
Timing Attacks on NTRUEncrypt Via Variation in
the Number of Hash Calls

Joseph H. Silverman and William Whyte

NTRU Cryptosystems, Inc.

Abstract. This report studies timing attacks on NTRUEncrypt based on
variation in the number of hash calls made on decryption. The attacks
apply to the parameter sets of [8,6]. To mount the attacker, an attacker
performs a variable amount of precomputation, then submits a relatively
small number of specially constructed ciphertexts for decryption and mea-
sures the decryption times. Comparison of the decryption times with the
precomputed data allows the attacker to recover the key in greatly reduced
time compared to standard attacks on NTRUEncrypt. The precomputed
data can be used for all keys generated with a specific parameter set and
tradeoffs exist that increase the amount of precomputation in order to de-
crease the time required to recover an individual key. For parameter sets in
[3] that claim k-bit security but are vulnerable to this attack, we find that
an attacker can typically recover a single key with about k/2 bits of effort.

Finally, we describe a simple means to prevent these attacks by en-
suring that all operations take a constant number of SHA calls. The
recommended countermeasure does not break interoperability with the
parameter sets of [8,6] and has only a slight effect on performance.

1 NTRUEncrypt Overview

In this section we briefly review how NTRUEncrypt works in order to set notation.
For further details, see [2,3,6]. Recall that NTRUEncrypt uses the ring of truncated
polynomials (also sometime called the ring of convolution polynomials)

Z[X]/(XN − 1).

We denote multiplication in this ring by ∗. At various stages of encryption and
decryption the coefficients of these polynomials are reduced modulo q and/or
modulo p, where p and q are relatively prime integers. This reduction is always
performed so that the reduced coefficients lie in the range from 0 to p − 1 (re-
spectively 0 to q −1). In particular, reduction modulo p and reduction modulo q
do not commute with one another. For example,

(11 mod 7) mod 2 = 4 mod 2 = 0 and (11 mod 2) mod 7 = 1 mod 7 = 1.

For simplicity in this note, we restrict attention to the case p = 2, in which case
various polynomials are chosen to be binary (i.e., all coefficients 0 or 1), and in
some cases with a fixed number of zeros and ones. To ease notation, we let

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 208–224, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 209

BN = {binary polynomials},

BN(d) = {binary polynomials with exactly d ones}.

An NTRUEncrypt private key consists of a pair of (binary) polynomials f and g.
The associated public key is the polynomial

h = p ∗ f−1
q ∗ g mod q,

where f−1
q denotes the inverse of f modulo q. Similarly, we let f−1

p denote the
inverse of f modulo p. To speed decryption, the polynomial f is often taken in
the form f = 1 + pF with F ∈ BN(dF), in which case f−1

p = 1. See [3,6] for a
discussion. The special form 1 + pF will play an important role in our attack.

Encryption and decryption use two hash functions. We denote them by G
and H as in [5]. In practice, they are built using either SHA-1 or SHA-256 in
various ways, depending on the desired security level, see [8]. The attack that
we describe is based on the fact that the number of SHA calls required by G
depends on the input to G. Thus by measuring decryption time, an attacker
may obtain information about the input to G, which in turn reveals information
about the private key f.

The encryption process works as follows.

M ∈ BN Padded plaintext
r = G(M) ∈ BN (dr) Randomizer

m′ = M ⊕ H(r ∗ h mod q) Masked message representative
e = (r ∗ h + m′) mod q Ciphertext

The decryption algorithm first recovers the (padded) message representative m′

and plaintext M and then uses them to recreate the blinding value r and verify
that (m′, e) is a valid NTRUEncrypt pair.

m′ =
(
(f ∗ e mod q) mod p

)
∗ f−1

p mod p Recover candidate m′

M = m′ ⊕ H(e − m′ mod q) Unmask m′ to get M

r = G(M) Recover r used in encryption
Verify that e equals r ∗ h + m′ mod q

The basis for our timing attack lies in the way in which G uses SHA to cre-
ate r from M. Note that on decryption, e and m′ completely determine M, and
therefore the time to calculate r = G(M). The blinding value r is required to be
a binary polynomial with exactly dr ones, and the process described in [8] for
creating r from M may take a different number of SHA calls for different values
of M. Later we will describe exactly how this is done, but for now we simply
observe that this leads to a time variation that an attacker may be able to mea-
sure and show how these timing observations may be converted into information
about the private key f. We also note that a simple countermeasure, as described
in Section 7, is to perform a few extra SHA calls to ensure that every decryption
takes the same amount of time.

210 J.H. Silverman and W. Whyte

2 The Time Trail of a Ciphertext

As we saw in Section 1, the number of hash calls required to create the blinding
value r from a message representative/ciphertext pair (m′, e) may be different
for different pairs (m′, e). Each hash call requires a nontrivial amount of time,
so an adversary might be able to determine how many hash calls Bob uses in
attempting to decrypt a (possibly bogus) ciphertext e.

In practice, there will be a number K so that the number of hash calls required
to create r from (m′, e) is usually either K or K + 1. For each pair (m′, e),
regardless of whether or not it is a valid NTRUEncrypt pair, we define r(m′, e) to
be the output from the decryption algorithm,

r(m′, e) = G
((

m′ + H(e − m′ mod q
)
) mod 2

)
,

and we set β(m′, e) ∈ {0, 1} by the rule

β(m′, e) =

{
0 if it takes ≤ K hashes to create r(m′, e),
1 if it takes > K hashes to create r(m′, e).

Note that for known (m′, e), the computation of r(m′, e), and thus of β(m′, e),
requires no private knowledge.

For a given (m′, e), we look also at the rotations (X im′, X ie) for i = 0, 1,
We define the Time Trail of (m′, e) to be the binary vector

T (m′, e) =
(
β(m′, e), β(Xm′, Xe), β(X2m′, X2e), . . . , β(XN−1m′, XN−1e)

)

∈ {0, 1}N .

The Time Trail tells us how many hashes are required for each of the rotations
of the pair (m′, e).

Let P be the probability that a randomly chosen (m′, e) requires (at most) K
hash calls and similarly 1 − P is the probability that a randomly chosen (m′, e)
requires (at least) K + 1 hash calls. If neither P nor 1 − P is too small, then
the probability that two pairs (m′

1, e1) and (m′
2, e2) have the same time trails is

quite small. More precisely, it is not hard to derive the formula

Prob
(
T (m′

1, e1) = T (m′
2, e2)

)
= (1 − 2P + 2P 2)N .

This holds under the assumption that different entries in the vectors are random
and independent: this is correct so long as the main variation in running time
comes from the hash calls, and so long as the output of SHA-1 is in some sense
random. We otherwise defer the derivation of this formula to Section A.1.

3 A Timing Attack Based on Variable Number of Hash
Calls

In this section we explain how an adversary Oscar might use time trails in order
to derive information about Bob’s private key.

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 211

Oscar first chooses a collection of (possibly bogus) ciphertexts E (i.e., E is
a collection of polynomials modulo q). He also chooses a set of message repre-
sentative values M (i.e., a collection of binary polynomials) with the property
that M contains many of the polynomials in the set

{
((f ∗ e mod q) mod 2) ∗ (f−1 mod 2) : e ∈ E

}
.

Note that this is exactly the set of message representative that Bob would create
during the process of decrypting the ciphertexts in E . More precisely, we assume
that the probability

pM,E := Prob
e∈E

(
((f ∗ e mod q) mod 2) ∗ (f−1 mod 2) ∈ M

)

is not too small.
Before starting the active part of the attack, Oscar creates a table consisting

of the time trails of every pair in M×E . In other words, he creates a searchable
list of binary vectors

(
T (m′, e) : m′ ∈ M and e ∈ E

}
.

Thus the precomputation required for the attack has time and space require-
ments that are O

(
#M · #E

)
.

To initiate the attack, Oscar chooses a random e ∈ E , sends it to Bob,
and records how long it takes Bob to decipher it. Note that the use of NAEP
padding [5] as described above ensures that bogus ciphertexts will be rejected.
But in this case the attacker does not care that the ciphertexts are rejected, so
long as he can obtain timing information. This timing information enables him
to determine how many hash calls are required to create r from the ciphertext e
and the message representative

m′(e) := ((f ∗ e mod q) mod 2) ∗ (f−1 mod 2),

so Oscar finds the value of β(m′(e), e). Of course, Oscar does not know the value
of m′(e).

In a similar manner, Oscar sends each of the polynomials

e, Xe, X2e, X3e, . . . , XN−1e

to Bob and obtains the values β(m′(X ie), X ie) for i = 0, 1, . . . , N − 1. We now
observe that

m′(X ie) = ((f ∗ X ie mod q) mod 2) ∗ (f−1 mod 2)

= X i ∗ ((f ∗ e mod q) mod 2) ∗ (f−1 mod 2)

= X im′(e)

Thus Oscar has determined β(X im′(e), X ie) for i = 0, 1, . . . , N − 1, so he knows
the time trail T (m′(e), e) of the pair (m′(e), e).

212 J.H. Silverman and W. Whyte

Oscar now searches his precomputed list and, with reasonable probability,
finds a small number of possibilities for (m′(e), e). In other words, Oscar now has
a known polynomial e and a known polynomial m′ so that when Bob decrypted e,
Bob got m′ as the message representative. Hence Oscar knows that there is an
equation of the form

m′ ∗ f ≡ (f ∗ e mod q) (mod 2). (1)

(More precisely, Oscar knows e and he has a small list of possible m′, one of which
satisfies (1). In Section 4.1 we discuss how Oscar can disambiguate between
the possible m′ in a plausible attack scenario.) Equation (1) certainly contains
a significant amount of information concerning Bob’s private key f, although
exploiting this information will depend on the specific form of e. For example, if
the elements of E consist of polynomials with very few nonzero coefficients, then
equation (1) may give information concerning the spacing between the nonzero
coefficients of f. In Section 4 we describe a specific collection E that leads to a
practical hash timing attack when the key f has the form f = 1 + pF. (This form
is sometimes used to decrease decryption time.)

4 A Practical Hash Timing Attack for f = 1 + 2F —
Theory

For this section we consider the case where p = 2, so q is necessarily odd, and
where private keys have the form

f = 1 + 2F for some binary polynomial F ∈ BN(dF).

The parameters recommended by NTRU Cryptosystems currently take this
form [3,6,8] Note that the inverse f−1

2 = (f mod 2)−1 is equal to 1, so the for-
mula that Bob uses to recover the message representative m′ from a ciphertext e
simplifies to

m′(e) = (f ∗ e mod q) mod 2. (2)

For later computations, we write F =
∑

j FiX
j with Fj ∈ {0, 1}, and for any j ∈

Z, we let Fj denote the coefficient F(j mod N).
Let λ = 2�q/8� be the smallest even integer that is larger than q/4. To mount

the attack, Oscar uses the set of (bogus) ciphertexts defined by

E =
{
λ + λX i : 1 ≤ i < N

}
.

In other words, the e ∈ E are polynomials with two coefficients equal to λ and
all other coefficients equal to 0. In summary, Oscar’s attack is:

1. Choose a value δ.
2. Let E = {ei = λ + λX i : 0 ≤ i ≤ (N − 1)/2} and M = BN(0 < d ≤ δ).
3. Precompute and store in a suitably searchable database the time trails

T (m′, e) for every m′ ∈ M and every e ∈ E .

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 213

4. For each i, send ei, Xei,. . . ,XN−1ei to Bob and use the decryption times to
determine the time trail T (m′(ei), ei) as described in Section 3.

5. Search the database to determine m′(ei), either exactly or up to a small num-
ber of choices. Once a candidate m′(ei) is found, validate it by the methods
below.

6. Use the resulting values of m′(ei) to reconstruct F, either by an exact compu-
tation or by cutting down on the search space for F and performing a direct
search of that subset.

We now need to figure out the possible values of m′(e) that arise in (2) when
Bob decrypts the ciphertexts in E . During decryption, Bob first computes

a = f ∗ e mod q

≡ (1 + 2F) ∗ (λ + λX i) (mod q)

≡ λ + λX i +
N−1∑

j=0

2λ(Fj + Fj−i)Xj .

Thus the jth coefficient of a is given by

aj =

⎧
⎪⎨

⎪⎩

λ(1 + 2F0 + 2F−i) mod q if j = 0,

λ(1 + 2Fi + 2F0) mod q if j = i,

λ(2Fj + 2Fj−i) mod q if j 	= 0, i

(2)

The key observation is that since λ = 2�q/8� is just slightly larger than q/4, the
quantities on the righthand side of 2 are between 0 and q−1 unless Fj = Fj−i = 1,
in which case they are greater than q. Thus there is nontrivial reduction modulo q
if and only if Fj = Fj−i = 1, which implies that

aj =

{
λ, 2λ, or 3λ if Fj = 0 or Fj−i = 0,

4λ − q or 5λ − q if Fj = Fj−i = 1.

The next step is to reduce a modulo 2, which yields the message representa-
tive m′(ei) for the (bogus) ciphertext ei = λ + λX i. Recalling that λ is even
and q is odd, we see that

aj mod 2 =

{
0 if Fj = 0 or Fj−i = 0,

1 if Fj = Fj−i = 1.

This gives the following explicit description of m′(ei):

m′(ei) =
N−1∑

j=0

(
1 if Fj = Fj−i = 1
0 otherwise

)
Xj ,

which in turn yields the following partial information about F:

214 J.H. Silverman and W. Whyte

F(ei) =
N−1∑

j=0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 if m′(ei)j = 1
or m′(ei)j+i = 1

0 if m′(ei)j−i = 1 and m′(ei)j 	= 1
or m′(ei)j+2i = 1 and m′(ei)j+i 	= 1

? unknown otherwise

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Xj ,

Therefore, every m′ with dm′ ones that Oscar can recover will yield dm′ pairs
of non-zero coefficients of F, allowing him to reduce the search space for F. To
be precise, defining the “left-hand” member of a pair in the obvious way, we
see that each of the dm′ left-hand members must be distinct, at least one of the
right-hand members must not occupy the same location as the left-hand member
of another pair (because N is prime) and for the remaining dm′ − 1 right-hand
members the expected number of left-hand members that they occupy the same
position as is given by the expected value of the hypergeometric distribution,

(dm′ − 1)2

N − dm′ − 2

The expected number of distinct coefficients of value 1, c1(dm′ , N), is therefore

c1(dm′ , N) = 2dm′ − (dm′ − 1)2

N − dm′ − 2

Oscar will also have learned the location of some of the zero coefficients of F:
each 1 coefficient that is not known to have another 1 i places to its left or to its
right must have a zero in that position (as a 1 would have been detected, and the
only other option is 0). This, too, will allow him to reduce the search space for F.

Now we estimate the amount of precomputation that Oscar must carry out
in order to mount the attack.

First, we note that the running time of a standard combinatorial attack on
an NTRUEncrypt private key is [4]

τ(dF , N) =
1√
N

(
�N/2�
�dF /2�

)

If Oscar knows the locations of d1 1s and d0 0s in F , this running time becomes

τ(dF , N ; d0, d1) =
(

N − (d0 + d1 + �(dF − d1)/2�)
�dF −d1

2 �

)
(3)

(the top line here is about N , rather than about N/2, because rotational symme-
try has been broken, and the factor of 1/

√
N vanishes for the same reason. Both

of these changes hinder the attacker). Oscar’s aim is to balance precomputation
work and key-specific combinatorial work so as to recover a key in as little total
effort as possible.

Oscar will start by selecting an integer δ and precomputing the time trails
for all m′ such that dm′ ≤ δ. We now estimate how many coefficients of F this

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 215

will enable him to recover. For any (dm′ , i), we want to calculate the probability
that F has exactly dm′ pairs of coefficients separated by i, or in other words the
probability that the dot product (F·X iF) = dm′ . To estimate this, consider what
would happen if F and X iF were independent. Each of the dF 1 coefficients in F
will select one of the coefficients in X iF , giving a hypergeometric distribution of
the values of (F · X iF). In practice, we know that if i 	= 0, a given 1 in F cannot
select itself in X iF and we observe that

PN,dF [F · X iF = dm′] = Hyp(dm′ , dF − 1, dF , N) =

(
dF

dm′

)(
N−dF

dF−1−dm′

)

(
N

dF −1

)

where Hyp(x, d, s, N), the hypergeometric distribution, is the probability of x
successes in d draws without replacement from a pool containing N items of
which s count as successes.

For any given value of dm′ , there are (N − 1)/2 different values of i and
(N − 1)/2 distinct ei. The expected number of m′s with dm′ 1s is therefore

E1(dm′) =
(N − 1)

2
∗ Hyp(dm′ , dF − 1, dF , N)

and the amount of precomputation work required to generate these time trails is

wN (dm′) =
N(N − 1)

2

(
N

dm′

)
.

Every successful time trail identifies c1 distinct 1 coefficients,

c1(dm′ , N) = 2dm′ − (dm′ − 1)2

N − dm′ − 2
.

It also identifies c0 distinct 0s, one to the left of every lefthand 1 and one to the
right of every righthand 1 except for the 1s that are lefthand in one pair and
righthand in another:

c1(dm′ , N) = 2dm′ − 2
(dm′ − 1)2

N − dm′ − 2
.

We now consider how quickly Oscar learns the distinct coefficients of F. Say
that he knows d0 0s and d1 1s, and as a result of finding a time trail he discovers
an additional c0 0s and c1 1s. Then we estimate the new expected total number
of distinct known coefficients as

(new total) = (already known) + (new) − (collisions between old and new)
d′1 = d1 + c1 − Expx(Hyp(x, c1, d1, dF))

= d1 + c1 − d1c1

dF

d′0 = d0 + c0 − Expx(Hyp(x, c0, d0, N − dF))

= d0 + c0 − d0c0

N − dF
.

216 J.H. Silverman and W. Whyte

This allows us to calculate the expected number of distinct coefficients found for
a certain amount of precomputation corresponding to a certain value of δ, and
therefore estimate the amount of work left to be done to recover the key. The
method is:

1. Set d0 = d1 = 0. Set the total work w = 0.
2. For dm′ = 1 to δ:
3. Calculate E1(dm′).
4. If �E1(dm′)� ≥ 1:

(a) Calculate c1(dm′ , N), c0(dm′ , N).
(b) For i = 1 to �E1(dm′)�:
(c) Set d1 = d1 + c1 − d1c1

dF
.

(d) Set d0 = d0 + c0 − d0c0
N−dF

(e) End i loop.

5. Set w = w + wN (dm′)
6. End dm′ loop.
7. Calculate τ(dF , N ; d0, d1) by (3) and output w, τ .

We emphasise that this is simply an estimate, and in particular the use of the
hypergeometric distribution is an approximation to the actual distribution. The
aim is simply to motivate a choice for δ.

4.1 Validating a Choice

The initial set of (bogus) ciphertexts E = {ei = λ + λX i} is relatively small to
reduce precomputation. Recognizing a time trail will tell Oscar that with high
probability he has identified m′(ei) for the relevant ei in his database. However,
if there is a nontrivial chance that the time trail is nonunique, Oscar may want
to check that he has in fact identified the correct ei.

To see how to do this, we note that if

ei = λ + λX i

decrypts to m′, then so do the alternate forms

e∗i = (λ + 2) + λX i, or λ + (λ + 2)X i, or . . .

or indeed many polynomials λ1 + λ2X
i with λ1 and λ2 even integers in the

vicinity of q/4 and satisfying λ1 + λ2 > q/2. Oscar therefore selects one of the
possible e∗i , calculates the time trail T (m′, e∗i) for the message representative m′

that he thinks is produced by decrypting the original ei, and then submits e∗i to
the decryption oracle to find its time trail. If the measured and the calculated
time trail match, he has confirmed the guess for m′. Otherwise, he knows that
the original match on the time trail was just coincidence.

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 217

4.2 Results

We present the results of our analysis in Table 1. Here we have calculated two
different values of δ.

The value δonekey is the value of δ that Oscar will precompute up to if he wants
to recover one key, in other words the first value of δ for which the work required
to peform the precomputation up to δ, w(δ), is greater than the remaining work
required to break the key, τ . It can be seen that, with the exception of parameter
set ees251ep4 (presented in [7]), the log of the amount of precomputation to
be performed log2 w(δ) is slightly more than half the claimed bit strength of the
parameter sets. We also present, for interest, the number of distinct 1s and 0s
that Oscar will on average have identified in a target key before he starts the
combinatorial attack on the remaining coefficients.

The value δallkeys is the value of δ at which Oscar will on average recover the
locations of all dF value-1 coefficients in F through time trail analysis alone. This
is the amount of precomputation that will allow him to recover any key at the
cost of simply submitting about N(N − 1) ciphertexts for decryption. It can be
seen that in general w(δallkeys) is greater than w(δonekey) by about 11 bits, or a
factor of about 2000.

This demonstrates that, so long as the time trails are sufficiently unique and
Oscar has an amount of storage that is customarily granted to attackers in
this kind of paper, this attack is practical. In the next section we analyse the
probability that time trails are unique.

Table 1. precomputation effort required to recover one key with minimum work and
to recover all keys for the parameter sets in [7,8]

Bit Parameter dr,
Security Set Name N dF δone key c1 c0 w τ δall keys w

80 ees251ep4 251 72 14 51.31 57.35 89.75 51.66 16 97.62
80 ees251ep6 251 48 5 40.26 64.72 47.86 23.99 7 58.36
112 ees347ep3 347 66 7 50.52 72.97 62.59 46.58 9 73.24
128 ees397ep1 397 74 8 60.81 94.48 69.95 42.74 10 80.67
160 ees491ep1 491 91 10 71.49 105.17 84.38 60.54 12 95.16
192 ees587ep1 587 108 12 79.57 110.07 98.79 88.09 14 109.62
256 ees787ep1 787 140 16 112.70 169.35 127.72 88.58 18 138.67

5 A Practical Hash Timing Attack for f = 1 + 2F —
Practice

In this section we evaluate the practicality of the attack described in Section 4
for some specific NTRUEncrypt parameter sets that appear in [6,8] (and also the
parameter set ees251ep4 described in [7], which is secure but less efficient than
the corresponding parameter sets in [8]). This practicality depends, among other

218 J.H. Silverman and W. Whyte

things, on the probability that different inputs require a greater or lesser number
of SHA calls. We begin by describing how [8] uses SHA to compute r and then
we compute the probability that this process takes a varying number of SHA
calls.

The blinding value r, which is a binary polynomial with exactly dr ones, is
created from a hash function via repeated calls to some version of SHA. Here is
the process as described in [8]:

1. Fix a value of c satisfying 2c > N . This value of c is specified in [8] for each
of the sample NTRUEncrypt parameter sets. Also let

b = �c/8� and n = �2c/N�

Thus b is the smallest integer such that b bytes contains at least c bits. (In
practice, b will be 1 or 2.) Similarly, nN is the smallest multiple of N that
is less than 2c.

2. Call the specified version of SHA and break the output into chunks of b bytes
each. Within each b byte chunk, keep the lower order c bits and discard the
upper order 8b − c bits. Convert the lower order c bits into (little endian)
integers i1, i2, . . . , it. (Here t is the integer such that the output of the spec-
ified version of SHA consist of tb bytes.) This process of splitting the output
from SHA is illustrated in Figure 1.

3. Create a list of indices j1, j2, . . . by looping through the list of i values
from (2). If i < n and i mod N is not already in the list, the adjoin i mod N
to the list, otherwise discard i. Continue until the list contains dr values of j.
If at any point you run out of i values, then call SHA and create additional i
values as specified in (2). The complete r generation algorithm is illustrated
with pseudocode in Figure 2.

i1 i2 it
. . .

c bits c bits c bits
� �� �

b bytes
� �� �

b bytes
� �� �

b bytes

Fig. 1. Converting SHA output into c bit integers

(1) jList = { }
(2) Call SHA to get i1, i2, . . . , it
(3) Loop α = 1, 2, . . . , t
(4) If iα < n and (iα mod N) /∈ jList

then adjoin iα mod N to jList
(5) If jList contains dr elements, then exit
(6) End α loop
(7) Go to Step (2) to get more i values

Fig. 2. Generating r from SHA output

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 219

This description makes it clear why the number of calls to SHA may vary
for different input values. If we treat the list of numbers i1, i2, . . . as a random
sequence of integers in the range 0 ≤ i < 2c, the fundamental probabilities that
we need to compute are

PC,N,n(L, d) = Prob

⎛

⎜
⎝

A set of L randomly chosen integers i ∈ [0, C)
includes exactly d numbers satisfying both
i ∈ [0, nN) and the values are distinct modulo N

⎞

⎟
⎠

It is not hard to find a recursive formula that allows one to compute PC,N,n(L, d)
reasonably quickly. See Appendix C for details.

In order to generate r, the algorithm described in Figure 2 needs to create a list
of dr distinct numbers satisfying 0 ≤ i < N . Each time the algorithm calls SHA, it
gets t numbers satisfying 0 ≤ i < 2c. Hence the probability that it suffices to call to
SHA s times is equal to the probability that st random numbers in the range [0, 2c)
contain at least dr values in [0, n) whose values modulo N are distinct. Hence

Prob(s calls to SHA suffices)=Prob

⎛

⎝
st randomly chosen integers in [0, 2c)
includes at least dr values in [0, n)
that are distinct modulo N

⎞

⎠

=
∑

dr≤d≤st

P2c,N,n(st, d).

In Table 2 we have assembled the NTRUEncrypt parameters from [7,8] and
computed the values of s such that it is most likely to take either s or s+1 calls
to SHA in order to generate r. The probabilities are listed in the last column of
the table. The closer that the first probability is to 50%, the greater the chance
that a time trail is unique, reducing the need to validate a time trail using the
methods of Section 4.1. In most cases except perhaps k = 80 and k = 192, it
will not be necessary to validate a time trail.

Table 2. The probability that s calls to SHA generates r

Bit SHA
Security N dr bits c b n t s : Prob(s SHA calls suffices) Pnonunique

80 251 48 160 8 1 1 20 3 : 98.14% 4 : 100.0% 2−13.5

112 347 66 160 14 2 47 10 7 : 15.65% 8 : 98.48% 2−154

128 397 74 160 11 2 5 10 8 : 12.77% 9 : 95.10% 2−144

160 491 91 160 9 2 1 10 10 : 13.87% 11 : 91.32% 2−193

192 587 108 256 11 2 3 16 8 : 4.52% 9 : 82.38% 2−76

256 787 140 256 12 2 5 16 10 : 53.04% 11 : 99.85% 2−783

6 Practicality of Attack: Availability of Timing
Information

As noted, it is possible for decryption to take a variable amount of time depend-
ing on the number of hash calls made. In this section we investigate how likely
it is that this information will be leaked.

220 J.H. Silverman and W. Whyte

On a 1.7 GHz Pentium Pro running Windows XP, NTRUEncrypt decryption
with the ees251ep6 parameter set of [8] takes 0.09 ms. A SHA-1 call takes about
1.34μs. These are average figures. The time for these averages to settle down is
obviously of interest.

We ran 100 sets of experiments, in each of which we decrypted a given
ees251ep6 ciphertext 1,000,000 times. As expected from Table 2, 98 of these
ciphertexts took 3 SHA-1 calls to generate r and the other 2 took 4. We sorted
the 100 experiments by running time and hoped to see that the 2 cases where
there had been 4 SHA-1 calls would also have the longest running times. In
fact, the noise due to other system activity overwhelms the variation in running
time due to the number of hash calls on this system: the two cases where there
had been 4 SHA-1 calls were in 29th and 68th position on the sorted list. Each
of these runs took about 90 seconds. If the noise could be eliminated by bom-
barding the decryption oracle with the same ciphertext for a period of an hour,
it would take the attacker N(N − 1)/2 hours to recover all the time trails, or
approximately 3 1

2 years. It therefore appears that this attack is unlikely to suc-
ceed against an implementation of NTRUEncryptdecryption running on a general
computing platform.

At the other end of the computing scale, on an 8051-type smart card (a Philips
Mifare ProX running at a 2.66 MHz internal clock, simulated on the Keil tools
simulator) we observed that for ees251ep4 the total time for a decryption was
58 ms, of which 30 ms was due to the 6 SHA-1 calls. In other words, on this
platform, an additional SHA call incurs an overhead of 5 ms. It seems highly
likely that in this environment the attack described in this paper is practical.

7 Conclusions and Recommendations

We have described a timing attack on the implementation of NTRUEncrypt de-
scribed in [8]. The attack relies on the fact that decryption of different (possibly
bogus) ciphertexts may require a different number of calls to a hash
function such as SHA-1 or SHA-256. We draw some conclusions and make some
recommendations.

1. The attack appears unlikely to work against NTRUEncryptrunning on a
general-purpose PC platform. However, the parameter sets of [8] are claimed
to be appropriate for any platform and as such it is worth investigating coun-
termeasures that can be put in place on any platform.

2. Although we have only described an attack that relies on keys of the special
form f = 1 + pF, it is reasonable to assume that similar attacks are possible
for more general keys. Thus the use of general keys is not a recommended
method to thwart hash timing attacks on NTRUEncrypt.

3. In order to prevent hash timing attacks, it suffices to make sure that almost
all decryptions require the same number of SHA calls. This can be accom-
plished by fixing a parameter KSHA so that almost all inputs (m′, e) require
at most KSHA SHA calls and then performing extra SHA call(s) if neces-
sary so that almost all inputs require exactly KSHA SHA calls. Here, we can

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 221

put a more concrete meaning on “almost all” by requiring that at the k-bit
security level, there is a chance of 2−k that a given (m′, e) has β(m′, e) = 1.
This yields the values given in Table 3 for KSHA. Note that even with this
number of SHA calls it is expected that decryption will take less than 0.5 s
on the smartcard platform described above.

Table 3. Recommended number of SHA calls for different security levels

Bit Expected
Security N SHA calls KSHA

80 251 3 6
112 347 8 15
128 397 9 17
160 491 11 22
192 587 9 20
256 787 10 21

Note that this recommendation will require an attacker to expend more than
2k machine cycles tomount the attack, first because a SHAcall takesmore than
one operation, and second because each attack involves KSHA > 1 SHA calls.

4. The method used to generate r from (m′, e) in [8] is easy to implement, but it
is somewhat wasteful of the pseudorandom bits produced by SHA. It might
be worthwhile to look for more efficient ways to generate r which might also
use a fixed number of calls to SHA, thereby eliminating the possibility of
a hash timing attack. However, we note that the use of a new r-generation
method would require changes to the exisiting standards, while equalization
of the number of SHA calls as in (2) is a simple implementation change that
maintains current standards.
Finally, we note that NTRUEncryptshould continue to be analysed for its
vulnerability to other side-channel attacks: this paper is by no means the
last word on the subject.

References

1. D. Brumley, D. Boneh, Remote timing attacks are practical. Journal of Computer
Networks, 2005.

2. J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key cryp-
tosystem, Algorithmic Number Theory (ANTS III), Portland, OR, June 1998, Lec-
ture Notes in Computer Science 1423, J.P. Buhler (ed.), Springer-Verlag, Berlin,
1998, 267–288

3. J. Hoffstein, J.H. Silverman, Optimizations for NTRU, Public Key Cryptogra-
phy and Computational Number Theory (Warsaw, Sept. 11–15, 2000), Walter de
Gruyter, Berlin–New York, 2001, 77–88.

4. N. A. Howgrave-Graham, J. H. Silverman, W. Whyte, A Meet-in-the-Middle At-
tack on an NTRU Private key, Technical report, NTRU Cryptosystems, June 2003.
Report #004, version 2, available at http://www.ntru.com.

222 J.H. Silverman and W. Whyte

5. N. Howgrave-Graham, J. H. Silverman, A. Singer and W. Whyte. NAEP: Provable
Security in the Presence of Decryption Failures, IACR ePrint Archive, Report 2003-
172, http://eprint.iacr.org/2003/172/

6. N. Howgrave-Graham, J. H. Silverman, W. Whyte Choosing Parameter Sets
for NTRUEncrypt with NAEP and SVES-3, Topics in cryptology—CT-RSA
2005, 118–135, Lecture Notes in Comput. Sci., 3376, Springer, Berlin, 2005.
www.ntru.com/cryptolab/articles.htm#2005 1

7. Consortium for Efficient Embedded Security, Efficient Embedded Security Standard
(EESS) #1 version 2, 2003.

8. Consortium for Efficient Embedded Security, Efficient Embedded Security Standard
(EESS) #1 version 3, 2005.

A Probability That Two Message Representatives Have
the Same Time Trail

A time trail is a binary vector of dimension N . We let P denote the probabilty
that a randomly chosen coordinate is equal to 0, so 1 − P is the corresponding
probablity that a randomly chosen coordinate is equal to 1. Then the probability
that (say) the first coordinates of two random time trails agree is

Prob(both 0) + Prob(both 1) = P 2 + (1 − P)2 = 1 − 2P + 2P 2.

In order for two entire time trails to be identical, they must agree on all N of
their coordinates. Hence

Probability that two Time Trails coincide = (1 − 2P + 2P 2)N .

Therefore for any given e ∈ E and m′ ∈ M, the probability that there exists some
other message representative m′′ ∈ M with T (e, m′′) = T (e, m′) is approximately

#M · (1 − 2P + 2P 2)N .

B The Average Number of Ones with a Given Separation
Distance

Let BN(d) be the set of binary polynomials of degree less than N with exactly d
ones and N − d zeros. Fix i. We are interested in the average number of j such
that Fj and Fj−i are both equal to 1, as F ranges over BN(d). For a given F
and i, we denote the number of such j by

νi(F) = #{0 ≤ j < N : Fj = Fj−i = 1}.

Clearly ν0(F) = d for every F ∈ BN(d). We now fix some 1 ≤ i < N and
compute the average value ν̄i(d) of νi(F) as F ranges over BN (d).

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 223

ν̄i(d) = Average
F∈BN (d)

νi(F) =
(

N

d

)−1 ∑

F∈BN (d)

νi(F)

=
(

N

d

)−1 ∑

F∈BN (d)

N−1∑

j=0

FjFj−i

=
(

N

d

)−1 N−1∑

j=0

∑

F∈BN (d)

FjFj−i

=
(

N

d

)−1 N−1∑

j=0

#
{
F ∈ BN (d) : Fj = Fj−i = 1

}

=
(

N

d

)−1 N−1∑

j=0

(
N − 2
d − 2

)

=
(

N

d

)−1

N

(
N − 2
d − 2

)

=
d(d − 1)

N
.

This proves the formula cited in Section 4.
We also observe that νi(F) appears as a coefficient of the product F ∗ Frev,

where the reversal Frev of F is the polynomial Frev =
∑

F−iX
i. Thus

F ∗ Frev =
N−1∑

j=0

N−1∑

k=0

FjF−kXj+k =
N−1∑

i=0

N−1∑

j=0

FjFj−iX
i =

N−1∑

i=0

νi(F)X i.

Thus knowledge of νi(F) for 0 ≤ i < N is equivalent to knowledge of the prod-
uct F ∗ Frev. Using this value and the public key h = f−1 ∗ g mod q, there are
practical methods for recovering F. In any case, it is certainly true that each
valid (r, m′) pair that Oscar finds contains significant information about the pri-
vate key f, and there are numerous ways to exploit such information in order to
recover f directly (if one has enough (r, m′) pairs) or by cutting down the search
space for f.

C The Probability of Choosing Distinct Values in a
Given Range

In this section we describe a recursion that can be used to compute the
probability

PC,N,n(L, d) = Prob

⎛

⎜
⎝

A set of L randomly chosen integers i ∈ [0, C)
includes exactly d numbers satisfying
i ∈ [0, nN) and whose values are distinct modulo N

⎞

⎟
⎠

224 J.H. Silverman and W. Whyte

We obtain a recursion from the observation that PC,N,n(L, d) equals the sum of
the following two quantities:

– The probability after L − 1 picks of having d − 1 values in [0, nN) that
are distinct modulo N multiplied by the probability of picking an integer
in [0, nN) multiplied by the probability that it does not a repeat a previous
values modulo N .

– The probability after L − 1 picks of having d values in [0, nN) that are
distinct modulo N multiplied by the probability of picking an integer that
either is not in [0, nN) or whose value modulo N repeats a previous value.

We observe that for the first case, the probability of picking an integer in [0, nN)
multiplied by the probability that it does not a repeat a previous values mod-
ulo N is

nN

C
· N − (d − 1)

N
=

n(N − d + 1)
C

.

For the second case, there are C − nN integers in [0, C) that are not in [0, nN),
and there are nd integers in [0, nN) that are in one of the d congruence classes
modulo n that have already been selected, so the probability of picking an integer
that either is not in [0, nN) or whose value modulo N repeats a previous value is

C − nN + nd

C
= 1 − n(N − d)

C
.

This yields the recursion formula

PC,N,n(L, d) = PC,N,n(L − 1, d − 1) ·
(

n(N − d + 1)
C

)

+ PC,N,n(L − 1, d) ·
(

1 − n(N − d)
C

)

Combining this recursion with the obvious initial values

PC,N,n(L, d) = 0 if L < d and PC,N,n(L, 0) =
(

1 − nN

C

)L

,

it is an easy matter to compute PC,N,n(L, d) if the parameters are not too large.

	NTRUEncrypt Overview
	The Time Trail of a Ciphertext
	A Timing Attack Based on Variable Number of Hash Calls
	A Practical Hash Timing Attack for f = 1+ 2F --- Theory
	Validating a Choice
	Results

	A Practical Hash Timing Attack for f = 1+ 2F --- Practice
	Practicality of Attack: Availability of Timing Information
	Conclusions and Recommendations
	Probability That Two Message Representatives Have the Same Time Trail
	The Average Number of Ones with a Given Separation Distance
	The Probability of Choosing Distinct Values in a Given Range

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

