
Top Curr Chem (2014) 345: 181–222
DOI: 10.1007/128_2013_489
# Springer-Verlag Berlin Heidelberg 2014
Published online: 11 February 2014

Structure and Stability Prediction

of Compounds with Evolutionary Algorithms

Benjamin C. Revard, William W. Tipton, and Richard G. Hennig

Abstract Crystal structure prediction is a long-standing challenge in the physical

sciences. In recent years, much practical success has been had by framing it as a

global optimization problem, leveraging the existence of increasingly robust and

accurate free energy calculations. This optimization problem has often been solved

using evolutionary algorithms (EAs). However, many choices are possible when

designing an EA for structure prediction, and innovation in the field is ongoing.

We review the current state of evolutionary algorithms for crystal structure and

composition prediction and discuss the details of methodological and algorithmic

choices. Finally, we review the application of these algorithms to many systems of

practical and fundamental scientific interest.
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1 Introduction

Many of the most crucial technological challenges today are essentially materials

problems. Materials with specific properties are needed but unknown, and new

materials must be found or designed. In some cases experiments can be performed

to search for and characterize new materials [1], but these methods can be expensive

and difficult. Thus, computational approaches can be complementary or advantageous.

Theoretical prediction of many materials properties is possible once the atomic

structure of a material is known, but structure prediction remains a challenge.

However, a number of new methods have been proposed in recent years to address

this problem [2–8]. These techniques are often faster and less expensive than

experimental work, they dispense with the need to work with sometimes toxic

chemicals, and they can be used to explore materials systems under conditions that

are still inaccessible to experiment, such as very high pressures.

Unless kinetically constrained, materials tend to form structures that are in

thermodynamic equilibrium, i.e., have the lowest Gibbs free energy. Thus, in

order to predict a material’s structure, we must find the arrangement of atoms that

minimizes the Gibbs free energy, given by

G ¼ U � TSþ pV

Here, U is the internal energy, p the pressure, V the volume, T the temperature,

and S the entropy. The entropy is comprised of three contributions: electronic,

vibrational, and configurational. The vibrational and configurational components

are expensive to calculate, and much of the error introduced by neglecting the
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entropy vanishes when taking energy differences [9, 10]. For these reason, the

entropy is often neglected, effectively constraining the search to the T ¼ 0 regime.

That is, the enthalpy H ¼ U + pV is frequently used to approximate the Gibbs free

energy. Finite temperature effects can be included as a post-processing step once

particularly promising structures have been identified. We note that, at high

temperatures, anharmonic contributions to the vibrational entropy can stabilize

phases that are mechanically or dynamically unstable at low temperature [11].

However, in order to search for stable materials at low temperature and fixed

composition, the function we need to minimize, known as the objective function,

is the enthalpy per atom.

A thermodynamic ensemble is not always used as the objective function. Bush

et al. devised an objective function based on Pauling’s valence rules and only

performed energy calculations on the best structures identified thereby [2, 12].

Although this approach is computationally efficient, it is limited to ionic materials

and is not as reliable as a direct search over the correct thermodynamic quantity.

1.1 Potential Energy Landscape

Given the atomic structure, there exist efficient methods for approximating

the enthalpy. A complete description of a crystal structure includes six lattice

parameters and 3N � 3 atomic coordinates, where N is the number of atoms in the

unit cell. Thus, the function we seek to minimize can be thought of as a surface in a

3N + 3-dimensional space. These surfaces are referred to as energy landscapes. The

lowest enthalpy structure is located at the deepest, or global, minimum of the energy

landscape. In this way, the physical problem of predicting a material’s atomistic

structure is expressed as a mathematical optimization problem. In order to understand

the search for the global minimum of an energy landscape, it is helpful to examine

some general properties of energy landscapes of materials, as follows:

• Much of the configuration space corresponds to structures with unphysical small

interatomic distances. These areas of the configuration space can be neglected.

• The energy landscape is effectively partitioned into basins of attraction by the

use of a local optimization routine. The local optimizer takes any two structures

in the same basin into the local minimum located at the bottom of the basin.

• The number of local minima on the energy landscape scales exponentially with

the dimensionality of the search space, i.e., with the number of atoms in the cell

[13]. Venkatesh et al. calculated the number of local minima as a function of

system size for clusters containing up to 14 Lennard–Jones particles, illustrating

this exponential trend [14].

• Deeper basins tend to occupy larger volumes in the multidimensional space.

Specifically, a power law distribution describes the relationship between the

depth of a basin and its hyper-volume. Combined with our capability for local

minimization, this greatly simplifies the search for the optimum structure [15].
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• The barrier to reach a neighboring basin is usually low if that basin has a deeper

minimum than the current basin. This is a consequence of the Bell–Evans–Polanyi

principle [7].

• Low-energy minima in the landscape usually correspond to symmetrical

structures [7].

• Low-lying minima are usually located near each other on the energy landscape.

This tendency gives the landscape an overall structure that can be exploited

while searching for the global minimum [16].

No analytical form exists for the enthalpy as a function of atomic configuration.

We can only sample the enthalpy and its derivatives at discrete points on the energy

landscape using methods such as density functional theory (DFT). Thus, one often

resorts to heuristic search methods. One such class of methods that has proven

successful is the evolutionary algorithm. This approach draws inspiration from

biological evolution. Efficient local optimization utilizes the derivative information

and is very beneficial in the solution of the optimization problem (see Sect. 4).

Figure 1 illustrates how local optimization transforms the continuous potential

energy landscape into a discrete set of basins of attractions, which dramatically

simplifies the search space.

1.2 Evolutionary Algorithms

In nature, genetic information is carried in organisms. It is maintained in a

population’s gene pool if it is passed on from parents to offspring. New information

can be introduced through mutation events, but these are rare (and usually lethal).

The success that an organism has in passing on its genes is called the organism’s

fitness.

The fitness of an organism is not universal but depends on its environment. Many

species which are very successful in their native habitats would do poorly in other

Enthalpy
Effective potential energy
surface of local minima

Potential energy
surface

Basin of
attraction

Local minimum

Local
optimization

Fig. 1 Potential energy surface. The use of local optimization simplifies the search problem by

dividing the continuous solution space into basins of attraction
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environments. More subtly, there is variance of traits within a single species. In

some cases these differences can lead to a difference in the organisms’ fitness.

The genes of low-fitness individuals are less likely to be passed on, so traits of the

high-fitness individuals are likely to be more common in subsequent generations.

In this way, populations (but not individuals) evolve to be well suited to their

environment. This assumes, of course, that relevant traits are passed on, to varying

degrees, from parents to offspring. The correlation between a trait in a parent and

that in an offspring is known as the heritability of a trait. In order for environmental

pressure to cause quick evolution of a trait, that trait must have high heritability.

Evolutionary algorithms leverage the power of this process to “evolve” solutions

to optimization problems. Initial efforts to apply evolutionary algorithms to the

structure prediction problem were aimed at finding the lowest energy conformation

of large organic molecules [17–21]. Evolutionary search techniques were also suc-

cessfully applied to atomic clusters [22, 23], and soon the method was extended to 3D

periodic systems [2, 12, 24].

It has been observed that evolutionary algorithms (EAs) are well suited to the

structure prediction problem for several reasons [25]. First, they can efficiently find

the global minimum of multidimensional functions. EAs require little information

and few assumptions about the lowest energy structure, which is advantageous

when searching for structures about which little is known a priori. Finally, if

designed correctly, an EA can take advantage of the structure of the energy

landscape discussed in Sect. 1.1.

The evolutionary approach to structure prediction is modeled after the natural

process. Each crystal structure is analogous to a single organism. In nature, the fitness

of an organism is based on how well its phenotype is suited to its environment and, in

particular, how successful it is in reproducing. In an evolutionary algorithm, fitnesses

are assigned to the organisms based on their objective function values, and they are

allowed to reproduce based on those fitnesses. Pressures analogous to those which

force species to adapt to their environments will thus lead to crystal structures with

lower energies.

Organisms in an EA are often grouped into generations. The algorithm proceeds

by creating successive generations. The methods by which an offspring generation

is made from parents are called variation operations or variations and include

operations that are analogous to genetic mutation and crossover. A single offspring

organism can be created from either one or two parents, depending on which

variation is used. Every offspring organism must meet some minimum standards

to be considered viable, analogous to the “growing up” process in nature. This is

known as the development process. The algorithm terminates when some user-

defined stopping criteria are met (see Sect. 2.13).

Improvements are made to the biological analogy when possible. In particular, we

would rather not let the optimal solution worsen from one algorithmic iteration to the

next. To prevent this, a promotion operator is used to advance some of the best

organisms from one generation directly to the next. Also, mutations in nature are

usually detrimental. When searching for structures, one might try to use mutation

variations that are likely to introduce valuable new information to the gene pool.
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Figure 2 outlines how a typical evolutionary algorithm for structure prediction

proceeds, such as that implemented by Tipton et al. [26, 27]. The EA starts by

creating an initial population (Sect. 2.2) and calculating the fitness of each organism

in it (Sect. 2.3). Organisms are then selected to act as parents (Sect. 2.4) or to be

promoted to the next generation (Sect. 2.5). The parents create offspring structures

via mating (Sect. 2.6) or mutation (Sect. 2.7). The offspring are developed (Sect. 2.9)

and the energy of each offspring organism is calculated using some external energy

code, followed by a post-evaluation development step. If successful, the offspring

structures are then added to the next generation, and their fitnesses are calculated.

Unless the EA has converged (Sect. 2.13), the current children become parents in the

next generation.

2 Details of the Method

2.1 Representation of Structures

A total of 3N + 3 dimensions describe the atomic coordinates and lattice vectors of

a crystal structure. Additionally, the number of atoms, N, itself must be determined

for ab initio structure predictions. However, these degrees of freedom are not all

truly independent. Alternate choices of lattice vectors provide infinitely many ways

to represent the same crystal structure, as illustrated in Fig. 3. Additionally, for

molecular crystals, the dimensionality of the search space is effectively reduced

since the molecular units typically stay intact in these crystal structures. This is due

to the separation of energy scales, with strong intramolecular covalent interactions

and much weaker intermolecular van der Waals interactions. In this case, structure

search algorithms can take advantage of this trait by treating complete molecules,

instead of individual atoms, as indivisible structural building blocks [28, 29]. Since

the solution space is somewhat more complicated than it has to be, the task of

searching that space is also more complicated than necessary. This difficulty may

be addressed by attempting to standardize the way structures are represented in the

computer.

Create initial parent 
generation

Use promotion and 
variations to create 

offspring

Pre-evaluation 
development

Structure relaxation and energy evaluation
using external code

Post-evaluation 
development

Enough structures?

No

Yes Convergence 
achieved?

No

Yes

Done!

Begin

Create empty child 
generation

Set children to parents

Fig. 2 Outline of evolutionary algorithm for structure prediction
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2.1.1 Standardization of Representation

Two techniques are employed to standardize the representation of structures. The first

and most widely used method is to impose hard constraints on the structures. These

constraints include minimum interatomic distances and lattice parameter magnitudes.

Limits on the maximum interatomic distances and lattice vector magnitudes are

sometimes enforced as well [26, 27, 30, 31]. In addition, most authors constrain the

range of angles between the lattice vectors [26, 27, 30–33]. If the algorithm varies the

number of atoms per cell, this value is also constrained [27]. A restriction on the total

volume of the cell is an additional possibility [30, 31, 34].

Physical considerations must be taken into account when choosing the

constraints. For the constraint of the minimum interatomic distances, choosing

80% of the typical bond length or of the sum of the covalent radii of the two

atoms under consideration has been proposed [30, 33]. The minimum lattice length

has been chosen by adding the typical bond length and the diameter of the largest

atom in the system [30, 32, 33]. Bahmann et al. set the maximum lattice vector

length to the sum of the covalent diameters of all atoms in the cell [30]. Several

authors limit angles between lattice vectors to lie between 60� and 120� [31, 32],

although a more liberal range of 45–135� has also been used [30, 33]. Ji et al. fix the
volume of the cell during the search [34], and Lonie et al.’s algorithm can be set to

use either a fixed cell volume or to constrain the volume to a user-specified range

[31]. In the work of Bahmann et al. the cell volume is constrained to the range

defined by the volume of the close-packed structure and four times that value [30].

Additional constraints may be used when one wishes to limit the search to a

particular geometry. For example, Bahmann et al. restrict the allowable atomic

positions and increase the maximum allowable lattice length in one direction to

facilitate a search for two-dimensional structures [30]. Woodley et al. use an EA to

search for nanoporous materials by incorporating “exclusion zones,” or regions in

which atoms are forbidden to reside [35].

Fig. 3 Five alternate

representations of a single

physical crystal are shown.

Cells 2 and 4 are Niggli

reduced versions of cells

1 and 3, respectively. They

are also 2 � 2 and 1 � 2

supercells, respectively, of

the primitive cell 5
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Several advantages are gained by using these constraints. Many energy models

behave poorly when faced with geometries with very small interatomic distances,

so enforcing this constraint from the start helps prevent failed structural relaxations

and energy calculations. As mentioned in Sect. 1.1, large regions of the potential

energy surface correspond to unphysical structures, and constraints help limit the

search to regions that do contain physical minima.

Additionally, they help to ensure that structures are represented similarly.

Removing as much redundancy as possible from the space of solutions makes the

problem easier without limiting our set of possible answers or introducing any a

priori assumptions as to the form of the solution. On the other hand, it is more

dangerous to remove merely unlikely regions of the space from consideration, since

doing so would bring into question both the validity of results and the claim to

first-principles structure prediction.

The second method used to help standardize structure representation involves

transforming the cells of all organisms to a unique and physically compact

representation when possible. One way to do this is the Niggli cell reduction

[27, 36]. There is a Niggli cell for any lattice that is both unique and has the shortest

possible lattice lengths. Figure 3 illustrates the representation problem and the

Niggli cell reduction. A similar transformation is used by Lonie et al. and Oganov

et al. [31, 37]. In addition to simplifying the space that must be searched, removing

redundancy by standardizing the representation of structures usually helps to

increase the quality of the offspring produced by the mating variation, as is

discussed in Sect. 2.6.

2.2 Initial Population

If no experimental data are available for the system under study, then the organisms

in the initial population are generated randomly, subject to the constraints discussed

above. The initial population generated in this way should sample the entire

potential energy landscape within the constraints. If experimental data is available,

such as from X-ray diffraction analysis, it can be used to seed the initial population

with likely organisms. If one is predicting an entire phase diagram (see Sect. 3), the

correct elemental and binary phases may already be known experimentally and can

be used in the initial population. The use of pre-existing knowledge has the

potential to decrease significantly the time needed to find the global minimum

When searching for molecular crystals, one typically places coherent molecular

units instead of individual atoms into the structure [28]. Zhu et al. made an

additional modification to the generation of the initial population to facilitate

their study of molecular solids [29]. Instead of placing molecules at completely

random locations within the cell, structures are built from randomly selected space

groups. The authors found that this provides the algorithm with a more diverse

initial population and improves the success of the search.
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2.3 Fitness

The fitness of an organism is the property on which evolutionary pressure acts, and

it depends on the value of the objective function. It is defined so that better solutions

have higher fitness, and thus minimizing the energy means maximizing the fitness.

It is usually defined as a linear function of the objective function, relative to the

other organisms in the population. Exponential and hyperbolic fitness functions

have also been used as an alternative way to introduce more flexibility into the

selection algorithm (see Sect. 2.4) [38, 39]. In one frequently-applied scheme, an

organism with a formation energy per atom, Ef, is assigned a fitness

f ¼ Ef � Emin
f

Emax
f � Emin

f

,

where Emax
f and Emin

f are the highest and lowest formation energies per atom,

respectively, in the generation [26, 27, 31, 38]. In this case, the organism with the

lowest energy in the generation is assigned a fitness of 1, and the organism with the

highest energy has a fitness of 0. An alternative approach is to rank the organisms

within a generation by their objective function values. The fitness of an organism is

then defined as its rank [32, 34]. For cases when the stoichiometry and number of

atoms in the cell is fixed, the fitness can simply be defined as the negative of the

energy of the organism [30, 33].

2.4 Selection

The selection method determines which organisms will act as parents. Generally,

structures with higher fitnesses are more likely to reproduce. The selection method is

a crucial component of the search because it is the only way that the algorithm applies

pressure on the population to improve towards the global minimum. Three commonly

used strategies are elitist (or truncated) selection, roulette wheel selection, and

tournament selection. In elitist selection the top several organisms are allowed to

reproduce with equal probability while the rest are prevented from mating [39].

In roulette wheel selection, a random number d between the fitnesses of the best

and worst organisms is generated for each organism, and if d is less than the fitness of
the organism, it is allowed to reproduce [38]. In this way, it is possible for any

organism except the worst one to reproduce, but it is more likely for organisms of

higher fitness. Finally, in tournament selection, all of the organisms in the parent

generation are randomly divided into small groups, usually pairs, and the best

member of each group is allowed to reproduce.

Tipton et al. employ another approach to selection which is essentially a

generalization of the three outlined above. Organisms are selected on the basis of

a probability distribution over their fitnesses [26, 27]. Two parameters are used to
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describe the distribution: the number of potential parents and an exponent which

determines the shape of the probability distribution. The number of parents

specifies how many of the best organisms in the current generation have nonzero

probabilities of acting as parents. The exponent describes a power law. This method

allows fine-grained control over the trade-off between convergence speed and the

probability of finding the ground state. An aggressive distribution that puts a lot of

pressure on the population to improve leads to faster convergence, but the algorithm

is more likely to converge to only a local minimum. On the other hand, a less

aggressive distribution will probably take more time to converge, but the algorithm

has a better chance of finding the global minimum because a higher degree of

diversity is maintained in the population. Several choices of selection probability

distribution are illustrated in Fig. 4.

Authors employ these strategies in a variety of ways. One approach is to use

elitist selection to remove some fraction of the parent generation, and then grow the

resulting group back to its original size by creating offspring organisms from the

remaining parent organisms with equal probability [30, 33, 34] or with a linear or

quadratic probability distribution over their fitnesses [32]. Abraham et al. use

roulette wheel selection. When the number of offspring organisms equals the

number of parent organisms, either roulette wheel or elitist selection are used on

the combined pool of structures to determine which organisms will make up the

next generation. Elitist selection was found to be preferable in the final step

[38]. Lonie et al. employ a linear probability distribution over the fitnesses to select

organisms to act as parents. A continuous workflow is used instead of a generational

scheme, so that offspring organisms are immediately added to the breeding

population when they are created [31].
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Fig. 4 Tuning the selection
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potential parents N and

power law p allows Tipton

et al. to adjust the

aggressiveness with which

an EA seeks to converge
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2.5 Promotion

A new generation is created from the structures in the previous one by applying

selection in conjunction with promotion and variation. The promotion operation

places some of the organisms in the old generation directly into the new generation

without undergoing any changes. This is used to ensure that good genetic material is

maintained in the population. Many authors use elitist selection to choose which

organisms to promote. Lyakhov et al. refined selecting for promotion by only

promoting structures whose fingerprints were significantly different (see

Sect. 2.11 for fingerprinting) [40]. This was done to prevent loss of population

diversity due to promoting similar organisms.

2.6 Mating

The goal of the mating variation is to combine two parents and preserve their

structural characteristics in a single offspring organism. In its most basic form, mating

consists of slicing parent organisms (cells) into two sections each and then combining

one from each parent to produce an offspring organism. This is illustrated in Fig. 5.

It is important that the mating operation be designed so that traits which are

important to the energy minimization problem have high heritability. The most

energetically-important interactions in materials come from species located close to

one another. This suggests that there is some amount of spatial separability in the

energy-minimization problem, with the energy depending primarily on the local

structure. The mating variation works by exploiting this feature of the problem. The

slicing mating variation maintains much of the local structure of each parent in a

very direct way, and we will now detail this operation.

+

Fig. 5 Schematic illustration of how the mating operator in the evolutionary algorithm combines

two crystal structures. For clarity, 1 � 2 supercells of the child and parent structures are shown
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2.6.1 Slice Plane Location and Orientation

After two parent organisms have been selected, the next step is choosing the planes

along which to slice them. In order to mate organisms that do not have identical

lattices, a fractional space representation is used. The positions of atoms in a cell are

expressed in the coordinate system of the cell’s lattice vectors. As a result, the

fractional coordinates of all atoms within the cell have values within the interval [0;1).

Authors have used various techniques to choose the orientation and location of

the slice plane. In one method, a lattice vector A and a fractional coordinate s along
A are randomly chosen [31, 32]. All atoms in one of the parent organisms with a

fractional coordinate greater than s along A and all atoms in the second parent with

fractional coordinate less than or equal to s are copied to the new child. Restricting

the range of allowed values of s can be used to specify the minimum contribution by

each parent to the offspring organism [31].

Alternatively, one may randomly select two planes that are parallel to a randomly

chosen facet of the cell. Atoms that lie between these planes are then exchanged

between the two parents. By “exchanged” we mean that each atom in the offspring

has the same species-type and fractional coordinates as in the corresponding parent.

This approach is equivalent to performing a translation operation on the atoms in the

cell and then using the single slice plane method outlined above. Both of these

methods choose slice planes that are parallel in real space to one of the cell facets

of the parent structures [33, 34, 38]. Tipton et al. selects the two slice planes slightly

differently: the fractional coordinate corresponding to the center of the sandwiched

slab is randomly selected. The width of the sandwiched slab is then randomly chosen

from a Gaussian distribution, and the two slice planes are placed accordingly

[26, 27]. Another approach is simply to fix the locations of the two slice planes.

For example, Abraham et al. specify that the two cuts be made at fractional coordi-

nates of 1/4 and 3/4 along the chosen lattice vector [38].

Abraham et al. introduced a periodic slicing operation [38]. In this case, the value

s described above becomes a cell-periodic function of the fractional coordinates

along the cell lattice vectors other than A. A sine curve is often used, with the

amplitude and wavelength drawn from uniform distributions. The wavelength is

commonly constrained to be larger than the typical interatomic distance and

smaller than the dimensions of the cell. The amplitude should also be small enough

to ensure that no portion of the slice exceeds the boundaries of the cell. Abraham

et al. found that periodic slicing improved the mean convergence time of their

algorithm over planar slicing [38].

Constraining the degree of contribution of each parent by, for example, stipu-

lating a minimum parental contribution can help prevent the mating operation from

reproducing one or other of the parent structures essentially unchanged. Once the

contribution of each parent has been determined, lattice vectors must be chosen for

the offspring structure. Frequently, a randomly weighted average of the parents’

lattice vectors is assigned to the offspring [31–33]. Simply averaging the lattice

vectors of the parent organisms, i.e., fixing the weight at 0.5, is another common

choice [26, 27, 34].
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2.6.2 Number of Atoms and Stoichiometry of Offspring

An offspring organism produced via mating as described so far may have a different

number of atoms or a different composition than its parents. This presents a difficulty

if one wishes to perform a search with a fixed cell size or at a single composition. The

simplest way to deal with these issues is simply to reject all offspring organisms

that do not meet the desired constraints [33, 38]. Alternatively, nonconforming

offspring can be made acceptable by the addition or removal of atoms. It may be

best to add and remove atoms from locations near the slice plane [34].

These corrections minimize disruption to the structure transmitted from the parent

organisms. Glass et al. use a slightly different approach: atoms to be removed or

added are selected randomly from the discarded fragments of one of the parent

organisms [31, 32]. Atomic order parameters have also been used to decide which

excess atoms to remove (see Sect. 2.11) [40]. Those with the lower degrees of local

order are more likely to be removed.

2.6.3 Modifications to the Mating Variation

Several additional modifications of the mating variation have been explored. The

first involves shifting all the atoms in a cell by the same amount before mating

[32, 41]. These shifts may happen with different probabilities along the axis where

the cut is made and an additional random axis. This removes any bias caused by the

implicit correlation between the coordinate s on the axis A in one crystal with the

coordinate s on the axis A in the other. A similar effect may be obtained by selecting

a random vector and shifting all atoms by this vector prior to making the cut [31].

In practice, these shifts help repeat good local structures to other parts of the cell.

In a further innovation, the parent organisms are subjected to random rotations

and reflections prior to mating. This procedure removes bias toward any given

orientation [31]. Additionally, an order parameter may be used to inform the choice

of contribution from each parent (see Sect. 2.11). Several trial slabs of equal

thickness are cut from the parents at random locations, and the slabs with the

highest degree of order parameters are passed to the offspring [40, 41].

The simple slicing mating operator is not appropriate for molecular crystals,

since it does not respect the integrity of the molecular units. Zhu et al. adapted the

mating variation to search for molecular crystals [29]. In their scheme, each

molecule is treated as an indivisible unit, and the location of the geometric center

of a molecule is used to determine its location for the purposes of the mating

operator.
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2.6.4 Shortcomings of the Slicing Mating Variation

The mating variation acts directly on the particular representation of a structure in

the computer. Since it is performed in fractional space, the mating variation can be

applied to any two parent organisms, regardless of their cell shapes. However, the

offspring structure may not always be successful. An offspring organism that has

little in common with either parent can be produced if their representations

(in particular the lattice parameters or number of atoms in the cells) are sufficiently

different. As a result, the offspring will often have low fitness. Thus the mating

variation is most successful when the parents are represented similarly because this

increases the heritability of important traits.

The constraints and cell transformations discussed in Sect. 2.1 combat this issue

through standardization of structure representation. Another method to increase the

similarity of representation prior to mating is to use a supercell of one of the parent

structures during mating [26, 27]. If one of the parent structures contains more than

twice as many atoms as the other, a supercell of the smaller parent is used in the

mating process. This technique ensures that both parent organisms are approxi-

mately the same size before mating, which aids in the creation of successful

offspring.

Lyakhov et al. use an additional technique to help increase the viability of the

offspring. If the distance between the parent organisms’ fingerprints (see Sect. 2.10)

exceeds a user-specified value, the would-be parents are not allowed to mate. The

rationale behind this stipulation is that if two parents are from different funnels in

the energy landscape, then their offspring would likely be located somewhere

between those funnels and therefore have low fitness [40, 41].

2.6.5 Other Mating Operations

Not all evolutionary algorithms employ the previously described slicing method for

mating. Bahmann et al. use a general recombination operation instead, where an

offspring structure is produced by combining the lattice vectors and atomic positions

of the two parent organisms [30]. This can be done in two ways: intermediate

recombination takes a weighted average of the parents’ values, and discrete recom-

bination takes some values from each parent without changing them. Smith et al. used

binary strings to represent structures on a fixed lattice, with each character in the

string indicating the type of atom at a point on the lattice [24]. Mating was carried out

by splicing together the strings of two parent structures. Jóhannesson et al. used a

similar approach to search for stable alloys of 32 different metals [117]. Although

all of these methods combine traits from each of the parents, they may not be as

successful in passing the important local structural motifs of parents to the

offspring.
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2.7 Mutation

The goal of the mutation operation is to introduce new genetic material into the

population. Its utility lies in its ability to explore the immediate vicinity of promising

regions of the potential energy surface that have been found via the mating variation.

The most common mutation entails randomly perturbing the atomic positions or

lattice vectors of a single parent organism to produce an offspring organism. Some

approaches call for mutating both the lattice vectors and the atomic positions

[26, 27, 33], while others affect only one type of variable. To apply a mutation to

the lattice vectors, they are subjected to a randomly generated symmetric strain

matrix of the form

S ¼
1þ e1 e6=2 e5=2
e6=2 1þ e2 e4=2
e5=2 e4=2 1þ e3

0
@

1
A, (1)

where the components ei are taken from uniform or Gaussian distributions [31–33].

Mutations of the atomic positions are achieved in a similar fashion. Each of the

three spatial atomic coordinates is perturbed by a random amount, often obtained

from a uniform or Gaussian distribution [26, 27]. To keep the size of these

perturbations reasonable, either an allowed range or a standard deviation is set by

the user. Most formulations do not mutate every atom in the cell but instead specify

a probability that any given atom in the cell will be displaced. The approach of

Abraham et al. combines mutation with the mating variation, perturbing atomic

positions after mating has been performed [38]. However, most authors treat

mutation as a separate operation.

Glass et al. claim that randomly mutating atomic positions is not necessary

because enough unintentional change occurs during mating and local optimization

to make it mostly redundant [32]. However, in later work, Lyakhov et al. use a

“smart” mutation operation where atoms with low-order local environments (see

Sect. 2.11) are shifted more [40, 41]. A further refinement to mutation has been

made by shifting all the atoms along the eigenvector of the softest phonon mode

[40, 41].

Permutation is another mutation-type operation for multi-component systems

that swaps the positions of different types of atoms in the cell. Generally, the user

specifies which types of atoms can be exchanged, and the algorithm performs a

certain number of these exchanges each time the permutation variation is used on a

parent organism [26, 27, 37]. The extent to which exchanging atomic positions

affects the energy is strongly system-dependent. For ionic systems, exchanging an

anion with a cation is likely to result in a much larger energy change than exchanges

between two different types of cations or anions. In metals, on the other hand, the

change in energy under permutation corresponding to anti-site defects is generally

small. It is often helpful to use a permutation variation when studying these systems

in order to find the minimum among several competing low energy configurations.
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The number of swaps carried out can be random within a specified range, or can

be pulled from a user-specified distribution. Randomly exchanging all types of

atoms has the drawback that many energetically unfavorable exchanges may be

performed, especially in ionic systems. If the number of atoms in the cell is small,

Trimarchi et al. do an exhaustive search of all possible ways to place the atoms on

the atomic sites [33].

Lonie et al. employ a “ripple” variation, in which all atoms in the cell are shifted

by varying amounts [31]. First, one of the three lattice vectors is randomly chosen

and then atomic displacements are made parallel to this axis. The amount by which

each atom is shifted is sinusoidal with respect to the atom’s fractional coordinates

along the other two lattice vectors. This produces a ripple effect through the cell.

Lonie et al. argue that this variation makes sense because many materials display

ripple-like structural motifs. Combining the ripple variation with other variations

such as the lattice vector mutation and the permutation leads to hybrid variations

that can improve the performance of the EA by reducing the number of redundant

structures encountered in the search [31].

Zhu et al. employ an additional mutation when searching for molecular solids.

Since molecules are not usually spherically symmetric, a rotational mutation

operator was introduced, in which a randomly selected molecule is rotated by a

random angle [29].

2.8 System Size

The number of atoms per cell, N, is an important parameter that needs to be

considered. If N is fixed to a value which is not a multiple of the size of the ground

state primitive cell of the material, the search cannot identify the correct global

minimum. However, N is a difficult parameter to search over. In the case of other

degrees of freedom for the solution, such as interatomic distances and cell volume,

the local optimization performed by the energy code helps to find the best values.

No analogous operation is possible in the case of N. Furthermore, the energy

hypersurface is not particularly well behaved with respect to this parameter. It is

likely that values of N surrounding the optimum will lead to structures quite high in

energy while values of N further from the ideal may lead to closer-to-ideal

structures.

Several approaches exist to search over this parameter. The first is simply to

“guess” the correct value of N [31–33]. Guessing N can make it easy to miss the

global minimum, especially for systems about which little is known a priori. To

increase the chances of finding the right number, searches can be performed at

several different values of N, but this is inefficient. A second technique is to allow

the cell size of candidate solutions to vary during the search. This can be done

passively through the mating variation by not enforcing a constraint on the number

of atoms in the offspring structure [27, 34, 38]. Incorporating a mutation-type

variation specifically designed for varying N is an additional option.
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Another way to aid the search for the correct number of atoms per cell is to use

large cells. Large supercells effectively allow several possible primitive cell sizes to

be searched at once because the cells can be supercells of multiple smaller cells. For

example, a search with a 50-atom supercell is capable of finding ground state

structures with primitive unit cells containing 1, 2, 5, 10, 25, and 50 atoms. However,

because the number of local minima of the energy landscape increases exponentially

with N [13], and because individual energy calculations are much more expensive for

larger structures, efficiency suffers.

Lyakhov et al. describe another difficulty with the large supercell approach that

arises when generating the initial population. Randomly generated large cells almost

always have quite poor formation energies, and disordered glass-like structures

dominate. This discovery implies that there exists an upper limit to the size of

randomly generated structures that can provide a useful starting point for the search.

Starting an evolutionary algorithm with a low-diversity initial population comprised

of low fitness structures provides a small chance of finding the global minimum

[40, 41]. To obtain reasonably good large cells for the initial population, Lyakhov

et al. generate smaller random cells of 15–20 atoms, and then take supercells of these

[40, 41]. In this way, the organisms in the initial population can still contain many

atoms, but they possess some degree of order and therefore tend to be more

successful.

An alternative approach is to start with smaller supercells and encourage them to

grow through the course of the search [26, 27]. This is achieved by occasionally

doubling the cell size of one of the parents prior to performing the mating variation.

The speed of cell growth in the population can be controlled through the frequency

of the random doubling. The advantage of this technique is that it searches over

N while still gaining (eventually) the benefits of large supercells. In addition,

considering smaller structures first ensures that the quicker energy calculations

are performed early in the search, and the more expensive energy calculations

required for larger cells are only carried out once the algorithm has already gained

some knowledge about what makes good structures.

2.9 Development and Screening

After a new organism has been created by one of the variations, it is checked against

the constraints described in Sect. 2.1 and tested for redundancy (see Sect. 2.10). At

this stage, many EAs scale the atomic density of the new organisms using an

estimate of the optimal density [26, 27, 32]. Starting from an initial guess of the

optimal density ρ0, the density estimate is updated each generation by taking a

weighted average of the old best guess ρi and the average density of the best few

structures in the most recent generation ρave:
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ρiþ1 ¼ wρave þ 1� wð Þρi,

where w is the density weighting factor. Then any time a new organism is made it is

scaled to this atomic density before local relaxation. The primary reason for the

density scaling is a practical one. Many minimization algorithms are quite time

consuming if the initial solution is far from a minimum. This scaling is an easy first

pass at moving solutions towards a minimum. Because the density scaling of an

organism alters the interatomic distances, etc., the constraints checks are performed

after the scaling of the density.

2.10 Maintaining Diversity in the Population

As the evolutionary algorithm searches the potential energy surface, equivalent

structures sometimes occur in the population. If a pair of structures mates more than

once, they are likely to create similar offspring. If the set of best structures does not

change from generation to generation due to promotion, the set of parents, and thus

the resulting set of children, can also be very similar. In addition, as the generation

as a whole converges to the global minimum, all the organisms are likely to become

more similar. What is worse, once a couple of low energy, often selected organisms

are in the population, they can reproduce and similar structures will effectively fill

up the next generations.

Duplicate structures hinder progress for several reasons. The most computationally

expensive part of the algorithm is the energy calculations, and performing multiple

energy calculations on the same structure is wasteful. However, this is exactly what

happens if duplicate structures are not identified and removed from the population.

Furthermore, low diversity in the population makes it difficult for the algorithm to

escape local minima and to explore neighboring regions of the potential energy

surface. This leads to premature convergence which is in practice indistinguishable

from convergence to the correct global minimum. For these reasons, it is desirable to

maintain the diversity of the population by identifying and removing equivalent

structures. This is not a trivial task because, as discussed in Sect. 2.1, there exist

infinitely many ways to represent a structure. Numerical noise adds to the difficulty of

identifying equivalent structures.

Some authors directly compare atomic positions to determine whether two

structures are identical. Lonie et al. developed an algorithm for this purpose, and

it correctly identified duplicate structures that had been randomly rotated, reflected,

or translated, and had random cell axes [42].

Tipton et al. also use a direct comparison of structures, with a slight modification

[26, 27]. During the search, two lists of previously-observed structures are

maintained. The first contains all the structures, relaxed and unrelaxed, that the

algorithm has seen. If a new unrelaxed offspring structure matches one of the

structures in the list, it is discarded. The assumption is that if it was good enough
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to keep the first time, it was promoted, and if not, there is no reason to spend more

effort on it. A second list contains the relaxed structures of all the organisms in

the current generation. If a new relaxed offspring structure matches one of the

structures in this list, it is discarded to avoid having duplicate structures in the

generation. This approach both minimizes the number of redundant calculations

performed and prevents the population from stagnating.

Wang et al. employ a bond characterization matrix to identify duplicate

structures in the population [8]. The components of the matrix are based on bond

lengths and orientations, and the types of atoms participating in the bond. Bahmann

et al. identify duplicate structures by choosing a central atom in each organism and

comparing the bond lengths between the central atom and the other atoms in a

supercell [30]. These authors introduced an additional technique to help prevent the

population from stagnating by stipulating an organism age limit. If an organism

survives unchanged (via promotion) for a user-specified number of generations, it is

removed from the population. This feature is meant to prevent a small number of

good organisms from dominating the population and reducing its diversity.

Another method involves defining a fingerprint function which describes essential

characteristics of a structure. When two organisms are found to have the same

fingerprints, they are likely identical, and one is discarded. Several fingerprint

functions have been used. The simplest is just the energy [22, 39]. The logic is that

if two structures are in fact identical, they should have the same energies to within

numerical noise. An interval is chosen to account for the noise. However, the size of

the interval is fairly arbitrary and system-dependent, and this method is prone to false

positives. Eliminating good unique organisms from the population can be even more

detrimental to the search than not removing any organisms at all [42]. Lonie

et al. expanded the fingerprint function to include three parameters: energy, space

group, and the volume of the cell [31]. Again, intervals were set on the volume and

energy. This is an improvement over simply using the energy as a fingerprint, but it

can still occasionally fail, especially for low-symmetry structures or when atoms are

displaced slightly from their ideal positions. Lonie et al. found that their direct

comparison algorithm outperformed their fingerprint function at identifying duplicate

structures [42].

Valle et al. employ a fingerprint function that is based on the distributions of the

distances between different pairs of atom types in an extended cell [41, 43, 44]. For

example, a binary system contains three interatomic distance distributions. The

fingerprint function takes all three distributions into account. They used this

fingerprint function to define an order parameter (see Sect. 2.11). Zhu et al. modified

this fingerprint function slightly when searching for molecular solids; since

distances between atoms within molecules do not change significantly, these

distances are not considered when calculating structures’ fingerprints [29].

Discarding duplicate structures from the population is not the only method

employed to maintain diversity. Abraham et al. use a fingerprint function to

determine how similar all the structures in a generation are to the lowest

energy structure in the generation. Instead of simply removing similar structures,

a modified fitness function is used which penalizes organisms based on their

similarity to this best structure [45].
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2.11 Order Parameters

Order parameters give a measure of the degree of order of an entire structure and

also of the local environment surrounding individual atoms. Since energy is often

correlated with local order, this can be a useful tool. Valle et al. extended their

fingerprint function by using it to define an order parameter [40, 41, 44]. They used

it to guide the algorithm at various points, as mentioned previously.

2.12 Frequency of Promotion and Variations

The user-specified parameters of an evolutionary algorithm affect its performance.

However, running hundreds or thousands of structure searches to optimize these

parameters can be prohibitively expensive, especially if an ab initio energy model is

used. Furthermore, optimal values depend on the system under study. Physical and

chemical intuition can be used to specify some of the parameters, such as the

minimum interatomic distance constraint, but there exists no clear way to determine

many of the others without performing enough searches to obtain reliable statistics.

Many authors arbitrarily choose how much each variation contributes to the next

generation [32–34]. Lonie et al. performed thousands of searches for the structure

of TiO2 using empirical potentials to determine the best set of parameters for their

algorithm [31]. They found that the relative frequency of the different variations did

not significantly affect the success rate of the algorithm. However, the parameters

associated with each variation did. For example, the lattice mutation variation was

found to produce more duplicate structures when the magnitude of the mutation was

small. This is likely to be due to structures relaxing back to their previous local

minima when only slightly perturbed.

There is an important distinction between the relative frequency with which a given

variation is called by the algorithm and the actual proportion of organisms in the next

generation that are produced by that variation. The difference arises because not all the

variations have the same likelihood of creating viable offspring. For example, mating

is more likely to give good offspring structures than mutation of atomic positions

because the latter will more frequently produce offspring that violate the minimum

interatomic distance constraint. For this reason, the researcher’s intentionmay be more

clearly communicated if the proportion of offspring created by each variation is

specified rather than the frequency that each variation is called by the algorithm.

Sometimes a situation arises in which it is not possible for one of the variations

to produce a viable offspring organism. This could happen, for example, if the

variation increases the size of the structures in the system, but all the potential

parent organisms are already close to the maximum allowed cell size. In this case,

the search will stop unless there is some way for the algorithm to get around the

user-specified requirement that a certain percentage of the offspring come from this

variation. Setting an upper limit on the number of failed attempts per variation is

one way to achieve this [26, 27].
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2.13 Convergence Criteria: Have We Found
the Global Minimum?

When searching for an unknown structure, there is no known criterion that guarantees

that the best structure encountered by the evolutionary algorithm is in fact the global

minimum. One common technique to analyze the success rate of a heuristic search

algorithm was given by Hartke [46]. In this method, many independent structure

searches are performed on the same system, using the same set of parameters for the

algorithm. For each search the energy of the best structure in each generation is

recorded. These values are then used to create a plot of the energy vs generation

number (or the total number of energy evaluations) that contains three curves: the

energy of the highest-energy best structure, the energy of the lowest-energy best

structure, and the average energy of the best structures. One shortcoming of the

Hartke plot is that the lowest and highest best energies encountered are outliers,

and in practice they depend strongly on the choice of the number of independent

structure searches.

Tipton et al. employs a statistically more relevant approach to quantifying an

EA’s performance in which the median, the 10th percentile, and the 90th percentile

energies of the best structures are plotted [27]. The 10th and 90th percentiles offer a

better characterization of the distribution of results and are less susceptible to

outliers and the number of independent structure searches performed to characterize

the efficiency of the algorithm.

Figure 6 shows an example of a performance distribution plot for Zr2Cu2Al that

was obtained by performing 100 independent runs of an EA with an embedded atom

model potential [27]. These plots provide insight into the expected performance of

the algorithm for the given material system and parameter settings and enable

statistical comparisons of the performance of different methodologies or parame-

terizations of an EA. Of course, the strength of these conclusions depends on how

many searches were used to construct the performance distribution plot, and the

algorithm must be tested on systems with known ground state structures to be

certain when the search was successful.

Lonie et al. showed that a decaying exponential fits the average-best energy

curve of a Hartke plot well for a system with a known ground state structure [31].

The halflife of the exponential fit provides a measure of how fast the algorithm

converges and can be used to determine a stopping criterion for the search.

However, not all of the searches find the global minimum, so allowing a search to

run for many halflives still does not guarantee that the global minimum will be

found, but it does increase confidence in the result.

A more common approach is to stop the search after a user-specified number of

generations has elapsed without improvement of the best organism [26, 27, 30, 31].

Stopping once an allocated amount of computational resources has been expended

is a popular alternative. Bahmann et al. have determined convergence when

population diversity falls below a certain threshold or when all the organisms

have very similar energies [30].
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Although most authors use one of the fairly simple convergence criteria

mentioned above, a quantitative statistical approach has been proposed by

Venkatesh et al. [14]. Using Bayesian analysis, they determined the distribution

of local minima based on the number found by a random search. This distribution

was then used to calculate how many attempts would be required to find the global

minimum with a specified probability.

3 Phase Diagram Searching

Even when one can say with a reasonable degree of confidence that the evolutionary

algorithm has converged to the global minimum of the potential energy landscape,

the result might still not represent the lowest energy structure that would be observed

in nature. Skepticism is justified for several reasons [47]. First, as discussed in

Sect. 2.8, unless the number of atoms in the cell is correctly guessed or allowed to

vary, the EA cannot find the global minimum. Second, the structure identified as the

global minimum might not be mechanically or dynamically stable, which would be

reflected in energy-lowering imaginary phonon modes for the proposed global

minimum crystal structure. Third, the reported global minimum might actually

represent a metastable phase that decomposes into two or more structures with

different stoichiometries. To determine whether this is the case, a phase diagram

search must be performed. In addition to predicting the decomposition of structures

into phases of other stoichiometries, phase diagrams are of great interest for many

practical applications.
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Fig. 6 Performance distribution plot for 100 structure searches at fixed composition for Zr2Cu2Al

using an embedded atom model potential [27]. The energy of the 90th percentile best structure is

shown in red, the tenth percentile best structure in blue, and the median best structure in black
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In order to perform a phase diagram search, we make use of the convex hull

construction [9]. The formation energies of all structures with respect to the

elemental constituents are plotted vs the composition. To determine the elemental

references, one can either refer to the literature or perform preliminary searches.

The smallest convex surface bounding these points is the convex hull, and the

lowest energy facet for each composition is of physical interest. Thus, the convex

hull is a graphical representation of the lowest energy a system can attain at each

composition, and the points that lie on the convex hull correspond to stable

structures. Figure 7 is an example of a convex hull for the Li–Si binary system [48].

Two approaches have been used to construct the convex hull. The first is to

perform fixed-stoichiometry searches at many compositions [9, 50]. The lowest

energy structure found in each search is then placed on an energy vs composition

plot and the convex hull is constructed. However, this method is computationally

expensive because it requires many separate searches to adequately sample the

composition space [27].

The second approach entails modifying the evolutionary algorithm to search

over composition space in the course of a single run. This requires two changes to

the standard algorithm. The first is that the stoichiometry of structures the algorithm

considers must be allowed to vary. This can be achieved simply by giving the initial

population random stoichiometries and removing stoichiometry constraints on

offspring structures [49]. The second modification involves the objective function.

The algorithm constructs a current convex hull for each generation of structures,

and a structure’s objective function is defined as its distance from the current

convex hull [26, 27, 49]. In this way, structures that lie on the current convex hull
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Fig. 7 A phase diagram search of the Li–Si binary system by Tipton et al. [48] using the method

of Trimarchi et al. [49] showed that a search for relatively small unit cell structures could

approximate the structural and energetic characteristics of the known very large experimental

structures and thus be used to predict the voltage characteristics of a Li–Si battery anode. The

search also identified a previously unknown member of the low-temperature phase diagram with

composition Li5Si2
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have the highest fitness, and those above the convex hull have lower fitnesses.

Selection then acts on this value in the standard way described in Sect. 2.4. As the

search progresses, the true convex hull of the system is approached.

As discussed in Sect. 2.8, the global minimum cannot be found if the cell does

not contain an integer multiple of the correct number of atoms. Since the structures

lying on the convex hull often do not contain the same numbers of atoms, allowing

the number of atoms to vary (Sect. 2.8) during the phase diagram search helps the

algorithm find the correct convex hull. An alternative approach is to perform

several composition searches with different, fixed system sizes. Each search

generates a convex hull, and these hulls can be overlaid to obtain the overall lowest

convex hull [49]. It should also be noted that the stoichiometries accessible to the

algorithm are constrained by the number of atoms in the cell. For example, a cell

containing four atoms in a binary system provides the algorithm with only five

possible compositions (0, 25, 50, 75, and 100% A or B). The use of larger system

sizes may be necessary for the algorithm to find the correct convex hull.

Another difficulty with phase diagram searches is inadequate sampling of the

entire composition range. Mating between parents with different stoichiometries

tends to produce offspring structures of intermediate composition. Because of this,

over time the population as a whole may drift toward the middle region of

the composition range, making it difficult to sufficiently sample more extreme

compositions. Two solutions to this problem have been proposed [26, 27]. The first

is to modify the selection criteria in such a way that mating between parents with

similar compositions is encouraged. The second is to divide the composition range

into sections and perform separate searches over each section. Agglomerating the

results from all the sections gives the overall convex hull.

4 Energy Calculations and Local Relaxation

The potential energy landscape over which an evolutionary algorithm searches is

defined by the code used for the energy calculations. These energy codes approximate

the true potential energy landscape of the system, so the global minimum found by an

EA will only represent the true global minimum of the system insofar as the

approximate Hamiltonian accurately represents the physics of the system.

As discussed in Sect. 1.1, the potential energy surface is divided into basins of

attraction by the local structure optimization or relaxation available in most energy

codes (see Fig. 1). In order to find the global minimum, we must only sample a

structure that resides in its basin of attraction, and the local optimizer will do the

rest. This tremendously reduces the effective size of the space that must be

searched; a relatively sparse sampling of a region can identify most of the local

minima [7]. Local optimization is therefore crucial to the success of the search.

Although the method depends on the energy code used, the local optimization

problem is relatively well understood and its solutions are generally stable.
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Glass et al. observed that the energies of a relaxed and unrelaxed structure are

only weakly correlated [32]. This implies that the energy of an unrelaxed structure

is not a reliable indicator of how close that structure is to a minimum in the potential

energy landscape. Although omitting local optimization is computationally

cheaper, an evolutionary search performed this way is unlikely to be successful.

Woodley et al. compared the performance of an evolutionary algorithm with and

without local relaxation and found that locally relaxing every structure greatly

improved the efficiency and success rate of the algorithm [51].

Both empirical and ab initio energy codes have successfully been used in

evolutionary algorithms to perform energy calculations and local relaxations. Due

to their approximate nature, empirical potential energy landscapes often contain

unphysical minima [52]. In addition, the cut-off distances imposed in many

interatomic potentials leave discontinuities in the energy landscape, which can

impede local relaxation. Although they mimic the true potential energy landscape

more accurately than empirical potentials, density functional theory (DFT) calcula-

tions are also capable of misguiding the search if care is not taken. Pickard

et al. found that insufficiently dense k-point sampling can lead to false minima, and

for calculations at high pressures, pseudopotentials with small enough core radii must

be used to give accurate results [7].

Many EA implementations are interfaced with multiple energy codes, and more

than one type of energy calculation may even be used in a single search.

Ji et al. employed both empirical potentials and DFT calculations when searching

for structures of ice at high pressures [53]. Lennard-Jones potentials were used for

most energy calculations, but ab initio calculations were performed periodically

and the parameters of the Lennard-Jones potentials were fitted to the DFT results. In

this way, the empirical potential improved as the search progressed, and fewer

computational resources were consumed than if ab initio methods alone had

been used.

5 Summary of Methods

Tables 1 and 2 list the salient details of several implementations of evolutionary

algorithms for structure prediction. The codes listed in Table 1 are production codes

available to other users; the codes in Table 2 are research codes. In the following we

summarize some of the distinguishing features of these evolutionary algorithms.

The Genetic Algorithm for Structure Prediction (GASP) is interfaced with VASP,

GULP, LAMMPS, andMOPAC and has phase diagram searching capability [26, 27].

In addition, GASP can perform searches with a variable number of atoms in the cell,

and it implements a highly tunable probability distribution for selecting organisms for

mutation, mating, and promotion. The Open-Source Evolutionary Algorithm for

Crystal Structure Prediction (XTALOPT) is interfaced with VASP, PWSCF, and

GULP. It incorporates a unique ripple mutation, as well as hybrid mutations. It does

not use a generational scheme but rather allows offspring structures to act as parents
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as soon as they are created [31]. The Universal Structure Predictor: Evolutionary

Xtallography (USPEX) code is interfaced with VASP, SIESTA, PWSCF, GULP,

DMACRYS, and CP2K. It incorporates a unique order parameter, both for cells and

individual atoms, that is used to help guide the search [32, 40]. The Evolutionary

Algorithm for Crystal Structure Prediction (EVO) is interfaced with PWSCF and

GULP. It applies an age limit to structures encountered in the search, and it also

employs a mating operation that is different from the cut-and-splice technique used in

most other evolutionary structure searches [30]. Finally, the Module for Ab Initio

Structure Evolution (MAISE) is interfaced with VASP. Both planar and periodic

slices can be used during mating, and it has the option to perform mating and

mutation in a single variation [54].

Trimarchi et al. developed an evolutionary algorithm for structure prediction

that is interfaced with VASP [33]. They later extended the algorithm to include

phase diagram searching [49]. Abraham et al. designed an evolutionary algorithm

with several unique features, including periodic slicing during the mating operation

and mutation of atomic positions only after mating [38]. The algorithm also accepts

offspring structures with different numbers of atoms than the parents. It is

interfaced with CASTEP. The evolutionary algorithm of Ji et al. is interfaced

with VASP, and it constrains the structures it considers to a constant volume

Table 2 Comparison of the methods implemented into evolutionary algorithms in various

research codes

Authors Ji et al. [34]

Trimarchi

et al. [33]

Bush

et al. [2]

Abraham

et al. [38]

Selection strategy Elitist Not

specified

Elitist Roulette wheel,

elitist

Mutation of lattice

vectors

No Yes No No

Mutation of atomic

positions

No Yes Yes Yes

Permutation of atomic

positions

Yes Yes No No

Promotion Yes Yes Yes Yes

Volume scaling No No No No

Number of atoms in the cell Fixed Fixed Fixed Variable

Cell reduction No No No No

Diversity protection None None None None

Phase diagram searching No Yes No No

Energy codes VASP VASP GULP CASTEP

Unique features Cells

constrained to

constant

volume

Surrogate

objective

function

Periodic

slicing,

mutation

only

after mating
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[34]. Bush et al. developed an evolutionary algorithm that incorporates a surrogate

objective function [2].

6 Applications

Evolutionary algorithms have been used to solve the structures of many types of

systems including molecules, clusters, surfaces, nanowires, and nanoporous materials

[39, 55–57]. Here we focus on applications of EAs to bulk, 3D periodic systems.

Within this constraint, we have made an effort to provide a comprehensive review of

prior applications. We grouped the application into six categories based on the type of

material studied: pure elements, hydrogen-containing compounds, intermetallics,

minerals, molecular solids, and other inorganic compounds. Tables 3, 4, 5, 6, 7,

and 8 correspond to these categories and list the applications of the method. For each

study, we indicate the system studied, the number of atoms in the configuration space

searched over, the energy code used, and the lead author.

6.1 Elemental Solids

Table 3 describes searches for elemental solids. Some elemental phase diagrams are

still not fully characterized, especially under extreme conditions such as high

pressure. Several elements have been predicted to display unusual properties at

high pressure, such as superconductivity. Ma and Oganov studied several different

elements under pressure. They found a new phase of boron with 28 atoms in the unit

cell that is predicted to be stable in the pressure range 19–89 GPa [58]. A search of

carbon under high pressures led to the prediction that the bc8 structure is more

stable than diamond above 1 TPa [25]. Oganov et al. predict several new

superconducting phases of calcium at pressures up to 120 GPa [61]. A study of

hydrogen at pressures up to 600 GPa predicted that it remained a molecular solid

throughout this pressure range [25]. The interesting case of hydrogen under

pressure will be further described below in the discussion of hydrogen-containing

compounds. Ma et al. predict that potassium and rubidium follow the same

sequence of phase transitions under pressure (40–300 GPa) observed experimen-

tally for cesium, but predict a new cubic phase of lithium above 300 GPa [63]. Ma

et al. also studied nitrogen under pressure, predicting new polymeric insulating

phases above 188 GPa, and studied sodium at pressures up to 1 TPa, predicting a

new optically transparent, insulating phase above 320 GPa [65]. They have also

reported a monoclinic, metallic, molecular phase of oxygen in the range of

100–250 GPa whose calculated XRD diffraction pattern is in agreement with

experiment [66].

Bi et al. searched for phases of europium at pressures up to 100 GPa and

predicted several nearly degenerate structures in the range 16–45 GPa, which
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may help explain the mixed phase structure observed experimentally in this

pressure regime [62] and the occurrence of superconductivity and magnetism in

these phases [109]. In a novel application of evolutionary algorithms, Park

et al. used an EA to verify that a new modified embedded atom potential for

molybdenum accurately reproduced the energy landscape of molybdenum [52].

Table 3 Application of evolutionary algorithms to single element systems

Element

Pressure

(GPa) Number of atoms

Number of

atoms References

Al 0 4, 8, 12 PWSCF Bahmann

et al. [30]

B 0,100,300 2, 3, 4, 6, 8, 9, 16, 12, 24, 26, 28,

30, 32

VASP Oganov et al. [58]

0 24, 25, 26, 27, 28, 29, 30, 31, 32 VASP Ji et al. [34]

Ba 0–300 Variable, up to 15 VASP Taillon et al. [59]

C 10–100 2, 4, 6, 8 VASP Li et al. [60]

0 Not specified CASTEP Abraham

et al. [38]

0 8, others tried PWSCF Bahmann

et al. [30]

0–2,000 8 VASP Oganov et al. [25]

Ca 20–600 3, 4, 6, 8, 9, 12, 16 VASP Oganov et al. [61]

Cl 100 8 VASP Oganov et al. [25]

Eu 0–90 Variable, up to 30 VASP Bi et al. [62]

F 50, 100 8 VASP Oganov et al. [25]

Fe 350 8 VASP Oganov et al. [25]

Ga 0 8 PWSCF Bahmann

et al. [30]

H Up to 600 2, 3, 4, 6, 8, 12, 16 VASP Oganov et al. [25]

In 0 4 PWSCF Bahmann

et al. [30]

K 40–300 4, 6, 8, 12, 16 VASP Ma et al. [63]

Li 30–1,000 4, 6, 8, 12, 16, 24 VASP Ma et al. [63]

Mo 0 Variable, up to 40 LAMMPS Park et al. [52]

N 100–350 8, 12, 16, 32 VASP Ma et al. [64]

100 6, 8, 12, 16 VASP Oganov et al. [25]

Na 0–1000 Not specified VASP Ma et al. [65]

O 100–250 4, 8 VASP Ma et al. [66]

25, 130, 250 4, 6, 8, 12, 16 VASP Oganov et al. [25]

Rb 40–200 4, 6, 8, 12 VASP Ma et al. [63]

S 12 3, 4, 6, 8, 9, 12 VASP Oganov et al. [25]

Si 0 8 VASP Trimarchi

et al. [33]

10, 14, 20 8 VASP Oganov et al. [25]

Tl 0 4 PWSCF Bahmann

et al. [30]

Xe 200, 1,000 8 VASP Oganov et al. [25]
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6.2 Hydrogen-Containing Compounds

Table 4 summarizes EA structure searches performed on hydrogen-containing

compounds. Ashcroft suggested in 1968 that hydrogen could become a high-

temperature superconductor under pressure [110] and in 2006 that doping hydrogen

to form chemically precompressed hydrogen-rich materials could be a potential

route to reduce the pressure required for superconductivity [111].

Hooper, Lonie, and Zurek have performed several studies on polyhydrides of

alkali and alkaline earth metals under pressure. A metallic phase of LiH6

Table 4 Application of evolutionary algorithms to hydrogen-containing compounds

Compound

Pressure

(GPa)

Formula units per

cell Energy code References

LimH, m ¼ 2 � 9 60, 80, 100 2, 4 VASP Hooper et al. [67]

LiHn, n ¼ 2 � 8 0–300 0–300 VASP Zurek et al. [50]

NaHn, n ¼ 6 � 12 100, 300 2, 3, 4 VASP Baettig et al. [68]

KHn, n ¼ 2–12 10, 100, 250 2, 4 VASP Hooper et al. [69]

RbHn, n ¼ 2–14 2–250 2 VASP Hooper et al. [70]

CsHn, n ¼ 2–9;16 30–200 2, 3, 4 VASP Shamp et al. [71]

BeHn, n ¼ 2–5 50, 150, 200 2, 4 VASP Hooper et al. [72]

MgHn, n ¼ 2–16 0–250 2, 3, 4, 5, 6, 8 VASP Lonie et al. [73]

BaHn, n ¼ 2–13 50–200 2, 4 VASP Hooper et al. [72]

WHn, n ¼ 1–6;8 25, 150 1, 2, 3, 4 VASP Labet et al. [74]

CH4 20–800 2, 3, 4 VASP Gao et al. [75]

11 Not specified VASP Zhu et al. [29]

SiH4 40–300 1, 2, 3, 4, 6 VASP Martinez et al. [76]

GeH4 50–250 1, 2, 3, 4 VASP Gao et al. [77]

SnH4 30–250 1, 2, 3, 4 VASP Gao et al. [78]

PbH4 0–500 2, 4 VASP Zaleski-Ejgierd

et al. [79]

NaH 0, 29.3 4 PWSCF,

VASP

Lonie et al. [31]

CH 0–300 Fixed, up to 8 VASP Wen et al. [80]

PtHx,

x ¼ 1

4
,
1

3
,
1

2
, 1, 2, 3, 4

120 6, 10, 12 VASP Zhou et al. [81]

FeHx

x ¼ 1

4
,
1

3
,
1

2
, 1, 2, 3, 4

300, 400 2, 3, 4, 6, 8 VASP Bazhanova et al. [82]

LiBeH3 50–550 2, 4 VASP Hu et al. [83]

LiNH2 0–360 2, 4 VASP Prasad et al. [84]

NaAlH4 0–20 1, 2 VASP Zhou et al. [85]

NaPtH2 0 Not specified VASP Wen et al. [86]

NaNH2 0, 10, 20 1, 2, 3, 4 VASP Zhong et al. [87]

SrFeH4 0 Not specified VASP Wen et al. [86]

Mg(BH4)2 0–20 2, 4 VASP Zhou et al. [88]
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was predicted to be stable above 110 GPa [50], and a stable phase of NaH9 was

predicted to metallize at 250 GPa [68]. Stable rubidium polyhydride phases

were predicted to metallize at pressures above 200 GPa [70]. A stable,

superconducting phase of MgH12 was identified under pressure, with a predicted

Table 5 Application of evolutionary algorithms to intermetallic compounds

Compound Pressure (GPa) Formula units per cell Energy code References

Al–Sc system 0 8 atoms VASP Trimarchi et al. [89]

0 6, 8 atoms VASP Trimarchi et al. [49]

0 8 atoms VASP Ji et al. [34]

Al13K 0 1 VASP Oganov et al. [37]

Au2Pd 0 4 VASP Trimarchi et al. [33]

0 4 VASP Trimarchi et al. [89]

CaLi2 10–250 1, 2, 3, 4, 6, 8 VASP Xie et al. [90]

CdPt3 0 2 VASP Trimarchi et al. [89]

CuPd 0 4 VASP Trimarchi et al. [89]

Na–Ca system 50 Not specified VASP Taillon et al. [59]

PdTi3 0 2 VASP Trimarchi et al. [89]

Table 6 Application of evolutionary algorithms to minerals

Mineral Pressure (GPa)

Formula units per

cell

Energy

code References

Al2O3 300 4 VASP Oganov et al. [25]

Al2SiO5 10 4 GULP Zhu et al. [91]

CaCO3 50, 80, 150 1, 2, 4 VASP Oganov et al. [25]

FeCx,

x ¼ 1

4
,
1

3
,
1

2
, 1, 2,

7

3
, 3, 4

300, 400 2, 3, 4, 6, 8 VASP Bazhanova

et al. [82]

FeS 56, 120, 400 2, 3, 4, 6, 8 VASP Ono et al. [92]

FeSix,

x ¼ 1

3
,
1

2
, 1,

5

3
, 2, 3

300, 400 8, 9, 12, 16, 18,

24 atoms

VASP Zhang et al. [93]

MgCO3 110, 150 1, 2, 4, 6 VASP Oganov

et al. [25, 37]

Mg-O system Up to 850 Up to 20 atoms VASP Zhu et al. [94]

MgSiO3 250 32 GULP Zhu et al. [91]

80, 120, 1,000 4, 8 VASP Oganov et al. [25]

Na-Cl system 0–250 Up to 16 atoms VASP Zhang et al. [95]

SiO2 500, 2,000 1–8 PWSCF Wu et al. [96]

0 3 VASP Oganov et al. [25]

10 24 GULP Zhu et al. [91]

TiO2 0 2, 4, 8 GULP Woodley

et al. [51]

0 16 GULP Lonie et al. [31]

Not specified 4 VASP Lonie et al. [31]
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Tc of 47–60 K at 140 GPa [73]. Lonie et al. also identified a new phase of BeH2

above 150 GPa, as well as a stable superconducting phase of BaH6, with a Tc of
30–38 K at 100 GPa [72].

Several studies have been performed on the group IV hydrides ranging from

methane to plumbane. Gao et al. searched for methane structures under pressure and

predicted that it dissociates into ethane and hydrogen at 95 GPa, butane and

hydrogen at 158 GPa, and finally carbon and hydrogen at 287 GPa [75]. Martinez

et al. looked at silane under pressure and predicted two new phases, one stable from

25 to 50 GPa, and the other from 220 to 250 GPa. The latter was predicted to be

superconducting, with a Tc of 16 K at 220 GPa [76]. Gao et al. searched for germane

and stannane under pressure. Germane was predicted to be stable with respect to

decomposition into pure germanium and hydrogen above 196 GPa, and it was

predicted to be superconducting, with a Tc of 64 K at 220 GPa [77]. Two stannane

isomers were predicted – one stable from 96 to 180 GPa, and the other occurring

above 180 GPa. Both phases were calculated to be superconductors [78]. Zaleski

et al. performed evolutionary structure searches for plumbane (PbH4) under

pressure and predicted that it forms a stable non-molecular solid at pressures

greater than 132 GPa [79]. Wen et al. predicted five low energy three-dimensional

structures of graphane in the pressure range 0–300 GPa, and each was either

semiconducting or insulating [80].

Zhou et al. investigated platinum hydrides under pressure and predicted a

superconducting hexagonal phase of PtH to be stable above 113 GPa [81].

Hu et al. searched for LiBeH3 at pressures up to 530 GPa and predicted two new

insulating phases [83]. Zhou et al. found two new tetragonal structures of Mg(BH4)2
under pressure whose densities, bulk moduli, and XRD patterns match experimen-

tally measured values [88].

Table 7 Application of evolutionary algorithms to molecular solids

Compound

Pressure

(GPa)

Formula units per

cell Energy code References

Benzene C6H6 0–300 Not specified VASP Wen et al. [80]

0, 5, 10, 25 4 VASP Zhu et al. [29]

Ice H2O 1,000–4,000 8 LAMMPS,

PWSCF

Ji et al. [53]

0 4 VASP Zhu et al. [29]

0 4 VASP Oganov

et al. [25]

CO2 50, 100, 150 1, 2, 3, 4, 6, 8 VASP Oganov

et al. [37]

12–20 2 VASP Zhu et al. [29]

50 1, 2, 3, 4, 6, 8 VASP Oganov

et al. [25]

NH3 5, 10, 25, 50 4 VASP Zhu et al. [29]

Glycine 1, 2 2, 3, 4 VASP Zhu et al. [29]

Butane-1,4- diammonium

dibromide

0 2 VASP Zhu et al. [29]

Urea CO(NH2)2 0 2 VASP Oganov

et al. [25]
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6.3 Intermetallic Compounds

Table 5 summarizes searches for intermetallic compounds. Trimarchi et al. have

studied many intermetallics. Their algorithm identified the correct lattice of Au2Pd,

which is known to be fcc, but it failed to find the lowest energy atomic configuration

[33] because the system exhibits several nearly degenerate structures. In another

study by these authors, a new phase of IrN2 was discovered [89]. They performed a

phase diagram search on the Al–Sc system, which exhibit several crystal structures

across the composition range, and successfully identified the experimentally known

ground state phases [49]. Xie et al. discovered two new superconducting phases of

CaLi2, one stable from 35 to 54 GPa and the other stable from 54 to 105 GPa.

Furthermore, they predict that CaLi2 is unstable with respect to dissociation into the

constituents at pressures greater than 105 GPa [90].

Table 8 Application of evolutionary algorithms to various inorganic compounds

Compound

Pressure

(GPa)

Formula units per

cell

Energy

code References

Al12C 0 1 VASP Oganov et al. [37]

BeB2, BeB3, BeB4,

BeB2.75

0, 160 4, 8 VASP Hermann et al. [97]

CsI 5–300 2, 3, 4, 8 VASP Xu et al. [98]

Fe-B system 0 Up to 15 atoms VASP Kolmogorov [54]

GaAs 0 4 VASP Trimarchi et al. [33]

Li-B system 0–320 1, 2 VASP Hermann et al. [99,

100]

Li-Si system 0 Variable, up to

20 atoms

VASP Tipton et al. [48]

MgB2 5–300 1, 2, 3, 4, 6 VASP Ma et al. [101]

SiC 0 4 VASP Trimarchi et al. [33]

WN2 0, 60 1, 2, 3, 4 VASP Wang et al. [102]

XeF2 0–200 Up to 4 VASP Kurzydlowski

et al. [103]

Xe-O System 5–220 Up to 36 atoms VASP Zhu et al. [104]

ATiO2, A═Ba, Be, Ca,
Mg, Sr

0 Not specified VASP Wen et al. [105]

NaPtF2 0 Not specified VASP Wen et al. [86, 105]

SrFeC4 0 Not specified VASP Wen et al. [86, 105]

CaRhO3 Not

specified

6 VASP Shirako et al. [106]

Li3RuO4 0 Not specified GULP Bush et al. [2]

SrTiO3 0 10 GULP Lonie et al. [31]

BC2N 30, 100 1, 2, 4 VASP Li et al. [107]

LiBeB 30, 100 Not specified VASP Hermann et al. [108]

Si2N2O 0 2 VASP Oganov et al. [25]

SrSiN2 0 4 VASP Oganov et al. [25]
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Sometimes the underlying lattices for these systems are known empirically, and

the search reduces to finding the lowest energy arrangement of atoms on the lattice.

For these cases, an efficient method to search over permutations of atomic positions

is crucial. D’Avezac et al. employed a virtual atom technique, in which the species

type of an atom is “relaxed” to determine if exchanging atom types at that site

would likely lead to a lower energy configuration [112]. In contrast to real space

mating operations, these authors also employed a reciprocal space mating scheme

[112]. With this technique, the structure factors of two parent organisms are

combined to form the offspring organism’s structure factor, which is then

transformed to real space, giving the offspring organism. A cluster expansion fitted

to DFT calculations was leveraged to perform energy calculations.

6.4 Minerals

Table 6 contains a summary of EA searches for the structures of several minerals.

Many of these studies were carried out at high pressure in order to simulate the

conditions in planetary interiors. Oganov et al. found two new phases of MgCO3

under pressure. In addition, a new phase of CaCO3 was reported to be stable above

137 GPa [37], and the structure of the post-aragonite phase of CaCO3, stable from

42 to 137 GPa, was solved [16]. Iron carbides of various compositions were

explored under pressure, and it was predicted that the cementite structure of Fe3C

is unstable at pressures above 310 GPa, indicating that this phase does not exist in

the Earth’s inner core [82]. Zhang et al. searched for iron silicide structures

under pressure and predicted that only FeSi with a cesium chloride structure is

stable at pressures greater than 20 GPa. Ono et al. investigated the structure of FeS

under pressure and reported several new phases up to 135 GPa [92]. Wu

et al. predicted a new low temperature post-perovskite phase of SiO2 with the

Fe2P-type structure [96].

6.5 Molecular Crystals

Table 7 summarizes searches for molecular crystals. Applications for molecular

solids include high-energy materials, pharmaceuticals, pigments, and metal-organic

frameworks [113–115]. Molecular solids are not always in their thermodynamic

ground states. Instead, the system is kinetically trapped and the molecular units are

maintained. Zhu et al. made several changes to the standard EA to facilitate

searching for molecular crystals, and they applied their algorithm to search for

structures of ice, methane, ammonia, carbon dioxide, benzene, glycine, and butane-

1,4-diammonium dibromide. Experimentally known structures were recovered by

the algorithm [29]. Ji et al. searched for ice at terapascal pressures and predicted

three new phases [53]. Lennard-Jones potentials were used to model the system, but
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ab initio calculations were periodically performed and the results used to fit the

empirical potentials. Hermann et al. performed evolutionary searches for high-

pressure phases of ice and predicted that ice becomes metallic at 4.8 TPa

[116]. Oganov et al. predicted that the β-cristobalite structure is the most stable

for CO2 between 19 and 150 GPa [37].

6.6 Inorganic Compounds

Table 8 summarizes searches for inorganic compounds. Many of these studies

aimed to clarify regions of various phase diagrams. Others sought to identify phases

with desirable properties, such as superconductivity.

Tipton et al. applied an evolutionary algorithm to investigate Li-Si anode

battery materials and carried out a phase diagram search on the Li–Si system. They

discovered a new stable phase with composition Li5Si2 [48]. Hermann et al. searched

for structures in the Li–B system under pressure and found several stable structures.

LiB was found to become increasingly stable as the pressure was increased beyond

300 GPa [99, 100]. Hermann et al. also predicted a new stable phase of LiBeB

at ambient pressure and several additional phases under pressures up to 320 GPa

[108]. Kolmogorov et al. searched for Fe–B structures at several different composi-

tions and reported new phases with compositions FeB4 and FeB2.

Xu et al. discovered a new orthorhombic phase of CsI that is predicted to be

stable from 42 GPa up to at least 300 GPa [98]. This material is predicted to

metallize at 100 GPa and to become superconducting at 180 GPa. Zhu et al. searched

for xenon oxides under pressure and found three stable compounds: XeO above

83 GPa, XeO2 above 102 GPa, and XeO3 above 114 GPa [104]. Bush et al. solved

the structure of Li3RuO4 at zero pressure. They used an alternative fitness function

in their EA and only calculated energies at the end of the search [2].

Li et al. resolved the structure of superhard BC2N and found it to have a rhombo-

hedral lattice [107].

7 Conclusions

Crystal structure prediction is a long-standing challenge in the physical sciences. If

we frame the structure prediction problem as one of global optimization, robust and

accurate free energy methods such as those described in Sect. 4 can be used as

objective functions, which can be minimized to find the thermodynamically stable

structure. This minimization problem has been effectively addressed in recent years

using evolutionary algorithms. However, the EA is less of a particular algorithm

and more of a general problem solving strategy. Thus, many methodological and

design choices are possible when creating an EA for structure prediction, and

innovation in the field is ongoing.
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The method generally begins with a broad sampling of the solution phase space.

Information gained from early calculations is used to try to guess new low energy

candidate structures. The ability to make such inferences relies on some characteri-

zation of or knowledge about the structure of the energy landscape, as described in

Sect. 1.1. In the evolutionary approach, we leverage the power of biological evolution

to search for low energy structures. Parent structures that are good solutions to the

problem are varied and combined in such a way so as to pass down their traits to

children. In this way, favorable properties are propagated in the population while

unfavorable ones tend to die out. The parent selection and variation operators are very

important to the success of this approach, and the most common and successful

variation operators take advantage of the partial spatial separability of the energy

minimization problem. These and other methodological issues were discussed in

Sect. 2.

In Sect. 6 we reviewed many applications of the method to systems of funda-

mental scientific as well as technological interest. As the field has begun to mature,

researchers have had many successes in practical applications. Several publicly

available software packages for performing these calculations exist and are

described in Sect. 5. However, evolutionary algorithms are not yet a commodity

method, and an understanding of the methodology remains helpful for obtaining

best results.

A number of challenges remain. Since ab initio energy calculations are the most

expensive part of the method, reducing the number of these necessary to obtain high

quality predictions is the focus of methodological developments. The energy and

relaxed structure are a small subset of the information provided by ab initio

calculations, so the opportunity exists to improve results by making better use of

the full set of data. Increasing the efficiency of the search through solution repre-

sentation and variation operators is also a promising avenue of improvement.

Searching over structures’ compositional degrees of freedom remains inefficient

since there is no local relaxation of these parameters, and the energy landscape has

little structure with respect to them. This makes prediction of the number of atoms

in the unit cell and phase diagram prediction challenging, as discussed in Sect. 3.

Although they lie beyond the scope of this review and volume, uses of

evolutionary algorithms to predict the atomic structures of other systems, such as

surfaces, 1D and 2D materials, atomic clusters, or molecules, etc., are also

important and active areas of research. A primary goal of computational materials

science is to find materials with desirable properties, and structure prediction is

a necessary early step in first principles prediction of materials’ properties.

Evolutionary algorithms have turned out to be a useful global optimization method

for addressing the structure prediction problem.
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92. Ono S, Oganov AR, Brodholt JP, Vočadlo L, Wood IG, Lyakhov A, Glass CW, Côté AS,
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