
Identity-Based Multi-signatures from RSA

Mihir Bellare1 and Gregory Neven2

1 Department of Computer Science & Engineering
University of California San Diego

mihir@cs.ucsd.edu
http://www.cs.ucsd.edu/users/mihir
2 Department of Electrical Engineering

Katholieke Universiteit Leuven
and Département d’Informatique

Ecole Normale Supérieure
Gregory.Neven@esat.kuleuven.be

http://www.neven.org

Abstract. Multi-signatures allow multiple signers to jointly authenti-
cate a message using a single compact signature. Many applications how-
ever require the public keys of the signers to be sent along with the
signature, partly defeating the effect of the compact signature. Since
identity strings are likely to be much shorter than randomly generated
public keys, the identity-based paradigm is particularly appealing for the
case of multi-signatures. In this paper, we present and prove secure an
identity-based multi-signature (IBMS) scheme based on RSA, which in
particular does not rely on (the rather new and untested) assumptions
related to bilinear maps. We define an appropriate security notion for
interactive IBMS schemes and prove the security of our scheme under
the one-wayness of RSA in the random oracle model.

1 Introduction

With the increased adoption of small, energy-restricted devices such as laptops,
cell phones, PDAs and sensors, battery life has become a crucial bottleneck in the
usage of these devices — and an important distinguishing factor in their sales.
Fast progress is being made in the development of lighter and higher-capacity
batteries, but at the same time the demand for energy-preserving technology is
more pressing than ever. Much effort is being put in the design of low-power
microprocessors, but also the software running on these processors is being op-
timized for energy consumption, rather than for speed or portability.

In accordance with their wireless nature, communication on these portable
devices often takes place over wireless channels such as Bluetooth and WiFi.
Unfortunately, these communication mechanisms are rather expensive in terms
of energy consumption. Reducing the number of bits to communicate is crucial
to increase battery life: communicating a single bit of data requires significantly
more power than executing a 32-bit instruction [1], so it makes perfect sense
to invest extra computation cycles to save on bandwidth. Also, communication

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 145–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

146 M. Bellare and G. Neven

is often not reliable, so the fewer the number of bits one has to communicate,
the better. To make things worse, wireless channels are inherently vulnerable
to eavesdropping and tampering attacks by outsiders. Strong cryptography is
needed to protect the communication, adding even more overhead to the com-
munication. It is our challenge as designers of cryptographic primitives to limit
this overhead to a minimum.
Multi-signature schemes. A multi-signature (MS) scheme [20] allows n dif-
ferent signers with public keys pk1, . . . , pkn to collectively sign a message m,
yielding a multi-signature σ of roughly the same size as a standard signature,
yet that certifies m under all public keys pk1, . . . , pkn simultaneously. By trans-
mitting σ instead of n individual signatures, multi-signature schemes can help
greatly to save on communication costs.

However, one still needs the public keys of all cosigners in order to verify the
validity of such a multi-signature. In most applications these public keys will
have to be transmitted along with the multi-signature, which partially defeats
the primary purpose of using a multi-signature scheme, namely to save on band-
width. The inclusion of some information that uniquely identifies the cosigners
seems inevitable for verification, but often this information can be represented
more succinctly than by means of randomly generated public keys. For exam-
ple, the signers’ user names or IP addresses could suffice for this purpose; this
information may even already be present in package headers. Moreover, each
public key may come with an associated certificate containing a signature from
a certification authority (CA) and the CA’s public key, which on its turn may
come with a chain of certificates leading to the root CA. Altogether, this sums
up to many more bits being transmitted than strictly necessary to authenticate
the message.
Identity-based signatures. In an identity-based signature scheme [28], the
public key of a user is simply his identity, e.g. his name, email or IP address.
A trusted key distribution center provides each signer with the secret signing
key corresponding to his identity. When all signers have their secret keys issued
by the same key distribution center, individual public keys become obsolete, re-
moving the need for explicit certification and all associated costs. These features
make the identity-based paradigm particularly appealing for use in conjunction
with multi-signatures, leading to the concept of identity-based multi-signature
(IBMS) schemes.
Generic constructions. In spite of their appeal with regard to applications,
implementations of IBMS schemes are rather limited. As demonstrated in [12,2],
any standard signature scheme can be transformed into an identity-based one
using the “certification paradigm”. One can attempt to derive IBMS schemes
from existing standard MS schemes via this approach [16]. The problem is that
the resulting multi-signature is not compact due to the need to include the
certificates with each signature. Even if the signatures in the certificates can be
aggregated [6], the public keys they contain cannot. In summary, unlike the case
of standard signatures, there seems no trivial, general way to transform compact
signature schemes into identity-based ones.

Identity-Based Multi-signatures from RSA 147

An existing construction. The only provably secure IBMS scheme known
today is due to Gentry and Ramzan [17]. The scheme employs groups with bilin-
ear maps (also known as pairings), which are usually implemented by modified
Weil or Tate pairing over elliptic or hyperelliptic curves. To avoid putting all our
eggs in the same basket, it is common practice in cryptography to try to find
alternative constructions of a primitive based on different assumptions. While
pairings have turned out extremely useful in the design of cryptographic proto-
cols, they were only recently brought to the attention of cryptographers [21], and
hence did not yet enjoy the same exposure to cryptanalytic attacks by experts as
other, older problems from number theory such as discrete logarithms, factoring
and RSA. This exposure is necessary to build confidence in the hardness of the
underlying problems; without it, their use in high-security applications may not
be advisable.

Also, efficient implementations of RSA are ubiquitous, even in the public do-
main, while implementations of pairings are much harder to come by. Unlike
RSA, even building an inefficient prototype implementation of pairings is far
from straightforward for anyone but an expert, and even then it is often difficult
or impossible to generate curves with the desired security parameters [15]. Com-
panies may have invested in expensive hardware or software implementations of
RSA, and may be reluctant to reinvest in new pairing implementations.
Our contributions. We present an efficient and provably secure IBMS scheme
based on RSA, which is thereby the first provably secure IBMS scheme not re-
lying on the use of pairings. Our scheme is essentially a multi-signature variant
of the Guilliou-Quisquater (GQ) identity-based signature scheme [18], strength-
ened with techniques from [3] to provide security against concurrent attacks.
Unstrengthened variants of our scheme were proposed before (but without secu-
rity proofs) in [18,8]. The proof makes use of the general forking lemma of [3],
which, unlike the original forking lemma by Pointcheval and Stern [27], applies
to more general contexts than generic standard signature schemes. Signatures
under our scheme are 1184 bits long for typical values of the security parameters,
which is longer than the 320-bit signatures of the scheme of [17]. Verification on
the other hand is considerably cheaper: our scheme needs only a single (multi-)
exponentiation in an RSA group, as opposed to three pairing computations for
the scheme of [17]. The cost of one pairing computation is roughly that of 6–20
exponentiations.

We prove our scheme secure in the random oracle model under the one-
wayness of RSA. Unlike the scheme of [17], our scheme requires the signers
to interact to generate a signature, so we had to extend their security notion to
model this interaction in the presence of an adversary, taking inspiration from
the (non-identity-based) notions of [24,3]. We consider the strongest possible set-
ting, namely with insecure and unauthenticated communication links controlled
by the adversary, without assuming the availability of a trusted broadcast prim-
itive. In fact, we distinguish between two different notions, called single-signer
and multi-signer security, based on the number of signers whose role can be
played by the signing oracle. While not obvious at first, we prove that these

148 M. Bellare and G. Neven

notions are in fact equivalent, so that we can prove our scheme secure under the
simpler single-signer notion. As in [3], but unlike [24], we allow the adversary to
concurrently engage in as many arbitrarily interleaved signature protocols as it
wants.
Interactive vs. non-interactive schemes. As noted above, our scheme re-
quires the signers to interact in order to generate a signature. The IBMS scheme
of [17] is non-interactive, meaning that each signer independently computes its
share to the signature, and anyone can combine these shares into a compact
signature. The requirement of interaction may seem to conflict with our goal of
saving on bandwidth. We argue that this is not always the case. Consider for
example a wired network of sensors in a very remote location (e.g. in a desert, or
in space) that needs to report back to a far-away base station through wireless
communication. The sensors can use the cheap wired network to execute joint
signing protocols and send the resulting compact signatures over the expensive
wireless channel. A non-interactive scheme does not offer any real advantage
here. In particular, it does not remove the need for local communication: the
sensors still need a round of interaction to exchange signature shares. In general,
the added cost of interaction depends highly on the network topology.
Aggregate vs. multi-signatures. Aggregate signature (AS) schemes [6] can
be seen as a generalization of multi-signatures where each signer i signs a differ-
ent message mi. Only a single identity-based aggregate signature (IBAS) scheme
is known [17]; it is also based on pairings. IBAS schemes automatically give rise
to IBMS schemes, but the scheme resulting from the only known IBAS instan-
tiation [17] is less efficient than their direct IBMS construction. We note that
the distinction between aggregate and multi-signatures becomes irrelevant for
interactive schemes. Indeed, one can easily construct an interactive aggregate
signature scheme from a multi-signature scheme by letting the signers, in a first
round of communication, inform each other about the messages mi they are
about to sign. The common message m can then be taken to be the concatena-
tion of (ID i, mi) tuples. Hence, the single-message restriction of multi-signature
schemes is not really limiting in the case of interactive schemes.
Other related work. Cheng et al. [10] recently proposed another interactive
IBMS scheme based on pairings, but proved it secure only under a weak variant
of selective-ID security. To the best of our knowledge, the schemes of [10,17] are
the only instantiations of IBMS in the literature.

There is more work on compact signature schemes in the non-identity-based
setting. There is a vast literature on MS schemes, but the only provably secure
schemes are those of [24,5,22,3]. The schemes of [5,22] are based on pairings,
those of [24,3] on discrete logarithms. In a sequential aggregate signature (SAS)
scheme [23], aggregation cannot be performed by an outsider; instead, the signers
cooperate, each in turn aggregating their signature into the current aggregate
using their secret key. The only known instantiations of SAS schemes are due
to [23,22]. The scheme of [23] is based on families of certified trapdoor permuta-
tions, of which strictly speaking no instantiations exist, but the authors discuss

Identity-Based Multi-signatures from RSA 149

how to instantiate their scheme with RSA. The scheme of [22] uses pairings, and
is the only one with security in the standard (i.e., non-random-oracle [4]) model.

2 Identity-Based Multi-signatures

Notation. Let N = {1, 2, 3, . . .}. A string means a binary one. The empty
string is denoted ε. If x, y are strings, then |x| is the length of x. If x1, x2, . . .
are objects then x1‖x2‖ . . . denotes an encoding of them as strings from which
the constituent objects are easily recoverable. If S is a (multi)set, then |S| is
its cardinality, s

$← S denotes the operation of assigning to s an element of
S chosen at random, and 〈S〉 is a unique encoding of S as a string. If A is
a randomized algorithm, then A(x1, . . . ; ρ) denotes its output on inputs x1, . . .

and coins ρ, while y
$← A(x1, . . .) means that we choose ρ at random and let

y = A(x1, . . . ; ρ).
General setting. We adapt definitions from [24,3] to the identity-based set-
ting. Consider n different signers with identities ID1, . . . , IDn who collectively
want to sign the same message m so that the resulting signature σ authenticates
m under each of their identities. We consider schemes with interactive signing
algorithms, meaning that all signers are simultaneously online and interact to
produce the signature σ. We assume that signers interact in rounds, where at
the beginning of each round each signer receives an incoming message from each
of the other signers, performs some computation and sends an outgoing message
to all other signers. We let the incoming message of the first round be the local
input of the signing algorithm, consisting of the secret key, the list of co-signers,
and the message m. The outgoing message of the last round is the final signature
σ, or ⊥ to indicate failure.

We assume that each signer has a direct connection to each of its co-signers.
We do not assume these connections to be private or authenticated however, and
neither do we assume the availability of an atomic broadcast primitive. When
describing signing protocols, we let each signer refer to itself as signer 1 with
identity ID1, and let it assign an index 2, . . . , n to each of its cosigners with
identities ID2, . . . , IDn. These indices serve merely as a local pointer for the
signer to distinguish between its different cosigners and the connections over
which it communicates with them. They have no global meaning outside this
protocol instance: the signer that you refer to as signer 2 with identity ID2 may
very well be my signer 3 with identity ID3, and in a later protocol instance I
may very well refer to the same signer as signer 4 with identity ID4. The indices
have no certified relationship with identities, and are certainly not included in
the identity strings.
Syntax of IBMS schemes. Formally an identity-based multi-signature scheme
IBMS = (Setup, KeyDer, Sign, Vf) consists of four algorithms. A trusted key dis-
tribution center runs the Setup algorithm to generate a master public key mpk
and corresponding master secret key msk . To a signer with identity ID ∈ {0, 1}∗,
it provides a secret key derived via sk ID

$← KeyDer(msk , ID). The signer can

150 M. Bellare and G. Neven

use this secret key to participate in signing protocols as prescribed by the
Sign algorithm, which takes as additional input the message m and a multi-
set L = {ID1, . . . , IDn} containing the identities of all signers participating in
the protocol. After a number of interactions, the Sign algorithm outputs the
multi-signature σ, or ⊥ to indicate failure. The verification algorithm Vf takes
as input the master public key mpk , a multiset of identities L = {ID1, . . . , IDn},
the message m and a candidate signature σ, and outputs 1 if σ is a valid signature
on message m by all identities in L, or outputs 0 otherwise. (Because a cheating
signer may try to impersonate an identity for which he does not have the key,
we explicitly allow multiple occurrences of the same identity by modeling L as
a multiset.)

In the random oracle model [4], the key derivation, signing and verification
algorithms additionally have access to a random oracle H(·) : {0, 1}∗ → D,
where D depends on the scheme and possibly on the master public key mpk .
If the scheme uses multiple random oracles, these can be derived from a single
oracle H using techniques of [4].

Correctness requires that, whenever all signers correctly follow the Sign proto-
col using secret key sk IDi

$← KeyDer(msk , ID i), then with probability one they
all end up with local output a signature σ such that Vf(mpk , L, m, σ) = 1 for all
positive integers n, all (mpk ,msk) output by Setup, all ID1, . . . , IDn ∈ {0, 1}∗
and all messages m ∈ {0, 1}∗.

3 Two Security Notions and Their Equivalence

In standard (i.e., non-identity-based) multi-signature schemes, security is com-
monly defined through an experiment with a single honest “target” signer, effec-
tively viewing all other signers as corrupted [24,5,3]. Security requires that it be
infeasible to forge a multi-signature involving the target signer. The adversary
has access to a signing oracle that plays the role of the target signer, while the
adversary plays the role of all other signers participating in the protocol. The
logic underlying this simplified model is that any honestly generated public key
is “as good” as any other one; no adversary is expected to perform significantly
better in a model with multiple honest signers, as it could easily have simulated
these other signers itself.

The same logic does not go through for IBMS schemes however. Any identity
is not necessarily “as good” as any other one: the scheme may behave differently
on different identities, or may even have “weak” identities for which forging signa-
tures is easy. We therefore need to consider a stronger security notion where the
adversary can adaptively decide to corrupt signers by submitting their identities
to a key derivation oracle, resulting in it being given their secret signing keys.

The adversary is also given access to a signing oracle through which it can
engage in any number of arbitrarily interleaved signing protocols with honest
signers. Unlike the case of standard multi-signature schemes however, it is not
immediately clear whether it is sufficient to let the oracle in each protocol in-
stance play the role of a single honest signer, leaving it up to the adversary to

Identity-Based Multi-signatures from RSA 151

play the role of all other signers, or whether we should allow the oracle to play
the role of multiple honest signers simultaneously. Indeed, an adversary in the
former model could try to simulate the signing oracle of the latter model by
corrupting all but one of the honest signers, but this precludes attacking any
of the corrupted identities in the final forgery. Our goal is of course to achieve
the strongest security notion possible, but at the same time we want to avoid
making security proofs unnecessarily complicated. Since the relation between
the two notions is not immediately clear, we present both in full detail below,
and then prove that both notions are in fact equivalent (up to a factor that is
the product of the number of the adversary’s signature queries and the maximal
number of participating signers in one protocol).

Our security notions do not cover robustness [7], meaning that we do not pre-
vent malicious signers or network faults from disrupting the signing protocol or
from making honest signers end up with invalid signatures. As argued in [24], the
strong notion of unforgeability in an adversarially-controlled network strengthens
the security guarantees offered by our scheme, but prevents robustness. Indeed,
if a signer with identity ID refuses to cooperate or is unreachable due to net-
work faults, then it should be impossible for the other signers to compute any
signature involving ID , for otherwise the scheme would be forgeable.
Single-signer security. In somewhat more detail, we consider the following
three-phase game associated to multi-signature scheme IBMS = (Setup, KeyDer,
Sign, Vf) and adversary (forger) F:

Setup: The game generates a master key pair (mpk ,msk) $← Setup, and gives
the master public key mpk as input to the forger.

Attack: F can decide to corrupt a signer by querying a key derivation oracle
with any identity ID , which returns the secret key for that identity sk ID

$←
KeyDer(msk , ID). In the random oracle model [4], it also has access to a random
oracle H(·). The forger can engage in an instance of the signature protocol with
any honest signer ID that it chooses, while F itself plays the role of all other
signers. It does so by submitting the identity ID ∈ {0, 1}∗, a multiset of identities
L and a message m to a signing oracle. The multiset L contains ID at least once.
The oracle plays the role of ID as dictated by the Sign algorithm; the role of the
other (possibly cheating) signers in L is played by F. Note that the identities
in L \ {ID} need not all be corrupted; the forger is free to try to simulate
them without their secret key. The forger can schedule an arbitrary number of
protocol instances concurrently, interacting with “clones” of the same honest
signer, where each clone maintains its own state and uses its own coins. When
the honest signer terminates a signing protocol, its local output (whether ⊥ or
a compact signature σ) is returned to F.

Forgery: At the end of its execution, F outputs a multiset L = {ID1, . . . , IDn}
of identities, a message m and a forged signature σ. The forger is said to win the
game if Vf(mpk , L, m, σ) = 1, if L contains at least one uncorrupted identity,
and if the forger never submitted a query (ID , L, m) to the signing oracle for
any ID ∈ L.

152 M. Bellare and G. Neven

The advantage of F in breaking the single-signer unforgeability of IBMS is defined
as the probability that F wins the above game, where the probability is taken
over the coin tosses of the forger, the honest signers, and the setup phase. We say
that a forger F (t, qK, qS, qH, nmax, ε)-breaks the single-signer security of IBMS if
it runs in time at most t; performs at most qK key derivation queries and at most
qH random oracle queries; engages in at most qS signature interactions with up
to nmax signers; and has advantage at least ε. (If there is more than one random
oracle, qH denotes the sum of the number of queries to all random oracles.) We
say that IBMS is (t, qK, qS, qH, nmax, ε) single-signer secure in the random oracle
model if no forger F (t, qK, qS, qH, nmax, ε)-breaks it.

Multi-signer security. Alternatively, we define the notion of multi-signer
security. The game is similar to the one described above, except that the sign-
ing oracle in each protocol instance can play the role of multiple honest signers
simultaneously. In particular, it performs signature queries by submitting two
multisets of identities Lh, Lc and a message m to the signing oracle. The mul-
tiset Lh contains the identities of honest signers, whose role will be played by
the oracle as dictated by the Sign algorithm. The forger plays the role of the
(possibly) cheating signers contained in Lc.

For the communication between signers, we consider the strongest possible
notion: the adversary completely controls all network traffic, even between honest
signers. We model this by letting honest signers, when they want to send a
message to another signer, hand the message to the adversary for delivery. The
adversary can then choose to inspect, modify and whether or not to deliver
the message at will. We do not assume the availability of a trusted broadcast
primitive, so the forger can cause different honest signers to have a different view
of the protocol by providing them with different messages. Note that this is a
situation that in particular cannot arise in the single-signer notion.

The forger F is said to win the game if eventually F outputs a forgery (L, m, σ)
such that Vf(mpk , L, m, σ) = 1, L contains at least one uncorrupted identity,
and the forger never performed a signature query (Lh, Lc, m) where Lh ∪ Lc =
L. The advantage of F in breaking the multi-signer security of IBMS is de-
fined as the probability that it wins the above game. We say that a forger
F (t, qK, qS, qH, nmax, ε)-breaks the multi-signer security of IBMS if has advan-
tage at least ε and adheres to the resource restrictions as explained above.
We say that IBMS is (t, qK, qS, qH, nmax, ε) multi-signer secure if no forger F
(t, qK, qS, qH, nmax, ε)-breaks it.

Single-signer implies multi-signer security. It is obvious that the notion
of multi-signer security is at least as strong as that of single-signer security, since
the latter can be viewed as a special case of the former where each of the sets
Lh is restricted to be a singleton. The following theorem states the less obvious
direction that single-signer security also implies multi-signer security, at the loss
of a factor nmaxqH in the reduction.

Theorem 1. If the IBMS scheme IBMS is (t′, q′K, qS, qH, nmax, ε
′) single-signer

secure, then it is also (t, qK, qS, qH, nmax, ε) multi-signer secure for

Identity-Based Multi-signatures from RSA 153

ε ≥ nmax(qS + 1) · ε′, t ≤ t′ − nmaxqS · tSign and qK ≤ q′K − nmaxqS, where
tSign is the running time of an execution of the signing protocol.

Proof. Let F be a forging algorithm that (t, qK, qS, qH, nmax, ε)-breaks the multi-
signer security of IBMS. Consider the single-signer forging algorithm F′ that,
on input mpk , guesses indices i

$← {0, . . . , qS} and j
$← {1, . . . , nmax} and runs

F(mpk). F′ maintains a counter ctr , initially zero, and an identity string ID∗,
initially ⊥. It responds to F’s signature queries (Lh, Lc, m) as follows. It first
increases ctr ; if ctr = i, it sets ID∗ to the j-th identity in Lh, or aborts if
Lh contains less than j elements. If F′ already corrupted ID∗ before, it also
aborts. To simulate the signing protocol, F′ uses its own signing oracle on input
(ID∗, Lh ∪Lc, m) to simulate ID∗, and corrupts all other identities in Lh so that
it can correctly simulate them using their secret keys.

When F queries for the secret key of ID∗, F′ gives up; otherwise, it forwards
the response from its own key derivation oracle. Eventually, F outputs its forgery
(L, m, σ). To be a valid forgery, L must contain at least one identity ID that
F never corrupted. If ID = ID∗, then (L, m, σ) is also a valid forgery for F′.
Likewise, if i = 0 and F never performed any signature queries involving ID ,
then (L, m, σ) is a valid forgery for F′. In all other cases, F′ aborts.

It is easy to see that F′ succeeds with probability ε′ ≥ ε/(nmax(qS + 1)), that
its running time is at most that of F plus the time of nmaxqS signing protocols,
and that it performs at most qS signature queries, qK + nmaxqS key derivation
queries, and qH random oracle queries. �

Viewing that both security notions are essentially equivalent and that the notion
of single-signer security is much easier to work with, we will stick to the latter
throughout the rest of the paper. When we talk about the advantage of a forger or
the security of an IBMS scheme, we implicitly mean the advantage and security
under the single-signer notion.

4 Our Scheme

In this section, we present an IBMS scheme based on the GQ identity-based
signature scheme [18]. To give some intuition into our scheme, we briefly recall
the GQ scheme here. The key distribution center generates an RSA modulus
N and exponents e, d such that ed ≡ 1 mod ϕ(N). The master public key is
the pair (N, e), while d is the master secret key. The signature on a message
m by identity ID is a pair (R, s) such that se ≡ R · H2(ID)c mod N where
c = H1(R‖m) and H1,H2 are random oracles. As pointed out by [17], to make
an aggregate variant of a randomized signature scheme, one must find a way
to “aggregate the randomness” in the different signatures. In the case of GQ
signatures, this can be achieved by multiplying elements together, so that a
signature by identities ID1, . . . , IDn is a pair (R, s) such that

se ≡ R ·
n∏

i=1

H2(ID i)c mod N ,

154 M. Bellare and G. Neven

where R and s are the product of the Ri and si generated by all signers, re-
spectively, and c = H1(R‖m). Note that the combined randomness R is needed
in order to compute c, which is the reason why the scheme has an interactive
signing protocol.

The basic multi-signature scheme is not new: it was already present in [18]
and was recently strengthened to provide robustness in [8], but was never proved
secure as such. If one were to attempt such a proof, it would be complicated by
the fact that, just like for other signature scheme following the Fiat-Shamir
paradigm [14], simulation of signatures relies on the unpredictability of the ran-
domness R used in the signature. In particular, for the simulator to be able to
program the random oracle H1 to simulate signature queries, the adversary’s
view needs to be independent of R. One way to overcome this problem [24] is
by guessing, for each of the qS signature queries, the index of a random oracle
query that contains the correct R, and rewinding the adversary if the guess is in-
correct. To avoid an exponential blowup of the running time, one has to restrict
the multi-signature scheme to forbid concurrent signing sessions. This may be
a limiting restriction viewing the inherently concurrent execution setting on the
Internet. Instead, we apply a recent technique of [3] to regain provable security
for concurrent protocol executions. The trick consists of letting signers commit
to their randomness share Ri through a random oracle in the first round of the
protocol, so that the simulator, who sees all random oracle queries, can extract
these values and correctly program the random oracle before the final value of
R is known to the forger.

The RSA assumption. An RSA key generator Kgrsa is an algorithm that
generates triplets (N, e, d) such that N is the product of two large primes and
ed ≡ 1 mod ϕ(N). The advantage of A in breaking the one-wayness of RSA
related to Kgrsa is defined as

Advow-rsa
Kgrsa

(A) = Pr

[
xe ≡ y mod N ;

(N, e, d) $← Kgrsa ; y
$← Z

∗
N ;

x
$← A(N, e, y)

]
.

We say that A (t, ε)-breaks the one-wayness of RSA with respect to Kgrsa if it
runs in time at most t and has advantage Advow-rsa

Kgrsa
(A) ≥ ε, and we say that the

RSA function associated to Kgrsa is (t, ε)-one-way if no algorithm A (t, ε)-breaks
it.
The scheme. We now present our scheme in more detail. Let l0, l1, lN , ∈ N,
and let H0 : {0, 1}∗ → {0, 1}l0, H1 : {0, 1}∗ → {0, 1}l1 and H2 : {0, 1}∗ → Z

∗
N

be random oracles, where H2 depends on the master public key of the scheme.
Let Kgrsa be an RSA key pair generator that outputs triplets (N, e, d) such that
ϕ(N) > 2lN and with prime encryption exponents e of length strictly greater
than l1+log2 nmax bits. To these, we associate the following identity-based multi-
signature scheme IBMS-GQ.

Setup. The key distribution center runs Kgrsa to generate RSA parameters
(N, e, d). It publishes mpk = (N, e) as the master public key, and keeps the
master secret key d secret.

Identity-Based Multi-signatures from RSA 155

Key derivation. On input master secret key d and signer identity ID , the key
distribution center computes x ← H2(ID)d mod N , and sends the user secret
key x over a secure and authenticated channel to the signer with identity ID .

Signing. On input user secret key x1 for identity ID1, message m and cosigner
identities ID2, . . . , IDn, a signer proceeds as follows.
Round 1:

– Local input: x1, L = {ID1, . . . , IDn}, m

– Computation: Choose r1
$← Z

∗
N , compute R1 ← re

1 mod N and t1 ←
H0(R1).

– Send to signer i: t1

Round 2:
– Receive from signer i: ti

– Send to signer i: R1

Round 3:
– Receive from signer i: Ri

– Computation: Check that ti = H0(Ri) for all 2 ≤ i ≤ n, and halt the
protocol with local output ⊥ if one of these tests fails. Otherwise, com-
pute R ←

∏n
i=1 Ri mod N , c ← H1(R‖〈L〉‖m) and s1 ← r1x

c
1 mod N .

– Send to signer i: s1

Round 4:
– Receive from signer i: si

– Computation: s ←
∏n

i=1 si mod N

– Local output: the signature σ = (c, s)

Verification. On input the master public key (N, e), a multiset of signer iden-
tities L = {ID1, . . . , IDn}, a message m and a candidate signature (c, s),
the verifier recomputes R ← se

(∏n
i=1 H2(ID i)

)−c mod N . He accepts the
signature as valid if c = H1(R‖〈L〉‖m), and rejects otherwise.

The length of a multi-signature is l1+ lN bits, or about 160+1024 = 1184 bits
for typical values of the security parameter. Signing takes two exponentiations
in Z

∗
N for each signer, and verification takes a single (multi-)exponentiation,

independent of the value of n. (Note that verification time is not completely
independent of n due to the computation of

∏n
i=1 H2(ID i), but this is fast.)

While largely based on a combination of existing schemes and techniques, we
believe the above scheme is important viewing the practical attractiveness of
the identity-based setting in combination with compact signatures. Our scheme
points out that provably secure IBMS can be achieved without the use of pair-
ings, which is an interesting observation in its own right. Pairings have only
recently been introduced to cryptography, and may therefore be at a greater
risk of novel security breaches than the better-tested assumptions relating to
RSA. Moreover, hardware and software implementations of RSA are ubiquitous,
even in the public domain, while good pairing implementations are much harder

156 M. Bellare and G. Neven

to find. Many companies have invested in efficient and secure implementations
of RSA, and may prefer to recycle these investments in their future products.

5 Security of Our Scheme

The following theorem relates the unforgeability of our IBMS scheme to the one-
wayness of the RSA problem associated to Kgrsa. The proof is given below. We
stress that we do not run into the key generation issues of [24] because keys are
generated by the trusted center instead of by the signers themselves. Also, unlike
the scheme of [24], we do allow concurrent signing sessions by reusing techniques
of [3].

Theorem 2. If the RSA function associated to Kgrsa is (t′, ε′)-one-way, then
the IBMS-GQ scheme is (t, qK, qS, qH, nmax, ε)-secure whenever t′ ≥ 2t + (2qH +
2qK + 2qS(nmax + 1) + 2nmax + 4) · texp and

ε′ ≤ ε2

16q2
K(qH + 1)

− 2q2
H + 8nmaxqSqH + 8n2

maxq
2
S

2lN
− nmaxqS

2l0
− 1

2l1
, (1)

where texp is the time of an exponentiation in Z
∗
N .

To prove the above theorem, we use a variant of the Forking Lemma of Pointcheval
and Stern [27] that was presented in [3]. Unlike the original Forking Lemma, this
variant is easily applicable to settings other than standard signature schemes. We
recall the lemma here.

Lemma 3. Let q ≥ 1 be an integer and H a set of size h ≥ 2. Let A be a
randomized algorithm that on input x, h1, . . . , hq returns a pair, the first element
of which is an integer in the range 0, . . . , q and the second element of which we
refer to as a side output. Let IG be a randomized algorithm that we call the input
generator. The accepting probability of A, denoted acc, is defined by

acc = Pr
[

J ≥ 1 : x
$← IG ; h1, . . . , hq

$← H ; (J, σ) $← A(x, h1, . . . , hq)
]

.

The forking algorithm FA associated to A is the randomized algorithm that takes
input x proceeds as follows:

Algorithm FA(x)
Pick coins ρ for A at random
h1, . . . , hq

$← H ; (I, σ) ← A(x, h1, . . . , hq; ρ)
If I = 0 then return (0, ε, ε)
h′

I , . . . , h
′
q

$← H ; (I ′, σ′) ← A(x, h1, . . . , hI−1, h
′
I , . . . , h

′
q; ρ)

If (I = I ′ and hI �= h′
I) then return (1, σ, σ′) else return (0, ε, ε).

Let
frk = Pr

[
b = 1 : x

$← IG ; (b, σ, σ′) $← FA(x)
]

.

Then

frk ≥ acc ·
(

acc
q

− 1
h

)
. (2)

We are now ready to prove the security of our IBMS scheme.

Identity-Based Multi-signatures from RSA 157

Proof (Theorem 2). Given a forger F, consider the following algorithm A. On
inputs (N, e, y), h1, . . . , hqH+1, algorithm A runs F on inputs mpk = (N, e).

Algorithm A maintains a counter ctr1 with initial value 0 and initially empty
associative arrays T0[·],T1[·, ·],T2[·]. It runs F on input mpk = (N, e) and an-
swers F’s oracle queries as follows.

– H0(R): If T0[R] is undefined, then A chooses T0[R] $← {0, 1}l0. It returns
T0[R] to F.

– H1(Q): A returns T1[Q], increasing ctr1 and setting T1[Q] ← hctr1 if this
entry is not yet defined.

– H2(ID): We use Coron’s technique [11] when simulating H2 to obtain a
tighter security bound. If T2[ID] = (b, x, X) then A returns X . If this entry
is not yet defined, it chooses x

$← Z
∗
N and tosses a biased coin b so that

b = 0 with probability δ and b = 1 with probability 1 − δ. If b = 0, then A
sets X ← xe mod N ; if b = 1, it sets X ← xey mod N . It stores T2[ID] ←
(b, x, X) and returns X to F.

– Key derivation query for ID : Algorithm A looks up T2[ID] = (b, x, X), per-
forming an additional query H2(ID) if this entry is not yet defined. If b = 0,
then A returns x; otherwise, it sets bad0 ← true and aborts the execution
of F returning (0, ε).

– Signature query for identity ID1, multiset of cosigners L = {ID1, . . . , IDn}
and message m: Algorithm A first performs a query H2(ID1) and looks up
T2[ID1] = (b1, x1, X1). If b1 = 0, then A simulates signer ID1 following the
real Sign(x1, L, m) algorithm using x1 as a secret key. If b1 = 1, it simulates
the signing protocol as follows.
It first chooses t1

$← {0, 1}l0 and sends t1 to all other cosigners. After having
received t2, . . . , tn from all other cosigners (whose role is played by F), it
chooses c

$← {0, 1}l1, s1
$← Z

∗
N and computes R1 ← se

1X
−c
1 mod N . If T0[R1]

has already been defined, then A sets bad1 ← true and halts returning (0, ε);
otherwise, it sets T0[R1] ← t1. For all 2 ≤ i ≤ n, A looks up values Ri

such that T0[Ri] = ti. If for some i multiple such values are found, A sets
bad2 ← true and halts returning (0, ε). If for some i no such value was found
then it sets alert ← true; otherwise, it computes R ←

∏n
i=1 Ri mod N and

sets T1[R‖〈L〉‖m] ← c, or sets bad3 ← true and halts with output (0, ε) if
this entry was already defined. It sends R1 to all other cosigners.
After having received R′

2, . . . , R
′
n from the cosigners, A verifies that H0(R′

i) =
ti for all 2 ≤ i ≤ n. If not, it ends this signing protocol with local output
⊥. If Ri �= R′

i for some i, then A sets bad2 ← true and halts with output
(0, ε). If alert = true then it sets bad4 ← true and halts with output (0, ε).
Otherwise, it sends si to all cosigners.
After having received s2, . . . , sn from the cosigners, A computes s ←

∏n
i=1 si

mod N and returns the signature (c, s) to F.

Eventually, F outputs a forged signature (c, s) together with multiset of identities
L = {ID1, . . . , IDn} and message m. Algorithm A computes performs additional
random oracle queries H2(ID i) for 1 ≤ i ≤ n, computes R ← se

∏n
i=1 H2(ID i)−c

and performs another random oracle query H1(R‖〈L〉‖m).

158 M. Bellare and G. Neven

Let U ⊆ {ID1, . . . , IDn} be the uncorrupted identities in L, meaning those for
which F never submitted a key derivation query. If the forgery is invalid, meaning
that Vf(mpk , L, m, (R, s)) = 0, U = ∅, or F previously made a signing query
(ID , L, m), then A returns (0, ε). Otherwise, algorithm A looks up T2[ID i] =
(bi, xi, Xi) for 1 ≤ i ≤ n. Let L0 = {ID i : bi = 0} and L1 = {ID i : bi = 1}. Since
the forgery is valid, we have that

se ≡ R ·
n∏

i=1

Xc
i ≡ R ·

n∏

i=1

xec
i ·

∏

i∈L1

yc mod N .

Let J be the index such that hJ = c = T1[R‖〈L〉‖m]. If L1 = ∅ then A sets
bad0 ← true and halts with output (0, ε). Otherwise, it lets x ←

∏n
i=1 xi,

n1 ← |L1|, and halts with output (J, (x, c, s, n1)).
We want to lower-bound the probability that A produces a “useful” output,

i.e. an output other than (0, ε). This is exactly the accepting probability acc as
defined in Lemma 3 with respect to H = {0, 1}l1 and an input generator IG that
returns triples (N, e, y) such that (N, e, d) $← Kgrsa and y

$← Z
∗
N . We overload

our notation to let bad i denote the event that the flag bad i gets set to true
during the execution of A. We can lower-bound the accepting probability of A
probability by:

acc ≥ ε · Pr [¬bad0] − Pr [bad1] − Pr [bad2] − Pr [bad3] − Pr [bad4] . (3)

First, let’s take look at the factor Pr [¬bad0]. The flag bad0 gets raised whenever
F makes a key derivation query for an identity for which b = 1, and if the
final forgery does not contain any identities for which b = 1. Since the set L
in the forgery must contain at least one uncorrupted identity, we have that
Pr [¬bad0] ≥ δqK(1− δ). This function reaches a maximum for δ = qK/(qK +1);
filling in this value of δ in the above expression gives

Pr [¬bad0] ≥
(

qK

qK + 1

)qK

· 1
qK + 1

=
1
qK

·
(

1 − 1
qK + 1

)qK+1

from which we can conclude that

Pr [¬bad0] ≥ 1
4qK

, (4)

because Pr [¬bad0] = 1 if qK = 0, because Pr [¬bad0] ≥ 1/(4qK) for qK = 1, and
because (1 − 1/(qK + 1))qK+1 is a monotonically increasing sequence for qK ≥ 1.

The flag bad1 gets raised during one of the qS signature queries when T0[·]
is defined for an argument that is uniformly distributed over Z

∗
N and that is

independent from F’s view. Since at any moment there are at most qH + nmaxqS
entries defined in table T0, the probability that this happens is at most

Pr [bad1] ≤ qS · (qH + nmaxqS)
2lN

. (5)

Identity-Based Multi-signatures from RSA 159

The flag bad2 only gets raised when two different entries in T0 have the same
value assigned to them. Since T0 contains at most qH + nmaxqS values that are
all chosen uniformly at random from {0, 1}l0 this happens with probability at
most

Pr [bad2] ≤ (qH + nmaxqS)2

2lN+1 . (6)

To bound the probability that bad3 is raised during the i-th signing query, we
distinguish between the case that F “knows” R1, meaning that it either queried
H0(R1) directly, or saw R1 as the honest signer’s randomness in a previous
signature query, and the case that it doesn’t “know” R1. In the latter case, F’s
view is independent of R, so the probability that this happens is simply given
by the number of defined entries in T1, which is at most qH + qS, divided by
2lN . In the former case, we cannot say that F’s view is independent of R, so F
may have queried H1(R, 〈L〉, m) on purpose. Suppose F previously made a query
H0(R1). Until right before this query, F’s view was independent of R1, so it had
probability at most qH/2lN to guess it correctly during any of its qH queries.
Likewise, the probability that A previously used the same randomness R1 in a
signature simulation is at most qS/2lN . In total, we have that

Pr [bad3] ≤ qS ·
(

qH + qS

2lN
+

qH

2lN
+

qS

2lN

)
=

2qS(qH + qS)
2lN

. (7)

Lastly, the probability that bad4 gets set is bounded by the probability that
F managed to “predict” the value of H0(Ri) during one of the qS signature
protocols and for one of the at most nmax signers, which is

Pr [bad4] ≤ nmaxqS

2l0
. (8)

Combining Equations (3–8) and using nmax > 0 gives

acc ≥ ε

4qK
− qS(qH + nmaxqS)

2lN
− (qH + nmaxqS)2

2lN+1 − 2qS(qH + qS)
2lN

− nmaxqS

2l0

≥ ε

4qK
− 3qS(qH + nmaxqS)

2lN
− q2

H + 2nmaxqSqH + n2
maxq

2
S

2lN+1 − nmaxqS

2l0

≥ ε

4qK
− q2

H + 4nmaxqSqH + 4n2
maxq

2
S

2lN
− nmaxqS

2l0
. (9)

Now consider an algorithm B that on input (N, e, y) runs the forking algo-
rithm FA((N, e, y)), which with probability frk returns a tuple (1, (x, c, s, n1),
(x′, c′, s′, n′

1)) with c �= c′. Since these originate from valid forgeries, their values
are such that

se ≡ Rxecycn1 mod N and s′e ≡ R′x′ec′
yc′n′

1 mod N .

The two executions of A when run by FA are identical up to the “crucial” random
oracle queries H1(R‖〈L〉‖m) and H1(R′‖〈L′〉‖m′), where R, L, m and R′, L′, m′

160 M. Bellare and G. Neven

are the randomness, identity sets and messages that F used in its first and second
forgeries, respectively. By the construction of A, we know that the two executions
of F are identical up to this query (because it was provided with the exact same
input, random tape and oracle responses), so in particular we have that R = R′,
L = L′ and m = m′. Since the entries T2[ID i] = (bi, xi, Xi) for ID i ∈ L = L′

are chosen by A at the latest at the time of the crucial hash query, we also have
that x = x′ and n1 = n′

1. Dividing and reorganizing the two equations above
gives

(xc−c′
s/s′)e ≡ y(c−c′)n1 mod N .

Since c �= c′ ∈ {0, 1}l1, n1 ≤ nmax, and e is a prime of length strictly greater than
l1+log2(nmax), we have that e > (c−c′)n1 and therefore that gcd(e, (c−c′)n1) =
1. Using the extended Euclidean algorithm, one can find a, b ∈ Z such that
ae + b(c − c′)n1 = 1. We then have that

y ≡ yae+b(c−c′)n1 ≡
(
ya · (xc−c′

s/s′)b
)e

mod N .

Algorithm B can therefore output ya · (xc−c′
s/s′)b as the RSA inversion of y.

The probability that algorithm B succeeds in doing so is given by

ε′ ≥ frk

≥ acc2

qH + 1
− 1

2l1

≥ ε2

16q2
K(qH + 1)

− 2 ·
(

q2
H + 4nmaxqSqH + 4n2

maxq
2
S

2lN
− nmaxqS

2l0

)
− 1

2l1

where in the last step we use Equation (9) and the facts that (a− b)2 ≥ a2 −2ab
and that 0 ≤ ε/4qK ≤ 1. The theorem follows.

We have left to show the bound for the running time t′ of B. We permit
ourselves to assume that (multi-)exponentiations in Z

∗
N take time texp while all

other operations take zero time. The running time of B is twice that of A, plus
one multi-exponentiation mod N . The running time of A is that of the forger F
plus one at most nmax +1 multi-exponentiations plus the time needed to answer
F’s oracle queries. Each random oracle or key derivation query takes at most one
exponentiation. A signature simulation takes at most nmax + 1 exponentiations.
We therefore have that t′ = 2t + 2(nmax + 2 + qH + qK + qS(nmax + 1)) · texp. �

6 Alternative Implementations

Our scheme is based on the GQ signature scheme [18], but our techniques can
be applied to other identity-based signature schemes following the Fiat-Shamir
paradigm as well. In particular, one can obtain efficient IBMS schemes based
on RSA from [28], based on factoring from [14,13,25,26], and based on pairings
from [19,9,29]. An extensive overview of the security properties of these schemes
as identity-based signature schemes can be found in [2].

Identity-Based Multi-signatures from RSA 161

Acknowledgments

Mihir Bellare was supported by NSF grant CNS-0524765, a gift from Intel Cor-
poration, and NSF CyberTrust project “CT-ISG: Cryptography for Computa-
tional Grids”. Gregory Neven is a Postdoctoral Fellow of the Flemish Research
Foundation (FWO – Vlaanderen), and was supported in part by the Concerted
Research Action (GOA) Ambiorics 2005/11 of the Flemish Government and in
part by the European Commission through the IST Programme under Contract
IST-2002-507932 ECRYPT.

References

1. K. Barr and K. Asanovic. Energy aware lossless data compression. In MobiSys
2003, pages 231–244. ACM Press, 2003.

2. M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based
identification and signature schemes. In C. Cachin and J. Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 268–286. Springer-Verlag, 2004.

3. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In ACM CCS 06. ACM Press, 2006.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pages 62–73. ACM Press, 1993.

5. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, PKC 2003,
volume 2567 of LNCS, pages 31–46. Springer-Verlag, 2003.

6. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In E. Biham, editor, EUROCRYPT 2003,
volume 2656 of LNCS, pages 416–432. Springer-Verlag, 2003.

7. C. Castelluccia, S. Jarecki, J. Kim, and G. Tsudik. A robust multisignatures scheme
with applications to acknowledgment aggregation. In C. Blundo and S. Cimato,
editors, SCN 2004, volume 3352 of LNCS, pages 193–207. Springer-Verlag, 2005.

8. C. Castelluccia, S. Jarecki, J. Kim, and G. Tsudik. Secure acknowledgment
aggregation and multisignatures with limited robustness. Computer Networks,
50(10):1639–1652, 2006.

9. J. C. Cha and J. H. Cheon. An identity-based signature from gap Diffie-Hellman
groups. In Y. Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 18–30.
Springer-Verlag, 2003.

10. X. Cheng, J. Liu, and X. Wang. Identity-based aggregate and verifiably encrypted
signatures from bilinear pairing. In O. Gervasi, M. L. Gavrilova, V. Kumar, A. La-
ganà, H. P. Lee, Y. Mun, D. Taniar, and C. J. K. Tan, editors, Computational
Science and Its Applications ICCSA 2005, volume 3483 of LNCS, pages 1046–
1054. Springer-Verlag, 2005.

11. J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 229–235. Springer-Verlag, 2000.

12. Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong key-insulated signature schemes.
In Y. Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 130–144. Springer-
Verlag, 2003.

13. U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. Journal of
Cryptology, 1(2):77–94, 1988.

162 M. Bellare and G. Neven

14. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer-Verlag, 1987.

15. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers.
http://eprint.iacr.org/, 2006.

16. D. Galindo, J. Herranz, and E. Kiltz. On the generic construction of identity-
based signatures with additional properties. To appear in ASIACRYPT 2006,
LNCS. Springer-Verlag, 2006.

17. C. Gentry and Z. Ramzan. Identity-based aggregate signatures. In M. Yung, editor,
PKC 2006, volume 3958 of LNCS, pages 257–273. Springer-Verlag, 2006.

18. L. C. Guillou and J.-J. Quisquater. A “paradoxical” indentity-based signature
scheme resulting from zero-knowledge. In S. Goldwasser, editor, CRYPTO’88,
volume 403 of LNCS, pages 216–231. Springer-Verlag, 1990.

19. F. Hess. Efficient identity based signature schemes based on pairings. In K. Nyberg
and H. M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 310–324. Springer-
Verlag, 2003.

20. K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Research & Development, 71:1–8, 1983.

21. A. Joux. A one round protocol for tripartite Diffie-Hellman. In Algorithmic Number
Theory Symposium – ANTS IV, volume 1838 of LNCS, pages 385–394. Springer-
Verlag, 2000.

22. S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. Sequential aggregate
signatures and multisignatures without random oracles. In S. Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS. Springer-Verlag, 2006.

23. A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate sig-
natures from trapdoor permutations. In C. Cachin and J. Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 74–90. Springer-Verlag, 2004.

24. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures. In ACM
CCS 01, pages 245–254. ACM Press, 2001.

25. K. Ohta and T. Okamoto. A modification of the Fiat-Shamir scheme. In S. Gold-
wasser, editor, CRYPTO’88, volume 403 of LNCS, pages 232–243. Springer-Verlag,
1990.

26. H. Ong and C.-P. Schnorr. Fast signature generation with a Fiat Shamir–like
scheme. In I. Damg̊ard, editor, EUROCRYPT’90, volume 473 of LNCS, pages
432–440. Springer-Verlag, 1990.

27. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, 2000.

28. A. Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley
and D. Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 47–53. Springer-
Verlag, 1985.

29. X. Yi. An identity-based signature scheme from the Weil pairing. IEEE Commu-
nications Letters, 7(2):76–78, Feb. 2003.

http://eprint.iacr.org/

	Introduction
	Identity-Based Multi-signatures
	Two Security Notions and Their Equivalence
	Our Scheme
	Security of Our Scheme
	Alternative Implementations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

