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Probing Strongly Correlated Materials
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Principle Approaches
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Abstract Time-resolved spectroscopy has an emerging role among modern

material-characterization techniques. Two powerful theoretical formalisms for

systems out of equilibrium (and thus for time-resolved spectroscopy) are

Non-Equilibrium Green’s Functions (NEGF) and Time-Dependent Density Func-

tional Theory (TDDFT). In this chapter, we offer a perspective (with more empha-

sis on the NEGF) on their current capability to deal with the case of strongly

correlated materials. To this end, the NEGF technique is briefly presented, and its

use in time-resolved spectroscopy highlighted. We then show how a linear response

description is recovered from NEGF real-time dynamics. This is followed by a

review of a recent ab initio NEGF treatment and by a short introduction to TDDFT.

With these background notions, we turn to the problem of describing strong

correlation effects by NEGF and TDDFT. This is done in terms of model Hamil-

tonians: using simple lattice systems as benchmarks, we illustrate to what extent

NEGF and TDDFT can presently describe complex materials out of equilibrium

and with strong electronic correlations. Finally, an outlook is given on future trends

in NEGF and TDDFT research of interest to time-resolved spectroscopy.
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1 Time-Resolved Spectroscopy and the Case of Strongly

Correlated Materials

Exploring and exploiting the properties of matter is an activity as old as mankind

itself. Indeed, it can be easily argued that the development of civilization(s) has

crucially depended on finding (also by chance) novel ways to deal with matter in

different forms. In a modern perspective, such activities are broadly referred to as

materials science.

Progress in materials science has always been driven by defining experimental

discoveries: notable examples across history are glass, bronze, steel, plastic, semi-

conductors, and, very recently, graphene, to name but a few. On the theoretical side,

a crucial advance was the recognition that many materials properties can be

understood, predicted, or even manipulated by taking into account the atomistic

nature of matter. A subsequent milestone in the theoretical development was the

advent of quantum mechanics. The latter provides a description of matter at the

microscopic, quantum level, thus radically changing the way we investigate mate-

rials properties. Nowadays, well established and traditional subfields of materials

science, such as, e.g., metallurgy, tribology, catalysis, and energy storage, all

benefit greatly from the conceptual backbone provided by quantum mechanics.

This also holds for the spectroscopical characterization of materials, the central

topic of this book.

From the theoretical point of view, what is definitely needed in today’s materials

science is an accurate (and preferably predictive) quantitative description of mate-

rials properties under a vast range of external conditions and operating regimes.

There are several reasons why this is not easy to accomplish. To mention a few, the

material of interest often has a complex crystal or magnetic structure (sometimes

with controlled or random inhomogeneities, i.e., long range order may be missing),

and this requires one to consider large structural units, with very many atoms, thus

rendering numerical simulations very expensive, if not prohibitive.

In other cases, the functional property of interest requires one to consider several

lenght scales and timescales together, an extremely challenging situation to theoretical
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treatments. Furthermore, novel properties often result frommaterials where the role of

interactions among electrons and between electrons and lattice vibrations are

non-negligible. Here, an accurate quantitative description of many-body effects is

mandatory (solving this problem in general is one of the great challenges of current

condensed matter research) to describe spectroscopy experiments.

Finally, describing and predicting the behavior of materials out of equilibrium

(i.e., in their actual operating regime) is considerably more complicated than in the

equilibrium case; for example, the presence of time-varying external fields removes

translational time invariance, adding considerable complexity to the theoretical

description.

One of the most versatile theories to describe materials at the microscopic level

is Density-Functional Theory (DFT) in the Kohn–Sham (KS) formulation. In

principle exact (in practice, approximate exchange-correlation (XC) potentials

need to be used), this approach provides a good account of several basic properties,

e.g., inter-atomic distances, cohesive energies, structural phase transitions, and

band-structure dispersion, often attaining quantitative agreement with experiment.

However, for materials with strong correlation effects among the electrons, success

is considerably more limited (we mention in passing another typical problem of KS

band-structure calculations, namely the band gap in semiconductors and insulators

is considerably underestimated with respect to its experimental value). As a result, a

great deal of current theoretical developments in ab initio methods has to do with

how to overcome these (and other) shortcomings of the available DFT treatments.

This is especially important to describe excited states and the spectroscopical

behavior of materials, which are the main subjects of this book. A common

denominator of Chaps. 1–8 of the book is a discussion of the currently available

ab initio approaches that can be used in spectroscopy, e.g., for optical and photo-

emission spectra. Different avenues are discussed, such as novel functionals, the

extension of DFT to the time-dependent case with Time-Dependent Density Func-

tional Theory (TDDFT), and many-body approaches based on propagator methods.

A second, transversal theme in the book is how to deal with materials where

correlations among electrons are important, if not pivotal, for a correct interpreta-

tion of the spectroscopic data.

For DFT-based approaches, a central open issue is how to go beyond current

approximations for the XC potential (see, e.g., the contributions by Kronik and

Kümmel, Dabo et al., Isseroff-Bendavid and Carter, and Şaşıoğlu et al. in this

book). As shown in the chapter by Pastore et al. in this book, progress in this

direction is key to a realistic description of complex functional materials. Another

relevant issue in DFT and TDDFT approaches is how to treat excited states; in this

case, it is important, at the linear response level, to devise improved exchange-

correlation kernels in TDDFT susceptibilities, instead of solving the full many-

body Bethe–Salpeter equation (see, e.g., the chapter by Sharma et al. in this

book for excitonic effects in optical absorption spectra).

On the other hand, for ab initio many-body approaches based on perturbative

schemes, a central role is played by the GW approximation (see, e.g., the contri-

butions by Bruneval and Gatti, Isseroff-Bendavid and Carter, Şaşıoğlu et al., and
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Kronik and Kümmel) which, with its wide range of applicability, currently is in

many respects the method of choice to deal with complex materials. The screened

exchange of the GW approximation cures several shortcomings of DFT treatments

based on local and semi-local potentials, but is unable to describe correctly local

correlations in strongly correlated systems. For this latter case, great improvements

have been obtained in terms of non-perturbative or embedding schemes, as

discussed in detail in the chapters by Biermann and by Isseroff-Bendavid and

Carter in this book. Important aspects of the physics of strongly correlated systems,

e.g., metal-insulator transitions due to electron correlations, or magnetic order and

spin excitations, can also be addressed successfully (for this latter aspect, see also

the chapter by Şaşıoğlu et al. in this book).

In Sects. 1–8, spectroscopic techniques and materials properties are primarily

discussed in the frequency domain. This is very suitable for the linear response

regime, where quantities such as correlation functions, spectral functions, absorp-

tion coefficients, etc., yield a wealth of information about the near-equilibrium

properties of a system. And yet, spectroscopical information about excited states

can also be directly obtained by performing experiments in the time domain. This

is, for example, the case of the so-called pump-and-probe time-resolved spectros-

copies which, with ultrafast probes, aim to reveal directly features from highly

excited states in the electron/hole dynamics in a material. From the theoretical point

of view, describing such experiments requires the use of non-equilibrium, time-

dependent approaches, and an inherent key aspect is how to take properly into

account the correlated electron dynamics. Addressing this issue, as relevant to time-

dependent spectroscopies, is the main aim of this chapter.

2 Plan of This Chapter

For our discussion of time-dependent spectroscopies, we need to introduce several
concepts, and to compare and apply different methodologies to several different
physical systems. It may thus be useful for the reader to rely on the present section
as a sort of guidance through the different parts of the chapter.

In what follows, we will consider two methods which have great potential to

describe time-resolved spectroscopy at the ab initio level: the non-equilibrium

Green’s function (NEGF) technique (in the following, we also refer to it as the

Kadanoff–Baym equations (KBE), see below) and TDDFT. Due to the expanding

capability of computers, full numerical solutions of the KBE are starting to appear

although, primarily, for model systems. Different is the case of TDDFT, which has

been extensively applied to materials characterization (mostly in a linear response

framework; studies of the real-time dynamics of materials via ab-initio TDDFT still

are less common). The performance of both NEGF and TDDFT relies on an

accurate treatment of a pivotal ingredient (the self-energy for the NEGF and the

XC potential for TDDFT), and good progress has been made in dealing with a broad

range of systems; however, for materials out of equilibrium (e.g., in time-resolved
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spectroscopy experiments), ab initio TDDFT and NEGF treatments of strong

electronic correlations currently remain rather inadequate. In this situation, it may

also be useful to analyze results from simple, strongly correlated model systems, to

gain qualitative insight into the problem. This is the perspective adopted here,

where in our discussion we interchangeably make use of notation and concepts

from the general ab initio case and/or from model-system treatments.

The emphasis of our presentation will be different for the two methods: we will

devote more space to the principles of the NEGF technique (which has not been

considered in the rest of the volume) than to TDDFT (for a thorough discussion see

the contribution by Sharma et al.). However, in the final part of this chapter, the

results from both methods for simple models will be discussed on an equal footing

to contrast different qualitative aspects of electronic correlations and how success-

fully they are currently dealt with within NEGF and TDDFT approaches.

In more detail, the rest of this chapter is organized as follows. (i) We start with a

short introduction of time-resolved spectroscopy (Sect. 3) to indicate the quantities

of interest within the NEGF approach. (ii) We then present the basic notions of the

NEGF-KBE formalism in Sect. 4. (iii) In Sect. 5, the linear response regime is

discussed from the NEGF perspective (this shows the potential advantage of

solving the KBE even in the linear-response regime, thus avoiding the direct

solution of a Bethe–Salpeter equation). (iv) We briefly review a recent ab initio

study in Sect. 6 to show the state-of-the-art of NEGF implementations for real

materials. (v) We then resort to model (Hubbard-type) Hamiltonians to address

strong correlation effects out of equilibrium (Sect. 7). (vi) This is followed by a

short review of lattice (TD)DFT, within and beyond the linear response regime in

Sect. 8, to deal with strongly correlated lattice models in Sect. 9. (vii) We use recent

benchmark results, which illustrate the importance of both non-perturbative and

non-adiabatic effects in real-time dynamics, to contrast the respective advantages

and current limitations in TDDFT and/or NEGF formulations (Sect. 9) when

electronic correlations are important. (viii) This is followed by our conclusions

and outlook in Sect. 10.

3 Time-Dependent Spectroscopies in General and NEGF

Time-resolved spectroscopy is the name broadly given to a set of experimental tools

that allow for the measurement of time-resolved quantities in photo-excited sys-

tems. Common examples are time-resolved infrared or fluorescence spectroscopies

and studies of photo-induced chemical reactions, relaxation processes of excited

states in metals, semiconductors, and complex materials. Electron relaxation driven

by electron–electron and electron–lattice scattering has been observed for quite

some time in experiments from ordinary metals and semiconductors. However, in

many other systems, the electron dynamics may be much faster, and one needs a

time resolution on the femtosecond or even attosecond scale. Here, we wish to

illustrate briefly some theoretical concepts necessary for a description of these
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experimental techniques in terms of NEGF. Our concise presentation in this section

is based on [1–3]. As, additional, general reference sources, we also mention the

papers [4, 5] and the reviews in [6, 7].

Femtosecond resolution can be achieved by ultrafast optics and a frequently used

technique is the so-called pump-probe setup. The pump pulse brings a sample out of

equilibrium, and the excited states subsequently start to decay. During this transient

period, a very short probe pulse is used to take a snapshot of the sample. The time

delay tp between the pump pulse and probe is usually well controlled.1 For higher

time resolution, shorter and more intensive laser pulses are needed. The most

advanced techniques generate sub-10 fs pulses in the visible and infrared spectrum.

Nowadays, attosecond resolution is generated by controlled light fields, and

sub-femtosecond pulses (electron or X-rays) can be reached. The pulses can either

be used as pump or as probe; therefore, there is no restriction due to femtosecond

light-envelopes as for the case of ultrafast optics [7]. Attosecond pump-probe

experiments are also promising candidates for future better resolution of the

electron–lattice interaction processes.

Quantities from ultrafast spectroscopy cannot be calculated by a straightforward

use of the linear-response formalism in frequency space, essentially for two

reasons.

1. First, the processes are inherently time-dependent and this can be accounted for

by the two-time, time-dependent Green’s function G<(t1, r1, t2, r2). This quan-
tity is the central concept of the NEGF technique, and is discussed in good detail

in the next section. Here, suffice it to say that the Green’s function contains

information about excitations in the sample, and is related to the density matrix

via

ρ t1; r1; r2ð Þ ¼ �iG< t1; r1; t1; r2ð Þ, ð1Þ

for real time t1. The one-time density matrix does not treat the energy as an

independent variable, whereas the two-time Green’s function does. The

two-time structure is crucial for the description of the inherent time-dependence.

A very important two-time quantity is defined as

A 1; 2ð Þ ¼ i G> 1; 2ð Þ � G< 1; 2ð Þ½ �, ð2Þ

which is a combination of the lesser and greater Green’s functions (see the next

section). In equilibrium, A becomes the spectral function. In the Wigner repre-

sentation, where one has t ¼ t1 � t2 and T ¼ t1þt2
2

and the dependence on t is

transferred to the energy space ω, A might be referred to as “T-time dependent

1A good control is highly desirable, since the energy and tuning of the perturbing fields also affect

the spectrum characteristics. For example, in time-resolved two-photon photoemission spectros-

copy, the energy shift between the photon energies of the pump and probe permits one to relate

peaks in the spectrum with initial and/or intermediate states [6].
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spectral function” A(T, ω, r1, r2). In equilibrium, or in the steady state,

A becomes independent of T, and depends only on ω. A time-dependent pole

structure in the “spectral function” gives us the information about the addition/

removal energies.

2. Second, we are dealing with processes that involve strong interactions between

the probe and the system. Examples are (strongly) nonlinear optics, attosecond

dynamics, ionization yields, high-harmonic generation, and quantum control of

electronic/ionic processes. In principle the NEGF technique is a tool for com-

puting the effect of correlations beyond linear response, since the external fields

(both pump and probe) are treated non-perturbatively. The complex dynamics

of the pump pulse can somehow expediently be avoided by making use of a

non-equilibrium initial density matrix ρ(t) ¼ � iG<(t, t) or by performing an

interaction quench [3, 8]. This second prescription attempts to imitate the initial

condition of the excited system and thus one can focus only on the relaxation and

interaction with the probe (however, in this way only a qualitative picture of the

effect of the pump can be expected). Yet, we wish to emphasize that the NEGF

approach (as presented in Sect. 4) can describe in full generality the dynamics

induced by both the pump and the probe, starting from the true equilibrium state.

In femtosecond and attosecond spectroscopy there are two main experimental

techniques, Time-Resolved Optical Spectroscopy and Time-Resolved Photoemis-

sion Spectroscopy. They both make use of the pump-probe setup, while differing in

the probe technique. We now wish to illustrate where and how connections with the

NEGF appear in the theoretical formulation for these two spectroscopies. Our

discussion and notation closely follow [1–3].

In optical spectroscopy, after the medium is driven out of equilibrium by the

pump pulse, one studies the dynamical response to the light probe. The probe field

is supposed to be weak, and we use linear response to investigate the change δj of a
current jα(r, t) driven by a variation of the probe field δEβ(r, t) (α, β label space-

components, and summation is implied for repeated indexes):

δjα r; tð Þ ¼
ð t

�1
dt0σαβ t; t0ð ÞδEβ r; t0ð Þ: ð3Þ

The optical conductivity σαβ(t, t0) is defined via the susceptibility response

function χαβ t;�tð Þ as

σαβ t; t0ð Þ ¼ �c

ð
t0

1
d�tχαβ t; �tð Þ, ð4Þ

consistent with causality constraints [1]. For the susceptibility response function,

the following relation holds:

χαβ t; t0ð Þ ¼ δ jα tð Þh i
δAβ t0ð Þ ¼

X
kσ

i

V

δvαkσ tð Þ
δAβ t0ð Þ G

<
kσ t; tð Þ þ vαkσ tð Þ δG

<
kσ t; tð Þ

δAβ t0ð Þ
� �

, ð5Þ
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where Aβ(t) denotes the vector potential component E ¼ �1
c

∂A
∂t

� �
, Gkσ

< (t, t) the

lesser Green’s function in the k-representation (see the next section), and the

electron group velocity vαkσ(t) accounts for the details of the band structure and

for the presence of the electric field. The expression for χ (see [1, 3] for a full

derivation) clearly shows the connection between the NEGF and the optical con-

ductivity through the susceptibility function.

In photoemission spectroscopy, the pump pulse excites the system to a general

non-equilibrium state and then, after a delay tp, a probe pump of specific shape and

finite duration is used to induce an emission of electrons from the sample. The

photoemission signal intensity as a function of tp is related to the NEGF. The time-

resolved photoemission signal is defined as the total number of electrons that are

emitted per solid angle dΩk̂ e
and energy interval dE [2, 3]

I k̂e;E; q; tp
� � ¼ dN k̂e;E; q; tp

� �
dΩk̂e

dE
, ð6Þ

where k̂e is the direction vector of the electron momentum ke ¼ k̂eke, and q is a

specific wave vector of the probe pulse. The photoemission caused by the pump

pulse is not considered because the pump radiation is chosen such that its photons

do not have sufficient energy to overcome the work function Φ of the sample [9].

The photoemission is described by a model which consists of three parts (we use

standard second quantization notation; for more detailed definitions see the next

section): Ĥ ¼ Ĥsolid tð Þ þ Ĥfree þ Ĥcoupl: tð Þ. Ĥsolid describes the electrons in the bulk

(see, e.g., (10)), while Ĥfree ¼
P

keσ
Eþ Φð Þϕ̂ {

keσ
ϕ̂ keσ describes electrons emitted to

the vacuum with asymptotic state with momentum ke. The last part Ĥcoupl: connects

the free-electron states with momentum ke to the bulk ones with momentum k via

the absorption of a photon with momentum q:

Ĥcoupl: tð Þ ¼ S t� tp
� � X

k, ke, σ
M k; q; keð Þeiωqtϕ̂{

keσ
ψ̂ kσ þ h:c:, ð7Þ

where ωq ¼ cq and the transition matrix M is expressed in terms of the electro-

magnetic coupling A � p. The function S(τ) describes an envelope function of the

probe pulse centered around τ ¼ 0.

The relation between the photoemission signal and the NEGF has a simple form

in the so-called sudden approximation, where there is no direct interaction between

the bulk and free emitted electrons. Otherwise, in a more general and complete

treatment, a three-current correlation function is needed [4, 5], which can be

evaluated within the NEGF scheme. In the sudden approximation, where the

probe is considered as a weak perturbation, the intensity takes the form [2, 3]

I k̂e;E; q; tp
� � ¼ X

k, σ
δkjjþqjj,kejj Ik,σ E� ωq � Φ; tp

� �
, ð8Þ
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Ik,σ Ω; tp
� � ¼ �i

ð
dt

ð
dt0S tð ÞS t0ð ÞeiΩ t0�tð ÞG<

kσ tþ tp, t
0 þ tp

� �
: ð9Þ

In Eckstein and Kollar [2], in deriving (8) and (9), two additional assumptions

were made: (a) one is dealing with a translationally invariant system, i.e.,

Gkσ
< (t, t0) ¼ Gkσ,kσ

< (t, t0) and (b) a constant form for M k; q; keð Þ ¼ Mδkjjþqjj,kejj is

considered. A more involved expression holds for the non-homogeneous case, and

when dispersion in the transition matrix element is kept. However, these more

technical issues are not especially relevant for our main deliberations here, which

were to illustrate a direct connection between time-resolved photoemission signal

and the NEGF.

To summarize, for a full description of the pump-probe technique it is necessary

to go beyond linear response. In full generality, the NEGF technique is able to take

into account the pump and probe pulses (the external fields) non-perturbatively. As

we will see in Sect. 4, this requires a double-time-integration of the equation of

motion for the two-time, non-equilibrium Green’s function (i.e., the KBE). In the

past, this was basically impossible, because there was insufficient computational

power, and thus only primarily linear response calculations. However, once the full

solution of the KBE becomes tractable with computers, the near-equilibrium

properties can be accessed via NEGF. The connection between NEGF and linear

response theory helps to solve the Bethe–Salpeter equation very effectively, even

for advanced kernels. The reason is that a simple kernel in the KBE is translated

into a very complicated kernel in the Bethe–Salpeter equation [10, 11]. These

points are discussed in more detail in the following sections.

4 General Aspects of Kadanoff–Baym Formalism

We wish now to briefly present the main features of NEGF (also referred to as

Kadanoff–Baym or Keldysh formalism). Motivated by pump-probe experiments

(see Sect. 3) we are interested in the evolution of a general non-equilibrium system

after (pump) or during (probe) the influence of external fields. Such a system is

described by the general Hamiltonian (in atomic units ℏ ¼ m ¼ e ¼ 1)

Ĥ tð Þ ¼
ð
dxψ̂{

�
x
� �i∇þ A x; tð Þ½ �2

2
þ Φ x; tð Þ � μ

0
@

1
Aψ̂

�
x
�

þ
ð ð

dx1dx2ψ̂{ x1ð Þψ̂{
�
x2
�
V̂
�
x1, x2

�
ψ̂
�
x2
�
ψ̂
�
x1
�

þ
ð
dx V̂el:�ph: xð Þψ̂{

�
x
�
ψ̂
�
x
�
ϕ̂
�
x
�

þ
ð
dx

1

2
_̂ϕ
2

xð Þ þ 1

2
∇ϕ̂
� �2

xð Þ
0
@

1
A

¼ Ĥ 0 þ Ĥinter: þ Ĥext: tð Þ þ Ĥel:�ph: þ Ĥph:,

ð10Þ
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where μ is chemical potential, ψ̂{ xð Þ=ψ̂ xð Þ are creation and annihilation operators

of the fermionic field which is coupled to the gauge field (Φ(x), A(x)), and the

density operator ϕ̂ xð Þ � b̂ xð Þ þ b̂{ xð Þ� �
represents the bosonic field for the pho-

nons. The terms Ĥ0, Ĥinter:, Ĥext:, and Ĥph:, respectively, describe Bloch electrons,

the interactions among electrons (responsible for the electron–electron scattering),

the external fields (responsible for the effect of the pump and probe fields during a

spectroscopy experiment), and the free phononic field. The interaction between the

electrons and the lattice vibration is described by the electron–phonon coupling

term Ĥel:�ph: [12] (in the following, electron–lattice interactions are explicitly

considered only in Sect. 6). For a macroscopic system described by the Hamilto-

nian of (10), a full solution for the many-body wave function cannot, in general, be

obtained. In contrast, one-body or two-body quantities, such as currents or density–

density correlation functions, are still of great interest, but also much easier to

determine. The central quantity in the NEGF is the non-equilibrium Green’s

function G(t1, t2), from which, for example, the addition/removal spectrum, the

density, and the current can be extracted. Due to the two-time dependence, the

Green’s function contains a significant amount of information. However, with this

complexity, computational costs for a solution are high, and represent a serious

bottleneck when trying to perform ab initio simulations.

The causal Green’s function G(1,2) is usually defined as

G 1; 2ð Þ ¼ �iTr ρ̂Tψ̂ 1ð Þψ̂{ 2ð Þ� �
, ð11Þ

where ψ̂{ 2ð Þ=ψ̂ 1ð Þ denotes a creation/annihilation operator in the Heisenberg pic-

ture and the symbol 1 ¼ (t1, r1, σ1) is a combined time-space-spin index. Tr

denotes summation over a complete basis weighted by the density matrix ρ̂ and

T is a time ordering operator, which requires a generalization for non-equilibrium

systems.

Instead of the causal Green’s function, we are more interested in the lesser

Green’s function G<(1, 2) defined for both equilibrium and non-equilibrium as

G< 1; 2ð Þ ¼ iTr ρ̂ ψ̂{ 2ð Þψ̂ 1ð Þ� �
, ð12Þ

now without time ordering T. This is motivated by the following connection with

the density matrix:

ρ t; r1; σ1; r2; σ2ð Þ ¼ �iG< t; r1; σ1; t; r2; σ2ð Þ
¼ Tr ρ̂ ψ̂{ t; r2; σ2ð Þψ̂ t; r1; σ1ð Þ� �

: ð13Þ

In experiments, before the external fields are applied, the system is prepared in

equilibrium. The initial density matrix then takes the form of the Gibbs grand

canonical distribution, and the lesser Green’s function reads
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G< 1; 2ð Þ ¼ i
Tr e�βĤ t0ð Þψ̂{ 2ð Þψ̂ 1ð Þ

n o
Tr e�βĤ t0ð Þ� � , ð14Þ

where the chemical potential μ is inside the initial Hamiltonian and the inverse

temperature β are related to the initial conditions. It should be stressed at this point

that the initial Hamiltonian Ĥ t0ð Þ ¼ Ĥ 0 þ Ĥint: þ Ĥel:�ph: þ Ĥph: at time t0 does not
contain external fields, but the evolution of the operators is treated in the Heisen-

berg picture with respect to the full Hamiltonian Ĥ tð Þwhere the fields are included.
If there are no external fields, the system remains in equilibrium and evolves

according to Ĥ t0ð Þ, and we end up with the usual equilibrium Green’s functions,

i.e., the finite temperature formalism. Moreover, if the system is in its ground state

we end up with ground-state Green’s functions, i.e., the zero temperature

formalism.

Historically, the development of Green’s function theory for non-equilibrium

systems was preceded by ground state theories at zero temperature (Feynman [13],

Dyson [14], Wick [15]) and the equilibrium theories for finite temperature

(Matsubara [16]). Both of them account for interactions, while being conceptually

distinct in important ways. The theory for zero temperature introduces an artificial

adiabatic interaction switching procedure, and the finite temperature theory uses the

similarity of the grand-canonical and evolution operator. As a consequence, the

Feynman theory covers evolution in real-time whereas Matsubara theory covers

evolution within a segment [t0, t0 � iβ] using imaginary time (see the imaginary-

time and real-time contours in Fig. 1).

The question is then how to incorporate time-dependent perturbations Ĥext: tð Þ.
The two theories mentioned cannot be directly generalized. In the zero-temperature

theory, the adiabatic procedure fails when the external field is applied. Briefly, one

cannot easily connect states in the past and future as in the ground-state case. In the

finite temperature theory, the evolution in imaginary time obviously starts to be an

issue because of the real-time dependence of the external fields. The problem of

how to perform time-evolution from initial equilibrium can be solved by introduc-

ing a so-called Schwinger–Keldysh contour, depicted in Fig. 1. The idea was

pioneered by Schwinger [17] followed by Kadanoff–Baym [18], popularized by

Konstantinov and Perel [19] and Keldysh [20], and in a clear way was reviewed by

Danielewicz [21].

The concept of Schwinger–Keldysh contour: In the zero-temperature theory, the

mean value of an operator Ô averaged over the interacting ground state jψ I
0i is

given by
�
ψ I
0

		Ô tð Þ		ψ I
0



. The latter expression can be formally written as a time-

evolution with adiabatically switched on/off interactions
ψ ijS 1;0ð ÞÔ tð ÞS 0,�1ð Þjψ ih i

ψ ijS 1,�1ð Þjψ ih i
where jψ ii is the initial state in the infinite past. At time t ¼ 0 we reach the fully

interacting system. The time evolution is without the external force, and thus
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S t0; tð Þ ¼ Te
�i
Ð t0

t
Ĥpert: τð Þdτ

, where the perturbed Hamiltonian Ĥpert: tð Þ ¼ Ĥinter: tð Þ is

in the interaction picture with respect to Ĥ 0. The operator T orders times as shown

by the arrow in the real-time contour in Fig. 1). We use the fact that, in the zero

temperature formalism, there exists a simple connection between the initial state

|ψ ii and the final state |ψ fi in the infinite future, i.e., jψ f i ¼ ψ ij i
ψ ijS 1,�1ð Þjψ ih i. Going

from the Heisenberg’s picture Ô tð Þ to the Dirac’s interaction picture Ô t, one can

rewrite the average as
ψ ijS 1;tð ÞÔ tS t,�1ð Þjψ ih i

ψ ijS 1,�1ð Þjψ ih i . The time evolution of any observable

O(t), making use of T, can then simply be written as
ψ ijT Ô tS 1,�1ð Þð Þjψ ih i

ψ ijS 1,�1ð Þjψ ih i . We should

mention here that above idea is rigorously proved by the Gell–Mann-Low

theorem [22].

Fig. 1 The real-time contour (top), the Round trip contour (center) given by distortion of the real-
time contour, the imaginary-time contour t ∈ [t0, t0 � iβ] (bottom left), and the Schwinger-

Keldysh contour (bottom right). Each contour has its own time-ordering, according to the inherent

contour orientation (the arrows on the contours). Interactions can be taken into account within

each of these contours. At time text. we switch on the external fields and the system is driven out of

equilibrium; this can be implemented in the upper branch of the Round trip contour. On the lower

branch of the Round trip contour we switch off the fields and end up with the initial equilibrium

state. In the Schwinger-Keldysh contour there is no necessity for an adiabatic interaction switching

because interactions can already be included within the vertical imaginary track
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If the system undergoes a time-evolution under the influence of an external field,

then the system is no longer in equilibrium, and thus it ends up in a final state which

is not connected to the initial one. The connection jψ f i ¼ ψ ij i
ψ ijS 1,�1ð Þjψ ih i no longer

applies; the real-time contour is not suitable. In order to get the average value over

the initial states, we do the time evolution according the Round trip contour; see

Fig. 1. It is obvious that in this contour the final state is the same as the initial one,

because we are going back and forth between time t0 ¼ � 1 and time of interest t.

The evolution of the operator Ô tð Þ can thus be simply written as
ψ ijTR Ô tS �1,�1ð Þð Þjψ ih i

ψ ijS �1,�1ð Þjψ ih i . The time TR ordering corresponds to the Round trip contour.

In this way, we get the same formal expression hψ ij . . . jψ ii for both the zero

temperature and the non-equilibrium theory.

Why do we also include the vertical track? In general the initial state can be a

thermal-equilibrium interacting state. Then we handle this state in the spirit of

Matsubara theory by adding the vertical track of the Matsubara formalism. In this

way we do not need to switch on/off adiabatically the interaction in the Round trip

contour and thus the evolution does not need to start in the infinite past.

The Schwinger–Keldysh contour γ thus consists of three branches. The evolution
in the horizontal branches corresponds to propagating in real time from t0 to the

times of interest (t1 and t2), then going backwards to the initial time t0. This can be

summarized as

ψ̂{ 2ð Þψ̂ 1ð Þ ¼ U t0; t2ð Þψ̂{ r2ð ÞU t2; t1ð Þψ̂ r1ð ÞU t1; t0ð Þ, ð15Þ

where ψ̂{=ψ̂ are now in the Schrödinger picture (the time evolution is in the

presence of the external force and this is accounted for by the operator U t0; tð Þ ¼
TRe

�i
Ð t0

t
Ĥ 0þĤpert:

�
τ
��

dτ
�

with perturbed Hamiltonian Ĥpert: tð Þ ¼ Ĥinter: þ Ĥext:

� �
tð Þ;

TR orders times as shown by the arrow in Fig. 1).

The third part of the contour comes from finite temperature theory. The equi-

librium statistical operator is

ρ̂ ¼ e�βĤ t0ð Þ

Tr e�βĤ t0ð Þ� � ð16Þ

and includes the effect of the interactions in the initial equilibrium state (initial

correlations). Taking this into account leads to the lesser non-equilibrium Green’s

function

G< 1; 2ð Þ ¼ i
Tr U t0 � iβ, t0ð ÞU t0; t2ð Þψ̂{ r2ð ÞU t2; t1ð Þψ̂ r1ð ÞU t1; t0ð Þ� �

Tr U t0 � iβ, t0ð ÞU t0; t0ð Þf g : ð17Þ

Probing Strongly Correlated Materials in Non-equilibrium: Basic Concepts and. . . 359



where the time evolution in the vertical branch is indicated by U t0; tð Þ (the

time evolution is without the external force and this is accounted for by the operator

U t0; tð Þ ¼ Tβe
�i
Ð t0

t
Ĥ 0þĤpert:

�
τ
��

dτ
�

with perturbed Hamiltonian Ĥpert: tð Þ ¼ Ĥinter: tð Þ;
Tβ orders times as shown by the arrow in the vertical track in Fig. 1).

Returning to the causal Green’s function, we need to change our naive definition

in (11), since it contains the time-ordering operator T inspired by Feynman’s

theory. For the Schwinger–Keldysh contour, we need to generalize (11). All

evolution operators (either U or U ) can be formally joined into one time-ordered

exponential as

G 1; 2ð Þ ¼ �i
Tr

n
TCe

�i
Ð
γĤ τð Þdτ

ψ̂t1 r1ð Þψ̂{
t2 r2ð Þ

o
Tr

n
TCe

�i
Ð
γĤ τð Þdτo : ð18Þ

We stress here that ψ̂ t1=ψ̂
{
t2 are not in Heisenberg picture. Here, t1 and t2 are on

the Schwinger–Keldysh contour and TC order times on the contour; for example,

t1 <C t2 means that going from t0 to t0 � iβ one meets t1 earlier than t2 [23, 24]. For
such a definition of G the structure of the equilibrium formulation is preserved, and

we can apply Wick’s theorem, many-body perturbation schemes, the Dyson’s

equation, the renormalization procedure, etc. The Dyson equation for the causal

Green’s function

G 1; 2ð Þ ¼ G0 1; 2ð Þ þ
ð
γ
G0 1; 3ð ÞΣ 3; 4ð ÞG 4; 2ð Þd3d4 ð19Þ

defines the self-energy Σ ¼ G�1
0 � G� 1, where the integration is over the

Schwinger–Keldysh contour γ with time-ordering fixed by TC. The Dyson integral

equation can be converted to its differential form

G0 1; 2ð Þ�1G 1; 2ð Þ ¼ δ 12ð Þ þ
ð
γ
Σ 1; 4ð ÞG 4; 2ð Þd4, ð20Þ

more explicitly

i
∂
∂t1

� H0 � u 1ð Þ
� �

G 1; 2ð Þ ¼ δ 12ð Þ þ
ð
γ
Σ 1; 4ð ÞG 4; 2ð Þd4, ð21Þ

which is usually solved by propagation from the initial state given by the solution of

the equation in imaginary time. The external fields are denoted by u(1) and are

treated non-perturbatively. The self-energy, on the other hand, accounts for the
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effects of the electron–electron and the phonon–electron interaction and is usually

approximated.

Such approximations for Σ are usually constructed via a selection of terms from

a perturbation series for Σ[G0] in terms of the free propagator G0. This is followed

by a renormalization procedure where, in the so-called skeleton diagrams, the free

propagators are replaced by the full Green’s function. This gives a final, self-

consistent approximation Σ[G].
Another way to access an approximate Σ[G] makes use of the equation of motion

for G:

i
∂
∂t1

� H0 � u 1ð Þ
� �

G 1; 2ð Þ ¼ δ 12ð Þ � i

ð
γ
V 1þ; 3ð ÞG2 1; 3; 3þ; 2ð Þd3, ð22Þ

where the two-particle Green’s function G2 couples to the one-particle G and where

3+ is infinitesimally later than 3 on the contour. This method is referred to as the

functional derivative method (see, e.g., the monograph by Kadanoff and Baym

[18]). In this approach, the self-energy is viewed as a decoupling scheme for the

two-particle Green’s function G2 � ψ̂{ψ̂{ψ̂ ψ̂
� 


in the Schwinger–Martin [17]

hierarchy, in terms of G and the interaction V. The way to decouple G2 is not

obvious a priori and can be done in different ways.

One obvious possibility is to use for the non-equilibrium case the approxima-

tions already known from equilibrium. Among these, very common ones are the

self-consistent Hartree, Hartree–Fock, 2nd-Born, GW, and T-matrix approxima-

tions. These perturbative schemes conserve macroscopic quantities such as the

number of particles, momentum, angular momentum, and energy [23, 25, 26],

which are very desirable (in fact, crucial) properties in out-of-equilibrium treat-

ments. Non-conserving approximations are also common, in cases where conden-

sation occurs, for example in superconductors, where the decoupling is called

anomalous [27].

It was shown that conserving approximations could be derived from a potential

Φ, and for this reason, they are also called Φ-derivable approximations. The first

and second functional derivatives of Φ are the self-energy Σ and the kernel Γ,
respectively, which will be discussed later in Sect. 5 in connection to the Bethe–

Salpeter equations; see Fig. 2. The T-matrix ladder approximation is usually used

for systems with short-range interactions (or in the dilute limit), while, in the GW

approximation (which takes into account the screening effects in solids and is

largely used, e.g., for semiconductors), the adopted point of view is that a first-

order expansion in the screened interaction should be more successful than one in

terms of the bare Coulomb interaction.

Numerical integration of the Kadanoff–Baym equations: We sketch here the

procedure to integrate numerically the KBE. To get G at all times t1, t2, we consider
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i∂t1 � h 1ð Þð ÞG 12ð Þ ¼ δ 12ð Þ þ
ð
γ
Σ 13ð ÞG 32ð Þd3, ð23Þ

�i∂t2 � h 2ð Þð ÞG 12ð Þ ¼ δ 12ð Þ þ
ð
γ
G 13ð ÞΣ 32ð Þd3: ð24Þ

The kernel Σ, for many-body approximations (MBA) based on partial summa-

tions such as those in Fig. 3, will in general be a contraction of the Green’s function

with another quantity which also obeys an auxiliary Dyson equation [29]. For

example, in the T-matrix approximation (TMA) for the particle-particle channel,

the expression for the self-energy is (V denotes the interaction)

ΣTMA 12ð Þ ¼ ΣHF þ i

ð
γ
V 13ð ÞG 43ð ÞT 34ð ÞV 42ð Þd34: ð25Þ

Apart from the Hartree–Fock term, Σ is expressed in terms of the T-matrix:

T 12ð Þ ¼ ϕ 12ð Þ �
ð
γ
ϕ 13ð ÞV 34ð ÞT 42ð Þd34: ð26Þ

The T-matrix is defined via a summation of ladder diagrams in the particle–

particle channel, up to infinite order. Such diagrams are represented in the right

hand column of Fig. 2 and in row c) of Fig. 3. The building block in summing these

diagrams is ϕ(12) ¼ � iG(12)G(12). The KBE integral equations and the equa-

tions for the self-energies are to be solved self-consistently at all times. The

Keldysh quantities involved in the KBE satisfy a set of symmetries that can be

used during the numerical time propagation. As an illustration, for G we have

G≷ 12ð Þ ¼ �G≷ 21ð Þ{, GR=A 12ð Þ ¼ GA=R 21ð Þ{, ð27Þ

Fig. 2 Examples of diagrams for the generating potential Φ[V, G], the self-energy Σ V;G½ � ¼ δΦ
δG,

and the kernel Γ V;G½ � ¼ δ2Φ
δG2 of the Bethe–Salpeter equation
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and similar relations hold for Σ and other auxiliary quantities (such as T, W, etc.).

Due to these symmetries, all quantities need only to be determined on the

lower/upper half of the time-square (see Fig. 3), during the time expansion from

Tp to Tp + Δ. Since the equations involve self-consistency, predictor-corrector

algorithms are employed.

One can treat ΣHF, the time-local part of the self-energy, together with the

non-interacting terms; that is, one defines h ¼ hþ ΣHF and thus explicitly, in the

KBE, only the correlation part Σc appears. This can also make the time-evolution

numerically more stable/accurate. For the sake of illustration, we use the symmetric

contour of Fig. 3 (other contours can be used; see [28, 30] for a discussion), where,

using the Langreth’s rules [31], the equation for G< becomes

i∂t1G
≶ t1; t2ð Þ ¼ h t1ð ÞG≶ t1; t2ð Þ þ I≶1 t1; t2ð Þ, ð28Þ

I≶1 t1; t2ð Þ ¼
ðt1
0

d �t Σ R
c t1; �tð ÞG≶ �t ; t2ð Þ þ Σ≶

c t1; �tð ÞGA �t ; t2ð Þ� �

þ 1

i

ðβ=2
0

d�τ Σ≶
c t1, � i�τð ÞG≶ �i�τ , t2ð Þ þ Σ≶

c t1, i�τð ÞG≶ i�τ , t2ð Þ� �
, ð29Þ

with contributions also from the vertical track (the memory-effects, due to initial

state correlations, during the time evolution); similar expressions read for the other

time arguments and time derivatives (when one of two time arguments is complex,

the collision integral I≶1 also has contributions from Matsubara’s propagators).

With h ¼ hþ ΣHF, it is expedient to define [32] a single-particle operator

S which satisfies i∂t1S t1; 0ð Þ ¼ h t1ð ÞS t1; 0ð Þ, with S(0, 0) ¼ S{(0, 0) ¼ 1 and

S t1; �tð ÞS �t ; t2ð Þ ¼ S t1; t2ð Þ. S is a matrix in the single-particle labels [32]. Using the

unitary gauge transformation G≶(t1, t2) ¼ S(t1, 0)g
≶(t1, t2)S

{(t2, 0), after some

algebra we arrive at the following expression for G> at time Tp + Δ:

Fig. 3 Top left: A type of Keldysh contour [28]. Bottom left: Time square. Right: MBA via partial

diagrammatic summations: (a) second Born approximation (BA); (b) GW approximation (GWA);

(c) T-matrix approximation (TMA). Exchange TMA diagrams are not shown
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G> Tp þ Δ, t2
� � ¼ S Tp þ Δ, Tp

� �
G> Tp; t2

� �
�iS Tp þ Δ,Tp

� �ð Δ

0

S{ �t þ Tp,Tp

� �
I>1 �t þ Tp, t2
� �

:
ð30Þ

Similar expressions hold for the other Green’s functions. To perform the actual

integration on the numerical time-grid, it is expedient to divide the time-step Δ in

N sub-intervals, to obtain

S Tp þ Δ,Tp

� � ¼ YN�1

j¼0

e�ih tjð ÞΔN ð31Þ

where ΔN ¼ Δ/N, tj ¼ Tp + ( j + 1/2)ΔN, and with h tð Þ evaluated with a four-point

extrapolation/interpolation. To solve (30) the integral is approximated numerically

with a low-order discretization formula. The other KBE are computed similarly, but

special care must be exerted for the diagonal contributions, when t1 ¼ t2. We defer

to the original literature for details [28–30, 32].

To summarize, solving the KBE (within a perturbative many-body scheme) in

the time interval [Tp, Tp + Δ] is accomplished in two nested loops. The outer loop

(which makes use of a predictor-corrector scheme) starts with an approximate

propagation of (23) and (24) to get an approximate eG. Then, via an inner loop,

self-consistency (for, e.g., T, see (26)) is achieved, where the quantities depend on

the input eG. The iterative process ends when self-consistency is achieved, and the

process restarts for the next time step.

5 Linear Response via the KBE

Is there any advantage in using the KBE for weak perturbations?
If the perturbation is weak and the linear order of the response to the perturbation

is sufficient (an example of weak perturbation is the probe pulse in time resolved

optical spectroscopy), the near equilibrium properties can be computed by linear

response theory (Kubo [33, 34]). In Kubo’s theory a response function satisfies the

so-called Bethe–Salpeter equation (see below), which can be solved in the fre-

quency domain. The solution is quite demanding to implement numerically and, in

general, this has mostly been done for relatively simple kernels. It turns out that the

KBE can also be used to perform linear response calculations, while avoiding the

direct solution of the Bethe–Salpeter equation.

In the linear regime, we are interested in the response of the NEGF to the small

variation of the perturbing potential u(t, r):

δG 1; 2ð Þ
δu 3ð Þ ju¼0

¼ �L 1; 3; 3þ; 2ð Þ ¼ �G2 1; 3; 3þ; 2ð Þ þ G 1; 2ð ÞG 3; 3þð Þ ð32Þ
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where L is called the response function and is related to the two-particle Green’s

function G2, which has already appeared in (22). Sometimes it is convenient

to generalize the equations to non-instantaneous (and non-local) external potentials

w(t, r, t0, r0)

δG 1; 2ð Þ
δw 4; 3ð Þjw¼0

¼ �L 1; 3; 4; 2ð Þ ¼ �G2 1; 3; 4; 2ð Þ þ G 1; 2ð ÞG 3; 4ð Þ, ð33Þ

to appreciate fully the structure of the time dependence. As mentioned before, the

central quantity in the NEGF is the non-equilibrium Green’s function G(t1, t2),
from which the addition/removal spectrum, the density, and the current can be

extracted. On the other hand, the key aspect in linear response theory is the

excitation spectrum, which can be extracted from the density–density response

function, χ 1; 2ð Þ ¼ δn 1ð Þ
δu 2ð Þju¼0

� ψ̂{ψ̂ ψ̂{ψ̂
� 


[35, 36]. The corresponding change in

the density, n(1) has the form

δn 1ð Þ
δu 3ð Þju¼0

¼ iL 1; 3; 3þ; 1þð Þ: ð34Þ

To see the connection with the NEGF we use the construction of the density

from the lesser Green’s function n(1) ¼ �iG<(1, 1) ¼ �iG(1, 1+) Then the ana-

lytic pieces of the response function are

δG< 1;1ð Þ
δu 3ð Þ

ju¼0, t1>Ct3

¼ �L 1; 3; 3þ; 1þð Þt1>Ct3
¼ �iχ>

�
1, 3

�
δG< 1;1ð Þ
δu 3ð Þ

ju¼0, t1<Ct3

¼ �L 1; 3; 3þ; 1þð Þt1<Ct3
¼ �iχ<

�
1, 3

� ð35Þ

The retarded density–density function is defined as

χR 1; 3ð Þ ¼ θ t1 � t3ð Þ χ> 1; 3ð Þ � χ< 1; 3ð Þð Þ, ð36Þ

and can be computed making use of the Bethe–Salpeter equation

L 1; 3; 4; 2ð Þ ¼ L0 1; 3; 4; 2ð Þ

�
ð
γ
L0 1; 5; 6; 2ð ÞΓ 6; 8; 7; 5ð ÞL 7; 3; 4; 8ð Þd5d6d7d8: ð37Þ

where L0(1, 3, 4, 2) ¼ �G(1, 4)G(3, 2). The equation, to be solved, requires an

approximation for the kernel Γ. However, even for rather simple kernels, this is a

difficult task because of the four-point structure of the equation. One way to

proceed is to devise kernels via the generating potential (see Fig. 2):
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δΦ

δG 2; 1ð Þ ¼ Σ 1; 2ð Þ, ð38Þ

δΣ 1; 2ð Þ
δG 4; 3ð Þ ¼ Γ 1; 3; 4; 2ð Þ, ð39Þ

and this ensures that the conservation laws [23, 25, 26] are obeyed.

On the other hand, one can extract the retarded density–density response func-

tion χR by inverting the integral

δ �iG< 1; 1ð Þð Þ ¼
ð1

t0

θ t1 � t3ð Þ χ> 1; 3ð Þ � χ< 1; 3ð Þð Þδu 3ð Þd3, ð40Þ

if one knows δG<(1, 1). The change in G< can be conveniently computed with the

NEGF. The equation is usually solved in the steady-state limit (where all quantities

depend on the time difference) using the Fourier transform:

δn ωð Þ ¼ χR ωð Þδu ωð Þ: ð41Þ

To mention an application, such a procedure was used [10] to characterize the

dipole moment of a molecule under the influence of an external electric field. In

terms of the response function transformed to the time domain, the dipole moment

for a field E0 in the direction z, reads (see [10] for further details)

d tð Þ ¼ E0

ð
z0χR r; r0; tð Þzdrdr0: ð42Þ

We conclude this section by noting that simple approximations for the KBE are

translated to highly non-trivial kernels of the BSE, and time-propagation of the

KBE offers a direct method to calculate response functions and excitation energies.

This can be of great relevance for first-principles treatments. An implementation of

the KBE at the ab initio level is discussed next.

6 A Recent Ab Initio Application of the KBE

We have seen that the full numerical solution of the time-dependent KBE requires

the evaluation and integration of several different double-time quantities on the

time square (t, t0). Computationally this can already be demanding for simple model

systems (see, e.g., the discussion in [29, 30, 37]): Thus, an appropriate question is

whether, for real materials, an ab initio solution of the KBE is possible at all.

If one is willing to specialize the treatment in some way, and to consider a

number of approximations, an ab initio KBE approach becomes viable. This

strategy, which paves the way to a systematic KBE treatment of materials (with
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electronic and lattice structures fully taken into account), was recently introduced

[38, 39] and applied to Si bulk; its main aspects are briefly reviewed here, following

closely the presentation style and notation of the original works [38, 39].

To circumvent the issue of a computationally costly double-time structure, one

can specialize the KBE to the t ¼ t0 axis in terms of a time derivative with respect to

both time arguments. Also, in an ab initio approach, it is convenient to express all

quantities in a KS basis {φmk(r)}. For example, in the KS basis, the Green’s

function is expressed as

G 1; 2ð Þ ¼
X
nn0,k

φ�
nk

�
r1
�
Gnn0k t1; t2ð Þφn0k r2ð Þ: ð43Þ

The KS basis is obtained by solving the KS equations

�∇2

2
þ VKS rð Þ

 �
φmk rð Þ ¼ εmkφmk rð Þ, ð44Þ

where VKS describes the effect of the ionic potential and of the electron–electron

interactions (schematically, VKS ¼ Vion + VHartree + Vxc, where the electronic part

is divided into a Hartree and an XC contribution). Within the KS basis, when the

time-dependent perturbation Û maintains the spatial symmetry of the system (for

example Û tð Þ ¼ �er̂ �E tð Þ ) and the momentum k is conserved, the equation of

motion for the equal-time lesser component of G becomes [38, 39]

i
∂
∂t

G<
k t; tð Þ ¼ hKS

k þ VHartree
k tð Þ þ Σ s

k tð Þ þ Uk tð Þ,G<
k t; tð Þ� �þ S<k tð Þ: ð45Þ

In (45), all quantities should be understood as matrices in the index m, m0, e.g.,
G<ð Þmm0 � G<

mm0 . Furthermore, the structure of the RHS of (45) is a commutator

[� � �, G<] plus an inhomogeneous term Sk
<(t). The commutator originates from

performing the time derivative with respect to both time arguments of G<ð Þmm0

(cf. with the one-sided time derivative of G<; see (28) and (29)).

Besides G<, the other terms in the commutator are the KS equilibrium Hamil-

tonian hKSk , the time-dependent Hartree term Vk
Hartree, the external field Uk, and a

self-energy contribution Σs
k, introduced to take into account static correlations, so

that in the linear regime one recovers the Bethe–Salpeter equation from the KBE

[38, 39]. The remaining term in the RHS, Sk
<(t), is the one containing the dynamical

scattering effects due to interactions among electrons or between electrons and

phonons. Its explicit form reads [39]

S<k tð Þ ¼
ð t

1
d �t Σ>

k t; �tð ÞG<
k
�t ; tð Þ þG<

k t;�tð ÞΣ>
k
�t ; tð Þ� �� ≶ ! ≷ð Þ, ð46Þ

where the second contribution on the RHS is obtained by interchanging lesser with

greater functions in the integral. The expression for S< is again the result of
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performing a time derivative in both arguments (thus producing the sum of two

mutually adjoint contributions), and of applying Langreth’s rules [31] to translate

quantities from the Keldysh-contour to the physical time-axis. We wish to add that

in the original treatment of [39], electron–phonon interactions are explicitly

included, with the phonons assumed to be in thermal equilibrium at a phonon

bath temperature β�1. Thus there is a dependence on β in the quantities of (45)

and (46) which, however, for the scopes of our cursory overview does not need to be

further considered. In Marini [39], additional simplifications are introduced to

perform the actual simulations. First, the electronic contribution to the self-energy

is calculated within the GW approximation (see, e.g., [40]), with the screened

interaction W calculated at the static level. Second, the boson-propagators which

enter the phononic part to Σ are determined using the equilibrium phonon distri-

butions. Third,Gmm0k andΣmm0k are taken as diagonal in the m indexes (for example,

Gmm0k t; tð Þ � iδmm0 f mk tð Þ, where fmk are the electronic occupations). Even with all

these approximations considered, a further simplification is required since, in (45)

and (46), S< contains double-time quantities and thus the equation for Gk
<(t, t) is

still not closed. The latter difficulty can be circumvented by introducing the

so-called Generalized Kadanoff–Baym Ansatz (GKBA) [41, 42], which is an

approximate decoupling procedure:

G≶
mk t; t0ð Þ � i GR

mk t� t0ð ÞG≶
mk t0; t0ð Þ � G≶

mk t; tð ÞGA
mk t� t0ð Þ� �

: ð47Þ

In Marini [39], it is shown how to compute S< in terms ofGR,A and the electronic

occupations fmk. The final expression for S< (and the relative algebraic derivation)

is rather cumbersome, but the GR,A are assumed to have exponential behavior (i.e.,

the transient, non-exponential features are neglected), and this additional assump-

tion permits the analytical evaluation of the time-integrals. Eventually, one ends up

with a set of (particle-number conserving) coupled nonlinear differential equations

for the time evolving electronic occupations fmk(t):

∂f mk tð Þ
∂t

¼ ∂f mk tð Þ
∂t

 �
coh:

� S<mk tð Þ, ð48Þ

∂f mk tð Þ
∂t

 �
coh:

¼ � hKS
k þ VHartree

k tð Þ þ Σ s
k tð Þ þ Uk tð Þ,G<

k t; tð Þ� �
mm

ð49Þ

where S< is expressed in terms of the electronic occupations {fmk(t)} and of the

lifetimes due to repeated electron–electron and electron–phonon scattering

processes. Thus the de-excitation and decay of electrons occur via the possible

creation of electron–hole pairs and phonons. In Marini [39], a discussion of the

non-equilibrium behavior of Si bulk is provided starting from a specific excited

electronic initial state, and a clear illustration of de-excitation via different channels

is provided, with the main conclusion that, due to the electronic gap and for near-

threshold excitations, decay via the electron–phonon channels dominates over the

electron–electron one in the short-time dynamics.
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We refer the interested reader to the original papers [38, 39] for detailed results

for silicon. As an outlook to this section, the approach of [39] represents a

significant methodological advance in the ab initio treatment of the time-dynamics

of solids and time-resolved spectroscopies. At the same time, the different approx-

imations/assumptions introduced to make it computationally viable certainly

require further scrutiny and validation. In line with the aims of this chapter, an

main issue is then how to deal with electron–electron interactions in the case of

strongly correlated materials out of equilibrium (e.g., if/when to improve over the

GW scheme). This is discussed in what follows.

7 Learning from Models

Can the study of model systems shed light on how to describe strongly correlated
systems out of equilibrium (and thus time-dependent spectroscopies)?

For many materials, the GW approximation provides an accurate many-body

description of the electronic structure (see the chapter by Bruneval and Gatti in this

book). On the other hand, in the case of strongly correlated systems, successful

options exist based on non-perturbative methods (chapter by Biermann). However,

even in the static case, the implementation of non-perturbative schemes at the ab

initio level is computationally intensive, and for materials with cells of moderate

size. In view of this, their use for an ab initio description of the non-equilibrium

regime appears to be impracticable at present, due to the double-time structure of

the NEGF. As we have just seen, even in the “simple” case of Si, one has to resort to

a series of approximations, and simplified GW self-energies, to make the ab initio

NEGF scheme tractable. Thus we can ask: what is the scope of approximations such

as GW, 2nd Born, or T-matrix for strongly correlated systems? Considerable insight

can be obtained by studying simple model systems, and here we focus on lattice

Hamiltonians. The model we use in our discussion is the time-dependent inhomo-

geneous Hubbard Hamiltonian, which in standard notation reads

H ¼
X
iσ

εin̂iσ � V
X
ijh i, σ

a{iσajσ þ
X
i

Un̂i"n̂i# þ
X
iσ

wi tð Þn̂iσ: ð50Þ

Compared to the standard Hubbard Hamiltonian [43], in (50) there is an extra,

time-dependent term representing the dynamical perturbation. In what follows,

V ¼ 1, i.e., it is taken as an energy unit. We now use this model to compare

many-body approximate treatments to exact ones for finite clusters. Before consid-

ering the dynamics, we start by looking at equilibrium spectral functions, since in

this case we can also extract some interesting features [28]. Figure 4 shows results

for fairly strong interactions (U ¼ 4) in the case of a six-site chain. Away from half-

filling is a regime where the TMA is expected to work well, and in fact we see that

the TMA provides a fairly good description of the spectral function, including the

Probing Strongly Correlated Materials in Non-equilibrium: Basic Concepts and. . . 369



split-off structure at energy ε � 6, also consistent with other comparative studies

[44–46]. On the other hand, BA and GWA are definitely inferior to TMA, and

completely unable to account for the satellite region. At half-filling, the perfor-

mance of the different MBA worsens, and now it is the BA to provide the closest

(and yet, very little) agreement with the exact result (for example, the gap value is

best represented in the BA). As a general feature in Fig. 4, the self-consistent

solution for the spectral function does not improve over the one-shot case and, in

some cases, see, e.g., Fig. 4e), rather the opposite occurs. This is not unexpected,

since self-consistency in partial diagrammatic summations is a requirement to get

conserving approximations, but can in fact worsen spectral densities [5, 44, 47].2

The non-equilibrium behavior of the system is shown in Fig. 5. The results were

obtained by numerically solving the KBE as described earlier and the time-

dependent perturbation used is a sudden shift of the on-site energy of the first site

of the chain. Looking at Fig. 5, the agreement between MBA and exact results is
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Fig. 4 Exact vs approximate results for the spectral function of six-site, open ended Hubbard

chains with U ¼ 4. The approximations used are 2nd Born (BA), the GW approximation (GWA),

and the T-matrix approximation (TMA). Two different densities are considered, n ¼ 1/6 and 0.5,

and for the approximate treatments, both one-only iteration and full self-consistent results are

shown (adapted from [28, 30])

2 Naturally, the agreement between MBA and exact solutions improves by reducing the value ofU,
but at the same time the results become increasingly close to the non-interacting ones.
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comparable (or inferior) to the static case. Also, at low filling, the TMA performs

better than the other MBA irrespective of the perturbation strength w0. However,

TMA and exact curves are mutually closer at larger w0 values (for small w0, the

dynamics primarily involves the band region of the spectrum, which is not well

reproduced by the TMA). One-dimensional systems are certainly quite a severe test

for the different MBA we considered, so one can wonder whether the MBA

performance would improve, say, for example, in 3D. Related to this, there is a

second relevant question: in which way should one improve over the MBA? In the

KBE formulation just discussed, the self-energies are matrices in the site-indexes,

i.e., no local approximations (such as, e.g., in single-site Dynamical Mean Field

Theory, DMFT) are made. Furthermore, when solved in time (i.e., not at the steady

state) the KBE fully take into account memory effects (i.e., the history of the

system). Thus, improving the MBA must necessarily introduce a better treatment

of electron-correlations. We will come back to this point later on. For the moment,

we make a digression and introduce another approach to the real-time dynamics of

the Hubbard model, namely time-dependent density functional theory in its lattice

version.

8 DFT and TDDFT (in the Lattice Version)

To gain insight on how to treat electronic correlations in time-dependent spectros-
copies, we find it useful to look at density-functional theory methods.

Static [48, 49] and time-dependent [50] density-functional theory (DFT and

TDDFT, respectively) have been discussed in detail in several other chapters of

this book (for TDDFT, see in particular the contribution by Sharma et al.). The

importance of (TD)DFT for an ab initio description of real materials cannot be

overemphasized: nowadays DFT is the premier tool for the investigation of the
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Fig. 5 Exact vs approximate results for the time-dependent density at the first site of a six-site

Hubbard chain after the sudden switch-on of a perturbation at the same site. The approximations

used are the BA, GWA, and TMA. Two different cluster fillings and two values of the perturbation

strength w0 are considered (adapted from [28, 30])
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static properties of many materials, whilst TDDFT is playing an increasingly

important role for describing electronic excitations. The practical implementation

of (TD)DFT resorts to a fictitious non-interacting system, the Kohn–Sham

(KS) system [48–51]. Central to the KS scheme is vxc, the XC potential, which

accounts for all the many-body effects. If no approximations are made for vxc, the
one-particle density of the many-body system is exactly obtained in terms of the

single-particle states of the KS system. However, in general the exact vxc is not

known (it is a highly non-trivial functional of the density, and in TDDFT it also

depends on the initial state), and different approximate choices are possible.

Relevant to the rest of this chapter, we mention two very simple ones: the local

density approximation (LDA) for DFT (where vxc depends only on the local

density) and the adiabatic LDA (ALDA) for TDDFT (where vxc has an instanta-

neous dependence on the local density). For a more detailed discussion of DFT and

TDDFT, we refer the reader to excellent and comprehensive reviews and books

[52–55]. For the lattice versions of DFT (LDFT) [56–58] and TDDFT (LTDDFT)

[59–63], the site occupation number is the basic variable. Recent reviews of L(TD)

DFT can be found in [64, 65]. For the present scopes, we limit our discussion to the

(inhomogeneous) 3D Hubbard model within the (A)LDA. As in the continuum

case, the functional dependence of vxc on the density is obtained from the ground-

state energy of the appropriate homogeneous reference system, in this case the 3D

infinite and homogeneous Hubbard model.

In Karlsson et al. [66], the ground state energy was calculated within DMFT

[67–69] in the single-site approximation. Single-site DMFT is non-perturbative and

variational in character, and generally gives reliable ground-state energies. In fact,

single-site DMFT is also often accurate in two-dimensions (see, e.g., the compar-

isons to Dynamical Cluster Approximation and diagrammatic Quantum Monte

Carlo [70]; for a comprehensive discussion of DMFT, see the chapter by

Biermann). From DMFT, the functional form of vhomxc (n) is obtained as [66]:

vhomxc nð Þ ¼ ∂
∂n

EDMFT n½ � � T0 n½ � � Un2=4
� �

, ð51Þ

where T0[n] and Un
2/4 are the kinetic-energy density of the non-interacting system

and the Hartree energy density, respectively. The XC potential from (51) is shown in

the left part of Fig. 6: it is easily noted that a discontinuity at half-filling emerges

when the strength of the Hubbard interactionU is above a critical valueUcrit. This is

how the Mott–Hubbard metal-insulator transition (signaled, e.g., by an infinite mass

renormalization or by a vanishing Drude’s weight) manifests within LDFT for a 3D

system. In lower dimensions, the situation can be different: we are not aware of

studies of vxc for the 2D Hubbard model, but in 1D there are several papers dealing

with LDFT [64]; in this case the metallic phase occurs only at U ¼ 0, i.e., for any

U > 0 a gap is present (such a gap becomes exponentially small for U ! 0), the

system is always in the Mott phase, and there is always a discontinuity in vxc. In 3D,
at half-filling, the discontinuity in vxc only shows up for allU > Ucrit (the size of the

discontinuity increases for increasingU values). As shown in the right side of Fig. 6,
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results for the DMFT spectral function A (ω) also support this picture: we observe a
gapped spectrum only at finite U values, with the gap size increasing at large

interaction strengths. Finally, we note that a similar behavior is arrived at if one

consider the Gutzwiller approximation (GA) or Quantum Monte Carlo results (for

example, DMFT and GA give close values for Ucrit; see the chapter by Biermann).

In terms of vxc from (51), it is now possible to introduce an (A)LDA for the

inhomogeneous case. Preliminary to a TDDFT calculation, the ground state of an

inhomogeneous Hubbard system is obtained via the self-consistent KS equations:

T̂ þ v̂KS
� �

ψ k ¼ εkψ k, ð52Þ

where, in the lattice-site picture, the KS potential vKS(i) ¼ vext(i) + Un(i)/

2 + vxc(i), and T̂ is the lattice kinetic energy operator. In vKS, the three terms

denote the external potential, Hartree, and XC contributions, respectively. In the

LDA, vxc(i) � vhomxc (n(i)), with n(i) ¼ 2 ∑k ∈ occ |ψk(i)|
2. Here, the factor 2 comes

from spin degeneracy, and the k-sum involves the occupied KS orbitals.

For the TDDFT real-time dynamics, the time-dependent KS equations read

T̂ þ v̂KS tð Þ� �
ψ k tð Þ ¼ i∂tψ k tð Þ, ð53Þ

where vKS(i, t) ¼ vext(i, t) + Un(i, t)/2 + vxc(i, t), n(i, t) ¼ 2 ∑ k ∈ occ|ψk(i, t)|
2 and,

in the ALDA, vxc(i, t) ¼ vhomxc (n(i, t)).
We conclude this digression about L(TD)DFT by mentioning that it can also be

used in the linear response regime [71] (for a discussion of linear response TDDFT

in the continuum case, see the chapter by Sharma et al.). For the lattice case, the XC

kernel fxc is defined as (ngs is the ground state density)

f xc R;R
0
; t; t

0
� �

¼ δvxc R; tð Þ
δn

R
0 t0ð Þ

				
n¼ngs

: ð54Þ
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Fig. 6 The XC potential for the 3D homogeneous Hubbard model as obtained from Dynamical

Mean Field Theory. Results for vxc as a function of the density and for the many-body spectral

function A(ω) are shown for several values of the interaction U
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In the ALDA, f ALDAxc R;R0; t; t0ð Þ ¼ v0xc ngs
� �

δ
R�R

0δ t� t0ð Þ, i.e, the dependence

on space and time variables becomes local. Thus, for the homogeneous 3D Hubbard

model, fALDAxc (q, ω) � fxc, which depends only on the uniform ground-state density

ngs. Then the response function in the ALDA is (U is the Hubbard interaction

strength)

χ q;ωð Þ ¼ χ0 q;ωð Þ
1� U þ f xcð Þχ0 q;ωð Þ , ð55Þ

where, in analogy with the continuum case, χ0(q, ω) is the response of the KS

system.3

In Verdozzi et al. [71], fxc in the DMFT-ALDA was used to compute the

response function of the 3D homogeneous Hubbard model, and, from it, the local

double-occupancy dR ¼ n̂R"n̂R#
� 


. The results showed that the ALDA double

occupancies can become slightly negative (a well-known feature exhibited by the

RPA in the continuum case), but that problem might be less severe than in the

continuum case, due to the discrete nature of the lattice.

9 Strongly Correlated Materials Out of Equilibrium:

KBE or TDDFT?

The KBE and TDDFT are in principle exact treatments of the non-equilibrium

problem. Furthermore, a formal link can be established between TDDFT and

MBPT via the so-called Sham–Schlüter equation, which relates the XC potential

to the electron self-energy [72, 73]:ð
γ
d2GKS 1; 2ð Þ vKS 2ð Þ � vext 2ð Þ½ �G 2; 1ð Þ ¼

ð
γ
d2d3GKS 1; 2ð ÞΣ 2; 3ð ÞG 3; 1ð Þ, ð56Þ

which is obtained by using the Dyson equation and considering that for both the

many-body system and the KS systems (GKS denotes the KS propagator) the

electron density is n(1) ¼ �iG(1, 1+) ¼ �iGKS(1, 1
+). Naturally, a difference

between results from the NEGF and TDDFT approaches can be made by the

level of approximations one introduces in vxc and/or Σ in actual implementations,

and this is what motivates our question in the title of this section.

3 Equations (54) and (55) are written for a spin-independent treatment, to stress the analogy with

the continuum case. However, the Hubbard interaction, (50), is written in spin-dependent form,

i.e., exchange is already removed at the Hamiltonian level. Thus, to be consistent, in (55) one

should perform the replacement fxc ! fxc � U/2; see [71] for more details.
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We now make a comparative assessment of the different approximations

schemes for the KBE and TDDFT discussed in Sects. 4, 7, and 8. This comparison

was originally considered in [66, 71], using a simple 3D model system which can be

solved exactly and in terms of MBA and ALDA-DMFT.4 The system is a cubic

cluster with 53 sites, described by a single-orbital tight-binding, nearest-neighbor

hopping Hamiltonian, with a Hubbard-type interaction Un̂0"n̂0# at the central site.
With the use of symmetry, the cluster can be numerically solved exactly for the

densities at the central site, provided that the time-dependent perturbation is also

confined at that site.

Results for slow and sudden perturbation were both considered in [66, 71] to

contrast the different aspects due to electron correlations. The results from such

calculation are displayed in Fig. 7a–e, while in Fig. 7f) we show the ten-site

symmetry-adapted system and the (Gaussian) shape of the slow perturbation at

the interacting, central site (the sudden perturbation is proportional to the step

function θ (t)). In Fig. 7, the particle density (the number of particles in the initial,

ground state), the strength of the interactions, and the “speed” and strength of the

time-dependent perturbation can be (and are) varied independently. This permits

one to extract some interesting features of the interplay between correlations and

memory effects due to interactions.

Starting with Fig. 7a, we see that for moderate interactions (in this model, and in

units of the hopping parameter, U ¼ 8 and the “bandwidth” W ≲ 12), there is

excellent agreement in time between all the MBA and the ALDA-DMFT with the

exact solution. This is because, for the slow perturbation in Fig. 7a, neither strong

correlation effects (which require to go beyond the MBA that we used), nor

non-adiabatic effects (beyond ALDA) appear to be very important. The situation

changes in Fig. 7b: this is a clear case of strong correlation regime (U ¼ 24), but the

perturbation remains slow; the MBA become clearly inadequate, but ALDA-DMFT

still gives a good description: the inclusion of non-perturbative effects (as in

ALDA-DMFT) appears to be relatively more relevant than taking into account

memory effects. Yet other changes are observed in Fig. 7c–e, where a sudden

perturbation and only moderate interactions U ¼ 8 are considered. In this case,

non-adiabaticity becomes highly relevant and a dependence on the perturbation

strength is also apparent. In Fig. 7c, results for the low-density limit are shown. This

is when the TMA (but not the BA or the GWA) is expected to perform well, and in

fact exact and TMA results are virtually indistinguishable. Since the perturbation

strength is small (0.2), even ALDA-DMFT performs well initially, but rapidly

deteriorates due to the lack of memory effects. In Fig. 7d, the increase of the

perturbation strength induces a clear failure of ALDA-DMFT (suggesting that

including memory effects is even more necessary), while also considerably wors-

ening the quality of the TMA results (the strong attractive perturbation suddenly

4A comparison of this kind has also been made in 1D for a quantum transport geometry [74] in

terms of KBE, time dependent density-matrix renormalization group results, and LTDDFT within

an ALDA for the inhomogeneous 1D Hubbard model [59].
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increases the density at interacting site beyond the range where the TMA performs

well); the pictures is the same at higher densities (Fig. 7e). Results for higher U, not
shown, show an even poorer agreement between exact and approximate solutions.

Finally, it is perhaps worth noting that BA and GWA are rather inadequate for most

cases considered.

Extrapolating the above findings to the general case, we surmise that the

description of strongly correlated materials out of equilibrium requires

non-perturbative treatments of the interactions and a proper account of memory

effects.5

Fig. 7 Exact, KBE, and TDDFT-DMFT dynamics for a 5 � 5 � 5 cluster, with a central

interacting site. The external field w(t) is applied at the impurity site. Using Oh symmetry, the

time-dependent density of this site can be exactly reproduced within a ten-site effective cluster

(f, dark circle). The specification for the curves in (a–e) is given in (a). For (a, b), a Gaussian

perturbation w(t) ¼ �w0 exp[�0.5(t � 5)2] is considered (see f), while a step perturbation w
(t) ¼ �w0θ(t) is used in (c–e). In (c–e) the value of the densities for t 	 0 is the unperturbed,

ground state one (such value is shown for t ¼ 0). The specific parameters are: (a) U ¼ 8, N ¼ 4,

w0 ¼ 5; (b) U ¼ 24, N ¼ 4, w0 ¼ 5; (c) U ¼ 8, N ¼ 2, w0 ¼ 0.2; (d) U ¼ 8, N ¼ 2, w0 ¼ 2;

(e) U ¼ 8, N ¼ 4, w0 ¼ 2 (adapted from [71])

5Memory effects can be important even for a non-interacting system, since memory emerges from

an embedding procedure for part of the system’s degrees of freedom. When electronic correlations

are important, memory effects can be harder to account for properly (because strong correlations

are more difficult to account for properly). As a matter of fact, electronic correlations can even

wash out memory, but in general this cancellation effect is quite difficult to describe correctly.
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In the past few years, non-perturbative NEGF schemes have appeared [75] for

lattice models, which require dynamical auxiliary impurity solvers (see, e.g.,

[76, 77]) to attain the solution of the original lattice problem. While still in an

early developmental phase in many respects, this avenue looks highly promising.

However, NEGF propagation scales quadratically with the simulation time, and

treatments at the ab initio level can be quite challenging. To clearly show the

emergence of this hurdle, we show in Fig. 8 the dynamics of an assembly of

fermions, performed within ALDA-DMFT [78]. The results concern the dynamical

competition between lattice disorder and interactions for ultracold fermion atoms in

optical lattices.6 To obtain meaningful results for inhomogeneous cases of Fig. 8

[78], the system studied must be taken large enough (in this case, the cluster has

more than 105 lattice sites). Unless introducing substantial simplifications/approx-

imations, this system size does not appear easily accessible to non-perturbative

(indeed, even to perturbative), double-time NEGF schemes, even if one is dealing

Fig. 8 Time-snapshots of a 3D interacting fermion cloud expanding in a disordered optical lattice.

The cloud is initially (t ¼ 0) confined by a harmonic potential. Results are obtained with lattice

(TD)DFT-DMFT [66]. The time-ordering of the snapshots sequence is indicated by the curly

arrow. The surface plots show the particle density in the z ¼ 0 plane of a simple cubic cluster with

473 lattice sites. The system is described by a Hubbard model with substitutional disorder, and

disorder is confined to a region surrounding the cloud in the initial state (top left). This system is of

relevance to the study of ultracold fermions in optical lattices. Each site can accommodate at most

two electrons with opposite spin, and the electronic cloud is made of N ≲ 1,000 electrons in each

spin channel. The density profile at t ¼ 0 is the result of the competition between the confining

potential and the Hubbard interaction (U ¼ 24), and the flat density region at n ¼ 1 (Mott-plateau)

is a consequence of the discontinuity in vxc, as computed with DMFT (adapted from [78])

6Model Hamiltonians can give an accurate description in this case. Since many of the physical

parameters of ultracold atoms in optical lattices can be experimentally tuned in independent ways

and in a broad range, several theoretical issues in condensed matter can be unambiguously

addressed.
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with simple lattice Hamiltonians.7 At the same time, TDDFT appears to be able to

cope with large inhomogeneous (model) systems, but there are no simple and

practical ways to go beyond the ALDA (for the situation in the linear response

regime, see the discussion in [53]).

Undoubtedly, there are many interesting cases which are not as extreme as those

in Fig. 8; however, it is fair to say that our limited analysis of model systems

suggests that, in general, substantial developments in both NEGF and TDDFT are

needed to describe successfully the real-time dynamics of complex materials with

strong correlations.

10 Conclusion and Outlook

In this chapter we have discussed some theoretical concepts of (ultrafast) time

resolved spectroscopy applied to materials. It can be easily argued that the role of

this technique is rapidly growing in importance among the experimental tools for

materials-characterization. It is also fair to say that time-resolved materials char-

acterization is in a rather early but fast developing stage. Thus, instead of

attempting a comprehensive review of the current status of the field, and revisiting

in a systematic way the connection between theory and experiment, we chose to

consider a single (in our view) pivotal aspect, i.e., how theoretical approaches

can/should deal with time-resolved spectroscopies for strongly correlated materials.

A firm conceptual grip on this aspect is certainly an important necessary ingredient

in the theoretical description (as a more utilitarian motivation for our strategy, this

topic closely reflects our specific interests and research in the field). We have,

furthermore, restricted ourselves to the NEGF technique and, to a lesser extent, to

TDDFT, and we have used simple model systems to illustrate how the present state

of development of these approaches deals with strongly correlated systems out of

equilibrium. The overall outcome of our discussion is that substantial development

is still needed for the XC potentials of TDDFT and the self-energies of the NEGF to

be able to deal with strong correlation effects in complex materials out of equilib-

rium, especially for ab initio treatments.

Of course, ours is a largely extrapolated perspective, developed by looking at

simple model systems; it is then legitimate to ask how much of what we said is of

real consequence for the ab initio case. It is not easy to provide a general answer to

this question, but we can try to add some brief considerations on a few recent

theoretical developments that in our view are relevant for future advances in ab

initio NEGF and TDDFT (and thus in theoretical time-dependent spectroscopy).

Starting with (TD)DFT, very recently the exact strong-interaction limit of the

Hohenberg–Kohn energy density functional has been used as starting point to

7 It may be useful to recall here that, with NEGF, several interesting quantities can be conveniently

obtained, such equilibrium and non-equilibrium spectral functions, double occupancies [79], etc.
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approximate the XC part of the KS approach [80] in the case of continuum systems.

Desirable and crucial features such as a derivative discontinuity of the XC func-

tional are well within the scope of the theory [81], and comparisons with bench-

marks ground state results for 1D continuum systems are very encouraging

[82]. Most likely this also means that an ALDA for continuum systems similar to

the one discussed here for the 3D Hubbard model is certainly viable and one could

reasonably expect a similar level of (good) agreement. However, in Sect. 9 we also

concluded that it is very necessary to go beyond the ALDA (a similar outcome

resulted from a recent study [83], where a non-adiabatic XC potential for a Hubbard

dimer was proposed). In our view, the development of non-adiabatic potentials is

the area where, at the moment, progress in general remains more uncertain.

For example, memory effects could be included via a variational approach to

many-body theory, with the variational freedom of the functionals limited to

non-interacting propagators determined by a local one-electron potential

[73]. The quality of the XC potentials would then depend on the MBA for the

action functional. However, recent exact results for the time-dependent XC poten-

tials in few-electron continuum systems [84] show the emergence of dynamical

step-like structures with non-local (in space and time) dependence on the density.8

Furthermore, a very recent treatment of photoemission within current density

functional theory suggests the need of dealing with highly non-local correlations

which connect sample and detector fields [85]. The kind of features we just

mentioned can represent a serious hurdle in developing reliable approximations

for vxc. Finally, we also mention that, for the case of linear response, there are

ongoing attempts to merge DMFT and TDDFT to obtain model non-local XC

kernels (possibly to be generalized for ab initio treatments) [86].

For the NEGF, good progress has recently been made with the introduction of an

ab initio scheme for the time-propagation on the time-diagonal axis [38, 39]. The

method, reviewed in Sect. 6, uses a self-energy in the GWA for the interactions

among electrons. In principle, other self-energies could be considered. In fact, our

KBE benchmarks for Hubbard clusters suggest that, most likely, self-energies based

on a number of well-known MBA (including the GWA used in [39]) might not be

good enough for strongly correlated materials. In the latter case there exists a very

promising line of attack based on non-perturbative, non-equilibrium methods that,

to our knowledge, at the time of writing, are being considered for lattice models

Hamiltonians (see, e.g., [75–77]). In our opinion, pursuing this avenue for real

materials requires one to devise breakthrough strategies to reduce substantially the

huge computational effort associated with an ab initio implementation. In this

respect, a possibility could be represented by use of suitable extensions of the

generalized Kadanoff–Baym ansatz [41] (already used in [39]) to devise accurate

decoupling schemes for the time-integrals appearing in the KBE. Different research

8We mention in passing that “unexpected” features in the exact XC potentials have also been

observed in 1D Hubbard chains [59]; however, for LTDDFT, a proper interpretation also requires

possible v-representability issues to be taken into account; see, e.g., [59, 61–63].
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groups [87, 88] are currently working to broaden the scope and range of validity of

this ansatz, with the long-term aim of rendering numerically viable ab initio NEGF

schemes for inhomogeneous, strongly correlated materials. Another option (at least

for model Hamiltonians) could be represented by strong-coupling approaches for

the non-equilibrium regime, and dealing with large inhomogeneous systems via

massively parallel computer architectures [89]. As a further possibility, one cannot

exclude the possibility that progress could also come from hybrid approaches that

merge at some level elements of TDDFT and NEGF. However, this issue remains

beyond the scopes of this brief survey.9

In conclusion, the NEGF-KBE and TDDFT are two robust and comprehensive

theoretical frameworks to describe time-resolved spectroscopy. Due to the avail-

ability of such powerful conceptual tools for the analysis of experiments, the future

of this characterization technique looks unquestionably bright. At the same time,

the limitations encountered by ab initio NEGF-KBE and TDDFT in their present

states of development make it very clear that, in the coming years, a lot of effort

needs to be put in by theoreticians to describe successfully the time-dependent

spectral response of strongly correlated, inhomogeneous materials.
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