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Status in Calculating Electronic Excited

States in Transition Metal Oxides

from First Principles

Leah Isseroff Bendavid and Emily Ann Carter

Abstract Characterization of excitations in transition metal oxides is a crucial step

in the development of these materials for photonic and optoelectronic applications.

However, many transition metal oxides are considered to be strongly correlated

materials, and their complex electronic structure is challenging to model with many

established quantum mechanical techniques. We review state-of-the-art first-

principles methods to calculate charged and neutral excited states in extended

materials, and discuss their application to transition metal oxides. We briefly

discuss developments in density functional theory (DFT) to calculate fundamental

band gaps, and introduce time-dependent DFT, which can model neutral

excitations. Charged excitations can be described within the framework of many-

body perturbation theory based on Green’s functions techniques, which predomi-

nantly employs the GW approximation to the self-energy to facilitate a feasible

solution to the quasiparticle equations. We review the various implementations of

theGW approximation and evaluate each approach in its calculation of fundamental

band gaps of many transition metal oxides. We also briefly review the related

Bethe–Salpeter equation (BSE), which introduces an electron–hole interaction

between GW-derived quasiparticles to describe accurately neutral excitations.

Embedded correlated wavefunction theory is another framework used to model

localized neutral or charged excitations in extended materials. Here, the electronic

structure of a small cluster is modeled within correlated wavefunction theory, while

its coupling to its environment is represented by an embedding potential. We

review a number of techniques to represent this background potential, including

electrostatic representations and electron density-based methods, and evaluate their

application to transition metal oxides.
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1 Introduction

Transition metal oxides are an emerging class of materials for use in a wide variety

of photonic and optoelectronic applications, such as light-energy conversion

through photovoltaics or photocatalysis, light emitting diodes, and transparent

conducting oxides. The electronic band structure and optical absorption properties

of these materials are fundamental to evaluating their functionality in these

applications. Characterization of their ground and excited states will help to

improve their performance in these technologies, particularly for solar energy

conversion applications, where the lifetime of the optically excited state is a crucial

factor that dictates device efficiency.

The response of a material to light absorption can typically be described by either

charged excitations or neutral excitations (Fig. 1). Charged excitations occur in

photoemission (PE) and inverse photoemission (IPE) processes. In PE, a material

absorbs an energetic photon with an energy hν to excite an electron in an occupied

valence state and emit it in the vacuum continuum. Irradiation can be with ultraviolet

light in ultraviolet PE spectroscopy (UPS) or X-rays in X-ray PE spectroscopy (XPS).

In IPE, the material absorbs an electron with a kinetic energy EK into an unoccupied

state and emits a photon with an energy hν0. PE spectra (PES) therefore correspond to

the distribution of occupied states, while IPE spectra (IPES) correspond to the distri-

bution of unoccupied states. The fundamental gap, Eg, is defined as the difference

between the lowest ionization potential (IP) from PE and the highest electron affinity

(EA) from IPE. Neutral excitations are those that occur during optical absorption,
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when a photon with an energy hν00 is absorbed to excite an electron from the valence

band to the conduction band. The optical gap, Eopt, is defined as the energetic

difference between the lowest excited state and the isoelectronic ground state, where

the transition between the two must be dipole-allowed. Eg and Eopt are not equivalent

due to the interaction energy between the excited electron and the hole it leaves behind

(the “exciton”) in a neutral excitation. The difference between the two (Eg�Eopt)

therefore corresponds to the exciton binding energy.

Computing the PES, IPES, optical absorption spectra, fundamental band gap, and

optical gap is an integral part of the design and understanding of transition metal

oxides for optical and optoelectronic applications. Electronic structure theory offers a

number of theoretical approaches to calculate these properties. These methods can

largely be classified into two subdivisions: those that are rooted in Green’s function

methods and those that employ a multi-determinant many- electron wavefunction. No

single theory is appropriate for calculating all of the aforementioned observables

[1]. Computing these properties from first principles is even more challenging for

transition metal oxides than for main group compounds, as many of these materials

are considered to be strongly correlated. Consequently, these theoretical methods

have varying levels of success for these applications. In this chapter we discuss some

of the most powerful methods in quantummechanics that are used to calculate optical

and PE observables, and we review their application to transition metal oxides.

In Sect. 2 we begin with a brief discussion of density functional theory (DFT),

which is the workhorse of quantum mechanics for ground-state properties of

materials. Because DFT is a ground-state theory, it cannot be used to predict

many of the excited state properties of interest. However, variations of DFT have

been proposed that may be appropriate for the prediction of the fundamental gap

and PES. Although DFT is not the main focus of this chapter, it serves as a starting

point for many higher levels of theory, which warrants its introduction. To close

this section we briefly review time-dependent DFT (TD-DFT) and its application to

predicting neutral excitations in transition metal oxides.

Fig. 1 A representation of the band structure, showing the charged excitations occurring in

(a) the lowest IP in PE and (b) the highest EA from IPE, the difference of which is the fundamental

gap, Eg ¼ IP�EA. The lowest neutral excitation is shown in (c), whose excitation energy is

defined as the optical band gap, Eopt. The difference between Eopt and Eg is the exciton binding

energy. The band edge positions represent the final state energies after the excitation
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In Sect. 3 we continue with a discussion of theGW approximation, which explicitly

describes charged excitations using a quasiparticle (QP) formalism. The GW approx-

imation can therefore be used to calculate PES, IPES, and the fundamental gap. We

discuss the various forms of GW, each of which approaches its implementation in a

different manner. At the end of this section, we introduce the Bethe–Salpeter

equations, which incorporate the electron–hole interactions needed to model neutral

excitations and calculate optical absorption spectra. For all of the methods discussed

we cite examples of their application to transition metal oxides, where available.

In Sect. 4 we discuss the techniques that rely on multi-determinant wavefunctions,

known as correlated wavefunction methods. We introduce correlated wavefunction

theory, discussing the various levels of theory used to model ground and excited states

of materials. We describe their application to extended materials through the use of the

embedded cluster model, where a small cluster is described within correlated

wavefunction theory, and the coupling of the environment to the cluster is accounted

for with an embedding potential. We review the representation of the embedding

potential using an electrostatic model of the background, as well as techniques that

use the electron density to derive a DFT-based or numerical embedding potential. Here,

too, we discuss cases where these methods have been applied to transitionmetal oxides.

Finally, we close the chapter in Sect. 5 with some concluding remarks.

2 Density Functional Theory

2.1 Kohn–Sham Density Functional Theory

The fundamental principle of DFTwas established byHohenberg andKohn [2], who

proved that the ground state properties of any non-degenerate system of electrons

can be uniquely determined by its electron density. Specifically, they derived a

functional of the electron density whose minimum corresponds to the ground state

energy. While their theory is formally exact, the approach remained intractable

because of the unknown form of the energy functional. DFT became a practical tool

with the scheme presented by Kohn and Sham [3], where the physical problem of

interacting electronsmoving in an external potential is mapped onto a fictitious set of

non-interacting electrons subject to a common effective potential. The Kohn-Sham

(KS) reference wavefunction is represented as a single Slater determinant

constructed from one-electron orbitals representing the spatial distribution of these

non-interacting electrons, and the interacting electron density is in fact given by the

sum of the densities of the occupied KS orbitals:

ρ rð Þ ¼
X
n, occ

ψn rð Þj j2: ð1Þ
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The energy functional in KS-DFT is

E ρ½ � ¼ Ts ρ½ � þ
ð
Vext rð Þρ rð Þdrþ J ρ½ � þ Exc ρ½ �, ð2Þ

where Ts is the non-interacting electron kinetic energy, which within KS-DFT is

expressed as a functional of the occupied non-interacting one-electron orbitals:

Ts ψ if g½ � ¼ � 1

2

Xocc
n

ψn ∇2
�� ��ψn

� �
: ð3Þ

The second term is the electrostatic interaction of the electron density with an

external potential Vext, such as the electron-ion potential. J is the classical Hartree
repulsion energy,

J ρ½ � ¼ 1

2

ð
ρ rð Þρ r

0� �
r� r

0j j drdr
0
, ð4Þ

and Exc is the exchange-correlation energy, which accounts for all non-classical

electron–electron interactions, as well as the difference between the interacting and

non-interacting electron kinetic energy.

The KS orbitals, ψ i(r), and their energies, Ei, are obtained as the eigenfunctions

and eigenvalues in the self-consistent solution of the KS equations

�∇2

2
þ Vext rð Þ þ VH ρ½ �; rð Þ þ Vxc ρ½ �; rð Þ

� �
ψ i rð Þ ¼ Eiψ i rð Þ, ð5Þ

where Vext is the electron-ion potential, VH is the Hartree potential, and Vxc is the

exchange-correlation potential.

The KS formalism for DFT is exact, and would reproduce the physical electron

density if the functional form of the exchange-correlation potential were known

exactly. However, only approximate forms of this potential are known. The search

for an accurate exchange-correlation functional is one of the greatest challenges in

DFT. KS-DFT can be used to model systems with several hundred atoms, as it

scales as O(N3) with respect to system size, although lower scaling methods have

been designed [4]. In periodic KS-DFT, the calculational expense also scales

linearly with respect to the number of k-points that sample the Brillouin zone.

2.2 Exchange-Correlation Functionals, DFT+U,
and Hybrid DFT

The simplest approximation for exchange and correlation is the local density

approximation (LDA), where the exchange-correlation energy at each point in
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space is approximated as that of a homogeneous electron gas with the same

density. The exact exchange-correlation energy for a homogeneous electron gas

was calculated by Ceperley and Alder using quantum Monte Carlo simulations [5],

and there are a number of functional forms using this data [6–8]. The LDA works

quite well for materials with nearly homogeneous electron densities, but is typically

inaccurate when there are large fluctuations of the density. The generalized gradient

approximation (GGA) improves upon the LDA formulation by expressing the

exchange-correlation energy as a functional of both the local density and the

gradient of the density, to provide a better description of systems with fluctuating

densities. A number of GGA functionals have been developed [9–14], including the

widely used Perdew–Burke–Ernzerhof (PBE) functional [10, 11]. The LDA tends

to underestimate bond lengths and lattice constants and overestimate bond energies,

while the GGA exhibits the opposite tendencies. The eigenvalue gaps of both

methods significantly underestimate the band gap.

The underestimation of the band gap with local and semilocal exchange-

correlation functionals is largely due to the self-interaction error, which is due to

the inexact cancellation of self-interaction that arises in the mean field formulation

of the Hartree energy. This interaction is cancelled exactly by the exchange

component in Hartree–Fock (HF) theory, but fails to be fully cancelled by the

inexact exchange-correlation functionals in KS-DFT. The spurious, repulsive self-

interaction produces excess electron delocalization upon variational optimization,

which is especially significant in systems with highly localized electrons such as the

d-electrons in first row, late transition metal oxides.

The self-interaction error can be corrected by reintroducing some form of exact

exchange into the exchange-correlation functional. The DFT+U method [15–22]

reduces the self-interaction error by introducing an approximation to intra-atomic

exact exchange. Specifically, it applies a parameterized Hartree–Fock-like potential

to the highly localized electrons on an atom. This potential is controlled by U and

J parameters, which are chosen to mimic the effective Coulomb (U ) and exchange

(J) on-site (intra-atomic) interactions between electrons. In practical DFT calcula-

tions, such as formulated by Dudarev et al. [21, 22], it is actually the difference

between U and J that is the effective parameter, and U and J are often combined by

re-defining Ueff ¼ U � J. The DFT+U approximation to exact exchange involves

only a minimal increase in computational effort above the standard DFT method.

The values of U and J – or more specifically, the quantity U�J – strongly

influence electron localization and the band gap of a material, so it is important that

U and J values are chosen to accurately represent the effective on-site interactions.

One approach is to choose the U�J that best reproduces empirical data. To be free

from empiricism, other procedures rely on first principles methods such as

constrained LDA [23–25] or a constrained random phase approximation (RPA)

[26–29], which extract U and J from a calculation where the electron occupation is

held fixed on a specific site. However, these techniques may still suffer from the

shortcomings of the approximate exchange-correlation potential used in DFT. To
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remove the dependence on a potentially inaccurate functional, one can calculate

U�J self-consistently using DFT+U within a linear-response approach [30–32], or

one can derive U and J using constrained RPA within a self-consistent DFT+U
calculation [33]. Alternatively, the ab initio method developed byMosey and Carter

[34, 35] derivesU and J from unrestricted Hartree-Fock (UHF) theory, which is free

from the self-interaction error of DFT with approximate exchange-correlation

potentials. Finally, the procedure proposed by Kioupakis et al. [36] chooses U�J
to minimize a subsequent single perturbative GW correction. This approach is

founded on the principle that the mean field theory must be close to the final GW
result for the perturbation theory to be operative. Their ideal value for U�J is thus
at the point where the DFT+U and GW band gap curves cross, which also pinpoints

the predicted band gap value.

Exact exchange can be more explicitly accounted for in the DFT reference by

using exact exchange within an optimized effective potential (denoted OEPx or

OEPx(cLDA) when LDA correlation is added); here a local potential is used to

approximate the non-local Fock operator [37]. This enables complete elimination

of the self-interaction error while maintaining a local KS potential. The main

challenges with OEP methods are their expense and numerical complexity [38–49].

Alternatively, hybrid functionals can offer a better description of electron–electron

interactions by introducing a nonlocal exact exchange potential that is mixed in with

DFT approximate exchange and applied to all electrons in the system. DFT exchange

tends to underestimate ionicity and the band gap, so adding in HF exchange, which

alone overestimates those same quantities balances these tendencies. The hybrid

functional scheme was first proposed by Becke [50]. There are a number of hybrid

functionals, all of which incorporate a portion of a nonlocal exact exchange potential

into the local KS potential. The PBE0 [51] functional is a hybrid functional which

replaces one quarter of PBE exchange with HF exchange, leaving correlation to be

treated solely by the PBE functional. The mixing parameter of 1/4 is justified by

perturbation theory considerations [52]. For an added degree of flexibility within the

functional form, range-separated hybrid functionals introduce a range-separating

parameter, which further divides the treatment of exchange as a function of

interaction distance. Range-separation was first proposed by Savin and coworkers

[53–55], but many range-separated hybrid functionals now exist [56–61].

The Heyd–Scuseria–Ernzerhof (HSE) [62–65] functional builds upon the PBE0

functional by introducing such a range-separation parameter, further dividing

exchange such that only the short range component introduces HF exchange. The

contribution of HF exchange therefore decreases in HSE with respect to PBE0, but is

still greater than DFT+U. Accordingly, the eigenvalue gaps of HSE tend to fall

between the two other theories, with the largest gaps predicted by PBE0. There is

also the popular B3LYP functional, which mixes LDA exchange-correlation with HF

exchange and GGA exchange and correlation [6, 66–68]. In B3LYP, the three mixing

parameters were determined by fitting to experimental atomization energies.
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2.3 Fundamental Band Gap from DFT

The single particle eigenvalues in standard KS-DFT with local or semilocal

exchange-correlation functionals do not formally correlate with the energies of

the states probed in PE and IPE spectroscopy. The only eigenvalue in KS-DFT that

has a formal interpretation is the one associated with the highest energy occupied

orbital, which is equal to the negative of the lowest IP from PE [69–71]. Although

no similar relationship can be derived between the lowest energy unoccupied

orbital and the EA, the difference between the highest energy occupied and lowest

energy unoccupied orbital eigenvalues is often interpreted as the fundamental band

gap. Sham and Schlüter [72] and Perdew and Levy [73] showed that the eigenvalue

gap differs from the fundamental band gap by an explicit correction given by the

derivative discontinuity of the exchange-correlation energy. This implies that it is

not possible to use the standard KS-DFT framework to obtain the fundamental band

gap of materials via interpretation of the KS eigenvalues. This is also indicative of a

broader disconnect between the KS density of states and the PES/IPES. Although

the fundamental band gap is only a part of the larger complex problem of predicting

absorption and emission spectra, in fact most work in this area has focused on the

smaller goal of adapting KS-DFT to calculate the band gap.

One strategy is to avoid completely a dependence on the KS eigenvalues by

calculating IPs and EAs explicitly via electron removal and addition, and to derive

the fundamental gap using the well-known ΔSCF method. The Δ-sol method by

Chan and Ceder [74] extends the ΔSCF method to solids and derives the band gap

from DFT total energy differences of charged periodic unit cells. To prevent

divergence of the electrostatic energy of the periodic array, they use the conven-

tional approach of introducing a neutralizing jellium background [75], and treat the

image-charge interaction error using the energy correction of Makov and Payne

[76]. However, the a posteriori correction to the energy does not correct for the

adulteration of the underlying potential by the jellium, and the topology of the local

electrostatic potential will be misrepresented in this approach [77, 78]. In the

application of the Δ-sol method to ZnO, Chan and Ceder used DFT with the

LDA for exchange-correlation to calculate a LDA/Δ-sol band gap of 3.5 eV. This is
close to the experimental gap of 3.37 [79], and is a marked improvement over

the LDA eigenvalue gap of 0.8 eV.

Another approach to calculate the fundamental gap is to add back in the missing

derivative discontinuity as a correction to the KS-DFT eigenvalue gap. Stein

et al. [80] introduced a correction term that is derived from the curvature of the

exchange-correlation energy as a function of electron number. Approximate

exchange-correlation functionals compensate for the missing derivative discontinuity

by introducing curvature to the exchange-correlation energy, and so the approach of

Stein et al. uses this curvature to derive the missing derivative discontinuity. The

missing derivative discontinuity is then added as a correction to the eigenvalue gap, in

accordance with the derivations of Sham and Schlüter [72] and Perdew and Levy

[73]. Thus far, this approach has only been applied to molecules.
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Calculation of the fundamental gap and formal interpretation of the DFT eigen-

values may be possible within an alternative DFT scheme. While KS-DFT maps the

density to a single Slater determinant of non-interacting orbitals, other mapping

schemes are possible. Within the generalized KS scheme, the density is mapped to

an interacting model system that partially accounts for electron–electron interac-

tion, whose potential is no longer strictly local. This nonlocal potential can

incorporate the derivative discontinuity into the band gap, leading to a formal

relationship between the lowest energy unoccupied orbital and the EA, with

which a fundamental band gap can be derived [81, 82].

An example of a generalized KS scheme that employs nonlocal functionals is

one that uses hybrid functionals (as discussed in the previous section), where

range-separated hybrid functionals contain an added degree of flexibility via the

range-separation parameter. Range-separated hybrid functionals optimize the range

separation parameter in different ways, and typically the range separation

parameter is optimized as a universal parameter. However, this parameter can be

shown to be a functional of the density [83], and differing values are needed at

varying densities of the homogeneous electron gas [84]. This indicates that the

range separation parameter unfortunately should be treated as a system-dependent

parameter that is optimized on a material-specific basis.

One range-separated hybrid functional that treats the range separation parameter as

system-dependent is the Baer–Neuhauser–Livshits (BNL) functional [83, 84], which

tunes the range separation parameter by actively enforcing the DFT-Koopmans’

theorem [85]. This approach has been used successfully in determining the parameters

for a range of molecules to obtain their fundamental gaps [86], and has also been

shown to be a goodmethod for producing the QP spectra of molecules [87]. However,

the tuning procedure can only be applied to molecules, and a robust tuning method

needs to be developed for solids for this approach to be appropriate for extended

materials [88]. Consequently, while the BNL functional and other generalized KS

schemes have the potential to be inexpensive and robust methods to determine the

fundamental band gap for transition metal oxides, they remain largely out of reach at

present. It is therefore necessary to turn to higher levels of theory that are designed to

model charged excitations explicitly, such as many-body perturbation theory, of

whichGW is one of the most prominent approximations. However, before elaborating

on GW theory, we first consider TD-DFT, which can be used to describe neutral

excitations.

2.4 Time-Dependent Density Functional Theory

The neutral excitation spectrum and optical gap can be calculated within the

framework of linear-response TD-DFT [89–97], which describes the evolution of

the electron density in response to a time-dependent external potential. Neutral

excitation energies can be obtained as the poles of the exact linear response

function. Using the formalism of TD-DFT, Petersilka et al. [90] related the exact
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response function χ to the KS non-interacting response function χKS, where the

Dyson-type equation is dependent on the nonlocal, energy-dependent exchange

correlation kernel fXC (the functional derivative of the exchange-correlation

potential with respect to the density):

χ r; r
0
;ω

	 

¼ χKS r; r

0
;ω

	 


þ
ð
d3x

ð
d3x

0
χKS r; x;ωð Þ 1

x� x
0j j þ fXC x; x

0
;ω

	 
� �
χ x

0
; r

0
;ω

	 

:

ð6Þ

The non-interacting response function can be derived directly from the solution to

the static KS equations. This approach is formally exact, but its accuracy is limited

by the approximations for the static exchange-correlation potential and the

frequency-dependent exchange-correlation kernel, which are typically modeled by

local functionals and the adiabatic approximation. The application of TD-DFT to

extended systems is challenging, largely because the typically local approximation

to the exchange-correlation functional used in the TD-DFT kernel does not capture

the important long-range interactions in extended materials [95, 98, 99]. There have

also been practical difficulties applying TD-DFT to simulate the optical spectra of

larger systems. The Liouville-Lanczos approach implemented by Baroni and

coworkers [100, 101] addresses this difficulty and enables the fast and efficient

computation of the full spectrum of complex periodic systems. TD-DFT scales

formally as O(N3), and therefore represents a powerful means of modeling optical

excitations with a computational expense not much greater than KS-DFT.

Thus far, TD-DFT has performed quite well in calculating optical excitations in

transition metal oxides, although many calculations employ cluster models to avoid

the challenge in describing long-range interactions. Many applications of TD-DFT to

transition metal oxides employ hybrid exchange-correlation functionals, which

improve the description of longer range interactions. Others use a DFT+U functional

to correct for the failure of the local approximation to exchange-correlation. (We have

not found applications of TD-DFT to transition metal oxides that employ local or

semilocal functionals.) One application has been to determine the optical properties of

ZnO nanoparticles. De Angelis and Armelao [102] calculated the lowest optical

transition energies of finite 1D, 2D, and 3D ZnO nanostructures using TD-DFT with

the B3LYP functional. They found a lowest excitation energy of 3.59 eV for the ZnO

nanoparticle (a (ZnO)111 cluster with a diameter ~0.13 nm), in comparison to the

experimental gap of 4.0 eV observed for particles with a diameter below 0.5 nm

[103]. Malloci et al. [104] used TD-DFT with the BP86 functional to correlate ZnO

nanoparticle size and structure with its optoelectronic properties. They found that the

optical gap and exciton binding energy decrease with increasing particle size, as is

expected due to decreasing quantum confinement. TD-DFT has been similarly applied

to TiO2 nanostructures. De Angelis et al. [105] used TD-DFT with the B3LYP

functional to study the lowest excited states of anatase (TiO2)38 nanoparticles,
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predicting excitation energies of 3.12–3.20 eV. Suzuki et al. [106] used TD-DFTwith

long-range corrected Becke exchange [107] to study the effect of oxygen vacancies on

excitation energies in anatase TiO2 nanoparticles. They found that oxygen defects

cause strong absorption peaks at 1.5, 1.9, and 2.8 eV, which are consistent with the

coloration of TiO2 crystals reduced by activated carbon [108, 109]. Govind et al. [110]

used TD-DFTwith the B3LYP functional to calculate the optical absorption spectrum

of bulk rutile, modeled as a large rutile TiO2 cluster terminated by pseudo-hydrogen

saturators. They predicted an absorption edge of ~3.0 eV consistent with experiment

(~2.9 eV [111, 112]), and found that N-doping lowered the absorption edge by

~0.9 eV, in comparison to the experimental decrease of about ~0.7 eV. TD-DFT has

also been used in bulk calculations of NiO. Lee et al. [113] derived the dynamical

linear response of the LDA+U functional within the TD-DFT framework on a basis of

Wannier functions, and applied it to study the bound d–d Frenkel excitons in NiO,

predicting exciton excitation energies at 1–2 eV in comparison to 0.6–3.5 eV from

experiment [114, 115]. Finally, Sottile et al. [94] showed how the inclusion of local

field effects in the response function is crucial in describing higher energy excitations

from the semicore states in electron energy loss spectra for bulk ZrO2 and TiO2. These

applications show that TD-DFT is a very promising method for calculating neutral

excitations in transition metal oxides; next we turn to many-body perturbation theory

to describe charged excitations that TD-DFT cannot.

3 GW Approximation

3.1 Fundamental Theory of the GW Approximation

The single particle excitations that occur in PE and IPE spectroscopy and that define

the fundamental gap can be described in terms of electron and hole QPs, where a QP

is comprised of a bare particle and its surrounding screening charge cloud. The

qualitative QP picture can be formally represented by many-body perturbation

theory. Specifically, the electron and hole QP energies, En, and wavefunctions,

ψn, can be obtained via solution of the QP equation [116]

T̂ þ Vext þ VH

� �
ψn rð Þ þ

ð
dr

0X
r; r

0
; En

	 

ψn r

0
	 


¼ Enψn rð Þ, ð7Þ

which differs from the KS equation of (5) by replacing the exchange-correlation

potential with the self-energy, Σ. The self-energy is a nonlocal, non-Hermitian,

energy-dependent operator that accounts for all non-classical electron–electron

interactions. The QP equation can be solved only with a well-founded definition

of the self-energy operator. Such a formalism was defined by Hedin [117], whose

set of integro-differential equations relate the self-energy to the Green’s functionG,
the polarizability P, the screened (W ) and bare (v) Coulomb interaction, and the
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vertex function Γ, thus providing a perturbative, self-consistent approach to solving
for the self-energy. In the following set of equations we employ a shorthand

notation for the space-time coordinates, defining 1 � (r1,t1):

P 1; 2ð Þ ¼ �i

ð
G 1; 3ð ÞG 4; 1ð ÞΓ 3; 4; 2ð Þd 3; 4ð Þ, ð8Þ

W 1; 2ð Þ ¼ v 1; 2ð Þ þ
ð
v 1; 3ð ÞP 3; 4ð ÞW 4; 2ð Þd 3; 4ð Þ, ð9Þ

Σ 1; 2ð Þ ¼ i

ð
G 1; 3ð ÞΓ 3; 2; 4ð ÞW 4; 1ð Þd 3; 4ð Þ, ð10Þ

Γ 1; 2; 3ð Þ ¼ δ 1; 2ð Þδ 1; 3ð Þ þ
ð
δΣ 1; 2ð Þ
δG 4; 5ð ÞG 4; 6ð ÞG 7; 5ð ÞΓ 6; 7; 3ð Þd 4; 5; 6; 7ð Þ: ð11Þ

The final equation to complete the self-consistent loop (shown in Fig. 2) in Hedin’s

relationships is Dyson’s equation, which links the non-interacting system with

Green’s function G0 to the fully interacting one (G) via the self-energy Σ:

G 1; 2ð Þ ¼ G0 1; 2ð Þ þ
ð
G0 1; 3ð ÞΣ 3; 4ð ÞG 4; 2ð Þd 3; 4ð Þ: ð12Þ

While theoretically this closed systemof equations could be solved self-consistently

to obtain Σ, practically, a fully self-consistent procedure is not implementable for even

the simplest systems. Hedin proposed the now widely used GW approximation, which

approximates the vertex function by its zeroth order term [117]:

Γ 1; 2; 3ð Þ ¼ δ 1; 2ð Þδ 1; 3ð Þ ð13Þ

Fig. 2 Hedin’s pentagon,

illustrating the self-

consistent loop of Hedin’s

equations. Under the GW
approximation, the loop

bypasses the calculation of

Γ (shown with some

transparency)
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The expression for the self-energy within this approximation therefore becomes

Σ 1; 2ð Þ ¼ iG 1; 2ð ÞW 1; 2ð Þ, ð14Þ

from which the “GW approximation” derives its name.

3.2 GW as a Single Perturbation: G0W0

The approximation for the vertex function makes it easier to iterate through Hedin’s

equations to construct self-consistently the self-energy, but even this is still

mathematically challenging. A common procedure is to apply the self-energy as

perturbative correction within the QP equation, where the self-energy is constructed

from the best mean field results available. This approach is denoted G0W0, where

typically, G0 and W0 are calculated using the eigenvalues and eigenfunctions of a

Hermitian single-particle reference such as KS-DFT (or some variant). These are

used to construct the self-energy according to (14), which is then used in a single

iteration of the QP equation applied to the reference eigenfunctions. This procedure

is founded on the assumption that the KS equations can be a good approximation to

the QP equations, as they differ only in the operator accounting for non-classical

electron–electron interactions (the exchange-correlation potential in KS theory vs

the self-energy of the QP equation). Within a first order perturbation, the QP

wavefunctions are taken to be identical to the KS wavefunctions, and the QP

energies En can be evaluated as

εn ¼ En þ Zn Enð Þ ψn Σ Enð Þ � Vxcj jψnh i, ð15Þ

where Vxc is the exchange-correlation potential of the reference Hamiltonian, En are
the KS eigenvalues, and Zn is a renormalization factor, Zn ¼ 1= 1� ∂Σ

∂E

� �� �
, that

accounts for the frequency dependence of Σ.

3.2.1 DFT/G0W0

Typically, the reference exchange-correlation potential employed is the LDA

[118]. However, the LDA fails for materials with highly localized electrons, such

as the d- or f-electrons in transition metal oxides, due to its inexact correction of

electron self-interaction (known as the self-interaction error). The self-interaction

error results in LDA wavefunctions that are not localized enough, for which a single

perturbative G0W0 correction often fails to compensate.

The shortcomings of the LDA/G0W0 approach are evident in the treatment of

many transition metal oxides, as shown in Table 1. We focus here on the predictive

accuracy of G0W0 with respect to the band gap, which may be an indicator for its

accuracy in the larger goal of predicting the full PES/IPES. LDA and LDA/G0W0
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both fail to open a gap (i.e., predict a gap between the valence and conduction

bands) for the lower-temperature monoclinic insulating phase of VO2, predicting

metallic character instead [119]. The LDA and LDA/G0W0 gaps for NiO also both

fall well below the experimental gap [120, 121]. The electronic structure of NiO is

inaccurately described, in that the character of the top of the valence band is

predicted to be predominantly Ni 3d, which is inconsistent with a widely accepted

model of NiO as a charge transfer insulator [122–133]. The band gaps of Cu2O,

ZnO, CdO, ZrO2, and HfO2 are similarly underestimated with LDA and LDA/G0W0

[121, 134]. The failure of the LDA in ZnO can be attributed to the under-prediction

of the metal d-electron binding energies, which at these too-low energies will

hybridize with the oxygen 2p-states at the valence band maximum. This pushes

the O 2p-states slightly higher and decreases the gap. For TiO2, LDA/G0W0

performs relatively well, as it produces QP spectra for TiO2 that agree well with

PES/IPES and calculates fundamental gaps close to experiment [135].

Replacing the LDA reference with a GGA exchange-correlation functional,

specifically the PBE functional, did not improve the prediction of theoretical

band gaps for Cu2O [145] and ZnO [146] (Table 2). PBE/G0W0 also predicts an

underestimated gap for Fe2O3 [147]. The change from LDA/G0W0 resulted in

slightly larger fundamental gaps predicted with PBE/G0W0 for rutile and anatase,

worsening agreement with experiment for anatase but not significantly impacting

accuracy for rutile [148].

3.2.2 DFT+U/G0W0

There are two approaches to remedy the failure of the standard LDA/G0W0

approach. The first is to replace the LDA (or GGA) reference with a more accurate

reference Hamiltonian that will be closer to the final GW solution, thereby

Table 1 LDA eigenvalue gaps and LDA/G0W0 QP gaps for a number of transition metal oxides in

comparison with experimental fundamental gaps (some optical gaps are reported in instances

where no fundamental gaps are available, marked with an asterisk in the table footnotes; the same

convention is used in all subsequent tables)

Eg(LDA) (eV) Eg(LDA/G0W0) (eV) Eg(Exp.) (eV)

TiO2-rutile 1.75a 3.34a 3.3 � 0.5b

TiO2-anatase 2.02a 3.56a 3.4c

VO2 0d 0d 0.2–0.7e

NiO 0.2f 1.0f, 1.1g 4.3h

Cu2O 0.54i 1.34i 2.17j

ZnO 0.71g 2.51g 3.37k

CdO 0g 0.10g 0.84l, 1.2m

ZrO2 3.58n 4.99n 5.5o

HfO2 3.95n 5.45n 5.7o

a [135]; b [136]; c [137]*; d [119]; e [138]; f [120]; g [121]; h [139]; i [134]; j [140]*; k [79]*; l [141]*;
m [142]*; n [143]; o [144]
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minimizing the perturbation. The second approach is to introduce some form of

self-consistency so GW will be independent of the starting point, thereby reducing

the impact of any inaccuracy in the reference Hamiltonian.

Within the first approach, the problem then lies in identifying a more appropriate

reference Hamiltonian for the material being studied. As described earlier, the self-

interaction error is the main cause of band gap underestimation in local and

semilocal exchange-correlation functionals. The DFT+U method is one approach

to reduce the self-interaction error by introducing an approximation to exact

exchange, where the material-specific parameters U and J can be determined via

a number of different methods.

Table 3 shows the QP gaps calculated with a G0W0 perturbation on a DFT+U
reference Hamiltonian. These studies determinedU�J values using a number of the

approaches described in Sect. 2.2. Isseroff and Carter [145] chose a U�J for Cu2O
that best reproduced empirical data, predicting a PBE+U/G0W0 gap (1.85 eV) with

greater accuracy than LDA/G0W0 (1.34 eV [134]), although still slightly below

experiment (2.17 eV [140]). Patrick and Giustino [150] applied the self-consistent

method of Kioupakis et al. [36] to determine the U�J value of anatase TiO2,

resulting in a U�J of 7.5 eV that produced a PBE+U and PBE+U/G0W0 band gap

of 3.27 eV. They applied the same U�J to rutile TiO2, which then also exhibited

close agreement between the PBE+U and PBE+U/G0W0 gap. The PBE+U/G0W0

gaps are smaller than those predicted with DFT/G0W0 (rutile: 3.34, 3.59 eV;

anatase: 3.56, 3.83 eV [135, 148]) and have worsened agreement with experiment

for rutile, casting doubt on the fidelity of this approach for determining U�J. Jiang
et al. [151] sampled a range of U�J values for LDA+U/G0W0 with MnO, FeO,

CoO, and NiO, showing that there was a strong dependence of the gap on U�J,
likely due to the U�J–induced change in hybridization between O 2p and transition
metal 3d orbitals. The band gaps reported in Table 3 for these four materials were

calculated with U�J obtained from constrained DFT-LDA, and agree well with

experiment for CoO, but are underestimated for MnO and NiO. Nevertheless, the

band gap predicted with LDA+U/G0W0 for NiO (3.75 eV) is a marked improvement

over the LDA/G0W0 gap (1.0, 1.1 eV [120, 121]). The application of U�J also

causes the valence band in NiO to develop more O 2p character, in agreement with

its description as a charge transfer insulator [122–129], due to the increased

hybridization of the Ni 3d states with the O 2p states. The band gap prediction

for MnO is improved with PBE+U/G0W0, with aU�J of 3.54 derived from ab initio

Table 2 PBE eigenvalue gaps and PBE/G0W0 QP gaps for a number of transition metal oxides in

comparison with experimental fundamental gaps

Eg(PBE) (eV) Eg(PBE/G0W0) (eV) Eg(Exp.) (eV)

TiO2-rutile 1.93a 3.59a 3.3 � 0.5b

TiO2-anatase 2.15a 3.83a 3.4c

Fe2O3 0.6d 1.3d 2.6 � 0.4e

Cu2O 0.43f 1.39f 2.17g

ZnO 0.67h 2.12h 3.37i

a [148]; b [136]; c [137]*; d [147]; e [149]; f [145]; g [140]*; h [146]; i [79]*
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UHF theory [152]. Similarly, using an ab initio U�J somewhat improves the band

gap predicted by LDA+U/G0W0 for FeO (0.95 eV from constrained DFT, 1.6 eV

from ab initio DFT+U ) [153]. Jiang et al. [154] also studied the dependence of

G0W0 on U�J for the lanthanide oxide series, where a relatively weak dependence

on U�J was observed within the range of meaningful values. They applied a

constant value for U�J of 5.4 eV to the entire lanthanide oxide series, chosen

based on a physical estimate. The resulting LDA+U/G0W0 QP gaps reproduce some

of the trends of the series, but many quantitative differences in the band gaps

remain. Liao and Carter [147] used LDA+U/G0W0 and PBE+U/G0W0 to calculate

the band gap in Fe2O3, and applied a U�J of 4.3 eV derived from ab initio UHF

theory [34, 35]. They found that LDA+U/G0W0 best reproduced the experimental

Table 3 DFT+U eigenvalue gaps and DFT+U/G0W0 QP gaps for a number of transition and

lanthanide metal oxides in comparison with experimental fundamental gaps. The exchange-

correlation functional (LDA+U or PBE+U ) is specified and the value used for U�J is reported

Vxc

U�J
(eV)

Eg(DFT+U )

(eV)

Eg(DFT+U/G0W0)

(eV) Eg(Exp.) (eV)

TiO2-rutile PBE+U 7.5a 2.83a 2.85a 3.3 � 0.5b

TiO2-anatase PBE+U 7.5a 3.27a 3.27a 3.4c

MnO LDA+U 3.9d 1.54d 2.34d 3.9 � 0.4e

MnO PBE+U 3.54f 1.68f 3.07f 3.9 � 0.4e

FeO LDA+U 3.9d, 3.7g 1.15d, 1.6g 0.95d, 1.6g 2.5h

Fe2O3 LDA+U 4.3i 1.9i 2.8i 2.6 � 0.4j

Fe2O3 PBE+U 4.3i 2.2i 3.1i 2.6 � 0.4j

CoO LDA+U 4.2d 2.21d 2.47d 2.5 � 0.3k

NiO LDA+U 4.3d 2.90d 3.75d 4.3l

NiO PBE+U 3.8g – 3.60g 4.3l

Cu2O PBE+U 6.0m 0.74m 1.85m 2.17n

La2O3 LDA+U 5.4o 3.76o 4.95o 5.55p, 5.34q, 5.3r

Ce2O3 LDA+U 5.4o 2.24o 1.50o 2.4p

Pr2O3 LDA+U 5.4o 3.17o 2.86o 3.9p, 3.5q

Nd2O3 LDA+U 5.4o 3.69o 4.50o 4.7p, 4.8q

Pm2O3 LDA+U 5.4o 3.35o 5.25o –

Sm2O3 LDA+U 5.4o 2.15o 4.38o 5.0p

Eu2O3 LDA+U 5.4o 1.28o 2.77o 4.4p

Gd2O3 LDA+U 5.4o 3.58o 4.89o 5.4p

Tb2O3 LDA+U 5.4o 3.34o 3.81o 3.8p

Dy2O3 LDA+U 5.4o 3.47o 4.41o 4.9p

Ho2O3 LDA+U 5.4o 3.05o 4.68o 5.3p

Er2O3 LDA+U 5.4o 2.69o 4.78o 5.3p, 5.49q

Tm2O3 LDA+U 5.4o 1.73o 4.73o 5.4p, 5.48q

Yb2O3 LDA+U 5.4o 1.25o 3.23o 4.9p, 5.05q

Lu2O3 LDA+U 5.4o 3.18o 4.66o 5.5p, 5.79q, 4.89s, 5.8s

a [150]; b [136]; c [137]*; d [151]; e [155]; f [152]; g [153]; h [156]; i [147]; j [149]; k [157]; l [139];
m [145]; n [140]*; o [154]; p [158]*; q [159]*; r [160]*; s [161]
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gap in comparison with all other implementations of GW, although PBE+U/G0W0

was relatively close in accuracy.

These results indicate that for many transition and lanthanide metal oxides,

while DFT+U performs better that the standard DFT reference, the approximate

treatment of exact exchange in DFT+U still does not adequately describe all

electron–electron interactions. While the accuracy of DFT+U is somewhat

influenced by the method used to derive U�J, in many materials these inadequacies

persist at all meaningful U�J values. The single G0W0 perturbation is ineffective

in correcting the deficiencies of an inaccurate DFT+U reference. An improved

reference wavefunction may be obtained from a DFT-based method with a less

approximate incorporation of exact exchange.

3.2.3 Hybrid-DFT/G0W0

Hybrid functionals (such as PBE0, HSE, B3LYP, etc.) can also improve the

description of electron–electron interaction by explicitly introducing a fraction of

exact exchange. The nonlocal, screened exchange component of HSE functions

similarly to the nonlocal and screened self-energy in the QP equation, so the use of

HSE as a reference Hamiltonian can be viewed as a step toward self-consistency

within the single perturbative approach. Consequently, HSE is the hybrid functional

most widely used as the starting point for a single perturbative G0W0 approach.

The hybrid-DFT/G0W0 approach has been effective for most main group

semiconductors and insulators, as the QP shifts in those cases are relatively small

[162]. However, as apparent in the varying accuracy with transition metal oxides

(Table 4), a consistent description of transition metal compounds is difficult within

a hybrid-DFT/G0W0 approach. Cu2O and MnO are the only materials studied where

HSE/G0W0 accurately predicts the fundamental gap [145, 152] (note that the

differences between the two results for the HSE and HSE/G0W0 gaps for MnO

are likely due to these two studies using different implementations of the HSE

functional, as the first study [163] employs the HSE03 functional, while the second

study employs HSE06 [152]). For other materials (Fe2O3, CoO, and NiO [147, 162,

163]), the HSE/G0W0 QP gap is too large in comparison with experiment, and

HSE/G0W0 often performs worse than DFT+U/G0W0. For FeO [163], the

HSE/G0W0 gap is too low, although HSE/G0W0 is still a significant improvement

over DFT+U/G0W0, as the greater component of exact exchange in HSE further

increases the band gap. The HSE/G0W0 gap is also too low for ZnO [162], although

it is an improvement over DFT/G0W0. The PBE0 reference typically increases the

final G0W0 gap in comparison to an HSE reference due its larger contribution

from HF exchange [145, 147], and generally worsens agreement with experiment

(e.g., with Fe2O3 and Cu2O).
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3.2.4 OEP-DFT/G0W0

An alternative to hybrid DFT is OEP with exact exchange (OEPx or OEPx(cLDA)),

which approximates the non-local Fock operator via a local potential [37]. OEPx

(cLDA)/G0W0 produced a band gap of 3.22 eV for wurtzite ZnO [164] in comparison

to 3.37 eV from experiment [79], which is a marked improvement over the

LDA/G0W0 (2.51 eV [121]) and PBE/G0W0 results (2.12 eV [146]).

3.3 Self-Consistent GW

The difficulty in obtaining a consistent description of transition metal oxides within

a single G0W0 approach indicates that the effective application of G0W0 to these

materials may require identification of a material-specific mean-field approach that

best describes its properties. Alternatively, one may depart from the one-shot

approach altogether, and strive to improve the GW prediction by introducing

self-consistency when defining the self-energy and solving the QP equation. Self-

consistency is extremely challenging to execute accurately. Fully self-consistent

GW calculations on the homogeneous electron gas showed that self-consistency

worsened agreement with experimental spectral properties [165]. This is because

self-consistency introduces some higher order electron–electron interaction terms

but lacks the higher order interaction terms included in the vertex function. Unless

vertex corrections are included within fully self-consistent GW, non-self-consistent

results are more accurate for most properties of the homogeneous electron gas.

Fully self-consistent GW is also mathematically complex to execute, as the

self-energy operator is non-local, non-Hermitian, and energy-dependent, and its

resulting QP wavefunctions are non-orthonormal.

Table 4 Hybrid-DFT eigenvalue gaps and hybrid-DFT/G0W0 QP gaps for a number of transition

metal oxides in comparison with experimental fundamental gaps. The hybrid exchange-correlation

functional is specified in the second column

Vxc Eg(hybrid-DFT) (eV) Eg(hybrid-DFT/G0W0) (eV) Eg(Exp.) (eV)

MnO HSE 2.6a, 3.07b 3.4a, 3.82b 3.9 � 0.4c

FeO HSE 2.1a 2.2a 2.5d

Fe2O3 HSE 3.5e 4.0e 2.6 � 0.4f

Fe2O3 PBE0 4.2e 4.5e 2.6 � 0.4f

CoO HSE 3.2a 3.4a 2.5 � 0.3g

NiO HSE 4.1a 4.7a 4.3h

Cu2O HSE 2.04i 2.17i 2.17j

Cu2O PBE0 2.84i 2.52i 2.17j

ZnO HSE 2.11k 2.86k 3.37l

a [163]; b [152]; c [155]; d [156]; e [147]; f [149]; g [157]; h [139]; i [145]; j [140]*; k [162]; l [79]*
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3.3.1 Self-Consistent Approximations for GW

To avoid the complexity of full self-consistency and its imbalanced treatment of

higher order electron–electron interactions, a number of other strategies have been

proposed that incorporate an approximation to the self-energy within a self-

consistent scheme. Bruneval, Vast, and Reining [166] proposed a form which first

applies the COHSEX approximation [117] to solve self-consistently for a static

approximation to the self-energy, followed by a single perturbative G0W0 step.

The self-energy can be divided into two parts: a dynamically screened exchange

operator (SEX) and a Coulomb hole (COH) term. SEX is similar to the Fock

operator in HF theory, but the bare Coulomb potential v has been replaced by the

screened Coulomb potential W. COH represents the induced response of the

electrons of the system to an added or removed point charge. COHSEX employs

a static approximation for SEX, where screening is assumed to be instantaneous,

such that only occupied states contribute to the term. Additionally, the COH term is

reduced to a local screening potential. The self-energy contributions from

these terms are both Hermitian and energy-independent, and therefore result in

orthogonal QP wavefunctions. Self-consistency within COHSEX is an approxima-

tion to self-consistent GW, but because it completely neglects dynamical screening,

dynamical effects are introduced afterward via the single G0W0 perturbation.

The self-consistent COHSEX method with a single perturbative G0W0 has been

used in calculating the spectral properties of VO2 [119]. VO2 has a band gap of

0.2–0.7 eV from experiment [138], but LDA/G0W0 fails to open up any gap.

However, self-consistent COHSEX on its own opens up a gap of 0.78 eV, and the

final G0W0 perturbation results in a gap of 0.65 eV. In this case, the change in the

wavefunctions from the LDA wavefunctions was essential to open up the gap.

Another approximation to the self-energy within self-consistentGW is the model

GW (mGW) approach proposed by Gygi and Baldereschi [167]. Here, the self-

energy is split into a short range part that is approximated by the LDA, and a long

range correction that is approximated by a model dielectric function. This approach

is not completely free from empiricism, as the approximate model dielectric

function requires an input value for the dielectric constant, which is frequently

taken from experiment.

Table 5 shows the band gaps of selected transition metal oxides as calculated with

mGW. mGW for NiO [168, 169] is a definite improvement over LDA/G0W0 (1.0, 1.1 eV

[120, 121]), although it predicts a gap like DFT+U/G0W0 (3.75, 3.60 eV [151, 153]) and

is still below experiment. It also describes the character of the top of the valence band

correctly, showing significant contributions from O 2p states [169], similar to the

band character predicted in LDA+U/G0W0 [151]. mGW succeeds in opening up a gap

in VO2 [170], with accuracy nearly equivalent to COHSEX/G0W0 (0.65 eV [119]).

For MnO, FeO, and CaCuO2 [168, 169], mGW predicts fundamental gaps very close to

experiment, exhibiting significant improvements from previous DFT+U/G0W0 calcu-

lations forMnO (2.34, 3.07 eV [151, 152]) and FeO (0.95, 1.6 eV [151, 153]). However,

the band gaps from mGW are overestimated for CoO and ZnO [168, 171], indicating

that while its approximations are successful for many materials, it is still not a

universally accurate method.
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3.3.2 Self-Consistent Diagonal GW0 and GW

Another approach to self-consistency uses the standard GW formalism for calcu-

lating the self-energy but considers only its diagonal elements, thereby employing

an energy-only self-consistent approach where only the eigenvalues are updated in

successive iterations of a G0W0-like perturbation. The updated eigenvalues can be

used to recalculate both G andW at every iteration (denoted GW) or only to update

G, keepingW fixed asW0 (denoted GW0). This procedure avoids the problems with

non-Hermiticity of the self-energy and the ensuing non-orthonormal wavefunctions

by fixing the wavefunctions to the initial KS-DFT input. Because the wavefunctions

are kept fixed, this method is not completely independent of the starting guess, and a

range of mean-field theories have been used to generate reference wavefunctions.

Table 6 shows the band gaps of selected transition metal oxides as calculated

with self-consistent GW0 and/orGW, using wavefunctions generated with a number

of exchange-correlation functionals. Typically, introducing self-consistency with

GW0 or GW results in larger gaps than with a single G0W0 perturbation. This trend

occurs in HSE/GW and PBE/GW with ZnO [146, 162], LDA+U/GW0 with MnO,

CoO, and NiO [151], LDA/GW with Cu2O [134], and LDA+U/GW0 with many of

the lanthanide oxide series [154]. In these studies, the increase in QP gaps also often

improves agreement with experimental band structures and fundamental gaps.

However, while there is some improvement in accuracy, in many cases there are

still significant quantitative differences, likely due to the enduring influence of an

inaccurate reference Hamiltonian. In Fe2O3 [147] the increasing levels of self-

consistency further opened up the gap, but led to worsened agreement with

experiment for reference Hamiltonians with larger initial eigenvalue gaps. And in

other cases, increasing levels of self-consistency resulted in decreased band gaps,

such as in LDA/GW0 with FeO [151] and Ce2O3, Pr2O3, Tb2O3, and Dy2O3 of

the lanthanide oxides [154]. Overall, these results show that introducing self-

consistency in this manner is not a panacea to the problems in the G0W0 approach,

as the success of the self-consistentGW0 andGWmethods is still dependent on both

the material and the reference Hamiltonian.

Table 5 QP gaps calculated

with model GW (mGW) [167]

for a number of transition

metal oxides in comparison

with experimental

fundamental gaps

Eg(mGW) Eg(Exp.)

VO2 0.6a 0.2–0.7b

MnO 4.2c, 4.03d 3.9 � 0.4e

FeO 2.32d 2.5f

CoO 3.02d 2.5 � 0.3g

NiO 3.7h, 3.60d 4.3i

CaCuO2 1.4h 1.5j

ZnO 4.23k 3.37l

a [170]; b [138]; c [172]; d [168]; e [170]; f [156]; g [156]; h [169];
i [139]; j [173]*; k [171]; l [79]*
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Table 6 QP gaps calculated with self-consistent GW0 and/or GW for a number of transition and

lanthanide metal oxides in comparison with experimental fundamental gaps. The exchange-

correlation functional used in the reference Hamiltonian, H0, is specified in the second column.

The eigenvalue gaps of the reference Hamiltonian, Eg(H0), are reported when available and the

values of U�J are reported where appropriate

Vxc

U�J
(eV)

Eg(H0)

(eV)

Eg(H0/GW0)

(eV)

Eg(H0/GW)

(eV) Eg(Exp.) (eV)

TiO2-rutile PBE+U 3.0a – – 4.48a 3.3 � 0.5b

V2O3 PBE+U 3.0a – – 1.70a 0.2c

VO2 PBE+U 3.0a – – 1.12a 0.2–0.7d

V2O5 PBE+U 3.0a – – 4.69a 2.15e

Cr2O3 PBE+U 3.0a – – 4.75a 4.7–5.0f

MnO LDA+U 3.9g 1.54g 2.57g – 3.9 � 0.4h

MnO PBE+U 3.0a – – 3.81a 3.9 � 0.4h

Mn3O4 PBE+U 3.0a – – 2.89a 2.5i

FeO LDA+U 3.9g 1.15g 0.86g – 2.5j

FeO PBE+U 3.0a – – 1.65a 2.5j

Fe2O3 PBE – 0.6k 1.7k 1.8k 2.6 � 0.4l

Fe2O3 LDA+U 4.3k 1.9k 3.3k 4.0k 2.6 � 0.4l

Fe2O3 PBE+U 4.3k 2.2k 3.6k 4.3k, 3.57a 2.6 � 0.4l

Fe2O3 HSE – 3.5k 4.4k 4.7k 2.6 � 0.4l

Fe2O3 PBE0 – 4.2k 4.7k 4.8k 2.6 � 0.4l

CoO LDA+U 4.2g 2.21g 2.54g – 2.5 � 0.3m

CoO PBE+U 3.0a – – 3.23a 2.5 � 0.3m

Co3O4 PBE+U 3.0a – – 2.42a 1.6n

NiO LDA+U 4.3g 2.90g 3.76g – 4.3o

NiO PBE+U 3.0a – – 4.28a 4.3o

Cu2O LDA – 0.54p – 1.80p 2.17q

Cu2O PBE+U 5.0a – – 1.59a 2.17q

CuO PBE+U 3.0a – – 2.49a 1.4r

ZnO PBE – 0.67s 2.54s 3.20s 3.37t

ZnO HSE – 2.11u 3.02u 3.33u 3.37t

La2O3 LDA+U 5.4v 3.76v 5.24v – 5.55w, 5.34x, 5.3y

Ce2O3 LDA+U 5.4v 2.24v 1.29v – 2.4w

Pr2O3 LDA+U 5.4v 3.17v 2.82v – 3.9w, 3.5x

Nd2O3 LDA+U 5.4v 3.69v 4.70v – 4.7w, 4.8x

Pm2O3 LDA+U 5.4v 3.35v 5.41v – –

Sm2O3 LDA+U 5.4v 2.15v 5.22v – 5.0w

Eu2O3 LDA+U 5.4v 1.28v 3.48v – 4.4w

Gd2O3 LDA+U 5.4v 3.58v 5.30v – 5.4w

Tb2O3 LDA+U 5.4v 3.34v 3.74v – 3.8w

Dy2O3 LDA+U 5.4v 3.47v 4.24v – 4.9w

Ho2O3 LDA+U 5.4v 3.05v 5.12v – 5.3w

Er2O3 LDA+U 5.4v 2.69v 5.22v – 5.3w, 5.49x

Tm2O3 LDA+U 5.4v 1.73v 5.15v – 5.4w, 5.48x

Yb2O3 LDA+U 5.4v 1.25v 4.70v – 4.9w, 5.05x

Lu2O3 LDA+U 5.4v 3.18v 4.99v – 5.5w, 5.79x, 4.89z, 5.8z

a [174]; b [136]; c [175]; d [138]; e [176]*; f [177]*; g [151]; h [155]; i [178]*; j [156]; k [147];
l [149]; m [157]; n [179]; o [139]; p [134]; q [140]*; r [180]*; s [146]; t [79]*; u [162]; v [154];
w [158]*; x [159]*; y [160]*; z [161]
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3.3.3 Self-Consistent Hermitized GW

Truly self-consistent methods should not be influenced by the choice of reference

Hamiltonian. However, the challenge of such self-consistent methods that update

both the eigenvalues and wavefunctions is to resolve somehow the non-Hermiticity

of the self-energy. The QP self-consistent GW (QPscGW) method of Faleev, van

Schilfgaarde, and Kotani [181] constrains the dynamical self-energy so that it

becomes static and Hermitian by symmetrizing the off-diagonal elements to

regularize the self-energy. This constrains the resulting Hamiltonian to be Hermitian

while the self-energy remains as close as possible to the original self-energy.

The QPscGW method should be free from any dependence on the input

wavefunction; however, its application (Table 7) to Fe2O3 showed significant

differences in the band gap with varying initial DFT references, indicating that

the choice of input wavefunction can lead to a solution that is a local minimum

[147]. Overall, QPscGW showed worsened agreement with experiment for the band

gap of Fe2O3, and the recommended method was DFT+U/G0W0. For NiO, the band

gap is more significantly overestimated with QPscGW than with any of the previous

GWmethods, and there are some discrepancies between PE experiments and the QP

spectrum [181]. QPscGW on MnO [181] provides a value at the lower bound of the

experimental gap (3.5 eV), which is an improvement over the DFT+U/G0W0

calculations (2.34, 3.07 eV [151, 152]), although one HSE/G0W0 calculation

(3.82 eV [152]), model GW (4.2, 4.03 eV [168, 172]), and PBE+U/GW (3.81 eV

[174]) performed better. Similarly, the QPscGW gap for Cu2O [134] is more

accurate than the gaps calculated with most other GW methods (1.34, 1.39, 1.85,

2.52 eV [134, 145]), excluding HSE/G0W0 (2.17 eV [145]). Consequently, self-

consistency with QPscGW is also not a universally reliable method, as its accuracy

is material-specific and still appears to depend on the input wavefunction.

Sakuma, Miyake, and Aryasetiawan [182] proposed another form of self-

consistent GW to update both the eigenvalues and wavefunctions, called the QPM

approximation. Their self-consistent procedure begins with a GW calculation built

on LDA input, and the resulting QP wavefunctions are then orthogonalized by

diagonalizing a Hermitian QP Hamiltonian constructed from the QP eigenvalues

and corresponding QP wavefunction projectors. This can be run self-consistently,

but, due to the expense, they approximated self-consistency by introducing a shift to

the conduction band QP energies, chosen such that the input and output band gaps

Table 7 QP gaps calculated with the QPscGWmethod [181] for several transition metal oxides in

comparison with experimental fundamental gaps

Eg(QPscGW) (eV) Eg(Exp.) (eV)

MnO 3.5a 3.9 � 0.4b

Fe2O3 2.9, 3.5, 4.2, 4.3c 2.6 � 0.4d

NiO 4.8a 4.3e

Cu2O 1.97f 2.17g

a [181]; b [155]; c [147], where the four values result from reference Hamiltonians of PBE,

LDA+U/PBE+U, HSE, and PBE0, in that order; d [149]; e [139]; f [134]; g [140]*
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are equivalent. They applied this approach to VO2 and found a gap of 0.6 eV in

comparison to 0.2–0.7 eV from experiment [138]. The QPM approximation was a

precursor to their later scheme for self-consistentGW, which constructs a Hermitian

Hamiltonian using Lowdin’s method of symmetric orthogonalization, thus ensuring

the orthonormality of the orbitals [183]. This form of self-consistent GW was

applied to NiO, which yielded a band gap of ~5 eV, which is greater than the

experimental gap of 4.2 eV. The predicted band structure matches the QPscGW

band structure nearly exactly, indicating the similarity between these two methods.

The overestimation of the band gap within many self-consistent forms of GW has

been attributed to the lack of higher-order many-body correlation effects when

applying self-consistency [184], underscreening by the RPA [185], or the neglect of

the contribution of lattice polarization to the screening of the electron–electron

interaction [186, 187]. However, these self-consistent schemes may be viewed as a

good mean field starting point for those higher-order calculations.

3.4 GW Outlook

An overview of the performance of all GW methods is shown in Fig. 3. This review

of the many implementations of GW shows that there is no universal GW method

appropriate for all transition metal oxides. GW is also hindered by its computational

expense, largely due to the nonlocality and frequency dependence of the self-energy

operator and its slow convergence with respect to k-point sampling and the number

of empty bands. It has been shown that the band gap may not completely converge,

even with hundreds of empty bands [188]. GW also scales as O(N4). Technical

improvements to the execution of GW and more formal theoretical improvements

such as vertex corrections or models that account for lattice polarization may

increase progress towards an efficient and accurate universal approach, thus

improving the description of transition metal oxides.

3.5 Bethe–Salpeter Equation

To describe the neutral excitations that occur in absorption spectroscopy and to derive

the optical gap, a theory needs to account for the screened electron–hole interaction

involved in the formation of excitons. This interaction is described in the

Bethe–Salpeter equation (BSE) [98, 189, 190], which solves for the neutral excitation

energies as the poles of the two-particle Green’s function. The solution of the BSE

typically begins with a GW calculation to solve for the quasielectron and quasihole.

BSE theory then subsequently introduces an interaction term that mixes the two types

of charged transitions. The BSE can be extremely computationally demanding, as it

requires an even larger number than GW of empty bands and k-points to obtain

converged results. BSE also scales as O(N5), which presents a computational
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challenge for systems larger than 100 atoms, even when massively parallelized. One

approach decreases the computational expense by generating the necessary electronic

states with an approximation to GW in which a GGA+U calculation with a scissor

shift operator (GGA+U+Δ) is used to reproduce a less refined approximation of the

GW band structure [191, 192]. Another approximation to BSE was developed by

Reining and coworkers [99, 193–195], who derived an effective nonlocal exchange-

correlation kernel from the BSE to reproduce excitonic effects (first applied within a

TD-DFT context and then subsequently extended to GW/BSE), which accounts for

both self-energy corrections as well as the screened electron–hole interaction.

The GGA+U+Δ approximation was used to generate input for BSE calculations

on ZnO, CdO, MnO, FeO, CoO, and NiO [191, 192]. For these materials, the

inclusion of excitonic effects was shown to be necessary to obtain agreement

with experimental absorption peak positions. BSE calculations enabled relevant

peaks in the optical spectrum to be characterized as specific optical interband

transitions. The approximation to the BSE using the kernel developed by Reining

et al. was applied to a number of materials [196], and an optical gap of 3.2 eV was

predicted for ZnO in comparison to 3.3 eV from experiment [197]. Here, the vertex

corrections were only used in the construction of W, but were neglected in the

construction of Σ due to numerical instabilities. The BSE without any approxima-

tions was used in calculations of Cu2O [134], which appropriately described the

strong excitonic effects of the material. BSE produces a detailed absorption

spectrum (Fig. 4) that is useful in analyzing the experimental spectrum. BSE was

also used to model rutile and anatase TiO2 [135, 148]. The optical gap for rutile

Fig. 3 A graphical representation of the data presented in Tables 1, 2, 3, 4, 5, 6, and 7, showing the

collected computed vs experimental band gaps for all materials and methods considered
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TiO2 was predicted to be 3.25 eV, which is only 0.22 eV above experiment, and the

overall optical spectrum for rutile TiO2 was shifted by only 0.1–0.2 eV with respect

to experiment.

Overall, the BSE has been shown to be a powerful tool in analyzing optical

absorption spectra, but its greatest challenge is its computational expense. While

the various approximations to BSE help reduce this burden, other theoretical

approaches may be helpful in studying neutral excitations with less of a

computational load.

4 Embedded Correlated Wavefunction Methods

GW and BSE theories are typically applied to bulk crystalline materials, and the

resulting spectra are therefore interpreted according to band theory. While this

approach describes delocalized excitations in the continuum very well, it is also

important to characterize localized excitations that involve only selected atoms and

orbitals, especially in materials where optical excitations of multiple characters may

occur. The localized neutral excitations that may occur in optical spectroscopy can be

better described by theories designed to model neutral excited states in more localized

models. To this end, we turn to correlated wavefunction methods, which can easily

characterize ground and excited states in clusters. The optical gap can be obtained as

the difference between the lowest excited state energy and the ground state energy,

and similarly, the entire optical absorption spectrum can be derived from a series

of excited state energies and oscillator strengths. The character of the localized

excitations can be probed through explicit models of their electronic structure.

Fig. 4 Optical absorption spectrum of Cu2O from experiment (black dotted line), from BSE with

QPscGW input and an LDA dielectric function (purple dashed line), and from BSE with QPscGW

input and a QPscGWdielectric function (red solid line). Reprinted with permission fromBruneval F,

Vast N, Reining L, Izquierdo M, Sirotti F, Barrett N, Phys Rev Lett, 97, 267601, 2006. Copyright

(2006) by the American Physical Society
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4.1 Correlated Wavefunction Theory

Many-electron wavefunction methods solve for the electronic structure of a system

using an ansatz of a wavefunction that is variationally optimized to solve the

Schrödinger equation. Within the Born–Oppenheimer approximation, the electronic

wavefunction is solved for in the field of fixed nuclei, where the electronic

Hamiltonian of the time-independent Schrödinger equation consists of the kinetic

energy operator, an electron-nuclear attraction operator, and the electron–electron

repulsion operator:

ĤΨ r1 . . . rNð Þ ¼
XN
i¼1

� 1

2
∇2Ψ �

X
A

ZA
1

ri � RAj jΨ
 !

þ 1

2

X
i6¼j

1

ri � rj
�� ��Ψ

¼ EΨ ð16Þ

HF theory [198, 199], essentially variational molecular orbital theory, is the

starting point for most quantum chemistry methods. HF theory approximates the

many-electron wavefunction as a single Slater determinant of one-electron spin-

orbitals, which fulfills the requirement of wavefunction antisymmetry with respect

to permutation of electrons (i.e., the Pauli Exclusion Principle):

Ψ r1 . . . rNð Þ ¼
ϕ1 r1ð Þ ϕ2 r1ð Þ . . . ϕN r1ð Þ
ϕ1 r2ð Þ ϕ2 r2ð Þ . . . ⋮
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ϕ1 rNð Þ . . . . . . ϕN rNð Þ

��������

��������
ð17Þ

The many-body wavefunction is solved for by applying a self-consistent mean-

field approximation, where each electron is subjected to an averaged Coulomb

potential and an exchange operator due to all other electrons. The exchange

interactions arise from the required permutational antisymmetry of the many-

electron wavefunction, and their explicit form is dictated by the Slater determinant

wavefunction. HF theory scales as O(N4), although the scaling for the overall

calculation can be lowered by using a screening method for the two-electron

integrals [200–206]. The scaling for the calculation of the Fock matrix can also

be reduced to linear using hierarchical multipole expansions [207–210]. HF can be

applied to systems with several hundred atoms.

While Coulomb and exchange interactions are accounted for exactly within HF

theory, because of the constraint of a single-determinant solution, the HF solution

does not account for any electron correlation. A single electron configuration

(a single determinant) wavefunction is insufficient for describing situations where

so-called static electron correlation is important, such as when the ground state

is best described with more than one (nearly) energy degenerate determinant.

Moreover, correlating electron motion lowers electron–electron repulsion, which

leads to a lower total energy that will be closer to the exact solution.
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Møller–Plesset perturbation (MPn) theory [211] is the simplest method of

introducing electronic correlation. MPn theory treats the full Hamiltonian as a

perturbed independent electron Hamiltonian, using the ground state HF

wavefunction and Fock operator as the starting point. MPn theory builds in

so-called dynamic correlation, in which correlated motion of the electrons is

accounted for via electronic excitations from the ground state wavefunction. One

of the most commonly used forms is MP2, where the energy is expanded to a

second order perturbation. The MP2 second order energy is expressed using the HF

orbitals and eigenvalues as

EMP2 ¼ 1

4

Xocc
ij

Xvirt
ab

hϕiϕj

��r�1
12

��ϕaϕbi
�� ��2
εi þ εj � εa � εb

: ð18Þ

MP2 formally scales as O(N5), although linear-scaling methods have been designed

[212–216], so that MP2 is not a significant increase from the computational expense

of HF. MP2 is also size-consistent. Unfortunately, MP2 is not variational, so the

calculated correlation energy may be too large.

Static correlation is treated explicitly with a self-consistently optimized multi-

configurational wavefunction that includes all significant, nearly-degenerate deter-

minants in the wavefunction. An example of a multi-configurational approach is the

Complete Active Space Self-Consistent Field (CASSCF) method [217]. The

CASSCF wavefunction is a linear combination of configuration state functions

(CSFs; spin and spatial symmetry-adapted linear combinations of Slater determi-

nants) generated by distributing a subset of electrons in all possible ways within an

active subset of the orbital space:

Φ ¼
X
K

AKΨK ð19Þ

The total energy is minimized with respect to both the molecular orbital coefficients

and the expansion coefficients AK. One of the greatest challenges of the CASSCF

method is choosing the active space of electrons and orbitals. Ideally, one would

like to include the full valence space; however, CASSCF scales factorially with

respect to the number of active orbitals and electrons. Including the full valence

space is therefore not feasible in larger systems, as the practical upper limit to the

active space is typically 16 electrons in 16 orbitals. Instead, the active space can be

selected according to a set of guiding criteria [218]. The most important orbitals to

include in the active space are those that would be likely to have fractional

occupations on average. Additionally, when modeling systems containing transition

metals, all orbitals of d-character should typically be included. Unfortunately, even
following these basic guidelines for selecting the prime candidates for the active

space frequently results in an active space size that is computationally impractical

and must be further truncated. The success of CASSCF largely depends on the

choice of the active space. While CASSCF is effective for treating static correlation,
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it does not account for dynamic correlation. However, the CASSCF wavefunction is

often used as a very good starting point for other levels of theory that introduce

dynamic correlation. For instance, CASPT2 [219] is a second order perturbation

theory approach to dynamic correlation based on a CASSCF reference state.

Configuration interaction (CI) [220] is frequently used for the explicit introduction

of dynamic correlation. The CI wavefunction is a linear combination of CSFs whose

determinants are defined by excitations from one (or more) reference determinants,

typically the HF determinant. Full CI includes all possible determinants formed by

exciting any number of electrons from the occupied to unoccupied states in the

reference determinant Ψ 0 within the set of spin orbitals:

Φ0j i ¼ c0 Ψ 0j i þ
X
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c ra Ψ r
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�� �þ X
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c rsab Ψ rs
ab

�� �þ X
a<b<c, r<s<t
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þ

X
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c rstuabcd Ψ rstu
abcd

�� �þ . . . ð20Þ

A variationally optimized full CI expansion that uses a complete set of spin orbitals

would produce the exact nonrelativistic ground state energy. Because an infinite

basis set cannot be handled, a finite set of spin orbitals must be used. Full CI within

this subspace is still intractable (scaling factorially), so CI approaches instead

typically use a small fraction of all possible determinants by truncating the expan-

sion of (20). The first order truncation includes single excitations only, which is not

helpful in improving the description of the ground state wavefunction, but can be

used to describe excited states in the so-called CI Singles (CIS) approach [221]. A

popular truncation is at second order to include single and double excitations

(SDCI), as excitations greater than those do not couple directly to the reference

determinant. A single reference determinant is insufficient in cases where static

correlation is significant, and in those instances the CI wavefunction can be

constructed via excitations from more than one reference wavefunction. CI with

single and double excitations from more than one reference is called multi-

reference SDCI or MRSDCI, where the reference determinants are typically chosen

by identifying the dominant references in a prior CASSCF calculation. MRSDCI

typically scales as O(N6), limiting these calculations to relatively small systems,

though again reduced scaling algorithms exist that allow larger numbers (though

not hundreds) of atoms to be treated [222–224]. Truncated CI energies are upper

bounds to the energies of a system, as CI theory is variational. Excited states

within CI correspond to higher order eigenvalue and eigenfunction solutions of

the (typically) nonrelativistic Hamiltonian eigenvalue problem. A major drawback

of CI theory is that, while full CI is theoretically size extensive, truncated CI

expansions are not size extensive, and therefore accuracy will decrease with

increasing system size.

An alternative to CI is coupled cluster (CC) theory [225], which constructs a

multi-determinant wavefunction consisting of a linear combination of excited

Slater determinants using an exponential excitation operator that acts on the HF

reference:
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Φ0j i ¼ eT̂ Ψ 0j i ð21Þ

where T̂ is the excitation operator

T̂ ¼ T̂ 1 þ T̂ 2 þ T̂ 3 . . . ð22Þ

and T̂ 1 is the operator for all single excitations, T̂ 2 is the operator of all double

excitations, etc. Typically, the cluster operator is truncated at or before the triple

excitation operator. However, if the CC expansion is truncated, CC theory is no

longer variational and the computed energy will not be an upper bound to the true

energy of the system. A variant of CC theory called equation-of-motion CC

(EOM-CC) [226] is used to calculate excited states, where the excited state

wavefunction is generated from a reference state by the action of an excitation

operator. EOM-CC including single and double excitations scales as O(N6),

generally limiting these methods to fairly small, gas phase systems (molecules).

These correlated wavefunction methods are very powerful for calculating

ground and excited state properties. However, their high level of accuracy is

compromised by their high computational cost, and it is not yet possible to use

these methods routinely to treat condensed matter due to their prohibitive expense,

though periodic MP2 [227–234] and coupled cluster theories [235, 236] have been

developed. A crude approximation to model an extended system, such as a bulk

crystal or surface, is as an isolated cluster. This method removes the impact of the

environment on the cluster, whose influence may be non-negligible. A more

accurate approach is to partition the system into a region of interest, which is

treated with the higher level correlated wavefunction method, and its environment,

which is treated with some lower level method (Fig. 5). This partitioning assumes

that the impact of the environment is non-negligible but slightly less important,

justifying its treatment with a lower level of theory. The influence of the environ-

ment on the region of interest is incorporated in the correlated wavefunction

method as an embedding potential.

4.2 Electrostatic Embedding

The simplest embedding model represents the background as a point charge array.

This representation is only appropriate for ionic systems, where the electron density

is relatively localized and the long-range interactions between the cluster and

environment can be approximated as purely electrostatic. Therefore this approach

is not well suited for some transition metal oxides containing more covalent

character. Correlated wavefunction theory must operate in finite real-space, so the

point charge array is often constructed as a finite array. However, the Madelung

potential of a finite array converges slowly in real space with respect to array size,

which may lead to significant deviations from the exact Ewald potential of the
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periodically infinite crystal. Therefore, the appropriate size and shape of the point

charge array must be chosen to properly converge the Madelung potential. The

standard approach is Evjen’s method [237], which defines fractional charges for

point charges in the terminal positions of an array with the same symmetry as the

bulk unit cell. In a cuboid array, for example, Evjen’s method assigns one eighth of

the bulk charge on point charges at the vertices, one quarter of the bulk charge on

point charges at edges, and one half of the bulk charge on point charges on faces.

There are alternate procedures to construct the background potential, such as the

periodic electrostatic embedded cluster method, which uses the periodic fast

multipole method to provide the correct Madelung potential due to a periodic

array of point charges [238]. Still other approaches define auxiliary charges to

represent the Madelung potential [239, 240].

When defining the point charge array according to Evjen’s method, the point

charge values are typically derived from the formal oxidation numbers of the ionic

compound. However, the formal charges may not accurately reflect the physical

ionicity of the compound, which can demonstrate partial ionicity. The use of overly

high charges in the background array is therefore an unphysical representation that

may lead to excessive polarization of the electron density in the quantum mechanical

(QM) cluster. A better approach may be to use a more physical value that more

accurately represents the material’s ionicity, where point charges values can be

obtained via a prior charge partitioning scheme such as Mulliken charges [241],

Löwdin charges [242], Hirshfeld [243] charges, or Bader charges [244–247] from

periodic DFT or HF calculations. A number of calculations suggest that using the

more physical fractional values in the point charge arrays is more appropriate

[248–250].

Fig. 5 Schematic of the embedding approach to modeling extended materials, illustrated here

with Cu2O. Region I is the embedded cluster, treated with the higher-level correlated wavefunction

theory, while Region II is the environment, treated with a lower level of theory. The effect of

Region II on Region I is incorporated into the correlated wavefunction theory calculation as an

embedding potential that is an additional one-electron operator in the Hamiltonian
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When the QM cluster is immediately surrounded by a point array, the boundary

atoms of the cluster that neighbor positive point charges of the environment

experience a strong artificial distortion of their electron density [251]. To prevent

this artificial drift of the electron density, the positive point charges adjacent to the

cluster are typically replaced by effective core potentials (ECPs), which restore

the missing short range Pauli repulsion between the cluster and its immediate

environment [251–253].

A more extensive representation of the background array is to use ab initio

model potentials (AIMPs) instead of point charges [254, 255]. AIMPs have an

advantage over ECPs in that they can be used to represent anions in addition to

cations. AIMPs can be used to represent the complete background array, or can be

used to replace point charges only in the region immediately surrounding the cluster

as a means of preventing the artificial drift of the electron density.

A fixed point charge array may be inappropriate in cases where polarization of

the environment is important. Environmental polarization can be introduced by

partitioning the background into two regions, where the region immediately

surrounding the cluster is treated with the polarizable shell model [256, 257]. In

this region, polarizability is introduced by representing the anions as a positive

point charge to which a negatively-charged shell is connected via a harmonic

potential. The polarizable environment is allowed to respond to electronic distor-

tions (e.g., excitations) within the QM cluster, while the rest of the non-polarizable

point charge array is held fixed. A similar approach is the elastic polarizable

environment model [258], where the environment is partitioned into three regions:

a shell model region, a point charge region, and a dielectric continuum. These

methods that incorporate a polarizable region may also include ECPs at the cluster

boundary to prevent spurious charge drift.

Point charge and AIMP embedding are the most widely used approaches in

embedded cluster methods applied to transition metal oxides. Thus far, all appli-

cations of point charge embedding for transition metal oxides obtained point charge

values from formal oxidation numbers as opposed to fractional ionicities. One use

of these embedded correlated wavefunction methods has been to characterize

absorption spectra and evaluate its contributing d–d transitions. De Graaf

et al. [259] modeled the neutral d–d excitations in NiO using CASSCF/CASPT2

and point charge embedding, producing excitation energies that compare well to

experiment. Another study of the NiO absorption spectrum, performed by Domingo

et al. [260], used CASSCF/CASPT2 with a direct reaction field [261] to allow for

polarization of the environment. In this model, AIMPs and point charges are used

with added induced electric dipoles, where the polarizabilities of the atoms are

assigned based on empirical values. Here, the theoretical spectrum reproduced the

experimental spectrum, helping to pinpoint some of the origins of its features. For

instance, the origin of the optical gap at 4.1 eV was identified as being due to a

ligand-to-metal charge transfer, confirming the charge transfer nature of NiO. The

polarized environment helped to explain the source of broadening and relaxation of

charge transfer states. Liao and Carter [262] studied the lowest optical excitations in

Fe2O3 using CASSCF/CASPT2 with the cluster embedded in a point charge array.
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They characterized the lowest excitations as d–d transitions that start at ~2.5 eV,

while ligand to metal charge transfer excitations occur at higher energies starting at

~6 eV. The optical band gap of Fe2O3 is 2.0–2.2 eV [263], and so the embedded

cluster model slightly overestimates the optical gap. De Graaf and Broer [264]

studied the d–d transitions in a series of cuprates with embedded CASSCF/

CASPT2, to analyze the effect of copper coordination on d–d transition energies.

Their embedding model used a point charge array, where the point charges at the

cluster boundary were replaced with AIMPs. They found the lowest d–d transition

to be 1 eV or higher in all cuprates, where the only transition that changed

throughout the series is 3dx2�y2 ! 3dz2 transition, due to changes in coordination

along the z-axis. Kanan and Carter [265] examined d–d and charge-transfer

excitations to explain the optical absorption spectrum of pure MnO and a MnO:

ZnO alloy. Their study used electrostatically embedded cluster models and

CASSCF/CASPT2. They identified the lowest lying excitations as single d–d ligand
field excitations, followed by double d–d excitations, Mn 3d to 4s excitations,

and finally the O 2p to Mn 3d charge transfer excitations. Alloying with Zn lowered
the highest excitation energy but did not significantly impact the lower-energy

excitations.

Another application of these embedded correlated wavefunction methods is to

study the effect of dopants on excitations in transition metal oxides. Muñoz-Garcı́a

et al. [266, 267] used CASSCF/CASPT2 with an embedded cluster model including

AIMPs to understand shifts in excited states of main character Ce 4f1, Ce 5d1, and
Ce 6s1 induced by codoping yttrium aluminum garnet (Y3Al5O12) with Ce and Ga

or La. They reproduced the Ce 4f ! 5d blueshift upon codoping with Ga and

explained it as a consequence of geometric distortions [266]. They also showed how

codoping with La introduces a redshift of the first Ce 4f ! 5d, in agreement with

experiment, while the second absorption experiences a blueshift [267].

The embedded correlated wavefunction method can also be used to identify

surface-specific excitations in materials. Geleijns et al. [268] studied local

excitations on the NiO(100) surface, using a cluster model embedded in AIMPs

and applying CASSCF/CASPT2 to solve for the wavefunctions of the lowest 15 d8

states of a Ni2+ ion on the surface. They confirmed the existence of surface-specific

d–d excitations at 0.6 and 2.1 eV, and showed that the lowest local charge transfer

state is 2 eV lower than in bulk NiO. Their study also showed the strong influence of

the embedding model, as excitations were heavily influenced by using either

point charges or AIMPs. Fink [269] studied excitations in the polar O-terminated

ZnO 0001
� �

surface with various defects and in bulk ZnO, using a cluster model

embedded in a point charge array and CASSCF or a multiconfigurational coupled

electron pair approximation [270]. She found that the oxygen vacancy in bulk ZnO

is characterized by absorption at 3.19 eV, in agreement with experiment, whereas

the corresponding surface excitation is more than 0.5 eV higher in energy. These

excitations are well above the optical band gap of ZnO, explaining why these

transitions cannot be observed experimentally.
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This level of theory can also help to interpret XPS spectra by solving for the

wavefunctions of ionized clusters to create core-holes. Hozoi et al. [271] used

nonorthogonal CI with an NiO cluster embedded in a point charge array to interpret

the 3s XPS spectrum. They found good agreement with experiment, and described

each state in terms of a few key configurations. Bagus and Ilton [272] also

explained the XPS spectrum in MnO using Dirac relativistic CI and a cluster

model embedded in a point charge environment.

4.3 Quantum Mechanical Embedding

The purely electrostatic representation in electrostatic embedding can be insufficient

to describe cluster-environment coupling in materials whose bonding character is not

purely ionic. To model these materials, the embedding potential must incorporate

non-classical interactions. A formal theory of embedding that accounted for

non-classical interactions was first developed by Grimley and Pisani [273], with an

early solution scheme that was based on Green’s function techniques. Gunnarsson

et al. [274, 275] generalized Grimley and Pisani’s methods, and derived a

Kohn–Sham scheme that confined the solution to a set of localized functions. Pisani

et al. [276–279] extended this perturbed crystal approach based on the one-electron

Green’s function method, where the one-electron Green’s function in the defect

region is evaluated within perturbation theory using the Green’s function of the

unperturbed host as a reference and a perturbing potential localized within

the embedded region. Inglesfield developed a related approach that constructs an

embedding potential from the Green’s function of a bulk crystal to use in calculations

of surfaces [280]. Scheffler et al. proposed a similar Green’s function–based

method to describe localized perturbations such as isolated adsorbates on crystal

surfaces [281].

A different approach for correlated wavefunction embedding was proposed by

Whitten and coworkers, who developed orbital space partitioning for embedded CI

[282–284]. Orbital space partitioning models the electron density of the environ-

ment using an orbital subspace that then interacts with the orbital subspace of the

QM cluster. Orbital space partitioning as proposed by Whitten et al. typically

begins with a single-determinant wavefunction (i.e., HF) solution for a large

cluster, which can be subdivided into the region of interest and the background.

The one-electron orbitals from the single reference wavefunction are then

partitioned into a subspace localized on the region of interest and a complementary

subspace localized on the environment. A number of localization procedures have

been proposed [285]. The localized orbitals in the environment subspace are used to

construct effective Coulomb and exchange operators [286, 287], which act upon the

quantum cluster within the CI calculation. Boundary potentials are also derived by

analyzing penetration of the environment orbitals within the embedded cluster. The

basis set for the embedded cluster is then augmented, and a CI calculation is

performed using the localized orbital subspace of the quantum cluster. Stoll and
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coworkers [288, 289] proposed a similar cluster-in-solid embedding technique that

extracts its effective one-electron Coulomb and exchange operators from a periodic

HF calculation, such that the subsequent correlation calculations are subject to an

infinite frozen HF environment. These models account for the electrons in the

environment in an approximate way, but in a still more sophisticated manner than

the electrostatic model.

The scheme for orbital space partitioning assumes that the one-electron orbitals

can be localized, but a localized description of bonding is not always appropriate,

such as in metals. In such cases, it is impractical to partition the electron density

using localized orbitals; instead, the electron density can be partitioned via charge

densities alone, thus avoiding the localization procedure. This approach is known as

density-based embedding, where the total system density ρtot is partitioned into a

density associated with the embedded cluster, ρI, and a density associated with the

background, ρII, whose densities must sum to the total system density:

ρI þ ρII ¼ ρtot ð23Þ

The coupling between the background and cluster densities is accounted for by an

effective, one-electron potential Vemb that is introduced into the Hamiltonian

(shown here to represent KS-DFT) applied to the region of interest:

�∇2

2
þ Vs ρI½ � rð Þ þ Vemb ρtot; ρI½ � rð Þ

� �
ψ I, i rð Þ ¼ Eiψ I, i rð Þ ð24Þ

where Vs is the typical KS potential for the isolated embedded cluster. This

approach is rooted in the subsystem formulation of DFT by Cortona [290], whose

strategy was to embed a DFT calculation within an orbital-free DFT background,

thereby reducing a periodic DFT calculation to that of a single atom. Wesolowski

and Warshel built on Cortona’s work by introducing the frozen-density embedding

scheme [291], which partitions the total density into the density of an active

subsystem and a frozen environment, and where the effect of the frozen environ-

ment is accounted for by an effective embedding potential based on DFT. Density-

based partitioning was extended further by Carter and coworkers [292–298] to go

beyond DFT in DFT embedding to embed a correlated wavefunction calculation

using a DFT-based embedding potential for the effect of the environment.

There are a number of methods to model the subsystem-environment interaction.

One approach is to use a model DFT functional to represent the interaction energy,

as first proposed by Cortona [290]. The embedding potential includes cluster/

background coupling from kinetic, Hartree, and exchange-correlation contributions:

Vemb ρtot; ρI½ � rð Þ ¼ VTs
ρtot; ρI½ � rð Þ þ VJ ρtot; ρI½ � rð Þ þ Vxc ρtot; ρI½ � rð Þ

þ V tot
ion rð Þ � V I

ion rð Þ ð25Þ

where the potential due to ions in the environment are accounted for by Vtot
ion

(r) � VI
ion(r), the kinetic potential is
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VTs
ρtot; ρI½ � rð Þ ¼ δTs ρtot½ �

δρtot rð Þ �
δTs ρI½ �
δρI rð Þ , ð26Þ

the Hartree potential is

VJ ρtot; ρI½ � rð Þ ¼ δJ ρtot½ �
δρtot rð Þ �

δJ ρI½ �
δρI rð Þ , ð27Þ

and the exchange-correlation potential is

Vxc ρtot; ρI½ � rð Þ ¼ δExc ρtot½ �
δρtot rð Þ � δExc ρI½ �

δρI rð Þ : ð28Þ

While the Hartree and exchange-correlation contributions to coupling can be easily

modeled at the KS-DFT level using standard exchange-correlation functionals, the

kinetic energy contribution is more difficult to model. This is because standard

KS-DFT calculates the kinetic energy using an orbital-based formulation, and with

density-based partitioning there is no orbital representation of the background. Even

within an orbital partitioning scheme, the orbital subspaces in the two regions are not

necessarily orthogonal to each other, resulting in a non-additive kinetic energy term

that must be approximated. The kinetic energy potential typically has been

approximated using an orbital-free DFT functional. Cortona modeled the kinetic

energy in the cluster/background coupling using the Thomas–Fermi kinetic energy

density functional that is exact for the homogeneous electron gas [299, 300]. Other

common approximations for the kinetic energy density functional include the von

Weizsäcker result for the limit of a one-orbital density [301], the Wang–Teter

functional [302], and theWang–Govind–Carter [303, 304] functionals, among others.

The non-additive kinetic energy can also be computed exactly with OEP methods.

Goodpaster et al. [305, 306] proposed a formally exact protocol that uses a Levy

constrained search [307] as implemented by Zhao, Morrison, and Parr [308–310] to

obtain first a full set of KS orbitals for the total density, after which the non-additive

kinetic energy is calculated exactly using the total and subsystem orbital sets via the

approach by King and Handy [311]. Fux et al. [312] proposed another scheme using

the OEP method of Wu and Yang [313] to reconstruct the KS potential for the

embedded subsystem, which is then subsequently used to define an accurate

non-additive kinetic energy potential.

To eschew the problems with approximate kinetic-energy density functionals

within the model DFT potential, several methods derive numerical embedding

potentials that completely replace the entire density functional potential, where

these new potentials are derived via an inversion technique from the partitioned

reference density. Roncero et al. [314] first introduced such a scheme, where the

density partitioning is first fixed and the embedding potential is subsequently

derived. They later improved this scheme by optimizing the embedding potential

and the density partitioning within the same iterative procedure, although there is
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no guarantee of their uniqueness [315]. Huang et al. [316] proposed a scheme where

density partitioning and the embedding potential are ensured to be unique by

constraining the embedding potential to be the same for the cluster and environ-

ment. Here, the embedding potential is solved for via an extension of the OEP

method. This scheme is closely related to partition density functional theory, as

proposed by Cohen and coworkers [317–321]. These methods differ in that

partition density functional theory allows for fractional numbers of electrons in

the partitioned subsystem densities, while Huang et al. constrain the electron

number in each subsystem to be an integer so as to allow correlated wavefunction

calculations to be performed, which require this constraint. While Huang

et al. derived a partitioning scheme and embedding potential that is dependent

only on the reference density from a DFT calculation, a self-consistent scheme was

proposed that updates the partitioning and embedding potential iteratively using

contributions of the new density from the correlated wavefunction method. Huang

and Carter [322] later reformulated this density-based embedding theory in terms of

functionals of the embedding potential, thereby straightforwardly enforcing the

constraint that all subsystems share a common embedding potential. Huang and

Carter also introduced an alternative to Wu and Yang’s more expensive formalism

for the OEP calculation by reformulating the potential functional derivative with

respect to the total energy in terms of finite differences, thereby improving the

efficiency of OEP calculations [49].

Another approach is to avoid the computational expense of OEP methods and

the approximations in orbital-free expressions for the kinetic energy altogether.

Manby et al. [323] devised a scheme to entirely remove the contribution of the

non-additive kinetic energy. They do so by exploiting the fact that if the subsystem

densities are constructed from mutually orthogonal orbitals, the kinetic energy

of the entire system is simply the sum of the kinetic energies of the isolated

subsystems, with no non-additive contribution. They therefore enforce mutual

orthogonality between subsystem orbitals through the use of a level shifting

projection operator, thereby eliminating the non-additive kinetic energy term.

Dependence on the level shifting operator is eliminated through perturbation

theory. While mutual orthogonality has been employed in orbital-space partitioning

methods for decades, it had not been used before to construct a formally exact DFT

embedding scheme.

Most of these state-of-the-art density-based embedding schemes have been

applied thus far to molecules [306, 315, 323, 324] or to localized impurities/

adsorption at metal surfaces (e.g., Kondo systems [325–327], electron-transfer-

induced dissociation [328, 329]) and have not yet been used to treat any extended

transition metal oxides. Consequently, it is difficult to evaluate the advantages and

disadvantages of these methods with respect to modeling more complex materials

like transition metal oxides. However, DFT-based embedding potentials were

compared recently to point-charge embedding in modeling the low-lying optical

excitations of MgO, selected as a prototype for metal oxides [253]. There, the

density functional embedding model resulted in a significantly underestimated

optical gap (5.63 eV) in comparison to experiment (7.5–7.8 [330, 331]), while the
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point charge embedded prediction of 6.8 eV was much closer. Overall, the

(inexpensive) embedded cluster model showed reduced accuracy in comparison

to (expensive) GW/BSE predictions (7.2–7.7 eV [192, 332, 333]), unfortunately

indicating that embedded clusters are not the most appropriate model for excitations

involving delocalized electrons like the exciton in MgO. While this identifies

a weakness in the density-based embedding model to describe delocalized

excitations, based on the prior success of point charge embedding with transition

metal oxides, the density-based models may still be promising in studying the more

localized excited states present in such materials, especially for transition metal

oxides with a larger degree of covalency. Indeed, the related cluster-in-solid

embedding technique of Birkenheuer et al. [288, 289] has been applied by Hozoi

et al. [334] to study the d-level splitting in layered cuprates, where the correlated

cluster was modeled with CASSCF/MRSDCI. The d-level splitting was in excellent

agreement with resonant inelastic X-ray scattering (RIXS) measurements.

5 Conclusions

As we have reviewed, a wide range of theoretical methods is available to calculate

the band structures and optical properties of transition metal oxides. No single

method can be declared as the universal approach to calculate all types of electronic

excitation spectra, as varying models are suitable for describing differing types of

excitations. GW best models charged excitations that can be appropriately

described within a delocalized band picture, while the related BSE and TD-DFT

can help to explain absorption spectra derived from band-to-band excitations.

However, for localized, neutral excitations, embedded correlated wavefunction

methods may best capture the essential physics. Within each of these parent

theories are a number of implementations that each rely on some form of

approximation, such that no one of these methods performs predominantly best in

describing excitations in transition metal oxides.

The progress in each of these fields continues to be significant, and the future

promises even greater advances. GW has already evolved considerably from its

roots as a single perturbation on an LDA reference. AsGW continues to advance, its

more modern implementations (such as those with greater self-consistency) need to

be better evaluated in the context of their application to transition metal oxides, to

better identify the source of their deficiencies. While we may hope to develop a

universal GW approach that is accurate for all materials, based on the observed

variability in accuracy within each method, it is likely that the current dependence

on identifying a material-specific optimal approach will persist.

Similarly, the field of embedded correlated wavefunction theory has made great

strides in the past few decades. However, a survey of the literature reveals that the

application of these methods to transition metal oxides has not entirely kept abreast.

A more thorough evaluation of these approaches is needed to assess their ability to

model excitations in these more complex materials, and specifically to judge whether
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density-based embedding potentials actually represent the cluster-background

coupling in these systems better than electrostatic embedding.

Regardless of an enduring inability to achieve all-encompassing accuracy within

a single method, it is clear that each individual theory will continue to improve in

accuracy and efficiency, broadening the bounds of its capability to describe larger

or more complex materials and phenomena. These advances will surely be coupled

with greater understanding of material properties and improved materials design for

numerous optical and optoelectronic applications.

Acknowledgments We are grateful to the U.S. Air Force Office of Scientific Research and the

U.S. Department of Energy, Basic Energy Sciences for support of our research in this area.

References

1. Carter EA (2008) Challenges in modeling materials properties without experimental input.

Science 321:800–803

2. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

3. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation

effects. Phys Rev 140:A1133–A1138

4. Bowler DR, Miyazaki T, Gillan MJ (2002) Recent progress in linear scaling ab initio

electronic structure techniques. J Phys Condens Matter 14:2781

5. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method.

Phys Rev Lett 45:566–569

6. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation

energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

7. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations

for many-electron systems. Phys Rev B 23:5048–5079

8. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas

correlation energy. Phys Rev B 45:13244–13249

9. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992)

Atoms,molecules, solids, and surfaces: applications of the generalized gradient approximation

for exchange and correlation. Phys Rev B 46:6671–6687

10. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple.

Phys Rev Lett 77:3865–3868

11. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple

[Phys Rev Lett 77:3865 (1996)]. Phys Rev Lett 78:1396

12. Perdew JP, Burke K, Ernzerhof M (1998) Perdew, Burke, and Ernzerhof reply. Phys Rev Lett

80:891

13. Zhang Y, Yang W (1998) Comment on “Generalized gradient approximation made simple”.

Phys Rev Lett 80:890

14. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-

functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59:

7413–7421

15. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U

instead of Stoner I. Phys Rev B 44:943–954

16. Anisimov VI, Solovyev IV, Korotin MA, Czyżyk MT, Sawatzky GA (1993) Density-
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72. Sham LJ, Schlüter M (1983) Density-functional theory of the energy gap. Phys Rev Lett 51:

1888–1891

73. Perdew JP, Levy M (1983) Physical content of the exact Kohn–Sham orbital energies:

band gaps and derivative discontinuities. Phys Rev Lett 51:1884–1887

74. Chan MKY, Ceder G (2010) Efficient band gap prediction for solids. Phys Rev Lett 105:

196403–196406

75. Leslie M, Gillan NJ (1985) The energy and elastic dipole tensor of defects in ionic crystals

calculated by the supercell method. J Phys C Solid State Phys 18:973–982

76. Makov G, Payne MC (1995) Periodic boundary conditions in ab initio calculations.

Phys Rev B 51:4014–4022

77. Schultz PA (1999) Local electrostatic moments and periodic boundary conditions. Phys Rev

B 60:1551–1554

78. Schultz PA (2000) Charged local defects in extended systems. Phys Rev Lett 84:1942–1945
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191. Rödl C, Bechstedt F (2012) Optical and energy-loss spectra of the antiferromagnetic

transition metal oxides MnO, FeO, CoO, and NiO including quasiparticle and excitonic

effects. Phys Rev B 86:235122 (11 pp)
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250. Neyman KM, Rösch N (1992) CO bonding and vibrational modes on a perfect MgO(001)

surface: LCGTO-LDF model cluster investigation. Chem Phys 168:267–280

251. Yudanov IV, Nasluzov VA, Neyman KM, Rösch N (1997) Density functional cluster
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