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Abstract The plant kingdom comprises 766 gymnosperms and ~350,000 angio-
sperms, for which iron (Fe) is an essential and highly demanded nutrient. Iron is
necessary for plant growth and development, being involved in a multitude of
functions within the plant, including chlorophyll biosynthesis. The understanding
of the mechanisms that govern Fe uptake, transport and storage has been the subject
of numerous studies since the middle of the twentieth century, but it was only in the
1990s, with the advent of molecular genetics, cheaper genome sequencing and
associated bioinformatic techniques, that scientists began to really unveil the detailed
molecular networks responsible for regulating iron homeostasis within the plant.
Homeostasis must be guaranteed in order to prevent Fe overload and toxicity but
also to assure sufficient levels within the plant to exert its numerous roles, since the
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unalike consequences of both deficiency and toxicity are equally adverse. In this
chapter we explore the current knowledge on the different molecular aspects that
regulate Fe metabolism in higher plants, looking at Fe uptake and distribution
mechanisms, the known signalling molecules and Fe sensing mechanisms, the part
of Fe in plant-bacteria symbiosis (including nodulated and non-nodulated plants)
and finally, how the molecular aspects of Fe metabolism impact and are impacted by
other metals.

1 Introduction

Dietary iron (Fe) deficiency is a worldwide public health problem affecting more
than two billion people, whose primary dietary sources are legumes and grains
(Myers et al. 2014). Therefore, any enhancement of Fe concentrations in these
primary crops would be valuable. Iron (Fe) is also an essential nutrient for plants,
with intermediate phloem mobility, whose concentration within a plant system must
be tightly regulated. Under Fe deficiency, plants usually develop yellowing of leaves
and reduced growth, since this nutrient is necessary in the electron transport chains
of photosynthesis and respiration (Prasad 2003); on the other hand, if accumulated in
high levels, Fe can generate hydroxyl radicals, which damage lipids, proteins and
DNA (Kampfenkel et al. 1995). Hence, plants must respond to Fe levels in terms of
both Fe deficiency and Fe overload (Connolly and Guerinot 2002).

The ascension of the omics era has contributed with vast information on Fe
metabolism response and associated mechanisms, essential for the development of
plant genotype improvement programmes (Vasconcelos et al. 2017). As of today, the
genomes of at least 225 plant species have been completely sequenced, providing a
plethora of data which allows scientists to understand the commonalities and
particularities of the genes underlying mineral uptake, transport and storage. Most
species with whole-genome sequences are crops, with food crops comprising the
biggest fraction (57.7%), and include not only cereals but other important crop
species grown for food, such as fruits, legume grains and vegetables (Leitch et al.
2017). Whole-genome sequencing and gene functional studies nowadays are not
only targeting yield and disease resistance but also are targeting the understanding of
the key genes involved in enhancing nutrient concentrations, so that better breeding
and plant improvement techniques may be applied. Still, although Fe uptake,
transport and accumulation mechanisms have been studied for long and applied in
different types of biofortification strategies, from the point of view of Fe relationship
with enzymatic activities (Weinstein and Robbins 1955), Fe translocation within the
plant (Tiffin 1966) or the complexity of the plant-soil interactions (Chaney and Bell
1987), the genetic data gathered in recent years, still postulates assumptions that
require further investigation, such as the classical division of plants according to
their Fe uptake mechanism.
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Soil properties, such as pH, amount of organic matter, clay minerals or carbonate
content, greatly impact Fe availability for plant utilization (Bech et al. 2008).
However, as soil is a complex matrix composed by several other nutrients, which
are also affected by these properties, it is important to account for nutrient crosstalk
and the net formed between them. Further in this chapter, the common genes
regulated by Fe and other metals (copper, zinc, manganese, boron, molybdenum
and cobalt), as well as between Fe and two non-metal nutrients (phosphorus and
sulphur), will be scrutinized.

Fe is also essential for the establishment of plant-bacteria symbiosis. When
growing in nitrogen-deficient soils, plants develop symbiotic interactions with
nitrogen-fixing microorganism developing a new organ named root nodule. This
newly formed plant organ, tightly regulated by the host plant, confers plants’ ability
to fix atmospheric nitrogen (N2). In this chapter the importance of iron uptake and
mobilization within legume plants for nodulation and establishment of effective
symbiotic interactions with soil bacteria at a molecular level are reviewed and
discussed. Although a brief summary is presented considering differences between
legume and nonlegume root nodules, this section is focused on legume-rhizobia
symbiosis. Legumes represent one third of primary crop produced in the world being
an important dietary source of protein and minerals for both livestock and humans.
On a global scale, biological nitrogen fixation in the legume-rhizobia symbiosis
accounts for roughly 200 million tons of fixed nitrogen per year (Graham and Vance
2003; Ferguson et al. 2010) with symbiotic crops requiring 35–60% less fossil-based
energy than conventional, N-fertilized crops (Jensen et al. 2012). In order to poten-
tiate intensive and sustainable agriculture, the production of nitrogen-fixing legumes
should be promoted. In parallel, efforts should also be made to develop biofortified
legume crops with increasing levels of iron. Still, to integrate the beneficial envi-
ronmental and dietary effects resulting from legume nodulation, it is crucial to
understand how iron is transported to nodules, utilized by the nodule and mobilized
towards the plant. Despite the importance of understanding the mechanisms
involved on Fe uptake throughout the plant for future modulation towards increasing
grain Fe concentrations in these environmentally friendly nodulated plants, little
is known about these processes. In this chapter an overview of current knowledge is
given. In the context of current climate changes, understanding these mechanisms is
even more urgent. Increasing atmospheric CO2 levels (predicted to double by the
end of the century reaching 800 ppm) are foreseen to negatively impact the
nutritional status of several crops (Loladze 2014). The reduced Fe levels found
were purported to be related with mechanisms involved on Fe transportation within
the plant. Under eCO2 whereas photosynthesis is generally induced leading to a
generally higher sugar and biomass accumulation and better yields (Högy et al.
2009; Köehler et al. 2019), it also reduces stomatal conductance which may
decrease Fe uptake through the xylem (Ainsworth and Rogers 2007; Xu et al.
2016; He et al. 2018). Recently, it has been reported that increasing air temperature
(foreseen to increase 6�C by 2050, relative to 1961–1990) counteracts the negative
effect of eCO2 in the nutritional quality of soybean grains (Köehler et al. 2019), and
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this opposite effect was attributed to differences in stomatal conductance regulation
(Urban et al. 2017).

After discussing the recent knowledge on Fe uptake mechanisms, in this chapter,
the essential genetic factors involved in Fe transport and signalling within the plant
will be reviewed.

2 Iron Uptake Mechanisms

Although Fe is present in great abundance in the soils, it exists mainly as Fe3+, which
forms insoluble hydroxides and becomes unavailable for plant absorption. There-
fore, when the conditions are adverse, e.g. alkaline or upland soils, plants are unable
to uptake Fe from the soils. To overcome this problem, plants developed strategies to
acquire Fe from the rhizosphere, which are classically divided into two. Strategy I,
also referred to as ‘reduction strategy’, is utilized by all dicotyledonous and
non-graminaceous plants. The first engaged step consists of proton release via H+-
ATPases in order to decrease rhizosphere’s pH and, consequently, increase Fe
solubility (Colangelo and Guerinot 2004). After the acidification step, Fe3+ is
reduced to Fe2+ by a root ferric chelate reductase. In Arabidopsis, this enzyme is
encoded by ferric reductase oxidase 2 (AtFRO2), which is composed of two
intramembrane haem groups, and is induced in the root epidermis to transfer
electrons across the plasma membrane (using NAD(P)H as an electron donor),
performing the reduction step (Robinson et al. 1999). Genes encoding the FRO
enzyme include eight members that are differentially expressed at the tissue levels,
being not only important for metal acquisition from soil but also for intracellular
distribution of Fe (Jain et al. 2014). More specifically, FRO1 was characterized in
pea to have 74% of overall similarity to AtFRO2 (Waters et al. 2002); AtFRO5,
AtFRO7 and AtFRO8 do not seem to be Fe-regulated, and AtFRO3 is expressed in
Fe-deficient leaves (Jeong and Connolly 2009); AtFRO6 overexpression in tobacco
plants enhanced ferric reductase activity in the leaves (Li et al. 2011). Alongside
with FRO, other compounds have been proposed to have a key role in the reducing
step, such as phenolics, organic acids, sugars and flavins (López-Millán et al. 2000;
Rodríguez-Celma et al. 2011), and recent reports identified scopoletins, a class of
phenolic-type compounds, to be secreted under Fe-deficient conditions and have an
important role in plant Fe nutrition (Fourcroy et al. 2014; Schmid et al. 2014; Tsai
et al. 2018).

After Fe3+ is reduced, Fe2+ is transported into the root by iron-regulated trans-
porter 1 (IRT1), which belongs to the zinc-regulated transporter/IRT-like protein
(ZIP) family (Guerinot 2000). IRT1 was described to be expressed only under
Fe-deficient conditions (Connolly et al. 2002), but it can also transport other divalent
metals, and it has been shown that the overexpression of AtIRT1 induces metal
overload (Barberon et al. 2011). Other studies showed that when the peanut AhIRT1
gene was introduced in tobacco and rice, it had a dual function: besides being
responsible for Fe absorption, it could also be responsible for Fe translocation, as
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the transgenic plants increased their tolerance to Fe deficiency and, even under Fe
sufficiency, Fe concentration was enhanced in roots and shoots (Xiong et al. 2014).

Graminaceous plants, like barley, rice and maize, utilize Strategy II (a ‘chelation
strategy’) for Fe uptake. In order to increase uptake, plants release phytosiderophores
(PSs) to the rhizosphere which act as chelators with high affinity for Fe3+. The
primary member of the PSs family is deoxymugineic acid (DMA), and nicotianamine
(NA) is the main precursor for its synthesis (Morrissey and Guerinot 2009). Consti-
tutive expression of the rice OsNAS2 gene in bread wheat increased the biosynthesis
of NA and DMA leading to higher concentrations of grain Fe, Zn, NA and DMA and
increased Fe bioavailability of the resulting flours (Beasley et al. 2019). Two tran-
scription factors seem to have an essential role in DMA and NA synthesis, namely,
IRO2 that regulates their synthesis by influencing DMA and NA synthase (DMAS
and NAS) expression (Ogo et al. 2007) and an Fe deficiency-responsive cis-acting
element-binding factor 1 (IDEF1) that intervenes in this synthesis by positively
regulating the expression of IRO2 (Kobayashi et al. 2009). Phytosiderophores are
effluxed to the rhizosphere via TOM1, a transporter whose expression levels augment
under Fe-deficient conditions (Nozoye et al. 2011). Once in the rhizosphere, the
complex Fe3+-PS is formed and is taken up into the root cells by transmembrane
proteins of the yellow stripe1 (YS1) family (Curie et al. 2001). YS1 transporters have
been identified in several grass species, and, interestingly, non-graminaceous plants
also have YS1-like (YSL) genes that encode proteins essential in metal-NA complex
transporting Fe (Inoue et al. 2009).

Although this classic division is mostly true, there are few studies showing that
some Strategy II plants could use Strategy I mechanisms, as is the example of rice
(Bughio et al. 2002; Ricachenevsky and Sperotto 2014; Pereira et al. 2014). Evi-
dences suggest the use of a ‘combined strategy’, where rice plants besides absorbing
Fe(III) via the chelation strategy also take up Fe(II) directly by the induction of
Strategy I transmembrane transporters IRT1/IRT2 (Ishimaru et al. 2006; Sperotto
et al. 2012; Pereira et al. 2014). Alike rice, homologs for Strategy I-related genes
have been found in maize, such as ZmNRAMP1 (Zanin et al. 2017); however the
physiological role and putative functions of these genes in maize are yet to be
explored (Li et al. 2018).

3 Molecular Factors Involved in Fe Distribution Within
the Plants

After entering the root cells, Fe can be transported to the aboveground organs via the
xylem (Broadley et al. 2012). This transport has for long been associated to the
formation of complexes between Fe and citrate, which seemed to be the preferential
form for Fe loading in the xylem (Tiffin 1966). In the meantime, studies confirmed
this theory (Green and Rogers 2004), and a ferric reductase defective 3 (FRD3)
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protein, belonging to the multidrug and toxic compound extrusion (MATE) family,
has been described to be necessary for efficient Fe translocation (Durrett et al. 2007).

Despite being predominantly transported through the xylem (López-Millán et al.
2000), Fe can also be transported through the phloem, complexed with NA, as this
metabolite, although not secreted by non-graminaceous plants, is synthetized and
chelates Fe (Stephan and Scholz 1993; Takahashi et al. 2003). In apple, NAS1
expression was shown to increase under Fe deficiency and to facilitate redistribution
of Fe in plants (Sun et al. 2018). When Fe reaches the leaves, it is putatively
unloaded in the apoplastic space via the YSL transporters (Waters et al. 2006).

Free Fe is toxic; therefore, it must be incorporated in storage structures. Ferritins,
for example, store Fe in excess for detoxification and maintain the mineral available
for protein synthesis (Briat et al. 2010). Ferritins can be found in most of the cellular
compartments, but the main storage organelle is the chloroplast (Briat et al. 2010). It
is generally established that under Fe supply, genes of the ferritin family are usually
overexpressed (Lescure et al. 1991; Wu et al. 2016). The majority of the Fe pool is
mainly located in chloroplasts (Roschzttardtz et al. 2013), and, although the method
for influx is still not well described (López-Millán et al. 2016), it is thought to require
a reduction-based mechanism, mediated by a member of the FRO family, probably
FRO7, both in Strategy I and Strategy II plants (Solti et al. 2014). The other major
reservoir for inactive Fe is the vacuole, and Fe is imported via a vacuolar membrane
transporter, VIT1, and remobilized by the NRAMP3 and NRAMP4 transporters
(Lanquar et al. 2005). Moreover, these proteins have been shown to have a con-
served role in Fe transportation and homeostasis in different crops, as is the case of
VIT expression in rapeseed (Zhu et al. 2016) and of Arabidopsis VIT1 expression in
cassava that showed promising results for biofortification programme development
(Narayanan et al. 2015). The later results were further improved in 2019 by com-
bining the overexpression of VIT1 with IRT1 and FER1, with cassava plants
accumulating iron levels 7–18 times higher and zinc levels 3–10 times higher than
those in non-transgenic controls in the field (Narayanan et al. 2019). Other examples
include AhNRAMP1 in peanut (Xiong et al. 2012) and MxNRAMP1 in apple (Pan
et al. 2015) leading to increased Fe accumulation.

4 Signalling Molecules and Fe Sensing Mechanisms

In plants, the complete network behind Fe sensing and signalling is yet to be
described (Kobayashi et al. 2018). However, it is known that Fe homeostasis
requires different signals and regulators, having an ultimate implication on
photoassimilate partitioning, due to its source-sink control (Marschner et al. 1996;
Lemoine et al. 2013). Shoots have always been pointed as the main responsible
organ for signalling the need for increased Fe uptake at the root level (Brown et al.
1961; Schmidt 2003). A negative feedback control for Fe uptake has been proposed,
where Fe sufficiency represses the synthesis of the ferric chelate reduction system
(Maas et al. 1988); however, a positive regulation has also been proven to exist,
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where a long-distance signal for Fe deficiency in the shoots induces Fe uptake in the
roots (Enomoto et al. 2007). A combined network system for the activation of
physiological Fe stress responses has also been suggested (García-Mina et al.
2013). In this model, together with a predominant root-to-shoot signal, which is
dependent not on the Fe conditions at the root level, but on the development of Fe
stress symptoms in the leaves, a local Fe sensing is also present in the roots, which
corresponds to the triggering of FRO and IRT1 genes in response to Fe stress at the
root level, independently of the Fe conditions presented by the leaves (Fig. 1).

Molecules with the potential to regulate Fe accumulation have been identified.
These include the transcription factor IDEF1 that positively regulates IRO2 gene in
graminaceous plants under Fe deficiency (Kobayashi and Nishizawa 2014); hemer-
ythrin motif-containing really interesting new gene (RING) and zinc-finger proteins
(ZNFs)/BRUTUS (BTS) ubiquitin ligases, which negatively regulate Fe deficiency
responses in both graminaceous and non-graminaceous plants, controlling Fe uptake
and translocation under Fe sufficiency to prevent Fe excess caused damage
(Kobayashi et al. 2013; Matthiadis and Long 2016); a bHLH protein, POPEYE,
which downregulates genes related to metal translocation (FRO3, NAS4 and ZIF1)
under Fe stress conditions (Long et al. 2010); metal tolerance proteins (MTP),
identified in wheat grains, with a role in divalent metal effluxing out of the cytoplasm

Fig. 1 Positive and negative regulators involved in iron deficiency signalling in plants
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and involvement in metal tolerance under Fe deficiency stress (Eroglu et al. 2017;
Vatansever et al. 2017); and a putative Arabidopsis thaliana TITANIA1 ortholog in
rice (OsTTA) that was shown to be a positive transcriptional regulator of Fe (Tanaka
et al. 2018).

Besides the abovementioned proteins and cofactors, phytohormones have been
pinpointed for their preponderant role in Fe homeostasis. This is because the
concentration and transport of hormones inside the plants seem to dictate shoot
responses to nutrient availability in the soil (Kudoyarova et al. 2015). Cytokinins act
both as root-to-shoot long-distance signal and as a local signal, and they repress
IRT1, FRO2 and FIT gene expression (Kiba et al. 2011); jasmonic acid also impacts
negatively on the expression of Fe uptake genes, IRT1 and FRO2 (Cui et al. 2018;
Kobayashi et al. 2016), although some research show that methyl jasmonate foliar
application might increase Fe concentration in plant tissues (Ghassemi-Golezani and
Farhangi-Abriz 2018; Li et al. 2017); and finally, brassinosteroids seem to aggravate
Fe deficiency responses by repressing Strategy I response genes, FRO1 and IRT1
(Wang et al. 2012), and phytosiderophore synthesis genes, NAS1, NAS2 and YSL2,
in rice (Wang et al. 2015), and by modulating Fe accumulation via a feedback loop
(Singh et al. 2018).

Among the phytohormones that positively regulate Fe deficiency responses, it has
been demonstrated that abscisic acid (ABA) promotes Fe transportation from root-
to-shoot and phenolic compound secretion from the roots (Lei et al. 2014) and
regulates the maintenance of Fe levels by inducing ferritin expression, as shown in
rose petals (Liu et al. 2017a, b); there is a crosstalk between auxin and Fe, especially
in Strategy II utilizing plants (Garnica et al. 2018; Kabir et al. 2016; Liu et al. 2015;
Shen et al. 2016), where auxin application regulates Fe-related genes mainly impli-
cated in phytosiderophore release (NAS, YSL and DMAS), but also in Fe uptake
(IRT and FRO), demonstrating its role in root-to-shoot signalling; ethylene is an
important regulator of Fe deficiency responses (Li and Lan 2017; García et al. 2018)
and, more recently, the role of ethylene response factors (ERFs) has been studied
(Liu et al. 2017a, b, 2018); salicylic acid improves oxidative damage caused by Fe
deficiency by affecting the oxidation reaction at the transcriptional level (Kong et al.
2014; Shen et al. 2016), and elevated endogenous levels of this hormone induce
other hormone-response genes, such as auxin and ethylene (Shen et al. 2016),
implying an interplay in the hormonal signalling; and supplementation with mela-
tonin and its precursor serotonin alleviates Fe deficiency response by inducing the
expression of bHLH protein-encoding genes, FRO2 and IRT1 (Wan et al. 2018), and
also by interplaying with abscisic and salicylic acids (Yoon et al. 2019).

However, other molecules are known to also significantly intervene in Fe signal-
ling. Different peptide families have a role in response to Fe stress in plants, for
example, the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) pep-
tides (Araya et al. 2016; Gutiérrez-Alanís et al. 2017) and the FE-UPTAKE-
INDUCING PEPTIDEs (FEPs) that are induced under Fe-deficient conditions
(Hirayama et al. 2018) or a short C-terminal amino-acid sequence consensus motif
(IRON MAN; IMA) that positively regulates Fe uptake in roots (Grillet et al. 2018).
Few studies also point out the role of microRNA (miRNA) in Fe homeostasis,
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whether by up-regulating the expression of Fe deficiency inducible transcription
factors and auxin signalling pathways (Kong and Yang 2010) or by post-
transcriptionally regulating photosynthetic machinery-related genes (Checovich
et al. 2016; Patel et al. 2017) (Fig. 1).

5 The Role of Iron in Plant-Bacteria Symbiosis

Plants are botanically sub-divided into the graminaceous and non-graminaceous
families. As mentioned before, these two groups use different pathways to mine
iron from the soil. The non-graminaceous plants including the legumes use
Strategy I, whereas graminaceous including cereals such as wheat or maize use
Strategy II (see Sect. 1). In this section the importance of iron uptake and mobiliza-
tion within legume plants for nodulation and establishment of effective symbiotic
interactions with soil bacteria are reviewed and discussed. A brief summary is
presented considering differences between legume and nonlegume root nodules,
but considering the importance of legumes for human nutrition, this section is
focused on legume-rhizobia symbiosis.

6 Legume and Nonlegume Root Nodules

Root nodules are specialized lateral root organs with 2–5 mm diameter which look
like white dots and result from the establishment of an effective mutually beneficial
interaction between a plant (the host) and selected soil microorganisms. When plants
grow in nitrogen-deficient soils, the formation of root nodules is promoted in order to
fulfil the plant nutritional needs. Although nitrogen gas (N2) is the most abundant gas
in the Earth’s atmosphere, this molecular form cannot be used by most organisms.
Only few bacteria and archaea are capable of fixing N2 into ammonia that can be
assimilated. Nevertheless, many legumes have evolved to establish a symbiosis with
gram-negative nitrogen-fixing soil bacteria collectively known as rhizobia. These
bacteria belong to the Rhizobiaceae family and spread to the alpha- and beta-
proteobacteria classes (Moulin et al. 2001) including the genera Azorhizobium,
Allorhizobium, Bradyrhizobium (Jordan and Bacteriology 1982), Mesorhizobium
(Jarvis et al. 1997; Laranjo et al. 2014), Rhizobium and Sinorhizobium (Chen et al.
1988), among others. Rhizobia bacteria grow in the rhizosphere, the narrow soil
region in contact with the root, where, due to the organic carbon provided by plant
roots in the form of root exudates, the number of microorganism is largely higher
(10–100 higher) than in bulk soil (Pii et al. 2015).

Though the majority of plants able to establish this symbiotic relation are in the
legume family Fabaceae, there are few exceptions. In the order Rosales, Parasponia
species belonging to the Cannabaceae family can also establish a symbiotic
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interaction with Rhizobia, constituting the unique nonlegume specie known to be
nodulated by Rhizobia (Hirsch 1992; Sytsma et al. 2002).

The filamentous gram-positive actinomycete Frankia also forms actinorhizal root
nodules on a variety of woody shrubs, trees and some herbaceous plants, fixing
approximately the same amount of nitrogen as rhizobial symbioses. All actinorhizal
species, about 200, belong to the Rosid I clade sharing a common ancestor with
legumes (Fabaceae) but differing from them in their wide distribution in numerous
botanical families. These species belong to three plant orders, the Fagales which
include the Betulaceae, Casuarinaceae and Myricaceae families; the Rosales with the
Rosaceae, Elaeagnaceae and Rhamnaceae families; and the Cucurbitales including
the Coriariaceae and Datiscaceae families (Santi et al. 2013). Differently from
legume nodules which have a peripheral vasculature, the nodules formed by these
nonlegume plants possess a central vascular system like roots (Santi et al. 2013;
Downie 2014), and bacteria are never released from the infection thread. According
to Downie (2014), it may signify that in legumes the oxygen is available for energy
production, while in nonlegume the haemoglobin in the cells surrounding the
vasculature would tend to bind most of the available oxygen slowing respiration
and reducing ATP levels making this symbiosis less efficient than that formed by
legume-rhizobia.

7 Legume Root Nodule Formation

Nodulation begins when Rhizobia contact the root hairs of the host plant and the
roots release flavonoids which are recognized by specific Rhizobia bacteria inducing
the expression of rhizobial genes encoding enzymes involved in the synthesis and
secretion of Nod factors. Nod factors are lipochito-oligosaccharide signalling mol-
ecules sensed by the root hair cells through membrane receptor-like kinases, trig-
gering a series of biochemical and morphological changes involved on nodule
development (Desbrosses and Stougaard 2011). Root hair deformation (curl) is
induced leading to the complete encapsulation of one or more bacteria which
multiply, being then transported through an infection thread which grows from the
root hair into the basal part of the epidermis cell extending to the root cortex (Hirsch
1992). In the cortical cells Rhizobia bacteria are surrounded by a plant-derived
membrane named symbiosome membrane forming the symbiosome, an organelle-
like structure separated from the plant cell (Verma and Hong 1996). In mature
symbiosomes, rhizobia differentiate into a nitrogen-fixing form named bacteroid,
which has the ability to absorb dinitrogen gas (N2) from the atmosphere and convert
it to ammonia (NH3) which is incorporated into organic form before being exported
from nodules. For nitrogen fixation the bacteroid requires a constant supply of
energy and carbon from the host plant in the form of organic acids. In the nodules,
sugars translocated from the shoot are converted to phosphoenolpyruvate through
glycolysis which is converted to malate by the action of phosphoenolpyruvate
carboxylase (PEPC) and malate dehydrogenase activities. Malate is considered to
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be the primary source of carbon transported to bacteroids where it is converted to
CO2 and water to produce ATP and reducing power required for nitrogen fixation
(Vance and Gantt 1992; Colebatch et al. 2004; Udvardi and Poole 2013).

Legume nodules formed through these symbiotic interactions can be determinate
or indeterminate. Determinate nodules lose meristematic activity shortly after initi-
ation, and nodule growth is due to cell expansion resulting in mature spherical
nodules. These nodules develop in tropical legume, such as those of the genera
Glycine (soybean), Phaseolus (bean), Arachis (peanut) and Vigna (cowpea), and on
some temperate legumes such as Lotus (e.g. Lotus japonicus). Indeterminate nodules
maintain an active apical meristem that produces new cells through cell division at
the distal end of the nodule becoming elongated. Therefore, these nodules form four
zones: meristem (zone I); invasion zone (II) in which rhizobia colonize plant cells,
proliferate, and differentiate; the nitrogen fixation zone (III) where bacteroids pro-
duce ammonia for the plant; and the senescence zone (IV), which is present only in
older nodules and may serve to recycle nutrients (Hirsch 1992). Examples of plants
developing indeterminate nodules include temperate legumes such as those from the
genera Pisum (pea), Medicago (alfalfa) and Trifolium (clover) (Mao et al. 2015).

8 Impact of Soil Iron Deficiency in Nodulation

Nodulation is regulated by external (heat, soil pH and composition, drought, nitrate)
and internal factors (autoregulation of nodulation, ethylene). Autoregulation of
nodulation controls nodule numbers per plant through a systemic process involving
the leaf (Ferguson et al. 2010). Several studies have shown that Fe starvation limits
root nodule bacterial survival and multiplication, as well as host plant growth,
nodule initiation and development and nitrogen fixation (Tang et al. 1991a; Slatni
et al. 2011, 2014).

Lupinus angustifolius plants supplied with mineral nitrogen have been reported to
have lower shoot weight than nodulated plants supplied with increasing Fe levels
(Tang et al. 1992). These results demonstrated that nodule formation and function
require more Fe than the growth of the host plant.

Nitrogen concentrations and contents in nodulated Phaseolus vulgaris
L. (Hemantaranjan 1988) and Arachis hypogaea L. (Tang et al. 1991b) were
reported to decrease under Fe deficiency. In addition, in several legumes, Fe
deficiency decreases nodule number and bacteroid nitrogenase activity (Tang et al.
1992). In the nodules of iron-deficient A. hypogaea, nitrogenase activity has been
shown to be reduced by 10–20% with nitrogen fixation being further delayed in
these plants as compared to plants grown under normal conditions (O’Hara et al.
1988; Tang et al. 1991b). The reduced activity may be partly caused by reduced
synthesis of leghemoglobin and bacteroid proliferation (Tang et al. 1992). In
L. angustifolius nodule initiation is impaired by Fe deficiency (Tang et al. 1991a,
1992). Due to the inhibition of rhizobia proliferation in roots, the division of root
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cortical cells required to form nodule meristems is limited causing the nodulation
impairment (Tang et al. 1992).

9 Iron Requirements for Legume-Rhizobia Symbiosis

The establishment of a symbiotic relation between the host plant and the bacteroid
requires increased uptake of micronutrients by the plant, since the bacteroids in root
nodules are dependent on the plant for all micronutrients (Clarke et al. 2014). Iron is a
critical micronutrient for the symbiosis because several symbiotic proteins incorpo-
rate iron including the bacterial nitrogen-fixing enzyme (nitrogenase), cytochromes
required for phosphorylation in the plant and bacteria, plant leghemoglobin which
transports oxygen, ferredoxins involved in transferring electrons and reducing the Fe
component of nitrogenase and a variety of other Fe proteins such as hydrogenases
(Guerinot 1991; Broadley et al. 2012; Brear et al. 2013). Leghemoglobins are the
most abundant plant proteins in nodules representing as much as 25–40% of the total
soluble protein in the infected plant cell (Kozlov 2014) and containing about 24% of
the soluble iron within the nodule (Ragland and Theil 1993). These proteins are
composed of an apoprotein and a haemmoiety both synthesized by the plant (O’Brian
1996). Since the bacteroids do not have contact with the pool of leghemoglobin in the
cytoplasm of infected cells (Wittenberg et al. 1996), leghemoglobins may not con-
stitute a major source of Fe during symbiosis. However, they have been shown, via
reverse genetics, to have a crucial role in symbiotic nitrogen fixation (Ott et al. 2005).
Suppression of the expression of the gene encoding leghemoglobin in Lotus
japonicus led to loss of leghemoglobin in nodules, higher steady-state levels of free
oxygen but lower ATP/ADP ratios and a complete absence of nitrogenase activity
(Ott et al. 2005). The bacteroid nitrogenase complex consists of six protein subunits
(two each of NifH, NifD and NifK), four iron-sulphur clusters (two each of [4Fe–4S]
and Fe8S7) and two iron-molybdenum cofactors (Fe7MoS9N) named FeMoco
(Downie 2014). This enzyme is very sensitive to oxygen; therefore, in order to
avoid nitrogenase degradation and provide the necessary oxygen for bacterial respi-
ration, the legume host maintains microaerobic oxygen concentrations by controlling
the permeability of the nodule cells to oxygen through changes in the proportion of
gas and water in the inner cortex of the nodule (Wei and Layzell 2006) or by
increasing the expression of leghemoglobin in the infected nodule cells.
Leghemoglobin buffers free oxygen content in the nitrogen-fixing zone of the plant
nodule reducing it to the nanomolar range avoiding the irreversible inactivation of the
oxygen-labile nitrogenase while providing adequate oxygen levels for bacterial
respiration (Ott et al. 2005).
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10 Iron Uptake to the Nodule and Remobilization

Regardless of the importance of understanding the mechanisms involved on iron
uptake to the nodule and translocation from the nodule, little is known about these
transport mechanisms (Slatni et al. 2011; Brear et al. 2013).

Legumes are Strategy I plants, reducing Fe by activating the plasma membrane
ferric chelate reductase enzyme or by exuding organic acids and protons to the
rhizosphere and by taking up reduced Fe using specific Fe transporters. In root
nodules of Phaseolus vulgaris grown under Fe deficiency, H+-ATPase and ferric
chelate reductase activities have been shown to be induced (Slatni et al. 2009, 2011).
In addition it was reported that under Fe deficiency there is an over-accumulation of
H+-ATPase and ZIP transporters (IRT1) in the nodules’ cortex cells of plants tolerant
to Fe deficiency particularly around the cortex cells of nodules (Slatni et al. 2012).
These results suggest that Fe would be transported through the apoplast using H+-
ATPases and ZIP family members to uptake apoplastic Fe. In such case nodule
epidermis would play a major role in Fe uptake in tolerant cultivars. This hypothesis
was further supported in a subsequent study reporting that under Fe deficiency Fe
allocation from the root system to the nodules was preferential in cultivars tolerant to
Fe deficiency (Slatni et al. 2014). However, in indeterminate nodules of Medicago
truncatula, Fe was not observed at the epidermis of the nodule appearing to be
delivered into nodules via the vascular system and released into the apoplasm of cells
in the invasion zone to the rhizobia-infected cells by an NRAMP plasma membrane
transporter before being taken up by plant cells and transported to bacteroids
(Rodríguez-Haas et al. 2013; Tejada-Jiménez et al. 2015). These contrasting results
suggest that nodule Fe uptake directly from the medium may be a secondary route of
Fe acquisition, comprising a mechanism developed by specific cultivars to cope with
Fe limitation.

Multidrug and toxic compound extrusion (MATE) proteins transport citrate and
can form chelates with ferric Fe facilitating Fe mobilization (Takanashi et al. 2013).
In Arabidopsis a root citrate transporter (AtFRD3), a member of MATE family, has
been reported to be required for Fe translocation from roots to shoots (Durrett et al.
2007). And two MATE transporters (GmFRD3 and GmFRD3b) have been shown to
mediate Fe translocation in soybean (Rogers et al. 2009). Regarding the possible
involvement of MATE transporters on Fe regulation in the nodule, Takanashi et al.
(2013) reported that in Lotus japonicus LjMATE1 is induced during nodule forma-
tion, mainly in the infection zone, and suppression of its expression leads to reduced
Fe accumulation in infected cells. These observations suggest that LjMATE1 is a
nodule-specific transporter providing citrate for Fe translocation from the root to
nodules being involved on Fe accumulation in the nodules (Takanashi et al. 2013)
(Fig. 2). In a recent study conducted inMedicago truncatula, theMtMATE67 protein
which segregates into a clade that includes the citrate efflux transporters LjMATE1
and AtFRD3 was found to be located in the plasma membrane of nodule cells and
also in the symbiosome membrane surrounding bacteroids in infected cells.
MtMATE67 has been shown to actively transport citrate out the cells when expressed
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in Xenopus oocytes with its suppression leading to Fe accumulation in the apoplasm
of nodule cells and a significant decrease in nitrogen fixation and plant growth
(Kryvoruchko et al. 2018). In this study it became clear that MtMATE67 plays an
important role in the citrate efflux from nodule to cells by increasing Fe(III)
solubility and mobility in the apoplasm and uptake into nodule cells. Also at
symbiosome level, the citrate transport by MtMATE67 into the symbiosome space
would contribute for pH reduction and increased Fe solubility and availability for
bacteroids (Kryvoruchko et al. 2018) (Fig. 2).

In non-graminaceous plants, such as legumes which use Strategy I mechanism for
Fe uptake, nicotinamide (NA), a phytosiderophore precursor, is not exuded by the
plant to increase Fe uptake, but it chelates metal cations including Fe within the
plant. Therefore, NA is believed to play a role as a long-distance signalling molecule
(Curie and Briat 2003) possibly acting as a regulator of internal Fe transport, being
involved on Fe homeostasis in plants (Takahashi et al. 2003; Hakoyama et al. 2009).
When a gene encoding nicotianamine aminotransferase (HvNAAT) from barley

Fig. 2 Main proteins involved in the Fe transport and distribution in the plant and in the nodules.
Transport movement is indicated by a blue arrow; all transport proteins and chelators are depicted in
black. PM plasma membrane, SM symbiosome membrane, SS symbiosome space, BM bacteroid
membrane, Lb leghemoglobin. Undetermined direction of Fe transport is marked by ‘?’
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(Hordeum vulgare, Strategy II plant) was introduced into tobacco plants (Strategy I
plants), the plants developed chlorosis symptoms related with NA shortage resulting
from the overproduction of the enzyme (NAAT) (Takahashi et al. 2003).

Although in Lotus japonicus the suppression of NA synthase 2 (LjNAS2) respon-
sible for NA formation did not affect nitrogen fixation, it has been shown to be
specifically expressed in the nodules particularly in nodule vascular bundles and
further expressed in a later stage of nodule development (maximum reached 24 days
after inoculation). In this study the authors hypothesized that LjNAS2 may be
involved on Fe remobilization from the nodules at senescence (Hakoyama et al.
2009) (Fig. 2). During seed filling, the levels of Fe in nodules have been shown to be
reduced by about 50%, suggesting that Fe present in nodules may possibly be
remobilized at senesce to the seeds as a NA chelate through the phloem (Curie
et al. 2009). In soybean plants overexpressing the barley NA synthase 1 (HvNAS1)
gene, the seeds NA content increased by fourfold and the seeds Fe concentrations by
twofold compared with the levels found in the seeds of non-transgenic plants.
Furthermore, the transgenic plants showed tolerance to Fe deficiency (Nozoye
et al. 2014). In a similar study conducted in sweet potato, transgenic plants
overexpressing HvNAS1 showed 7.9-fold higher levels of leaf NA and accumulated
threefold higher levels of Fe than non-transgenic plants. Also, similar to the one
observed for soybean, transgenic plants exhibited tolerance to restricted Fe supply
which was positively correlated with the HvNAS1 expression level (Nozoye et al.
2017). These studies further support the hypothesis previously proposed regarding
Fe remobilization as Fe-NA chelates from the nodule to the seeds at senescence. If
so, this transport would require the involvement of YSL (yellow stripe-like) trans-
porters (Fig. 2).

11 Iron Transport Within the Nodule

A number of transporter families have been implicated in Fe movement across the
symbiosome membrane including natural resistance-associated macrophage protein
(NRAMP) (Kaiser et al. 2003; Jeong et al. 2017), vacuolar iron transporter (VIT)
(Kim et al. 2006; Jeong and Guerinot 2009; Jeong et al. 2017), yellow stripe-like
(YSL) (Curie et al. 2009), zinc-iron permease (ZIP) (Moreau et al. 2002; Abreu et al.
2017) and multidrug and toxic compound extrusion (MATE) (Takanashi et al. 2013;
Kryvoruchko et al. 2018). The symbiosome membrane is derived from the host
plasma membrane but shares properties with the vacuolar membrane (Verma and
Hong 1996). It acts as a regulation point under plant control which contains trans-
porters and channels to facilitate the movement of nutrients and metabolites between
the host and the symbiosome space (Brear et al. 2013).

The transport of Fe through the symbiosome membrane of soybean has been
shown to be faster than Fe transport across the bacteroid membrane (LeVier et al.
1996). Accordingly, ferric Fe chelates are believed to be mainly located in the
symbiosome space rather than in the bacteroid. The lower pH of the symbiosome
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space as compared with that of plant cytosol would promote the stabilization of ferric
chelates such as citrate for subsequent uptake by the bacteroid (Moreau et al. 1995).
Recent studies suggest that the symbiosome membrane may possess ferric chelate
reductase activity (Slatni et al. 2009, 2011). This property would be inherited by the
plasma membrane of the infected plant cell of the host plant from which it was
formed and would be involved in the reduction of ferric Fe to ferrous Fe for
subsequent uptake by the symbiosome. The symbiosome has the ability to uptake
ferric and ferrous Fe, but the import of ferrous Fe is much efficient (Moreau et al.
1995; LeVier et al. 1996). Other findings support the hypothesis of ferric chelate
accumulation in the symbiosome space. Whereas in the symbiosome space of
isolated soybean symbiosomes the levels of leghemoglobin are extremely low, Fe
bound to siderophores (compounds binding ferric Fe with high affinity) are present
in high concentration in the symbiosome space (Wittenberg et al. 1996).

The ZIP transporter IRT1 was detected in nodule cortex cells of Phaseolus
vulgaris (Slatni et al. 2012), but the only ZIP family member characterized in this
organ, GmZIP1, seems to be localized in the symbiosome and has been shown to
have a role in Zn uptake (Moreau et al. 2002). Also, a member of the NRAMP family
of transporters, the divalent metal transporter 1 (DMT1), has been identified as a
ferrous Fe transporter on the soybean symbiosome membrane (Kaiser et al. 2003).
However, it is not clear if it transports ferrous Fe across the symbiosome membrane
to the symbiosome space or to the cytosol of the infected plant cell or even if this is a
bidirectional transporter.

In Lotus japonicus a vacuolar iron transporter 1 (VIT1), SEN1, has been shown to
be expressed in nodule-infected cells being essential for nitrogen fixation in this host
(Hakoyama et al. 2012). It suggests that SEN1 may have a role in the symbiosome
membrane as a Fe importer. In Arabidopsis VIT1 transports ferrous Fe into the
vacuole (Kim et al. 2006), and the symbiosome membrane is known to possess
vacuolar membrane properties (Verma and Hong 1996).

YSL transporters belonging to the oligopeptide (OPT) superfamily are mainly
located in plasma membrane, transporting ferric and ferrous Fe chelated to nicotin-
amide (NA) into the phloem or sink cells (Curie et al. 2009). These transporters are
mainly found in monocots since they mediate the uptake of Fe(III)-PS complexes
from the rhizosphere, but they also exists in dicots where they are thought to be
specialized in Fe(II)-NA long-distance transport (Curie and Briat 2003; Nozoye et al.
2011; Nozoye 2018). In a transcriptome study conducted in soybean including the
analysis of nodule tissue, it has been shown that 15 YSL transporters were encoded
in the genome with one of these transporters (Glyma 11g31870) presenting nodule-
specific expression, whereas eight others were also detected (Libault et al. 2010;
Severin et al. 2010).

Figure 1 summarizes the main players in the Fe trafficking pathways described
above.
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12 Molecular Interactions of Fe with Other Nutrients

Since the regulation of Fe homeostasis implies significant responses by plants,
other metals essential in the maintenance of optimal plant growth might also be
impacted. However, information on the potential interaction and crosstalk among
different metal ions and their effect on plant mineral metabolism are still limited
(Anjum et al. 2015).

When comparing ionome data from three different plant systems, namely, Strat-
egy I Glycine max (Santos et al. 2016), Strategy II Brassica napus (Maillard et al.
2016) andOryza sativa (Pereira et al. 2014), that utilizes a combined strategy system,
the uptake of micronutrients such as Cu, Zn, Mn, B, Mo and Co was consistently
increased by Fe depletion in all plant systems. Hence, it is clear that Fe homeostasis
has a serious implication in plants’metal ion regulation, and potential interactions and
uptake/transport mechanisms are commonly triggered (Table 1).

Plants utilize the same reduction strategy described for Fe to reduce Cu, where
FRO2 reduces Cu2+ to Cu+ at the root surface, although it has been hypothesized that
Cu2+ could be directly taken up via IRT-like transporters (Jain et al. 2014). Since
under Fe deficiency this FRO2/IRT1 system is usually up-regulated (Robinson et al.
1999), it seems probable that, in the absence of Fe substrate and having high affinity
for Cu ions, plants increase Cu uptake. A positive correlation between leaf Cu and Fe
concentrations was found (Stein et al. 2016), and, in a recent work, a crosstalk
between Fe and Cu has been demonstrated (Ramamurthy et al. 2018). Furthermore,

Table 1 Common gene regulation and mineral interactions between iron and other metals

Iron
interaction
with Common gene regulation References

Copper FRO2, IRT1, SOD, oxidoreductases,
redox-responsive transcription factor 1
(RRTF1), ethylene response factor
(ERF)

Ramamurthy et al. (2018) and Santos
et al. (2013)

Zinc ZIP-like transporters, metallothioneins,
metal ion transport and binding,
defence response genes

Darbani et al. (2015), Khokhar et al.
(2018), Ma et al. (2017), Santos et al.
(2013) and Zeng et al. (2018)

Manganese NRAMP1, NRAMP6, IRT1, MTP8 Cailliatte et al. (2010), Connolly et al.
(2002), Eroglu et al. (2017), Long et al.
(2018) and Peris-Peris et al. (2017)

Cobalt IRT1, IREG1/FPN1, IREG2/FPN2 Korshunova et al. (1999), Lange et al.
(2017) and Morrissey et al. (2009)

Molybdenum MOT1, CNX2, CNX3, ABA3, FRO6,
FRO7, IREG1

Bittner (2014), Morrissey et al. (2009),
Tomatsu et al. (2007) and Vigani et al.
(2016)

Nickel IRT1, IREG2, MTP3, NRAMP1,
FRO2

Meier et al. (2018), Mihucz et al.
(2012), Nishida et al. (2011) and
Schaaf et al. (2006)
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this metal is essential for oxidation and reduction reactions, is a constituent of several
enzymes with oxidase function and is also a cofactor of Cu/Zn superoxide dismutase
(SOD) (Broadley et al. 2012). At a molecular level, Cu deficiency leads to similar
gene regulation as Fe, with a particular impact on oxidative stress-related genes,
namely, oxidoreductases, redox-responsive transcription factor 1 (RRTF1) and
ethylene response factor (ERF) (Ramamurthy et al. 2018; Santos et al. 2013).

On the other hand, Zn, which also shares ZIP-like transporters like IRT1, is
sometimes found decreased in Fe-deficient roots (Roriz et al. 2014; Santos et al.
2015) but is generally increased in the shoots of different plants. Studies show that
the transfer of Zn from the root to the shoot is very fast (Page and Feller 2005);
hence, the increase of Zn in the shoot could be representative of increased Zn root
uptake by the plants. Low levels of Zn supply are also related to increased Cu
concentration in plant shoots (Zeng et al. 2018). This metal is the second most
abundant metal in living organisms after Fe, and, in cereals, Zn deficiency is one of
the most serious micronutrient deficiencies on calcareous soils, deeply impacting
other nutrient accumulation (Broadley et al. 2012; Khokhar et al. 2018). Like Fe, it is
typically taken up as a divalent cation (Broadley et al. 2012) and is required for
structural and functional activities of several essential proteins (Fox and Guerinot
1998). Molecular studies show that both Fe and Zn homeostasis require the regula-
tion of metallothioneins, metal ion transport and binding and defence response genes
(Darbani et al. 2015; Santos et al. 2013; Zeng et al. 2018). With the identification of
QTL for levels of Fe and Zn, common markers for these two minerals have been
further identified (Ma et al. 2017).

Despite having a wide range of oxidation states,Mn2+ is the most soluble form in
the soil and consequently the most accumulated form in plants (Broadley et al.
2012). Mn has a major role in activation of enzymes involved in lignin biosynthesis,
photosynthesis and detoxification of O2 free radicals through Mn SOD activity (Page
et al. 2006). Its uptake occurs via active diffusion through root epidermal cells, and,
like Cu, Mn competes for common transporters and ligands of Fe, namely,
NRAMP1 (Cailliatte et al. 2010), NRAMP6 (Peris-Peris et al. 2017) and metal
transporters from the ZIP family (IRT1), both in Strategy I plants, like Arabidopsis
(Connolly et al. 2002), and in Strategy II plants, like barley (Long et al. 2018). Metal
tolerance protein 8 (MTP8) was also found to be able to transport both Fe and Mn in
Arabidopsis plants, with a particular role in regulating Fe and Mn homeostasis in the
seeds (Eroglu et al. 2017). Hence, when Fe is present, it has been found a positive
correlation between these two metals, particularly regarding root concentrations
(Alagic et al. 2018).

Required by legumes for N2 fixation, Co is mainly accumulated in the root system
(Page et al. 2006). Reports on the crosstalk between Co and Fe hypothesize that the
molecular mechanisms behind Co accumulation might have evolved from Fe
homeostasis mechanisms (Lange et al. 2017). Like Fe, Co uptake is mediated by
IRT1 (Korshunova et al. 1999), and Co excess is correlated to the decrease of
photosynthetic pigments due to the prevention of the incorporation of Fe in the
protoporphyrin molecule, the precursor for chlorophyll (Jayakumar et al. 2009).
Also in common with Fe metabolism, ferroportins Iron Regulated1 (IREG1/FPN1)
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and IREG2/FPN2 seem to be important in Co detoxification and translocation to the
shoot (Morrissey et al. 2009).

For long, Mo and Fe have been correlated with each other (Kannan and Ramani
1978; Bittner 2014), and recent evidence has proven that Fe nutritional status greatly
impacts Mo homeostasis in plants (Vigani et al. 2016). Plants absorb Mo essentially
as molybdate (MoO4

2�), and this element is a constituent of nitrate reductase
enzyme, consequently having an important role in plant metabolism, especially in
legumes (Duan et al. 2017). This mineral only has biological activity when
complexed by a pterin compound, forming the molybdenum cofactor (Moco) and
active Mo enzymes depend on the presence of Fe and Cu (Mendel 2007). Hence, Fe
is essential for plant Mo regulatory metabolism since Moco biosynthesis is depen-
dent on Fe availability. Its bioavailability is hindered under acidic conditions (Kaiser
et al. 2005), and, given the fact that under Fe deficiency plants usually acidify the
rhizosphere, Mo concentration is usually decreased in the leaves (Baxter 2009; Roriz
et al. 2014; Vigani et al. 2016) and increased in the roots (Santos et al. 2016; Vigani
et al. 2016). FewMo metabolism-related genes have been identified in plants, but the
genes MOT1 (Tomatsu et al. 2007) and MOT2 (Gasber et al. 2011) have been shown
to have key role on Mo intracellular and interorgan transport. The MOT1 gene, in
particular, was shown to be downregulated under Fe deficiency, while three genes
essential for Moco biosynthesis in plants, CNX2, CNX3 and ABA3, seem to be
up-regulated (Bittner 2014). On the other hand, Mo deficiency does not impact the
main players in Fe reduction, uptake and accumulation (FRO2, IRT1 and ferritin)
but impacts other isoforms of the FRO gene, FRO6 and FRO7, as well as the iron-
regulated protein-encoding gene IREG1 Morrissey et al. (2009).

Abundantly available in the soils, Ni predominant oxidation state is +2, which is
the most available for plant uptake through both passive diffusion and active
transport (Seregin and Kozhevnikova 2006). This metal is utilized in several phys-
iological processes, being an important component of many metalloenzymes and
having a vital role in nitrogen metabolism, mainly in root nodule growth and
hydrogenase activation (Yusuf et al. 2011). Studies show that high dosages of Ni
increase relative transcription level of AtIRT1 in roots (Nishida et al. 2011) and that
Fe and Ni share similar uptake mechanisms (Mihucz et al. 2012), putatively com-
peting for absorption (Boostani et al. 2019). After uptake by IRT1, Ni seems to be
internalized in the vacuole by iron-regulated protein 2 (IREG2) (Schaaf et al. 2006).
Other Fe-related genes were found to be up-regulated in the presence of Ni, namely,
Fe deficiency-induced transcription factor (FIT); two metal transporters, MTP3 and
NRAMP1; as well as FRO2 (Meier et al. 2018).

Other, non-metal, nutrients are also correlated to Fe metabolism (Table 2). For
example, the concentration of available phosphorus (P) modulates Fe2+ uptake
system (Ward et al. 2008), and P deficiency seems to lead to a common regulation
of 579 genes in Arabidopsis (Li and Lan 2015). Among this pool of genes, the ones
with stronger induction and highly correlated to Fe mechanisms were FRO2 and
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IRT1 and AT3G12900, CYP82C4, AT5G38820, COPT2, AT1G30560 and
AtOCT1. On a different study, also in Arabidopsis, P deficiency decreased the
expression of FRO3, IRT1, IRT2, NAS1 and FRO6, but both Fe and P homeostasis
were found to be impacted by the regulation of a MYB-like transcription factor,
phosphate starvation response 1 (PHR1) (Briat et al. 2015). Moreover, as seen before
in soybean plants under Fe deficiency (Santos et al. 2013), P deficiency induces the
regulation of flavonoid biosynthetic process (Li and Lan 2015). Strategy II utilizing
plants, like maize, also showed up-regulation of transporters for Fe2+, like
NRAMP1, PHT1 and PHO1, which resulted in higher accumulation of P in both
roots and shoots (Zanin et al. 2017).

Sulphur (S) and Fe interaction has been well described from the perspective of the
formation of Fe-S clusters, which are essential in photosynthesis, respiration and
other cellular reactions (Broadley et al. 2012; Lu 2018). However, the crosstalk
between these two minerals at a molecular level is yet to be fully understood. In the
last decade, it has been shown that FRO1 and IRT1 gene expression is repressed
under S deficiency (Zuchi et al. 2009; Forieri et al. 2013) and that Fe deficiency also
modulates S-related gene expression by inducing the up-regulation of S transporters,
such as SIST1;1 and SIST1;2 (Paolacci et al. 2014). In Strategy II utilizing plants, S
uptake is also related to Fe uptake mechanisms since, when S is deficient, the release
of phytosiderophores to the rhizosphere is repressed (Astolfi et al. 2006) and, for
example, the expression of Fe-related transcription factor IRO2 is increased (Grewal
et al. 2018); on the other hand, when Fe is deficient, S deficiency response is
triggered at a molecular level, particularly S transporters and the genes encoding
ATP sulphurylase (Ciaffi et al. 2013), adenosine 50-phosphosulphate reductase
(APR) and sulphite reductase (SIR) (Hantzis et al. 2018). It is also interesting to
note that S application to the soil acidifies the pH (Ramzani et al. 2017), turning the
conditions more appropriate for Fe reduction and uptake mechanisms activation.

Table 2 Common gene regulation and mineral interactions between iron and other non-metal
minerals

Fe
interaction
with Common gene regulation References

Phosphorus FRO2, IRT1, AT3G12900, CYP82C4,
AT5G38820, COPT2, AT1G30560,
AtOCT1, NRAMP1, PHT1, PHO1,
FRO3, IRT1, IRT2, NAS1, FRO6,
PHR1

Briat et al. (2015), Li and Lan (2015),
Santos et al. (2013) and Zanin et al.
(2017)

Sulphur FRO1, IRT1, SIST1;1, SIST1;2, IRO2,
APR, SIR

Astolfi et al. (2006), Ciaffi et al. (2013),
Forieri et al. (2013), Grewal et al.
(2018), Hantzis et al. (2018), Paolacci
et al. (2014) and Zuchi et al. (2009)
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13 Conclusion

Since Fe homeostasis regulation is a complex system, much is yet to decipher. Some
molecules have been demonstrated to be key in the process of Fe sensing within the
plant; however, the positive and negative feedback signals described are not enough
to explain this regulation. Local sensing and a long-distance sensing system con-
tribute for the homeostasis maintenance that is strongly supported by the equilibrium
of the Fe uptake systems and rapidly triggered/repressed, depending on plant’s
necessities. Furthermore, since it is difficult to mimic, under controlled conditions,
the interactions between various nutrients, studies where two or three different
nutrients are assayed at the same time are more frequent. The study of the crosstalk
between different nutrients is crucial to understand the variation and plant distribu-
tion of different nutrient pools that can impact plants’ vigour and health.

Fe is an essential micronutrient for the establishment of effective legume-rhizobia
symbiosis, but Fe transport from the root to the nodule and within the nodule of
symbiotic legumes is very complex, and little is known on how Fe is transported
across a number of membrane layers until reaching the bacteroid. Despite some
efforts that have been done to identify Fe transporters involved on Fe uptake by the
nodules, it has been challenging to recognize their exact location and their precise
function within the nodule.

Considering the importance of nodulation for increasing sustainable nitrogen
fixation concerning environmentally friendly agricultural practices and the crucial
role of Fe nutrition in the effectiveness of these mutually beneficial associations, it is
of utmost importance to further understand the molecular mechanisms involved on
Fe uptake in nodulated legumes, and we believe this is an area that warrants further
exploration in the future. In the context of current climate changes, understanding
these mechanisms is even more urgent. Increasing atmospheric CO2 levels are
foreseen to decrease Fe accumulation in several crops (Loladze 2014), and it is
believed to be related with Fe transportation throughout the plant particularly
through the xylem since stomatal conductance is generally reduced under eCO2
(Ainsworth and Rogers 2007; Xu et al. 2016; He et al. 2018). Increasing temperature
on the contrary induces stomatal conductance (Urban et al. 2017) and has recently
been reported to counteract nutritional losses induced by eCO2 (Köehler et al. 2019).

In the frame of current (1) climate changes possibly inducing nutritional losses is
several crops, (2) necessity for highly nutritious enhanced food crops capable of
coping current Fe deficiencies in populations worldwide, and (3) need of intensive
and sustainable agricultural practices to feed an increasing human population, it is
crucial to understand the molecular features of Fe uptake and movement within the
plant.
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