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Concepts in Projection-Reconstruction

Ray Freeman and Ēriks Kupče

Abstract The Achilles heel of conventional multidimensional NMR spectroscopy

is the long duration of the measurements, set by the Nyquist sampling condition and

the resolution requirements in the evolution dimensions. Projection-reconstruction

solves this problem by radial sampling of the evolution-domain signals, relying on

Bracewell’s Fourier transform slice/projection theorem to generate a set of projec-

tions at different inclinations. Reconstruction is implemented by one of three possible

deterministic back-projection schemes (additive, lowest-value, or algebraic), or by a

statistical model-fitting program. For simplicity the treatment focuses principally on

the three-dimensional case, and then extends the analysis to four dimensions. The

concept of hyperdimensional spectroscopy is described for dealing with even higher

dimensions.
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1 Introduction

We live in a three-dimensional world. Survival has ensured that our brains have

evolved a remarkable capacity to reconstruct a three-dimensional image based on

a pair of slightly different two-dimensional views of our environment. While we

take this apparent instance of projection-reconstruction entirely for granted, the

complexity of the general problem soon becomes apparent in the science of

robotics, when we attempt to teach a machine to construct a reliable visual model

of its surroundings. What for humans is an entirely automatic process needs to

be derived again from first principles for a perambulating robot. Concepts like

parallax and occultation have to be re-examined.

Art presents similar challenges. It was quite some time before artists discovered

perspective – the key to depicting a plausible representation of three dimensions

on a plane canvas. Nowhere is this challenge more critical than in sculpture, the

creation of three-dimensional artefacts that reconcile the visual and tactile senses.

It is reported that the famous French sculptor Auguste Rodin employed an unusual

stratagem – he placed his model on a turntable with strong back-lighting, concen-

trating his attention on the changing silhouettes as he rotated the table in small

steps. This scheme was certainly effective; his sculptures of the human form are

so life-like that his critics accused him of cheating by taking plaster casts of his

subjects. A good case can be made that Rodin was the true father of projection-

reconstruction.

Present-day computers greatly facilitate this transformation of two-dimensional

raw data into a three-dimensional image. Artefacts in a museum collection are often

irreplaceable, so that worldwide dissemination is quite impractical. However, if

a sequence of digital photographs is taken from several different points of view,

a program can be written to reconstruct an image that can be rotated about an axis to

give a lifelike representation of three spatial dimensions [1]. The resulting digital

archive is readily transferable to any desired location and can be scaled if necessary.

A more mundane application is to offer some article for sale on a popular website in

a form that conveys a three-dimensional impression. Google Earth offers street

views of many cities that give the perception of three-dimensional reality, while

more recent research [1] creates a true three-dimensional reconstruction of the local

street environment. Lost in a strange city, a person could in principle use a mobile

phone to photograph an adjacent building, pass on the information to a distant

computer, and receive confirmation of his present location (within a metre) and also

his orientation, followed by detailed directions for proceeding to his intended

destination. Face-recognition software employs related procedures to track a person

in a crowd.

X-Ray tomography [2] makes use of the same principles. A set of pictures of

X-ray absorption is taken at different angles of incidence around a circle. The

software uses this information to reconstruct an image of the internal organs of the

patient. Whereas traditional X-ray studies gave only a two-dimensional image on a

sheet of photographic film, tomography allows the surgeon to examine the internal
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structure as if in three spatial dimensions. At about the same time, and completely

independently, Paul Lauterbur [3] hit on the idea of medical imaging by recording

nuclear magnetic resonance absorption in an applied magnetic field gradient. By

combining the results of measurements at different inclinations of the magnetic

field gradient, he was able to reconstruct a map of the distribution of protons within

the sample. Soon the ‘sample’ became a human patient and the exciting science of

MRI was born.

Projection-reconstruction is not therefore a new phenomenon. Recently it has

become of particular interest to high-resolution NMR spectroscopists with the

realization [4] that a three-dimensional spectrum can be treated as a candidate

for reconstruction in just the same manner as a physiological sample, but with the

advantage that the ‘object’ is now a sparse distribution of discrete resonances, like

the stars in the night sky, not a continuous absorption medium. (Interestingly,

projection-reconstruction borrows at least two data processing schemes from earlier

work in radio astronomy.) Sparse sampling assumes particular importance as

spectra are recorded in higher and higher dimensions in order to study larger

and larger biomolecules, often with isotopic enrichment in both carbon-13 and

nitrogen-15. The prime concern is speed. This review focuses on data-sampling

methodology rather than the actual spectroscopic applications.

2 Three-Dimensional NMR

The basic principles of projection-reconstruction are most easily understood by

reference to the simplest case – three dimensional spectroscopy. Early experiments

in NMR were preoccupied with the inherently poor sensitivity. The duration of

a measurement was often dictated by the need for appreciable multiscan averaging.

On the other hand, multidimensional spectra must normally satisfy the Nyquist

sampling condition and the resolution requirements in each and every evolution

dimension, so the number of scans is inevitably large. In modern spectrometers,

particularly those equipped with a cryogenically cooled probe (receiver coil and

preamplifier), this usually ensures a satisfactory signal-to-noise ratio long before

all the evolution dimensions have been explored on a full Cartesian matrix. The

measurement duration is said to be ‘sampling-limited’ rather than ‘sensitivity-limited’.

The obvious remedy is to resort to some form of sparse sampling of evolution space.

Sacrifices must therefore be made. All sparse sampling regimes come at the

expense of spectral artefacts. Some introduce an element of randomness in the

selection of sampling co-ordinates, but although this can reduce the mean intensity

of artefacts, it does so at the expense of widespread proliferation. Better the devil

you know. Of the many possible schemes, radial sampling appears to offer the most

acceptable solution. Because the resulting artefacts are well defined, effective

suppression schemes can be devised. More important is the fact that radial sampling

in the time domain gives rise to a particularly simple observable result – projections

of the target spectrum in the frequency domain.
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The key ‘slice/projection’ theorem was first formulated in a radio astronomy

context by Bracewell [5] and later exploited in NMR by Nagayama et al. [6] and

Bodenhausen and Ernst [7, 8]. Consider the case of a typical plane S(F1,F2) from

a three-dimensional NMR spectrum S(F1,F2,F3). In order to obtain a projection at

some angle a, the theorem postulates that the time domain response should be

sampled along a slice through the origin at this same angle a. This requires that the
evolution parameters t1 and t2 be varied jointly [7–13]:

t1 ¼ t cosa; (1)

t2 ¼ t sina: (2)

Fourier transformation of this skew slice through two-dimensional evolution space

provides the required projection (Fig. 1).

Suppose that the NMR signal from a typical chemical site evolves at a frequency

OA in t1, and one from a second correlated site evolves at OB during t2. The
signal component that is observed after the second evolution stage is modulated

as cos(OA t1) cos(OB t2). As in the standard practice, quadrature detection is

employed in both evolution intervals, generating four signal components:

S1 ¼ cosðOA t1Þ cosðOB t2Þ; (3)

S2 ¼ sinðOA t1Þ cosðOB t2Þ; (4)

S3 ¼ cosðOA t1Þ sinðOB t2Þ; (5)

S4 ¼ sinðOA t1Þ sinðOB t2Þ: (6)

Fig. 1 The Bracewell slice/projection theorem. The Fourier transform of a slice through the

evolution dimension at an inclination a (left) is the projection of the corresponding frequency-

domain spectrum at the same angle a (right)
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After substitution of (1) and (2) the appropriate combinations of these terms creates

the four signals:

S1 � S4 ¼ cosðOAtcosaþ OBtsinaÞ; (7)

S2 þ S3 ¼ sinðOAtcosaþ OBtsinaÞ; (8)

S1 þ S4 ¼ cosðOAtcosa� OBtsinaÞ; (9)

S2 � S3 ¼ sinðOAtcosa� OBtsinaÞ: (10)

Hypercomplex Fourier transformation gives the sum and difference frequencies

(scaled accordingly) given by (OAcosa + OBsina) and (OAcosa � OBsina). Con-
sequently each measurement produces a pair of projections inclined at�a. Figure 2
shows five projections of a simulated two-dimensional spectrum containing seven

peaks. They were calculated as integrals of the intensities along rays perpendicular

to the projected trace. In the time domain the angle a must be positive whereas

in the frequency domain a can take on all angles 0� to 360�, although the projections
at a and a � 180� are of course identical.

Because the number of time-domain slices (and hence the number of recorded

projections) is relatively small, the density of sampling points is far lower than the

density used in the conventional experiment, which must examine every point on

the complete Cartesian grid while satisfying the Nyquist condition and the require-

ment for adequate resolution. This is where the critical time saving occurs. With

this limited radial sampling [13], the speed advantage increases by an order of

magnitude for each new evolution dimension beyond the first. This opens up the

Fig. 2 A set of five integral

projections of a simulated

two-dimensional spectrum

containing seven responses.

Note the situation (upper
right) where two responses

are eclipsed, giving a

projected response with an

increased integral in that

particular direction
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possibility of studying unstable molecules, or chemically exchanging systems, or

even some protein folding applications. Naturally the sensitivity falls off as the

measurement duration is reduced, but it is assumed here that sensitivity is not a

limiting factor.

3 Reconstruction

Projections are therefore relatively easily obtained, but the following reconstruction

stage is more challenging. Formally this involves the inverse Radon transform

[14, 15] – computing the three-dimensional spectrum S(F1,F2,F3) starting from

all the recorded projections. Inverse problems of this kind are notoriously tricky to

solve but an NMR spectrum is a favourable case because the target spectrum

comprises discrete resonances sparsely distributed in three dimensions rather than

a continuum of absorption. There are two general approaches to this problem –

deterministic and statistical [16].

3.1 Deterministic Reconstruction

The full three-dimensional spectrum S(F1,F2,F3) is built up by assembling individual

reconstructed planes S(F1,F2) as a function of the directly detected dimension F3. The

basic procedure for reconstructing S(F1,F2) is best described as ‘back-projection’.

Suppose that there are n one-dimensional projection traces available for the recon-

struction. Consider a typical trace P1, recorded at some arbitrary angle a. Every
peak in P1 is extended at right angles to the trace to form a set of parallel ridges

running across the plane S(F1,F2). These ridges have cross-sections defined by the

resonance lineshapes in P1. Another set of ridges from a differently oriented

projection trace P2 intersect with those from P1, and the point of intersection defines

the location of a potential correlation peak of the target spectrum. If the signals

are added there is a peak at the point of intersection (Fig. 3). A set of Pn back-

projections is measured. Usually these include a ¼ 0� and a ¼ 90� projections,

obtained by Fourier transformation of time-domain signals recorded with t2 ¼ 0 or

t1 ¼ 0, because they have a relatively high sensitivity [17]. When all the projections

are combined, the genuine correlation peaks become better defined in comparison

with the artefacts.

The ambiguity between genuine and false correlations can normally be resolved

in terms of the number of back-projected ridges that intersect at the same location.

A genuine correlation peak involves the intersection of n ridges – one from
each and every trace Pn. Intersections involving less than n ridges can normally

be taken to indicate false correlations, although in practice this criterion may not

be entirely clear cut, notably in situations where some projections contain very
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weak or missing resonances. Exactly how the intersecting ridges are combined is

determined by the back-projection algorithm used [18]. There are three principal

methods for reconstructing the two-dimensional spectrum S(F1,F2) by combining

back-projections. Each approach has strengths and disadvantages, and the choice is

mainly determined by the nature of the available experimental projection data.

3.1.1 The Additive Algorithm

Consider a typical pixel in the S(F1,F2) plane. If it corresponds to a genuine

correlation response there are n signal-bearing rays intersecting at that point, one

from each of the n projections. The simplest procedure is to add these n contribu-

tions to signal intensity of this pixel (or alternatively, calculate the arithmetic

mean). This has the advantage that all n traces contribute to the final signal-to-noise
ratio, just as in multiscan averaging. Figure 4 illustrates the improvement in spectral

quality as the number of measured projections n is increased from 6 through 18. Not

only does the signal-to-noise ratio increase, but artefacts also become less apparent,

indicating that increasing n is to be preferred over time-averaging identical traces.

One advantage is that the additive algorithm allows for the possibility that some

projection traces may be missing a particular resonance through poor sensitivity;

genuine correlation peaks then occur at lower-order (<n) intersections. Even in the
case where there is a very noisy projection trace with no detectable signals, the

additive reconstruction remains valid.

The additive algorithm has the advantage of being linear. The correct relative

intensities are normally preserved, and there is no spurious ‘improvement’ in the

signal-to-noise ratio in the reconstructed spectrum; the noise floor increases as

the square root of n. This algorithm proves to be most useful when n is relatively

large, for then the intensities of residual ridges and false cross-peaks are weak in

comparison with the genuine correlation peaks, and may fall below the general

level of the noise. However, the presence of many vestigial ridges in the skirts of

a reconstructed resonance distorts and broadens the derived line-shape. This can be

Fig. 3 The intersection of two back-projected ridges in the additive mode creates a correlation

peak but leaves undesirable ridges
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corrected by the application of a resolution enhancement function to the projection

traces [19] – a procedure known as filtered back-projection.

If necessary, a reprocessing program can be written to filter out artefacts on the

grounds that each true correlation peak carries with it a known, well-defined pattern
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166168170172174176178180182

100
110
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130
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166168170172174176178180182
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Fig. 4 Reconstructed spectra using the additive back-projection algorithm, showing the effect of

increasing the number of projections, (a) n ¼ 6, (b) n ¼ 12, (c) n ¼ 18. Six responses are detected

as the signal-to-noise ratio increases and the artefacts become less obtrusive. Residual ridges are

apparent in (a) but not in (c)
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of back-projection ridges. One such program, ‘CLEAN’, has been adapted from

a procedure first introduced in radio astronomy [20, 21] and later applied in NMR

spectroscopy [22, 23]. It presupposes that the line shapes in the reconstructed

spectrum are known, or can be measured. Then an iterative search selects the tallest

response in the reconstructed S(F1,F2) plane and subtracts it, along with its asso-

ciated back-projection ridges, storing the appropriate intensity and frequency

co-ordinates in a table. The next iteration stage is slightly less burdened with

artefactual ridges, and the next-tallest response is located and removed, along

with its associated ridges. The procedure continues until the detection threshold is

just above the base-plane noise, where further iteration becomes unproductive. The

only remaining danger is that extremely weak NMR responses, comparable with

the baseline noise, could be overlooked. The spectroscopist may then make direct

use of the correlation information stored in the table, or alternatively, reconstruct

a processed version of the spectrum.

3.1.2 The Lowest-Value Algorithm

In situations where artefacts are of more serious concern than any sensitivity

considerations, a more appropriate approach is to superimpose all n back-projection
rays, but retain only the lowest amplitude at each pixel [24, 25]. (More specifically,

the program selects the lowest absolute magnitude response and then reinstates

the original sign.) Then the only intersections that give rise to correlation peaks are

those involving one ridge from each trace. Intersections of less than n ridges

necessarily overlap with noise from a back-projection that carries no NMR signal,

causing any potential false correlation peak to be replaced by the base-plane noise.

A similar suppression occurs for all the extraneous ridges. For this reason the

lowest-value algorithm generates a very clean reconstruction, because each addi-

tional back-projection operation constrains the artefacts more effectively. Sensitivity

does not improve with n; indeed it is determined by the signal-to-noise ratio of the

weakest resonance in one of the projections. Consequently the reconstruction process

breaks down if one of the n traces has a missing resonance, unless this eventuality

is recognized and that particular projection is deliberately eliminated from the

reconstruction. The lowest-value algorithm is most useful when n is small. Its

inherent non-linearity has two consequences. First, the skirts of the reconstructed

peaks are clipped; instead of circular (or elliptical) intensity contours, some

polyhedral character is imposed, with 2n edges. Second, the character of the base-

plane noise is changed, because the algorithm selects the lowest noise amplitude at

each pixel.

However, the principal restriction of the lowest-value algorithm is to experi-

ments where all projections have an acceptable signal-to-noise ratio. Otherwise

problems arise because the algorithm discriminates against very weak signals

comparable with the noise. One bad apple spoils the whole barrel. At any given

pixel, the intensity is set by the one particular back-projected ray that just happens

to contribute a near-zero noise fluctuation. In this situation the degree of signal

Concepts in Projection-Reconstruction 9



suppression may vary from pixel to pixel across the region where a weak correla-

tion peak is expected, leading to break up of the peak profile.

3.1.3 Hybrid Schemes

One solution is to devise a methodology that combines the advantages of the

additive and lowest value procedures while avoiding the pitfalls of each. These

hybrid schemes seek to balance the advantages of accumulation and purging. An
initial accumulation stage combines the reconstructed spectra in the additive mode

to improve sensitivity, and then any artefacts are purged by the lowest-value

algorithm. The n experimental projections are divided into p independent batches,

usually of equal size k. These subsets are used to reconstruct p different versions

of the desired S(F1,F2) spectrum, enhanced in signal-to-noise ratio by applying the

additive algorithm to each batch in turn. Then the resulting p reconstructions are

combined pixel-by-pixel according to the lowest-value algorithm in order to mini-

mize the artefacts. The ratio k:p determines the balance between the conflicting

demands of sensitivity and artefact suppression. In the limit that k ¼ n this regime

reduces to pure accumulation; at the opposite extreme where p ¼ n this scheme

reduces to pure purging. This simple hybrid algorithm is effective, but is not

necessarily the optimum scheme.

In an attempt to improve on this hybrid scheme, a combinatorial approach has

been suggested [26]. Instead of accumulating p independent batches, this procedure
examines a much larger number of batches nCk ¼ n!=ðn� kÞ!k!, representing the

sums of all possible combinations of k amplitudes chosen from the available total n.
The perceived rationale for this combinatorial method is that processing an

extremely high number of batches should deliver a substantial sensitivity advantage

as the lowest-value operation is applied to all nCk sums. Since these calculations

must be repeated for every pixel in the S(F1,F2) plane, and for every plane as a

function of F3, the method is very computationally intensive.

Mandelshtam [27] has suggested a fast and very effective simplification. When all
possible combinations of n signals in batches of k have been examined to search for

the batch with the lowest sum, all these low-intensity itemsmust necessarily be found
in one particular batch, so the result is simply the sum of the k lowest-amplitude

signals. The slow combinatorial calculation can therefore be replaced by a single, fast

summation. All n back-projected rays that intersect at a given pixel are examined, and

the subset with the k lowest amplitudes is retained. As before, the adjustable

parameter k serves to define the desired balance between sensitivity and artefact

suppression. Clearly this is the most effective hybrid scheme discovered so far.

3.1.4 The Algebraic Algorithm

When the aim is to study the very crowded spectra characteristic of large biomo-

lecules such as proteins, the overriding concern is to reduce the amount of data to
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be processed. Then it makes sense to simplify the information in the raw projection

traces by eliminating all except the frequency information, ignoring intensities and

line shapes. Each projection trace is processed with a peak-picking routine and

all further processing is based solely on frequency information. The n projection

traces are replaced by n lists of frequencies, each list from a different projection at

a specific projection angle a. Here lies the real danger – peak-picking can miss

a resonance because it is lying on the shoulder of a stronger response, or simply

because a weak resonance lies below the arbitrary intensity threshold assumed by

the peak-picking program. Then the criterion for recognizing a genuine correlation

peak (n intersections) is compromised.

Apart from these caveats, the algorithm is an exercise in simple algebra [15, 28].

It selects one frequency from each of the n lists, thus defining n intersecting straight
lines running across the reconstruction plane S(F1,F2) at various inclinations a. By
solving the resulting n simultaneous equations, the algorithm determines whether or

not all these straight lines intersect at a point. In practice a certain degree of leeway
is allowed, based on the expected accuracy of the frequency measurements. The

process is continued until a positive outcome is detected – all n straight lines meet

within a small, predefined ‘area of uncertainty’. The ‘centre of gravity’ is taken as

the location of a genuine correlation peak. The frequency co-ordinates used in these

n-fold solutions are then saved, and the corresponding frequencies removed from

the frequency lists.

Problems arise because there may still be further genuine correlations that

involve less than n intersecting lines, owing to the shortcomings of the peak-picking

routine. An iterative scheme is contrived [29] which relaxes the requirement that

there be n intersections. The next stage examines combinations of frequencies

from the depleted projection lists, accepting all (n�1)-fold intersections as genuine

correlations, and transferring the corresponding frequency co-ordinates to the

‘accepted’ list. There is no absolute guarantee that these new solutions do not

contain an occasional false correlation, but the probability is minimized because

a large number of resonance frequencies associated with n-fold solutions has

already been removed from the list. A third level of iteration may then be initiated,

searching for possible genuine solutions of the order (n�2) and so on, until the

operator terminates the search.

The power of this algebraic algorithm stems from the very high degree of data

reduction achieved in the peak-picking stage, something that is indispensable when

dealing with spectra of very high complexity. A possible disadvantage is the lack of

a cast-iron criterion for identifying false correlations, but the saving grace is that for

large biomolecules an absolutely complete solution may not be necessary. Note

that although this mode of operation is correctly categorized as back-projection, it

does not involve ‘reconstruction’ in the spectroscopic sense. Correlations appear

as frequency co-ordinates in the ‘accepted’ list, with no opportunity for viewing

a reconstructed spectrum to make a judgement about reliability. This apparently

clean end-result is illusory because information about signal intensities compared

with levels of artefacts and noise has been intentionally disregarded. The method

has been applied successfully to multidimensional spectra of proteins [29].

Concepts in Projection-Reconstruction 11



3.1.5 Eclipsed Resonances

Complications arise whenever two responses are eclipsed – where the projection

has been recorded at an inclination a that happens to catch two peaks in the S(F1,F2)

plane in exact alignment. Consider first of all the common case where all responses

are positive. One example is illustrated in Fig. 2 (upper right). In the additive

algorithm, back-projection then makes a twofold contribution to the intensities

at both locations, distorting the relative intensities in the final reconstruction.

Fortunately the severity of this intensity error decreases with n. One remedy is to

discard the highest and lowest back-projected contributions to the intensity of

a given pixel on the grounds that they could be unreliable, then sum the rest. By

its very nature the lowest-value algorithm is more forgiving when there are eclipsed

peaks; an abnormally intense response in one projection is unlikely to affect the

corresponding pixel. Because the algebraic algorithm retains no intensity informa-

tion but relies solely on frequencies, it is essentially unaffected by eclipsed

back-projection.

There is a far more serious problem when the S(F1,F2) spectrum is composed of

both positive and negative resonances, since the eclipsed condition can lead to

cancellation (or severe attenuation) of the corresponding projected signal. This

interference between signals of opposite phase affects the three back-projection

algorithms in quite different ways. The additive scheme (with n large) should

tolerate occasional cancellation effects reasonably well, since if one direction

of back-projection proves ineffective this does little to falsify the overall recon-

struction. The lowest-value algorithm is far more sensitive to accidental cancella-

tion because destructive interference can seriously degrade the reconstruction.

A comprehensive solution to interference between eclipsed resonances is

provided by a subroutine that sets up the radial sampling in such a way as to

avoid all those projection directions a that would lead to eclipsed peaks [18]. It is

based on initial sampling with t2 ¼ 0 or t1 ¼ 0, generating the 0� and 90� projec-
tions after Fourier transformation. Two-dimensional convolution of the responses

along these axes produces a preliminary test map containing both genuine and false

correlation peaks. Projections that record not the integral, but the tallest signal on

the projection ray are known as ‘skyline projections’. These are computed at all

possible angles a, and the integral over each projection trace is plotted as a function
of a. This graph displays a constant integral except at inclinations where two or

more responses are eclipsed, when there is a sudden dip. The graph overestimates

the danger that genuine peaks are eclipsed because false correlation peaks make

contributions to the projections, but it can nevertheless be used to predict those

projection angles that avoid all possible cases of overlap.

There are alternative strategies for treating spectra with positive and negative

responses. They work best if the projection angles are chosen to avoid eclipsed

peaks. One method divides the projection information into two independent

sets – one with positive signals and the other with negative signals. These plus
and minus sets are used separately to reconstruct plus and minus S(F1,F2) planes,
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which are then recombined. Another scheme converts all the resonances in the

projections into positive peaks, thereby limiting the reconstruction to the absolute

magnitude mode.

Mandelshtam [27] has proposed a histogram-based algorithm for reconstructing

spectra with both positive and negative peaks, and it does not rely on avoiding the

eclipsed case. It retains only the most-likely contribution to the intensity at a given

pixel. An artificially broadened amplitude distribution function is derived from the

histogram representing all the intensity contributions. Although loosely related to

the sum of the individual amplitudes, the maximum of this function is quite

insensitive to cancellation effects. This scheme works better at higher values of n.
It has been successfully tested on simulated two-dimensional spectra.

3.1.6 Projected Linewidths

In a three-dimensional experiment it is quite likely that the nuclei evolving in t1 and
t2 have different spin–spin relaxation times T2

A and T2
B. This means that a response

in the S(F1,F2) plane may have very different natural linewidths in the two

frequency dimensions. With a skew slice through evolution space at an angle a,
Fourier transformation generates a projected response with a Lorentzian width

given by

Dn ¼ cosa ðpT2AÞ
� þ sina ðpT2BÞ

�
: (11)

This response is broader than at least one of the parent lines in F1 or F2. This may

suggest a choice of projection angle a that favours a narrower projected line if good
resolution is an important consideration.

3.2 Statistical Methods

An entirely different approach to reconstruction [16] is to find a model of the two-

dimensional spectrum S(F1,F2) that is compatible with all the measured projection

traces. In principle the iteration could start with an arbitrary or completely feature-

less model (zero intensity at every pixel), but usually it is better to employ some

‘prior knowledge’. In the vicinity of a correlation peak it is clear that there must

be some correlation between the intensities of adjacent pixels. Prior knowledge

may take the form of assumptions about lineshapes or the expected number of

resonances in the two-dimensional spectrum, or it might exploit hard evidence from

an earlier deterministic scheme. At the most primitive level, where each pixel in the

S(F1,F2) plane is fitted independently, these statistical programs converge very

slowly, but there is much to be gained by restricting the variable parameters to
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a number of discrete resonances with appropriate line-shapes, for example two-

dimensional Gaussians. There is an inherent danger in these assumptions because a

spurious spike in the noise could be ‘promoted’ to the status of a genuine correlation

peak – this particular wolf has been provided with sheep’s clothing. A standard

least-squares procedure may be used, but convergence to a global solution is faster

if the more sophisticated simulated annealing routine [30] is employed. The ‘maxi-

mum likelihood’ estimate [31], loosely related to least-squares fitting, seeks

to maximize the probability of observing the set of experimental projections Pn

given the current proposed S(F1,F2) map.

Maximum entropy reconstruction [32] is claimed to return a ‘maximally non-

committal’ solution. It calculates a small set of proposed S(F1,F2) maps that are

compatible with the measured projections within the experimental errors, and

selects the one with the least information content. For this reason it suppresses all

noise and artefacts in the reconstruction and is therefore prone to be misleading.

In another terminology, it rejects ‘false positives’ but is likely to return ‘false

negatives’. This particular feature suggests that the maximum entropy solution

could prove to be a useful starting point for more sophisticated statistical programs.

3.2.1 Bayesian Inference [33]

This is a learning system that tests the degree to which the suggested model ‘M’ is

consistent with the experimental data ‘D’, and any prior knowledge about the

problem ‘C’. It proposes an initial model two-dimensional spectrum S(F1,F2) in

the light of any prior assumptions, for example the expected lineshapes. This

defines a conditional prior probability P(M|C) that the model is correct based

only on the initial assumptions. The next stage updates P(M|C) in the light of the

experimental projection data D to give the posterior probability P(M|DC) reflecting
how well the proposed model is justified based on bothD and C. The next parameter

is the likelihood P(D|MC) that the experimental data D is consistent with the model

M and the prior assumptions C. Bayes’ theorem can be expressed as

P MjDCð Þ / P MjCð ÞP DjMCð Þ: (12)

It is now possible to maximize the posterior probability P(M|DC) to give the most

probable model for the two-dimensional spectrum S(F1,F2). There are

many methods available for such a computation, including the Markov chain

Monte-Carlo algorithm.

3.2.2 The Markov Chain Monte-Carlo Method

Monte Carlo methods originated in an ingenious approach to the complex problem

of evaluating the probability that a hand of Solitaire would come out successfully.

14 R. Freeman and Ē. Kupče



The solution was to set out several Solitaire hands at random and count the

proportion of successful hands. A Markov chain defines a sequence of states

where the ‘transition probability’ from the current state of a system to its next

state is dependent only on the value of the current state. The starting point can be

arbitrary but the chain must eventually reach a stationary distribution. It should not

get trapped in a loop, and must also retain some probability of jumping to the next

state. To avoid bias in the choice of starting conditions the initial set of results is

usually discarded, a procedure known as ‘burn in’. Confirmation of convergence of

the Markov chain is achieved by inspection of the trajectories to check that there is

no obvious remaining trend, or by running several independent simulations to

verify that the various solutions lie within a reasonable range.

One example of the NMR reconstruction problem employs the reversible-jump
Markov chain Monte-Carlo method [16]. It assumes that the model spectrum

S(F1,F2) is made up of a limited number m of two-dimensional Gaussian resonance

lines. Then m, the linewidths, intensities, and frequency co-ordinates are varied

until the Markov chain reaches convergence. The allowed transitions between the

current map M and the new map M’ comprise movement, merging or splitting of

resonance lines, and ‘birth’ or ‘death’ of component responses. Compatibility with

the experimental traces is checked by projecting M’ at the appropriate angles. The
procedure has been found to be stable and reproducible [16].

Some measure of the reliability of all these statistical methods can be obtained

by rerunning the programs with different initial conditions. It emerges that in

general the location of peaks in the reconstruction is well reproduced, but relative

intensities can sometimes vary appreciably. The possibility of false or missing

correlations suggests that, in principle, the aforementioned deterministic schemes

may be preferable.

4 Four-Dimensional Spectroscopy

When there is ambiguity in the three-dimensional spectrum, or where global

isotopic enrichment in 13C and 15N has been employed, a further evolution dimen-

sion may be introduced [18]. The problem can still be visualized as a cube in three-

dimensional evolution space, neglecting any representation of the real-time direct

acquisition dimension t4. The three evolution parameters are defined by

t1 ¼ t cosa cosb; (13)

t2 ¼ t sina cosb; (14)

t3 ¼ t sinb: (15)
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(These reduce to the expressions for three-dimensional spectra if b ¼ 0�.) After
Fourier transformation a cube that represents the evolution subspace S(F1F2F3) is

created, with the fourth frequency dimension F4 left to the imagination. In this

representation the simplest projections are the three ‘first planes’ F1F4 (where

t2 ¼ t3 ¼ 0), F2F4 (where t1 ¼ t3 ¼ 0), and F3F4 (where t1 ¼ t2 ¼ 0). Resonance

locations in one such plane are independent of peak positions in one of the other

planes. Normally these first planes do not provide enough information to solve the

reconstruction problem unambiguously. However they do generate accurate values

of the chemical shifts, they tend to have relatively good sensitivity, and they can be

‘borrowed’ from related NMR experiments if necessary. A second category of

projections is generated by varying two evolution parameters (say t1 and t2) in
step, while holding the third (t3) at zero. There are three such kinds of tilted

projections, at angles �a with b ¼ 0�, at �b with a ¼ 0�, and at �b with a ¼ 90�.
The third category comprises doubly-tilted projections (involving simultaneous

tilting through a and b) recorded when t1, t2, and t3 are incremented jointly. The

observed NMR signals are modulated as functions of the evolving chemical shifts

(OA, OB, and OC). There are now eight relevant time-domain expressions:

S1 ¼ cosðOAt cosacosbÞ cosðOBt sinacosbÞ cosðOCt sinbÞ; (16)

S2 ¼ cosðOAt cosacosbÞ cosðOBt sinacosbÞ sinðOCt sinbÞ; (17)

S3 ¼ cosðOAt cosacosbÞ sinðOBt sinacosbÞ cosðOCt sinbÞ; (18)

S4 ¼ cosðOAt cosacosbÞ sinðOBt sinacosbÞ sinðOCt sinbÞ; (19)

S5 ¼ sinðOAt cosacosbÞ cosðOBt sinacosbÞ cosðOCt sinbÞ; (20)

S6 ¼ sin OAt cosacosbð Þ cos OBt sinacosbð Þ sin OCt sinbð Þ; (21)

S7 ¼ sin OAt cosacosbð Þ sin OBt sinacosbð Þ cos OCt sinbð Þ; (22)

S8 ¼ sin OAt cosacosbð Þ sin OBt sinacosbð Þ sin OCt sinbð Þ: (23)

The treatment is a straightforward extension of the three-dimensional case outlined

in Sect. 2. There are four independent projections of the four-dimensional spectrum

S(F1F2F3F4), giving the frequencies of a typical peak symmetrically related in

two pairs:

OAcosacosbþ OBt sinacosbþ OCt sinb; (24)

OAcosacosb� OBt sinacosbþ OCt sinb; (25)

OAcosacosbþ OBt sinacosb� OCt sinb; (26)

OAcosacosb� OBt sinacosb� OCt sinb: (27)
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5 Hyperdimensional Spectroscopy

The treatment in Sect. 4 is readily extended to five dimensions [18, 34], but

the time factor begins to be critical for actual measurements. Drastic economies

in digitization must be made in all four evolution intervals before the experiment

becomes practically feasible. A five-dimensional experiment that employs only
16 complex time-domain samples in each of the four evolution periods, with

1 s allowed for (complex) signal acquisition and relaxation, would require

12 days to complete. Furthermore, there would be cumulative losses of magneti-

zation due to relaxation and pulse imperfections, and a fourfold overall signal

loss attributable to the √2 attenuation between successive stages. Even the

processing and storage of high-dimensional data begins to make excessive

demands on present-day computers. Although such an experiment is feasible in

practice, it is far better to consider an alternative mode for higher dimensional

spectra.

The new concept is called hyperdimensional NMR [35, 36]. Consider the case of

a ten-dimensional experiment, as might be contemplated for a ten-spin system

representing two adjacent aminoacids in a large biomolecule. Imagine the

corresponding virtual matrix comprising all ten orthogonal frequency dimensions.

There is no point in attempting to construct this matrix by means of an actual
ten-dimensional experiment, but it can be used as a conceptual framework for

combining lower-dimensional results. The key point is that (say) a three-dimensional

spectrum and a four-dimensional spectrum can be combined into a six-dimensional

spectrum provided they share one common frequency axis. (A minor assignment

problem arises if there are degenerate chemical shifts in the common dimension,

but there are relatively simple solutions to this difficulty [37]). Tacking together the

appropriate low-dimensional spectra on this imaginary framework allows any one

of the ten chemical sites to be correlated with any other; there are 45 pairwise

correlations of this kind. Note the irony that the results for a ten-dimensional

problem are only easily visualized as plane projections of this monster matrix.

The conventional procedure has always been manual cross-referencing of peaks

in the two independent low-dimensional spectra. In contrast, hyperdimensional

NMR combines these spectra directly, and then relates them to a virtual high-

dimensional matrix.

As a practical illustration, Fig. 5 shows 4 typical two-dimensional projections of

the ten-dimensional spectrum of a small 39-residue protein agitoxin, globally

enriched in 13C and 15N. All these spectra were obtained by combining three- and

four-dimensional experiments that were completed in a reasonably short time,

whereas the duration of the full ten-dimensional experiment would have been

completely unacceptable. These four planes have been selected from the full comple-

ment of 45 possible projections. Each of these spectra contains many cross-peaks

because there are many different pairs of adjacent amino acids.
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6 Conclusions

Projection-reconstruction is not a new idea. The brain performs hundreds of related

operations every second by constructing mental three-dimensional images based on

two slightly shifted two-dimensional views of the outside world. Applications in

other scientific fields – magnetic resonance imaging and X-ray tomography – are

well known. This review focuses on the data-sampling methods required to imple-

ment projection-reconstruction schemes designed to speed up multidimensional
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Fig. 5 Four typical planes chosen from 45 possible projections of a virtual ten-dimensional

matrix, representing the ten-dimensional spin systems in adjacent aminoacid residues of a small

protein, agitoxin. They show the correlations (a) N(i�1) to NH(i), (b) CH(i�1) to NH(i), (c) N(i)
to Ca(i), (d) Ca(i) to CO(i)
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NMR spectroscopy. Radial sampling of time-domain data is clearly an effective

sparse sampling route for this purpose. It relies on a well-proven theorem that the

Fourier transform of a skew slice through a two-dimensional time-domain function

is the projection of the corresponding frequency-domain function viewed at the

same angle. Although, as with all sparse sampling protocols, this scheme introduces

artefacts, these are well defined and can be suppressed very effectively. There are

basically four deterministic schemes to implement the reconstruction stage. It is

essential to match the mode of reconstruction to the appropriate experimental

situation – the additive scheme for sensitivity, the lowest-value program for artefact

suppression, the Mandelshtam hybrid algorithm for balancing the accumulation and

purging features, or the algebraic algorithm for complicated biochemical spectra.

On the whole the deterministic schemes are to be preferred over statistical model-

fitting procedures. Finally the review describes an effective way to deal with very

high dimensional cases – hyperdimensional spectroscopy. Note that the term is not

merely a codeword for experiments in higher dimensions, but a conceptual frame-

work for dealing with such systems and for extracting the appropriate information.
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