
Top Curr Chem (2014) 348: 205–236
DOI: 10.1007/128_2013_451
# Springer-Verlag Berlin Heidelberg 2013
Published online: 19 June 2013

Folds and Buckles at the Nanoscale:

Experimental and Theoretical Investigation

of the Bending Properties of Graphene

Membranes

Vittorio Morandi, Luca Ortolani, Andrea Migliori,

Cristian Degli Esposti Boschi, Emiliano Cadelano, and Luciano Colombo

Abstract The elastic properties of graphene crystals have been extensively

investigated, revealing unique properties in the linear and nonlinear regimes, when

the membranes are under either stretching or bending loading conditions. Neverthe-

less less knowledge has been developed so far on folded graphene membranes and

ribbons. It has been recently suggested that fold-induced curvatures, without in-plane

strain, can affect the local chemical reactivity, the mechanical properties, and the

electron transfer in graphene membranes. This intriguing perspective envisages a

materials-by-design approach through the engineering of folding and bending to

develop enhanced nano-resonators or nano-electro-mechanical devices. Here we

present a novel methodology to investigate the mechanical properties of folded and

wrinkled graphene crystals, combining transmission electron microscopy mapping of

3D curvatures and theoretical modeling based on continuum elasticity theory and

tight-binding atomistic simulations.
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Abbreviations

BLE Bilayered edged graphene

CNT Carbon nanotube

CVD Chemical vapor deposition

DP Diffraction pattern

FFT Fast Fourier transform

GPA Geometric phase analysis

HRTEM High resolution transmission electron microscopy

STEM Scanning transmission electron microscope

TB Tight-binding

TEM Transmission electron microscope

1 Introduction

The capabilities of modern low-voltage aberration-corrected TEMs and STEMs,

in terms of resolution in imaging and associated spectroscopies, enable the investi-

gation of a wide range of properties of graphene-based materials, with atomic

sensitivity and resolution. Among these investigations we can find the morphologi-

cal aspects (shape, dimensions, thickness), as well as the structural ones (crystalline

habits, edges, defects, strain), to the physical and chemical properties (doping,

functionalization) of the systems under analysis, [1–5], using these instruments

and the related techniques as fundamental tools for the investigation of graphene-

based materials [6, 7].

In this work we will focus on the structural properties of graphene membranes

and, in more detail, on their 3D structure, showing how this can be reconstructed

through a combined experimental–theoretical approach taking into account, on one

side, geometric phase analysis (GPA) of HREM [8, 9] images, and, on the other, a

combination of continuum elasticity theory and atomistic TB simulations.
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2 Mapping Curvature at the Nanoscale

The stability of 2D crystals was debated for decades since, according to the so-called

Mermin–Wagner theorem, in 2D lattices thermal agitation will induce long wave-

length fluctuations which will destroy the long-range crystalline order [10]. The

existence of graphene was then debated until the discovery of a full set of 2D crystals

in 2005 [11].

Since the beginning it was clear that the structure of graphene was not perfectly

flat; nevertheless nowadays not so much is known on the precise 3D structure of

free-standing membranes. Indeed, free-standing graphene exists as a crumpled

sheet stabilized by its intrinsic corrugations [12]. Ripples and folds induce

curvatures in the 2D carbon lattice, bending the sp2 sigma bonds and locally

modifying the electronic properties of the materials (see Fig. 1).

Graphene membranes, when not supported or suspended, folds, realizing com-

plex structures [13–15]. It is worth noting that whenever the honeycomb lattice

bends, its electronic transport properties change, and interesting edge conduction

states can be obtained over micrometric lengths. This suggested the possibility to

engineer the transport properties of this material by modifying its 3D structure, and

strain and bending have been the subject of intense theoretical and experimental

studies [16–19]. Recent results indicate that the curvature induced by folding can be

at the origin of significant changes of chemical reactivity [20, 21] and of the

mechanical [22] and charge transport properties [23, 24] of graphene membranes.

The folding of graphene membranes depends on several factors, like lattice

orientations, crystal defects, and possibly adsorbed molecules, as well as on the

surrounding environment [25–28]. A deeper understanding of the mechanism

leading to the bending and the folding of the membranes is still an issue and a

deeper understanding of the curvature mechanics in graphene is essential to under-

stand the profound relations between its 3D structure and its properties. In this

framework there are two methodologies typically adopted to recover 3D structures

at the nanoscale, i.e., electron tomography in the TEM and scanning probe micros-

copy (SPM).

Unfortunately, neither of these techniques work properly for suspended graphene

membranes. Indeed, electron tomography needs to acquire more than 100 images of

the same region in different projections to reconstruct its 3D structure successfully

[29], a requirement that hardly matches with the high electron beam damage

Fig. 1 (a) 3D sketch of an intrinsically bent free-standing graphene flake; (b) graphical represen-

tation of the bent sp2 orbitals
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sensitivity, even at low energies, of graphene membranes [30]. On the other hand,

SPM typically needs supported samples to accomplish the interaction between the

probe and the membranes and to avoid, or at least minimize, artifacts due to

modification of the structure of the membrane [31].

Here we present a novel method to map 3D deformations in suspended graphene

membrane, requiring only one micrograph, and based on the so-called GPA that

will be discussed in detail in the following.

The idea behind this is indeed very simple. If we observe in the TEM a wrinkled

two-dimensional crystal like that depicted in Fig. 2a, the microscope will provide us

with a projected image of the crystal lattice in the direction of the beam. The effect

of this projection is that regions of the membrane not perpendicular to the electron

beam will appear as compressed. Therefore, from the measurements of these

apparent strains in the image of the lattice, in principle one can calculate back the

local slope of the flake with respect to the electron beam.

To focus this approach, we can consider a simplified model, such as that

represented in Fig. 2b, where, on the top, a one-dimensional chain of atoms showing

a height variation is depicted. Despite interatomic distances being kept fixed, in the

TEM image we will see the atomic positions projected in the direction of the beam

over the x-axis, indicated by the red circles. It is worth noting that the distances

between the projected positions in the image varies in accordance with the slope of

the undulated atomic chain. At the bottom of Fig. 2b is shown a profile of the local

strain as it would be calculated from the projected atomic positions. Using simple

geometry, it is clear that a measure of this apparent strain in the image will provide

an immediate measure of the local slope of the undulated chain, thereby providing a

complete reconstruction of its two-dimensional structure.

Let us introduce in more detail the principles of image formation in the TEM, as

this will be the basis for a complete understanding of the strain recovery techniques.

If we consider a crystal illuminated by an electron beam, as in the TEM, each of the

Fig. 2 (a) Schematics of the perspective view and the top view of a bent 2D crystal; (b) 1D sloped

atomic chains (yellow circles) with the corresponding projected image on the x-axis (red circles)
(top) and calculated apparent strain along the x-axis (bottom)
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crystal planes forming the structure will split the electron beam into multiple

beams, the unscattered beam and several diffracted beams, as shown at the top of

Fig. 3a. The objective lens of the TEM at high magnification, i.e., in the high
resolution imaging mode, is set to bring those diffracted beams to superimpose on

the image plane, resulting in an interference pattern, where the fringes follow the

direction of the original crystal planes. At the top of Fig. 3b there are reported, as an

example, three sets of diffracted wavefronts representing three independent sets of

crystal planes.

The results of the superposition of these diffracted wavefronts is shown at the

bottom. The interference pattern represents the so-called high resolution electron

microscopy image (HREM). In the reciprocal space, like in a diffraction pattern,

the fringes appear as couples of symmetric spots, indicating a precise frequency

corresponding to the spacing of the fringes, as shown at the bottom of Fig. 3a. A real

as well as an apparent deformation of the crystal plane periodicities, like those

highlighted in Fig. 2, will result in a deformation of the fringes in the image, and the

corresponding information in the reciprocal space will be encoded in the region

around the corresponding spot. Therefore, once taking into account the ability to

separate the contribution to the modulation of the fringe spacing in an HREM image

of the real and of the apparent deformations of the crystal, the problem of mapping

undulations and bending of a graphene membrane can be reduced to recovering the

strain out of the HREM image.

Fig. 3 (a) Schematics of the interference pattern generation on the image plane and typical

hexagonal direction pattern of a honeycomb crystal lattice; (b) HREM image formation by the

superposition of three interference patterns generated by three different families of planes
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2.1 Geometric Phase Analysis

GPA is a technique that analyzes the geometric distortions in the HREM image of a

crystal lattice by means of Fourier analysis. The reconstructed phase is called

geometric to avoid confusion with the electronic phase of the electron wavefront:

its meaning and the information it contains on the geometric distortions of the

image will be explained and discussed in the following. It is appropriate at this point

to introduce some formalism that will facilitate understanding of the underlying

mechanism of GPA strain reconstruction.

An HREM micrograph is a 2D image and a vector r can be defined in order to

indicate the position of a point. The intensity I(r) of the HREM image, as discussed

in the previous section, is represented by the superposition of interference fringes

created by the various beams diffracted by the sample. We can identify the direction

of these beams, and the direction of the relative system of fringes in the image, with

the wave-vectors g of the reciprocal space. If we consider the image of a perfect

crystal, free from any deformation, its intensity I(r) can be expressed as a Fourier

series over the frequencies g, as

IðrÞ ¼
X
g

Ige
2πi g�r; (1)

where Ig is a coefficient representing the intensity of the fringe system originating

from that particular g. In the reciprocal space the Fourier transform of (1) becomes:

~IðkÞ ¼
X
g

Igδðk � gÞ; (2)

where δ is the Dirac delta function. For a perfect crystal, the reciprocal space is

non-zero only at the positions of the g vectors.

Deformations in the specimen lattice can be introduced using the displacement

field u(r) with the following transformation [32]:

r 7! r � uðrÞ: (3)

The effect of this displacement vector field is that the reciprocal lattice directions g
are not defined globally for the crystal; instead they are local, depending on the

position g(r). Then for a deformed crystal (1) becomes

IðrÞ ¼
X
g

Ig e
2πi g�re�2πi g�uðrÞ: (4)

In real crystals lattice distortions are not the only imperfections present, since we

need to take into account thickness variations and, as in the case of graphene
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membranes, possible undulations. All these effects require one to consider the

intensity coefficients Ig to be the local function Ig(r) of the position [8]. If we define
the complex functions Hg(r) as

HgðrÞ ¼ IgðrÞe�2πi g�uðrÞ: (5)

then the Fourier transform of (4) becomes

~IðkÞ ¼
X
g

~HgðkÞ � δðk � gÞ: (6)

In the case of a deformed crystal, in the reciprocal space there is now some

dispersion of the intensity around the positions of the reciprocal vectors g. The

information about the deformations in the sample is encoded in the ~HgðkÞ functions.
The amplitude term of these functions will give the modulation in intensity of the

interference fringes in the direction of each g, while the phase term describes the

variations in the inter-fringe spacing around the image area. As already mentioned,

this phase term is called geometric phase.
The original HREM digital image is transformed by FFT to its frequency

spectrum and the pixels close to a specific g vector are selected using a circular

mask. The distance between two nearby gs limit the diameter of the mask, and

therefore it limits the resolution of the reconstructed maps, which is usually of the

order of a nanometer. The effect of the shape of the mask is beyond the scope of this

manuscript and the explicit expression of the mask will be omitted in the following

calculations (see [33] for details).

Selecting the region of the reciprocal space around a particular gwe are selecting

one specific ~HgðkÞ and setting the origin of the Cartesian reference system to the

position of g. Inverse FFT will give back the complex image:

FFT ~HgðkÞ
� � ¼ HgðrÞ ¼ IgðrÞe�2πi g�uðrÞþϕg : (7)

When transforming back an additional phase constant, ϕg emerges. Mathemati-

cally the process should recover H back without any additional term, but the pixel

nature of the image makes it impossible to determine exactly the position of the g,
which often lies in a sub-pixel position. This error in the re-centering of the

reciprocal space means that a δ-like component is still present and will transform

back to a constant phase in real space. The constant phase term ϕg is removed from

the reconstructed phase by re-normalizing the background over a reference area of

the map [8].

The result of the reconstruction procedure is a complex image corresponding to

one Hg(r). Amplitude and phase terms will be calculated according to the equations

IgðrÞ ¼ < HgðrÞ
� �

PgðrÞ ¼ = HgðrÞ
� �� ϕg

; (8)
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where < and = stands respectively for real and imaginary parts. The displacement

field u(r), is a two-dimensional vector field, and to recover it in every direction it is

necessary to reconstruct the Hg of two non-collinear g1 and g2. Mathematically we

need to find two vectors a1 and a2, in the real space, solving the equation

uðrÞ ¼ � 1

2π
Pg1a1ðrÞ þ Pg2a2ðrÞ
� �

: (9)

From the displacement field u(r) it is finally possible to calculate the strain

tensor E [8]:

E ¼ εxx εxy
εyx εyy

� �
¼

@ux
@x

@ux
@y

@uy
@x

@uy
@y

 !
: (10)

All these procedure are available as a series of script implementing numerically

GPA reconstructions and strain calculations. The software gives the strain tensor as

separated components expressed as follows [8]:

εxx ¼ @ ux
@x Symmetric strain Ex

εyy ¼ @ uy
@y Symmetric strain Ey

εxy ¼ 1
2

@ ux
@y þ @ uy

@x

� 	
Symmetric strain Exy

Δxy ¼ 1
2

@ ux
@x þ @ uy

@y

� 	
Mean dilatation Dxy

ωxy ¼ 1
2

@ uy
@x � @ ux

@y

� 	
Rotation Rxy

: (11)

The definition of the x and y reference axis are chosen by the user at his own

convenience.

GPA provides the instruments to reconstruct lattice deformations starting from the

HREM image of a crystalline sample. All the limits of the technique are due to this

specific image-based approach. As already stated, the image is representative of the

lattice structure of the sample. Intensity features in the image, however, will be

directly connected to the arrangement of planes in the sample only under restrictive

conditions. A set of constraints is imposed by the HREM technique itself and others lie

in the sample structure. It is beyond the scope of this manuscript to examine all the

parameters determining the limits and the precision of the reconstructed strain maps

[33]. Here it is important to note that the objective lens, and other imaging parameters,

can strongly affect the result of the analysis. Most of the problems arising from the

way the microscope transfers the spatial information from the specimen to the imaging

plane can be minimized by using the latest generation aberration-corrected

microscopes. The aberration-corrected microscope transfer function provides a

faithful transfer of spatial frequency over a large range. The remaining geometric

distortions induced by the lenses are removed by subtracting from the resulting phase

images a reference deformation map specific to the microscope used.
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The sample itself can present some important problems in the analysis of the

HREM images. Variations in the thickness of the sample in the area under investi-

gation induce an additional geometric phase displacements that will be impossible

to distinguish from those induced by changes in the interatomic distances. Strong

intensity variations of the interference fringes and, in the limiting case, a contrast

inversion, will be interpreted by the numerical routine as an additional phase

displacement not related to any physical strain.

Graphene membranes resolve or minimize many of the above-mentioned

problems. The most important limitation in TEM sample preparation is the control

over the thickness of the specimen. In the case of FGC membranes the thickness is

ideally uniform, and it can be experimentally determined at atomic level without

error and is normally constant over a large area. In our analysis we will concentrate

on the determination of the apparent compression induced by the vertical geomet-

rical projection of the bent membrane. We thus have a quasi-perfect sample to

investigate with the GPA technique.

2.2 Experimental Reconstruction of Bent Graphene
Membranes

Particular care was taken in setting up the experimental conditions for HREM

imaging. The experiments were performed using the aberration-corrected Tecnai

F20 TEM available at the CNRS-CEMES of Toulouse (http://www.cemes.fr),

operated at an acceleration voltage of 100 kV to avoid structural damage to the

carbon lattice. The sample was chosen according to the following criteria: it must

have an explicit geometrical distortion, where the effect of projection induced

apparent strain and real mechanical strain could be easily separated. Two kinds of

sample were analyzed. The first were mechanically exfoliated graphite flakes,

where thin electron transparent flakes can be easily obtained with thin borders

composed of few-layers, typically folded over themselves. Natural graphite powder

was exfoliated using a mortar and pestle and successively sonicated in isopropanol

for additional exfoliation and dispersion. The resulting solution was drop-cast over

standard 3 mm TEM holey carbon grids. The second kind of sample were graphene

crystals grown by CVD on copper substrate and then transferred on a 3-mm

TEM grid.

In Fig. 4 is shown the HREM image of a graphene flake prepared as highlighted

before. The flake is folded over itself along two borders. From an analysis of the

borders (0002) fringes it is possible to state that the flake is composed of three

superimposed graphene layers (six total layers). By looking closer at the edges, as

in inset (a) of Fig. 4, it is possible to determine the stacking order of the composing

graphene sheets. The series of intensity peaks corresponding to the position of

benzene rings in the stacked layers is highlighted by red circles. Their alignment

along lines not perpendicular to the flake edge is characteristic of ABAB stacking.
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Inset (b) of the same figure shows the FFT spectrum of the image. Graphite

principal reflections are highlighted (blue circles) along with folded borders

(0002) reflections (red rectangles).

An important feature of the image is the defocus difference which is apparent

between the left-side and upper borders. The left border shows some evident

Fresnel fringes due to under-focus, while the upper border is almost at focus,

with no Fresnel fringe visible. This suggest that there is some height difference

between the two regions, leading to the hypothesis that the membrane bends near

the border, inducing a compression of the projected atomic positions.

Fig. 4 HREM image of the border of an FGC flake. The membrane is folded over itself on two

sides, exposing (0002) fringes, which makes possible to determine the number of layers in the

membrane as 3. The inset (a) shows a close-up of the (0002) folded zone in the yellow rectangle.
From the disposition of the intensity peaks it is possible do determine that the flake has ABA
staking sequence. The inset (b) shows the FFT of the HREM image. Graphite reflections are

marked for easier view (blue circles) and (0,0,0,2) reflections of the two borders are clearly visible
(red rectangles)
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Following this hypothesis, it is possible to make a model of the 3D structure of

the folded border of the graphene flake, as reported in Fig. 5. The three-layers flake

starts to bend, makes a curve, and folds over itself forming six stacked layers.

Looking back to the experimental image, it is worth noting that this flake is

folded along particular directions. Indeed, looking at the FFT spectrum of the image

we note that the upper and left border are folded respectively perpendicularly to

ð01�10Þ and ð10�10Þ lattice direction. This means that when the three layers super-

impose after the border bending they will stack over the original three matching

lattice positions and, eventually, preserving the overall ABAB stacking.

What is important to note is that in this case the bending, and therefore the

apparent strain in the projected lattice image, will be only in one direction. The

sample is therefore in a suitably simple configuration to test GPA 3D reconstruction.

It is important to stress here that a hypothesis of 3D structure of the flake, as shown

in the schematics of Fig. 5, can be made from basic knowledge of the material and

from a careful inspection of the HREM image itself (geometry, defocus variations,

etc.). However, it is not possible in any way to quantify the surface height variation
from a standard analysis of the HREM image.We will show that this can be obtained

by GPA.

The first step in GPA is the reconstruction of the phase displacement maps relative

to at least two non collinear g vectors. In the case of the flake under investigation we

selected ð01�10Þ, ð10�10Þ, and ð1�100Þ reflections of the reciprocal lattice. Figure 6

shows the results of the reconstruction. To select the ~HgðkÞ coefficients a numerical

mask has been used, with an aperture corresponding to a final resolution of about

0.5 nm in the reconstructed phase maps.

The first noticeable feature of the phase maps of Fig. 6 is that large phase

displacements can be seen in the ð10�10Þ direction, near the upper border. Figure 7
shows the phase map for the ð10�10Þ direction. Three triangular regions of significant
phase displacement are aligned over the border and are indicated by white arrows.

The right one is the larger and the most intense. A slight phase displacement is

noticeable corresponding to these regions in the ð1�100Þdirection, while in the ð01�10Þ
direction the phase is almost flat all over the flake.

Fig. 5 Proposed schematics

for the structure of the folded

flake under investigation
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The apparent compression we are looking for is therefore acting displacing ð10�10Þ
and ð1�100Þ fringes, leaving almost unmodified the ð01�10Þ direction. To calculate

strain maps we need to define a reference axis to project their components. A possible

choice is the direction ð2�1�10Þ , assuming the flake is bent with a slope in that

direction.

Fig. 6 Reconstructed amplitude and phase maps for the graphite reflections indicated by blue
circles in the FFT of the image of Fig. 4. Variations in the phase values are mapped with a color

scale. Large phase variations are visible near the upper border in the reconstructed phase map from

the ð1; 0; �1; 0Þ g vector. Reference areas to re-normalize the phase backgrounds were taken in the

regions corresponding to that marked by the red rectangle in the ð0; 1; �1; 0Þ phase map. The lateral

dimension of the reconstructed phase maps is identical to that of the original HREM image

(27.60 nm)
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Figure 8 shows a close-up of the border region in HREM imaging and in the

ð10�10Þphase map. The plot of Fig. 8c is taken in the marked region and shows that a

large phase variation is local along the direction of the ð2�1�10Þ lattice planes. We can

form a hypothesis for the model of the atomic structure of the flake in this region as

shown in Fig. 8d. According to the scheme in Fig. 5, three layers bend in the

positive z direction while the other three bend in the opposite direction, creating a

hollow space near the border curvature.

The calculated amplitude maps are generally slowly varying, except for some

localized regions for ð1�100Þ and ð01�10Þ. Between the large phase bumps of the

ð1�100Þmap, localized contrast inversions will be likely to generate artifacts during

strain calculations [33]. The same problem is present in the marked region of the

ð01�10Þ amplitude map, near the left border. We will avoid these regions during

analysis of the calculated strain maps.

This structural hypothesis will be verified by calculating the strain field map

when choosing the Cartesian reference system indicated in Fig. 8a, i.e., with the

x-axis in the ð2�1�10Þ direction. As already discussed, we need two phase maps

calculated for two non-collinear directions to recover the 2D strain field. Every

couple of g vectors is mathematically equivalent, so a good criterion will be to

choose the couple resulting in the higher signal-to-noise ratio. We checked different

combinations and all the results were consistent. In the end, the best results have

been obtained using the ð01�10Þ and ð10�10Þ directions.
Figure 9 shows the results for the strain maps εxx and εyy. They are significantly

more affected by noise than the phase images because of the numerical process of

calculating the derivative of the phase [34]. Nevertheless, the main features of the

maps can be easily identified.

The central part of the flake is almost strain free in both the x and y components.

Along the x-direction we recognize some strain change associated with the borders of

the three regions already noted near the upper border. Consistent with the choice of

axes, the largest strain variation is associated with the zone highlighted in Fig. 8a, b).

Fig. 7 Phase map

reconstructed for the ð10�10Þ
direction. Arrows indicate
large phase variations at the

border of the flake
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Fig. 8 (a) HREM image of the flake near the upper border. The region of interest (ROI) is

marked by the rectangle and the Cartesian reference system for further analysis is indicated.

(b) Corresponding region of the ð01�10Þphase map. The same ROI of (a) is reported. (c) Plot of the

phase profile along the x-axis in the region of interest. (d) Schematics of the atomic structure of

the flake in the ROI
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To recover the local deformation of the membranes from the strain maps we

should retrieve the local slope value from the measured strain. For this purpose we

need to find a zone were the apparent compression can be assumed to be along one

direction only.

Recalling Fig. 8, it is possible to identify a region showing local uniaxial strain

due to the geometric projection of the bent 3D atomic structure. The zone

corresponds to the region marked with the yellow rectangle in Fig. 10a. According

Fig. 9 Calculated strain field maps. (a) Components of the strain field along the ð2�1�10Þ x-direction
and (b) along the ð01�10Þ perpendicular y-direction

Fig. 10 (a) Calculated strain map Exx in the ð2�1�10Þ direction. (b) Profile of the strain intensity

along the yellow ROI. (c) Profile of the strain intensity for the blue ROI. Profiles are acquired in the
direction indicated by the white arrow
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to the one-dimensional model previously discussed, we should find the peak of

the compression associated to the position of the curvature inversion point in the

bent flake.

Figure 10b shows the profile of the strain along the yellow rectangle. The plot

indeed shows a localized peak in the strain corresponding to the middle region of

the phase ramp of Fig. 8c. The measured compression is about 5%. Such a value is

extremely high for a pure mechanical in-plane compression of the crystal lattice.

Taking into account that graphene has a Young’s modulus of about 1 Tpa, a 5%

compression implies a stress of about 1028 N/nm2. Even if graphene should resist

such a force without breaking the interatomic bonds, a compression like this would

result in a 3D deformation. Thus, once more, we consider that such a strain is

apparent, and due to the effect of projection of the bent flake on the xy-plane.
The profile of the unstrained central area (blue rectangle of Fig. 10c) enables

analysis of the noise of the image. The two plots of Fig. 10 are obtained using the

same intensity scale to visualize background oscillations easily. An average of the

strain free area background shows noise oscillations of about 0.6%. Such

oscillations are mainly due to the poor contrast of the graphite fringes in the

HREM image. This noise is amplified by the numerical calculations performed

by the GPA to obtain the derivative maps, and it is the first limitation of this

technique. Nevertheless, in this case, a relatively good signal-to-noise ratio, with

a few percent strain, is still present.

For each value of the position of the map, a value for the slope of the surface of

the flake can be calculated, by means of simple trigonometry, that it is able to define

immediately the local angle α between the flake surface and the xy-plane in terms of

the strain ε as

cosðαÞ ¼ ð1� εÞ: (12)

From the value of α it is straightforward to calculate its tangent for each value of

the strain. Then, the reconstruction of the 3D atomic structure of the graphite flake

can be calculated from the fit of the local slope, which is the first derivative of the

height displacement of the flake surface. A straight integration can give directly the

atomic positions.

Figure 11 shows the results of the structure simulation. In the inset of Fig. 11a

the integrated height as a function of the distance is plotted, and the three dimen-

sional model is calculated accordingly. Each stacked layer change its z position of

about 0.8 nm, as indicated in the lateral projection of Fig. 11b. It is almost certain

that the bent structure of the three-layers graphene flakes can be reconstructed only

from the analysis of the apparent strain in the HREM image.

The same method can be applied to a single graphene layer as that reported in

Fig. 12 [35]. The membrane was grown by chemical vapor deposition (CVD) on a

copper substrate and transferred on a TEM grid. The HREM image shows the folded

edge of a monolayer membrane; the border is visible by the (0002) graphite lattice

fringe and the two layers in the stacked regions are rotated by an angle θ ¼ 21.7�,
as shown by the fast Fourier transform (FFT) in the bottom left corner inset.
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In the top right corner a schematics of the superimposed lattices as they appear

projected in the image is given. In addition it is clearly shown that the membranes

are not atomically clean and adsorbates or residues from the growth are either on top

or in between the membranes, changing its three dimensional configuration.

Figure 13 reports the resulting strain map in the direction perpendicular to the

folded border. In the map a compression running along the border is clearly visible,

close to a relaxed central area, where the two lattices are in contact and a strained

internal region, parallel to the border. Analyzing the deformation in the two

compressed region along the border, marked with 1 and 2 (see the profiles on the

right of Fig. 13), and following the same procedure described before, it is possible

Fig. 11 Schematics of the reconstructed structure of the flake. (a) Perspective view. In the inset a
plot of the elevation of each graphene layer. (b) Lateral view of the structure
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to interpret the strain as apparent and induced by the curvature of the fold, and

therefore to estimate a maximum slope of 16� over a length of 3 nm in both regions,

corresponding to a height variation of 0.8 nm.

Another example of a graphene flake showing a more pronounced 3D structure is

reported in Fig. 14, where a different region of the same border of the flake shown in

Fig. 12 is reported. The HREM image in Fig. 14a clearly shows an isolated defect on

the folded border, indicated by the white circle, and two lines of compression joining

at the defect site at the border, highlighted with the white lines. These curved

compressed regions are clearly shown in the strain map in Fig. 14b. As before, we

can analyze the strain along the two regions marked with (1) and (2), therefore

measuring a height variation of about 1 nm over a length of 4 nm with a slope of 16�

in region 1, and of 0.9 nm over a length of 2 nm and a slope of 27� in region 2.

Therefore we can interpret the observed compression lines as a curved wrinkle

induced in the folded edge by the defect, and the two membranes are wrapping in

their interior the carbonaceous contaminants shown in the HREM micrograph.

It is worth noting that in all the reconstructed structures, close to the fold

the curvature of the membrane is expected to increase up to 90�, and this is not

Fig. 12 HREM image of a single layer graphene flake folded edge. Bottom left corner: FFT of the

image, showing the stacking orientation of the two lattices. Top right corner: schematics of the

folded lattice
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highlighted in the apparent strain maps. In fact, this fold corresponds to an infinite

apparent compression in the imaged lattice, and in the strain profiles it is hidden by

geometric phase artifacts arising from the phase discontinuity at the interface

between the flake and the vacuum. In addition, the spatial resolution achieved in

the GPA reconstruction is 0.5 nm, which is the same order of the estimated fold

curvature radius, making it impossible to map such a large and rapid variation of the

crystal slope.

Fig. 13 Map of the strain component in the direction perpendicular to the edge of the fold. The

internal part of the flake shows no significant strain, while parallel to the border we can observe

compressed regions. (1, 2). On the right are reported the strain profiles acquired, respectively, over

regions (1) and (2)

Fig. 14 (a) HREM image of a single graphene layer folded over itself. A point defect, highlighted

by the white circle, is visible on the border; (b) map of the strain component in the direction

perpendicular to the edge of the fold. Two compressed lines, highlighted with white lines in (a), are
clearly visible; (c, d) strain profiles acquired, respectively, over regions (1) and (2)
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Nevertheless, in all the reported cases the method demonstrated effective in the

reconstruction of the 3D structure of the graphene membranes, at least far from the

region close to the folded edge. To validate the proposed methodology, the further

step is to compare the experimental results with a model of the 3D structure of

graphene flakes. This will be the subject of the next section.

3 Modeling the Bending Properties of Graphene

Membranes: Conceptual Framework

In order to obtain trustworthy HRTEM simulated images addressed at validating

the experimental results, the actual 3D atomic structure of folded graphene

membranes is needed. With this aim, we proceed through a multi-step protocol,

obtained by blending together atomistic and continuum modeling:

• The shape of a folded two-dimensional continuum membrane is at first predicted

according to continuum elasticity.

• The shape corresponding to the minimum elastic energy configuration is then

decorated by a carbon honeycomb lattice.

• Careful lattice relaxation follows, eventually driving to the actual atomistic

configuration of a folded graphene sample.

A key-feature underlying the above protocol is that, while the bending processes

of a two-dimensional continuummembrane involves only out-of-plane deformations,

in a two-dimensional atomic lattice such a deformation pattern cannot be achieved

without introducing bond strain [18]. This is mainly due to the distortion and mutual

interaction between neighboring pz orbitals. Thus, there is always interplay between

real bond-length variations and the apparent strain observed by projection of a bent

structure onto a plane. Taking into account properly the bond strain induced by

bending is, in turn, a tough problem owing to the peculiar nature of the carbon–carbon

interactions which can only be quantitatively modeled by quantum mechanics.

Therefore, the atomistic relaxation outlined above is performed by tight-binding

molecular dynamics, making use of the representation by Xu et al. [36].

4 Simulation Protocol

4.1 Step 1: Predicting the Shape of a Folded Continuum
Membrane

From the continuum elasticity theory point of view, the equilibrium shape of a

folded graphene (also known as BLE, Bilayered Edged Graphene) is the same

as that of any other 2D solid membrane and, hence, can be predicted by solving
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the Euler–Poisson problem, just providing the correct geometrical boundary

conditions.

The geometrical features of the specific configuration of a BLE graphene is

achievable by imposing the correct length (L) of the bent carbon ribbon (i.e., as

shown in Fig. 15, one can recognize two different regions, the inner one that is

almost a flat bilayer of graphene and the bent closed edges), the attack angle (φo)

(i.e., the angle obtained between the tangent plane at the folded region and the flat

one where they match together), and the (almost) constant distance (a) between the

two parallel layers along the flat region (see Fig. 15).

The length of the folded region in graphene results from the competition

between the bending momentum (i.e., the bending moduli of graphene, the bending

rigidity, and the Gaussian bending stiffness, depending on the mean and Gaussian

curvatures, respectively) and the attractive Van der Waals potential, which engen-

der the opening and the adhesion of the graphene sheet, respectively. In the matter

of the geometric features, the generic cylindrical configuration observed in BLE

involves only the mean curvature on the surface, and therefore the elastic energy

stored by the curvature at certain conditions depends just on the bending rigidity

(see Sect. 4.2).

The bending energy density Ub of a generic surface can be written as Ub ¼
2κH2 � �κK, where the mean curvature is H ¼ 1

2
ðk1 þ k2Þ and the Gaussian curva-

ture is defined as K ¼ k1k2 , k1 ¼ R�1
1 and k2 ¼ R�1

2 are the principal curvatures,

while R1 and R2 are the local principal radii of curvature. Due to the Gaussian

curvature being null,K ¼ 0, in the case of cylindrical geometry, the bending energy

density Ub is given by Ub ¼ 1
2
κ k21.

The corresponding problem consists in finding the curve z ¼ z(x) by minimizing

the bending energy Ub ¼
Ð Ð Ub dσ under the given boundary conditions that

consist in fixing the positions of the two parallel edges (with length l ) at a given

distance a (i.e., the equilibrium distance of a bilayered graphene, a ¼ 1.41 Å), a

constrained width L (i.e., enforcing the absence of any in-plane stretching), and the

attack angles are fixed for continuity reasons by the bilayer flat region.

Fig. 15 3D rendering of the TB simulated graphene folds. (a) Armchair fold. (b) Zig–zag fold
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In Fig. 16 the cross section of the bent graphene ribbon is sketched as a line with

width L. Hence, by imposing the method of Lagrange multipliers:

Ub ¼ 1

2
κl

ða
0

dx
€z2

ð1þ _z2Þ52
þ λ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ _z2

p !
: (13)

The above integral can be written in the general form GðzÞ ¼ Ð a
0
dxFðz; _z; €z; xÞ,

which is the solution of the Euler–Poisson differential equation @F
@z� d

dx
@F
@ _zþ d2

dx2
@F
@€z ¼0.

By the application of constrained variational calculus we eventually obtain the

final geometry in parametric representation [x(s), z(s)] with the given boundary

conditions. First of all, by the angle definition we get _z ¼ tan θ, and €z ¼ 1
cos2 θ

@θ
@x .

Introducing the arc length s ¼ Ð x
0
dx

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ _z2

p
, the Euler–Poisson differential equa-

tion can be written as

dθ

ds

� �2

¼ þλþ C1 sin θ þ C2 cos θ: (14)

By imposing the fixed attack angle condition, i.e., θ(0) ¼ θo ¼ π/2 and θ(L) ¼ �θo,

as shown in Fig. 16, (14) leads toC1 ¼ 0, and can be simplified as dθ
ds ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ C cos θ
p

,

where C � C2 as well as in the following.

fo o

x = 0

′
o

′
fo

x = a

ds

x

z bent ribbonFig. 16 A cross-section of a

bent ribbon (blue curve)
with parallel edges at fixed

distance a ¼ 3.4 Å, i.e., the

equilibrium distance between

two graphene layers. The

ribbon width L and the edges

distance a are taken as

constant, and the attack

angles θo and θ0o ¼ �θo
(or ϕ and ϕ0) are fixed at π/2
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Finally, by using the length L ¼ Ð a
0
dx

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ _z2

p
and the distance a to obtain the

parameters C and λ it follows that

L ¼
ðθo
�θo

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ C cos θ

p

a ¼
ðθo
�θo

cos θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ C cos θ

p
:

Turning back in Cartesian coordinates,1 we have obtained the parametric form of

the minimized surface:

x ¼ L

Ð θo
θðsÞ

cos θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþC cos θÞ

pÐ θo
�θo

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþC cos θÞ

p

z ¼ L

Ð θo
θðsÞ

sin θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþC cos θÞ

pÐ θo
�θo

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþC cos θÞ

p

: (15)

4.2 The Bending Rigidity of Graphene

The bending rigidity of graphene (κ ¼ 1.40 eV), including relaxation effects, can

be evaluated using carbon nanotubes instead of nanoribbons. Nanotubes, of course,

do not show any edge effects, but the bending rigidity depends on the mean

curvature, which in nanotubes is a geometric constant (the cylindrical geometry

of a nanotube imposes the Gaussian curvature null, K ¼ 0). Including relaxation

effects in the function of the nanotube radius R it possible to extract the pure

bending energy term by comparing the radius variation between the reference

starting tube, which has all bonds equal to the perfect graphene, namely 1.41 Å,

and the fully relaxed one. In fact, bond stretching is observed down to (15,0)

nanotubes [37–39]

The elastic energy density U ½eV �
A�2� of a nanotube can be written as the sum of

the strain energy density and the bending energy density:

U ¼ Us þ Ub: (16)

1We observe that
dx

ds
¼ cos θ, and

dz

ds
¼ dz

dx

dx

ds
¼ sin θ.
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The bending energy density Ub of a general given surface can be written as

Ub ¼ 2κH2 � �κK; (17)

where the mean curvature isH ¼ 1
2
ðk1 þ k2Þ and the Gaussian curvature is defined

as K ¼ k1k2, k1 ¼ R�1
1 and k2 ¼ R�1

2 are the principal curvatures, while R1 and R2

are the local principal radii of curvature. Choosing a cylindrical configuration that

involves only one curvature (i.e., k1 ¼ R�1
1 and k2 ¼ 0), the mean curvature is

H ¼ 1
2
k1, while the Gaussian curvature is null, K ¼ 0.

Thus in the case of cylindrical geometry, the bending energy densityUb is given by

Ub ¼ 1

2
κ k21: (18)

The total bending energy Ub can be calculated by performing the integral of

the bending energy density Ub on the reference surface Σo , i.e., Ub ¼
Ð Ð

Σo
Udσ ¼

1=2κl
Ð
γo
k21ds, whereΣo ¼ Lol is the total area of the reference system, γo ¼ 2π Ro is

the circumference of the cylinder with radius Ro, and s is the arc length (0 < s < Lo).
Note that the reference surface Σo is defined as the surface of the corresponding

rectangular flat slice which has been rolled to build the nanotubes, i.e., the unstrained

graphene nanoribbon wherein all the bond length are equal to the equilibrium

distance dC–C ¼ 1.41 Å between a pair of neighbor carbon atoms.

The solution of the integral is as follows:

Ub ¼ 1

2
κl
2πRo

R2
: (19)

If the bending does not involve stretching, the radius R after the relaxation of the

nanotube has to be equal to the reference cylinder radius Ro. Therefore the bending

energy can be simplified as

Ub ¼ lim
R!Ro

1

2
κl
2πRo

R2
¼ πκl

Ro
: (20)

Because the bending energy can be computed by atomistic simulation as the

difference between the total energy of the nanotube Etube
o and the corresponding

reference flat system E flat
o , namely Ub ¼ E tube

o � E flat
o , the bending rigidity κ of a

nanotube with radius Ro is given by

κ ¼ RoUb

πl
; (21)

in the absence of stretching on the surface (Fig. 17).
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However, if the nanotube dimension is down to a certain radius (see Fig. 18), the

relaxation of the structure allows a variation of radius R. In these cases with

R 6¼ Ro, it needs to take in account the non-negligible stretching term in (16).

Thus, the stretching energy density Us has to be integrated as follows:

Ro

l

γo

Fig. 17 A nanotube can be sketched as a simple cylinder. Here the radius Ro and circumference γo
are referred to the reference configuration (i.e., without bond stretching), while the length l is fixed
by imposing the periodic boundary condition along the cylinder axis (dashed line)
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Fig. 18 Bending rigidity κ in function of the radius of a set of zig–zag nanotubes in the range of

(3,0)–(30,0). The symbols show the value of the bending rigidity, as defined in (20), obtained by

tight-binding simulations. Note that down to (15,0) a deviation from the constant value is

observed. This fact is due to the rising of stretching bond effects due to the curvature. The

asymptotic value is κ ¼ 1.40 eV
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Us ¼ 1

2

E

1þ ν

ð ð
Σo

Tr ε̂2
� �þ ν

1� ν
Tr ε̂ð Þ½ �2

� 	
dσ:

Here the nanotube length l is constant due to the periodic boundary condition

imposed along the axis of the cylinder; hence, we can consider only the strain tensor

ε̂ ¼ ζ 0

0 0

� �
along the circumference. So considering that ζ ¼ γ � γo

γo
¼ R� Ro

Ro
:

Us ¼ πRoEl

1� ν2
R� Ro

Ro

� �2

: (22)

Obviously, when R ! Ro, the stretching energy goes to zero, Us ¼ 0.

4.3 Step 2: Predicting the Actual Atomistic Structure
of a Folded Graphene Membrane

Tight binding (TB) atomistic simulations have been performed making use of the

sp3, orthogonal, and next-neighbors tight-binding representation by Xu et al. [40]

The present TB total energy model has been implemented within the scheme given

by Goodwin et al. [41] for the dependence of the TB hopping integrals and the

pairwise potential on the interatomic separation.

The following continuum analysis is useful to create reasonable input

configurations for atomistic calculations, mainly with the aim of starting the relaxa-

tion routine from a configuration as close as possible to equilibrium. The investigated

system consists in a squeezed nanotube formed by a perfect hexagonal carbon lattice,

having circumference L and length l, corresponding to a simulation box containing

~900 carbon atoms. Moreover, periodic boundary conditions are assumed along the

direction of the length l. The length (width) is developed along the armchair

(zig–zag) direction of the honeycomb lattice.

Although reassuring, the above picture must be refined in order to take properly

into account atomic-scale features. Full relaxation of the internal degrees of free-

dom of the systems is performed by zero temperature damped dynamics until

interatomic forces result as not larger than ~10�5 eV/Å. We have so generated a

set of configurations, where bending and stretching features are entangled, in order

to simulate the HRTEM images.

Summarizing, we started from a configuration made by a hexagonal configura-

tion mapped on the predicted shape with the desired chirality, then we obtained the

correct values for the geometrical parameters using zero-temperature atomistic

relaxation simulations adopting a TB semi-empirical scheme [31] plus a van der

Waals interaction [42]. If the central region, where the layers remain parallel, is

large enough, as shown in Fig. 15, any further constraint is not needed. The atomic
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coordinates calculated so far allow us to simulate HREM images. It is important to

note that in two-dimensional out-of-plane deformations it is impossible to achieve

bending without introducing strain [18], and there is always interplay between real

bond-length variations and the apparent strains due to the effect of projection of a

bent structure. However, atomistic simulations performed on folded monolayer

structures show that bond-length variations in the folded regions are <0.1% in

the direction perpendicular to the edge [18]. This indicates that graphene stiffness

ensures that changes in the interatomic distances are small compared to the effect of

projection on the measured strain in the image.

5 Validation of the Experimental Procedure

As highlighted in the previous section, the modeling of the structure started from

tubular lattices, imposing the structure to collapse at the center in order to simulate

the two superimposed graphenes near a folded edge, as reported in Fig. 19. In this

case one half of the structure of an armchair tube has been taken into account

prolonged with flat graphenes, obtaining a folded monolayer edge, with a loop of

0.74 nm in diameter. The height variation with respect to the center of 0.2 nm is

accommodated over a length of 0.7 nm with a slope angle of 17�. It is important to

note that variations of the interatomic distances in the curved part result in being

<1%, and therefore all the strain in a TEM image of such a structure should come

from the effect of the projection of the atomic positions in the lattice.

The atomic position of the lattice obtained in this way has then been used as

input to simulate HREM images, in exactly in the same experimental conditions

shown before, using the JEMS package [43]. In Fig. 20a the top view of the folded

armchair structure is given, while in Fig. 20b the corresponding simulated HREM

image is shown for an energy of 100 keV and a small positive defocus and slightly

positive spherical aberration. Then we applied the GPA to the simulated image to

calculate the strain in the direction parallel to the border and perpendicular to it, as

reported in Fig. 20c, d, respectively. In the direction parallel to the border there is no

variation in the lattice, as we expect from the folding, where all the compression in

the sloped region is along the perpendicular direction.

Fig. 19 Lateral, left, and
top view, right, of the
half-portion of the armchair

tubular lattice structure
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In Fig. 21 the line scan taken in the direction perpendicular to the folded border,

along the white line in Fig. 20d, is shown. Moving from the flat region towards the

border, we can measure a compression of about 4%, followed by a rapid increase of

the strain as we approach the border where the crystal is almost parallel to the beam

direction.

The large red dots in the profile are the compression values calculated from the

projected atomic positions in the structure of Fig. 20d. The profile maps very well

the compression corresponding to the inner curvature but, due to intrinsic resolution

problems in the recovered strain map, it fails to map the rapid curve of the outer

Fig. 20 (a) Top view of the simulated atomic position; (b) simulated HREM image from (a);

(c) strain map along the direction parallel to the border; (d) strain map along the direction

perpendicular to the border

Fig. 21 Strain profile (red line) along the white line in Fig. 20d and compression values (big red
dots) calculated from the projected atomic position of the simulated structure of Fig. 19
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part. Nevertheless, as in the experimental case, the intensity of the compression can

be used to measure the local maximum slope, about 16�, and to measure the length

of the curved region, estimated as 0.7 nm. Therefore it is possible to estimate a

height variation of 0.2 nm, which is almost identical to the real height variation in

the simulated structure.

To confirm further the capabilities of the method, following the very same

approach, one half of the structure of a zig–zag tube has been taken into account,

as reported in Fig. 22. In this case the modeled structure shows a loop of 0.81 nm in

diameter, and thus a height variation with respect to the center of 0.23 nm

accommodated over a length of 0.7 nm with a slope angle of about 28�. Again
we can use the modeled atomic position as input for HREM image simulation to

apply the GPA strain analysis to recover the 3D modeled structure. The results are

reported in Fig. 23. Even in this case the spatial resolution of the map fails to show

the rapid curvature at the outer edge, but at the same time it is possible to measure

with great precision the structure of the internal region, with a slope of 27�, over a
length of 0.7 nm, therefore estimating a height variation of 0.3 nm, close to the 0.23

expected from the model.

Fig. 22 Lateral, left, and top view, right, of the half-portion of the zig–zag tubular lattice structure

Fig. 23 (a) Simulated HREM image from the simulated atomic positions of Fig. 22; (b) strain

map along the direction parallel to the border; (c) strain profile (blue line) along the white line in
(b) and compression values (big red dots) calculated from the projected atomic position of the

simulated structure of Fig. 22
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6 Conclusions

In this chapter we have presented a novel approach to study the mechanical

properties of wrinkles and fold in graphene membrane, using a combination of

TEM-based 3D mapping and blended continuum-atomistic modeling. The experi-

mental results show that the apparent strain in the HREM images on graphene

membranes provides precise information about the 3D sub-nanometer height and

spatial resolution, in excellent agreement with predictions by atomistic tight-binding

simulations.

Combining information from electron diffraction and HREMwith the possibility

of mapping the 3D membrane morphology is successful in characterizing freely

suspended graphene crystals. In this work we have focused on the investigation of

graphene folded edges, but the same methodology can be applied to investigate the

elastic properties and 3D structure of complex folds and wrinkle geometries. In

addition, the proposed approach is general and can be easily extended to other

two-dimensional crystal like BN or MoS2 membranes, as well as to hybrid multi-

layer thin-films composed of these materials.
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