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General Computational Algorithms for

Ab Initio Crystal Structure Prediction

for Organic Molecules

Constantinos C. Pantelides, Claire S. Adjiman, and Andrei V. Kazantsev

Abstract The prediction of the possible crystal structure(s) of organic molecules is

an important activity for the pharmaceutical and agrochemical industries, among

others, due to the prevalence of crystalline products. This chapter considers the

general requirements that crystal structure prediction (CSP) methodologies need to

fulfil in order to be able to achieve reliable predictions over a wide range of organic

systems. It also reviews the current status of a multistage CSP methodology that has

recently proved successful for a number of systems of practical interest. Emphasis

is placed on recent developments that allow a reconciliation of conflicting needs

for, on the one hand, accurate evaluation of the energy of a proposed crystal

structure and on the other hand, comprehensive search of the energy landscape

for the reliable identification of all low-energy minima. Finally, based on the

experience gained from this work, current limitations and opportunities for further

research in this area are identified. We also consider issues relating to the use of

empirical models derived from experimental data in conjunction with ab initio CSP.
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API Active pharmaceutical ingredient
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1 Introduction

Crystalline organic materials play an important role in many high-value

manufacturing sectors such as the pharmaceutical, agrochemical and fine chemicals

industries. For instance, the majority of active pharmaceutical ingredients (APIs)

are produced and delivered as solids [1]. The propensity of medium-size organic

molecules to crystallize in multiple forms (“polymorphs”) leads to significant

challenges for the industry as differences in crystal structure can lead to large

changes in physical properties such as solubility, dissolution rate and mechanical

strength. These variations affect both manufacturing process and product effective-

ness, and the appearance of a new, more stable, crystal structure of a given API can

have wide-ranging effects on the availability and economic value of a drug [2]. As a

result, the crystalline structure of an API has become a key element of patent

protection and regulatory approval.
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Given the practical importance of polymorphism and its intrinsic scientific

interest, much research effort has been devoted towards increased understanding

of this phenomenon and converting this understanding into methodologies for

crystal structure prediction (CSP). Five blind tests for CSP have been organised

by the Cambridge Crystallographic Data Centre (CCDC) since 1999 [3], providing

useful benchmarks and helping to identify areas where improvements and further

research are needed. While the blind tests are based on a relatively small set of

compounds, the publications summarising their results [3–7] provide some evi-

dence of progress in the development of increasingly reliable methodologies.

Of particular note is the growing ability to predict the solid state behaviour of

molecules of size, complexity and characteristics that are relevant to the pharma-

ceutical industry [8–10].

1.1 Definition and Scope of the CSP Problem

The central problem of CSP can be summarised as follows:

Given the molecular diagrams for all chemical species (neutral molecule(s) or
ions) in the crystal, identify the thermodynamically most stable crystal structure at
a given temperature and pressure, and also, in correct order of decreasing stability,
other (metastable) crystal structures that are likely to occur in nature.

From a thermodynamic point of view, the most stable crystal structure is that

with the lowest Gibbs free energy at the given temperature and pressure and, where

relevant, at the given composition (crystal stoichiometry). The other structures of

interest are normally metastable structures with relatively low free energy values.

Mathematically, all these structures correspond to local minima of the Gibbs free

energy surface, with the global (i.e. lowest) minimum determining the most stable

structure.

The scope of the CSP methodology presented in this chapter includes both

single-component crystals and co-crystals, hydrates, solvates and salts. It is appli-

cable to flexible molecules of a size typical of “small molecule” pharmaceuticals

(i.e. up to several hundred daltons) and to crystals in all space groups, without

restriction on the number of molecules in the asymmetric unit (any Z0 > 0).

Examples of such systems are presented in Fig. 1.

1.2 Requirements for General CSP Methodologies

In this chapter we are interested in CSP methodologies that can be applied reliably

in a systematic and standardised manner across the wide range of systems defined

above. Based on the experience of the last two decades of activity in CSP, but also

from other areas of model-based science and engineering, this translates into certain

key requirements:
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• A reliable CSP methodology must be based on automated algorithms, with

minimal need for user intervention beyond the specification of the problem to

be tackled. This in turn limits the scope for reliance on previous experience

and/or similarities with other systems, which in any case can lead to erroneous

results as small changes in molecular structure can result in significant changes

in the crystal energy landscape [15], including the number of local minima and

the detailed geometry of the crystal packing. Statistical analysis of experimental

evidence, such as that contained in the Cambridge Structural Database (CSD),

does not always provide reliable guidance and sometimes leads to potentially

relevant stable/metastable crystal structures being missed. In past blind tests [7],

this was one of the stated reasons for failing to produce successful matches to

experimental crystal structures.

• It must have a consistent, fundamental physical basis that can be applied

uniformly to wide classes of systems. In our experience, “special tricks”

(e.g. case-by-case adjustments of intermolecular interactions), whilst sometimes

successful at reproducing known experimental structures for specific molecules,

lead to limited predictive capability. They also sometimes obscure the real issues
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Fig. 1 Examples of systems of interest to current CSP methodologies. (a) “Molecule XX”, fifth

CCDC blind test target [4] (benzyl-(4-(4-methyl-5-( p-tolylsulfonyl)-1,3-thiazol-2-yl)phenyl)-
carbamate). (b) Bristol-Myers Squibb’s BMS-488043 [11] (1-[4-(benzoyl)piperazin-1-yl]-2-

(4,7-dimethoxy-1H-pyrrolo[5,4-c]pyridin-3-yl)ethane-1,2-dione). (c) Pfizer’s Axitinib anti-cancer
drug [12] (N-methyl-2-[[3-[(E)-2-pyridin-2-ylethenyl]-1H-indazol-6-yl]sulfanyl]benzamide).

(d) (R)-1-phenyl-2-(4-methylphenyl)ethylammonium-(S)-mandelate salt [13]. (e) Progesterone-

pyrene (2:1) co-crystal [14]
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that need to be addressed, acting as an obstacle to gaining the understanding that

is necessary for the advancement of the field.

• It must produce consistently reliable solutions, e.g. as judged in terms of its

ability to reproduce experimental evidence for different systems, predicting all

known polymorphs with low energy ranking. However, such an assessment is

complicated by the practical unfeasibility of conducting exhaustive experimen-

tal “polymorph screening” programs. While it is always possible to recognise

that a CSP approach has failed to identify an experimental structure or to find its

correct stability rank, it is harder to draw conclusions when it predicts structures

that have not been observed experimentally [16, 17].

• It must take advantage of current state-of-the-art computer hardware and soft-

ware within practicable cost. There is little benefit in a computationally efficient

CSP methodology that is capable of producing results within minutes on a

desktop computer if it fails to identify significant low-energy structures. While

there is certainly a higher cost in securing access to advanced distributed

computing hardware, this is usually negligible compared to the cost of a missed

polymorph.

Current methodologies for crystal structure prediction pay varying degrees of

attention to the above requirements. In any case, the blind test papers and several

recent reviews provide a good overview of current thinking and of the tools that

have been developed [18–25].

1.3 The CrystalPredictor and CrystalOptimizer Algorithms

As much of the relevant background is readily available elsewhere, our focus in this

chapter is to provide a coherent overview of a CSP methodology that we have been

developing over the past 15 years in the Centre for Process Systems Engineering at

Imperial College London. Consistent with the principles outlined above, our meth-

odology, algorithms and workflow have been heavily influenced by a systems

engineering background and have drawn on experience in developing algorithms

and implementing them in large software codes in other areas. We aim to provide a

CSP algorithm designer’s perspective, setting out the general considerations that

need to be taken into account in a manner that can hopefully be of value to designers

of future algorithms. The approach presented is one concrete example of what can

be achieved given current constraints on underlying software infrastructure (e.g. for

quantum-mechanical (QM) calculations) and on computing hardware.

Our work has focused on two general-purpose algorithms and codes, namely

CrystalPredictor [26, 27] which performs a global search of the crystal energy

landscape, and CrystalOptimizer [28] which performs a local energy minimisation

starting from a given structure. Over the last few years, these algorithms have been

applied both by us and more extensively by others to a relatively wide variety of

systems including single compound crystals [15, 29–36], co-crystals [14, 37–39],
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including chiral co-crystals [40, 41], hydrates and solvates [42, 43]. The codes have

also been used separately, e.g. Gelbrich et al. [44] report a recent application of

CrystalOptimizer to the study of four polymorphs of methyl paraben.

The CrystalPredictor algorithm has been in use since the third blind test [4–6],

while CrystalOptimizer has been available only since the latest (fifth) blind test [4],
where it was applied successfully to the prediction of the crystal structure of target

molecule XX [9], one the largest and most flexible molecules considered in a blind

test to date. Both codes have been evolving continually in terms both of the range of

systems to which they are applicable and of their computational efficiency.

1.4 Structure of Chapter

Section 2 of this chapter reviews the main considerations that need to be taken

into account in the design of CSP algorithms. Based on this background, Sect. 3

provides a description of the key elements of our methodology in its most recent

form. Finally, Sect. 4 seeks to draw some general conclusions based on the

experience gathered from a fairly consistent application of this methodology across

a relatively wide range of systems over the last few years. In particular, we consider

the limitations of our current approach and identify areas of further work that are

needed to address them. We also consider issues relating to the use of empirical

models derived from experimental data in conjunction with ab initio CSP.

2 Key Considerations in the Design of CSP Algorithms

2.1 Mathematical Formulation of the CSP Problem

A crystal formed from one or more chemical species is a periodic structure defined

in terms of its space group, the size and shape of the unit cell, the numbers of

molecules of each species within the unit cell and the positions of their atoms.

For example, Fig. 2 shows the unit cell of crystalline Form II of piracetam

((2-oxo-1-pyrrolidinyl)acetamide). In this case, there is only one molecule per

unit cell, and the crystal structure is also characterised by the Cartesian coordinates

of the atoms within this cell. For the purposes of this chapter, we are interested in

systems that extend practically infinitely in each direction and are free of all defects.

The crystal structures of practical interest are those which are stable or meta-

stable at the given temperature, pressure and composition; as such they correspond

to local minima in the free energy surface with relatively low values of the Gibbs

free energy, G, which can be expressed as:
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min G ¼ U þ pV � TS ð1Þ

where U denotes the internal energy of the crystal, p the pressure, V the volume,

T the temperature and S the entropy on a molar basis. The minimisation is carried

out with respect to the variables defining the crystal structure as listed above.

The entropic contribution �TS is typically omitted in the context of CSP as it is

difficult to compute reliably and at low computational cost for systems of practical

interest. The magnitude of this term is expected to be small compared to the

enthalpic contribution at the relatively low temperatures of interest [46]; on the

other hand, omission of the term is often cited as one of the possible reasons for

failing to predict experimentally observed structures accurately. In any case, any

predictions made by CSP methodologies making use of this simplification in

principle relate to a temperature of 0 K.

The work term +pV is also often omitted from the free energy expression. It is

worth mentioning that, in contrast to the –TS term, this term can be computed with

negligible cost, and is sometimes important for predictive accuracy at high

pressures.

Based on the above approximations, the energy function used to judge stability

of a crystal structure is usually reduced to the lattice internal energy U, typically

computed with reference to the gas-phase internal energy Ugas
i of the crystal’s

constituents i:

min ΔG ffi U �
X
i

xiU
gas
i ð2Þ

where xi is the molar fraction of chemical species i in the crystal structure. Posing

the CSP problem in this manner reduces it to two important sub-problems, namely

the accurate computation of this energy for a proposed crystal structure and the

reliable identification of all local minima, or at least those with relatively low

energy values. We consider these in more detail in the two sections below.

β

b

a

c

α
γ

Fig. 2 Lattice vectors

(a, b, c) and angles

(α, β, γ) defining the unit

cell in the Form II crystal

of piracetam [45]
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2.2 Accurate Computation of Lattice Energy

In principle the lattice energy can be computed through QM computations, as is

the case in periodic solid-state density functional theory approaches, e.g. [47, 48].

However, such an approach is computationally very demanding, to an extent that

may currently limit its applicability with respect to the size of the system to which it

can be applied successfully; its theoretical rigour is also somewhat compromised by

the need to use an empirical model of dispersion interactions. The alternative is

the “classical” approach to computing lattice energy which distinguishes intra-

molecular and pair-wise intermolecular contributions, with the latter being further

divided into repulsive, dispersive and electrostatic terms. Moreover, starting with a

reference unit cell, one has to add up the interactions of its molecules with those in

all other cells within an infinite periodic structure.

Most organic molecules of interest to CSP have a non-negligible degree of

molecular flexibility which allows them to deform in the closely packed crystalline

environment. In turn, the deformation induces changes to their intramolecular

energy, but also to two other aspects that affect intermolecular interactions within

the crystal, namely the relative positioning of the atoms in the molecule and their

electronic density field. Overall, then, stable/metastable crystal structures represent

a trade-off between the increase in intramolecular energy caused by deformations

from in vacuo conformations and the overall energy decrease due to attractive and

repulsive intermolecular interactions. This is illustrated in Fig. 3 for xylitol

(1,2,3,4,5-pentapentanol) using a model that includes separate contributions to

the lattice energy from the intra- and intermolecular interactions (cf. Sect. 3).

Intramolecular forces tend to favour larger values of the torsions in the range

considered (cf. Fig. 3d where the minimum energy point occurs at the top right

corner). On the other hand, intermolecular forces drive torsion angle H1-O1-C1-C2

to a low value, and torsion angle O1-C1-C2-C3 towards an intermediate value of

approximately 180� (cf. Fig. 3c where the minimum energy point is near the middle

of the left vertical axis). These opposite effects are of similar magnitudes, resulting

in the torsions adopting intermediate values in the experimentally observed con-

formation (cf. Fig. 3b).

The classical approach to lattice energy computation is common to most current

CSP approaches. Notwithstanding the approximations that are already inherent in

the classical calculations, what is not always appreciated is the very significant

extent to which even relatively small inaccuracies in them affect the quality of

crystal structure predictions, especially when considering relative stability rankings

as a measure of success. Potential pitfalls include:

• Inaccuracies in Intramolecular Energy Calculation

These may arise either from failing to take account of all the conformational

degrees of freedom that are substantially affected by the crystalline environment,

or from approximations in the calculation of the intramolecular energy for a given

conformation (e.g. via the use of inappropriate empirical force fields).
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• Inaccuracies in Pairwise Intermolecular Interactions—Electrostatic Contributions

Analysis of blind test results (for example for Molecule VIII [19]) indicates

that partial charges do not provide a sufficiently accurate representation of the

electrostatic field, and one has to resort to more complex alternatives such as

off-centre charges [50] or distributed multipoles [51, 52]. These classical electro-

static descriptions are often derived from gas-phase isolated-molecule QM calcu-

lations and therefore ignore the effects of polarisability, which can sometimes lead

to inaccurate ranking, especially for polar crystals. Approaches aiming to address

this issue include the use of gas-phase calculations on dimers [53], or of continuum

polarisable models for the isolated-molecule calculations [54]. Developments in

more accurate atom-atom potentials also hold promise in this area [55, 56].
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Fig. 3 Effect of conformational flexibility on the energetics of xylitol. (a) Molecular confor-

mation of xylitol in the experimental crystal structure [49], with blue arrows denoting the

two torsional angles being considered here. (b) Lattice energy map as a function of the two angles.

(c) Intermolecular energy map. (d) Intramolecular energy map. The open circle on each map

denotes the values of the torsions in the experimentally observed crystal
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• Inaccuracies in Pairwise Intermolecular Interactions—Dispersion/Repulsion

Contributions

Given the difficulty in their ab initio computation, the contributions of repulsion/

dispersion interactions are usually computed via empirical potentials fitted to

experimental data [57–63]. A potential pitfall in this context is that the values of

the repulsion/dispersion potential parameters derived from such an exercise depend

on what other terms are included in the lattice energy (e.g. intramolecular and/or

intermolecular electrostatic contributions) and on precisely how each such term is

computed (e.g. whether electrostatic contributions are accounted for in terms of

partial charges or distributed multipoles, and the level of theory employed in the

QM isolated-molecule calculations used to derive these partial charges/multipoles).

For example, the commonly used parameters from [60, 61, 63] were estimated

assuming perfectly rigid molecules, with electrostatic interactions computed via

atomic charges derived from HF/6-31G** QM calculations. Therefore, these

parameter values are not necessarily consistent with more recent CSP techniques

that take account of molecular flexibility and/or employ distributed multipoles

derived from QM computations at much higher levels of theory.

• Errors in Summation of Intermolecular Interactions Over Infinite Periodic

Structures

The importance of efficiently and accurately computing these summations is

generally well understood, and techniques such as Ewald summations [64] are

routinely used to calculate conditionally convergent electrostatic sums such as

charge–charge interactions. However, the quality of practical implementations

varies widely. For example, cut-off distances for determining which terms to

include in these summations are often set to inappropriately low values, and/or

are applied to distances between centres of mass (rather than individual atoms) of

the molecules involved – even when the size of the molecule is a significant fraction

of the cut-off distance itself; in the latter case, at least some of the terms omitted

from the summation relate to pairs of atoms that are much closer to each other than

centre-of-mass distances suggest.

2.3 Identification of Local Minima on the Lattice Energy
Surface

Addressing the issues identified above is clearly important for ensuring an accurate

calculation of the lattice energy. The next area of concern is ensuring that the

crystal structures predicted are local minima on the energy surface. This may not be

the case if the optimisation algorithm used for energy minimisation converges to

points that are not true local minima. Such failures may be caused by using

algorithms, such as simplex [65], which do not make use of the values of the partial

derivatives of the energy with respect to the crystal structure decision variables, and
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consequently exhibit slow convergence. More recent work had tended to avoid this

problem by using gradient-based optimisation algorithms [66]; nevertheless, failure

may still occur because of inaccurate values of these partial derivatives (e.g. when

they are approximated via finite difference perturbations).

Ensuring that any crystal structures obtained are true local minima does not

necessarily guarantee that all such structures of practical relevance are identified.

The standard approach for identifying multiple local minima is based on generating

a large number of structures which are used as initial points for local energy

minimisation along the lines described above. Mathematically, it can be shown

that such an approach is guaranteed to identify all local minima provided an infinite

number of initial points are generated in a manner that sufficiently covers the space

of decision variables. The more practical question is how many structures need to

be generated in order to provide a reasonably high probability of identification of all

structures of interest. Some relevant insight is provided in Fig. 4 which shows the

local minima identified during the global search phase for the ROY molecule

[36]. Even for such a relatively small molecule, there are several thousands of

local minima, many hundreds of which would be of interest as potential starting

points for a refinement using a more accurate lattice energy model. Given that there

is currently no technique which can selectively and directly identify only relatively

low-energy structures, it seems that the desired degree of reliability in CSP can be

achieved only by generating very large numbers (in the order of tens or hundreds of

thousands) of candidates.

Insufficient exploration of the space of possible crystal structures may also

arise in more subtle ways as a result of the introduction of artificial constraints

during the global search. A common pitfall is to base the search on a finite number

of rigid molecular conformations generated a priori by fixing some of the key

flexible degrees of freedom (e.g. torsion angles) to specific sets of values. This

“multiple rigid-body searches” approach avoids the need to handle molecular

flexibility during the global search. However, whilst this approach can be successful

in specific cases (cf. the “RCM” algorithm reported in [9]), its outcome is highly

dependent upon the specific choice and indeed the total number of rigid structures

tested; for highly flexible molecules, comprehensive coverage of the crystal struc-

ture space may be achievable only via a very large number of global searches, each

based on a different rigid conformation. Moreover, taken together, these rigid-body

global searches may result in many more unique structures than a single flexible

search: two or more neighbouring but ostensibly distinct local minima may relax

into a single one if the molecules are allowed to deform continuously under the

intermolecular forces exerted on them. Not taking advantage of this relaxation

effect during the global search stage invariably results in a higher number of

structures that need to be analysed at the refinement stage, and consequently a

higher computational load.
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2.4 Implications for CSP Algorithm Design

The analysis presented above suggests that taking shortcuts in the

accurate calculation and minimisation of crystal energy in an attempt to reduce

computational complexity may be detrimental to the quality of the prediction, as are

attempts to sample only a small part of the decision space (e.g. by using only

hundreds or thousands of initial points in the global search). Such “savings”

may prove highly counter-productive in applications (e.g. in the pharmaceutical

industry) where failing to identify a low-energy polymorph or identifying too

many fictitious ones can have serious implications. Accordingly, one needs

to aim for algorithms that attempt to maximise reliability of prediction within

currently available computational power.

Fig. 4 Local minima of lattice energy surface for ROY molecule (5-methyl-2-[(2-nitrophenyl)

amino]-3-thiophenecarbonitrile, [67]) identified by global search. (a) Energy vs density diagram;

each point corresponds to a unique local minimum on the lattice energy surface. (b) Cumulative

number of unique local minima identified vs energy difference from the global minimum
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The challenge for the CSP algorithm designer is how to reconcile the need

for very accurate evaluation of energy and its partial derivatives for the purposes

of local minimisation of lattice energy, with the extremely large number of

such minimisations that have to be carried out during the search for low-energy

structures. A practical way of achieving this is via a two-stage procedure where

the global search is performed using a relatively simpler and computationally

less expensive energy model. This allows a much smaller number of promising

structures to be identified which can then serve as starting points for refinement via
local minimisation using a more detailed model.

The two-stage approach to ab initio CSP is illustrated schematically in Fig. 5.

It takes as input the stoichiometry of the crystalline phase and the molecular

connectivity diagrams for the relevant chemical species, and produces as output

the crystal structure with the lowest (globally minimum) lattice energy as well as

other crystal structures that correspond to local lattice energy minima with energy

values close to the global minimum.

In practice it is usually necessary to have an additional “Stage 0” dedicated to the

study of each individual species in order to:

• Identify important aspects of its molecular flexibility (e.g. the set of torsional

angles that are likely to undergo significant deformation in the crystalline

environment, and the likely range of any such deformation).

• Determine an appropriate level of theory of QM calculations (e.g. via compar-

ison with any available experimental data on its gas-phase conformation or any

already known polymorphs for crystals formed by it).

In some CSP methodologies the information necessary for computing intramo-

lecular energy and/or intermolecular electrostatic contributions during Stages 1 and

2 is also generated via QM calculations during this Stage 0. Alternatively, these QM

calculations may be performed “on-the-fly” when necessary during Stages 1 and

2 (see Sect. 3.3).

The multistage approach to CSP has been widely adopted [18, 25, 38, 68] and

has been successfully used in the blind tests of crystal structure prediction [3–7,

9]. Its success hinges on the hypothesis that relatively simple models of the energy

surface can provide energy minima whose geometry is in reasonably good agree-

ment with that of energy minima on a more accurate surface – even if the actual

energy values differ significantly, in both absolute and relative terms, between the

simpler and the more rigorous models. The approach comes with its own potential

pitfalls: for example, using too simplistic an energy model at the global search

phase may result in some of the structures of interest either being missed altogether

or being ranked so high in crystal energy that they are not selected for subsequent

refinement. Therefore, the global search phase also exhibits an accuracy vs com-

putational cost trade-off, and the way the balance between these two is struck

differs significantly between algorithms.
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Fig. 5 Multistage approach for CSP, illustrated for molecule BMS-488043 (cf. Fig. 1b)
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3 The CrystalPredictor and CrystalOptimizer

CSP Algorithms

The CrystalPredictor and CrystalOptimizer algorithms (cf. Sect. 1.3) are aimed,

respectively, at the global search and refinement stages of the general methodology

described in Fig. 5. They are designed to be applicable to crystal structures which

belong, in principle,1 to any space group and which involve any number of

chemical species of the same or different types within the asymmetric unit.

Based on the analysis presented in Sect. 2, and in order to ensure the maximum

degree of consistency between the two algorithms, their overall design philosophy

can be summarized as follows:

• In CrystalOptimizer, use the highest degree of accuracy in lattice energy

computation that can be practically deployed at the refinement stage.

• In CrystalPredictor, apply the above subject to the minimal set of simplifications

that are necessary to accommodate the additional computational complexity of

the global search.

Inevitably, the practical implications of these general principles have been

changing over the years, reflecting advances in our ability to describe efficiently

and accurately various terms in the energy function. In this section we discuss the

current state of the algorithms and their implementation in computer code.

3.1 Molecular Descriptions

The description of the molecular conformation is a key element of any CSP

methodology. In CrystalPredictor and CrystalOptimizer each chemical entity in

the crystal is assumed to be flexible with respect to all conformational degrees of

freedom (CDFs), including torsion angles, bond angles and bond lengths.

In general, we divide the CDFs into two different sets2:

• The independent CDFs, θ, are those which are affected directly by

intermolecular interactions in the crystalline environment.

• The dependent CDFs, θ , always assume values that minimise the intramolecular

energy of an isolated molecule for given values of θ; therefore θ ¼ θ θð Þ.
By spanning the whole range from an empty set θ (i.e. a rigid molecule

calculation) to an empty set θ (i.e. a fully atomistic computation), the above

1 See Sect. 3.5.2 for details of the current implementation.
2 In fact, the algorithms also recognise a third class of CDFs which can be fixed at user-provided

values (e.g. in order to exploit a priori available experimental information in performing more

targeted searches). However, in the interests of clarity of presentation, we omit this complication

from the mathematical descriptions provided in this chapter.
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partitioning provides a mechanism for adjusting the number of degrees of freedom

that have to be manipulated during the energy minimisation (see Sect. 3.2). More

specifically, it allows us to employ different degrees of molecular flexibility

between the global search and refinement stages.

In earlier applications of our CSP methodology, θ would typically include only

the more flexible torsion angles while θ would comprise the remaining torsion

angles, as well as bond angles and lengths. However, with increasing computational

capability and more efficient ways of computing intramolecular energy contribu-

tions (see Sect. 3.3), one can afford to shift the balance from θ to θ, taking direct

account of a wider range of torsion angles and even some bond angles, especially

during the refinement stage. A number of examples employing extended sets of

independent CDFs θ, including fully atomistic computations, were reported in [28].

3.2 The Lattice Energy Minimisation Problem

The lattice energy minimisation problem is formulated in terms of the following

independent decision variables:

• The unit cell lattice lengths and angles, collectively denoted by X
• The positions of the centres of mass and the orientation of the chemical entities

within the unit cell, collectively denoted by β
• The independent CDFs, θ, of the chemical entities

As already mentioned, the dependent CDFs θ can be computed as functions of

the independent ones, i.e. θ θð Þ via minimisation of the intramolecular energy, i.e.

θ θð Þ ¼ arg minθU
intraðθ , θÞ ð3Þ

carried out as an isolated-molecule QM calculation. The latter also produces the

information necessary for deriving an appropriate finite-dimensional description

Q(θ) of the molecule’s electrostatic field in terms of charges or distributed multi-

poles [52, 69]. The CDFs θ andθ can also be used in conjunction with the molecular

positioning variables β to determine the Cartesian coordinates Y of all atoms

within a central unit cell, i.e. Y ¼ Y θ; θ; β
� �

. Finally, Y together with the unit cell

parameters X determines the atomic positions in all periodic images of the central

unit cell, which are required for the calculation of intermolecular energy

contributions.

Overall, the lattice energy minimisation problem in both CrystalPredictor and

CrystalOptimizer is formulated mathematically as3

3 The actual implementations also include the +pV term in the objective function which, therefore,

corresponds to lattice enthalpy. However, in the interests of simplicity of presentation, this is

omitted here and in subsequent discussion.
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minX,β,θ U X; β; θð Þ � ΔUintra θ;θ
� �þ Ue Q; Y;Xð Þ þ Urd Y;Xð Þ ð4Þ

where ΔUintra represents the intramolecular energy contribution (after subtraction

of the gas-phase internal energy of the chemical species in the crystal) and Ue

and Urd represent the intermolecular electrostatic and repulsion/dispersion contri-

butions. Note that, in the interests of clarity, the above expression does not show

explicitly the direct and indirect functional dependence of the quantities θ ,Q, Y on

the independent decision variables X, β, θ.

3.3 Accounting for Molecular Flexibility During
Lattice Energy Minimisation

The evaluation of the intramolecular contribution ΔUintra θ; θ
� �

in the above

objective function can be done via a standard QM minimisation of configurational

energy at given (fixed) values of θ. In general, such isolated-molecule calculations

can provide the accuracy required for modelling the deformation of the molecular

structure and energy within the crystal [70], although neglecting intramolecular

dispersion can lead to inaccuracies for highly flexible molecules [71].

In principle this QM calculation could be embedded directly within the overall

energy minimisation algorithm, as implemented in the DMAFlex algorithm

[72]. This has the added advantage of also producing consistent values of the

dependent CDFs θ , thereby allowing correct evaluation of atomic positions

Y within the central unit cell, and consequently of the interatomic distances that

are needed for the correct calculation of intermolecular contributions Ue and Urd at

each iteration. It also allows the derivation of consistent electrostatic descriptions

Q which are also needed for the accurate evaluation of the intermolecular electro-

static contributions, Ue.

The obvious difficulty that arises from embedding an expensive QM calculation

within an iterative optimisation procedure is one of computational cost, and this

severely limits the number of independent CDFs that can be handled in practice. An

alternative would be to replace the QM calculations by molecular mechanics

intramolecular potentials (cf. the use of the DREIDING and COMPASS potentials

in the RCM approach reported in [9]). Such techniques can approximate the effects

of θ on ΔUintra to a varying degree of accuracy; however, they do not take account

of the secondary effects on intermolecular contributions arising from the effects of

θ on θ and Q. Overall, there is some doubt regarding the suitability of such models

for CSP [19, 68].

A different way of addressing the above difficulties is via the use of

pre-constructed interpolants for ΔUintra (and, in principle, θ and Q) based on a

multi-dimensional grid of values of θ. An example of such an approach was the

restricted multidimensional Hermite interpolants used in earlier versions of
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CrystalPredictor [27]. However, the size of the required grid effectively imposed a

limit on the number of independent CDFs that could be handled to typically 3–6

torsion angles depending on the complexity of the molecule(s) under consideration.

For molecules exhibiting higher degrees of flexibility, one had to resort to artificial

approximations, such as grouping the flexible torsion angles into multiple, suppos-

edly non-interacting groups, and then constructing the interpolants using QM

calculations based on surrogate simpler molecules, each involving a different

group of torsions. For example, in the case of molecule XX of the fifth blind test,

the six flexible torsion angles considered during the global search were decomposed

into two “independent” groups (of three angles each) located at either end of the

molecule; the QM calculations were then performed using two simpler surrogate

molecules derived from the original molecule (cf. Sect. 2.1 in [9]). While in this

case the global search was ultimately successful in identifying a structure

corresponding to the experimentally observed crystal, in general such an approach

is cumbersome, involves elements of subjective judgment and may not be applica-

ble in cases where the torsion angles interact more closely with each other; all these

factors make it less than ideal, especially in the context of the general principles and

requirements set out in Sect. 1.2.

In view of the above, the approach used in the most recent versions of our

algorithms is based on Local Approximate Models (LAMs) [28]. LAMs are essen-

tially multidimensional quadratic Taylor expansions of the functions ΔUintra θð Þ
� minθU

intra θ , θ
� �� Ugas and θ θð Þ � arg minθU

intra θ , θ
� �

, and multidimensional

linear Taylor expansions of the functions Q� θð Þ � Q θ , θ
� �

. As their name implies,

they are local approximations constructed around certain points θ[1], θ[2], θ[3] . . . in
the space of the independent CDFs θ. Because of the continuity and differentiability
of the functions ΔUintra θð Þ, θ θð Þ,Q� θð Þ, each LAM can be guaranteed to be

accurate within a required tolerance within a finite non-zero volume surrounding

the point at which it was derived. Consequently, in principle the entire θ-domain of

interest can be covered with a finite number of LAMs. In practice the range of

applicability of LAMs for each molecule of interest is determined based on test

calculations at Stage 0 of the methodology of Fig. 5.

The use of LAMs can provide accurate values of ΔUintra(θ), θ θð Þ and Q*(θ) for
the computation of the lattice energy function at minimal cost. It may also poten-

tially improve the performance of the optimisation algorithm as LAMs are not

subject to the numerical noise that may arise because of the iterative nature of the

QM calculations. However, certain adjustments need to be made to the optimisation

algorithm to account for the discontinuities that may arise as the iterates move from

one LAM to a neighbouring one.

LAMs were originally introduced in the context of CrystalOptimizer [28]. In this

case the θ-domain of interest cannot normally be determined a priori, and therefore

the sequence of Taylor expansion points θ[1], θ[2], θ[3] . . . is determined “on-the-

fly” during the optimisation iterations. This is illustrated schematically in Fig. 6 for

a hypothetical molecule involving two independent CDFs, θ1 and θ2. Once a LAM
is derived, it is kept in memory even if the optimisation iteration moves out of its
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range of applicability; this allows the LAM to be re-used should the optimisation

iterates return to within range at a later state of the optimisation iterations (cf. the

green point in Fig. 6). Moreover, at the end of the calculation, the relevant QM

results that have been used to derive LAMs are stored in persistent storage (“LAM

databases”), thereby allowing them to be re-used in future CSP calculations involv-

ing this particular molecule.

The introduction of LAMs in CrystalOptimizer over the last 3 years has signif-

icantly increased the range of molecular flexibility that can be handled from only a

few (typically no more than six) torsional angles to large numbers of torsion and

bond angles and indeed all the way to fully atomistic calculations [28]. For exam-

ple, the successful prediction of molecule XX in the fifth blind test involved treating

14 torsion angles and 5 bond angles as independent CDFs (cf. the “FCC” approach

reported in [9]).

The benefits realized from the use of LAMs in CrystalOptimizer and also the

experience gained with the application of earlier versions of CrystalPredictor to the

global searches undertaken in the context of the fifth blind test [4, 9] and other

challenging systems [36] have motivated the introduction of LAMs in

CrystalPredictor [27]. In this case, the θ-domain of interest is known a priori

since the global search algorithm (see Sect. 3.5.3) will, by design, cover the entire

allowable space of θ, as well as those of the other optimisation decision variables

X and β. Therefore, in this case there is no advantage in computing the LAMs

on-the-fly during the search; instead, it is more efficient to compute them before the

start of the global search based on a regular grid, as illustrated in Fig. 7.4 This recent

Fig. 6 Use of LAMs during lattice energy minimisation by CrystalOptimizer for a molecule

involving two independent CDFs θ1 and θ2. The points and solid arrows indicate the progress of
the optimisation iterations in the two-dimensional [θ1, θ2] domain. Large red circles indicate

points at which new LAMs have to be derived, while the smaller circles indicate other iterates at
which an existing LAM can be used. The dashed rectangles indicate the limits of applicability of

each LAM; these are usually expressed in terms of ranges � Δθ which are established at Stage

0 of the procedure in Fig. 5

4As already mentioned, these LAMs can be stored in persistent LAM databases to be re-used in

later calculations, such as those required for the subsequent refinement stage.
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development has made it possible to consider much higher degrees of molecular

flexibility during the global search without the need for ad hoc approximations such

as the molecular decomposition described earlier.

3.4 Intermolecular Contributions to the Lattice Energy

Both CrystalPredictor and CrystalOptimizer calculate the intermolecular electro-

static contributions to the lattice energy using finite representations of the electro-

static potential determined via isolated-molecule QM computations (cf. Sect. 3.3).

The main difference between the two codes is in the form of this finite represen-

tation. In the interest of computational efficiency during the global search,

CrystalPredictor employs simple charges located at the atomic positions. On the

other hand, in order to ensure higher accuracy during the crystal structure refine-

ment stage, CrystalOptimizer makes use of distributed multipoles, placing an

expansion comprising charge, dipole, quadrupole, octupole and hexadecapole

terms at each atomic position. The expansion is derived directly from the isolated

molecule wavefunction [52] using the GDMA [69] program. Distributed multipole

moments have been shown to be successful in predicting the highly directional

(anisotropic) lone-pair interactions, π–π stacking in aromatic rings and hydrogen

bond geometries in molecular organic crystals [73–75].

CrystalPredictor and CrystalOptimizer employ empirical isotropic potentials for

the computation of repulsion/dispersion contributions to the lattice energy. The

energy contribution arising from a pair of atoms (i,i0) located at a distance r from
each other is given by the Buckingham potential [76]:

Fig. 7 LAMs for use by global search in CrystalPredictor for a molecule involving two indepen-

dent CDFs θ1 and θ2. LAMS are derived at points (indicated by the large red circles) placed on a

regular grid defined over the θ-domain of interest [θ1
min,θ1

max] 	 [θ2
min,θ2

max]. The dashed rectan-
gles indicate the limits of applicability of each LAM; these are usually expressed in terms of ranges

� Δθ which are established at Stage 0 of the procedure in Fig. 5
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The summations of intermolecular atom-atom interactions between the central

unit cell and its neighbouring cells are handled via a combination of direct and

Ewald [64] summations.

3.5 The Global Search Algorithm in CrystalPredictor

CrystalPredictor performs a global search by generating very large numbers of

structures, each one of which may be used as an initial guess for a local

minimisation of the lattice energy function (cf. Sect. 3.2). The key aspects of this

algorithm are described below.

3.5.1 Exploitation of Space Group Symmetry

Physically, any crystal structure will have to belong to one of the 230 crystallo-

graphic space groups. For a given space group, only a subset of the optimisation

decision variables X, β, θ may be independent, while the rest can be determined via

space group symmetry relations. In practical terms this means that the global search

for this particular space group only needs to explore the space of the independent

subset, thereby improving the coverage of the decision space that can be achieved

with any given number of candidates.

In its current implementation, CrystalPredictor generates candidate structures in

59 space groups chosen among those most frequently encountered in the CSD. The

total number of structures to be generated is specified by the user, and so is the

distribution of these structures among the 59 space groups. Typical choices include

the numbers of structures generated being either the same for all space groups, or in

direct proportion to the space groups’ frequency of occurrence in the CSD.

3.5.2 Search Domains for Conformational Variables

The domain of independent CDFs θ (cf. Sect. 3.2) that needs to be searched is an

important aspect of the global search algorithm given the complexity and cost
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associated with handling the effects of these variables on both intramolecular and

intermolecular energy contributions (cf. Sect. 3.3). For example, the size of the

domain [θ1
min, θ1

max] 	 [θ2
min, θ2

max] illustrated in Fig. 7 directly determines the

number of LAMs that are needed to cover it, which is an important consideration

given the fact that the construction of each LAM requires a computationally

expensive isolated-molecule QM calculation.

In view of the above, establishing appropriate ranges of the independent CDFs

for each chemical entity that appears in the crystal is an important part of the

preliminary conformational analysis carried out at Stage 0 of the algorithm of

Fig. 5. Typically, this involves varying each independent CDF θ around its value

in the in vacuo conformation of the molecule while keeping all other θ constant at

their in vacuo values. The variations that are assumed to be relevant for CSP

purposes are those which increase intramolecular energy by up to a given threshold

(typically +20 kJ/mol) from its minimum value at the in vacuo conformation.

Overall, the above procedure establishes the range of interest for each indepen-

dent CDF θi in terms of lower and upper bounds [θi
min,θi

max] . The θ-domain of

interest is assumed to be the Cartesian product [θ1
min,θ1

max] 	 [θ2
min,θ2

max] 	
[θ3

min,θ3
max] 	 . . . . Theoretically, the one-dimensional scans used to determine

this could result in inadvertently excluding certain combinations of multiple θi that
would result in intramolecular energy increases below the specified threshold.

However, this has not been found to be a problem in practice; this may be a result

of setting the threshold at a conservatively high value.

It is worth noting that, in some cases, the values of interest may belong to

multiple ranges that are disjoint from each other, e.g. [a, b] and [c, d] with c > b. In
such cases, the CrystalPredictor global search is applied separately to each range. If

more than one independent CDF has multiple ranges, then the search needs to be

applied to each combination of the ranges of these CDFs.

3.5.3 Generation of Candidate Structures

An important decision in any global search algorithm is the precise way in which

candidate points are generated over the space of independent variables being

searched. Typical choices include creating points on a uniform grid in

multidimensional space, or as random samples from a uniform probability distri-

bution (the Monte–Carlo approach). CrystalPredictor [26, 27] makes use of deter-

ministic low-discrepancy sequences [77]. These normally lead to better coverage of

the search space for any given number of points being generated.

By way of illustration, Fig. 8 shows 225 points being placed on a

two-dimensional search space according to the 3 schemes mentioned above. By

construction, the low-discrepancy sequence approach (cf. Fig. 8c) places each new

point so as to maximise a measure of distance from all previous points; this leads to

better coverage of the domain than that achievable using random samples

(cf. Fig. 8b). Moreover, the projection of each point onto each of the axes corre-

sponds to a distinct value of each decision variable, i.e. no two points in the
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low-discrepancy sequence in Fig. 8c have the same abscissa or ordinate; in practical

terms this means that the search samples 225 distinct values of each variable in the

search space, as compared with only 15 distinct values in the uniform grid case of

Fig. 8a. A further advantage of low-discrepancy sequences over uniform grids is

that the final number of candidate points does not have to be decided a priori.

Should the initial search be deemed to be insufficient for whatever reason, more

points can be added and optimally placed with respect to all previously generated

points.

3.5.4 Local Minimisation of Lattice Energy

The crystal structures generated by the approach described in Sect. 3.5.3 are used as

starting points for minimisation of the lattice energy function. In practice, before

doing this, CrystalPredictor applies a pre-screening based on density, lattice energy

and steric hindrance criteria, aimed at eliminating from further consideration any

structures that are clearly unrealistic.

The minimisation of lattice energy, subject to the symmetry constraints deter-

mined by the space group currently under consideration (cf. Sect. 3.5.1) and simple

bounds on the decision variables, is performed via a sequential quadratic program-

ming (SQP) algorithm [66]. For efficiency and robustness, the algorithm makes use

of exact first-order derivatives of the objective function and the constraints, deter-

mined via analytical differentiation and application of the chain rule on the depen-

dent quantities θ θð Þ,Q θð Þ,Y θ; θ; β
� �

.

The CrystalPredictor code is designed to use distributed computing environ-

ments involving arbitrarily large numbers of processors for the simultaneous

minimisation of multiple structures.

Uniform grid Random points 
drawn from 
uniform 
probability 
distributions

Low-discrepancy 
sequences

a b c

Fig. 8 Different schemes for candidate point generation during global search. (a) Uniform grid.

(b) Random points drawn from uniform probability distributions. (c) Low-discrepancy sequences
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3.5.5 Post-Processing of Generated Structures

The successful execution of CrystalPredictor typically results in a large number of

structures, each of which is a local minimum of the lattice energy within a given

space group. Given the even larger number of initial candidate structures that are

generated and minimised, not all of these final structures will be unique. Accord-

ingly, CrystalOptimizer applies a clustering step intended to remove any duplicate

structures among the final set based on their lattice energy, density and interatomic

distances.

Finally, because of the space group symmetry constraints, it is possible that a

structure is a local minimum only with respect to the space group under which it

was generated but only a saddle point as far as the lattice energy surface is

concerned. This is assessed by generating the corresponding Hessian matrix of

the lattice energy via centered finite differences and evaluating its eigenvalues. For

a true local minimum, all of these have to be positive; if the Hessian is found to have

one or more zero or negative eigenvalues, then a small perturbation is applied to this

structure and it is then used as a starting point for a lattice energy minimisation

without any space symmetry constraints. This leads to a lower-energy structure that

is a true local minimum on the lattice energy surface.

3.6 Crystal Structure Refinement Via CrystalOptimizer

The crystal structures of lowest energy determined at the end of the

CrystalPredictor global search stage (cf. Sect. 3.5.5) are selected for refinement

by CrystalOptimizer using a more detailed model of lattice energy. One common

criterion for determining whether a given structure is to be refined is based on the

difference between the structure’s lattice energy and the globally minimum lattice

energy determined during the search, with typical cut-off points being placed at

around +10–20 kJ/mol. Alternatively, a fixed number of structures (e.g. the lowest

1,000) may be chosen for refinement. Inevitably, there is a degree of subjective

judgment in both of the above criteria, the overall objective being to apply refine-

ment to the minimum possible number of structures but without leaving out any

polymorphs that are likely to occur in nature. In general, the number of structures

that need to be refined becomes lower as more physical detail is added to the lattice

energy computation during the global search.

At the fundamental level, CrystalOptimizer employs a very similar lattice

energy description as CrystalPredictor with two important differences:

• Molecular flexibility: both algorithms employ the concept of partitioning CDFs

into independent θ and dependent θ (cf. Sect. 3.1) and the LAMs described in

Sect. 3.3. However, in order to achieve higher accuracy, CrystalOptimizer

calculations typically involve more independent and fewer dependent CDFs.
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Because of the use of LAMs, the incremental computational cost is usually

acceptable, especially given the relatively few structures that have to be refined.

• Intermolecular electrostatic interactions: as has already been stated,

CrystalPredictor uses atomic charges while CrystalOptimizer employs distrib-

uted multipole expansions.

At the implementational level, the minimisation of lattice energy in

CrystalOptimizer is unconstrained: there is little advantage in explicitly enforcing

space group symmetry constraints in order to reduce the number of independent

decision variables during the optimisation. The space groups of the final structures

can be determined by a posteriori analysis using tools such as PLATON [78].

Finally, CrystalOptimizer poses the lattice energy minimisation as a bilevel

optimisation problem of the form

minθ ΔUintra θ, θ θð Þ� �þ Uinter
� θ, θ θð Þ,Q θð Þ� �� � ð7Þ

where the functionUinter
� is the intermolecular energy corresponding to theminimum

lattice energy crystal incorporating rigid molecule(s) described by CDFs θ, θ and

distributed multipole expansions Q, i.e.

Uinter
� θ; θ;Q

� � � minX,β Ue Q,Y θ; θ; β
� �

,X
� �þ Urd Y θ; θ; β

� �
,X

� �� �
: ð8Þ

Thus, the bilevel optimisation problem comprises:

• An outer optimisation problem in the independent CDFs θ
• An inner optimisation problem in the unit cell parameters X and molecular

positioning variables β.

CrystalOptimizer employs a quasi-Newton algorithm for the solution of the

outer problem, and the DMACRYS code [79, 80] for the solution of the inner

problem. The partial derivatives of the function Uinter
� are obtained via centered

finite differences.

The application of the refinement algorithm to the structures selected at the end of

the global search stage may result in the same structure being generated more than

once. This often arises because the additional molecular flexibility taken into account

by CrystalOptimizer allows two or more structures identified by CrystalPredictor as

being distinct to relax into the same structure. Accordingly, a clustering algorithm

based on the root mean square deviation in the 15-molecule coordination sphere [81]

is applied to eliminate any crystallographically identical structures. This finally

leaves the list of distinct structures that are reported to the user in ascending order

of lattice energies as potential polymorphs.
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4 Concluding Remarks

The methodology presented in this chapter is applicable to the prediction of a wide

range of crystal structures of organic molecules, including those involving highly

flexible molecules and containing multiple molecules (of the same or different

types) or ions in the asymmetric unit.

Based on a two-stage global search/refinement approach, the methodology

incorporates some major recent advances such as the use of low-discrepancy

sequences for the systematic coverage of the space of decision variables during

the global search, the efficient and accurate handling of molecular flexibility during

both the global search and the refinement stages via LAMs and the accurate

description of electrostatic interactions via distributed multipole expansions at the

refinement stage. The CrystalPredictor and CrystalOptimizer codes are based on a

careful implementation of these ideas, together with efficient numerical optimisa-

tion algorithms and exploitation of modern distributed computing resources.

4.1 Predictive Performance of CSP Methodology

There is currently a growing body of experience (cf. the references mentioned in

Sect. 1.3) on the performance of these codes on a range of systems; some of this

experience has been gained under blind test conditions. It may be worth noting in

this context that, as the codes have been evolving over the last decade, results

reported in different publications may have been obtained with different versions.

However, an improvement in applicability and predictive accuracy is clearly

discernible over this period, and we have now reached a point where, for example,

we can usefully study molecules of relevance to the pharmaceutical or agro-

chemical industries.

Although the predictive performance of the methodology varies from one case to

another, we believe the following statements to be a fair general representation of

the current state of the technology to the extent that this has been explored both by

us and by others:

[S1] Experimentally observed crystal structures are generally identified

successfully.

[S2] In general, the accuracy of structure reproduction is reasonably good for

crystals involving a single chemical species, and less good for co-crystals,

salts and hydrates.

[S3] Experimentally observed structures are generally predicted to have low rank

(i.e. high relative stability).

[S4] For systems where multiple crystal structures have been identified experi-

mentally (cf. the ROY molecule [36]), the predicted stability ranking is not

always correct.
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[S5] Low-energy structures that have not (yet) been identified experimentally are

often also reported, and some of them may be more stable than the experi-

mentally observed ones.

4.2 Errors and Approximations in CSP Methodology

At the fundamental level, our CSP approach incorporates a number of approxima-

tions, including:

• The use of a lattice enthalpy5 criterion, i.e. the omission of entropic contributions

from the Gibbs free energy.

• The separation of lattice energy into intramolecular and intermolecular elec-

tronic and repulsive/dispersive contributions.

• The calculation of the intermolecular contributions as sums of pairwise

interactions.

• The use of finite descriptions of electronic charge density based on isolated

molecule calculations, and not taking account of polarisability effects.

• The use of empirical isotropic repulsion/dispersion potentials.

At a less fundamental, but potentially also important, level the application of the

methodology to a particular system may be subject to practical limitations relating

to:

• The level of theory of QM calculations that can be employed for a given

chemical species within practical computational limits.

• The partitioning between independent and dependent CDFs.

• The use of empirical repulsion/dispersion potential parameters that were esti-

mated from experimental data using molecular descriptions and lattice energy

models which were different to those used by our methodology (e.g. in account-

ing for molecular flexibility, in the description of electrostatic interactions, and

in the QM level of theory); we shall return to consider this issue in more detail in

Sect. 4.4.

4.3 The Free Energy Residual Term

Mathematically, we can summarize the discussion of Sect. 4.2 via the following

expression for the Gibbs free energy, G, of the crystal structure:

5 Including the +pV term.
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G xð Þ ¼ Ĝ xð Þ þ E xð Þ ð9Þ

where x is the set of variables defining the crystal structure, Ĝ is the free energy

approximation that is computed6 by a CSP methodology andE is a residual term that

combines the errors from all the approximations, both physical and mathematical/

numerical, listed in Sect. 4.2.

To date we have not reached firm conclusions regarding the relative importance

of these approximations in the context of our methodology and their relation to

observations [S1]–[S5]. However, some of these factors (e.g. the effects of

polarisability or of anisotropic repulsion/dispersion interactions) have been studied

in the CSP literature, and it would be useful to repeat this type of analysis with the

more detailed energy model presented here. From the general mathematical and

algorithmic perspectives:

• [S1] indicates that the molecular representations (e.g. in terms of flexibility), the

nature and extent of the global search and the criteria used for selecting the

crystal structures to be refined are generally satisfactory.

• [S2] suggests that, at least for crystals comprising single chemical species and

notwithstanding the various approximations listed in Sect. 4.2, the local minima

of the computed lattice energy function are close to true minima of the Gibbs

free energy. Thus, the local sensitivities (gradients) of the residual term E with

respect to the variables x are likely to be significantly smaller than the gradients

of the computed free energy Ĝ , i.e.:

∂E
∂x

����
���� 
 ∂Ĝ

∂x

�����

����� ) ∂G
∂x

� ∂Ĝ
∂x

: ð10Þ

On the other hand, the term ∂E
∂x may be more significant for crystals involving

multiple types of chemical species.

• [S4] indicates that the errors E depend on the variables x to an extent sufficient to
alter the relative stability order of two crystal structures x1 and x2, both of which

correspond to local minima, i.e. Ĝ x1ð Þ < Ĝ x2ð Þ while G(x1) > G(x2).

One practical implication of the above analysis is that, at least in some cases, it

may be useful to:

1. Use our CSP methodology as a way of identifying, with reasonable accuracy, a

small number n of (likely) stable structures xk, k ¼ 1, . . ., n, and their

corresponding energy values Ĝ k.

6 In the case of our CSP methodology, this is the computed value of the lattice enthalpy (as opposed
to the true lattice enthalpy) of the crystal structure.
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2. Keep these structures fixed at the values xk and apply to them more computa-

tionally demanding calculations in order to compute more accurate values Ĝ
0
k.

3. Re-rank the structures xk according to the new values Ĝ
0
k.

Overall, such a procedure may lead to a more accurate ranking of structures

xk, k ¼ 1, . . ., n at a relatively moderate cost and without actually introducing

additional complex calculations within the optimisation carried out at the refine-

ment stage. Examples of a posteriori calculations that could be applied at step

2 include QM calculations at very high levels of theory, and the use of harmonic

approximation techniques for estimating the entropic contributions to the free

energy [82].

4.4 Combining Experimental Information and Ab Initio CSP

The free energy residual term E also provides a useful way of thinking about

the potential role of experimental information and empirical models derived

from it in CSP. We note that any method for constructing an ab initio

approximation of free energy, irrespective of its accuracy, is likely to have a

non-zero residual, E, and this will inevitably lead to non-zero deviations

between predictions and available experimental data. Therefore, a more accurate

estimate of the free energy may be achievable by assuming an empirical

parameterized functional form, E x; αð Þ, i.e.

G xð Þ ¼ Ĝ xð Þ þ E x; αð Þ ð11Þ

and then using the experimental data to estimate the parameters α so as to minimise

some measure of the deviation between data and predictions.

In fact, the use of empirical “repulsion/dispersion” potentials (cf. Sect. 3.4) may

be interpreted as one example of the introduction of a residual term. In particular,

equations (5) and (6) essentially define the functional form of a parameterized

residual function E x; αð Þ, where the set of parameters α comprises the interaction

parameters Aii, Bii and Cii for pairs of atoms of type i. Interestingly, the analysis

presented above indicates that:

• Albeit ostensibly intended to account for repulsion/dispersion interactions, this

residual term actually acts as an all-purpose “garbage bin”, attempting to capture

all errors and approximations listed in Sect. 4.2, some of which may be at least as

important as repulsion/dispersion.

• The values of the parameters α obtained by any experimental data fitting

procedure will depend on the form of the computed energy term Ĝ xð Þ used

for this procedure; using them in conjunction with a different Ĝ xð Þ is, to say the

least, questionable.
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• If the above considerations are not taken into account properly, the use of more

sophisticated calculations7 in an attempt to mitigate the effects of some of the

approximations listed in Sect. 4.2 may be ineffective or even counterproductive.

For example, employing higher levels of theory in QM calculations may some-

times lead to a worse quality of predictions.

Finally, it could be argued that the immediate objective of introducing any
empirical function E x; αð Þ should be to improve CSP accuracy for a specific system
of interest. Therefore it would make sense to estimate the parameters α using

experimental data that are more directly relevant to the system of interest, in

conjunction with the same model Ĝ xð Þ as the one that will be used for carrying

out the CSP. Examples of appropriate experimental data would include already

resolved polymorphs for the same system, or indeed structures in the CSD arising

from similar molecules. We note that such an approach would be substantially

different to the common practice of using information in the CSD to provide

qualitative guidance as to likely high-level features (e.g. packing motifs) in crystal

structures; instead, parameter estimation would extract quantitative lower-level

information on energetic contributions that would complement the ab initio com-

puted energy Ĝ xð Þ in the context of formal CSP algorithms. We believe that this

area, and the fundamental and practical challenges associated with it, constitute a

fruitful subject for further research.
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