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Emergence and Evolution

Tammy J. Bullwinkle and Michael Ibba

Abstract The aminoacyl-tRNA synthetases (aaRSs) are essential components of

the protein synthesis machinery responsible for defining the genetic code by pairing

the correct amino acids to their cognate tRNAs. The aaRSs are an ancient enzyme

family believed to have origins that may predate the last common ancestor and as

such they provide insights into the evolution and development of the extant genetic

code. Although the aaRSs have long been viewed as a highly conserved group of

enzymes, findings within the last couple of decades have started to demonstrate

how diverse and versatile these enzymes really are. Beyond their central role in

translation, aaRSs and their numerous homologs have evolved a wide array of

alternative functions both inside and outside translation. Current understanding of

the emergence of the aaRSs, and their subsequent evolution into a functionally

diverse enzyme family, are discussed in this chapter.
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1 Introduction

Aminoacyl-tRNA synthetases bridge the transition from RNA to protein during

translation by correctly pairing a particular tRNA with its cognate amino acid to be

incorporated into a growing peptide chain by the ribosome. How aaRSs contributed

to the transition from an RNA-only world to one involving protein synthesis has

been the subject of considerable conjecture. Polypeptide formation programmed by

a genetic code likely existed early in evolution and the earliest process of translation

arose at a time when functions that predate present-day proteins were being

performed by other, protein-free systems. Similar to the largely RNA directed

functions of the ribosome, there is a general consensus that aminoacyl-tRNA

synthesis may have begun as a process catalyzed by RNA [1–3]. Many parts of

the ribosome and its factors resemble mini RNA helices, which could have served

as substrates for many of the aaRSs [4–8]. Aminoacyl-minihelices can be used by

contemporary ribosomes, providing a link between a strictly RNA world and one

involving protein synthesis [9]. It is also thought that the early genetic code was

comparatively simple, perhaps consisting of only a few amino acids, and the first

aaRS functionalities possibly emerged as an early part of the primordial protein

synthesis machinery. As the protein code became more complex the synthetases,

along with tRNAs, separated from the early ribosome leading to a precursor more

similar to the contemporary protein synthesis machinery [10].

Present day aminoacyl-tRNA synthetase enzymes are universally required for

protein synthesis in all organisms and show a high degree of evolutionary conser-

vation. AaRSs have undergone extensive horizontal gene transfer, particularly

during early evolution, and such events have been identified across all taxonomic

levels and are well supported by phylogenic evidence [11]. Synthetases apparently

emerged before the tree of life evolved into three domains, during the time of the

last universal common ancestor (LUCA), as can be seen by the universal distribu-

tion of aaRSs across all branches of life. Additionally, aaRS phylogenies provide

evidence that each family of synthetase was present in LUCA [12]. Ancient

emergence of aaRSs as well as early and abundant gene transfer events led to

deep lineages and low sequence similarity between modern synthetase homologs

[13]. Additionally, the evolution of the synthetase enzyme family has included gene

duplications and the subsequent emergence of numerous paralogs with new

functions (Sect. 5).
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Several studies suggest a correlation between how the aaRSs are evolutionarily

related to each other and the overall amino acid order or structure of the genetic

code. It is not generally believed that the evolution of the aaRS family is responsible

for shaping the genetic code, but rather is somewhat converged with the evolution

of the code as both are driven by similar properties of the corresponding amino

acids [12, 13]. The evolution of the universal genetic code for the 20 canonical

amino acids likely occurred early in the history of life and appears to predate the

emergence or distinction between class I and class II aaRSs, as the aaRSs had

already evolved amino acid specificities by the time of the LUCA. This order of

events further suggests that the extant aaRS aminoacylation machinery may have

somehow displaced an ancient, now extinct, aminoacylation process [11, 14].

The contemporary aminoacyl-tRNA synthetase enzymes are modular in structure

and contain a core catalytic domain responsible for ATP dependent aminoacyl-

adenylate formation and subsequent ester bond ligation of the activated amino acid

onto the 30 ribose of tRNA. In addition to the core catalytic domain, each enzyme

contains a variety of other modules that function primarily to maintain translational

accuracy via substrate and tRNA binding and recognition as well as proofreading of

misacylated products. In some instances other domains appended to synthetases are

responsible for activities outside of tRNA charging including transcriptional and

translational regulation, DNA replication, and cell signaling (Sects. 4 and 5). This

chapter will focus on the conventional classification of this large enzyme family, as

well the emergence of non-canonical aaRSs, alternative pathways for tRNA

aminoacylation and aaRS homologs and paralogs that function both in and apart

from tRNA aminoacylation. How further adaptive evolution has allowed for wide-

spread adjustments to the core functions of aaRSs providing selective advantages

specific to different organisms and their environments will also be discussed.

2 The Aminoacyl-tRNA Synthetase Class System

AaRSs are grouped into two unrelated structural classes based on the conserved

architecture of the catalytic core domains of the enzymes [15, 16]. This classification

is independent of other appended domains, with roughly half the aaRSs in each of the

two classes (Table 1). The categorization of synthetases into one of two classes is

almost completely universal across all three domains. In other words, the synthetase

class assignment for a particular cognate amino acid is the same regardless of the

origin of the enzyme. There is one recently discovered exception, LysRS,1 which is

found in both classes (Sect. 3.1). Although the two aaRSs classes are evolutionarily

and structurally very different from each other, the overall chemistry of the tRNA

1Specific aminoacyl-tRNA synthetases are denoted by their three-letter amino acid designation,

e.g., LysRS for lysyl-tRNA synthetase. Lysine tRNA or tRNALys denote uncharged tRNA specific

for lysine; lysyl-tRNA or Lys-tRNA denote tRNA aminoacylated with lysine.
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aminoacylation reaction is similar in both (Fig. 1). The existence of two entirely

unrelated classes of synthetases provides a strong example of convergence, with two

independent structural solutions evolving to achieve the same enzymatic goal;

efficient aminoacylation of tRNA [17]. It has also been suggested that the existence

of two independent aaRS classes is indicative of multiple origins of protein synthesis

where each used its own set of amino acids and then the two systems fused, or

possibly competed, to form eventually one translation process [11].

A docking study of aaRSs on the tRNA acceptor stem found that subclasses of

synthetases within each of the two major classes correlate to each other with respect

to amino acid specificity [18]. Because two synthetases from the two different classes

normally bind the tRNA acceptor stem from opposite sides, it is possible to model the

simultaneous docking of two aaRSs onto a single tRNA. Upon doing this, the authors

found specific class I/class II aaRS pairs that could be docked without creating major

steric clashes and this pairing occurs because the position of the active site in relation

to the tRNA acceptor stem varies for aaRSs within each subclass. For each pair of

class I and II aaRSs that were co-docked, the corresponding amino acids had similar

structural and steric characteristics. From these results, the authors propose the

possibility that ancestral aaRSs with the same amino acid specificities evolved into

two separate enzymes with different class architectures, but the same amino acid

substrates. LysRS provides a modern example of this, where the amino acid

substrates are exactly the same for two enzymes of different aaRS classes [19, 20].

In most cases, however, the aaRS pairs have evolved divergent amino acid

specificities and new codons designated to distinguish similar amino acids from

each other [18].

Fig. 1 Two-step aminoacylation reaction by aaRSs. In the first step of the reaction, nucleophilic

attack by the α-carboxylate carbon of the amino acid on the α-phosphate of ATP leads to the

formation of an enzyme-bound aminoacyl-adenylate and pyrophosphate release. The second step of

catalysis involves transfer of the aminoacyl-adenylate to tRNA. Nucleophilic attack by either the

20 or 30 OH of A76 of the tRNA (depending on class) on the α-carbonyl carbon of the aminoacyl-

adenylate and subsequent release of AMP drives the tRNA transfer step of the reaction

48 T.J. Bullwinkle and M. Ibba



2.1 Class I aaRS

The catalytic domains of class I synthetases are structurally very similar to each

other and contain a conserved Rossmann fold domain. This conserved domain is

responsible for nucleotide binding and contains two conserved sequences, “HIGH”

and “KMSKS” located near the α-phosphate of the bound ATP (Fig. 2) [21]. Also

unique to the class I synthetases is the attachment of the activated amino acid at the

20 OH of tRNA. Class I aaRSs bind the tRNA acceptor helix on the minor groove

side and, although many of the synthetases in class I are capable of aminioacylating

both the 20 and 30 OH of their respective tRNA, the 20 OH is a much more efficient

target for catalysis [22, 23]. Release of the aminoacyl-tRNA is rate limiting for

many members of this class of synthetase [24–26]. It should be noted that the

Fig. 2 Active site domains of

(a) class I aminoacyl-tRNA

synthetase, e.g., GlnRS, and

(b) class II aminoacyl-tRNA

synthetase, e.g., AspRS.

Shown are ATP and the

acceptor ends of cognate

tRNAs (red). The locations of
the characteristic motifs are

indicated: in (a), MSK (dark
blue), HIGH (red): in (b),

motif 1 (red), motif 2 (light
blue), and motif 3 (dark blue)
(reprinted from [17],

Copyright 1997, with

permission from Elsevier

Science)
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analysis of subclass grouping of both class I and class II synthetases can vary

slightly based on the structures and sequences available for phylogenic comparison

[18, 21, 27, 28].

There are three class I synthetase subclasses. Subclass Ia contains synthetases

whose cognate amino acids have hydrophobic aliphatic groups or are sulfur

containing. This group shares a well conserved overall structure, including a

common tRNA stem-contact fold (SC-fold), an α-helical anticodon binding

domain, and a connective peptide I (CPI) domain which is a globular insertion

domain located between two parts of the nucleotide binding fold. The CPI domain

is attributed to the post-transfer editing function, or proofreading, of misacylated

tRNAs in three of the class Ia synthetases, LeuRS, IleRS, and ValRS [29–31]

reviewed in [32]. Phylogenetic reconstruction supports previous theories that

these three closely related synthetases, which are all cognate for aliphatic amino

acids and charge tRNAs that decode NUN codons, arose from a common ancestor

which was unable to discriminate between Leu, Ile, and Val [13, 33].

Subclass Ib includes ArgRS, GluRS, GlnRS, and an atypical class I LysRS, all of

which recognize cognate charged amino acids. Interestingly these four synthetases

are the only exceptions to the distinct two-step reaction, as they all require cognate

tRNA binding before catalysis of the pyrophosphate exchange reaction occurs

[34–36]. GlnRS likely evolved from GluRS and both are involved in the formation

of Gln-tRNA either directly or indirectly depending on the particular organism or

organelle (discussed below). GluRS in eukaryotes is more closely related to GlnRS

than it is to GluRS in bacteria, suggesting GlnRS emerged from a gene duplication

of an ancestral eukaryl GluRS that was then transferred to bacteria [37] reviewed

in [38].

The third subclass, Ic, contains the structurally similar TrpRS and TyrRS, both of

which have cognate aromatic amino acid substrates. The subclass 1c enzymes are both

dimers, in contrast to all other class I synthetases that function as monomers. Based on

early sequence comparisons that showed TrpRS and TyrRS from eukaryotes and

Archaea were more similar to each other than compared to their counterparts in

eubacteria, it was proposed that Trp and Tyr were added more recently to the genetic

code with their cognate synthetases diverging after the three domains of life had split

[39]. More recent analyses, however, have shown that TrpRS and TyrRS form two

monophyletic groups, more in line with other synthetase evolutionary groupings and

supporting a much earlier gene duplication event [40, 41].

2.2 Class II aaRS

Class II synthetases tend to work as multimers, as most are homodimers while some

forms of PheRS, AlaRS, and the bacterial form of GlyRS function act as tetramers.

Class II aaRSs are much less conserved than class I and have a structurally distinct

catalytic core that is made up of a characteristic seven-stranded antiparallel β-sheet
surrounded by a number of α-helices (Fig. 2) [21]. There are three loosely

conserved sequence motifs (1,2,3) found in class II synthetases; motif 1 is found
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at the dimer interface while motifs 2 and 3 participate in substrate binding in the

catalytic site. In contrast to class I, class II aaRSs bind the acceptor helix of the

tRNA from the major groove side and generally attach the activated amino acid to

the 30 OH of tRNA. The only exception to this last point is PheRS which, like a class

I synthetase, aminoacylates the 20 OH of tRNA.

Subclasses of class II aaRS are defined by differences in primary sequence,

subunit organization (dimer, heterodimer, etc.), and location and composition of the

anticodon-binding domain. HisRS, ProRS, SerRS, and ThrRS are usually grouped

as subclass IIa synthetases. These enzymes have the canonical class II catalytic site

and are grouped together due to the similarity in the sequences of their C-termini.

With the exception of SerRS, the synthetases within this group have similar

C-terminal tRNA anticodon binding domains, which contain an α/β fold responsible

for recognizing determinants in the tRNA anticodon loop [16]. Interestingly, this

domain is also found in the archaeal/eukaryotic type GlyRS (see below).

Subclass IIb is composed of three synthetases, AspRS, AsnRS, and LysRS, that

share several regions of sequence and structural homology indicating these

enzymes all originated from a common ancestor. The structural organization of

the subclass IIb is highly conserved, in particular the presence of an oligonucleotide

binding (OB) fold containing an N-terminal extension that acts as an anticodon-

binding module, which contacts tRNA on the minor groove side of its anticodon

stem [42–44]. The anticodon stem loops of the cognate tRNAs of the class IIb

synthetases all have a conserved central uracil base which makes two contacts with

the aaRS [16].

The class IIc synthetases AlaRS, GlyRS, PheRS, PylRS, and SepRS only contain

class II motifs 2 and 3 and have less well conserved amino acid and tRNA binding

elements than other class II aaRSs. The members of this aaRS subclass mostly exist

as tetrameric structures, as opposed to dimers like the other two class II subgroups

[45]. There are some exceptions to this such as mitochondrial PheRS, which is a

monomer lacking the β-subunit and editing domain [46]. Two forms of GlyRS

exist, a homodimer found in archaea, eukaryotes, and some bacteria and a

heterotetramer found only in bacteria (see Table 1). The two forms of GlyRS are

unrelated in both sequence and structure and the heterotetramer form is not closely

related to any of the other class II aaRS [16]. The distribution of GlyRS types in

different bacteria does not correlate with the evolutionary emergence of these

bacteria [47]. GlyRS is a clear example of a synthetase that does not follow the

rule of one conserved aaRS across all domains for each amino acid [11].

2.3 Examples of Where aaRSs Are Missing
from Particular Genomes

Not all organisms have a full set of 20 canonical aaRSs to synthesize aa-tRNA from

all 20 canonical amino acids. Initial analyses of complete archaeal genomes

revealed missing open reading frames encoding several synthetases, complicating
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the understanding of tRNA aminoacylation at that time [149, 150]. Subsequent

studies showed that previously unknown aaRSs and indirect aminoacylation

pathways are prevalent in archaea and bacteria. The indirect aminoacylation

pathways involve a non-discriminating (ND) synthetase with expanded specificity

to form a mischarged canonical amino acid-tRNA pair, which is then further

modified by RNA dependent enzymes, changing the tRNA-bound amino acid.

2.3.1 AsnRS and GlnRS

The aaRSs most often missing from certain organisms are those for the direct

aminoacylation of Asn-tRNAAsn and Gln-tRNAGln. There is no known GlnRS

encoded in any sequenced archaeal genome, and most bacterial genomes and

eukaryotic organelles also lack GlnRS. Additionally, many archaea and prokaryotes

do not contain an AsnRS [28]. For organisms lacking these aaRSs, Glu-tRNAGln or

Asp-tRNAAsn is first formed by ND-GluRS or ND-AspRS, respectively. The

mischarged tRNA species is then amidated by the appropriate amidotransferase

(AdT), requiring ATP as well as an amide source (Fig. 3) [151–153]. Structural and

biochemical data suggest aminoacylation and amidation enzymes are able to form a

complex known as the transamidosome, which provides channeling of substrates

[154–157]. A more recent study has now shown that formation of a transamidosome

is not essential in all cases as rapid kinetic channeling of intermediates can still

occur without direct protein association [158].

Two different, but related, tRNA-dependent AdTs exist, GatCAB and GatDE.

The presence of a particular form and its activity in vivo varies depending on the

domain of life as well as whether one or both GlnRS and AsnRS are missing [151],

reviewed in [159]. For example, the GatCAB AdT functions both as a Glu-AdT and

Asp-AdT, while GatDE functions strictly as a Glu-AdT. GatCAB is found in both

bacteria and archaea, but only archaea lacking AsnRS. GatDE is found only in

Archaea. Recently it was shown that a unique situation exists in yeast where the

Fig. 3 Direct aminoacylation vs the transamidation pathway for Asn-tRNAAsn formation. In species

that encode AsnRS, Asn-tRNAAsn formation occurs directly (top). Transamidation (bottom) involves
Asp-tRNAAsn formation using a non-discriminating AspRS (ND-AspRS). Asp-tRNAAsn is then

converted to Asn-tRNAAsn with an amidotransferase (Adt). Indirect aminoacylation of Gln-tRNAGln

occurs similarly, using ND-GluRS and Glu-AdT
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cytoplasmic GluRS is imported into the mitochondria and functions there as the

ND-GluRS that generates mitochondrial Glu-tRNAGln [160]. This charged tRNA

substrate is then converted to Gln-tRNAGln using a novel trimeric Adt, GatFAB.

The transamidation pathways likely evolved by the adoption of Asn and Gln

biosynthesis pathways by the aminoacyl-tRNA formation machinery [161].

For example, the GatD domain of the Archaeal Glu-AdT originates from an

asparaginase, and the GatA domain of the multi-domain AdT is related to amidases

responsible for amide bond cleavage [153, 159]. GlnRS and AsnRS were not

present in LUCA, and therefore it is likely that Gln-tRNAGln and Asn-tRNAAsn

were first formed by indirect pathways. Where these synthetases do appear, the

phylogenies lack any typical patterns, further supporting their recent origin [11, 28].

The fact that so many organisms have not acquired the appropriate aaRS for amide

amino acids and have lost the corresponding Adts may reflect the essential role of

amidotransferase enzymes in metabolism. For example, Gln is a major source of

amides for many biosynthetic pathways. Also, most bacteria that have acquired

AsnRS still have an indirect Asn-tRNA formation pathway, which is used as the

only source of Asn biosynthesis in these organisms [162, 163].

2.3.2 Formylmethionyl-tRNA

Another example of an aaRS “missing” from genomes involves a unique aa-tRNA

that is needed to initiate protein synthesis in bacteria, mitochondria, and

chloroplasts. This tRNA, formylmethionyl-tRNAfMet, is aminoacylated indirectly

as there are no genes encoding an fMetRS known to date. First, aminoacylation of

initiator tRNAfMet with methionine by methionyl-tRNA synthetase (MetRS) occurs

followed by formylation of the methionine moiety by methionyl-tRNA

transformylase [164, 165]. The initiator tRNA contains sequence elements and

modifications that distinguish it from elongator tRNAMet and helps it evade binding

to elongation factors and instead bind directly to the ribosomal P site with the help

of initiation factors (reviewed in [166]). In Trypanosoma bruceimitochondria Met-

tRNAMet is imported from the cytoplasm and a fraction is then formylated and used

for translation initiation [167]. The formyl modification of methionine is important

for the initiator tRNA to function in translation, as it is specifically recognized by

bacterial initiation factor 2 (IF2), ensuring the appropriate tRNA is in place for

initiation [168].

2.3.3 Selenocysteine-tRNA

The amino acid selenocysteine (Sec) is found in all three domains of life, but not in all

organisms, and was the first discovered outside of the original 20 amino acids

encoded by the universal genetic code. However, no SecRS or enzyme able to

aminoacylate directly tRNASec with Sec has been identified. Selenocysteine is similar

to cysteine, the difference being the thiol group is replaced by a selenium-containing
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selenol moiety. Selenol has a lower redox potential and a lower pKa than a thiol group

and is ionized and more reactive at physiological pH. Proteins that contain Sec are

often enzymes involved in redox reactions and these Sec residues are most often

found within the active site [169]. Sec is formed from serine after tRNA charging and

before polypeptide insertion. SerRS first aminoacylates tRNASec with serine (Ser)

and Ser-tRNASec is then converted to Sec-tRNASec by the enzymes selenocysteine

synthase (SelA) in bacteria and O-phosphoseryl-tRNA kinase (PSTK) followed by

Sep-tRNA:Sec-tRNA synthase (SepSecS) in eukaryotes and Archaea (Fig. 4) [170,

171]. Similar to tRNASer, tRNASec species contain particularly long variable arms,

a conserved structure of these tRNAs needed for SerRS recognition (reviewed

in [172]). However, the structure of tRNASec is sufficiently different that

aminoacylation of this tRNA is less efficient than that of the cognate tRNASer [173,

174]. Incorporation of Sec into the growing peptide occurs at particular stop codons

(UGA), which are identified by a nearby cis element – a stem-loop structure in the

mRNA (bacteria) or a structure in the 30 untranslated region (archaea and eukaryotes)
[175–177]. An additional RNA binding protein is needed to recognize the cis element

in the RNA to signal the translational machinery for proper encoding of Sec. Unique

elongation factors (SelB in bacteria and eEFSec in eukaryotes) replace the function of

EF-Tu and deliver Sec-tRNASec to the ribosome. The details of these unique

mechanisms of ribosomal decoding in archaea and eukaryotes are still under investi-

gation [178, 179]. The fact that the incorporation of selenocysteine into proteins

required the development of an alternative route, rather than addition of a new

synthetase and a simple change to the existing code, supports the notion that the

contemporary genetic code and existing amino acid set are difficult to change as they

are to some extent constrained by amino acid metabolism [180].

2.3.4 CysRS

In several methanogenic archaea, including M. jannaschii and M. thermoauto-
trophicum, CysRS is not present and the mechanism of Cys-tRNACys formation

in these organisms was initially unclear [181]. Initial biochemical studies suggested

that Cys-tRNACys was formed in these organisms by a prolyl-tRNA synthetase

Fig. 4 Indirect Sec-tRNASec formation. SerRS first aminoacylates tRNASec with serine (Ser) and

then Ser-tRNASec is converted to Sec-tRNASec by the enzymes selenocysteine synthase (SelA) in

bacteria and O-phosphoseryl-tRNA kinase (PSTK) followed by Sep-tRNA:Sec-tRNA synthase

(SepSecS) in eukaryotes and Archaea. Both of these enzymes are dependent on a selenium donor

and pyridoxal phosphate (PLP). PSTK also requires ATP
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(ProRS) with a dual specificity for both Pro and Cys [182]. However, it was

subsequently shown that the absent CysRS is actually replaced by the activity of

O-phosphoseryl-tRNA synthetase (SepRS), a newly discovered synthetase which

will be discussed below. This synthetase forms Sep-tRNACys, which is then

converted to Cys-tRNACys by Sep-tRNA:Cys-tRNA synthase (SepCysS) [183].

The mechanism for Cys-tRNACys synthesis is similar to Sec-tRNASec synthesis in

archaea. Sep-tRNA is the intermediate in both pathways and serves as a substrate

for either SepSecS or SepCysS, and the two enzymes share many similarities [159].

Additionally, it has been proposed from phylogenetic studies that the indirect

pathways for Cys-tRNACys formation and Sec incorporation in bacteria, Archaea,

and eukaryotes were all present at the time of LUCA [171, 184].

3 Non-canonical Aminoacyl-tRNA Synthetases

In addition to the 20 well-characterized canonical aaRSs, there exist several

recently discovered enzymes that either fall outside the normal class rules or charge

tRNA with amino acids that are not among the 20 encoded by the universal genetic

code. Phylogenetic analyses show that these enzymes likely arose early in the

evolution of aaRSs and were not retained in most organisms. In most cases they

only still appear in small groups of archaeons and dispersed bacteria [144].

3.1 LysRS I

The only known synthetase to date that breaks the class rule and contains enzymes in

both class I and class II is LysRS. Class I LysRS (LysRS1) was discovered relatively

recently [19] and is found mostly in Archaea, a few dispersed bacteria, and no

eukaryotes. Class II LysRS (LysRS2), however, is found in eukaryotes and most

bacteria. Most organisms contain one class of LysRS or the other, with the exception

of the archaeal group, Methanosarcinaceae, and a few isolated species in other

genera, such as Nitrosococcus oceani [185] and Bacillus cereus [186, 187] where
both LysRS genes are present [188]. The existence of the same aaRS in two distinct

structural classes provides an example of convergent evolution in which divergent

mechanisms achieve the same functional goal. In this case, the end result of each

enzyme’s emergence is the formation of lysylated tRNALys. LysRS2 likely existed

prior to LysRS1 as it demonstrates deep evolutionary connections to AspRS and

AsnRS based on sequence and phylogenetic analyses [11]. Similar phylogenetic

associations are lacking between LysRS1 and any other extant synthetase. LysRS1

emerged relatively early in the archaeal lineage and horizontal gene transfer to a few

bacteria appears to have come from a pyrococcal progenitor [189]. LysRS1 enzymes

from different domains are not deeply rooted and do not group together, whereas

other enzymes that are present in both archaea and bacteria do. This LysRS1
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distribution pattern is consistent with recent horizontal gene transfer events that

possibly occurred more than once [11, 36]. There is a robust correlation between

the phylogeny of class I LysRS sequences and the distribution of AsnRS, which may

reflect competition for overlapping anticodon sequences during tRNA recognition

[190].

Sequence and structural comparisons indicate some distant relationship between

LysRS1 and the class I synthetases CysRS, ArgRS, GluRS, and GlnRS (see above)

and, similar to three of these synthetases, LysRS1 requires binding of tRNA for

formation of the aminoacyl-adenylate [20, 34–36]. Structural and functional data

suggest tRNALys anticodon recognition by LysRS1 requires fewer interactions than

by LysRS2, supporting a less significant role of the anticodon in tRNA recognition

by the class I enzyme [191]. LysRS1 has an alpha-helix cage anticodon binding

domain, which is similar only to GluRS, suggesting tRNALys anticodon specificity

may have evolved from the analogous domain of an ancestral GluRS enzyme [191].

In addition to differences in tRNA recognition, LysRS1 and LysRS2 also show

divergent resistance to near-cognate amino acids, which may have also impacted

the retention of a particular form of the enzyme in different lineages. Lysine

recognition differs between the two enzymes and specificity is greater in the

LysRS1 active site compared to that of LysRS2, which is more catalytically

efficient [192–194]. The need for either strong active site discrimination or efficient

catalysis likely depends on the organism and the environment in which it lives,

leading to variations in the pressure to retain a particular form of LysRS encoded in

a genome.

3.2 Pyrolysyl-tRNA Synthetase (PylRS)

Although natural proteins contain more than 140 different amino acids, the majority

of these are the result of posttranslational modifications that occur after protein

synthesis [195]. There are only two known additions to the standard 20 amino acid

set that are decoded during protein synthesis. These two non-canonical amino acids

are selenocysteine (Sect. 2.3.3) and pyrrolysine which, unlike selenocysteine, exists

as a free metabolite that requires a unique aaRS to charge it directly onto tRNA. Pyl

is encoded in proteins often needed for methylamine utilization and was first

identified in a group of archaeal methanogens [196]. More than 20 Pyl-decoding

organisms have been identified with roughly half of these being archaeal

methanogens of the Methanosarcina family and the rest diverse species of bacteria

including Acetohalobium arabaticum, Desulfitobacterium hafniense, Desulfito-
bacterium dehalogenans, and a symbiontic δ-proteobacterium bacteria of the

worm Olavius algarvensis, [197, 198].
The mechanism of pyrrolysine insertion into proteins was initially not clear, and

thought to require a modification of Lys-tRNAPyl, which can be formed by the class

II LysRS [199]. Additional in vitro studies showed that tRNAPyl is efficiently

aminoacylated with Lys in the presence of both class I and class II LysRSs of
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Methanosarcina barkeri [200]. More recently, however, the use of in vitro

synthesized pyrrolysine demonstrated that the dedicated tRNA synthetase,

pyrrolysyl-tRNA synthetase (PylS), is responsible for charging tRNAPyl and is

unable to use lysine as a substrate [201, 202]. The formation of Pyl-tRNAPyl and

the production of Pyl-containing proteins have been investigated for a handful of

pyrrolysine-encoding organisms and this amino acid is found to be inserted into

certain proteins at specific UAG stop codons. Although Pyl-tRNAPyl is recognized

by EF-Tu without the help of trans-acting factors, a downstream pyrrolysine

insertion sequence (PYLIS) promotes incorporation of pyrrolysine over translation

termination [201, 203]. Therefore pyrrolysine and selenocysteine insertion are

similar in that both require cis elements for ribosomal decoding.

The carboxy-terminus of PylRS resembles a typical class II catalytic domain; the

amino-terminal domain, however, looks somewhat different compared to other

canonical synthetases and is responsible for tRNAPyl recognition [204]. The

genes encoding the carboxy- and amino-termini of PylRS are separated by two

genes in the bacterium D. hafniense, which differs from the archaeal PylRS-

encoding gene arrangement [205]. The amino-terminus of archeal PylRS is

dispensable in vitro but required in vivo [206]. The D. hafniense PylRS structure

demonstrates how the tRNA binding surface is well conserved between all PylRSs

and results in an aaRS–tRNA interaction surface that is distinct from those observed

in other known aaRS–tRNA complexes [146]. This is thought to be due to the early

emergence of PylRS which led to the evolution of unique structural features in

both the protein itself and tRNAPyl. Based on the Archaeal M. mazei structure and
phylogenetic analysis, PylRS is considered to be a class IIc aaRS along with GlyRS,

PheRS, and AlaRS. With the exception of GlyRS, all the synthetases in this

subclass share a homologous quaternary architecture; thus it is possible that Pyl

exists as a tetramer as well. Although the structural results show a dimeric PylRS

bound to two tRNAPyl molecules, modeling of a potential PylRS tetramer shows

conserved residues along the interface of the tetramer, suggesting this is the correct

oligomerization state [144]. These structural studies were also successful in deducing

the amino acid binding pocket of PylRS, which contains a deep hydrophobic pocket

for Pyl binding. The specificity elements of PylRS for its substrates are residue side

chains that extend into the amino acid binding pocket. This mode of recognition

enables the development of aaRSs that can aminoacylate novel amino acids and

arise either by evolution, as with Pyl, or by enzyme design experiments [144, 146].

Although PylRS is an uncommon synthetase with a distribution limited to a

small subset of organisms, phylogenetic analyses link its emergence with other

class II aaRSs prior to the LUCA [13]. Because the insertion of Pyl into proteins is

seen for only a small number of disperse species, it is predicted that the Pyl

encoding operon was likely acquired by ancient horizontal gene transfer events

between now extinct groups that had a greater use for this amino acid [13, 207,

208]. These gene transfer events were then followed by limited retention of the Pyl

encoding operon in extant organisms. Interestingly Pyl is synthesized solely from

Lys, connecting amino acid metabolism and synthetase evolution [209]. Pyl insertion

at UAG codons is regulated differently in archaea versus some of the bacterial
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examples looked at thus far. Pyl-decoding archaea constitutively encode Pyl and

have adapted to this by having fewer TAG codons in their genes, whereas bacteria

that use Pyl, such as Acetohalobium arabaticum, regulate Pyl encoding at the level

of transcription of the Pyl operon under particular growth conditions [198].

3.3 Phosphoseryl-tRNA Synthetase (SepRS)

In organisms that lack CysRS, another, non-canonical synthetase has been found

responsible for indirect aminoacylation of Cys-tRNACys. Initially it was unclear how

Cys-tRNACys was formed in CysRS lacking organisms and a dual specific ProRS was

thought to be responsible (Sect. 2.3.4). Since then, a non-canonical class II aaRS,

O-phosphoseryl-tRNA synthetase (SepRS), was found in most methanogenic archaea

and is responsible for charging tRNACys with o-phosphoserine (Fig. 5). The

o-phosphoseryl-tRNACys intermediate is then further modified by Cys-tRNA

synthase (SepCysS) [183].

The SepRS/SepCysS genes are only found in archaeal genomes that contain the

methanogenesis genes for generating or oxidizing methane [184]. This linkage

suggests a strong evolutionary connection between the indirect Cys-tRNACys path-

way and methanogenesis. This tRNA dependent indirect pathway is also the sole

method of free cysteine biosynthesis in some organisms, and, in the case of

Methanosarcina mazei, cysE, one of the bacterial genes for cysteine biosynthesis,

was apparently lost while the more ancient SepRS/SepCysS system was retained

[184, 210]. In a few organisms, namely several Methanosarcina species, genes for

both the traditional class I CysRS and the indirect SepRS/SepCysS tRNA-charging

pathway exist [184]. It appears that both pathways have physiological significance

and depend on differing selectivity of various tRNACys isoacceptors with the help

of particular tRNA modifications. However, the exact role of the redundancy in Cys-

tRNACys formation in some organisms remains unclear, but is likely closely linked to

sulfur and energy metabolism in methanogens [210]. As more is revealed about these

unique aminoacylation systems, evolutionary links between protein synthesis, amino

acid synthesis and cellular metabolism will become more apparent.

SepRS has a very ancient lineage, stemming at least as far back as the origin of

the archaeal branch. Phylogenetic analysis indicates that, although both PylRS and

Fig. 5 Indirect Cys-tRNACys formation. SepRS first aminoacylates tRNACys with O-phosphoserine
(Sep) and then Sep-tRNACys is converted to Cys-tRNACys with Sep-tRNA:Cys-tRNA synthase

(SepCysS) in the presence of a sulfur donor and PLP
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SepRS evolved much before LUCA, these enzymes were only retained in a handful

of organisms, demonstrating the unique metabolic requirements for these amino

acids. Alternatively, the emergence of GlnRS and AsnRS in some organisms

occurred post-LUCA [11], replacing the more primitive indirect charging pathway

for Asn and Gln, which are required in the proteomes of all organisms. Interest-

ingly, both PylRS and SepRS are classified as class IIc synthetases and appear to be

distant homologs of PheRS. Phylogenetic evidence shows SepRS evolved from

α-PheRS, while PylRS evolved much earlier, before the differentiation of PheRS

into a heterotetramer, and likely evolved from an ancestral PheRS as a result of

gene duplication [144, 184].

Phylogenetic evidence suggests synthetases evolved after the genetic code was

established [11, 14] and therefore, not surprisingly, Sep and Pyl, which are not

encoded directly by the code, emerged from an earlier evolved synthetase and

required some flexibility of the existing code rather than expansions of the genetic

code itself. The discovery of these additional aaRSs and tRNA charging pathways

suggests that with further knowledge of uncharted organisms, in terms of sequence

and proteome composition, other unidentified aaRSs might exist. Such discoveries

could expand the genetic code beyond the current 22 amino acids or uncover new

pathways for tRNA aminoacylation. The roles of pyrrolysine in proteins required

for methanogen growth on methylamines and selenocysteine in enzymes requiring

strong redox capacities indicate the evolutionary selective pressures that underlie

the retention of these non-canonical amino acids. Although Crick’s adaptor hypoth-

esis [211] is satisfied partially by the discovery of 20 distinctive aaRSs, his later

proposed “frozen accident” theory [212] is not. This theory states that the genetic

code is “frozen” and that any changes to it would be strongly selected against, if not

lethal. The non-canonical examples discussed here demonstrate the code is not

“frozen” because these amino acids emerged after establishment of the genetic code

and in certain organisms the capacity for coding and incorporation of these amino

acids has been lost.

4 Functional Evolution of Synthetases

The early process of deciphering the genetic code for protein synthesis was almost

certainly more ambiguous than in extant organisms, likely involving incorporation

of a particular “type” of amino acid at codons [213, 214]. Therefore some of the

earliest proteins may have been defined more by the general properties of their

chemical makeup rather than by the presence of specific chemical groups at specific

locations. Aminoacylation accuracy by modern synthetases is challenged by the

similarity between many of the substrates used by each of the 23 known aaRS

enzymes. The structural and chemical similarities between tRNAs present

challenges for accurate recognition of the correct isoacceptors, but even more

problematic is the high similarity of some amino acids, some of which can vary

by a single methyl group as is the case for isoleucine and valine. Despite these
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similarities, most aaRSs have a misacylation rate of less than 1 in 5,000 [215].

Aminoacyl-tRNA synthetases have adapted to maximize substrate specificity in

order to maintain or control fidelity during protein synthesis. Two different

mechanisms are responsible for ensuring highly accurate substrate recognition in

different aaRSs. The first depends on the high specificity of the particular enzyme

for its amino acid and tRNA substrates. The second way aaRSs can achieve higher

substrate specificity, and therefore greater accuracy for protein synthesis, is through

editing non-cognate amino acids.

4.1 Specificity of Synthetases

Faithful translation at the level of aaRSs starts with proper identification and pairing

of particular tRNAs with their cognate amino acid. Synthetase specificity, or how

each enzyme selects the correct tRNA isoacceptors for its cognate amino acid, is

often referred to as the second genetic code [216]. Specificity of the aminoacylation

reaction is largely dependent on proper recognition of the cognate amino acid and

proper tRNAs from the large cellular pool of metabolites and isoacceptors, respec-

tively. Aminoacyl-tRNA specificities can vary between synthetase variants and in

some cases appear to have evolved in order to adapt to the particular environments

of organisms or the properties of individual cellular compartments [217–219].

Progress in genetic, structural, and biochemical studies has helped shape the

underlying principles behind tRNA recognition and amino acid selection of

aaRSs, and has provided insight into how these enzymes have adapted to specific

evolutionary forces [214, 220, 221].

4.1.1 tRNA Recognition

The primary force for tRNA–aaRS binding is displacement of bound water

molecules by the phosphate backbone of the tRNA, and therefore the initial binding

event is somewhat non-specific. Structural modeling studies of PheRS, ThrRS, and

IleRS showed how electrostatic interactions contribute to the first stages of tRNA

binding [222]. It was determined that positive patches on these aaRSs, formed by

non-conserved interaction residues, and supplementary domains are most important

for determining the long-range potential of the enzyme. These regions are unrelated

to the conserved catalytic motifs of aaRSs and determine the ability to attract the

tRNA molecule from a distance and direct it to its binding site.

After long distance interactions are made between an aaRS and tRNA, more

specific recognition at short distances occur and rely strongly on the conserved

catalytic modules. Short distance binding and recognition are also established

by similar structural determinants of tRNAs. Differential binding affinity is not

sufficient to ensure the correct recognition of the cognate tRNA and therefore

kinetic discrimination is used to overcome these limitations and help the aaRS
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distinguish between cognate and non-cognate tRNAs. Aminoacylation of the

correct tRNA is influenced more by kcat effects than by Km effects [223]. Through

various structural and pre-steady state kinetic studies of several tRNA–aaRS pairs,

a general model of tRNA binding and recognition has been elucidated [224–226].

The first stage of tRNA binding is fast and the thermodynamic stability of this initial

complex depends on interactions with the anticodon or variable arm. These close

interactions are followed by a slow conformational change and accommodation

step that occurs only when the cognate tRNA is bound. Interactions with the

acceptor stem of the cognate tRNA are important for this accommodation and

facilitating an efficient rate of aminoacylation and transfer. The precise details

of tRNA binding likely vary somewhat even within each class of aaRS as tRNA

binding determinants and structural motifs vary between different tRNA–aaRS

pairs.

Transfer RNA identity elements are necessary for proper recognition of a

particular group of isoacceptors by an aaRS. Some of these elements are positive

determinants that promote binding of the cognate tRNA and some are negative

(anti-determinants) that prevent acceptance of a non-cognate tRNA [221]. For both

class I and class II isoacceptors recognition elements are located on the periphery of

the tRNA, in the acceptor arm, and in most cases the anticodon stem loop. Major

discrimination occurs at N73, distal base pairs of the acceptor arm, and base 35 of

the anticodon stem loop. The anticodon region is not essential for aaRS–tRNA

recognition in the three Escherichia coli tRNAs specific for Leu, Ser, and Ala. In

the case of tRNASer, the anticodon nucleotides are different in the six isoacceptors

and the acceptor stem, D-loop, and long variable arm unique to these isoacceptors

are needed for recognition [227]. Anti-determinants are often modified bases;

however, in the cases of Glu, Ile, and Lys modified bases in the anticodon loop

are used as positive elements [221]. Anti-determinants of tRNAs from one class of

aaRSs tend to be against binding by members of the other aaRS class [227].

Additionally, organisms that lack a particular aaRS will have tRNAs with positive

and negative identity elements driven by this absence.

Other minor elements, located throughout the tRNA and in its core region, are

more specific to each synthetase system and domain of life. Identity elements found

in the core region of most tRNAs tend to be specific and contribute to architectural

differences in the tRNA. Specificity elements found in the variable loop, TψC arm,

and the D stem often contribute indirectly to binding by providing the necessary

tertiary interactions for proper tRNA structure and folding. In the case of the

initiator tRNAMet in yeast, changes in the elbow of the tRNA (A20 and A60) result

in loss of methylation, while aaRS binding is retained, demonstrating how elements

in this region can differentially affect tRNA structure and function [228].

Once folded into their L-shaped structure, tRNAs are basically comprised of two

distinct domains, one being the acceptor helix stacked with the TψC arm and the

other made up of the anticodon stem aligning with the D stem. These two domains

interact with separate regions of the aaRS and are thought to have emerged

independently from each other [229]. There are a few unique cases of mitochondrial

tRNAs which lack the TψC and D arms and these tRNAs can only be charged by the
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corresponding mitochondrial aaRSs [230]. The aaRS active site domain, which

defines the classification of a particular synthetase by its sequence and structure,

interacts with the acceptor helix-TψC arm domain of the tRNA. Interactions made

with the tRNA in this region vary depending on the synthetase class and unique

features of different enzyme subgroups.

Synthetase interactions made with the anticodon-D-loop domain of the tRNA are

carried out through additional enzyme regions that are separate from the “class-

defining” catalytic core. These anticodon binding domains of aaRSs are much less

conserved and can vary significantly within each class. As shown in the cases of

GluRS, GlnRS, and AspRS [231, 232], binding to the anticodon results in large

conformational changes in the tRNA, which then transmit changes to the active site.

The two separate domains of tRNAs likely evolved separately as did the synthetase

domains that recognize them. Modern aaRSs and tRNAs likely arose from

ancestors with a simpler mode of tRNA–aaRS recognition solely involving the

tRNA acceptor stem and aaRS class-defining catalytic domain [233]. The demon-

stration that minimalist tRNAs, or minihelices, are aaRS substrates supports this

theory and such experiments provide insights into elements that were important for

recognition prior to the emergence of larger contemporary tRNAs. Class II

synthetases are thought to have appeared first in evolution as these enzymes are

best able to aminoacylate minimalist tRNAs and, as mentioned above, some aaRSs

of this class completely lack tRNA anticodon recognition elements [221].

4.1.2 Amino Acid Specificity

Amino acid recognition by synthetases takes place in the catalytic site prior to

activation and formation of the aminoacyl-adenylate. The mode of amino acid

binding varies between different classes of synthetases. Analysis of the CysRS

crystal structure and those of other class I synthetases indicate that amino acid

binding occurs when the conserved KMSKS motif is in an “open” confirmation.

This binding occurs prior to ATP binding and adenylate formation, at which point

the loop closes [29, 33, 48, 61, 63, 75, 231, 234]. Class II tRNA synthetases have

evolved to discriminate among their amino acid substrates primarily by altering the

amino acid side chains in the binding pocket as opposed to changing the position of

protein backbone or secondary structure elements [144]. In addition, the size of the

amino acid binding pocket may be important, as in the PheRS synthetic site where a

conserved Ala residue helps determine specificity of phenylalanine over tyrosine

[235]. Interestingly some PheRS variants, such as cytoplasmic PheRS in yeast and

humans, contain a glycine at this position, resulting in significantly lower cognate

amino acid specificity [217]. ThrRS contains a zinc ion in its active site that

contributes to amino acid specificity by recognizing the hydroxyl at the β position

of threonine and discriminating against alanine and serine [236]. Although modern

synthetases have evolved differentiated structures for proper substrate recognition,

the active site architectures of some of these enzymes are unable to distinguish

between very similar amino acids with high enough stringency to ensure accurate
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translation. In these cases editing or proofreading mechanisms are found in many

synthetases to aid in the elimination or hydrolysis of misactivated amino acids

(Sect. 4.2.2).

4.2 Adapted and Changing Domains

AaRSs are thought to have evolved additional modules to help maintain accurate

protein synthesis as the genetic code increased to include more amino acids and the

number of isoacceptors increased. Such adapted domains include sites of post-

transfer editing, and RNA recognition domains needed for tRNA anti-codon binding

and structural stabilization. In addition to the core catalytic and various adapted

domains, several aaRS modules evolved into free standing proteins either with

synthetase-like functions, such as trans-editing domains, or with other roles in the

cell (Sect. 5).

4.2.1 RNA Recognition

Asmentioned above, domains outside the synthetase catalytic core can be involved in

tRNA recognition. Such domains evolved much later and can vary significantly

between synthetase enzymes. Many aaRSs contain additional tRNA recognition

domains outside of the region of the catalytic site. For example class IIb aaRSs contain

a conserved, lysine rich N-terminal anticodon binding domain (ABD). Structural and

biochemical data for yeast AspRS illustrate how the N-terminus of this synthetase

participates in tRNA binding, as the presence of this extension considerably increases

the stability of the complex between AspRS and its homologous tRNA [42]. Aside

from providing stability to the aaRS–tRNA complex for aminoacylation directly,

these additional RNA binding domains can be used to provide tRNA stability and

even sometimes to facilitate transport. For example, cytoplasmic LysRS in humans is

selectively packaged along with the tRNALys isoacceptors to help transport the

tRNALys replication primer into the HIV-1 viron [237]. The viral Gag polyprotein is

required for this packaging event. Human LysRS also binds a portion of the HIV

genome that contains a tRNALys anticodon-like element possibly to release LysRS

from tRNALys, enabling this RNA to anneal to viral RNA for priming [238]. A second

example of a trafficking role involves human TyrRS, where the nuclear localization

signal is located in the same region of the protein needed for tRNA binding, thereby

regulating TyrRS localization to the nucleus [239]. More generally, nuclear pools of

synthetases in eukaryotes are predicted to serve as “proofreaders” for properly

processed, functional tRNAs before these tRNAs are exported into the cytoplasm

for their use in translation [240].
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4.2.2 aaRS Editing

In order to maintain faithful translation, particularly in the case of similar amino

acids where only so much specificity can be achieved by substrate discrimination,

aaRSs have adaptedmethods to proofread or “edit”misacylated or incorrectly paired

amino acid/tRNA pairs selectively. Editing activities can be found in approximately

half of the aaRSs and both structural and biochemical studies have helped advance

our understanding of how editing processes work in different aaRSs. The catalysis of

aminoacylation by synthetases is a highly conserved mechanism; however, the

editing mechanisms performed by these enzymes is much more variable. The high

degree of diversity in proofreading further exemplifies the long evolutionary path-

way of these enzymes as well as the role convergent evolution has played in their

emergence. Both pre- and post-transfer editing mechanisms by aaRSs exist and are

defined by the substrate. Pre-transfer editing targets the misactivated aminoacyl-

adenylate and occurs within the active site of the aaRS itself. Post-transfer editing

involves clearance of misacylated tRNAs and occurs in appended enzymatic

domains that emerged later in evolution [241].

The presence of separate catalytic and editing sites in one enzyme, as predicted

based on biochemical evidence [242], was first supported by structural studies of

IleRS [29, 49]. Since then, editing by dedicated post-transfer editing CP1 domains

in class I IleRS, ValRS, and LeuRS have been well characterized, in addition to

many other editing systems. IleRS, ValRS, and LeuRS have a high degree of

conservation in their CP1 domains that suggests early emergences and selective

pressure to maintain editing in these enzymes. It has recently been shown that the

rebinding and trans editing of a released misacylated tRNA is a possible post-

transfer editing mechanism for these class I aaRSs; however, the relative importance

of this pathway is not known [243]. A trans editing model has also been shown

for the class II PheRS where the post-transfer hydrolysis of a misacylated tRNA

occurs after rebinding and is thought to be a significant editing pathway [244].

Kinetic studies show LeuRS and ValRS mainly rely on post-transfer editing to

prevent misincorporation of non-cognate amino acids [245, 246]. IleRS, however,

also uses a distinct tRNA-dependent pre-transfer editing activity in its synthetic site

[49, 247]. In the case of some LeuRS enzymes, there is less robust post-transfer

editing activity against particular amino acids. Yeast cytoplasmic LeuRS is able to

clear misacylated Ile-tRNALeu efficiently; however, the enzyme’s post-transfer

hydrolytic activity against Met-tRNALeu is much weaker [248]. It was hypothesized

that yeast cytoplasmic LeuRS can shift between pre- and post-editing pathways

depending on the identity of the non-cognate amino acid. Human cytoplasmic

LeuRS also shows modular pathways for editing different non-cognate amino

acids. Norvaline, for example, is predominantly cleared by post-transfer editing

while α-amino butyrate is the target of the pre-transfer mechanism [249]. Interest-

ingly, when the yeast mitochondrial CP1 domain from LeuRS was isolated from the

full-length enzyme it was unable to hydrolyze misacylated Ile-tRNALeu, which is in

contrast to the isolated E. coli LeuRS CP1 domain [250]. This isolated yeast CP1
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domain still retained its intron splicing activity (Sect. 5.1), suggesting that this

LeuRS has functionally diverged to have a robust splicing activity, which has

come at some expense to aaRS functionality in aminoacylation and editing [250].

The only other class I synthetase with editing activity is the related MetRS.

Homocysteine, an intermediate of methionine biosynthesis, is activated by MetRS

and subsequently edited prior to transfer to the tRNA. Unusually, this proofreading

occurs within the active site of the enzyme and involves cyclization of the adenylate

to form homocysteine thiolactone and AMP [251–253].

Separate, adapted post-transfer editing domains are found in class II PheRS,

ThrRS, AlaRS, and ProRS and pre-transfer editing activity has been demonstrated

in the active sites of ProRS, SerRS, and LysRS II [241]. Class II aaRS post-transfer

editing domains are much less conserved than those in the class I enzymes. This

variability coincides with the trend of class II synthetases, which tend to share less

conservation between different aaRSs. Some of the class II synthetases, where

product release is rapid and not rate limiting, also have homologous free standing

trans acting editing domains, a phenomenon that to date has not been described for

class I enzymes. PheRS is among the least well conserved class II aaRSs, and exists

in various forms in different domains and cellular compartments [217]. PheRS post-

transfer editing takes place in the β subunit of the enzyme 40 Å away from the site

of aminoacylation and is responsible for clearing misacylated Tyr-tRNAPhe [235,

254, 255]. Structure based alignments of the PheRS editing domain show consider-

able divergence as many archaeal/eukaryal PheRSs lack conservation of the critical

residues found in bacterial PheRS [256]. Mitochondrial PheRSs exist as a monomer

from which the β subunit and post-transfer editing are completely absent [46].

Post-transfer editing in ThrRS is necessary to hydrolyze mischarged Ser-tRNAThr

and takes place in an adapted N2 domain of the N terminus, which shares homology

to the same region of AlaRS. Mitochondrial ThrRS lacks the N2 domain and archaeal

ThrRSs often contain an unrelated N-terminal domain, and in some cases the editing

domain acts in trans [257, 258]. In-depth structural analyses of bacterial ThrRS have

elucidated the post-transfer editing mechanism and show two water molecules to be

involved in the hydrolysis reaction, one of which is excluded when Thr is in the

editing site vs Ser [259, 260]. This editingmechanism is based onmore than howwell

the misacylated substrate “fits” into the editing active site and is thought possibly to

be similar in other post-transfer editing sites such as those of PheRS and LeuRS

[260]. Also, the freestanding protein ThrXp in Archaea is homologous to the editing

domain of ThrRS and is able to clear Ser-tRNAThr in vitro [258]. The editing domains

of some ThrRS enzymes from archaea also share sequence and structural homologies

with D-Tyr-tRNATyr deacylases (DTD) [261–263]. DTDs contain trans editing

activity against mischarged D-Tyr-tRNATyr, which can be synthesized by TyrRS,

and are found across the three domains of life [264, 265]. This activity is essential to

cell viability, as D-amino acids could dramatically alter protein folding and function.

Interestingly, changing one particular residue in E. coli DTD to that found in ThrRS

changed the specificity from D-amino acids to L-Ser, supporting the evolutionary

linkage between DTDs and ThrRS [260].
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Class II AlaRS has a flexible Ala binding pocket and as a result the enzyme has

to be able to clear misactivated Gly and Ser [135]. An appended post-transfer

editing domain is used to clear both Ser-tRNAAla and Gly-tRNAAla, while a trans

editing domain, AlaXp is also used to clear the large non-cognate residue, Ser. The

appended post-transfer editing domain of AlaRS is thought to have evolved from a

primordial AlaXp that later fused to the aminoacylation domain of AlaRS [135].

Interestingly, all three domains of life contain the additional free standing editing

domain, AlaXp, which is mainly responsible for clearing mischarged Ser-tRNAAla.

There is strong evolutionary pressure to retain AlaXp in addition to AlaRS editing,

as demonstrated in mice where reduced Ser-tRNAAla editing was linked to protein

misfolding in neuronal cells [266].

For ProRS there exist several different mechanisms of synthetase proofreading,

many of which include trans editing domains collectively known as ProX enzymes.

The insertion domain (INS) is one which exists as an appendage to the core

synthetase for most bacteria and is responsible for clearing mischarged Ala-

tRNAPro. Some species, including Clostridium sticklandii, lack an INS domain

and encode a freestanding domain PrdX that is used to hydrolyze Ala-tRNAPro

[267]. The synthetic site of ProRS is also capable of mischarging Cys-tRNAPro,

which can be cleared by a freestanding editing domain YbaK that is itself

homologous to the INS domain [268–270]. Human encoded ProX has recently

been shown to deacylate mischarged Ala-tRNAPro, but not Cys-tRNAPro, by

specifically recognizing the Ala moiety of Ala-tRNAPro [271]. Additional free-

standing ProRS trans editing domain homologs, such as YeaK and PA2301, have

also been identified based on sequence similarity to INS and YbaK; however, their

function is still not clear [272].

Post-transfer editing domains are not universally conserved, and in several

aaRSs these domains have actually been lost. Examples of editing domains that

appear to have been lost during evolution include a number of mitochondrial

synthetases, such as human mitochondrial ProRS, human mitochondrial LeuRs,

human and yeast mitochondrial PheRS, as well as the cytosolic ProRS in higher

eukaryotes, and most archaeal and mitochondrial versions of ThrRS. [46, 257–259,

273–276]. Many archaeal ThrRS enzymes have an N-terminal domain that is

unrelated to the conserved N2 editing domain and in some cases a trans editing

domain is encoded separately from the aminoacylation site [257]. Mycoplasma

PheRS and LeuRS are also unable to post-transfer edit effectively as PheRS lacks

conserved residues in the β subunit required for editing and LeuRS is missing the

CP1 domain altogether [218, 219]. As a result of the error-prone activities of these

two synthetases, the Mycoplasma mobile proteome naturally contains elevated

levels of mistranslation. The evolutionary advantage of these error-prone

proteomes is unclear, but it has been proposed that, because many of these

organisms are obligate intracellular pathogens, misincorporation of similar amino

acids increases antigen diversity without completely losing structural and function

integrity of proteins [218]. Understanding the role of translational fidelity is

important as editing by synthetases can vary greatly between different domains of

life and even within a particular organism [217]. Whether or not reduced quality
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control within a particular organism or cellular compartment is beneficial and what

environmental conditions or stresses dictate such benefits or disadvantages, is

important to understanding what drives the evolution of synthetase fidelity.

The numerous examples of stable robust freestanding editing domains and their

homology to fused synthetase domains strongly suggests that the free-standing

variants may have first existed as independent proteins that were later fused with

their respective aaRS. This theory is supported by the observation that the editing

domains of several synthetases contain a conserved CXXC motif, which is often

found in mobile elements that have been incorporated into larger proteins [267].

Interestingly, the trans editing domain YbaK functions most effectively as a stable

complex with ProRS, outcompeting EF-Tu, suggesting one possible evolutionary

path for the transition from freestanding to fused editing domains [269]. Domain

acquisition and movement of editing domains are thought to have occurred more

than once during the evolution of some aaRSs [267, 277]. Editing modules in

ProRS, for example, have diverse contexts and can include insertions, N-terminal

additions, and independent protein forms [267, 278, 279]. The editing domains of

AlaRS and ThrRS are similar in sequence yet are located in different regions of the

synthetase and could possibly have been acquired at different points during

evolution. The lack of structural conservation within the ThrRS editing domains

suggests that they were possibly acquired from more than one ancestor where they

had emerged early in evolution, or the archaeal ThrRS editing site may have

evolved rapidly after the divide of the eukaryote and archaeal lineages [257, 280].

5 Emergence of Non-canonical Functions in Aminoacyl-tRNA

Synthetases

5.1 Fused Domains Having Non-canonical Functions

In addition to adapted aaRS domains involved in tRNA aminoacylation, several

examples of fused aaRS domains used for non-canonical functions have emerged

throughout evolution. There are many N- or C-terminal domains found only in

eukaryotic synthetases that are not needed for aminoacylation activity. For example,

in archaea and higher eukaryotes fused terminal domains are thought to play a role in

forming the multisynthetase complex (MSC). The MSC is a complex of several

synthetases and auxiliary proteins including eukaryotic initiation factor 1-α (eIF1-α)
that is hypothesized to have a role in promoting synthetase activity and channeling

translation components to the ribosome [281, 282]. Other fused aaRS domains,

particularly prevalent in eukaryotes, are often involved in cell signaling pathways

[283]. One example of a fused aaRS domain used for signaling is theWHEP domain

found in chordate TrpRS, which regulates the angiostatic signaling activity of this

synthetase [284, 285]. TyrRS in higher eukaryotes contains fused ELR and EMAPII

domains that are both used for angiogenesis related signaling. The EMAPII domain
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blocks the signaling function of the ELR domain, and upon cleavage of the ELR

domain post secretion the EMAPII is accessible for signaling. The remaining

N-terminal fragment containing the aminoacylation domain (mini-TyrRS) is also

able to promote leukocyte migration [286]. Another recent example of how

synthetases play a role in signaling involves LeuRS and its key role in linking

cellular amino acid levels to the TORC1 response pathway. In both human and

yeast cells, leucine-bound LeuRS was found to interact with system specific

GTPases through the conserved CP1 editing domain. This interaction in turn

promotes lysosomal recruitment and activation of TORC1, which is responsible

for regulating protein synthesis, ribosome biogenesis, nutrient uptake, and

autophagy [287, 288]. Outside of cell signaling, such domains fused to aaRSs can

be involved in the regulation of gene expression as in the cases of AlaRS DNA

binding and transcriptional regulation of its own gene, PheRS regulation through

transcriptional attenuation, and ThrRS for regulation of translation [289–291]. In

E. coli, ThrRS is able to bind the leader region of thrS mRNA and prevent binding

of the 30S ribosomal subunit [292]. Hairpin recognition of the mRNA is similar to

anticodon stem loop recognition by ThrRS. Gene regulation by fused domains of

aaRSs also occurs in eukaryotes. For example, the synthesis of ribosomal RNA in

humans appears to be regulated by the C-terminus of MetRS, which is needed for

nucleolar localization and possible nucleic acid interactions [286].

AaRSs have also been found to have functions in tRNA and mRNA transport and

processing. In yeast, the CP1 domain of mitochondrial LeuRS is involved in Group

I intron splicing and the C-termini of mitochondrial TyrRSs from S. cerevisiae and
Neurospora crassa have been implicated in rRNA splicing [250, 286, 293, 294].

Additionally, TyrRS in yeast appears to be important for tRNA export from the

nucleus [240] and LysRS and AlaRS in certain eukaryotes are needed for mito-

chondrial import of tRNA [286]. Lastly, in most actinomycetes LysRS is fused

directly to a multiple peptide resistance virulence factor, which uses specific

aminoacylated tRNAs as substrates to aminoacylate and alter the properties and

composition of membrane lipids [295–297].

5.2 Paralogs of Synthetases

As more sequence data is becoming available for organisms from all three domains

of life it is becoming evident that paralogs to aaRSs are encoded in most genomes,

and genetic and biochemical studies have just begun to unravel the function of some

of the corresponding gene products. Interestingly there are numerous examples of

these paralogs that do not aminoacylate tRNA but are rather used for cellular

activities outside of protein synthesis. These examples of free standing enzymes

with new functionalities take advantage of many structural and sequence

characteristics of aaRSs and further demonstrate the evolutionary importance of

the enzymes.
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5.2.1 Class I Paralogs

There are a number of class I aaRS paralogs that have been found to function as

isoenzymes, or duplications of an enzyme with a different amino acid sequence that

still performs the same chemical reaction. For example, two different forms of a

synthetase used in the cytoplasm and mitochondria are considered isoenzymes.

Synthetase isoenzymes that have evolved new functions have the same amino acid

and tRNA specificity, but commonly have a slightly different active site relative to

the canonical aaRS. These differences in specificity can be exploited by host

organisms to provide resistance to natural inhibitors, as perhaps best exemplified

by the IleRS isoenzyme that confers mupirocin resistance to a number of drug-

resistant isolates of bacterial pathogens such as Staphylococcus aureus [298].
A number of aaRS paralogs have been found to function as peptide synthetases,

transferring activated amino acids to carrier proteins in non-ribosomal peptide

synthesis. AlbC is an example of a class I paralog with high similarity to an aaRS

catalytic domain, in this case TrpRS, that functions as a cyclodipeptide synthase,

transferring Phe from Phe-tRNAPhe to an activated serine residue [299]. MshC is a

CysRS paralog that catalyzes Cys attachment to the amino group of a mycothiol

precursor (not the hydroxyl like aaRSs) [300]. CPDSs are often derived from the

class I catalytic domain, demonstrating the high amount of divergence that has

occurred in these enzymes. There has also been a series of truncated class II SerRS

homologs identified that activate and transfer amino acids to carrier proteins

(Sect. 5.2.2) [301].

GluX (yadB in E. coli) is a truncated form of class I GluRS that lacks the entire

C-terminal anticodon-binding domain. Early studies showed yadB was not essential

in E. coli and it was thought to be a pseudogene without a known function. [37,

302]. Subsequently, yadB was shown to have a conserved prokaryotic function in

posttranscriptionally modifying tRNAAsp on the modified nucleoside queuosine,

which is inserted at the wobble position of the anticodon-loop and has been

renamed glutamyl-Q-tRNAAsp synthetase [303]. This GluRS catalytic paralog has

unusual tRNA binding that goes against the classic idea of the aaRS catalytic

site–tRNA acceptor stem interaction. Structural mimicry between the anticodon-

stem and loop of tRNAAsp and the amino acid acceptor-stem of tRNAGlu partly

explains this unusual and unexpected mode of RNA binding.

5.2.2 Class II Paralogs

Paralogs of class II synthetases perform a wide variety of cellular roles outside of

tRNA aminoacylation. For example, PoxA is a class II LysRS paralog found in

many bacteria that posttranslationally adds β-lysine to a conserved lysine residue on
translation elongation factor P [304]. Other notable examples include two paralogs

of HisRS, HisZ, and GCN2, that have very different functionalities. HisZ, which

was first identified in Lactococcus lactis, is homologous to class II HisRS proteins
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and is required for the first step in histidine biosynthesis [305]. As an essential

subunit of HisG, an ATP phosphoribosyltransferase, HisZ catalyzes the transfer of

ATP to 5-phosphoribosyl 1-pyrophosphate (PRPP) producing the substrate for nine

additional steps in the histidine biosynthesis pathway. This enzyme provides

another evolutionary link between amino acid biosynthesis and the aminoacylation

reaction. HisZ also has some non-specific RNA binding activity, but whether this is

functionally significant is not known [305]. GCN2 is found in eukaryotes and is

used to sense amino acid levels and subsequently regulate translation. GCN2

enzymes contain a Ser-Thr kinase domain and a HisRS-like domain that binds

uncharged tRNA and prevents kinase activity in the absence of tRNA binding [306].

HisZ and GNC2 are functionally distinct and products of separate evolutionary

events. HisZ is the result of an early gene duplication event in bacteria while

GCN2 is the result of a later gene duplication event in eukaryotes [305]. Asparagine

synthetase A (AsnA) shows homology to the catalytic domain of Asp/AsnRS and is

responsible for catalyzing asparagine synthesis using aspartate, ATP, and ammonia

as substrates [119, 307]. Structural and phylogenetic data suggest AsnA evolved

from a duplication of the ancestral AspRS gene, leading to the archaeal/eukaryal

AspRS and a precursor to AsnRS and AsnA. Upon duplication of this AsnRS

precursor gene, one copy evolved Asn activation and tRNAAsn binding activity,

while the other copy lost its anticodon-binding domain and evolved a new catalytic

site to become AsnA [119]. The biotin protein ligase, BirA in E. coli, is a paralog of
SerRS [308] at its catalytic site and functions to activate biotin to form biotinyl-50-
adenylate and then catalyze the covalent attachment of this biotin to a subunit of

acetyl-CoA carboxylase at a lysine residue [309]. As more structural data became

available BirA was also shown to resemble the class II PheRS β subunit [310].

Similarities between the structures of BirA and PheRS were found in a region

separate from the catalytic domains of these proteins that resemble Src-homology 3

(SH3)-like DNA binding domains. This region of BirA is responsible for regulating

transcription of the biotin operator [311]. Both AsnA and BirA catalyze reactions

that involve the formation of an adenylated intermediate, which is not the case for

the HisZ enzyme. It was suggested that this absence of adenylation by HisZ and its

role in binding and regulating histidine indicate early aaRSs may have been simple

amino acid binding proteins [305].

Other SerRS paralogs include SLIMP and homologs that acylate carrier proteins

for non-ribosomal protein synthesis. SLIMP is found to be localized in the

mitochondria of insects and is needed for proper development in flies [312]. The

function of this protein is unknown; however, it shows a general affinity to RNA

and may be involved in mRNA processing and/or gene expression. There has also

been a series of truncated SerRS homologs identified in a number of bacteria, which

are similar in structure to the catalytic region of an atypical SerRS (aSerRS) that is

found in methanogenic archaea [313]. These homologs lack tRNA binding and

canonical aminoacylation activity, but rather activate and transfer amino acids to a

phosphopantetheine prosthetic group on carrier proteins. The functions of these

carrier proteins have yet to be identified, but it is thought that they possibly play a

role in non-ribosomal protein synthesis [301].
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One last example of a class II aaRS paralog with a cellular function outside of

tRNA aminoacylation is found in mitochondrial DNA polymerase. The Polγβ
subunit, which is responsible for the enzyme’s processivity, has a domain that is

similar to the catalytic domain of class IIa synthetases. The regions of similarity

include the aaRS active site that binds the amino acid, ATP, and the acceptor stem

of the tRNA [314]. Polγβ also has a C-terminal domain that is similar to the tRNA

anticodon binding domain of the dimeric GlyRS [315]. Despite these similarities,

Polγβ has important differences and lacks critical residues necessary for tRNA

anticodon binding and therefore does not retain the function of an aaRS. This

example does show strong evolutionary links between this polymerase subunit

and aaRSs, particularly in their nucleic acid binding properties.

6 Conclusion

Almost 60 years after evidence of aminoacyl synthetase activity first emerged [316,

317], the field is continuing to grow and provide insights into evolution, the fidelity

of protein synthesis, and the workings of other biological systems. The discoveries

of PylRS and SepRS demonstrate how the genetic code is less rigid than once

thought and has been adaptive to changes in environmental demands [183, 201].

The vast increase in aaRS structural information within the last several years has

increased our resources for phylogenetic analysis as well as helped explain

biochemical mechanisms. Also, the structure of PylRS provides a great example

of substrate orthogonality and is paving the way for advances in protein engineering

[146]. Lastly, the immense amounts of recent genomic sequencing data have

uncovered numerous aaRS accessory domains and paralogs whose functions have

connected aaRSs to cellular development and disease and are targets of new

therapeutic development [318, 319].
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