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Polysialic Acid in Brain Development

and Synaptic Plasticity

Herbert Hildebrandt and Alexander Dityatev

Abstract Polymers of sialic acid can be produced by pro- and eukaryotic cells.

In vertebrates polysialic acid consists of α2,8-linked N-acetylneuraminic acid and is

most prominent during nervous system development. Polysialic acid is produced by

two complementary sialyltransferases, ST8SiaII and ST8SiaIV. The major, but not

the only, carrier of polysialic acid is the neural cell adhesion molecule (NCAM).

In this review we highlight how polySia dictates the interactions of various cell

types during development and plasticity of the vertebrate central nervous system on

different molecular levels. Recent progress in generating mouse models with

differential ablation of the polysialyltransferases or NCAM revealed the dramatic

impact of polysialic acid-negative NCAM on brain development and elaborate

electrophysiological studies allowed for new insights into the role of polysialic

acid in regulating synaptic plasticity and learning. The implications of dysregulated

polysialylation for brain disease and neuropsychiatric disorders are discussed.
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1 Introduction

Polysialic acid (polySia or PSA1) occurs as a capsular polysaccharide of

neuroinvasive bacterial pathogens (see Jakobsson et al. [1]) and as a unique glycan

structure of a small set of eukaryotic cell surface proteins [2, 3]. In mammals,

polySia consists of linear chains of α2,8-glycosidically linked N-acetylneuraminic

acid residues (Fig. 1a) with a variable degree of polymerization ranging from 8 up to

approximately 90 sugar units and comprises approximately 10% of the total protein-

bound neuraminic acid in the developing brain [4, 5]. Early physicochemical

investigations predict that at least parts of the polySia chain exhibit an extended

helical conformation with a basal unit of approximately nine sialic acids [6–8]. Due

to the negative charge of the nine-carbon monosaccharide, polySia forms a

hydration shell, which increases the hydrodynamic radius of the polySia carrier

and enlarges the space between adjacent cells (Fig. 1b) [9–12].

The most prominent protein modified by polySia is the neural cell adhesion

molecule (NCAM), the prototypic member of the immunoglobulin family of

adhesion molecules. Discovered as a synaptic glycoprotein more than 35 years

1 The most commonly used abbreviation for polysialic acid in neuroscience is PSA but in tumor

biology, PSA stands for prostate specific antigen. To avoid confusion we prefer to use polySia to

abbreviate polysialic acid.
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ago [13], some of the first analyses already indicated striking differences in sialic

acid content and biochemical properties of NCAM isolated from either embryonal

or adult nervous tissue [14, 15]. At about the same time polySia was identified as

a major source of sialic acid in the glycoprotein fraction of embryonic rat brain

and hence could be assigned to NCAM [4, 16]. Since then, numerous studies

in vitro and in cell-based approaches have shown that polysialylation decreases

NCAM-mediated homophilic adhesion [11, 12, 17–20] as well as NCAM signaling

functions induced by homophilic or heterophilic NCAM interactions [21–23].

However, NCAM is not the only carrier of polySia. A limited number of other

polysialylated proteins have been described including the scavenger receptor CD36

in human milk [24], neuropilin-2 on human dendritic cells [25–27], and the

polysialic acid synthesizing enzymes themselves, which can polysialylate their

own N-glycans in a process termed autopolysialylation [28–31]. In the nervous

system, occurrence of polySia on sodium channel alpha subunits of adult rat brain

synaptosomal fractions has been reported [32] and most recently a subfraction of

the synaptic cell adhesion molecule SynCAM 1 has been identified as a target for

polysialylation in the early postnatal mouse brain [33]. The latter study also

established that polysialylation attenuates homophilic adhesion of SynCAM 1 in

a bead aggregation assay, implying that polySia serves as a potent regulator of

Syn-CAM 1 interactions in vivo, as is known for NCAM (Fig. 1b).

a

b

Fig. 1 Eukaryotic polySia structure. (a) α2,8-glycosidically linked N-acetylneuraminic acid

residues. (b) PolySia increases the hydrodynamic radius, shields of interactions of its carrier

protein and increases intermembrane space affecting interactions of various other cell surface

proteins
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2 Polysialic Acid Biosynthesis

In 1995 two different polysialyltransferase genes were independently characterized

in four groups [34–37]. In these studies, each of the two enzymes was shown to be

capable of producing polySia in vitro. Initially named STX [38] and PST-1 [34],

the enzymes were designated ST8SiaII and ST8SiaIV according to a systematic

nomenclature of sialyltransferases introduced in 1996 by Tsuji, Datta, and Paulson

[39]. ST8SiaII and ST8SiaIV show a high sequence homology and are typical

members of the mammalian sialyltransferase family with a type II trans-membrane

topology, a short N-terminal cytoplasmic tail, a stem region, and a large catalytic

domain facing the Golgi lumen (Fig. 2a) [40, 41]. The catalytic domain includes

the sialylmotifs L, S, and VS, three conserved sequences that are found in all

mammalian sialyltransferases and are involved in substrate binding [41–43]. The

polysialyltransferases contain two additional structurally unique polybasic motifs,

termed polysialyltransferase domain [44] and polybasic region [45, 46], respectively

(PD and PBR; Fig. 2a). While the polysialyltransferase domain is part of the

catalytic domain, the polybasic region is located in the stem region and seems to

be involved in acceptor substrate recognition. Replacement of basic amino acids

identified arginine residues within both motifs that are essential for polysialylation

[45, 46]. In addition, interference with N-glycosylation of the polysialyltransferases
and in particular the prevention of autopolysialylation leads to the formation of

inactive enzymes [28, 47, 48].

Using cytidine 50-monophosphate (CMP) – activated sialic acid as donor (see [49]),

ST8SiaII and ST8SiaIV catalyze the transfer of multiple α2,8-linked sialic acid

residues to, in the case of NCAM, a highly variable, di-, tri-, or tetraantennary

N-linked core glycan [50–54] (Fig. 2b). As determined in vitro, terminally α2,3- or
α2,6-sialylated galactose residues bound in α1,4-linkage to N-acetyl glucosamine

can be used as acceptor sites for polysialylation [55, 56]. Although NCAM carries

six N-glycosylation sites, the addition of polySia in vivo is restricted to sites 5 and

6, located in the fifth Ig-like domain (Ig5; Fig 2b) [52, 53, 57]. Mutational analyses

identified an acidic patch in the first fibronectin type III repeat (FN1) that is critical

for polysialylation [58] and hence might interact with the polybasic region of the

polysialyltransferases [45]. Further deletion and replacement studies revealed the

role of an alpha helix in Fn1 and the region linking FN1 and Ig5 in positioning of

the Ig5 N-glycans for polysialylation with some but limited flexibility [58–60].

The latter studies suggest that not only protein–protein interaction but also proper

spacing between the membrane and a particular N-glycosylation site are key

determinants for site-specific polysialylation of only selected protein acceptors,

such as NCAM and SynCAM 1 (Fig. 2b) [33, 58].

In the absence of specific enzymes that could degrade polySia at the cell surface,

polySia expression in vertebrates seems to be regulated mainly by the balance

between the synthesis of polysialylated structures and their internalization from the

cell surface, which in the case of NCAM leads to either lysosomal degradation or

recycling [61–63]. During mouse brain development, the expression of the two
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polysialyltransferases and the level of NCAM peaks during the third trimester [64]

and in theperinatal phase, the entire pool ofNCAMispolysialylated [65, 66].Analyses

of polysialyltransferase-deficient mice in this time window reveal that a loss of

ST8SiaIV is completely compensated by the remaining activity of ST8SiaII. Con-

versely, in the absence of ST8SiaII more than 50% of the available NCAM are still

fully polysialylated [65, 66]. Thus, biosynthesis of polySia under these conditions

is limited by the availability of NCAM as the major acceptor. As detailed below

(Sect. 4.2), an untimely appearance of polySia-negative NCAM causes severe defects

a

b

Fig. 2 Biosynthesis of polySia on NCAM and SynCAM 1. (a) Domain structure of the polysialyl-

transferases ST8SiaII and ST8SiaIV with the polybasic region (PBR), the polysialyltransferase

domain (PD), and the sialylmotifs large (L), small (S), and very small (VS) of the catalytic domain.

The relative positions of the N-glycans are indicated by arrowheads. TMD transmembrane

domain. (b) Structure of the type I transmembrane proteins NCAM and SynCAM 1, example

for a complex, here triantennary, core glycan with terminal sialic acid(s), and model of NCAM and

SynCAM 1 in complex with a Golgi-resident polysialyltransferase (polyST) for site-specific

polysialylation. Ig Ig domains, Fn fibronectin type III repeats, triangles N-glycosylation sites.

Parts of panel b are modified from [33]
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in brain development. The overly high enzyme levels in the embryonic and early

postnatal period, therefore, might be crucial to guarantee that all NCAM is fully

polysialylated during critical developmental periods. Possibly this overcapacity

explains that a small fraction of SynCAM 1 is used as an alternative acceptor

for polysialylation just during this phase [33].

3 Patterns of Polysialic Acid Expression

3.1 Developmental PolySia Patterns

PolySia is most prevalent during nervous system development. In mice the expres-

sion of both polysialyltransferases starts with neural tube closure at embryonic day

(E) 8.5 and polySia is detected from E9 onwards [67, 68]. In general, polySia is

widespread during embryonic and early postnatal brain development and most if not

all neurons seem to be positive for polySia at some stage of their differentiation

[69]. Staining has been detected on radial glia of the developing cortex and mesen-

cephalon [64, 70] as well as on Bergmann and Müller glia, i.e., the radial glia of

cerebellum and retina [71–73]. The most prominent polySia expression is found on

interneuron precursors that migrate tangentially from the subventricular zone of

the lateral ventricle to the olfactory bulb [74, 75]. This neurogenic niche is derived

from the embryonic lateral ganglionic eminence and persists into adulthood. In the

course of brain development polySia is also found on migrating precursors of

cortical interneurons [76, 77] and cerebellar granule cells [71]. As shown for, e.g.,

Cajal–Retzius cells, the first neuron population growing out axons in the cortical

primordium, or for fiber tracts like the optic nerve, the corticospinal tract, and

thalamocortical fibers, developing axons of the rodent brain display strong

polySia-immunoreactivity as well [72, 76, 78–80]. Finally, polySia is present during

synapse formation of hippocampal neurons [81, 82] and plays a decisive role in the

functional maturation of GABAergic inhibition which determines the time window

of the so-called critical period of plasticity in the visual cortex [83] (see Sect. 5.2).

Together, these findings point towards multiple functions of poly-Sia at all stages of

neurogenesis. Correspondingly, the polysialyltransferases have broad and

overlapping expression patterns in these developmental stages [68, 84].

As studied on the whole brain level and during development of the mesencephalic

dopaminergic system in mice, mRNA expression of both polysialyltransferases

increases dramatically after E10.5 and reaches plateau levels between E13.5 and

E14.5, which are maintained until birth [64]. The time-course of ST8SiaII and

ST8SiaIV upregulation is almost identical and precisely parallels a steep increase

in the NCAM transcript level. In the course of postnatal brain development both

polysialyltransferases are downregulated. In contrast to the moderate reduction of

ST8SiaIV, a sharp drop of ST8SiaII mRNA occurs in a rather narrow time window

between postnatal day (P) 5 and P11 followed by declining polySia [66]. At these
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lower transcript levels a close correlation of polysialyltransferase expression and

polySia formation becomes evident. Because the amount of NCAM remains almost

constant, reduced polysialylation causes a gradual appearance of polySia-negative

NCAM [66]. Highly consistent with these studies on the whole brain level, a decline

of polySia has been observed in the prefrontal and visual cortex during the second

and third week of postnatal development, which in the visual cortex is preceded by

declining mRNA levels of ST8SiaIV and a particularly pronounced drop of ST8SiaII

between P9 and P12 [83, 85, 86]. Moreover, postnatal downregulation of polySia

but constant levels of NCAM were detected in the human prefrontal cortex [87].

Among the three major splice variants of NCAM only the two transmembrane

isoforms NCAM-140 and NCAM-180 occur in their polysialylated form in brain

lysates of embryonic and postnatal mouse brain [66, 67, 76]. In contrast, the glyco-

lipid anchored isoform NCAM-120 is barely detectable at birth but massively

upregulated during postnatal development without being polysialylated [66]. These

findings contrast with in vitro data showing that all three NCAM isoforms can serve

as polySia acceptors due to their identical extracellular domains [88]. Consistent with

NCAM-120 being the characteristic isoform of mature oligodendrocytes and myelin

sheaths, the increasing levels of NCAM-120 parallel the course of myelination during

postnatal brain development [89, 90]. The lack of polysialylated NCAM-120 in

postnatal mouse brain, therefore, may be explained by differential expression patterns

of polysialyltransferases and NCAM-120. In contrast, oligodendrocyte precursors are

positive for polySia in development and also during lesion-induced recruitment in the

adult brain [91–96]. However, for both neuronal and oligodendrocyte precursors the

NCAM isoform patterns remain to be determined.

3.2 PolySia Patterns of the Mature Brain

Under healthy conditions, polySia vanishes almost completely within the first

3 weeks of postnatal development, coinciding with the completion of major

morpho-genetic events. There are, however, various hotspots of polySia expression

in the mature brain. Most prominent, migrating neuroblasts arising from the neuro-

genic niches of the anterior subventricular zone [74, 75, 97, 98] and early postmitotic

granular cell precursors in the subgranular layer of the hippocampal dentate gyrus

[99–104] are characterized by their high polySia content and have been observed in

all mammals including man [105–107]. Other major sources of polySia in the adult

brain comprise widely spread subsets of interneurons and a population of immature

neurons in layer II of the paleocortex. PolySia-positive interneurons were observed

in different cortical areas, including prefrontal cortex [108, 109], piriform cortex

[110], and hippocampus [111], as well as in the amygdala [112, 113]. Although

polySia is best known by its intense expression in immature precursor stages, the

polySia-positive interneurons of the cortex are mature neurons as evidenced by the

presence of NeuN as an indicator of differentiated neurons, together with inter-

neuron markers, mainly GAD67 and either calbindin, somatostatin, or parvalbumin
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depending on the cortical area under consideration [114]. Compared to polySia-

negative interneurons, these cells receive less synaptic input and have reduced

dendritic arborization and spine numbers, suggesting that polySia is a negative

regulator of interneuron connectivity and possibly allows for plasticity of inhibitory

cortical networks [114]. As discussed in detail elsewhere [69, 115], the identity of

the population of immature neurons in the paleocortex is enigmatic. Besides being

polySia-positive, the immature cells display further features of neuronal precursors,

like expression of doublecortin and the lack of NeuN [110, 116]. Despite a

conflicting report [117], studies in rodents and cats provide substantial evidence

that these cells are generated prenatally and maintain their immature phenotype into

adulthood [118, 119]. Together with a comparative analysis of various mammalian

and non-mammalian species [120], the data indicate that some immature polySia-

and doublecortin-positive cells are also present in layers II and III of the mammalian

neocortex. Most recently, the first evidence has been obtained that at least some

of these immature neurons have the potential for maturation. After massive interfer-

ence with olfactory processing by bulbectomy, the numbers of polySia- and

doublecortin-positive cells in the piriform cortex layer II of adult rats were reduced

in favor of increased numbers of differentiated, NeuN-positive neurons [121].

In addition to these examples of polySia immunoreactivity comprising the

surface of neuronal cell somata and processes, some differentiated neurons of the

mature brain are characterized by a polySia-negative soma while displaying polySia

on their neurites. Most notably, most, if not all, hippocampal mossy fibers show

intense polySia staining, although their somata in the granule cell layer are polySia-

negative [77]. A similar situation was observed for pyramidal cells of the hippo-

campal CA1 region. Although the cell layer itself is polySia-negative [122], polySia

immunoreactivity is detected on axons and dendrites of the CA1 pyramidal cells

[123, 124]. Furthermore, as reviewed in great detail elsewhere [69, 125], wide areas

of the adult brain retain a diffuse pattern of polySia staining. In thalamic and striatal

regions this staining cannot yet be assigned to defined cell populations. In contrast,

the more prominent diffuse polySia immunoreactivity of the adult hypothalamo-

neurohypophysial system has been studied comprehensively [126–131]. Pronounced

changes of polySia patterns occur during the glial and synaptic remodeling that

accompany the physiological regulation of neuro-hormone release. While some of

this polySia could be assigned to neurons of hypothalamic magnocellular nuclei,

astrocytes and in particular their fine perineuronal processes are a major source

of polySia in the hypothalamus. Strikingly, enzymatic removal of polySia by

endosialidase injection prevents the rearrangement of synapses and astrocytic pro-

cesses, indicating that polySia is a prerequisite for these changes [128, 130, 131].

Besides these hypothalamic astrocytes, polySia is found on other astrocytic cells of

the adult brain, like the pituicytes of the neurohypophysis [132] and radial glia-like

tanycytes in the ependymal layer of the third ventricular wall sending processes into

the mediobasal hypothalamus [133]. Furthermore, polySia is also formed by reactive

astrocytes, activated in response to various insults [92, 134–136].
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3.3 Polysialyltransferase Activity in the Mature Brain

In general, polySia immunoreactivity and the combined mRNA expression of

polysialyltransferases are well correlated [68, 84, 137–140]. Despite considerable

overlap there are marked differences in tissue- and time-specific mRNA expression

patterns suggesting an independent regulation of ST8SiaII and ST8SiaIV at the

transcriptional level. Most notably, ST8SiaII is predominant during embryonic

development, while ST8SiaIV is the major polysialyltransferase of the adult brain

[66, 68, 84, 137]. Accordingly, polySia is drastically reduced in the brain of

adult ST8SiaIV-negative mice as detected by Western blot analysis or immuno-

histochemistry [66, 141, 142]. However, polySia expression is retained on newborn

neurons in the neurogenic niches of the subgranular zone of the hippocampal dentate

gyrus and the subventricular zone of the lateral ventricle [141]. Loss of ST8SiaII

has less effect on the polySia level but Western blot analysis of different brain

regions indicates clear reductions in some parts of the brain [143]. First immuno-

histochemical data demonstrated a loss of polySia in the subgranular zone of the

dentate gyrus, but normal levels of immunoreactivity were detected in the

subventricular zone of the lateral ventricle and the descending stream of rostrally

migrating-neuroblasts destined to become olfactory bulb interneurons [143]. Thus,

both polysialyltransferases jointly produce polySia during subventricular zone

neurogenesis and the loss of one enzyme can be largely compensated by the other.

In contrast, ST8SiaII seems to be solely responsible for polySia synthesis in newborn

granule cells of the adult dentate gyrus. However, the prominent polySia staining

on the mossy fibers of the mature dentate granule cells is retained in the absence of

ST8SiaII but completely abolished by the loss of ST8SiaIV [141, 143]. These

findings match perfectly the ST8SiaII and ST8SiaIV mRNA expression patterns

[84]. During the early stage of their life the newborn granule cell precursors in the

subgranular layer express high levels of ST8SiaII, whereas only ST8SiaIV has been

detected over the entire depth of the granular cell layer and consequently is

associated with mature granule cells [84]. Interestingly, therefore, the expression

patterns of the two polysialyltransferases during neurogenesis of dentate granule

cells recapitulate the developmental profiles on the cellular level.

A direct comparison of polySia immunoreactivity in the cortex of young adult

ST8SiaII- and ST8SiaIV-deficient mice corroborated the differential contribution

of the two enzymes in the hippocampal dentate gyrus but also indicated a small

overlap [142]. Minor populations of immature polySia-positive neurons remain in

the ST8SiaIV-negative subgranular zone and some isolated polySia-positive fibers

are still present throughout the granular cell layer of ST8SiaII-deficient mice.

Moreover, this study clearly demonstrates that ST8SiaIV is solely responsible for

polySia expression in mature cortical interneurons, whereas ST8SiaII is the major

polysialyltransferase of the immature neurons in the paleocortex [142]. Remark-

ably, ST8SiaIV activity may drive maturation of these immature neurons, because

ST8SiaIV deficiency leads to increased numbers of polySia- and doublecortin-

positive immature neurons in the paleocortex layer II. In contrast, many of the
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immature granule neurons displayed aberrant locations and morphology in

ST8SiaII-deficient animals, suggesting a role for ST8SiaII in their terminal

differentiation [142].

4 Role of Polysialic Acid in Brain Development

4.1 NCAM and PolySia are Implicated in Neural Tube
Closure

A function of the earliest expression of polySia during neural tube closure is

inferred from the premature polysialylation of NCAM observed in the splotch

mutant mouse, a model of Waardenburg syndrome type I caused by pax3 mutations

[144]. Indeed, pax3 mutations may affect the balanced expression of polysialylated

NCAM, since NCAM and ST8SiaII are downstream targets of this transcription

factor [145, 146]. The vital importance of tightly controlled NCAM interactions

during these early stages of development was unequivocally demonstrated by the

dominant embryonic lethality of mice in which all membrane-associated forms of

NCAM were replaced by a soluble, secreted form of its extracellular domain [147].

Analysis of chimeric embryos revealed severe defects by E8.5–E9.5. The embryos

were truncated with reduced numbers of poorly formed somites and neural tube

defects. Embryos derived almost entirely from homozygous mutant ES cells

exhibited the same lethal phenotype, indicating that the secreted NCAM is produc-

ing this phenotype through heterophilic rather than homophilic interactions [147].

Although not addressed in this study, the drastic effects of uncontrolled,

overshooting NCAM interactions imply that the onset of polysialylation at E9 is

used to limit NCAM interactions during neural tube closure. Noteworthy in this

context are the pronounced effects of valproic acid and retinoic acid on the polySia-

NCAM system. Both are potent teratogens in humans and cause defects of neural

tube closure with different periods of sensitivity in mice [148]. Valproic acid

increases the polySia to NCAM ratio, while retinoic acid accelerates polysialylation

of NCAM, at least in cell culture experiments, by augmenting ST8SiaIV but

decreasing ST8SiaII mRNA levels [149–151].

4.2 PolySia-Deficient Mouse Models Reveal Distinct Modes
of PolySia Engagement in Neuronal Migration and
Axon Tract Development

Analyzing mice with partial or complete ablation of polySia disclosed the crucial

role of NCAM polysialylation for mammalian brain development [141, 143,

152–155]. The first models with an extensive loss of polySia were mice with
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genetic ablation of all NCAM isoforms [151] or with a deletion of an exon specific

for the 180 kD isoform of NCAM [152]. Surprisingly, these NCAM-deficient

animals turned out to be viable and fertile and showed a grossly normal brain

development. Both NCAMmutant mice, however, display two prominent neuroan-

atomical defects (for comprehensive review, see [156, 157]). First was a size

reduction of the olfactory bulbs caused by a migration deficit of subventricular

zone-derived olfactory interneuron precursors, the major polySia-positive cell type

in the wild-type brain (see Sect. 3.2) [152, 158–160]. Second was a defective

lamination of mossy fibers projecting from the dentate gyrus to the CA3 subfield

of Ammon’s horn [161, 162]. Both phenotypic traits must be explained by the loss

of polySia and not NCAM because they could be copied by enzymatic removal of

the sugar polymer leaving the NCAM protein backbone unaltered [158, 162].

Consistent with the potential of the polysialyltransferase ST8SiaII to compen-

sate almost entirely for a loss of ST8SiaIV during the developmental phase (see

Sect. 2), no defects of brain morphology were detected in the ST8SiaIV-negative

mice [141]. Conversely, the partial reduction of polySia levels in the developing

brain explains the malformation of the hippocampal mossy fiber tract observed in

ST8SiaII-deficient mice, which is reminiscent of the respective phenotype of the

Ncam-knockouts [143]. Since mice with genetic ablation of NCAM are almost

completely devoid of polySia it is also not surprising that the major neurodeve-

lopmental defects of Ncam�/� animals are recapitulated in St8siaII, St8siaIV
double-knockout mice (II�/�IV�/�), which are polySia-negative but retain normal

levels of NCAM expression [154, 155]. In marked contrast to the Ncam-knockout,
however, the simultaneous deletion of both polysialyltransferases generates a

postnatally lethal phenotype. Although born at Mendelian ratio and without overt

morphological defects, II�/�IV�/� mice fail to thrive and more than 80% die within

the first 4 weeks of age [154].

The comparative analysis of II�/�IV�/� and Ncam�/� brains then demonstrated

that loss of both polysialyltransferases confers a phenotype that combines two types

of defects: (1) defects that develop in polySia-negative mice irrespective of

the presence or absence of NCAM and (2) defects that manifest exclusively in

II�/�IV�/� mice and therefore may be caused by the appearance of polySia-free

NCAM [154]. The first category comprises defective rostral migration of

subventricular zone precursors and smaller olfactory bulbs as well as delamination

of mossy fibers. Besides postnatal growth retardation and precocious death, the

second category includes a high incidence of progressive hydrocephalus and severe

anomalies of a diverse set of brain fiber tracts, which occur regardless of ventricular

dilatation. Affected are commissural and non-commissural axon tracts. Most con-

spicuous is the complete agenesis of the anterior commissure. As shown by

anterograde tracing of the anterior limb, axons of the anterior commissure are

present but lack normal fasciculation, deviate early from their normal trajectory,

and therefore never cross the midline [154]. Morphometric analyses also revealed

hypoplasia of the internal capsule, the major gateway of fibers to and from the

cerebral cortex, and of the mammillothalamic tract. This tract projects from the

mammillary bodies to thalamic nuclei as part of a circuit involving thalamus,
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cortex, hippocampus, and mammillary body (Papez’ circuit) and is essential for

spatial working memory in the mouse [163]. Furthermore, size reduction but

correct midline crossing of the corticospinal tract was detected. Although resem-

bling the hypoplasia of the corticospinal tract in Ncam�/� [164] the defect was

significantly more severe in II�/�IV�/� mice [154]. In II�/�IV�/� mice escaping

from hydrocephalus, the corpus callosum reached its normal thickness in central

sections, but, as demonstrated in a later study, is significantly shorter due to a

marked hypoplasia of the splenium, the posterior end of the corpus callosum

[165]. In contrast, other tracts, like lateral olfactory tract, optic tract, fasciculus

retroflexus, or posterior commissure appeared to be normally developed.

Remarkably, all the fatal developmental defects specifically found in II�/�IV�/�

but not in Ncam�/� mice could be rescued by the additional deletion of NCAM in

polysialyltransferase- and NCAM-negative triple-knockouts (II�/�IV�/�N�/�). It
therefore was hypothesized that the major function of polySia is to mask NCAM

and to guarantee that NCAM mediated contacts take place in a highly organized,

time- and site-specific manner [154]. To substantiate the assumption that untimely

expressed polySia-negative NCAM causes malformation of brain axon tracts, the

available mouse models with defects in NCAM, ST8SiaII, and ST8SiaIV were used

to breed mice with different levels of polySia-negative, “naked” NCAM during

brain development [165]. In addition to the entirely polySia-negative, NCAM-

positive II�/�IV�/� and the polySia- and NCAM-negative II�/�IV�/�N�/� animals,

mice with different combinations of functional and mutant polysialyltransferase

and NCAM alleles were screened. Out of the 27 possible allelic combinations, mice

of nine genotypes with different levels of polySia, NCAM, and polySia-free NCAM

at postnatal day 1 were selected for morphometric evaluation at the age of 4 weeks.

Axon tracts like anterior commissure, internal capsule, and corpus callosum, for

which morphological deficits have been identified in the brain of II�/�IV�/� mice,

were analyzed. As shown in Fig. 3 by the example of the corpus callosum, the

degree of the axon tract defects correlated precisely with the amounts of untimely

expressed polySia-free NCAM and not with the overall polySia or NCAM level at

postnatal day 1 [165]. The premature occurrence of “naked” NCAM due to a loss of

the shielding functions of polySia, therefore, causes inappropriate development of

major axon connections, and addition of polySia to NCAM is needed for correct

brain wiring. This strengthens the view that concealing NCAM is the key regulatory

mechanism that makes polySia essential for brain development. In a broader

perspective, these findings indicate that cell surface glycosylation can be used as

a surveillance system to control interactions of the corresponding carrier protein.

In search for the cause of the internal capsule hypoplasia the development of

thalamocortical and corticothalamic fibers was analyzed [80]. During normal

embryogenesis the two fiber systems grow towards each other and intermingle to

form the reciprocal connections between cortex and thalamus, which account for a

major part of the internal capsule. Similar to the situation for the anterior commis-

sure, labeling of thalamocortical axons revealed that the fibers are present

but misrouted in the polysialylation-deficient II�/�IV�/� but not in the

NCAM-negative II�/�IV�/�N�/� mice. After correctly crossing the primordium
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of the reticular thalamic nucleus the thalamocortical axons fail to turn into the

internal capsule and therefore are unable to meet the corticothalamic fibers. In

addition, deficiencies of corticothalamic connections contribute to the hypoplasia

of the internal capsule in polysialylation-deficient mice [80]. The same study

revealed a striking degeneration of the reticular thalamic nucleus (Rt) in specifically

the II�/�IV�/� mice. Apoptotic loss of Rt neurons occurred right after birth in a

narrow time-window, closely matching the onset of glutamatergic innervation by

thalamocortical and corticothalamic fibers under healthy conditions. Apoptosis of Rt

neurons could also be induced by lesioning corticothalamic fibers on whole-brain

slice cultures, suggesting that defective afferent innervation leads to anterograde

transneuronal degeneration. The loss of Rt neurons in polysialylation-deficient,

NCAM-positive mice, therefore, seems to be caused by the defects of thalamocortical

and corticothalamic axon development.

4.3 PolySia in Oligodendrocyte Maturation and Myelination

Surprisingly, the polysialylated form of the synaptic cell adhesion molecule

SynCAM 1 was recently found to be expressed by a subpopulation of NG2 cells

(polydendrocytes) in the perinatal mouse brain [33]. These multifunctional precursor

cells serve as the primary source of myelinating oligodendrocytes during develop-

ment and myelin repair but are also able to give rise to astrocytes and neurons

[166, 167]. Possible functions of polySia as a modification of SynCAM 1 have not

a b

Fig. 3 Polysialylation of NCAM is essential for brain development. (a) In mice without func-

tional polysialyltransferases (PolyST-negative) the splenium of the corpus callosum (scc) is

markedly reduced (arrow), leading to an overall shorter corpus callosum (cc) as shown here in

midsagital sections. (b) The severity of the corpus callosum defect in 4- to 6-week-old mice

correlates linearly with the amounts of polySia-deficient NCAM at postnatal day 1. The strongest

defect, i.e., the shortest cc, and the most polySia-free NCAMwere detected in the polyST-negative

St8siaII, St8siaIV double-knockout mice and set to 100%. Each of the data points stands for one of

the nine mouse lines investigated (see text for details). Adapted from [165]
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yet been explored. The most prominent function of SynCAM 1, however, is its

potency to induce neuronal synapse formation [168]. Interestingly, NG2 cells receive

glutamatergic synaptic input [169, 170]. Thus, integration of NG2 cells into neural

networks might be modulated by polysialylation of SynCAM 1 [33].

PolySia on NCAM is expressed by migrating oligodendrocyte precursor cells

(OPC) but down-regulated during maturation into myelinating oligodendrocytes

[72, 91, 92]. During the two phases of oligodendrocyte development polySia seems

to play a dual role. On the one hand, the presence of polySia promotes OPCmigration

in response to chemoattractive guidance cues [171–173]. On the other hand, polySia

helps to keep the precursors in an undifferentiated state, while downregulation of

polySia enhances differentiation into mature oligodendrocytes as shown in vitro

and under pathological conditions of precursor recruitment from the anterior

subventricular zone after lysolecithin-induced demyelination of the corpus callosum

[174, 175]. In a complementary approach, neural precursor cells overexpressing

ST8SiaIV were transplanted into the brain of hypomyelinated shiverer mice. The

engineered cells displayed widespread integration and myelination in the host, but

differentiated more slowly than controls [176]. Involvement of polySia as a negative

regulator in the process of myelination itself has been derived from co-cultures of

oligodendrocytes and neurons. In this in vitro system, removal of polySia enhanced

myelin formation, but, in contrast to the studies on OPCs discussed above, the

negative regulation of myelination was attributed to the presence of polySia on

axons, thought to prevent attachment of the myelin-forming oligodendrocyte pro-

cesses [177]. The question whether down-regulation of polySia is required for the

myelination process in vivo was addressed in transgenic mice expressing the

polysialyltransferase ST8SiaIV under the control of the proteolipid protein promoter

[178]. In these mice, postnatal down-regulation of polySia in oligodendrocytes

was abolished. Similar to the transplantation study with polySia overexpressing

precursors [176], the sustained polysialylation caused a delay of oligodendrocyte

maturation and myelin formation. Furthermore, the transgenic mice exhibited struc-

tural abnormalities of their myelin and axonal degeneration. Thus, myelin formation

per se does not necessarily require the loss of polySia from the oligodendrocyte

membrane but down-regulation of polysialylation during oligodendrocyte differenti-

ation is a prerequisite for efficient myelin formation and maintenance [178].

4.4 Cellular Models of Polysialic Acid-Controlled
NCAM Signaling

In rodents and humans, polySia is part of the neurogenic niches in the anterior

subventricular zone and in the subgranular layer of the dentate gyrus [102, 104, 106,

179, 180]. As shown by endosialidase treatment in vivo, loss of polySia causes

premature differentiation of neuronal precursors in both systems [181, 182]. In the

dentate gyrus of ST8SiaII-deficient mice, many of the immature granule neurons
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display aberrant locations and morphology, suggesting a role of ST8SiaII in their

terminal differentiation [139]. Reminiscent of the in vivo data, removal of polySia

from cultured subventricular zone-derived neuroblasts promotes neurite induction

and maturation into olfactory bulb interneurons [183]. Interestingly, both effects

were independent from changes in cell migration and could be mimicked by

exposure to polySia-free NCAM. The assumed gain of NCAM function in the

absence of polySia is corroborated by the finding that the degree of differentiation

in cultures obtained from polySia-negative, NCAM-positive II�/�IV�/� mice was

higher than in Ncam�/� neuroblasts [183]. This outcome is highly compatible with

the proposed role of polySia as a key regulator of NCAM interactions in brain

development (see Sect. 4.2). Further experiments revealed that the effect of polySia

removal depends on cell–cell contacts and that NCAM-negative and polySia-

NCAM-positive neuroblasts respond equally well to polySia-free NCAM. Thus,

NCAM on the cell surface is not required for these effects, suggesting the existence

of heterophilic signaling. In agreement with these observations, heterophilic

NCAM binding has been shown to promote differentiation of hippocampal

progenitors from the embryonic brain [184]. In this study, however, the influence

of polySia was not addressed.

The potency of polySia as a regulator of particularly heterophilic NCAM

interactions has been clearly demonstrated in a series of in vitro studies with

tumor cells [21–23, 140]. The prevailing model of NCAM-induced signaling

involves association with fibroblast growth factor (FGF) receptors and predicts

their activation as well as downstream signaling through the mitogen-activated

protein kinase ERK1/2 pathway [185, 189]. Consistent with this model, a crucial

role of ERK1/2 in polySia-regulated, heterophilic NCAM signaling was identified,

leading to cell differentiation, growth arrest, and increased cell survival (Fig. 4)

[21, 22]. A recent study confirms that the activation of ERK1/2 in response to a loss

of polySia indeed depends on FGF receptor activity [23]. Moreover, experimentally

induced loss of polySia initiates NCAM-mediated signaling at cell–cell contact

sites causing reduced motility and enhanced focal adhesion at the cell-substrate

interface. Surprisingly, this response was independent from FGF receptor and

ERK1/2 activation but involves association of the src-family kinase p59fyn (Fyn)

with paxillin (Fig. 4). The analysis of a set of truncated NCAM variants revealed

that induction of focal adhesion is triggered by NCAM domains distinct from

the FGF receptor binding site. A fragment comprising the immunoglobulin-like

domains Ig3 and Ig4 is sufficient to induce focal adhesion but lacks the ability to

activate ERK1/2. By contrast, the fibronectin type III repeats containing the FGF

receptor binding site are sufficient to induce activation of ERK1/2 but unable to

promote focal adhesion [23].

Although these studies were performed in tumor cells, the mechanisms of

polySia-controlled NCAM signaling may apply to other cell models. As described

above, subventricular zone-derived neuroblasts and hippocampal progenitors

respond with enhanced differentiation to loss of polySia or exposure to polySia-

free NCAM [182–184], and OPCs differentiate significantly faster after enzymatic

removal of polySia than in the absence of NCAM [174, 175]. It should also be
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noted that focal adhesion kinase-dependent point contacts regulate growth cone

motility [190]. Thus, polySia-dependent NCAM signaling from cell–cell to

cell–substrate contacts may modulate growth cone adhesion and motility and this

could contribute to the axon guidance deficits caused by the gain of NCAM

functions in polysialylation deficient mice (see Sect. 4.2).

5 Polysialic Acid in Synapse Formation,

Synaptic Plasticity, Learning and Memory

5.1 Formation of Excitatory Synapses

The role of NCAM in formation of excitatory hippocampal synapses is mediated by

a polySia-dependent heterophilic mechanism [80]. As polySia and NCAM are

expressed both pre- and postsynaptically, the original topic of investigation was

to distinguish between pre- vs postsynaptic effects. This was done using so-called

heterogenotypic co-cultures of Ncam+/+ and Ncam�/� neurons. Comparison of the

Fig. 4 Model of polySia as a negative regulator of heterophilic NCAM signaling. Removal of

polySia unmasks NCAM and thereby initiates NCAM-mediated heterophilic interactions at

cell–cell contacts. This involves (i) FGF receptor activation by the fibronectin type III repeats of

NCAM leading to ERK1/2 dependent promotion of cell differentiation with reduced proliferation

and enhanced survival and (ii) interactions of NCAM Ig3-4 domains with an unknown binding

partner causing recruitment of the src family kinase Fyn to paxillin (pax) and focal adhesion kinase

(FAK) to enhance focal adhesion at the cell-substrate interface. Kinase activation by phosphory-

lation is indicated by (P). Based on [21–23]
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mean amplitudes of excitatory postsynaptic currents in synaptic connections with

different patterns of pre- vs postsynaptic NCAM expression revealed that the

presence of NCAM presynaptically did not influence synaptic strength, whereas

postsynaptic expression of NCAM increased the synaptic strength by a factor of 2.

Analysis of synaptophysin immunoreactivity associated with NCAM-positive and

NCAM-negative neurons revealed a twofold higher synaptic coverage of NCAM-

positive cells. This was observed only in heterogenotypic cultures, i.e., under

conditions when growing axons had a choice of which postsynaptic target to select,

Ncam+/+ or Ncam�/�. There was no difference between NCAM-positive and

NCAM-negative neurons in synaptic coverage in homogenotypic cultures. Thus,

expression of NCAM dictates where to form synapses, but is not required for

synapse formation. Since expression of NCAM and polySia in the CNS is regulated

in an activity-dependent manner [191], an increase in NCAM/polySia-NCAM

expression may promote experience-dependent excitatory synaptogenesis in

stimulated neurons and/or dendritic subdomains [192].

Does NCAM act as a ligand or a receptor during formation of excitatory

synapses? Transfection of NCAM-deficient neurons with any of three major

NCAM isoforms, GPI-linked NCAM120, or transmembrane domain-containing

NCAM140 or NCAM180 stimulated preferential synapse formation on all NCAM

isoform-expressing neurons [82]. These experiments suggest that the extracellular

domain of NCAM functions as a synaptogenic ligand. To investigate the involve-

ment of polySia, cultures were treated with endosialidase. This treatment completely

abolished preferential formation of synapses in NCAM-expressing cells. Enzymatic

removal of heparan sulfates from cultured neurons, a mutation in the heparin-binding

domain (HBD) of NCAM, and application of recombinant soluble extracellular

domains of NCAM and polySia-NCAM similarly diminished synaptogenic activity

of neuronally expressed polySia-NCAM, suggesting that interaction of NCAM with

heparan sulfate proteoglycans is involved. PolySia-NCAM-driven synaptogenesis

was also blocked by antagonists to FGF receptor and the NMDA subtype of

glutamate receptors, but not by blockers of non-NMDA glutamate receptors or

voltage-dependent Na+ channels. Enzymatic removal of polySia and heparan

sulfates also suppressed the increase in the number of perforated spine synapses

associated with NMDA receptor-dependent long-term potentiation (LTP) in the CA1

region of organotypic hippocampal slice cultures [82]. Thus, neuronal polySia-

NCAM in complex with heparan sulfate proteoglycans promotes synaptogenesis

and activity-dependent remodeling of synapses.

In St8siaII-knockout mice, ectopic synapse formation of hippocampal mossy

fibers has been detected together with axon mistargeting and abnormal extension of

the infrapyramidal mossy fiber bundle [143]. In the mature brain, however, polySia

expression on the mossy fibers depends on ST8SiaIV activity [141] and is

maintained in adult St8siaII-knockout mice [143]. This indicates that ectopic

formation of mossy fiber synapses originates from a lack of ST8SiaII during

development, when both polysialyltransferases are co-localized in the dentate

gyrus [83]. Recently, the role of ST8SiaII and polySia in synapse formation of

hippocampal mossy fibers has been addressed by the use of a chemically modified
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sialic acid precursor (N-propanoyl-D-mannosamine, ManNProp) [193]. ManNProp

can be used by ST8SiaIV to produce unnatural propanoyl-polySia but inhibits

ST8SiaII activity [194]. Treatment of hippocampal slice cultures derived from

newborn mice with ManNProp resulted in aberrant mossy fiber projections forming

functional glutamatergic terminals on CA1 pyramidal neurons with a typical mossy

fiber synapse-like morphology [193]. Reminiscent of the phenotype of the St8siaII-
knockout mice, in vivo application of ManNProp to newborn rats for 4 weeks

yielded a significantly longer infrapyramidal mossy fiber bundle. However, unlike

in St8siaII-knockouts, aberrant fibers were polySia-negative but NCAM-positive

and entered into the CA1 pyramidal layer. Moreover, recurrent mossy fibers were

observed in the ManNProp-treated rats, which aberrantly crossed the granule cell

layer to terminate on neurons in the molecular layer [193]. Interestingly, this

aberrant innervation pattern resembles the mossy fiber sprouting observed after

kainate induced status epilepticus. Homeostatic regulation of polySia synthesis,

therefore, is essential for correct outgrowth and synaptic targeting of hippocampal

mossy fibers.

5.2 Plasticity of Inhibitory Synapse Maturation

In the visual cortex, polySia is downregulated shortly after eye opening. This

decline is inversely correlated with the maturation of GABAergic innervation and

hindered by visual deprivation, indicating a role of polySia in the critical period of

ocular dominance plasticity [83]. Indeed, premature reduction of polySia promotes

functional maturation of GABAergic synapses. Removal of polySia by application

of endosialidase to cortical organotypic cultures causes precocious maturation of

perisomatic GABAergic synapses as evidenced by enhanced branching of axon

arbors and higher density of mature presynaptic boutons [83]. As shown by

injection of endosialidase, a too early loss of polySia in the adolescent visual cortex

also promotes the maturation of perisomatic GABAergic innervation in vivo and,

consistent with a higher number of GABAergic synapses, increased the frequency

of miniature inhibitory postsynaptic currents. In addition, a shift in occular domi-

nance, which can normally be evoked by monocular deprivation during a critical

period between P24 and P35, could be induced much earlier in endosialidase-

treated mice [83]. The enhanced inhibition in response to the loss of polySia,

therefore, seems to trigger precocious ocular dominance plasticity.

Preceding the decline of polySia in the mouse visual cortex, ST8SiaII and

ST8SiaIV mRNA levels decrease around the time of eye opening. However, only

the reduction of ST8SiaII is regulated by sensory experience [86]. Moreover, in

organotypic slice cultures, developmental downregulation of ST8SiaII is reduced

by blocking spike activity with tetrodotoxin or by AP5 as antagonist of NMDA

receptors and enhanced by blocking GABAA receptors with bicuculline. This

indicates that ST8SiaII gene expression is regulated by activity and in particular

by NMDA-mediated excitation [86]. Interestingly, a similar regulation of polySia
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by sensory input and activity through NMDA receptor-dependent mechanisms

has been shown during postnatal development of the dorsal vagal complex in the

brain stem [195]. Conversely, as detailed in the next section, polySia modulates

extrasynaptic NMDA receptor signaling, pointing towards a possible feedback

regulation.

Contrasting the precocious maturation of perisomatic innervation after an acute

loss of polySia, mice over-expressing a soluble extracellular domain fragment of

NCAM under the neuron-specific enolase promoter (NCAM-EC mice) display a

reduction in perisomatic synaptic puncta formed by parvalbumin-positive cortical

interneurons, indicating a decrease in the number of synaptic terminals of basket

cells [198]. Further investigations of these mice revealed perturbed arborization of

basket cells in the prefrontal cortex during early postnatal stages, when endogenous

polysialylated NCAM is replaced by polySia-negative NCAM [85]. Consistent with

the enhanced inhibition in the visual cortex after endosialidase treatment [83], a

recent study demonstrates increased numbers and sizes of perisomatic basket cell

synapses in Ncam-knockout mice [199]. Moreover, the study also provides

evidence that polysialylated is required to promote ephrinA5-induced axon

remodeling of basket interneurons in cortical slices. Together, these data impres-

sively demonstrate that the balanced regulation of polySia and NCAM is essential

for proper synapse development of basket cells.

5.3 Synaptic Plasticity in the Mature Nervous System

The first evidence that NCAM may play a role in synaptic plasticity was provided

in 1994 by a seminal study that showed that perturbation of NCAM function

significantly reduced LTP in the CA1 area of the hippocampus [200]. Polyclonal

antibodies against NCAM, soluble oligomannosides that block interaction of NCAM

with oligomannosidic carbohydrates carried by L1, and synthetic peptides from the

fourth Ig-like domain of NCAM, which mediates interaction with L1, were used in

these experiments. Further analysis of constitutive and conditionally NCAM defi-

cient mice (NCAMff+), in which the NCAM gene was ablated in neurons

after cessation of major developmental events by expression of Cre recombinase

under the CaMKII promoter, showed impairment of CA1 LTP in both mutants

[191, 196, 201], thus supporting the view that NCAM plays an acute role in synaptic

plasticity in the CA1 region. Additionally, long-term depression (LTD) in the CA1

was impaired in constitutive and conditional Ncam-knockout mice [197, 201]. In the

CA3 region, constitutive but not conditional NCAM-deficient mice were found to

have abnormalities in lamination of mossy fiber projections and to be impaired in

mossy fiber LTP, suggesting that NCAM is required for proper development of

mossy fiber-CA3 synapses [201, 202]. Recording of LTP in the dentate gyrus of

anesthetized mice confirmed the role of NCAM in synaptic plasticity in vivo [203]

(Table 1). Overexpression of soluble extracellular domain of NCAM in NCAM-EC
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mice did not affect LTP in CA3-CA1 synapses but resulted in specific impairment of

LTP in the prefrontal cortex [204].

The role of polySia in synaptic plasticity was initially studied using the enzy-

matic removal of polySia by endo-N, which inhibited LTP and LTD in CA1

[123, 191]. Experiments using mice deficient in ST8SiaII or ST8SiaIV provided

the genetic evidence for the importance of polySia in synaptic plasticity in the CA1

[141, 143]. No involvement of these enzymes in mossy fiber LTP in the CA3 region

or in the dentate gyrus LTP was revealed using either of two lines of polySia-

deficient mice, despite abnormal lamination of mossy fiber projections in ST8SiaII

deficient mutants [141, 143, 203].

Several early observations suggested that polySia may modulate activity of

glutamate receptors and hence regulate induction of LTP. Peptides blocking inter-

action of proteins with the fourth immunoglobulin-like domain of NCAM reduced

LTP when applied before induction of LTP but not afterwards [205], pointing to the

importance of NCAM for LTP induction. Since impairment of LTP in NCAM

deficient mice could be rescued by elevation of extracellular Ca2+ concentration, it

has been speculated that NCAM influences Ca2+ signaling via NMDA receptors

[201]. This idea was supported by the data showing a similar central location of

NCAM180 and the GluN2A receptors within the postsynaptic density in untreated

animals, and a similar redistribution of these molecules to the edges of postsynaptic

density in animals after induction of LTP [206]. Because polySia may directly

potentiate opening of AMPA subtype glutamate receptors [207], it was hypothesized

that polySia may influence activity of LTP-mediating receptors via a direct interac-

tion with the extracellular domain of receptors. This hypothesis was supported by a

study [208] in which impaired CA1 LTP in hippocampal slices was rescued via

application of soluble polySia or ectodomain of polySia-NCAM, but not of NCAM.

A parallel in vitro study [209] reported that soluble polySia alone or attached to

NCAM inhibited activation of GluN2B-containing NMDA receptors by low micro-

molar concentrations of glutamate in hippocampal cultures and artificial lipid

bilayers (Fig. 5). These concentrations are characteristic for extrasynaptic space

but much lower than synaptic concentrations of glutamate following transmitter

release.

Two recent studies demonstrate that polySia-NCAM regulates synaptic plasticity

by setting a balance in signaling via extrasynaptic GluN2B and synaptic GluN2A

receptors [196, 197]. Consistent with the findings of Hammond and colleagues

[209], isolation of NMDA receptor-mediated component in hippocampal slices

Table 1 Effects of

NCAM, polySia and

polysialyltransferases

on multiple forms of

hippocampal synaptic

plasticity

Condition CA1 LTP CA1 LTD CA3 LTP DG LTP

Ncam�/� # # # #
Ncamff+ # # ¼ n.d.

Endosialidase # # ¼ n.d.

St8siaIV�/� # # ¼ ¼
St8siaII�/� ¼ n.d. ¼ ¼
# impaired, ¼ normal, n.d. not determined
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also revealed an increase in GluN2B-mediated transmission in NCAM-deficient

mice and an increase in GluN2B-mediated Ca2+ signaling after removal of polySia

[196]. In parallel, a decrease in GluN2A-mediated transmission was found. Strik-

ingly, the suppression of extrasynaptic GluN2B signaling with Ro 25–6981 or by

reduction of extrasynaptic glutamate concentrations using the glutamate scavenger

GTP, or facilitation of GluN2A receptors by D-cycloserine fully restore levels of

LTP in either NCAM or polySia deficient slices to wild-type levels.

The following data support the view that the mechanisms downstream of GluN2B

in NCAM/polySia deficient slices involve signaling via Ras-GRF1 to the Rac

effector p38 MAPK. The level of phosphorylated p38 MAPK is upregulated in

NCAM-deficient mice and in endosialidase-treated slices, while it is reduced in

Ras-GRF1�/� mice [210]. An inhibitor of p38 restores levels of LTP in polySia or

NCAM-deficient slices to those seen in wild-type mice. The level of phosphorylated

p44 is co-upregulated although to a smaller degree than p38, as expected in response

to activation of Ras-GRF1, which has been shown to mediate synaptic depression

through p38 MAPK [210]. PolySia deficiency does not lead to impaired LTP in

Fig. 5 Model for polySia-NCAM-mediated modulation of signaling via NMDA receptors. Endo-

genous and exogenous molecules are shown in black and gray, respectively. Stimulatory and

inhibitory relationships are shown by arrows with sharp and blunt ends, respectively. In Ncam+/+
mice, polySia-NCAM inhibits extrasynaptic GluN2B-containing receptors and LTP is induced

through activation of GluN2A receptors. In Ncam�/� mice, signal enhancement occurs via

extrasynaptic GluN2B-containing receptors, whereas signal reduction occurs via GluN2A-containing

receptors, which leads to impaired LTP. This model is supported by experiments with rescue of LTP

inNcam�/�mice by elevated extracellular Ca2+ and reduced extracellularMg2+ concentrations, and

application of NMDA receptor modulators DCS or Ro 25–6981, the glutamate scavenger GPT,

polySia, or SB 203580 [196]. All these treatments change the signaling balance between GluN2A-

and GluN2B-mediated pathways in favor of the GluN2A-mediated pathway and restore LTP in

Ncam�/� mice. Similarly, LTP is restored in endosialidase-treated slices from Ncam+/+ mice by

DCS, Ro 25–6981, and SB 203580, and by genetic ablation of Ras-GRF1. Furthermore, fear memory

is restored by DCS and Ro 25–6981 in Ncam�/� mice, whereas LTD is rescued by DCS. Modified

with permission from [197]
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Ras-GRF1�/� mice, supporting the view that Ras-GRF1 is a transducer down-

stream of hyperactive GluN2B in polySia deficient neurons. Interestingly, activation

of p38 MAPK signaling has also been shown to mediate impairment in LTP by

tumor necrosis factor [211], by injection of the ectodomain of another cell adhesion

molecule, neuroplastin [212], and by the Aβ peptide generated from the amyloid

precursor protein, which is widely believed to underlie the pathophysiology of

Alzheimer’s disease [213]. In these cases, p38 MAPK enhances the removal of

AMPA and NMDA receptors from the postsynaptic cell surface, which is likely to

be the mechanism for impaired LTP in polySia/NCAM deficient mice. The

mechanisms of impaired LTP in the prefrontal cortex of NCAM-EC mice are

unknown. However, the study of tenascin-R deficient mice demonstrates that a

deficit in perisomatic GABAergic inhibition in the hippocampus may induce meta-

plastic increase in the threshold for induction of LTP [214]. Whether this is also the

case in the prefrontal cortex of NCAM-EC mice remains to be investigated.

5.4 Learning and Memory

The results showing the role of polySia and NCAM in hippocampal plasticity are

nicely complemented by studies of hippocampus-dependent spatial and place

(contextual) learning in the Morris water maze and fear conditioning paradigms.

These studies demonstrated learning-associated changes in the expression of

NCAM and polySia [213–218], and impaired memory after treatment with

NCAM antibodies [219], in constitutively NCAM-deficient mice [152, 208, 220]

and in conditionally NCAM-deficient mice [201, 221]. Temporal perturbations of

NCAM or associated polySia at different phases of learning and memory lead to the

same memory deficits in spatial navigation [123, 218] and contextual fear condi-

tioning [208]. Furthermore, NCAM-EC mice are impaired in contextual and cued

fear conditioning and working memory [198, 204], and genetic ablation of

polysialyltransferases ST8SiaII or ST8SiaIV results in impaired fear conditioning

[143, 208] or impaired spatial and reversal learning in the Morris water maze [222].

As the pre-training treatment with GluN2B antagonist Ro 25–6981 and GluN2A

agonist D-cycloserine, which restored LTP in polySia/NCAM deficient hippo-

campal slices, also rescued hippocampus-dependent contextual fear memory in

NCAM deficient mice [196, 197], acquisition of this form of learning appears to

depend on polySia-NCAM mediated modulation of signaling through NMDA

receptors. Another study suggests that polySia might also contribute to consoli-

dation of memories, as mice which were injected with polySia cyclic mimetic

peptide pr2 into the dorsal hippocampus (5 h after massed training in the spatial

version of the water maze) showed higher levels of memory retention 24 h, 1 week

and 4 weeks after the training [223].
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6 Implications for Nervous System Disease

6.1 PolySia and Epilepsy

Because various plastic changes have been suggested to be functionally involved in

the epileptogenesis, and polySia is the key molecule involved in plasticity, several

studies addressed the polySia role in development and progression of epilepsy and

associated comorbidities. There is increased expression of polySia in the hippo-

campus and the entorhinal cortex in human temporal lobe epilepsy [224]. Removal

of polySia with endosialidase in rodents increased acute seizure susceptibility, as

indicated by reduced seizure threshold [225], and lowered the number of newborn

neurons following the status epilepticus (SE, induced by electrical stimulation of

basolateral nucleus of the amygdala), as compared to vehicle-treated rats, thereby

counteracting the SE-induced increase in neurogenesis [226]. Nevertheless, the SE

induced increases in the total number of doublecortin expressing immature neurons

and the fraction of doublecortin-positive cells with persistent basal dendrites was

not affected by endosialidase treatment. There was also no effect of endosialidase

on the number of seizures, their severity, and the duration of single seizures [226].

This is in contrast to the results obtained by intraperitoneal injection of kainate

for induction of seizures, as mice deficient in ST8SiaIV showed a reduced latency

to the first generalized seizure and higher lethality due to SE [227]. In the elevated

plus maze paradigm, the loss of polySia in St8siaIV-knockout mice increased

anxiety-associated behavior, suggesting a major implication of the polySia–NCAM

system in the control of anxiety after SE [227]. In view of the fact that anxiety

disorders represent a frequent clinical problem in epileptic patients [228], it will be

of interest to evaluate further the potential of polySia–NCAM targeting for the

treatment of these comorbidities.

Also in the model of mesial temporal lobe epilepsy with unilateral hippocampal

injection of kainate, contralateral i.c.v. endosialidase infusion severely increased

neurodegeneration in the KA-lesioned hippocampal formation [229]. A significant

increase in cell death was evident in the lesioned CA3 pyramidal cell layer,

accompanied by strong astrogliosis throughout the lesioned hippocampal forma-

tion. Neurodegeneration also extended to the dentate gyrus and led to early onset of

focal seizures, in line with data obtained in ST8SiaIV-deficient mice and with a

previous study showing that hyperthermic preconditioning-induced upregulation of

polySia-NCAM has a neuroprotective effect against kainate [230]. The striking

trans-hemispheric influence of endo-N suggests that polySia-NCAMmight mediate

transport of neuroprotective signals into the lesioned hippocampus. One of the

signals appeared to be the binding partner of NCAM – GDNF – since injection of

GDNF antibodies into the contralateral hippocampus of kainate-treated mice mim-

icked injection of endosialidase by enhancing neurodegeneration and decreasing

expression of the GDNF family receptor α1 in the epileptic focus. Thus, polySia-

NCAM-mediated modulation of GDNF signaling restrains neurodegeneration and

delays onset of SE.
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6.2 PolySia and Neurodegeneration

There are significantly fewer NCAM-positive neurons in the frontal cortex of

Alzheimer’s disease (AD) patients than in normally aging individuals, although

there is little difference in the levels of NCAM in the occipital cortex and hippo-

campus of the two groups [231]. However, polySia is over-expressed in the outer

two-thirds and the inner third of the molecular layer of the dentate gyrus in AD

patients [232]. Furthermore, fiber and neuropil staining is increased in the strata

oriens, radiatum, and pyramidale of the CA1 subfield. There are changes in polySia

immunoreactivity in layer II and in the superficial portion of layer III of the

entorhinal cortex. Thus, polySia is upregulated in hippocampal areas where neuro-

fibrillary tangles, amyloid plaques, and neuronal loss appear, or where neurons

suffer from a lack of inputs and undergo remodeling. Interestingly, acute adminis-

tration of Aβ increased expression of polySia in the CA1 and DG subfields [233],

but significantly decreased expression of another carbohydrate carried by NCAM,

HNK-1 [234]. Moreover, HNK-1 immunoreactivity was decreased in brain tissue of

a transgenic mouse model of AD.

In this context, it is remarkable that application of polySia mimetic and the

combination of polySia and HNK-1 mimetics, but not the HNK-1 mimetic alone,

improves functional recovery after spinal cord injury [235]. A better outcome in

polySia mimetic-treated mice is associated with higher, as compared with control

mice, numbers of cholinergic and glutamatergic terminals and monaminergic axons

in the lumbar spinal cord, and better axonal myelination proximal to the injury site.

These data suggest that polySia mimetic peptides can be efficient therapeutic tools

augmenting plasticity and synaptogenesis. Furthermore, several NCAM-mimicking

or -derived peptides have neuroprotective properties. For instance, systemic treatment

with the FGL peptide (mimicking NCAM interaction with FGF receptors) reverses

depression-like behavior in NCAM deficient mice, reduces neuroinflammation and

neuroglial activation within the aged rat hippocampus and the age-related loss of

synaptophysin immunoreactivity within CA3 and hilus, and attenuates Aβ induced

neuropathology and cognitive impairment that are hallmarks of Alzheimer’s disease

[236]. The latter effects are mediated by inhibition of the GSK3beta kinase activity.

The mechanisms of polySia mimetic peptides are less clear, but several putative

polySia binding molecules have been identified, including BDNF, NT-3 and NT-4

[237], FGF2 [238], GluN2B-containing NMDA receptors [196], and the human-

specific Siglec-11 [239], with prominent neuroprotective properties. It is particularly

noteworthy that human Siglec-11 ectopically expressed on murine microglia and

interacting with polySia on neurons reduces lipopolysaccharides-induced gene

transcription of proinflammatory mediators, impairs phagocytosis, and alleviates

microglial neurotoxicity [239].
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6.3 PolySia in Demyelinating Disease and Remyelination

PolySia has been detected on chronically demyelinated axons in multiple sclerosis

lesions, whereas remyelinated axons in so-called shadow plaques with partial repair

were negative for polySia [240]. These data suggest that re-expression of polySia on

axons could act as an inhibitor of remyelination. This is supported by the strong

polySia immunoreactivity on axons of hypomyelinated white matter in a mouse

model of Niemann–Pick disease type C [241] and by the persistence of polySia

expression on unmyelinated fibers of the healthy rodent brain such as axons in the

fimbria and in the mossy fiber tract of the hippocampal formation [77]. A hint that

polySia expression interferes to at least some extent with myelin repair in vivo, was

obtained by applying the mouse model of cuprizone-induced de- and remyelination to

ST8SiaIV-deficient mice [242]. These mice have normal developmental myelination,

and comply with the stereotyped pattern of white and gray matter demyelination

described for mice fed with the neurotoxic copper chelator cuprizone [243, 244].

However, reexpression of several myelin markers and thus remyelination were

accelerated in St8siaIV-knockout mice during the first week after withdrawal of the

toxin. The effect has been assigned mainly to enhanced OPC differentiation and to a

lesser extent to OPC recruitment [242]. The data are proof of the principle that

targeting polysialyltransferases could be used to improve remyelination.

6.4 PolySia and Neuropsychiatric Disorders

6.4.1 Altered NCAM and PolySia Levels in Neuropsychiatric Disorders

A long standing record links dysregulation of NCAM to the pathophysiology of

schizophrenia and other neuropsychiatric disorders. As reviewed in detail elsewhere

[245, 246], a number of studies found increased concentrations of NCAM fragments

in either serum or cerebrospinal fluid of schizophrenic patients or in post-mortem

brain including samples from hippocampus and cingulate cortex. Elevated levels of

NCAM fragments were also detected in cerebrospinal fluid and post-mortem brain

samples of patients with bipolar disorder – for review see [245, 246]. In autism, an

early study reported a decrease in a small, 70-kDa serum fragment of NCAM [247].

This finding was not reproduced by a later study, which instead found a trend towards

an increase of a 105-kDa to 115-kDa NCAM immunoreactive band corresponding to

the major form of NCAM typically detected in human serum samples [248]. In

addition, the same study reported lower levels of specifically the 180-kDa isoform in

post-mortem samples of the cerebellar cortex. In most of the studies, however, the

exact nature as well as possible sources of the NCAM fragments remains elusive.

Concerning polySia, one small, but prominent study found moderate to severe

reductions of polySia-positive cell numbers in the hilus of the dentate gyrus in

eight out of ten post-mortem brains of medicated schizophrenic patients as compared
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to control brains [249]. Importantly, no significant difference was detected in the

total numbers of cells in the hilus, and polySia immunoreactivity in the granular cell

layer of the dentate gyrus was not apparently altered between schizophrenic and

control brains. Furthermore, a recent immunohistochemical comparison of brain

sections from psychiatric disorder patients indicates that polySia is not altered in

the amygdala of schizophrenics but is reduced in depressed patients and increased

in bipolar disorder [250].

6.4.2 Genetic Associations

Schizophrenia has a high heritability and genome-wide association studies indicate

a polygenic origin with a shared genetic liability between schizophrenia and bipolar

disorder [251, 252]. NCAM1 and both polysialyltransferase genes map to chromo-

somal regions that harbor susceptibility loci for schizophrenia (11q23.1, 15q26, and

5q21 for NCAM1, ST8SIA2, and ST8SIA4, respectively) [253–255]. More telling,

single nucleotide polymorphisms (SNPs) in NCAM1 as well as in the promoter

region of ST8SIA2, but not ST8SIA4, have been associated with schizophrenia

[256–259]. Interestingly, risk haplotypes in the promoter region of ST8SIA2 were

identified by two independent studies in the Japanese and the Han Chinese popula-

tion [256, 259]. In vitro promoter assays with one of the risk-associated variants

point towards enhanced transcriptional activity [256]. Recently, analysis of a point

mutation detected heterozygously in just one schizophrenic patient in the Japanese

sample revealed that the E141K substitution near the sialylmotif L leads to reduced

activity and production of shorter polySia chains [260]. Other SNPs within NCAM1
have been found to contribute to the risk of bipolar disorder [257, 261] and a

genome-wide association study in the Han Chinese population found a strong

association of an SNP close to ST8SIA2 [262]. A genome-wide scan in an Italian

population indicates a common susceptibility locus for schizophrenia and bipolar

disorder in 15q26 including ST8SIA2 [263]. In this study, however, analysis of two

SNPs in the promoter region of ST8SIA2, directly associated with schizophrenia in

the Japanese sample [256], failed due to low allele frequencies in the European

population and therefore, association with ST8SIA2 was not confirmed or ruled

out [263]. Moreover, an exploratory analysis of a genome-wide association study of

SNPs in more than 1,500 families with autism spectrum disorders (ASD) identified

a strong association signal for an intronic SNP in ST8SIA2 in a subgroup of the

ASD sample stratified by verbal status [264].

6.4.3 Animal Models

Compelling evidence suggests that schizophrenia is associated with disturbed

neurodevelopment resulting in altered brain connectivity [265, 266]. In light of

the particularly strong links between the polySia-NCAM system and schizophrenia
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in humans, the remarkable parallels between the phenotype of NCAM- or polySia-

deficient mice and pathophysiological findings in schizophrenia merit a short survey.

First, ventricular enlargement, one of the most abundant abnormalities in schizo-

phrenia [267], has been reported for mice with specific deletion of NCAM-180 [268]

and variable degrees of ventricular dilatations including cases of severe hydroceph-

alus were observed in II�/�IV�/� mice [154]. Second, smaller olfactory bulbs occur

in schizophrenia [269] and N�/� or II�/�IV�/� mice [153, 154]. Third, reductions of

corpus callosum and internal capsule as found in schizophrenic patients [266,

270–273] correlate with deficits of these axon tracts in polysialylation-deficient

mice [80, 165]. Importantly, the almost linear correlation of gross anatomical defects

with the premature occurrence of polySia-free NCAM [165] (see Sect. 4.2 and

Fig. 3) suggests that even minor imbalances of NCAM polysialylation during

brain development lead to deficits of connectivity. Fourth, reminiscent of cognitive

impairment in schizophrenia [274], N�/� as well as polysialyltransferase-deficient

II�/� and IV�/� mice display deficits in synaptic plasticity, learning, or memory

formation (see Sects. 5.3 and 5.4) and one study reported reduced prepulse inhibition

of acoustic startle in NCAM-180 knockout mice ([268], but see [275]). These animal

models therefore highlight that genetic interference with the complex coordination

of NCAM polysialylation has the potential to cause a neurodevelopmental predispo-

sition to schizophrenia and possibly other disorders.

Chronic stress is a well established model of anxiety and depressive-like behav-

ior in rodents. Daily exposure of rats to restraint stress for 3 weeks causes an

up-regulation of polySia levels in the hippocampus [276] and a transient increase of

polySia-positive neurons in the dentate gyrus associated with suppression of prolif-

eration and reduced numbers of granular cells [276, 277]. Interestingly, a recent

study revealed increased vulnerability to restraint stress and depression-like behav-

ior as well as impaired neurogenesis in the dentate gyrus of heat shock factor

1 (HSF1)-deficient mice associated with reduced polySia and polysialyltransferase

mRNA levels in early postnatal stages [278]. Binding of HSF1 to the St8siaII and
St8siaIV promoters suggests regulation through direct transcriptional control. Since

enzymatic removal of polySia from the neonatal hippocampus also affects

depression-like behavior, the data imply that polysialylation under the control of

HSF1 is essential for hippocampal development and behavioral maturation [278].

A stress-induced increase of polySia-positive cells is also observed in the piriform

cortex [279]. In contrast, chronic stress leads to reduced levels of polySia immuno-

reactivity in the amygdala [280]. This was confirmed by a recent study showing that

these changes can be attributed to altered polySia levels of interneurons, and are

paralleled by lower mRNA levels of ST8SiaII and reduced expression of the

GABAergic marker GAD67 [113]. Conversely, polySia and GAD67 are significantly

increased in the amygdala of rats subjected to social isolation rearing, indicating

that this model, which causes a behavioral phenotype with schizophrenia-like traits,

is not reproducing the decrease of inhibitory markers found in the amygdala of

schizophrenic patients [281].

Dysfunction of inhibitory neurotransmission and connectivity in the prefrontal

cortex (PFC) are involved in the pathogenesis of schizophrenia and major
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depression [282–284]. The medial PFC is particularly affected and in depression

shows remodeling, which may be corrected by antidepressants. As discussed before

(see Sect. 3.2), a series of studies show that polySia is specifically expressed by

interneurons of the adult neocortex, and this holds true for the PFC in rodents and

men [107, 109]. Strikingly, chronic antidepressant treatment with the selective

serotonin reuptake inhibitor fluoxetine (Prozac®) increases polySia levels within

the rat PFC [285–287] but also in other cortical areas [288]. Similar results have

been obtained with another antidepressant, imipramine [289]. Likewise, a dopa-

mine D2 receptor agonist increased, but the D2 receptor antagonist and anti-

psychotic drug haloperidol reduced polySia in the PFC [290]. Furthermore,

polySia-positive interneurons show low levels of synaptic connectivity [114] and

polySia seems to be required for the dopamine D2 receptor-mediated increase in

perisomatic inhibition of principal neurons in the PFC of adult rats [291]. Collec-

tively, these findings point towards polySia as a trigger of structural plasticity of

inhibitory networks in the mature PFC. As shown in mice, polySia of interneurons

in the mature PFC is exclusively produced by ST8SiaIV [142]. Thus, complemen-

tary to the potential role of dysfunctional ST8SiaII expression during brain devel-

opment, altered NCAM polysialylation of cortical interneurons by ST8SiaIV may

contribute to the etiology of neuropsychiatric disorders at later stages.
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