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MALDI-ToF Mass Spectrometry for Studying

Noncovalent Complexes of Biomolecules

Stefanie M€adler, Elisabetta Boeri Erba, and Renato Zenobi

Abstract Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-

MS) has been demonstrated to be a valuable tool to investigate noncovalent

interactions of biomolecules. The direct detection of noncovalent assemblies is

often more troublesome than with electrospray ionization. Using dedicated sample

preparation techniques and carefully optimized instrumental parameters, a number

of biomolecule assemblies were successfully analyzed. For complexes dissociating

under MALDI conditions, covalent stabilization with chemical cross-linking is a

suitable alternative. Indirect methods allow the detection of noncovalent assemblies

by monitoring the fading of binding partners or altered H/D exchange patterns.
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Abbreviations

ACN Acetonitrile

ADP Adenosine-50-diphosphate
AMNP 2-Amino-4-methyl-5-nitropyridine

AMP Adenosine-50-monophosphate

ANA 2-Aminonicotinic acid

AP Atmospheric pressure

ATP Adenosine-50-triphosphate
ATT 6-Aza-2-thiothymine

CHCA a-Cyano-4-hydroxycinnamic acid

DHAP Dihydroxyacetophenone

DHB Dihydroxybenzoic acid

DNA Deoxyribonucleic acid

ESI Electrospray ionization

FA Ferulic acid

hERa LBD Human estrogen receptor a ligand binding domain

HIV Human immunodeficiency virus

HPA 3-Hydroxypicolinic acid

IR Infrared

iTRAQ Isobaric tag for relative and absolute quantitation

Ka Association constant

Kd Dissociation constant

LILBID Laser induced liquid beam or bead ionization/desorption

MALDI Matrix-assisted laser desorption/ionization

MCP Microchannel plate detector

MS Mass spectrometry

NHS N-Hydroxysuccinimide

PNA p-Nitroaniline
RNA Ribonucleic acid

SA Sinapinic acid

TFA Trifluoroacetic acid

THAP Trihydroxyacetophenone

THF Tetrahydrofuran

ToF Time-of-flight

TrpR Tryptophan repressor

UV Ultraviolet

1 Introduction

Biomolecules that are involved in key cellular processes such as reproduction,

growth, and development can communicate via physical interactions. To achieve

this, biomolecules specifically recognize their interaction partner. They generally
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dock to their partners through short-range biophysical interactions, such as hydro-

gen bonds, van der Waals forces, and hydrophobic interactions. In other words,

intracellular as well as cell–cell communication functions because transient non-

covalent interactions are formed between biomolecules. Many such noncovalent

interactions take place, including protein–protein, protein–ligand, protein–metal

ion, protein–carbohydrate, protein–DNA, DNA–DNA, and DNA/RNA-drug

interactions.

Protein–protein interactions are the kernels for the formation of multiprotein

complexes, which consist of two or more noncovalently bound proteins. Such

multiprotein complexes are often quite large “molecular machines” that perform

an equally complex, specific biological function. For instance, the proteasomes are

protein complexes for molecular degradation of damaged proteins in all eukaryotes

and archaea and in some bacteria [1]. Noncovalent bonds between proteins and

between protein and polysaccharides are involved in the recognition of antigens by

antibodies [2]. Antibodies, gamma globulin proteins that exist in the blood and

other bodily fluids of vertebrates, show a very high binding affinity and specificity

for specific antigens. Interactions between proteins and small ligands such as drugs

or nucleotides (e.g., adenosine-50-triphosphate, ATP) are critical for keeping cells

fully functional. For instance, ATP plays a fundamental role in signal transduction

processes in eukaryotes and many prokaryotes [3]. Proteins can contain one or

several metal ions as cofactor, which are generally crucial for proteins to function

properly. Hemoglobin, myoglobin, and hemerythrin are important examples of

metalloproteins that contain iron and bind oxygen [4]. Noncovalent interactions

between proteins and DNA are of paramount importance for the storage and readout

of genetic information in living organisms. In eukaryotes, segments of DNA double

helix are coiled around a central core formed by eight proteins (histones) to form

the so-called nucleosome [5]. Nucleosomes are defined as the basic unit of DNA

packaging in eukaryotes. Finally, DNA–DNA interactions are omnipresent [6]:

DNA generally forms the well-known DNA double strands that are held tightly

together by hydrogen bonds.

A large variety of analytical techniques such as nuclear magnetic resonance,

X-ray crystallography, ultracentrifugation, and spectroscopic techniques (fluores-

cence, circular dichroism, light scattering, or surface plasmon resonance) have been

developed to study such interactions (see, for example [7]). Recently, mass spec-

trometry (MS) has emerged as a powerful tool to investigate noncovalently bound

complexes and presents advantages compared to other techniques [8]. Using MS,

the molecular weight of intact noncovalent complexes, their stoichiometry, and

interactions between subunits can be established. Analysis of biomolecules bound

by noncovalent interactions using MS requires only small amounts of sample (on

the order of femto- to picomoles), directly provides stoichiometric information and

can often be carried out more easily than analyses by other techniques.

Mass spectrometric analysis of noncovalently bound complexes requires a

suitable soft ionization method. The two main methods in use are electrospray

ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). MALDI

and ESI allow, under appropriate conditions, the preservation of noncovalently
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bound complexes in the gas phase (for reviews see [9–14]). ESI-MS is often

considered to be the preferred method, although the results are affected by the

nature of the intermolecular interaction, by the composition, ionic strength, and pH

of the buffer in which the protein complexes are dissolved, and by the voltages and

the pressures in the mass spectrometer. However, MALDI-MS is an attractive

alternative to ESI-MS because it can overcome some of the difficulties of ESI-

MS. Foremost, the mass spectra acquired by MALDI-MS are simpler to interpret

than those acquired by ESI-MS due to the predominance of singly charged species.

Furthermore, MALDI ionization is more tolerant to the presence of detergents and

salts than ESI ionization. To date, ESI analyses are mainly carried out using volatile

buffers such as ammonium acetate or ammonium carbonate.

In the current review we illustrate and selectively discuss the major advances in

the application of MALDI-MS to study noncovalent complexes. First we describe

the challenges in the analysis of noncovalent complexes (Sect. 2). Then we distin-

guish between two different approaches to analyze noncovalent assemblies: direct

methods that allow a direct detection of the noncovalent assembly (Sect. 3) and

indirect methods in which the presence of the complex is deduced indirectly,

e.g., by the intensity decrease of an interacting partner (Sect. 4). The last section

encompasses quantitative strategies to characterize noncovalent interactions

(Sect. 5).

2 Challenges for the Detection of Noncovalent Interactions

Detection of noncovalent complexes by MALDI-MS generally involves the co-

crystallization of the analyte with a dedicated matrix typically on a stainless steel

plate, ionization and desorption of the crystals with a pulsed laser beam, accelera-

tion of ions with an electrical field, their mass analysis, often using time-of-flight

(TOF) instruments, and ion detection. This process requires properly adapted

instrumental conditions and sample preparation protocols and, for a number of

reasons, is not always straightforward.

The most obvious hurdle is that many MALDI matrices present an unnatural,

acidic environment, and that they are often used in combination with organic

solvents. This environment tends to denature proteins and is certainly not conducive

to maintaining noncovalent interactions during sample preparation. Some remedies

for preserving noncovalent interactions were proposed. For example, it is possible

to carry out the co-crystallization of the sample with the matrix very rapidly, such

that there may be insufficient time for complex dissociation. Aqueous solutions can

be utilized. The most successful, however, is the use of special, nonacidic matrices

for MALDI of weakly bound complexes. The crystalline environment of the matrix

itself may cause disruption of complexes. Special sample preparation methods for

MALDI-MS of noncovalent complexes will be discussed in detail in Sect. 3.2. It

was observed that MALDI mass spectra obtained from a fresh area of the sample by

a single laser shot are much more successful for generating intact complex peaks.
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This is the so-called “first shot phenomenon” [15] and it is not general, but sample-,

preparation-, and matrix-dependent. This will be discussed in detail in Sect. 3.1.3.

Another difficulty in the analysis of noncovalent assemblies is that large,

multiprotein complexes generally require high laser pulse energies to be liberated

from the condensed phase for the creation of detectable ions. At some point on the

molecular weight scale, the required laser pulse energy may be so high that

dissociation of the complex is favored over desorption/ablation. In order to stabilize

high molecular weight noncovalent assemblies against dissociation, one often

resorts to a “trick,” chemical crosslinking [16]. Chemical crosslinking will be

discussed more extensively in Sect. 3.3.

A third problem is that MALDI produces predominantly singly charged ions,

and complexes of very high m/z (over 50,000–100,000 Da) are quite difficult to

detect using TOF instruments. The most successful approach to address this

problem has been the development of special high-mass detectors, notably cryo-

genic detectors [17–19] and ion-to-ion conversion dynode detectors [20, 21]. Using

these technologies, it is now possible to measure in the hundreds of kDa to MDa

range on the m/z scale. For details, see Sect. 3.1.4.
Generally, however, commercial TOF instruments are not equipped with these

special detectors, chemical cross-linking is not widely used, and the temptation has

been to work at high sample concentration to increase the chances to observe high-

mass complexes by MALDI-MS. However, this leads to another problem, namely

unwanted clustering in the expanding MALDI plume. The distinction between a

specifically formed noncovalent complex and a nonspecific cluster can become

difficult. For example, Chan et al. [22] observed clusters of up to 15-mers of

chicken egg white lysozyme when working with a 126-pmol MALDI sample and

a liquid matrix, 3-nitrobenzyl alcohol. There are several other examples of cluster-

ing in the literature, e.g., clusters between arginine-lysine/oligodeoxyribonu-

cleotide or protein and oligothymidylic acid formed, for instance, by multiple

ion-pair interactions [23, 24]. Usually it is impossible to distinguish specifically

bound complexes from non-specific complexes in such spectra. Of course, there are

also clusters between analyte and matrix, which, given the limited resolution at

elevated mass, generally leads to some undesired peak broadening. Occasionally,

however, one observes a specific complex peak “sticking out” of an otherwise

exponentially decaying nonspecific cluster distribution. This was, for example, the

case for avidin [25], where the specific tetramer peak at �63 kDa was clearly more

intense than peaks of the dimer, trimer, pentamer, hexamer, etc. in the spectrum,

which were all present due to nonspecific clustering in the plume.

An open question is whether the gas-phase structure of a biomolecule complex is

identical to the structure in solution. This may depend on whether the complex is

transferred into the gas phase by MALDI (which is somewhat less “soft”) or by a

very soft “native” ESI method [11, 26]. There are some indirect hints, for example,

the charge state distribution in ESI mass spectra or the collision cross section as

measured by ion mobility spectroscopy that the gas-phase conformation of such

complexes is indeed very close to that in solution phase, but a rigorous proof is still

lacking [27].
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In conclusion, finding the appropriate strategies for preserving and detecting

noncovalent interactions, the distinction between specific and nonspecific com-

plexes, and the resemblance of gas-phase structure to the solution-phase struc-

ture are the main challenges during the analysis of noncovalent complexes by

MALDI-MS.

3 Approaches for Direct Detection of Specific Complexes

by MALDI-MS

The direct detection of noncovalent biomolecular complexes with MALDI-MS was

accomplished in the early days after the development of this soft ionization

technique. Intact molecular ions of streptavidin [28], glucose isomerase [29], and

porin [30] forming quaternary structures with identical subunits could be observed

using the water soluble matrix nicotinic acid and minimizing the amount of organic

solvents. However, nicotinic acid suffers from several disadvantages, such as low

salt tolerance, extensive matrix adduct formation, and lack of compatibility with

widespread lasers such as nitrogen lasers or frequency-tripled Nd:YAG lasers with

emissions at 337 nm or 355 nm, respectively. Experiments with more typical

MALDI matrices (e.g., sinapinic acid) often yielded only signals of subunits rather

than of the complex ions. Therefore, dedicated sample procedures were developed

to preserve noncovalent biomolecular complexes, often largely dependent on the

analyte itself. Thus, several experimental approaches should be tested for each

analyte.

Below we describe the instrumental features that should be chosen to detect

noncovalent complexes successfully (e.g., source pressure and laser energy). We

also discuss how the sample should be prepared prior to the MALDI-MS analysis.

Finally, we illustrate the achievements of chemical crosslinking.

3.1 Instrumental Parameters

3.1.1 Laser Pulse Energy and Wavelength

The laser pulse energy strongly influences the presence of the specific intact

assembly [31]. In most cases, laser pulse energy values just above the detection

threshold value are recommended to maintain reasonable relative intensities of the

complex and to minimize the amount of nonspecific clusters formed in the gas-

phase (Fig. 1) [32–34].

For the detection of intact double-stranded DNA, desorption with infrared (IR)

and ultraviolet (UV) lasers was compared [33]. The IR laser in combination with

glycerol/ammonium acetate as matrix was favored for higher numbers of base pairs
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and less fragmentation was observed compared to 6-aza-2-thiothymine (ATT)

matrix in the UV range. However, with DNA being smaller than 70 mers, only

the UV laser allowed the preservation of the intact assembly.

In contrast, Zehl and Allmaier observed a minor importance of the type of

extraction (delayed or continuous), the choice of the acceleration voltage, and the

use of reflectron mode concerning the relative intensity of the intact quaternary

structure and nonspecific cluster ions, when studying tetrameric avidin [31].

3.1.2 Source Pressure

Few studies presented the utility of ionization at atmospheric pressure (AP). Due to

collisions with ambient gases after ionization, AP-MALDI produces ions with

lower internal energy than MALDI at ultrahigh vacuum. Thus, weak noncovalent

interactions experience less fragmentation. AP-MALDI was successfully used

for sugar–sugar [35] and sugar–peptide complexes [36] by IR-AP-MALDI or

peptide–peptide complexes by UV-AP-MALDI [37].

Fig. 1 MALDI-TOF mass spectrum of whole human blood diluted 1:500 in 20 mM ammonium

acetate (a). In the spectrum the intact hemoglobin a2b2, the hemoglobin a- and b-chains and

human serum albumin (HSA) are present. The peaks of the heterodimeric subassembly (b) and the

intact heterotetrameric assembly (d) are shown in detail. The corresponding calculated spectra are

given (c, e). a indicates the hemoglobin a-chain, b the hemoglobin b-chain and H the heme b

group. A saturated 2,6-dihydroxyacetophenone solution in acetonitrile/20 mM ammonium acetate

1:3 (v/v) was used as matrix. Laser energy values just above the threshold were applied.

(Reproduced with permission from [34]. # (2004) John Wiley & Sons, Ltd)
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3.1.3 The First Shot Phenomenon

In many cases the detection of intact noncovalent assemblies was only possible for

the first or the first few laser shots on a non-irradiated sample spot [15, 38–44].

Successive laser shots at the same position mainly yielded monomeric ions (Fig. 2).

This observation is generally described as “the first shot phenomenon” and was first

investigated by Rosinke et al. for the homotrimeric OmpF porin protein [15]. Cohen

et al. suggested segregation or precipitation of the quaternary complex at the crystal

surface or dissociation of complexes around the ablation crater induced by laser

irradiation [38]. Neither the macroscopic crystal structure, nor the type of substrate,

nor the pH stability range of the protein samples had any influence. Detailed

investigations of fluorescent or fluorescently labeled protein complexes with con-

focal laser scanning microscopy measurements confirmed the original assumption

of Cohen et al. [38] that size segregation during crystal growth and dissociation of

protein complexes in the crystal interior are responsible for the occurrence of the

phenomenon [39, 40]. The first shot phenomenon is not generally observed during

analysis of noncovalent interactions. Others report the lack of a clear-cut first shot

phenomenon for certain analyte-matrix combinations [31, 45]. The extension to

types of biomolecular interactions other than protein–protein assemblies has only

been reported so far for adenylate kinase with the nucleotides adenosine-50-
monophosphate (AMP), adenosine-50-diphosphate (ADP), and ATP [44].

Fig. 2 MALDI mass spectra showing first and subsequent shot data of tetrameric streptavidin.

Sinapinic acid was dissolved in triethylammonium bicarbonate at pH 8.5. Sample spots were

prepared with a dried droplet preparation using a 1,000:1 matrix-to-analyte ratio. All spectra are

normalized to the base peak. (Reproduced with permission from [40].# (2007) The Royal Society

of Chemistry)
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3.1.4 High-Mass Detectors

The conventionally used microchannel plate detectors (MCP) suffer from low

detection efficiency of high-mass ions due to their low velocity when impinging

on the detector surface [46]. Additionally, detector saturation becomes a problem

when low-mass ions are present. Ions of lower molecular weight arrive first at the

detector. Since the recovery times of detector channels are typically on the order of

microseconds [47], the detection sensitivity for high-mass ions with flight times on

the order of several hundred microseconds is significantly lower.

Using special high mass detectors, it is possible to measure in the hundreds of

kDa to MDa range on the m/z scale. For so-called superconducting tunnel junction

cryodetectors, the impinging analyte ions cause a break-up of Cooper electron pairs

under superconducting temperatures. The resulting free electrons can tunnel

through a thin oxide layer and thus be detected as excess current [19]. Using this

principle, the ion detection is mass-independent and detector saturation effects are

avoided due to the fast refresh time of few microseconds. Cryogenic detectors

allowed the detection of von Willebrand factor [17] and large molecules such as

dendrimers [48]. In ion-to-ion conversion detectors, the analyte ions are converted

into secondary ions on a conversion dynode, reaccelerated, and detected with a

subsequent secondary electron multiplier [20]. Examples of high-mass MALDI

mass spectra with an ion-to-ion conversion detector include the analysis of anti-

bodies [49], PEGylated proteins and glycoproteins [50], and direct profiling and

imaging of proteins on tissue [51]. The given examples, however, do not represent

noncovalent complexes.

3.1.5 LILBID-MS

Promising results in the analysis of noncovalent interactions were obtained by an

alternative ionization technique called laser induced liquid beam ionization/desorp-

tion (LILBID) [52]. Instead of a crystallized matrix-analyte mixture, Brutschy et al.
used a free liquid beam consisting of a solvent as laser target. After seeding the

beam with sample and injecting it into vacuum, partially solvated ions are desorbed

by exciting a vibration of the solvent with pulsed infrared laser radiation and mass

analyzed with a reflectron TOF tube. The use of an aqueous buffer as liquid beam

solvent allowed the conservation of protein–protein interactions, such as hemo-

globin [53], ribonuclease S, or calcium-dependent calmodulin/melittin complexes

[54]. Shifting the temperature or pH value of the buffer solution to non-native

solution-phase conditions induced dissociation into subunits, thus indicating spe-

cific complex detection. More recently, the miniaturization of the beam to micro

droplets provided higher sensitivity and less sample consumption, extending the

application range to more delicate biomolecules of low availability [55]. This

variant of LILBID-MS is called laser-induced liquid bead ion desorption. Ranging

from DNA duplexes to DNA/RNA-ligand complexes, LILBID-MS showed high

MALDI-ToF Mass Spectrometry for Studying Noncovalent Complexes 9



potential for the analysis of large macromolecular complexes of nucleic acids in the

megadalton mass range [56]. In the case of the human immunodeficiency virus

(HIV) Tat:TAR transactivation complex, a quantitative evaluation of the spectra

allowed one to draw conclusions on binding specificity, on affinities of different

ligands, and on efficiencies of potential inhibitors and the determination of apparent

IC50 and Kd values [57].

Intact membrane protein complexes could be successfully ionized in the pres-

ence of detergent molecules, which partially remained bound to the macromolecule

[58, 59]. By increasing the laser intensity, the detergent molecules were stripped off

causing disintegration into different oligomeric association states. Being able to

detect intact bacterial ATP synthase with a molecular weight of about 540 kDa

(Fig. 3) [60], the complex subunit stoichiometries were determined and com-

parisons between bacterial and eukaryotic species made [61]. In comparison with

ESI, LILBID-MS provides simpler spectra due to lower charge states and a higher

salt tolerance.
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Fig. 3 LILBID anion spectrum of the intact ATP synthase measured under soft conditions

(a). Using higher laser intensities, all eight subunits are visible (b). Additionally, the a and b
subunits appear multiply charged and fragments consisting of oligomeric c subunits (cn) are visible
as well. Peaks indicated by asterisks could not yet be accounted for and probably represent minor

impurities from the enzyme preparation. (Reproduced with permission from [60]. # (2008)

Elsevier B.V.)
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3.2 Dedicated Sample Preparation Procedures

The noncovalent complex has to survive all target preparation and laser desorption

steps in order to be detected by MALDI-MS. Several influencing factors that

prevent complex disruption could be pointed out. The choice of MALDI matrix

[42, 45], the pH of the solution [62–67], the crystal morphology [15, 42], the sample

spotting technique, the presence of organic solvent [15], the ionic strength [33, 68],

the matrix/analyte ratio [32, 38, 69], and the speed of solvent evaporation [31, 42]

are crucial for preserving the noncovalent interaction. Although numerous

approaches turned out to be successful for certain complexes, no general protocol

applicable for different kinds of biomolecular interactions has been obtained so far.

Note that the binding strength of a noncovalent interaction is not necessarily

a good indicator for whether or not an intact complex will be successfully detected

by MALDI-MS. For example, to the best of the authors’ knowledge, no biotin-

streptavidin complex, which represents one of the strongest known noncovalent

interactions, has ever been measured in its assembled form so far by MALDI-MS.

3.2.1 Choice of MALDI Matrix

MALDI matrices enhance desorption and ionization of the analyte molecules by

absorbing the laser light and are typically small organic molecules that have a high

absorption at the corresponding laser wavelengths. The physicochemical nature of

the MALDI matrix is one of the key factors for detecting intact noncovalent

complexes. Depending on the solvent, the crystal morphology and the analyte

incorporation change. For example, the intact porin trimer was only detectable in

sufficient amounts of ferulic acid (FA) in tetrahydrofuran (THF), but not with the

same matrix dissolved in other solvents, such as acetonitrile (ACN), ACN:0.1%

trifluoroacetic acid (TFA) ¼ 1:2 (v/v) or acetone [15]. Other tested matrices such

as a 2,5-dihydroxybenzoic acid (DHB):2-hydroxy-5-methoxy benzoic acid ¼ 9:1

(v/v) mixture dissolved in acetonitrile:0.1% TFA ¼ 1:2 (v/v) did not provide any

signal of intact trimers. For the ternary system porin/FA/THF, only the finely

structured, microcrystalline areas of the sample spots yielded the trimer. In addition

to FA [15, 38, 42], several other matrices allowed the detection of reasonable

amounts of oligomeric species for certain protein quaternary structures. One of

the more common ones are the less acidic hydroxyacetophenone derivatives such as

isomers of dihydroxyacetophenone (DHAP) [31, 34, 38, 40, 42, 44] or trihydrox-

yacetophenones (THAP) [38], 3-hydroxypicolinic acid (HPA) [45], and ATT

[39, 43, 69] dissolved in various solvent mixtures, preferably aqueous buffers

containing ammonium salts. The latter also represents a favored matrix for biomo-

lecular interactions of low-molecular weight complexes, such as those involving

oligonucleotides [33, 41, 70–77], peptide–peptide [37, 67, 78–81], peptide-amino

acid [82], or peptide–metal ion complexes [64, 66]. Additionally, other matrices

have been used: p-nitroaniline (PNA) [64, 83–87] and 2-amino-4-methyl-5-

MALDI-ToF Mass Spectrometry for Studying Noncovalent Complexes 11



nitropyridine (AMNP) [65, 88] for the analysis of peptide–metal ion/ligand

complexes, HPA for double-stranded DNA [89], and DHAP to preserve DNA-

peptide interactions [68]. In a few cases, highly acidic matrices such as sinapinic

acid (SA) [25, 32, 40, 62, 63, 90, 91] or a-cyano-4-hydroxycinnamic acid (CHCA)

[92] showed promising results.

3.2.2 pH Value of the Matrix Solution

One would expect that acid-sensitive complexes tend to dissociate at low pH values

when acidic matrices are used. Thus, raising the pH of the matrix solution to

physiological values can facilitate the observation of oligomeric species [62, 69].

In the case of several enzyme-substrate complexes,Woods et al. tested SA as a matrix

dissolved in ethanol:1 M ammonium citrate ¼ 1:1 (v/v) or ethanol:water ¼ 1:1 (v/v,

pH < 2). Ions for the enzyme-substrate complex were only observed under the first

conditions [62]. However, the stability gain of noncovalent complexes with

increased pH values is often counterbalanced by a loss in ionization efficiency [93].

As demonstrated by Jespersen et al., the physicochemical properties of the

matrix seem to have stronger influence than the acidity or basicity of the matrix

itself [45]. Investigating glutathione-S-transferase and streptavidin with different

acidic or basic matrices in a pH range of 2–7.1, species related to the protein

quaternary structures were only detected using HPA (pH 3.8) dissolved in water,

but not with DHB, CHCA, or basic matrices such as 2-aminonicotinic acid (ANA),

PNA, and AMNP (Fig. 4). Matrices were dissolved in water except for CHCA,

which was dissolved in ACN:water ¼ 30:70.

In addition to ammonium salts, additives such as methylene blue, peptides, or

spermine can stabilize a noncovalent assembly during crystal growth and/or desorp-

tion/ionization and thus facilitate its detection by MALDI-MS (Fig. 5) [76].

3.2.3 Sample Preparation

Different sample preparations have been used ranging from variations of the dried-

droplet method [15, 25, 31–34, 38–40, 42–45, 62–70, 72–84, 87–89, 91] to layer

techniques [37, 40–42, 92] such as thin layer or sandwich preparations. For the

dried droplet method [94], the analyte is directly mixed with the matrix solution

either on the MALDI plate or in an Eppendorf tube and dried under room tempera-

ture. The thin layer technique [95] utilizes a thin layer substrate of matrix crystals as

a seeding ground for subsequent cocrystallization of the analyte solution. For the

sandwich method [95], a second layer of matrix is added on top of the sample

prepared by the thin layer technique. However, the dried-droplet method is most

widely applied. The sandwich method is compatible with the matrixes CHCA and

SA and has slightly higher tolerance to sample impurities. Fast sample spot drying

under reduced pressure turned out to be more successful than slow drying [31, 42].

12 S. M€adler et al.



3.2.4 Sample Concentration

The detection of intact assemblies is often only possible for a limited concentration

range. On one hand, a sufficient amount of matrix is required for isolating sample

molecules from each other; on the other, the sample concentration should not be

too low compared to the matrix concentration. Cohen et al. found for the homo-

meric protein complex streptavidin a valid range between 0.05 and 10 g/L

(3.8–770 pmol/mL) and for alcohol dehydrogenase between 0.1 and 0.5 g/L
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Fig. 4 Positive ion mode MALDI mass spectra of recombinant streptavidin obtained at different

pH values with three different matrix compounds: (a) DHB in water (pH 2), (b) HPA in water

(pH 3.8), and (c) AMNP in water (pH 7.1). Peaks corresponding to the dissociated and undissoci-

ated subunits are indicated as “S” and “M,” respectively. (Reproduced with permission from [45].

# (1998) John Wiley & Sons, Ltd)
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(2.7–13.5 pmol/mL) [38]. For aerolysin, Moniatte et al. could measure the

heptameric complex only in a concentration window of 0.5–1.5 pmol/mL [32]. In

order to avoid suppression of analyte signals, matrix/analyte ratios as well as

mixing ratios between different analytes in heteromeric complexes have to be

carefully optimized. Testing several analyte/matrix ratios by preparing analyte

solutions ranging from 0.1 to 10 pmol/mL was recommended.

3.2.5 Successful Examples

The direct detection of specific noncovalent complexes byMALDI-MS was accom-

plished for homomeric or heteromeric protein–protein [15, 25, 31, 32, 34, 38–45,

63, 69, 90, 91] (Fig. 1), protein–peptide [62, 69, 92], peptide–peptide [37, 67,

78–81], protein/peptide–ligand [44, 84–87], protein/peptide–metal ion complexes

[62, 64–66, 83, 88], peptide-amino acid [82], oligonucleotide double strands [33,

68, 70, 74–76, 89] (Fig. 5), and protein/peptide/guanidinium derivatives-oligonu-

cleotide interactions [41, 65, 68, 71–73, 77].

3.3 Chemical Crosslinking

Chemical crosslinking has been extensively used in the past to determine the stoichi-

ometry of noncovalent complexes in combination with gel electrophoresis [96].

Fig. 5 Negative ion mode MALDI mass spectrum of a duplex oligonucleotide with the peptide

b-melanocyte stimulating hormone as additive. The peptide:duplex ratio was 1:250. The mixture

of 6-aza-2-thiothymine and spermine (sp) was used as matrix. (Reproduced with permission from

[76]. # (2002) Elsevier B.V.)
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For this, biomolecule assemblies were covalently stabilized with homobifunctional

reagents such as imidoesters. Starting in the early 1990s, chemical crosslinking has

been successfully applied in order to prevent complex dissociation of protein quater-

nary structures during MALDI-MS analysis. In the first experiments, glutaraldehyde

was selected as crosslinker [16]. Due to its polymerization reaction in solution,

several lengths of bifunctional crosslinkers are generated that can react with

e-amino groups of lysines and a-amino groups of the N-termini. Thus, a variety of

distances between the subunits can be bridged. Using this approach, Caprioli and

Farmer detected dimeric and tetrameric complexes such as avidin and yeast alcohol

dehydrogenase (Fig. 6) [16]. Only a few studies demonstrated the feasibility of this

approach [97, 98]. One reason may be the high amount of generated polymerization

products that deteriorates the spectra quality significantly.

Since the early days, numerous hetero- or homobifunctional linkers have been

developed and applied to study biomolecular noncovalent interactions. In order to

identify interaction partners and to determine the stoichiometry of complexes,

nonselective photoreagents, as well as site-specific linkers reacting with a limited

number of amino acid side chains, were examined. The underlying chemistry and

applied functional groups are summarized in the literature [99, 100] and commer-

cial product catalogs [101]. Among the photoreactive linkers, azido groups

are particularly noteworthy. If higher selectivity is needed, N-hydroxy-succinimide

(NHS) esters are often chosen as reactive end groups. The main targets of these
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esters are primary or secondary amines. However, side reactions with hydroxyl

groups of serine, threonine and tyrosine have been reported as well [102, 103].

As an example, a heterobifunctional linker bearing both reactive groups, i.e.,

sulfosuccinimido-2-(7-azido-4-methylcoumarin-3-acetamido)ethyl-1,30dithiopro-
pionate, was used to confirm the 1:1 stoichiometry of the gp120 (HIV-1 virus)

interaction with the CD4 receptor of T lymphocytes [104].

In combination with previously described high-mass detectors, the analysis of

biomolecular complexes up to several MDa became possible. The application of

high-mass MALDI and crosslinking for epitope mapping, kinetic studies, sandwich

assays for immunocomplexes [49, 105], monitoring of ligand regulation mech-

anisms (Fig. 7) [106], screening of protease inhibitors [107], and determining

association states [108] was demonstrated using NHS esters as crosslinkers.

In comparison with ESI analysis of noncovalent interactions under native

conditions or direct MALDI-MS analysis, chemical crosslinking has a remarkable

advantage. Since the stabilization of the complex is performed under solution

conditions, gas-phase labile complexes (e.g., bound by the hydrophobic effect)

are easily preserved during the analysis [109].

Fig. 7 High-mass MALDI-MS showing a ligand-dependent dimerization in solution for the

mutant human estrogen receptor a ligand binding domain (hERa LBD) after chemical crosslinking

with NHS esters. MALDI mass spectrum of crosslinked hERa LBD without ligand (a) and after

adding the ligand E2 (b). After incubation with E2 and crosslinking, the MALDI mass spectrum

clearly shows an increase of the homodimer, which is labeled [2M + H]+. After incubation with

different test compounds and crosslinking (c), only the ligands SIM and NIT did not increase the

homodimer abundance relative to the aporeceptor significantly. The asterisks indicate sample

impurities. (Reproduced with permission from [106]. # (2008) American Chemical Society)
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Combining chemical crosslinking with electrophoretic separation, digestion and

subsequent MALDI-MS of the excised bands to perform peptide mapping allowed

the identification of several interacting partners [110, 111]. For example,

experiments in living cells with paraformaldehyde revealed interactions of adhesin

proteins with other membrane proteins [110]. Applying a heterobifunctional

crosslinker comprising azido and an NHS ester functionalities allowed the identifi-

cation of bacterial surface adhesins with a carbohydrate-containing crosslinking

probe [111]. Potential candidates of triadic proteins interacting with RyR1 or

TRPC3 in skeletal muscles were established using a maleimide crosslinker [112].

The crosslinker arm can also act as a ruler to map spatial proximities of amino

acids in proteins and protein complexes [113]. Typical “bottom–up” protocols for

the analysis of protein assemblies include the crosslinking reaction of the

interacting proteins, purification of reaction products, and their digestion. The

generated peptides are chromatographically separated and subjected to MS and

tandem MS analysis. The data analysis using dedicated software [114, 115] allows

the identification of intra-molecularly or inter-molecularly crosslinked peptides and

modified amino acids. The derived distance constraints yield low-resolution tertiary

structures of proteins. Using an NHS ester crosslinking agent and MALDI-post

source decay analysis, the bovine basic fibroblast growth factor FGF-2 was

identified as a member of the b-trefoil family [113]. The same methodology showed

promising results for mapping binding interfaces of noncovalent protein–protein

interactions [116–122]. Utilizing different crosslinkers, several subunits of the ATP

synthase from Saccharomyces cerevisiae were investigated and their role in this

yeast machinery was deduced [117–119]. With the same protocol, topology and

spatial organization models of several multiprotein complexes were proposed

[120]. Since the number of unmodified peptides or fragments by far exceeds the

number of modified ones, data analysis is often the crucial step in this method. With

the use of cleavable crosslinkers, affinity tags or isotopic labeling, improvements in

the detection of intra-molecularly or inter-molecularly crosslinked species were

obtained [123–135]. Recently, several crosslinkers have been optimized for

MALDI-MS conditions. On one hand, this optimization was accomplished by

inserting photolabile groups that give characteristic fragmentation patterns induced

by the UV laser pulse in the mass spectrometer [136]. On the other hand, specific

signal enhancement of peptides modified with crosslinker molecules was accom-

plished by incorporating a CHCA moiety in the linker [137].

In order to study protein-oligonucleotide binding interfaces, several crosslinking

approaches were tested in combination with MALDI-MS. Most of them incorporate

photochemical reactions, which are reviewed in [138]. A strategy avoids the use of

any crosslinker molecules and relies on the natural UV reactivity of the

nucleobases. Upon UV radiation of protein-oligonucleotide complexes, covalent

linkages between the interaction partners are formed at the binding interface

(Fig. 8). The resulting species can be analyzed directly by MALDI-MS to find

interaction partners [139] or can be subjected to digestion procedures and MS

[140–143] or tandem MS [144, 145] analysis to identify binding sites. Since direct

UV-induced crosslinking often suffers from low yields of crosslinked products,
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dedicated enrichment protocols are preferable [146–148]. Alternatively, the

oligonucleotides are chemically modified with reactive groups forming either

specific [149, 150] or nonspecific photo-induced [139, 151] covalent linkages to

the protein. Using this approach, amino acids in close proximity to these

modifications in RNA/DNA-binding domains of proteins could be identified. The

main challenges for the analysis of protein-oligonucleotide complexes are con-

flicting conditions for an optimum ionization of the interacting molecules. Thus,

sample preparation conditions should be carefully chosen [140, 152].

In recent studies, MALDI-MS has been mainly used as a fast and sensitive tool

to monitor the crosslinking step and to optimize its reaction conditions prior to ESI

analysis [132, 153–155] or as a supportive tool to complement ESI data [156].

In order to avoid the detection of nonspecific assemblies, the concentration

levels of biomolecules should be kept as low as possible. Control experiments

using the same crosslinking conditions, but nonbinding biomolecules, are strongly

Fig. 8 Complementary strategy for identification of protein–RNA crosslinking sites in native

ribonucleoprotein (RNP) particles as outlined for UV-irradiated U1 small nuclear (sn)RNPs.

Arrows in the U1 snRNA secondary structure indicate the crosslinking sites on the RNA as

identified by a immunoprecipitation/primer-extension method. Arrows at the 3D protein models

of the U1 70K protein and of the heptameric Sm protein ring show the corresponding crosslinking

sites within the protein as identified by Edman degradation combined with MALDI-MS.

(Reproduced with permission from [143]. # (2002) Elsevier Science (USA))
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recommended. A study focusing on the application range of chemical crosslinking

has been published recently. M€adler et al. pointed out that complexes with lower

affinity than a Kd of 25 mM cannot be analyzed using standard protocols [157].

4 Indirect Methods to Detect Specific Complexes

by MALDI-MS

In contrast to the described direct methodologies, alternative approaches have been

developed to detect the presence of noncovalent complexes by the appearance or

fading of certain binding partners in the mass spectra. In this review, these methods

will be referred as “indirect methods.”

4.1 Intensity Fading

In the so-called intensity fading approach, the formation of a complex between a

target biomolecule and its ligands is monitored in the presence and absence of the

biomolecule. When the target biomolecule is present, the relative intensity of a

ligand decreases (i.e., fades), if compared to control mixtures where no target

molecule is present.

In early immunoassay studies, proteolysis products of antigens after the reaction

with a monoclonal antibody were analyzed by MALDI-MS and their relative

intensities were compared to reaction mixtures where no antibody was present

[158–160]. An intensity decrease for certain peptides revealed their participation

in the epitope. This approach was also used for high-throughput screening [161,

162] and in combination with dedicated software [163].

More recently, the intensity fading of intact binding partners has been moni-

tored. A non-binding molecule, with similar mass and ion intensity as the

interacting partner, was used as internal control. Utilizing this strategy, complexes

between proteases and their corresponding inhibitors, as well as protein-nucleic

acid complexes, were successfully analyzed [164, 165]. In order to preserve the

noncovalent interaction during crystallization, DHAP in ammonium buffers with

low acetonitrile content was applied as matrix. Immobilizing the protein target on

microbeads and incorporating prefractionation steps dramatically increased the

efficiency of this approach [166]. For instance, 16 protein inhibitors of serine

proteases among a complexity of nearly 2,000 molecular species were identified

in the saliva of the leech Hirudo medicinalis. The validity of the intensity fading

methodology was confirmed with high-mass MALDI measurements after chemical

crosslinking [107]. However, the mechanism is still not fully understood. A detailed

study on experimental conditions, which are necessary to observe intensity fading,

revealed the necessity of sub-mM concentrations of the binding partners and the

presence of several non-binding compounds [167].
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Attempts to use the “intensity fading” strategy to gain quantitative information

on a noncovalent complex were published for the interaction between the protease

papain and its inhibitor cystatin [168]. In this study, the number of binding sites of

cystatin for papain was determined by a modified Scatchard analysis. In order to

draw the Scatchard plot, the relative intensity decrease of free cystatin was moni-

tored. However, in the age of computer-based curve fitting, the linearization

provided by the Scatchard plot is not really necessary, and it is somewhat problem-

atic because the ordinate and abscissa are not independent. Today, nonlinear least

squares fits can easily be used instead of linearization. More recent approaches

demonstrated the feasibility of the “intensity fading” approach for studying

metallopeptidase-inhibitor complexes [169], calcium-ion dependent calmodulin-

peptide interactions (Fig. 9) [170], complexes between proteases and inhibitors

from the plant Capsicum annuum [171], small molecules inhibiting the formation of

a dimeric kinase [172], and RNA-polypeptide interactions [173].

4.2 Identification of Affinity-Separated Interaction Partners

Since its early days, MALDI-MS has served as a tool for the study of

immunocomplexes. Instead of detecting the intact immunocomplexes, an indirect

approach based on affinity-capture of the antigen on immobilized antibodies has

often been applied [174]. In order to identify the antibody recognition site of the

antigen, a proteolytic protection assay was used [175–178]. The antigen was

captured by antibodies immobilized on beads, subsequently digested, and the

Fig. 9 MALDI mass spectra of mixtures of calmodulin-binding peptides melittin (Mel), substance
P (SP), and a nonbinding control (bradykinin, BDK) after the addition of different concentrations

of calcium-saturated calmodulin (a). Plot of the relative intensities (RI) of both melittin and

substance P (corrected with the RI of the control) after the addition of calcium-saturated calmodu-

lin with different concentrations (b). THAP was used as the matrix. (Reprinted with permission

from [170]. # (2009) Elsevier Inc.)
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unbound peptides were washed off. Due to the high stability of the antibody to

proteolysis, the epitope remained noncovalently attached to the antibody and was

directly analyzed on the beads by MALDI-MS. This approach is generally termed

as “epitope excision.” If the antigen is proteolytically cleaved before binding to the

antibody, “epitope extraction” is the term of choice. With the use of magnetic

beads, the separation efficiency from unbound material is increased [179–182].

Competition assays allow the quantitation of binding efficiencies of different

ligands [179, 180]. However, the immobilization step of one partner can alter the

binding affinity due to covalent modifications. Binding the antibody to an

immobilized protein, such as protein G, circumvents this problem [183, 184].

The same approach of noncovalent immobilization of an antibody was applied

for immunoassays performed on self-assembled monolayers on a gold surface

[185]. Using a porous gold layer, MALDI imaging techniques provided high-

throughput and high sensitivity analysis [186]. A less costly alternative to anti-

body immobilization is the use of silica surfaces with covalently bound specific

peptides [187].

MALDI-MS coupled with surface plasmon resonance (SPR) allows the simulta-

neous determination of binding kinetics during affinity separation, as reviewed in

[188] (Fig. 10). In this method, a chip, which is directly analyzed by MS, replaces

the beads [189]. An immobilized compound is used as a hook to fish unknown

ligands from a complex biological sample [190]. MALDI-MS analysis again serves

as a tool to identify the bound ligands and to map the recognition sites of the

immobilized compound [191, 192]. High-throughput measurements can be easily

carried out, when different target molecules are immobilized in distinct areas of the

chip [193]. Moreover, the use of reflectometric interference spectroscopy was

suggested as an alternative technique to SPR to investigate quantitative and quali-

tative binding of mixtures of ligands to target biomolecules [194].

MALDI-MS commonly serves as a tool to identify complex partners in diverse

biological samples after electrophoretic separations [195] or tandem-affinity purifi-

cation [196]. However, co-purified, nonspecific interactors are not easily distin-

guishable from specific ones. Additionally, changes in the complex composition

can occur during sample preparation. In order to overcome these difficulties, a four-

channel iTRAQ (isobaric tag for relative and absolute quantitation) approach

provides in a single liquid chromatography-MALDI-TOF/TOF analysis the identi-

fication of genuine partners of the bait and the detection of variations in complex

composition [197].

4.3 Hydrogen/Deuterium Exchange

MALDI-MS is used to study biomolecular interactions with hydrogen/deuterium

(H/D) exchange strategies, as reviewed in [198]. In brief, deuterium atoms

are integrated in interaction partners of interest by replacing backbone amide

hydrogen atoms. As hydrogen is exchanged for deuterium, the increase in mass is
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monitored by MS. The exchange rates depend on the extent of inter- and intra-

molecular hydrogen bonding and solvent accessibility. Upon binding of an interac-

tion partner, the H/D exchange rate at the binding site is altered. Komives and

coworkers demonstrated the feasibility of MALDI-MS analysis to identify binding

sites on a protein–protein interface. They studied the cyclic-AMP-dependent pro-

tein kinase complex with a kinase inhibitor and ATP [199] and the thrombin-

thrombomodulin fragment complex [200]. Additionally, investigations on epitope

mapping [201], assembly of viral capsids [202], conformational changes induced

by aggregation [203–206], structural changes upon complex association (Fig. 11)

[207–209], and the topology of supramolecular protein complexes [210] were

conducted.

However, MALDI-MS analysis coupled with H/D exchange suffers from several

disadvantages. One major problem is the back-exchange effect occurring during

Fig. 10 Overview of MS coupled with SPR with on-chip incorporated proteolytic digestion. A

receptor is covalently immobilized on the surface of the first flow cell (FC1). A second flow cell

(FC2) is derivatized with a proteolytic enzyme. The analyte (ligand)-containing solution is routed

through FC1 where the component of interest is affinity-captured. Following washing of non-

specifically retained components, the ligand is eluted/routed from FC1 into FC2, where time for

digestion is allowed. MALDI-MS analysis performed on the surface of FC2 yields accurate masses

of the proteolytic peptide fragments that can be used for in-depth protein characterization.

MALDI-MS performed on the surface of FC1 yields the mass of the intact protein. (Reprinted

with permission from [188]. # (2000) WILEY-VCH Verlag GmbH)
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analysis which is more prominent than in ESI experiments, although protocols have

been developed to reduce [211] or to quantify its importance [212]. The application

of collisional-induced dissociation to obtain site-specific information about the

incorporation of deuterium into peptides and proteins is problematic due to “scram-

bling” of the deuterium position [213]. In contrast, in-source decay fragmentation

induced less scrambling [214]. Although the higher salt tolerance and the simplified

spectra are a strong advantage of MALDI and can often lead to abandonment of

chromatographic purification, ESI is still the main ionization technique used for

H/D exchange studies of biomolecular complexes.

Fig. 11 Conformational analysis of g0 peptide (410–427) interactions with thrombin anion

binding exosite II (ABE-II). MALDI mass spectra representing residues 85–94 of ABE-II (m/z
1317.73) after 1 and 10 min of deuteration and subsequent proteolysis: (a, f) undeuterated peak

cluster, (b, g) thrombin spectrum in the absence of ligands, (c, h) inhibited thrombin, (d, i) g0

peptide bound to thrombin, (e, j) g0 peptide bound to inhibited thrombin. This peak cluster contains

the ABE-II residue R93 and experiences a significant degree of protection from deuterium in the

presence of the g0 peptide. Since this protection is maintained over 10 min, the HDX data present

evidence that the g0 peptide is interacting with R93. (Reprinted with permission from [209]. #
(2006) American Chemical Society)
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5 Quantitative Characterization of Biomolecular Interactions

Noncovalently bound complexes are composed of interacting molecules (e.g., A

and B) and it is possible to determine their binding affinities by MALDI-MS. The

propensity of a noncovalently bound complex (e.g., AB) to dissociate into its

components can be quantified by calculating an equilibrium constant named disso-

ciation constant. The dissociation constant is usually indicated by Kd and is the

inverse of the association constant Ka:

Aþ B Ð AB
A½ � B½ �
AB½ � ¼ Kd ¼ 1

Ka

:

The method SUPREX (stability of unpurified proteins from rates of H/D

exchange) was developed by Fitzgerald’s group to investigate the strength of

protein–ligand binding interactions in solution using H/D exchange and MALDI-

MS [215]. The SUPREX protocol for the determination of Kd values includes an

initial H/D exchange by adding a tenfold excess of deuterated exchange buffer to the

target protein, usually at physiological pH. The exchange buffers contain varying

concentrations of a chemical denaturant such as guanidinium chloride and urea. The

denaturant leads to unfolding of the protein and to an enhancement of the H/D

exchange rate, thus increasing the rate of deuterium incorporation into the protein.

At a given exchange time, a small aliquot of the reaction mixture is added to the

matrix (sinapinic acid) solution in a tenfold excess and the sample is subjected to

MALDI analysis. The change in mass relative to the fully protonated sample (Dmass)

in the spectra is plotted as a function of denaturant concentration, and the data is fitted

to a sigmoidal function to obtain a transition mid-point. Solution-phase folding free

energies (DG�f) in the presence and the absence of ligand can be calculated. The

folding free energies DG�f of a protein and a protein–ligand complex are different,

and this difference, DDG�f, can be used to determine the protein–ligand binding

constant. SUPREX works in a high-throughput automated fashion, requires only

minute amounts of sample, and is applicable to purified as well as unpurified

protein–ligand complexes. A prerequisite for SUPREX is that the protein must unfold

in a two-state manner, i.e., only the fully folded and the fully unfolded states of the

protein should be populated at equilibrium, thus posing a limit on its application.

As an example, the ternary protein–DNA complex formed of tryptophan repres-

sor (TrpR), two molecules of L-tryptophan, and a 25-base pair duplex of DNA

containing TrpR’s cognate DNA sequence was analyzed by SUPREX [216]. The Kd

values of the complexes, investigated in this study, were in agreement with previ-

ously established Kd values.

SUPREX was also used to measure quantitatively the stability of unpurified

proteins in complex biological matrices [217]. Experiments of Fitzgerald’s group in

this field led to some excellent studies where SUPREX was applied to measure the

thermodynamic stability of proteins both in vitro and in vivo with good accuracy

and high precision [218, 219].
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Related to SUPREX, Fitzgerald’s group developed a technique called SPROX

(stability of proteins from rates of oxidation) to determine the thermodynamic

stability of proteins and protein–ligand complexes [220]. Proteins are oxidized

with hydrogen peroxide in the presence of increasing concentrations of a denatur-

ant (e.g., guanidine hydrochloride). Using MALDI-MS, the degree of oxidation is

established at each oxidation time as a function of the denaturant concentration.

By correlating denaturant concentration and oxidation rate, a folding free energy

(DGf) and m value (dDGf/d[denaturant]) are measured during protein unfolding.

If DGf and m values of the proteins are measured in the presence and absence of

ligands, it is possible to evaluate protein–ligand affinities (e.g., DDGf and Kd

values). The main advantage of SPROX over SUPREX is the use of irreversible

oxidation. The chemical stability of the oxidized proteins enables the manipula-

tion of the modified proteins after oxidation. As an example, oxidized methionine

amino acids were used to probe the solvent accessibility of these amino acidic

residues as a function of temperature in order to construct thermal denaturation

curves [221].

The Wanner group described a novel MALDI-based binding assay to determine

affinity constants between small ligands and proteins in saturation and competition

experiments, showing an excellent agreement between the Kd values determined by

the two methods. A known ligand of the protein was used as an internal standard to

generate a calibration function. They compared MS binding assays based on

MALDI-MS/MS and those based on LC-ESI-MS/MS quantification. The instru-

ment they used was a MALDI-triple quadrupole with high speed in the analysis of

small molecules, commercialized as “FlashQuant system” [222].

6 Conclusions

In this review, we described the major applications of MALDI-MS to investigate

noncovalent complexes of biomolecules. We highlighted the strengths and the

limitations of the MALDI-based approaches to detect and quantify noncovalent

complexes. We described not only the experimental approaches to detect

complexes directly, but we also explained what the critical instrumental parameters

are, and how intact complexes can be preserved by chemical cross-linking. Finally,

we illustrated the possibility of detecting noncovalent complexes indirectly.

Overall, MALDI-MS represents an excellent method for studying noncovalent

interactions. The substantial advantages of MALDI-MS over other techniques are

sensitivity, speed, a higher salt tolerance, and the possibility to obtain precise

molecular weights and stoichiometric information.
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