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Molecular Crowding and Hydration Regulating

of G-Quadruplex Formation

Daisuke Miyoshi, Takeshi Fujimoto, and Naoki Sugimoto

Abstract Intracellular space is highly crowded with soluble and insoluble

biomolecules that range from large polymers, such as proteins and nucleic acids,

to small molecules, including metabolites and metal ions. It is therefore of interest

to understand the effects of molecular crowding on the structure, stability, and

function of biomolecules. Moreover, molecular crowding is observed not only

intracellularly but also in the extracellular matrix and under the conditions used

in in vitro biotechnological and nanotechnological processes. However, most

biochemical studies of biomolecules are performed under dilute conditions. Recent

studies have demonstrated critical effects of molecular crowding on nucleic acids.

In the present study we discuss how molecular crowding affects the properties of

G-quadruplexes as well as other non-canonical nucleic acid structures.
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1 Introduction

One of the ultimate goals of biochemical and biophysical studies is to reveal how

biomolecules participate in fundamental biological processes in situ, i.e., inside

living cells. Intracellular space is highly crowded with soluble and insoluble

biomolecules that range from large polymers, such as proteins and nucleic acids,

to small molecules, including metabolites and metal ions. Surprisingly, the total

molecular concentration within cells reaches 400 mg mL�1 and biomolecules

occupy up to 40% of the total intracellular space (Fig. 1) [1–4], creating conditions

of molecular crowding. It is therefore of interest to understand the effects of

molecular crowding on the structure, stability, and function of biomolecules.

Molecular crowding has been demonstrated to affect the properties of biomolecules

through effects on the thermodynamics and kinetics of macromolecular association

and dissociation [5–7]. However, most biochemical studies are performed under

non-physiological dilute conditions [8, 9], in contrast to other cellular environmen-

tal factors, such as temperature, pH, ion species and concentrations, and redox

potential, which are adjusted during biochemical experiments to match physiologi-

cal conditions. Since there are excellent reviews regarding molecular crowding

effects on the structure and function of proteins and nucleic acids [1–6, 8–10], we

discuss herein how molecular crowding affects the properties of G-quadruplexes

and other non-canonical nucleic acid structures.

2 Molecular Crowding

Molecular crowding conditions are observed both intracellularly and in the extra-

cellular matrix and also in in vitro biotechnological and nanotechnological

processes. In this section we demonstrate how molecular crowding is critical in

both in vivo and in vitro environments.
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2.1 Molecular Crowding In Vivo

Molecular crowding occurs in both the nucleus and the cytoplasm where diagnostic

target molecules exist and to where therapeutic molecules are targeted. Eukaryotic

nuclei, in which DNA is present, are heterogeneous and contain a variety of

subnuclear structures such as the nucleolus, splicing-factor compartments, Cajal

bodies, promyelocytic leukemia bodies, replication factors, and transcription

factors [11, 12]. In the nucleus, DNA is highly condensed and is packed with

nuclear components to form chromosomes. DNA exists in a semi-ordered structure

in these nuclear chromosomes, where it is wrapped around histones forming a

composite material called chromatin (Fig. 2) [13, 14]. The nucleosome core

Fig. 2 Hierarchical structure of a chromosome. Nucleosomes (right), which are composed of a

histone octamer and a DNA strand, form the beads-on-a-string structure that is shown in the center.
A higher-order structure of nucleosomes makes a chromosome structure (left)

Fig. 1 Schematic illustration of molecular conditions within a living cell that is filled up with

biomolecules such as tRNA, ribosomes, mRNA, and protein. Note that there are many small

molecules in addition to these large biomolecules in a living cell
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consists of about 146 dsDNAs wrapped in left-handed superhelical turns around

four identical pairs of proteins known as the histone octamer. DNA is then further

packaged into metaphase chromosomes. Histone proteins regulate nucleosome

assembly, DNA condensation, and DNA flexibility [15, 16]. Thus, the inside of

the cell nucleus is crowded by molecules such as DNA and histones as well as by

RNA, proteins, and small cosolutes.

Visualization of the cytoplasm, where RNA is present, by electron microscopy

revealed the actin cytoskeleton, which was reconstructed without prior removal of

membranes or extraction of soluble proteins [17, 18]. By using this technique,

single macromolecular assemblies with distinct shapes, such as the proteasome and

ribosomes, can be identified at a resolution of nanometers in an unperturbed cellular

environment. Moreover, the cytoplasm of a living cell consists of a large number of

additional molecules such as nucleic acids, proteins, carbohydrates, and lipids.

Therefore, the biomolecules occupy 20–40% of the total volume of the intracel-

lular environment. The total concentration of intracellular biomolecules is estimated

to be 300–400 mg mL�1, and the concentration is even higher in the mitochondrial

matrix [1, 19–21]. The crowded nature of the cell interior can be visualized by

comparison with lattice structures. In face-centered cubic lattices and simple cubic

lattices, the atomic packing factors, which are the fractions of the volumes of crystal

structures that are occupied by atoms, are 0.74 and 0.52, respectively (Fig. 3). The

atomic packing factor of a diamond crystal is just 0.34, which is comparable with the

fractional volume commonly occupied by biomolecules in living cells. Molecular

crowding in living organisms involves high concentrations not only of

macromolecules but also of small molecules. The concentration of such small

molecules, which act as osmolytes, can reach the molar range. The most extreme

example inmammals is the kidneymedulla cells, which contain a urea concentration

of up to 5.4 mol L�1 [22], which corresponds to 30% of the cell by mass. Thus, not

only macromolecules but also small organic molecules are indispensable for

maintaining homeostasis in all living organisms [23, 24].

2.2 Molecular Crowding In Vitro

It is obvious that molecular reactions that are designed to take place on a material

surface in pharmaceutical and medicinal devices also proceed under conditions of

high molecular crowding. Typical in vitro molecular crowding can be observed at

Fig. 3 Structure of (a) face-

centered, (b) simple, and (c)

diamond lattices. Atoms in a

lattice are shown as black
circles
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liquid–solid interfaces, such as when a biomolecule is immobilized on a solid

surface as occurs in analytical methods such as affinity chromatography, enzyme-

linked immunosorbent assay (ELISA), and surface plasmon resonance (SPR). In

such biosensing techniques, biomolecules are directly or indirectly attached to solid

supports via covalent or non-covalent interactions (Fig. 4). When a DNA strand is

directly immobilized, it is either surrounded by identical DNA strands or is on a

self-assembled monolayer of an organic polymer that prevents non-specific adsorp-

tion of molecules onto the solid support. In the case of the direct immobilization of

DNA strands onto gold nanoparticles, the density of the DNA strands was reported

to be around 50 pmol cm�2 [25–27], resulting in around 3 � 1013 DNA

strands cm�2. Since the diameter of DNA is 2 nm, the DNA strands cover around

90% of the surface, indicating that there is almost no available free surface after

hybridization of the DNAs with their target complementary DNA strands. This

demonstrates the molecular crowding conditions of immobilized biomolecules. It is

therefore possible that the hybridization process that occurs at the solution–solid

interface is different from the process occurring in a dilute solution, and that this

difference is at least partly due to molecular crowding.

In nanodevices, the distinctive chemical conditions at the solution-solid inter-

face further affect the properties of the whole system. A nanopore, whose diameter

generally ranges from several to several ten of nanometers, can be created by a

membrane protein or by a combination of lithography and ultrathin materials such

as silicon and graphene [28–30]. At the nanoscale level, the chemical condition at

the liquid–solid interface that is not observed in bulk solution dominates the

characteristics of the whole solution. Since such nanodevices have been applied

to the detection, separation, and purification of biomolecules [31], it is essential to

investigate the biomolecular properties at the solution–solid interface where the

surface and immobilized biomolecules create molecular crowding conditions.

2.3 Molecular Crowding Reagents

Because it is difficult to investigate quantitatively nucleic acid interactions in a

living cell and on material surfaces, in vitro experimental systems that use a

Fig. 4 DNA strands attached

to (a) an immobilized surface

and (b) an immobilized

nanoparticle. For clarity, all

DNA strands except one are

shown in gray
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synthetic cosolute have been widely used to study biomolecular reactions under

non-aqueous conditions. Such crowding cosolutes should meet the following

criteria [10]: (1) they should be basically inert so that there is no chemical interac-

tion between the target molecule and the crowding cosolute; (2) they should easily

dissolve in water to stimulate molecular crowding; (3) in the case of large cosolutes,

different polymer sizes should be available; and, (4) in the case of small cosolutes,

different chemical properties should be available. Inert cosolutes in particular are

convenient for the study of molecular environments. Thus neutral and highly water-

soluble molecules are extremely useful cosolutes for quantitative studies. However,

chemical interactions including electrostatic interactions between the target mole-

cule and cosolutes should be taken into account when investigating intracellular

biomolecular function [32, 33]. Poly(ethylene glycol) (PEG) and polysaccharides

are often used to mimic molecular crowding conditions since they are inert to most

biomolecules. These polymers can be dissolved in water to a relatively high

concentration, and different polymer sizes are commercially available. Other

small cosolutes that are useful for mimicking molecular crowding conditions are

alcohols, glycols, amino acids, acetonitrile, trimethylamine N-oxide, and betaines

[34–36]. Moreover, proteins such as chymotrypsin, albumin, hemoglobin, and

lysozyme, as well as synthetic polymers such as poly(vinylpyrrolidone)s, are also

utilized as crowding cosolutes to mimic better the chemical conditions inside living

cells [37].

3 Molecular Crowding Effects on Non-canonical Structures

of Nucleic Acids

The critical role of the nucleic acids, DNA and RNA, is to store and process the

genetic information that includes all of the information that is necessary for life. In

1953, Watson and Crick demonstrated that DNA forms a double helix via

Watson–Crick base pairs. Half a century after the discovery of the double helix,

the Human Genome Project (HGP) identified the almost 3.2 billion base pairs in the

entire human genome. The HGP also showed that repetitive DNA sequences,

including dinucleotide and trinucleotide repeats, as well as telomeric and centro-

meric sequences, are widely distributed in the human genome. Most of this repeti-

tive DNA can potentially fold into noncanonical structures. From this perspective,

clarifying not only the primary structure (sequence) of nucleic acids but also

thermodynamic and kinetic analyses of the higher-order structures and structure-

function relationships of nucleic acids are essential for understanding the reactions

that underlie biological processes and diseases. Thus, molecular crowding effects

on the non-canonical structures of nucleic acids are of interest for a broad range of

research fields. In this section, we will introduce the effects of molecular crowding

on some of the non-canonical structures of nucleic acids.
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3.1 DNA Triplexes

Spink and Chaires as well as Goobes and Minsky demonstrated that the Hoogsteen

base pairs in a DNA triplex are generally stabilized by molecular crowding, whereas

Watson–Crick base pairs are destabilized [38, 39]. These studies also suggested that

the thermodynamics of DNA duplexes and triplexes are regulated by DNA hydra-

tion. Minsky et al. further estimated the thermodynamic parameters of the triplex

formation of T18·A20·T20 and found that stabilization of the DNA triplex by PEG

was driven by a large negative enthalpy change that exceeded the unfavorable

entropy change [40]. Based on the parameters measured under conditions of various

salt concentrations and temperatures, they proposed that alterations in environmen-

tal conditions could be effectively compensated for by crowding cosolutes; this

compensation provides a mechanism for adaptation to, and buffering against, unfa-

vorable conditions such as unfavorable ionic strength or temperature [40].

3.2 DNA Junctions

Junctions in nucleic acid structures arise when three or more helices meet at a single

point (Fig. 5a). These branched junctions are important intermediates in many

biological functions and play important roles in many cellular processes [41].

Three-way junctions (TWJs) are the simplest type of junction and are used as a

model system to gain insight into other complex and multi-branched junction

structures [42]. TWJs create a unique electrostatic environment near the junction

point due to the close proximity of opposing charges. The effects of molecular

crowding on the formation of TWJs of DNA have been systematically studied [43].

TWJs, consisting of the junction point and three helical duplex arms, were

destabilized by molecular crowding both in the absence and presence of 5 mM

Mg2+. However, the difference in the number of water molecules that were taken up

by the TWJ as a whole and by each helical arm demonstrated that water molecules

were released from the junction point. This dehydration upon the junction point

formation suggested the stabilization of the junction point under the molecular

crowding conditions. In fact, molecular crowding induced the structural transition

from a bimolecular duplex to the intramolecular TWJ, even in the absence of Mg2+

(Fig. 5b). This finding demonstrates that intracellular conditions, under which water

activity decreases and hydration becomes less favorable, facilitate the formation of

TWJ structures rather than bimolecular duplex structures.

3.3 RNA Structures and Functions

There have been several studies of molecular crowding effects on high-order RNA

structures and their catalytic activity. It was reported that methanol stabilized
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a 58-nt RNA structure but not RNA secondary structure [44]. Addition of the

osmolyte trimethylamine-oxide (TMAO) enhanced the efficiency of ribosome

reconstitution by up to 100-fold, providing a substantially improved system for

the in vitro analysis of mutant ribosomes [45]. These findings demonstrated that

cosolutes play an important role in stabilizing high-order RNA structures and their

interactions with other biomolecules. This effect may be due to the stabilizing effect

of TMAO on RNA tertiary structure. Indeed, TMAO can counteract the denaturing

effects of urea on tRNA tertiary structure [46]. In order to understand the basis for

the effects of TMAO on RNA structures, Draper and coworkers quantified the

TMAO-induced stabilization of RNAs. They suggested that the formation of RNA

tertiary structure is accompanied by substantial dehydration of the phosphate

groups, and that TMAO affects this process by reducing the energetic penalty

associated with this dehydration [47]. These results were supported by molecular

dynamic simulations of a 22-nt RNA hairpin in aqueous TMAO solution [48].

Further reports of molecular simulations indicated that molecular crowding

enhances the thermodynamic stability of a pseudoknot in human telomerase

RNA, leading to a structural switch from a hairpin to a pseudoknot of human

telomerase RNA [49].

It was reported that the RNA cleavage activity of a hairpin ribozyme increases in

the presence of PEG 400 or dextran 10000 [50, 51]. The RNA compaction

accompanied by water release that occurs during the folding of the hairpin ribo-

zyme into the active conformation was proposed to be responsible for the enhanced

cleavage activity under molecular crowding conditions. It was also found that the

formation of a tertiary RNA structure of the GAAA tetraloop-receptor RNA tertiary

motif that was observed in the group I ribozyme domain was favored by molecular

crowding induced by higher molecular weight PEG and dextran but was not

Fig. 5 (a) Three-dimensional

structure of three- and four-

way junctions. (b) Schematic

illustration of the molecular

crowding effect on the

equilibrium between an

intermolecular duplex and an

intramolecular three-way

junction
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induced by lower molecular weight sucrose and glycerol [52]. Small angle X-ray

scattering experiments showed that PEG favors more compact RNA structures and

folding at low Mg2+ concentrations because of the excluded volume effects of

molecular crowding [53]. Although the presence of the cosolutes decreased the

thermal stability of the ribozyme stem (duplex) regions, the structure as a whole

was stabilized by molecular crowding. More importantly, it was found that molec-

ular crowding induced by PEG decreased the metal ion concentration that was

required for the catalytic activity of a hammerhead ribozyme, facilitated catalytic

turnover, and activated a ribozyme that was in inactive form [54]. This ribozyme

also showed efficient activity in a solution at physiological salt concentration only

under osmotic pressure induced by added cosolutes. The fact that the ribozyme

functioned efficiently under physiological conditions implies that ribozymes have

the potential to work efficiently within a living cell. These results indicate that

molecular crowding is critical not only to maintain RNA structures but also to

maintain their functions in living cells where there exist many biomolecules that

can destabilize RNA structures.

4 Molecular Crowding Effects on G-Quadruplex

Conformations

G-quadruplexes have a unique polymorphic nature [55–59]. The polymorphism of

G-quadruplex conformation is induced and regulated not only by nucleotide

sequence but also by chemical conditions. Since a G-quadruplex is stabilized by

cation coordination to the center of the G-quartet, the effects of cations on

the conformation and thermal stability of G-quadruplexes have been studied

[60–69]. Using NMR, Wang and Patel were the first to show that the human

telomeric DNA sequence, AG3(TTAG3)3, folded to form an antiparallel

G-quadruplex in the presence of Na+ [70]. Subsequently, Parkinson et al.,

using X-ray crystallography, reported the formation of a parallel G-quadruplex

of AG3(TTAG3)3 in the presence of K+ [71]. There are now at least five types of

intermolecular G-quadruplexes known for human telomeric DNA sequences that

contain TTAGGG repeats. NMR and chemical modification studies have shown

the formation of mixed G-quadruplexes [(3+1) G-quadruplexes or hybrid

G-quadruplexes] that involve Form 1 and Form 2 [72–74]. These studies have

demonstrated that chemical conditions as well as nucleotide sequences should be

taken into account when determining native G-quadruplex conformations

in living cells. In addition to the effects of cation species and their concentration,

it is now widely accepted that molecular crowding critically affects the structural

polymorphism of G-quadruplexes. In this section we will discuss how

molecular crowding regulates the conformation and the thermal stability of

G-quadruplexes.
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4.1 G-Quadruplex Conformations Under Molecular Crowding
Conditions

The effect of molecular crowding on G-quadruplex conformations was first studied

using the Oxytricha nova telomeric DNA sequence dG4T4G4, in the presence of

Na+ (Table 1). Molecular crowding conditions were created by use of both the

neutral cosolutes PEG (MW ¼ 300) and glycerol and the positively charged

cosolutes putrescine, cadaverine, and spermidine [75]. It was found that molecular

crowding induced by PEG induced a conformational transition from an antiparallel

to a parallel conformation of the d(G4T4G4) and d(G4T4)3 G4 G-quadruplexes

(Fig. 6a), whereas molecular crowding using the cationic cosolutes did not alter

the antiparallel G-quadruplex conformation. These results suggested that the con-

formational switch of G-quadruplexes is regulated by molecular crowding.

In 2005, Chaires and coworkers reported molecular crowding effects on the

G-quadruplex conformation of the human telomeric DNA sequence dA(G3TTA)4
in the presence of Na+ and K+ [76]. Circular dichroism and fluorescence quenching

Table 1 G-quadruplex conformations under molecular crowding conditions

Ref. Sequence Cosolute Cation Conformation

[75] G4T4G4 & (G4T4)3 G4 2 M PEG 100 mM Na+ Parallel

2 M Putrescine Antiparallel

[76] A(G3T2A)3 1.4 M PEG 185 mM Na+ Antiparallel

185 mM K+ Mixeda

[77] (G3T2A)3 G3 40% PEG 100 mM Na+ Antiparallel

(G4T2)G4 40% PEG Parallel (G-wire)

[78] (G3T2A)3 G3 40% PEG 150 mM Na+ Antiparallel

150 mM K+ Parallel

[79] (G3T2A)3 G3 2 M PEG None Parallel

[80] (G3T2A)3 G3
b and

A(G3T2A)3 G3

Ethanol 150 mM K+ Mixed and

parallelc

[81] AG3(T2AG3)3 50% Acetonitrile 25 mM K+ Paralleld

300 mg mL�1 BSA Unassigned

[82]e Human telomere Neutral cosolutes Parallel

[83] Human telomeref 40% PEG K+ Parallel

Egg extractg Not parallel

[84] TBA 40% PEG 100 mM Na+ or K+ Antiparallel
aCD spectra was typical for the mixed conformation
bLonger human telomere DNA sequences were also studied
cThe conformation depended on DNA concentration
dCD spectra was typical for the parallel but NMR spectra was not (see main text)
eHuman telomere sequences with various flanking sequences were studied with PEGs, dimethyl

sulfoxide, ethanol, and acetonitrile. Higher concentrations of PEG 200 induced a high-order

structure
fHuman telomere DNA sequences with various flanking sequences were studied
gEgg extract indicates Xenopus laevis egg extract
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studies showed dramatic changes in the G-quadruplex conformation under molecu-

lar crowding conditions in the presence of K+ but not in the presence of Na+. These

results, as well as the results obtained for theO. nova telomeric DNA, indicated that

molecular crowding effects on G-quadruplex conformations are dependent on the

nature of the coexisting cation and on the nucleotide sequence. To study the

polymorphic nature of DNA G-quadruplexes under molecular crowding conditions,

the effects of the telomeric DNA sequence on the intermolecular and intramolecular

G-quadruplexes formed from Tetrahymena, human, and O. nova telomeric

sequences were studied under dilute and molecular crowding conditions in the

absence and presence of various cosolutes [77]. The intermolecular and intramo-

lecular G-quadruplex structures formed from Tetrahymena telomeric DNA formed

very long, well-ordered G-wires in the presence of cosolutes in Na+ solution.

Although this structure is adopted by many parallel-stranded telomeric sequences,

the intermolecular and intramolecular G-quadruplex structures formed from human

telomeric sequences remained as compact antiparallel G-quadruplex structures

under these conditions (Fig. 6b). These results demonstrate that a single G to A

base replacement in the loops of a G-quadruplex leads to a dramatically different

structure under molecular crowding conditions in the presence of Na+. Conversely,

the parallel conformation of a G-quadruplex formed from human telomeric DNA

was observed in a K+-containing solution under molecular crowding conditions

[78]. More complex behavior of the human telomeric DNA under molecular

crowding conditions has also been reported: in the presence of K+, molecular

crowding using ethanol induced a conformational transition of human telomeric

DNA from the antiparallel to the parallel conformation via a mixed conformation

[80]. Such structural conversion of the human telomeric DNA by molecular

Fig. 6 Molecular crowding effects on the conformations of (a)Oxytricha nova telomere DNA and

(b) Tetrahymena and human telomeric DNAs. Molecular crowding induces the parallel-stranded

G-quadruplex (G-wire) conformation of all of the telomeric DNA sequences except for human

telomeric DNA
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crowding was also observed in the absence of a monovalent cation [79] and,

furthermore, was observed for long telomeric sequences containing two

G-quadruplex units [81]. Heddi and Phan used NMR to study how molecular

crowding affects the human telomeric DNAs that had folded into the four different

conformations under dilute conditions in the presence of K+ [82]. The NMR spectra

clearly demonstrated that the four different G-quadruplex conformations were all

converted to the parallel G-quadruplex conformation under molecular crowding

conditions induced by PEG 200 in the presence of K+. Notably, this parallel

conformation was almost identical to the parallel conformation observed by

X-ray crystallography under dilute conditions with K+. Furthermore, the addition

of other the neutral cosolutes PEG 8000, dimethyl sulfoxide, ethanol, and acetoni-

trile also induced a similar conformation as that induced by PEG 200. These NMR

results indicate that molecular crowding simplifies the polymorphic nature of

G-quadruplexes, depending on the nucleotide sequence of the G-quadruplex.

4.2 Molecular Crowding Induced by Different Cosolutes

Although molecular crowding generally favors the parallel conformation of a

G-quadruplex, the above results indicated that the molecular crowding effects on

G-quadruplex conformation are highly dependent, not only on the nucleotide

sequence of the G-quadruplex and the nature of the co-existing cation species but

also on the cosolute species. From this perspective, a vertebrate telomeric DNA

G-quadruplex was studied under molecular crowding conditions within a Xenopus
laevis egg extract as well as in the presence of PEG 200 and Ficoll70 [83]. The

conformation of the vertebrate telomeric DNA in the X. laevis egg extract or in

Ficoll was different from that observed in the presence of PEG. Based on these

results, the authors stated that PEG should not be used to mimic molecular

crowding conditions. However, the usage of PEG to induce molecular crowding

conditions can provide important information for evaluation of quantitative

parameters including thermodynamic parameters of G-quadruplex structure and

the hydration state of G-quadruplexes, as will be discussed below. Moreover, Trent

and coworkers, using acetonitrile as a non-hydrogen-bonding dehydrating agent,

performed CD and NMR studies of the conformation of human telomeric DNA in

K+ and Na+ solutions [85]. They showed that, although the CD spectra obtained

using acetonitrile were similar to those obtained using PEG 400, the NMR spectra

obtained using these reagents were not similar to each other, indicating that

assignment of G-quadruplex conformations based only on CD spectra is not

sufficient. Interestingly, the NMR spectrum obtained under the molecular crowding

condition induced by bovine serum albumin was similar to that obtained under the

dilute condition.
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4.3 Duplex–Quadruplex Competitions

It has been considered that most telomeric DNAs fold into a duplex with

Watson–Crick base pairing (Fig. 7a). However, it remains unclear whether duplex

formation is dominant in the G-rich/C-rich regions since these G-rich and C-rich

regions can individually form quadruplex structures [86]. Thus, molecular

crowding effects on duplex–quadruplex competition are of interest in terms of

predicting the native structure of such regions. It was demonstrated that a duplex

formed with G- and C-rich DNAs under a dilute condition in the presence of Na+

was dissociated upon molecular crowding and that the G- and C-rich DNA

sequences folded into individual quadruplexes (Fig. 7b) [87]. Tan and coworkers

also reported that molecular crowding induced telomere G-quadruplex formation in

a salt-deficient solution and in a K+-containing solution and that it enhanced the

competition between G-quadruplex formation and duplex formation [88, 89].

Kinetic studies of G-quadruplex formation from a duplex with the complementary

sequence showed that the formation rate of a G-quadruplex depends on the PEG and

the K+ concentration [90]. A quantitative analysis showed that, when 30 nmol L�1

of G-rich and C-rich human telomeric DNAs were mixed together in a 100 mM K+

solution, the amount of the G-quadruplex formed was 17.6 and 23.4 nmol L�1 in the

Fig. 7 (a) Schematic illustration of a telomeric region composed of G-rich and C-rich strands. (b)

Structures of the telomeric DNAs under dilute and molecular crowding conditions. Under dilute

and molecular crowding conditions the 1:1 mixture of the G-rich and C-rich strands folds into a

duplex and quadruplexes, respectively
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absence and presence of 10% ethylene glycol, respectively [91]. As shown using

these short oligonucleotides, molecular crowding made it possible for a G-rich

sequence to form a stable G-quadruplex in a long double-stranded DNA [92]. These

results indicate that molecular crowding is essential for G-quadruplex formation in

the G-rich/C-rich double stranded region. In such regions, the polymorphic nature

of the G-quadruplex can be induced by molecular crowding in vivo. These results

also illustrate the difficulty of correctly extrapolating the structures of not only

telomeric DNA sequences but also of many other biomolecules in vivo based on

their structures in vitro. Thus, molecular crowding as well as other cellular envi-

ronmental factors [93–96] play critical roles in the structure of a biomolecule and

analysis of their effects is useful for understanding biomolecular behaviors in vivo

and for efficient drug and ligand targeting by biomolecules.

5 Molecular Crowding Effects on the Thermal Stability

of G-Quadruplexes

As discussed above, molecular crowding stabilizes non-canonical structures of

nucleic acids that involve DNA triplexes, DNA junctions, and RNA tertiary

structures, and strongly stabilizes non-canonical G-quadruplexes. Moreover,

molecular crowding creates and regulates the conformational changes between

different types of G-quadruplexes, and between a G-quadruplex and a duplex. In

this section we will discuss how molecular crowding stabilizes G-quadruplex

structures, resulting in dynamic conformational transitions.

5.1 Thermodynamics of G-Quadruplexes Under Molecular
Crowding Conditions

Table 2 summarizes the thermodynamic parameters of G-quadruplex formations

under dilute and molecular crowding conditions. It is widely accepted that molecu-

lar crowding significantly stabilizes G-quadruplexes. In order to show the

differences in molecular crowding effects on a non-canonical G-quadruplex and

a canonical duplex, the thermodynamic parameters of the intramolecular antiparal-

lel G-quadruplex formed by a thrombin binding aptamer (TBA) and those of an

intramolecular antiparallel hairpin-looped duplex were evaluated under molecular

crowding conditions induced by various neutral cosolutes [84]. It was quantitatively

demonstrated that the antiparallel G-quadruplex is stabilized under molecular

crowding conditions at various concentrations of PEG 200 but that these conditions

destabilize the duplex. The melting temperature (Tm) for 5 mmol L�1 of the antiparal-

lel G-quadruplex increased from 54.1 �C to 58.7 �C as the PEG 200 concentration was

increased from 0 to 40 wt% in a K+-containing solution. In contrast to the
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G-quadruplex, the Tm for 5 mmol L�1 of the duplex in the presence of K+ decreased

from 66.4 �C to 54.3 �C as the PEG 200 concentration was increased from 0 to

40 wt%. When the PEG 200 concentration was increased from 0 to 40 wt%, the

values of DH˚ (enthalpy change), TDS˚ (entropy change), and DG˚25 (free energy

change at 25 �C) of the antiparallel G-quadruplex decreased from �42.0

to �53.0 kcal mol�1, from �38.5 to �47.5 kcal mol�1, and from �3.5

to �5.5 kcal mol�1, respectively. The difference in DG˚25 induced by molecular

crowding was �2.0 kcal mol�1. On the other hand, the values of DH˚, TDS˚, and
DG˚25 for formation of the duplex increased from�81.5 to�75.8 kcal mol�1, from

�71.7 to �68.9 kcal mol�1, and from �9.8 to �6.9 kcal mol�1, respectively, with

the same change in PEG 200 concentration. These changes indicated that promotion

of the G-quadruplex formation by molecular crowding was enhanced by a favorable

enthalpic contribution that exceeded an unfavorable entropic contribution. Con-

versely, the duplex destabilization was due to an unfavorable enthalpic contribution

that exceeded a favorable entropic contribution. Such an enhancement in the

thermodynamic stability of G-quadruplexes by molecular crowding has been

reported for various G-rich nucleotide sequences. In particular, the G-quadruplex

formed by the sequence dG3T3G3TG3T3G3 was stabilized 3.5 kcal mol�1 in DG˚25
by 30% ethylene glycol in a K+ solution, which corresponded to more than two

orders of difference in the equilibrium constant [97]. Stabilization effects were also

reported for the structures formed by the human telomeric DNA [79, 85] and by bcl-
2 DNA [98]. It is noteworthy that the stabilization and destabilization of DNA

structures do not depend on their structure but instead depend on the type of base

pairs that are involved in their structure [99]. In addition, it was recently reported

that the Hoogsteen base pairs in triplex and G-quadruplex DNA structures were

stabilized not only by molecular crowding but also by a model peptide that

mimicked histone H3, which is critical for the formation of a high-order complex

Table 2 G-quadruplex stabilities under molecular crowding conditionsa

Ref. Sequence Cosolute

DTm
(�C)

DDG�b

(kcal mol�1)

DDH�

(kcal mol�1)

TDDS�b

(kcal mol�1)

[84] TBAc 40% PEG 4.6 �2.0 �11 �9

[97] G3T3G3TG3T3G3 30% EGd 12 �3.5 �16 �12

G3T5G3TG3T5G3 15 �2.4 �6.4 �3.8

[79]e (G3T2A)3 G3 0.75 M PEG 200 11 �4.6 +39 +43

0.75 M PEG 400 14 �2.1 +69 +71

[85] AG3(T2AG3)3 50% Acetonitrile 19 �5.9 �6.1 N.D.

[98] bcl-2 DNA 40% PEG 26 �4.5 �12 �7.6

bcl-2 RNA 20 �3.6 �6.6 �3.0
aThe molecular crowding effects are evaluated as the follow: (Parameter under the crowding

condition) � (Parameter under the dilute condition)
bThermodynamic parameters at 25 �C
cTBA indicates thrombin binding aptamer
dEG indicates ethylene glycol
eThe parameters are the difference between 0.75 and 0.1 M cosolute because the experiments were

carried out without cation
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called a nucleosome that involves a DNA strand and histone octamers (Fig. 2)

[100]. Since nucleosomes become further organized to form chromatin inside the

eukaryotic cell nucleus, and since chromatin structure is dynamic and controls gene

expression, the stabilization of G-quadruplexes and triplexes by a histone-

mimicking peptide implies roles for such non-canonical structures in transcription.

The stabilization of G-quadruplexes by molecular crowding supports both the

formation of G-quadruplexes and the biological roles of G-quadruplexes within

living cells.

5.2 Hydration of G-Quadruplexes

Water molecules play critical roles in generating and maintaining the structure,

stability, and function of biomolecules. It is well known that many proteins unfold

in non-aqueous solution and lose their functions in the absence of water.

Nucleotides have a large number of hydration sites. The 11–12 hydration sites of

a nucleotide are occupied by water molecules that directly interact with the

nucleotide and form a primary hydration shell in which 8–9 water molecules per

nucleotide are bound to the primary hydration shell [101]. These water molecules

play fundamental roles in maintaining the structure, stability, and function of

nucleic acids.

The use of the osmotic stress technique that uses an osmolyte as a cosolute

provides information regarding biomolecular interactions with water molecules.

Such analysis has revealed differences in the numbers of water molecules bound,

�Dnw, which are evaluated as follows: –Dnw ¼ nw,folded � nw,unfolded, where nw,
folded and nw,unfolded indicate the numbers of water molecules bound to the folded

and unfolded states, respectively. In general, an osmolyte that induces molecular

crowding lowers the activity of water, aw, and thus decreases the chemical potential

of water. Therefore, cosolutes affect the equilibrium constant of biomolecular

reactions that involve the association or dissociation of water molecules. Indeed,

water molecules participate in most biochemical reactions. The dependency of

water activity on the equilibrium constant K of a biomolecular reaction reflects

the number of water molecules released upon the reaction Dnw as presented by the

equation (∂log K/∂log aW) ¼ �Dnw, if other interactions between the cosolute and
the nucleic acid, and between the cosolute and the water molecule, are negligible

[102]. This technique can be applied to any equilibrium and parameters to evaluate

how many water molecules participate in the reactions.

The osmotic stress method has been applied to the evaluation of the hydration

state of G-quadruplexes. UV melting studies of the TBA in a K+ solution at 0 and

40 wt% PEG 200 showed that molecular crowding with PEG 200 stabilizes the

TBA G-quadruplex structure [84]. Thermodynamic parameters including the equi-

librium constant Kobs can be evaluated based on the melting curves. Plots of ln Kobs

vs. ln aw can be drawn based on osmotic pressure measurements. Both of these Kobs

have a linear relationship with ln aw, and the slope of this line corresponds to the
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number of water molecules released upon structure formation, showing that water

molecules are released upon the formation of G-quadruplexes. In contrast, water

molecules are taken up upon duplex formation. It was quantitatively calculated that

4.5 and 4.0 water molecules per nucleotide were released upon G-quadruplex

formation. Conversely, in solutions of K+ and Na+, 3.4 and 3.5 water molecules

per nucleotide were taken up upon duplex formation.

The numbers of water molecules released upon G-quadruplex formation have

been reported for various sequences (Table 3). Marky and coworkers reported

values of Dnw for DNA aptamers, NHE-III, and a human telomere [103] in a K+

solution. They calculated that 0.1–1.5 water molecules were released per nucleotide

through G-quadruplex folding depending on the nucleotide sequence. It was pro-

posed that these values result from (1) the release of structural water from the

random coil state upon formation of the G-quadruplex, (2) the uptake of

electrostricted water molecules by G-quadruplexes with a higher charge density,

and (3) the release of electrostricted water from K+ upon binding to the

G-quadruplex core (G-quartet). Notably, they further separately evaluated Dnw
for the loop and G-quartet (G-quadruplex core) regions using various substitutions

[104] and reported that Dnw ¼ 13 for the G-quartet and Dnw ¼ �6�þ8 for the

remaining loop region. In addition, by comparison of the Dnw values of not only G-

quadruplexes but also of duplexes and triplexes, it was proposed that the opposing

effects of molecular crowding on canonical structures (duplexes) and on non-

canonical structures (G-quadruplexes and triplexes) were due to different behaviors

of water molecules binding to the DNA strands [99]. Trent and coworkers further

attempted to assess experimentally the role of steric crowding (excluded volume)

Table 3 Hydration of G-quadruplexes and other DNA structures

Ref. Sequence Structure Cation Dnw
a

[84] G2T2G2TGTG2T2G2 Antiparallel (chair) 100 mM K+ 4.5

100 mM Na+ 4.0

28 merb Antiparallel duplex 100 mM K+ �3.4

100 mM Na+ �3.5

[103] G2T2G2TGTG2T2G2 Antiparallel (chair) 100 mM K+ 0.53

G3T2G3TGTG3T2G3 Antiparallel (chair) 1.1

TG4AG3TG4AG3TG4A2G2 Parallel 1.5

AG3T2AG3T2AG3T2AG3 Antiparallel 0.14

[104] G2U2G2UGUG2U2G2 Antiparallel 100 mM K+ 0.6

G2T2G2TTTG2T2G2 1.4

[97] G3T3G3T3G3TG3 Parallel 100 mM K+ 0.27

G3T3G3T5G3TG3 Mixed 100 mM K+ 0.14

[105] A(G3T2A)3G3T2 Mixedc 100 mM K+ 0.17

[98] bcl-2 DNA Paralleld 5 mM K+ 8.5
aThe values of Dnw are per nucleotide. The negative and positive Dnw indicate hydration and

dehydration, respectively, upon the structure formation
bThe sequence is TCTTTCTCTTCTTTTTCGAAGAGAAAGA (underlined is loop region)
cStructure under the dilute condition is the mixed conformation
dStructure under the molecular crowding condition is the parallel conformation

Molecular Crowding and Hydration Regulating of G-Quadruplex Formation 103



and hydration on the structure of a human telomeric G-quadruplex. Using BSA and

acetonitrile to induce molecular crowding conditions, it was shown that the

excluded volume effect on G-quadruplex conformation under molecular crowding

conditions induced by acetonitrile is small and that hydration is the dominant factor

for determination of the conformation and stability of a G-quadruplex [85].

Although the number of water molecules released upon G-quadruplex formation

varied from 0.14 to 8.5 depending on the experimental conditions and procedure

used as well as on the nucleotide sequence and the conformation of the G-

quadruplex (Table 3), the dehydration of the G-quadruplex through structure

formation is clearly observed, and this dehydration should stabilize the G-

quadruplex under cell-mimicking conditions.

6 Conclusions and Perspectives: Making G-Quadruplexes

More Canonical with Molecular Crowding

In the present review we have introduced and discussed how molecular crowding

alters the conformation and thermodynamics of nucleic acids with structures

ranging from a canonical duplex to a non-canonical G-quadruplex. Changes in

nucleic acid structures and their stabilities affect various enzymes including

nucleases, polymerases, telomerases, and helicases [78, 106–110]. Although the

molecular crowding effects on enzyme functions are not yet sufficiently under-

stood, it is now generally accepted that molecular crowding is one of the most

important players in the regulation of various biological processes via stabilization

or destabilization of nucleic acid structures and enhancement or suppression of

nucleic acid functions. In particular, molecular crowding effects on G-quadruplexes

should be taken into account when considering the biological functions of

G-quadruplexes because of the polymorphic nature of their conformation, thermal

stability, and dynamics. In fact, the properties of G-quadruplexes under molecular

crowding conditions critically affect ligand and drug designs. Tan and coworkers

studied molecular crowding effects on the functions of G-quadruplex ligands in

terms of their effects on the affinity of ligand binding to G-quadruplexes and on the

efficiency of these ligands for inhibition of telomerase activity [111]. They found

that, under molecular crowding conditions, the ligands TMPyP4, BMVC, and

Hoechst 33258 became significantly less effective, or lost the ability to stabilize

the G-quadruplex and to inhibit telomerase activity. On the other hand, recent

studies showed that TMpyP4 bound to G-quadruplex structures with higher affinity

than to duplexes [112]. The binding of TMPyP4 to G-quadruplexes of human

and O. nova telomeric DNAs under molecular crowding conditions has also been

reported [113, 114]. Moreover, some G-quadruplex ligands that can bind to

G-quadruplexes with high affinity and specificity under molecular crowding

conditions have been found [115, 116]. It will therefore be necessary to determine

how molecular crowding affects G-quadruplex ligand functions and how we can
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rationally design G-quadruplex ligands so that they function under the conditions

within living cells.

Molecular crowding effects on biomolecules are also important for various

in vitro technologies, including drug delivery systems [117], the dispersion of

carbon nanomaterials [118, 119], nanoparticle assembly [120, 121], response

enhancement of electrochemical DNA sensors [122], DNA strand exchange

[123], and the manipulation of single DNA molecules [124]. These studies clearly

demonstrate that molecular crowding is a useful chemical stimulus for controlling

the properties of nucleic acids toward in vitro applications. Since molecular

crowding destabilizes canonical duplexes but stabilizes non-canonical structures

especially G-quadruplexes, it will be possible to make G-quadruplex more canoni-

cal structure of nucleic acids with molecular crowding both in vivo and in vitro.
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