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Large-Scale Generation and Screening

of Hypothetical Metal-Organic Frameworks

for Applications in Gas Storage and

Separations

Christopher E. Wilmer and Randall Q. Snurr

Abstract Metal-organic frameworks (MOFs) are porous crystals that are synthe-

sized in a building-block approach that greatly facilitates rational design. MOFs are

promising materials for gas storage and separation applications, but they are also

intriguing for their potential use as catalysts, electrodes, and drug delivery vehicles.

For these reasons, MOFs have spurred a renewed interest in the concept of “crystal

engineering,” where the crystal structure of a material is designed to meet

application-specific criteria. This chapter reviews recent work in the computational

design of MOFs, with an emphasis on high-throughput methods that generate and

screen many thousands of candidates automatically.
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1 Unique Properties of Metal-Organic Frameworks

Metal-organic frameworks (MOFs) are crystalline materials that share much in

common with (non-crystalline) highly cross-linked polymers [1, 2]. Like conven-

tional polymers, MOFs are synthesized by the self-assembly of molecular “building

blocks” that form into an extended structure. Unlike most polymers, however, the

extended structure is a rigid, three-dimensional porous crystal whose order can be

maintained over millimeter scales. MOFs are so named because the monomers are

divided into two distinct groups: metal ions (derived from dissolved metal salts) and

the organic ligands that coordinate to them (see Fig. 1). Before the term MOF came

into widespread use [3, 4] these materials were (and still are) referred to as

coordination polymers [5–7] and, more recently, porous coordination polymers

(PCPs) [1, 8, 9]. Note, however, that amorphous materials have been referred to

as coordination polymers [7], but MOFs are exclusively crystalline.

A significant milestone in the history of MOFs was reached when it was

discovered that the solvent (used in the synthesis procedure) could be removed,

leaving behind a freestanding “permanently porous” structure with a very high

internal surface area [3, 4, 10, 11].

Two of the earliest permanently porous MOF structures are HKUST-1, reported

by Chui et al. [10], and MOF-5 (later named IRMOF-1) by Li et al. [4]. The former

is formed from the self-assembly of benzene-1,3,5-tricarboxylic acid and a copper

salt and the latter from benzene-1,4-dicarboxylic acid and a zinc salt. In both cases

the metal salt and organic ligand were dissolved in dimethylformamide (DMF)

solvent at elevated temperatures for 12–24 h. In each case, the synthesis resulted in

micrometer scale crystals that could be analyzed by X-ray diffraction to obtain the

detailed crystal structures (see Fig. 2). The discovery of these and other perma-

nently porous MOFs [8, 11] over a decade ago catapulted MOFs from being

materials of purely scientific interest to materials of potential industrial importance.
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Fig. 2 Building blocks and crystal structures of (a–c) HKUST-1 and (d–f) IRMOF-1. (a)

Benzene-1,3,5-tricarboxylic acid and copper ions, which arrange into octahedral “paddle wheel”

clusters in solution, form (b, c) the HKUST-1 structure [10]. (d) Benzene-1,4-dicarboxylic acid

and zinc ions, which form Zn4O tetrahedral clusters in solution, form (e, f) the IRMOF-1 structure

[4]. Grey, white, red, cyan, and blue spheres represent carbon, hydrogen, oxygen, copper, and zinc
atoms, respectively. The purple sphere (f) indicates the size of the pore that is available to guest

molecules

Fig. 1 Schematic of MOF self-assembly. MOFs are synthesized by the self-assembly of organic

and metal-containing (inorganic) building blocks to form extended crystalline frameworks. Note

that MOFs can have a wide variety of framework topologies beyond the cubic framework

depicted here
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1.1 Utility in Gas Storage and Separation Applications

In the past decade a significant impetus for studying MOFs has been their potential

use as adsorbents for industrial gas storage and separations applications [12]. MOFs

can have surface areas as high as 7,200 m2/g, significantly higher than the best

activated carbon or zeolite materials [13]. Because of their high internal surface

areas, MOFs have a high density of adsorption sites that can bind gases of interest,

which collectively concentrate the gas without increasing the pressure. This phe-

nomenon can have a dramatic effect on gas storage under certain conditions. For

example, at 35 bar and 298 K, a vessel filled with MOF-177 would store as much

CO2 as nine equally sized vessels without a sorbent material [14]. There has also

been marked interest in developing MOFs to store gaseous fuels, such as methane

[15, 16] and hydrogen [17, 18], compactly in vehicles.

In addition to storage, MOFs can selectively adsorb certain gases over others,

which makes them promising for separating and purifying mixtures of gases [19].

Adsorption-based gas separation is an alternative to distillation, which is a perva-

sive and energetically costly process in the chemicals industry [20]. In the recent

literature, MOFs have been reported as promising adsorbents for separating mix-

tures of H2/CO2 [21], H2/NH3 [21], CH4/CO2 [22], olefin/paraffin mixtures [23],

and p-, o-, m-xylene mixtures [24, 25], among many others [26–30].

It would be particularly beneficial to industry to design a MOF that is optimal for

a particular industrial process, as opposed to relying on serendipitous discovery.

This is not an unrealistic goal, since both the crystal structure and gas adsorption

behavior of a MOF can potentially be computationally predicted a priori.

1.2 Predictable Self-Assembly

Since the molecular building blocks used in their self-assembly only coordinate in

very specific orientations and stoichiometries, MOF structures can be relatively

straightforward to predict. The creation of new MOFs based on the known shape

and connectivity of the building blocks has come to be called “reticular design” [31]

and reports of thousands of new structures over the past decade are a testament to

the reliability of this approach [32].

However, knowledge of the final structure does not equal knowledge of the

detailed synthesis pathway. It is still a significant challenge in the field of MOFs to

find the synthesis conditions that lead to the formation of a desired crystal structure.

To this end, high throughput robotics have been developed to test rapidly thousands

of synthesis conditions given a particular choice of building blocks [33, 34].

Even with predictable self-assembly, the development of MOFs for industrial

applications must rely on chemical intuition and trial-and-error testing unless we

can predict how the crystal structure determines the gas adsorption behavior.

Fortunately, significant advances have been made in accurately modeling gas

adsorption in MOFs using molecular simulations.
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1.3 Predictable Gas Adsorption Behavior

For gases that are relatively inert, molecules interact weakly with the walls of a

MOF and do not appreciably change their electronic structure (i.e., no new bonds

are formed or broken). Thus, under these conditions (i.e., physisorption rather than

chemisorption) the details of the electronic structure for both the gas molecules and

framework structure can be ignored and all atoms can be modeled as classical

particles where inter-atomic interactions are governed by Lennard Jones and

Coulombic potentials (for more details see Sect. 5.2) [35, 36]. While such models

may seem overly simple, they have often predicted gas adsorption behavior in

remarkable agreement with experimental measurements for a variety of gases over

a wide range of temperatures and pressures (e.g., see Fig. 3) [15, 16, 35, 37,

38]. Such close agreement between experimental measurements and simulation

data would not be possible if not for the crystalline nature of MOFs.

Fig. 3 Accuracy of molecular simulations for predicting gas adsorption in two different MOFs.

(a–c) Simulated (dashed lines) and experimentally measured (solid lines) adsorption isotherms for

three different gases over a wide range of temperatures for the MOF NU-125 [16]. (d–f),

Simulated (dashed lines) and experimentally measured (solid lines) adsorption isotherms for

three different gases over a wide range of temperatures for the MOF NU-111. Note that no fitting

was used. Figure parts (a–c) adapted from [16] with permission from The Royal Society of

Chemistry. Figure parts (d–f) adapted from [38] with permission from The Royal Society of

Chemistry
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Certain gas-temperature combinations are more challenging to model accurately

than others. Cryogenic hydrogen adsorption requires taking quantum diffraction

effects into account [35, 39–41]. Notably, at low pressures and temperatures, where

adsorption is dominated by host–guest interactions (rather than guest–guest) [42],

the accuracy of adsorption predictions will depend strongly on how the strongest

interaction sites are modeled. For example, simulations of water adsorption [43–45]

and CO2 adsorption at sub-atmospheric pressures are often challenging [46, 47] due

to strong interactions that occur at the open metal sites [48, 49], which are not well

described by Lennard Jones potentials [35, 50].

However, even when molecular simulations are unable to predict gas adsorption

accurately, computational analysis of MOFs can precisely calculate pore sizes,

surface areas, and other properties of indirect importance to the application of

interest. It is also sometimes possible to use molecular simulations to rank correctly

MOFs from best to worst, even when the predictions are not quantitatively accurate

[46, 47, 51].

1.4 Structure Tunability

Perhaps the most attractive feature of MOFs is the enormous diversity of possible

structures, due to the practically unlimited variety of organic ligands that can be used.

A small subset of the many organic ligands that have been incorporated in MOF

structures is shown in Fig. 4. Therefore,MOFs can have a very wide range of possible

pore geometries and surface chemistries [31, 52]. By choosing the building blocks

appropriately, one can tune the properties of the resulting MOF to behave in an

optimal way for a given context [53]. For example, in the context of membranes for

gas separations, one might create a material with pores tuned to be just large enough

to let through one gas species (perhaps the desired product), but too small for the other

species in the mixture. Recent reports of “post-synthesis” functionalization [54] and

“solvent assisted ligand exchange” [55, 56] even allow for nuanced modifications to

MOF structures and continue to expand what it is possible to synthesize.

This tunability presents a challenge however: given the ability to create almost

any kind of MOF structure, which one should we make? This chapter mainly

addresses this challenge.

2 Challenges in MOF Design

2.1 Large Space of Possible MOFs

As alluded to above, the space of possible MOFs is vast. Even when considering

only hundreds of molecular building blocks (i.e., organic ligands and metal salts),
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the combinatorial possibilities allow for millions of hypothetical MOF structures

[57]. Given that the universe of organic chemistry from which the ligands are

chosen is itself vast (and growing), exploring the space of possible MOFs appears

daunting. Although design by intuition continues to yield materials with impressive

and successively better properties, maximizing the potential of MOFs will be

greatly accelerated by efficient methods to search this enormous space for optimal

candidates.

Fig. 4 A selection of organic ligand building blocks for MOFs. Figure adapted and reprinted with

permission from [58]. Copyright 2013 American Chemical Society

Large-Scale Generation and Screening of Hypothetical Metal-Organic. . . 263



2.2 Difficult to Predict Structural Details

While from the geometry and connectivity of the building blocks it is possible to get

an approximate sense of the self-assembled MOF structure, certain structural details

can be difficult to estimate without appealing to more sophisticated calculations.

For example, even after organic ligands coordinate to the metal ions in the frame-

work, they may retain rotational or other non-translational degrees of freedom

[59, 60]. The detailed geometry of the pores of a MOF in such cases may be

temperature dependent, independent of expected thermal expansion effects. If the

organic ligands exhibit conformational degrees of freedom then even the resulting

framework topology can depend on the synthesis conditions, resulting in

supramolecular isomerism [53, 61].

MOFs are also able to self-assemble such that one (or more) framework is

interpenetrated (also called “catenated”) within another [62, 63] (see Fig. 5).

A common rule of thumb is that if there is enough space for another framework,

then the MOF will interpenetrate. However, it is possible to control interpenetration

via the synthesis procedure [63]. For example, an intermediate MOF can be

constructed from an organic ligand with a bulky leaving group that does not

leave room for interpenetration. By subsequently removing this bulky leaving

group, a non-interpenetrated MOF with “extra” space can be synthesized.

It is not only challenging to predict whether or not MOFs will (or have the ability

to) interpenetrate; it is also difficult to know how the interpenetrated frameworks

will pack relative to each other. Whether or not the interpenetrated frameworks are

packed tightly (see Fig. 6) can have a significant impact on the gas adsorption

properties [64].

The inorganic building blocks, referred to sometimes as secondary building units

(SBUs) [65, 66], are themselves self-assembled from dissolved metal salts. The

structure of these precursor assemblies would be very challenging to predict from

ab initio calculations, but MOF design is broadly based on the assumption that,

under similar conditions, dissolved metal salts will always form the same SBUs.

Thus, the SBUs can be thought of as rigid building blocks in the same way as the

rigid organic ligands. Nevertheless, many distinct SBUs are derived from the same

metal salts but under different conditions, and so one should be cautious when

predicting MOF structures on the assumption that a particular SBU will form.

Finally, it is perhaps fundamentally impossible to predict the location and

arrangement of defects (e.g., missing organic ligands) or of interchangeable ligands

in so-called multivariate MOFs (MTV-MOFs) [67]. In the latter, ligands that are

identical except for having different chemical functional groups are allowed to self-

assemble simultaneously, resulting in crystalline materials with a random spatial

distribution of functional groups. Creating MOFs with multiple chemical functional

groups in a single crystal is attractive for catalytic applications and for gas masks,

where each functional group can respond to a different toxic molecule. Unfortu-

nately, designing such an MTV-MOF cannot currently rely on any particular

arrangement of functional groups.
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2.3 Unclear Structure–Property Relationships

Even if it were possible to know the detailed MOF structure based on the choice of

building blocks, that would still not answer the question of which MOF should be

designed for a particular engineering problem. This is because, in general, we do

not know the relationship of the crystal structure to the gas adsorption property of

interest (without performing either experiments or detailed molecular simulations).

For a single MOF, or a small set, it is possible to predict the gas adsorption

properties of each structure using molecular simulations. However, as described

above, the space of possible MOFs is so vast that even computational trial-and-error

Fig. 5 Framework interpenetration can occur in MOFs, where one framework grows inside

another. Whether or not this occurs can depend on the synthesis path taken to produce the final

structure. Figure adapted and reprinted with permission from [63]. Copyright 2010 American

Chemical Society
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is inefficient. The discovery of structure–property relationships, ideally ones that

could be expressed as analytical equations, would be the ultimate tool in designing

optimal MOF structures. Unfortunately, only a few such relationships have been

tentatively proposed in the literature [42, 68, 69], and those only apply to specific

gases under a limited range of conditions (see Fig. 7.)

As will be discussed later in the chapter, the use of high throughput computa-

tional screening methods has provided unprecedented clarity in the form of highly

resolved structure–property relationships for certain gases. However, this is still an

area where much work needs to be done.

3 Strategies for MOF Design

3.1 High Throughput Experimental Synthesis

Although the focus of this chapter is on computational methods, it is worth men-

tioning that a valid approach to finding usefulMOFs from the vast sea of possibilities

is high throughput experimental synthesis using sophisticated robotic equipment

[33, 34, 70]. While robotic equipment presents a tremendous improvement in speed

Fig. 6 Based on the choice of building blocks, it is sometimes easy to predict the structure of the

framework (a), but not whether multiple frameworks will interpentrate (b, c). Additionally, the

spacing between the interpenetrated frameworks, which can be small (b) or large (c), can be

difficult to predict
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over traditional synthesis workflows, it is unlikely to become fast enough to cover a

significant fraction of the space of possibleMOF structures. To truly harness the vast

space of MOFs, high speed computational methods are needed.

3.2 Simulating the Self-Assembly of Hypothetical MOF
Structures

An intuitive computational approach to exploring hypothetical MOF structures is to

model the self-assembly process that takes place during synthesis for many com-

binations of molecular building blocks. Based on what is known today, molecular

simulations that take into account chemical reactions amongst thousands of mole-

cules simultaneously are either prohibitively costly or insufficiently accurate.

However, if only the final crystal structure is desired, rather than the intermediate

details, then the self-assembly process can be modeled in a simpler way that ignores

much of the unimportant physics.

Fig. 7 The relationship between CO2 adsorption, N1, and the heat of adsorption, Qst, in over

40 different MOFs in 4 cases corresponding to different pressures. The points represent experi-
mental measurements and the solid black lines represent linear fits to the data, which are drawn for
the purpose of identifying structure–property relationships. Cases 1–4 correspond to pressures of

0.5, 2.5, 0.5, and 0.1 bar, respectively. Materials labelled a–d were not used in the linear fit.

Figure obtained from [68]. Copyright 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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This is the approach taken by Mellot-Draznieks et al. in what is called the

“automated assembly of secondary building units” (AASBU) approach [71].

Here, building blocks referred to as SBUs, are treated as rigid bodies that are

assigned “sticky sites” that have no physical significance except to cause SBUs to

bind to one another via a Lennard–Jones interaction potential. The SBUs are

initially distributed randomly in a periodic unit cell and then allowed to settle

into an ordered crystal structure by simulated annealing Monte Carlo [72]. This

procedure can generate thousands of plausible structures in a short period of time.

The AASBU approach allows one to explore the phase space of MOFs orders of

magnitude more quickly than by high throughput experimental methods. However,

the iterative nature of energy minimization schemes requires a baseline level of

computational expense that can potentially be avoided by other approaches. In the

following sections we describe non-iterative methods of generating hypothetical

MOF structures.

3.3 Non-iterative Generation of Hypothetical MOF
Structures

Rather than arranging building blocks randomly in space and then minimizing the

energy of the system, one can potentially choose the initial configuration in such a

way that minimization is practically unnecessary. Here, the computational com-

plexity is shifted from iterative energy minimization to searching the space of

logical arrangements of chemical building blocks (i.e., candidate “initial configu-

rations”) based on geometrical, topological, and chemical considerations.

While there are potentially many ways to approach non-iterative MOF genera-

tion, we have broadly defined two categories: “top-down” and “bottom-up”

generation.

3.3.1 “Top-Down” Generation: From Network Topology

to Hypothetical MOF

For over a century there has been interest in categorizing crystalline structures by

various mathematical descriptions [73–75]. One approach, in which crystal struc-

tures are described by periodic graphs called nets, has played a central role in MOF

design. Each node and edge in a net represents a group of atoms, with the atoms of

the inorganic building blocks often grouped as nodes (see Fig. 8). The assignment

of atoms to nodes and edges is subjective, but the study of nets has nevertheless

been very significant in predicting how building blocks can connect into periodic

structures.

Many experimentally synthesized zeolites and MOF crystal structures are

described a posteriori as corresponding to a particular net. Therefore, a potential
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strategy for generating a candidate MOF structure computationally is to begin with

a known net, and then substitute chemical building blocks in place of the nodes and

edges as appropriate. For this approach, however, a database of nets or a net

generation algorithm is needed.

It is possible to use nets from experimentally discoveredMOFs, such as those kept

in the Reticular Chemistry Structure Resource (RCSR) database [75]. However, the

number of experimentally synthesized MOFs thus far is a negligible fraction of the

total MOF space (there are 2,031 nets available as of writing in the RCSR database).

There may also be specific interest in designing MOFs corresponding to new nets,

which is fundamentally not possible if only the known nets are used to generate MOF

structures.

There have recently been significant advances in the mathematical understand-

ing of nets, and this has led to the development of algorithms that can systematically

enumerate them (see Fig. 9) [73, 76–78]. An exciting property of enumerative

algorithms is that there is the possibility of comprehensively generating all possible
nets (within certain constraints on complexity). In the context of computational

screening in the search of optimal materials, it is reassuring to know that no

structure, or subset of structures, was missed that might have had better properties.

Fig. 8 Examples of six

different periodic graphs,

called nets, that can

represent the underlying

topology of a MOF.

Reprinted with permission

from [75]. Copyright 2008

American Chemical Society
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Such algorithms are potentially ideal for generating hypothetical MOF structures

since they provide a large and potentially comprehensive set of nets onto which

chemical building blocks can be added (see Fig. 10.) This strategy has been used to

generate zeolite-like microporous solids systematically [79], and recently

Bureekaew and Schmid reported a hypothetical covalent organic framework

(COF) generation scheme that follows a top-down approach [80]. It is also worth

pointing out that non-systematic top-down approaches have been used to design

new MOFs one at a time, such as with the design of NU-100 [81].

Fig. 10 Schematic illustration of the top-down approach to generating hypothetical MOFs. First a

net is chosen ( far left), and then chemical building blocks are appended to the net, resulting in a

chemically detailed MOF structure ( far right)

Fig. 9 Six examples of enumerated nets from the algorithm of Delgado Friedrichs

et al. [73]. Below each net ID is the space group. Reprinted with permission from [73]. Copyright

1999 Nature Publishing Group
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For a given net, only certain combinations of chemical building blocks will

match the topology of the net (e.g., a net may have both vertices with three edges

and vertices with two edges, which would require a combination of 2-connected

and 3-connected chemical building blocks). Since the number of possible nets is

very large, a large fraction of nets may not be compatible with the building blocks

in one’s library. Another challenge is that the geometry of the building blocks,

which is not explicitly specified by the net, can affect the topology of the crystal

structure. In the supramolecular chemistry literature it is known that the assembly

of building blocks into larger structures depends on the shape and size of the

building blocks, in addition to the degree of connectivity [82]. A 2-connected

organic building block self-assembling with a 2-connected metal node may form

an infinite chain, square, or rod, depending on the bend angle of the linker, as shown

in Fig. 11.

Therefore, the top-down approach requires matching a net to a set of compatible

building blocks in terms of both connectivity and shape. An interesting strategy

may be to generate de novo building blocks that are compatible with a given net and

are constrained to be reasonable candidates for chemical synthesis.

3.3.2 “Bottom-Up” Generation: Connecting Building Blocks into

Crystals

Another approach, which does not make use of nets explicitly, is to begin with the

building blocks and connect them together sequentially until they form a logical

periodic structure (i.e., where all connection points are satisfied) (see Fig. 12).

Fig. 11 The shape of the building block, in addition to its connectivity, plays a critical role in

determining the shape and even dimensionality of the final self-assembled structure. An organic

2-connected building block can self-assemble with a 2-connected inorganic building block to form

(a) linear chains, (b) squares, or (c) rods, depending on the organic building block’s shape
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Although it is not known a priori whether any particular combination of building

blocks is able to form a plausible MOF structure, the scale of the computational

search is a function of the size of the building block library (whereas the space of

possible nets is independent of the building block library size). It is not clear

whether the top-down or bottom-up approach is computationally more efficient.

As will be described below, in our first implementation of a bottom-up strategy,

over 100,000 hypothetical MOF structures could be generated in less than 24 h on a

single CPU [57].

4 Bottom-Up MOF Generation Details

4.1 Creating MOF Building Blocks

We created a library of building blocks by extracting fragments from experimen-

tally determined MOF crystal structures. These building blocks were later

recombined in various ways to form new hypothetical MOF structures, as shown

in Fig. 13. Although it is beyond the scope of this chapter, it is worth noting that the

partitioning of a crystal structure into fragments in such a way that they can be

recombined into many different structures is a challenging problem; we relied on

human intuition and manual inspection, but potentially pattern recognition and

other techniques from computer science could have been used. An important aspect

to creating these fragments such that they weremodularwas to partition the MOF at

junctures that occurred frequently in MOF materials (e.g., the point where

carboxyl-terminated ligands coordinate to a metal).

Each extracted fragment is assigned a number of connection sites, and each site

contains information about the chemical details at the fragment boundary, such as

which building blocks can combine with each other. Information about the relative

spatial arrangement of two fragments before they were extracted is preserved by a

set of vectors associated with each connection site, as shown in Fig. 14.

Fig. 12 A schematic of bottom-up generation of hypothetical MOF structures. Chemical building

blocks are connected together until they form a periodic, chemically detailed structure
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4.2 Assembling MOFs Block by Block

Generating a MOF can be described as a sequence of decisions, starting with

choosing a building block in the library, then choosing a second building block

and how it will connect to the first one, and so on until a complete structure is

formed. This process is depicted in Fig. 15. Building blocks are combined stepwise,

and if an atomic overlap occurs at a particular step, a different building block is

Fig. 13 Visual summary of the bottom-up hypothetical MOF generation strategy. Crystal struc-

tures of existing MOFs are obtained from X-ray diffraction data (left), and are subsequently

divided into building blocks (middle) that can then be recombined to form new, hypothetical

MOFs (right). Figure adapted and reprinted with permission from [57]. Copyright 2012 Nature

Publishing Group

Fig. 14 Encoded in each fragment (i.e., building block) are the (a) atom composition and

geometry, (b) topological information via numbered connection sites, and (c) geometrical infor-

mation in the form of orientation vectors. To allow for rotational degrees of freedom (i.e., for

building blocks that can rotate relative to one another), a list of angles for alternative orientations is

also included. Reprinted with permission [57]. Copyright 2012 Nature Publishing Group
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chosen or a different connection site, until all possibilities are exhausted. While the

total number of steps in each generation process can vary, there are always three

steps when, instead of adding a building block, a periodic boundary is imposed by

connecting any two building blocks (see steps 2 and 4 in Fig. 15). When no more

building blocks can be added, the crystal generation procedure is complete. (Note

that no force field or quantum mechanical energy minimizations are involved.)

Since after deciding on the first building block there are many distinct second
decisions, the space of all MOF generation attempts can be described by a decision

tree. The number of branches that lead to failed attempts (i.e., illogical structures

with only partially connected building blocks or building blocks that overlap

sterically) is vastly greater than the number of successful structures (i.e., plausible

hypothetical MOFs).

Here we attempt to crudely quantify lower bounds on the size of this decision

tree. The number of possible hypothetical MOFs (where we consider every decision

sequence a “possible” hypothetical MOF) can be estimated based on the size of the

library of modular building blocks (from here on assumed to be 100) and a few

simplifying assumptions.

Let’s consider the case of MOFs composed of only one type of inorganic building

block and one type of organic building block. Let L be the number of organic

building blocks (L as in “linkers”) and C be the number of inorganic building blocks

to choose from (C as in “corners”). Linkers may only connect with corners, and vice

versa. The number of possible MOFs, N, is simply N ¼ L � C, which corresponds,
for example, to 900 for L ¼ 90 and C ¼ 10.

Fig. 15 The assembly process occurs by stepwise addition of building blocks (1), which are

attached at their connection sites (purple Xs). Building blocks are also connected across periodic

boundaries (2, hashed circles indicate mirror images). The process repeats (3, 4) until all

connection sites are utilized. An interpenetrated MOF may be generated if enough space exists

(5, black circles indicate atoms belonging to one of two interpenetrated frameworks). Gray, red,
blue, and turquoise spheres represent carbon, oxygen, nitrogen, and zinc atoms, respectively.

Hydrogen atoms have been omitted for clarity. Reprinted with permission from [57]. Copyright

2012 Nature Publishing Group
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Now we can consider the case where a unit-cell of a MOF contains M linkers

(not to be confused with L: the number of linker types), which can be either of two

types: A or B. Here the diversity of possible structures spans two dimensions: the

ratio of A-linkers to B-linkers, and the number of possible arrangements of A and B

linkers at a fixed ratio (see Fig. 16).

We can estimate a lower bound on the number of unique MOFs by the number of

ratios of component types (i.e., a unit-cell with two A-linkers and one B-linker

cannot be the same crystal as one with one A-linker and 2 B-linkers). Calculating

this lower bound is equivalent to finding the number of unordered sets ofM balls of

L colors (the answer is:M + L – 1 choose L – 1). However, two crystals, both with

two A-linkers and one B-linker but in different positions, can either be physically

identical (i.e., related by a symmetry operation) or unique (for example, if the

corner is asymmetrical as in Fig. 16). Thus, we can set an upper bound on the

number of possible crystals by forming strings such as “BBA,” “BAA,” “BAB,”

and so forth. Thus, with a meager library of one corner and two linkers, the number,

N, of possible MOFs is

M þ L� 1

L� 1

� �
¼ 3þ 2� 1

2� 1

� �
< N < 23 ¼ LM

4 < N < 8

(1)

If we allow for more corners and linkers in our library (for example, C ¼ 10,

L ¼ 90) but keep the constraint that MOFs may only use two linkers simulta-

neously, then we arrive at the modified expression

C� L� L� 1

2

0
@

1
A 3þ 2� 1

2� 1

� �
� Lþ 2

2
4

3
5 < N < C� L� L� 1

2

0
@

1
A23 � Lþ 2

2
4

3
5

81, 000 < N < 241, 200

(2)

This analysis underestimates the size of the decision tree because, among other

things, conformational degrees of freedom and topological variations were

Fig. 16 MOFs that contain two distinct linkers (A-type, blue and B-type, yellow) (a) may vary in

the ratio of A to B linkers (b – left vs middle) or in the arrangement of those linkers at a fixed ratio

(b – left vs right). A larger fragment of the schematic MOF framework is shown in (c) for clarity.

Reprinted with permission from [57]. Copyright 2012 Nature Publishing Group
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neglected (which would have a further multiplying effect on the possibility space).

We have also neglected to consider decision sequences that are not equal, but that

can lead to the same MOF structure (e.g., by changing the order in which two

building blocks were added). Collapsing all such “degenerate” decision sequences

into one is itself a computationally expensive procedure. Therefore it is possible

that searching a larger decision tree with degeneracies is comparable to the com-

putation cost of searching a reduced non-degenerate decision tree.

Finding plausible hypothetical MOFs in this decision tree can be carried out

using a depth-first or breadth-first search along with established optimization

techniques, such as various branch pruning methods. In our first implementation

of this approach we used a depth-first search and implemented a fail-safe measure

that would abort a branch of the tree and jump ahead by a random increment to

another branch to prevent getting stuck. One should be cautious about the use of a

random increment without precise control of the random number generator because

it can hinder reproducibility of generated results.

Using the above approach, we were able to efficiently create a database of

hypothetical MOFs that could be screened (or searched through) for applications

in natural gas storage [57], xenon/krypton separations [83], and CO2 separation and

capture [84]. These investigations have largely served as proof-of-concept demon-

strations of how a database of hypothetical MOFs can help find candidate MOFs for

synthesis and also help elucidate structure–property relationships.

5 Large-Scale Screening of Hypothetical MOFs for Gas

Storage and Separations

5.1 Motivations

Independent of the method, generating and screening hypothetical MOF structures

computationally enmasse serves two distinct purposes: helping to identifyMOFs that

can be synthesized and tested experimentally, and identifying structure–property

relationships that can also reveal important physical limits on gas adsorption.

5.1.1 Identifying Promising Candidates for Experimental Synthesis

Generating hypothetical MOF structures to find promising candidates for experi-

mental synthesis saves significant time and resources. There are already a few

reported cases where a de novo MOF was designed, simulated, and later synthe-

sized and found to have properties in nearly perfect agreement with the simulation

predictions. Notably, Farha et al. demonstrated this approach for the MOF NU-100

[81], which had nearly the highest BET surface area for any porous material at the

time of publication (6,143 m2/g, second only to MOF-210, reported at almost the
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same time [85]) (see Fig 17). We recently reported the synthesis of a MOF, which

had been output by our bottom-up generator, whose crystal structure and methane

adsorption agreed well with our computational predictions [57], but had

been previously synthesized by Lin et al. under the name NOTT-107 [86]. In the

future, we anticipate that more MOFs generated in silico will be subsequently

synthesized experimentally, but it is worth expanding on the notion that significant

insight can be obtained from large-scale screening even without going to the final

synthesis step.

5.1.2 Discovering Performance Limits and Structure–property

Relationships

A natural question when designing a new MOF for a particular application is what

is the best possible performance outcome (e.g., what is the highest possible methane

storage density at 35 bar and 298 K? [15, 16, 60]). This is a question for which

generating and screening hypothetical MOFs on a large scale is ideal. However, it is

difficult to know whether the best structure from any particular set of hypothetical

MOFs represents the limit of the class of MOFs as a whole. Occasionally it is easier

to address a question that appears at first more ambitious: what are the performance

limits for any material whatsoever (i.e., beyond just MOFs)? When considering all

physical arrangements of matter, any discovered performance limit will necessarily

be an upper bound on what is possible to achieve with MOFs. This abstract notion

is, in fact, an important consideration when creating a database of hypothetical

MOFs. One can, for example, choose to use exotic building blocks to generate a

more diverse database but at the risk of inadvertently creating hypothetical mate-

rials that are unlikely to be synthesized (or entirely unphysical). The benefit of a

more diverse database is that it is more likely to span the full range of possible

properties (including perhaps inadvertently unobtainable properties), which is

helpful for determining fundamental performance limits (see Fig. 18).

Fig. 17 A new organic linker (a) was designed and the resulting crystal, the MOF NU-100,

(b) was predicted computationally. NU-100 was then synthesized (c), and the measured crystal

structure and gas adsorption properties were in excellent agreement with the computational

predictions. Figure adapted and reprinted with permission from [81]. Copyright 2010 Nature

Publishing Group
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Beyond discovering performance limits, the large data sets generated from

simulating gas adsorption in thousands of hypothetical MOFs can be mined to

find new structure–property relationships. Structure–property relationships are

useful in establishing design rules for MOFs that can guide subsequent synthesis

efforts. However, when experimental data from only a handful of MOFs is consid-

ered, it can be difficult to resolve the trends. As with the performance limits, it is not

necessary for every hypothetical MOF to be a good candidate for chemical synthe-

sis in order to be useful in identifying structure–property trends.

For both performance limits and structure–property relationships to yield accu-

rate insights, not only must the set of hypothetical MOFs considered be large and

diverse, but the model used to calculate gas adsorption must also be accurate.

Below, we describe the commonly used classical atomistic simulation method to

predict gas adsorption behavior in MOFs.

5.2 The Simulation Model

Gas adsorption properties of MOFs are usually calculated using Monte Carlo

methods, which use random moves to sample a statistical mechanical ensemble

and determine average quantities such as the equilibrium uptake and enthalpy

[87, 88]. Typically the MOF framework is assumed to be rigid, but the gas

Fig. 18 A database of computationally generated materials might contain structures that corre-

spond to i) MOFs that have already been or can be synthesized, (ii) physically plausible materials

that are not MOFs (e.g., no inorganic building blocks), and (iii) unphysical structures (i.e.,

thermodynamically unstable, artifically raised binding interactions). In the process of mapping

the properties of the hypothetical MOFs, three possible cases can result: (1) the hypothetical MOF

with the best performance exceeds that of all physically realizable materials and thus reveals an

upper bound on what is possible with real materials, (2) the span of property values of hypothetical
MOFs contains all realizable MOFs, but a non-MOF material is potentially better, and (3) the
properties exhibited by the hypothetical MOFs are a subset within the space of MOFs. It may not

always be possible to know which case is most applicable in a given scenario, but it is a function of

both the particular hypothetical MOF database and property being considered
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molecules can move and take on many possible configurations. For each configu-

ration, the energy is calculated using a classical interaction potential. For simula-

tions of CH4, CO2, and N2 adsorption (pertinent to the examples described later in

this chapter) the interaction energies between non-bonded atoms were computed

through a Lennard-Jones (LJ) plus Coulomb potential:

Vij ¼ 4Eij
σij
rij

� �12

� σij
rij

� �6
 !

þ qiqj
4πE0rij

where i and j are interacting atoms, rij is the distance between atoms i and j, Eij and
σij are the LJ well depth and diameter, respectively, qi and qj are the partial charges
of the interacting atoms, and E0 is the dielectric constant.

The LJ parameters for the gas molecules are often taken from the TraPPE force

field, which stands for transferable potentials for phase equilibria [89, 90]. The

TraPPE force field was developed to reproduce vapor–liquid coexistence curves for

pure components of various classes of molecules. For framework atoms in MOFs,

the LJ parameters are usually taken from rather general force fields, such as the

Universal Force Field (UFF) [91]. Partial charges for the framework atoms have in

the past (when only a handful of MOFs were being investigated) been derived from

quantum chemistry calculations [46, 92]. For large databases it is impractical to use

quantum chemistry-based methods, and so we applied a semi-empirical charge

equilibration method that estimates partial charges based on known ionization

energies [47, 93].

Adsorption isotherms are typically calculated using grand canonical Monte

Carlo (GCMC) simulations. In this method an adsorbate phase at constant temper-

ature T, volume V, and chemical potential μ is allowed to equilibrate with a gas

phase (which is not simulated). The number of molecules N in the adsorbate phase

is allowed to fluctuate so that the chemical potentials of the two phases are equal.

For more details on our simulation method, the reader is referred to [35].

5.3 Selected Gas Storage and Separations Applications

5.3.1 Natural Gas Storage in Vehicles

Natural gas is an abundant fuel that can be used to power transportation vehicles

[94]. It is less expensive and generates less CO2 per mile travelled than liquid

petroleum-based fuels [16]. However, it is a challenge to store natural gas in

sufficient quantities in light-duty vehicles in a compact form. Compressed natural

gas (CNG) has less than a third of the volumetric energy density of gasoline, and in

the United States CNG tanks are pressurized to 3,600 psi, resulting in fuel tanks that

are costly, heavy, and require capitally intensive compression equipment to refill

[16, 95]. An alternative to storing natural gas at high pressures is to use a porous

adsorbent that can store methane at similar concentrations to CNG tanks but at
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reduced pressures. Over a decade ago, the Department of Energy put forth a

methane storage target for adsorbent materials aimed at vehicular natural gas

storage: 180 v(STP)/v at 35 bar and 298 K. This target has since been met, but

given the high concentration of methane in CNG tanks (~260 v(STP)/v), there is

significant interest in an even better adsorbent [16].

Both to find a MOF that could outperform existing adsorbents and to learn about

the underlying structure–property relationships of methane storage in porous mate-

rials, we generated and screened a database of 137,953 hypothetical MOFs from

102 building blocks [57]. From this screening effort we found, in addition to a

promising MOF for methane storage (that we subsequently synthesized), several

revealing structure–property relationships (see Fig. 19). We found that volumetric

methane storage density increased linearly with volumetric surface area, but that

there was an optimal gravimetric surface area in the 2,000–3,000 m2/g range. This

latter observation ran counter to conventional wisdom that higher BET surface

areas were always better for gas storage. We also found that the best MOFs in our

database for storing methane at 35 bar shared a remarkably narrow range of void

fraction values. The void fraction is the fraction of empty space within a porous

material, and the highest densities of methane were found in MOFs that had a void

fraction of almost exactly 80% (see Fig. 19c).

It was also possible to correlate the effects of choosing specific building blocks

with methane storage ability. For example, we found that MOFs in our database

with short alkyl functional groups (i.e., methyl, ethyl, and propyl groups) were

found in over 75% of MOFs with methane storage capacities above 205 v(STP)/v

Fig. 19 Structure–property relationships obtained from the database of hypothetical MOFs.

Reprinted with permission from [57]. Copyright 2012 Nature Publishing Group
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(see Fig. 19). This observation is relatively straightforward to test experimentally

by incorporating specific functional groups into new MOFs that may or may not be

in our generated database.

From the mountain of generated data, there are potentially many patterns within

that may be hard to detect. Rather than merely plotting combinations of variables

against each other and discovering patterns by visual inspection, rigorous data

mining techniques can be used. Although data mining is common in large-scale

drug and catalyst design, these methods have not yet been significantly applied to

MOFs. This is likely because, until very recently, there were no databases of MOFs

of suitable size.

Fernandez et al. recently used data mining techniques to investigate systemati-

cally our database of 137,953 hypothetical MOFs to determine the relative impor-

tance of various properties for predicting methane storage [69] (see Fig. 20). They

applied a range of established data mining algorithms (e.g., multi-linear regression,

decision trees, supported vector machines) to see which were the most suitable for

extracting trends in MOF-based gas adsorption data.

Fernandez et al. found that the methane storage at 35 bar, U35bar, or at 100 bar,

U100bar, could be estimated reasonably well by knowledge of just the void fraction

(VF), dominant pore diameter (DP, which is the diameter that corresponds to the

tallest peak in a pore size distribution of a porous material), and gravimetric surface

area (Sg):

U35bar ¼ 391:6180� VF� 9:3361� DP� 0:0161� Sgþ 1:4954

U100bar ¼ 390:9582� VF� 6:1908� DP� 0:0044� Sg� 3:2607

U35,100bar ¼½ � v STPð Þ=v, VF ¼½ � dimensionless, DP ¼½ � Å, Sg ¼½ � m2=g

Using supported vector machines, they were able to identify combinations of

parameters that suggest there are MOFs with greater methane storage capacities

than those present in the database itself.

Fig. 20 A comparison of GCMC simulation data (“Actual”) to data mining-based predictions

using a multi-linear regression (MLR) fit (“Predicted”). The MLR fit used a training set of 10,000

MOFs to estimate methane storage at (a) 35 bar and (b) 100 bar on the remaining 127,953 MOFs

based on three structure variables: the void fraction, dominant pore diameter, and gravimetric

surface area. Reprinted with permission [69]. Copyright 2013 American Chemical Society
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This preliminary illustration indicates that data mining is likely to become

commonplace in future MOF research. Such systematic methods will be particu-

larly helpful for problems where computational simulations are very costly, such as

in MOF-based catalysis or low pressure CO2 capture where water and other trace

gases can play a significant role.

5.3.2 Carbon Dioxide Separation and Capture

Due to both rising global greenhouse gas emissions [96] and an increased world-

wide demand for natural gas [97], there is significant interest in the development of

porous materials to separate carbon dioxide (CO2) from mixtures of gases, such as

the exhaust of fossil-fuel-based power plants (flue gas) and gases that are rich

sources of methane (CH4).

Porous materials like MOFs can be used to separate CO2 from these mixtures via

pressure-swing adsorption (PSA) or vacuum-swing adsorption (VSA), where the

material is exposed to impure gas at a high(er) pressure and then regenerated by

lowering (i.e., releasing or “swinging”) the pressure. The effectiveness of a MOF

for either PSA or VSA depends on how well it adsorbs CO2 at the higher pressure

and then how easily it releases the CO2 at the lower pressure.

Creating a MOF that is optimal for a CO2 separation process requires that we are

able to synthesize a structure with pores that selectively bind CO2 either much more

strongly, or more weakly, than other gases in the mixture. This, in turn, requires that

we determine (independent of our synthesis capabilities) what the optimal shape,

size, and chemistry of the pores ought to be for CO2 separation. To address this need

we used the same database of 137,953 hypothetical MOFs as was used for methane

storage screening, but instead ran molecular simulations of CO2 and N2 adsorption

(as well as CH4 adsorption, but at lower pressures than in the earlier work that

focused on compressed methane storage in vehicles). The objective was solely to

determine structure–property relationships, which were unclear at the time, rather

than find a particular MOF candidate to synthesize [84].

In this study we considered every MOF in the database in four distinct cases

corresponding to separating CO2 from either N2 or CH4 at pressures and composi-

tions selected for their industrial relevance, namely: (1) natural gas purification using

PSA, (2) landfill gas separation using PSA, (3) landfill gas separation using VSA, and

(4) flue gas separation using VSA. See Table 1 for gas phase mixture compositions

and pressures that approximate each of these four cases (at temperatures of 298 K).

With this large dataset we were able to observe sharply defined correlations

between the properties of the MOFs, such as the pore diameter, surface area, pore

volume, and chemical functionality, and their usefulness for CO2 separations in

each of the four cases (see Fig. 21). As with the case of high pressure methane

storage, we observed what could be described as structure–property domains whose

boundaries arise from either the limited diversity of our database or from funda-

mental physical limits (as discussed earlier).
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Our work complements several recently reported large-scale computational

screening efforts focused on CO2 separations [98–102]. Lin et al. [100] screened

hundreds of thousands of hypothetical zeolite and zeolitic imidazolate framework

structures for their application to CO2 capture from flue gas [100]. In this study,

each structure was measured on its ability to reduce the “parasitic load,” which is

the amount of energy a fossil fuel-based power plant would need to spend on

capturing CO2 (instead of delivering electrical power) (see Fig. 22). Similarly,

Haldoupis et al. [98] computationally screened ~500 MOFs for their ability to

separate CO2 from N2, which was the largest set of predictions for CO2 adsorption

in MOFs at the time it was reported. In their work, Henry’s constants were

correlated with pore diameters, but similar comparisons with other structural

characteristics (e.g., surface area, void fraction) or other adsorption properties

(e.g., working capacity, selectivity) were not reported. Wu et al. [102] recently

Fig. 21 A sample of structure–property relationships derived from simulated CO2, CH4, and N2

adsorption in over 130,000 hypothetical MOFs. Clear relationships can be discerned between (a)

CO2 working capacity (ΔN1) and surface area, (b) CO2 uptake (N1) at 2.5 bar and CO2 heat of

adsorption (Qst), and (c) selectivity of CO2 over N2 (α12
ads) and maximum pore diameter. Qst

values are determined from CO2 adsorption at the lowest simulated pressure, 0.01 bar. Each plot is

divided into 50 � 50 regions that are represented by a filled circle if more than 25 structures exist

within the region. The color of each circle represents the average (d) helium void fraction of all

structures in that plot region. Figure obtained from [84] and reprinted with permission from The

Royal Society of Chemistry

Table 1 Evaluation criteria used by Bae and Snurr to assess the effectiveness of porous materials

for CO2 separation and capture [68]

Case Application

Mixture

composition

Adsorption and desorption

pressures (pads and pdes)

1) Natural gas purification using PSA CO2/CH4 ¼ 10:90 pads ¼ 5 bar, pdes ¼ 1 bar

2) Landfill gas separation using PSA CO2/CH4 ¼ 50:50 pads ¼ 5 bar, pdes ¼ 1 bar

3) Landfill gas separation using VSA CO2/CH4 ¼ 50:50 pads ¼ 1 bar, pdes ¼ 0.1 bar

4) Flue gas separation using VSA CO2/N2 ¼ 10:90 pads ¼ 1 bar, pdes ¼ 0.1 bar

The four mixture compositions and adsorption/desorption conditions considered are for: (1) natural

gas purification using PSA, (2) landfill gas separation using PSA, (3) landfill gas separation using

VSA, and (4) flue gas separation using VSA. Temperature is 298 K in all cases
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examined 105 MOFs for CO2/N2 separations and discovered that simultaneously

increasing Qst values while decreasing the void fraction was a useful design rule for

increasing the selectivity.

6 Conclusions

Large-scale computational methods have great potential to accelerate the develop-

ment of new materials. MOFs provide a potentially ideal platform for applying

computational crystal engineering methods due to their predictable structures and
predictable gas adsorption behaviors. We have shown how large-scale simulations

can reveal structure–property insights in MOFs for important gas storage and

separation applications such as natural gas storage in vehicles and CO2 separation

and capture.

In the future we will likely see experimentally synthesized MOFs that were

designed and optimized entirely in silico. This will depend, however, not only on

the ability to generate hypothetical MOFs that can be readily synthesized but also

on further improvements in our simulation models used to predict gas adsorption

behavior.

It is also exciting to consider the possibility of high throughput computational

methods working in tandem with high throughput robotic synthesis equipment. This

would enable researchers to spend less time attempting to discover promising new

materials serendipitously and more time testing material hypotheses and creating

the next generation of MOFs.

Fig. 22 (a) Six example hypothetical zeolites that Lin et al. [100] found performed well for CO2

capture. Materials shown as ball and stick (O,red; Si,tan), with colored surfaces indicating the

local free energies of binding CO2. An important focus in this screening study was the (b) parasitic

energy that each porous material could potentially reduce. The green line indicates the parasitic

energy load of existing monoethanolamine CO2 capture technology and the black line indicates a
minimum parasitic energy threshold. Reprinted with permission from [100]. Copyright 2012

Nature Publishing Group
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