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Dispersion Corrected Hartree–Fock and

Density Functional Theory for Organic

Crystal Structure Prediction

Jan Gerit Brandenburg and Stefan Grimme

Abstract We present and evaluate dispersion corrected Hartree–Fock (HF) and

Density Functional Theory (DFT) based quantum chemical methods for organic

crystal structure prediction. The necessity of correcting for missing long-range

electron correlation, also known as van der Waals (vdW) interaction, is pointed out

and some methodological issues such as inclusion of three-body dispersion terms are

discussed. One of the most efficient and widely used methods is the semi-classical

dispersion correction D3. Its applicability for the calculation of sublimation energies

is investigated for the benchmark set X23 consisting of 23 small organic crystals. For

PBE-D3 the mean absolute deviation (MAD) is below the estimated experimental

uncertainty of 1.3 kcal/mol. For two larger π-systems, the equilibrium crystal

geometry is investigated and very good agreement with experimental data is found.

Since these calculations are carried out with huge plane-wave basis sets they are

rather time consuming and routinely applicable only to systems with less than about

200 atoms in the unit cell. Aiming at crystal structure prediction, which involves

screening of many structures, a pre-sorting with faster methods is mandatory. Small,

atom-centered basis sets can speed up the computation significantly but they suffer

greatly from basis set errors. We present the recently developed geometrical counter-

poise correction gCP. It is a fast semi-empirical method which corrects for most of

the inter- and intramolecular basis set superposition error. For HF calculations with

nearly minimal basis sets, we additionally correct for short-range basis incomplete-

ness. We combine all three terms in the HF-3c denoted scheme which performs very

well for the X23 sublimation energies with an MAD of only 1.5 kcal/mol, which is

close to the huge basis set DFT-D3 result.
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Abbreviations

ANCOPT Approximate normal coordinate rational function optimization

program

AO Gaussian atomic orbitals

B3LYP Combination of Becke’s three-parameter hybrid functional B3 and

the correlation functional LYP of Lee, Yang, and Parr

BSE Basis set error

BSIE Basis set incompleteness error

BSSE Basis set superposition error

CN Coordination number

CRYSTAL09 Crystalline orbital program

D3 Third version of a semi-classical first-principles dispersion
correction

DF Density functional

DFT Density Functional Theory

DFT-D3 Density Functional Theory with atom-pairwise and three-body

dispersion correction

gCP Geometrical counterpoise correction

GGA Generalized gradient approximation

HF Hartree–Fock

HF-3c Dispersion corrected Hartree–Fock with semi-empirical basis set

corrections

MAD Mean absolute deviation

MBD Many-body dispersion interaction by Tkatchenko and Scheffler

MD Mean deviation

Me-TBTQ Centro-methyl tribenzotriquinazene

MINIX Combination of polarized minimal basis and SVP basis

PAW Projector augmented plane-wave

PBE Generalized gradient-approximated functional of Perdew, Burke,

and Ernzerhof

RMSD Root mean square deviation

RPA Random phase approximation
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RPBE Revised version of the PBE functional

SAPT Symmetry Adapted Perturbation Theory

SCF Self-consistent field

SD Standard deviation

SIE Self interaction error

SRB Short-range basis incompleteness correction

SVP Polarized split-valence basis set of Ahlrichs

TBTQ Tribenzotriquinazene

TS Tkatchenko and Scheffler dispersion correction

VASP Vienna ab initio simulation package

vdW Van der Waals

VV10 Vydrov and van Voorhis non-local correlation functional

X23 Benchmark set of 23 small organic crystals

XDM Exchange-dipole model of Becke and Johnson

ZPV Zero point vibrational energy

1 Introduction

Aiming at organic crystal structure prediction, two competing requirements for the

utilized theoretical method exist. On the one hand, the calculation of crystal energies

has to be accurate enough to distinguish between different polymorphs. This involves

an accurate account of inter- as well as intramolecular interactions in various

geometrical situations. On the other hand, each single computation (energy including

the corresponding derivatives for geometry optimization or frequency calculation)

has to be fast enough to sample all space groups under consideration (and possibly

different molecular conformations) in a reasonable time [1–5]. Typically, one

presorts the systems with a fast method and investigates the energetically lowest

ones with a more accurate (but more costly) method. For the inclusion of zero point

vibrational energy (ZPVE) contributions a medium quality level is often sufficient.

A corresponding algorithm is sketched in Fig. 1. The generation of the initial structure

(denoted as sample space groups) is an important issue, but will not be discussed in

this chapter. Here we focus on the different electronic structure calculations, denoted

by the quadratic framed steps in Fig. 1. We present dispersion corrected Density

Functional Theory (DFT-D3) as a possible high-quality method with medium

computational cost and dispersion corrected Hartree–Fock (HF) with semi-empirical

basis error corrections (HF-3c) as a faster method with medium quality.

Density Functional Theory (DFT) is the “work horse” for many applications in

chemistry and physics and still an active research field of general interest [6–9]. In

many covalently bound (periodic and non-periodic) systems, DFT provides a very

good compromise between accuracy and computational cost. However, common

generalized gradient approximated (GGA) functionals are not capable of describing

long-range electron correlation, a.k.a. the London dispersion interaction

[10–13]. This dispersion term can be empirically defined as the attractive part of
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the van der Waals-type interaction between atoms and molecules that are not

directly bonded to each other. For the physically correct description of molecular

crystals, dispersion interactions are crucial [14, 15]. In the last decade, several well-

established methods for including dispersion interactions into DFT were developed.

For an overview and reviews of the different approaches, see, e.g., [16–25] and

references therein. Virtual orbital dependent (e.g., random phase approximation,

RPA [26]) and fragment based (e.g., symmetry adapted perturbation theory, SAPT

[27]) methods are not discussed further here because they are currently not

routinely applicable to larger molecular crystals. For the alternative combination

of accurate molecular quantum chemistry calculations for crystal fragments with

force-fields and subsequent periodic extension see, e.g., [28, 29].

Here we focus on the atom-pairwise dispersion correction D3 [30, 31] coupled

with periodic electronic structure theory. The D3 scheme incorporates

non-empirical, chemical environment-dependent dispersion coefficients, and for

dense systems a non-additive Axilrod–Teller–Muto three-body dispersion term. We

present the details of this method in Sect. 2.1. Compared to the self-consistent

Sample Space Groups

Optimize with fast,
medium quality method

→ Electronic energy Eel

2nd derivatives with fast,
medium quality method

→ Zero point vibr. energy EZPV E

Re-Optimize with moderately
fast, high quality method

→ New electronic energy Eel

Most stable structure(s)

Eel < Min{Eel}+Δ

Min{Eel + EZPV E}

Eel + EZPE < Min{Eel + EZPV E}+Δ

Fig. 1 A typical crystal structure prediction algorithm [1]. First, the optimum electronic crystal

energy Eel is calculated with a fast, medium quality method. Second, the more costly second

derivatives for the electronically lowest structures in a certain energy interval (Δ) are calculated to
get the zero point vibrational energy EZPVE. Finally, the electronic energy E

0
el is re-calculated for

the energetically lowest structures in a (different) energy interval (Δ0) with a more accurate

method. The data from step two can be finally used also to estimate thermal and entropic

corrections
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solution of the Kohn–Sham (KS) or HF equations, the calculation of the D3

dispersion energy requires practically no additional computation time. Although

it does not include information about the electron density, it provides good accuracy

with typical deviations for the asymptotic dispersion energy of only 5% [19]. The

accuracy for non-covalent interaction energies with current standard functionals

and D3 is about 5–10%, which is also true for small relative energies [32].

Therefore, it is an ideal tool to fulfill fundamental requirements of crystal structure

prediction. We evaluate the DFT-D3 scheme with huge plane-wave basis sets in

Sect. 2.2 and compare it to competing pairwise-additive methods, which partially

employ electron density information.

Because the calculation of the DFT or HF energy is the computational bottle-

neck, a speed-up of these calculations without losing too much accuracy is highly

desirable. The computational costs mainly depend on the number of utilized single

particle basis functions N with a typical scaling behavior from N2 to N4. The choice

of the type of basis functions is also an important issue. Bulk metals have a strongly

delocalized valence electron density and plane-wave based basis sets are probably

the best choice [33]. In molecular crystals, however, the charge density is more

localized and a typical molecular crystal involves a lot of “vacuum.” For plane-

wave based methods this can result in large and inefficient basis sets. In a recently

studied typical organic system (tribenzotriquinacene, C22H16), up to 1.5 � 105

projector augmented plane-wave (PAW) basis functions must be considered for

reasonable basis set convergence [34]. For this kind of system, atom-centered

Gaussian basis functions as usually employed in molecular quantum chemistry

could be more efficient. However, small atom-centered basis sets strongly suffer

from basis set errors (BSE), especially the basis set superposition error (BSSE)

which leads to overbinding and too high computed weight densities (too small

crystal volumes) in unconstrained optimizations. Because different polymorphs

often show various packings with different densities, correcting for BSSE is

mandatory in our context. In order to get reasonable absolute sublimation energies

and good crystal geometries, these basis set errors must be corrected. A further

problem compared to plane-wave basis sets is the non-orthogonality of atom-

centered basis functions which can lead to near-linear dependencies and bad self-

consistent field (SCF) convergence. We have recently mapped the standard Boys

and Bernardi correction [35], which corrects for the BSSE, onto an atom-pairwise

repulsive potential. It was fitted for a number of typical Gaussian basis sets and

depends otherwise only on the system geometry and is therefore denoted gCP [36].

Analytic gradients are problematic in nearly all other counterpoise schemes, but are

easily obtained for gCP. For the calculation of second derivatives, analytic first

derivatives are particularly crucial. Periodic boundary conditions are included and

the implementation has been tested in [37].We present the gCP scheme here

together with an additional short-range basis (SRB) incompleteness correction in

Sect. 3.1. In Sect. 3.2 the combination of small (almost minimal) basis set DFT

and HF, dispersion correction D3, geometrical counterpoise correction gCP, and

short-range incompleteness correction SRB is evaluated for typical molecular

crystals. The plane-wave, large basis PBE-D3 results are briefly discussed and

used for comparison.
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2 Dispersion Corrected Density Functional Theory

2.1 London Dispersion Correction

At short inter-atomic distances, standard density functionals (DF) describe the

effective electron interaction rather well because of their deep relation to the

corresponding electron density changes. Long-range electron correlation cannot

be accurately described by the local (or semi-local) DFs in inhomogeneous

materials. To describe this van der Waals (vdW)-type interaction, one can include

non-local kernels in the vdW-DFs as pioneered by Langreth and Lundquist [38, 39]

and later improved by Vydrov and van Voorhis (VV10 [25]). For the total

exchange-correlation energy Exc of a system, the following approximation is

employed in all vdW-DF schemes:

Exc¼EGGA
X þ EGGA

C þ ENL
c , (1)

where standard exchange (X) and correlation (C) components (in the semi-local

generalized gradient approximation GGA) are used for the short-range parts and

ENL
c represents the non-local correlation term describing the dispersion energy. In

the vdW-DF framework it takes the form of a double-space integral:

ENL
c ¼ 1

2

ðð
ρ rð ÞΦNL r; r

0
� �

ρ r
0

� �
d3rd3r

0
: (2)

The electron density ρ at positions r and r0 is correlated via the integration kernel
ΦNL(r,r0). It is physically approximated by local approximations to the frequency

dependent dipole polarizability α(r,ω). The VV10 kernel has been successfully

used in various molecular applications [40–43] by us but is not discussed further in

this work.

The famous Casimir–Polder relationship [44] connects the polarizability with

the long-range dispersion energy, which scales as C6 ¼ R6 where R is the distance

between two atoms or molecules. The corresponding dispersion coefficient CAB
6 for

interacting fragments A and B is given by

CAB
6 ¼ 3

π

ð1
0

αA iωð ÞαB iωð Þdω, (3)

where αA(iω) is the averaged dipole polarizability at imaginary frequency ω. In
vdW-DF (but not in DFT-D3) dispersion can be calculated self-consistently and

changes the density in turn. Because this change is normally insignificant [25, 38,

40], ENL
c is typically added non-self-consistently to the SCF-GGA energy. The main

advantage of vdW-DF methods is that dispersion effects are naturally included via

the system electron density. Therefore, they implicitly account for changes in the
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dispersion coefficients due to different “atoms-in-molecules” oxidation states in

a physically sound manner. The disadvantage is the raised computational cost

compared to pure (semi-)local DFs.

By treating the short-range part with DFs and the dispersion interaction with a

semi-classical atom-pairwise correction, one can combine the advantages of both

worlds. Semi-classical models for the dispersion interaction like D3 show very

good accuracy compared to, e.g., the VV10 functional [43, 45] for very little

computational overheads, particularly when analytical gradients are required.

The total energy Etot of a system can be decomposed into the standard,

dispersion-uncorrected DFT/HF electronic energy EDFT/HF and the dispersion

energy Edisp:

Etot ¼ EDFT=HF þ Edisp: (4)

We use our latest first-principles type dispersion correction DFT-D3, where the

dispersion coefficients are non-empirically obtained from a time-dependent, linear

response DFT calculation of αA(iω). The dispersion energy can be split into two-

and three-body contributions Edisp ¼ E(2) + E(3):

E 2ð Þ ¼ � 1

2

X
n¼6, 8

Xatom pairs

A 6¼B

X
T

sn
CAB
n

rB � rA þ Tk k þ f RAB
0

� �n (5)

E 3ð Þ ¼ 1

6

Xatom pairs

A 6¼B

X
T

CABC
9 3cos θacos θbcos θc þ 1ð Þ
r9ABC � 1þ 6 rABC=R0ð Þ � αð Þ : (6)

Here, CAB
n denotes the averaged (isotropic) nth-order dispersion coefficient for

atom pair AB, and RA/B are their Cartesian positions. The real-space summation

over all unit cells is done by considering all translation invariant vectors T inside a

cut-off sphere. The scaling parameter s6 equals unity for the DFs employed here

and ensures the correct limit for large interatomic distances, and s8 is a functional-

dependent scaling factor. The rational Becke and Johnson damping function f(Rab
0 )

is [46]

f Rab
0

� � ¼ a1R
ab
0 þ a2, Rab

0 ¼
ffiffiffiffiffiffiffi
Cab
8

Cab
6

s
: (7)

The dispersion coefficients CAB
6 are computed for molecular systems with the

Casimir–Polder relation (3).We use the concept of fractional coordination numbers

(CN) to distinguish the different hybridization states of atoms in molecules in a

differentiable way. The CN is computed from the coordinates and does not

use information from the electronic wavefunction or density but recovers basic

information about the bonding situation of an atom in a molecule, which has a

dominant influence on the CAB
6 coefficients [30]. The higher order C8 coefficients

are obtained from the well-known relation [47]
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C8 ¼ 3

2
C6

r4
� �
r2h i : (8)

With the recursion relation Ciþ4 ¼ Ci-2
Ciþ2

Ci

� �
and C10 ¼ 49

40

C2
8

C6
, one can in

principle also generate higher orders, but terms above C10 do not improve the

performance of the D3 method. The three parameters s8, a1, and a2 are fitted for

each DF on a benchmark set of small, non-covalently bound complexes. This fitting

is necessary to prevent double counting of dispersion interactions at short range and

to interpolate smoothly between short- and long-range regimes. These parameters

are successfully applied to large molecular complexes and to periodic systems [45,

48]. In the non-additive Axilrod–Teller–Muto three-body contribution (6) [30, 49],

rABC is an average distance in the atom-triples and θa/b/c are the corresponding

angles. The dispersion coefficient CABC
9 describes the interaction between three

virtually interacting dipoles and is approximated from the pairwise coefficients as

CABC
9 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CAB
6 CAC

6 CBC
6

q
: (9)

The applicability of this atom-pairwise dispersion correction with three-body

corrections in dense molecular systems was shown in a number of recent publications

[16, 50, 51].

For early precursors of DFT-D3 also in the framework of HF theory, see

[52–56]. Related to the D3 scheme are approaches that also compute the C6

coefficients specific for each atom (or atom pair) and use a functional form similar

to (5). A system dependency of the dispersion coefficients is employed by all

modern DFT-D variants. We explicitly mention the works of Tkatchenko and

Scheffler [57, 58] (TS. “atom-in-molecules” C6 from scaled atomic volumes),

Sato et al. [59] (use of a local atomic response function), and Becke and Johnson

[46, 60, 61] (XDM utilizes a dipole-exchange hole model). The TS and XDM

methods are used routinely in solid-state applications [62–65].

2.2 Evaluation of Dispersion Corrected DFT

2.2.1 X23 Benchmark Set

A benchmark set for non-covalent interactions in solids consisting of 21 molecular

crystals (dubbed C21) was compiled by Johnson [24]. Two properties for

benchmarking are provided: (1) thermodynamically back-corrected experimental

sublimation energies and (2) geometries from low-temperature X-ray diffraction.

The error of the experimental sublimation energies was estimated to be 1.2 kcal/mol

[66]. Recently, the C21 set was extended and refined by Tkatchenko et al. [67]. The

X23 benchmark set (16 systems from [67] and data for 7 additional systems were

8 J.G. Brandenburg and S. Grimme



obtained from these authors) includes two additional molecular crystals, namely

hexamine and succinic acid. The molecular geometries of the X23 set are shown in

Fig. 2. The thermodynamic back-correction was consistently done at the PBE-TS

level. Semi-anharmonic frequency corrections were estimated by solid state heat

capacity data. Further details of the back-correction scheme are summarized in [67]

The mean absolute deviation (MAD) between both data sets is 0.55 kcal/mol.

Because the X23 data seem to be more consistent, we use these as a reference. If

we take the standard deviation (SD) between both thermodynamic corrections as

statistical error measure, the total uncertainty of the reference values is about

1.3 kcal/mol. In the following, all sublimation energies and their deviations

consistently refer to one molecule (and not the unit cell).

The calculations are carried out with the Vienna Ab-initio Simulation Package

VASP 5.3 [68, 69]. We utilize the GGA functional PBE [70] in combination with a

projector-augmented plane-wave basis set (PAW) [71, 72] with a huge energy

cut-off of 1,000 eV. This corresponds to 200% of the recommended high-precision

cut-off. We sample the Brillouin zone with a Γ-centered k-point grid with four

k-points in each direction, generated via the Monkhorst–Pack scheme [73]. To

simulate isolated molecules in the gas phase, we compute the Γ-point energy of a

single molecule in a large unit cell (minimum distance between separate molecules

of 16 Å, e.g., adamantine is calculated inside a 19 � 19 � 19 � Å3 unit cell). In

order to calculate the sublimation energy, we optimize the single molecule and the

corresponding molecular crystal. The unit cells are kept fixed at the experimental

values. The atomic coordinates are optimized with an extended version of the

approximate normal coordinate rational function optimization program (ANCOPT)

[74] until all forces are below 10�4 Hartree/Bohr. We compute the D3 dispersion

Fig. 2 Geometries of the 23 small organic molecules in the X23 benchmark set for non-covalent

interactions in solids. Hydrogen atoms at carbons are omitted for clarity. Carbons are denoted by

dark gray balls, hydrogens are light gray, oxygens are red, and nitrogens are light blue

Dispersion Corrected Hartree–Fock and Density Functional Theory for Organic. . . 9



energy in the Becke–Johnson damping scheme with a conservative distance cut-off

of 100 Bohr. The three-body dispersion energy is always calculated as a single-

point on the optimized PBED3/1,000 eV structure. The results for X23 are

summarized in Table 1. Figure 3 shows the correlation between experimental

sublimation energies and the calculated values on the PBE/1,000 eV, PBE-D3/

1,000 eV, and PBE-D3/1,000 eV+E(3) levels. The uncorrected functional yields

unreasonable results. Because of the missing dispersion interactions, the attraction

between the molecules is significantly underestimated, which results in too small

sublimation energies. Some systems are not bound at all on the PBE/1,000 eV level.

For PBE-D3 all results are significantly improved. The MAD is exceptionally low

and drops below the estimated experimental error of 1.3 kcal/mol. The mean

deviation of +0.4 kcal/mol indicates a slight overbinding on the PBE-D3/

Table 1 Mean absolute deviation (MAD), mean deviation (MD), and standard deviation (SD) of

the calculated, zero-point exclusive sublimation energy from reference values for the X23 test set.

The energies and geometries refer to the PBE/1,000 eV, PBE-D3/1,000 eV, PBE-D3/1,000 eV

+E(3) levels. Values for the XDM and TS method are taken from [24] and the data for 16 systems

on the PBE-MBD level from [67]. Negative MD values indicate systematic underbinding

Method

X23 sublimation energy

MAD MD SD

PBE/1,000 eV 11.55 �11.55 6.20

PBE-D3/1,000 eV 1.07 0.43 1.34

PBE-D3/1,000 eV+E(3) 1.21 �0.49 1.65

PBE-XDM/1,088 eV 1.50 �0.45 2.12

B86b-XDM/1,088 eV 1.37 �0.33 1.91

PBE-TS/1,088 eV 1.53 3.50 2.32

PBE-MBD/1,000 eV 1.53 1.53 0.95

All energies are in kcal/mol per molecule

0
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20

30

40

50

0 10 20 30 40 50

E
ca
lc

su
b
[k
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m
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]

Eref
sub [kcal/mol]

PBE/1000 eV
PBE-D3/1000 eV

PBE-D3/1000 eV+E(3)

Fig. 3 Correlation between experimental and PBE computed sublimation energy with and

without dispersion correction. The gray shading along the diagonal line denotes the experimental

error interval. All energies are calculated on optimized structures but with experimental lattice

constants
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1,000 eV level. The three-body dispersion correction is always repulsive and

therefore decreases the sublimation energy. At the PBE-D3/1,000 eV+E(3) level

the MAD and SD is slightly raised but these changes are within the uncertainty of

the reference data and hence we cannot draw definite conclusions about the

importance of three-body dispersion effects from this comparison. Because

inclusion of three-body dispersion has been shown to improve the description of

binding in large supramolecular structures [45] and is not spoiling the results here,

we recommend that the term is always included. However, the many-body effect

(i.e., adding E(3) to the PBE-D3 data) is smaller than found in recent studies by

another group [58, 75] employing a general many-body dispersion scheme. We

compare our results to the pairwise dispersion corrections XDM and TS and show

the normal error distributions in Fig. 4. The XDM model works reasonably well

with an MAD of 1.5 kcal/mol, while the TS scheme is significantly overbinding

with an MAD of 3.5 kcal/mol. The overbinding of the TS model is partially

compensated by large many-body contributions and the MAD on the PBE-MBD

level drops to 1.5 kcal/mol. A remarkable accuracy with an MAD of 0.9 kcal/mol

was reported with the hybrid functional PBE0-MBD [67, 76]. The XDM model

works slightly better in combination with the more repulsive B86b functional.

However, the mean deviation of –0.5 kcal/mol and –0.3 kcal/mol reveals a system-

atic underbinding of the XDM method consistent with results for supramolecular

systems (ER Johnson (2013), Personal Communication). This will lead to a worse

result when a three-body term is included.

As a further test we investigate the unit cell volume for the same systems.

We perform a full geometry optimization and compare with the experimental

low-temperature X-ray structures. The unit cell optimization is done with the VASP

quasi-Newton optimizer with a force convergence threshold of 0.005 eV/A�. Without

dispersion correction, too large unit cells are obtained. On the PBE/1,000 eV level, the

volumes of the orthorhombic systems are overestimated by 9.7%. We compare the

0
-7.5 -5 -2.5 0 2.5 5 7.5

P
ro
ba

bi
lit
y
D
en
si
ty

ΔEsub [kcal/mol]

PBE-D3/1000 eV

PBE-TS/1088 eV
PBE-XDM
/1088 eV

Fig. 4 Deviations between experimental and theoretical sublimation energies for the X23 set. We

convert the statistical data into standard normal error distributions for visualization. The gray
shading denotes the experimental error interval. The quality of the theoretical methods decreases

in the following order: PBE-D3/1,000 eV, PBE-XDM/1,088 eV, and PBE-TS/1,088 eV
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theoretical zero Kelvin geometries with low-temperature X-ray diffraction data at

approximately 100 K. Therefore, the calculated values should always be smaller than

the measured ones due to thermal expansion effects. After applying the D3 correction,

the unit cells are systematically too small by 0.8% which is reasonable considering

typical thermal volume expansions assumed to be approximately 3%. In passing it is

noted that the geometries of isolated organic molecules are systematically too large in

volume by about 2% with PBE-D3 [77], which is consistent with the above findings.

In summary, PBE-D3 or PBE-D3 + E(3) provide a consistent treatment of interaction

energies and structures in organic solids. Screening effects on the dispersion

interaction as discussed in [58, 75] seem to be unimportant in the D3 model.

2.2.2 Structure of Tribenzotriquinazene (TBTQ)

As an example for a larger system where London dispersion is even more

important, we re-investigate the recently studied tribenzotriquinacene (TBTQ)

compound [34] which involves π-stacked aromatic units. We utilized the GGA

functionals PBE [70] and RPBE [78], a PAW basis set [71, 72] with huge energy

cut-off of 1,000 eV within the VASP program package. The crystal structures of

TBTQ and its centro-methyl derivate (Me-TBTQ) was measured and a space group

R3m was found for both TBTQ and Me-TBTQ. However, a refined analysis

revealed the true space group of TBTQ to be R3c (an additional c-glide plane),

while the space group of Me-TBTQ is confirmed. The structure in Fig. 5 shows the

tilting between neighboring TBTQ layers. With dispersion corrected DFT

(PBE-D3/1,000 eV), we were able to obtain all subtle details of the structures as

summarized in Table 2. The unusual packing induced torsion between vertically

stacked molecules was computed correctly as well as an accurate stacking distance.

The deviations from experimental unit cell volumes of 1.4% for TBTQ and 1.5%

for Me-TBTQ are within typical thermal volume expansions. The agreement

between theory and experiment is excellent but necessitated a huge basis set with

1.46 � 105 plane-wave basis functions. A calculation of the crystal structure of

Me-TBTQ on the same theoretical level confirms the measured untilted stacking

geometry.

The dispersion correction is also crucial for the correct description of the

sublimation energy. For PBE negative values (no net bindings) are obtained. On

the PBE-D3 level reasonable ZPVE-exclusive sublimation energies of 35 and

29 kcal/mol are calculated, which fit the expectations for molecules of this size.

In Fig. 6 we show the potential energy surface (PES) with respect to the vertical

stacking distance for Me-TBTQ. In addition to the PBE functional, we applied the

Hammer et al. modified version, dubbed RPBE [78], to investigate the effect of

the short-range correlation kernel. For each point, we perform a full geometry

optimization with a fixed unit cell geometry. The curves for both uncorrected
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Fig. 5 X-Ray (left) and PBE-D3/1,000 eV (middle) crystal structure of TBTQ. The computed

structure was obtained by an unconstrained geometry optimization [34]. The right figure highlights
the analyzed geometry descriptors

Table 2 Comparison of experimental X-ray and computed PBE-D3/1,000 eV structures. The first

block corresponds to the TBTQ crystal, the second to the Me-TBTQ crystal. As important

geometrical descriptors the vertical stacking distance R, the tilting angle Θ, and the unit cell

volume Ω are highlighted

X-Ray PBE-D3/1,000 eV

R 4.75 4.67

Θ 6.2� 9.8�

Ω 2,075 2,046

a, b, c 15.96, 15.96, 9.48 15.92, 15.92, 9.32

α, β, γ 90.0, 90.0, 120.0 90.0, 90.0, 120.0

R 5.95 5.91

Θ 0.0� 0.0�

Ω 2,306 2,272

a, b, c 14.96, 14.96, 11.90 14.90, 14.90, 11.82

α, β, γ 90.0, 90.0, 120.0 90.0, 90.0, 120.0

All lengths are given in Å

-20

-10

0

10

20

30

40

5 6 7 8

E
co
h
/N

[k
ca
l/
m
ol
]

c [Å]
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Fig. 6 Dependence of the cohesive energy Ecoh per molecule on the vertical cell parameter c (the
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cell geometry. The asymptotic energy limit c ! 1 corresponds to the interaction in one

Me-TBTQ layer, approximated by a large distance of 15 Å
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functionals show no significant minimum in agreement with the wrong sign of the

sublimation energy. Furthermore, we see significant deviation between the two

functionals, i.e., PBE is much less repulsive than RPBE. With the inclusion of the

D3 correction the differences between both functionals diminishes nicely and the

PES are nearly identical. This is a strong indication that the D3 correction provides

a physically sound description of long- and medium-range correlation effects.

In fact, RPBE-D3 reproduces the equilibrium structure even slightly better than

PBED3. This confirms previous observations from different groups that dispersion

corrections are ideally coupled to inherently more repulsive (semi-local)

functionals [19, 79, 80].

3 Dispersion Corrected Hartree–Fock with Basis

Set Error Corrections

3.1 Basis Set Error Corrections

The previously presented results were obtained with huge plane-wave basis sets and

these DFT calculations are rather costly. It seems hardly possible to use fewer

plane-wave functions, because the stronger oscillating functions are necessary to

describe the relatively localized electron density in molecular crystals. A significant

reduction of basis functions seems only possible with atom centered functions, i.e.,

Gaussian atomic orbitals (AO). In contrast to plane-waves, however, small AO

basis sets suffer greatly from basis set incompleteness errors, especially the BSSE.

Semi-diffuse AOs can exhibit near linear dependencies in periodic calculations and

the reduction of the BSSE by systematic improvement of the basis is often not

possible. A general tool to correct for the BSSE efficiently in a semi-empirical way

was developed in 2012 by us [36]. Recently, we extended the gCP denoted scheme

to periodic systems and tested its applicability for molecular crystals [37].

Additionally, the basis set incompleteness error (BSIE) becomes crucial when

near minimal basis sets are used. For a combination of Hartree–Fock with a MINIX

basis (combination of valence scaled minimal basis set MINIS and split valence

basis sets SV, SVP as defined in [81]), dispersion correction D3, and geometric

counterpoise correction gCP, we developed a short-ranged basis set incompleteness

correction dubbed SRB. The SRB correction compensates for too long covalent

bonds. These are significant in an HF calculation with very small basis sets,

especially when electronegative elements are present. The HF-D3-gCP-SRB/

MINIX method will be abbreviated HF-3c in the following. The HF method has

the advantage over current GGA functionals that it is (one-electron) self interaction

error (SIE) free [82, 83]. Further, it is purely analytic and no grid error can occur.

The numerical noise-free derivatives are important for accurate frequency calcula-

tions. In contrast to many semi-empirical methods, HF-3c can be applied to almost

all elements of the periodic table without any further parameterization and the
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physically important Pauli-exchange repulsion is naturally included. Here, we

extend the HF-3c scheme to periodic systems and propose its use as a cheap

DFT-D3 alternative or for crosschecking of DFT-D3 results.

The corrected total energy EHF�3c
tot is given by the sum of the HF energy

EHF/MINIX, dispersion energy ED3
disp, BSSE correction EgCP

BSSE, and short-ranged

basis incompleteness correction ESRB:

EHF�3c
tot ¼ EHF=MINIX þ ED3

disp þ EgCP
BSSE þ ESRB: (10)

The form of the first term ED3
disp is already described in Sect. 2.1. For the HF-3c

method the three parameters of the damping function s8, a1, and a2 were refitted in

the MINIX basis (while applying gCP) against reference interaction energies [84]

and this is denoted D3(refit). The second correction, namely the geometrical

counterpoise correction gCP [36, 37], depends only on the atomic coordinates

and the unit cell of the crystal. The difference in atomic energy emiss
A between a

large basis (def2-QZVPD [85]) and the target basis set (e.g., the MINIX basis)

inside a weak electric field is computed for free atoms A. The emiss
A term measures

the basis incompleteness and is used to generate an exponentially decaying, atom-

pairwise repulsive potential. The BSSE energy correction EgCP
BSSE EgCP BSSE reads

EgCP
BSSE ¼ σ

2

Xatom pairs

A 6¼B

X
T

emiss
A

exp �α � rB � rA þ Tk kβð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SAB � Nvirt

B

q , (11)

with Slater-type overlap integral SAB, number of virtual orbitals on atom B in the

target basis set Nvirt
B , and basis set dependent fit parameters σ , α, and β. The Slater

exponents of s- and p-valence orbitals are averaged and scaled by a fourth fit

parameter η to get a single s-function exponent. For each combination of Hamiltonian

(DFT or HF) and basis set, the four parameters were fitted in a least-squares sense

against counterpoise correction data obtained by the Boys–Bernardi scheme [35].

Systematically overestimated covalent bond lengths for electronegative

elements

are corrected by the third term ESRB:

ESRB ¼ � s

2

Xatom pairs

A 6¼B

X
T

ZAZBð Þ3=2exp �γ R0,D3
AB

� �3=4
rB � rA þ Tk k

� �
: (12)

We use the default cut-off radii R0;D3
AB as determined ab initio for the D3

dispersion correction and ZA/B are the nuclear charges. The parameters s and γ
were determined by fitting the HF-3c total forces against B3LYP-D3/def2-TZVPP

[86] equilibrium structures of 107 small organic molecules. Altogether, the HF-3c

method consists of nine empirically determined parameters, three for the D3
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dispersion, four in the gCP scheme, and two for the SRB correction. The HF-3c

method was recently tested for geometries of small organic molecules, interaction

energies and geometries of non-covalently bound complexes, for supramolecular

systems, and protein structures [81], and good results superior to traditional semi-

empirical methods were obtained. In particular the accurate non-covalent HF-3c

interactions energies for a standard benchmark [84] (i.e., better than with the

“costly” MP2/CBS method and close to the accuracy of DFT-D3/“large basis”)

are encouraging for application to molecular crystals.

3.2 Evaluation of Dispersion and Basis Set Corrected
DFT and HF

We evaluate the basis corrections gCP and SRB by comparison with reference

sublimation energies for the X23 benchmark set, introduced in Sect. 2.2. We

calculate the HF and DFT energies with the widely used crystalline orbital program

CRYSTAL09 [87, 88]. In the CRYSTAL code, the Bloch functions are obtained by

a direct product of a superposition of atom-centered Gaussian functions and a

k dependent phase factor. We use raw HF, the GGA functional PBE [70], and the

hybrid GGA functional B3LYP [89, 90]. The Γ-centered k-point grid is generated

via the Monkhorst–Pack scheme [73] with four k-points in each direction. The large
integration grid (LGRID) and tight tolerances for Coulomb and exchange sums

(input settings. TOLINTEG 8 8 8 8 16) are used. The SCF energy convergence

threshold is set to 10�8 Hartree. We exploit the polarized split-valence basis set

SVP [91] and the near minimal basis set MINIX. The atomic coordinates are

optimized with the extended version of the approximate normal coordinate rational

function optimization program (ANCOPT) [74].

Mean absolute deviation (MAD), mean deviation (MD), and standard deviation

(SD) of the sublimation energy for the X23 test set and for the subset X12/Hydrogen

(systems dominated by hydrogen bonds) are presented in Table 3. The dispersion and

BSSE corrected PBE-D3-gCP/SVP and B3LYP-D3-gCP/SVP methods yield good

sublimation energies with MADs of 2.5 and 2.0 kcal/mol, respectively. The artificial

overbinding of the gCP-uncorrected DFT-D3/SVP methods is demonstrated by the

huge MD of 8.5 kcal/mol for PBE and 10.1 kcal/mol for B3LYP. Adding the three-

body dispersion energy changes the MADs for D3-gCP to 2.9 and 1.7 kcal/mol,

respectively. As noted before [37], the PBE functional with small basis sets

underbinds hydrogen bonded systems systematically. The HF-3c calculated sublima-

tion energies are of very good quality with an MAD of 1.7 and 1.5 kcal/mol without

and with three-body dispersion energy, respectively, which is similar to the previous

PBE-D3/1,000 eV results. Considering the simplicity of this approach, this result is

remarkable. The MD is with 0.6 and –0.2 kcal/mol, respectively, also very close to

zero. This indicates that, with the three correction terms, most of the systematic errors

of pure HF are eliminated. For hydrogen bonded systems the MAD is only slightly
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higher, which indicates an overall consistent treatment. To analyze the HF-3c method

in more detail, we investigate the different energy contribution to the sublimation

energy on the optimized HF-3c structures as shown in Fig. 7.

Plain HF is not capable of describing the intermolecular attraction in the crystals

and has the largest MAD of 11.3 kcal/mol. The only significant physical attraction

between the molecules arises in hydrogen bonded systems which are dominated by

Table 3 Mean absolute deviation (MAD), mean deviation (MD), and standard deviation (SD) of

the computed sublimation energy with respect to experimental reference data for the X23 test set

and for the subset X12/Hydrogen dominated by hydrogen bonds. We compare the HF-3c method

with gCP corrected PBE-D3/SVP and B3LYP-D3/SVP methods. For PBE/SVP level, we also give

deviations to the corresponding large plane-wave basis set values in parentheses

X23 X12/Hydrogen

Method MAD MD SD MAD MD

PBE-D3/SVP 8.5 (8.1) 8.5 (8.1) 3.5 (3.4) 10.5 (9.7) 10.5 (9.7)

PBE-D3-gCP/SVP 2.5 (2.1) �1.1 (1.5) 3.0 (2.6) 2.8 (2.5) �1.4 (–2.3)

PBE-D3-gCP/SVP+E(3)a 2.9 (2.0) �2.0 (–1.5) 3.2 (2.5) 3.1 (2.4) �2.2 (–2.2)

B3LYP-D3/SVP 10.1 10.1 4.1 12.0 12.0

B3LYP-D3-gCP/SVP 2.0 0.5 2.3 1.7 �0.1

B3LYP-D3-gCP/SVP+E(3)a 1.7 �0.4 2.2 1.8 �0.8

HF/MINIXb 11.3 �11.3 6.1 10.7 �10.7

HF-D3(refit)/MINIXb 6.3 6.3 3.6 7.5 7.5

HF-D3(refit)-gCP/MINIXb 1.6 0.5 1.9 1.8 �0.0

HF-3c 1.7 0.6 2.0 1.8 0.0

HF-3c+E(3)a 1.5 �0.2 2.0 2.0 �0.7
aThree-body dispersion E(3) as single-point energy on optimized structures
bSingle-point energies on HF-3c optimized structures

All values are in kcal/mol per molecule
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electrostatics which is properly described by HF. By inclusion of dispersion, the

MAD drops to 6.3 kcal/mol on the HF-D3(refit)/MINIX level, but the sublimation

energy is significantly overestimated. This too strong attraction can be efficiently

and accurately corrected with the gCP scheme. The MAD on the HF-D3(refit)-gCP/

MINIX level is 1.6 kcal/mol and very similar to the MAD of the full HF-3c method.

This demonstrates that the SRB correction mainly affects geometries as intended.

Because the energy decomposition analysis is done for fixed geometries, we cannot

investigate the importance of the ESRB contribution in more detail. In conclusion,

the computationally very cheap HF-3c method provides encouraging energies.

However, for a few systems we encounter convergence problems of the SCF

procedure with the CRYSTAL09 code. This can be sometimes avoided with

tighter tolerances for Coulomb and exchange integral sums with the side effect of

increased computational cost. Zero point vibrational energies are not analyzed here,

but numerically stable second energy derivatives of HF-3c were reported in [81].

4 Conclusions

We have presented and evaluated dispersion corrected Hartree–Fock and Density

Functional Theories for their potential application to computed organic crystals and

their properties. For a correct description of molecular crystals, semi-local (hybrid)

density functionals have to be corrected for London dispersion interactions.

A variety of modern DFT-D methods, namely D3, TS/MBD, and XDM, can

calculate sublimation energies of small organic crystals with errors close to the

experimental uncertainty. For the X23 test set we found that the D3 scheme gives

the best performance of the tested additive dispersion corrections with an MAD of

1.1 kcal/mol, which is well below the estimated error range of 1.3 kcal/mol. In the

DFT-D3 scheme the three-body dispersion energy corrections are approximately

5% of the sublimation energy. The finding that the method, which has been

developed originally for molecules and molecular complexes, can be applied

without further, solid-state specific modifications is encouraging. It was further-

more shown that DFT-D3 can calculate the π-stacking of tribenzotriquinacene

and its centro-methyl derivative with all subtle geometry details. This example

demonstrates that larger molecules routinely considered in organic chemistry can

also be treated accurately in their solid state by DFT based methods.

In addition to these calculations with huge plane-wave based basis sets, we

exploited Gaussian atom-centered orbitals. We demonstrated the large basis set

errors on the DFT-D3/SVP and HF-D3/MINIX levels and presented and evaluated

two semi-empirical basis set corrections. The resulting DFT-D3-gCP/SVP and

HF-3c methods perform well and the MAD of 1.5 kcal/mol (with three-body

dispersion) for HF-3c is especially remarkable. However, the SCF convergence

with unscreened Fock-exchange is sometimes problematic and, despite a larger

basis being used, the PBE-D3-gCP/SVP calculations converge faster and yield an

acceptable MAD of 2.5 kcal/mol for the X23 sublimation energies.
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In Fig. 8 we summarize the results of the various theoretical methods for the X23

benchmark set by converting the statistical data into standard normal distributions.

The best results are calculated with the D3 dispersion corrected PBE functional in a

huge PAW basis set. HF-3c + E(3) and PBE-D3-gCP/SVP can also be

recommended.

In future work the description of energy rankings of polymorphs on the different

theoretical levels has to be investigated systematically. Furthermore, coupling of

the D3 dispersion correction to different GGA, meta-GGA, and hybrid GGA

functionals might provide even better performance. In any case, the future for

fully quantum chemical based first principles crystal structure prediction seems

bright.

References

1. Neumann MA, Leusen FJJ, Kendrick J (2008) A major advance in crystal structure prediction.

Angew Chem Int Ed 47:2427–2430

2. Oganov AR (2010) Modern methods of crystal structure prediction. Wiley-VCH, Berlin

3. Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary

techniques. Principles and applications. J Chem Phys 124:244–704

4. Sanderson K (2007) Model predicts structure of crystals. Nature 450:771–771

5. Woodley SM, Catlow R (2008) Crystal structure prediction from first principles. Nat Mater

7:937–964

6. Dreizler J, Gross EKU (1990) Density functional theory, an approach to the quantum many-

body problem. Springer, Berlin

7. KochW, Holthausen MC (2001) A chemist’s guide to Density Functional Theory. Wiley-VCH,

New York

-20 -10 0 10 20

P
ro
ba

bi
lit
y
D
en
si
ty

ΔEsub [kcal/mol]

PBE-D3
/1000 eV

PBE/1000 eV

PBE-D3/SVP
PBE-D3-gCP

/SVP

HF-3c
+E(3)

Fig. 8 Deviations between experimental and theoretical sublimation energies for the X23 set. We

convert the statistics into standard normal error distributions for visualization. The gray shading
denotes the experimental error interval. The quality of the theoretical methods decreases in the

following order. PBED3/1,000 eV, HF-3c+E(3), PBE-D3-gCP/SVP, PBED3/ SVP, and

PBE/1,000 eV

Dispersion Corrected Hartree–Fock and Density Functional Theory for Organic. . . 19



8. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford

University Press, Oxford

9. Paverati R, Truhlar DG (2013) The quest for a universal density functional. The accuracy of

density functionals across a braod spectrum of databases in chemistry and physics. Phil Trans

R Soc A, in press. http://arxiv.org/abs/1212.0944

10. Allen M, Tozer DJ (2002) Helium dimer dispersion forces and correlation potentials in density

functional theory. J Chem Phys 117:11113

11. Hobza P, Sponer J, Reschel T (1995) Density functional theory and molecular clusters.

J Comput Chem 16:1315–1325

12. Kristy´an S, Pulay P (1994) Can (semi)local density functional theory account for the London

dispersion forces? Chem Phys Lett 229:175–180
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