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Data Sampling in Multidimensional NMR:
Fundamentals and Strategies
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Abstract Beginning with the introduction of Fourier Transform NMR by Ernst

and Anderson in 1966, time domain measurement of the impulse response (free

induction decay) consisted of sampling the signal at a series of discrete intervals.

For compatibility with the discrete Fourier transform, the intervals are kept

uniform, and the Nyquist theorem dictates the largest value of the interval

sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling

along an indirect time dimension, extension to multidimensional experiments

employed the same sampling techniques used in one dimension, similarly subject

to the Nyquist condition and suitable for processing via the discrete Fourier

transform. The challenges of obtaining high-resolution spectral estimates from

short data records were already well understood, and despite techniques such as

linear prediction extrapolation, the achievable resolution in the indirect dimen-

sions is limited by practical constraints on measuring time. The advent of methods

of spectrum analysis capable of processing nonuniformly sampled data has led

to an explosion in the development of novel sampling strategies that avoid

the limits on resolution and measurement time imposed by uniform sampling.

In this chapter we review the fundamentals of uniform and nonuniform sampling

methods in one- and multidimensional NMR.
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1 Introduction

Since the introduction of Fourier Transform NMR by Richard Ernst and Weston

Anderson in 1966, the measurement of NMR spectra has principally involved

the measurement of the free induction decay (FID) following the application of

a broad-band RF pulse to the sample [1]. The FID is measured at regular intervals,

and the spectrum obtained by computing the discrete Fourier transform (DFT). The

accuracy of the spectrum obtained by this approach depends critically on how

the data are sampled. In the application of this approach to multidimensional

NMR experiments, the constraint of uniform sampling interval imposed by the

DFT incurs substantial sampling burdens. The advent of non-Fourier methods of

spectrum analysis that do not require data sampled at uniform intervals has enabled

the development of a host of nonuniform sampling (NUS) strategies. In this

chapter we review the fundamentals of sampling, both uniform and nonuniform,
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in one and multiple dimensions. We then survey recently developed NUS

methods that have been applied to multidimensional NMR, and consider pro-

spects for new developments. While non-Fourier methods of spectrum analysis

are indispensible for nonuniformly sampled data, they have been reviewed

elsewhere.

2 Fundamentals: Sampling in One Dimension

Implicit in the definition of the complex DFT,

fn ¼ 1
ffiffiffiffi

N
p

X

N�1

k¼0

dke
�2pikn=N (1)

is the periodicity of the spectrum, which is apparent by setting k to N in (1). Thus the

component at frequency nDt/N is equivalent to (and indistinguishable from) the

components at (n/NDt) þ/� (m/Dt), m ¼ 1, 2, . . .. This periodicity makes it possi-

ble to consider the DFT spectrum as containing all positive frequencies with zero

frequency at one edge, or containing both positive and negative frequencies with

zero frequency at (actually near) the middle. The equivalence of frequencies in the

DFT spectrum that differ by a multiple of 1/Dt is a manifestation of the Nyquist

sampling theorem, which states that, in order to determine unambiguously the

frequency of an oscillating signal from a set of uniformly spaced samples, the

sampling interval must be at least 1/Dt. (For additional details of the DFT and

its application in NMR, see [2].)

In the description of the DFT given by (1) it is assumed that the data samples

and DFT spectrum are both complex. Implicit in this description is that two

orthogonal components of the signal are sampled at the same time, referred

to as simultaneous quadrature detection. Most modern NMR spectrometers

are capable of simultaneous quadrature detection, but early instruments had a

single detector, so only a single component of the signal could be sampled at

any one time. With so-called single-phase detection, the sign of the frequency is

indeterminate. Consequently the carrier frequency must be placed at one edge

of the spectral region and the data must be sampled at 1/2Dt to determine

unambiguously the frequencies of signals spanning a bandwidth (or spectral

width, SW) 1/Dt.
The detection of two orthogonal components permits the sign ambiguity to be

resolved while sampling at a rate of 1/Dt. This approach, called phase sensitive or

quadrature detection, enables the carrier to be placed at the center of the spectrum.

Simultaneous quadrature detection is commonly achieved by mixing a detected

signal with a fixed-frequency reference signal and the same reference signal phase

shifted by 90�, or a cosinusoidal reference. The output of the phase-sensitive

detector is two signals, differing in phase by 90�, containing frequency components
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of the original signal oscillating at the sum and difference of the reference fre-

quency with the original frequencies. The sum frequencies are typically filtered

out using a low-pass filter. While quadrature detection enables the sign of frequen-

cies to be determined unambiguously, while sampling at 1/Dt, it requires just

as many data samples as single-phase detection since it samples the signal twice

at each 1/Dt interval, while single-phase detection samples once at each

1/2Dt interval.

2.1 Oversampling

The Nyquist theorem places a lower bound on the sampling rate, but what about

sampling faster? It turns out that sampling faster than the reciprocal of the

spectral width, called oversampling, can provide some benefits. One is that the

oversampling increases the dynamic range, the ratio between the largest and

smallest (non-zero) signals that can be detected [3, 4]. Analog-to-digital (A/D)

converters employed in most NMR spectrometers represent the converted

signal with fixed binary precision, e.g., 14 or 16 bits. A 16-bit A/D converter

can represent signed integers between �32,768 and þ32,767. Oversampling by

a factor of n effectively increases the dynamic range by sqrt(n). Another benefit
of oversampling is that it prevents certain sources of noise that are NOT band-

limited to the same extent as the systematic (NMR) signals from being aliased

into the spectral window.

2.2 How Long Should One Sample?

For signals that are stationary, that is their behavior doesn’t change with time, the

longer you sample the better the sensitivity and accuracy. For normally distributed

random noise, the signal-to-noise (S/N) ratio improves with the square root of the

number of samples. NMR signals are rarely stationary, however, and the signal enve-

lope typically decays exponentially in time. For decaying signals, there invariably

comes a time when collecting additional samples is counter-productive, because the

amplitude of the signal has diminished below the amplitude of the noise, and

additional sampling only serves to reduce S/N. The time 1.3 � R2, where R2 is

the decay rate of the signal, is the point of diminishing returns, beyond which

additional data collection results in reduced sensitivity [5]. It makes sense to sample

at least this long in order to optimize the sensitivity per unit time of an experiment.

However, limiting sampling to 1.3 � R2 results in a compromise. That’s because

the ability to distinguish signals that have similar frequencies increases the

longer one samples. Intuitively this makes sense because the longer two signals

with different frequencies evolve, the greater the difference in their values at a
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specific time. Thus resolution, the ability to distinguish closely-spaced frequency

components, is largely related to the longest time sample.

3 Sampling in Multiple Dimensions

While the FTNMR experiment of Ernst and Anderson was the seminal development

behind all of modern NMR spectroscopy, it wasn’t until 1971 that Jean Jeener

proposed a strategy for parametric sampling of a virtual or indirect time dimension

that formed the basis for modern multidimensional NMR [6], including applications

to magnetic resonance imaging (MRI). In the simplest realization, an indirect time

dimension can be defined as the time between two RF pulses applied in an NMR

experiment. The FID is recorded subsequent to the second pulse, and because it

evolves in real time its evolution is said to occur in the acquisition dimension.

A given experiment can only be conducted using a single value of the time interval

between pulses, but the indirect time dimension can be explored by repeating the

experiment using different values of the time delay. When the values of the time

delay are systematically varied using a fixed sampling interval, the resulting

spectrum as a function of the time interval can be computed using the DFT along

the columns of the two-dimensional data matrix, with rows corresponding to

samples in the acquisition dimension and columns the indirect dimension. General-

ization of the Jeener principle to an arbitrary number of dimensions is straightfor-

ward, limited only by the imagination of the spectroscopist and the ability of the

spin system to maintain coherence over an increasingly lengthy sequence of RF

pulses and indirect evolution times.

3.1 Quadrature Detection in Multiple Dimensions

Left ambiguous in the discussion above of multidimensional NMR experiments is

the problem of frequency sign discrimination in the indirect dimensions. Because

the indirect dimensions are sampled parametrically, i.e., each indirect evolution

time is sampled via a separate experiment, the possibility of simultaneous quadra-

ture detection is not available. Quadrature detection in the indirect dimension of a

two-dimensional experiment nonetheless can be accomplished by using two experi-

ments for each indirect evolution time to determine two orthogonal responses. This

approach was first described by States, Haberkorn, and Ruben, and is frequently

referred to as the States method [7]. Alternatively, oversampling could be used by

sampling at twice the Nyquist frequency while rotating the detector phase through

0�, 90�, 180�, and 270�, an approach called time-proportional phase incrementation

(TPPI). A hybrid approach is referred to as States-TPPI. Processing of States-TPPI

sampling is performed using a complex DFT, just as for States sampling, while

TPPI employs a real-only DFT.
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3.2 Sampling Limited Regime

An implication of the Jeener strategy for multidimensional experiments is that

the length of time required to conduct a multidimensional experiment is

directly proportional to the total number of indirect time samples (times two for

each indirect dimension if States or States-TPPI sampling is used). In experiments

that permit the spin system to return close to equilibrium by waiting on the order

of T1 before performing another experiment, sampling along the acquisition

dimension effectively incurs no time cost. Sampling to the Rovnyak limit

(1.3 � R2) in the indirect dimensions places a substantial burden on data collec-

tion, even for experiments on proteins with relatively short relaxation times.

Thus a three dimensional experiment for a 20-kDa protein at 14 T (600 MHz

for 1H) exploring 13C and 15N frequencies in the indirect dimensions would

require 2.6 days in order to sample to 1.3 � R2 in both indirect dimensions.

A comparable four-dimensional experiment with two 13C (aliphatic and carbonyl)

and one 15N indirect dimensions would require 137 days. As a practical matter,

multidimensional NMR experiments rarely exceed a week, as superconducting

magnets typically require cryogen refill on a weekly basis. Thus multidimensional

experiments rarely achieve the full potential of the resolution afforded by super-

conducting magnets. The problem becomes more acute with very high magnetic

fields. The time required for data collection in a multidimensional experiment to

fixed maximum evolution times in the indirect dimensions increases with

the increase in magnetic field raised to the power of the number of indirect

dimensions. The same four-dimensional protein NMR experiment performed at

21.2 T (900 MHz for 1H), sampled to 1.3 � R2, would require about 320 days.

NUS approaches have made it possible to conduct high resolution 4D experiments

that would otherwise be impractical [45].

While methods of spectrum analysis capable of super-resolution exist, that is,

methods that can achieve resolution greater than 1/tmax, the most common of these,

linear prediction (LP) extrapolation, has substantial drawbacks. LP extrapolation is

used to extrapolate signals beyond the measured interval. While this can dramati-

cally suppress truncation artifacts associated with zero-filling as well as improve

resolution, because LP extrapolation implicitly assumes exponential decay it can

lead to subtle frequency bias when the signal decay is not perfectly exponential [8].

This bias can have detrimental consequences for applications that require the

determination of small frequency differences, such as measurement of residual

dipolar couplings (RDCs).

4 Non-Fourier Methods of Spectrum Analysis

The DFT, strictly speaking, requires data sampled at uniform intervals. Thus the

development of NUS methods to avoid the sampling limited regime in multidimen-

sional NMR closely parallels the development of non-Fourier methods of spectrum
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analysis capable of treating data that have been collected at nonuniform intervals.

One of the first methods to be employed in NMR in conjunction with NUS is

maximum entropy (MaxEnt) reconstruction [9, 10]. MaxEnt reconstruction seeks

that spectrum containing the least amount of information that is still consistent

with the measured data. It makes no assumption regarding the nature of the

signal, and thus is suitable for application to signals characterized by non-

exponential decay (non-Lorentzian line shapes). A host of similar methods

employ functionals other than the entropy to regularize the spectrum, for example

the l1-norm [11, 12]. Another class of methods that can reconstruct frequency

spectra from data that are sampled nonuniformly assume a model for the data.

Bayesian [13] and maximum likelihood [14, 15] (MLM) methods both assume

the signal can be described as a sum of exponentially decaying sinusoids, and can

be used either to reconstruct a frequency spectrum or to determine a list of

frequency components and their characteristics; for this reason these methods

are often described as being parametric. A method that is intermediate between

the parametric methods that assume a model for the signal and regularization

methods that do not is a method called multidimensional decomposition [16]

(MDD). It assumes that frequency components in multidimensional spectra can

be decomposed into a vector product of one-dimensional lineshapes. The

approach is related to principle component analysis, and has been utilized in

the field of analytical chemistry and chemometrics (where it is called PARAFAC

[17]); a unique decomposition exists only for spectra that have three or more

dimensions.

4.1 “DFT” of NUS Data and the Point-Spread Function

From the definition of the DFT, it is clear that the Fourier sum can be modified

by evaluating the summand at arbitrary frequencies rather than uniformly

spaced frequencies. Kozminksi and colleagues have proposed utilizing this

approach for computing frequency spectra of NUS data [18]; however,

strictly speaking it is no longer properly called a Fourier transformation of the

NUS data. Consider the special case where the summand in (1) is evaluated for

a subset of the normal regularly-spaced time intervals. An important character-

istic of the DFT is the orthogonality of the basic functions (the complex

exponentials),

X

N�1

n¼0

e�2piðk�k0Þn=N ¼ 0; k 6¼ k0; (2)

when the summation is carried out over a subset of the time intervals. Some of the

values of n indicated by the sum in (2) are left out, and the complex exponentials are
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no longer orthogonal. An implication is that frequency components in the signal

interfere with one another when the sampling is nonuniform.

Consider now NUS data sampled at the same subset of uniformly spaced times,

but supplemented by the value zero for those times not sampled. Clearly the DFT

can be applied to this augmented data, but it is not the same as “applying the DFT

to NUS data.” It is a subtle distinction but an important one. What is frequently

referred to as the DFT spectrum of NUS data is not the spectrum of the NUS

data but the spectrum of the zero-augmented data. The differences between the

DFT of the zero-augmented data and the spectrum of the signal are mainly the

result of the choice of sampled times, and are called sampling artifacts. While the

DFT of zero-augmented data is not the spectrum we seek, it can sometimes be

a useful approximation if the sampled times are chosen carefully to diminish

the sampling artifacts.

The application of the DFT to NUS data has parallels in the problem of

numerical quadrature on an irregular mesh, or evaluating an integral on a set of

irregularly-spaced points [19]. The accuracy of the integral estimated from

discrete samples is typically improved by judicious choice of the sample points,

or pivots, and by weighting the value of the function being integrated at each of

the pivots. For pivots (sampling schedules) that can be described analytically, the

weights correspond to the Jacobian for the transformation between coordinate

systems (as for the polar FT, discussed below). For sampling schemes that cannot

be described analytically, for example those given with a random distribution, the

Voronoi area (in two dimensions; volume in three dimensions, etc.) provides a

useful set of weights [20]. The Voronoi area is the area occupied by the set of

points around each pivot that are closer to that pivot than to any other pivot in the

NUS set.

Under certain conditions the relationship between the DFT of the zero-aug-

mented NUS data and the true spectrum has a particularly simple form. If the

sampling is restricted to the uniformly-spaced Nyquist grid (also referred to as the

Cartesian sampling grid) and there exists a real-valued sampling function with

the property that when it multiplies a uniformly sampled data vector, element-

wise, the result is the zero-augmented NUS data vector, then the DFT of the zero-

augmented NUS data is the convolution of the DFT spectrum of the uniformly

sampled data with the DFT of the sampling function. The sampling function has the

value 1 for times that are sampled and zero for times that are not. The DFT of the

sampling function is variously called the point-spread function (PSF), the impulse

response, or the sampling spectrum.

The PSF provides insight into the locations and magnitudes of sampling artifacts

that result from NUS, and it can have an arbitrary number of dimensions, corres-

ponding to the number of dimensions in which NUS is applied. The PSF typically

consists of a main central component at zero frequency, with smaller non-zero

frequency components. Because the PSF enters into the DFT of the zero-augmented

spectrum through convolution, each non-zero frequency component of the PSF

will give rise to a sampling artifact for each component in the signal spectrum,

with positions relative to the signal components that are the same as the relationship
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of the satellite peaks in the PSF. The amplitudes of the sampling artifacts will be

proportional to the amplitude of the signal component and the relative height of the

satellite peaks in the PSF. Thus the largest sampling artifacts will arise from the

largest-amplitude components of the signal spectrum. The effective dynamic range

(ratio between the magnitude of the largest and smallest signal component that can

be unambiguously identified) of the DFT spectrum of the zero-augmented data can

be directly estimated from the PSF for a sampling scheme as the ratio between the

amplitude of the largest non-zero frequency component and the amplitude of the

zero-frequency component.

Using NUS approaches to reconstruct a fully-dimensional spectrum invariably

introduces sampling artifacts that are characteristic of the NUS strategy employed.

Characteristic ridge artifacts emanating from peaks in back-projection reconstruc-

tion (BPR) spectra (described below) that were initially believed to be artifacts of

back projection were instead demonstrated to be characteristic of radial sampling

by using MaxEnt reconstruction to process radially-sampled data: the MaxEnt

spectrum contained essentially identical ridge artifacts [44]. While spectral recon-

struction methods attempt to diminish sampling artifacts in the reconstructed

spectrum, their ability to suppress sampling artifacts is limited by the presence of

noise. It is thus important to have an understanding of the nature of sampling

artifacts that is independent of the method used to reconstruct the spectrum.

Provided that sampling is restricted to a uniform Cartesian grid (arbitrary sampling

schemes can be treated using successively fine grids) and one can define a real-

valued sampling function that has the value one when a sample is collected and zero

when it is not collected, sampling artifacts arise from the convolution of the impulse

response or PSF with the true spectrum. The PSF is simply given by the DFT of the

sampling function. PSFs typically exhibit a major peak at zero frequency, with

satellite peaks of varying intensity at non-zero frequencies. Using the DFT to

process NUS data, the resulting spectrum corresponds exactly to the convolution

of the PSF with the true spectrum (Fig. 1). Methods such as MaxEnt reconstruction

suppress the magnitude of sampling artifacts, but they appear at the same locations

as found in the DFT spectrum (Fig. 2).

In addition to helping to specify the frequencies of sampling artifacts (which will

depend on the frequencies contained in the signal being sampled as well as the

sampling scheme), the PSF helps to specify the magnitudes of the sampling

artifacts, as discussed above. While MaxEnt or other methods of spectrum analysis

that attempt to deconvolve the PSF can improve the dynamic range, sampling

schemes with PSFs containing smaller satellite peaks (relative to the central

component) will give rise to smaller sampling artifacts.

An implication of restricting the sampling function to being a real vector is

that if quadrature detection is employed in the indirect dimensions, e.g., States-

Haberkorn-Ruben, then all quadrature components must be sampled for a given

set of indirect evolution times. If they are not all sampled, the sampling func-

tion is complex, and the relationship between the DFT of the NUS data, the

DFT of the sampling function, and the true spectrum is no longer a simple

convolution.
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Fig. 1 The DFT of a decaying sinusoid (a, b) and a sampling function (c, d) and their multiplica-

tion in the time domain (e) resulting in their convolution in the frequency domain (f). The DFT of

the sampling function (f) is the PSF

10x

a b

Fig. 2 (a) nuDFT vs (b) MaxEnt reconstruction applied to the same data. The inset in B shows

a tenfold expansion of the baseline
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5 Nonuniform Sampling: A Brief History

5.1 The Accordion

It was recognized soon after the development of FT NMR that one way to avoid the

sampling limited regime in multidimensional situations is to avoid collecting

the entire Nyquist grid in the indirect time dimensions. The principal challenge to

this idea was that methods for computing the multidimensional spectrum from

nonuniformly sampled data were not widely available. In 1981 Bodenhausen and

Ernst introduced a means of avoiding the sampling constraints associated with

uniform parametric sampling of two indirect dimensions of three-dimensional

experiments, while also avoiding the need to compute a multidimensional spectrum

from an incomplete data matrix, by coupling the two indirect evolution times [21].

By incrementing the evolution times in concert, sampling occurs along a radial

vector in t1�t2, with a slope given by the ratio of the increments applied along each

dimension. This effectively creates an aggregate evolution time t ¼ t1 þ a*t2 that
is sampled uniformly, and thus the DFT can be applied to determine the frequency

spectrum. According to the projection-cross-section theorem, this spectrum is the

projection of the full t1�t2 spectrum onto a vector with angle a in the f1�f2 plane.
Bodenhausen and Ernst referred to this as an “accordion” experiment. Although

they did not propose reconstruction of the full f1�f2 spectrum from multiple

projections, they did discuss the use of multiple projections for characterizing the

corresponding f1�f2 spectrum, and thus the accordion experiment is the precursor to

more recent radial sampling methods that are discussed below. Because the coupling

of evolution times effectively combines time (and the corresponding frequency)

dimensions, the accordion experiment is an example of a reduced dimensionality

(RD) experiment.

5.2 Random Sampling

The 3D accordion experiment has much lower sampling requirements because it

avoids sampling the Cartesian grid of (t1, t2) values that must be sampled in order

to utilize the DFT to compute the spectrum along both t1 and t2. A more general

approach than the accordion experiment is to eschew regular sampling altogether.

A consequence of this approach is that one cannot utilize the DFT to compute the

spectrum, so some alternative method capable of utilizing nonuniformly sampled

data must be employed. In seminal work, Laue and collaborators introduced the use

of MaxEnt reconstruction to compute the frequency spectrum from nonuniformly

sampled data [22]. In analogy with the concept of matched filter apodization for

maximizing signal-to-noise ratio (S/N), Barna et al. utilized random sampling that

was exponentially biased to short times, so that the sampling distribution matched

the decay of the signal envelope. The concept of biased random sampling was
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further generalized to J-modulated experiments (cosine-modulated exponential decay)

and constant-time experiments (no decay) by Schmieder et al. [32, 33] While the

combination of biased random sampling and MaxEnt reconstruction provided high

resolution spectra with dramatic reductions in experiment time compared to conven-

tional uniform sampling because it employs samples collected at long evolution times

without the need to sample all uniformly-spaced shorter times, the approach was not

widely adopted, no doubt because neither MaxEnt reconstruction nor NUSwas highly

intuitive. Nevertheless a small cadre of investigators continued to explore novel NUS

schemes in conjunction with MaxEnt reconstruction throughout the 1990s.

5.3 RD, Redux

The first RD experiment was the accordion experiment. In the original accordion

experiment one indirect dimension represented chemical shift evolution while the

second indirect dimension encoded a mixing time designed to measure chemical

exchange. Although this experiment established the foundation for a host of

subsequent RD experiments, most of which deal exclusively with chemical shift

evolution, its utility for measuring relaxation rates and other applications is still

being developed [23, 24]. Even though it was clear from the initial description of

the accordion experiment that the method was applicable to any 3D experiment, it

was nearly a decade before it was applied to a 3D experiment where both indirect

dimensions represented chemical shifts [25, 26]. This application emerged as

a consequence of newly-developed methods for isotopic labeling of proteins that

enabled multinuclear, multidimensional experiments, with reasonable sensitivity,

for sequential resonance assignment and structure determination of proteins. The

acquisition of two coupled frequency dimensions, however, introduces some diffi-

culties. The main problem is that the two dimensions being co-evolved are mixed

and must be deconvoluted before any useful information can be extracted. Since the

evolution linearly combines the two dimensions, their frequencies are “mixed” in

the spectrum in a linear manner as well. The number of resonances observed in the

lower dimensional spectrum depends on the number of linked dimensions. Thus, if

two dimensions are linked, the RD spectrum will contain two peaks per resonance

of the higher dimensional spectrum, whereas if three dimensions are coupled, each

of the above two peaks will be split by the second frequency resulting in four

resonances and so on. The position of the peaks in the spectrum can be used to

extract the true frequency of the resonances in the spectrum. The problem obviously

becomes more complicated as the number of resonances is increased. If overlap can

be avoided, however, it is possible to reduce experimental time drastically. Among

the weaknesses of this approach are sensitivity losses, associated with both peak

splitting and relaxation losses, which effectively limit the number of dimensions

that can be coupled for a given molecular size.

An extension of RD was presented by Kim and Szyperski [27] in 2003 in

which they used a “G-matrix” to combine appropriately the hypercomplex data
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of arbitrary dimensionality to produce “basic spectra.” These spectra are much less

complicated than the RD projections and the known relationship between the

various patterns can be used to extract true chemical shifts (via nonlinear least-

squares fitting). Combination of the hypercomplex planes enables recovery of some

sensitivity that is otherwise lost in RD approaches due to peak splitting. A dis-

advantage is that the data are not combined in a higher dimensional spectrum so

that the sensitivity is related to that of each of the lower dimensional projections

rather than the entire dataset. GFT-NMR was developed contemporaneously with

advances in sensitivity delivered by higher magnetic fields and cryogenically

cooled probes, providing sufficient sensitivity to make GFT experiments feasible

for the first time, albeit using very concentrated protein samples (the GFT method

was demonstrated on a 2 mM sample of ubiquitin).

Broader appreciation for NUS was stimulated by a series of papers by Kupce and

Freeman, in which they utilized BPR from a series of experiments employing radial

sampling in t1/t2 to reconstruct the fully-dimensional f1/f2/f3 spectrum [28–32].

While the data sampling was equivalent to that employed by the accordion, GFT,

and RD experiments, the use of back-projection (by analogy to computerized

tomography) demonstrated the connection with the 3D spectrum conventionally

obtained by uniform sampling and DFT. Despite some drawbacks to radial sam-

pling (discussed below), the BPR approach was important because it provided

a useful heuristic for more general NUS approaches.

The principle underlying radial sampling in 3D experiments generalizes to higher

dimensions. For example, coupling of three indirect evolution times results in a pro-

jection of three dimensions onto a vector with one angle specifying the orientation

with respect to the t1/t2 plane, and one specifying the angle with respect to the t2/t3
plane. Two very similar approaches for circumventing sampling limitations associated

with uniform sampling in higher-dimensional experiments have been introduced to

achieve high resolution while employing prior knowledge to design sampling angles.

Chemical shift distributions expected for proteins can be used to determine a set

of radial sampling angles (projection angles) that will optimally resolve potential

overlap. Identification of frequencies in the projected spectra, together with know-

ledge of the projection angles, can be used to determine the (unprojected) frequencies

in the orthogonal coordinate system of the fully-dimensional experiment.

In addition to GFT and BPR, a host of other methods can be applied to radially-

sampled data; like BPR, these methods reconstruct the fully-dimensional spectrum.

Zhou and colleagues employed radial FT [28] to process data collected along concen-

tric rings in t1/t2 [29]. MLMmethods that fit a model (typically consisting of a sum of

exponentially-damped sinusoids) can also be used to analyze radially sampled data,

as can regularization methods that do not model the signal (e.g., l1-norm, MaxEnt).

5.4 The NUS Explosion

Since the turn of the twenty-first century, there has been a great deal of effort devoted

to developing novel NUS strategies for multidimensional NMR. A recurring theme
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has been the importance of irregularity or randomness. Approaches involving various

analytic sampling schemes (triangular, concentric rings, spirals) as well as novel

random distributions (Poisson gap) have been described.

6 General Aspects of Nonuniform Sampling

We will contrast different approaches to NUS that have been applied to multi-

dimensional NMR in a moment, but we first discuss some characteristics of NUS

that are general and apply to all NUS approaches.

6.1 On-Grid vs Off-Grid Sampling

NUS schemes are sometimes characterized as on-grid or off-grid. Schemes that

sample a subset of the evolution times normally sampled using uniform sampling at

the Nyquist rate (or faster) are called on-grid. In schemes such as radial, spiral, or

concentric ring, the samples do not fall on the same Cartesian grid. However, one can

define a Cartesian grid with spacing determined by the precision with which evolution

times are specified (discussed below). Alternatively, “off grid” sampling schemes can

be approximated by “aliasing” (this time in the computer graphics sense) the evolution

times onto a Nyquist grid, without greatly impacting the sampling artifacts (Fig. 3).

6.2 Bandwidth and Aliasing

Bretthorst was the first to consider carefully the implications of NUS for bandwidth

and aliasing [30, 31]; his important contribution was published in a rather obscure

proceedings volume, but more recently a version has been published in a more

widely-accessible publication. Among the major points Bretthorst raises is that

sampling artifacts accompanying NUS can be viewed as aliases. This is demon-

strated in Fig. 4, where the spectrum obtained using uniform but deliberate under-

sampling is contrasted with the DFT spectrum for NUS data of the same signal.

6.3 Sampling Artifacts Are Spectral Aliases

However, as Bretthorst has pointed out, when the sampling (evolution) times are

specified with finite precision (as they are in all commercial instruments), one can

always define a uniform grid on which all the samples will fall. This grid spacing

will generally be finer than the Nyquist grid. The largest grid spacing sufficient

to encompass fully an arbitrary NUS scheme is given by the greatest common
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divisor (GCD) of the sampled times, which is at least as large as the precision and

may be larger, depending on the sampling scheme. As the samples are not uniform,

the Nyquist sampling theorem does not apply, so strictly speaking there is not

a bandwidth limiting the frequencies that can be unambiguously determined.

NUS artifacts are a form of aliasing, which can be appreciated by considering

uniform undersampling as a form of NUS. Figure 4 illustrates a one-dimensional

spectrum computed by applying the DFT to a synthetic signal sampled at the

Nyquist interval (Fig. 4a) and twice the Nyquist interval (Fig. 4b). The signal

sampled at twice the Nyquist interval has one alias of the true signal. Figure 4c

depicts the DFT spectrum of a signal sampled nonuniformly. Note the strongest

sampling artifact occurs precisely at the location of the undersampling artifact.

Higher order sampling artifacts can be ascribed to aliases due to undersampling by

greater degrees.
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Fig. 3 (a) Radial sampling (left) on-grid and (right) off-grid. Dots represent the Nyquist grid,

circles represent sampled data points. The solid lines indicate the angle of the radial vector

(projection axis). (b) Reconstruction of radially sampled data; on-grid sampling reconstructed

using MaxEnt (left) and off-grid sampled data reconstructed using PR (right)
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Since sampling artifacts are aliases, they can be diminished by increasing the

effective bandwidth. One way to do this is to decrease the GCD. As shown above

the GCD need not correspond to the spacing of the underlying grid. Introducing

irregularity is one way to decrease the GCD to the size of the grid, and this helps to

explain the usefulness of randomness for reducing artifacts from NUS schemes

[46]. The ability of randomness to reduce NUS aliasing artifacts is depicted in

Fig. 5. The left panels depict a two-dimensional sampling scheme (top) in which the

data are undersampled by a factor of four in each dimension, leading to multiple

instances of each true peak in the DFT spectrum (bottom). The middle and right

panels illustrate the effect of increasing amounts of randomness incorporated into

the sampling scheme on the spectral aliases. The incorporation of randomness can

suppress artifacts in otherwise regular sampling schemes, such as radial sampling,

as shown in Fig. 6.

Another way to increase the effective bandwidth is to sample from an oversampled

grid. We saw earlier that oversampling can benefit uniform sampling approaches

by increasing the dynamic range. When employed with NUS, oversampling has the

effect of shifting sampling artifacts out of the original spectral window [47]. This

effect is shown in Fig. 7.

Frequency

a

b

c

d

Fig. 4 Examples of aliasing

using uniform (a, b) and
nonuniform (c, d) sampling.

(a, b) DFT spectrum using

uniform sampling for a single

synthetic sinusoid; (a) at the
Nyquist rate, (b) at one-half
the Nyquist rate. (c, d) nuDFT
(DFT in which samples not

measured are set to zero) for

the same synthetic signal

using nonuniform sampling

from the Nyquist grid. In

(c) an alias appears at the

frequency expected using

deliberate undersampling by

a factor of 2, but with a height

slightly less than the true

(unaliased) peak. In (d) the
alias is greatly diminished,

a result of the greater number

of samples in the NUS set

spaced at the Nyquist interval
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7 A Menagerie of Sampling Schemes

While the efficacy of a particular sampling scheme depends on a host of factors,

including the nature of the signal being sampled, the PSF provides a useful first-

order tool for comparing sampling schedules. Figure 8 illustrates examples of

several common two-dimensional NUS schemes, together with PSFs computed for

varying levels of coverage (30%, 10%, and 5%) of the underlying uniform grid.

Some of the schemes are off-grid schemes, but they are approximated here by

mapping onto a uniform grid. As noted previously, on-grid approximation of off-

grid sampling schemes coupled with reconstruction methods such as MaxEnt gives

results that are very similar to off-grid sampling. The PSF gives an indication of the

distribution and magnitude of sampling artifacts for a given sampling scheme;

schemes with PSFs that have very low values other than the central component

give rise to weaker artifacts. Of course the PSF alone does not tell the whole story,

because it does not address relative sensitivity. For example, while the random

schedule has a PSF with very weak side-lobes, and gives rise to fewer artifacts

than a radial sampling scheme for the same level of coverage, it has lower sensitivity

for exponentially decaying sinusoids than a radial scheme (which concentrates more

samples at short evolution times where the signal is strongest). Thus more than one

metric is needed to assess the relative performance of different sampling schemes.

1

128

1 128 1 128

t2

t1 t1t1

1 128

Fig. 5 MaxEnt spectra for synthetic two-dimensional data consisting of five exponentially decay-

ing sinusoids plus noise. The left-most panels depict deliberate undersampling selecting every

fourth point along both dimensions. The center and right panels depict blurred undersampling,

RMS 0.625 and 1.25, respectively.White contour levels are plotted at multiples of 1.4 starting with

3% of the height of the highest peak
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7.1 Random and Biased Random Sampling

Exponentially-biased random sampling was the first general NUS approach

applied to multidimensional NMR [22]. By analogy with matched filter apodiza-

tion (which was first applied in NMR by Ernst, and maximizes the S/N of the

uniformly-sampled DFT spectrum), Laue and colleagues reasoned that tailoring

NUS so that the signal is sampled more frequently at short times, where the signal

is strong, and less frequently when the signal is weak, would similarly improve

S/N. They applied an exponential bias to match the decay rate of the signal enve-

lope; we refer to this as envelope-matched sampling (EMS). Generalizations of the

approach to sine-modulated signals, where the signal is small at the beginning,

and constant-time experiments, where the signal envelope does not decay, were

described by Schmieder et al. [32, 33].

1

128

1 128 1 128

t2

t1 t1t1
1 128

Fig. 6 1H/13C plane (15N chemical shift 121.96 ppm) from the HNCO spectrum of Ubiquitin,

using data collected at 9.4 T (400 MHz for 1H) on a Varian Inova instrument. Spectra were

computed using MaxEnt reconstruction and radial sampling using five projections with different

amounts of random “blurring” of the sampling schedule (RMS zero (none), 0.625 and 1.25,

left to right). Top: sampling schedules. Bottom: MaxEnt spectra. Contour levels are chosen as

in Fig. 5
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Fig. 8 (Continued)
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7.2 Triangular

Somewhat analogous to the rationale behind exponentially-biased sampling, Delsuc

and colleagues employed triangular sampling in two time dimensions to capture the

strongest part of a two-dimensional signal [34]. The approach is easily generalized

to arbitrary dimension.

7.3 Radial

Radial sampling results when the incrementation of evolution times is coupled, and

is the approach employed by GFT, RD, and back-project reconstruction methods.

Radial sampling has also found application in MRI. When a fully-dimensional

spectrum is computed from a set of radial samples (e.g., BPR, radial FT, MaxEnt),

the radial sampling vectors are typically chosen to somewhat uniformly span the

orientations from 0� to 90�. When the fully-dimensional spectrum is not reconstructed,

Fig. 8 A menagerie of sampling schemes. The first column depicts examples of two-dimensional

sampling schemes that have been employed in NMR, for 30% coverage of a 128 � 128 uniform

grid (i.e., approx. 4915 samples out of 16,384). Successive columns depict the PSF for 30%, 10%,

and 5% coverage. The PSFs are normalized to the value of the central component, and the color

coding is depicted on the far right. Sampling schedules depicted include (c) circular shell, (cr)
randomized circular, (r) radial, (Poisson) Poisson gap, (rand) random, (EMS) envelope-matched,

(BMS) beat-matched, (burst) bursty, and (triangle) triangular
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but instead the individual one-dimensional spectra (corresponding to projected

cross sections through the fully-dimensional spectrum) are analyzed separately,

the sampling angles are typically determined using a knowledge-based approach

(HIFI, APSY [35, 36]). Prior knowledge about chemical shift distributions in

proteins is employed to select sequentially radial vectors to minimize the likelihood

of overlap in the projected cross section.

The successes of methods like RD, GFT, and BPR notwithstanding, when the

aim is to reconstruct the fully-dimensional spectrum, radial sampling is a rather

poor approach compared to less regular sampling schemes. When the aim is not
to reconstruct the fully dimensional spectrum, but to analyze projections separately,

a complete separate and dedicated infrastructure for the analysis is required

(which comprises much of the effort behind GFT, HIFI, and APSY approaches).

The advantage of reconstructing the fully dimensional spectrum is that the data are

isomorphic with spectra computed using conventional uniform sampling methods,

and the abundance of graphical and analysis tools that exist for multidimensional

NMR data can be used to visualize and quantify the spectra. This includes XEASY

[37], NMRDraw [38], NMRViewJ [39], Sparky [40], and a host of automated

scripts for “strip” plots and sequential assignment of proteins. Figure 9 compares

the use of radial sampling with exponentially biased random sampling in two

indirect dimensions, using MaxEnt reconstruction to compute the 3D spectrum.

The top panels depict contour plots using one, two, and three radial sampling

vectors (from left to right). Below each panel are shown contour plots for spectra

computed using biased random sampling using the same number of samples as the

radial sampling example given directly above. The accuracy of the reconstruction

of the 3D spectrum from a set of sparse samples is dramatically better when biased

random sampling is used instead of radial sampling.

7.4 Concentric Rings

Coggins and Zhou introduced the concept of concentric ring sampling (CRS),

and showed that radial sampling is a special case of CRS [29]. They showed that

the DFT could be adapted to CRS (and radial sampling) by changing to polar

coordinates from Cartesian coordinates (essentially by introducing the Jacobian for

the coordinate transformation as weighting factors). Optimized CRS that linearly

increases the number of samples in a ring as the radius increases and incorporates

randomness were shown to provide resolution comparable to uniform sampling for

the same measurement time, but with fewer sampling artifacts than radial sampling.

They also showed that the discrete polar FT is equivalent to the result from

weighted back projection reconstruction.

7.5 Spiral

Spiral sampling is used mainly in MRI, where it permits reduced exploration of

k-space (and thus a reduction of scan time).
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7.6 Beat-Matched Sampling

The concept of matching the sampling density to the signal envelope, in order

to sample most frequently when the signal is strong and less frequently when it is

weak, can be extended to match finer details of the signal. For example, a signal

containing two strong frequency components will exhibit beats in the time domain

signal separated by the reciprocal of the frequency difference between the
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Fig. 9 HNCO spectra of ubiquitin. Top panels show the addition of 0�, 90�, and 30� projections of
the two jointly sampled indirect dimensions at a proton chemical shift of 8.14 ppm, reconstructed

using back projection reconstruction. Each projection contains 52 complex points; thus the total

number of complex points sampled from left to right is 52, 104, and 156. The lower panel shows
MaxEnt reconstruction using the same number of complex data points, distributed randomly along

the nitrogen dimension (constant time) and with an exponentially decreasing sampling density

decay rate corresponding to 15 Hz in the carbon dimension. A 1D trace at the position of the

weakest peak present in the spectrum is shown at the top of each spectrum (indicated by a dashed
line). The insets depict the sampling scheme
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components. As the signal becomes more complex, with more frequency compo-

nents, more beats will occur corresponding to frequency differences between the

various components. If one knows a priori the expected frequencies of the signal

components, one can predict the location of the beats (and nulls, or zero-crossings),

and tailor sampling accordingly. The procedure is entirely analogous to EMS,

except that the sampling density is matched to the fine detail of predicted time-

domain data, not just the signal envelope. We refer to this approach as beat-matched

sampling (BMS). Possible applications where the frequencies are known a priori

include relaxation experiments or multidimensional experiments in which scout

scans or complementary experiments provide knowledge of the frequencies. In

practice, BMS sampling schedules appear similar to EMS (e.g., exponentially

biased) schedules; however, they tend not to be as robust, as small difference in

noise level or small frequency shifts can have pronounced effects on the location of

beats or nulls in the signal.

7.7 Poisson Gap Sampling

Hyberts and Wagner [41] noted empirically that the distribution of the gaps in

a sampling schedule are also important. Long gaps near the beginning or end of

a sample schedule were particularly detrimental. They adapted an idea employed in

computer graphics, Poisson gap sampling, to generate sampling schedules that avoid

long gaps while ensuring the samples are randomly distributed. Similar distributions

can be generated using other approaches, for example quasi-random (e.g., Sobolev)

sequences. In addition to being robust, Poisson gap sampling schedules show

less variation with the random deviate than other sampling schemes. A potential

weakness of Poisson gap sampling, however, is that the minimum distance between

samples must not be too small, otherwise aliasing can become significant.

7.8 Burst Sampling

In burst or burst-mode sampling, short high-rate bursts are separated by stretches

with no sampling. It effectively minimizes the number of large gaps, while ensuring
that samples are spaced at the minimal spacing when sub-sampling from a grid.

Burst sampling has found application in commercial spectrum analyzers and com-

munications gear. In contrast to Poisson gap sampling, burst sampling ensures that

most samples are separated by the grid spacing to suppress aliasing [42].

7.9 Nonuniform Averaging

The concept underlying EMS or BMS can be applied to the amount of signal aver-

aging performed, in contexts where a significant number of transients are averaged
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to obtain sufficient sensitivity. In this sensitivity-limited regime, varying the num-

ber of transients in proportion to the signal envelope could be utilized in conjunc-

tion with uniform or nonuniform sampling in the time domain. An early application

of this idea in NMR employed uniform sampling with nonuniform averaging, and

computed the multidimensional DFT spectrum after first normalizing each FID by

dividing by the number of transients summed at each indirect evolution time [43].

Although the results of this approach are qualitatively reasonable provided that

the S/N is not too low, a flaw in the approach is that noise will not be properly

weighted. A solution is to employ a method where appropriate statistical weights

can be applied to each FID, e.g., MaxEnt or MLM reconstruction.

7.10 Random Phase Detection

We’ve seen how NUS artifacts are a manifestation of aliasing, and how randomi-

zation can mitigate the extent of aliasing. There is another context in which aliasing

appears in NMR, and that is determining the sign of frequency components (i.e., the

direction of rotation of the magnetization). An approach widely used in NMR to

resolve this ambiguity is to detect simultaneously two orthogonal phases (simulta-

neous quadrature detection). When simultaneous quadrature detection is not feasi-

ble, for example in the indirect dimensions of a multidimensional experiment,

oversampling by a factor of two together with placing the detector reference fre-

quency outside the spectral window spanned by the signal can resolve the ambigu-

ity (TPPI). Alternatively, two orthogonal phases can be detected sequentially

(sequential quadrature detection). The total number of samples required to resolve

the sign ambiguity is the same whether quadrature detection or oversampling is

employed. Single-phase detection using uniform sampling with random phase

(random phase detection, RPD) is able to resolve the frequency sign ambiguity

without oversampling, as shown in Fig. 10. This results in a factor of two reduction

in the number of samples required, compared to quadrature or TPPI detection

methods, for each indirect dimension of a multidimensional experiment. For

experiments not employing quadrature or TPPI detection, it provides a factor of

two increase in resolution for each dimension.

7.11 Optimal Sampling?

Any sampling scheme, whether uniform or nonuniform, can be characterized by its

effective bandwidth, dynamic range, resolution, sensitivity, and number of samples.

Some of these metrics are closely related, and it is not possible to optimize all of

them simultaneously. For example, minimizing the total number of samples (and

thus the experiment time) invariably increases the magnitude of sampling artifacts.

Furthermore, a sampling scheme that is optimal for one signal will not necessarily
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be optimal for a signal containing frequency components with different character-

istics. Thus the design of efficient sampling schemes involves tradeoffs. Simply put,

no single NUS scheme will be best suited for all experiments.

8 Concluding Remarks

The use of NUS in all its guises is transforming the practice of multidimensional

NMR, most importantly by lifting the sampling limited obstacle to obtaining the

potential resolution in indirect dimensions afforded by ultra high-field magnets.

NUS is also beginning to have tremendous impact in MRI, where even small

reductions in the time required to collect an image can have tremendous clinical

impact. For all the successes using NUS, our understanding of how to design

optimal sampling schemes remains incomplete. A major limitation is that we lack

a comprehensive theory able to predict the performance of a given NUS scheme

a priori. This in turn is related to the absence of a consensus on performance

metrics, i.e., measures of spectral quality. Ask any three NMR spectroscopists to

quantify the quality of a spectrum and you are likely to get three different answers.

Further advances in NUS will be enabled by the development of robust, shared

metrics. An additional hurdle has been the absence of a common set of test or

a b c
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f 2
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Fig. 10 Two-dimensional f1/f2 cross-sections from four-dimensional N,C-NOESY data for the

DH1 domain of Kalirin. One dimensional cross sections parallel to the f1 axis at the f2 frequencies
indicated by the colored lines are shown above each panel. Panel A is the real/real component of

the two dimensional DFT spectrum using quadrature detection in all dimensions. Panel B is the

DFT spectrum obtained using only the real/real/real component from the three indirect time

dimensions of the time domain data. Panel C is the maximum entropy spectrum obtained using

random phase detection. Panels B and C employ 1/8th the number of samples used in panel A
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reference data, which is necessary for critical comparison of competing approaches.

Once shared metrics and reference data are established, we anticipate rapid addi-

tional improvements in the design and application of NUS to multidimensional

NMR spectroscopy.
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