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Biology of Fluoro-Organic Compounds

Xiao-Jian Zhang, Ting-Bong Lai, and Richard Yuen-Chong Kong

Abstract Investigations on diverse aspects of fluoro-organic compounds have rap-

idly increased during the past decades. Because natural sources of fluoro-organic

compounds are extremely rare, the industrial synthesis of fluorinated organic

compounds and production of fluorinated natural product derivatives have greatly

expanded in recent years because of their increasing importance in the agrochemical

and pharmaceutical industries. Due to structural complexity or instability, synthetic

modification is often not possible, and various biofluorination strategies have been

developed in recent years for applications in the anti-cancer, anti-viral and anti-

infection fields. Despite the industrial importance of fluorinated compounds, there

have been serious concerns worldwide over the levels and synthetic routes of certain

fluorinated organic compounds, in particular perfluorinated chemicals (PFCs). PFCs

are emerging and recalcitrant pollutants which are widely distributed in the environ-

ment and have been detected in humans and wildlife globally. PFCs have been

demonstrated to be potentially carcinogenic, adversely affect the neuroendocrine

and immune systems, and produce neurotoxicity, heptatotoxicity and endocrine

disrupting effects in vertebrate animals. Here, we provide an overview of recent

advances in our understanding of the biology of various fluoro-organic compounds

and perspectives for new enzymes and metabolic pathways for bioremediation of

these chemicals.
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1 Introduction

1.1 Natural Sources of Fluorinated Compounds

Fluorine exists naturally in the Earth’s crust and is the most abundant halogen and the

13th most abundant element. Compared with other halogens, fluorine shows very low

levels in surface water and exists mainly in an insoluble form (CaF2) in nature, and

thus has very little effects on the environment and biota. More than 4,000 natural

products that contain chlorine, bromine, and even iodine have been reported in living

organism, whereas only about a dozen fluorinated natural products have been isolated

to date [1]. Fluoroacetate was the first natural organofluorinated compound to be

identified in 1943 as a metabolite from Dichapetalum cymosum [2]. The low bio-

availability of natural fluorinated compounds and fluorine’s very low concentration in

surface water may be due to its largely insoluble form (CaF2). The fluoride ion has a

high heat of hydration in aqueous solution, which thus limits its participation in

displacement reactions. Fluorine cannot be transformed into organic substrates by

haloperoxidases (which is a family of peroxidase enzymes that mediate the oxidation

of halides by hydrogen peroxide) [3].

1.2 Biofluorination and Fluorinase

Fluorine substitution is widely used in pharmaceutical and agricultural applications

because of the effects of fluorine on membrane permeability, metabolic stability, and

receptor-binding properties [4, 5]. Because fluorinated products are extremely rare in

nature, a number of methods have been developed for synthesis of fluorinated
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compounds [6, 7]. However, the greatest progress has been in the generation of

nonselective fluorinated products, which often cause toxicity and are difficult to

handle. Selective incorporation of fluorine is challenging; therefore, development

of biologically-based methods for fluorochemical production is needed.

Some enzymatic systems have been reported to utilize fluoride ions. For exam-

ple, pyruvate kinase is known to catalyze the generation of fluorophosphate from

ATP fluoride [8], and more recently, mutant glycosyl transferases were reported to

fluorinate 2,4-dinitrophenyl-activated sugars to form a-fluoroglycosides [9, 10].

However, these reactions are adventitious or the intermediates are unstable. In

2002, the first fluorinase was reported in Streptomyces cattleya (O’Hagan et al.

2002), which uses S-adenosyl-L-methionine (SAM) and a fluoride ion as substrates

to catalyze the formation of 5-fluoro-5-deoxyadenosine (5-FDA) and L-methionine

(L-Met), which is the first step in the biosynthetic pathway of the fluorometabolites,

fluoroacetate and 4-fluorothreonine (Fig. 1; Hagan et al. 2002). As the only native

fluorination enzyme that has been identified so far, fluorinase was used to explore

the syntheses of diverse fluorinated derivatives. For example, an engineered

organofluorine biosynthetic metabolite that is a potent anticancer agent, fluorosali-

nosporamide, was produced by introducing a fluorinase gene (flA) into Salinispora
tropica using recombinant DNA technology [12]. This study showed that selective

fluorination of drugs and drug candidates could be expanded by inserting the flA
gene into a variety of microorganisms to initiate the biosynthesis of novel organo-

fluorine compounds.

In 2009, a chemo-enzymatic approach for selective fluorination was established

whereby fluorine substitutions were used to produce a set of organic molecules

including some prodrugs via a two-step regio- or stereo-selective procedure.

The initial reaction is catalyzed by cytochrome P450 monooxygenases to insert

oxygen selectively into non-reactive C–H bonds with deoxofluorination. The

generated hydroxyl group was substituted by a nucleophilic fluorinating reagent,

leading to selective fluorine substitution [13].
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Fig. 1 The fluorinase enzyme of S. cattleya is the first committed step in the biosynthetic pathway

to produce fluoroacetate and 4-fluorothreonine [11]
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1.3 (Bio) Synthesis and Pharmaceutical Applications
of Fluorinated Compounds

Burgeoning after the 1970s, the industrial synthesis of fluorinated organic

compounds expanded because of their applications in pharmaceutical, agricultural,

and other industrial areas. In medical applications, fluorine substitution often

increases the hydrophobicity, metabolic stability, bioactivity, and bioavailability

of molecules, thus improving their therapeutic indices. Medicinal production has

focused on fluorinated drugs and drug candidates based on natural product analogs.

While fluorinated natural products are very rare, the production of fluorinated

natural product derivatives is increasingly common. Due to structural complexity

or instability, synthetic modification is often not possible, and alternative strategies

have been sought. In the past 20 years, synthetic methodologies in organic fluorine

chemistry have focused on the biosynthesis of fluorinated analogs of natural

products. Precursor-directed biosynthesis and mutasynthesis are two of the main

industrial approaches for biosynthesis of fluorinated natural products. For example,

fluorinated diazepinomicin analogs with modest anti-bacterial activity against

Staphylococcus aureus have been generated through precursor-directed biosynthesis

by supplementing Micromonospora cultures with various indole-related derivatives

[14]. Using the mutasynthesis approach, auxotrophic strains of bacteria (which are

unable to produce specific amino acids) have been successfully exploited to produce

a number of fluorinated natural products [15]. For example, several new calcium-

dependent antibiotics were produced by feeding 5-fluorotryptophan to a Streptomyces
coelicolor tryptophan-auxotrophic strain [16].

Derivatives of anti-cancer drugs and other compounds such as the anti-

inflammatory drugs fluorouracil and fluorocorticoids have been successfully bio-

synthesized. Other recent efforts have led to the development of fluorinated natural

product derivatives, such as fluorine-substituted nucleosides, alkaloids, macrolides,

steroids, amino acids, and prostaglandins, for applications in the anti-cancer, anti-

viral, and anti-infection fields [15, 17]. Almost 20% of all pharmaceutical drugs on

the market contain at least one fluorine atom, including the two best selling

compounds, Lipitor (Atorvastatin; Fig. 2a), an inhibitor of cholesterol biosynthesis,

and Advair Discus (a mixture of fluticasone (Fig. 2b) and salmeterol), a steroidal

anti-inflammatory [18].

1.4 Perfluorinated Compounds

In industrial applications, fluorinated compounds, especially perfluorinated com-

pounds perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), play

important roles in material science, including fluoropolymers, liquid crystals, and

fire extinguishing products, due to their thermal and oxidative stability [19]. The

phase-partitioning behavior of perfluoroalkanes makes them a prominent class

of surfactants widely used in fire-fighting applications, herbicide and insecticide
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formulations, cosmetics, greases and lubricants, paints, polishes, and adhesives.

In addition, poly/perfluorine derivatives are applied as oxygen carriers in blood

substitutes [20]. Although production of many perfluorinated compounds such as

PFOA and PFOS has ended in the USA and EU, these compounds are still produced

in China and other developing countries.

1.4.1 Environmental Fate and Toxicity

Thousands of tons of fluorinated organic compounds have been emitted into the

environment [19]. In recent years, concerns over the levels and synthetic routes of

fluorinated organic compounds, especially perfluorinated compounds, have

increased. Perfluorinated compounds show thermal, chemical, and biological sta-

bility, lipophilicity, worldwide distribution and accumulation in the atmosphere

[21], river water [22], wildlife [22, 23], and in humans [24], which may lead to

serious problems. The detection of organofluorines in wildlife and humans has been

increasingly reported since 1968 [25, 26]. In 2003–2004, >99% of individuals

sampled in one study in the US showed detectable PFOA in their serum [27]. In

2009, PFOS was included in Annex B of the Stockholm Convention on Persistent

Organic Pollutants.

1.4.2 Fluorinated Compounds and Human Health

While fluorine is regarded as an essential element and is beneficial to human health

at low concentrations, the environmental distribution of fluorinated organic com-

pounds is dangerous to humans due to their bioaccumulation and potential impacts

on metabolism. During the last two decades, concerns about the toxicity of fluori-

nated organic compounds, especially perfluorinated compounds, have increased.
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Fig. 2 Structures of the fluorine containing market leading pharmaceuticals. (a) Lipitor

(Atorvastatin, (3R,5R)-7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-(propan-2-yl)-1H-
pyrrol-1-yl]-3,5-dihydroxyheptanoic acid). (b) Advair Discus (a combination of fluticasone

[S-(fluoromethyl) (6 S,8 S,9R,10 S,11 S,13 S,14 S,16R,17R)-6,9-difluoro-11,17-dihydroxy-10,
13,16-trimethyl-3-oxo-6,7,8,11,12,14,15,16-octahydrocyclopenta [a] phenan-threne-17-carbothioate]
and salmeterol-2-(hydroxymethyl)-4-{1-hydroxy-2-[6-(4-phenylbutoxy) hexylamino] ethyl} phe-

nol) (O’Hagan 2010).

Biology of Fluoro-Organic Compounds 369



Most toxicological studies on PFCs have been conducted on rats or monkeys. In

animal research, common PFCs such as PFOA and PFOS have been demonstrated

to be potentially carcinogenic, to affect the neuroendocrine and immune systems,

to cause neurotoxicity and hepatotoxicity, and to reduce serum cholesterol and

triglycerides [28–30]. Effects on gestational and developmental toxicity were also

confirmed [31]. In vitro studies on human cells also demonstrated the toxicity of

PFCs on DNA integrity, intracellular organelles, and hormones ([32]; Vanden

Heuvel et al. 2006; [33]). In population studies, some PFCs were reported to act

as hormone disruptors and thus to affect human fecundity [34]. Human fetal birth

weight was also reported to be impaired by background exposure to PFOA [35].

Additionally, exposure to PFCs causes altered hepatic function, immune function,

thyroid function, and cholesterol metabolism, and has carcinogenic potential in

humans [36].

2 Biodegradation of Organofluorinated Compounds

Biodegradation is the chemical dissolution of materials by bacteria or through

other biological means. Over the years, scientists and engineers have developed a

number of bioremediation and biotransformation methods to degrade, transform, or

accumulate a huge range of man-made contaminants. A great variety of microbes

such as Burkholderia, Rhodococcus, Pseudomonads, Aspergillus, and Beauveria
have shown an extraordinary capability to degrade artificial pollutants such as

hydrocarbons (e.g., oil), polychlorinated biphenyls (PCBs), polyaromatic hydro-

carbons (PAHs), heterocyclic compounds (such as pyridine or quinoline), and

pharmaceutical substances [37]. Biodegradation by microorganisms is perhaps

one of the most effective methods to remove organic pollutants from the environ-

ment and has attracted considerable interest in bioremediation of organofluorinated

compounds.

Although fluoroorganic compounds are well known for their inertness and con-

tain the strong C–F bond, some organisms such as bacteria, fungi, algae, and even

vertebrates can still biotransform and biodegrade fluoroorganic compounds because

of the steric size similarity between fluorine, hydrogen, and hydroxyl groups. To

date, little is known about the bacterial metabolism of fluoroorganic compounds,

even though several reports have been published on the degradation of mono-

fluorinated compounds. In 1954, the first report on biological defluorination

described fluoride elimination of p-fluoroaniline using a horseradish peroxidase.

Fluoroaliphatics such as fluoroacetate can be degraded with monofluoroacetate

dehalogenase (Pseudomonas indoloxidans, Pseudomonas cepacia, Moraxella sp.,

Burkholderia sp., etc.) and biodegradation of trifluoroacetic acid has also been

reported [38, 39]. Fluoroaromatic compounds can be biodegraded aerobically and

anaerobically. However, the biodegradation pathways of perfluorinated chemicals

are still not known.
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2.1 Fluoroaliphatics

2.1.1 Fluoroacetate

Fluoroacetate is one of the most highly toxic compounds for mammals [40]. The

dissociation energy of its C–F bond is among the highest found in natural products

[41]. The presence of fluoroacetate in the environment and biota results from its

industrial use as a vertebrate pest control agent as well as from metabolites of other

compounds such as fluoroacetamide, which is used to control rodents, the antican-

cer drugs 5-fluorouracil and fluoroethyl nitrosourea, and the industrial chemical

fluoroethanol [42].

Microbial defluorination of fluoroacetate was first reported in 1961 [43],

followed by reports of the first enzymatic release of fluoride ion from fluoroacetate

in both vertebrates and bacteria [44]. A wide variety of microorganisms such as

Moraxella, Pseudomonas, and Burkholderia were isolated and shown to be capable
of defluorinating fluoroacetate [39, 45]. Fluoroacetate dehalogenases have been

characterized in Pseudomonas strains as well as other bacteria for decades (Fig. 3)
[46–48]. Microbial degradation of fluoroacetate is now well understood at the

mechanistic level. Two possible mechanisms were delineated from the enzyme

reaction [49]. The ester intermediate pathway has been examined for fluoroacetate

dehalogenases and other enzymes such as rat liver microsomal epoxide hydrolase

[45, 50–52]. The carboxylate group of the aspartate residue at the active site acts

as a nucleophile and first attacks the a-carbon atom of fluoroacetate to displace

the fluorine atom, leading to the release of a fluoride ion. An ester intermediate is

formed, which is subsequently hydrolyzed by a water molecule activated by a

histidine residue, thereby regenerating the carboxylate group of the aspartate

molecule [53].

2.1.2 Fluoropyruvate

Fluoropyruvate is often used in the laboratory as an inhibitor to inactivate pyruvate

carboxylase, lactate dehydrogenase, and the pyruvate dehydrogenase complex [54].

In recent years, there has been increasing focus on the use of 3-halopyruvate as an

anti-cancer agent because it acts as an irreversible inhibitor of metabolic enzyme(s)

associated with glycolysis. For example, it has been demonstrated that 3-bromo

pyruvate shows high in vivo toxicity on tumors but has no adverse effect on healthy

tissue [55]. In 1978, a pyruvate dehydrogenase component of Escherichia coli
that catalyzes the conversion of 3-fluoropyruvate to acetate and fluoride ions was

reported [56]. Fluoride is eliminated by b-elimination, which is the classical

OH
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F

O

F

+ H2O OH   +   HF

Fig. 3 Hydrolytic

defluorination of

fluoroacetate [40]
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mechanism for dehydrogenases (Fig. 4). Recently, 19F NMR spectroscopy studies

demonstrated the conversion of fluoropyruvate to fluoroacetate by D. cymosum,
where fluoroacetate is mineralized followed by the release of fluoride [57].

2.1.3 Maleylacetate

Fluorinated maleylacetates have been investigated as substrates of maleylacetate

reductase for a number of years [58–61]. A maleylacetate reductase enzyme was

first isolated in 1995 from Pseudomonas sp. strain B13 that catalyzes the halo-

elimination of 2-fluoromaleylacetate as well as other halomaleylacetates (Fig. 5).

This enzyme consumes two moles of NADH per mole of maleylacetate that

contains a fluorine substituent in the 2-position, while only one mole of NADH

is required for halide elimination in substrates without a fluorine substituent in the

2-position [58].

2.1.4 Fluorinated Cycloalkyl N-Phenylcarbamates

Fluorine substitution of a hydrocarbon position in fluorinated cycloalkyl

N-phenylcarbamates occurs in hydroxylation reactions by Beauveria bassiana, a
soil-borne filamentous fungus. The hydroxylation of 4-cis-fluorocycloalkyl
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N-phenylcarbamates probably produces terminal fluorohydrins, which are not sta-

ble and thus are subsequently dehydrofluorinated to give the corresponding ketones

[62]. Recently, the defluorination of trans-2-fluorocycloalkyl N-phenylcarbamate

by B. bassiana was also reported, in which fluorine elimination could occur either

via hydroxylation of the six member ring at C-4 or p-hydroxylation of the aromatic

ring (Fig. 6).

2.1.5 Fluorinated Carbohydrates

Fluorinated carbohydrates have a broad range of pharmaceutical and biomedical

applications ranging from metabolic and biochemical studies to disease diagnoses.

Replacement of a hydroxyl group with a fluorine atom in carbohydrates can affect
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Fig. 6 Defluorination of trans-2-fluorocycloalkyl N-phenylcarbamate by Beauveria bassiana [63]
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their metabolic and biochemical behavior, including enzyme-carbohydrate inter-

actions, lectin-carbohydrate affinities, antibody-carbohydrate binding [64, 65], and

application in positron emission tomography for cancer diagnosis [66]. Therefore,

fluorinated compounds are important reagents in metabolic studies and for disease

diagnoses. The microbial catalytic defluorination of fluoromonosaccharides has

been reported [67, 68]. Expression of a 65.5 kDa membrane protein is induced

by 4-deoxy-4-fluoro-D-glucose (4-FG) or glucose and is associated with the active

D-glucose transporter system in Pseudomonas putida [68]. P. putida defluorination

of fluoro-D-glucose is stereospecific. In addition, 4-FG is converted to 2,3-dideoxy-

D-glycero-pentonic acid with fluoride elimination while 3-deoxy-3-fluoro-

D-glucose (3-FG) is metabolized without defluorination. Electron donors such as

L-malate are required in these defluorination metabolic pathways [69].

2.2 Fluoroaromatics

Fluoroaromatics are widely used in industry as intermediates or end-products in the

synthesis of pharmaceuticals, insecticides, plastics, and molecules related to liquid

crystal technology [15, 70]. The broad applications of fluoroaromatics have led to

their accumulation in the environment. Their widespread occurrence and potential

toxicity have led to increasing interest in biodegradation and treatment processes

for fluoroaromatics.

2.2.1 Fluorobenzoates

As model compounds of other fluoro-substituted aromatic compounds, fluoro-

benzoates have been widely used to study bacterial metabolism of fluorinated

aromatics. For example, bacteria such as Pseudomonas [71, 72], Xanthobacter
[73], and Sphingomonas [74] have been reported to exhibit fluorobenzoate degra-

dation. In addition, the metabolism of 2-, 3-, and 4-fluorobenzoic acid has been well

studied [71, 74, 75]. Using 18O2, Pseudomonas sp. was shown to form catechol

from 2-fluorobenzoic acid by incorporation of two oxygen atoms from a single

dioxygen molecule. This defluorination proceeds through a cyclic peroxide inter-

mediate. In the major pathway, 1,2-dioxygenation of 2-fluorobenzoic acid leads to

an unstable fluorohydrin, which is then defluorinated to catechol. Muconate is

finally formed, which subsequently goes in the TCA cycle to produce energy

(Fig. 7, pathway a). The minor pathway, 1,6-dioxygenation, also takes place,

leading to the formation of 3-fluorocatechol and then 2-fluoro-cis-cis-muconate

(Fig. 7, pathway b) [75]. 3-Fluorobenzoate is degraded by 1,2-dioxygenation

to yield fluorocatechol, which is metabolized to 2-fluorobenzoic acid in the

minor pathway (Fig. 7, pathway c) [74, 75]. The predominant pathway of 3-

fluorobenzoate includes a 1,6-dioxygenation reaction to yield fluoromuconic

acids. Defluorination then occurs to yield muconate [74] (Fig. 7, pathway d).
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4-Fluorobenzoate is degraded by Pseudomonas sp. in similar pathways to

3-fluorobenzoate (Fig. 7, pathway e) [75, 76].

The anaerobic degradation of monofluorobenzoates under various electron-

accepting conditions including denitrifying, sulfate-reducing, iron-reducing, and

methanogenic conditions has also been studied [77–80]. After long-term incuba-

tion, 2-fluoro- and 4-fluorobenzoates are degraded by Pseudomonas with fluoride

elimination [79]. Recently, dehalogenated 3-fluorobenzoate was investigated

in Syntrophus aciditrophicus culture. Two hydrogen atoms are added to

3-fluorobenzoate to form a 3-fluorocyclohexadiene metabolite, leading to stoichio-

metric accumulation of benzoate and fluorine [80].

2.2.2 Fluorophenols

Fluorophenolic compounds are widely used in agricultural industries as herbicides,

insecticides, and fungicides [81]. Fluorophenols are transferred to fluorocatechols

and fluoromuconates via microbial degradation [82]. The fluorophenol
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metabolites of Exophiala jeanselmei, a yeast-like fungus, which are converted

by the phenol hydroxylase and catechol 1,2-dioxygenase enzymes, have been

characterized by 19F NMR spectroscopy. The conversion of fluorophenols (i.e.,

3-fluoro-, 4-fluoro-, and 3,4-difluorophenol) via catechol 1,2-dioxygenase involves

two common steps [81, 83]: (1) the introduction of ortho-hydroxyl groups and (2)

ring cleavage by catechol dioxygenase. The resulting muconates and accumulation

of stoichiometric amounts of fluoride anions have been detected (Fig. 8).

2.2.3 Fluorotoluene

3-Fluorotoluene was reported to be accumulated and co-metabolized by

Cladosporium sphaerospermum, a fungi culture grown on toluene [84]. 19F NMR

was used to determine the catabolic pathway. A methyl group is first oxidized by the

toluene monooxygenase enzyme followed by ring hydroxylation to form fluoropro-

tocatechuate. The remaining steps include decarboxylation of the fluoroprotoca-

techuate followed by ortho-cleavage (Fig. 9).

2.2.4 Fluorobiphenyls

Fluorobiphenyls can be co-metabolized via the classical aromatic degradation

pathways by fungi and bacteria [85–87]. Recently, the degradation pathway of

4,4-difluorobiphenyl was proposed. The hydrolase BphD catalyzes the transfor-

mation from 3-fluoro-2-hydroxy-6-oxo-6-(4-fluorophenyl)-hexa-2,4-dienoate to

3-fluoro-2-hydroxypenta-2,4-dienoate. Then, (Z)-3-fluoro-2-oxo-pent-3-enoate is
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formed and further catabolized, eventually yielding acetaldehyde and fluoro-

pyruvate (Fig. 10) [88].

2.2.5 Fluorophenylacetic Acid

The defluorination of p-fluorophenylacetic acid by Pseudomonas has been studied

[76]. First, the aromatic ring is cleaved between C-1 and C-2. Then, C-2 is further

modified by two alternative pathways. Hydrolyzation occurs to give 3-hydroxy-3-

fluoroadipic acid. Fluorine elimination occurs and yields b-ketoadipic acid (Fig. 11,
pathway a). Alternatively, after lactonization and formation of 4-carboxymethyl-
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Fig. 9 Proposed fungal catabolism of fluorotoluene [38]
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3-fluoro-butanolide, hydrolyzation and cleavage of C–C bonds yield acetate and

monofluorosuccinic acid (Fig. 11, pathway b). The latter compound is converted to

oxaloacetate and hydrogen fluoride.

2.2.6 Fluorobenzene

A microbial consortium containing Sphingobacterium, Flavobacterium, and

b-Proteobacterium was shown by Carvalho et al. in 2002 [89] to be capable of

defluorinating fluorobenzene. In addition, a bacterial strain from the Labrys
portucalensis group that uses fluorobenzene as a sole carbon and energy source

has been purified [90]. The degradation of fluorobenzene via ortho cleavage of

4-fluorocatechol and catechol by Rhizobiales strain F11 has been investigated

by Carvalho et al. in 2006 [91]. It was found that the initial attack on fluorobenzene

by a dioxygenase enzyme could lead to two different pathways. In one pathway, a

dihydrodiol dehydrogenase enzyme (step 1) transforms 4-fluoro- cis-benzene-1,
2-dihydrodiol to 4-fluorocatechol. In the second pathway (step 10), 1-fluoro-

cis-benzene-1,2-dihydrodiol is converted to catechol (Fig. 12).

2.2.7 Fluoroquinolones

Fluoroquinolones are some of the most widely used antimicrobial agents for

treating both Gram-negative and Gram-positive infections. Their widespread
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presence has been detected at multiple locations around the world [92]. Other

reports have suggested their potential toxicity to plants and aquatic organisms

[93, 94]. Many clinically relevant bacterial species including S. aureus and Pseu-
domonas aeruginosa are capable of developing resistance to quinolones [95].
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Degradation of the fluoroquinolone, enrofloxacin, was observed in Gloeophyllum
striatum, a brown rot fungus where a hydroxyl radical attacks fluorine at the C-6

position to form 6-hydroxyen-rofloxacin which is further hydroxylated to 5,6- and

6,8-dihydrox-yenrofloxacin [96]. The metabolism of enrofloxacin by seven basid-

iomycetous fungi from agricultural sites was recently reported by Wetzstein et al.

[97]. Oxidative decarboxylation of enrofloxacin first occurs, then defluorination

takes place in multiply hydroxylation and acetylation steps (Fig 13) [97].

2.2.8 Fluorinated Anilines

Microsomal NADPH-dependent reaction pathways for biodehalogenation of

fluorinated anilines have been investigated [98]. Three possible pathways for

dehalogenation of fluorinated anilines, such as 2-fluoro-4-hydroxyaniline and

pentafluoroaniline, in the presence of xanthine glutathione and NADPH were
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proposed. A study of the metabolism of 3,4-difluoroaniline with Pseudomonas
fluorescens 26-K showed the formation of 3-fluoro-4-hydroxyaniline and the

release of a fluoride ion [99]. Recently, biotransformation of 4-fluoroaniline was

observed in the earthworm Eisenia veneta. The catabolic products were analyzed

using 19-F NMR, but no fluoride ion was detected (Fig. 14) [100, 101].

2.3 Biodegradation of Polyfluorinated Compounds

The degradation of polyfluorinated compounds, such as fluorotelomer alcohols

(FTOHs), fluorotelomer ethoxylates, and polyfluoroalkyl phosphates, in atmo-

spheric and aqueous systems has been established and has been reported to be a

source of perfluorinated carboxylic acids (PFCAs). However, published informa-

tion on the biodegradation of PFCAs is very limited. The aerobic and anaerobic

biodegradability of three fluorinated surfactants have been described [102]. How-

ever, no release of fluoride has been found.

2.3.1 Fluorotelomer Alcohols

FTOH is the generic name of fluorinated compounds that contain even-numbered

fluorocarbon chains and an ethanol moiety [103]. FTOHs are used in fire-fighting

foams, grease-resistant food packaging, leather protectants, and stain-resistant

carpeting and textiles. In addition, FTOHs are used industrially to generate acrylate
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polymers and as intermediates in the production of fluorinated surfactants. Conse-

quently, FTOHs are widely detected in air. Furthermore, estrogen-like properties

have been reported for these compounds [104].

8–2 FTOH degradation was first reported in detail in reactions catalyzed by a

mixed microbial consortium [105–109]. Based on 14C analysis, 8–2 FTOH biodeg-

radation in aerobic soils was proposed (Fig. 15). 8–2 FTOH is converted rapidly to

8–2 fluorotelomer aldehyde (FTAL) by an alcohol dehydrogenase and to 8–2

fluorotelomer acid (8–2 FTA) by an aldehyde dehydrogenase. The conversion of

8–2 FTA to 8–2 fluorotelomer unsaturated acid (8–2 FTUA) in soils is so rapid that

no 8–2 FTA above the limit of quantification was observed.

Recently, the first study to investigate aerobic biodegradation of 6–2 FTOH

[F(CF2)6CH2CH2OH] was described by Liu et al. [110]. Based on this investigation

and previous studies on the mechanism of 8–2 FTOH biodegradation [107–109,

111, 112], several pathways for 6–2 FTOH degradation have been proposed. 6–2

FTOH is first converted to 6–2 FTAL through oxidation by alcohol dehydrogenase

or cytochrome P450, and then to 6–2 FTA by aldehyde dehydrogenase. Using the

2,4-dinitrophenylhydrazine (DNPH) derivatization method previously described

for the detection of 8–2 FTAL from 8–2 FTOH degradation in soil and mammals

[108, 109], 6–2 FTAL was not detected in the soil extracts. Hydrogen fluoride (HF)

is removed from 6–2 FTA to form 6–2 FTUA either because a-oxidation is

not operable or because rapid HF elimination to 6–2 FTUA supersedes 6–2 FTA

a-hydroxylation, which is necessary for a-oxidation (Martin et al. 2005). 6–2

FTUA degradation proceeds by two pathways (Fig. 16).

Biodegradation of a novel fluorotelomer alcohol, 1H,1H,2H,2H,8H,8H-perfluoro-
dodecanol (degradable telomer fluoroalcohol, DTFA), was investigated in a mixed

bacterial culture obtained from activated sludge and the pathway was also proposed

(Fig. 17) [103], First, through the catalytic activity of alcohol dehydrogenase and
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aldehyde dehydrogenase, DTFA is oxidized to 2H,2H,8H,8H-perfluorododecanoic
acid (2H,2H,8H,8H-PFDoA) which is then defluorinated to 2H,8H,8H-2-perfluoro-
dodecenoic acid (2H,8H,8H-2-PFUDoA). Double bonds are formed between the

internal –CH2– and –CF2– groups in 2H,8H,8H-2-PFUDoA which is then further

degraded via two different b-oxidation pathways. In pathway a, through the removal

of –CF2–, 2H,8H-2,8-PFUDoA is transformed into three different long-chain car-

boxylic acids which are further degraded into perfluorobutanoic acid (PFBA) with

dicarboxylic acids containing different fluorocarbon lengths (C4–C6 compounds),

whereas in pathway b, 2H,8H-2,8-PFUDoA is transformed into perfluoropentanoic

acid (PFPeA) with three different fluorinated dicarboxylic acids (Fig. 17).

2.3.2 Fluorotelomer Ethoxylates

Fluorotelomer ethoxylates [F–(CF2–CF2–)x–(CH2–CH2–O)y–H] are an important

class of non-ionic fluorinated surfactants and are regarded as a potential source of

per- and polyfluorinated organic pollutants. Aerobic biotransformation of FTEOs

was recently demonstrated by Fr€omel and Knepper [113]. Distinct from the bio-

degradation of FTOHs, o-oxidation occurs and is responsible for the transformation

of FTEOs to FTEO carboxylates (FTEOCs). After oxidation of the terminal
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hydroxyl group to a carboxylic acid, the carbon chain is subsequently shortened

whereby the short-chained FTEOCs are not further degraded. In this chapter, no

PFCA formation attributable to FTEO degradation was observed.

2.3.3 Fluorotelomer-Based Urethanes

Fluorotelomer-based urethanes are urethane polymers consisting of a series of

fluorotelomer side-chains attached to a hydrocarbon backbone and are commercially

used as stains and soil repellents for textiles. Russell et al. [114] tested the potential

for microbial activities in four different soil samples to degrade a fluorotelomer-based

urethane polymer under aerobic conditions over a 24-month period and demonstrated

that fluorotelomer side-chains were released and transformed to perfluorocarboxylic

acids including PFOA.

2.3.4 Polyfluoroalkyl Phosphates

Polyfluoroalkyl phosphates (PAPs) are used as commercial surfactants for oil

repelling applications, and have been shown to be degraded to PFCAs in a rat

model and waste water treatment plant system [115]. The pathway in Fig. 18
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describes the aerobic degradation routes of 4:2, 6:2, 8:2, and 10:2 monosubstituted

PAPs (monoPAPs) and 6:2 disubstituted PAP (diPAP) by a microbial mixture

collected from sewage of a wastewater treatment plant. In the microbial system,

6:2 FTOH was initially oxidized into a series of acid metabolites. The intermediate

metabolite, 6:2 saturated fluorotelomer carboxylic acid (6:2 FTCA), is converted

via b-oxidation to 6:2 unsaturated fluorotelomer carboxylic acid (6:2 FTUCA)

and perfluorohexanoic acid (PFHxA) (Fig. 18, pathway b), while 5:3 FTCA is

transformed to perfluoropentanoic acid (PFPeA) (Fig. 18, pathway c). However,

the production of PFPeA may also be attributed to other precursors. For example,

6:2 FTUCA may degrade into 5:2 fluorotelomer ketone (F(CF2)5CH(OH)CH3)

which is further reduced to 5:2 secondary fluorotelomer alcohol (sFTOH, F

(CF2)5CH(OH)CH3), and subsequently transformed to PFPeA (Fig. 18, pathway d).

6:2 FTCA and PFHpA production have been observed, supporting the possibility of

oxidation of the a-carbon in FTCA to form odd-chain PFCAs (Fig. 18, pathway a).

2.3.5 v-(Bis(trifluoromethyl)amino)alkane-1-Sulfonates

Biodegradation of o-(bis(trifluoromethyl)amino)alkane-1-sulfonates was detected in

a fixed-bed bioreactor. Its incompletemineralization revealed that degradationmostly

takes place via desulfonation, oxidation, and further b-oxidation [116]. The C–F and

C–N bonds in the bis(tri-fluoromethyl)amino (BTFMA) group cannot be accessed by

microbes for biodegradation; therefore no defluorination was observed (Fig. 19).

2.3.6 N-Ethyl Perfluorooctane Sulfonamide Ethanol

N-Ethyl perfluorooctane sulfonamide ethanol (N-EtFOSE) is present in protective

paper coatings. Although the only producer in the USA, 3M, has stopped produc-

tion since 2002, N-EtFOSE can still be detected in the North American atmosphere

[117]. Aerobic biotransformation of N-EtFOSE in activated sludge has been studied

[118]. Fast oxidation of N-EtFOSE forms N-ethyl perfluorooctane sulfonamido

acetic acid (N-EtFOSAA) through an aldehyde intermediate. N-Ethyl perfluoro-
octane sulfonamide (N-EtFOSA) undergoes direct dealkylation to perfluorooctane

sulfonamide (FOSA), while perfluorooctane sulfonamido acetic acid (FOSAA)

production proceeds at a slower rate. The extremely stable compound PFOS was

observed as the final product (Fig. 20) [118].

2.3.7 10-(Trifluoromethoxy) Decane-1-Sulfonate

10-(Trifluoromethoxy) decane-1-sulfonate is a fluorinated surfactant that has been

globally distributed, thus leading to increasing concern on its environmental fate and

toxicity. Biomineralization of 10-(trifluoromethoxy) decane-1-sulfonate was reported

by Peschka et al. in 2008. Two proposed pathways, major and minor, have been
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described (Fig. 21). In the major degradation pathway, the carbon chain of the

fluorinated alkylsulfonate derivative is shortened by b-oxidation after desulfonation

and oxidation. The formed trifluoromethanol is unstable and mineralizes immediately

(Fig. 21, pathway a). In the minor degradation pathway, insertion of oxygen occurs,

and then, the molecule is subsequently cleaved and degraded (Fig. 21, pathway b).

2.4 Perspectives for the Biodegradation of Perfluorinated
Compounds

As previously mentioned, biodegradation and biotransformation of several

polyfluorinated compounds such as FTOHs, FTEOs, and PAPs have been reported.
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But to date there are still no reliable reports on the biodegradation or biotransfor-

mation of perfluoroalkyl compounds such as PFOS and PFOA. To date, the studies

examining biodegradation and transformation of PFCs is very limited. PFCAs,

including PFOA, are common transformation products from fluorotelomer

chemicals [105, 106, 109, 120, 121]. No evidence about the biodegradation

and biotransformation of PFCAs has been found. A recent study about the biode-

gradability of PFOA using five different microbial communities incubated for up to

259 days showed that PFOA is still microbiologically inert and thus is environmen-

tally persistent [122]. Because of the high stability of the strong C–F covalent

bonds, the rigidity of the perfluoroalkyl chain, and the lack of reactive substituent,

PFOS is highly recalcitrant to biodegradation or chemical degradation under
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Fig. 21 Degradation pathways of 10-(trifluoromethoxy)decane-1-sulfonate [119]
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ambient conditions. Only two reports about the chemical degradation of PFOS have

been published [123, 124]. No studies on biodegradation or biotransformation have

been reported. Recently, the first report of reductive dehalogenation of PFOS

catalyzed by vitamin B12 was published, in which PFOA was reduced and

dehalogenated by Ti(III)-citrate [125]. These results suggested the potential for

reductive dehalogenation of PFCs.

2.4.1 Thermodynamics of Organofluorine Biodegradation

Thermodynamics can be used to evaluate whether organisms can obtain energy

for growth by catalyzing certain reactions. This approach has been applied to

the study of reductive biodechlorination of chlorinated compounds such as

3-chlorobenzoate and chloromethanes. The amount of energy available from

reductive dechlorination was reported to be between 100 and 180 kJ/mol [126],

which is enough to support microorganism growth by using halogenated compounds

as electron acceptors. The Gibbs free energy values of fluorinated compounds

showed that the amount of energy obtained from defluorination is similar to the

amount available from dechlorination and could support microorganism growth.

Therefore, organisms may be able to obtain energy by catalyzing certain defluori-

nation reactions for growth.

Although the thermodynamic properties of perfluoroalkylated compounds are not

available, the Gibbs free energy values for the reductive removal of one fluorine atom

from fluoropropane molecules (Table 1) showed that the energy yields from the

hydrogenolysis of perfluorinated compounds and from less fluorinated compounds

are similar. These results reveal the thermodynamic basis for reductive biode-

fluorination of perfluoroalkylated compounds, especially under anaerobic conditions.

Table 1 Gibbs free energy values for reductive dehalogenation (hydrogenolysis) of selected

fluorinated aromatic and aliphatic compounds and their chlorinated analogs [127]

Substrate Product DG� (kJ/mol)

CF3CF2CH3 CHF2CF2CH3 �100.0

CF3CF2CH3 CF3CHFCH3 �117.4

CF3CHFCH3 CHF2CHFCH3 �88.2

CHF2CF2CH3 CHF2CHFCH3 �105.5

CF3CHFCH3 CF3CH2CH3 �163.2

CF3CH2CH3 CHF2CH2CH3 �78.8

CHF2CHFCH3 CH2FCHFCH3 �96.0

CHF2CHFCH3 CHF2CH2CH3 �153.9

CHF2CH2CH3 CFH2CH2CH3 �88.4

CH2FCHFCH3 CFH2CH2CH3 �146.3

CFH2CH2CH3 CH3CH2CH3 �140.0

All calculations used the following standard conditions: T¼298.15K, pH¼7, methanes and H2 in

the gas phase at 1 atm, and benzoates and halides in the aqueous phase at 1 M
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2.4.2 Perspectives for the Biodegradation of Perfluorinated Compounds

Thermodynamically, perfluorinated compounds should be potentially biodegrad-

able, especially under anaerobic conditions [127]. To date, the reductive

biodefluorination of perfluorinated compounds has not yet been observed. More-

over, the rate at which microorganisms can evolve the capability to grow on this

potential source of energy and the function of the enzymatic machinery that

catalyzes this reaction are largely unknown. However, co-metabolic degradation

of several polyfluorinated compounds under aerobic conditions and without ther-

modynamic facilitation has been studied in detail [109, 110, 115]. This information

formed the basis for technology that has been applied in the field for the degradation

of other polyhalogenated compounds such as trichloroethene. The search for co-

metabolic degradation of poly- and perfluorinated compounds, and studies to

understand its mechanisms better will continue.

3 Defluorination Pathways and Defluorogenases

3.1 Enzymatic Metabolic Pathways

3.1.1 Aerobic Metabolism

Limited reports are available about the biodegradation of fluorinated organic

compounds, and therefore little is known about the enzyme-catalyzed defluorination

pathway. Under aerobic conditions, fluorinated organic compounds are usually

degraded via the electron donor or co-metabolic pathways. It has been reported

that 4-fluorophenol can be utilized as the sole source of carbon and energy for

Arthrobacter sp. strain IF1, and that two gene clusters are involved [128]. Cluster A
harbors fpdA1DE and includes an FADH2-dependent monooxygenase, a putative

maleylacetate reductase, and a hydrolase gene. In Cluster B, fpdA2 encodes a 4-FP

monooxygenase, fpdB encodes a flavin reductase, and fpdC encodes a putative

hydroxyquinol dioxygenase (Fig. 22). The proposed catabolic pathway is shown in

Fig. 23.

To date, the well-known enzymes involved in fluoro-degradation are normally

responsible for the catabolism of non-fluorinated compounds. Evidence suggests that

enzymes are specifically employed for the catabolismof these substrates. Enzymes for

degrading aromatic compounds such as monooxygenases, cleavage dioxygenases,

and maleylacetate reductase have exhibited biodefluorination activity. As shown in

Fig. 24, a number of enzymes that do not show specific activity for fluoroaromatic

compounds are involved in the catabolism of 3-fluorobenzoic acid [86].

Because of the similar steric sizes of hydrogen and fluorine, substitution of

hydrogen for fluorine is considered to have an important role in defluorination.

Many oxygenases and (de)hydroxylases make up a group of defluorinating enzymes
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that act on both fluorinated aromatics and fluoroaliphatics. In 1978, a pyruvate

dehydrogenase component of E. coli was found to catalyze the conversion of

3-fluoropyruvate to acetate and fluoride ions and to eliminate the fluorine [56].

Later, the proposed mechanism of fluorine elimination by dehydrogenases was

proposed. p-Hydroxybenzoate hydroxylase, a NADPH-dependent flavin-containing
monooxygenase from P. fluorescens and Candida parapsilosis, was reported to
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9373

5145
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fpdE

Fig. 22 Organization of the open reading frames (ORFs) in the fpd gene regions of Arthrobacter
sp. strain IF1. Open arrows indicate the size and direction of each ORF [128]
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degrade several fluorine-substituted p-hydroxybenzoates such as fluorohydroxy-

benzoate [129, 130]. Fluorobiphenyl metabolism is catalyzed by a series of

dioxygenases dehydrogenases and hydrolases to yield fluoropyruvate and

4-fluorobenzoate [86, 87].
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Fig. 24 Catabolism of 3-fluorobenzoic acid in aerobic bacteria [40]
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3.1.2 Anaerobic Metabolism

Less is known about the degradation of fluoroaromatic compounds under anaerobic

conditions. Defluorination of 2-hydroxybenzoate and 3-fluorobenzoate was

observed in S. aciditrophicus cultures under anaerobic conditions (Mouttaki et al.

2009). Recently, co-metabolism in a bacterial culture was found to catalyze

4-fluorobiphenyl to a carboxylic acid derivative [131]. Both methanogenic and

sulfate-reducing defluorination generated trifluoroacetic acid (TFA) via a co-

metabolism pathway [132, 133]. Denitrifying bacteria have also been reported to

mineralize 2- and 4-fluorobenzoate [79].

3.2 Defluorinases

Among all the dehalogenations, defluorination is most difficult because the C–F

bond is one of the most stable bonds in nature. Partly because of limited studies on

defluorinases, most man-made organofluorine compounds are degraded via co-

metabolism pathways. Enzymes with alterable substrates play an important role,

although few fluorine-specific enzymes have been identified.

3.2.1 Fluoroacetate Dehalogenase

As the most common fluorinated natural product, fluoroacetate was reported in

1965 to be degraded by Pseudomonas fluoroacetate dehalogenase, which catalyzes

the hydrolytic cleavage of the C–F bond to yield glycolate and a fluoride ion [46].

Other fluoroacetate dehalogenases have been isolated from microorganisms such as

Moraxella, Delftia, and Burkholderia [45, 48, 134]. Fluoroacetate dehalogenase

belongs to the a/b hydrolase superfamily protein. The mechanism of C–F bond

cleavage by fluoroacetate dehalogenase has been extensively investigated (Keuning

et al. 1985; [45]). The three-dimensional structure of FAc-DEX FA1, a fluoro-

acetate dehalogenase from Burkholderia sp. strain FA1 [53], suggested a mecha-

nism whereby fluoroacetate is degraded by an initial nucleophilic attack on the

a-carbon atom by the carboxylate group of Asp104 which displaces the fluoride ion

to form an ester intermediate. The ester intermediate is then hydrolyzed by a

His271-activated water molecule, which yields glycolate and regenerates the car-

boxylate group of Asp104 (Fig. 25).

3.2.2 Fluoroacetate-Specific Defluorinases

Detoxification of fluoroacetate in mammals is catalyzed by fluoroacetate-specific

defluorinases (FSDs) such as the glutathione-S-transferase isozyme GSTZ which is

distinct from bacterial fluoroacetate dehalogenases (Fig 26) [135]. Two distinct
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FSD activities have been identified in rat liver: one is glutathione-S-transferase-like
and the other more predominant activity is apparently a new type of dehalogenase,

which is considered to be an FSD. Interestingly, the amino acid sequence of the

latter FSD is similar to the sorbitol dehydrogenase protein, which does not show

defluorination activity on fluoroacetate.

3.2.3 4-Fluorobenzoate Dehalogenase

4-Fluorophenol (4-FP) monooxygenase (FpdA2) was first cloned and purified from

Arthrobacter sp. strain IF1. In combination with FpdB, which uses NADH to

reduce either flavine-adenine dinucleotide (FAD) or flavin Mononucleotide

(FMN), FpdA2 transforms various halogenated phenols via para-substitution, lead-
ing to halide release and hydroquinone formation (Fig. 27) [128].
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3.3 Perspectives for New Enzymes and Metabolic Pathways

As mentioned above, co-metabolism is the main degradation pathway for mono-

and polyfluorinated organic compounds. However, due to very limited research,

only a few co-metabolism pathways have been found in the laboratory. Further

studies in this area will help to investigate the pathways and enzymes involved in

defluorination. Compared with a series of dechlorinases that catalyze various

kinds of reactions, only three kinds of defluorinases have been identified to date.

In 2007, biodegradation of 4-fluoroglutamate was reported via an unusual pathway,

yielding equimolar concentrations of fluoride ions and ammonia, indicating that an

enzyme such as glutamate dehydrogenase is not responsible for the biotransforma-

tion (Fig. 28) [136]. In addition, the defluorinating/deaminating activity was

found in the soluble fraction of the cell and was not related to the dechlorinating/

deaminating activity, which was located in the cell membrane. These results

suggest the existence of a potential new fluoroglutamate dehalogenase. Under

anaerobic conditions, defluorination was detected in methanogenic, sulfate-

reducing, and denitrifying bacteria, indicating that extensive defluorination occurs

under anaerobic conditions [79, 132]. Reductive defluorination is a thermodynami-

cally feasible mechanism to derive cellular energy under anaerobic conditions.

However, microbes that are able to obtain energy for growth by reductive

defluorination have yet to be isolated [127]. And there is much be done to elucidate

the defluorination mechanisms and properties of the enzymes involved.
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Fig. 28 4-Fluoroglutamate dehalogenase/deaminase. Arrows indicate that more than one reaction

might be occurring. GSH¼glutathione [40]
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4 Summary and Perspectives

Brominated and chlorinated compounds have been investigated in previous research

on the biodegradation of halogenated compounds. However, fluorinated chemicals

have thus far received much less attention [127]. The inertness of fluorine results in

persistence and leads to accumulation in the environment, making it necessary to

explore microbial degradation of fluoroorganic compounds. Until recently, only a

few microbes including bacteria, fungi, and algae have been found to be capable

of fluoro-degradation. For most fluorinated substrates, the mechanism of fluoro-

degradation is still not clear. Several monofluorinated compounds, including

fluoroaliphatics [57, 136, 137], fluoroaromatics [71, 74, 81, 88], and a few other

polyfluorinated compounds [105, 106, 109, 110], can be degraded. However, the

mechanisms of these degradation reactions are largely unknown. No biodegradation

of perfluorinated compounds has been observed [25, 122]. Perfluorinated and

polyfluorinated compounds are widely used as surfactants, catalysts, and insecti-

cides [18, 19]. These compounds are highly recalcitrant and have been detected

throughout the global environment [26, 27]. Biodegradation of perfluorinated

compounds is thermodynamically possible under reductive conditions, but has not

been measured [127]. Despite a great increase in knowledge over the last few

decades, we are still far from being able to predict the biodegradation of fluorinated

organic compounds as well as the mechanism of defluorination. Although the

dehalogenation of both fluorinated and chlorinated organic compounds is largely

mediated by soil microflora, limited knowledge of the factors influencing these

microorganisms is available. Development of systematic biological and molecular

genetics studies will help in the study of soil microbial species and communities,

thus facilitating the discovery of new microbes capable of defluorination.

New technologies for chemical analysis have made highly sophisticated studies

practical in the laboratory. Fluorine-19 nuclear magnetic resonance spectroscopy

(19F NMR) and isotopic labeling techniques have helped to contribute to a deeper

understanding of several key processes in the catalyzed reactions of fluorinated

substances [74, 109, 110]. The rapid growth of bioinformatics has led to the

development of databases that search for organic persistence information. Further-

more, scientists have created computer programs such as MultiCASE based on

general quantitative structure-degradation relationships (QSDRs) to predict the

degradation/persistence of organic chemicals in the environment that have not

been characterized [138]. One of these popular computer programs, BIOWIN,

contains a series of models collectively referred to as biodegradability probability.

Based on QSDR models as well as six aerobic biodegradation models and one

anaerobic model, BIOWIN can predict the biodegradability probability under

aerobic and anaerobic conditions. If a metabolic pathway is available for a chemi-

cal, it is assumed to be biodegradable [139]. Similar programs, including the

UM-BBD Pathway Prediction and System CATABOL program, have also been

developed for determining the biodegradability probability [140, 141]. These tools

provide unique approaches to studying biodifluorination.
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In general, biodegradation studies need interdisciplinary collaborations between

microbiology, ecology, genetics, biochemistry, and analytical chemistry to resolve

complex problems. As more research attention is given to this field and more

technologies are developed and applied, further mechanisms of the biodegradation

of fluorine-containing organic compounds will be elucidated.
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