
Group Secret Handshakes
Or

Affiliation-Hiding Authenticated Group Key Agreement

Stanisław Jarecki, Jihye Kim, and Gene Tsudik

Computer Science Department
University of California, Irvine

{stasio, jihyek, gts}@ics.uci.edu

Abstract. Privacy concerns in many aspects of electronic communication trigger
the need to re-examine – with privacy in mind – familiar security services, such
as authentication and key agreement.

An Affiliation-Hiding Group Key Agreement (AH-AGKA) protocol (also
known as Group Secret Handshake) allows a set of participants, each with a cer-
tificate issued by the same authority, to establish a common authenticated secret
key. In contrast to standard AGKA protocols, an AH-AGKA protocol has the fol-
lowing privacy feature: If Alice, who is a member of a group G, participates in an
AH-AGKA protocol, none of the other protocol participants learn whether Alice
is a member of G, unless these participants are themselves members of group
G. Such protocols are useful in suspicious settings where a set of members of a
(perhaps secret) group need to authenticate each other and agree on a common
secret key, without revealing their affiliations to outsiders.

In this paper we strengthen the prior definition of AH-AGKA so that the se-
curity and privacy properties are maintained under any composition of protocol
instances. We also construct two novel AH-AGKA protocols secure in this new
and stronger model under the RSA and Gap Diffie-Hellman assumptions, respec-
tively. Each protocol involves only two communication rounds and few exponen-
tiations per player (e.g., no bilinear map operations). Interestingly, these costs
are essentially the same as those of the underlying (unauthenticated) group key
agreement protocol. Finally, our protocols, unlike prior results, retain their secu-
rity and privacy properties without the use of one-time certificates.

Keywords: secret-handshakes, group key agreement, authenticated group key
agreement, privacy, privacy-preserving authentication.

1 Introduction

A traditional authenticated group key agreement (AGKA) protocol is assumed to op-
erate within the confines of a common Public Key Infrastructure (PKI). At the start,
participants – who have no prior secrets in common – exchange their public key certifi-
cates (PKCs). This exchange leaks information; in particular, it always reveals a partic-
ipant’s public key certification authority (CA). However, exchange of credentials, such
as PKCs, is part and parcel of any AGKA and it seems counter-intuitive to be concerned
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about information leakage. At the same time, in many applications, the identity of the
certificate-issuing CA determines the certificate owner’s affiliation. This is not an issue
if affiliation by itself is not a sensitive attribute. However, in certain scenarios, affilia-
tion must be kept private and protected from all unauthorized parties, most commonly,
those with different affiliations. We consider two motivating examples.

• CIA agents often operate in hostile environments and their affiliation represents a
closely-guarded secret. This is mandated by the rules of the agency. Therefore, if
two or more CIA agents need to discover each other and establish a secure com-
munication channel, affiliation-leaking information cannot be exchanged for fear
of detection and unpleasant consequences.

• Federal air marshals routinely accompany civilian flights and are required to keep a
very low profile, i.e., to blend in as much as possible. When two or more marshals
in an airport (or any common vicinity) need to coordinate activities and set up a
secure conference, they must do so in an unobservable and undetectable manner,
i.e., their affiliations must be kept private.

In a two-party setting, affiliation hiding authentication schemes have been addressed
in the past with so-called secret handshake protocols [1]. The initial work [1] intro-
duced the notion of privacy in public key-based authentication schemes and proposed
the first two-party secret handshake scheme based on bilinear maps and secure under
the Gap Diffie-Hellman (GDH) assumption. A subsequent result by Castelluccia, et
al. [9] developed a slightly more efficient secret handshake scheme secure under the
Computational Diffie-Hellman (CDH) assumption. Both schemes can be used in two
versions: If the players use one-time certificates, in addition to affiliation-hiding these
protocols trivially attain a property of unlinkability, since in addition to not leaking their
affiliations, any two instances of the same player cannot be linked with each other. If
the players re-use their certificates, the protocols are affiliation-hiding but it’s possible
to trace multiple occurrences of the same party.

In this paper we consider affiliation hiding in a multi-party (two or more) setting, i.e.
for Authenticated Group Key Agreement protocols (AGKA). We construct two practi-
cal Affiliation-Hiding AGKA protocols (AH-AGKA), wherein participants compute an
authenticated common secret key as long as all participants have the same affiliation,
i.e., possess certificates issued by the same CA. At the same time, in contrast to a stan-
dard AGKA, a party engaging in an AH-AGKA protocol is assured that its affiliation is
revealed to only those other protocol participants that belong to the group governed by
the same CA. Our protocols have similar properties as the two-party secret handshakes
of [1, 9], i.e. they offer affiliation-hiding with standard re-usable certificates, and they
can offer unlinkability only if the players use one-time certificates. They can also offer
heuristic unlinkability, e.g if players limit the usage of one certificate based on their
physical mobility.

Group (or multi-party) secret handshake protocols have been considered in prior
work, notably [17] and [12]. In [17], Tsudik and Xu presented the first scheme sup-
porting any number of protocol participants and reusable certificates. However, their
approach assures that the participants in the AGKA protocol successfully compute a
shared key only if their group revocation information is synchronized (in other words,
only if each participant assumes the same revocation epoch).
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Recently, Jarecki et al. [12] constructed a practical AH-AGKA protocol which avoids
this synchronization assumption, based on the (unauthenticated) Burmester-Desmedt
group key agreement protocol [7]. However, this AH-AGKA protocol is secure only
with the use of one-time certificates.1 Also, the model of security for AH-AGKA pro-
tocols considered in [12] is restricted to a single instance of an AH-AGKA protocol
execution. Such a model makes sense if each protocol instance uses independent in-
puts, but it is insufficient in the standard PKI setting of re-usable certificates.

Our Contributions. The contributions of this paper are as follows: First, we upgrade
the notion of AH-AGKA in [12] with a more robust and thus more useful notion. The
new notion assumes a standard PKI model of re-usable certificates and it is modeled
on the standard – and very strong – notion for traditional AGKA protocols in [6, 14],
which, in turn, comes from a long line of research on Authenticated 2-party Key Agree-
ment protocols [3, 16, 8]. This upgraded security notion implies that each AH-AGKA
protocol session remains secure given arbitrary scheduling of protocol instances and any
message-interleaving pattern between these instances, e.g., a man-in-the-middle attack.
Also, the security of a protocol session is independent of the usage of keys produced by
all other protocol sessions.

Second, we construct two AH-AGKA protocols that support standard re-usable cer-
tificates and satisfy the new strong notion of AH-AGKA security. Both protocols are
implicitly-authenticated variants of the Burmester-Desmedt GKA protocol. These two
protocols are secure under the RSA and the GDH assumptions, respectively, in the
Random Oracle Model (ROM). (Moreover, the second protocol is secure also under the
CDH assumption, but the security reduction from the CDH problem is weaker.) Each
scheme involves only 2 communication rounds and few exponentiations per participant.
From both communication and computation perspective, the protocol costs are the same
as those of the unauthenticated Burmester-Desmedt group key agreement protocol [7]
and lower than those of the (non affiliation-hiding) signature-based authenticated ver-
sion of the Burmester-Desmedt protocol due to Katz and Yung [14]. Consequently, our
protocols show that Affiliation Hiding for AGKA protocol can be achieved at essentially
no additional cost. Note, however, that an AH-AGKA protocol guarantees success only
if all participants are affiliated with the same CA, which is not the case in a standard
AGKA. Moreover, we do not address perfect forward security in this paper.

Third, an independent consequence of our work is a variant of the Burmester-Desmedt
GKA protocol which is secure (in ROM), although without perfect forward secrecy, even
if the participants re-use their Diffie-Hellman key contributions. The standard Burmester-
Desmedt GKA protocol is insecure unless each player uses a new contribution in every
protocol instance. As a consequence of re-use of key contributions, this version of the
Burmester-Desmedt protocol requires 2 exponentiations per player instead of 3.

Organization. The rest of this paper is organized as follows: Section 2 formally defines
an AH-AGKA scheme and the desired security/privacy properties. Section 3 defines the

1 We want to point out that in addition to requiring more storage for group members, higher load
on the issuing CA, and longer certificate revocation structures, a protocol that requires single-
use certificates is vulnerable to depletion attacks, whereby the adversary repeatedly engages
some user in the AH-AGKA protocol, thus depleting the latter’s supply of one-time certificates.
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cryptographic assumptions required by our constructions. Section 4 presents the RSA-
based AH-AGKA protocol, and Section 5 presents the DH-based AH-AGKA protocol.
The security proofs for the RSA-based scheme are given in detail, but because of space
limitations we relegate the proofs of security for the DH-based scheme to the full ver-
sion of this paper [13].

2 Affiliation-Hiding Authenticated Group Key Agreement: Model
and Definitions

Entities. Our AH-AGKA model is based on the existing standard model for authenti-
cated group key agreement protocols [6, 14]. The main difference is that the standard
model assumes a global PKI where each entity has a private/public key-pair and a cer-
tificate issued by a CA which is part of the PKI. The PKI involves a certification hier-
archy, where the integrity of the association between entities and their public keys is
vouched by a chain of certificates all leading to some commonly trusted CA-s. In this
model, it is assumed that certificates (which in many applications contain information
about owners affiliation) are publicly available. In contrast, AH-AGKA protocols aim
to protect affiliation privacy of the participants and certificates are kept private. Another
distinctive feature of our model is its “flat” certification structure, i.e., certification hier-
archies and chains are not allowed. There are only CA-s and entities certified by CA-s;
there are no intermediate CA-s and no delegation of certificates.

An AH-AGKA scheme operates in an environment that includes a set of users U
and a set of groups G. Each group is administered by a CA responsible for creating
the group, admitting entities as members and revoking membership. We assume upper
bounds m and l, respectively, on the total number of groups and the number of members
in any given group, i.e., |G| ≤ m and |U| ≤ l. We assume that each user can be a
member of many groups. We denote the fact that user U ∈ U is a member of group
G ∈ G as U≺ G. The main part of an AH-AGKA scheme is an AH-AGKA protocol,
which is executed by any set of users Δ = {U1, ..., Un} ⊆ U , for any n ≥ 2. (More
on that below.) Hereafter, the term group member refers to a user who is a member of a
particular group, whereas the terms player and protocol participant refer to a user who
is currently taking part in some particular instance of an AH-AGKA protocol.

Groups. We note from the outset that the use of the term group is over-loaded in this
paper. First, it denotes a set of users with the same affiliation (members of group G),
i.e., with certificates issued by the same CA. Second, it refers to an ad-hoc group (Δ)
of AH-AGKA protocol participants who may or may not be all members of the same
group G. We make the desired meaning unambiguous from the context. We use pro-
tocol participants or set of players when referring to the second meaning, and we use
group only in the first meaning except when re-using the standard terminology of (Au-
thenticated) Group Key Agreement, where the word Group refers to the set of players
participating in an instance of the AGKE protocol.

AH-AGKA Protocol. Using this terminology, each player Ui ∈ Δ participating in an
instance of the AH-AGKE protocol executes the protocol instructions on inputs a public
key of some group G ∈ G s.t. Ui≺ G, and Ui’s certificate of membership in G. The
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purpose of the AH-AGKA protocol is for the players in Δ to establish an authenticated
shared secret key as long as (1) each of them run the protocol on the same public key, i.e.
the public key of the same group G, and (2) for each Ui ∈ Δ it holds that Ui≺ G. This
key is secret and authenticated in the sense that it can be used for any subsequent secure
communication, e.g., entity authentication or message encryption and/or authentication.

To avoid any misunderstanding, we stress that such protocol does not in general im-
ply an efficient solution for an (affiliation-hiding) group discovery problem, where each
participating player starts a protocol on a set of its certificates of membership in a set of
groups, and the protocol succeeds, for example, as long as all the certificates are valid
and all these sets have a non-empty union. In contrast, our AH-AGKA schemes are most
practical in scenarios where each user is a member of at most one group. However, we
stress that if a user is a member of many groups, this would affect execution efficiency
(or robustness), but it would not affect security and affiliation-hiding of our schemes.
Indeed, in the definitions that follow we assume w.l.o.g. that each user is a member of
every group.

Public Information and Network Assumptions. In our environment, all groups G ∈
G are publicly known. Their CA public keys and certificate revocation lists (CRL-s)
maintained by CA-s are publicly accessible. Before any group can be created, a common
security parameter must be publicly chosen, and a public Setup procedure is executed on
that parameter. The Setup procedure creates common cryptographic parameters which
are used as inputs in all subsequent protocols. We stress that the Setup procedure does
not need to be executed by a trusted authority: It can be executed by anyone, for example
by one of the CAs, and everyone can verify the validity of its outputs.

We assume that communication between users and CA-s, i.e. the certificate issuance
process and the CRL retrieval, are conducted over anonymous and authenticated chan-
nels. In practice, a user might communicate with the CA, e.g., while retrieving the most
recent CRL for its group, over an anonymous channel such as TOR [11]. Alternatively,
the CRL-s of all groups can be combined and stored at some highly-available site where
they can be either retrieved in bulk (if small) or via some Private Information Retrieval
(PIR) protocol, e.g., [10].

We assume that all communication within the AH-AGKA protocol takes place over
a broadcast channel. We assume weak synchrony, i.e., the protocol executes in rounds.
In practice, this assumption implies that the protocol is started by a broadcast mes-
sage indicating the number of participants. Weak synchrony among the participants
also assumes that the length of the time window assigned to each protocol round is
large enough to accommodate clock skews and reasonable communication delays. The
broadcast channel is not assumed to be authenticated. In fact, the broadcast channel is
used for purely notational convenience since we make no assumptions about its relia-
bility. Specifically, when a participant broadcasts a message, it could just as well send a
copy of this message to every other participant over a point-to-point link. In our model,
the adversary is assumed to have full control of the underlying network: it sees the mes-
sages broadcasted by each participant in a given round, and decides which messages
will be delivered to each participant in that round. The adversary can delete, modify
or substitute any message and it can choose to deliver different messages to different
participants.
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As a consequence of this model, the security and privacy (Affiliation Hiding) proper-
ties of our AH-AGKA protocols hold, by definition, given any adversarial interference
in the protocol. However, we stress that we do not claim any robustness properties of
our protocols, apart from the basic correctness, i.e. that the protocols succeeds if the
players execute the protocols on matching inputs and there is no active adversarial in-
terference in the protocol. Indeed, constructing AH-AGKA protocols which are robust
against protocol interference is an open issue.

Player Instances and Protocol Sessions. In line with prior work [8, 6, 14], our model
allows for multiple executions of the AH-AGKA protocol scheduled in an arbitrary way,
each involving any set of participants. We model this in the usual way, by assuming
that every user U ∈ U can run multiple instances of the protocol. We denote the τ -
th instance of user U as Πτ

U . When player U starts a new instance of the AH-AGKA
protocol, it creates a new instance Πτ

U for a locally unique value τ . Such instances can
run on shared state, e.g., certificates and CRLs held by player U , but each instance also
keeps separate state. Each player instance can either reject or accept and output a key.
We say that an instance Πτ

U runs a protocol session, and we use player instance and
protocol session interchangeably, denoting both as Πτ

U . When referring to a specific
user Ui we use Πτ

i as a short-hand version of Πτ
Ui

, to denote τ -th instance of user
Ui ∈ U . Each instance Πτ

i keeps a state variable, sidτ
i which can be thought of as a

session id. (However, see the remark below.) This variable is protocol-dependent, but in
our protocols it is always set to an entirety of the communication sent and received by
instance Πτ

i .

AH-AGKA Syntax. We define an AH-AGKA scheme as a collection of the following
algorithms:

• Setup: on input of security parameter κ, it generates public parameters params.
• KGen: executed by the group CA, on input params, it outputs the group public

key PK and the corresponding secret key SK for this group, and an empty cer-
tificate revocation list CRL. We denote the group corresponding to the public key
PK as Group(PK). If PK was generated by the CA that maintains group G then
Group(PK) = G.

• Add: executed by the CA of group G, on input SK and U ∈ U , it adds U to G by
generating a certificate for U , denoted cert. If cert is issued under a public key PK,
we say that cert ∈ Certs(PK).

• Revoke: executed by the group CA, on input U ∈ U , it retrieves the correspond-
ing cert ∈ Certs(PK) issued for U , and revokes it by adding a new entry to
the group CRL which uniquely identifies cert. If cert is revoked, we say that
cert ∈ RevokedCerts(CRL).

• Handshake: this is the AH-AGKA protocol itself, which is an interactive protocol
executed by some set of participants Δ = {U1, ..., Un} ⊆ U . Each Ui uses its
distinct new instance Πτ

i and runs session Πτ
i of the protocol on some inputs:

(certτ
i , PKτ

i , CRLτ
i )
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where PKτ
i is the public key of the group which, in Ui’s view, sets the context for

the protocol, certτi is Ui’s certificate in Group(PKτ
i ), and CRLτ

i is the CRL of this
group.2 An instance Πτ

i either rejects or outputs an authenticated secret key Kτ
i .

Remark: Our syntax, though adopted from earlier AGKA models of [6, 14], is slightly
different from that used in some other work on Key Agreement protocols, e.g., [8],
where a protocol instance takes as additional input, a so-called session-id (different
from the sidτ

i value introduced above). In this alternative model, creation of a fresh and
locally-unique session-id’s, common to all players engaging in the protocol, is assumed
to be done before the protocol starts. In contrast, in the model of [6, 14], which we
adopt, no such agreed-upon value is assumed. (However, our protocols, similarly to the
AGKA protocol in [14], in the first protocol round create a value s which plays the role
of such unique session-id input. As a side remark, we point out that unlike the protocol
of [14], our AH-AGKA protocol manages to piggyback the creation of this session-id s
onto the first round of the protocol, thus saving one communication round.)

Partnering. The purpose of the Handshake protocol is to allow a set of participants
with matching inputs, i.e. specifying the same group G, to establish a common key. We
use the term session partnering to denote protocol instances that run on matching inputs
and where all protocol messages between them are properly delivered. Namely, we say
that a set of protocol instances {Πτ1

1 , Πτ2
2 , ..., Πτn

n } is partnered if there exists a single
public key PK and a single value sid such that, for each session Πτi

i , in this set it holds
that PKτi

i = PK and sidτi

i = sid. The latter implies complete agreement among these
player instances with regard to the set of messages sent and delivered between these
instances.

Correctness. We say that an AH-AGKA scheme is correct if, assuming that all keys,
certificates and CRL-s are generated by following the Setup, KGen, Add and Revoke
procedures, the following holds:

For any set of partnered sessions Πτ1
1 , Πτ2

2 , ..., Πτn
n where certτi

i ∈Certs(PKτi

i )
for each i, and certτi

i �∈ RevokedCerts(CRL
τj

j ) for all pairs (i, j), there exists
a single unique bit-string K of length κ such that each session Πτi

i accepts and
outputs Kτi

i = K .

2.1 Definition of Security

We define AH-AGKA security similarly to standard AGKA protocols in the PKI model,
but we must adapt these security notions to our setting. In the setting of an AH-AGKA
scheme, the protocol participants, instead of recognizing one another by individual pub-
lic keys, want to establish authenticated sessions with any other participants as long as
all these participants are non-revoked members of the same group. This is reflected in
the fact that a user starts an AH-AGKE protocol instance on just his certificate and
the public key of some chosen group G. One implication this bears for the AH-AGKA

2 As in standard authentication protocols in the PKI model, the more recent CRL, the better.
However, we do not assume that a player has the most recent group CRL.
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security definition is that, unlike in a standard AGKA protocol in the PKI model, our
notion of security must explicitly include admission and revocation actions of the CA’s
which manages the groups.

AH-AGKA security is defined via a game between an adversary and a set of users
communicating over a network. In this game, the adversary gets to see the public
keys of all groups, and some number of certificates in each group, corresponding to
all corrupted players and leaked secrets. The adversary then schedules any number of
Handshake protocol instances, involving any combination of honest users and groups.
The adversary has complete control of the network, i.e., it sees all messages and can
delay, delete, modify, or inject any messages received by the honest players. The adver-
sary can also request that some key established in some protocol session be revealed.
We say that the AGKA protocol is secure if, for each (unrevealed) session executed by
an honest player, the adversary cannot distinguish the key output by the player on that
session from a random bitstring of the same length. (As discussed below, the only ex-
ception is if the adversary previously requested that a key be revealed for some protocol
session partnered with the one at hand.)

Formally, security is defined via an interaction of an adversarial algorithm A and
a challenger C on common inputs (κ, l, m). The interaction starts with C generating
params via Setup(κ), and initializing m groups G1, ..., Gm, by running the
KGen(params) algorithm m times. C initializes all members in these groups, by run-
ning the Add(SKj) algorithm, for each SKj , j = 1, ..., m, for l times. This way, C
generates m certificates for every U ∈ U , thus making every user a member of every
group. The adversary A gets all generated public keys PK1, ..., PKm. It then chooses
any subset Rev ⊆ U of initially corrupted players and gets the set of their certificates
{certi(j) | Ui ∈ Rev, j ∈ {1, ..., m}}. For each group G in G, the challenger runs the
Revoke algorithm to revoke all corrupted members U ∈ Rev, and outputs the resulting
CRL-s for each group, i.e., CRL1, ..., CRLm.

After this initialization, A schedules any number of Handshake protocols, arbitrar-
ily manipulates their messages, requests the keys on any number of the (accepting)
sessions, and optionally corrupts any number of additional players, all of which can
be modeled by A issuing any number of the commands listed below. Finally, A stops
and outputs a single bit b′. The commands the adversary can issue, and the way the
challenger C responds to them, are listed below. In all commands we assume that
U ∈ U \ Rev.

• Start(U, G) : If U = Ui for some Ui ∈ U \ Rev and G = Gj for some Gj ∈ G,
the challenger retrieves key PKj for group Gj , certificate certi

(j) issued to player
Ui for group Gj , and the CRLj for group Gj , and initiates instance Πτ

U , where
τ is an index that has not been used by user U before. The challenger follows the
Handshake protocol on behalf of instance Πτ

U on inputs (certi(j), PKj , CRLj),
forwarding any message generated by this instance to A. The challenger keeps the
state of all initiated instances. We denote the group upon which Πτ

U is initiated as
Group(Πτ

U ). If Πτ
U is triggered on Gj then Group(Πτ

U ) = Gj . C also hands to A
the index τ of this instance.

• Send(U, τ, M): If instance Πτ
U has been initiated and is still active, C delivers a

set M of messages to this instance. The set M should normally contain n − 1
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messages M2, ...Mn, for n ≥ 2, which models the messages that instance Πτ
U

receives in the current round of this protocol. The instance interprets these messages
as broadcasted by n − 1 distinct instances of the protocol in the same round. (A
could send an empty set M, but an instance would invariable immediately abandon
the protocol as a result.) C forwards to A any message Πτ

U generates in response.
If Πτ

U outputs a key, C stores this key with the session state.
• Reveal(U, τ): If Πτ

U outputs a session key K , C sends K to A. If the session has
either not completed yet or has been rejected, C sends A a null value.

• Test(U, τ): This query is allowed only once. If session Πτ
U has output a session key

K , C picks a random bit b. If b = 1, then C sends K to A. If b = 0 then C sends to
A a random κ-bit long value K ′, instead of K . If the session does not exist, failed,
or is still active, the challenger ignores this command.

Session Freshness and Legitimate Adversaries. We call an active session Πτ
U of an

uncorrupted player U fresh, if for all sessions Πτ ′

U ′ partnered with Πτ
U the adversary has

not queried Reveal(U, τ) or Reveal(U ′, τ ′). Note that the adversary knows whether any
two sessions are partnered or not. We call an adversary A legitimate if it poses a Test
query on a fresh session Πτ

i , and afterwards A does not issue a Reveal query on Πτ
U or

any Πτ ′

U ′ partnered with Πτ
U .

Definition 1. Denote the final output of adversary A in the above interaction with the
challenger C on common inputs (κ, l, m) as 〈A, C(b)〉(κ, l, m). We define the adver-
sary’s advantage in the security game as

Adv sec
A = | Pr[b = b′ | b′ ← 〈A, C(b)〉(κ, l, m)] − 1/2|

where the probability is taken over the random coins used by A and C and a random
choice of the challengers bit b.

We call an AH-AGKA scheme (ε, t, qs, qH , l, m)-secure in the Random Oracle Model
if for all legitimate adversaries A who run in time t, start qs AH-AGKA sessions, and
make qH hash function queries, it holds that Adv sec

A ≤ ε.

2.2 Definition of Affiliation-Hiding

We define the affiliation-hiding property using a similar game as in the security defini-
tion in the previous section. However, the adversary’s goal in the affiliation-hiding game
is not to violate semantic security of some session key (as in the security game above)
but to learn the participants’ affiliation. We model the property of the attacker’s inabil-
ity to learn the affiliation by comparing two executions of the adversary: one where
the challenger follows the protocols faithfully on behalf of all honest participants, and
the other where the adversary interacts with a simulator, instead of the real users. The
simulator attempts to follow the adversary’s instructions, except that it is never told the
groups for which the (scheduled by the adversary) Handshake protocol instances are
executed, i.e., if the adversary issues a Start(U, G) query, the simulator gets only an
identifier (îd) which is uniquely but arbitrarily assigned to the pair (U, G) ∈ U × G.

Consequently, these inputs are also the only thing that the adversary can possibly
learn from the interaction with a simulator. The simulated protocol messages can re-
veal only whether or not two sessions involve the same (user,group) pair. However, the
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adversary does not learn which group, nor can he decide if two instances of two dif-
ferent users belong to the same group. Note that we allow the adversary to be able to
link instances which involve the same (user,group) pair because the simulator gets the
same îd for such instances. Indeed, all AH-AGKA schemes we propose in this paper
are linkable in this sense.

Formally, the game between A and Cah, on common inputs κ, l, m, starts exactly as the
game between A and C in the security definition above. Namely, Cah runs Setup(κ)→
params, then runs m instances of KGen(params) → (PKj , SKj), for j = 1, .., m, then
lm instances of the Add algorithm, Add(SKj) → certi

(j), for i = 1, ..., l and j =
1, ..., m, which generate l certificates for each of the m groups. Cah gives to A all public
keys PKj and the certificates of all corrupted users: {certi(j) | i ∈ Rev, j ∈ {1, ..., m}},
revokes all of these certificates, and finally publishes the resulting CRL-s.

After this initialization, A schedules any number of Handshake instances and ma-
nipulates their messages in arbitrary ways. We model this interaction between A and
Cah by allowing A any number of queries Start(U, G) and Send(U, τ, M) to C, as in
the security game.

However, A does not make a Test query in this game. Instead, Cah picks a random
bit b at the beginning of the execution and performs A’s commands depending on the
value of b. If b = 0, Cah responds to A’s commands Start(U, G) and Send(U, s, M)
by following the corresponding protocol on behalf of the user, exactly as in the security
game in above. Otherwise (b = 1), Cah replies to A with messages produced by the
simulator SIM, which is an interactive machine which runs only on inputs params,
and, instead of Start(U, G) and Send(U, s, M), it gets on-line inputs Start(îd) and
Send(îd, M), respectively, where îd is a unique (and random) string assigned to this
(U, G) pair. At the end of the game, the adversary outputs a bit b′.

Definition 2. Denote the final output of adversary A in the above interaction with the
challenger Cah on common inputs (κ, l, m) as 〈A, Cah(b)〉(κ, l, m). We define the ad-
versarial advantage in the affiliation-hiding game as

Adv ah
A (κ, l, m) = | Pr[b = b′ | b′ ← 〈A, Cah(b)〉(κ, l, m)] − 1/2|

where the probability is taken over the random coins used by A and Cah and a random
choice of the challengers bit b.

We call an AH-AGKA scheme affiliation-hiding if for any probabilistic polynomial-
time adversary A, for parameters l an m polynomially related to κ, the adversarial
advantage Adv ah

A (κ, l, m) is a negligible function of κ.

Remark on the Affiliation-Hiding Notion. First, note that the above definition re-
stricts A to only Start and Send queries. This results in a restricted notion of affiliation-
hiding, which can and should be strengthened to include the information the A can
gain about session keys from higher-level protocols, modeled by Reveal queries. Such
strengthening is in fact necessary in practice because without the Reveal queries, A’s
view does not even contain information on whether a given session instance failed or
succeeded, which is something that a network adversary can very often learn in practice.
We leave consideration of stronger notions of affiliation-hiding to the full version of the
paper. Second, an exact-security version of the above notion can be easily extrapolated,
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and this too will be included in the full version, together with the exact security bounds
on affiliation-hiding for the two AH-AGKA schemes presented in this paper.

3 Cryptographic Assumptions

Definition 3. Let S-RSA-IG(κ) be an algorithm that outputs so-called safe RSA in-
stances, i.e. pairs (n, e) where n = pq, e is a small prime that satisfies gcd(e, φ(n)) =
1, and p, q are randomly generated κ-bit primes subject to the constraint that p =
2p′ + 1, q = 2q′ + 1 for prime p′, q′, p′ �= q′.

We say that the RSA problem is (ε, t)-hard on 2κ-bit safe RSA moduli, if for every
algorithm A that runs in time t we have

Pr[(n, e) ← S-RSA-IG(κ), g ← Z
∗
n : A(n, e, g) = z s.t. ze = g (mod n)] ≤ ε.

Definition 4. Let G be a cyclic group of prime order q with a generator g. We say that
the Square Diffie-Hellman Problem (SDH) in G is (ε, t)-hard if for every algorithm A
running in time t we have

Pr[x ← Zq : A(g, gx) = gx2
] ≤ ε.

DDH oracle: A DDH oracle in group G is an algorithm that returns 1 on queries of the
form (g, gx, gy, gz) where z = xy mod q, and 0 on queries of the form (g, gx, gy, gz)
where z �= xy mod q.

Definition 5. We say that the Gap Square Diffie-Hellman Problem (GSDH) in group G

is (ε, t)-hard if for every algorithm A running in time t on access to the DDH oracle
DDHG in group G we have

Pr[x ← Zq : ADDHG(g, gx) = gx2
] ≤ ε.

It is well known that the SDH problem is equivalent to the computational Diffie-Hellman
(DH) problem. Just note that gxy = (g(x+y)2/(gx2

gy2
))2

−1
, and that oracle errors can

be easily corrected since both the SDH and the DH problems are random self-reducible.
Similarly, the GSDH problem is equivalent to the Gap Diffie-Hellman problem (GDH),
which is believed to be hard in many prime-order groups. In particular, generic group
algorithms cannot solve it in time better than Ω(

√
q) [5].

4 AH-AGKE Scheme Based on the RSA Assumption

• Setup: On security parameter κ, the Setup procedure picks two other parameters
κ′, and κ′′. Parameter κ is the length of the key output by the key agreement proto-
col Handshake, κ′ is an additional parameter which in practice can be 160, and κ′′

is chosen so that the RSA problem for 2κ′′-bit safe RSA moduli has at least κ-bit
security (see theorem 1 for exact bounds). Whenever we say that two distributions
D1, D2 are statistically close we mean that the statistical difference between them
is bounded by O(2−min(κ,κ′,κ′′)). The setup procedure also chooses a κ′-bit prime
q̂ and defines hash functions Hq̂ : {0, 1}∗ → Z∗q̂ and H : {0, 1}∗ → {0, 1}κ.
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• KGen: Generate a 2κ′′-bit safe RSA modulus n = pq, where p = 2p′+1, q = 2q′+
1, and p, q, p′, q′ are primes. Pick a random element g s.t. g generates a maximum
subgroup in Z∗n, i.e. ord(g) = 2p′q′, and s.t. −1 /∈ 〈g〉. (This holds for about half of
the elements in Z∗n, and it is easily tested.) Note that in this case Z∗n ≡ 〈−1〉 × 〈g〉.
Therefore, in particular, if x ← Z2p′q′ and b ← {0, 1} then (−1)bgx is distributed
uniformly in Z∗n. RSA exponents (e, d) are chosen in the standard way, as a small
prime e and d = e−1 (mod φ(n)). The secret key is (p, q, d) and public key is
(n, g, e). Key generation also fixes a hash function Hn : {0, 1}∗ → Zn, specific to
the group modulus n.3

• Add: To add user U to the group, the manager picks a random string id ← {0, 1}κ′

and computes a (full-domain hash) RSA signature on id, σ = hd (mod n), where
h = Hn(id). U ’s certificate is cert = (id, σ).

• Revoke: To remove user U from the group, the manager appends string id to the
group CRL, where (σ, id) is U ’s certificate in this group.

• Handshake: This is an AGKA protocol executed by some set Δ = {U1, ..., Un}
of players. Each player Ui starts a session Πτi

i for a (locally) fresh τi, on some
inputs (certi, (n, e, g), CRLi) s.t. (n, e, g) is some public key, certi = (idi, σi) is
Ui’s certificate for this public key (n, e, g), i.e. certi ∈ Certs(n, e, g), and CRLi is
the (hopefully recent) CRL for group Group(n, e, g). The Handshake protocol is in
Figure 1 below (see also the note below).

Notational Simplifications. In figure 1, we make several assumptions to simplify the
notation. First, we denote the set of participating players as simply U1, ..., Un, even
though they can be any n users Ui1 , ..., Uin among U = {U1, ..., Ul}, for any n ≥ 2.
Secondly, we assume that the order between the players, which in the full protocol is de-
termined on-line according to the players’ messages in Round 1, is simply U1, ..., Un.4

For simplicity of notation, we assume that the indices cycle modulo n, i.e. Un+1 = U1.
We also assume that each instance Πτ

i starts on the same public key (n, e, g). (Since
we are not concerned with robustness properties in this paper, we do not concern our-
selves with what happens with executions of instances which are not partnered, and in
particular do not run on the same public keys.)

Affiliation hiding property of the protocol in figure 1 depends crucially on the fact
that if the distribution of variable θ̄i is indistinguishable from uniform over Zn then the
distribution of θi = θ̄i +kn is statistically close to U22κ′′+κ . There is an alternative way

3 Selecting separate hash function Hn for every group is done purely for notational convenience.
A family of hash functions Hn : {0, 1}∗ → Zn s.t. each Hn is statistically close to a random
function with range Zn, can be easily implemented in the random oracle model with a single
hash function with range 22κ′′+κ. E.g., Hn(m) = H(n, m) mod n.

4 This ordering is done as follows: In the protocol each player Ui picks a long-enough random
nonce μi (see Round 1 in figure 2), which Ui then includes in all its messages in the protocol.
After receiving some set of messages in Round 1 (note that we assume weak synchrony), every
receiver sorts all the received messages by the increasing order of these μi values. Each player
then (re)labels all the participants and the messages received in Round 1, including its own mes-
sages and its inputs, according to this order. The actual protocol runs exactly as the simplified
protocol in figure 2 in the case that this ordering of players created in Round 1 coincides with
the original labels i = 1, ..., n of the participants U1, ..., Un assumed for simplicity in figure 2.
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The inputs of instance Πτ
i of player Ui are certi = (σi, idi), (n, g, e), and CRLi. Note that

σe
i = Hn(idi) mod n.

[Round 1]: Ui picks random values bi ← {0, 1}, ti ← Zn/2, and μi ← {0, 1}3κ , computes

θ̄i = (−1)biσig
ti (mod n), sets θi = θ̄i + νn for random ν ← [0, ..., �22κ′′+κ/n�], and

Ui broadcasts (θi, idi, μi).

• Assume that player Ui received n-1 messages (θ1, id1, μ1) , ..., (θi−1, idi−1, μi−1),
(θi+1, idi+1, μi+1), (θn, idn, μn) in Round 1. (This is a simplification. In the real pro-
tocol each receiver Ui orders the received messages, and the players which sent them,
according to values μ these messages contain. See footnote 4.)
If any two messages contain the same value idj or the same value μj , player Ui rejects.

• Ui sets s = ((n, g, e), {θj , idj , μj}j=1,...,n)
• If idj ∈ CRLi for any j then Ui picks a random value Xi in Z∗

q̂ and sets reject =
T . Otherwise, Ui computes Xi = Hq̂((zi+1)ti , s)/Hq̂((zi−1)ti , s) (mod q̂) , where
zi+1 = (θi+1)2e(hi+1)−2 (mod n) and zi−1 = (θi−1)2e(hi−1)−2 (mod n).
(Note that if (idj , σj) is a certificate for public key (n, e, g) and θj = (−1)bj σjg

tj +νn
then zj = g2etj .)

[Round 2]:
Ui broadcasts (Xi, μi).

• If in Round 2 player Ui receives n-1 values Xj accompanied by μj ’s that match the
μ1, ..., μi−1, μi+1, ..., μn values above, if n

j=1 Xj = 1, and if reject �= T , then Ui

computes ki = Hq̂((zi−1)ti , s)n·(Xi)n−1·(Xi+1)n−2 · · · Xi−2 (mod q̂) and outputs
Ki = H(ki, sidi), where sidi = ((n, g, e), {θj , idj , μj , Xj}j=1,...,n). Otherwise Ui

rejects.

Fig. 1. RSA-based Affiliation-Hiding AGKE protocol

that we can use to hide the range of θi, which does not take the κ bandwidth overhead
[2], which is to repeat picking θ̄i until θ̄i ∈ {0, 1}2κ′′−1. However, the expected running
time of such procedure is twice larger than ours. Moreover, such procedure can be
subject to timing attacks. Note that the overhead of κ bits our procedure incurs is small
compared to |θ̄i| = |n|.
Protocol Correctness. To see that the protocol Handshake in Figure 1 is correct,
note that if some n sessions Πτ1

1 , ..., Πτn
n are partnered then they all run on the same

public key (n, e, g), and all the values (θ1, id1, μ1, X1),...,(θn, idn, μn, Xn) are ex-
changed between them without interference. Therefore, first of all, each participating
player will create the same order among the participants, and hence each player la-
bels all the exchanged values in the same way, so we can assume for simplicity that
this ordering coincides with the original labels i = 1, ..., n. Each player also com-
putes also the same value s and sidi. To see that each player computes the same value
ki and hence the same key Ki, note that for each j we have zj = θ2e

j h−2
j = g2etj ,

and therefore, each Xi = Hq̂(g2etiti+1 , s)/Hq̂(g2eti−1ti , s) (mod q̂). Note also that
Hq̂((zi−1)ti , s) = Hq̂(g2eti−1ti , s). It follows that for every i we have

ki = Hq̂(g2eti−1ti , s) ∗ Hq̂(g2etiti+1 , s) ∗ ... ∗ Hq̂(g2eti−2ti−1 , s) mod q̂

Therefore all the keys Ki are the same as well.
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Theorem 1. Assuming that the RSA problem is (ε′, t′)-hard on random safe RSA moduli
of length 2κ′′, the above tuple of algorithms (Setup, KGen, Add, Revoke, Handshake) is
an (ε, t, qs, qH , l, m)-secure AH-AGKE scheme in the Random Oracle Model as long as

ε ≈ m ∗ (2ε′ + 2lqH2−κ′
+ q2

s2−3κ + qs2−κ′′+2)
t ≈ t′ − (m ∗ tkg + qs ∗ qH ∗ texp)

where tkg is the time to generate an RSA private/public key pair and texp is the time of
(multi)exponentiation modulo n, for 2κ′′-bit RSA moduli.

Proof. Assume a legitimate PPT adversary A interacting with challenger C as described
in the security definition (definition 1). Assume that there are m groups and l users in
the universe, and that A runs in time t, starts at most qs sessions, and makes at most
qH queries to the hash functions Hn, Hq̂ , and H . Assume w.l.o.g. that A always makes
a test query on some session. Denote Adv sec

A = |Pr[b′ = b]|, i.e. the advantage of
the adversary A in the interaction with C, by ε. We split the security proof into two
parts. First we describe the simulation procedure, SIM, which using A, attempts to
solve for z s.t. ze = g mod n on an RSA challenge (n, e, g). This simulation procedure
will run in time t′ approximately t + (m ∗ tkg + qs ∗ qH ∗ texp). We will then argue
that the probability of SIM’s success in solving the RSA challenge is at least ε′ ≥
ε/m−(2lqH2−κ′

+q2
s2−3κ+qs2−κ′′+2), assuming that element g in SIM’s challenge

is such that 〈−1〉 × 〈g〉 = Z∗n. Note that if n is a safe RSA modulus then for a random
g ∈ Z∗n this holds with probability 1/2 − O(2−|n|/2) ≈ 1/2. Therefore, the success
of SIM on solving a random g ∈ Z∗n is (statistically close to) at least half the above
expression, which completes the proof.

PART I: CONSTRUCTION OF A SIMULATOR

Setup. Given the RSA challenge (n, e, g), SIM follows the Setup algorithm with
parameters κ, κ′, and κ′′ = |n|/2. As mentioned above, we assume that 〈−1〉 × 〈g〉 =
Z∗n.

Initialization of all groups. Let G∗ ∈ G be a group s.t. the probability that the adver-
sary A tests on Πτ

i s.t. Group(Πτ
i ) = G∗ is not less than 1/m. (Recall that we assume

A always tests some session.) Simulator SIM initializes all the groups in G except
G∗ as in the real protocol. SIM also creates l certificates for each of these groups by
following the Add procedure, and in the rest of the simulation SIM simply follows the
Handshake protocol on behalf of all instances Πτ

i s.t. Group(Πτ
i ) �= G∗. Thus, in the

rest of the simulation description we will only describe SIM’s actions with regard to
instances Πτ

i s.t. Group(Πτ
i ) = G∗.

For group G∗, SIM sets its public key as (n, e, g), and creates the certificates for
each revoked player Ui ∈ Rev by simulating an RSA signature (idi, σi) under key
(n, e, g). Namely, SIM picks two random values idi ← {0, 1}κ′

and σi ← Z∗n, and
assigns Hn(idi) to σe

i (mod n). If A has already queried Hn on any idi’s chosen by
SIM in this way, SIM abandons the simulation. For each Ui /∈ Rev in G∗, SIM
picks a random value idi ← {0, 1}κ′

. SIM hands to A all the public keys and the certs
of the corrupted players.
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Hash queries to Hn, Hq̂ and H . For each query x to Hn, SIM picks random a ← Z∗n
and sets Hn(x) = ae · g−1 (mod n). W.l.o.g, assume that Hn is queried on each idi

for Ui /∈ Rev. Denote value a chosen above for x = idi as ai, and Hn(idi) = ae
ig
−1

as hi. For the queries to H and Hq̂ , SIM simply passes these queries to H and Hq̂ ,
respectively. However, for each query (r, s) to Hq̂ , SIM also tries to solve the RSA
challenge as we describe below.

After the above initialization, SIM must provide responses for A’s queries Start,
Send, Reveal, and Test, which would look to A as the real execution, i.e. as in A’s
interaction with challenger C. For notational convenience assume that the local index
τ of each instance Πτ

i is globally unique (e.g., assume that τ in Πτ
i has a suffix i).

In the following description, we add as a superscript the instance index τ to all values
related to Πτ

i . For example, θτ
i , Xτ

i will refer to messages θi, Xi sent by instance
Πτ

i . As mentioned above, SIM responds to A’s commands relating to instances Πτ
i

s.t. Group(Πτ
i ) �= G∗ by simply following the honest players’ protocol. However, for

queries involving group G∗, simulator SIM respondes as follows:

Start commands. For the Start(Ui, G
∗) command, SIM initializes instance Πτ

i . SIM
picks bτ

i ← {0, 1}, γτ
i ← Zn/2, and computes θ̄τ

i = (−1)bτ
i · ai · gγτ

i (mod n). Notice
that the distribution of θ̄τ

i in this simulation and in the real protocol are statistically close
because both are statistically close to uniform in Z∗n. Note that since hi = (ai)e/g,
therefore θ̄τ

i = (−1)bτ
i · (hig)d · gγτ

i = (−1)bτ
i ·hd

i · gd+γτ
i = (−1)bτ

i ·hd
i · gtτ

i (mod n),
where tτi = γτ

i + d (mod φ(n)/2). The simulator does not know either d or tτi , but
will use the above relation to solve for gd later. SIM also chooses μτ

i ← {0, 1}3κ,
ντ

i ← [0, ..., �22κ′′+κ/n�], sets θτ
i = θ̄τ

i + ντ
i and replies with (θτ

i , idi, μ
τ
i ).

Send queries. Consider an instance Πτ
i created by the Start command above. We de-

note the Send command to this instance corresponding to Round 1 of the protocol by
Send1, and the Send command corresponding to Round 2 of the protocol by Send2. In
the following statement, just like we did in the description of the protocol, we assume
that the index of player Ui involved in session Πτ

i belongs to set i ∈ {1, .., n}. (In
general i ∈ {1, .., l} where l = |U| > n, but the proof in the general case is easy to
extrapolate from the proof we give here.)

For the Send1(Ui, τ, {θ̂τ
j , îd

τ

j , μ̂τ
j }j=1,..,n,j �=i) command, unless there are collisions

in id’s or μ’s, SIM sets sτ
i as in the protocol. If any îd

τ

j ’s are on CRLi then SIM
sets Xτ

i ← Z∗q̂ and rejectτi = T . Otherwise, SIM sets Xτ
i = cτ

i,i+1/cτ
i,i−1 (mod q̂)

where values cτ
i,j for j = i − 1 and j = i + 1 are chosen as follows. If ∃ some Πτ ′

i′

which received the Send1 query s.t.:

1. (θτ ′

i′ , idτ ′

i′ , μτ ′

i′ ) = (θ̂τ
j , îd

τ

j , μ̂τ
j )

2. (θ̂τ ′

j′ , îd
τ ′

j′ , μ̂τ ′

j′ ) = (θτ
i , idτ

i , μτ
i ) for j′ = i′ + 1 or j′ = i′ − 1

3. sτ ′

i′ = sτ
i and rejectτ

′

i′ �= T

then SIM assigns cτ
i,j ← cτ ′

i′,j′ , where cτ ′

i′,j′ is a value SIM has previously chosen

when dealing with the Send1 command to session Πτ ′

i′ . Note that this case corresponds
to an adversary who honestly routes the messages of matching instances Πτ

i and Πτ ′

i′
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from one to another. In such case in the real execution these two instances would com-
pute the same value cτ

i,j = cτ
i′,j′ , where

cτ
i,j = Hq̂((ẑτ

j )tτ
i , sτ

i ) and cτ ′

i′,j′ = Hq̂((ẑτ ′

j′ )tτ′
i′ , sτ ′

i′ )

If any of these conditions are not met, which corresponds to the case where there is
no instance Πτ ′

i′ which runs on matching inputs as Πτ
i , or when the adversary actively

interferes in the communication between these two instances, SIM picks a fresh ran-
dom value cτ

i,j ← Z∗q̂ . In both cases SIM stores [j, Πτ
i , sτ

i , (θ̂τ
j , îd

τ

j , μ̂τ
j ), cτ

i,j ] in a
table denoted THq̂

. Finally, SIM replies with (Xτ
i , μτ

i ).
For all the Send2(Ui, τ, {X̂τ

j , μ̂τ
j }j=1,..,n,j �=i) commands, SIM abandons Πτ

U if

values μ̂τ
j are not correct or Πn

j=1X̂
τ
j �= 1, where X̂τ

i = Xτ
i ; otherwise SIM sets sidτ

i

as in the protocol, computes

kτ
i = (cτ

i,i−1)
n · (X̂τ

i )n−1 · (X̂τ
i+1)

n−2 · · · (X̂τ
i−2) (mod q̂) (1)

and outputs Kτ
i = H(kτ

i , sidτ
i ).

Reveal queries. On Reveal(Ui, τ), if instance Πτ
i has output a session key Kτ

i , SIM
delivers it to A.

Test query. Finally, if adversary issues command Test(i, τ) then SIM picks a random
bit b as C does, and if b = 1 then SIM replies with Kτ

i to A. Otherwise, SIM returns
a random value in {0, 1}κ.

Computing the RSA challenge. Every time A makes a query (r, s) to Hq̂ , SIM at-

tempts to solve its RSA challenge as follows. For each entry [j, Πτ
i, s

τ
i , (θ̂τ

j , îd
τ

j , μ̂τ
j ), cτ

i,j ]
in table THq̂

s.t. sτ
i = s, SIM wants to check if

r = ((θ̂)2e(ĥ)−2)t = (θ̂)2e(γ+d)(ae/g)−2(γ+d) = (θ̂/a)2(eγ+1)g2γg2d (mod n)
(2)

where θ̂ = θ̂τ
j , a is the value s.t. ĥ = Hn(îd

τ

j ) = ae · g−1 (mod n), and (t, γ) =
(tτi , γτ

i ) defined when session Πτ
i was started. Note that if r = (ẑτ

j )tτ
i , i.e. A queries

Hq̂ on pair (r, s) = ((ẑτ
j )tτ

i , sτ
i ), where ẑτ

j = (θ̂τ
j )2e(ĥ)−2 and tτi is the value that

satisfies θ̄τ
i = (−1)bτ

i (hi)dgtτ
i , then r = ((θ̂τ

j )2e(ĥ)−2)tτ
i .

The way SIM can verify if equation (2) holds is to compute

w = r · (θ̂/a)−2(1+eγ)g−2γ (mod n) (3)

and test if we = g2. If this holds then SIM extracts gd by computing wβgα, where α,
β satisfy eα + 2β = 1.

PART II: ANALYSIS OF THE SIMULATION

First note that if the adversary A runs in time t then the running time t′ of the above
simulator SIM is dominated by t + m ∗ tkg + qs ∗ qH ∗ texp, where tkg is the time
to generate an RSA private/public key pair and texp is the time of an exponentiation
modulo n.
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Denote as Nb the real network as executed by the challenger C with a fixed bit b.
Recall that if b = 0 then C sends to A a random κ-bit long value and if b = 1 then C
delivers the session key of the tested instance. We also denote as SIMb an execution
of the above simulator SIM with a fixed bit b on challenge (n, e, g) where g satisfies
〈−1〉 × 〈g〉 = Z∗n.

We define the following events:

NEb: A outputs 1 on interaction with Nb.
NEG,b: A outputs 1 and tests session Πτ

i s.t. Group(Πτ
i ) = G, on interaction with

Nb.
SEG,b: A outputs 1 and tests session Πτ

i s.t. Group(Πτ
i ) = G, on interaction with

SIMb.
sCollision: There is a user Ui s.t. sτ1

i = sτ2
i for some τ1 �= τ2, either in an execution

or in a simulation.
HnFailure: A queries Hn on idi for some Ui ∈ Rev before this value is chosen, by
C in an execution and by SIM in a simulation.
N̄EG∗,b = NEG∗,b ∧ ¬(HnFailure ∨ sCollision)
S̄EG∗,b = GEG∗,b ∧ ¬(HnFailure ∨ sCollision)
Hq̂Query: There is a session Πτ

i s.t. A queries Hq̂ on pair (ẑτ
j )tτ

i , sτ
i ), for j = i−1

or j = i+1, which relates to this Πτ
i session, i.e. ẑτ

j = (θ̂τ
j )2e(Hn(îd

τ

j ))−2, and tτi
satisfies gtτ

i = (θτ
i )2e(Hn(idi))−2.

Note that by the assumption that Adv sec
A = |Pr[b′ = b]| ≥ ε we have | Pr[NE1] −

Pr[NE0]| ≥ 2ε. Also, since Pr[Eb] =
∑

G∈G Pr[NEG,b], let G∗ ∈ G be a group s.t.

| Pr[NEG∗,1] − Pr[NEG∗,0]| ≥ 2ε/m (4)

Assume that this is a group chosen by the simulator SIM above. (Note that SIM
could also guess G∗ with 1/m probability.) We will argue the following four facts:

|Pr[NEG∗,b] − Pr[N̄EG∗,b]| ≤ Pr[HnFailure ∧ sCollision] for b = 0, 1 (5)

Pr[HnFailure ∧ sCollision] ≤ lqH2−κ′
+ q2

s · 2−3κ (6)
|Pr[S̄EG∗,1] − Pr[S̄EG∗,0]| ≤ qH2−κ′

(7)

|Pr[N̄EG∗,b | ¬Hq̂Query] − Pr[S̄EG∗,b | ¬Hq̂Query]| ≤ qs2−κ′′+2 for b = 0, 1 (8)

Note that by inequalities (4)-(5) it follows that for either b = 0 or b = 1 we have:

|Pr[N̄EG∗,b] − Pr[S̄EG∗,b]| ≥ ε/m − (lqH2−κ′
+ q2

s2
−3κ + qH2−κ′

/2) ≥ ε/m − (2lqH2−κ′
+ q2

s2
−3κ)

Together with (5), this inequality implies that

Pr[Hq̂Query] ≥ ε/m − (2lqH2−κ′
+ q2

s2−3κ + qs2−κ′′+2)

Since whenever event Hq̂Query happens the simulator SIM solves its RSA challenge,
this implies our claim that ε′ ≥ ε/m − (2lqH2−κ′

+ q2
s2−3κ + qs2−κ′′+2)
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It remains for us to argue that statements (5)-(5) above indeed hold. Note that inequal-
ity (5) follows immediately from the definition of NEG∗,b. For inequality (5) observe that
Pr[HnFailure] ≤ lqH2−κ′

because |Rev| ≤ l and the response on each query to Hn is
a random element in the set of size {0, 1}κ′

. Also Pr[sCollision] ≤ q2
s · 2−3κ because a

collision in sτ
i values for any user Ui can only happen if two sessions Πτ1

i and Πτ2
i of

this user choose the same value μτ1
i = μτ2

i . Since every session chooses its μτ
i value at

random in a set of size 2−3κ, and there are at most qs sessions, the above bound follows.
Equality (5) is also straightforward to see. First note that the statistical difference

between all the values θτ
i in the execution and the simulation is qs2−κ′′+2, because

for each Πτ
i , the difference between distribution of tτi chosen as in the execution as

tτi ← Zn/2, and the distribution of values tτi = γτ
i + d (mod φ(n)/2) for γτ

i uniform

in Zn/2 (recall that this is how value tτi is defined in the simulation), is at most 2−κ′′+2.
Everything else in the execution and the simulation is distributed in the same way,
provided g is correct and event HnFailure does not happen, except for the way values cτ

i,j

are computed. Now, if Hq̂Query does not happen, i.e. if for all sessions Πτ
i , adversary

A does not query the hash function Hq̂ on the proper pair (ẑτ
j )tτ

i , sτ
i ) that corresponds

to the Πτ
i session, then the way c’s are computed in the execution (as outputs of Hq̂)

and the way they are picked in the simulation (at random in Z∗q̂ except if two sessions
are partnered) are the same from A’s point of view. The reason that’s the case is that the
only case in the protocol execution when two sessions Πτ

i , Πτ ′

i′ compute two c values
on the same input is if sτ

i = sτ ′

i′ . But if there is no collisions in s values (event sCollision)
then this implies in particular that that the adversary re-routed messages of these two
sessions between each other, and in this case the simulator SIM also makes the two c
values equal to one another.

It remains to argue that inequality (5) holds. Note that the only difference in these
two interactions is that in S̄EG∗,1 A gets key Kτ

i = H(kτ
i , sτ

i ) on tested Πτ
i , while in

S̄EG∗,0 A gets a random κ-bit value instead of Kτ
i . Note that in A’s interaction with

S̄E, if we disregard for a moment the information A gets from queries to H(kτ ′

i′ , sτ ′

i′ )
for any Πτ ′

i′ (this information is contained in the answers of Test and Reveal queries),
then value kτ

i is hidden from A in an information-theoretic way, i.e. it’s uniformly
distributed in Z∗q̂ independently from everything else A sees. The reason that’s the case
is because, by equation (1), for each Πτ

i , value kτ
i is distributed independently from

A’s view as long as cτ
i,i−1 is independent from A’s view. Disregarding A’s queries

to H , the only way value cτ
i,i−1 enters into the information A gets in the simulation is

via Xτ
i = cτ

i,i+1/cτ
i,i−1 (mod q̂), where the cτ

i,i+1 is chosen independently from cτ
i,i−1,

except if Πτ
i is partnered by A’s Send1 commands with some other session Πτ ′

i′ (see the
three conditions on sessions Πτ

i and Πτ ′

i′ in the procedure for SIM on Send1 query).
In that case we have cτ

i,j = cτ ′

i′,j′ for some j = i ± 1 and j′ = i′ ± 1, and thus we have

to ask if cτ
i,i−1 is still perfectly uniform given Xτ

i , Xτ ′

i′ . Let us call a pair (Πτ
i , Πτ ′

i′ )
related if this is the case and assume j = i + 1 and j′ = i′ − 1 (in general there are
three other cases for A to pair up these sessions, but the argument given here can be
extended to this general case). Let Π

τi1
i1

, ..., Π
τin

in
be sessions s.t. for each j, sessions

Π
τij

ij
and Π

τij+1
ij+1

are related in the above way. However, even in this case, each variable
cij ,ij−1 , taken by itself, is still uniformly distributed in Z∗q̂ (although not independently
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from one another) given A’s view X
τi1
i1

, ..., X
τin

in
, because each Xi1 sets one constraint

between two c’s but there are n + 1 independently chosen c’s involved.
Finally, let us put back the additional information related to any of these cij ,ij−1

values that A gets from hash function outputs H(k
τij

ij
, s

τij

ij
). Note that A gets to see

these outputs from both its Reveal and Test queries, and A can query H to search for
the matching value k

τij

ij
for any Π

τij

ij
in a chain of related sessions Π

τi1
i1

, ..., Π
τin

in
.

Learning any such k
τij

ij
value implies learning the corresponding c

τij

ij ,ij−1 value, and

together with X
τi1
i1

, ..., X
τin

in
this leads to recovery of all values c

τi1
i1,i1−1, ..., c

τin

in,in−1.
However, A can only make qH hash queries to H , and since each of these values is
(individually) uniform in Z∗q̂ , the ability to query H can leak information on any of

these values with probability at most qh2−κ′
, because q̂ is a κ′-bit prime. This implies

the qh2−κ′
bound on the distance between the two simulations, for b = 0 and b = 1.

Theorem 2. The AH-AGKE protocol defined by the above tuple (Setup, KGen, Add,
Revoke, Handshake) is Affiliation-Hiding.

Proof. (sketch) Since the id values are chosen independently of the group, the only val-
ues which can reveal something about the group membership of honest players are the θ
values sent in Round 1 and the X values sent in Round 2. The simulator SIM required
for the affiliation-hiding notion (see section 2.2) is very simple: On the Start(îd) com-
mand it picks μτ

i at random as in the protocol, and θτ
i as a random bitstring of length

(2κ′′ + κ), and sends back (θτ
i , îd, μτ

i ). Then on the Send1(îd, M) command to the
same Πτ

i “instance” of the protocol, SIM picks Xτ
i at random in Z∗q̂ and sends back

(Xτ
i , μτ

i ).
The argument that the adversary cannot tell Xi values creates at random in the above

game from the Xi values returned by the honest parties in the protocol, follows the
same lines as the argument given in the proof of security of this protocol. In summary,
the only way A can tell these Xi values from random is by querying the Hq̂ hash
function on an “appropriate” input ((ẑτ

j )tτ
i , s), for j = i ± 1, related to this session

(these values are well-defined in both the simulation and the execution). However, by
the same argument as given in the security proof, if that happens with non-negligible
probability than such adversary can be used to break the RSA problem.

What’s new in this proof is that we must show that the distribution of value θ sent by
an honest user in this protocol is statistically close to a uniform distribution on (2κ′′ +
κ)-bit strings, denoted Z22κ′′+κ . Recall that for all groups G1, ..., Gm we have 2κ′′ =
|n1| = ... = |nm|. We use U ≈S V to denote that distribution U is statistically close to
V in the sense that the difference between these distributions is at most O(2−min(κ,κ′′)).

As we noted in the construction, values (−1)bgt (mod n) are uniformly distributed
in Z∗n for (b, t) ← {0, 1} × Z2p′q′ . Take any h ∈ Z∗n and σ = hd mod n. Define a
random variable θ̄b,t = (−1)bgtσ mod n. Since multiplication by σ is a permutation in
Z∗n, we have

{θ̄b,t}(b,t)←{0,1}×Z2p′q′ ≡ Z∗n
Since Zn/2 ≈S Z2p′q′ , the above implies that

{θ̄b,t}(b,t)←{0,1}×Zn/2
≈S Z∗n
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Because the proportion of elements in Zn which are divisible by p′ or q′ is O(2−κ′′
),

we have Z∗n ≈S Zn. Therefore

{θ̄b,t}(b,t)←{0,1}×Zn/2
≈S Zn

Finally, we can mask the modulus n of a random value θ̄ in Zn by choosing random
k ← [0, ..., �22κ′′+κ/n�], and adding kn to θ̄ over integers:

{θ̄b,t + kn}(b,t,k)←{0,1}×Zn/2×Z�(22κ′′+κ)/n�
≈S {0, 1}2κ′′+κ

Therefore the difference between the distribution of values θτ
i in the protocol exe-

cution and a simulation where these values are chosen uniformly among (2κ′′ + κ)-bit
strings, is about 2−min(κ,κ′′). Since there are qs sessions, the total difference in the two
views contributed by all the θ values is at most qs2−min(κ,κ′′).

5 Affiliation-Hiding AGKA Scheme Based on the Diffie-Hellman
Problem

We present the DH-based AH-AGKA scheme. Due to space constraints we present only
the scheme, a sketch of correctness, and the statements of theorems about its security
and affiliation-hiding. The proofs will be included in a full version of this paper [13].
We note that the proof of security of this AH-AGKE protocol follows a similar logic
to the proof of security of the RSA-based AH-AGKA protocol in the previous section,
but it includes rewinding, which results in the factor qH of security degradation in the
reduction.

• Setup: The setup algorithm outputs the standard discrete logarithm parameters
(p, q, g), i.e., primes p, q of size polynomial in κ, s.t. g is a generator of a sub-
group in Z∗p of order q. We also define hash functions Hq : {0, 1}∗ → Zq,
H̄q : {0, 1}∗ → Z∗q , and H : {0, 1}∗ → {0, 1}κ.

• KGen: The secret key is chosen as a random number x ∈ Zq and the public key is
y = gx (mod p).

• Add: For any user U in the group, CA computes the certificate cert as a Schnorr
signature [15] on an empty message under the key y, namely cert = (w, t) where
w = gr (mod p), and t = r + xHq(w) (mod q), for random r ← Zq. Note that
(w, t) satisfies equation gt = wyHq(w) (mod p).

• Revoke: To revoke user U , the CRL is appended with (hash of) w, where (w, t)
was U ’s certificate.

• Handshake: This is an AGKA protocol executed by some set Δ = {U1, ..., Un}
of players. Each player Ui starts a session Πτi

i for a (locally) fresh τi, on some
inputs (certi, y, CRLi) s.t. y is some public key, certi = (wi, ti) is Ui’s certificate
for this public key y, i.e. certi ∈ Certs(y), and CRL is the (hopefully recent) CRL
for group Group(y). The Handshake protocol is in Figure 2 below.



Group Secret Handshakes 307

The inputs of instance Πτ
i of player Ui are certi = (wi, ti), y, and CRLi. Note that gti =

wiy
Hq(wi).

[Round 1]: Player Ui picks μi ← {0, 1}3κ , and broadcasts (wi, μi)
• Assume that player Ui received n-1 messages (w1, μ1), ..., (wi−1, μi−1),

(wi+1, μi+1), ..., (wn, μn) in Round 1. (This is a simplification as in Figure 1. See
footnote 4.)
If any two messages contain the same value μj or the same value wj , player Ui rejects.

• Ui sets s = (y, {wj , μj}j=1,...,n).
• If wj ∈ CRLi for any j then Ui picks a random value Xi in Zq and sets reject =

T . Otherwise, Ui computes Xi = H̄q((zi+1)ti , s)/H̄q((zi−1)ti , s) (mod q) where
zi−1 = wi−1y

Hq(wi−1) and zi+1 = wi+1y
Hq(wi+1).

(Note that if (wi−1, ti−1) and (wi+1, ti+1) are certificates under key y then zi±1 =
gti±1 .)

[Round 2]: Player Ui broadcasts (Xi, μi).
• If in Round 2 player Ui receives n-1 values Xj accompanied by μj ’s that match the

μ1, ..., μi−1, μi+1, ..., μn values above, and if reject �= T , then Ui computes ki =
H̄q((zi−1)ti , s)n · Xn−1

i · Xn−2
i+1 · · · Xi−2 (mod q) and outputs Ki = H(ki, sidi),

where sidi = (y, {wj , μj , Xj}j=1,...,n). Otherwise U rejects.

Fig. 2. DH-based Affiliation-Hiding AGKA protocol

Protocol Correctness. Similarly to the correctness argument for the RSA-based pro-
tocol, if n instances Πτ

i are executed on the same public key y and their messages are
properly exchanges, they output same values sτ

i , sidτ
i , and they all compute the same

key material

kτ
i = H̄q(gti−1ti , s) ∗ H̄q(gtiti+1 , s) ∗ ... ∗ H̄q(gti−2ti−1 , s) mod q

where ti’s are defined by the first message as in Figure 2. Therefore all partnered ses-
sions also output the same keys Kτ

i .

Theorem 3. The AH-AGKA scheme defined by the above tuple (Setup, KGen, Add,
Revoke, Handshake) is affiliation-hiding.

Theorem 4. Assuming that the GSDH problem is (ε′, t′)-hard in the q-order subgroup
generated by g in Z∗p , the AH-AGKA scheme defined by (Setup, KGen, Add, Revoke,
Handshake) above is (ε, t, qs, qH , l, m)-secure in the Random Oracle Model for

ε = cε ∗ (ε′ + (mlqH/q + q2
s2−3κ))

t = ct ∗ (t′/qH − (ml + qHqS)texp)

where texp is a cost of exponentiation in the subgroup generated by g and ct, cε are
small constants, assuming the cost of accessing the DDH oracle is constant.
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