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Abstract Accurately modeling molecular crystal polymorphism requires careful

treatment of diverse intra- and intermolecular interactions which can be difficult to

achieve without the use of high-level ab initio electronic structure techniques.

Fragment-based methods like the hybrid many-body interaction QM/MM tech-

nique enable the application of accurate electronic structure models to chemically

interesting molecular crystals. The theoretical underpinnings of this approach and

the practical requirements for the QM and MM contributions are discussed. Bench-

mark results and representative applications to aspirin and oxalyl dihydrazide

crystals are presented.

Keywords Fragment methods � Molecular crystals � Polymorph prediction

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.1 Fragment-Based Methods in Electronic Structure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2 The Hybrid Many-Body Interaction (HMBI) Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3 Accurate Force Fields for Long-Range and Many-Body Interactions . . . . . . . . . . . . . . . 69

2.4 Electronic Structure Treatment of the Intermolecular Interactions . . . . . . . . . . . . . . . . . . . 73

3 Performance and Applications of HMBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1 Predicting Molecular Crystal Lattice Energies and Geometries . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Aspirin Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Oxalyl Dihydrazide Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

G.J.O. Beran (*), S. Wen, K. Nanda, Y. Huang, and Y. Heit

Department of Chemistry, University of California, Riverside, CA 92521, USA

e-mail: gregory.beran@ucr.edu

mailto:gregory.beran@ucr.edu


1 Introduction

Organic molecular crystals often exhibit a variety of different packing motifs, or

polymorphs. These different crystal packing motifs can have diverse physical

properties, making crystal structure critically important in a wide range of fields.

Polymorphism plays a major role in the pharmaceutical industry, for example,

where a substantial fraction of drugs including aspirin, acetaminophen, Lipitor,

and Zantac have known polymorphs. Polymorphs of a given pharmaceutical can

have drastically different solubilities and bioavailabilities, making the understand-

ing of polymorphism critical for the drug industry.

Pharmaceutical polymorphism has led to several major drug recalls or with-

drawals in recent years. For instance, the HIV drug ritonavir was temporarily

removed from the market in 1998 when a new, insoluble polymorph appeared in

production facilities, leading to shortages of this desperately needed medicine and

costing its maker hundreds of millions of dollars in lost sales [1, 2]. Polymorphism

is also believed to be behind multiple recalls of the anti-seizure drug carbamaze-

pine, which exhibits several low-solubility polymorphs [3]. In 2008, Neupro brand

skin patches for the Parkinson’s disease drug rotigotine were withdrawn from the

market when a less-effective crystal form appeared visibly on the patches as

dendritic structures [4]. Pharmaceutical polymorphism has also been the subject

of many legal battles arising from the fact that unique crystal forms are patentable.

Major examples include the ulcer/heartburn medication Zantac and the antibiotic

cefadroxil [5].

Crystal packing is also important for foods such as chocolate. Solid cocoa

butter form V is desired to achieve chocolate with a shiny appearance, a 34�C
melting point that causes it to melt pleasingly on the tongue, and other favorable

characteristics. However, form VI cocoa butter, which leads to chocolate that is

dull, soft, grainy tasting, and has a melting point a few degrees higher, is

thermodynamically more stable [6]. At room temperature the transition from

form V to form VI occurs on a timescale of months, and it occurs even faster

at elevated temperatures. The chocolate industry expends considerable effort to

produce and maintain chocolate in the proper form to ensure a high-quality

product with a reasonable shelf life.

Many other areas of chemistry and materials science must cope with molecular

crystal polymorphism as well. Crystal packing influences the stability, sensitivity,

and detonation characteristics of energetic materials, for instance [7, 8]. It also can

have drastic effects on organic semiconductor materials. Solid rubrene currently

holds the record for the highest-known carrier mobility in an organic molecular

crystal. However, a rubrene derivative with a different crystal packing motif

exhibits no measurable carrier mobility [9].

Predicting molecular crystal structure from first principles is extremely chal-

lenging. The problem involves (1) a search over many (millions or more) possible

crystal packings, (2) the accurate evaluation of the lattice energy of the possible

structures (at 0 K), (3) calculation of the finite-temperature thermodynamic
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contributions, and (4) an understanding of the competition between thermodynam-

ically and kinetically preferred packing arrangements.

Significant progress on the “search” problem has been made in recent years. For

example, the Price group uses a hierarchical series of ever-improving theoretical

models to screen out unlikely structures and eventually identify the most stable

forms [10, 11]. The initial screening might consider some ~107 randomly generated

structures with different space group symmetries and numbers of molecules in the

asymmetric unit cell using a very simple force field. This simple force field allows

one to rule out a significant fraction of the energetically uncompetitive structures.

Subsequent rounds improve the quality of the force field, winnowing down the

potential structures toward a final prediction. Neumann and co-workers use a

mixture of density functional theory (DFT) with dispersion corrections and a

force-field fitted to match the DFT results to search over possible structures

[12–15]. In their work the force field identifies a subset of likely structures which

are then refined with DFT. Both strategies proved effective in the two most recent

blind tests of crystal structure prediction [16, 17]. Recent progress in crystal

structure global optimization algorithms may also help solve the search

problem [18].

Once a relatively small number of candidate crystal structures have been iden-

tified, discrimination among them requires predicting the lattice energies or relative

energies very accurately. This necessitates using a theoretical approach that can

handle the subtle balances between intra- and intermolecular interactions that

characterize conformational polymorphism [19]. One must treat the diverse

non-covalent interactions – hydrogen bonding, electrostatics, induction

(a.k.a. polarization), and van der Waals dispersion – with high and uniform

accuracy to avoid biasing the predictions toward certain classes of structures

(e.g., hydrogen-bonded vs π-stacking motifs). Overall, the energy differences

between experimentally observed polymorphs are typically less than 10 kJ/mol,

and they are often closer to ~1 kJ/mol.

After obtaining reliable predictions at 0 K, one can start to think about finite

temperature effects. The computation of finite-temperature enthalpies, entropies,

and free energies is much less mature. The entropic contributions to relative

polymorph stabilities are commonly assumed to be smaller than the enthalpic

ones [20], but of course there will be many exceptions. Thermal effects are typically

estimated using simple (quasi-)harmonic approaches (e.g., [21]) though sampling-

based free energy methods are starting to be explored more actively in this context

(e.g., [22, 23]).

Finally, real-world crystallization is often driven by kinetics, not thermodynamics.

Understanding the kinetics of crystallization is probably even more difficult than the

thermodynamics, since it requires a dynamical understanding of the nucleation and

crystal growth processes with sufficient accuracy to differentiate correctly among the

different packing motifs. Progress in this direction is also being made, but it will

likely be quite some time before one can reliably predict which crystal structures will

form kinetically under a given set of crystallization conditions.
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Nevertheless, the ability to predict the thermodynamically preferred structures

reliably would be very useful for predicting temperature and pressure regions of

phase stability, to determine whether a given pharmaceutical polymorph is stable or

metastable, or to predict a variety of crystal properties. Toward this end, this chapter

focuses on computing accurate lattice energies and relative energies at 0 K.

2 Theory

The theoretical treatment of molecular crystals has traditionally relied on either

molecular mechanics (MM) force fields or electronic structure methods with

periodic boundary conditions. Force field modeling of molecular crystals has

improved dramatically over the past decade [19, 24–27], as demonstrated by the

major successes in the recent blind tests of crystal structure prediction [11, 12,

15–17, 28]. Much of this success arises from the inclusion of increasing amounts of

quantum mechanical information into the force fields, ranging from the parameter-

ization to the determination of intramolecular conformation.

In that vein, one should be able to achieve even better accuracy by treating the

systems fully quantum mechanically. This requires a careful balance between

accuracy and computational expense. Most quantum mechanical (QM) calculations

on molecular crystals are performed with periodic DFT. Widely used semi-local

density functionals generally do not describe van der Waals dispersion interactions.

However, there has been substantial progress toward including van der Waals

dispersion interactions either self-consistently or as an a posteriori correction using

a variety of empirical and non-empirical strategies [29–35]. Despite the tremendous

progress in this area, it can sometimes be difficult to identify when DFT methods are

performing well enough or to interpret the results when different density functionals

make contradictory predictions.

Wavefunction methods offer the potential to improve the quality of the predictions

systematically by improving the wavefunction. The simplest useful wavefunction

technique for molecular crystals is second-order Møller–Plesset perturbation theory

(MP2). A number of periodic MP2 implementations exist, including efficient ones

based on local-correlation ideas [36–47]. These provide a nice alternative to DFT, but

they remain relatively computationally expensive. Furthermore, MP2 correlation

itself is often insufficient, as will be discussed below. Unfortunately, more accurate

periodic coupled cluster implementations are too expensive to be applied to most

chemically interesting molecular crystals [48–51].

2.1 Fragment-Based Methods in Electronic Structure Theory

Fragment-based methods provide a lower-cost alternative to traditional periodic

boundary condition electronic structure methods. These techniques partition the
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system in some fashion, perform quantum mechanical calculations on each indi-

vidual fragment, and piece them together to obtain information about the system as

a whole. While many individual fragment calculations are needed in a single

crystal, each is relatively inexpensive compared to a full periodic crystal calcula-

tion. This allows one to utilize higher-level electronic structure methods at much

lower computational cost.

Early fragment techniques include the fragment molecular orbital method [52,

53], divide-and-conquer techniques [54], and incremental schemes [55, 56], but

there has been an explosion of fragment methods in recent years, as discussed in

two reviews [57, 58] and in a thematic issue of Physical Chemistry Chemical
Physics [59]. A couple of groups have also identified a common framework that

unifies most or all of these fragment methods [60, 61].

One very common fragment strategy decomposes the total energy of a set of

interacting molecules, whether in a cluster or a crystal, according to a many-body

expansion:

Etotal ¼ E1-body þ E2-body þ E3-body þ � � �: ð1Þ

The expansion is formally exact, but any computationally useful application of

this expansion requires approximation of the higher-order terms in some fashion.

For a typical molecular crystal, the three-body and higher terms account for

10–20% of the total interaction energy, making those terms necessary for accurate

crystal modeling.

Approximations to the many-body expansion typically fall into two categories.

The first category uses electrostatic embedding to incorporate polarization effects

into the lower-order terms, thereby reducing the importance of the higher-order

terms. The many-body expansion can then be truncated after two-body or three-

body terms. Examples of such embedding approaches include the electrostatically-

embedded many-body expansion approach [62–64], binary interaction [65–67], and

the exactly embedded density functional many-body expansion [68].

The electrostatic embedding methods are very successful, but they suffer from

two potential disadvantages. First, while it is often true that induction effects

dominate the many-body contributions, many-body dispersion has also proved

important in molecular crystal systems [30, 58, 69, 70], and those effects are not

captured via electrostatic embedding. Second, embedding complicates the calcula-

tion of nuclear gradients and Hessians of the energy. When embedding a particular

monomer or dimer in a potential arising from the other molecules, the embedding

potential depends on the positions of all other atoms in the system. Therefore, the

energy gradient of that monomer or dimer now depends on all 3N atomic coordi-

nates, instead of just the coordinates of the monomer or dimer in question. These

additional gradient contributions arising from the embedding-potential are often

neglected, but they can sometimes be significant [65].

The methods in the second category of many-body expansion approximations

make no truncation in the many-body expansion. Instead, the higher-order terms

are approximated at some lower level of theory. The incremental method and
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other related schemes treat the important low-order terms with accurate ab initio

methods and approximate the higher-order terms using Hartree-Fock (HF), DFT,

or any higher-level QM technique. Alternatively, the hybrid many-body interac-

tion (HMBI) approach (and a nearly identical model simultaneously and

independently proposed by Manby and co-workers [71]) approximates the

higher-order terms using a polarizable force field. The advantage of this approach

is that polarizable force fields are much less expensive to evaluate than electronic

structure methods. Compared to embedding techniques, these approaches can

avoid the need to make a priori assumptions about where to truncate the many-

body expansion and provide the flexibility to build in whatever physical terms are

needed in the system, including the aforementioned many-body dispersion

effects.

2.2 The Hybrid Many-Body Interaction (HMBI) Method

In the HMBI model, the intramolecular (one-body) and short-range (SR) pairwise

intermolecular (two-body) interactions are treated with electronic structure theory,

while the long-range (LR) two-body and the many-body terms are approximated

with the polarizable force field:

EHMBI ¼ EQM
1-body þ EQM

SR2-body þ EMM
LR2-body þ EMM

many-body, ð2Þ

where the “many-body” term includes all three-body and higher interactions

(Fig. 1). To evaluate the energy in practice, one exploits the fact that one can

write a many-body expansion purely in terms of MM contributions:

EMM
total ¼ EMM

1-body þ EMM
SR2-body þ EMM

LR2-body þ EMM
many-body, ð3Þ

which can be rearranged as

EMM
LR2-body þ EMM

many-body ¼ EMM
total � EMM

1-body � EMM
SR2-body: ð4Þ

Substituting this expression into (2) leads to the following working HMBI

energy expression:

EHMBI
total ¼ EMM

total þ
X
i

EQM
i � EMM

i

� �þX
ij

dij Rð Þ Δ2EQM
ij � Δ2EMM

ij

� �
, ð5Þ

where Ei corresponds to the energy of monomer i, and Δ2Eij ¼ Eij � Ei � Ej is the

interaction energy between monomers i and j evaluated as the difference between

the total energy of the dimer Eij and the individual monomer energies Ei and Ej.

Note that the monomer energies in these expressions are evaluated at the same
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geometry as in the dimer (and in the full cluster or crystal). The dij(R) term ensures

no discontinuities arise in the potential energy surface as the model transitions from

the short-range QM to the long-range MM two-body interaction regimes. This

function decays from 1 to 0 as a function of the intermolecular distance

R (defined here as the shortest distance between the two molecules) over a user-

defined interval governed by two parameters, r1 and r0 [72]:

dij Rð Þ ¼ 1

1þ e2
��r1�r0��= r1�Rð Þ�

��r1�r0��= R�r0ð Þ
: ð6Þ

By default, we conservatively transition from QM to MM between r1 ¼ 9.0 Å
and r0 ¼ 10.0 Å, but more aggressive cutoffs can often be used. In water/ice, for

instance, using the ab initio force field described in the next section, one can

transition from QM to MM between 4.5 and 5.5 Åwith virtually no loss in accuracy

(see Sect. 2.3).

The energy expression in (5) resembles the expressions used in a two-layer

ONIOM-style QM/MM model. One computes the energy of the entire system at a

low-level of theory, and then corrects it with smaller calculations at a higher level of

theory. The physics described by the two types of models is quite different,

however. In ONIOM QM/MM, one partitions the system into distinct QM and

MM regions. In the fragment-based HMBI QM/MM approach, one instead parti-

tions based on the nature of the interaction. There are no specific QM and MM

regions. Each molecule has both QM and MM interactions in the HMBI model. The

important interactions are treated with QM, while the less important ones are

treated with MM. In this sense, the HMBI model is spatially homogeneous, as is

appropriate for modeling a molecular crystal.

Fig. 1 Schematic of the HMBI method. Each individual molecule in the unit cell and its short-

range pairwise interactions are treated with QM, while longer-range interactions and interactions

involving more than two molecules are treated with MM. The shaded region indicates the smooth

transition QM and MM via interpolation. Reprinted with permission from [115]. Copyright 2010

American Chemical Society

Accurate and Robust Molecular Crystal Modeling Using Fragment-Based. . . 65



For systems with periodic boundary conditions like crystals, the HMBI energy

expression in (5) must also include pairwise interactions between central unit cell

molecules and their periodic images:

EHMBI
total ¼ EMM

total þ
X
i

EQM
i � EMM

i

� �þX
ij

dij 0ð Þ Δ2EQM
ij 0ð Þ � Δ2EMM

ij 0ð Þ
� �

þ 1

2

X
i

Ximages

j nð Þ
dij nð Þ Δ2EQM

ij nð Þ � Δ2EMM
ij nð Þ

� �
:

ð7Þ

In this expression, i runs over molecules in the central unit cell, while j can either
be in the central unit cell ( j(0)) or in the periodic image cell n ( j(n)). Unit cell n is

defined as the cell whose origin lies at vector n ¼ nv1v1 þ nv2v2 þ nv3v3 in terms of

the three lattice vectors, v1, v2, and v3. In practice, thanks to the function dij(R), the
sum over j(n) runs only over molecules within a distance r0 of the current central

unit cell molecule i.
The computational bottleneck in HMBI is the evaluation of the QM pairwise

interaction energies Δ2Eij(0) and Δ2Eij(n). Because only short-range pairwise

interactions are treated with QM, the HMBI model scales linearly with the

number of molecules in the system (non-periodic) or unit-cell (periodic). More

precisely, the MM terms do not scale linearly, but their cost is so much smaller

than that of the QM terms for any practical system that linear scaling behavior

is observed. For non-periodic systems, the onset of linear scaling occurs once

the system becomes larger than the outer extent of the QM-to-MM transition

region, r0. In periodic systems, which are formally infinite, linear-scaling

behavior is observed for unit cells of any size. This linear-scaling behavior is

a key advantage of fragment methods compared to fully QM methods like

periodic DFT or MP2. Large unit cells or supercells of the sort that might be

used to perform lattice dynamics or to examine localized/defect behavior can be

much cheaper with a fragment method than with a traditional periodic QM

methods.

2.2.1 Nuclear Gradients and Hessians

The HMBI energy expression contains only additive energy contributions and does

not use any sort of embedding, so derivatives of the energy can be computed straight-

forwardly. For instance, if ql corresponds to the Cartesian x, y, or z coordinates

(not its fractional coordinate) of the l-th atom in the central unit cell, then the

gradient of the energy with respect to ql is given by [73]
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∂EHMBI
total

∂ql
¼ ∂EMM

total

∂ql
þ
X
i

∂EQM
i

∂ql
� ∂EMM

i

∂ql

0
@

1
AþX

ij 0ð Þ

∂dij 0ð Þ
∂ql

Δ2EQM
ij 0ð Þ � Δ2EMM

ij 0ð Þ
� �

þ
X
ij 0ð Þ

dij 0ð Þ
∂Δ2EQM

ij 0ð Þ
∂ql

�
∂Δ2EMM

ij 0ð Þ
∂ql

0
@

1
A

þ 1

2

X
i

Ximages

j nð Þ

∂dij nð Þ
∂ql

Δ2EQM
ij nð Þ � Δ2EMM

ij nð Þ
� �

þ 1

2

X
i

Ximages

j nð Þ
dij nð Þ

∂Δ2EQM
ij nð Þ

∂ql
�
∂Δ2EMM

ij nð Þ
∂ql

0
@

1
A:

ð8Þ

The individual one-body and two-body energy gradient terms in (8) are obtained

readily from the monomer and dimer gradients computed in standard electronic

structure or MM software packages. The expression for the gradient of the

QM-to-MM smoothing function dij has been provided previously [73].

To optimize the size and shape of the unit cell, one also needs the gradient with

respect to the lattice vectors. When working in Cartesian coordinates instead of

fractional coordinates, changing the lattice vectors does not affect the one-body or

two-body terms within the central unit cell, but it does affect the two-body contri-

butions due to interactions between molecules in the central unit cell and those in

periodic image cells and the MM energy of the entire crystal. The resulting gradient

with respect to the qth coordinate (x, y, or z) of the Eth lattice vector (v1, v2, or v3) is
given by

∂E
∂vEq

¼ ∂EMM
total

∂vEq
þ 1

2

X
i

X
j nvð Þ

nv
X
k

∂dij nvð Þ
∂qk

Δ2EQM
ij nvð Þ � Δ2EMM

ij nvð Þ
� �8<

:
þdij nvð Þ

∂EQM
ij nvð Þ

∂qk
�
∂EQM

j nvð Þ
∂qk

0
@

1
A� ∂EMM

ij nvð Þ
∂qk

� ∂EMM
j nvð Þ

∂qk

0
@

1
A

0
@

1
A
9=
;:

ð9Þ

where k sums over the atoms in periodic image monomer j. Often, one expresses the
unit cell in terms of three lattice constants (a, b, and c) and three angles (α, β, and γ).
The expressions for the nine components of the lattice vector gradients in (9) can be

transformed into expressions for these six lattice parameters [73].

Note that, except for the term ∂EMM
total/∂vEq, all the terms needed to compute the

lattice vector gradients in (9) are already available from the gradients with respect

to the atomic positions (8). The ∂EMM
total/∂vEq term can be computed inexpensively,

since it is at the MM level. Therefore, the calculation of the lattice vector gradient

typically requires minimal additional work once the nuclear gradients with respect

to atomic position have been obtained. The evaluation of the one-body and
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two-body QM gradients forms the computational bottleneck in evaluating the full

nuclear gradient.

The nuclear Hessian can be computed similarly by differentiating (8) with

respect to a second nuclear coordinate, q
l
0 :

∂2
EHMBI
total

∂ql∂ql0
¼ ∂EMM

PBC

∂ql∂ql0
þ
X
i

∂2
EQM
i

∂ql∂ql0
� ∂2

EMM
i

∂ql∂ql0

0
@

1
A

þ
X
ij nð Þ

ζijdij nð Þ
∂2Δ2EQM

ij nð Þ
∂ql∂ql0

�
∂2Δ2EMM

ij nð Þ
∂ql∂ql0

0
@

1
A

þ
X
ij nð Þ

ζij
∂dij nð Þ
∂ql

∂Δ2EQM
ij nð Þ

∂q
l
0
�
∂Δ2EMM

ij nð Þ
∂q

l
0

0
@

1
A

þ
X
ij nð Þ

ζij
∂dij nð Þ
∂q

l
0

∂Δ2EQM
ij nð Þ

∂ql
�
∂Δ2EMM

ij nð Þ
∂ql

0
@

1
A

þ
X
ij nð Þ

ζij
∂2

dij nð Þ
∂ql∂ql0

Δ2EQM
ij nð Þ � Δ2EMM

ij nð Þ
� �

,

ð10Þ

where the sums over j(n) run over molecules in both the central unit cell and in

periodic image cells, ζij ¼ 1 for dimers where both monomers lie within the central

unit cell (n ¼ 0), and ζij ¼ 1/2 for dimers where the second monomer lies outside

the central unit cell. Evaluation of the Hessian requires gradients and Hessians for

each individual monomer and dimer. Once the Hessian has been computed, one can

compute harmonic vibrational frequencies, lattice dynamics, statistical thermody-

namic partition functions, etc.

2.2.2 Crystal Symmetry

Molecular crystals often exhibit high symmetry, both translational (due to the

periodic boundary conditions) and space group symmetry, and significant compu-

tational savings can be reaped by exploiting this symmetry in the monomer and

dimer calculations. The straightforward approach would identify the space group of

the crystal and use the symmetry operations of that group to determine which

monomers and dimers are symmetry-equivalent. One need only compute the

energies and forces for the symmetry-unique monomers and dimers and then

scale their contributions based on the number of symmetry-equivalent monomers

or dimers.

Alternatively, one can simply rotate the monomers and dimers to a common

reference frame (e.g., aligned along the principle axes of inertia) and simply test

which monomer/dimer geometries are identical within some numerical threshold.

68 G.J.O. Beran et al.



This approach avoids the need (1) to specify the space group and (2) to program the

symmetry operations for all 230 space groups.

A sizable fraction of organic molecular crystals exhibit P21/c symmetry, for

which roughly fourfold computational savings can be obtained. The savings can be

even larger for other space groups. For acetamide crystals in the R3c space group,

one obtains 18-fold speed-ups by exploiting symmetry. So while the details are

system-dependent, for a crystal with one molecule in the asymmetric unit cell and a

conservative QM to MM transition distance, one might typically need to perform

~50 symmetry-unique dimer calculations.

2.3 Accurate Force Fields for Long-Range and Many-Body
Interactions

The success of the HMBI approach depends critically on the quality of the polar-

izable force field used for the long-range two-body and the many-body terms; c.f.
(2). This means that it needs to capture two-body electrostatics, two-body van der

Waals dispersion, self-consistent long-range and many-body induction, and many-

body dispersion interactions (approximated here with only the leading three-body

Axilrod–Teller term):

EMM ¼ E2-body es þ E2-body disp þ Einduction þ E3-body disp: ð11Þ

In our early work [74] we used the Amoeba force field [75, 76], which includes

all of these contributions except for the many-body dispersion. It works fairly well

in this context, but even better results are achieved by constructing an ab initio force

field (AIFF) “on the fly” based on QM calculations for each individual monomer

[77, 78].

The key idea behind the AIFF is to parameterize the force field in terms of

atom-centered distributed multipole moments [79–81], distributed polarizabilities

[82, 83], and distributed dispersion coefficients [84]. These are obtained from the

molecular electron density, the static polarizabilities, and the frequency-

dependent polarizabilities, respectively. The form of the force field is well-

justified at long ranges from intermolecular perturbation theory, and empirical

short-range damping functions help avoid serious problems for shorter-range

interactions [85, 86].

This AIFF model mimics the much more expensive QM treatment very well, as

shown in Figs. 2, 3, and 4. The use of multipolar expansions and the lack of

exchange terms lead to some problems at short range, but the long-range interac-

tions are modeled very accurately. Figure 2 shows that the predicted lattice energy

of ice Ih is virtually invariant to the distance at which HMBI transitions from a QM

to an MM description of the long-range pairwise interactions once the two mole-

cules are ~4.5Å apart. For other systems, the corresponding transition distance may
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need to be longer (e.g., ~7 Å in formamide), but the AIFF always behaves well at

sufficiently long distances [58].

The AIFF also reproduces the QM many-body induction effects accurately

[87]. Figure 3 shows the errors in the many-body induction in a set of 101 (form-

amide)8 geometries for the Amoeba force field and AIFF relative to RI-MP2. The

Amoeba force field performs fairly well, but it systematically underestimates the

many-body induction interactions by up to ~2 kJ/mol. The AIFF performs signif-

icantly better, with errors of roughly �0.5 kJ/mol and a mean error very close to

zero. Compared to Amoeba, the success of the AIFF stems from (1) its use of

higher-rank multipoles (up to hexadecapole), (2) its use of higher-rank polarizabil-

ities (up to quadrupole–quadrupole), and (3) the fact that these parameters are

computed for each molecule in its current geometry rather than frozen at the values

for some averaged/equilibrium geometry.

Finally, Fig. 4 demonstrates that the three-body dispersion model performs well

compared to the three-body dispersion term in symmetry-adapted perturbation

theory (SAPT). The simple, isotropic coupled Kohn–Sham dispersion coefficient

representation provides a good approximation to the more complete SAPT

calculation [58].

Overall, the AIFF does an excellent job of reproducing the QM interactions it

replaces at much lower cost. HMBI predictions for the lattice energies of ammonia

and carbon dioxide crystals differ from full periodic MP2 by only 1–2 kJ/mol, for

instance [58].

2.3.1 AIFF Implementation

The long-range two-body electrostatics in the AIFF are implemented in standard

fashion, with electrostatic interaction energy between two atoms A and B being

given by

Ees  
X
tu

QA
t TtuQ

B
u , ð12Þ

where the Ttu matrix includes the distance- and orientation-dependent contributions

for the interaction of two different spherical-tensor multipole moment components

Qt and Qu. To evaluate the induction contributions, one first finds the induced

multipole moments according to

ΔQA
t ¼ �

X
t0u

αA
tt0Tt0u QB

u þ ΔQB
u

� �
, ð13Þ

where αA
tt0 is the static polarizability tensor on atom A and ΔQ is an induced

multipole moment. Clearly the induced multipole moment on atom A depends on

the induced multipole moment on atom B, so this process is done self-consistently

until the induced multipoles reach convergence. Once the induced multipoles are
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known, one can compute the induction energy contribution for the pair of atoms A

and B according to

Eind  
X
tu

ΔQA
t TtuQ

B
u þ QA

t TtuΔQB
u : ð14Þ

The two-body dispersion between atoms A and B is evaluated via

Casimir–Polder integration over the frequency-dependent polarizabilities:

E2-body disp  
X
tu

X
t0u0

TtuTt0u0

ð1
0

αA
tt0 iωð ÞαB

uu0 iωð Þdω: ð15Þ

The integration is typically evaluated via numerical quadrature at ten frequen-

cies ω. The expression in (15) corresponds to an anisotropic model for atom-atom

dispersion. However, to a fairly good approximation, one can approximate this with

a simple isotropic dispersion model (i.e., one which averages over the diagonal

dipole–dipole and quadrupole–quadrupole elements of the frequency-dependent

polarizability and neglects the off-diagonal elements). In that case, the dispersion

model reduces to the standard C6, C8, etc., terms divided by the interatomic distance

R to the corresponding power,

E2-body disp  CAB
6

R6
AB

þ CAB
8

R8
AB

þ � � �: ð16Þ

The isotropic dispersion coefficients Cn are obtained from the Casimir–Polder

integration over the appropriate elements of the isotropic frequency-dependent

polarizabilities α :

CAB
n /

ð1
0

α A iωð Þα B iωð Þdω: ð17Þ

The many-body dispersion is approximated using the leading Axilrod–Teller

three-body dispersion contribution. In the isotropic case, the three-body dispersion

between atoms A, B, and C is computed according to

E3-body disp  CABC
9

1þ 3cos Â cos B̂ cos Ĉ
� �

R3
ABR

3
BCR

3
AC

, ð18Þ

where the RIJ correspond to the distances between pairs of atoms and the cosines

involve the interior angles of the triangle formed by the three atoms. The C9

dispersion coefficient is obtained via Casimir–Polder integration over the

frequency-dependent dipole–dipole polarizabilities on all three atoms:

CABC
9 /

ð1
0

α A iωð Þα B iωð Þα C iωð Þdω: ð19Þ

Note that most of the interaction terms described here also involve various

empirical damping functions at short range to avoid divergences and the “polari-

zation catastrophe,” [78] but those are omitted here for simplicity.
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The most difficult aspect of the force field implementation involves the evalu-

ation of the EMM
total term in (7). The periodic crystal’s induced multipoles are first

computed self-consistently in a large, finite cluster consisting of the central unit cell

and some number of periodic images (e.g., those within 25Å). The algorithm works

by inducing multipoles on the central unit cell molecules, replicating those induced

moments on the periodic image molecules, and repeating the process until self-

consistency is achieved. This procedure minimizes the edge effects arising from the

finite cluster. Next, the permanent and induced multipole moments are combined

and the overall interaction is evaluated via a multipolar Ewald sum [88]. Finally, the

two-body and three-body dispersion contributions are evaluated via explicit lattice

summation with large cutoffs. The evaluation of the AIFF interactions is cheap

compared to the QM calculations, so one can afford to evaluate all of these

contributions with tight cutoffs, thereby minimizing any errors due to truncating

the lattice sums. See [78] for more details on the AIFF implementation and its

performance for molecular crystals.

2.4 Electronic Structure Treatment of the Intermolecular
Interactions

As the results described in Sect. 1 will demonstrate, high quality electronic structure

methods need to be used for the QM one-body and two-body terms in HMBI. The

electronic structure treatment must be capable of balancing the different types of

intramolecular and intermolecular interactions to discriminate properly among

different packing motifs. Ideally, one would employ high-level coupled cluster

methods, like coupled cluster singles, doubles, and perturbative triples (CCSD(T)),

with large basis sets, but this is usually impractical due to its N7 scaling with system

size N.
A more pragmatic approach will primarily use techniques that scale no more

than N5, like MP2. It is well known, however, that while MP2 describes van der

Waals dispersion, it does so poorly [89–91]. Comparisons with intermolecular

perturbation theory reveal the reasons for this poor performance: MP2 treats

intermolecular dispersion interactions at the uncoupled HF (UCHF) level

[92, 93]. In this view, the intermolecular dispersion interaction involves matrix

elements of the intermolecular interaction between the ground state and excited

state wavefunctions for molecules A and B divided by an energy denominator that

depends on the excitation energies from ground to excited states:

Edisp ¼ �
X
ab

< ψ0
Aψ

0
B

��V̂ ��ψ a
Aψ

b
B >

Ea
A � E0

A þ Eb
B � E0

B

: ð20Þ

In UCHF (and MP2) these excited states for ψa and excitation energies Ea � E0

are approximated using unrelaxed, ground-state HF orbitals and Fock matrix orbital

eigenvalue energy differences.
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Better results can be obtained by replacing the UCHF treatment of

intermolecular dispersion with a coupled HF (CHF) [94] or coupled Kohn–Sham

(CKS) [95, 96] one in which the excited states and excitation energies are computed

with time-dependent HF or time-dependent DFT. Or one can obtain improved

dispersion coefficients through other means [97]. The CKS variant has proved

particularly successful, and is known as MP2C:

EMP2C ¼ EMP2 � EUCHF
disp þ ECKS

disp : ð21Þ

MP2C works very well for a variety of intermolecular interaction types across a

wide spectrum of intermolecular separations and orientations [89, 91, 96,

98–102]. The dispersion correction scales N4, so MP2C retains the overall fifth-

order scaling of MP2. However, the prefactor for the dispersion correction is

relatively large, and it consumes a non-trivial amount of computer time. For

example, computing the HMBI RI-MP2C/aug-cc-pVTZ single-point energy of

the aspirin crystal requires ~2,450 h for the MP2 and ~390 h for the dispersion

correction. So while the underlying MP2 calculation clearly dominates, accelerat-

ing the MP2C dispersion correction would be beneficial.

MP2C appears to work very well for molecular crystal problems [70, 103]. Of

course, other alternatives for accurately describing intermolecular interactions with

similar computational cost exist, including spin-component-scaled MP2 methods

[104–106], dispersion-weighted MP2 [107], and van der Waals-corrected density

functionals. Recent improvements in the random-phase approximation (RPA) are

also promising and may prove useful in the near future [108–111].

2.4.1 Faster MP2C for Molecular Crystals

Evaluating the MP2C dispersion correction requires computing UCHF and CKS

density–density-response functions χ for each monomer at a series of frequenciesω,

χ0 ωð Þ½ �PQ ¼ �4
X
ia

P
��ia� �

Eia ia
��Q� �

E2ia þ ω2
, ð22Þ

and then computing the dispersion energy via Casimir–Polder integration [96]:

Edisp ¼ � 1

2π

ð1
0

dωeχA ωð ÞJAB eχB ωð Þ� �T
JAB
� �T

: ð23Þ

In these expressions, i and a are occupied and virtual molecular orbitals, P and

Q are auxiliary basis functions, Eia is the difference between the HF orbital energies

for orbitals i and a, JAB ¼ (PA|r�112 |Q
B),eχ ¼ S�1χS�1, and S ¼ (P|r�112 |Q). For CKS,

one must obtain the coupled density response functions from the uncoupled one in

(22) by solving the Dyson equation [96].
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Equations (22) and (23) are typically computed using a so-called dimer-

centered (DC) basis, in which the calculations on the isolated monomers are

carried out in the presence of ghost basis functions on the other monomer it is

interacting with. This has two disadvantages for fragment-based calculations in

molecular crystals. First, the ghost basis functions substantially increase the basis

set size and therefore the computational cost. Second, when computing the many

different pairwise intermolecular interaction energies, one must recompute each

monomer’s response function repeatedly for each different dimer interaction in

which it is involved.

However, while the calculation of accurate CKS or UCHF dispersion energies

requires large basis sets [112], it turns out that the energy difference between them

is much less sensitive to the basis set [103]. In fact, one obtains nearly identical

results when using a comparable monomer-centered (MC) basis (i.e., with no ghost

basis functions). This indicates that the basis-set dependence of UCHF and CKS

dispersion are similar, and the higher-order basis-set effects are well described in

the DC UCHF dispersion that is inherent in the supermolecular MP2 calculation. It

is unnecessary to replace those contributions with CKS ones. Figure 5 demonstrates

the excellent agreement between the MP2C results obtained in monomer-centered

and dimer-centered basis sets, nearly independent of whether one uses a double-

zeta basis or extrapolated complete-basis-set limit.

In practice, switching to an MC basis accelerates the calculation of the disper-

sion correction for a single dimer roughly fivefold. Much more dramatic savings

can be obtained in a molecular crystal, however. Thanks to space group symmetry

and the use of periodic boundary conditions, typical molecular crystal unit cells

contain no more than a handful of symmetry-unique monomers. Therefore, one

needs only calculate the monomer density–density response functions in (22) for

those few unique monomers. Then one can compute the dispersion interaction for

each dimer according to (23) with trivial effort. For instance, using this approach

reduces the computational time for evaluating the MP2C/aug-cc-pVTZ dispersion

correction in crystalline aspirin by two orders of magnitude, from 390 CPU hours to

only 2.8 CPU hours. At the same time, the MC MP2C approach affects the relative

energies of the two polymorphs by no more than a few tenths of a kJ/mol relative to

the DC MP2C values (e.g., Fig. 6). For all practical purposes, this approach makes

computing the MP2C correction “free” for molecular crystals. With its high accu-

racy and low cost, MP2C makes an excellent choice for describing the non-covalent

interactions in molecular crystals.

Of course, the aforementioned speed-ups only affect the evaluation of the

dispersion correction. As noted previously, the underlying RI-MP2/aug-cc-pVTZ

calculations in aspirin require ~2,450 CPU hours. Further computational savings

must come from the MP2 part such as through local MP2 or other similar methods.

One must be careful, however, that the truncation schemes do not hinder the ability

to describe the non-covalent interactions at intermediate distances (i.e., beyond

nearest-neighbor interactions but not yet far enough apart to be treated by the force

field in HMBI).
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2.4.2 Basis Sets

It is well know that describing intermolecular interactions with correlated wave

function methods requires large basis sets, so it is no surprise that molecular crystal

energetics can often be very sensitive to the basis sets. This is particularly true for

cases of conformational polymorphism, where the crystal packing motifs differ in

both intramolecular conformation and intermolecular packing. Counterpoise cor-

rections can help correct for basis set superposition error (BSSE). Different con-

formational polymorphs, however, may exhibit varying degrees of intramolecular

BSSE, which is much harder to correct. In the oxalyl dihydrazide example

discussed in Sect. 3.3, for example, the qualitative ordering of the experimental

polymorphs differs dramatically as a function of basis set for exactly this reason.

The intramolecular conformations of certain functional groups, such as the

pyramidalization of nitrogen groups, can also be sensitive to basis sets.

In general, one should take care to ensure that molecular crystal calculations are

converged with respect to basis set. Basis set extrapolation toward the complete

basis set (CBS) limit, where feasible, can be very useful. One can also employ

explicitly correlated techniques like MP2-F12 to achieve large-basis accuracy at

reasonable computational cost [113, 114].

3 Performance and Applications of HMBI

To demonstrate the capabilities of the HMBI method, this section discusses molec-

ular crystal benchmarks for predicting crystal geometries and lattice energies

(Sect. 3.1) along with applications to polymorphic aspirin (Sect. 3.2) and oxalyl

dihydrazide (Sect. 3.3) crystals.

The ability to predict crystal lattice energies accurately provides a demanding

test for any theoretical treatment of molecular crystals. Lattice energies measure the

energy required to dissociate the crystal to isolated gas-phase molecules. Whereas

relative polymorph energies allow for some degree of error cancellation between

the treatments of two different sets of non-covalent interactions, lattice energies

expose any errors in calculating the strength of those interactions (at least for small,

rigid molecules for which the intramolecular geometry is similar in the gas and

crystal phases). The situation is analogous to the differences between computing

reaction energies vs atomization energies, with the former being much easier due to

cancellation of errors. In molecular crystals, the degree of error cancellation in the

relative energies between polymorphs will depend on the differences in intra-

molecular configurations and intermolecular packing. In cases like aspirin, where

the two polymorphs exhibit similar structures, substantial error cancellation occurs.

On the other hand, cases like oxalyl dihydrazide exhibit more diverse interactions

and packing modes, leading to less error cancellation and making it much more

difficult to obtain accurate polymorphic energies.
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3.1 Predicting Molecular Crystal Lattice Energies
and Geometries

3.1.1 Lattice Energies

Benchmark lattice energy predictions have been performed on a series of seven

small-molecule crystals: ammonia, acetamide, benzene, carbon dioxide, formam-

ide, ice Ih, and imidazole. These crystals were chosen because they span a diverse

range of intermolecular interactions, ranging from hydrogen-bonded to van der

Waals dispersion bonded. The calculations start in a relatively small basis

(aug-cc-pVDZ) RI-MP2, then increase the basis set toward the TQ-extrapolated

basis set limit, and then finally examine higher-order correlation effects evaluated

with CCSD(T) in a modest basis. Initially the Amoeba force field was used for the

MM terms [115], but even better results are obtained when the AIFF (in the Sadlej

basis set [116, 117]) described in Sect. 2.3 is used [78].

The primarily hydrogen-bonded crystals exhibit generally consistent improve-

ment toward the experimental lattice energies as the electronic structure treatment

of the one-body and short-range two-body terms is improved, as shown in Fig. 7.

For those cases, the higher-order CCSD(T) correlation contributions are generally

small. However, for the benzene and imidazole crystals, where the π-electron van

der Waals dispersion interactions are significant, MP2 over-binds the crystals by

~10–12 kJ/mol (~10–20%). This sort of error is particularly problematic in the

context of molecular crystal polymorphism, since MP2 will be biased toward such

dispersion-bound packing motifs over hydrogen-bonded ones.

The CCSD(T) results correct the MP2 overestimate of the dispersion interactions

in these two crystals. Overall, for six of the seven crystals, the estimated CBS-limit

CCSD(T) results lie within 1–2 kJ/mol of the nominal experimental values, which
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is likely within the experimental errors. The reason for the larger errors in acet-

amide is unclear. Of course, CCSD(T) calculations will often be cost-prohibitive in

molecular crystals. MP2C can provide a lower-cost alternative that substantially

improves upon MP2. Table 1 demonstrates that including the MP2C dispersion

correction has relatively small effects on the hydrogen-bonded crystals, but it

reduces the large MP2 errors for the imidazole and benzene crystals from ~10–12

to ~2–3 kJ/mol, which is only slightly worse than the CCSD(T) results; see [103]

for further details.

3.1.2 Crystal Structures

The HMBI model also provides accurate crystal geometries. Fully relaxed geom-

etry optimizations at the HMBI counterpoise-corrected RI-MP2/aug-cc-pVDZ and

Amoeba MM level for several of the benchmark crystals described above

reproduced the experimental structures fairly accurately, including the space

group symmetry [73]. Root-mean-square errors in the unit cell lattice parameters

are only 1.6% relative to low-temperature crystal structures (100 K or below). For

comparison, the same errors with B3LYP-D* [118] are 3.4% in the 6-31G** basis

and 2.0% in the TZP basis. The HMBI RI-MP2 calculations also perform well for

the root-mean-square deviations in the atomic positions (Table 2). Figure 8 shows

overlays of the experimental and HMBI RI-MP2 optimized structures, highlighting

the good agreement between them.

Overall, the RI-MP2/aug-cc-pVDZ structures are clearly better than dispersion-

corrected B3LYP-D*/6-31G* [118]. They are slightly worse than those obtained

with B3LYP-D* in a triple-zeta basis (TZP), though the MP2/aug-cc-pVDZ results

exhibit slightly more uniform errors. In principle, larger-basis MP2 geometries

ought to be even better, but optimizing in those larger basis sets becomes even

more expensive. One must also worry about the effects of the MP2 treatment of

dispersion on the geometries.

Given the sorts of practical calculations that are currently feasible, it is not

obvious that fragment methods provide a significant advantage relative to DFT for

molecular crystal structure optimization, especially since the basis set requirements

Table 1 Molecular crystal

lattice energies in kJ/mol.

MP2C/CBS-limit performs

much better than MP2/CBS-

limit relative to both the

estimated complete-basis-set

CCSD(T) results and

experiment

Crystal MP2a MP2Cb CCSD(T)a Experimentc

Ice (Ih) 59.9 60.3 60.2 59

Ammonia 39.3 40.5 40.2 39

Formamide 78.6 78.7 80.4 82

Acetamide 79.8 79.8 79.7 86

Carbon dioxide 29.1 26.3 29.5 31

Imidazole 102.8 93.1 88.6 91

Benzene 48.6 61.6 52
aWen and Beran [78]
bHuang et al. [103]
cBeran and Nanda [115]
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for correlated wavefunction methods like MP2 are steeper than those for DFT. For

this reason, we often optimize the geometry using DFT and perform high-level

single-point energies using HMBI. Of course, further improvements in MP2-like

algorithms and continuing advances in computer hardware may change this.

3.2 Aspirin Polymorphism

The crystal structure of aspirin has been known since the 1960s [119], but suspicion

of a second crystal form lingered for many years until 2004, when the structure of

aspirin form II was predicted by the Price group [120]. Experimental confirmation

for form II came a year later [121], though this report was followed by several more

years of controversy in the crystallographic community [122, 123]. Only in the past

couple years has the existence and structure of form II aspirin been firmly

established [124–126].

The controversy arose from the fact that the two aspirin polymorphs exhibit very

similar structures, and it proved very difficult to obtain pure crystals of form II.

Rather, one often obtains mixed crystals containing domains of both forms

I and II. The overall crystal packing of the two polymorphs is very similar except

for the nature of the interlayer hydrogen bonding (Fig. 9). Whereas form I exhibits

dimers, with each acetyl group hydrogen bonding to one other aspirin molecule in

the adjacent layer, form II exhibits a catemeric structure, where each acetyl group

hydrogen bonds to two adjacent molecules. This catemeric structure produces long

chains of hydrogen bonds in form II.

Interestingly, earlier dispersion-corrected DFT studies suggested that form II

was ~2–2.5 kJ/mol more stable than form I [127, 128], which would be surprising

for two crystals that appear to grow together so readily. Other examples of crystals

which form intergrowths are often separated by less than 1 kJ/mol in energy

[129–131].

We investigated this system [132] using HMBI after optimizing the crystal

structures for each form using B3LYP-D*/TZP. We performed a variety of calcu-

lations, including MP2, SCS(MI)-MP2 [104], and MP2C in both aug-cc-pVDZ and

Table 2 Root-mean-square deviations (rmsd15 [140] in Å) between the theoretically optimized

and experimental geometries for clusters of 15 molecules taken from each crystal. The tempera-

tures at which the experimental structures was obtained is also listed. See [73] for details

Crystal

B3LYP-D*/

6-31G**

HMBI RI-MP2/

aug-cc-pVDZ

B3LYP-D*/

TZP

Experimental

temperature (K)

Ice (Ih) 0.13 0.10 0.04 15

Formamide 0.29 0.16 0.22 90

Acetamide 0.16 0.08 0.08 23

Imidazole 0.20 0.12 0.14 103

Benzene 0.09 0.06 0.02 4
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aug-cc-pVTZ basis sets. In all cases, the energy differences between the two

polymorphs were only a few tenths of a kJ/mol, confirming the expected near-

degeneracy of the two forms (Table 3). Interestingly, both MP2 and SCS(MI)-MP2

Fig. 8 Overlays of the experimental (black) and HMBI MP2 structures (red) for (clockwise from
top left) ice Ih, formamide, acetamide, imidazole, and benzene. The experimental unit cell

boundaries are drawn. Adapted with permission from [73]. Copyright 2012, American Institute

of Physics

Fig. 9 Aspirin forms I and II exhibit very similar crystal packing. The key difference lies in

whether the interlayer hydrogen bonding occurs as dimers (form I) or catemers (form II).

Reprinted with permission from [132]. Copyright 2012 American Chemical Society
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appear to overestimate significantly the ~115 kJ/mol experimental lattice energy

[128, 133], predicting aug-cc-pVTZ values of 132 and 136 kJ/mol, respectively. In

contrast, MP2C predicts a lattice energy of 116 kJ/mol, in much better agreement

with the experimental value [103].

In addition to predicting the virtual degeneracy of the two aspirin polymorphs,

physical insight into the nature of the polymorphism was obtained by decomposing

the relative energies of the two polymorphs according to the different contributions in

the HMBI many-body expansion. In particular, we found that while the intramolec-

ular interactions favor form I, the intermolecular interactions favor form II (Fig. 10).

The key differences arise from the nature of the interlayer hydrogen bonding. In

form I, the acetyl group hydrogen bonds to only one adjacent aspirin molecule, which

allows the acetyl group to adopt a slightly more favorable intramolecular conforma-

tion. In contrast, the catemeric hydrogen bonding in form II forces the acetyl group to

adopt a conformation that is slightly less favorable, but in doing so it forms much

better hydrogen bonds and achieves hydrogen bond cooperativity through the

extended hydrogen-bond networks. It turns out that the energy differences in each

case amount to about 1.5 kJ/mol and cancel one another almost perfectly, making the

two polymorphs virtually and “accidentally” degenerate.

From a theoretical perspective, one other key feature emerged from this study:

the strong similarity between the crystal packing in both polymorphs leads to

excellent cancellation of errors in predicting the relative polymorph energetics.

Unfortunately, such thorough error cancellation is probably the exception rather

than the rule, as demonstrated by the case of oxalyl dihydrazide which is discussed

in the next section.

3.3 Oxalyl Dihydrazide Polymorphism

Oxalyl dihydrazide provides another interesting example of molecular crystal

polymorphism. It exhibits five experimentally known polymorphs, denoted α – E,
that differ in their degree of intramolecular and intermolecular hydrogen bonding

Table 3 Lattice energies and

relative energy differences for

the two polymorphs of aspirin

(in kJ/mol). The two

polymorphs are virtually

degenerate across a range of

model chemistries

MP2a SCS(MI) MP2a MP2Cb

aug-cc-pVDZ

Form I 113.7 132.5 –

Form II 113.5 132.3 –

ΔEI ! II
c 0.2 0.1 –

aug-cc-pVTZ

Form I 132.1 135.6 116.1

Form II 132.0 135.5 116.3

ΔEI ! II
c 0.1 0.0 �0.1

aWen and Beran [132]
bHuang et al. [103]
cThe apparent discrepancies between the lattice energies and the

ΔE values arise from rounding
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(Fig. 11). The relative stabilities of the five polymorphs is not known experimen-

tally, but it is believed that the trend follows α, δ, E < γ < β [134]. That is, the β
form is the least stable, followed by the γ form. The other three are more stable,

though their energetic ordering is unknown.

Earlier force field and DFT calculations had significant trouble reproducing

these qualitative trends. The relative polymorph ordering varied widely with the

choice of density functional; see, for example, [135]. Most of those functionals

lacked van der Waals dispersion corrections, however. The empirical dispersion-

corrected D-PW91 functional, which has been very successful in the blind tests of

crystal structure prediction and elsewhere [12, 15, 87, 136–138], does however

obtain a plausible ordering for the polymorphs (α < E < δ < γ < β), but the

overall energy range of the polymorphs is ~15 kJ/mol, which is somewhat larger

than the<10 kJ/mol typically found for experimentally observable polymorphs. On

the other hand, a different dispersion corrected function, B3LYP-D* [118], gives a

very different ordering that is inconsistent with experiment [70]. In other words,

obtaining reasonable results for this system is not simply a matter of including

dispersion. Rather, the energetics are very sensitive to the specific treatment of the

electronic structure and the balance between intermolecular and intramolecular

interactions. Note that vibrational zero-point energy is also important in oxalyl

dihydrazide, and it is included in the results shown here. Finite-temperature effects

may also be significant, but no attempt has been made to estimate them.

Obtaining plausible predictions for the relative polymorph energies proved

challenging, even for correlated wavefunction methods (Fig. 12) [70]. In small

basis sets, MP2 predicts the α form to be the least stable. However, increasing the

basis set size toward the CBS limit dramatically reorders the polymorphs, prefer-

entially stabilizing the α form. The slow basis set convergence in oxalyl
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Fig. 10 Aspirin provides a classic example of conformational polymorphism: form I adopts a

slightly more favorable intramolecular conformation, while form II exhibits stronger

intermolecular interactions. The two effects have nearly identical energies, and the two poly-

morphs are virtually degenerate. Reprinted with permission from [132]. Copyright 2012 American

Chemical Society

Accurate and Robust Molecular Crystal Modeling Using Fragment-Based. . . 83



dihydrazide provides a sharp contrast to aspirin, where the relative energy differ-

ence between the two polymorphs was insensitive to the basis set.

The basis set sensitivity in oxalyl dihydrazide arises from BSSE. The α poly-

morph exhibits only intermolecular hydrogen bonds, while the other four forms

contain mixtures of intermolecular and intramolecular hydrogen bonds. Applying a

standard counterpoise correction to each QM dimer calculation helps correct the

intermolecular BSSE, but it is harder to correct intramolecular BSSE. Therefore,

the α polymorph, which has much less intramolecular BSSE, is destabilized relative

to the other four forms in small basis sets. As the basis set size increases, the

intramolecular BSSE decreases in the other four forms, and the balance between

intermolecular and intramolecular hydrogen bonding is restored.

Beyond the basis set effects, oxalyl dihydrazide exhibits some π-stacking type

van der Waals dispersion interactions, so it comes as no surprise that using MP2C

instead of MP2 also has a significant effect. The dispersion correction reorders the

β and γ polymorphs to the correct experimental ordering. It also stabilizes the α

Fig. 11 The five experimentally known polymorphs of oxalyl dihydrazide
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form substantially relative to the other polymorphs. The more empirical SCS(MI)-

MP2 did not perform as well as MP2C in this system [70], perhaps due to the major

differences in the optimal correlation energy scaling factors for intra- and

intermolecular interactions.

Finally, Axilrod–Teller three-body dispersion effects prove important here.

They destabilize the α form relative to the other four forms. The three-body

dispersion contributions here are repulsive and die off with R� 9. Therefore, they

are more repulsive in the dense α polymorph (1.76 g/cm3) than in the four other, less

dense polymorphs (1.59–1.66 g/cm3). Without three-body dispersion, the calcula-

tions predict that the α polymorph is the most stable. However, including the three-

body dispersion terms makes the E polymorph slightly more stable than the α one, in

contrast with the best dispersion-corrected DFT predictions. The predicted ener-

getic preference for the E polymorph over the α one is slight, and no experimental

data currently exists to help resolve the issue. Nevertheless, it is interesting to note

that the empirically dispersion-corrected DFT results in [70, 135] include only

two-body dispersion and favor the α polymorph, just like the HMBI results without

three-body dispersion. From this perspective it would be interesting to see what

state-of-the-art many-body dispersion-corrected density functionals predict here.

4 Conclusions and Outlook

Fragment-based methods like HMBI provide a computationally viable means of

achieving high-accuracy structures and lattice energies for chemically interesting

molecular crystals. The systems examined here highlight the challenges inherent to

modeling molecular crystals, where the subtle energetic competitions can require

careful electronic structure treatments. It will not always be a priori obvious how

elaborate an electronic structure treatment is needed for a given system. One can

sometimes count on cancellation of errors, especially when the different crystal

packing motifs are similar (like in aspirin), but much less error cancellation occurs

in other cases (like oxalyl dihydrazide). Unfortunately, the reduced error-

cancellation case is probably more typical for conformational polymorphs of

flexible organic molecules, especially as the molecules become larger.
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Periodic DFT methods can often provide acceptable accuracy for molecular

crystal systems with reasonable computational costs. In many cases, however,

one will wish to assess the reliability of those predictions or to obtain even more

accurate predictions. From this perspective, one of the key strengths of fragment

methods is their ability to improve systematically the quality of the results with

respect to the underlying electronic structure treatments. The ability to demonstrate

convergence of the predictions with respect to model chemistry is a powerful tool

for making robust predictions. Moreover, for systems with large numbers of

molecules in the unit cell, the inherently linear-scaling nature of the computation-

ally dominant QM calculations in fragment methods will often make them cheaper

than full periodic DFT calculations. Fragment methods also provide a natural

decomposition scheme for understanding the nature of the energetic competitions

in polymorphic crystals.

For evaluating the intermolecular interactions in molecular crystals, the

dispersion-corrected MP2C method provides a useful balance between accuracy

and efficiency, offering near coupled-cluster-quality results at MP2-like cost. In

practice, MP2C (or its explicitly correlated variant, MP2C-F12), with an

aug-cc-pVTZ basis, is practical for molecular crystals containing two to three

dozen atoms per molecule and a handful of molecules in the asymmetric unit

cell. In other words, these techniques are applicable to a number of interesting,

small-molecule pharmaceuticals, organic semiconductors, and energetic materials

(though many more such materials remain impractical for the moment!).

Thus, fragment methods like HMBI will likely play an important role in molec-

ular crystal modeling for years to come. The next advances are likely to come from

a couple of directions. First, further efficiency improvements will enable the

application to larger systems. For instance, the MP2C timings described above

indicate that the vast majority of the computational time is consumed on the MP2

calculations. A sizable fraction of that time comes from evaluating the long-range

interactions, which are then largely discarded through the MP2C dispersion

correction. New, more efficient strategies for achieving similar quality results can

surely be developed. In addition, further improvements to the ab initio force field

would enable one to treat fewer dimers quantum mechanically, thereby accelerating

the calculations. This requires incorporating efficient treatments of the short-rate

exchange interactions into the force field.

Second, one needs to consider finite-temperature entropies and free energies.

This can be done through quasi-harmonic-type approximations or through

dynamical free energy calculations. The latter is potentially more rigorous and

capable of capturing anharmonic effects, but of course it is limited by the need

for extensive computational sampling and the quality of the force fields that can

be used to perform such sampling affordably. Quasiharmonic calculations are

much less expensive computationally, but they involve their own severe approx-

imations. Much more research is needed in this area to determine which tech-

niques are useful under which circumstances. In other words, many theoretical

opportunities remain in molecular crystal modeling to occupy researchers for

quite some time!
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29. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density

functional for general geometries. Phys Rev Lett 92:246401

30. DiStasio RA, von Lilienfeld OA, Tkatchenko A (2012) Collective many-body van der Waals

interactions in molecular systems. Proc Natl Acad Sci U S A 109:14791–14795. doi:10.1073/

pnas.1208121109

31. Grimme S (2011) Density functional theory with London dispersion corrections. WIREs

Comput Mol Sci 1(2):211–228. doi:10.1002/wcms.30

32. Otero-de-la Roza A, Johnson ER (2013) Many-body dispersion interactions from the

exchange-hole dipole moment model. J Chem Phys 138(5):054103. doi:10.1063/1.4789421

33. Thonhauser T, Cooper VR, Li S, Puzder A, Hyldgaard P, Langreth DC (2007) Van der Waals

density functional: self-consistent potential and the nature of the van der Waals bond. Phys

Rev B 76:125112

34. Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from

ground-state electron density and free-atom reference data. Phys Rev Lett 102(7):073005.

doi:10.1103/PhysRevLett.102.073005

88 G.J.O. Beran et al.

http://dx.doi.org/10.1107/S0108768111042868
http://dx.doi.org/10.1107/S0108768109004066
http://dx.doi.org/10.1107/S0108768112017466
http://dx.doi.org/10.1080/01442350802102387
http://dx.doi.org/10.1063/1.4738961
http://dx.doi.org/10.1002/anie.200462760
http://dx.doi.org/10.1021/ct300035u
http://dx.doi.org/10.1016/j.addr.2003.10.006
http://dx.doi.org/10.1039/c004055j
http://dx.doi.org/10.1107/S0108768105016563
http://dx.doi.org/10.1073/pnas.1208121109
http://dx.doi.org/10.1073/pnas.1208121109
http://dx.doi.org/10.1002/wcms.30
http://dx.doi.org/10.1063/1.4789421
http://dx.doi.org/10.1103/PhysRevLett.102.073005


35. Vydrov OA, Van Voorhis T (2010) Nonlocal van der Waals density functional: the simpler

the better. J Chem Phys 133(24):244103. doi:10.1063/1.3521275

36. Ayala PY, Kudin KN, Scuseria GE (2001) Atomic orbital Laplacetransformed second-order

Møller–Plesset perturbation theory for periodic systems. J Chem Phys 115:9698–9707

37. Hirata S, Iwata S (1998) Analytical energy gradients in second-order Moller–Plesset pertur-

bation theory for extended systems. J Chem Phys 109(11):4147–4155

38. Hirata S, Shimazaki T (2009) Fast second-order many-body perturbation method for

extended systems. Phys Rev B 80(8):1–7. doi:10.1103/PhysRevB.80.085118

39. Izmaylov AF, Scuseria GE (2009) Resolution of the identity atomic orbital Laplace

transformed second-order Møller–Plesset theory for nonconducting periodic systems. Phys

Chem Chem Phys 10:3421–3429

40. Marsman M, Grueneis A, Paier J, Kresse G (2009) Second-order Møller–Plesset perturbation

theory applied to extended systems. I. Within the projector-augmented-wave formalism using

a plane wave basis set. J Chem Phys 130:184103

41. Maschio L, Usvyat D, Manby FR, Casassa S, Pisani C, Schutz M (2007) Fast local-MP2

method with density-fitting for crystals. I. Theory and algorithms. Phys Rev B 76:075101

42. Ohnishi YY, Hirata S (2010) Logarithm second-order many-body perturbation method for

extended systems. J Chem Phys 133(3):034106. doi:10.1063/1.3455717

43. Pisani C, Maschio L, Casassa S, Halo M, Schutz M, Usvyat D (2008) Periodic local MP2

method for the study of electronic correlation in crystals: theory and preliminary applications.

J Comput Chem 29:2113–2124

44. Shiozaki T, Hirata S (2010) Communications: explicitly correlated secondorder

Møller–Plesset perturbation method for extended systems. J Chem Phys 132(15):151101.

doi:10.1063/1.3396079

45. Suhai S (1983) Quasiparticle energy-band structures in semiconducting polymers: correlation

effects on the band gap in polyacetylene. Phys Rev B 27:3506–3518

46. Sun JQ, Bartlett RJ (1996) Second-order many-body perturbation-theory calculations in

extended systems. J Chem Phys 104:8553–8565

47. Usvyat D, Maschio L, Manby FR, Casassa S, Pisani C, Schutz M (2007) Fast local-MP2

method with density-fitting for crystals. II. Test calculations and applications to the carbon

dioxide crystal. Phys Rev B 76:075102
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