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Data Mining Approaches to

High-Throughput Crystal Structure

and Compound Prediction

Geoffroy Hautier

Abstract Predicting unknown inorganic compounds and their crystal structure is a

critical step of high-throughput computational materials design and discovery. One

way to achieve efficient compound prediction is to use data mining or machine

learning methods. In this chapter we present a few algorithms for data mining

compound prediction and their applications to different materials discovery

problems. In particular, the patterns or correlations governing phase stability for

experimental or computational inorganic compound databases are statistically

learned and used to build probabilistic or regression models to identify novel

compounds and their crystal structures. The stability of those compound candidates

is then assessed using ab initio techniques. Finally, we report a few cases where data

mining driven computational predictions were experimentally confirmed through

inorganic synthesis.
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Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences (IMCN),
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1 Introduction

First principles or ab initio computations aim at computing materials properties (e.g.,

thermodynamic stability, conductivity, light absorbance) from the fundamental laws

of quantum physics. Following the emergence of ab initio techniques and especially

of density functional theory (DFT) [1], the field has seen a combination of theoretical

developments, standard codes developments (e.g., [2–4]), and increase in computa-

tional power. Materials science is even moving to a new paradigm where

computations are not only used to explain experimental observations but also to

predict new materials and their properties [5].

One emerging route towards computational discovery of materials is to use high-

throughput computing. High-throughput computing consists of evaluating material

properties on thousands of different materials to identify the best performing

compounds and to understand trends from large datasets [5, 6]. This approach has

already been used in various fields such as catalysis [7], Li-ion batteries [8, 9],

scintillators [10], photocatalytic water splitters [11–13], thermoelectric materials

[14, 15], mercury sorbents [16], organic photovoltaics [17], and topological

insulators [18]. High-throughput infrastructures have reached such a maturity that

large sets of computations are nowadays stored in computational databases such as
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the materials project [19, 20] and others [21, 22] that can be accessed through web

interfaces. With the data repository and analysis tools they provide, materials

scientists now have access to an unprecedented amount of data [23].

Many high-throughput studies have concentrated on evaluating properties on

known compounds extracted from databases such as the Inorganic Crystal Structure

Database (ICSD) [24] or on a limited structural framework (e.g., perovskites [11]).

While those studies are of great value, they face some limitations. Databases are

often not up to date, i.e., they do not have the latest reported structures in

the literature. Also, many inorganic compounds are known to exist at a given

stoichiometry but their crystal structure has not been determined from powder

diffraction data. Finally, compounds of greatest interest for a specific application

might not have been synthesized yet. This is especially the case for multicomponent

systems (e.g., ternaries and quaternaries) or less common chemistries.

Finding new compounds and determining their crystal structure before synthesis is

called crystal structure prediction. Since 1988, when Nature’s editor John Maddox

called our inability to properly perform crystal structure prediction one of “continuous

scandal in physical science,” the field has greatly evolved [25–27]. Among the

different approaches to structure prediction, data mining has been developed in

parallel with high-throughput computational searching. Indeed, in contrast to other

approaches, data mining typically compromises on the exhaustivity of the search in

favor of less computational time and an access to much larger chemical spaces to

explore. The idea behind data mined compound prediction is very simple and has been

driving solid state chemistry for centuries: nature is not random and there are patterns

that one could learn from observing phase stability. The novelty lies in the use of

quantitative mathematical approaches from the fields of machine learning or statistical

learning.

In this chapter we will start by presenting how thermodynamical phase stability

can be evaluated from DFT computations (Sect. 2). The different techniques and

accuracy of approximations will be outlined. The general idea behind data mining

driven structure prediction will be presented in Sect. 3 and specific examples of

methods and algorithms will be explained in detail in Sects. 4, 5, and 6. Finally, we

will present in Sect. 7 a few selected examples of successful data mining compound

predictions where the computational suggestion was followed by successful

experimental verification.

2 Phase Stability Evaluation Through Ab Initio Computing

An important factor determining the existence of inorganic compounds is their

thermodynamical phase stability. To evaluate whether a compound is thermo-

dynamically stable, one needs to compare its (free) energy with the (free) energy of

other competing phases. This step is essential for the compound prediction problem

and DFT computations are routinely used to perform such an analysis. In this section

we will overview the standard thermodynamic constructions along with the different

approximations involved and assess their accuracy.
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2.1 Low Temperature Stability: The Convex Hull
Construction

Assessing thermodynamical phase stability in a chemical system requires the

comparison of the free energy of the different phases present [28, 29]. An isothermal,

isobaric and closed system requires the use of the Gibbs free energy as thermo-

dynamic potential. For a binary component system with NA atoms of A and NB atoms

of B, at temperature T and pressure p, the Gibbs free energy G is expressed as

G NA;NB; T; pð Þ ¼ E NA;NB; T; pð Þ þ pV NA;NB; T; pð Þ � TS NA;NB; T; pð Þ, (1)

where V is the volume, S the entropy, and E the energy.

The first approximation we will make is to assume that the pV term is small. This

approximation is valid when only solid phases are involved in the phase equilibrium.

In addition, we will work at zero temperature. No entropic effects need to be

taken into account then. Entropic effects can be modeled but this would require a

more important computational budget as all relevant excitations (vibrational,

configurational, and electronic) would need to be considered [30–32].

Under these approximations, the relevant thermodynamic potential is the energy.

The energy normalized by the total number of particles in the system N ¼ NA þ NBð Þ
: E xA; xBð Þ and fractions instead of amounts: xA ¼ NA

N and xB ¼ NB

N will be used. The

normalized energy is usually expressed in meV/atom.

Solving the Kohn–Sham equation in the DFT framework can directly provide an

approximation to this energy. Ab initio computations can therefore associate an

energy to any compound present in a given chemical system. In the specific case of

zero temperature and negligible volume effects, phase stability can then be directly

computed from a simple set of DFT ionic relaxations on all the phases of interest. Let

us illustrate this with the example of a simple binary A-B chemical system. In this

system, computations have been performed for compounds at a composition A2B,

AB2, and AB in different crystal structures designated respectively by α1, α2, β1, β2,
β3, and γ. The elemental phases have also been computed and, as a convention, all

energies will be expressed as formation energies from the elements. Figure 1 plots the

formation energy for the different phases computed in function of the fraction of

B. From this plot, a very simple construction called the convex hull can be performed.

The construction consists of finding a convex envelope containing all the points in the

plot. This envelop called the convex hull (or hull) is plotted in green in Fig. 1. The

phases present on this convex hull are the most stable phases or ground states for the
system studied. For instance, α2 is thermodynamically unstable and will decompose

to form α1. The phase γ will decompose into two phases: α1 and β2 (as γ is above the
tie line formed by α1 and β2).

This construction can be performed in any dimension and thus on multi-

component systems such as ternaries, quaternaries, etc.
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Different measures of (in)stability can be defined using this convex hull

construction:

• Energy above the hull (or distance to the hull)
For an unstable phase, the energy above the hull consists in the energy

separating the phase from its decomposition tie-line (see red double arrow in

Fig. 2a). It is equivalent to the opposite of the energy associated with the

decomposition reaction from the phase to the stable products. It is a positive

number and usually expressed in meV/atom. Stable phases have by definition an

energy above the hull equals to zero.

• Inverse energy above the hull (or inverse distance to the hull)
This quantity is defined only for stable phases. It is computed by removing the

phase of interest from the convex hull and constructing a new convex hull. The

distance to the new convex hull for the phase is then computed and called the

inverse energy above the hull. It is equivalent to the opposite of the energy of

formation of the phase of interest from the phases that would be stable if it did

not exist. It is a positive number and expressed in meV/atom. A large inverse

distance to hull represents a high stability of the predicted structure. The inverse

energy above the hull is represented for the phase β2 in Fig. 2b.

Convex hull constructions and the analysis of computed phase diagrams can be

performed using the pymatgen package [34].

Fig. 1 Convex hull construction for an A-B system. The points represent different phases. The
line is the convex hull. The points on the line are the most stable phases or ground states and points
above the line are unstable phases according to the construction

ba

Fig. 2 Illustration of different measure of stability from the convex hull construction. The energy

above the hull is illustrated for the unstable phase γ by the double arrow in (a). The inverse

distance to the hull is represented for the stable phase β2 by the double arrow in (b). Reprinted with

permission from [33]. Copyright 2012 American Chemical Society

Data Mining Approaches to High-Throughput Crystal Structure and Compound. . . 143



2.2 Stability for Open Systems

Oxides are very important compounds technologically and are better studied with

an open instead of close thermodynamical system approach. A ternary system

composed of particles of A, B, and oxygen will be used here as an example. In

the previous section we assumed that the relevant thermodynamic variables are the

amount of constituents (NA, NB, and NO), the temperature T, and the pressure p. In
reality, very often during oxide synthesis, the amount of oxygen present in the

system is not directly controlled and the system is an open system to oxygen. In this

case, the relevant thermodynamic potential is the Legendre transform of the Gibbs

free energy with respect to the oxygen amount: the oxygen grand potential φ:

φ NA;NB; μO; T; pð Þ ¼ G� μONO: (2)

Normalizing the grand canonical potential by N ¼ NA + NB and using factions

of A, B, xA, and xB, we get

φ NA;NB; μO; T; pð Þ ¼ G� μONO

N
: (3)

This is a situation very similar to that in the previous section except that the

Gibbs free energy is replaced by the oxygen grand potential. Here, the effect of

volume and temperature can be approximated by assuming that the dominant

volume and entropy factors come from the gaseous oxygen and that the entropy

and volume factors from the solid phase can be neglected. This approximation has

been successfully used by Ong et al. for the study of the Li-Fe-P-O phase diagram

[35]. The normalized grand canonical potential is then

φ NA;NB; μO; T; pð Þ ¼ E� μONO

N
: (4)

Only the μO term has a pressure and temperature dependence. Practically, a

convex hull construction using the normalized grand canonical potential at a fixed

μO can be performed to obtain the stable phases in specific conditions. The oxygen

chemical potential can be linked to the oxidizing or reducing nature of the environ-

ment. Ways to increase the oxygen chemical potential (i.e., to be more oxidizing) are

to decrease the temperature or increase the oxygen partial pressure. In contrast, the

oxygen chemical potential can be decreased (i.e., be more reducing) by increasing the

temperature or lowering the oxygen partial pressure.

It follows from this analysis that any oxide compound exists in an oxygen

potential window with a maximal and minimal oxygen chemical potential. Any

environment setting a chemical potential lower than the minimal oxygen chemical

potential would be too reducing for the compound to form while any environment

setting a higher chemical potential than the maximal oxygen chemical potential

would be too oxidizing.
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2.3 Accuracy of DFT(+U) in Determining Phase Stability

Curtarolo et al. performed one of the first large scale studies of the performance of

DFT on phase stability [36]. The authors focused on binary metals. They computed

a large number of competing crystal structure prototypes in 80 binary metal systems

and they studied how often the experimentally observed ground state was in

agreement with the computed one. DFT successfully found the actual ground

state in at least 90% of the cases.

For oxides and other insulators or semiconductors, the typical errors from

standard DFT in oxides on the elemental formation energies can be quite large

and up to hundreds of meV/atom [37]. However, for multicomponent compounds,

phase stability will not depend directly on the elemental formation energy but more

often on the reaction energies between multicomponent phases. Figure 3 illustrates

this by presenting the convex hull of an A-B-C system. The stability of the ABC2

phase does not depend directly on the A + B + 2C ! ABC2 reaction (i.e., the

formation energy from the elements) but will depend on the A2C + B2C3 ! ABC2

reaction (dashed red line). For instance, determining whether a ternary oxide is

stable or not will depend on its reaction energy from the binary oxides. A recent

study showed that those reaction energies are significantly better described by DFT

than by elemental reaction energies due to cancellation of errors when comparing

chemically similar phases [38]. Comparing computed to experimental reaction

energies, an error distribution centered on 0 and with a standard deviation around

25 meV/atom was found. When analyzing compound prediction results, this error

bar should be kept in mind.

For metal oxides with partially occupied d orbitals (i.e., FeO, Mn3O4, etc.), DFT is

known to perform poorly because of a self-interaction error present in the typical

functionals used in DFT. The DFT+U method is one way of circumventing this issue

by effectively localizing d electrons and providing a more physically accurate picture

of the bonding in oxides [39, 40]. On the other hand, in metals the electron delocali-

zation induced by pure DFT is actually close to the real metallic bonding state and

applying a U correction would only cause the model to deviate from the reality. We

stand therefore in a situation in which, for transition metals, DFT reproduces

Fig. 3 Convex hull of a typical A-B-C system. The stability of the ternary ABC2 phase will

depend directly on the reaction energies from the binaries, not from the elements
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sufficiently well the energy in metallic systems but in oxides, only DFT+U does. As

computations with two different Hamiltonians (DFT and DFT+U) cannot be directly

compared, it is impossible to compute energies and then evaluate phase stability

when compounds of different natures are involved, such as oxides and metals. To

treat this situation, Jain et al. developed an approach relying on an energy shift of the

DFT energies [41]. This shift is based on a calibration on experimental binary oxides

formation energies from the metal. After applying this shift to DFT computed phases,

all computed data can be compared and used to assess phase stability. A similar

approach has been proposed by Stevanovic et al. [42].

3 Data Mining Compound and Crystal Structure

Prediction

Section 2 showed how the phase stability of compounds is assessed using DFT.

However, the most challenging part of the compound prediction problem lies in the

efficient selection of compound candidates to test for stability. Nowadays this

selection is typically performed following one of two approaches: optimization or

data mining-based.

3.1 Optimization Approaches

Optimization-based methods consider that finding the most stable crystal structure

(at a given composition) can be mapped to the mathematical problem of finding the

values of the structural degrees of freedom (i.e., lattice parameters and atomic

positions) minimizing the (free) energy. The search for a global minimum on the

energy landscape is, however, far from simple as the energy function (or landscape)

is very large, complex, and presents many local minima [43].

One popular way of simplifying this problem has been to reduce the number of

degrees of freedom by working on a fixed crystal lattice, only allowing different

decorations of the underlying crystal structure framework. For instance, we can

study any ordering on a face-centered cubic lattice at a composition AB and find

possibly a rock salt ground state. This approach is usually coupled with the use of a

simplified Hamiltonian fitted on a limited set of computations performed on

selected orderings through the cluster expansion technique [44–46]. Identifying

new phases on a fixed lattice has been especially useful in alloy theory [47–49], but

close-packed oxides have also been studied through cluster expansion [50].

However, when the underlying lattice is not known, researchers must rely on

advanced optimization techniques such as simulated annealing or genetic

algorithms to explore the rugged energy landscape. Simulated annealing (and the

related basin hopping) [51, 52] rely on applying perturbations to a starting configu-

ration. Those perturbation are accepted or not depending on how the energy is
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lowered, offering a way to scan the energy landscape efficiently in search of a

global minimum. Genetic algorithms, on the other hand, are inspired by the

biological process of evolution and the idea of survival of the fittest [53–57].

Optimization methods have been used to study many different chemistries, often

with empirical potentials. However, a growing number of studies are now being

performed purely on first-principles computations (e.g., the Na-N [58], W-N [59],

Fe-B [60] chemical systems). New phases proposed by optimization approaches

include new high-pressure phases of boron [59], CaCO3 [55, 61], and FeB4 [62] as

well as a new metastable polymorph of LiBr [63]. The optimization approach to

structure prediction is very appealing but suffers from very extensive requirements

in terms of computational budget, especially when multicomponent systems are

explored. For instance, finding the ground state of MgSiO3 by a genetic algorithm

required around 1,000 energy evaluations [56].

3.2 Data Mining Approaches

The optimization approach assumes no previous knowledge (except for the energy

model). On the other hand, solid state chemists have been for long using empirical

or heuristic rules to rationalize and sometimes predict crystal structures. A very

well known example of such a set of rules is the Pauling rules relating stability to

atomic factors (such as ionic size, charge) and structural factors (such as the number

of edges or facets shared by cation-anion polyhedra) [64].

Another common heuristic approach consists of building structure maps

[65–67]. Structure maps rely on the existence of common crystal structure
prototypes. Different compounds can form similar arrangement of atoms called

prototypes. Traditionally, these structure prototypes are named after the formula

and/or name of the mineral from one of the compounds forming this structure. For

example, the “NaCl” or “rocksalt” structure prototype is formed not only by NaCl

but also by CoO, AgBr. etc. (see Fig. 4).

Structure maps are constructed by plotting for what values of atomic factors

certain crystal structure prototypes form. These atomic factors can, for instance, be

ionic radii or chemical scales such as the Mendeleev number in Pettifor maps. If the

factors are relevant, the structure types will cluster in different regions of the

structure map.

Empirical rules such as the Pauling rules are not really predictive and are mainly

used to rationalize the existence of already characterized crystals. While structure

maps can be used as a predictive tool as shown by Morgan et al. [68], they present

limitations due to their focus on specific factors such as size or electronegativity and

tend to be available only for very well populated stoichiometries.

Inspired by the success of empirical rules, researchers have been developing data

mining or machine learning techniques that learn from previous computations or

experiments and make informed guesses about likely crystal structure candidates

[69]. The approach relies greatly on the recent developments in data mining,
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machine learning, and statistical learning [70]. While we will focus on inorganic

compounds in this chapter, data mining approaches are also used more and more in

the fields of organic chemistry (see for instance [71, 72]).

Sections 4, 5, and 6 will present in more detail some data mining approaches to

compound prediction. They all rely on the use of a database of experimental or

computed data that is used to fit a probabilistic or regression model. This data mined

model can propose likely compound and crystal structure candidates that are tested

for stability with DFT.

4 Linear Regression Based Approaches to Data Mining

Crystal Structure Prediction

The work from Curtarolo et al. pioneered the use of data mining approaches in

combination with ab initio computations [73]. The authors focused on the correlations

existing between the energy of crystal structure prototypes in a binary system.

4.1 The Principal Component Analysis Model

Curtarolo et al. built a database of 114 crystal structure prototypes in 55 binary

metallic systems. They computed the energy of each of those compounds

using DFT.

The information included in this database can be expressed as a series of

55 vectors Ei (1 for each binary system) with 114 dimensions:

Ei ¼ Ei1;Ei2; . . . ;Einð Þ (5)

Fig. 4 Some examples of compounds and their crystal structure prototypes
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If the energies are not distributed randomly in the 114 dimension (i.e., if there

are correlations between energies in different alloys and crystal structures), we can

represent the energy vectors in a subspace of lower dimension than the full

114 dimensions. This dimension reduction can be formally performed with the

commonly used principal component analysis (PCA).

PCA starts by expressing the vector Ei as an expansion on a subspace of smaller

dimension:

Ei ¼
Xd
j¼1

αijei þ εi dð Þ, (6)

where εi is the error on the alloy i. PCA then finds the basis set {ei} minimizing the

squared sum of errors ∑ iεTi εi. This new basis set consists of a new set of axes in the

114 dimension space that are adequate to represent our set of alloy energies in

reduced dimensions.

Reducing the dimension naturally induces an error compared to the full database

in the 114 dimensions. The smaller the dimension reduction (the larger d), the

smaller the error induced by dimensional reduction. This is illustrated in Fig. 5a

which shows the root mean squared error depending on the number of dimensions.

Only nine dimensions (nine alloys) are necessary to obtain the energy of an alloy in

a specific crystal structure within an error of 50 meV/atom.

4.2 Prediction Procedure

The correlations indicated by the PCA can be used to accelerate the prediction of

new phases. Using these correlations, the amount of ab initio computations to

perform can be reduced dramatically. A data mining driven structure prediction

Fig. 5 Root mean squared error in function of the dimension reduction (a) and (b) number of

computations as a function of the number of ground states accurately predicted. The dashed line
indicates picking the structures randomly and the plain lines indicate the data mining driven

approach. Reprinted figures with permission from [73]. Copyright 2003 by the American Physical

Society
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procedure consists of three stages: prediction, suggestion, calculations. Given a

previously computed library of crystal structure prototypes in different alloys, we

can use the PCA to predict the energies of crystal structures not computed yet in a

given alloy. Using these data mined predicted energies we can identify the

structures that are the farthest below the convex hull or the closest to the hull.

This limited set of candidates are then computed by DFT. The new DFT results are

added to the database and a new series of prediction, suggestion, calculations is

performed until a convergence to a stable solution is reached.

Figure 5b compares the number of calculations required to reach a certain

percentage of ground states accurately predicted in both the random selection

(dashed line) and data mining driven case (plain line). The data mining approach

performs significantly better.

This technique has been used to perform searches of new borides [74, 75] or

rhodium alloys [76].

5 Data Mining Approach Based on Correlations

Between Crystal Structure Prototypes

The approach based on PCA presented in Sect. 4 is of great interest but requires

a database of computed energies for known (often stable) compounds and for

hypothetical compounds (often unstable) and their crystal structures. Such a

database is unfortunately not available for most areas of chemistry. On the

other hand, experimental crystal structure databases such as the ICSD are widely

available, giving access to observed inorganic compounds. In 2006, Fischer

et al. proposed an approach based on correlations between observed crystal

structures that do not require any previous computational data [77]. Instead of

a regression problem (i.e., predicting continuous quantities such as energies),

a classification problem is tackled: predicting whether a given crystal structure is

likely to be stable or not (without modeling how stable it will be). We will present

here the algorithm in detail and its application on a high-throughput large scale

search for ternary oxides [78].

5.1 General Principle of the Algorithm

Crystalline inorganic compounds have a limited set of crystal structure prototypes

(see Fig. 4). The basic idea behind the algorithm is to consider that the presence of a

given crystal structure prototype in a chemical system can be correlated to factors

such as the elements in this chemical system and the crystal structures co-existing at

other compositions. For instance, the crystal structure prototype of LaMn2O5 forms

very often with Mn. A strong correlation exists between the presence of this crystal
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structure prototype in a chemical system and manganese. Likewise, the FeSb2O6

and Sb2O5 crystal structure prototypes are also strongly correlated. From this

observation one can think about using partial information about a chemical system

(e.g., the presence of Mn or of the Sb2O5 prototype) to infer the crystal structures

likely to form. In the following sections we will discuss how this basic idea is

implemented mathematically. The data abstraction and variables will be introduced

along with the probabilistic model rigorously integrating all those correlations.

5.2 Data Abstraction

We will assume that a prototype label has been assigned to all the compounds in the

database. This prototyping step can be fully automated by using, for instance, the

algorithm proposed by Hundt et al. [79]. After transformation of the raw database to

a prototyped database, the data are in the form of a composition-crystal structure

prototype pair for each compound.

For the sake of simplicity we will use discrete composition variables in our model.

Compositions are continuous variables and, to project this continuous problem to a

discrete one, we will consider any composition to be present in a composition bin. For

instance, the composition bins could be AB, A2B, AC2, etc. for the binaries and ABC,

ABC2, etc. for the ternaries. Each of these composition bins ci is associated with a

variable xci indicating what crystal structure is present at this composition. For

example, if ci represents the composition AB2C4 then xci may have values such as

spinel, olivine, etc. The condition xci ¼ nostructure value indicates the absence of a

compound at the given composition. In addition, variables representing the system’s

constituents (e.g., Ei¼Ag, Cu, Na, etc.) are defined. With these definitions, any

chemical system of C constituents and n compositions can be represented by a vector

X ¼ xc1 ; xc2 ; . . . ; xcn ; xE1
; xE2

; . . . ; xEc
ð Þwhere the composition space is discretized by

using n composition bins.

In this formalism, any information from the database on a chemical system can

be represented by an instance of the vector X (see Fig. 6). Any prototyped crystal

structure database D can then be represented as a collection of N Xi instances,

D ¼ X1;X2; . . . ;XNf g.

5.3 Probabilistic Function and New Compound Discovery
Procedure

The probability density p(X) provides information as to what crystal structures tend

to coexist in a chemical system. Based on the available information at known

compositions in a system, this probability density can be used to assess if another

composition (cj) is likely to be compound-forming. Mathematically, this is

evaluated by computing the probability of forming a compound:
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pcompound cj
� �¼1

�p xcj ¼nostructure
��xc1 ,xc2 , ...,xcj�1

,xcjþ1
, ...,xcn , ...,xE1

,xE2
, ...,xEc

� �
:

(7)

In addition, when a composition cj of interest is targeted, the probability density
can be used to suggest the most likely crystal structures by evaluating the following:

p xcj
��xc1 , xc2 , . . . , xcj�1

, xcjþ1
, . . . , xcn , . . . , xE1

, xE2
, . . . , xEc

� �
: (8)

For the different values of xcj (i.e., for the different crystal structure prototypes

known at this composition), a list of the l most likely crystal structure candidates

can be established. These candidate crystal structures can then be tested for stability

by an accurate energy model such as DFT. The procedure for compound discovery

is summarized in Fig. 7.

We should stress that, in contrast to most optimization techniques, this approach

can not only suggest likely crystal structures for a given composition but also

suggest which compositions are likely to form stable compounds. This is very

important, especially for multi-component systems (ternaries or quaternaries), as

the compositional space is larger than for binary compounds.

5.4 Approximated Probabilistic Function

While very useful for structure prediction, this probability function is extremely

complex. In the case of ternary oxides, our model requires 183 variables. With

roughly 100 crystal structure prototypes possible per variable, this probability

function is defined on a domain of around 10366 values!

For all practical purpose this probability function needs to be approximated. The

way the approximation is made here is to use an approach known in statistical

Fig. 6 An example of how the information on the Al-Mg-O chemical system is projected onto the

composition variables. All dots indicate composition bins. Red dots are composition bins without

any known compound and blue dots are composition bins with a known compound crystallizing in

a specific prototype marked by an arrow
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mechanics as the cumulant expansion [80]. The cumulant expansion can be

presented starting with the identity

p Xð Þ ¼ Π
i
gi xcið Þ Π

j<k
gjk xcj ; xck
� �

Π
l<m<n

glmn xcl ; xcm ; xcnð Þ . . . (9)

Following this expression, p(X) can be seen as a product of independent

variables with corrections from pair, triplet, etc., correlations. The cumulant

terms can be defined recursively. Starting with a one variable probability function,

we trivially have

gi xcið Þ ¼ p xcið Þ; (10)

with a two variables probability function we have

p xci ; xcj
� � ¼ p xcið Þp xcj

� �
gij xci ; xcj
� �

, (11)

which implies that

Fig. 7 Data-mining driven compound discovery procedure. A probabilistic model is built from a

crystal structure database. In any system A-B-C, this model is used to identify the new

compositions (red dots) most likely to form a compound. For those compositions, the most likely

crystal structures are proposed using the same probabilistic model. These structure candidates are

then tested for stability by an accurate energy model as DFT

Data Mining Approaches to High-Throughput Crystal Structure and Compound. . . 153



gij xci ; xcj
� � ¼ p xci ; xcj

� �
p xcið Þp xcj

� � : (12)

The general form for a cumulant over the variable Xα is

gα xαð Þ ¼ p xαð Þ
Πβ�αgβ xβ

� � , (13)

for which the products at the denominator extends over all subsets of α.
So far, no approximation has been introduced. The approximation will consist of

truncating the cumulant expansion, considering that all the cumulants beyond pairs

(triplets, quadruplets etc. . .) are equal to 1 so that

p Xð Þ ¼ 1

Z
Π
i
p xcið Þ Π

j<k

p xci ; xcj
� �

p xcið Þp xcj
� � , (14)

where Z is a normalization constant or partition function.

5.5 Estimating the Probabilistic Function
from Available Data

Having decided on the form of an approximated probability function (14), we still

need to estimate the values of these function parameters. Using a database D, we

will search for the values p xci , xcj
��D� �

and p xci
��D� �

in best agreement with the data.

One can see this process – called parameter estimation – as a fit of the model to the

available data.

We will present two common ways of estimating the parameters of a probabilistic

model from the data: the maximum likelihood and the Bayesian approach. For

pedagogical purposes we will first present derivations for the single variable case

and will generalize later on the multi-variable case [81].

5.5.1 Single Variable Multinomial Parameter Estimation

by Maximum Likelihood

Let us assume a random variable X that can take on n possible values x ∈ {v1,v2, . . .,
vq}. Assuming we have a database D of N observed values for D ¼ x1; x2; . . . ; xNf g,
we would like to infer the probability function p x

��D� �
. For each of the possible

q values of Xwe assign a parameter with the value of the probability function. We then

have q parameters θvi with p x ¼ við Þ ¼ θvi . All these parameters can be for notation

purpose regrouped in one vector θ.
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It is very common to approach the parameter estimation using the maximum

likelihood approach [82]. The best estimate for the parameter is the one maximizing

the (log)-likelihood of the data l:

l D; θð Þ ¼ log p
�
D jθ� ¼ log p x1, x2, . . . , xN

��θ� � ¼XN
t¼1

log p xt
��θ� �

¼
X
x

n xð Þlog θx (15)

This derivation has been performed assuming that all the xi observations are

independent. n(x) indicates the number of times the value x is observed in the data

D. Maximizing the likelihood function in (15), under the constraint that
X
x

θx ¼ 1,

leads to

θML
x ¼ n xð ÞP

x0 n x0ð Þ : (16)

The maximum likelihood estimate of the probability for a given value to be

drawn is therefore the frequency at which this value appeared in the data set.

5.5.2 Single Variable Multinomial Parameter Bayesian Estimation

In the simple maximum likelihood approach presented in the previous section, there

is one set of values for the θ parameters. Another approach, called Bayesian

estimation, considers that assigning a unique value for a parameter is too rigid

and argues that one should be interested in discovering instead the probability

distribution of the parameter p θ
��D� �

. As an illustration, if one is observing a coin

toss leading to 1,001 heads and 999 tails, a maximum likelihood approach would

find out that the probability for heads should be 0.5005. A Bayesian approach, in

contrast, will argue that from this information one cannot rule out the possibility

that the value of the parameter is 0.5 for example. From this information the

Bayesian approach would rather propose a p θ
��D� �

peaked on 0.5005 but allowing

some spread and non-zero values for values close to 0.5005. A very complete

presentation of the Bayesian approach to probability can be found in Jaynes [83].

In the Bayesian approach, the probability for a value x to be observed is now

computed by integrating on all possible values of θ weighted by their probability:

p x
��D� � ¼ ð p x

��θ,D� �
p θ;Dð Þdθ: (17)
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The parameters θx are now defined as

θx ¼ p x
��θ,D� �

: (18)

The parameter estimation process consists in finding p θ
��D� �

. Using Bayes’ rule

of probability, we can show that

p θ
��D� � ¼ p D

��θ� � p θð Þ
p Dð Þ (19)

¼ p x1, x2, . . . , xN
��θ� � p θð Þ

p x1; x2; . . . ; xNð Þ (20)

¼ λΠ
x
θn xð Þ
x p θð Þ (21)

With λ ¼ 1

p x1; x2; . . . ; xNð Þ.
A new quantity appeared during this derivation: p(θ). This is called the prior on

the parameters. This represents the a priori belief the observer had before any

observation was actually done. In the multinomial case, a common prior used for

convenience is the Dirichlet distribution:

p θð Þ ¼ β αð ÞΠ
x
θαx�1
x , (22)

where β αð Þ ¼ Γ
P

x
αxð Þ

Πx Γ αxð Þ and Γ is the Gamma function. Plugging the Dirichlet prior

(22) in the expression of the posterior (20), we get

p θ
��D� � ¼ λβ αð ÞΠ

x
θn xð Þþαx�1
x : (23)

As we can see, using the Dirichlet prior with a multinomial distribution leads to a

multinomial distribution as posterior. This very convenient behavior makes the

Dirichlet distribution the so-called conjugate prior of a multinomial distribution.

The last piece of our problem not yet solved is the value of λ. We can use the

normalization condition
Ð
p(θ|D)dθ ¼ 1. Applying this constraint, it can be shown

that

p θ
��D� � ¼ Γ

X
x0

n x
0

� �
þ αx0

 !
Π
x

θn xð Þþαx�1
x

Γ n xð Þ þ αxð Þ (24)

¼ C n;αð ÞΠ
x0
θ
n x

0ð Þþα
x
0

x0
, (25)

where the part of the expression involving the Gamma function has been regrouped

for clarity in C(n, α). Now that we have found the expression for p θ
��D� �

, we can

evaluate the probability to observe a value vi for the variable X:
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p x ¼ við Þ ¼
ð
θvip θ;Dð Þdθ (26)

¼ C n;αð Þ
ð
θvi Π

x0
θ
n x

0ð Þþα
x
0

x0
dθ (27)

¼ n við Þ þ αviP
x0 n x0ð Þ þ αx0

: (28)

This final expression can be compared to that obtained using the maximum

likelihood (16). The way the prior influences the result is by adding extra counts αx
to the evaluation of the probability. We can see that if there is an important amount

of data available the probability will be driven mainly by the frequency of counts.

On the other hand, if there are very few data points, the prior will drive the

probability.

While we have chosen the Dirichlet prior, we still have to choose what

parameters α to use. There is no unique answer to that question. This choice

would depend on the prior belief we have in the outcome. In the case of no prior

information being available [84, 85], there is a common choice of prior called the

minimum information uniform Dirichlet prior, where α is chosen as

αx ¼ 1

q
(29)

where q represents the number of possible values for X.

5.5.3 Generalization to Multiple Variables

The results presented in the two previous sections can be generalized for multiple

variables. Let us say that we have two variables X and Y and we want to estimate

p x, y
��D� �

. D refers to a set of N observations D ¼ x; yð Þ1; x; yð Þ2; . . . ; x; yð ÞN
� �

. If

there are q possible values for X and r values possible for Y, then there are qr
possible values for the pair (X, Y ). Results from the single variable case can then

be directly used with a multinomial defined on qr values. Then the maximum

likelihood is

θML
x,y ¼ n x; yð Þ

N
; (30)

the Bayesian estimate is

p x ¼ vi, y ¼ wj

��D� � ¼ n vi;wj

� �þ αvi,wj

N þPx, y αx,y
; (31)

and the minimum information Dirichlet prior is
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αx ¼ 1

qr
: (32)

5.6 Searching for Unknown Ternary Oxides Using Data
Mining Compound Prediction

Ternary oxides are important for many technologies. The model presented here has

been used to search for new ternary oxides. We estimated a cumulant expansion

probabilistic model (14) using the oxide experimental data available in the ICSD

[24] and the Bayesian estimation procedure presented in Sect. 5.5. The 2006

version of the ICSD was searched for duplicate compounds. After this analysis,

616 unique binary and 4,747 ternary oxides compounds were identified. These

compounds were grouped by crystal structure prototype. Both duplicate checks and

prototyping were performed using Hundt et al.’s algorithm [79]. Composition bins

were binned into the 30 most common binary compositions and the 120 most

common ternary compositions. Any compound not fitting perfectly in one of

these bins was binned in the closest composition bin. Adding the 3 element

variables, 183 variables were used in total in the probability model.

5.6.1 New Ternary Oxides Predictions

We then searched for new compounds in 2,211 A-B-O systems with A and B taken

from H, Li, Be, B, C, N, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co,

Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, In, Sn, Sb, Te, I, Cs,

Ba, La, Hf, Ta, W, Pt, Hg, Tl, Pb, Bi, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb,

and Lu. In these systems we used the procedure described in Fig. 7 and searched for

compositions where no ternary oxide is given in the ICSD but for which the

probability for forming a compound (7) is higher than a certain threshold. This

threshold represents a compromise between the computational budget required and

the rate of discovery expected. The value of the threshold we chose suggested 1,261

possible compositions and exhibited a 45% true positive rate during cross-

validation. At these selected compositions, the most likely crystal structures were

determined from the data mined probability density using (8). The number of

suggested crystal structures at each composition corresponds to the list length that

gave 95% accuracy in cross-validation. This corresponds to a total of 5,546 crystal

structures whose energy needed to be calculated with ab initio DFT. All existing

binary, ternary, and element structures in the ICSD were also calculated so that

relative phase stability can be assessed (using the thermodynamical convex hull

construction presented in Sect. 2). Hence, a new structure is stable when its energy

is lower than any combination of energies of compounds in the system weighted to

the same composition.

From the 1,261 compositions suggested by the model, the ab initio computations

confirmed 355 to be stable against every compound known in the ICSD.
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This represents 1 new stable compound predicted per 16 DFT computations. A fully

exhaustive search (i.e., computing all possible structure prototypes in any

composition bin) in the 2,211 A-B-O systems of interest would be prohibitive and

require 5,428,287 computations. Even restricting such an exhaustive search to the

crystal structure prototypes present in the selected 1,261 compositions bins would

need substantially more computations (183,007) than the 5,546 needed while using

the machine learned model.

To put this number of 355 new compounds predicted in perspective, we

compared it to the number of experimentally discovered and characterized ternary

oxides. We identified the earliest date of publication for any ternary oxide

compound present in the ICSD. We did not take into account multiple reports of

the same compound and compounds with partial occupancies. Figure 8 indicates in

blue how many new ternary oxide compounds were discovered each year according

to the ICSD from 1930 to 2005. The red bar shows how many new compounds have

been discovered in this work. The experimental discovery rate for ternary oxides is

around 100 per year since the 1970s. The 355 new compounds suggested were

obtained with about 55 days of computing on 400 Intel Xeon 5140 2.33-Ghz cores.

Those numbers show the potential for accelerating new compound discovery

through combining data mining with DFT computations.

Details and discussion on the results are available in Hautier et al. [78] and

details of all the new compounds are available on a web site [86].

Fig. 8 New ternary oxide discovery per year according to the ICSD. The bars from 1930 to 2005

indicate the number of new ternary oxides discovered per year. They are compared to the number

of new compounds discovered in this work
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6 Data Mined Ionic Substitution Model

In Sect. 6 we present a compound prediction algorithm based on correlations

between crystal structures co-existing in a same chemical system. This algorithm

was used in combination with high-throughput DFT computations to discover new

ternary oxides.

While, in theory, this algorithm can be used to make predictions in chemical

systems with any number of components, there are practical limitations to its

application, for instance, to the prediction of quaternary compounds. Indeed, the

data available for quaternaries is sparser than for ternaries, making the extraction of

informative correlations more difficult. More specifically, as the model presented in

the previous section is based on correlations between crystal structure prototypes, it

shows predictive limits for the crystal structure prototypes appearing only once in

the database. Those unique crystal structure prototypes do not have enough

occurrences for the model to capture useful correlations. The problem associated

with unique prototypes is already present in ternary compounds but tends to be even

more critical in the quaternary space. In the ICSD, 20% of the ternary crystal

structure prototypes are unique but up to 50% are unique in the case of quaternary

prototypes.

In the coming section we will show how a different data mining approach can be

used to make predictions in sparser regions. A probabilistic model can be built to

assess the likelihood for ionic species to substitute for each other while retaining the

crystal structure [87]. We describe the mathematical model and its training on an

experimental crystal structures database. The model predictive power is then

evaluated by cross-validation and the emerging chemical substitution rules are

analyzed.

6.1 Ionic Substitution Approach to New Compound
Discovery

Chemical knowledge often drives researchers to postulate new compounds based

on substitution of elements or ions from another compound. For instance, when the

first superconducting pnictide oxide LaFeAsO1�xFx was discovered, crystal

chemists started to synthesize many other isostructural new compounds by

substituting lanthanum with other rare earth elements such as samarium [88].

A formalization of this substitution approach exists in the Goldschmidt rules of

substitution, stating that the ions closest in radius and charge are the easiest to

substitute for each other [89]. While those rules have been widely used to rationalize

a posteriori experimental observations, they lack a real quantitative predictive power.

The data mining ionic substitution approach follows this substitution idea but

proposes a mathematical and quantitative framework around it. The basic principle

is to learn from an experimental database how likely the substitution of certain ions
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in a compound will lead to another compound with the same crystal structure.

Mathematically, the substitution knowledge is embedded in a substitution

probability function. This probability function can be evaluated to assess quantita-

tively if a given substitution from a known compound is likely to lead to another

stable compound. For instance, in the simple case of the LaFeAsO1�xFx compound

we expect the probability function to indicate a high likelihood of substitution

between La3+ and Sm3+ and thus a high likelihood of existence for the

SmFeAsO1�xFx compound in the same crystal structure as LaFeAsO1�xFx but

with Sm on the La sites.

This method follows an approach used in the field of machine translation

[90]. The aim of machine translation is to develop models able to translate texts

from one language to another. Therefore, one approach is to build probabilistic

models that evaluate the probability for a word in one language to correspond to

another word in another language. In the case of our ionic substitution model, the

approach is similar but it is a correspondence between ionic species instead of

words that is sought.

6.2 The Probabilistic Model

We present here the different variables and the mathematical form of the substitution

probabilistic model.

Let us represent a compound formed by n different ions by an n component

vector:

X ¼ X1,X2, . . .Xnð Þ: (33)

Each of the Xj variables are defined on the domain Ω of existing ionic species:

Ω ¼ Fe2þ; Fe3þ;Ni2þ;La3þ; . . .
� �

: (34)

The quantity of interest to assess the likelihood of an ionic substitution is the

probability pn for two n-component compounds to exist in nature in the same crystal

structure. If Xj and X0
j respectively indicate the ions present at the position j in the

crystal structure common to two compounds, then one needs to determine

pn X;X
0

� �
¼ pn X1;X2; . . . ;Xn;X

0
1;X

0
2; . . . ;X

0
n

� �
: (35)

Knowing such a probability function allows one to assess how likely any ionic

substitution is. For example, by computing p4(Ni
2 +, Li1 +, P5 +, O2 �|Fe2 +, Li1 +,

P5 +, O2 �), one can evaluate how likely Fe2+ in a lithium transition metal

phosphate is to be substituted by Ni2+. In this specific example, this value is

expected to be high as Ni2+ and Fe2+ are both transition metals with similar charge
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and size. Actually, LiNiPO4 and LiFePO4 both form in the same olivine-like

structure. On the other hand, the substitution of Fe2+ by Sr2+ would be less likely

and p4(Sr
2 +, Li1 +, P5 +, O2 �|Fe2 +, Li1 +, P5 +, O2 �) should have a low value.

We must point out that the probability function does not have any crystal structure

dependence. The fact that the compound targeted for substitution forms an olivine

structure does not influence the result of the evaluated probability. This is an

approximation in our approach.

The probability function pn(X,X
0) is a multivariate function defined in a high-

dimensional space and cannot be estimated directly. For all practical purposes, this

function needs to be approximated. We follow here an approach successfully used

in other fields such as machine translation and, based on the use of binary indicators

f, so-called feature functions.[91] These feature functions are mathematical

representations of important aspects of the problem. The only mathematical

requirement for a feature function is to be defined on the domain of the probability

function (X,X0) and return 1 or 0 as a result. They can be as complex as required by

the problem. For an ionic substitution model, one could choose, for example, as a

feature function:

f X;X
0

� �
¼ 1 if Ca2þ substitutes for Ba2þ in the presence of O2�

0 else

	
(36)

The relevant feature functions are commonly defined by experts from prior

knowledge. If our chosen set of feature functions are informative enough, we expect

to be able to approximate the probability function by a weighted sum of those

feature functions:

pn X;X
0

� �
� e
P

i
λif

nð Þ
i X;X

0ð Þ
Z

: (37)

Here λi indicates the weight given to the feature f
ðnÞ
i (X,X0) in the probabilistic

model. Z is a partition function ensuring the normalization of the probability function.

The exponential form chosen in (37) follows a commonly used convention in the

machine learning community [92].

The model presented is extremely general and can be adjusted by using whatever

feature function is considered relevant. A first assumption made is to consider that

the feature functions do not depend on the number n of ions in the compound.

Simply put, we assume that the ionic substitution rules are independent of the

compound’s number of components (binary, ternary, quaternary, etc.).

Therefore we will omit any reference to n in the probability and feature

functions. Equation (37) then becomes
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pn X;X
0

� �
� e
P

i
λi f i X;X

0ð Þ
Z

: (38)

While the feature functions could be more complex, only simple binary

substitutions are considered in this work. This means that the likelihood for two

ions to substitute for each other is independent of the nature of the other ionic

species present in the compound. Mathematically, this translates into the assump-

tion that the relevant feature functions are simple binary features of the form

f a,bk X;X
0

� �
¼ 1 Xk ¼ a and X

0
k ¼ b

0 else

	
(39)

Each pair of ions a and b present in the domain Ω is assigned a set of feature

functions with corresponding weights λa;bk indicating how likely the ions a and b can
substitute in position k. For instance, one of the feature functions will be related to

the Ca2 + to Ba2 + substitution:

f Ca
2þ,Ba2þ

k X;X
0

� �
¼ 1 Xk ¼ Ca2þ and X

0
k ¼ Ba2þ

0 else

	
(40)

The magnitude of the weight λCa
2þ,Ba2þ

k associated with this feature function

indicates how likely this binary substitution is to happen.

Finally, the features weights should satisfy certain constraints so that any

permutations of the components do not change the result of the probability evaluation.

Those symmetry conditions are

λa,bk ¼ λb,ak , (41)

and

λa,bk ¼ λa,bl : (42)

6.3 Training of the Probability Function

While the mathematical form for our probabilistic model is now well established,

the model parameters (the weights λa;bk ) still need to be evaluated. Those weights are

estimated from the information present in an experimental crystal structure

database.

From any experimental crystal structure database, structural similarities can be

obtained using structure comparison algorithms [79, 93]. For instance, CaTiO3 and

BaTiO3 both form cubic perovskite structures with Ca and Ba on equivalent sites.

This translates in our mathematical framework as a specific assignment for the

variables vector (X,X0) ¼ (Ca2 +,Ti4 +,O2 �,Ba2 +,Ti4 +,O2 �). We will follow the
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convention in probability theory, designing specific values of the random variable

vector (X,X0) by lower case letters (x,x0). An entire crystal structure databaseDwill

lead to m assignments (X,X0) ¼ (x,x0)t with t ¼ 1, . . ., m

D¼ X;X
0

� �
¼ x;x

0
� �1

, X;X
0

� �
¼ x;x

0
� �2

,..., X;X
0

� �
¼ x;x

0
� �m�1

, X;X
0

� �
¼ x;x

0
� �m	 


:

(43)

Coming back to our analogy to machine translation, probabilistic translation

models are estimated from databases of texts with their corresponding translation.

The analogue to the translated texts database in our substitution model is the crystal

structure database.

Using these assignments obtained from the database, we follow the commonly

used maximum-likelihood approach to find the adequate weights from a database

[82]. The weights maximizing the likelihood to observe the training data are

considered as the best estimates to use in the model. For notation purposes we

will represent the set of weights by a weight vector λ.
From those m assignments, the log-likelihood l of the observed data D can be

computed as

l D; λð Þ ¼
Xm
t¼1

log p x; x
0

� �t��λ� �
(44)

¼
Xm
t¼1

X
i

λif i x; x
0

� �t� �
� log Z λð Þ

" #
(45)

The feature weights maximizing the log-likelihood of observing the dataD (λML)

are obtained by solving

λML ¼ arg max
λ

l D; λð Þ: (46)

There is a last caveat in the training of this probability function. Any ionic pair

never observed in the data set could theoretically have any weight value. All those

unobserved ionic pair weights will be set to a common value α. As these ionic pairs
should be unlikely, a low value of α (for instance α ¼ 10�5 in the rest of this work)

will be used.

6.4 Compound Prediction Process

When the substitution probabilistic model in (37) has been trained, it can be used to

predict new compounds and their structures from a database of existing compounds.

The procedure to predict a compound formed by species a, b, c, and d is presented
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in Fig. 9. For each compound containing (x1i ,x
2
i ,x

3
i ,x

4
i ) as ionic species, the

probability to form a new compound by substitution of a, b, c, and d for x1i , x
2
i ,

x3i , and x
4
i is evaluated by computing p(a, b, c, d|x1i , x

2
i , x

3
i , x

4
i ). If this probability is

higher than a given threshold σ, the substituted structure is considered. If this new

compound candidate is charge balanced and previously unknown, it can be added to

our list of new compound candidates. If not, the algorithm goes to the next i + 1

compound in the crystal structure database. The substitutions proposed by the

model do not have to be isovalent. However, all suggested compounds have to be

charge balanced.

At the end of the new compound prediction process, a list of new compounds

candidates in the a, b, c, d chemistry is available. This list should be tested in a

second step for stability vs all already known compounds by accurate ab initio

techniques such as DFT (see Sect. 2).

6.5 Analysis of the Model

A binary feature model based on the ternary and quaternary ionic compounds

present in the inorganic crystal structure database (ICSD, [24]) has been built. In

this work we consider a compound to be ionic if it contains one of the following

Fig. 9 Procedure to predict new compounds formed by the a, b, c, and d species using the

substitutional probabilistic model. Reprinted with permission from [87]. Copyright 2011 Ameri-

can Chemical Society
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anions: O2�, N3�, S2�, Se2�, Cl�, Br�, I�, F�. Only ordered compounds (i.e.,

compounds without partially occupied sites) are considered. Crystal structure

similarity was found using Hundt et al.’s algorithm [79] and used to obtain the

database D of m assignments ((43) necessary to train the model. A binary feature

model was fitted on this data set using a maximum likelihood procedure.

6.5.1 Cross-Validation on Quaternary ICSD Compounds

The procedure to discover new compounds using the probabilistic model was

presented in Sect. 6.4. Using this procedure, we evaluated the predictive power of

this approach by performing a cross-validation test [70]. Cross-validation consists

in removing part of the data available (the test set) and training the model on the

remaining data set (the training set). The model built in this way is then used to

predict back the test set and evaluate its performance. We divided the quaternary

ordered and ionic chemical systems from the ICSD in three equal-sized groups. We

performed three cross-validation tests using all compounds in one of the groups as

test set and the remaining quaternary and ternary compounds as training set. This

extensive cross-validation tested 2,967 compounds in total. The cross-validation

tests excluded compounds forming in prototypes unique to one compound, as our

substitution strategy by definition cannot predict compounds in such unique

prototypes. We also only considered substitution leading to charge balanced

compounds.

Figure 10 indicates the false positive and true positive rates for a given threshold σ.
The true positive rate (TPrate) indicates the fraction of existing ICSD compound that

are indeed found back by the model (i.e., true hits):

TPrate σð Þ ¼ TP σð Þ
P

, (47)

where P is the number of existing compounds considered during our cross-

validation test and TP(σ) is the number of those existing compounds found by our

model with a given threshold σ (i.e., the number of true positives). The false

positive rate (FPrate) indicates the fraction of compounds not existing in the ICSD

and suggested by the model (i.e., false alarms):

FPrate σð Þ ¼ FP σð Þ
N

, (48)

where P is the number of compounds of proposed compounds non-existing in the

ICSD but considered during cross-validation and TP(σ) is the number of those

non-existing compounds proposed by our model with a given threshold σ (i.e., the

number of false positives).

High threshold values will lead to fewer false alarms but will imply fewer true

hits. On the other hand lower threshold values give more true hits at the expense of
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generating more false alarms. In practice, an adequate threshold is found by

compromising between these two situations.

The clear separation between the two curves in Fig. 10 shows that the model is

indeed predictive and can effectively distinguish between the substitutions leading

to an existing compound and those leading to non-existing ones. Moreover, Fig. 10

can be used to estimate a value of probability threshold for a given true positive

rate. For instance, the threshold required to find back 95% of the existing

compounds during cross-validation is indicated in Fig. 10 by a dashed line.

6.5.2 Ionic Pair Substitution Analysis

The tendency for a pair of ions to substitute for each other can be estimated by

computing the pair correlation:

gab ¼
p X1 ¼ a,X

0
1 ¼ b

� �
p X1 ¼ að Þp X1 ¼ bð Þ (49)

¼ p X1 ¼ a,X
0
1 ¼ b

� �
P

j p X1 ¼ a,X
0
1 ¼ x0

j

� �P
j p X1 ¼ b,X

0
1 ¼ x0

j

� � (50)

¼
1
Z e

λa,b
1

1
Z

P
j e

λ
a,x0 j
1

1
Z

P
j e

λ
b,x0 j
1

(51)

where a and b are two different ions and the sum represent a summation on all the

possible values x0j of the variable X0
1, i.e., a sum over all possible ionic species.

Fig. 10 True positive rate

(TPrate, blue line) and false

positive rate (FPrate, red
line) in function of the

probability threshold (σ)
logarithm during cross-

validation. Reprinted with

permission from [87].

Copyright 2011 American

Chemical Society
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This pair correlation measures the increased probability to observe two ions at

equivalent positions in a particular crystal structure over the probability to observe

each of these ions in nature. Two ions which substitute well for each other will have

a pair correlation higher than 1 (gab > 1) while ions which rarely substitute will

have a pair correlation lower than one (gab < 1). The pair correlation is therefore a

useful quantitative measure of the tendency for two ions to substitute for each other.

Figure 11 plots the logarithm (base10) of this pair correlation for the 60 most

common cations in the ICSD (the pair correlation for all the ionic pairs is presented

in supplementary information). Positive values indicate a tendency to substitute

while negative values show a tendency not to substitute. The ions are sorted by their

element Mendeleev number [65]. This ordering relates to their position in the

periodic table. Therefore, the different ions are automatically clustered by chemical

classes (alkali, alkali earth, rare earth, transition metals, and main group elements).

Fig. 11 Logarithm (base 10) of the pair correlation gab for each ion couple a, b. Equation (49) was

used to evaluate the pair correlation gab. The ions are sorted according to their element’s

Mendeleev number. Only the 60 most common ions in the ICSD are presented in this graph.

These correlation coefficients were obtained by training our probabilistic model on the ICSD.

Positive values indicate a tendency to substitute while negative values, in contrast, show a

tendency not to substitute. The symmetry of the pair correlation (gab ¼ gba) is reflected in

the symmetry of the matrix. Reprinted with permission from [87]. Copyright 2011 American

Chemical Society
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Different “blocks” of strong substitutional tendency are observed. For instance,

the rare earth elements tend to substitute easily to each other. The similar charges

(usually +3) and ionic size for those rare earth elements explain this strong

substitution tendency.

The alkali elements also form a strongly substituting group. Only the ions with

the largest size difference (Cs with Na or Li) do not substitute easily.

While transition metals in general tend to substitute easily for each other, two

subgroups of strong pair correlation can be observed: the early transition metals

(Zr4+, Ti4+, Ta5+, Nb5+, V4+, V5+,W6+, Mo6+) and late transition metals (Cr3+, Mn2+,

Mn3+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Hg2+, Cd2+, Zn2+). This separation into two

groups could be explained by a charge effect. The early transition metals have

higher common oxidation states (+4 to +6) than the late ones (+2 to +3). Two

notable exceptions to the general strong substitution tendency between transition

metals are Ag1+ and Cu1+. While substituting strongly for each other, those two

ions do not substitute for any other transition metal. Indeed, electronic structure

factors drive both ions to form very unusual linear environments [94].

On the other hand, the main group elements do not have a homogeneous strong

substitution tendency across the entire chemical class. Only smaller subgroups such

as Ga3+, Al3+, and In3+ or Si4+, Ge4+, and Sn4+ can be observed.

Regions of unfavorable substitutions are also present. Transition metals do not

likely substitute for alkali or alkali earth metals. Only the smallest ions: Li1+, Na1+,

and Ca2+ exhibit mild substitution tendencies for some transition metals. In

addition, transition metals are very difficult to substitute for rare earths. Only Y3+

(and Sc3+ not shown in the figure) can substitute moderately with both rare earth

and transition metals, indicating their ambivalent nature at the edge of these two

very different chemistries.

Rare earth compounds do not substitute with main group elements with the

surprising exception of Se4+. Se4+ can occupy the high coordination sites that rare

earth elements take in the very common Pnma perovskite structure formed by

MgSeO3, CoSeO3, ZnSeO3, CrLaO3, InLaO3, MnPrO3, etc. . .
The oxidation state of an element can have a significant impact on whether an

element will substitute for others. The two main oxidation states for antimony, Sb3+

and Sb5+, behave very differently. The rather large +3 ion substitutes mainly with

Pb2+ and Bi3+, while the smaller +5 ion substitute preferentially with transition

metals Mo6+, Cr3+, Fe3+, etc.

Some ions tend to form very specific structures and local environments. Those

ions will substitute only with very few others. For instance, C4+ almost only

substitutes with B3+. Both ions share a very uncommon tendency to form planar

polyanions such as CO3
2� and BO3

3�. Hydrogen is an even more extreme example

with no favorable substitution from H1+ (with the exception of a mild substitution

with Cu1+) to any other ion, in agreement with its very unique nature.
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6.6 Limits and Strengths of the Model

The substitution model makes several simplifying assumptions. The absence of

dependence on the number of components implies that, for instance, the substitution

rules do not change if the compounds are ternaries or quaternaries. If Fe2+ is

established to substitute easily for Ni2+ in ternary compounds, the same substitution

should be likely in quaternaries.

In addition, the substitution rules do not depend on structural factors. In reality,

how easy a chemical substitution is will depend somewhat on the specific structure.

Some crystal structure sites will accommodate for instance a wider range of ions

with different size without major distortion. Perovksites are a good example of

structures where the specific size tolerance factor is established (see for instance

Zhang et al. [95]). In some ways our model is “coarse grained” over structures.

The second major assumption is the use of binary features only. This implies that

the substitution model only focuses on two substituted ions at a given site and does

not take into account the “context” such as the other elements present in the crystal

structure. Here again, a more accurate description will require this context to be

taken into account. For instance, two cations might substitute in oxides but not in

sulfides.

Those simplifying assumptions are, however, very useful in the sense that they

allow the model to capture rules from data dense regions and use them to make

predictions in data sparse regions. The substitution rules learned from ternary

chemical systems can be used to predict compounds in the much less populated

quaternary space. Likewise, substitution rules learned from very common crystal

structure prototypes can be learned and used to make predictions in uncommon

crystal structures. It is this capacity for this simpler model to make predictions in

sparser data regions which constitutes its main advantage vs more powerful models

such as that presented in Sect. 5.

Of course, our model could be refined in many ways. The most straightforward

way to add structural factors would be to introduce a dependence on the ion local

environment. The features could also be extended to go beyond binary features.

Interesting work in feature selection has shown that complex features can be built

iteratively from the data by combining very simple basic features [92].

The ionic substitution model has been used to search with high-throughput

computing for novel multicomponent oxides and polyanionic systems (e.g.,

phosphates) in the field of Li-ion batteries [8, 38, 96, 97]. The technique has also

been used recently to explore the field of oxynitrides for water splitting. The lack of

knowledge of oxynitride chemistry justified relying heavily on data mining driven

compound prediction [13].
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7 From Computer to Synthesis: Examples of Successful

Compound Prediction Through Data Mining

The ultimate success of a compound prediction technique is to lead to an experimental

synthesis of the predicted phase. The theoretical approaches presented in this review

chapter have already led to several successful syntheses of compounds suggested

through computation. We will outline briefly (and not exhaustively) some of those

successful predictions and describe their context.

7.1 Assigning a Structure to a Powder Diffraction Pattern

There are a significant number of compounds present in powder diffraction databases

(e.g., the PDF4+ database [98]) that do not have any crystal structure assigned. This is

an important issue, especially for computational materials science, as ab initio

computations need a material’s crystal structure to evaluate any property. Structure

assignment from powder diffraction data, for instance by Rietveld refinement, needs

a structural guess of the crystal structure that data mining crystal structure prediction

algorithms can provide. In the large scale search for ternary oxides presented in

Sect. 5, 355 compounds not present in the ICSD were suggested [78]. Of those

355 compounds, 64 compositions are present in a powder diffraction database but

without any structural data associated with the ICSD. Figure 12 compares the

simulated vs the experimental powder diffraction spectrum present in the PDF

database for two predicted compounds: MgMnO3 and CoRb2O3 (00-024-0736 [99]

and 00-027-0515 [100]). Not only did the algorithm identify successfully the

stoichiometries absent from the ICSD 2006 database (without data from the PDF

database) but the computed and experimental patterns are in good agreement (if one

takes into account the overestimation of the lattice constant by a few percent present

with DFT computations in the generalized gradient approximation). Only one peak in

the 50� region does not match the powder diffraction pattern for MgMnO3.

These two examples show that a purely data mining driven approach based on no

human intervention can successfully assign crystal structure to powder diffraction

patterns.

7.2 SnTiO3

Among the compounds without any data available (even powder diffraction data),

the large scale data mined ternary oxide search presented in Sect. 5 found SnTiO3 to

be a stable stoichiometry with an ilmenite structure being the most stable phase.

This SnTiO3 ilmenite prediction is of technological interest as SnTiO3 perovskite

has been predicted through ab initio computation to be a good candidate Pb-free
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ferroelectric material [101]. Unfortunately, the interesting piezoelectric properties

are only present for the perovskite structure. The synthesis of SnTiO3 had been

unsuccessful at the time of publication of the paper on ternary oxides but was

reported very shortly after by Fix et al. [102]. The experimental results very clearly

confirm the computed prediction of an ilmenite phase. Not only is this example a

success of computational prediction but it illustrates how important it is to study the

stability of the phases that are used to make materials properties prediction in the ab

initio literature.

7.3 Li9V3 (P2O7)3 (PO4)2

Finding novel cathodes for Li-ion batteries is of great importance for energy storage

[103–105]. Using the possibility to predict important battery properties by ab initio

computations (voltage, Li-ion diffusion, stability when charged) [106, 107], a high-

throughput computational search for new cathode materials has been performed by

Ceder et al. This project made extensive use of some of the data mining based

compound prediction approaches that have been previously described.

During this high-throughput study, an entirely novel phase – Li9V3 (P2O7)3 (PO4)2 –

was predicted by the ionic substitution approach suggesting that a substitution of Fe3+

to V3+ in Li9Fe3 (P2O7)3 (PO4)2 leads to a compound lying low in energy [8, 108]. This

example shows how unusual structures, beyond the common spinels, rock salt, ilmenite

etc., can also be suggested by data mining approaches and lead to technologically

relevant materials.

We should note that an independent report on this phase by Kuang et al. [109]

had appeared in the literature. However, the patent anteriority date from the Ceder

team (before Kuang et al.’s publication) clearly confirms the true predictive nature

of the result.

ba

Fig. 12 Comparison between the predicted (above) and the experimental (from PDF4+ database,

below) powder diffraction patterns for MgMnO3 (a) and CoRb2O3 (b)
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7.4 Sidorenkite

The high-throughput cathode project also led to the identification of an even

more exotic class of materials: the sidorenkite carbonophosphates [33, 38, 110].

Carbonophosphates had only been known as rare minerals but were identified by

high-throughput computations to form very promising lithium-ion battery cathodes.

The predicted compounds were then synthesized by hydrothermal reaction followed

by ion exchange as suggested by computational phase stability analysis. Some

carbonophosphates have shown electrochemical activity and very good cyclability

as Li-ion battery cathode (see Fig. 13c, d).

7.5 LiCoPO4

Compound prediction can also push for the reinvestigation of chemical systems that

were believed to be very well known. In their high-throughput phosphate analysis,

Hautier et al. made the surprising observation that data mining and DFT suggested

d

c

b

a

Fig. 13 XRD patterns (a) and powders (b) of first-time synthesized Na3M(CO3)(PO4) with

M ¼ Mn, Ni, Fe, Co, etc. The electrochemical activity (voltage vs capacity) of the Mn-based Li

version Li3Mn(CO3)(PO4) (c) and the cyclability of the Li3Fe(CO3)(PO4) phase (d). Adapted with

permission from [33] and [110]. Copyright 2012 American Chemical Society
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a polymorph of the well studied LiCoPO4 olivine structure [8]. While LiCoPO4

olivine incorporates Co coordinated by octahedra of oxygen, the new predicted

polymorph shows the structure of LiZnPO4 based on tetrahedral Co. The prediction

was confirmed by Jähne et al. when they reported on the first synthesis of tetrahedral

LiCoPO4 in the structure that was suggested computationally [111].

8 Conclusion and Future Avenues

Materials science is moving more and more towards computationally oriented

materials design. Compound and crystal structure prediction is a critical step in

this new paradigm. Current DFT techniques are mature enough to model the phase

stability reasonably well and different approaches to compound predictions have

been developed. Among them, data mining offers high-throughput-friendly,

efficient methods that have already been used in several fields from Li-ion batteries

to oxynitrides for water splitting. We not only presented these methods in details

but also reported on several successes where computational predictions were

confirmed by experimental synthesis.

In the future, the development of large databases of freely available computed

data such as the Materials Project will surely help in providing large data sets to be

used for fitting more efficient data mining crystal structure prediction models. We

can expect an improvement in the predictive power of data mining based techniques

as the models are refined and the data sets become larger.

However, the main limitation of data mining techniques is their inability to

predict (in contrast to optimization techniques such as genetic algorithms) crystal

structures that have never been observed before. Combination of optimization and

data mining approaches could offer a solution to this problem, aiming at keeping

the low computational budget of knowledge-based methods while approaching the

exhaustivity of the optimization approaches.

We hope the many compound prediction techniques available and the current

understanding of the accuracy of phase stability prediction will in the future make

phase stability a more central part of the computational materials design process.

Too often new phases with exceptional computed properties are proposed without

assessing their phase stability.

Finally, while computations can be truly predictive to determine the existence of an

inorganic phase, the step between computational compound prediction and finding the

most appropriate synthesis route is still very empirical. A better fundamental under-

standing of the different synthesis approaches (solid state reaction, hydrothermal, etc.)

needing a joint effort from experimentalists and theorists would be of great value here.
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