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Abstract Climate warming is strongest in winter and in northern ecosystems.
Ecological and biogeochemical impacts, however, depend mainly on soil tempera-
tures. Climate warming can contrastingly affect winter soil conditions across north-
ern biomes due to the crucial importance of snow cover: Increasing winter
precipitation results in soil warming in the arctic, while midwinter snowmelt events
can induce more severe soil frost in arctic and boreal ecosystems. Cold-temperate
ecosystems are projected to experience increased soil frost due to strongly reduced
snow cover no longer insulating the soil against still cold air temperatures. In cool-
temperate ecosystems, warming eventually causes the complete loss of soil frost.
Both pathways, soil warming and soil cooling, have important implications for
ecology and biosphere-atmosphere feedbacks: In arctic and boreal ecosystems,
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increased decomposition and mineralization allow for enhanced primary production,
but midwinter melting followed by frost and/or rain-on-snow events might counter-
act this trend. More variable surface temperatures can damage primary production,
and colder soil temperatures, due to reduced snow cover, can significantly decrease
decomposition in cold-temperate ecosystems. For cool-temperate ecosystems, wetter
winters could result in nutrient leaching, and altered dormancy patterns could cause
increased frost damage despite air warming. In summary, winter processes are
clearly relevant for the biosphere-atmosphere feedback, and even the sign of this
feedback, i.e., ecosystems acting as carbon sink or as carbon source, depends on
winter processes in temperate, boreal, and arctic ecosystems. This review concludes
that current knowledge is not sufficient to quantify this feedback with satisfactory
certainty. Important processes and the key uncertainties are identified, e.g., synchro-
nicity in above- versus belowground growing season; temporal hierarchies in eco-
logical processes such as the role of root damage and root activity for decomposition
of soil organic matter (“priming”); or shifts in plant species composition due to
winter climate change determining primary production as well as litter quantity and
decomposability. Evidently, sound projections of future ecosystem functioning and
biotic feedbacks to climate change require a comprehensive understanding of winter
ecological processes, which have so far too often been neglected.

1 Winter Climate Change

1.1 Air Temperature

Climate records and climate models consistently project polar amplification in air
temperature warming of the Northern Hemisphere, implying increased rates of
warming from tropical to polar regions (Stocker 2014). Furthermore, warming in
winter is expected to exceed warming in all other seasons (Stocker 2014). Winter
warming will exceed annual warming for arctic (app. 4.4 and 3.4 K, respectively),
boreal (app. 3.8 and 3.0 K, respectively), and temperate (app. 2.7 and 2.6 K,
respectively) ecosystems until 2100 according to 42 CMIP5 global models for the
RCP4.5 scenarios (Stocker 2014). However, occasional cold winter extremes will
continue to occur despite this general warming trend (Pachauri and Mayer 2015). For
Europe, such events might even increase in frequency as future warming of the Polar
Ocean might increase advection of polar air masses, causing cold extremes over
Europe (Petoukhov and Semenov 2010; Yang and Christensen 2012).

1.2 Precipitation

Winter precipitation is generally expected to increase, again, with largest increases
toward the poles (Stocker 2014). For Northern Asia, for instance, this increase is
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projected to be more than 50%, whereas summer precipitation is projected to hardly
change (Stocker 2014).

Ecologically more important than a general increase in precipitation amount,
however, are shifts in the form of precipitation. Snowfall is declining at the geo-
graphical margins of seasonal snowfall occurrence but increasing toward regions
with colder winters in North America (Kunkel et al. 2009). Likewise, snowfall in
Canada is increasing toward the North and decreasing toward the South of the
country (Mekis and Vincent 2011). Similar patterns are reported for Europe and
Japan (Scherrer and Appenzeller 2006; Takeuchi et al. 2008). Taken together,
winters in temperate regions are expected to become wetter, while winters in boreal
and arctic regions are expected to become snowier.

1.3 Snow

More than half (55%) of the land area of the Northern Hemisphere is influenced by
seasonal snow cover (Zhang et al. 2003). Snow cover, however, is declining by
5.3 days per decade since winter 1972–1973 (Choi et al. 2010). Largest decreases
occur in regions with winter mean air temperatures in the range of�5 to +5�C around
the mid-latitudinal coastal margins of the continents (Brown and Mote 2009). Snow
cover will continue to further shrink by 7% for RCP2.6 and by 25% in RCP8.5 by the
end of the twenty-first century for the multi-model average, with strongest changes in
advancing spring snowmelt (Brown and Mote 2009; Brutel-Vuilmet et al. 2013).

Snow depth and the snow water equivalent, however, are more sensitive to
snowfall amount than snow cover (Brown and Mote 2009). For Eurasia, for instance,
winter snow accumulation is currently increasing, but snowmelt is occurring earlier
and quicker (Bulygina et al. 2010). With regard to maximum snow depth, model
projections are mixed and come with little confidence (Stocker 2014). According to
available models, snow depth will increase or only marginally decrease in the coldest
regions, while annual maximum snow depth will decrease strongly closer to the
southern limit of the (formerly) seasonally snow-covered area (Brutel-Vuilmet et al.
2013; Demaria et al. 2016; Estilow et al. 2015; Raisanen 2008).

1.4 Soil Temperature

Many relevant ecological processes are driven by winter soil temperatures, e.g.,
biogeochemistry or overwintering of organisms (Kreyling 2010). Despite this high
ecological importance, soil temperatures are not even considered in the reports of the
Intergovernmental Panel on Climate Change (IPCC) apart from the projected deg-
radation of permafrost (Stocker 2014). Soil temperature shifts with climate change
are complex, because soil temperature depends in nontrivial ways both on air
temperature and precipitation changes as soils are protected from air frost events if
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the insulating snow cover is sufficiently deep and continuous (Groffman et al. 2001;
Sturm et al. 1997). This insulating power of snow is well known and can prevent
soils from freezing temperatures even considering winter conditions in boreal
regions (Isard and Schaetzl 1998). Already 30–40 cm of powder snow can effec-
tively decouple air and soil temperature (Sturm et al. 1997). However, the insulating
power of snow cover changes with the degradation of the snow. Compaction, for
instance, can completely remove its insulation power, and soils under ski pistes are
consequently much colder than outside the prepared areas (Rixen et al. 2004;
Steinbauer et al. 2017).

Decreased insulation by snow cover could expose soils to cold air temperatures
either overnight or during cold snaps, resulting in the apparent paradox of “colder
soils in a warmer world” (Groffman et al. 2001). In light of the ongoing and
projected changes in air temperature and snow cover/depth outlined above, this
phenomenon is to be expected for regions where air temperatures continue to drop
below zero degrees centigrade and snow cover is missing, i.e., focus on the temper-
ate regions formerly experiencing continuous snow cover but now falling out of the
seasonally snow-covered area (from here on referred to as cold-temperate). Here,
e.g., in Southern Canada, the Northeast United States, or southern Scandinavia and
northeastern Central Europe, soil minimum temperatures may actually become
colder, and frequency of freeze-thaw cycles is increasing with climate change
(Brown and DeGaetano 2011; Campbell et al. 2010; Henry 2008). Further south
(from here on referred to as cool-temperate), e.g., across large parts of Central
Europe, the increase in air temperature makes more than up for the decreasing
snow cover, and soil minimum temperatures are rising even stronger than mean air
temperatures, while soil freeze-thaw cycles are becoming less frequent (Kreyling
and Henry 2011).

Boreal and arctic regions might experience soil warming due to the insulating
effect of increased snow cover (Iijima et al. 2010). Here, however, temporal variabil-
ity of winter weather may become ecologically important if widespread snowmelt
events during winter increase in frequency, e.g., due to more frequent occurrence of
warm air masses over some Arctic regions in winter (Visbeck et al. 2001).

Another ecologically relevant scenario of winter precipitation change are
increases in the frequency of rain-on-snow events, which can cause the formation
of massive and gas-impermeable ice covers (Bieniek et al. 2018) and reduce the
insulation capacity of the snow cover (Martz et al. 2016).

2 Ecosystem Responses to Winter Climate Change

Winter processes can have substantial ecological effects on seasonally snow-covered
ecosystems, as originally demonstrated for the Arctic (Clein and Schimel 1995). We
have shown that winter climate can have stronger effects on dissolved and gaseous
carbon (C) emissions of a wet boreal forest than summer climate (Haei et al. 2013).
Likewise, temperate ecosystems are strongly shaped by seasonal cycles, with the
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winter season being a major ecological filter and driver (Campbell et al. 2005;
Kreyling 2010). Snow provides a relatively mild subnivean microclimate for plants,
animals, and soil beneath (Kausrud et al. 2008; Pauli et al. 2013). Changes in snow
cover, consequently, affect ecological processes. In particular, soil freezing in
response to decreased snow cover has been identified as crucial parameter which
can disrupt soil microbial activity (Bolter et al. 2005; Yanai et al. 2004), damage
plant roots (Tierney et al. 2001; Weih and Karlsson 2002), and lead to increased soil
nitrogen (N) leaching (Joseph and Henry 2009), increased soil trace gas losses
(Matzner and Borken 2008), decreased plant productivity (Schuerings et al. 2014),
and plant mortality (Schaberg et al. 2008; Buma et al. 2017). Freezing can also affect
soil physical processes directly by breaking up soil aggregates (Oztas and
Fayetorbay 2003) and by reducing soil water infiltration (Iwata et al. 2010).

Despite the fact that studies focusing on winter ecology report its high relevance,
comparably few ecological studies on the effects of climate change consider winter
at all (Fig. 1). More than two thirds of studies on ecological responses to climate
change in arctic ecosystems, where the importance of winter is hardly arguable,
ignore winter effects, and this share further increases for boreal and temperate
ecosystems (Fig. 1). This pattern appeared to change in 2010, when a strong increase
in climate impact studies in temperate and arctic ecosystems took winter into account
(Fig. 2). However, this increase did not sustain and the number of studies consider-
ing winter rather stagnated, in particular compared to the overall number of scientific
papers on climate change effects in these biomes (inserted panel in Fig. 2). The
following review of ecological responses to winter climate change is therefore
fragmentary. Primary production has been studied in some detail, but these studies
rather demonstrate high complexity in the relevant processes than a coherent trend
(Sect. 2.1). There is also quite some knowledge available on soil biotic activity,

Fig. 1 Published research on biogeochemical and ecological impacts of climate change separated
by papers dealing with effects of winter climate change (search string in ISI Web of Science:
¼((winter or frost or snow or freez�) and (“climate change” or “climatic change” or “global
warming” or “climate warming”) and (biogeochemi� or “primary product�” or “biomass” or
“decomposition” or “mineralization”) and (boreal or arctic or temperate)); articles only) versus
climate change in other seasons (search string in ISI Web of Science identical to the one above but
without “(winter or frost or snow or freez�) and”)

The Ecological Importance of Winter in Temperate, Boreal, and Arctic. . . 381



decomposition, and mineralization in response to the expected changes in winter
climate (Sect. 2.2). Little is published about nutrient leaching (Sect. 2.3), and a
critical lack of knowledge exists on the interplay of these three key ecological
aspects. The net effects of (winter) climate change on the C cycle, i.e., the biotic
feedback to climate change, can therefore hardly be assessed up to now (Sect. 3).

2.1 Primary Production

The general expectation of increased primary production with warming is used to
explain the greening or “shrubbification” of the Arctic over the past decades
(Elmendorf et al. 2012). This expectation appears sound as temperate, boreal, and
arctic plant species are clearly temperature-limited over winter (Larcher 2003) and as
elongation of the growing season increases primary production (Slayback et al.
2003). Furthermore, there is experimental evidence that increased snow depth
enhances plant growth of arctic shrubs (Krab et al. 2018). However, the recently
described “arctic browning” (Phoenix and Bjerke 2016) warns against naïve extrap-
olation of the “greening” trend. Increased fire frequency (Bret-Harte et al. 2013) or
pest outbreaks (Netherer and Schopf 2010) are potential explanations for this
reversed greening in some regions and at specific times. Winter processes offer
other explanations, as increased productivity with longer and warmer growing
seasons may be counteracted when (1) winter climate change leads to increased
soil freezing, when (2) warmer autumns or warm spells during winter lead to

Fig. 2 Temporal development of published research on biogeochemical and ecological impacts of
climate change separated by papers dealing with effects of winter climate change (main graph)
versus climate change effects in all seasons (inlay). Search strings in ISI Web of Science identical to
Fig. 1
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premature dormancy release and increased winter and spring frost damage, when
(3) winter warm spells expose plant organs to subsequent frost by melting the
insulating snow cover, when (4) winter rain events lead to ice encasement, or
when (5) wetter winters delay spring phenology.

1. It is well documented that increased depth and duration of soil freezing caused by
snowpack reductions adversely impact root vitality (Comerford et al. 2013;
Kreyling et al. 2012a; Reinmann and Templer 2018; Tierney et al. 2001),
photosynthesis (Göbel et al. 2019), shoot elongation (Comerford et al. 2013),
and N uptake by trees (Campbell et al. 2014). Root frost damage can even lead to
regional dieback of ecologically and economically important tree species, as the
example of Chamaecyparis nootkatensis (yellow cedar) in the Pacific Northwest
implies (Schaberg et al. 2008; Buma et al. 2017). For the cold-temperate regions
where soil frost is expected to increase in frequency and magnitude due to
reduced snow cover, growth and C sequestration in the deciduous forests might
be most adversely impacted by this projected shift in winter climate (Reinmann
et al. 2019). Here, reduced stem growth might be explained as a passive conse-
quence of reduced nutrient availability. Alternatively and more likely in light of
the below described increase in nutrient availability (Sect. 2.2) with soil frost, C
resources might be actively shifted belowground to facilitate compensatory root
growth later in the year, which is a common consequence of increased
root damage due to soil frost (Gaul et al. 2008; Sorensen et al. 2016). Studies
on root-stem resource allocation (e.g., studies on within-tree dynamics of
nonstructural carbohydrates (Hartmann and Trumbore 2016)) that could distin-
guish between these two alternative mechanistic explanations are so far lacking.

Changes in the frequency of soil frost events, i.e., the number of freeze-thaw
cycles, are another aspect of altered winter insulation of soils, yet they appear to
only have minor or transient effects on plant performance (Kreyling et al. 2010,
2012b; Larsen et al. 2007). Taken together, lethal and sublethal root and shoot
damage are expected to slow down or even reverse the projected increase in
primary productivity in regions with increased incidence of soil frost events due
to permanently or temporarily reduced snow cover.

2. Temperate species can incur freezing damage at temperatures in the range of �5
to �10�C but survive much colder temperatures in winter after successful
hardening in a dormant state (Noshiro and Sakai 1979). With climate change,
plants may be particularly vulnerable to frost in late winter and early spring
because of premature dehardening (Augspurger 2013; Gu et al. 2008; Rigby and
Porporato 2008; Liu et al. 2018; Montwé et al. 2018). Such premature
dehardening can be caused by several interrelated effects such as cold acclimation
occurring later in autumn, under shorter photoperiod and lower light intensity, all
affecting the energy partitioning between growth, built-up of reserves, and
cold acclimation that can further be influenced by elevated atmospheric CO2

concentrations (Rapacz et al. 2014). Temperate deciduous tree species differ
considerably in budburst forcing requirements and photoperiod sensitivity
(Malyshev et al. 2018) and, consequently, in winter (Kreyling et al. 2015a) and
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spring (Muffler et al. 2016) frost tolerance, indicating that winter climate changes
also have the potential to affect competitive balances between co-occurring
species. Generally, spring damage is potentially more relevant than winter dam-
age because woody species have the ability to adjust winter frost tolerance to
ambient conditions dynamically, while frost tolerance around budburst is mini-
mal and nonadaptable (Vitra et al. 2017). Midwinter warming events, however,
can break dormancy in temperate (Kreyling et al. 2015b), boreal (Ogren 1996),
and arctic (Bokhorst et al. 2010b) plants, and early spring warming increases
forcing conditions leading to budburst followed by late frost events (Augspurger
2013). Annual wood increment of cool-temperate deciduous trees can be
decreased by more than 50% due to single frost events after leaf-out (Príncipe
et al. 2017).

Note, though, that winter dormancy is a complex phenomenon as dormancy
depth depends not only on forcing temperatures but also on chilling sums, meaning
that plants require a certain amount of cold temperatures for dormancy release
(Laube et al. 2014). Consequently, warmer winters could also lead to unfulfilled
chilling requirements. Until now reported in only one extreme case, winter warming
can consequently even lead to strongly delayed spring phenology because of
unfulfilled chilling requirements and unbroken dormancy (Yu et al. 2010).

Furthermore, winter temperature and moisture are critical drivers for seed
dormancy and germination, and global climate change alters these cues and can
compromise seedling emergence and vigor (Walck et al. 2011). Yet, few studies
have tested the importance of snow cover and winter temperature on seed
survival, germinability, seedling establishment, and growth in response to climate
change. First evidence suggests that post-winter seed germination decreases with
reduced snow cover in trees that disperse seeds in summer or fall (Drescher and
Thomas 2013). Likewise, seed mortality increases with decreasing snow cover
over winter for Fagus crenata (Homma et al. 1999).

3. Extreme winter warming events leading to snowmelt leave plant shoots vulner-
able to cold air temperatures subsequent to the warming event even in arctic
ecosystems (Bokhorst et al. 2009, 2011). Again, susceptibility is species-specific,
and evergreen plants are more vulnerable than graminoids or deciduous species to
such extreme temperature variabilities in the arctic (Bokhorst et al. 2018). Here,
subsequent frost damage is not driven by dormancy break but rather by exposing
plant organs to frost events which usually are protected by the insulating snow
cover. A coordinated distributed experiment at 13 temperate grassland sites
implies that negative effects of snow removal on biomass production increase
sharply toward colder sites, with up to 25% reduced productivity at cold-
temperate sites and no visible effects at cool-temperate sites (Henry et al.
2018). We have further found comparable effects of short-term (2–5 days) winter
warming pulses in temperate ecosystems, where at least some species reacted
with strongly reduced biomass production, although the increased susceptibility
in this case might also be caused by dormancy break (Schuerings et al. 2014).

Observational studies support the findings of these experimental studies:
Boreal understory plant species show clear differences in their snow cover
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preferences (Rasmus et al. 2011), emphasizing the regulatory importance of
altered snow cover for species composition. Snow cover manipulations conse-
quently affect species occurrence patterns in boreal (Kreyling et al. 2012a) and,
likewise, in steppe (Chi et al. 2018) ecosystems.

4. Ice encasement harms plants by anoxia, accumulation of CO2, ethanol, lactic
acid, and ethylene (Gudleifsson 1994, 2010). More frequent occurrences of rain-
on-snow events and midwinter thaw events therefore result in increased damage
by ice encasement (Bélanger et al. 2002; Tompkins et al. 2004). However, plants
differ in their vulnerability to ice encasement with juvenile conifer trees
(Domisch et al. 2018) and alpine plants (Bjerke et al. 2017) reacting quite
sensitively, while arctic willow and arctic graminoids appear rather tolerant
(Bjerke et al. 2018).

Extreme aboveground ice encasement furthermore occurs in the form of ice
storms, i.e., supercooled rainfall during freezing air temperatures leading to ice
coating of aboveground plant organs and, due to the sheer weight, to branch and
crown loss of forest trees (Rustad and Campbell 2012). Frequency of such events
is projected to increase, at least for the temperate zone of western North America
(Cheng et al. 2007).

5. The start date of the growing season can be delayed by increasing winter
precipitation (Vaganov et al. 1999). It has recently been shown that extraordi-
narily wet winters delay the start of the growing season by several days over a
wide range of boreal forests due to colder soil temperatures related to both the
increase in snowmelt heat flux and reduced absorption of solar radiation, which
are proportional to the amount of winter precipitation (Yun et al. 2018).

Taken together, several negative feedbacks to primary production are hidden in
projected winter climate changes, and their importance and relative effect sizes are
hardly known, in particular in a multi-year perspective. However, evidence suggests
the surprising conclusion that we should expect more plant frost damage in a warmer
world and that the effects of winter climate change on primary production are not yet
studied to a degree that allows for sound predictions into the future.

2.2 Soil Biotic Activity, Litter Decomposition,
and Mineralization

Generally, soil warming leads to increased soil biotic activity and mineralization
(Rustad et al. 2001). Accordingly, transplanting intact soil cores to warmer sites
results in strongly increased nitrogen mineralization with presence or absence of a
continuous snow cover mediating this effect (Wang et al. 2016). Zero degrees
Celsius represents an important threshold for abrupt changes in microbial activity
and substrate usage because of decreasing availability of liquid water (Mikan et al.
2002). However, much colder temperatures are typically required to cause microbial
lysis, and microbial growth can continue below freezing (McMahon et al. 2009).
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Nevertheless, the sublethal effects of freezing on soil microorganisms are not well
understood, and the length of freezing, the number of freeze-thaw cycles, and the
rate of freezing can all increase cell damage for a given freezing intensity (Elliott and
Henry 2009; Vestgarden and Austnes 2009). In addition, for soil microorganisms
that survive freezing and desiccation over winter by accumulating osmolytes,
thawing can potentially cause mortality via osmotic shock, caused by exposure to
melt water from snow (Jefferies et al. 2010).

Increased snow depth in arctic ecosystems has been shown to decrease richness
and lead to a turnover of ectomycorrhizal fungal communities, potentially stimulat-
ing C and N mobilization and primary production (Morgado et al. 2016). Increased
microbial activity in warmer soils over winter will also increase soil respiration in
arctic (Mikan et al. 2002), boreal (Öquist and Laudon 2008), and temperate systems
(Muhr et al. 2009; Schuerings et al. 2013). Reduced insulation due to absent snow
cover, e.g., after extreme winter warming events, however, can lead to colder soils
and strongly reduced annual decomposition rates, as, e.g., shown for a wet boreal
forest (Kreyling et al. 2013). Soil microbial biomass, rates of soil C mineralization,
and heterotrophic soil respiration in northern temperate hardwood forests, however,
do not appear to be altered by reductions in snowpack and increases in soil freezing
(Sorensen et al. 2016; Steinweg et al. 2008). Yet, in another snow removal exper-
iment in the same ecosystem, soil respiration increased in response to induced soil
frost, probably because of root mortality providing easily decomposable organic
matter which might lead to priming and increased SOM degradation (Reinmann and
Templer 2018). Infrared warming of a temperate grassland resulted in absence of
snow cover, more variable soil temperatures, and unaltered decomposition rates
(Walter et al. 2013). Increased soil temperature variability, in particular soil freeze-
thaw cycles, adversely affects soil microbial biomass and increases available N and
fuel N2O emissions according to a meta-analysis on 47 available studies (Song et al.
2017). Winter litter decomposition, however, is remarkably unaffected by midwinter
warming events leading to snowmelt in arctic ecosystems (Bokhorst et al. 2010a).
Methane emissions in response to winter climate change appear less well studied. In
an arctic moist tundra, it has been shown that long-term increases in snow accumu-
lation can lead to markedly increased methane emissions, implying a positive
feedback to climate warming due to the strong greenhouse capacity of methane
(Blanc-Betes et al. 2016).

Taken together, soil warming increases soil biotic activity and litter decomposi-
tion. It needs be noted, though, that effect sizes diminish over time (Romero-
Olivares et al. 2017). Soil cooling, however, can have various consequences:
decreasing soil biotic activity and litter decomposition due to temperature limitation,
showing no effect, or even increasing soil biotic activity due to increased supply of
easily decomposable necromass. Increased soil temperature variability generally
reduces soil biotic biomass but leads to increased soil nutrient availability
(Comerford et al. 2013).
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2.3 Nutrient Leaching

Increased N leaching following soil freezing has been explained by decreased root
uptake due to lethal or sublethal root damage (Campbell et al. 2014; Matzner and
Borken 2008). However, the projected increase in winter rain for the temperate
regions and in total winter precipitation for arctic regions could further counteract
the positive effects of soil warming on tree growth through increased mineraliza-
tion as the mineralized nutrients might be leached out with the downward flow of
the additional water, thereby getting lost for primary production (Bowles et al.
2018). Apart from this general and theoretical expectation, there is surprisingly
little literature on this question. Roots occurring in deeper soil layers after winter
soil warming have been interpreted as indirect indicator for N leaching (Schuerings
et al. 2013). The expectation of increased nutrient leaching might also require fine-
tuning to acknowledge potentially negative feedbacks. For instance, the supply of
easily decomposable material might decrease with less winter root damage
(Tierney et al. 2001) and a reduction in soil aggregate disruption (Oztas and
Fayetorbay 2003) for regions with increasing thickness of snow cover and
warming soils. Furthermore, despite evidence for increased N leaching losses in
response to increased soil frost in some temperate systems (Fitzhugh et al. 2001),
the opposite effect has been reported in others (Hentschel et al. 2008). Snow
removal leading to colder soils with more frequent freeze-thaw cycles have
furthermore been shown to increase ammonium availability but not nitrate loss
in a cool-temperate forest in Northern Japan (Shibata et al. 2013). Finally, winter
warming pulses can trigger N leaching with plant community composition largely
controlling the amount of leaching (Kreyling et al. 2015b).

Overall, responses of soil N retention to winter climate change will depend on the
so far understudied balance between plant uptake responses and N leaching losses
(Sanders-DeMott et al. 2018), and future projections are hardly possible with the
current state of knowledge.

3 Feedbacks from Ecosystems to Climate

Feedbacks in the C cycle between the atmosphere and the terrestrial biosphere
remain a considerable source of uncertainty for both global climate projections
and predictions of the terrestrial net primary productivity (NPP; Heimann and
Reichstein 2008). Empirical studies and the models that rely on them for parame-
terization often use only growing season climate conditions to explore relationships
between climate and plant growth or ecosystem NPP (Friedlingstein et al. 2006;
Sanders-DeMott et al. 2017). Concerning northern forest ecosystems (i.e., cold-
temperate and boreal forests), satellite data, model projections, and in situ observa-
tions imply that C uptake rates have increased due to winter warming that has
lengthened the growing season in recent decades (Xia et al. 2014). A decrease in
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winter snow cover restraining C emissions to the atmosphere due to colder soil
temperatures has been shown to cause a negative feedback to global warming for
cold-temperate and boreal forests according to Eddy-covariance C flux data
(Yu et al. 2016). Still, the strength and temporal variability of such a potential C
sink appears uncertain due to potentially confounding effects regulating primary
production described above (Sect. 2.1). The large uncertainty in soil C dynamics
between multiple models and experiments (Sulman et al. 2018) emphasizes the
conclusion that a better understanding of feedbacks between the biosphere and the
atmosphere is crucial for both the projections of realized climate change and
the ecological impacts of this climate change. Below, I develop hypotheses for
biosphere-atmosphere feedbacks which await rigorous testing and point out key
uncertainties (summarized in Fig. 3). These hypotheses are based on very simplistic
comparisons between trends in C gain through primary production (Sect. 2.1), trends
in C loss through decomposition (Sect. 2.2), and potentially limiting effects of
increased nutrient leaching (Sect. 2.3) in view of the projected key changes in
ecologically relevant climatic parameters (Sect. 1).

3.1 Arctic

Strongly increasing air temperatures lengthen the growing season. Increased snow
cover and air warming lead to soil warming. Based on these trends, decomposition
and mineralization over winter increase. A shift in the species composition toward
more productive species enhances primary production and suppresses nutrient
leaching. The net feedback to the climate system depends on relative effect sizes

Fig. 3 Winter climate change of ecologically relevant parameters, their hypothetical effects on
ecosystem functioning, and potential feedbacks to the climate systems separated by biomes
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of increased decomposition in comparison to increased production, with the latter
being complicated by several potentially negative balances such as increased cli-
matic variability resulting in more frequent midwinter melting and rain-on-snow
events which damage plant organs and can lead to dieback. The role of winter
climate change on the net feedback of the biosphere to climate change is currently
unclear for arctic ecosystems.

3.2 Boreal

Increasing air temperatures lengthen the growing season. Together with slightly
increased or unaltered snow cover, air warming leads to slight soil warming. Based
on these trends, decomposition and mineralization increase. Primary production
increases. Nutrient leaching increases mainly during extreme events which limit
primary production, e.g., due to increased climatic variability resulting in more
frequent midwinter melting or rain-on-snow events which damage plant organs
and can lead to plant dieback. Plant community composition is altered by these
winter climate changes; its feedback on decomposition and nutrient leaching is
unclear. The role of winter climate change on the net feedback of the biosphere to
climate change is currently unclear for boreal ecosystems.

3.3 Temperate

Temperate ecosystems move toward opposing winter climate regimes. Cold-
temperate ecosystems are influenced by the apparent paradox of “colder soils in a
warmer world” (Groffman et al. 2001) due to air temperatures still being cold while
soils being no longer protected by an insulating snow cover. This leads to reduced
decomposition rates over winter and reduced primary production due to (sub)lethal
root damage which further allows for increased nutrient leaching. Primary produc-
tion is further limited by more frost damage to aboveground plant organs because of
reduced frost tolerance and earlier leaf-out despite increased climatic variability
leading to damaging frost events mainly in spring.

Cool-temperate systems are no longer snow-covered and air warming exceeds the
cooling capacity of a missing snow cover for soil temperature. Consequently, air and
soil temperatures increase, lengthening the growing season, increasing primary
production and increasing decomposition rates. Markedly more winter rainfall,
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however, leads to nutrient leaching which limits primary production. Effect sizes
here are unknown. Primary production is further limited by more frost damage to
aboveground plant organs because of reduced frost tolerance and earlier leaf-out
despite increased climatic variability leading to damaging frost events mainly in
spring.

The role of winter climate change on the net feedback of the biosphere to climate
change is currently unclear for temperate ecosystems.

4 Summary and Key Uncertainties

Up to now, winter climate change effects on key ecological processes, i.e., primary
production, decomposition, and nutrient leaching, are understudied in temperate,
boreal, and arctic ecosystems. Surprisingly, uncertainties even about directions of
change are largest for cold-temperate ecosystems. Change in snow cover and its
effect on soil temperatures have been identified as key aspect in winter climate
change. Clearly, better projections of soil temperature and climatic variability are
needed from climate models in order to better predict ecological feedback loops to
climate change and inform experiments about realistic manipulations (see Fig. 4 for
potential experimental designs). Generally, experimental and observational studies
need to shed light on temporal hierarchies in ecological processes, such as the role of
root damage and root activity for decomposition of soil organic matter (“priming”;
Kuzyakov 2010) or shifts in plant species composition due to winter climate change
determining primary production (Krab et al. 2018) as well as litter quantity and
decomposability (Cornelissen et al. 2007). Primary production is furthermore
strongly determined by phenology, and a sound understanding of changes in the
growing season needs to acknowledge not only the obvious but also the “hidden”
aspects, i.e., explore the (missing) synchronicity between above- and belowground
growth (e.g., Blume-Werry et al. 2016). Another major source of uncertainties are
biotic interactions (Makoto et al. 2014) including phenological mismatches (Allstadt
et al. 2015) and altered herbivory patterns (Tsunoda et al. 2018). Finally, global
change drivers interact and first evidence suggests that this interaction is rarely
additive, as shown for instance for the interaction between snow depth changes
and N deposition (Vankoughnett and Henry 2014). Evidently, sound projections of
future ecosystem functioning and biotic feedbacks to climate change require a
comprehensive understanding of winter ecological processes, which have so far
been too often neglected.
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