

Lecture Notes in Computer Science 4377
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Masayuki Abe (Ed.)

Topics in Cryptology –
CT-RSA 2007

The Cryptographers’ Track at the RSA Conference 2007
San Francisco, CA, USA, February 5-9, 2007
Proceedings

13

Volume Editor

Masayuki Abe
1-1 Hikarino-oka
Yokosuka-shi
239-0847, Japan
E-mail: abe.masayuki@lab.ntt.co.jp

Library of Congress Control Number: 2006938905

CR Subject Classification (1998): E.3, G.2.1, D.4.6, K.6.5, K.4.4, F.2.1-2, C.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-69327-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69327-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11967668 06/3142 5 4 3 2 1 0

Preface

The RSA Conference, with over 15,000 attendees and 300 exhibitors, is the
largest computer security event of the year. The Cryptographers’ Track (CT-
RSA) is a research conference within the RSA Conference. Starting in 2001,
CT-RSA continues to its seventh year and is now regarded as one of the major
regularly staged event for presenting the results of cryptographic research to a
wide variety of audiences.

The proceedings of CT-RSA 2007 contain 25 papers selected from 73 sub-
missions which cover all the topics of cryptography. All the submissions were
reviewed by at least three reviewers, which was possible by the hard work of 23
Program Committee members and many external reviewers listed in the follow-
ing pages. The papers were selected as a result of conscientious discussion. The
program includes two invited talks, by Michel Rabin and Andrew Odlyzko.

I would like to express my gratitude to the Program Committee members,
who were enthusiastic from the very beginning of this completed project. Thanks
also to the external reviewers including those who completed urgent reviews
during the discussion phase. Special thanks to Shai Halevi for providing and
maintaining the Web review system. Finally, I would like to thank Burt Kaliski
of RSA Laboratories and the Steering Committee for their suggestions and con-
tinuous assistance.

October 2006 Masayuki Abe
CT-RSA 2007 Program Chair

CT-RSA 2007

RSA Conference 2007, Cryptographers’ Track

Moscone Center, San Francisco, CA, USA
February 5-9, 2007

Program Chair

Masayuki Abe NTT Corporation, Japan

Program Committee

Kazumaro Aoki NTT Corporation, Japan
John Black University of Colorado at Boulder, USA
Colin Boyd Queensland University of Technology, Australia
Jung Hee Cheon Seoul National University, Korea
Alexander W. Dent Royal Holloway, University of London, UK
Serge Fehr CWI, Netherlands
Stuart Haber HP Labs, USA
Shai Halevi IBM T.J. Watson Research Center, USA
Goichiro Hanaoka AIST, Japan
Marc Joye Thomson R&D, France
Jonathan Katz University of Maryland, USA
Arjen K. Lenstra EPFL, Switzerland
Helger Lipmaa Cybernetica AS and University of Tartu,

Estonia
Stefan Lucks University of Mannheim, Germany
Bart Preneel Katholieke Universiteit Leuven, Belgium
Vincent Rijmen IAIK, Graz University of Technology, Austria
Kazue Sako NEC, Japan
Adam Smith Weizmann Institute of Science, Israel
Douglas Stinson University of Waterloo, Canada
Brent Waters SRI International, USA
Susanne Wetzel Stevens Institute of Technology, USA
Yiqun Lisa Yin Independent Consultant, USA
Adam Young MITRE Corporation, USA

VIII Organization

Steering Committee

Alfred Menezes University of Waterloo, Canada
Tatsuaki Okamoto NTT Corporation, Japan
David Pointcheval CNRS/ENS, France
Ron Rivest MIT, USA
Moti Yung RSA Labs and Columbia University, USA

External Reviewers

Toshinori Araki
Frederik Armknecht
Nuttapong Attrapadung
Roberto Avanzi
Dan Bailey
Lejla Batina
Liqun Chen
Benoit Chevallier-Mames
Andrew Clark
Yvonne Cliff
Scott Contini
Jason Crampton
Yang Cui
Alex Dent
Edith Elkind
Jun Furukawa
Steven Galbraith
Benedikt Gierlichs
Philippe Golle

Eric Hall
Daewan Han
Helena Handschuh
Nick Hopper
Sotiris Ioannidis
Toshiyuki Isshiki
Tetsu Iwata
Charanjit Jutla
Ulrich Kühn
Yuichi Komano
Matthias Krause
Hugo Krawczyk
Nam-suk Kwarc
Mario Lamberger
Joseph Lano
Kazuto Matsuo
Alexander May
Florian Mendel
Ulrike Meyer

Ilya Mironov
James Muir
Toru Nakanishi
DaeHun Nyang
Satoshi Obana
Elisabeth Oswald
Pascal Paillier
Kenny Paterson
S. Raj Rajagopalan
Christian Rechberger
Tomas Sander
Jacob Schuldt
SeongHan Shin
Dirk Stegemann
Emin Tatli
Isamu Teranishi
Kan Yasuda
Rui Zhang

Table of Contents

Symmetric-Key Encryption

MV3: A New Word Based Stream Cipher Using Rapid Mixing and
Revolving Buffers . 1

Nathan Keller, Stephen D. Miller, Ilya Mironov, and
Ramarathnam Venkatesan

A Simple Related-Key Attack on the Full SHACAL-1 20
Eli Biham, Orr Dunkelman, and Nathan Keller

Signatures and Authentication

Impossibility Proofs for RSA Signatures in the Standard Model 31
Pascal Paillier

Selecting Secure Passwords . 49
Eric R. Verheul

Human Identification Through Image Evaluation Using Secret
Predicates . 67

Hassan Jameel, Riaz Ahmed Shaikh, Heejo Lee, and Sungyoung Lee

Hash Functions

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 85
Florian Mendel, Joseph Lano, and Bart Preneel

Second Preimages for SMASH . 101
Mario Lamberger, Norbert Pramstaller, Christian Rechberger, and
Vincent Rijmen

Digital Signatures (I)

A Practical Optimal Padding for Signature Schemes 112
Haifeng Qian, Zhibin Li, Zhijie Chen, and Siman Yang

Directed Transitive Signature Scheme . 129
Xun Yi

Identity-Based Multi-signatures from RSA . 145
Mihir Bellare and Gregory Neven

X Table of Contents

Cryptographic Protocols (I)

Improved Efficiency for Private Stable Matching . 163
Matthew Franklin, Mark Gondree, and Payman Mohassel

Compact E-Cash from Bounded Accumulator . 178
Man Ho Au, Qianhong Wu, Willy Susilo, and Yi Mu

Batch Processing of Interactive Proofs . 196
Koji Chida and Go Yamamoto

Side-Channel Attacks (I)

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash
Calls . 208

Joseph H. Silverman and William Whyte

Predicting Secret Keys Via Branch Prediction . 225
Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert

Side-Channel Attacks (II)

Template Attacks on Masking—Resistance Is Futile 243
Elisabeth Oswald and Stefan Mangard

Differential Power Analysis of Stream Ciphers . 257
W. Fischer, B.M. Gammel, O. Kniffler, and J. Velten

Cache Based Remote Timing Attack on the AES . 271
Onur Acıiçmez, Werner Schindler, and Çetin K. Koç

Cryptographic Protocols (II)

Group Secret Handshakes Or Affiliation-Hiding Authenticated Group
Key Agreement . 287

Stanis�law Jarecki, Jihye Kim, and Gene Tsudik

Efficient Password-Authenticated Key Exchange Based on RSA 309
Sangjoon Park, Junghyun Nam, Seungjoo Kim, and Dongho Won

Non-degrading Erasure-Tolerant Information Authentication with an
Application to Multicast Stream Authentication over Lossy Channels . . . 324

Yvo Desmedt and Goce Jakimoski

Digital Signatures (II)

A Practical and Tightly Secure Signature Scheme Without Hash
Function . 339

Benôıt Chevallier-Mames and Marc Joye

Table of Contents XI

How to Strengthen Any Weakly Unforgeable Signature into a Strongly
Unforgeable Signature . 357

Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang

Efficient Implementation

Public Key Cryptography and RFID Tags . 372
M. McLoone and M.J.B. Robshaw

A Bit-Slice Implementation of the Whirlpool Hash Function 385
Karl Scheibelhofer

Author Index . 403

MV3: A New Word Based Stream Cipher Using
Rapid Mixing and Revolving Buffers

Nathan Keller1,�, Stephen D. Miller1,2,��, Ilya Mironov3,
and Ramarathnam Venkatesan4

1 Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel
2 Department of Mathematics, Rutgers University, Piscataway, NJ 08854

3 Microsoft Research, 1065 La Avenida, Mountain View, CA 94043
4 Microsoft Research, 1 Microsoft Way, Redmond, WA 98052

Cryptography, Security and Algorithms Group, Microsoft Research India

Abstract. mv3 is a new word based stream cipher for encrypting long
streams of data. A direct adaptation of a byte based cipher such as
rc4 into a 32- or 64-bit word version will obviously need vast amounts
of memory. This scaling issue necessitates a look for new components
and principles, as well as mathematical analysis to justify their use. Our
approach, like rc4’s, is based on rapidly mixing random walks on di-
rected graphs (that is, walks which reach a random state quickly, from
any starting point). We begin with some well understood walks, and
then introduce nonlinearity in their steps in order to improve security
and show long term statistical correlations are negligible. To minimize
the short term correlations, as well as to deter attacks using equations
involving successive outputs, we provide a method for sequencing the
outputs derived from the walk using three revolving buffers. The cipher
is fast — it runs at a speed of less than 5 cycles per byte on a Pentium
IV processor. A word based cipher needs to output more bits per step,
which exposes more correlations for attacks. Moreover we seek simplicity
of construction and transparent analysis. To meet these requirements, we
use a larger state and claim security corresponding to only a fraction of
it. Our design is for an adequately secure word-based cipher; our very
preliminary estimate puts the security close to exhaustive search for keys
of size ≤ 256 bits.

Keywords: stream cipher, random walks, expander graph, cryptanalysis.

1 Introduction

Stream ciphers are widely used and essential in practical cryptography. Most are
custom designed, e.g. alleged rc4 [Sch95, Ch. 16], seal [RC98], scream [HCJ02],
and lfsr-based nessie submissions such as lili-128, snow, and sober [P+03,
Ch. 3]. The vra cipher [ARV95] has many provable properties, but requires more

� Partially supported by the Adams Fellowship.
�� Partially supported by NSF grant DMS-0301172 and an Alfred P. Sloan Foundation

Fellowship. Corresponding author (miller@math.rutgers.edu).

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 1–19, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 N. Keller et al.

memory than the rest. We propose some new components and principles for stream
cipher design, aswell as their mathematical analysis, and present a concrete stream
cipher called mv3.

To motivate our construction, we begin by considering rc4 in detail. It is an
exceptionally short, byte-based algorithm that uses only 256 bytes of memory.
It is based on random walks (card shuffles), and has no serious attacks. Modern
personal computers are evolving from 32 to 64 bit words, while a growing number
of smaller devices have different constraints on their word and memory sizes.
Thus one may desire ciphers better suited to their architectures, and seek designs
that scale nicely across these sizes. Here we focus on scaling up such random walk
based ciphers. Clearly, a direct adaptation of rc4 would require vast amounts
of memory.

The security properties of most stream ciphers are not based on some hard
problem (e.g., as RSA is based on factoring). One would expect this to be the case
in the foreseeable future. Nevertheless, they use components that – to varying
degrees – are analyzable in some idealized sense. This analysis typically involves
simple statistical parameters such as cycle length and mixing time. For example,
one idealizes each iteration of the main loop of rc4 as a step in a random walk
over its state space. This can be modeled by a graph G with nodes consisting
of S256, the permutations on 256 objects, and edges connecting nodes that dif-
fer by a transposition. Thus far no serious deviations from the random walk
assumptions are known. Since storing an element of S232 or S264 is out of the
question, one may try simulations using smaller permutations; however, this is
nontrivial if we desire both competitive speeds and a clear analysis. It therefore
is attractive to consider other options for the underlying graph G.

One of the most important parameters of rc4 is its mixing time. This denotes
the number of steps one needs to start from an arbitrary state and achieve
uniform distribution over the state space through a sequence of independent
random moves. This parameter is typically not easy to determine. Moreover, rc4
keeps a loop counter that is incremented modulo 256, which introduces a memory
over 256 steps. Thus its steps are not even Markovian (where a move from the
current state is independent of earlier ones). Nevertheless, the independence of
moves has been a helpful idealization (perhaps similar to Shannon’s random
permutation model for block ciphers), which we will also adhere to.

We identify and focus on the following problems:

• Problem 1 – Graph Design. How to design graphs whose random walks
are suitable for stream ciphers that work on arbitrary word sizes.

• Problem 2 – Extraction. How to extract bits to output from (the labels
of) the nodes visited by walk.

• Problem 3 – Sequencing. How to sequence the nodes visited by the walk
so as to diminish any attacks that use relationships (e.g. equations) between
successive outputs.

We now expand on these issues. At the outset, it is important to point out
the desirability of simple register operations, such as additions, multiplications,

MV3: A New Word Based Stream Cipher 3

shifts, and xor’s. These are crucial for fast implementation, and preclude us
from using many existing constructions of expander graphs (such as those in
[LPS86, HLW06]). Thus part of the cipher design involves new mathematical
proofs and constructions. The presentation of the cipher does not require these
details, which may be found in the Appendix.

High level Design Principles: Clearly, a word based cipher has to output
more bits per step of the algorithm. But this exposes more relationships on the
output sequence, and to mitigate its effect we increase the state size and aim
at security that is only a fraction of the log of the state size. We also tried to
keep our analysis as transparent and construction as simple as possible. Our
key initialization is a bit bulky and in some applications may require further
simplifications, a topic for future research.

1.1 Graph Design: Statistical Properties and Non-linearities

In the graph design, one wants to keep the mixing time τ small as a way to keep
the long term correlations negligible. This is because many important properties
are guaranteed for walks that are longer than τ . For example, such a walk visits
any given set S nearly the expected number of times, with exponentially small
deviations (see Theorem A.2). A corollary of this fact is that each output bit is
unbiased.

Thus one desires the optimal mixing time, which is on the order of log N ,
N being the size of the underlying state space. Graphs with this property have
been well studied, but the requirements for stream ciphers are more complicated,
and we are not aware of any work that focuses on this issue. For example, the
graphs whose nodes are Z/2nZ (respectively (Z/2nZ)∗) and edges are (x, x+ gi)
(respectively (x, x · gi)), where gi are randomly chosen and i = O(n), have this
property [AR94]. While these graphs are clearly very efficient to implement,
their commutative operations are quite linear and hence the attacks mentioned
in Problem 3 above can be effective.

To this end, we introduce some nonlinearities into our graphs. For example,
in the graph on Z/2nZ from the previous paragraph, we can also add edges of
the form (x, hx) or (x, xr). This intuitively allows for more randomness, as well
as disrupting relations between successive outputs. However, one still needs to
prove that the mixing time of such a modified graph is still small. Typically this
type of analysis is hard to come by, and in fact was previously believed to be
false. However, we are able to give rigorous proofs in some cases, and empirically
found the numerical evidence to be stronger yet in the other cases. More details
can be found in the Appendix.

Mixing up the random walks on multiplicative and additive abelian groups
offers a principled way to combine with nonlinearities for an effective defense.
As a practical matter, it is necessary to ensure that our (asymptotic) analysis
applies when parameters are small, which we have verified experimentally.

We remark here that introduction of nonlinearities was the main motivation
behind the construction of the T -functions of Klimov and Shamir ([KS02]). They

4 N. Keller et al.

showed that the walk generated by a T -function deterministically visits every
n-bit number once before repeating. A random walk does not go through all the
nodes in the graph, but the probability that it returns to a previous node in m
steps tends to the uniform probability at a rate that drops exponentially in m.
It also allows us to analyze the statistical properties as indicated above. (See the
Appendix for more background.)

1.2 Extraction

Obviously, if the nodes are visited truly randomly, one can simply output the
lsb’s of the node, and extraction is trivial. But when there are correlations
among them, one can base an attack on studying equations involving successive
outputs. One solution to this problem is to simultaneously hash a number of
successive nodes using a suitable hashing function, but this will be expensive
since the hash function has to work on very long inputs.

Our solution to the sequencing problem below allows us to instead hash a lin-
ear combination of the nodes in a faster way. A new aspect of our construction is
that our hash function itself evolves on a random walk principle. We apply suit-
able rotations on the node labels (to alter the internal states) at the extraction
step to ensure the top and bottom half of the words mix well.

1.3 Sequencing

As we just mentioned, the sequencing problem becomes significant if we wish
to hash more bits to the output (in comparison to rc4). First we ensure that
our graph is directed and has no short cycles. But this by itself is insufficient,
since nodes visited at steps in an interval [t, t + Δ], where Δ � τ , can have
strong correlations. Also, we wish to maximize the number of terms required
in equations involved in the attacks mentioned in Problem 3. To this end, we
store a short sequence of nodes visited by the walk in buffers, and sequence them
properly. The buffers ensure that any relation among output bits is translated
to a relation involving many nonconsecutive bits of the internal state. Hence,
such relations cannot be used to mount efficient attacks on the internal state of
the cipher.

The study of such designs appear to be of independent interest. We are able to
justify their reduction of correlations via a theorem of [CHJ02] (see Section 4.5).

1.4 Analysis and Performance

We do not have a full analysis of the exact cipher that is implemented. How-
ever, we have ensured that our idealizations are in line with the ones that allow
rc4 be viewed via random walks. Of course some degree of idealization is nec-
essary because random bits are required to implement any random walk; here
our design resembles that of alleged rc4 [Sch95, Ch. 16]. Likewise, our cipher
involves combining steps from different, independent random walks on the same

MV3: A New Word Based Stream Cipher 5

underlying graph. We are able to separately analyze these processes, but al-
though combining such steps should intuitively only enhance randomness, our
exact mathematical models hold only for these separate components and hence
we performed numerical tests as well.

Our cipher mv3 is fast on 32 bit processors — it runs at a speed of 4.8 cycles
a byte on Pentium IV, while the speed of rc4 is about 10 cycles a byte. Only
two of the eSTREAM candidates [DC06] are faster on similar architecture.

We evaluated it against some known attacks and we present the details in
Section 4. We note that some of the guess-and-determine attacks against rc4
(e.g. [K+98]) are also applicable against mv3. However, the large size of the
internal state of mv3 makes these attacks much slower than exhaustive key
search, even for very long keys.

The security claim of mv3 is that no attack faster than exhaustive key search
can be mounted for keys of length up to 256 bits.1

The paper is organized as follows: In Section 2 we give a description of mv3.
Section 3 contains the design rationale of the cipher. In Section 4 we examine
the security of mv3 with respect to various methods of cryptanalysis. Finally,
Section 5 summarizes the paper. We have also included an appendix giving some
mathematical and historical background. Additional appendices can be found in
the full version of this paper (http://arxiv.org/abs/cs/0610048).

2 The Cipher MV3

In this section we describe the cipher algorithm and its basic ingredients. The
letters in its name stand for “multi-vector”, and the number refers to the three
revolving buffers that the cipher is based upon.

Internal state. The main components of the internal state of mv3 are three re-
volving buffers A, B, and C of length 32 double words (unsigned 32-bit integers)
each and a table T that consists of 256 double words. Additionally, there are
publicly known indices i and u (i ∈ [0 . . . 31], u ∈ [0 . . . 255]), and secret indices
j, c, and x (c, x are double words, j is an unsigned byte).

Every 32 steps the buffers shift to the left: A ← B, B ← C, and C is emptied.
In code, only the pointers get reassigned (hence the name “revolving”, since the
buffers are circularly rotated).

Updates. The internal state of the cipher gets constantly updated by means
of pseudo-random walks. Table T gets refreshed one entry every 32 steps, via
application of the following two operations:

u ← u + 1
T [u] ← T [u] + (T [j] ≫ 13).

(Symbol x ≫ a means a circular rotation to the right of the double word x by
a bits).
1 Note that mv3 supports various key sizes of up to 8192 bits. However, the security

claims are only for keys of size up to 256 bits.

6 N. Keller et al.

In other words, the u-th element of the table, where u sweeps through the
table in a round-robin fashion, gets updated using T [j].

In its turn, index j walks (in every step, which can be idealized as a random
walk) as follows:

j ← j + (B[i] mod 256),

where i is the index of the loop. Index j is also used to update x:

x ← x + T [j],

which is used to fill buffer C by C[i] ← (x ≫ 8).
Also, every 32 steps the multiplier c is additively and multiplicatively refreshed

as follows:

c ← c + (A[0] ≫ 16)
c ← c ∨ 1
c ← c2 (can be replaced by c ← c3)

Main loop. The last ingredient of the cipher (except for the key setup) is the
instruction for producing the output. This instruction takes the following form:

output: (x · c) ⊕ A[9i + 5] ⊕ (B[7i + 18] ≫ 16).

The product x · c of two 32-bit numbers is taken modulo 232.
Putting it all together, the main loop of the cipher is the following:

Input: length len
Output: stream of length len

repeat len/32 times
for i = 0 to 31

j ← j + (B[i] mod 256)
x ← x + T [j]
C[i] ← (x ≫ 8)
output (x · c) ⊕ A[9i + 5] ⊕ (B[7i + 18] ≫ 16)

end for
u ← u + 1
T [u] ← T [u] + (T [j] ≫ 13)
c ← c + (A[0] ≫ 16)
c ← c ∨ 1
c ← c2 (can be replaced by c ← c3)
A ← B, B ← C

end repeat

Key initialization. The key initialization algorithm accepts as inputs a key
K of length keylength, which can be any multiple of 32 less than or equal to
8192 (we recommend at least 96 bits), and an initial vector IV of the same
length as the key. The key remains the same throughout the entire encryption

MV3: A New Word Based Stream Cipher 7

session, though the initial vector changes occasionally. The initial vector is pub-
licly known, but should not be easily predictable. For example, it is possible to
start with a “random” IV using a (possibly insecure) pseudo-random number
generator known to the attacker, and then increment the IV by 1 every time
(see Section 4.2).

The key initialization algorithm is the following:

Input: key key and initial vector IV, both of length keylength double words
Output: internal state that depends on the key and the IV

j, x, u ← 0
c ← 1
fill A, B, C, T with 0xEF
for i = 0 to 3

for l = 0 to 255
T [i + l] ← T [i + l] + (key[l mod keylength] ≫ 8i) + l.

end for
produce 1024 bytes of mv3 output
encrypt T with the resulting key stream

end for
for i = 4 to 7

for l = 0 to 255
T [i + l] ← T [i + l] + (IV[l mod keylength] ≫ 8i) + l.

end for
produce 1024 bytes of mv3 output
encrypt T with the resulting key stream

end for

Note that when only the IV is changed, only the second half of the key
initialization is performed.

3 Design Rationale

In this section we describe more of the motivating principles behind the new
cipher.

Internal state. The internal state of the cipher has a huge size of more than
11,000 bits. This makes guess-and-determine attacks on it (like the attack against
rc4 in [K+98]) much slower than exhaustive key search, even for very long keys.
In addition, it also secures the cipher from time/memory tradeoff attacks trying
to invert the function f : State −→ Output, even for large key sizes. More detail
on the security of the cipher with respect to these attacks appears in Section 4.

The buffers A, B, C and table T , as well as the indices j, c, and x should
never be exposed. Since the key stream is available to the attacker and depends
on this secret information, the cipher strictly adheres to the following design
principles:

8 N. Keller et al.

Principle 1. Output words must depend on as many secret words as possible.
Principle 2. Retire information faster than the adversary can exploit it.

As the main vehicle towards these goals, we use random walks (or, more
precisely, pseudo-random walks, as the cipher is fully deterministic).

Updates. The updates of the internal state are based on several simultaneously
applied random walks. On the one hand, these updates are very simple and
can be efficiently implemented. On the other hand, as shown in the Appendix,
the update mechanism allows one to mathematically prove some randomness
properties of the sequence of internal states. Note that the random walks are
interleaved, and the randomness of each one of them relies on the randomness of
the others. Note also that the updates use addition in Z/2nZ and not a bitwise
xor operation. This partially resolves the problem of high-probability short
correlations in random walks: In an undirected random walk, there is a high
probability that after a short number of steps the state returns to a previous
state, while in a directed random walk this phenomenon does not exist. For
example, if we would use an update rule x ← x ⊕ T [j], then with probability
2−8 (rather than the trivial 2−32) x would return to the same value after two
steps. The usage of addition, which unlike xor is not an involution, prevents
this property. However, in the security proof for the idealized model we use the
undirected case, since the known proofs of rapid mixing (like the theorem of
Alon and Roichman [AR94]) refer to that case.

Introducing nonlinearity. In order to introduce some nonlinearity we use a
multiplier c that affects the cipher output in a multiplicative way. The value of c
is updated using an expander graph which involves both addition and multipli-
cation, as explained in the Appendix. It is far from clear the squaring or cubing
operation still leaves the mixing time small and our theorem addresses this.

Our update of c involves a step c ← c∨ 1. This operation may at a first seem
odd, since it leaks lsb(c) to attacker, who may use it for a distinguishing attack
based only on the lsb of outputs, ignoring c entirely. However, this operation is
essential, since otherwise the attacker can exploit cases where c = 0, which occur
with a relatively high probability of 2−16 due to the c ← c2 operation (and last
for 32 steps at a time). In this situation, they can disregard the term x · c and
devise a guess-and-determine attack with a much lower time complexity than
the currently possible one.

Sequencing rule. The goals of this step were explained in section 1.3. Our
output rule is based on the following general structure: The underlying walk
x0, x1, . . . , xn, . . . is transformed into the output y0, y1, . . . , yn, . . . via a linear
transformation:

yi = xni1 ⊕ xni2 ⊕ · · · ⊕ xnik
.

Without loss of generality, we assume that the indices are sorted ni1 < ni2 <
· · · < nik. Let N = {nij}. The set N is chosen to optimize the following para-
meters:

MV3: A New Word Based Stream Cipher 9

1. Minimize the latency and the buffer size required to compute yi. To this end,
we require that there will be two constants m and C, between 64 and 256,
such that i − C ≤ nij ≤ i for each i ≥ m and 1 ≤ j ≤ k. We additionally
constrain nik = i for all i > m;

2. Maximize the minimal size of a set of pairs xi, xi+1 that can be expressed
as a linear combination of y’s. More precisely, we seek to maximize a such
that the following holds for some j1, . . . , jb > m and i1, . . . , ia:

(xi1⊕xi1+1)⊕(xi2⊕xi2+1)⊕· · ·⊕(xia ⊕xia+1) = yj1⊕yj2⊕· · ·⊕yjb
. (3.1)

Notice that the value of b has not been constrained, since usually this value
is not too high and the attacker can obtain the required data.

Intuitively speaking, the second constraint ensures that if the smallest feasible
a is large enough, no linear properties of the x walk propagate to the y walk.
Indeed, any linear function on the y walk can be expressed as a function on the
x walk. Since the x walk is memoryless, any linear function on a subset of x’s
can be written as a xor of linear functions on the intervals of the walk. Each
such interval can in turn be broken down as a sum of pairs. If a is large enough,
no linear function can be a good distinguisher. Note that we concentrate on the
relation between consecutive values of the state x, since in a directed random
walk such pairs of states seem to be the most correlated ones.

Constructing the set N can be greatly simplified if N has periodic structure.
Experiments demonstrate that for sequences with period 32 and k = 3, a can be
as large as 12. Moreover, the best sequences have a highly regular structure, such
as ni1 = i − (5k mod 16) and ni2 = i − 16 − (3k mod 16), where k = i mod 16.
For larger periods a cannot be computed directly; an analytical approach is
desirable.

As soon as the set of indices is fixed, yi for i > m can be output once xi

becomes available. The size of the buffer should be at least i−nij for any i > m
and j. If N is periodic, retiring older elements can be trivially implemented
by keeping several buffers and rotating between them. We note that somewhat
similar buffers where used recently in the design of the stream cipher Py [BS05].

More precisely, if we choose the period P = 32 and k = 3, i.e. every output
element is an xor of three elements of the walk, the output rule can be imple-
mented by keeping three P -word buffers, A, B, and C. Their content is shifted
to the left every P cycles: A is discarded, B moves to A, and C moves to B. The
last operation can be efficiently implemented by rotating pointers to the three
buffers.

The exact constants chosen for nij in the output rule are chosen to maxi-
mize the girth and other useful properties of the graph of dependencies between
internal variables and the output, which is available to the attacker.

Rotations. Another operation used both in the output rule and in the update of
the internal state is bit rotation. The motivation behind this is as follows: all the
operations used in mv3 except for the rotation (that is, bitwise xor, modular
addition and multiplication) have the property that in order to know the k least

10 N. Keller et al.

significant bits of the output of the operation, it is sufficient to know the k least
significant bits of the input. An attacker can use this property to devise an attack
based on examining only the k least significant bits of the output words, and
disregard all the other bits. This would dramatically reduce the time complexity
of guess-and-determine attacks. For example, if no rotations were used in the
cipher, then a variant of the standard guess-and-determine attack presented in
Section 4 would apply. This variant examines only the least significant byte of
every word, and reduces the time complexity of the attack to the fourth root of
the original time complexity.

One possible way to overcome this problem is to use additional operations that
do not have this problematic property, like multiplication in some other modular
group. However, such operations slow the cipher significantly. The rotations used
in mv3 can be efficiently implemented and prevent the attacker from tracing only
the several least significant bits of the words. We note that similar techniques
were used in the stream cipher Sosemanuk [B+05] and in other ciphers as well.

Key setup. Since the bulk of the internal state is the table T , we concentrate
on intermingling T and the pair (key, IV). Once T is fully dependent on the key
and the IV , the revolving buffers and other internal variables will necessarily
follow suit.

We have specified that the IV be as long as the key in order to prevent
time/memory tradeoff attacks that try to invert the function g : (key, IV) −→
Output. The IV is known to the attacker but should not be easily predictable.
One should avoid initializing the IV to zero at the beginning of every encryp-
tion session (as is frequently done in other applications), since this reduces the
effective size of the IV and allows for better time/memory tradeoff attacks. A
more comprehensive study of the security of mv3 with respect to time/memory
tradeoff attacks is presented in Section 4.

We note that the key initialization phase is relatively slow. However, since
the cipher is intended for encrypting long streams of data, the fast speed of
the output stream generation compensates for it. We note that since the IV
initialization phase is also quite slow, the IV should not be re-initialized too
frequently.

4 Security

mv3 is designed to be a fast and very secure cipher. We are not aware of any
attacks on mv3 faster than exhaustive key search even for huge key sizes of more
than 1000 bits (except for the related key attacks in Section 4.6), but have only
made security claims up to a 256-bit key size. In this section we analyze the
security of mv3 against various kinds of cryptanalytic attacks.

4.1 Tests

We ran the cipher through several tests. First, we used two well-known batteries
of general tests. One is Marsaglia’s time-tested DIEHARD collection [Mar97],

MV3: A New Word Based Stream Cipher 11

and the other is the NIST set of tests used to assess AES candidates [R+01]
(with corrections as per [KUH04]). Both test suites were easily cleared by mv3.

In light of attacks on the first few output bytes of rc4 [MS01, Mir02], the most
popular stream cipher, we tested the distribution of the initial double words of
mv3 (by choosing a random 160-bit key and generating the first double word of
the output). No anomalies were found.

rc4’s key stream is also known to have correlations between the least signif-
icant bits of bytes one step away from each other [Gol97]. Neither of the two
collections of tests specifically targets bits in similar positions of the output’s
double words. To compensate for that, we ran both DIEHARD and NIST’s tests
on the most and the least significant bits of 32-bit words of the key stream.
Again, none of the tests raised a flag.

4.2 Time/Memory/Data Tradeoff Attacks

There are two main types of TMDTO (time/memory/data tradeoff) attacks on
stream ciphers.

The first type consists of attacks that try to invert the function f : State −→
Output (see, for example, [BS00]). In order to prevent attacks of this type, the
size of the internal state should be at least twice larger than the key length.
In mv3, the size of the internal state is more than 11,000 bits, and hence there
are no TMDTO attacks of this type faster than exhaustive key search for keys
of less than 5,500 bits length. Our table sizes are larger than what one may
expect to be necessary to make adequate security claims, but we have chosen
our designs so that we can keep our analysis of the components transparent, and
computational overhead per word of output minimal. We intend to return to
this in a future paper and propose an algorithm where the memory is premium,
based on different principles for light weight applications.

The second type consists of attacks that try to invert the function g : (Key, IV)
−→ Output (see, for example, [HS05]). The IV should be at least as long as the
key – as we have mandated in our key initialization – in order to prevent such
attacks faster than exhaustive key search. We note again that if the IV ’s are used
in some predictable way (for example, initialized to zero at the beginning of the
encryption session and then incremented sequentially), then the effective size of
the IV is much smaller, and this may enable a faster TMDTO attack. However,
in order to overcome this problem the IV does not have to be “very random”.
The only thing needed is that the attacker will not be able to know which IV
will be used in every encryption session. This can be achieved by initializing the
IV in the beginning of the session using some (possibly insecure) publicly known
pseudo-random number generator and then incrementing it sequentially.

4.3 Guess-and-Determine Attacks

A guess-and-determine attack against rc4 appears in [K+98]. The attack can
be adapted to mv3 (the details of this modification are given in the full version
of this paper). However, the time complexity of this attack is quite large – more

12 N. Keller et al.

than 22000, since the attacker starts with guessing more than 2000 bits of the
state. Hence, this attack is slower than exhaustive key search for keys of less
then 2000 bits length.

4.4 Guess-and-Determine Attacks Using the Several Least
Significant Bits of the Words

Most of the operations in mv3 allow the attacker to focus the attack on the
k least significant bits, thus dramatically reducing the number of bits guessed
in the beginning of the attack. We consider two reasonable attacks along these
lines.

The first attack concentrates on the least significant bit of the output words.
In this case, since the least significant bit of c is fixed to 1, the attacker can
disregard c at all. However, in this case the attacker cannot trace the values of j,
and guessing them all the time will require a too high time complexity. Hence,
it seems that this attack is not applicable to mv3.

The second attack concentrates on the eight least significant bits of every
output word. If there were no rotations in the update and output rules, the
attacker would indeed be able to use her guess to trace the values of j and
the eight least significant bits in all the words of the internal state. This would
result in an attack with time complexity of about 2600. However, the rotations
cause several difficulties for such an attack, because guesses in consecutive loops
cannot be combined together.

Hence, it seems that both of the attacks cannot be applied, unless the attacker
guesses the full values of all the words in two buffers, which leads to the attack
described in subsection 4.3 (with a time complexity of more than 22000).

4.5 Linear Distinguishing Attacks

Linear distinguishing attacks aim at distinguishing the cipher output from ran-
dom streams, using linear approximations of the non-linear function used in the
cipher – in our case, the random walk.

In [CHJ02], Coppersmith et al. developed a general framework to evaluate
the security of several types of stream ciphers with respect to these attacks. It
appears that the structure of mv3 falls into this framework, to which [CHJ02,
Theorem 6] directly applies:

Theorem 1. Let ε be the bias of the best linear approximation one can find for
pairs xi, xi+1, and let AN (a) be the number of equations of type (3.1) that hold
for the sequence ym, ym+1, Then the statistical distance between the cipher
and the random string is bounded from above by√√√√ N∑

a=1

AN (a)ε2a. (4.1)

MV3: A New Word Based Stream Cipher 13

Note that for ε � 1/2, the bound (4.1) is dominated by the term with the
smallest a, which equals to 12 in our case. Since the relation between xi and xi+1
is based on a random walk, ε is expected to be very small. Since the statistical
distance is of order ε24, we expect that the cipher cannot be distinguished from a
random string using a linear attack, even if the attacker uses a very long output
stream for the analysis.

4.6 Related-Key Attacks and Key Schedule Considerations

Related key attacks study the relation between the key streams derived from
two unknown, but related, secret keys. These attacks can be classified into dis-
tinguishing attacks, that merely try to distinguish between the key stream and
a random stream, and key recovery attacks, that try to find the actual values of
the secret keys.

One of the main difficulties in designing the key schedule of a stream cipher
with a very large state is the vulnerability to related-key distinguishing attacks.
Indeed, if the key schedule is not very complicated and time consuming, an
attacker may be able to find a relation between two keys that propagates to a
very small difference in the generated states. Such small differences can be easily
detected by observing the first few words of the output stream.

It appears that this difficulty applies to the current key schedule of mv3.
For long keys, an attacker can mount a simple related-key distinguishing attack
on the cipher. Assume that keylength = 8192/t. Then in any step of the key
initialization phase, every word of the key affects exactly t words in the T array,
after which the main loop of the cipher is run eight times and the output stream
is xored (bit-wise) to the content of the T array. The same is repeated with the
IV replacing the key in the IV initialization phase.

The attacker considers encryption under the same key with two IV s that
differ only in one word. Since the key is the same in the two encryptions, the
entire key initialization phase is also the same. After the first step of the IV
initialization, the intermediate values differ in exactly t words in the T array.
Then, the main loop is run eight times. Using the random walk assumption, we
estimate that, with probability (1 − t/256)256, each of the corresponding words
in the respective T arrays used in these eight loops are equal, making the output
stream equal in both encryptions. Hence, with probability (1 − t/256)256, after
the first step of the IV initialization the arrays A, B, and C are equal in both
encryptions and the respective T arrays differ only in t words.

The same situation occurs in the following three steps of the IV initialization.
Therefore, with probability

∏4
�=1(1 − t�/256)256 all of the corresponding words

used during the entire initialization phase are equal in the two encryptions. Then
with probability (1 − 4t/256)32 all of the corresponding words used in the first
loop of the key stream generation are also equal in the two encryptions, resulting
in two equal key streams. Surely this can be easily recognized by the attacker
after observing the key stream generated in the first loop.

14 N. Keller et al.

In order to distinguish between mv3 and a random cipher, the attacker has to
observe about M =

∏4
�=1(1− t�/256)−256 · (1− 4t/256)−32 pairs of related IV s,

and for each pair she has to check whether there is equality in the first 32 key
stream words. Hence, the data and time complexities of the attack are about
210M . For keys of length at least 384 bits, this attack is faster than exhaustive
key search. Note that (somewhat counter intuitively) the attack becomes more
efficient as the length of the key is increased. The attack is most efficient for 8192-
bit keys, where the data complexity is about 210 bits of key stream encrypted
under the same key and 215 pairs of related IV s, and the time complexity is
less than 232 cycles. For keys of length at most 256 bits, the data and time
complexities of the attack are at least 2618 and hence the related-key attack is
much slower than exhaustive key search.

If we try to speed up the key schedule by reducing the number of loops
performed at each step of the key schedule, or by inserting the output of the
eight loops into the T array (as opposed to xoring it bit-wise to the content of
the T array), the complexity of the related-key attack is reduced considerably.
These details are given in the full version of the paper.

Hence, the related-key attack described above is a serious obstacle to speeding
up the key schedule. However, we note that the related-key model in general, and
in particular its requirement of obtaining a huge number of encryptions under
different related-IV pairs, is quite unrealistic.

4.7 Other Kinds of Attacks

We subjected the cipher to other kinds of attacks, including algebraic attacks
and attacks exploiting classes of weak keys. We did not find any discrepancies
in these cases.

5 Summary

We have proposed a new fast and secure stream cipher, mv3. The main attributes
of the cipher are efficiency in software, high security, and its basis upon clearly
analyzable components.

The cipher makes use of new rapidly mixing random walks, to ensure the
randomness in the long run. The randomness in the short run is achieved by
revolving buffers that are easily implemented in software, and break short cor-
relations between the words of the internal state.

The cipher is word-based, and hence is most efficient on 32-bit processors. On
a Pentium IV, the cipher runs with a speed of 4.8 clocks a byte.

Acknowledgements. We thank Adi Shamir for his generous discussions. We
are grateful to Nir Avni and Uzi Vishne for their careful reading and comments
on an earlier version, and Rebecca Landy for providing numerics on expander
graphs.

MV3: A New Word Based Stream Cipher 15

References

[ARV95] W. Aiello, S. Rajagopalan, and R. Venkatesan, Design of Practical and Prov-
ably Good Random Number Generators, Proc. of SODA’95, pp. 1–9, 1995.

[AR94] N. Alon and Y. Roichman, Random Cayley Graphs and Expanders, Rand.
Str. Alg. vol. 5(2), pp. 271–284, 1994.

[B+05] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin,
A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sib-
ert, Sosemanuk, a Fast Software-Oriented Stream Cipher, submitted to
Ecrypt, 2005.

[BS05] E. Biham and J. Seberry, Py (Roo): A fast and secure stream cipher using
rolling arrays, submitted to Ecrypt, 2005.

[BS00] A. Biryukov and A. Shamir, Cryptanalytic Time/Memory/Data Tradeoffs
for Stream Ciphers, Proc. of Asiacrypt’00, pp. 1–13, 2000.

[CHJ02] D. Coppersmith, S. Halevi, and C. S. Jutla, Cryptanalysis of stream ciphers
with linear masking, Proc. of CRYPTO’02, pp. 515–532, 2002.

[DC06] C. De Canniere, eSTREAM testing framework, 2006, avalable on-line at
http://www.ecrypt.eu.org/stream.

[Gi98] D. Gillman, A Chernoff bound for random walks on expander graphs, SIAM
J. Comput. 27 (4), pp.1203–1220 (1998).

[Gol97] J. Golić, Linear statistical weakness of alleged RC4 keystream generator,
Proc. of Eurocrypt’97, pp. 226–238, 1997.

[HCJ02] S. Halevi, D. Coppersmith, and C. Jutla, Scream: a Software-Efficient
Stream Cipher, Proc. of FSE’02, pp. 195–209, 2002.

[HS05] J. Hong, P. Sarkar, Rediscovery of Time Memory Tradeoffs, 2005. Available
online at http://eprint.iacr.org/2005/090.

[HLW06] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applica-
tions, Bull. Amer. Math. Soc. 43 (2006), pp. 439–561.

[JMV05] D. Jao, S. Miller, and R. Venkatesan, Do All Elliptic Curves of the Same
Order Have the Same Difficulty of Discrete Log?, Proc. of Asiacrypt’05,
pp. 21–40, 2005.

[KUH04] S. Kim, K. Umeno, and A. Hasegawa, Corrections of the NIST statistical test
suite for randomness, Cryptology ePrint Archive, Report 2004/018, 2004.

[KS02] A. Klimov and A. Shamir, A New Class of Invertible Mappings, Proc. of
CHES’02, pp. 470–483, 2002.

[KS04] A. Klimov and A. Shamir, New Cryptographic Primitives Based on Multi-
word T-Functions, Proc. of FSE’04, pp. 1–15, 2004.

[K+98] L. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege, Analysis
Methods for (Alleged) RC4, Proc. of ASIACRYPT’98, pp.327-341, 1998.

[LPS86] A. Lubotzky, R. Phillips, and P. Sarnak, Explicit expanders and the Ra-
manujan conjectures, Proc. of STOC’86, pp. 240–246, 1986.

[MS01] I. Mantin and A. Shamir, A practical attack on broadcast RC4, Proc. of
FSE’01, pp. 152–164, 2001.

[Mar97] G. Marsaglia, DIEHARD battery of tests, available from http://
stat.fsu.edu/∼geo/.

[Mir02] I. Mironov, (Not so) random shuffles of RC4, Proc. of CRYPTO’02, pp. 304–
319, 2002.

[P+03] B. Preneel et al., NESSIE Security Report, version 2.0, 2003.
[RC98] P. Rogaway and D. Coppersmith, A Software-Optimized Encryption Algo-

rithm, J. of Cryptology 11(4), pp. 273–287, 1998.

16 N. Keller et al.

[R+01] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, A statistical test
suite for random and pseudorandom number generators for cryptographic
applications, NIST Special Publication 800-22, http://www.nist.gov, 2001.

[Sch95] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code
in C, 2nd Ed., John Wiley & Sons, 1995.

A Appendix: Mathematical Background

The good long term randomness properties of the internal state of mv3 are
achieved by updates using rapidly mixing random walks. Actually, the walks are
only pseudo-random since the cipher is fully deterministic, but we desire the
update rule to be as close as possible to a random walk. In this appendix we
recall some mathematics used to study random walks, such as expander graphs
and the rapid mixing property, with a focus on the types of random walks used
in the cipher.

Rapidly Mixing Random Walks and Expander Graphs

Recall that a random walk on a graph starts at a node z0, and at each step
moves to a node connected by one of its adjacent edges at random. A lazy
random walk is the same, except that it stays at the same node with probability
1/2, and otherwise moves to an adjacent node at random. Intuitively, a random
walk is called “rapidly mixing” if, after a relatively short time, the distribution
of the state of the walk is close to the uniform distribution — regardless of the
initial distribution of the walk.

Next, we come to the notion of expander graph. Let Γ be an undirected k-
regular graph on N < ∞ vertices. Its adjacency operator acts on L2(Γ) by
summing the values of a function at the neighbors of a given vertex:

(Af)(x) =
∑
x∼y

f(y) . (A.1)

The spectrum of A is contained in the interval [−k, k]. The trivial eigenvalue λ = k
is achieved by the constant eigenvector; if the graph is connected then this eigen-
value has multiplicity 1, and all other eigenvalues are strictly less than k. A se-
quence of k-regular graphs (where the number of vertices tends to infinity) is cus-
tomarily called a sequence of expanders if all nontrivial eigenvalues λ of all the
graphs in the sequence satisfy the bound |λ| ≤ k − c for an absolute constant c.
We shall take a slightly more liberal tack here and consider graphs which satisfy
the weaker eigenvalue bound |λ| ≤ k − c(log N)−A for some constant A ≥ 0.

The importance of allowing the lenient eigenvalue bound |λ| ≤ k−c(log N)−A

is that a random walk on such a graph mixes in polylog(N) time, even if A >
0. More precisely, we have the following estimate (see, for example, [JMV05,
Proposition 3.1]).

MV3: A New Word Based Stream Cipher 17

Proposition A.1. Let Γ be a regular graph of degree k on N vertices. Suppose
that the eigenvalue λ of any nonconstant eigenvector satisfies the bound |λ| ≤ σ
for some σ < k. Let S be any subset of the vertices of Γ , and x be any vertex in
Γ . Then a random walk of any length at least log 2N/|S|1/2

log k/σ starting from x will

land in S with probability at least |S|
2N = |S|

2|Γ | .

Indeed, with σ = k − c(log N)−A, the random walk becomes evenly distributed
in the above sense after O((log N)A+1) steps.

Next, we come to the issue of estimating the probability that the random walk
returns to a previously visited node. This is very important for cryptographic
purposes, since short cycles lead to relations which an attacker can exploit. The
following result gives a very precise estimate of how unlikely it is that a random
walk returns to the vertex it starts from. More generally, it shows that if one has
any set S consisting of, say, one quarter of all nodes, then the number of visits
of the random walk to this set will be exceptionally close to that of a purely
random walk in the sense that it will obey a Chernoff type bound. This in turn
allows one to show that the idealized cipher passes all the moment tests.

Theorem A.2. ([Gi98, Theorem 2.1]) Consider a random walk on a k-regular
graph Γ on N vertices for which the second-largest eigenvalue of the adjacency
operator A equals k − εk, ε > 0. Let S be a subset of the vertices of Γ , and tn
the random variable of how many times a particular walk of n steps along the
graph lands in S. Then, as sampled over all random walks, one has the following
estimate for any x > 0:

Prob
[∣∣∣∣tn − n

|S|
|Γ |

∣∣∣∣ ≥ x

]
≤

(
1 +

xε

10n

)
e−x2ε/(20n) . (A.2)

Thus even with a moderately small value of ε, the random walk avoids dwelling
in any one place overly long.

In practice, algorithms often actually consider random walks on directed graphs.
The connection between rapid mixing of directed graphs (with corresponding ad-
jacency/transition matrix M) and undirected graphs is as follows. A result of J.
Fill shows that if the additive reversalization (whose adjacency matrix is M +M t)
or multiplicative reversalization (whose adjacency matrix is MM t) rapidly mixes,
then the lazy random walk on the directed version also rapidly mixes. From this
it is easy to derive the effect of having no self-loops as well. Moreover, if the undi-
rected graph has expansion, then so does the directed graph — provided it has
an Eulerian orientation. It is important to note that this implication can also be
used to greatly improve poorly mixing graphs, which is the genesis of the graph
in Theorem A.3.

Expander graphs are natural sources of (pseudo)randomness, and have nu-
merous applications as extractors, de-randomizers, etc. (see [HLW06]). However,
there are a few practical problems that have to be resolved before expanders can
be used in cryptographic applications. One of these, as mentioned above, is a
serious security weakness: the walks in such a graph have a constant probability

18 N. Keller et al.

of returning to an earlier node in constant number of steps. It is possible to solve
this problem by adding the current state (as a binary string) to that of another
process which has good short term properties, but this increases the cache size.
In addition, if the graph has large directed girth (i.e. no short cycles), then the
short term return probabilities can be minimized or even eliminated.

Additive Random Walks on Z/2nZ

Most of the random walks used in the cipher, namely the random walks used
in the updates of j, x, and T , are performed in the additive group Z/2nZ. The
mixing properties of these walks can be studied using results on Cayley graphs
of this group. In general, given a group G with a set of generators S, the Cayley
graph X(G, S) of G with respect to S is the graph whose vertices consist of
elements of G, and whose edges connect pairs (g, gsi), for all g ∈ G and si ∈ S.

Alon and Roichman [AR94] gave a detailed study of the expansion proper-
ties of abelian Cayley graphs, viewed as undirected graphs. They showed that
X(G, S) is an expander when S is a randomly chosen subset of G whose size is
proportional to log |G|, and hence random walks on them mix rapidly on them.

Using second-moment methods it can be shown that their graphs are ergodic
(and also that the length of the shortest cycle is within a constant factor of
log |Γ |) with overwhelming probability over the choice of generators. The sig-
nificance of this is that we need not perform a lazy random walk, which would
introduce undesirable short term correlations as well as waste cycles and com-
promise the cryptographic strength.

In mv3, the rapid mixing of the random walks updating x, j and T follows from
the theorem of Alon and Roichman. For example, consider the update rule of x
of the form x ← x + T [j]. The update rule corresponds to a random walk on the
Cayley graph X(G, S) where G is the additive group Z/2nZ and S consists of the
256 elements of the T register. Note that we have |S| = 4 log2(|G|). In order to
apply the theorem of Alon and Roichman we need that the elements of the T array
will be random and that the walk will be random, that is, that j will be chosen
each time randomly in {0, . . . , 255}. Hence, assuming that j and T are uniformly
distributed, we have a rapid mixing property for x. Similarly, one can get rapid
mixing property for j using the randomness of x.

Non-linear Random Walks

In order to introduce some nonlinearity to the cipher, we use a multiplier c that
affects the cipher output in a multiplicative way. The multiplier itself is updated
using a nonlinear random walk that mixes addition and multiplication operations.
The idealized model of this random walk is described in the following theorem:

Theorem A.3. Let N and r be relatively prime positive integers greater than
1, and r̄ an integer such that rr̄ ≡ 1 (mod N). Let Γ be the 4-valent graph on
Z/NZ in which each vertex x is connected to the vertices r(x + 1), r(x − 1),
r̄x + 1, and r̄x − 1. Then there exists a positive constant c > 0, depending only
on r, such that all nontrivial eigenvalues λ of the adjacency matrix of Γ either

MV3: A New Word Based Stream Cipher 19

satisfy the bound |λ| ≤ 4−c(log N)−2, or are of the form λ = 4 cos(2πk/N) for k
satisfying rk ≡ k (mod N). In particular, if N is a power of 2 and (r−1, N) = 2,
then Γ is a bipartite graph for which all eigenvalues not equal to ±4 satisfy
|λ| ≤ 4 − c(log N)−2.

The proof of the theorem can be found in the full version of the paper. The
result means that for a fixed r, Γ is an expander graph in the looser sense that
its eigenvalue separation is at least c/(log N)2 for N large. This is still enough to
guarantee that the random walk on the graph mixes rapidly (i.e. in polylog(N)
time).

We note that although we use an additive notation, the theorem holds for any
cyclic group, for example a multiplicative group in which the multiplication by
r corresponds to exponentiation (this is the non-linearity we are referring to).
Also the expressions r(x ± 1), r̄x ± 1 may be replaced by r(x ± g), r̄x ± g for
any integer g relatively prime to N . Additionally, the expansion remains valid if
a finite number of extra relations of this form are added.

The operation used in the mv3 cipher algorithm itself is slightly different: it
involves not only addition steps, but also a squaring or cubing step. Though this
is not covered directly the Theorem, it is similar in spirit. We have run exten-
sive numerical tests and found that this operation can in fact greatly enhance the
eigenvalue separation, apparently giving stronger eigenvalue bounds of the form
|λ| ≤ σ for some constant σ < 4.

A Simple Related-Key Attack on the Full
SHACAL-1

Eli Biham1,�, Orr Dunkelman1,2,�, and Nathan Keller3,��

1 Computer Science Department, Technion.
Haifa 32000, Israel

{biham,orrd}@cs.technion.ac.il
2 Katholieke Universiteit Leuven, ESAT/SCD-COSIC

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
orr.dunkelman@esat.kuleuven.be

3 Einstein Institute of Mathematics, Hebrew University.
Jerusalem 91904, Israel

nkeller@math.huji.ac.il

Abstract. SHACAL-1 is a 160-bit block cipher with variable key length
of up to 512-bit key based on the hash function SHA-1. It was submit-
ted to the NESSIE project and was accepted as a finalist for the 2nd
phase of evaluation. Since its introduction, SHACAL-1 withstood exten-
sive cryptanalytic efforts. The best known key recovery attack on the full
cipher up to this paper has a time complexity of about 2420 encryptions.

In this paper we use an observation due to Saarinen to present an
elegant related-key attack on SHACAL-1. The attack can be mounted
using two to eight unknown related keys, where each additional key re-
duces the time complexity of retrieving the actual values of the keys by
a factor of 262. When all eight related-keys are used, the attack requires
2101.3 related-key chosen plaintexts and has a running time of 2101.3 en-
cryptions. This is the first successful related-key key recovery attack on
a cipher with varying round constants.

1 Introduction

In 1993, NIST has issued a standard hash function called Secure Hash Algorithm
(FIPS-180) [27]. Later this version was named SHA-0, as NIST published a
small tweak to this standard called SHA-1 in 1995. Both SHA-0 and SHA-1 are
Merkle-Damgard hash functions with compression function that accept blocks
of 512 bits and chaining values of 160 bits (which is also the digest size). Later,
NIST has published three more standard hash functions as part of FIPS-180:
SHA-256, SHA-384 and SHA-512. Each of the new hash functions has a digest
size corresponding to its number, i.e., SHA-256 has a 256-bit digest, etc. Recently,
NIST has issued another hash function, SHA-224, that has a digest size of 224
bits.

� This work was supported in part by the Israel MOD Research and Technology Unit.
�� The author was supported by the Adams fellowship.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 20–30, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Simple Related-Key Attack on the Full SHACAL-1 21

Both SHA-0 and SHA-1 were subjected to a great deal of analysis [2,3,12,30,
32,34] In the last two years there was a major progress in the attacks on both
of the hash functions. This progress included finding a collision in SHA-0, and
devising an algorithm that can find a collision in SHA-1 in less than 263 SHA-1
applications [2,3,30,32,34]. The new techniques are based on finding good dif-
ferentials of the compression function of SHA-1 and combining them with some
novel plaintext modification techniques.

In 2000 it was suggested to use the compression function of SHA-1 as a block
cipher [15]. Later this suggestion was named SHACAL-1 and submitted to the
NESSIE project [16]. SHACAL-1 is a 160-bit block cipher with a variable key
length (0–512 bits) and 80 rounds based on the compression function of SHA-1.
The cipher was selected as a NESSIE finalist, but was not selected for the
NESSIE portfolio [25].

Several papers analyze the strength of SHACAL-1 as a block cipher [6,17,20,21].
These papers apply differential, amplified boomerang, rectangle and related-key
rectangle attacks to reduced-round variants of SHACAL-1. The best known attack
on SHACAL-1 that does not use related-keys is a rectangle attack on 49-round
SHACAL-1 [6].

In a recent paper a transformation of the collision-producing differentials
of SHA-1 presented in [32] was used to devise the first known attack on the
full SHACAL-1 [13]. The attack is a related-key rectangle attack that requires
2159.8 chosen plaintexts encrypted under four related keys and has a time com-
plexity of 2423 encryptions.

In [23], Saarinen observed that it is possible to construct slid pairs in the
compression function of SHA-1 using about 297 chosen chaining values (for two
different blocks of message). Saarinen used the slid pairs to mount a related-
key distinguishing attack against SHACAL-1 requiring 297 chosen plaintexts
encrypted under two related keys and time complexity of 297 encryptions.

In this paper we use the results of [23] to devise key-recovery attacks against
the full SHACAL-1 with much lower data and time complexities than previously
known. The attacks use between two and eight unknown related keys, where
each additional key reduces the time complexity of retrieving the actual values
of the keys by a factor of 262. When all eight related-keys are used, the attack
requires 2101.3 related-key chosen plaintexts and has a running time of 2101.3

encryptions. A comparison of the known attacks on SHACAL-1 along with our
new results is presented in Table 1.

This is the first time a related-key attack succeeds against a cipher with
varying round constants. Moreover, this is the first case, where the related-key
process is used with some probability without combining it with other attacks,
e.g., related-key differentials [19] or related-key rectangle attack [7,20,17].

This paper is organized as follows: In Section 2 we describe the block cipher
SHACAL-1. In Section 3 we describe the previously known results on SHACAL-
1. We shortly describe Saarinen’s main observation on SHA-1 in Section 4. In
Section 5 we present our new related-key attack on SHACAL-1. We summarize
the paper in Section 6.

22 E. Biham, O. Dunkelman, and N. Keller

Table 1. Summary of Our Results and Previously Known Results on SHACAL-1

Attack & Source Number of Rounds Complexity
Keys Rounds Data Time

Differential [21] 1 41 0–40 2141 CP 2491

Amplified Boomerang [21] 1 47 0–46 2158.5 CP 2508.4

Rectangle [6] 1 47 0–46 2151.9 CP 2482.6

Rectangle [6] 1 49 29–77 2151.9 CC 2508.5

Related-Key Rectangle [20] 2 59 0–58 2149.7 RK-CP 2498.3

Related-Key Rectangle [17] 4 70 0–69 2151.8 RK-CP 2500.1

Related-Key Rectangle [13] 4 80 0–79 2159.8 RK-CP 2423.0

Related-Key Rectangle [13] 4 80 0–79 2153.8 RK-CP 2504.2

Slide † [23] 2 80 0–79 297 RK-CP 297

Related Key (Section 5) 2 80 0–79 297 RK-CP 2447

Related Key (Section 5) 4 80 0–79 299.6 RK-CP 2321

Related Key (Section 5) 8 80 0–79 2101.3 RK-CP 2101.3

Complexity is measured in encryption units.
† – Distinguishing attack
CP — Chosen Plaintexts, CC — Chosen Ciphertexts, RK — Related-Key

2 Description of SHACAL-1

SHACAL-1 [16] is a 160-bit block cipher supporting variable key lengths (0–512
bits). It is based on the compression function of the hash function SHA-1 [27].
The cipher has 80 rounds (also referred as steps) grouped into four types of 20
rounds each.1

The 160-bit plaintext is divided into five 32-bit words – A, B, C, D and E.
We denote by Xi the value of word X before the ith round, i.e., the plaintext
P is divided into A0, B0, C0, D0 and E0, and the ciphertext is composed of
A80, B80, C80, D80 and E80.

In each round the words are updated according to the following rule:

Ai+1 = Wi + ROTL5(Ai) + fi(Bi, Ci, Di) + Ei + Ki

Bi+1 = Ai

Ci+1 = ROTL30(Bi)
Di+1 = Ci

Ei+1 = Di

where + denotes addition modulo 232, ROTLj(X) represents rotation to the
left by j bits, Wi is the round subkey, and Ki is the round constant.2 There are
three different functions fi, selected according to the round number:

1 To avoid confusion, we adopt the common notations for rounds. In [16] the notation
step stands for round, where round is used for a group of 20 steps.

2 This time we adopt the notations of [16], and alert the reader of the somewhat
confusing notations.

A Simple Related-Key Attack on the Full SHACAL-1 23

fi(X, Y, Z) = fif = (X&Y)|(¬X&Z) 0 ≤ i ≤ 19
fi(X, Y, Z) = fxor = (X ⊕ Y ⊕ Z) 20 ≤ i ≤ 39, 60 ≤ i ≤ 79
fi(X, Y, Z) = fmaj = ((X&Y)|(X&Z)|(Y &Z)) 40 ≤ i ≤ 59

There are also four round constants:

Rounds Ki Rounds Ki

0–19 5A827999x 20–39 6ED9EBA1x

40–59 8F1BBCDCx 60–79 CA62C1D6x

In [16] it is strongly advised to use keys of at least 128 bits, even though
shorter keys are supported. The first step in the key schedule algorithm is to
pad the supplied key into a 512-bit key. Then, the 512-bit key is expanded into
eighty 32-bit subkeys (or a total of 2560 bits of subkey material). The expansion
is done in a linear manner using a linear feedback shift register (over GF (232)).

The key schedule is as follows: Let M0, . . . , M15 be the 16 key words (32
bits each). Then the round subkeys W0, . . . , W79 are computed by the following
algorithm:

Wi =
{

Mi 0 ≤ i ≤ 15
ROTL1(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) 16 ≤ i ≤ 79

3 Previous Results

A preliminary differential and linear analysis of the properties of the compression
function of SHA-1 as a block cipher is presented in [15]. The found differentials
are relatively short (10 rounds) and have probabilities varying between 2−13 and
2−26 (depending on the round functions).

In [28] these differentials are improved, and 20-round differentials with prob-
ability 2−41 are presented. In [21] another set of differentials of SHACAL-1 is
presented, including a 30-round differential with probability 2−130.

In [21] a 21-round differential for rounds 0–20 and a 15-round differential for
rounds 21–35 are combined to devise an amplified boomerang distinguisher [18]
for 36-round SHACAL-1. This distinguisher is used to attack 39-round SHACAL-
1 using 2158.5 chosen plaintexts and about 2250.8 39-roundSHACAL-1 encryptions.
The attack is based on guessing the subkeys of the three additional rounds, and then
checking whether the distinguisher succeeds. This approach is further extended
to attack 47-round SHACAL-1 before exhaustive key search becomes faster than
this attack. Another attack presented in [21] is a differential attack on 41-round
SHACAL-1. The success of these attacks was questioned and resolved in [6].

Besides resolving the problems with previous attacks, in [6] a rectangle at-
tack on 49-round SHACAL-1 is presented. The attack requires 2151.9 chosen
plaintexts, and has a running time equivalent to 2508.5 49-round SHACAL-1
encryptions.

In [20] a related-key rectangle attack with two keys is presented against 59-
round SHACAL-1. This attack has a data complexity of 2149.7 related-key chosen

24 E. Biham, O. Dunkelman, and N. Keller

plaintexts and a time complexity of 2498.3 59-round SHACAL-1 encryptions. This
attack is improved in [17] to a related-key rectangle attack with four keys on 70-
round SHACAL-1. The improved attack has a data complexity of 2151.8 related-
key chosen plaintexts, and a time complexity of 2500.1 70-round SHACAL-1
encryptions.

Using the improved differentials of SHA-1 found in [32] and some improved
key recovery techniques, two related-key rectangle attacks with four keys on
the full SHACAL-1 are given in [13]. The first has a data complexity of 2159.8

related-key chosen plaintexts and a time complexity of 2423.0 encryptions, and
the second has a data complexity of 2153.8 related-key chosen plaintexts and a
time complexity of 2504.2 encryptions.

Summarizing the known attacks on SHACAL-1, the best known attacks against
SHACAL-1 use the rectangle technique. The best attack in the related-key model
is applicable against the full SHACAL-1, while the best chosen plaintext attack is
applicable for a 49-round reduced variant of the cipher. Both of the attacks require
a very large amount of chosen plaintexts and a very high time complexity.

4 Slid Pairs in the Compression Function of SHA-1

4.1 Related-Key Attacks and Slid Pairs

Related key attacks [1,22] are attacks that exploit relations during encryption
under different keys. Let us consider an iterated block cipher whose key schedule
is simple enough such that for any key K1, it is possible to find K2 such that
the round subkeys KR1

i , KR2
i produced by K1 and K2, respectively, satisfy:

KR1
i = KR2

i+1

Assume that like in many ciphers, all the rounds of the cipher are the same.
For such pair of keys, if a pair of plaintexts (P1, P2) satisfies P1 = fKR2

1
(P2),

where fsk(P) denotes one round encryption of P under the subkey sk, then the
corresponding ciphertexts C1 and C2 satisfy C1 = fKR1

r
(C2), where r is the

number of rounds. Given such a pair of plaintexts for these related keys, it is
possible to find the keys using a very simple attack algorithm.

In [10] Biryukov and Wagner show that the related key attacks can be applied
to ciphers that can be written as Ek = f l

k = fk ◦ fk ◦ . . . ◦ fk, where fk is a
“relatively simple” key-dependent function. The attack looks for two plaintexts
P1 and P2 satisfying the relation P2 = fk(P1). Such a pair is called a slid pair,
and can be used in an attack that is similar to the attack in the case of related
keys.

In the slide attack, the attacker collects 2n/2 known plaintext/ciphertext pairs
(where n is the block size). For every pair of plaintexts (P1, P2), the attacker
checks whether it is a slid pair by treating the pair as a slid pair and trying
to use it to attack fk. The time complexity of the attack is 2n applications of
the attack on fk given a slid pair. Note that the data and time complexities
are independent of the number of rounds in Ek. The slide attack was further
generalized in [8,11,14] to be applicable to a wider range of block ciphers.

A Simple Related-Key Attack on the Full SHACAL-1 25

4.2 Saarinen’s Observation

Saarinen has observed that slid pairs can be found (with some probability) in
the compression function of SHA-1, i.e., in SHACAL-1 [23]. The slid pairs are
constructed under two related message blocks, or in the case of SHACAL-1, two
related keys.

Let W = (W0, W1, . . . , W15) be the first key, and let W ∗ = (W ∗
0 , W ∗

1 , . . . , W ∗
15),

such that

W ∗
i =

{
Wi+1 0 ≤ i ≤ 14
W16 = ROTL1(W13 ⊕ W8 ⊕ W2 ⊕ W0) i = 15

These two keys satisfy W ∗
i = Wi+1 for 0 ≤ i ≤ 78.

Let P = (A0, B0, C0, D0, E0) and P ∗ = (A∗
0, B

∗
0 , C∗

0 , D∗
0 , E∗

0) be two plaintexts
encrypted under W and W ∗, respectively. We denote the input to round i by
(Ai, Bi, Ci, Di, Ei) (or with ∗ when considering the encryption of P ∗ under W ∗).
If after the first round of the encryption of P under W the following holds:

A1 = A∗
0; B1 = B∗

0 ; C1 = C∗
0 ; D1 = D∗

0 ; E1 = E∗
0 (1)

then this equality holds until round 20 of the encryption of P (or round 19 of the
encryption of P ∗). In order for the slid pair to retain its “slidness”, the following
equality must hold:

W20 + ROTL5(A20) + f20(B20, C20, D20) + E20 + K20 =

A21 = A∗
20 =

W ∗
19 + ROTL5(A∗

19) + f19(B∗
19, C

∗
19, D

∗
19) + E∗

19 + K19

As W20 = W ∗
19, A20 = A∗

19, B20 = B∗
19, C20 = C∗

19, D20 = D∗
19, E20 = E∗

19, the
above holds whenever

fxor(B20, C20, D20) + K20 = fif (B20, C20, D20) + K19. (2)

For a random permutation, this equality holds with probability 2−32. In the
case of SHACAL-1, it was verified experimentally that the probability is close
to 2−32 (see [10]).

If the transition between the IF rounds and the XOR rounds is successful,
then the equality remains until round 40 of the encryption of P . Again, with
probability close to 2−32 the transition in round 40 does not affect the equality
between the respective intermediate encryption values. The same holds for the
last transition in round 60.

Thus, Saarinen concluded that the probability that (P, P ∗) is a slid pair
assuming that it satisfies the condition of Equation (1) is 2−96. To achieve
such pairs, pairs of structures of 232 chosen plaintexts are chosen, such that
SetP = (A, B, C, D, x) for some fixed A, B, C, D and all possible values of x,
and SetP ∗ = (y, A, ROTL30(B), C, D) for all possible values of y. These struc-
tures ensure that for each P ∈ SetP there exists P ∗ ∈ SetP ∗ such that the pair

26 E. Biham, O. Dunkelman, and N. Keller

(P, P ∗) satisfies the condition in Equation (1). Hence, 264 pairs of structures are
expected to contain a slid pair with a relatively high probability.

In order to detect the slid pairs, we note that for a slid pair we have

A80 = A∗
79; B80 = B∗

79; C80 = C∗
79; D80 = D∗

79; E80 = E∗
79, (3)

and this gives a 128-bit filtering on the ciphertexts that can be easily executed
using a hash table. However, since we check a total number of 2128 pairs and our
filtering is only on 128 bits, we expect that for a random permutation, one pair
can also pass the filtering. In order to overcome this problem, we take 265 pairs
of structures, thus expecting to detect two slid pairs. Then we check whether the
pairs suggest the same value for the subkey of the last round. If not, we collect
some additional structures, find another slid pair and check again. With a high
probability, the right subkey will be suggested at least twice, while for a random
permutation the probability that a subkey is suggested twice is extremely low.

Therefore, the attack can distinguish between SHACAL-1 and a random per-
mutation using about 298 chosen plaintexts encrypted under two related keys,
with time complexity of about 298 encryptions.

We note that Saarinen has also proposed an algorithm that requires only 232

operations to find such a slid pair in SHA-1. However, the algorithm assumes
that the attacker can control the message block (i.e., the keys) directly, and thus
it is not applicable to SHACAL-1 (unless it is in a chosen-key attack).

5 A Simple Related-Key Attack on SHACAL-1

The basic stage of our attack on SHACAL-1 is similar to the distinguishing
attack presented by Saarinen [23]. We encrypt some pairs of structures under
the two related keys and detect the candidate slid pairs. Now, each candidate
slid pair suggests a value for two key words – the subkey used in the last round
of the encryption under the key W ∗ and the subkey used in the first round of
the encryption under W . At this stage, there is a difference between our attack
and the attack in [23]: In order to reduce the data complexity of the attack we
do not wait until the same key word is suggested twice, but rather continue with
all the suggested subkey values. The wrong key values can be easily discarded in
the last stage of our attack that will be described later, and hence we only need
that the right key value will be amongst the suggested ones.

The algorithm of the basic stage of the attack is as follows:

1. Repeat the following M times, when M will be specified later:
– Choose A, B, C, and D at random and ask for the encryption of SetP =

(A, B, C, D, x) for all possible values of x under W and of SetP ∗ =
(y, A, ROTL30(B), C, D) for all possible values of y under W ∗.

– Search for candidate slid pairs, i.e., pairs of ciphertexts T =(a, b, c, d, e) ∈
SetP and T ∗ = (a∗, b∗, c∗, d∗, e∗) ∈ SetP ∗ such that b∗ = a, c∗ =
ROTL30(b), d∗ = c, and e∗ = d. Pass to the next stage all the can-
didate slid pairs, and the respective plaintext pairs denoted by P =
(A, B, C, D, X) and P ∗ = (Y ∗, A, ROTL30(B), C, D), respectively.

A Simple Related-Key Attack on the Full SHACAL-1 27

2. For each candidate slid pair, compute W0 and W80 using the formulas:

W0 = Y ∗ − [ROTL5(A) + fif (B, C, D) + X + K0] (4)
W80 = a∗ − [ROTL5(a) + fxor(b, c, d) + e + K79] (5)

3. Output all the pairs of values (W0, W80) suggested by candidate pairs.

After using the pair of related keys (W, W ∗), we can repeat the attack with
the related keys (W ∗, W ∗∗) that satisfy the relation

W ∗∗
i =

{
W ∗

i+1 0 ≤ i ≤ 14
W ∗

16 = ROTL1(W ∗
13 ⊕ W ∗

8 ⊕ W ∗
2 ⊕ W ∗

0) i = 15

to retrieve two additional key words. This time the attack retrieves W ∗
0 and

W ∗
80, but due to the relation between W and W ∗, these values are equal to W1

and W81, respectively. Then, the attack can be applied again. As all the keys
are linearly dependent of each other, it is possible to combine the knowledge of
each instance of the attack into a knowledge on the original key W . Therefore,
if we repeat the attack 7 times, thus requiring 8 related keys, we get 64 · 7 = 448
linear equations in the bits of the key, and the rest of the key can be found
by exhaustive search with time complexity of only 264 encryptions. Note that
if several candidates for the subkey values were suggested in some of the basic
attacks, we perform the last stage of the attack for all the possible candidates,
and still the time complexity is much below 2100 encryptions.

Now we want to compute the minimal possible value of M such that, with a
high probability, in all the 7 applications of the basic stage of the attack the right
key will be amongst the suggested ones. Using a Poisson approximation we get
that if M = 264 · t then the probability that in a single application of the basic
attack no real slid pair will be found is e−t. Hence, assuming that the basic stages
are independent we get that the probability that in all the applications there will
be at least one real slid pair is (1− e−t)7. For t = 21.5, we get (1− e−t)7 ≈ 0.65,
and hence the success probability of the attack is about 0.65. If we want a greater
success probability, we can increase the data complexity. For example, for t = 4
the success probability is about 0.88 and for t = 8, the success probability is
greater than 0.99.

Therefore, the total data complexity of the attack is 21.5 · 264 · 233 · 7 ≈ 2101.3

related-key chosen plaintexts, and the time complexity is dominated solely by
the encryption time.

The data complexity can be slightly reduced using an adaptive attack. We can
ask for structures of plaintexts to be encrypted under two related keys, until two
candidate slid pairs suggest the same subkeys (thus, with high probability, these
are the right subkeys). Once this happens, there is no need to further encrypt
plaintexts under these two related keys.

If only a smaller number of k < 8 related keys is available, we can perform
the basic stage of the attack k − 1 times and find the rest of the key bits using
exhaustive key search. We note that it is possible to reduce the time complexity

28 E. Biham, O. Dunkelman, and N. Keller

of this search by a factor of four, by considering the fact that for slid pairs there
is a special relation between the intermediate encryption values in round 20
(presented in Equation (2)). If this relation is not satisfied, the key can be easily
discarded without completing the full encryption.

Note that if the attack is performed less than seven times, we can reduce the
number of chosen plaintexts and still expect that with a high probability, in
all the applications of the basic attack there will be at least one slid pair. For
example, for k = 2 we can take t = 1 and get success probability of 0.63, and
for k = 4 we can take t = 2 and get success probability of 0.65.

The exact time complexity of the last stage depends on the number of sub-
key candidates suggested in the basic stages. Assuming that in each stage, be-
sides the right subkey we encounter three wrong candidate values (that can-
not be discarded) at most, the total time complexity of the attack is at most
2510+2(k−1)−64(k−1) = 2510−62(k−1) trial encryptions.

We conclude that our attack with k related keys has a data complexity of at
most (k − 1) · 298.5 related-key chosen plaintexts, and a running time of at most
max{(k − 1) · 298.5, 2510−62(k−1)} trial encryptions.

6 Summary and Conclusions

In this paper we presented a simple related-key attack on SHACAL-1. The at-
tack can be performed using between two and eight related-keys. The variant
of the attack with eight related keys requires 2101.3 chosen plaintexts and has
time complexity of 2101.3 encryptions. The attack is by far better than all the
previously known related-key attacks on SHACAL-1.

Our results, following the results in [23], are based on the original variant of
the related-key attack presented by Biham in 1993 [1].3 Usually, slid pairs or their
equivalent related-key counterparts can be found only if the round functions of
the cipher are identical (for all the rounds). Hence, inserting a round constant
to the round function of a block cipher seems to be sufficient to protect it with
respect to related-key attacks.

In SHACAL-1, round constants are used in all the round functions but the
fact that the constants are changed only once every 20 rounds and the fact that
the round functions are also slightly changed in the same places can be used
to construct the required pairs of plaintexts. Hence, the results of [23] and our
attack show that related-key attacks can be mounted also on ciphers using round
constants, if the constants are not chosen carefully.

We conclude that our key-recovery attack demonstrates, once again, that using
a linear key schedule algorithm and relatively similar round functions is not a
good way to design a secure block cipher.

3 In 1996, Kelsey et al.[19] presented the related-key differential attack. This attack
uses different ideas and the only similarity between it and Biham’s attack is the
fact that both attacks perform in the related-key model. The related-key rectangle
technique, that was used in previous attacks on SHACAL-1, is an expansion of the
related-key differential attack.

A Simple Related-Key Attack on the Full SHACAL-1 29

References

1. Eli Biham, New Types of Cryptanalytic Attacks Using Related Keys, Journal of
Cryptology, Vol. 7, No. 4, pp. 229–246, Springer-Verlag, 1994.

2. Eli Biham, Rafi Chen, Near-Collisions of SHA-0, Advances in Cryptology, pro-
ceedings of CRYPTO 2004, Lecture Notes in Computer Science 3152, pp. 290–305,
Springer-Verlag, 2004.

3. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet,
William Jalby, Collisions of SHA-0 and Reduced SHA-1, Advances in Cryptol-
ogy, proceedings of EUROCRYPT 2005, Lecture Notes in Computer Science 3621,
pp. 36–57, 2005.

4. Eli Biham, Orr Dunkelman, Nathan Keller, The Rectangle Attack – Rectangling
the Serpent, Advances in Cryptology, proceedings of EUROCRYPT ’01, Lecture
Notes in Computer Science 2045, pp. 340–357, Springer-Verlag, 2001.

5. Eli Biham, Orr Dunkelman, Nathan Keller, New Results on Boomerang and Rectan-
gle Attacks, proceedings of Fast Software Encryption 9, Lecture Notes in Computer
Science 2365, pp. 1–16, Springer-Verlag, 2002.

6. Eli Biham, Orr Dunkelman, Nathan Keller, Rectangle Attacks on 49-Round
SHACAL-1, proceedings of Fast Software Encryption 10, Lecture Notes in Com-
puter Science 2887, pp. 22–35, Springer-Verlag, 2003.

7. Eli Biham, Orr Dunkelman, Nathan Keller, Related-Key Boomerang and Rectangle
Attacks, Advances in Cryptology, proceedings of EUROCRYPT ’05, Lecture Notes
in Computer Science 3494, pp. 507–525, Springer-Verlag, 2005.

8. Eli Biham, Orr Dunkelman, Nathan Keller, Improved Slide Attacks, private com-
munication.

9. Eli Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Stan-
dard, Springer-Verlag, 1993.

10. Alex Biryukov, David Wagner, Slide Attacks, proceedings of Fast Software Encryp-
tion 6, Lecture Notes in Computer Science 1636, pp. 245–259, Springer-Verlag,
1999.

11. Alex Biryukov, David Wagner, Advanced Slide Attacks, Advances in Cryptology,
proceedings of EUROCRYPT 2000, Lecture Notes in Computer Science 1807,
pp. 586–606, Springer-Verlag, 2000.

12. Florent Chabaud, Antoine Joux, Differential Collisions in SHA-0, Advances in
Cryptology, proceedings of CRYPTO 1998, Lecture Notes in Computer Science
1462, pp. 56–71, Springer-Verlag, 1998.

13. Orr Dunkelman, Nathan Keller, Jongsung Kim, Related-Key Rectangle Attack on
the Full SHACAL-1, accepted to Selected Areas in Cryptography 2006, to appear
in Lecture Notes in Computer Science.

14. Soichi Furuya, Slide Attacks with a Known-Plaintext Cryptanalysis, proceedings
of Information and Communication Security 2001, Lecture Notes in Computer
Science 2288, pp. 214–225, Springer-Verlag, 2002.

15. Helena Handschuh, Lars R. Knudsen, Matthew J. Robshaw, Analysis of SHA-1 in
Encryption Mode, proceedings of CT-RSA 2001, Springer-Verlag Lecture Notes in
Computer Science, vol. 2020, pp. 70–83, 2001.

16. Helena Handschuh, David Naccache, SHACAL, preproceedings of NESSIE first
workshop, Leuven, 2000.

17. Seokhie Hong, Jongsung Kim, Guil Kim, Sangjin Lee, Bart Preneel, Related-Key
Rectangle Attacks on Reduced Versions of SHACAL-1 and AES-192, proceedings
of Fast Software Encryption 12, Lecture Notes in Computer Science 3557, pp.
368–383, Springer-Verlag, 2005.

30 E. Biham, O. Dunkelman, and N. Keller

18. John Kelsey, Tadayoshi Kohno, Bruce Schneier, Amplified Boomerang Attacks
Against Reduced-Round MARS and Serpent, proceedings of Fast Software Encryp-
tion 7, Lecture Notes in Computer Science 1978, pp. 75–93, Springer-Verlag, 2000.

19. John Kelsey, Bruce Schneier, David Wagner, Key-Schedule Cryptoanalysis of
IDEA, G-DES, GOST, SAFER, and Triple-DES, Advances in Cryptology, pro-
ceedings of CRYPTO ’96, Lecture Notes in Computer Science 1109, pp. 237–251,
Springer-Verlag, 1996.

20. Jongsung Kim, Guil Kim, Seokhie Hong, Sangjin Lee, Dowon Hong, The Related-
Key Rectangle Attack — Application to SHACAL-1, proceedings of ACISP 2004,
Lecture Notes in Computer Science 3108, pp. 123–136, Springer-Verlag, 2004.

21. Jongsung Kim, Dukjae Moon, Wonil Lee, Seokhie Hong, Sangjin Lee, Seokwon
Jung, Amplified Boomerang Attack against Reduced-Round SHACAL, Advances in
Cryptology, proceedings of ASIACRYPT 2002, Lecture Notes in Computer Science
2501, pp. 243-253, Springer-Verlag, 2002.

22. Lars R. Knudsen, Cryptanalysis of LOKI91, proceedings of Auscrypt 1992, Lecture
Notes in Computer Science 718, pp. 196–208, Springer-Verlag, 1993.

23. Markku-Juhani O. Saarinen, Cryptanalysis of Block Ciphers Based on SHA-1 and
MD5, proceedings of Fast Software Encryption 10, Lecture Notes in Computer
Science 2887, pp. 36–44, Springer-Verlag, 2003.

24. NESSIE – New European Schemes for Signatures, Integrity and Encryption.
http://www.nessie.eu.org/nessie

25. NESSIE, Portfolio of recommended cryptographic primitives.
26. NESSIE, Performance of Optimized Implementations of the NESSIE Primitives,

NES/DOC/TEC/WP6/D21/2.
27. US National Bureau of Standards, Secure Hash Standard, Federal Information

Processing Standards Publications No. 180-2, 2002.
28. Eteinee Van Den Bogeart, Vincent Rijmen, Differential Analysis of SHACAL,

NESSIE internal report NES/DOC/KUL/WP3/009/a, 2001.
29. David Wagner, The Boomerang Attack, proceedings of Fast Software Encryption 6,

Lecture Notes in Computer Science 1636, pp. 156–170, 1999.
30. Xiaoyun Wang, Andrew C. Yao, Frances Yao, Cryptanalysis on SHA-1, Crypto-

graphic Hash Workshop, NIST, Gaithersburg, 2005.
31. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, Xiuyuan Yu, Cryptanalysis

of the Hash Functions MD4 and RIPEMD, Advances in Cryptology, proceedings
of EUROCRYPT 2005, Lecture Notes in Computer Science 3494, pp. 1–18, 2005.

32. Xiaoyun Wang, Yiqun Lisa Yin, Hongbo Yu, Finding Collisions in the Full SHA-1,
Advances in Cryptology, proceedings of CRYPTO 2005, Lecture Notes in Computer
Science 3621, pp. 17–36, 2005.

33. Xiaoyun Wang, Hongbo Yu, How to Break MD5 and Other Hash Functions, Ad-
vances in Cryptology, proceedings of EUROCRYPT 2005, Lecture Notes in Com-
puter Science 3494, pp. 19–35, 2005.

34. Xiaoyun Wang, Hongbo Yu, Yiqun Lisa Yin, Efficient Collision Search Attacks on
SHA-0, Advances in Cryptology, proceedings of CRYPTO 2005, Lecture Notes in
Computer Science 3621, pp. 1–16, 2005.

Impossibility Proofs for RSA Signatures in the
Standard Model

Pascal Paillier

Cryptography & Innovation, Security Labs, Gemalto
pascal.paillier@gemalto.com

Abstract. It is well-known that RSA signatures such as FDH, PSS or
PSS-R are as secure as RSA is hard to invert in the random oracle (RO)
model. Such proofs, however, have never been discovered in the standard
model. This paper provides an explanation of this gap by pointing out
a strong impossibility of equivalence between inverting RSA and any
form of unforgeability for a wide class of RSA signatures. In particular,
our impossibility results explicitly assume that the public key is made
of a single RSA instance, that hash functions involved in the signature
padding are unkeyed and that key generation fulfils a natural property
which we call instance-non-malleability. Beyond showing that any RSA-
based signature scheme of that type black-box separates the RO model
from the standard model in a strong sense, our work leaves the real-life
security of well-known signatures in a state of uncertainty.

1 Introduction

Background. Provable security is a relatively young field in cryptography. His-
torically, the security of cryptosystems has been a most central subject, but the
study of security reductions relating schemes to computational problems of ref-
erence has been scattered until fairly recently. In little over a decade, the subject
has attracted enormous interest and accumulated an impressive body of results.
Quite surprisingly, years of active research on RSA signatures such as Full Do-
main Hash [3,7] (FDH) or Probabilistic Signature Scheme [17] (PSS/PSS-R)
have brought no evidence that the standard-model security of these is satisfac-
tory. The question of coming up with a security proof for these schemes remains
one of the most challenging open problems of modern cryptography. The practi-
cal implications of such a proof are of prime importance to the security industry
due to the fact that most cryptographic standards [17,12] for digital signatures
that are in use today rely on RSA-based constructions.

Proofs involving idealized versions of the hash functions, pseudo-random func-
tions or blockciphers used within the signature padding procedure have pro-
gressively emerged over the years. The random oracle (RO) model [3], despite
recent critics about its limitations [1,6,13], has long served cryptographers in
their work of design and assessment. Whenever a proof that a signature scheme
reaches strong unforgeability is found in the random oracle model, it has been a

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 31–48, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

32 P. Paillier

tradition to extend its scope to the standard model thanks to the heuristic ar-
gument (often referred to as the RO model heuristic) that a RO-model security
proof somewhat guarantees the security of standard-model instantiations of that
signature scheme under the same complexity assumptions.

This paper provides evidence that this heuristic argument might not be well-
founded for real-life RSA signatures i.e., those defined in current cryptographic
standards1. Real-life RSA signatures are basic: they employ paddings based on
unkeyed hash functions and have a public key consisting of only one RSA in-
stance. What we show is that breaking any form of unforgeability w.r.t. any sig-
nature scheme of this type cannot be equivalent to inverting RSA in the standard
model. Our impossibility results are partial in the sense that we disprove equiv-
alence under the assumption that the key generation is instance-non-malleable.
In a nutshell, this property means that extracting e-th roots modulo n is not
any easier if one is given an e′-th root extractor modulo n′ for (n′, e′) �= (n, e).
Although scarcely studied so far, it seems reasonable to conjecture that com-
monly used RSA instance generators are in turn instance-non-malleable, unless
voluntarily constructed otherwise [21].

Our results point out that real-life RSA signatures just cannot reach a maxi-
mal security level i.e., equivalence to inverting RSA, or rather, that if one could
prove in the future that they can, that proof would force the distribution of
public keys to realize some form of instance-malleability. Subsequently, our work
provides a strong black-box separation between the standard and the RO model
in which it is well-known that forging e.g. PSS signatures is equivalent to invert-
ing RSA. Previous works have observed similar separations in specific contexts.

Prior Work. The present work is related to several important results showing
that a number of schemes proven secure in the RO model cannot be securely
instantiated in the standard model. Canetti, Goldreich and Halevi [6] suggested
artificial yet concrete examples of signature and encryption schemes featuring
this property. Bellare, Boldyreva and Palacio [1] showed a simple hash variant
of ElGamal which is CCA-preserving in the RO model but does not realize this
property in the standard model. Goldwasser and Tauman have reported the exis-
tence of a secure 3-round ID protocol that cannot be Fiat-Shamir-converted into
a secure signature scheme in the standard model. In another direction, Boldyreva
and Fischlin [4] recently considered the question of instantiating random oracles
(e.g. in FDH) with realizable functions such as verifiable pseudorandom func-
tions (VRFs). They showed in particular that VRFs cannot generically instanti-
ate random oracles. Another negative and wider result on instantiations of FDH
was recently found by Dodis, Oliveira and Pietrzak [8]. More recently, Paillier
and Vergnaud [15] discovered impossibility results for Fiat-Shamir transformed
[10] and assimilated signatures such as DSA, ElGamal and Schnorr signatures.
Even more recently, Paillier and Villar [16] give a reformulation of a long-lived
folklore impossibility result due to Williams [18,20] (see also [11]) to show that
factoring-based encryption schemes using a single modulus as public key cannot
1 Formally refuting the RO-model heuristic here would require a polynomial attack on

RSA signatures. Instead, we show that nothing prevents the existence of such attacks.

Impossibility Proofs for RSA Signatures in the Standard Model 33

be CCA secure under the factoring assumption, using the following two-step
reasoning. First, they formally reformulate Williams’ observation that no key-
preserving security reduction exists which reduces factoring to CCA security.
Those reductions are limited to make queries to the adversarial oracle that in-
volve the very same public key as the one they are given as input. Second, they
extend the impossibility to arbitrary reductions under the assumption that the
key generation is non-malleable or in other words, that non-key-preserving oracle
calls bring essentially no computational advantage to security reductions.

This paper extends the results of [16] to the case of RSA signatures. We
follow the same two-stage approach. Based on a refinement of non-malleability
more adapted to RSA key generators which we call instance-non-malleability,
we closely relate the existence of unrestricted security reductions to the one of
key-preserving reductions, which are easily shown not to exist using a diagonal
argument as in [16, Corollary 1]. We emphasize that impossibility results in the
key-preserving case alone are in fact very simple and lead to one-line proofs
that are folklore since the late eighties. It seems to us, however, that introducing
instance-non-malleability is the only way to formally extend the non-existence of
key-preserving reductions to the non-existence of arbitrary reductions, which def-
initely leads to a much stronger statement. We thus view our contributions as a
natural extension of the impossibility results originally pointed out by Williams.

This paper focuses on the case of RSA signatures although similar impossi-
bility results are applicable to RSA encryption such as RSA-OAEP. Indepen-
dently from this work, Brown [5] recently restated the (folklore) non-existence
of key-preserving security reductions (under the name of simple reductions) in
the case of RSA encryption, that would yield a key-preserving equivalence be-
tween IND-CCA security and inverting RSA. We finally comment that including
an additional random string in the public key (i.e., using at least one family of
hash functions in the message padding) or allowing multiple RSA instances in
the public key as in [11,9] is enough to avoid our impossibility results com-
pletely2. We therefore preconize the inclusion of an additional random string in
the public key as a simple fix in practical implementations of RSA signatures
and encryption. We refer to the full version of this work [14] for further com-
ments on these countermeasures as well as an explanation as to why the security
proofs we consider here and claim not to exist in the real world may be sound
in the RO model.

Our contributions. We focus on several security notions for an arbitrary real-life
RSA-based signature scheme and assuming a black-box equivalence with invert-
ing RSA in the standard model, we analyze the effect that such an equivalence
exerts on the security profile of the scheme i.e., the map of all known security re-
ductions related to this scheme. We start by considering universal unforgeability
under key-only attack3 and find that an equivalence with RSA nullifies resistance
against chosen message attacks. This result is in itself sufficient to prove that
2 Goldwasser-Micali-Rivest and Dwork-Naor constructions precisely do this and are

indeed shown to be equivalent to RSA.
3 Also known as no-message attack.

34 P. Paillier

there exists no RSA-based scheme which is chosen-message unforgeable under
the RSA assumption, unless inverting RSA is easy or RSA is instance-malleable.
We further extend this result to existential unforgeability under key-only attack
and show that an equivalence with RSA nullifies resistance against known mes-
sage attacks. Investigating stronger assumptions, we then proceed to show that
there is no hope one can ever base the unforgeability of RSA signatures on the
One-More RSA assumption [2] or the gap RSA assumption i.e., the computa-
tional gap between inverting RSA and factoring.

Our proof technique is based on the construction of black-box meta-reductions
as initiated in [7,15,16]. This increasingly popular technique yields simple impos-
sibility proofs featuring a perfect preservation of success probabilities. Combining
it with instance-non-malleability, unfortunately, does not allow to preserve the
constructive aspect of reductionist proofs based on meta-reductions4. Finally, we
emphasize that the goal of this paper is to disprove that common RSA signatures
are maximally secure and that our results are essentially of theoretical interest.
We do not report weaknesses or attacks on either of the signature schemes we
consider here, and in particular we do not deny that forging RSA signatures is
likely to be intractable in practice.

Roadmap. Section 2 provides a number of definitional facts about instance
generators, RSA signatures and related security notions. We introduce instance-
malleability in Section 3 and establish a crucial property of instance-non-mal-
leable generators in terms of security games. We proceed to show in Section 4.1
that an equivalence between inverting RSA and universal forgeries under key-
only attacks imply the existence of efficient chosen message attacks. Section 4.2
further extends this result to existential forgeries. We introduce root extrac-
tion attacks in Section 5 and use these to show why RSA signatures cannot be
proven unforgeable under the One-More RSA assumption either. We conclude
in Section 6.

2 Preliminary Facts

2.1 Black-Box Reductions

We adopt the same notations as in [16]. A black-box5 reduction R between two
computational problems P1 and P2 is a probabilistic algorithm R which solves
P1 given black-box access to an oracle solving P2. We write P1 ⇐R P2 when R
is known to reduce P1 to P2 in polynomial extra time (in a security parameter),
counting oracle calls for one elementary step. Note that R can be polynomial
even when no polynomial-time algorithm solving P2 is known to exist. P1 ⇐ P2
states that some polynomial R exists such that P1 ⇐R P2 and P1 ≡ P2 means
P1 ⇐ P2 and P2 ⇐ P1. Succ (P, τ) denotes the maximal success probability taken
over all probabilistic algorithms solving P in no more than τ elementary steps.

4 See [14] for further details.
5 All reductions considered in this paper are fully black-box.

Impossibility Proofs for RSA Signatures in the Standard Model 35

Similarly, Succ (P1 ⇐ P2, ε, τ, �) is the maximal success probability of algorithms
solving P1 in no more than τ steps and at most � calls to an oracle solving P2
with probability ε.

2.2 RSA and Related Computational Problems

Root Extraction. Solving the root extraction problem consists in computing
RSA(n, e, y) = y1/e mod n given random integers n, e such that gcd(e, φ(n)) = 1
where φ(n) = |Z∗

n| and y ← Zn. Because of its random self-reducibility [19], the
hardness of computing RSA(n, e, y) is essentially independent from the choice
of y and rather depends on n and e. We denote RSA(n, e, ·) the problem of
computing e-th roots modulo n. Since the intractability of RSA(n, e, ·) is vari-
able and strongly related to the form of n, cryptographic applications only rely
on hard instances by defining some instance generator RSA. Given a security
parameter k, RSA(1k) generates a hard instance (n, e), as well as the side
information d = e−1 mod φ(n). Abusing notations, we will indifferently write
(n, e, d) ← RSA(1k) or (n, e) ← RSA(1k) to denote a random selection of an
RSA key, d being output or not depending on the context. A probabilistic al-
gorithm A is said to (ε, τ)-invert RSA or equivalently (ε, τ)-break INV [RSA]
when Pr

[
(n, e, d) ← RSA(1k), y ← Zn : A(n, e, y) = yd mod n

]
≥ ε where the

probability is taken over the coin flips of A and RSA and A stops after τ steps.
The RSA assumption (where the instance generator RSA is often referred to
implicitly) states that Succ (INV [RSA] , τ) = negl (k) for τ = poly (k).

The One-More RSA Problem [2]. INV [RSA] is generalized to a family of com-
putational problems �-OM [RSA] for � ≥ 0. A probabilistic algorithm A breaks
�-OM [RSA] when given a random instance (n, e) ← RSA(1k), � + 1 random
integers y0, y1, . . . , y� ← Zn and oracle access to RSA(n, e, ·), A outputs the e-th
roots of y0, . . . , y� in no more than � calls to the oracle. Formally, A is said to
(ε, τ)-break �-OM [RSA] when

Pr
[

(n, e, d) ← RSA(1k),
y0, y1, . . . , y� ← Zn

: ARSA(n,e,·)(n, e, y0, . . . , y�) = (yd
0 , . . . , yd

�)
]
≥ ε ,

where the outputs are modulo n, the probability is taken over the random tapes
of A and of the experiment, the runtime of A is upper-bounded by τ and A
sends at most � requests to RSA(n, e, ·). Note that 0-OM [RSA] is identical to
INV [RSA] by definition. Also, �2-OM [RSA] ⇐ �1-OM [RSA] if �2 ≥ �1. The
One-More RSA assumption states that Succ (�-OM [RSA] , τ) = negl (k) for τ =
poly (k) and � = poly (k).

Total Break, Factoring and Relations among Problems. A total break of RSA
states that computing d from (n, e) is not hard in average i.e., when (n, e, d) ←
RSA(1k). A probabilistic algorithm A (ε, τ)-breaks FACT [RSA] when

Pr
[
(n, e, d) ← RSA(1k) : A(n, e) = d

]
≥ ε

36 P. Paillier

taken over the random coins of A and RSA and A runs in time at most τ . Also,
we define GAP [RSA] as the problem of computing d from (n, e) ← RSA(1k)
given oracle access to RSA(n, e, ·) i.e., A (ε, τ)-breaks GAP [RSA] when

Pr
[
(n, e, d) ← RSA(1k) : ARSA(n,e,·)(n, e) = d

]
≥ ε .

It is easily seen that for any instance generator RSA, one has

GAP [RSA] ⇐ FACT [RSA]

⇓ ⇓
OM [RSA] ⇐ INV [RSA]

2.3 Real-Life RSA Signatures

Standardized RSA signatures [17,12] use simple padding functions mostly com-
posed of cascaded or interleaved unkeyed hash functions, exclusive-ors and con-
catenations of bitstrings with fixed patterns. We therefore define RSA signatures
in a way that reflects this feature. A real-life RSA-based signature scheme S with
security parameter k is described as the combination of an RSA instance gener-
ator RSA with a padding (or redundancy) function

μ : {0, 1}m × {0, 1}r → {0, 1}w

where the descriptions of μ, of m, w ≥ 1 and of r ≥ 0 are functions of k. It may
be the case that m = ∗ if signing messages of arbitrary length is supported.
We impose that μ be verifiable: there must be a function ν such that for any
m ∈ {0, 1}m, y ∈ {0, 1}w, ν(m, y) = 1 if there exists r ∈ {0, 1}r such that
y = μ(m, r) and 0 otherwise. The primary role of a padding function is to
destroy the homomorphic property of modular exponentiation. To this end, μ
generally involves one or several hash functions such as SHA-1. A secondary but
important feature is to make signatures probabilistic, in which case r > 0. We
identify S = (RSA, μ) to a tuple of probabilistic algorithms Gen, Sign and
Ver defined as follows.

Key generation. Gen(1k) runs RSA(1k) to get (n, e, d). The secret key is (n, d)
while the public key is (n, e).

Sign. Given a secret key (n, d) and a message m ∈ {0, 1}m, Sign(n, d, m) ran-
domly selects r ← {0, 1}r and computes the signature s = μ(m, r)d mod n.

Verify. Ver(n, e, m, s) returns ν(m, se mod n).

We impose that μ and ν are both efficiently computable i.e., in time poly (k).
Note that the domain and range of μ are independent from the public key but
that the number of output bits w depends on the key length. Although easily
extendable, this setting captures RSA signature schemes described in industrial
standards such as PSS. Through the rest of the paper, S stands for a real-life
RSA signature scheme and Sn,e(m) denotes the set of all possible signatures on
m with respect to S and public key (n, e).

Impossibility Proofs for RSA Signatures in the Standard Model 37

2.4 Security Notions for Real-Life RSA Signatures

Security notions combine an adversarial goal with an attack model. The attacker
is seen as a probabilistic polynomial time algorithm that attempts to fulfill its
goal while being given a number of computational resources. The attacker may
interact with the scheme in different ways.

Adversarial goals. We say that a signature scheme is breakable (BK) when
an adversary extracts the secret key matching a randomly chosen public key
(n, e) ← RSA(1k). The scheme is said to be universally forgeable (UF) when
there exists an adversary that returns a valid signature on a randomly chosen
message m ← {0, 1}m given as input. The notion of existential forgeability (EF)
is similar but allows the adversary to choose freely the value of the signed mes-
sage. These notions are classical [11]. Since the focus is on RSA signatures, we
introduce a specific adversarial goal according to which the adversary attempts
to extract the e-th root of a randomly chosen element y ← Zn for a randomly
chosen key (n, e) ← RSA(1k). We say that the scheme is root-extractable (RE)
if this goal can be fulfilled in probabilistic polynomial time. It is easily seen that
this goal is weaker than BK but stronger than UF.

Attack models. We consider several attack scenarios in this paper. In a key-only
attack (KOA), the adversary is given nothing else than a public key as input.
A known message attack (KMA) consists in giving as input to the attacker a
list (m1, s1), . . . , (m�, s�) of pairwise distinct message-signature pairs. In a chosen
message attack (CMA), the adversary is given adaptive access to a signing oracle.

Relations among security levels. As in [15,16], we view security notions as
computational problems e.g. UF-KMA [S] is the problem of computing a uni-
versal forgery under known message attack. This notation allows to relate se-
curity notions using reductions. In the case of KMA or CMA, we denote by
�-GOAL-ATK[S] the problem of breaking GOAL in no more than � calls to
the resource defined by ATK. Thus, breaking �-EF-CMA [S] authorizes at most
� calls to the signing oracle to break EF. We recall that GOAL-CMA [S] ⇐
GOAL-KMA [S] ⇐ GOAL-KOA [S] for any RSA signature scheme S and adver-
sarial goal GOAL ∈ {BK, RE, UF, EF}. Fig. 1 displays the map of black-box re-
ductions among security levels that will be of interest for this work.

3 Instance-Malleability of RSA Instance Generators

We refine the definition of non-malleability suggested by [16] into one that is
better suited to the context of RSA key generators.

3.1 What Is Instance-Malleability?

Interpretation. We say that RSA is instance-malleable if extracting roots with
respect to a randomly selected instance (n, e) is easier when given repeated ac-
cess to an oracle that extracts e′-th roots modulo n′ for other instances (n′, e′) �=

38 P. Paillier

GAP [RSA] ⇐ BK-CMA [S] ⇐ BK-KMA [S] ⇐ BK-KOA [S] ≡ FACT [RSA]

⇓ ⇓ ⇓
RE-CMA [S] ⇐ RE-KMA [S] ⇐ RE-KOA [S] ≡ INV [RSA]

⇓ ⇓ ⇓
UF-CMA [S] ⇐ UF-KMA [S] ⇐ UF-KOA [S]

⇓ ⇓ ⇓
EF-CMA [S] ⇐ EF-KMA [S] ⇐ EF-KOA [S]

Fig. 1. Relations among security notions for real-life RSA signatures

(n, e) in the range of RSA(1k). A typical example of instance-malleability is
when public exponents generated by RSA are easy-to-factor integers. Given
(n, e = e1e2), e-th roots modulo n are easy to compute when e1-th and e2-th
root extractions modulo n are provided. Another example is when the distribu-
tion of n induced by RSA(1k) contains moduli of variable bitlength and number
of factors. It is indeed trivial to compute e-th roots modulo n given an e-th root
extractor modulo n′ = αn if it is the case that both (n, e) and (n′, e) are proper
outputs6 of RSA(1k). We observe that common RSA-based cryptosystems rely
on generators which precisely seem to avoid any form of malleability by con-
struction: it is generally the case that the bitlength of n is fixed to k, that the
number of prime factors is equal to two and that e is limited to be a prime num-
ber or a constant value. The simple malleability properties discussed above do
not apply then and it seems reasonable to believe that instance-non-malleability
is de facto realized in a strong sense. We now give a proper definition.

Formal Definition. Following the methodology of [16], we define two games in
which a probabilistic algorithm R attempts to extract an e-th root modulo
n where (n, e) ← RSA(1k). We assume that R has access to some perfect
oracle A(n, e, aux) implicitly parameterized by the very same instance (n, e).
Here aux denotes an auxiliary input depending on how A is specified and R may
submit any admissible value for aux to the oracle. Since A is perfect i.e., has
success probability equal to one, A can be identified to the problem it solves
which we denote also by A. We impose A to be trivially reducible to INV [RSA],
meaning that there must exist a reduction algorithm T such that for any (n, e) ∈
Range

(
RSA(1k)

)
and any auxiliary input aux, A(n, e, aux) can be solved with

probability one with a single call to RSA(n, e, ·) in time tA = poly (k). Game 0
is the game as per the above wherein algorithm R has success probability

Succ0 (R,A, τ, �) = Pr
[
(n, e, d) ← RSA(1k)

y ← Zn
: RA(n,e,·)(n, e, y) = yd mod n

]
6 This requirement has to hold given current security notions, see [14].

Impossibility Proofs for RSA Signatures in the Standard Model 39

where R runs in (extra) time at most τ and makes at most � queries to A(n, e, ·).
The success probability of Game 0 is then defined as

Succ0 (A, τ, �) = max
R

Succ0 (R,A, τ, �)

where the maximum is taken over all probabilistic algorithms R conforming
to Game 0. In Game 1, the challenged algorithm is also given access to an
oracle RSA(n′, e′, y) which returns y1/e′

mod n′ with probability one for any
(n′, e′) �= (n, e) provided that (n′, e′) ∈ Range

(
RSA(1k)

)
and y ∈ Zn′ . Its

success probability Succ1 (R,A, τ, �) is then

Pr
[
(n, e, d) ← RSA(1k)

y ← Zn
: RA(n,e,·),RSA(·,·,·)(n, e, y) = yd mod n

]
,

where R runs in time at most τ , makes �A queries to A(n, e, ·) and �RSA queries
of the form (n′, e′, y) to RSA(·, ·, ·) and �A + �RSA ≤ �. Letting

Succ1 (A, τ, �) = max
R

Succ1 (R,A, τ, �) ,

the maximum being taken over all probabilistic algorithms R playing Game 1,
we define

ΔINV
RSA (τ, �) = max

A⇐INV[RSA]

∣∣∣Succ1 (A, τ, �) − Succ0 (A, τ, �)
∣∣∣

where the maximum is taken over all computational problems A trivially re-
ducible to INV [RSA] in polynomial time.

Definition 1 (Instance-Non-Malleability). Note that ΔINV
RSA (τ, 0) = 0 for

any integer τ . An instance generator RSA is said to be instance-non-malleable
when ΔINV

RSA (τ, �) = negl (k) when τ = poly (k) and � = poly (k).

3.2 Application to Security Games

The property of instance-non-malleability allows one to relate reduction algo-
rithms R such that INV [RSA] ⇐R A to algorithms solving the above games,
provided that A is trivially reducible to INV [RSA].

Lemma 1. Let A be a computational problem trivially reducible to INV [RSA]
in time tA. Then for any positive integers τ, � and any ε ∈ (0, 1),

Succ (INV [RSA] ⇐ A, ε, τ, �) ≤ Succ1 (A, τ + � · tA, �)
≤ Succ0 (A, τ + � · tA, �) + ΔINV

RSA (τ + � · tA, �) .

Proof. (First ≤) Assume there exists a probabilistic algorithm R such that
INV [RSA] ⇐R A which succeeds with probability εR in time τ by making
at most � queries to an oracle AR solving A with probability ε. We build an
algorithm M which conforms to Game 1 and succeeds with identical probability

40 P. Paillier

and running time as above. Algorithm M makes use of the trivial reduction T as
a subroutine and behaves as follows. Given an RSA instance (n, e) ← RSA(1k)
and y ← Zn, M runs R over (n, e, y). Now for each oracle query AR(ni, ei, auxi)
that R makes to AR, M either runs A(n, e, auxi) if (ni, ei) = (n, e) and forwards
the output to R, or runs T (ni, ei, auxi) if (ni, ei) �= (n, e), supplying T with or-
acle access to RSA(ni, ei, ·), and forwards the result to R. M eventually returns
the output of R. Since T succeeds with probability one, the simulation of AR is
perfect for any ε ∈ (0, 1). M requires extra time at most � · tA and totalizes at
most � calls to A(n, e, ·) and RSA(·, ·, ·) with instances (n′, e′) �= (n, e). (Second
≤) This follows from the definition of ΔINV

RSA (τ, �). ��

4 Impossibility of Equivalence with Inverting RSA

4.1 Universal Unforgeability and Chosen-Message Security

We focus on the standard-model security level UF-KOA [S] of a real-life RSA-
based signature scheme S combining an instance-non-malleable instance gener-
ator RSA and a padding function μ.

Theorem 1. Let S = (RSA, μ) be an RSA signature scheme and assume that
RSA is instance-non-malleable. If UF-KOA [S] is equivalent to INV [RSA] then
RE-CMA [S] is polynomial.

Proof. The proof comes in two stages. In the first stage, we focus on Game 0 with
respect to A � UF-KOA [S] and use a reduction algorithm successfully playing
Game 0 to break RE-CMA [S]. We then make use of instance-non-malleability
and Lemma 1 to conclude in stage 2.
Stage 1. Let us assume that there exists a reduction algorithm R as per Game 0
which (εR, τ)-inverts RSA given oracle access to a perfect oracle A that breaks
UF-KOA [S] and let � be the maximal number of times R runs A. We build an
algorithm M which (εM, τM)-breaks �-RE-CMA [S] with εM ≥ εR and τM = τ
using R as follows. Given (n, e) ← RSA(1k), y ← Zn and a signing oracle
limited to � queries, M runs R on input (n, e, y) and simulates � executions of
A by making requests to the signing oracle. Whenever R calls A(n, e, m) for
some m ∈ {0, 1}m, M forwards m to the signing oracle to get s ∈ Sn,e(m) and
returns s to R. Since R conforms to Game 0 and never calls A on (n′, e′, m)
with (n′, e′) �= (n, e), M succeeds in simulating A perfectly. This means that for
any τ, �,

Succ0 (UF-KOA [S] , τ, �) ≤ Succ (�-RE-CMA [S] , τ) .

Stage 2. We now use the definition of instance-non-malleability and Lemma 1.
Obviously, there exists a trivial reduction T from UF-KOA [S] to INV [RSA]:
given arbitrary (n, e, m), T simply defines y = μ(m, r) for some randomly se-
lected r ← {0, 1}r, requests s = RSA(n, e, y) and outputs s. T requires exactly
one random selection and one evaluation of μ, which takes time tUF-KOA[S] =

Impossibility Proofs for RSA Signatures in the Standard Model 41

poly (k). Applying Lemma 1, one gets for any τ , � and ε ∈ (0, 1):

Succ (INV [RSA] ⇐ UF-KOA [S] , ε, τ, �)

≤ Succ0 (UF-KOA [S] , τ + � · poly (k) , �) + ΔINV
RSA (τ + � · poly (k) , �)

≤ Succ (�-RE-CMA [S] , τ + � · poly (k)) + ΔINV
RSA (τ + � · poly (k) , �) .

We extend asymptotically the above to τ, � = poly (k). Since by assumption
Succ (INV [RSA] ⇐ UF-KOA [S] , ε, τ, �) is non-negligible and the instance-non-
malleability of RSA imposes ΔINV

RSA (τ + � · poly (k) , �) to remain negligible, one
gets that Succ (�-RE-CMA [S] , τ + � · poly (k)) must be non-negligible. ��

4.2 Existential Unforgeability and Known-Message Security

We now move on to the study of EF-KOA [S] where again S is a real-life RSA
signature scheme relying on an instance-non-malleable generator RSA and some
padding function μ.

Theorem 2. Let S = (RSA, μ) be an RSA-based signature scheme and as-
sume that RSA is instance-non-malleable. If EF-KOA [S] ≡ INV [RSA] then
RE-KMA [S] is polynomial.

Proof. We build a meta-reduction M which converts an algorithm R play-
ing Game 0 with respect to A � EF-KOA [S] into an algorithm which breaks
RE-KMA [S] and conclude using Lemma 1 as above. Assume R (εR, τ)-inverts
RSA given access to an oracle A that breaks EF-KOA [S] with probability one
and assume that R runs A at most � times. We build an algorithm M which
(εM, τM)-breaks �-RE-KMA [S] with εM ≥ εR and τM = τ . Given (n, e) ←
RSA(1k), y ← Zn and � arbitrary message-signature pairs (m1, s1), . . . , (m�, s�),
M runs R on (n, e, y) and simulates � executions of A using the message-
signature pairs: when R runs A(n, e) for i = 1, . . . , �, M simply returns (mj , sj).
M succeeds in simulating A perfectly, meaning that

Succ0 (EF-KOA [S] , τ, �) ≤ Succ (�-RE-KMA [S] , τ) .

We then invoke the instance-non-malleability of RSA to conclude as in the
second stage of the proof of Theorem 1. ��

4.3 Impossible Proofs for RSA Signatures

Theorem 3. Let RSA be an instance-non-malleable generator. There is no real-
life RSA signature scheme S = (RSA, μ) such that EF-CMA [S], UF-CMA [S] or
EF-KMA [S] is equivalent to INV [RSA] unless INV [RSA] is polynomial.

This is a direct corollary of Theorems 1 and 2 and the straightforward black-box
reductions between security notions. A most striking consequence is that real-
life RSA signatures that are proven to be existentially unforgeable under chosen

42 P. Paillier

message attack under the RSA assumption in the RO model (i.e., pretty much
all of the ones currently used in cryptographic applications) do not verify that
property in the standard model. This in turn tells us that these signature schemes
separate the RO model from the standard model in a strong sense, unless their
key generation escapes instance-non-malleability as per Definition 1.

5 On the Impossibility of Basing Unforgeability on the
One-More RSA Assumption

A most crucial challenge that arises from Theorem 3 is to establish the real
security level of common RSA signatures. If one cannot expect to reach a max-
imal security level EF-CMA [S] ≡ INV [RSA], is there any hope to connect the
unforgeability of these signatures to stronger assumptions? This section explores
the feasibility of basing the unforgeability of S on the One-More RSA assump-
tion. Here again, we report impossibilities. In particular, it is shown that PSS-R,
FDH and PSS do not admit proofs of universal unforgeability under the One-
More RSA assumption in the standard model if one assumes a slightly stronger
notion of instance-non-malleability.

5.1 Extending Instance-Non-Malleability to OM [RSA]

We extend the previous definition of instance-non-malleability as follows. Instead
of extracting roots, the algorithm R playing either Game 0 or Game 1 attempts
to solve t-OM [RSA] where t ≥ 0 is an additional parameter. Again, the resources
of R are modelled as a perfect oracle A(n, e, ·) where A is trivially reducible to
INV [RSA]. The success probability of R is defined as

Succi
t (R,A, τ, �) = Pr

[
(n, e, d) ← RSA(1k)

y0, . . . , yt ← Zn
:

ROi(n, e, y0, . . . , yt)
= (yd

0 mod n, . . . , yd
t mod n)

]
,

where i ∈ {0, 1}, O0 = {A(n, e, ·)}, O1 = {A(n, e, ·), RSA(·, ·, ·)}, R runs in
time at most τ , totalizes at most � queries to the oracles in Oi and requests
made to RSA(·, ·, ·) are of the form (n′, e′, y) with (n′, e′) ∈ Range

(
RSA(1k)

)
,

(n′, e′) �= (n, e) and y ∈ Zn′ . We define

Δt-OM
RSA (τ, �) = max

A⇐INV[RSA]

∣∣∣max
R

Succ1
t (R,A, τ, �) − max

R
Succ0

t (R,A, τ, �)
∣∣∣

where the inner maxima are taken over all probabilistic algorithms R play-
ing Game 1 and Game 0 respectively and the outer maximum is taken over
all computational problems A trivially reducible to INV [RSA] in polytime.
We say that RSA is instance-non-malleable with respect to OM [RSA] when
Δt-OM

RSA (τ, �) = negl (k) when t, τ, � = poly (k). Note that the previous definition
is captured by setting t = 0. Lemma 1 still applies here under the following
reformulation: for any positive integers t, τ, � and any ε ∈ (0, 1),

Succ (t-OM [RSA] ⇐ A, ε, τ, �) ≤ Succ0
t (A, τ + � · tA, �) + Δt-OM

RSA (τ + � · tA, �) .

Impossibility Proofs for RSA Signatures in the Standard Model 43

GAP [RSA]
∗
≡ BK-REA [S]

∗
⇐ BK-KOA [S] ≡ FACT [RSA]

⇓ ∗ ⇓

OM [RSA]
∗
≡ omRE-REA [S]

∗
⇐ RE-KOA [S] ≡ INV [RSA]

⇓ ∗ ⇓
omUF-REA [S]

∗
⇐ UF-KOA [S]

⇓ ∗ ⇓
omEF-REA [S]

∗
⇐ EF-KOA [S]

Fig. 2. Black-box reductions among security notions involving root extraction attacks

5.2 Introducing Root Extraction Attacks

We now introduce a stronger attack model wherein the adversary is given direct
access to root extraction instead of a signing oracle. We define a notion of uni-
versal forgery under this type of attack, noting this security level omUF-REA [S].
A probabilistic algorithm breaks �-omUF-REA [S] if, given a random public key
(n, e), �+1 random messages m0, . . . , m� and oracle access to RSA(n, e, ·), it can
produce signatures si ∈ Sn,e(mi) for i = 0, . . . , � in no more than � requests to
the oracle. More precisely, A is said to (ε, τ)-break �-omUF-REA [S] when

Pr
[

(n, e, d) ← RSA(1k)
m0, m1, . . . , m� ← {0, 1}m : ARSA(n,e,·)(n, e, m0, . . . , m�) = L ∧

L ∈ Sn,e(m0) × · · · × Sn,e(m�)

]
≥ ε ,

where the probability is taken over the random coins of A and of the experiment,
A runs in time τ and sends at most � requests to RSA(n, e, ·). For complete-
ness, we define �-omEF-REA [S] in a similar way, allowing the adversary to freely
choose messages m0, . . . , m� with the restriction that no two message-signature
pairs given as output are identical. We also introduce �-omRE-REA [S] where
the adversary attempts to extract � + 1 e-th roots modulo n in no more than �
requests to RSA(n, e, ·). We see that for any real-life RSA signature scheme S
and � ≥ 0,

�-omEF-REA [S] ⇐ �-omUF-REA [S] ⇐ �-omRE-REA [S] ≡ �-OM [RSA] .

We also introduce �-BK-REA [S] where the adversary attempts to compute d from
(n, e) by making at most � calls to RSA(n, e, ·). We plot on Fig. 2 the relations
holding between these security levels. Black-box reductions marked with a ∗,
somewhat unfamiliar, are detailed in the full version of this paper [14].

5.3 Transposable and Derandomized Paddings

Transposable Paddings. Given a padding function μ mapping {0, 1}m × {0, 1}r

to {0, 1}w, we define μT over {0, 1}r × {0, 1}m by μT (m, r) = μ(r, m). Thus μT

44 P. Paillier

is obtained from μ by reversing the message and random domains of μ. We say
that μ is transposable if μT is verifiable. When μ is transposable, μT is a proper
padding function that defines a transposed signature scheme ST allowing one to
sign r-bit messages under m bits of randomness. To remain consistent with the
definition of a signature scheme, we impose that r > 0 for transposable paddings,
resulting in that only probabilistic paddings are transposable. We say that S is
transposable when its padding function is transposable. Obviously, (ST)T = S.

Derandomized Paddings. If μ is a (verifiable) padding function with domain and
range as above, we define μ◦ : {0, 1}m+r → {0, 1}w by setting μ◦(m) = μ(m0, m1)
where |m0| = m, |m1| = r and m = m0‖m1. Thus, μ◦ is a (verifiable) padding
with no randomness and we call it the derandomized version of μ. The scheme S◦

induced by μ◦ is said to be the derandomized version of S. Note that (S◦)◦ = S◦.

5.4 Impossibility Results for Transposable Paddings

Let us now consider the standard-model security level UF-KOA [S] of a real-
life scheme S combining an instance-non-malleable (w.r.t OM [RSA]) instance
generator RSA with some transposable padding function μ.

Theorem 4. If OM [RSA] ⇐ UF-KOA [S] then omUF-REA [ST] is polynomial.

Proof. We actually give a proof that if one had t-OM [RSA] ⇐ UF-KOA [S] then
(t + �)-omUF-REA [ST] could be broken for polynomial �, for any t. This proof is
not just a generalization of the one of Theorem 1 to the extended case t ≥ 0. Let
us assume that some reduction algorithm R converts a perfect universal forger A
into an algorithm which (εR, τ)-breaks t-OM [RSA] while playing Game 0 as per
Section 5.1 in no more than � calls to A. Here again, we build a meta-reduction M
converting R into an algorithm which (εM, τM)-breaks (t + �)-omUF-REA [ST]
with εM ≥ εR and τM = τR+poly (t, �, k) and we conclude using the assumption
that RSA is instance-non-malleable with respect to OM [RSA].

Overview of M. M attempts to break (t + �)-omUF-REA [ST]. Given a random
public key (n, e) ← RSA(1k), a root extraction oracle RSA(n, e, ·) which M
can call t + � times and t + � + 1 random messages m0, . . . ,mt+� ← {0, 1}r,
M must output t + � + 1 signatures s0, . . . , st+� on m0, . . . ,mt+� with respect
to ST . A description of M is as follows. M randomly selects ui ← Zn and
sets yi = μ(0, mi) · ue

i mod n for i = 0, . . . , t. Then M runs R(n, e, y0, . . . , yt).
Since R complies with Game 0, R does not run A over (n′, e′) �= (n, e). M
simulates � executions of A by making requests to the root extraction oracle
RSA(n, e, ·) to generate forgeries s1, . . . , s�. These simulations will also result in
the generation of signatures st+1, . . . , st+� on mt+1, . . . ,mt+� with respect to
ST . R may also send up to t queries to the root extraction oracle, which M
perfectly simulates by forwarding the queries to its own root extractor. Overall,
M makes at most t + � queries. If R outputs (yd

0 mod n, . . . , yd
t mod n), M sets

si = yd
i u−1

i mod n for i = 0, . . . , t and returns s0, . . . , st+�, thereby succeeding
in solving (t + �)-omUF-REA [ST].

Impossibility Proofs for RSA Signatures in the Standard Model 45

Simulation of A. Wlog, R runs A(n, e, mi) for i = 1, . . . , �. To simulate the i-th
oracle call, M computes μ(mi, mt+i) and uses the root extractor RSA(n, e, ·) to
get st+i = μ(mi, mt+i)d mod n. M then sets si = st+i. Note that si = st+i is
simultaneously a valid signature on mi with respect to S and a valid signature
on mt+i with respect to ST . M returns si to R as the output of A(n, e, mi).

Summing up. The distributions of (n, e), y0, . . . , yt and the signatures comply
with the definition of R. M queries RSA(n, e, ·) no more than t+� times. Because
M simulates A perfectly, we have εM ≥ εR. The extra time of M amounts to
at most t + � evaluations of μ and a few operations modulo n. This means that
for any t, τ, �,

Succ0
t (UF-KOA [S] , τ, �) ≤ Succ ((t + �)-omUF-REA [ST] , τ + poly (t, �, k)) .

This gives the expected result using the above reformulation of Lemma 1 and
assuming RSA is instance-non-malleable with respect to OM [RSA]. ��

Most interestingly, it is the case that omUF-REA [ST] may remain unbroken in the
RO model even though UF-KOA [S] and INV [RSA] are shown to be equivalent.
A typical example of this separation is PSS-R, as we now see.

Definition 2. Let H : {0, 1}m+r → {0, 1}t and G : {0, 1}t → {0, 1}w−1−t be two
hash functions where w, m, r, t are length parameters conforming to [17]. Define
PSS-R = (RSA, μ) where μ(m, r) = 0 ‖ w ‖ (r‖m) ⊕ G(w) with w = H(m‖r).

Lemma 2 (RO-model REA security of PSS-R). PSS-R is transposable
and omUF-REA

[
(PSS-RT)G,H

]
≡ OM [RSA].

The proof of Lemma 2 is given in the full version of this work [14]. Theorem 4
shows that it is impossible to have OM [RSA] ⇐ UF-KOA [S] for any trans-
posable RSA signature scheme S = (RSA, μ) such that RSA is instance-non-
malleable w.r.t OM [RSA] and omUF-REA [ST] is intractable. This impossibility
readily extends to all forms of unforgeability due to the natural black-box order-
ing between security notions. In particular, provided that omUF-REA [PSS-RT]
is intractable, which seems a reasonable assumption, there is no hope one can
ever prove that PSS-R is unforgeable (in any sense) under the One-More RSA
assumption.

5.5 Impossibility Results for Non-transposable Paddings

Theorem 4 ascertains that the unforgeability of S cannot be proven under the
assumption that OM [RSA] is intractable provided that S is transposable and
assuming that omUF-REA [ST] is intractable. However this is not satisfactory
since S may not be transposable. In this section, we alleviate the assump-
tion that S is transposable. The price to pay is that we cannot provide evi-
dence that UF-KOA [S] �≡ OM [RSA] anymore. What we prove however is that
EF-KOA [S] �≡ OM [RSA] under the same assumptions.

46 P. Paillier

Theorem 5. If OM [RSA] ⇐ EF-KOA [S] then omUF-REA [S◦] is polynomial.

Proof. We prove that if t-OM [RSA] ⇐ EF-KOA [S] then (t + �)-omUF-REA [S◦]
can be broken for polynomial �. Assume that some reduction algorithm R con-
verts an existential forger A into an algorithm which (εR, τ)-breaks t-OM [RSA]
while playing Game 0 as per Section 5.1 in no more than � calls to A. We
show how to build a meta-reduction M converting R into an algorithm which
(εM, τM)-breaks (t + �)-omUF-REA [S◦] with εM ≥ εR and τM ≈ τR and we
conclude using the instance-non-malleability of RSA w.r.t OM [RSA] as above.

Overview of M. M attempts to break (t + �)-omUF-REA [S◦]. Given a random
public key (n, e) ← RSA(1k), a root extractor RSA(n, e, ·) which M can call
t + � times and t + � + 1 random messages m0, . . . ,mt+� ← {0, 1}r+m, M must
output the (unique) t+�+1 signatures s0, . . . , st+� on m0, . . . ,mt+� with respect
to S◦. A description of M is as follows. M randomly selects ui ← Zn, sets yi =
μ(mi) · ue

i mod n for i = 0, . . . , t and runs R(n, e, y0, . . . , yt). Since R conforms
to Game 0, R never runs A over (n′, e′) �= (n, e). M simulates � executions
of A by making requests to the root extraction oracle RSA(n, e, ·) to generate
arbitrary forgeries (m1, s1), . . . , (m�, s�). These simulations will also result in the
generation of signatures st+1, . . . , st+� on mt+1, . . . ,mt+� with respect to S◦. R
may also send up to t queries to its root extraction oracle, which M perfectly
simulates by forwarding the queries to its own root extraction oracle RSA(n, e, ·).
Overall, M makes at most t+ � queries. If R outputs (yd

0 mod n, . . . , yd
t mod n),

M sets si = yd
i u−1

i mod n for i = 0, . . . , t and returns s0, . . . , st+�, thereby
succeeding in solving (t + �)-omUF-REA [S◦].

Simulation of A. Wlog, R runs A(n, e) for i = 1, . . . , �. At the i-th call, M
computes μ(mt+i) and uses the root extractor to get st+i = μ(mt+i)d mod n.
M then sets si = st+i and sets mi to the m-bit prefix of mt+i i.e., mt+i = mi‖ri

for some r-bit string ri. Note that si = st+i is a valid signature on mt+i with
respect to S◦. M then returns (mi, si) to R as the output of A(n, e).

Summing up. The distributions of (n, e), y0, . . . , yt and the signatures comply
with the definition of R. M queries RSA(n, e, ·) no more than t + � times. The
simulation of A being perfect, one gets εM ≥ εR. The extra time of M amounts
to at most t + � evaluations of μ and a few operations modulo n. This implies
that for any t, τ, �,

Succ0
t (EF-KOA [S] , τ, �) ≤ Succ ((t + �)-omUF-REA [S◦] , τ + poly (t, �, k)) .

This gives the wanted result invoking again the reformulated Lemma 1 and
assuming RSA is instance-non-malleable with respect to OM [RSA], exactly as
in the proof of Theorem 4. ��

Application to FDH. Theorem 5 is perfectly suited to the case of FDH since
FDH◦ = FDH. The padding function μ is defined as μ(m, r) = H(m) where H
is a w-bit hash function, m = ∗ and r = 0. We claim that

Impossibility Proofs for RSA Signatures in the Standard Model 47

omUF-REA
[
FDHH

]
≡ OM [RSA] ,

as long as n2−w remains polynomial. As w � |n| in practice, n2−w is bounded
by a small constant. A proof of that fact is given in [14]. Under the assumption
that omUF-REA [FDH] is intractable in the standard model, we thus obtain that
EF-KOA [FDH] cannot be equivalent to OM [RSA]. This assumes of course that
RSA is instance-non-malleable with respect to OM [RSA].

Application toPSS. The signature scheme PSSexists in several versions [17,12].
We consider the version put forward by PKCS #1 v2.1.

Definition 3 (EMSA-PSS). Let H : {0, 1}m → {0, 1}t1, F : {0, 1}t2+t1+r →
{0, 1}t3 and G : {0, 1}t3 →{0, 1}w−t3−9 be three hash functions where w, m, r, t1, t2
and t3 are length parameters conforming to [17]. Define PSS = (RSA, μ) where
μ(m, r) = 0 ‖

(
0w−r−t3−10 ‖ 1 ‖ r

)
⊕ G(w) ‖w ‖ 0xBC with w = F (0t2 ‖H(m) ‖ r).

Lemma 3. omUF-REA
[
(PSS◦)F,G,H

]
≡ OM [RSA].

The proof of Lemma 3 is given in the full paper [14]. Again, under the quite
reasonable assumption that omUF-REA [PSS◦] is intractable in the standard
model, we have that EF-KOA [PSS] cannot be equivalent to OM [RSA] unless
OM [RSA] is easy (which in turn would contradict by itself the assumption that
omUF-REA [PSS◦] is intractable) or unless RSA is instance-malleable with re-
spect to OM [RSA].

Remark 1 (On basing unforgeability on GAP [RSA]). Finally, we note that un-
der the very same assumptions, the unforgeability of RSA signatures cannot
be based on GAP [RSA] either. This is easily seen reductio ad absurdum as
having GAP [RSA] ⇐ UF-KOA [S] or GAP [RSA] ⇐ EF-KOA [S] mechanically
implies OM [RSA] ⇐ UF-KOA [S] or OM [RSA] ⇐ EF-KOA [S] by virtue of
OM [RSA] ⇐ GAP [RSA], which contradicts either Theorem 4 or Theorem 5.

6 Conclusion

This paper put forward several new impossibility results for RSA-based signature
schemes. Among other results, we have shown that no real-life RSA signatures
as per the definition of Section 2.3 that are based on instance-non-malleable key
generation can be chosen-message secure under any one of the RSA, the gap
RSA or the One-More RSA assumptions in the standard model. A challenging
direction for future research would be to formally confirm or refute that common
key generators are instance-non-malleable using computational number theory.

Acknowledgements. I would like to thank Jonathan Katz for his patience
and suggestions that substantially improved the quality of this paper. This work
has been financially supported by the European Commission through the IST
Program under Contract IST-2002-507932 ECRYPT.

48 P. Paillier

References

1. M. Bellare, A. Boldyreva and A. Palacio. An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In EUROCRYPT 2004, LNCS 3027,
pp. 171–188, 2004.

2. M. Bellare, C. Namprempre, D. Pointcheval and M. Semanko. The One-More-RSA-
Inversion Problems and the security of Chaum’s Blind Signature Scheme. Journal
of Cryptology, Vol. 16, No. 3, 2003, pp. 185-215.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pp. 62–73, 1993. ACM Press.

4. A. Boldyreva and M. Fischlin. Analysis of random oracle instantiation scenarios for
OAEP and other practical schemes. In CRYPTO 2005, LNCS 3493, pp. 412–429.

5. D. R. L. Brown. Unprovable security of RSA-OAEP in the standard model, 2006.
Available at http://eprint/iacr.org/2006/223.

6. R. Canetti, O. Goldreich and S. Halevi. On the random-oracle methodology as
applied to length-restricted signature schemes. In TCC 2004, LNCS 2951, pp.
40–57, 2004.

7. J-S. Coron. On the exact security of full domain hash. In CRYPTO 2000, LNCS
1880, pp. 229–235, 2000.

8. Y. Dodis, R. Oliveira and K. Pietrzak. On the generic insecurity of the full domain
hash. In CRYPTO 2005, LNCS 3493, pp. 449–466, 2005.

9. C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme
and its applications. In CRYPTO’94, LNCS 839, pp. 234–246,1994.

10. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO’86, LNCS 263, pp. 186–194, 1987.

11. S. Goldwasser, S. Micali and R. L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Comp., 17(2):281–308, 1988.

12. IEEE P1363a Committee. IEEE P1363a / D9 — Standard specifications
for public key cryptography: Additional techniques. Document available at
http://grouper.ieee.org/groups/1363/index.html/, 2001. Draft Version 9.

13. J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In CRYPTO 2002, LNCS 2442, pp. 111–126.

14. P. Paillier. Instance-non-malleable RSA-based cryptography, 2006. Available at
http://eprint/iacr.org/2006/.

15. P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be equivalent
to discrete log. In ASIACRYPT 2005, LNCS 3788, pp. 1–20, 2005.

16. P. Paillier and J. Villar. Trading one-wayness against chosen-ciphertext security in
factoring-based encryption. In ASIACRYPT 06, LNCS 4284, pp. 252–266, 2006.

17. PKCS #1 v2.1: RSA cryptography standard (draft), document available at
http://www.rsasecurity.com/rsalabs/pkcs/. RSA Data Security Inc., Sept.
2005.

18. M. O. Rabin. Digital signatures and public key functions as intractable as factor-
ization. Technical Report MIT/LCS/TR-212, MIT, January 1979.

19. M. Tompa and H. Woll. Random self-reducibility and zero-knowledge interactive
proofs of possession of information. UCSD TR CS92-244, 1992.

20. H. C. Williams. A modification of the RSA public-key encryption procedure. In
IEEE Transactions on Information Theory, IT-26(6):726–729, 1980.

21. Adam Young and Moti Yung. Malicious Cryptography: Exposing Cryptovirology.
John Wiley & Sons, first edition, 2005.

Selecting Secure Passwords

Eric R. Verheul

PricewaterhouseCoopers Advisory, Radboud University Nijmegen,
Institute for Computing and Information Sciences, P.O. Box 85096,

3508 AB Utrecht, The Netherlands
eric.verheul@[nl.pwc.com, cs.ru.nl]

Abstract. We mathematically explore a model for the shortness and se-
curity for passwords that are stored in hashed form. The model is implic-
itly in the NIST publication [8] and is based on conditions of the Shannon,
Guessing and Min Entropy. We establish various new relations between
these three notions of entropy, providing strong improvements on exist-
ing bounds such as the McEliece-Yu bound from [7] and the Min entropy
lowerbound on Shannon entropy [3]. As an application we present an al-
gorithm generating near optimally short passwords given certain security
restrictions. Such passwords are specifically applicable in the context of
one time passwords (e.g. initial passwords, activation codes).

1 Introduction

Consider the context of a computer system to which the logical access by a user
(a human or another computer) is protected by a password. The threat that
we consider is compromise of this password through one of the following two
types of attack. In the on-line guessing type of attack, the attacker repeatedly
makes guesses of the password, most likely first, and tests them by attempting
to logon to the system. In our model the system has implemented “account
lockout”, locking the system after a certain number, say b, unsuccessful logon
attempts which limits the effectiveness of the attack. In the off-line guessing
type of attack, the attacker gets hold of some test-data from the system that
enables him to test password guesses, most likely first, on his own systems.
This information could for instance be a UNIX “passwd” file, a Windows SAM
database or, more generally, the secure hash of a password. We distinguish
two kinds of off-line attacks. In a complete attack the attacker is willing to take
all the required computational effort to completely finish his attack algorithm
thereby surely finding the password. In an incomplete attack the attacker is
only willing to take a certain computational effort, a number of L guesses, in
the attack, thereby finding the password only with a certain probability. To
illustrate, suppose that an attacker has the SHA-1 hash of the password. If the
attacker is willing to let the guess process run on a 1 GHz Pentium machine for
a day this means that he is willing to perform about 236 tries (cf. [2]); one might
find it acceptable that the probability of success is at most 1%.

The central problem of this paper deals with choosing passwords that on the
one hand have the functional requirement that they are “small” and on the

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 49–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

50 E.R. Verheul

other hand have the security requirement that they are “adequately” resistent
against both on-line as off-line attacks, both complete as incomplete. Such pass-
words are specifically applicable in the context of one time passwords (e.g. initial
passwords, activation codes).

Outline of the Paper
In Section 2 we describe the mathematical model we use for the central problem
in this paper. In this model the Shannon entropy is taken as a measure for
“smallness” of passwords, the Guessing entropy [6] as a measure for security of
passwords against complete off-line attacks and the Min entropy (cf. [3]) as a
measure for security of passwords against incomplete off-line attacks. In Section
3 we discuss and apply some techniques for calculating extreme points of convex
sets. In Section 4 we present general, new relations between the three types of
entropy. This provides both strong improvements on the McEliece-Yu bound
from [7] and the Min entropy lowerbound [3] on Shannon entropy. In Section
5 we arrive at a new lower bound on the Shannon entropy of distributions,
i.e. on the minimal length of the corresponding passwords, given restrictions
on the Guessing and Min entropy. As an application we present in Section 6
an algorithm generating near optimally short passwords under these conditions
that are specifically applicable in the context of one time passwords (e.g. initial
passwords, activation codes). Finally Section 7 contains the conclusion of this
paper and open problems.

Related Work
NIST Special Publication 800-63 [8] provides technical guidance in the imple-
mentation of electronic authentication, including passwords. The implicitly used
mathematical model for security of passwords is similar to ours but the publica-
tion does not fully mathematically explore this model. Massey [6], cf. [5], shows
that the entropy H for a password distribution is upper bounded in terms of its
Guessing entropy α by H ≤ log2(e·α−1). Note that Massey’s bound is indepen-
dent of the number of passwords n. By a counterexample it is indicated in [6]
that no interesting lower bound on the entropy of a password exists in terms of
the Guessing entropy alone. McEliece and Yu [7] show that H ≥ 2 log2(n)

n−1 (α− 1)
indicating that such lower bounds exist if one takes into account the number
of passwords n. It is well-known that the Shannon entropy is lower bounded by
the Min entropy (cf. [3]), i.e., independent of n. Massey’s bound can also be
formulated as a lower bound on the Guessing entropy in terms of the Shannon
entropy; in [1] Arikan provides another lower bound on the Guessing entropy in
terms of the lp-norm of the underlying probability distribution.

2 The Mathematical Model for Secure Passwords

In this section we describe our mathematical model for secure passwords selec-
tions. Further motivation of the model is placed in Appendix A. We assume
that passwords correspond to a finite variable X with a discrete distribution
(p1, . . . , pn) on n points (the number of possible passwords). That is, each pi ≥ 0

Selecting Secure Passwords 51

and they sum up to 1. To facilitate easy notation and formulae we assume
throughout this paper that the probabilities pi are denoted in a decreasing form,
i.e., p1 ≥ p2 . . . ≥ pn ≥ 0. The size of passwords is measured in our model by
the (Shannon) Entropy H(X) (or simply H) which is given by

H(X) = −
n∑

i=1

pi · log2(pi),

and where we use the usual convention that 0·log2(0) = 0. Our choice is motivated
by the fact that the entropy corresponds with the average size of passwords in
bits using an optimal coding for these passwords, most notably a coding based on
a Huffman encoding tree [4]. The resistance against complete off-line attacks we
measure by the Guessing entropy, cf. [6], denoted by G(X) or simply α, given by

G(X) =
n∑

i=1

i · pi.

This relates to the expected number of tries for finding the password using an op-
timal strategy, i.e. trying the most likely keys first. Perhaps surprising, a large
Guessing entropy by itself is not a sufficient guarantee for a secure passwords dis-
tribution. In [6] an example is given of a family of distributions (see also Section 4)
that all have a fixed Guessing entropy but that have a highest probability that in-
creases to one (and the entropy decreases to zero). That is, the probability that the
first guess is successful goes to one implying that these distributions are certainly
not “secure”. From this example it is indicated that a viable security model also
needs to take into account resistance against incomplete attacks. In our model,
we measure this by the so-called Min Entropy, H∞(X) or simply H∞ given by
− log2(p1), cf. [3]. If the Min entropy is sufficiently large, or equivalently p1 suffi-
ciently small, then one can assure that

∑L
i=1 pi ≤ L · p1 is sufficiently small too.

The resistance against on-line attacks is directly related to the probability of
success in the optimal strategy, i.e. trying the b most likely keys. As typically
the acceptable number b will be much smaller than the acceptable number L
of an incomplete attack, we will only impose conditions on the effectiveness on
the latter kind of attack. The central problem of this paper can now be math-
ematically formulated as follows: given lower bounds on the Guessing and Min
entropy (or equivalently an upper bound on p1) what is the minimal Shannon
entropy possible and how can one calculate and apply minimal distributions?

3 Preliminaries

3.1 Extreme Points of Ordered Distributions with Fixed Guessing
Entropy

We recall (cf. [9, p. 241]) that a point x of a convex set C is extreme if it
is not an interior point of any line segment lying in K. Thus x is extreme iff

52 E.R. Verheul

whenever x = λy + (1 − λ)z with 0 < λ < 1 we have y �∈ C or z �∈ C. It is a
direct consequence of the Krein-Milman theorem (cf. [9, p. 242]) that any closed,
bounded convex set in Rn for some natural n is the convex hull of its extreme
points.

Let r, s, n be natural numbers and let f1, ..., fr and F1, ..., Fs be (linear) func-
tionals on Rn and let δ1, ..., δr, θ1, ..., θs ∈ R. The set C ⊂ Rn is defined by

C = {x ∈ Rn|fi(x) = δi for i = 1, 2, ..., r and Fj(x) ≥ θj for j = 1, 2..., s}.

Clearly, C is a closed convex set but is not necessarily bounded. Equations of
type fi(x) = δi we call defining hyperplanes and equations of type Fj(x) ≥ θj

we call defining halfspaces. We call a point x in C a minimal intersection point
if

{x} = ∩r
i=1f

−1(δi)
⋂

∩j∈SF−1(θj) (1)

for some subset S of {1, ..., s}. Determining the elements in (1) amounts to solving
n variables based on r + ‖S‖ equations as indicated in (1). Minimal intersection
points then coincide with unique solutions x to such sets of equations that also
satisfy the other conditions, i.e. lie in the remaining defining halfspaces. If each
subset of n functionals in {f1(·), ..., fr(·), F1(·), ..., Fs(·)} is linearly independent
(and so r ≤ n in particular), then one only needs to look at subset S of size n− r.
The following result, using the notation of above, can be considered as part of the
mathematical “folklore”, cf. [11]. We provide proofs in Appendix B.

Theorem 1. If C is bounded then the extreme points of C are precisely the
minimal intersection points and C is the convex hull of the minimal intersection
points.

Let n be a natural number and α be a real number and let

Cn,α = {(p1, ..., pn) ∈ Rn |
n∑

i=1

pi = 1,
n∑

i=1

ipi = α, p1 ≥ p2... ≥ pn ≥ 0}.

One can easily verify that Cn,α �= ∅ iff 1 ≤ α ≤ (n + 1)/2 so from now on we
implicitly assume that α satisfies the condition 1 ≤ α ≤ (n + 1)/2. It is easily
verified that Cn,1 = {(1, 0, . . . , 0)} and Cn,(n+1)/2 = {(1/n, 1/n, . . . , 1/n)}.

Theorem 2. The set Cn,α is a closed, bounded the convex set and is the hull
of its extreme points. These extreme points take the form Xj,k,n for integers j, k
satisfying 1 ≤ j ≤ 2α − 1 ≤ k ≤ n and

Xj,k,n = (aj,k,n, aj,k,n, · · · aj,k,n, bj,k,n, · · · bj,k,n, 0, · · · 0)
↑ ↑ ↑ ↑

1, 2, · · · j, j + 1, · · · k, k + 1, · · · n,

where

aj,k,n =
−2α + 1 + j + k

j · k ; bj,k,n =
2α − (j + 1)

k(k − j)
,

and where we define bj,k,n = 1/(2α − 1) for j = 2α − 1 = k (which can only
occur when 2α − 1 is an integer).

Selecting Secure Passwords 53

Proof: See Appendix B. �
Note that if in the previous theorem 2α− 1 is an integer then all points of type
Xj,2α−1,n for 1 ≤ j ≤ 2α−1 are equal to the point whose first 2α−1 coordinates
are equal to 1/(2α− 1) and the remaining ones are zero. We note that from the
previous theorem it simply follows that the set Cn,α has more than one point
if α < (n + 1)/2 and n ≥ 3. So, for n ≥ 3 it follows Cn,α = {

(1
n , 1

n , . . . , 1
n

)
} iff

|Cn,α| = 1.
In practice often a certain number, say d, of the highest probabilities coincide.

For instance when a dictionary is used and the d most likely passwords are chosen
uniformly from a dictionary of size d ≤ n. The set of such distributions takes
the following form:

Cn,α,d = {(p1, ..., pn) ∈ Rn |
n∑

i=1

pi = 1,
n∑

i=1

i · pi = α,

p1 = p2 . . . = pd ≥ pd+1 . . . ≥ pn ≥ 0}

We usually write Cn,α for Cn,α,1. The following two results state some of the
immediate properties of Cn,α and Cn,α,d.

Proposition 1. Cn,α,d �= ∅ iff Cn,α �= ∅ and d ≤ 2α − 1 iff 1 ≤ α ≤ (n + 1)/2
and d ≤ 2α − 1.

Proof: See Appendix B. �

Proposition 2. We use the terminology and conditions of Theorem 2. The ex-
treme points of Cn,α are the points Xj,k,n satisfying d ≤ j ≤ 2α − 1 ≤ k ≤ n.

Proof: See Appendix B. �

3.2 Useful Formulae

We use the terminology of Theorem 2. It is convenient to introduce the function
G(x, y, z) with domain {(x, y, z) ∈ R3 | 0 < x ≤ y ≤ z} given by

G(x, y, z) = −
(

(−y + x + z)
z

log2(
−y + x + z

x · z)

+
(y − x)

z
log2(

y − x

z(z − x)
)
)

,

if x < y ≤ z and G(y, y, z) = log2(y) and G(y, y, y) = log2(y). Note that
G(x, z, z) = log2(z), limx↑y G(x, y, z) = G(y, y, z) and that G(j, 2α − 1, k) =
H(Xj,k,n). Also note that values of G(·) are easily calculated. As usual we
denote the entropy function on two points by h(·), i.e., h(p) = −p log2(p)
− (1 − p) log2(1 − p).

A real valued function G(·) from a convex set C ⊂ Rn is called convex (re-
spectively concave) if G(λx + (1 − λ)y) ≤ λG(x) + (1 − λ)G(y) (respectively

54 E.R. Verheul

G(λx + (1 − λ)y) ≥ λG(x) + (1 − λ)G(y) for all x, y ∈ C and 0 ≤ λ ≤ 1. Note
that G(·) is convex iff −G(·) is concave. If G(·) is a twice-differentiable function
in a single real variable (i.e., C ⊂ R) then G(·) is convex (respectively concave)
if G

′′ ≥ 0 (respectively G
′′ ≤ 0) on C. The proofs of the following two lemmas

are straightforward verifications.

Lemma 1. For 1 ≤ x ≤ y ≤ z the following holds.

1. G(x, y, z) − log2(x) = G(1, y/x, z/x)
2. G(1, y, z) = h(y−1

z) + y−1
z log2(z − 1)

Lemma 2.

1. For fixed x, z, the function [x, z] � y → G(x, y, z) is concave.
2. For fixed y, z, the function [1, y] � x → G(x, y, z) is concave.
3. For fixed x, y, the function [y,∞) � z → G(x, y, z) increases to its maximum

and is then decreasing.

Proposition 3. G(x, y, z) ≥ log2(x) + y−x
z−x log2(z/x)

Proof: By Lemma 2, for fixed x, z the function [x, z] � y → G(x, y, z) is concave.
Note that for y = x this function takes the value log2(x) and for y = x it takes
the value log2(z). If we write y = (1−λ)x+λz it follows that λ = (y−x)/(z−x).
From concavity it now follows

G(x, y, z) ≥ (1 − λ) log2(x) + λ log2(z) = log2(x) + λ log2(z/x),

from which the proposition follows. �

4 Relations Between Entropies

As explained in the introduction, we let passwords correspond to a finite variable
X with a discrete distribution (p1, . . . , pn) on n points that we assume to be
ordered, i.e., p1 ≥ p2 . . . ≥ pn ≥ 0. The following inequalities hold, providing
lower and upper bounds for the highest probability, i.e. p1, of points in Cn,α,d

in terms of α and n.

Theorem 3. For (p1, . . . , pn) ∈ Cn,α,d the following inequalities hold

1
2α − 1

≤ −2α + 1 + �2α − 1�
(�2α − 1�)(�2α − 1�) +

1
�2α − 1� ≤ p1 ≤ 1/d + 1/n − 2α − 1

n
.

Proof: If d = 1 then from Theorem 2 it follows that the extreme points of Cn,α,d

are of type Xj,k,n with 1 ≤ j ≤ 2 ·α− 1 ≤ k ≤ n. It more generally follows from
Proposition 2 that for d > 1, the extreme points of Cn,α,d are of type Xj,k,n with
1 ≤ j ≤ 2 · α − 1 ≤ k ≤ n.1 It follows that (p1, . . . , pn) is in the convex hull of
the extreme points Xj,k,n with d ≤ j ≤ 2 · α − 1 ≤ k ≤ n.
1 We distinguish between d = 1 and d > 1 to avoid a circular reasoning in the proofs

of Propositions 1, 2 and Theorem 3.

Selecting Secure Passwords 55

Note that for fixed k the formula of the first coordinate of Xj,k,n, i.e., aj,k,n, is
decreasing in j. As the smallest permissible j equals d and the largest permissible
equals �2α − 1�, it follows that

min{a�2α−1�,k,n | 2α − 1 ≤ k ≤ n} ≤ p1 ≤ max{ad,k,n | 2α − 1 ≤ k ≤ n} (2)

Also note that for fixed j the formula of the first coordinate of Xj,k,n, i.e.,
aj,k,n, is increasing in k. This means that the left hand side of (2) is equal to
a�2α−1�,2α−1�,n, which is easily seen equal to

−2α + 1 + �2α − 1�
(�2α − 1�)(�2α − 1�) +

1
�2α − 1� .

That this expression is greater or equal to 1/(2α − 1) follows from the easily
verified inequality x−�x�/(�x�·�x�)+1/�x� ≥ 1/x for any x ≥ 0. This concludes
the proof for the second equality of the result. Similarly, the right hand side of
(2) is equal to ad,n,n which is easily seen equal to 1/d + 1/n− 2α−1

n completing
the proof of the theorem. �
As the function − log2(·) is decreasing, the bounds in the previous result can
easily transformed in lower- and upperbounds for the Min entropy H∞ in terms
of α and n. The following result is a direct consequence; the right hand inequality
also follows from a standard concavity result.

Corollary 1. − log2(1 − 2(α−1)
n) ≤ H∞ ≤ log2(2α − 1)

The next result enables the precise calculation of the minimum entropy on Cn,α,d

that we denote by Mn,α,d.

Theorem 4. The following hold:

1. Mn,α,d = min{G(j, 2α − 1, k) | j ∈ {d, �2α − 1�}, k ∈ {�2α − 1�, n}}.
2. Mn,α,d ≥ min{log2(2α−1), G(d, 2α−1, n)} = min{log2(2α−1), h(2α−1−d

n)+
2α−d

n log2(n/d − 1)} with equality if 2α − 1 is an integer.

Proof: We prove the two parts of the theorem simultaneously. As the entropy
function is concave, the minimum of the entropy function on Cn,α,d is the min-
imum the entropy achieves on its extreme points, i.e., the points of type Xj,k,n

with d ≤ 2α − 1 ≤ k ≤ n (cf. Proposition 2), that is:

Mn,α,d = min{G(j, 2α − 1, k) | k, j ∈ N, d ≤ j ≤ 2α − 1 ≤ k ≤ n}

From the concavity of the function j → G(j, 2α − 1, k), i.e. Lemma 2, follows

Mn,α,d = min{G(j, 2α − 1, k) | j ∈ {d, �2α− 1�}, k ∈ N, 2α − 1 ≤ k ≤ n} (3)

Mn,α ≥ min{G(j, 2α − 1, k) | j ∈ {d, 2α − 1}, k ∈ N, 2α − 1 ≤ k ≤ n} (4)

with equality if 2α−1 is an integer. Finally, from equality (3) and the third part
of of Lemma 2 we arrive at the first part of the theorem.

56 E.R. Verheul

As G(2α − 1, 2α− 1, n) = G(d, 2α − 1, 2α− 1) = G(2α − 1, 2α− 1, 2α− 1) =
log2(2α − 1) inequality (4) implies that

Mn,α,d ≥ min{G(j, 2α − 1, k) | j ∈ {d, 2α − 1}, k ∈ {2α − 1, n}}
= min{log2(2α − 1), G(d, 2α − 1, n)}

with equality if 2α−1 is an integer. The second part of the theorem now follows
from combining the two formulae from Lemma 1. �
From Theorem 4 it follows that Mn,α,d is asymptotically equal to G(d, 2α, n), i.e.
to the entropy of the distribution the Xd,n,n that goes to log2(d). For d = 1 this
sequence actually forms the counterexample in [6] that no (interesting) lower
bound on the entropy exists in terms of the Guessing entropy alone.

Theorem 4 also enables to determine that perhaps contrary to popular belief,
the formula log2(2α− 1) ≤ H is actually only true for n ≤ 6. Indeed, it is easily
verified that the graph of the function hn : [1, (n + 1)/2] � α → G(1, 2α − 1, n)
lies under the graph of [1, (n+1)/2] � α → log2(2α−1) for n = 1, 2, ..., 6. From
the second part of Theorem 4 it now follows that the formula is true for n ≤ 6.
That this formula does not hold for n ≥ 7 also follows from the second part of
Theorem 4 as h7(1.5) = 0.960953 < 1 = log2(2α − 1).

Theorem 5

Mn,α,d ≥ log2(d) +
2α − 1 − d

n − d
log2(n/d)

This lowerbound on Mn,α,d is weaker than the lowerbound from the second part of
Theorem 4. Moreover, both sides of the inequality are asymptotically equivalent
in n.

Proof: Consider the following inequalities.

Mn,α,d ≥ min (G(d, 2α − 1, n), log2(2α − 1))

≥ min
(

log2(d) +
2α − 1 − d

n − d
log2(n/d), log2(2α − 1)

)
≥ log2(d) +

2α − 1 − d

n − d
log2(n/d),

The first inequality is the second part of Theorem 4 and the second inequality
follows from Proposition 3. For the last inequality; note that the function [2α−
1,∞) � n → log2(d)+ 2α−1−d

n−d log2(n/d), is decreasing. As this function converges
to the value log2(2α − 1) for n ↓ 2α − 1, the last inequality follows and thereby
the first two parts of the theorem.

With respect to the last part of the theorem; the sequence of distributions
Xd,n,n all have Guessing entropy equal to α and it is easily seen that their
Shannon entropies converge to log2(d). �
The previous result with d = 1 is an extension of the McEliece-Yu bound from
[7]. Its proof also shows that the lowerbound in the second part of Theorem 4

Selecting Secure Passwords 57

for d = 1 provides a stronger bound on Mn,α,1 than the McEliece-Yu bound. It
is easily shown that the difference between these bounds is about h(2(α−1)/n),
about one in practice.

5 Secure Password Distributions

Let (p1, ..., pn) ∈ Cn,α and let 0 < δ ≤ 1. Then Cn,α,δ is the set:

{(p1, ..., pn) ∈ Rn |
n∑

i=1

pi = 1,
n∑

i=1

i · pi = α, δ ≥ p1 ≥ p2... ≥ pn ≥ 0}.

From the proof of Theorem 3 it follows that the extreme point X�2α−1�,2α−1�,n ∈
Cn,α has a minimal first coordinate, namely a�2α−1�,2α−1�,n. So Cn,α,δ �= ∅ iff
Cn,α �= ∅ and a�2α−1�,2α−1�,n ≤ δ. Or in other words that

−2α + 1 + �2α − 1�
(�2α − 1�)(�2α − 1�) +

1
�2α − 1� ≤ δ and α ≤ (n + 1)/2. (5)

Clearly, the fact that Cn,α,δ is non-empty does not imply that it contains an
element with first coordinate equal to δ. We call δ admissible if there is such an
element. It simply follows from the proof of Theorem 3 that δ is admissible iff

−2α + 1 + �2α − 1�
(�2α − 1�)(�2α − 1�) +

1
�2α − 1� ≤ δ ≤ 1 − 2(α − 1)

n
. (6)

The following theorem discusses the extreme points of Cn,α,δ and how to
calculate them. For v ∈ Rm we let (v)1 denote the first coordinate of v.

Theorem 6. The set of points E′

{λXj1,k1,n + (1 − λ)Xj2,k2,n | j1 = j2 or k1 = k2, λ ∈ [0, 1] :
λ(Xj1,k1,n)1 + (1 − λ)(Xj2,k2,n)1 = δ} ∪ {f ∈ E | (f)1 ≤ δ}

is finite and its convex hull spans Cn,α,δ. In particular, all extreme points of
Cn,α,δ are in E′.

Proof: See Appendix B. �
Let H(n, α, δ) denote min{H(c) | c ∈ Cn,α,δ}. The following immediate result
shows how H(n, α, δ) can be precisely calculated.

Theorem 7. H(n, α, δ) is equal to the minimum value that the entropy takes
on the set E′ defined in Theorem 6, which is the minimum of at most �2α− 1� ∗
�n − 2α − 1� real numbers.

We extend the meaning of

aj,k,n =
−2α + 1 + j + k

j · k

58 E.R. Verheul

from Theorem 2 to include any real 0 < j ≤ 2α−1 ≤ k ≤ n. The function (0, 2α−
1] � j → aj,k,n is decreasing and takes as an image the segment [1/(2α− 1),∞).
The inverse of this function is a function gα

k : [1/(2α−1),∞) → (0, 2α−1] given
by gα

k (x) = k−2α+1
kx−1 .

The following is the main result of this section. The idea of calculating an lower
bound on the Shannon entropy given a Guessing entropy and α upperbound δ
on the highest probability occurring is simple: just find the real number j such
that the “virtual” extreme point Xj,n,n has a first probability aj,n,n equal to δ.
The lowerbound on the Shannon entropy is then the minimum of the entropy of
the “virtual” extreme point and log2(2α−1). The proof of Theorem 8 is skipped
due to space restrictions but will be part of the full version of this paper.

Theorem 8. Let α be fixed, 1 ≤ 2α − 1 ≤ n, and let δ be such that Cn,α,δ �= ∅
(so in particular δ ≥ 1/(2α − 1) , then

H(n, α, δ) ≥ min(G(gα
n (δ), 2α − 1, n), log2(2α − 1)).

Moreover, the sequence {min(G(gα
n (δ), 2α − 1, n), log2(2α − 1))}n is decreasing

and converges to − log2(δ).

The following result is a consequence of Theorem 8 in an analogous fashion as
Theorem 5 is a consequence of Theorem 4.

Theorem 9. Let α be fixed, 1 ≤ 2α − 1 ≤ n, and let δ be such that Cn,α,δ �= ∅
(so in particular δ ≥ 1/(2α − 1) , then

H(n, α, δ) ≥ log2(g
α
n(δ)) +

2α − 1 − gα
n(δ)

n − gα
n(δ)

log2(n/gα
n(δ)). (7)

This lowerbound on Hn,α,δ is weaker than the lowerbound from the second part
of Theorem 8. Moreover, the sequence {log2(g

α
n(δ))+ 2α−1−gα

n(δ)
n−gα

n(δ) log2(n/gα
n(δ))}n

is decreasing and converges to − log2(δ).

Corollary 2. Let (p1, p2, ..., pn) be an (ordered) password distribution with Shan-
non entropy H, Guessing entropy α and Min entropy H∞ then

H ≥ min(G(gα
n (p1), 2α − 1, n), log2(2α − 1))

≥ log2(g
α
n(p1)) +

2α − 1 − gα
n(p1)

n − gα
n(p1)

log2(n/gα
n(p1)) ≥ H∞.

We make some remarks on Theorem 8. If we fill in the largest possible admissible
δ in Theorem 8, i.e., δ = 1− 2(α − 1)/n, we obtain the second part of Theorem
4 for d = 1 which itself an improvement of the McEliece-Yu bound by Theorem
5. The bound in Theorem 8 is strong in the sense that for δ that equal the
first coordinate of an extreme point of type Xj,n,n, i.e. δ = aj,n,n equality in
Theorem 8 holds provided H(Xj,n,n) ≤ log2(2α−1). In Appendix C it is further
indicated that the bound in Theorem 8 is strong and that taking the minimum
with log2(2α − 1) cannot be relaxed. It is also indicated that the distributions
Xj,n,n are in fact “local” minima.

Selecting Secure Passwords 59

6 Selecting Near Optimal Secure Passwords

The strongness discussed above of Theorem 8 gives rise to the following algo-
rithm, providing a near optimal password distribution with minimal Shannon
entropy in our security model. In this algorithm we assume that the Guessing
entropy α is an integer and that the bound on the highest occurring probability
δ is of the form 1/D for some natural number D. These are very mild restric-
tions. For the existence of such distributions (cf. Theorem 3) one requires that
1/(2α − 1) ≤ δ. If the latter equality holds, the only distribution satisfying is
the uniform one on 2α − 1 points and the (minimal) Shannon entropy equals
the Guessing entropy. So we assume that 1/(2α − 1) < δ, i.e. D < 2α − 1. As
limn→∞ gn(1/D) ↑ D it also follows that

lim
n→∞

G(gn(1/D), 2α − 1, n) = lim
n→∞

G(D, 2α − 1, n) = log2(D).

It now follows from Theorem 8 that when n grows to infinity, the minimum
Shannon entropy H(n, α, δ) decreases to log2(D). For two reasons the distrib-
ution XD,n,n is an obvious choice for a finite approximation of this minimum.
Firstly, its Shannon entropy converges to this minimum. Secondly, the highest
probability occurring in XD,n,n, i.e., aD,k,n, is less than δ but can be taken
arbitrarily close it. Moreover, as discussed at the end of Section 5, for n large
enough the distribution XD,n,n establishes the minimum Shannon entropy in its
own “class”, i.e., the distributions on n points with Guessing entropy equal to
α and highest probability ≤ aD,n,n.

The distributions of type XD,n,n also have a simple form: the first D coor-
dinates are equal to aD,n,n and the remaining n − D coordinates are equal to
bD,n,n. This makes generation of passwords in accordance with this distribution
quite convenient by using a Huffman tree as follows. First generate a ‘0’ with
probability Pmin = D∗aD,n,n and a ‘1’ with probability Pmax = (n−D)∗bD,n,n.
If 0 is generated, generate a random string of size D bits and concatenate it with
‘0’, if ‘1’ is generated then generate a random string of size (n−D) bits and con-
catenate it with ‘1’. One can easily verify that the average size of such generated
strings is at most the Shannon entropy of XD,n,n plus one bit. By increasing
n one obtains password generation methods with average bit length arbitrarily
close to log2(D) whereby with a small probability (i.e., (n−D) ∗ bD,n,n decreas-
ing to zero) large passwords will occur of size log2(n − D) ≈ log2(n). In the
table below we have placed some of the characteristic figures for α = 264 and
δ = 2−40.

If one applies this password generation method in a context where the system
generates user passwords to be used repeatedly by the user, the user will be
inclined to have changed the issued large password until the system proposes
a small password. This of course undermines the security assumptions of the
system. Also when using passwords repeatedly, it is important that they are
easily memorable which the generated passwords in their current form are not.
Consequently the password generation method described is only practically ap-
plicable when the passwords generated are One Time Passwords (OTPs). OTPs

60 E.R. Verheul

arise in many applications such as in activation codes for digital services (e.g.
prepaid mobile credit typically stored on a scratch card). Also initial computer
passwords supplied by the IT department of an organization can be considered
to be OTPs.

log2(n) − log2(aD,n,n) Average Min Max Pmin Pmax

pwd length length length
65.0 65.00 65.00 40.0 65.0 2.98E-08 1.00E+00
65.5 41.77 58.90 40.0 65.5 2.92E-01 7.07E-01
66.0 41.00 54.00 40.0 66.0 5.00E-01 5.00E-01
66.5 40.62 50.30 40.0 66.5 6.46E-01 3.53E-01
67.0 40.41 47.56 40.0 67.0 7.50E-01 2.50E-01
67.5 40.28 45.53 40.0 67.5 8.23E-01 1.76E-01
68.0 40.19 44.04 40.0 68.0 8.75E-01 1.25E-01
68.5 40.13 42.95 40.0 68.5 9.11E-01 8.83E-02
69.0 40.09 42.14 40.0 69.0 9.37E-01 6.25E-02
69.5 40.06 41.56 40.0 69.5 9.55E-01 4.41E-02
70.0 40.04 41.13 40.0 70.0 9.68E-01 3.12E-02

7 Conclusion

We have presented a mathematical model for secure passwords and we have
presented an algorithm providing near-optimal distributions in this model as
well as a simple algorithm generating binary passwords accordingly. Such al-
gorithms are specifically applicable in the context of one time passwords (e.g.
initial passwords, activation codes). In addition we have established various new
relations between the three notions of entropy (Shannon, Guessing, Min), pro-
viding strong improvements on existing bounds. Our results indicate that the
expression log2(2α − 1), which we propose to call the Searching entropy, relates
better to the other two entropies than the Guessing entropy α in its natural
form.

It follows from Theorem 8 that distributions with fixed Guessing entropy
α that satisfy log2(2α − 1) ≤ H (an apparent popular belief) is of non-zero
Lebesgue measure, i.e. the probability that a random distribution on n points
with Guessing entropy equal to α satisfies this inequality is non-zero. It seems
an interesting problem to establish the behavior of this probability in terms of α
and n. A similar question is: what is the probability that a random distribution
on n points satisfies log2(2α − 1) ≤ H? Based on our experiments it seems that
this probability is close to one which we have actually shown for n ≤ 6 as then
all distributions satisfy this inequality.

Acknowledgments

Lisa Bloomer and Franklin Mendivil are thanked for discussing and eventu-
ally providing (Franklin) me with a technique for choosing random probability

Selecting Secure Passwords 61

distributions on n points used in my simulations. Frans van Buul is thanked
for writing the initial simulation software, Christian Cachin for discussions on
the various types of entropy, Berry Schoenmakers for providing me some initial
mathematical techniques and Marcel van de Vel for the discussions on convexity.

References

1. E. Arikan, An inequality on guessing and its application to sequential decoding,
IEEE Trans. Inform. Theory, vol. 42, pp. 99-105, 1996.

2. A. Bosselaers, Even faster hashing on the Pentium, rump session presentation at
Eurocrypt97, May 13, 1997.

3. C. Cachin, Entropy Measures and Unconditional Security in Cryptography, volume
1 of ETH Series in Information Security and Cryptography. Hartung-Gorre Verlag,
Konstanz, Germany, 1997 (Reprint of Ph.D. dissertation No. 12187, ETH Zrich).

4. D.A. Huffman, A method for the construction of minimum-redundancy codes, Pro-
ceedings of the I.R.E., 1952, pp. 1098-1102

5. D. Malone, W.G. Sullivan, Guesswork and entropy, IEEE Transactions on Infor-
mation Theory, Volume 50, Issue 3, pp. 525-526, 2004.

6. J.L. Massey, Guessing and entropy, Proc. 1994 IEEE International Symposium on
Information Theory, 1994, p.204.

7. R.J. McEliece, Z. Yu, An inequality on entropy, Proc. 1995 IEEE International
Symposium on Information Theory, 1995, p.329.

8. NIST, Electronic Authentication Guideline, Special Publication 800-63, 2004.
9. H.L. Royden, Real analysis, Macmillan Publishing company, New York, 1988.

10. Sci.crypt crypto FAQ, http://www.faqs.org/faqs/cryptography-faq/part04 .
11. M. L. J. van de Vel, Theory of Convex Structures, North-Holland, 1993.

A Appendix: Notes on the Model

Our model describes an ideal situation in which the computer system owner
knows or can prescribe the probability distribution according to which users
choose passwords. This is the case when the computer system owner generates
the passwords for its users. In common practice, the system owner can at least
highly influence the probability distribution by imposing “complexity rules” for
passwords chosen by users.

In our model we have not taken the Shannon entropy as a measure for security
of passwords which seems to be widely done. We have only found non-valid
motivations for this, that are typically based on the misconception, e.g. in [8],
[10], that the Shannon entropy and Guessing entropy are related by log2(α) = H .

Perhaps contrary to popular belief, even an inequality of type

log2(2α − 1) ≤ H. (8)

between the Shannon entropy and the Guessing entropy is not generally true as
is shown by the earlier mentioned example of Massey [6].

62 E.R. Verheul

In Theorem 8 we prove a variant on inequality (8) that does hold. We note
that in this and many other results in this paper the expression log2(2α − 1)
takes a prominent place. In fact, one can argue that this expression is a more
suitable definition of Guessing entropy.

As Massey’s bound can be rewritten as α ≥ log2(H)− log2(e) ≈ log2(H)−1.4
one can use the Shannon entropy in an underestimate for the Guessing entropy
This indicates that the Shannon entropy can be used as an underestimate for re-
sistance against complete off-line attacks. Without referring to Massey’s bound,
appendix A of [8] uses α ≥ log2(H) and consequently from a theoretical perspec-
tive the numbers Table A.1 in [8] are about one bit too small. A large Shannon
(and consequently Guessing) entropy does not provide resistance against incom-
plete attacks. To this end, for 0 < δ < 1 consider the distribution (δ, q1, q2, . . . qm)
with qi = (1− δ)/m. This distribution has a Shannon entropy that goes to infin-
ity when m goes to infinity, while the probability that the first guess is successful
is δ irrespective of m. In other words, the Shannon and Guessing entropies alone
are not an appropriate measure for secure password distribution as is suggested
in table A.1 of [8].

In our model we have only considered an attacker that is after one specific
password. In practice the attacker might test-data for several, say P , passwords
(e.g. of different users), e.g. a UNIX “passwd” file or a Windows “SAM” data-
base. If the attacker is only after one password (and not necessarily all of them
or a specific one), his optimal strategy would be in parallel: trying if any of the
passwords is the most likely password etcetera. If the test-data is just a secure
hash of a password, then the attacker would be able to speed up the complete
attack by about a factor P , which is why it is common practice to salt pass-
words before applying a secure hash function to it. If we assume that passwords
are indeed adequately salted, the attacker does not gain any advantage from a
parallel attack when he is aiming to mount a complete attack, i.e. finding all
passwords. However the attacker gains advantage when he is aiming to mount
an incomplete attack. Indeed if the attacker divides the computational effort he
is willing to spend over the number of passwords, his probability of success is
higher than if he only uses this effort to guess only one password. Our model can
be used to quantify resistance against this attack as well by the following obser-
vation: if the probability of success of a incomplete attack with effort L against
one password is q, then the probability of success of an incomplete P -parallel
attack with effort L · P is 1 − (1 − q)P ≈ q · P .

B Appendix: Proofs on Convexity

Proof of Theorem 1: Note that C is a closed set. It suffices to prove the
first part of the result as the remainder then follows from the Krein-Milman
theorem. To this end, let x ∈ C be an extreme point. Let be S ⊂ {1, ..., s} of
highest cardinality such that

Selecting Secure Passwords 63

x ∈ ∩r
i=1f

−1(δi)
⋂

∩j∈SF−1(θj)

is of lowest affine dimension. Now suppose that this dimension is not zero, i.e.
that x is not a minimal intersection point. Then first of all, S �= {1, 2, ..., s}
as then set ∩r

i=1f
−1(δi)

⋂
∩j∈{1,2,...,s}F

−1(θj) would be an unbounded subset
of C that is bounded by assumption. So {1, 2, ..., s} \ S �= ∅ and for every j ∈
{1, 2, ..., s} \S it follows that Fj(x) > δj . That is, there exists a small Euclidean
ball B around x such that Fj(y) > δj for all y ∈ B. It now follows that

B
⋂

∩r
i=1f

−1(δi)
⋂

∩j∈{1,2,...,s}F
−1(θj) ⊂ C (9)

Now, the intersection of a Euclidean ball and a affine space of dimension ≥ 1
contains more points than only its centre (i.e., x). Suppose that z is also in (9)
than it easily follows that x − (z − x) = 2x − z is also in (9). It then follows
that y = 1

2 (2y − z) + 1
2z and x can not be an extreme point. We arrive at a

contradiction and we conclude that x is a minimal intersection point.
Conversely, suppose that x is a minimal intersection point, i.e. there exists a

S of {1, ..., s}, such that:

{x} = ∩r
i=1f

−1(δi)
⋂

∩j∈SF−1(θj). (10)

Now suppose that x is not an extreme point, that is x = λy + (1 − λ)z with
0 < λ < 1 and y, z ∈ C \ {x}. It simply follows that for each j ∈ S we have
Fj(y) = Fj(z) = θj as otherwise Fj(x) > θj . We conclude that y, z are also
elements of the left hand side of (10) contradicting that x is minimal intersection
point. �

Proof of Theorem 2: The cases n = 1 and n = 2 can be easily verified directly
and we assume that n ≥ 3. Note that for f1(x) =

∑n
i=1 xi, f2(x) =

∑n
i=1 i · xi,

Fj(x) = xj − xj+1 for 1 ≤ j < n and Fn(x) = xn, the set Cn,α takes the form:

Cn,α = {x ∈ Rn|f1(x) = 1, f2(x) = α, and Fj(x) ≥ 0 for j = 1, 2..., n}.

As Cn,α is clearly bounded we aim to use Theorem 1. For this we need to look
for unique solutions of x of the equation f1(x) = 1, f2(x) = α and any subsets
of the equations

F1(x) = 0; F2(x) = 0; ... Fn(x) = 0.

As any n − 3 or smaller subset of these equations will certainly not result in
unique solutions x, we only need to consider any n − 2, n − 1 and n-subset of
these equations.

An (n− 2)-subset pertains to leaving out two equations, say the j-th and the
k-th with 1 ≤ j < k ≤ n which leads to the following system of equations:

x1 = x2 = ... = xj

xj+1 = xj+2 = ... = xk

xk+1 = xk+2 = ... = xn = 0.

64 E.R. Verheul

Together with the conditions f1(x) = 1, f2(x) = α simple calculations shows that
this results in a unique solution Xn,j,k as defined in the theorem. However these
solutions also need to satisfy the remaining two equations, i.e., xj ≥ xj+1 and
xk ≥ xk+1 = 0. Simple calculations show that the first condition is equivalent
to k ≥ 2α − 1 and that the second condition is equivalent to j ≤ 2α − 1. We
conclude that the Xj,k,n described in the theorem are all extreme points of Cn,α.

An (n − 1)-subset pertains to a 1 ≤ j ≤ n and

x1 = x2 = ... = xj

xj+1 = xj+2 = ... = xn = 0.

If this has a solution, then 2α− 1 must be equal to j and hence an integer. The
first j coordinates of this solution will be equal to 1/(2α− 1) and the remaining
ones are zero. We arrive at X2α−1,2α−1,n. Finally, an n-subset cannot results in
solutions, let alone unique ones. �
Proof of Proposition 1: As the last equivalence is evident, we only prove
the first one. To this end, let (p1, ..., pn) ∈ Cn,α,d �= ∅, then from Theorem 3
with d = 1 it follows that 1/(2α − 1) ≤ p1. If (p1, ..., pn) ∈ Cn,α,d ⊂ Cn,α then
clearly p1 ≤ 1/d. Hence it follows that d ≤ 2α−1. The “only if” part of the first
equivalence now follows from Cn,α,d ⊂n,α. Conversely suppose that Cn,α �= ∅ and
d ≤ 2α− 1. Then according to Theorem 2 Xd,n,n is one of the extreme points of
Theorem 2 Cn,α. It evidently follows that Xd,n,n ∈ Cn,α,d, showing that this set
is not empty. Actually, this alternatively follows from X�2α−1�,n,n ∈ Cn,α,d. �
Proof of Proposition 2: We start the proof with two observations. First,
from the description of the points Xj,k,n in Theorem 2 it follows that all first j
probabilities are strictly larger than the remaining ones provided that k �= 2α−1.
Second, if k = 2α − 1 (hence 2α − 1 is an integer in particular), then for all
1 ≤ j ≤ 2α − 1, the points Xj,k,n are equal to the distribution consisting of
2α− 1 non-zero probabilities equal to 1/(2α− 1). As d ≤ 2α− 1 by Proposition
1 it evidently follows that then all first d probabilities are equal in Xj,k,n.

For a proof of the proposition; by using the description of the points Xj,k,n

in Theorem 2 it directly follows that if d ≤ j ≤ 2α − 1 ≤ k that then the first d
probabilities are equal.

Conversely, let a point Y ∈ Cn,α have its first d probabilities equal. Then
by Theorem 2 the point Y is the convex combination of points Xj,k,n satisfying
1 ≤ j ≤ 2α − 1 ≤ k, j < k. Suppose that in this convex combination, some
points Xj,k,n contribute that do not satisfy d ≤ j, i.e. d > j. If for some of these
points k = 2α− 1 then, by the second observation at the beginning of the proof,
the contribution of this Xj,k,n can be replaced with Xd,k,n.

So we may assume for the point Xj,k,n contributing to Y satisfies d > j and
k > 2α− 1. Let j′ be the smallest j with this condition, it follows from the first
observation at the beginning of the proof, that the first j′ < d probabilities in
Y are strictly larger than the j′ + 1-th probability and hence that the first d
probabilities in Y are not equal. We arrive at a contradiction. �

Selecting Secure Passwords 65

Proof of Theorem 6: We number the points in E, i.e. E = {e1, e2, . . . , e|E|}.
Clearly,

Cn,α,δ = {
|E|∑
i=1

λiei | ei ∈ E,

|E|∑
i=1

λi = 1, λi ≥ 0,

|E|∑
i=1

λi(ei)1 ≤ δ}. (11)

We relate Cn,α,δ with

L = {(λ1, λ2, . . . , λ|E|) | λi ≥ 0,

|E|∑
i=1

λi = 1,

|E|∑
i=1

λi(ei)1 ≤ δ} ⊂ R|E|.

For l = (λ1, λ2, . . . , λ|E|) ∈ L we define l ·E =
∑|E|

i=1 λi ·ei. As the set L is convex,
closed and bounded it is spanned by it extreme points. Following Theorem 1 the
extreme points of L are of type

F = {(λ1, λ2, . . . , λ|E|) | only two different λi, λj ∈ [0, 1] are non-zero and
λi + λj = 1, λi · (ei)1 + λj · (ej)1 = δ

or λi = 1 and (ei)1 ≤ δ}

Clearly, F is finite. Also, any convex combination (λ1, λ2, . . . , λ|E|) occurring
in (11) is a convex combination of elements in F . In other words, the convex
hull of F · E is equal to Cn,α,δ. That is, an extreme point of Cn,α,δ is either an
extreme point f in Cn,α with (f)1 ≤ δ or of type

λXj1,k1,n + (1 − λ)Xj2,k2,n (12)

with 1 ≤ j1, j2 ≤ 2α − 1 ≤ k1, k2 ≤ n and λ ∈ (0, 1).
We now take another view at the extreme points of Cn,α,δ. Using the technique

used in the proof of Theorem 2 it follows that the extreme points of Cn,α,δ are
either f ∈ E with (f)1 ≤ δ or take the form

(δ, δ, · · · δ, a, · · · a, b, · · · b, 0, · · · 0)
↑ ↑ ↑ ↑ ↑ ↑

1, 2, · · · j, j + 1, · · · k, k + 1, · · · m, m + 1 · · · n
(13)

with the condition that δ ≥ a ≥ b > 0 and that this point is in Cn,α. 2

If either k1 or k2, say k1, in expression (12) is equal to 2α − 1 (also implying
that 2α − 1 is an integer) then this expression also holds if we take j1 = j2.
Indeed, all points of type Xj,2α−1,n are equal (cf. Theorem 2). So assume that
2α − 1 < k1, k2. As is shown by Theorem 2 all extreme points Xj,k,n with
2α−1 < k in E are of a special form: the first j coordinates are equal and strictly
larger than the j +1 to k-th coordinates which are also equal and strictly larger
than zero. It follows immediately that a point as in expression (12) can only be
of the prescribed form (13) if either j1 = j2 or k1 = k2. �
2 We note that, unlike in the proof of Theorem 2, not all points of the prescribed form

(13), automatically satisfy the remaining conditions.

66 E.R. Verheul

C Appendix: Comparison of Bounds

In Figure 1 below we have for n = 23 and α = 7 depicted the graphs of δ →
H(n, α, δ) calculated using Theorem 7 labeled by “A”; δ → min(G(gα

n (δ), 2α −
1, n), log2(2α − 1)) labeled by “B”, δ → G(gα

n (δ), 2α − 1, n) labeled by “C”,
the bound in Theorem 9 labeled by “D” and the Min entropy δ → − log2(δ)
labeled by “E”. Finally we have depicted the 13 points (aj,n,n, H(Xj,n,n)). It is
easily verified that Theorem 8 is strong in the sense that for all δ that equal the
first coordinate of an extreme point of type Xj,n,n, i.e. δ = aj,n,n equality in
Theorem 8 holds provided H(Xj,n,n) ≤ log2(2α− 1). However, the figure below
indicates that these distributions are actually “local” minima with respect to
the Shannon entropy. The figure also indicates that the bound in Theorem 8
is strong, certainly in comparison with the bound in Theorem 9 and the Min
entropy. We finally note that the example also shows that taking the minimum
with log2(2α − 1) in Theorem 8 cannot be relaxed.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
ha

nn
on

 e
nt

ro
py

δ

A=B

C

A

B=C

D

E

(aj,n,n, H(Xj,n,n))

Fig. 1. Comparison of bounds

Human Identification Through Image Evaluation
Using Secret Predicates�

Hassan Jameel1, Riaz Ahmed Shaikh1, Heejo Lee2, and Sungyoung Lee1

1 Department of Computer Engineering, Kyung Hee University, 449-701 Suwon,
South Korea

{hassan, riaz, sylee}@oslab.khu.ac.kr,
2 Department of Computer Science and Engineering, Korea University Anam-dong,

Seongbuk-gu, Seoul 136-701, South Korea
heejo@korea.ac.kr

Abstract. The task of developing protocols for humans to securely au-
thenticate themselves to a remote server has been an interesting topic
in cryptography as a replacement for the traditional, less secure, pass-
word based systems. The protocols proposed in literature are based on
some underlying difficult mathematical problem, which are tuned so as to
make them easily computable by humans. As a result these protocols are
easily broken when desired to be efficiently executable. We present a Hu-
man Identification Protocol based on the ability of humans to efficiently
process an image given a secret predicate. It is a challenge-response pro-
tocol in which a subset of images presented satisfies a secret predicate
shared by the challenger and the user. We conjecture that it is hard to
guess this secret predicate for adversaries, both humans and programs.
It can be efficiently executed by humans with the knowledge of the secret
which in turn is easily memorable and replaceable. We prove the security
of the protocol separately for human adversaries and programs based on
two separate assumptions and justify these assumptions with the help of
an example implementation.

1 Introduction

The problem of constructing human identification protocols is an important one
in the cryptographic community. That is to say, how can a human H authenticate
to a remote server C, without using any computational aid? To make matters
worse, the communication link between H and C is controlled by an adversary
who can either passively listen to their conversation or actively interfere at will.
Under such conditions, it is desirable that this adversary should not be able
to masquerade as H even after observing a number of authentication sessions.
� This research was supported by the MIC (Ministry of Informations and Communi-

cations), Korea under the ITRC (Information Technology Research Center) support
program supervised by the IITA (Institute of Information Technology Assessment)
incollaboration with SunMoon University. The corresponding author is Dr. Sungy-
oung Lee.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 67–84, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

68 H. Jameel et al.

Notice that traditional password based schemes are completely insecure in this
environment, in the sense that even the remote terminal which is being used
by H to perform the authentication protocol is not trusted. It might contain
malicious software like key-loggers, that can grab and record everything that H
types, or someone might be using a hidden camera to see the alpha-numerics
being typed. Ideally, H should be presented with a set of challenges, which H
processes efficiently with the help of some shared secret and replies such that
the responses yield little or nothing about the secret. The amount of processing
required on H ’s part defines the feasibility of the protocol. What kind of protocol
is practical for humans? We are not particularly good at numerical calculations;
however we can be reasonably proud of our image processing abilities. If we can
pose a challenge that involves evaluating an image based on some secret criteria
then we might be able to construct a human executable protocol.

Consider the example of an IQ test based on images. The purpose of such a
test is to check a person’s intellectual abilities. The hardness of these questions
is relative; for some these tests are harder than for others. But once a particular
hint for a question is given, it would be answered promptly unlike someone
who has to solve the question without any aid. If we assume that the hint to the
question is a secret shared between the questioner and the human, then those who
know the secret hint before hand can reply instantly whereas others without the
knowledge of the hint would take considerably longer time. Furthermore, since
we are involving images, the task of writing a computer program to answer these
questions seems extremely hard as well, much like the automated CAPTCHA
tests [6] that most humans can solve but computer programs cannot pass with a
certain probability. The absence of such a “hint” makes the task of guessing the
answer hard even for a human adversary. Additionally and more importantly,
this “hint” can be renewed after even a small number of authentications as it
will not be hard for a human to remember a natural statement.

The idea of constructing secure and efficiently executable human identification
protocols using human’s cognitive abilities about picture processing is not new.
Matsumoto and Imai [1] were the first to propose a human identification protocol,
followed by Wang et al [2], Matsumoto [3], Yang Li and Teng [4], Hopper and Blum
[5] and Li [7]. All of these schemes can be implemented graphically. The idea is to
map the secret with a set of images. The user only has to remember the images
instead of a string of secret. This allows for easy secret recollection as humans can
easily recall images as compared to textual strings. However, the security of the
scheme relies on some underlying numerical problem like the Learning Parity with
Noise (LPN) problem in [5] and the images are only used as an aid for learning the
secret. Due to this fact, the complexity of these schemes is still a bit high, e.g. the
HB protocol of [5] requires more than 300 seconds on average by humans. More
recently, Weinshall [12] has proposed a scheme based on the SAT problem, which
was subsequently broken in [13]. Notice that even in their scheme, the secret is a
set of prespecified grid positions and in order to easily memorize these positions,
pictures are introduced. They do not make use of the underlying structure of the
images apart from using them as a memory aid. DeJa Vu[8] and Passface [9] are

Human Identification Through Image Evaluation Using Secret Predicates 69

purely graphical authentication schemes in which the user is asked to remember
a subset of secret pictures and is then asked to authenticate by choosing his/her
chosen images in a pool of pictures. A similar concept is to point and click secret
locations in an image as in [10]. Apparently, in these schemes the user does not
have to do any computational effort whatsoever. But this does not come without
a drawback. These systems are not secure if someone is observing the actions of the
user. If an adversary monitors the users’ selections, it will be pretty easy to learn
the secret images or locations. We argue that an image itself has a very complex
structure and features, and instead of using it just as a memory aid, we can use
the internal properties of images to pose challenges that can be efficiently executed
by humans. Additionally, we might relax the required number of authentication
sessions with a given secret, if the secret is easy to remember by a human and
can be changed without too much effort on H ’s part. From the previous efforts,
we can see that apart from the usual trade off between security, secret size and
computational time, we face the problem that if we want to renew the secret after
a small number of authentication sessions, it seems hard for a human to remember
the new secret immediately.

In this paper, we show that it is possible to construct a challenge-response
protocol, each challenge of which contains a kind of AI hard problem like CAPT-
CHA [6] for a computer algorithm. Moreover, the challenge is presented in such a
way that a human without the knowledge of the secret can make “little sense” of
the correlation between the elements of the challenge. We claim that such hard
problems exist, and a protocol based on these problems will be very hard to break
for adversaries, both humans and computer programs, while being efficiently
executable for the legitimate user. Exact quantification of the hardness of these
problems however remains an open issue.

2 An Informal Description of the Protocol

The central idea proposed in this paper is informally as follows: How can we
combine the notion of CAPTCHA (creating a challenge-response that is not
susceptible to bots) and secure user authentication that is not vulnerable to
shoulder surfing or sniffing? To accomplish this feat, we propose the following
protocol:

Setup. User and the server agree upon a secret that is a composite of the
following:

1. A simple question Q (which we will call a predicate) with only a binary answer,
such as “Does the picture contain a woman?”
2. A set of distinct random numbers a1, a2, . . . , ar; all between 1 and n.

Server to user. A list of n pictures that are uniformly distributed with respect
to the question Q above.

User to server. n-bit binary string such that for pictures numbered a1, a2,. . .,ar

the corresponding bits are answers to the secret question Q and for all the other
positions the bits are random.

70 H. Jameel et al.

The server accepts if the answer string is correct at the designated places. We
can do the online step repeatedly to amplify security. In the full version of the
protocol in Section 4, we permute the ai’s to make it harder for the adversary to
extract any information from the answer string. The probability of guessing the
correct permutation would be far less than that of guessing a correct random
ordering of numbers. Security is based on the fact that (i) a bot or a computer
program does not know the relationship between the pictures, and (ii) a human
watching the proceedings would not know which bits are significant, which in
turn will make it hard to guess the question being answered.

3 Definitions

We start with a set of definitions formalizing the notions of Identification Pro-
tocols and the new concepts introduced in this paper. We first define the notion
of an AI problem solver which is modified from the definition of an AI problem
in [6].

Definition 1. An AI problem solver is a function f : S → R, where S is a set
of AI problem instances and R ∈ {0, 1}∗is the answer alphabet. A family of AI
problem solvers is a map F : Keys(F)×S → R. Here Keys(F) denotes the set of
all AI problem solvers from S to R. Namely, if k ∈ Keys(F) then Fk : S → R is
an AI problem solver.

Notice that we specifically define a family of AI problem solvers instead of just
a single one. Such a family will allow us to distribute different secrets, namely
k ∈ Keys(F), to different users for authentication. The concept is similar to a
function family.

We define the (δ, τ)-hardness of an AI problem solver similar to [6]:

Definition 2. An AI problem solver f is said to be (δ, τ)-solved if there exists a

program A, running in time at most τ ,on an input s
R←S, such that

Pr
[
s

R←S : A (s) = f (s)
]
≥ δ

f is said to be (δ, τ)-hard if no current program is a (δ, τ)solution to f , and the
AI community agrees that it is hard to find such a solution.

Definition 3. A family of AI problem solvers is said to be (δ, τ)-hard if for all
keys k ∈ Keys(F), Fk is (δk, τk)-hard with δk ≤ δ and τk ≤ τ .

Definition 4. We say that a function family, F : Keys(F)×S → R is (λ (r) , τ)-
resilient against key recovery, if for all H running in time at most τ , we have:

Pr[k
R←Keys(F); b1b2 . . . br

R←{0, 1}r ;
s1s2 . . . sr ← S|Fk (s1)Fk (s2) . . . Fk (sr) = b1b2 . . . br;
k′ ← H (s1s2 . . . sr) : k = k′] < λ (r)

Human Identification Through Image Evaluation Using Secret Predicates 71

Notice that H is not shown the value of the function Fk at each of the ‘r’
inputs. H only knows that the answer to each input belongs to the range R. It
has to guess the correlation between the different inputs. Of course, the inputs
must have an internal structure in order for the above definition to make sense.
We do not elaborate this correlation between the inputs here as it will become
clear when we describe the security of our protocol against human adversaries,
instantiated with a suitable choice of the function family F in Section 6.

We restate the definitions of identification protocols and human executable
protocols from [5] for reference:

Definition 5. An Identification Protocol is a pair of probabilistic interactive
programs (H, C) with shared auxiliary input z, such that the following conditions
hold:

– For all auxiliary inputs z, Pr [〈H (z) , C (z)〉 = accept] > 0.9
– For each pair x �= y, Pr [〈H (x) , C (y)〉 = accept] < 0.1

When 〈H, C〉 = accept, we say that H authenticates to C. The transcript of C
contains challenges c and that of H comprises responses r to these challenges.

Definition 6. An Identification Protocol (H, C) is (α, β, t)-human executable if
at least a (1 − α) portion of the human population can perform the calculations
Hunaided and without errors in at most t seconds with probability greater than
(1 − β).

Discussion on the definitions. We have separately defined a family of AI problem
solvers and an (λ (r) , τ)-resilient function family. This partition is due to the
fact that we want different security assumptions for a program and a human
adversary. For an adversarial program, we require that the actual hardness in
breaking our protocol relates to solving a function from the family of AI problem
solvers. The set of keys ‘Keys(F)’ need not be hidden from this program or more
strongly, the program might even be given the particular key being used and
asked to guess the value of the function at a new input. We conjecture that such
a program will still not be able to succeed but with a small probability. More
details will follow in the next sections. On the other hand, we require a rather
weak security assumption for human adversaries. Obviously, for a human the AI
problem solvers will not pose any problems by definition. Instead, we present a
(λ (r) , τ)-resilient function family to the human adversary. More specifically, we
hide the set Keys(F) from the human adversary; randomly select a key from this
set; draw a set of r inputs at random and ask the human adversary to guess the
key. Since we assume the function family is (λ (r) , τ)-resilient, the probability
of guessing the key is very small. We will present a function family F and argue
that it satisfies both these requirements. The same function family F can both be
a family of AI problem solvers and (λ (r) , τ)-resilient at the same time. Indeed,
we give an example of such an F .

72 H. Jameel et al.

4 Proposed Protocol

The main theme of our protocol as described in Section 2 is to present a hu-
man with a series of pictures that satisfy a certain predicate. The user answers
a pre-specified set of these pictures in an order determined by a hidden secret
permutation. The assumption is that the analysis of these pictures by a com-
puter program is extremely hard and even for a human adversary, the challenge
of guessing the secret predicate when the answers are given in a random order,
seems implausible. We first give a description of the protocol based on a generic
building block F , and give a detailed practical example of this building block in
Section 6.

Preliminaries. The following notations and functions will be used in the pro-
tocol and hence forth.

Perm (L, l) : Outputs the hidden permutation string P = q∗0p1q
∗
1p2q

∗
2 · · · plq

∗
l

of length L, obtained by first randomly selecting a permutation of the set
{1, 2, . . . , L} and then randomly selecting L− l locations in this permuted string
and replacing the numbers in the corresponding locations by 0’s. The non-
zero numbers are p1, p2, . . . , pl. Each q∗i is either null or a substring of 0’s and
|q∗0 | + |q∗1 | + · · · + |q∗l | = L − l.

Insert (P, a1a2 . . . al) : Given P = q∗0p1q
∗
1p2q

∗
2 · · · plq

∗
l and an l-bit binary string

a1a2 . . . al, outputs a binary string b∗0a1b
∗
1a2b

∗
2 · · ·alb

∗
l , where each b∗i is a random

binary substring whose length is equal to q∗i .

Note. Notice that in this procedure the human user has to input random bits
at the positions of q∗i ’s. This is an idealized assumption since humans may not
be able to generate truly random bits. We acknowledge this as a drawback but
use it nevertheless since it makes our analysis simpler.

Sep (P, r) : From the given P = q∗0p1q
∗
1p2q

∗
2 · · · plq

∗
l and an L-bit binary string

r = r1r2 . . . rL, does the following:

– r′ ← null
– For k = 1toL

• If P [k] �= 0
∗ r′ ← r′||r [k]
∗ Output r′

Notice that, |r′| = l.
We are now ready to describe our protocol. After presenting the protocol

based on a generic building block F and defining the security of our protocol
under the assumed hardness of this building block, we will describe a suitable
instantiation of this building block in the next section. It is our thesis that the
proposed candidate satisfies our security requirements.

Human Identification Through Image Evaluation Using Secret Predicates 73

System Parameters. L, l and m; all positive integers.
Setup. H and C evaluate Perm (L, l) and keep the resulting hidden permu-
tation P as a shared secret. From a family of (δ, τ)-hard AI problem solvers
F : Keys(F) × S → {0, 1}, H and C randomly select a secret key k ∈ Keys(F).
C also sets S− = { }.
Protocol.

– Set j = 0
– While j �= m or j �= ⊥:

• C randomly chooses a binary sequence b1b2 · · · bL from {0, 1}L.
• for i = 1 to L:

∗ If bi = 1, C selects a random si ∈ S − S− such that Fk (si) = 1 and
updates S− ← S− ∪ {si}.

∗ Else C selects a random si ∈ S − S− such that Fk (si) = 0 and
updates S− ← S− ∪ {si}.

∗ Csets s = s1s2 · · · sL and sends it to H .
• For i = 1 to l:

∗ H computes F (spi). If it is 1, it assigns ai = 1 otherwise assigns
ai = 0.

• H sends r′ = Insert (P, a1a2 . . . al) to C.
• If Sep (P, r′) = F (sp1) ‖ F (sp2) ‖ . . . ‖ F (spl

), C increments j otherwise
C sets j = ⊥.

– If j = m, C accepts H .

It is easy to see that the probability of someone impersonating a legitimate
user by randomly submitting answers is 2−lm. We have defined the set S−, so
that once an input from a set S has been used, it should no longer be used again
for that particular user. In practice we can define two sets: S1 and S0 denoting
the sets whose elements evaluate to Fk (.) = 1 and 0 respectively. Each time an
input is used from this set, it is taken out of this set and never used for the same
user. The reason and practicality of this requirement will become clear when we
show a reasonable instantiation.

5 Security Analysis

5.1 Security Against Passive Adversarial Programs

An Identification Protocol (H, C) is (p, q) secure against passive adversaries if
for all computationally bounded adversaries A,

Pr [〈A (T q (H (z) , C (z))) , C (z)〉 = accept] ≤ p

Here T q (., .) represents the transcript of q communication sessions between H
and C. In the appendix, we assume that if B is a program, then even after
observing a certain amount of values of Fk (.), it cannot solve this function with
probability better than δ. With this assumption, we prove the following for our
protocol:

74 H. Jameel et al.

Claim 1. If F is a (δ, τ)-hard family of AI problem solvers, then for all adver-
sarial programs A:

Pr [(A (T q (H (z) , C (z))) , C (z)) = accept] ≤ 2δ − 1

Proof. See Appendix A.1.

5.2 Security Against Passive Human Adversaries

For a human adversary, we assume that F is a family of (λ (r) , τ)-resilient func-
tions. Hence it is not possible to extract the key k of a particular function Fk of
this family, when less than r of the instances are shown to a human adversary.
We can construct an experiment in which this adversary is also given a random
binary sequence of r bits. Obviously, this adversary has no advantage in detect-
ing the key k, if this sequence is truly independent of the choice of answers.
However if we give this adversary the true sequence of answers, then it might
have considerable advantage in detecting the secret key. All we need to show is
that our protocol does not reveal the true answers with all but a small probabil-
ity. Ideally, the answer string should be a pseudorandom binary string; however
we do not know how a human would be able to generate a cryptographically
secure pseudorandom string without any computational aid. The best we can
do is to introduce some randomness in the answer strings based on the secret
permutation and the random bits. We digress here to explain the need for secret
permutation and the random bits. Consider an adversary that randomly picks
up a permutation and the corresponding locations and tries to detect the key.
For a suitable choice of L = 10 and l = 5, the probability that the adversary’s
guess was correct is 5!

10!/
(10

5

)
≈ 2−22. If instead, we use a simpler procedure of

randomly selecting 5 locations (as in Section 2), then the adversary’s probability
of guessing the hidden locations is just 1/

(10
5

)
≈ 2−8. To achieve the same level

of probability, we would have to choose L = 24 and l = 12, which means that the
user has to remember more locations. This motivates the use of our procedure.

We show in Appendix A.2, that in a given round, the probability of the event
that the answer string returned by H is equal to the actual answer string (with-
out permutation and random bits) is less than 1

2r

(
1 + l

L2

)r
. Since our adversary

has no advantage in solving our protocol without guessing the random permu-
tation, it follows that the advantage of this adversary in breaking our protocol
is bounded by λ (r) and the above probability, as shown in the appendix.

5.3 Security Against Active Adversaries

We take the definition of an active adversary from [5]. We do not distinguish
between a human adversary and an adversarial program in this case. An identi-
fication protocol (H, C) is (p, q, r)-detecting against active adversaries if for all
computationally bounded adversaries A,

−Pr [〈H (z) ,A (T r (H (z) , C (z)))〉 �= ⊥] < q
−Pr [〈A (T r (H (z) , C (z))) , C (z)〉 = accept] < p

Human Identification Through Image Evaluation Using Secret Predicates 75

Against active adversaries we have a natural defense thanks to the cognitive
abilities of humans. If a human can detect that a particular instance has been
replayed twice or more with a high probability, then he may reject C, hence ter-
minating the protocol session. Hence our protocol has an innate defense against
replay attacks. More specifically, let 1 − q be the probability that H can detect
an instance s′ being replayed. Obviously, this probability should be a function
of time and the specific iteration at which the instance is being replayed. Let S−

i

denote the variable defining the set S− after the ith query to C by H . Let Ai

be the event that an s′ was presented to H at the ith query, such that s′ ∈ Sj

for some j < i. Then,

Pr [H detects Ai] ≥ Pr
[
H detects Ar|s′ ∈ S−

1 ∧ s′ /∈ S−
r , 1 < j < r

]
≥ 1 − q

All other events will be predicted with greater probability. Thus with high prob-
ability the human will detect a replay challenge attack.

Notice however, that our protocol is not secure against another kind of attack:
the automated adversary intercepts the sequence from the server to the user, and
replaces one instance in that sequence by some other instance (taken from some
other source). If the user’s reply is rejected, the adversary now has two instances
for which it knows that the answers are different. After collecting a few such pairs,
all these pairs are displayed to a human adversary, which now has the instances
alongwith their answers. This attack, however would result in the termination of
the session, if successful. The protocol could be repaired to handle this kind of
active attack. Namely, we can allow the user to submit wrong answers about half of
the time. This would result in an increase in the number of rounds and would take
more time. We acknowledge it as a weakness in our protocol and leave a possible
efficient fix as a future work. There may be other active attacks from a combined
human-computer adversary and a thorough analysis is certainly required.

6 A Suitable Instantiation of F

We describe a procedure that seems a plausible candidate for an AI problem
solver as well as being (λ (r) , τ)-resilient at the same time. Our motivation is
the saying that a picture is worth a thousand words. A picture might satisfy
a variety of predicates. Consider as an example, the picture in Figure 1. How
many different predicates does this picture satisfy? To list a few:

– Does this picture present a cartoon?
– Is there a “nose” in this picture?
– Is there a woman in this picture?

And so on. In short, we can select a predicate, find a set of pictures that satisfy
this predicate and a set that does not. We present these pictures to a human
user in place of F in our protocol and we are sure that it will satisfy our goals.
Let Pic denote a collection of pictures and let pic be a member of it. Let Pred
denote the set of all predicates. We define the family of functions:

Q : Pred × Pic → {0, 1}

76 H. Jameel et al.

Fig. 1. A picture might represent a large number of concepts and contexts

Conjecture 1. Q defines a family of AI problem solvers.

The CAPTCHA project has a particular CAPTCHA named ESP-PIX [11], that
presents a set of pictures related to each other through some feature. The pictures
are rather obviously related to each other when viewed by a human; however it is
claimed that for a computer program it is extremely hard to find a common link
between the pictures. We present a similar but harder problem. In our protocol,
the pictures satisfying the predicate are intermingled with those that do not,
and we ask a computer program to tell whether the pictures are interlinked or
not.

Conjecture 2. Q defines an (λ (r) , τ)-resilient family of functions.

This claim seems hard to justify. Our claim is based on the belief that the fol-
lowing problem would be hard for a human. Namely, a human is given a series
of pictures as in Figure 2; is told that some of these pictures satisfy a given
predicate and some don’t, and is asked to guess the hidden predicate. Of course
without the knowledge of the answers to the predicate for each of these pictures,
this seems to be a hard problem. With the knowledge of the answers, we cannot

Fig. 2. A set of pictures, some or all of which satisfy a hidden predicate

say with a certain amount of confidence that a person might not be able to
guess the hidden predicate. We constructed our protocol in a way so as to hide
the answers, such that the adversary might not be able to gain advantage by
guessing the hidden predicate. An important question is: What kind of predicate
to choose? A predicate involving color differences like “Does the picture contain

Human Identification Through Image Evaluation Using Secret Predicates 77

the color red?” should most certainly not be used. Color difference is very easily
caught by the human eye. The predicate used in Figure 2 is “Does the object in
the image begin contain the letter “P” in its name?” Predicates like this, which
do not catch the human eye, are the likely candidates.

6.1 A User Friendly Implementation

For human users the parameters L = 10, l = 5 and m = 4 can be chosen.
Note that a random guess attack can only succeed with a probability 2−20 in
this case, which is more than the security of a 4-digit pin number. The user
is given a hidden permutation string say: 0098030502. When the user inputs
his ID, he is brought to a page containing 10 pictures in a 2X5 grid at the
bottom of which is a text box. The user answers by randomly picking ‘0’ or ‘1’
in place of the ‘0’s’ in the permutation string and answering the pictures in the
specified order corresponding to the digits other than the ‘0’s’. So, for example,
a possible answer would be 1011001101, where the underlined digits denote the
actual answers and the rest are random bits. The user would input the string
1011001101 and will go to the next series of 10 pictures if this answer is correct
at the specified positions. The procedure continues until 4 steps and the user is
accepted once all the 4 steps result in a success. The choice of using 10 pictures
in a challenge seems appropriate, as they can easily be displayed on the screen
as shown in Figure 3. A single picture would take around 5 seconds for a human

Fig. 3. An authentication step in our proposed protocol

to verify whether it satisfies the predicate or not. This would take around 100
seconds to execute the protocol. This amount of time seems reasonable if we use
the protocol only under certain circumstances such as when the user is trying to
log on through an insecure public terminal.

78 H. Jameel et al.

7 Limitations and Discussion

One might ask the question that how long the protocol should be run to keep a
desired security level. It is evident that based on our assumption, the protocol
can be safely executed for a number of times if we only consider adversarial
programs. How about human adversaries? We know an inherent weakness in
us humans; the more the work load, the less efficient we are. So if a human
adversary is given a collection of, say 2000, pictures and is asked to find the
hidden predicate, then he might not be able to examine all these pictures. In
order to make the task harder for a human adversary, we can have two or more
predicates connected through a truth clause. The user then checks whether the
picture satisfies the clause and answers accordingly. This will result in an increase
in execution time, but guessing the secret predicates will be much harder.

Another question is regarding the possible usage of our protocol. We insist
that our protocol should be used only in situations when a user is away from
the luxury and security of his personal computer or office environment. The user
might want to use our system when using a public terminal to log in for emails
while on a business trip. However, when he is back in his office or home, he can
use the normal password based system to log in to his computer. So, we can
safely use our system for a small number of authentications before the secret
predicate can be refreshed and a new hidden permutation can be used. The fact
that the secret predicate plus the hidden permutation is not a load on a human’s
memory (the hidden permutation being the size of a normal telephone number)
makes this switch very practical and reusable. Consequently, we can use this
system, for say 20 or 30 authentications before renewing the secret.

A modified version of the protocol, secure against general active adversaries is
also desirable; without making it infeasible or increasing the number of rounds.
The most important limitation is the selection of the predicates and selecting
appropriate pictures that satisfy these predicates. This can be done by a ded-
icated group from the service providers. We do not know however, if this task
can be performed by a computer or not. Automatically generated predicates and
pictures might prove helpful and will increase the practicality of our scheme. An-
other important direction is to find whether there exist other functions in place
of the predicate-image one. A function family whose soundness can be theoreti-
cally proved instead of being conjectured would certainly be a better candidate
than the one presented in this paper.

8 Conclusion

The problem of making secure human identification protocols in which a human
authenticates to a remote server has resulted in many efficient authentication
protocols over the years. These protocols try to make things easy for humans by
presenting them a challenge based on some mathematical problem which is easy
to compute but difficult for an adversary to crack. However, the efficiency of
these protocols lie in the user friendly representation. Instead of using computa-
tional problems, we can look for problems in domains where humans are better

Human Identification Through Image Evaluation Using Secret Predicates 79

than computers, like image evaluation. However, to construct an identification
protocol, we need some problem that is not only hard for computer programs
but for human adversaries too. We have shown that it is possible to construct a
protocol based on human’s excellent image processing abilities such that defeat-
ing the protocol is hard even for the human adversaries. The proposed problem
based on evaluating an image through a secret predicate seems to be hard to
crack even for human adversaries who do not have the knowledge of the secret.
This allows us to deal with the security of the protocol separately for the adver-
sarial programs and for human adversaries. It will be interesting to investigate
further in search for other possible problems that satisfy this nice feature. The
obvious open question and limitation is to mathematically quantify the hardness
of the problem discussed in this paper. This, however, remains an open problem.

Acknowledgements

We are grateful to Stuart Haber for his comments and the anonymous reviewers
for their suggestions.

References

1. Matsumoto, T., Imai, H.: Human Identification through Insecure Channel. Ad-
vances in Cryptology - EUROCRYPT 91, Lecture Notes in Computer Science,
Springer-Verlag. 547 (1991) 409–421

2. Wang, C.H., Hwang, T., Tsai, J.J.: On the Matsumoto and Imai’s Human Iden-
tification Scheme. Advances in Cryptology - EUROCRYPT 95, Lecture Notes in
Computer Science, Springer-Verlag. 921 (1995) 382–392

3. Matsumoto, T.: Human-computer cryptography: An attempt. 3rd ACM Conference
on Computer and Communications Security, ACM Press. (1996) 68–75

4. Xiang-Yang Li, Shang-Hua Teng: Practical Human-Machine Identification over In-
secure Channels. Journal of Combinatorial Optimization. 3 (1999) 347–361

5. Hopper, N.J., Blum, M.: Secure Human Identification Protocols. Advances in Cryp-
tology - Asiacrypt 2001, Lecture Notes in Computer Science, Springer-Verlag. 2248
(2001) 52–66

6. Luis von Ahn, Manuel Blum, Nicholas Hopper, John Langford: CAPTCHA: Using
Hard AI Problems for Security. Advances in Cryptology – Eurocrypt 2003, Lecture
Notes in Computer Science, Springer-Verlag. (2003) 294–311

7. Shujun Li, Heung-Yeung Shum: Secure Human-computer identification against
Peeping Attacks (SecHCI): A Survey. Unpublished report, available at Elsevier’s
Computer Science Preprint Server. (2002)

8. Rachna Dhamija, Adrian Perrig: Deja Vu: A user study using images for authen-
tication. Proc. of the 9th USENIX Security Symposium. (2000) 45–58

9. ID Arts Inc: Passfaces - the Art of Identification. Visit http://www.idarts.com
10. Vince Sorensen: PassPic - Visual Password Management. Visit http://

www.authord.com/
11. The CAPTCHA project: ESP-PIX. Visit http://www.captcha.net/
12. Daphna Weinshall: Cognitive Authentication Schemes Safe Against Spyware (Short

Paper). 2006 IEEE Symposium on Security and Privacy. (2006) 295–300
13. Philippe Golle and David Wagner: Cryptanalysis of a Cognitive Authentication

Scheme. Cryptology ePrint Archive, Report 2006/258. http://eprint.iacr.org/.

80 H. Jameel et al.

A Security Analysis

A.1 Security Against Passive Adversarial Programs

We first define the following oracles that represent the different functionalities
in our protocol.

The oracle Fk. For any k ∈ Keys(F), this oracle takes as input an s ∈ S and
outputs Fk (s) ∈ {0, 1}.

We assume a global set S− initially empty, available to the following oracles.

The oracle C. This oracle takes as input the following queries:

– Init : This query initializes a new session and terminates any previous session.
C randomly outputs the sequence of instances s = s1s2 . . . sL from S − S−

and updates S− ← S− ∪ s, j ← 1.
– C (a1a2 . . . aL) : If j = ⊥ outputs reject. Else if j = m outputs accept or

reject and updates j ← ⊥. Else if j < m, yields one of two possible outputs:
• (s) ; Randomly outputs the sequence s = s1s2 . . . sL from S − S− and

updates S− ← S− ∪ s, j ← j + 1.
• (reject) ; Outputs (reject) and sets j ← ⊥.

The oracle H. Takes as input the query H (s = s1s2 . . . sL). If S− ∩ s = ϕ,
outputs a1a2 . . . al. Else outputs ⊥.

Now suppose an AI problem solver outputs a sequence of bits r1r2 . . . rt on the
inputs s1s2 . . . st. An adversarial program A wants to guess Fk (st+1) on being
given the challenge st+1. The following experiment describes this functionality:

ExperimentExpaps
F,A

k
R←Keys(F)

s ← AFk

b ← AFk (s)
If b = Fk (s) return 1 else return 0

The aps-advantage of A is defined as:

Advaps
F,A = Pr

[
Expaps

F,A = 1
]

For any t, q we define the aps-advantage of F as:

Advaps
F,A (t, q) = max

A

{
Advaps

F,A

}
with the maximum being over all adversarial programsA having time-complexity
t and making at most q oracle queries to the oracle Fk.

Human Identification Through Image Evaluation Using Secret Predicates 81

Conjecture. If F is a family of (δ, τ)-hard AI problem solvers, then for any
program A:

Advaps
F,A (τ, |S| − 1) < δ.

where δ > 1/2.
Our belief on this conjecture is based on the definition of a CAPTCHA[6].

Even if we provide answers to the queries of an adversarial program, it will be
hard for it to analyze all the pictures and categorize them into one category. The
function family Q described in Section 6 shows just this.

Now let B be a passive adversarial program, such that:

Pr [(B (T q (H (z) , C (z))) , C (z)) = accept] > β.

This adversary can be described by the following experiment:

ExperimentExpaut
F,B

Initialize oracles C and H
While state = “test”

done ← BC,H

B queries C until C outputs accept or reject.
If C outputs accept

Output ‘1’
Else

Output ‘0’

We define the advantage of B as:

Advaut
F,B = Pr

[
Expaut

F,B = 1
]

And aut-advantage of our protocol as:

Advaut
F,B (t, qC , qH) = max

B

{
Advaut

F,B
}

Now, we relate the two adversaries with the help of the following claim:

Claim. We have:

2Advaps
F,A (tp + tsqC + taqH + τ, (qC + qH) l) − 1 = Advaut

F,B (τ, qC , qH)

Proof. We construct an adversary AB which is given an oracle Fk and runs
adversary B as a subroutine. This adversary uses the advantage of B in defeating
our protocol to predict the image of Fk at s.

The adversary is described as follows:

Adversary AFk

B
Randomly select P = Perm (L, l). Run Adversary B, replying to its oracle
queries as follows:
When B makes an oracle query init:

82 H. Jameel et al.

Set j ← 1 and randomly select s = s1s2 · · · sL, where si ∈ S − S− and
update S− ← S− ∪ {si}. Update the sequence p ← sp1sp2 . . . spl

.
When B makes an oracle query C (r′ = a1a2 . . . aL), do:

If j = ⊥ output reject.
Else if j = m and Sep (P, r′) = F (sp1)F (sp2) . . . F (spl

) output accept
and update j ← ⊥; else reject and update j ← ⊥.
Else if j < m, yields one of two possible outputs:

(s) ; If Sep (P, r′) = F (sp1)F (sp2) . . . F (spl
), randomly output the

sequence s = s1s2 . . . sL from S − S− and update S− ← S− ∪ s, j ←
j + 1 and p ← sp1sp2 . . . spl

.
(“reject”) ; If Sep (Perm, r′) �= F (sp1)F (sp2) . . . F (spl

) output “rej-
ect” and set j ← ⊥.

When B makes an H (s = s1s2 . . . sL) query do:
For i = 1 to l, ai ← Fk (spi)
Return r′ = Insert (P, a1a2 . . . al) to B as the answer.

Until B outputs the state ‘done’.
Set j ← 0.
On B’s init query, randomly select s = s1s2 · · · sL, where si ∈ S − S− and
update S− ← S− ∪ {si}, j ← 1. Update the sequence p ← sp1sp2 . . . spl

.
For 2 to m do:

When B outputs r′ = a1a2 . . . aL set q ← q||Sep (P, r′). Randomly
select s = s1s2 · · · sL, where si ∈ S − S− and update S− ← S− ∪ {si},
j ← j + 1. Update the sequence p ← p||sp1sp2 . . . spl

.
When B outputs a1a2 . . . aL, set q ← q||Sep (P, r′) and output accept.

Randomly select an s from p = s1s2 . . . slm and set it as the output.
Output the corresponding bit in q = a1a2 . . . alm as the response and halt.

Now, we can see that:

Advaps
F,AB = Pr

r∈Fk

[
s ← AFk

B ; b ← AFk

B (s) ; Fk (s) = b
]

= Pr [Fk (s) = b|B succeeds]Pr [B succeeds]
+ Pr [Fk (s) �= b| B fails] Pr [B fails]

=
Advaut

F,B
2

+
1
2

Let tp, ts and ta denote the running times of the procedures Perm (., .), Sep (., .)
and Insert (., .) respectively. AB has to perform Perm (., .) once, Sep (., .) a maxi-
mum of tsqC times and Insert (., .) a maximum of taqH times. Further notice that
apart from these calculations, the adversary AB does some rather trivial calcu-
lations more than the adversary B. Thus if the running time of B is bounded
by τ , then that of AB is bounded above by tp + tsqC + taqH + τ . Hence, by
maximizing, we reach to the conclusion:

2Advaps
F,A (tp + tsqC + taqH + τ, (qC + qH) l) − 1 = Advaut

F,B (τ, qC , qH)

��

Human Identification Through Image Evaluation Using Secret Predicates 83

Theorem. If F is a (δ, τ)-hard family of AI problem solvers, then for all passive
adversarial programs B running in time less than τ − Δt:

Pr [(B (T q (H (z) , C (z))) , C (z)) = accept] < 2δ − 1

where, q ≈ |S|−1
Lm and Δt ≈

(
1 + |S|−1

l

)
t, with t � τ .

A.2 Security Against Passive Human Adversaries

Assume that we have a human adversary H. We consider the following experi-
ment:

ExperimentExphg
F,H

k
R←Keys(F);

b1b2 . . . bk ← {0, 1}k;
s1s2 . . . sr ← S − S−, such thatF (s1)F (s2) . . . F (sr) = b1b2 . . . bk;
k′ ← H (s1s2 . . . sr);
If k = k′ return 1 else return 0.

The hg-advantage of H is defined as:

Advhg
F,H = Pr

r∈Fk

[
Exphg

F,A = 1
]

For any t we define the hg-advantage of F as:

Advhg
F,H (t) = max

H

{
Advhg

F,H

}
Since F is an (λ (r) , τ)-resilient function family, we have

Advhg
F,H (τ) = λ (r) .

This tells us that if a human adversary is given a series of instances, and is
not shown which one of them output 1 or which one of them output zero, then
he has a probability of λ (r) in successfully guessing the key. All we to show is
that for a human observer, the following two situations are hard to distinguish
but with a small probability: (a) Concatenated outputs of the two oracles in
our protocol for a total of r/Lm authentication sessions. (b) A random set of r
instances with a truly random answer bit string of the same length. In particu-
lar, consider a passive adversary H, who listens r/Lm sessions of our protocol
and gets the r instances s1s2 . . . sr together with their answers a1a2 . . . ar. Let
Ai denote the event that F (si) = ai in our protocol. We first prove the following:

Theorem. 1
2r < Pr [A1 ∧ A2 ∧ . . . ∧ Ar] < 1

2r

(
1 + l

L2

)r
, where r = jL for some

positive integer j.

84 H. Jameel et al.

Proof. Consider the event, A1 : F (s1) = a1. Let σ denote the identity permuta-
tion and P denote the hidden permutation of our protocol, then,

Pr [F (s1) = a1] = Pr [F (s1) = a1|σ (1) = P (1)] Pr [σ (1) = P (1)] +
+ Pr [F (s1) = a1|σ (1) �= P (1)] Pr [σ (1) �= P (1)]

= 1 · 1
L

(
l

L

)
+

1
2

(
1 − l

L2

)
=

1
2

(
1 +

l

L2

)
Similarly, we can find out that:

Pr [F (s2) = a2|F (s1) = a1] <
1
2

(
1 +

l

L2

)
And in general, for all t ≤ r,

1
2

< Pr [F (st) = at|F (s1) = a1 ∧ . . . ∧ F (st−1) = at−1] <
1
2

(
1 +

l

L2

)
Hence, 1

2r < Pr [A1 ∧ A2 ∧ . . . ∧ Ar] < 1
2r

(
1 + l

L2

)r
. ��

We define the advantage of a passive human adversary attempting to defeat our
protocol as Advhg

P,H (τ) and assume that, Advhg
P,H (τ) = Advhg

F,H (τ) + α (r);
where, α (r) = M ,(M < 1 − λ (r)) when Pr [A1 ∧ A2 ∧ . . . ∧ Ar] = 1, and α (r) =
0 when, Pr [A1 ∧ A2 ∧ . . . ∧ Ar] = 1/2r. Assuming α (r), to be a linear function,
it is straight forward to show that:

Advhg
P,H (τ) < λ (r) +

M

2r − 1

((
1 +

l

L2

)r

− 1
)

.

Cryptanalysis of Reduced Variants of the
FORK-256 Hash Function�

Florian Mendel1,��, Joseph Lano2, and Bart Preneel2

1 Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A–8010 Graz, Austria
Florian.Mendel@iaik.tugraz.at

2 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium
{Joseph.Lano,Bart.Preneel}@esat.kuleuven.be

Abstract. FORK-256 is a hash function presented at FSE 2006. Whereas
SHA-like designs process messages in one stream, FORK-256 uses four
parallel streams for hashing. In this article, we present the first cryptana-
lytic results on this design strategy. First, we study a linearized variant of
FORK-256, and show several unusual properties of this linearized variant.
We also explain why the linearized model can not be used to mount attacks
similar to the recent attacks by Wang et al. on SHA-like hash functions.
Second, we show how collision attacks, exploiting the non-bijectiveness of
the nonlinear functions of FORK-256, can be mounted on reduced vari-
ants of FORK-256. We show an efficient attack on FORK-256 reduced to
2 streams and present actual colliding pairs. We expect that our attack
can also be extended to FORK-256 reduced to 3 streams. For the moment
our approach does not appear to be applicable to the full FORK-256 hash
function.

1 Introduction

Recent results in cryptanalysis of hash functions [6,5] show weaknesses in many
commonly used hash functions, such as SHA-1 and MD5. Therefore, the crypt-
analysis of alternative hash functions is of great interest. In this article, we
will study the hash function FORK-256. It was proposed by Hong et al. at
FSE 2006 [2]. FORK-256 was designed to be resistant against known-attack
strategies including the attack by Wang et al. used to break SHA-1 [5].

In this article, we present the first cryptanalytic results on FORK-256 and
stream-reduced variants. On the one hand we explain why the linearized model
can not be used to mount attacks similar to the attack of Wang et al. on SHA-1.
All the characteristics we found in the linearized variant of the hash function
have a low probability to hold in the original FORK-256 hash function. On the
� This previous work was in part supported by grant No.2005-S-062(2005) from the

KISA(Korea Information Security Agency).
�� This author is supported by the Austrian Science Fund (FWF), project P18138.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 85–100, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

86 F. Mendel, J. Lano, and B. Preneel

other hand, we show several unusual properties in the linearized variant of the
hash function, which are not common in the linearized variants of other hash
functions, as for instance the SHA-family [3].

Furthermore, we show how collision attacks, exploiting the non-bijectiveness
of the nonlinear functions of FORK-256, can be mounted on reduced variants of
FORK-256. We show an efficient attack on FORK-256 reduced to 2 streams and
present a colliding message pair. We expect that the attack can be extended to
FORK-256 reduced to 3 streams.

The remainder of this article is structured as follows. A description of the hash
function is given in Section 2. In Section 3, we show that the linearized variant of
the FORK-256 has several unusual properties. Differential attacks on FORK-256
using the linearized variant for finding a suitable characteristic are studied in
Section 4. In Section 5, we give a truncated differential which can be used to
break stream-reduced variants of FORK-256. A sample colliding message pair for
FORK-256 reduced to two streams is given in this section as well. Conclusions
are presented in Section 6.

2 Description of the Hash Function FORK-256

The FORK-256 hash function was proposed by Hong et al. in [2]. It is an iter-
ative hash function that processes 512-bit input message blocks and produces
a 256-bit hash value. Unlike other commonly used hash functions, such as the
SHA-family, it consists of 4 parallel streams which we denote B1, B2, B3 and
B4. In each stream the state variables are updated according to the expanded
message words and combined with the chaining variables after the last step,
depicted in Fig. 1. In the following, we briefly describe the FORK-256 hash
function. It basically consists of two parts: the message expansion and the state
update transformation. A detailed description of the hash function is given in [2].

S
TR

EA
M

1

1(M)

S
TR

EA
M

2

2(M)

S
TR

EA
M

3

3(M)

S
TR

EA
M

4

4(M)

CVn

CVn+1

Fig. 1. Structure of FORK-256

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 87

2.1 Message Expansion

The message expansion of FORK-256 is a permutation of the 16 message words
mi in each stream, where different permutations are used. The ordering of the
message words for each stream is given by the permutations Σ1, Σ2, Σ3 and Σ4,
where Σj(M) = wj = (mσj(0), . . . , mσj(15)).

Table 1. Ordering of the message words

step k 0 1 2 3 4 5 6 7
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ1(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ2(i) 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1
σ3(i) 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3
σ4(i) 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6

2.2 State Update Transformation

The state update transformation starts from a (fixed) initial value IV of eight
32-bit registers and updates them in 4 parallel streams of 8 steps. In each step
2 message words are used to update the eight state variables. Fig. 2 shows one
step of the state update transformation of FORK-256.

Aj,i Bj,i Cj,i Dj,i

Aj,i+1 Bj,i+1 Cj,i+1 Dj,i+1

Kj,2i

Wj,2i

<< 5

<< 17

f

<< 9

<< 21

g

Ej,i Fj,i Gj,i Hj,i

Kj,2i+1

Wj,2i+1

<< 9

<< 21

g

<< 5

<< 17

f

Ej,i+1 Fj,i+1 Gj,i+1 Hj,i+1

Xj,2i Xj,2i+1

left side right side

Fig. 2. Step i in stream Bj of FORK-256

The non-linear functions f and g used in each step are defined as follows.

f(x) = x + (x � 7 ⊕ x � 22)
g(x) = x ⊕ (x � 13 + x � 27)

Two step constants Kj,2i and Kj,2i+1 are added in step i; the constants are
different for each step of the stream. The order of the constants is different in

88 F. Mendel, J. Lano, and B. Preneel

Table 2. Ordering of constants

step i K1,2i K1,2i+1 K2,2i K2,2i+1 K3,2i K3,2i+1 K4,2i K4,2i+1

0 δ0 δ1 δ15 δ14 δ1 δ0 δ14 δ15

1 δ2 δ3 δ13 δ12 δ3 δ2 δ12 δ13

2 δ4 δ5 δ11 δ10 δ5 δ4 δ10 δ11

3 δ6 δ7 δ9 δ8 δ7 δ6 δ8 δ9

4 δ8 δ9 δ7 δ6 δ9 δ8 δ6 δ7

5 δ10 δ11 δ5 δ4 δ11 δ10 δ4 δ5

6 δ12 δ13 δ3 δ2 δ13 δ12 δ2 δ3

7 δ14 δ15 δ1 δ0 δ15 δ14 δ0 δ1

each stream. The ordering of the constants for each stream is given in Table 2.
For the actual values of the constants δ0 to δ15 we refer to [2].

After the last step of the state update transformation, the chaining variables
and the output values of the last step of the four streams are combined, resulting
in the final value of one iteration (feed forward). The feed forward is a word-wise
modular addition of the IV and the output of the state update transformation.
The result is the final hash value or the initial value for the next message block.

3 L-FORK-256: A Linearized Variant of FORK-256

In this section, we analyze the linearized variant of FORK-256. We show that
the linearized variant L-FORK-256 has several properties that are not common
in the linearized variants of other hash functions. However, so far we do not see
how these properties can be used in an attack on the original FORK-256 hash
function. L-FORK-256 is constructed by replacing all modular additions in the
hash function by XOR operations.

LH(CVn, Mn) = CVn ⊕
4⊕

j=1

Bj(CVn, Σj(Mn)) (1)

The 4 streams Bj can be described as follows.

Bj(CVn, Σj(Mn)) = CVnA ⊕ Σj(Mn)B ⊕ cj (2)
= CVnA ⊕ MnSjB ⊕ cj (3)

with Sj some permutation matrices, and A, B matrices that describe the action
of L-FORK-256 on the chaining value input, respectively the message input. The
matrices A are of little importance, since:

LH(CVn, Mn) = CVn ⊕
4⊕

j=1

CVnA ⊕ MnSjB ⊕ cj (4)

= CVn ⊕ Mn(S1 ⊕ S2 ⊕ S3 ⊕ S4)B ⊕ (c1 ⊕ c2 ⊕ c3 ⊕ c4) (5)
= CVn ⊕ MnSB ⊕ c, (6)

with S = S1 ⊕ S2 ⊕ S3 ⊕ S4 and c = c1 ⊕ c2 ⊕ c3 ⊕ c4.

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 89

3.1 Action on Special Message Words

The four streams of FORK-256 are quite similar. Only the ordering of the con-
stants and the message words is different in each stream.

Observation 1. If we have a message M with repeating message words M =
m0, m1, . . . , m15 with mi = mj ∀i, j, then Σ1(M) = Σ2(M) = Σ3(M) = Σ4(M).

Observation 2. In L-FORK-256, for inputs that are repeating messages, we
have that B1 = B2 = B3 = B4.

Consequently, the description (2) of a stream can be reduced to:

Bj(CVn, Mn) = CVnA ⊕ MnB ⊕ cj (7)

and the description(6) of L-FORK-256 becomes

LH(CVn, Mn) = CVn ⊕ c, (8)

which is independent of Mn.
Observe that having a repeating message as input is a sufficient condition for

this effect, but it is not a necessary condition. It can be verified that (8) holds
whenever the input message satisfies the following 12 conditions:

m6 = m7 = m9
m3 = m5 = m12 = m13
m1 = m2 = m3 ⊕ m6 ⊕ m15
m0 = m8 = m3 ⊕ m6 ⊕ m14
m10 = m11 = m3 ⊕ m14 ⊕ m15
m4 = m6 ⊕ m14 ⊕ m15 .

(9)

3.2 Fixed-Points

In L-FORK-256 we can easily construct a fix-point for any value of the chaining
variables CVn.

Theorem 1. A two-block message can be used to construct a two-step fixed point
in L-FORK-256.

Proof: By combining two repeated messages, we can construct a fixed point for
L-FORK-256. Let M1 = m‖ · · · ‖m and M2 = m‖ · · · ‖m, then

CVn = LH(CVn−1, M2)
= CVn−1 ⊕ c
= LH(CVn−2, M1) ⊕ c
= (CVn−2 ⊕ c) ⊕ c
= CVn−2 .

��
Theorem 2. Two fixed-points and an arbitrary message block M3 can be used
to produce a collision in L-FORK-256.

90 F. Mendel, J. Lano, and B. Preneel

Proof: Let M1, M2 be repeating messages and let M3 be an arbitrary message.
Define y = L-FORK-256(IV, M3). Then the hash values of M = M3|M2|M1 and
M∗ = M2|M1|M3 are given by:

CV2 = LH(IV, M1) = c ⊕ IV

CV3 = LH(CV2, M2) = c ⊕ c ⊕ IV = IV

CV4 = LH(CV3, M3) = LH(IV, M3) = y

CV ∗
2 = LH(IV, M3) = y

CV ∗
3 = LH(CV ∗

2 , M1) = c ⊕ y

CV ∗
4 = LH(CV ∗

3 , M2) = c ⊕ c ⊕ y = y

��

3.3 Output Dependencies

In L-FORK-256 we found several output dependencies. However, statistical tests
show that these are not present in the original hash function.

Observation 3. Three linear dependencies exist between the 256 output bits of
L-FORK-256. These 3 dependencies are the following:

127∑
i=0

w2i+1 = 0,
128∑
i=1

w2i = 0,
160∑

i=33

wi = 0 . (10)

From (10) it follows that the parity of the output of L-FORK-256 is constant.

4 Differential Analysis

In this section, we analyze the security of FORK-256 against differential attacks.
We study the impact of the type of attack that was used by Wang et al. to
break SHA-1 [5]. The attack can be summarized as follows. First, find a collision
producing characteristic with high probability in the linearized variant of the
hash function. Second, use random trials to find a message pair that follows the
linear characteristic.

4.1 Finding a Characteristic

Finding a collision in the linearized variant of FORK-256 is not difficult since
it depends only on the differences in the message words. Two messages M and
M∗ = M ⊕ Δ collide if and only if:

h∗
1 ⊕ h1 = (M ⊕ Δ)SB ⊕ IV ⊕ c ⊕ (MSB ⊕ IV ⊕ c) = ΔSB = 0 (11)

The matrices S and B are described in Section 3. A collision-producing difference
can be found by solving the set of linear equations given in (11).

Furthermore, the following theorem shows that every near-collision [1] can be
turned into a collision with only a minor increase in complexity.

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 91

Table 3. Smallest Hamming weight found for FORK-256 and reduced variants

stream collision near-collision
one stream 52 35
1 & 2 384 135
3 & 4 384 288
full hash 1280 704

Theorem 3. For L-FORK-256, every two-block message difference of the form
(Δ, Δ) produces a two-block collision.

Proof:

L-FORK-256((M1 ⊕ Δ)‖(M2 ⊕ Δ)) = LH(LH(IV,M1 ⊕ Δ),M2 ⊕ Δ)
= LH(IV ⊕ (M1 ⊕ Δ)SB ⊕ c,M2 ⊕ Δ)
= (IV ⊕ (M1 ⊕ Δ)SB ⊕ c) ⊕ (M2 ⊕ Δ)SB ⊕ c
= (IV ⊕ M1SB ⊕ c) ⊕ M2SB ⊕ c
= L-FORK-256(M1‖M2)

��

4.2 Minimizing the Number of Conditions

It is difficult to bound the number of conditions that have to be fulfilled in
order to guarantee that the message follows the characteristic in the original
FORK-256 hash function. A commonly used approach is to use the Hamming
weight of the expanded message to approximate the attack complexity. This
approximation is useful for SHA-1, but does not hold in the case of FORK-256.
A property of L-FORK-256 is that collision producing differences with very low
weight in the message, can easily result in very high weights in the internal states
of the four separate streams. Hence, to get a more accurate approximation of
the final attack complexity the weight of the internal state variables has to be
considered as well.

We used algorithms from coding theory to find characteristics with low Ham-
ming weight. Even if the algorithms are probabilistic they are expected to do a
good job as they did in the case of SHA-1 [4]. In Table 3, the smallest found
weights for FORK-256 and reduced variants are shown.

Converting the Hamming weights to numbers of conditions is complicated by
the following issues.

1. One equation may cover several conditions imposed on bits in identical po-
sitions of several registers.

2. One equation may cover conditions imposed on bits in neighboring positions
of several registers.

92 F. Mendel, J. Lano, and B. Preneel

3. Conditions imposed on bits in the MSB position of a 32-bit word may be
fulfilled automatically, due to carry overflow effects.

4. Some conditions might be reworked to linear conditions involving only mes-
sage bits. Such conditions are easy to fulfill and don’t contribute to the
probability of the characteristic.

A rough estimation of the work factor can be made by taking the Hamming
weight of the internal state variables and the weight of the expanded message.
For FORK-256 with all four streams, the estimate probability for a random
message having the chosen differences to follow the linear characteristic and to
collide is 2−1280. The probability for a near-collision is 2−704. These probabilities
are too small to pose a realistic threat to the hash function. Note that the smallest
found Hamming weight for one stream is equal to the local collision given in [2].

4.3 A Differential Characteristic for 4 Steps with Probability 1

For four (out of eight) steps of FORK-256 there exists a characteristic with prob-
ability 1. If we choose the same difference δ in all message words m∗

i = mi ⊕ δ,
for i = 0, . . . , 15 and differences in all chaining variables A′

j,k = · · · = H ′
j,k = δ

for j = 1, . . . , 4 for a k < 5 then we have after 4 steps:

A′
j,k+4 = B′

j,k+4 = · · · = H ′
j,k+4 = 0 for j = 1, . . . , 4

This characteristic holds with probability 1 for δ = 80000000. For all the other
cases the probability of the characteristic is approximately 2−HW(δ)∗12∗4. It is
difficult to use this characteristic to break FORK-256. To construct a collision
we would need a characteristic (not necessary linear) for the first 4 steps in each
stream that produces the needed differences in all the chaining variables.

5 Truncated Differential Attack

The function f and g map a 32-bit input word to a 32-bit output. By design,
these functions are not invertible (although their linear approximations are).
This means we could try to construct collisions by using values x �= x∗ which
have the property that f(x) = f(x∗) and g(x+δk) = g(x∗+δk). For the analysis,
it is most convenient to consider as difference operation the modular difference:

x′ = x − x∗ mod 232 . (12)

5.1 One Stream

We first consider one stream of the hash function. For the attack, we want to
exploit a truncated characteristic of the following form:

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 93

(0, 0, 0, 0, 0, 0, 0, 0) (13a)
⇓ x �= x∗, f(x) = f(x∗), g(x + δk) = g(x∗ + δk)

(0, x′, 0, 0, 0, 0, 0, 0) (13b)
⇓ ⊕ changes the difference

(0, 0, α, 0, 0, 0, 0, 0) (13c)
⇓ ⊕ changes the difference

(0, 0, 0, β, 0, 0, 0, 0) (13d)
⇓ ⊕ changes the difference

(0, 0, 0, 0, γ, 0, 0, 0) (13e)

The difference in the 5th register can be canceled by adding a message block
with a suitable difference. Alternatively, the characteristic can be concatenated
with a rotated version of itself.

The probability of the first step depends on the difference x′ and on the value
of the constant δk. There are many δk values for which the probability of the
differential equals 0, but there is also a significant fraction for which one can find
at least one x′ such that the probability becomes greater than zero. We call a δk

value weak, if there exists at least one difference x′ for which the probability of
the differential is greater than 0.

5.2 Weak Constants

By doing an exhaustive search we found 2 weak constants for the right side and 4
weak constants for the left side of one stream of FORK-256. The weak constants
are shown in Table 4.

Table 4. Weak constants in FORK-256

side constant x x∗

left side

δ2 AEB691E5 06DEF69A
δ1 6FF2F3E9 4B4D2A05
δ3 67EAC4D8 27A61343
δ7 20D331A5 04549CDC

right side δ10 D73BC777 445C5563
δ14 EDFD4D5B BE452586

These weak constants can be used to break one stream of FORK-256. To break
FORK-256 with more than one stream we would need more weak constants (see
Section 5.4). Therefore, we have to extend the concept of weak constants as
described in the next section.

5.3 Semi-weak Constants: Extending the Idea of Weak Constants

Instead of searching for pairs x, x∗ having zero differences at the output of f and
g, we can extend the search to pairs x, x∗ such that:

94 F. Mendel, J. Lano, and B. Preneel

f(x) ⊕ f(x∗) = Δf
g(x + δk) ⊕ g(x∗ + δk) = Δg

(14)

and

Δf = Δg

Δf � 5 = Δg � 9
Δf � 17 = Δg � 21 ,

where the last condition is equivalent to Δf = Δg � 4. We found many pairs
x, x∗ and constants δk which fulfill (14). A subset of these are given in Table 7
and Table 8 in the appendix. We restrict the search to values Δf and Δg with low
Hamming weight to keep the final attack complexity low. Note that additional
conditions have to be fulfilled to guarantee that the differences at the output of
f and g cancel out within one step. In detail, the probability that the differences
cancel out is approximately 2−3·HW(Δf). Note, that for Δf �= 0 the minimal
Hamming weight is 8.

5.4 The Full Hash Function

If we consider the full hash, then we have to take into account two effects:

1. Due to the different permutations Σj , the message blocks enter in the dif-
ferent streams at different steps. This property complicates the attack.

2. Due to the final addition of the streams, we can convert near-collisions for
each of the streams into collisions for the full hash. This property facilitates
the attack.

If we consider a variant of FORK-256 where the output of the functions f and g
are not considered, then there are no interactions between the different registers
in the streams. For this variant, we can easily construct a collision. Note that
for each xj,i which has a non-zero difference we need one weak constant to
guarantee that the original FORK-256 hash function behaves like the variant.
To minimize the number of (needed) weak constant, we have to minimize the
number of differences in xj = (xj,0, . . . , xj,15), for j = 1, 2, 3, 4. In Table 5, we
list the best results we found for FORK-256 and stream-reduced variants. Since
we would need 12 weak constants to break the original FORK-256 hash function,
this attack strategy is not applicable to FORK-256. We expect a complexity of
at least 212·3·HW(Δf) ≥ 2288 applications of the compression function to find a
collision in FORK-256. However, FORK-256 reduced to 2 streams can be broken
easily with this method as shown in Section 5.5.

5.5 A Collision for Two Streams of FORK-256

In this section, we present a collision for FORK-256 reduced to two streams using
the attack strategy described before. In the following, we will describe how to

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 95

Table 5. Number of weak constants needed to produce a collision in FORK-256 and
stream-reduced variants. Note a ‘x’ denotes a difference in the word xj,i in stream j.

differences stream 1 stream 2 stream 3 stream 4
m6, m12 ------x-----x--x ------------x-x- -x-----xx-----x- -x------x------x
m2, m12 --x--------xx--- --------x-----x- -----x-x----x-x- -x------x--x----
m9, m13 ---------x---x-- ---x-----xx----- ----x-x------x-x ------x---x----x
m2, m6 --x---x----x---x --------x---x--- -x---x--x---x--- -----------x---x

m4, m7 ----x--x-----xx- -------x-----xx- x---------------
m0, m10 x--------xx----- -----x----x-x--- -----x---x--x---
m3, m8, m9, m10 ---x----xx------ --x---x--------- ---x----xx------
m5, m10 -----x-----xx--- --x--------xx--- x---------------
m3, m12 ------x-------xx -------x------xx -x--------------

m0, m9 x--------------- ---x------------
m13 -------------x-- ----x--------x--
m5 -----x------x--- ------------x---
m6 ------x--------x ---------------x
m2 --x--------x---- -----------x----
m12 --------------x- -------x------x-
m3 ------x--------x ---------------x
m4 -------x------x- --------------x-
m9 ---x------x----- ----------x-----
m14, m15 ---x------------ ----x-----------

construct a collision in FORK-256 reduced to stream 1 and stream 2. Note that
the attack would work similar to break FORK-256 reduced to 2 other streams.

Considering the ordering of the message words in stream 1 and stream 2 (see
Table 1), we see that the distance (in number of steps) between m0 and m9 is
4 in both streams. Hence, we need only two weak constants in the attack. The
attack can be summarized as follows.

1. Choose x1,0 = 7AB8131D and x∗
1,0 = 728D1B48 and calculate B1,1 and B∗

1,1.
2. Choose x2,3 = E2E5A2A9 and x∗

2,3 = A6378BEC and calculate F2,2 and F ∗
2,2.

3. Choose suitable values for x1,2, x1,4 and x1,6 such that E′
1,4 = −x′

2,3.
4. Choose suitable values for x2,5, x2,7 and x2,9 such that A′

2,5 = −x′
1,0.

5. We have 24 conditions on B1,0, C1,0, D1,0 that have to be fulfilled to guar-
antee that the differences at the output of f and g cancel out in step 0 of
stream 1. Therefore, we use an arbitrary first message block to get suitable
values for B1,0, C1,0, D1,0 that satisfy all necessary conditions. To find this
first message block takes at most 224 hash computations.

Table 6. A colliding message pair for FORK-256 reduced to two streams

h0 06A09E667 0BB67AE85 03C6EF372 0A54FF53A 0510E527F 09B05688C 01F83D9AB 05BE0CD19

M0
0F427DBAA 06FBF0CB7 0413F646C 0FCE4800E 0AF327AFD 05CB1B99A 00C879908 0FD5EA595
0BA603C95 06CF74DC6 0516E4AD5 01E43C9B5 03A112367 0258259E8 0FC3FA69D 0CD4F8D0C

h1 06A09E667 0C1F86BBC 0D2856B94 052847CA9 0B8D977FE 0EE42EED7 0A309479B 05C5A4DA8

M1
010AE2CB6 000000000 010ABB697 000000000 0197E717C 000000000 01FDE8BA2 000000000
0D4A419E3 0E3082DF1 0E7C9B7DB 000000000 000000000 0B93DF199 000000000 0314E6339

M∗
1

0088334E1 000000000 010ABB697 000000000 0197E717C 000000000 01FDE8BA2 000000000
0D4A419E3 0A65A1734 0E7C9B7DB 000000000 000000000 0B93DF199 000000000 0314E6339

M ′
1
0082AF7D5 000000000 000000000 000000000 000000000 000000000 000000000 000000000
000000000 03CAE16BD 000000000 000000000 000000000 000000000 000000000 000000000

h2 06A09E667 06D320398 00E1A7F40 0A359E80E 0E029DE72 019F5C484 032084418 0836E2FD8
h∗
2 06A09E667 06D320398 00E1A7F40 0A359E80E 0E029DE72 019F5C484 032084418 0836E2FD8

96 F. Mendel, J. Lano, and B. Preneel

6. We also have 24 conditions on F2,1, G2,1, H2,1 in stream 2 that have to be
fulfilled to guarantee that the differences at the output of f and g cancel
out in step 1 of stream 2. Therefore, we have to modify x2,1 to satisfy these
conditions. We can find a suitable value for x2,1 in at most 224 trials.

7. Calculate mi for i = 0, . . . , 15 from the x-values calculated in step 1-6.

m0 = w1,0 = x1,0 − A1,0

m15 = w2,1 = x2,1 − E2,0

m2 = w1,2 = x1,2 − A1,1

m9 = w2,3 = x2,3 − E2,1

m4 = w1,4 = x1,4 − A1,2 *
m10 = w2,5 = x2,5 − E2,2

m6 = w1,6 = x1,6 − A1,3

m4 = w2,7 = x2,7 − E2,3 *
m13 = w2,9 = x2,9 − E2,4

Note that there are 2 conditions on m4. To satisfy both conditions we calcu-
late first m4 = w1,4 = x1,4 − A1,2 and then we use m8 to modify E2,3 such
that m4 = w1,7 = x2,7 − E2,3 holds.

With this method we can easily construct collisions in the FORK-256 variant.
Once we have fixed the values of the chaining variables by using an arbitrary first
message block and have determined x1,0, x1,2, x1,4, x1,6, x2,1, x2,3, x2,5, x2,7, and
x2,9 we can construct many collisions by solving the system of equations given in
step (7) of the attack. We can construct about 2(16−9)·32 colliding message pairs
once we have fixed all the x-values. This can be compared to having 224 neutral
bits [1] in the message. In Table 6, we give a colliding message for FORK-256
reduced to the first 2 streams.

Complexity Analysis. In this section, we will give a detailed complexity analy-
sis of the attack on FORK-256 reduced to 2 streams. The attack basically consists
of 2 parts:

1. Find the values of Table 7 and Table 8 in the appendix
2. Find suitable x-values.

The first part of the attack has complexity of at most 232 ·4 = 234 computations
of f and g. This is equivalent to at most 228 computation of the compression
function of FORK-256. Note that the real complexity might be much lower,
since g is only calculated if Δf is correct. While the first part of the attack is
computational expensive, the second part of the attack has a comparable low
complexity. For each difference in xj,i for j = 1, 2, 3, 4 and i = 0, . . . , 15 we
have to fulfill 24 conditions on the chaining variables and further find 3 suitable
x-values to guarantee the that the difference cancel out after 4 steps. Therefore,
we need 9 x-values in the attack on the first 2 streams. To find all these x-values
and calculating the first block to fulfill all conditions on the chaining variables

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 97

take us at most 7 · 232 calculations of f and g, and 224 hash computations.
Note that the probability for finding a suitable x-value is much higher than 2−32

in practice. Thus, the complexity will be much lower than 229 for this part of
the attack. Hence, the final attack complexity for both parts of the attack is
about 229 for the first collision. Many other collisions can be constructed with
probability 1 afterward.

Improving/Extending the Attack. There are several ways to improve the
attack. In the following we list some of them:

1. The attack can be modified to construct collisions in FORK-256 reduced to
two other streams.

2. As shown by way of an example, the degrees of freedom (the number of
neutral bits) we have in the attack on 2 streams is quite large. Thus, we can
try to extend the attack to 3 streams of FORK-256.

3. Since the number of needed weak constants is too large for an attack on the
original FORK-256 hash function, we could try to construct a near-collision
in the hash function (only 6 weak constants needed).

4. Instead of searching for values (x, x∗) for which Δf = Δg, we can extend the
search to values for which Δf �= Δg, but the differences cancel out due to
carries of the modular addition. Therefore, we have to find a good method to
reduce the search space and the runtime for finding these values, respectively.

6 Conclusions

In this article we presented the first cryptanalytic results on the hash function
FORK-256. We showed that the linearized variant of FORK-256 has several
unusual properties which do not exist in the linearized variants of other hash
functions. We also explained why the linearized model can not be used to mount
attacks similar to the recent attacks by Wang et al. on SHA-like hash functions.

Furthermore, we showed how collision attacks, exploiting the non-bijectiveness
of the nonlinear functions of FORK-256, can be mounted on reduced variants of
FORK-256. We presented an efficient attack on FORK-256 reduced to 2 streams.
Moreover, we expect that our attack can also be extended to FORK-256 reduced
to 3 streams. For the moment our approach does not appear to be applicable to
the full FORK-256 hash function.

However, this does not prove that FORK-256 is secure. Further analysis is
required to get a good view on the security margins of FORK-256.

Acknowledgements

The authors wish to thank Christophe De Cannière, Christian Rechberger, Nor-
bert Pramstaller, Vincent Rijmen, and the anonymous referees for useful com-
ments and discussions.

98 F. Mendel, J. Lano, and B. Preneel

References

1. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K. Franklin, edi-
tor, Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, vol-
ume 3152 of LNCS, pages 290–305. Springer, 2004.

2. Deukjo Hong, Jaechul Sung, Seokhie Hong, Sangjin Lee, and Dukjae Moon. A
New Dedicated 256-bit Hash Function: FORK-256. In Matt Robshaw, editor, Fast
Software Encryption, 13th International Workshop, FSE 2006, Graz, Austria, March
15-17, 2006, Proceedings, volume 4047 of LNCS, pages 195–209. Springer, 2006.

3. National Institute of Standards and Technology (NIST). FIPS-180-2: Secure Hash
Standard, August 2002. Available online at http://www.itl.nist.gov/fipspubs/.

4. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting Coding
Theory for Collision Attacks on SHA-1. In Nigel P. Smart, editor, Cryptography
and Coding, 10th IMA International Conference, Cirencester, UK, December 19-21,
2005, Proceedings, volume 3796 of LNCS, pages 78–95. Springer, 2005.

5. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-
1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 14-
18, 2005, Proceedings, volume 3621 of LNCS, pages 17–36. Springer, 2005.

6. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005: 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005. Proceedings, volume 3494 of LNCS,
pages 19–35. Springer, 2005.

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 99

A Appendix

Table 7. List of (semi) weak constants for the left side of the stream

side constants Δf = Δg x x∗

left side

δ0 11111111 7AB8131D 728D1B48
δ0 88888888 B2D7C3DA 3B10A457
δ1 11111111 DC7A5519 38EC29EF
δ1 11111111 E02717D6 9FED7307
δ1 44444444 C2886A61 545D72A2
δ1 88888888 8DC83B78 1C547838
δ2 22222222 650CA295 4605419A
δ2 44444444 BEF57D44 2CF60FEB
δ3 22222222 E3E8525C 4CA6452C
δ3 44444444 8EA41F57 642967E8
δ3 44444444 7B080CA7 304EB46C
δ4 22222222 64B41C80 4D83EDBA
δ5 44444444 F92C0421 46119614
δ5 88888888 130F16FD 113044A8
δ6 22222222 8DD2989F 3FC9AB68
δ8 11111111 FE26B64C CA52EA30
δ8 11111111 AD85682B 609F1D2F
δ8 22222222 BAF886F0 4BAF0F68
δ8 44444444 B14939BC 0D0B62B8
δ8 44444444 CE341C7A AC04B7A3
δ9 11111111 B16A5B43 97949A93
δ9 44444444 FEF6F543 4D044E8C
δ9 88888888 7AB68B12 68C08524
δ10 88888888 F542812D 71F08875
δ11 88888888 50411ED1 23B25243
δ11 44444444 F7DF0AAC 7C65633B
δ11 22222222 4AB0742B 17E1B95C
δ12 44444444 CE44B12D 8EDD5A2B
δ12 11111111 E940C5B8 C0304FF9
δ12 44444444 86B755E0 73EF1636
δ12 11111111 5566F6BE 3F3136F2
δ13 22222222 48A7C925 279A5753
δ13 44444444 AE36E874 12D10ADA
δ13 22222222 FACB2049 F947DBD2
δ14 22222222 E545F52D 46511638
δ14 88888888 678E6534 02271592
δ14 22222222 CD454CD7 3D6A82F0
δ14 88888888 F3508338 C32F4A66
δ15 22222222 68B8B75D 46A9FF78
δ15 44444444 F7C30C12 56C94895

100 F. Mendel, J. Lano, and B. Preneel

Table 8. List of (semi) weak constants for the right side of the stream

side constants Δf = Δg x x∗

right side

δ0 11111111 87311631 CF174A81
δ0 88888888 9AE34AAD E9BBB576
δ0 88888888 7078180F CA9E34B0
δ1 22222222 8A7B922A 8515FD65
δ1 44444444 49E17C65 D2FAFF64
δ3 11111111 B93446E3 3AEE54AD
δ3 44444444 47233861 190D5338
δ4 22222222 5C40490B 4D886BE9
δ5 44444444 8673BC03 636F7E88
δ5 44444444 CC6F6AFE AAF1DE10
δ6 22222222 249BD62F 717C851E
δ6 22222222 E5C43BC9 9C7E42D8
δ10 11111111 F0D362CD E15DA3A4
δ12 11111111 E2E5A2A9 A6378BEC
δ12 22222222 02FCA84E A822C4E6
δ12 22222222 F150D9B4 DA63A7EA
δ12 22222222 24193476 93C46D96
δ13 22222222 B43BA7D4 A491977E
δ13 22222222 DF3661E0 A6F79CF2
δ13 22222222 DF3661A0 A6F79CB2
δ13 11111111 28E0B213 C91908C7
δ13 44444444 13BB91E2 B7F968E6
δ14 88888888 99394D77 73F1C4C9
δ14 44444444 B5FAEFDB 6A6FE934
δ14 88888888 AC9747A5 77F40F98
δ15 11111111 1D405A4E 0BAE9B75
δ15 22222222 C0D7FE3A 53480ECC
δ15 88888888 AE4B89E3 6EDF99DA
δ15 88888888 AE0B89E3 6E9F99DA

Second Preimages for SMASH�

Mario Lamberger, Norbert Pramstaller,
Christian Rechberger, and Vincent Rijmen

Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A–8010 Graz, Austria
{Christian.Rechberger,Vincent.Rijmen}@iaik.tugraz.at

Abstract. This article presents a rare case of a deterministic second
preimage attack on a cryptographic hash function. Using the notion of
controllable output differences, we show how to construct second preim-
ages for the SMASH hash functions. If the given preimage contains at
least n + 1 blocks, where n is the output length of the hash function in
bits, then the attack is deterministic and requires only to solve a set of
n linear equations. For shorter preimages, the attack is probabilistic.

Keywords: SMASH, hash functions, cryptanalysis, second preimages.

1 Introduction

So far, cryptanalysis of dedicated hash functions mainly focused on collision
resistance. The goal here is to find an arbitrary pair of messages whose hash
values collide. The cryptanalysis is usually considered to be successful if the
employed method needs less than 2n/2 hash evaluations, where n is the length
of the output. Recently and most notably a successful cryptanalysis of SHA-1
was shown which targets its collision resistance [12].

However, for many applications of hash functions, fast collision search attacks
are not considered to be a threat. Instead, properties like pseudorandomness,
one-wayness or resistance against second preimage attacks are usually expected
and needed from a hash function. We know that collision resistance implies sec-
ond preimage resistance [7], at least if the existence of a family of hash functions
is assumed [11].

In this article we present a quite rare case of a second preimage attack on
a hash function. The only known preimage or second preimage attacks in the
literate are a second preimage attack on MD4 reduced to two rounds [4], a

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT,
and by the Austrian Science Fund (FWF) project P18138. The information in this
document reflects only the author’s views, is provided as is and no guarantee or
warranty is given that the information is fit for any particular purpose. The user
thereof uses the information at its sole risk and liability.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 101–111, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

102 M. Lamberger et al.

preimage attack on MD2 [6] and a chosen-message second preimage attack on
MD4 [13].

The targeted hash function of this paper was named SMASH and presented
at FSE 2005 [5]. It turns out that the collision attack presented in [9] can be
extended to a second preimage attack, which works for almost all hash functions
designed according to the SMASH design strategy. Before that, we first review
the SMASH design and list some of its properties in Section 2. The attack is
based on the concept of controllable output differences which we introduce in
Section 3. A method to turn the ability to produce controllable output differences
into preimage/second preimage attacks of known hash function constructions is
given there. In Section 4 we show how to construct arbitrary differences in the
chaining variables of almost any instantiation of the SMASH design strategy,
including SMASH-256 and SMASH-512. Subsequently, we turn this into a second
preimage attack in Section 5. Finally we give some general remarks on how to
avoid the identified vulnerabilities in Section 6 and conclude in Section 7.

2 The SMASH Design Method

We present here an overview of the hash function design strategy presented in
[5]. Basically, we follow the notation of [5], except that we denote finite field
addition by ‘+’.

2.1 Definition of SMASH

Knudsen [5] proposes a new hash function design strategy with a nonlinear com-
pression functionbased on a bijectiven-bitmapping f , wheren is the output length
of the hash function in bits. Let m = m1, m2, . . . , mt be the message input after
MD strengthening, where each block mi consists of n bits. The hash output ht+1
is computed as follows where hi denotes the chaining variable after iteration i:

h0 = f(iv) + iv (1)
hi = f(hi−1 + mi) + hi−1 + θmi for i = 1, . . . , t (2)

ht+1 = f(ht) + ht . (3)

The last step (3) is equivalent to the processing of an additional message block,
filled with zeroes. Hence, we can also describe this as a different padding rule,
where first MD strengthening is applied and then a block mt+1 filled with zeroes
is appended.

The multiplication by θ in (2) is defined as an operation in the finite field
GF(2n). Here, θ is an arbitrary field element in GF(2n) with the only restriction
that θ �∈ {0, 1}.

Knudsen proposes two instantiations of the new model, called SMASH-256
and SMASH-512. For instance SMASH-256 is specified by setting n = 256, by
defining the finite field GF(2256) via the irreducible polynomial g(α),

Second Preimages for SMASH 103

g(α) = α256 + α16 + α3 + α + 1, (4)

and by defining the function f . Because the attack we describe in this paper
works for almost all instantiations of the SMASH model, including SMASH-256
and SMASH-512, we don’t repeat the detailed description of the instantiations.
In the remainder of this paper we will write SMASH to denote an instantiation
of the SMASH design method.

2.2 Properties of the SMASH Structure

The structure of SMASH in (2) exhibits the following property.

Property 1 (forward prediction property [5]). Let hi−1, h
∗
i−1 be two intermediate

hash values. Choose a value for mi and compute m∗
i = mi + hi−1 + h∗

i−1. Then

hi + h∗
i = (1 + θ)(hi−1 + h∗

i−1) .

In our analysis of SMASH, we don’t use any properties of the function f , ex-
cept for the following property, which follows from the simple observation that
repeated input values lead to repeated output values.

Property 2 (Deterministic function property). If xi = xj and x∗
i = x∗

j then
f(xi) + f(x∗

i) = f(xj) + f(x∗
j).

This property may sound trivial, but it has been used in [9] to construct collisions
for SMASH.

3 Controllable Output Difference Implies Preimages

We say that we can control the output difference of a hash function H if there
exists a base message m, and a set of offset messages m∗(i) such that for any
given output difference ε, we can efficiently determine the offset message m∗(iε)
such that

H(m∗(iε)) = H(m) + ε. (5)

Assume now that we want to construct a preimage for the value H. Then we
proceed as follows. We compute ε = H − H(m). If ε = 0, then m is a preimage
for H. Otherwise, the offset message m∗(iε) is a preimage, because

H(m∗(iε)) = H(m) + ε = H(m) + H − H(m) = H.

4 Constructing Arbitrary Differences in a Chaining
Variable

In this section, we define the messages that we need in order to construct arbi-
trary differences in the chaining variable of SMASH.

104 M. Lamberger et al.

4.1 Structured Messages

The base message m contains n message blocks. The first block, denoted by m1,
can be selected arbitrarily. The next blocks are defined as follows:

mi = m1 + h0 + hi−1, 1 < i ≤ n, (6)

where hi denotes the value of the chaining variable after processing message mi:
h0 is defined by (1) and hi by (2).The purpose of this base message is to ensure
that the inputs to the function f are the same for each iteration.

Secondly, we define the offset messages m∗(δ), where δ is a vector of n bits
denoted δ1, . . . , δn, which are not all equal to zero. We denote by h∗

i the value
of the chaining variable after processing message m∗

i , again according to (1) and
(2). Let x be an arbitrary n-bit block, different from zero, and let a denote the
value

a = f(m1 + h0) + f(m1 + x + h0) + θx (7)
= f(mi + hi−1) + f(mi + x + hi−1) + θx, (8)

where the second equality follows from the definition of the base message (6).
Then the offset message m∗(δ) is defined as follows:

m∗
1 = m1 + δ1x,

m∗
i = mi + δix + a

∑i−1
j=1 δj(1 + θ)i−j−1, 1 < i ≤ n.

(9)

4.2 Constructing the Desired Offset Message

Using Property 1 and Property 2, the following theorem can be shown, which is
also given without proof in [9].

Theorem 1. For any non-zero value x, defining m, δ, a and m∗(δ) as above, it
holds that:

hn + h∗
n = a

n∑
j=1

δj(1 + θ)n−j .

Proof. We give a proof by induction, showing that:

ht + h∗
t = a

t∑
j=1

δj(1 + θ)t−j , 1 ≤ t ≤ n. (10)

In the first step, we set t = 1. If δ1 = 0, then we have from (9) that m∗
1 = m1

and hence h1 + h∗
1 = 0. If δ1 = 1, then m∗

1 = m1 + x and

h1 + h∗
1 = (f(h0 + m1) + h0 + θm1) + (f(h0 + m1 + x) + h0 + θ(m1 + x))

= a.

Second Preimages for SMASH 105

Assume now that (10) holds for index t ≥ 1, then we need to show it also holds
for index t + 1. Applying (9) and the induction hypothesis gives:

mt+1 + m∗
t+1 + δt+1x = a

t∑
j=1

δj(1 + θ)t−j = ht + h∗
t . (11)

Hence, if δt+1 = 0, then we have:

ht+1 + h∗
t+1 = f(ht + mt+1) + f(h∗

t + m∗
t+1)︸ ︷︷ ︸

0

+ht + h∗
t + θ(mt+1 + m∗

t+1)

= (1 + θ)a
t∑

j=1

δj(1 + θ)t−j

= a

t+1∑
j=1

δj(1 + θ)t+1−j .

If δt+1 = 1, then we use (8) and (11) to get:

ht+1 + h∗
t+1 = f(ht + mt+1) + f(h∗

t + m∗
t+1) + ht + h∗

t + θ(mt+1 + m∗
t+1)

= (a + θx) + a
t∑

j=1

δj(1 + θ)t−j + θ

⎛⎝a
t∑

j=1

δj(1 + θ)t−j + x

⎞⎠
= a

⎛⎝1 + (1 + θ)
t∑

j=1

δj(1 + θ)t−j

⎞⎠ = a
t+1∑
j=1

δj(1 + θ)t+1−j

��
The proof is based on the fact that (6) and (9) have the following effect on the
inputs to f .

Let yi = mi + hi−1 be the inputs to f when processing the base message m.
Similarly, let y∗

i be the inputs to the compression function when processing the
offset message m∗. In case of the base message m, we have

∀i, 1 ≤ i < n : yi = m1 + h0 .

In case of the offset message m∗, the inputs to f depend on δ, but still can only
have two values:

∀i, 1 ≤ i < n : yi = m1 + h0 + δi · x .

Theorem 1 can be used to compute the value hn + h∗
n corresponding to a given

base message m, difference x and vector δ. Conversely, when given a value for m, x
and hn + h∗

n, the corresponding value for δ can be computed by solving a set of n
linear equations in the unknowns δ1, . . . , δn. If the polynomials (1 + θ)i mod g(α),
0 ≤ i < n, are linearly independent, then there is always exactly one solution.Once
δ is known, the corresponding offset message m∗ can be constructed using (9).

106 M. Lamberger et al.

The polynomials (1 + θ)i are independent if the element (1 + θ) is one of
the elements that are not in a proper subfield of GF(2n). If n is a power of
2, then the number of such elements is 2n − 2n/2. Hence, a randomly selected
θ will produce independent polynomials with overwhelming probability. This is
the only condition that is required for our attack to work deterministically on a
hash function designed according to the SMASH design strategy.

4.3 SMASH-256 and SMASH-512

In the cases of SMASH-256 and SMASH-512 we have that θ = α, and (1 + α)
is not in a proper subfield. For these cases, the value δ can be computed with
Algorithm 1, which is faster than the general method to solve linear equations.

Algorithm 1. Compute δ for SMASH
Require: First preimage M
Ensure: δi ∈ {0, 1}

Compute base message m as described in (6)
Compute a as described in (7)
V ⇐ (hn+1 + h∗

n+1)a−1

Compute the polynomial representation V (α) of V
Let Tn(α) ⇐ V (α)
i ⇐ n
Initialize δ with 0
repeat

Perform the polynomial division Ti(α) = Ti−1(α)(1 + α) + ti to determine the
quotient Ti−1(α) and the remainder ti.
δi ⇐ ti

i ⇐ i − 1
until i = 0 or Ti(α) = 0
{Check that ti ∈ {0, 1}, ∀i, that deg(Ti(α)) ≤ i, ∀i and that Ti = 0.}

In [9], collisions for SMASH were constructed by choosing an arbitrary base
message and selecting a proper offset message. Observe that for n-block mes-
sages, hn + h∗

n = 0 always leads to the unacceptable solution δ = 0. That is the
reason why n + 1-block messages (without considering the padding) have to be
used in order to construct collisions.

5 Construction of Second Preimages

Consider first a reduced variant of SMASH, which is defined by leaving out the
padding (we only consider inputs with a length that is a multiple of n) and by
leaving out the final application of the compression function (3). The discussion
in the previous section implies that we can control the output difference of this
SMASH variant. Hence, we can construct preimages. In order to do this, we need
to control the message blocks m∗

2, . . . ,m
∗
n. This is illustrated in Fig. 1.

Second Preimages for SMASH 107

1 2 n t = n + 1

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸

arbitrary n − 1 blocks set by the attack padding

n blocks used in the basic attack �

target of the preimage attacks

Fig. 1. Structure of the messages used in the (second) preimage attacks

Due to the padding and the final processing in SMASH, we can’t control the
message inputs for the last two applications of the compression function. We
see currently no way to find preimages for SMASH. However, we can construct
second preimages.

For simplicity, assume we are given a message M (after padding) with length
t = n+1 blocks, i. e. the first preimage. Later on we will show how to extend the
approach to longer and also shorter messages. We can easily compute Ht−1, the
value of the chaining variable before the processing of block Mt. Now we con-
struct an n-block preimage for Ht−1. Subsequently we concatenate Mt to produce
a second preimage for SMASH(M). This attack produces second preimages of
the same length as the given preimage.

5.1 Second Preimages for Longer Messages

For messages of length t ≥ n + 2, there are two possibilities to construct second
preimages using the described attack.

1. The target for the preimage is again Ht−1. Choose arbitrary values in the
first t − n blocks instead of the first block only and then do the attack by
controlling the last n− 1 message blocks. The resulting message structure is
illustrated at the top of Fig. 2.

2. Instead of constructing a preimage for Ht−1, construct a preimage for Hn

instead. Only the first block can be chosen arbitrarily, the last t − n blocks
are the same for the first and the second preimage. The resulting message
structure is illustrated at the bottom of Fig. 2.

5.2 Second Preimages for Shorter Messages

The attack can be extended to find also second preimages for a first preimage
M with length t ≤ n. Following Theorem 1, we then get n equations in t − 1
unknowns:

ht−1 + h∗
t−1 = a

t−1∑
j=1

δj(1 + θ)t−1−j . (12)

With probability 2t−1−n, there exists a solution δ. If no solution exists, then the
attack has to be repeated with another value for m or x. On average, the attack

108 M. Lamberger et al.

1 t − n t − n + 1 t − 1 t

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸

t − n arbitrary blocks n − 1 blocks set by the attack padding

n blocks used in the basic attack �

target of the preimage attacks

1 2 n t

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

arbitrary n − 1 blocks set by the attack padding

n blocks used in the basic attack t − n blocks same as first preimage�

target of the preimage attacks

Fig. 2. Two different structures of the messages used in the (second) preimage attacks
for longer messages

will succeed after 2n+1−t iterations. Hence the presented attack is faster than the
general meet-in-the-middle attack [5] for messages longer than n/2 + 1 blocks.

5.3 Summary of Results

Table 1 summarizes the results on second preimage attacks on SMASH.

Table 1. Overview of second preimage attacks on SMASH

type message length number of blocks probability
t the attacker can choose

meet-in-the-middle [5] ≥ 2 t − 2 2−n/2

this paper ≥ n + 1 t − n 1
this paper < n + 1 1 2t−1−n

6 Additional Discussions

Subsequently we discuss general ways to prevent the found weaknesses in SMASH
in new hash function designs. In order to have a secure iterated hash function, its
compression function and the way it is used should have (at least) the following
properties:

Second Preimages for SMASH 109

Round

Round

Round

+

+
. . .

+

+

�

�

�
�

�

�

�

�

�

�

�

�

�

�k

c

p

Round

Round

Round

+

+
. . .

+

+

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�. . .
�

k

c

p

Fig. 3. Two views on a block cipher

1. there should be no ‘simple’ relation between input (differences) and output
(differences),

2. it shouldn’t be possible to apply the same input twice to the same function.

The first property is captured in the notion ‘random oracle’. The second property
is essential in a universal hash function.

There are currently no indications that the SMASH-256 and SMASH-512 con-
structions violate the first property. Note that for algorithms like SHA-1 [8] and
its predecessors these relations have been found. They have been used to con-
struct collisions [12] but they can not be used to construct controllable differences
as needed for the presented second preimage attack.

However, the second property is absent from the SMASH design structure.
There seem to be two alternative approaches to achieve the second property.
The first one is used in block-cipher based compression functions as studied
in [2,10]. A block cipher has two inputs, and the secure constructions all ensure
it is impossible to control both inputs. An attacker can for instance control the
plaintext input, but then the key input doesn’t stay constant over the different
iterations, which implies that the attacker sees different functions of the family.

A second approach is to base the compression function on a primitive that
takes in principle inputs of larger size than a message block. For instance, in
Alpha-MAC [3], only 32 bits of the 128-bit AES round transformation are de-
termined by the message.

Both approaches are in fact not that very different from one another. The
two inputs of a block cipher can also be seen as two parts of one input, of which
one part is controllable and the other part not, see Fig. 3. In the case of 128-bit
AES, the round transformation and the key schedule can be composed into a
new 256-bit round transformation, that transforms both the message and the
key input. This new round transformation is however highly asymmetric. Much

110 M. Lamberger et al.

more symmetry is in the enlarged round transformation of the block cipher W,
used in the hash function Whirlpool [1]. This is because the key schedule of
W uses the round transformation. A remaining asymmetry is however the fact
that while there is information flow from the ‘key part’ to the ‘message part’,
no information flows in the opposite direction (see right hand side of Fig. 3).

7 Conclusion

Using the concept of controllable output differences, second preimages for SMASH
can be constructed. The conjectured security level against second preimage at-
tacks was 2n/2 hash operations. Our attack breaks this bound for messages longer
than n/2 + 1 blocks.

We discussed how to avoid these vulnerabilities in new hash function con-
structions. It would be interesting to see whether there are other hash function
constructions that are vulnerable to this attack.

Acknowledgements

We would like to thank Lars Knudsen and the anonymous reviewers for helpful
comments.

References

1. Paulo S.L.M. Baretto and Vincent Rijmen. The Whirlpool Hashing Function.
Cryptology ePrint Archive, Report 2005/281, 2000. revised in May 2003, http://
paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html.

2. John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of the
Block-Cipher-Based Hash-Function Constructions from PGV. In Douglas R. Stin-
son, editor, Advances in Cryptology - CRYPTO 2002, 22nd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002, Pro-
ceedings, volume 2442 of LNCS, pages 320–335. Springer, 2002.

3. Joan Daemen and Vincent Rijmen. A New MAC Construction ALRED and a
Specific Instance ALPHA-MAC. In Henri Gilbert and Helena Handschuh, editors,
Fast Software Encryption: 12th International Workshop, FSE 2005, Paris, France,
February 21-23, 2005, Proceedings, volume 3557 of LNCS, pages 1–17. Springer,
2005.

4. Hans Dobbertin. The First Two Rounds of MD4 are Not One-Way. In Serge
Vaudenay, editor, Fast Software Encryption, 5th International Workshop, FSE’98,
Paris, France, March 23-25, 1998, Proceedings, volume 1372 of LNCS, pages 284–
292. Springer, 1998.

5. Lars R. Knudsen. SMASH - A Cryptographic Hash Function. In Henri Gilbert and
Helena Handschuh, editors, Fast Software Encryption: 12th International Work-
shop, FSE 2005, Paris, France, February 21-23, 2005, Proceedings, volume 3557
of LNCS, pages 228–242. Springer, 2005.

Second Preimages for SMASH 111

6. Lars R. Knudsen and John Erik Mathiassen. Preimage and Collision Attacks on
MD2. In Henri Gilbert and Helena Handschuh, editors, Fast Software Encryption:
12th International Workshop, FSE 2005, Paris, France, February 21-23, 2005,
Proceedings, volume 3557 of LNCS, pages 255–267. Springer, 2005.

7. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1997. Available online at http://
www.cacr.math.uwaterloo.ca/hac/.

8. National Institute of Standards and Technology (NIST). FIPS-180-2: Secure
Hash Standard, August 2002. Available online at http://www.itl.nist.gov/
fipspubs/.

9. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Breaking a New
Hash Function Design Strategy Called SMASH. In Bart Preneel and Stafford E.
Tavares, editors, Selected Areas in Cryptography, 12th International Workshop,
SAC 2005, Kingston, ON, Canada, August 11-12, 2005, Revised Selected Papers,
volume 3897 of LNCS, pages 233–244. Springer, 2006.

10. Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based on
Block Ciphers: A Synthetic Approach. In Douglas R. Stinson, editor, Advances
in Cryptology - CRYPTO ’93, 13th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 22-26, 1993, Proceedings, volume 773 of
LNCS, pages 368–378. Springer, 1994.

11. Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function Ba-
sics: Definitions, Implications, and Separations for Preimage Resistance, Second-
Preimage Resistance, and Collision Resistance. In Bimal K. Roy and Willi Meier,
editors, Fast Software Encryption, 11th International Workshop, FSE 2004, Delhi,
India, February 5-7, 2004, Revised Papers, volume 3017 of LNCS, pages 371–388.
Springer, 2004.

12. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, 25th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 14-18, 2005, Proceedings, volume 3621 of LNCS, pages 17–36. Springer, 2005.

13. Hongbo Yu and Gaoli Wang and Guoyan Zhang and Xiaoyun Wang. The Second-
Preimage Attack on MD4. In Yvo Desmedt and Huaxiong Wang and Yi Mu and
Yongqing Li, editors, Cryptology and Network Security, 4th International Confer-
ence, CANS 2005, Xiamen, China, December 14-16, 2005, Proceedings, volume
3810 of LNCS, pages 1–12. Springer, 2005.

A Practical Optimal Padding for Signature
Schemes

Haifeng Qian1, Zhibin Li1, Zhijie Chen2, and Siman Yang2

1 Computer Science & Technology Department, East China Normal University,
Zhongshan Road 3663 (N), Shanghai 200062, China

{hfqian,lizb}@cs.ecnu.edu.cn
2 Department of Mathematics, East China Normal University,

Zhongshan Road 3663 (N), Shanghai 200062, China,
{zjchen,smyang}@math.ecnu.edu.cn

Abstract. A digital signature scheme that achieves an optimal band-
width (generating signatures as short as possible) is called an optimal
signature scheme. The previous optimal signature schemes all need the
random permutations (or the ideal ciphers) with large block size as build-
ing blocks. However, the practical cipher with large block size such as
Halevi and Rogaway’s CMC-mode should call the underlying secure block
cipher with small block size many times each time. This makes the previ-
ous optimal signature schemes which use the large domain permutation
(or the ideal cipher) less efficient in the real world, even if there exist
the methods that can encipher the messages with larger domain. On the
other hand, all the practical signature schemes are not optimal in band-
width including PSS-R, FDH, DSA, etc. Hence, the problem on how to
design a practical, efficient and optimal signature scheme remains open.

This paper uses two random oracles and an ideal cipher with a smaller
block size to design an optimal padding for signature schemes. The ideal
cipher in our scheme can be implemented with a truly real block cipher
(e.g. AES). Therefore, we provide a perfect solution to the open problem.
More precisely, we design a practical, efficient and optimal signature
scheme. Particularly, in the case of RSA, the padding leads the signature
scheme to achieve not only optimality in bandwidth but also a tight
security.

Keywords: Optimal Signature, Tight Security, Random Oracle Model,
Ideal Cipher Model, Short Signature.

1 Introduction

How to constructing short signatures is an important old problem since short
signatures are very useful in practice. The size of the signature is also one of
the measures of the efficiency of a digital signature scheme. Therefore, several
proposals are shown on how to shorten the signatures while preserving a high
level of security [5,6]. Another technique proposed for reducing the signature
length is to design signatures with message recovery [3,21,13]. In such systems

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 112–128, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Practical Optimal Padding for Signature Schemes 113

one encodes a part of the message into the signature thus shortening the total
length of the message/signature pair.

Generally speaking, a digital signature scheme is a tuple of probabilistic algo-
rithms which enable the signer to transform an arbitrary message into a signed
message, such that anyone can check the validity of the signed message[13]. A
signed message contains the message, plus some information to prove its validity.
If in a scheme without message recovery, the signed message is the concatena-
tion of the message and of a signature. The message expansion of a signature
scheme is the difference between the length of the signed message and the original
message. It is the length of the signature, if there is no message recovery.

The security level of a properly designed signature scheme is determined by
not only the hardness of the underlying mathematical problem but also the size
of message expansion of the signature scheme. For a specific signature scheme,
one obvious lower bound of the security level is that k-bit signatures (or more
exactly k bits of message expansion) cannot provide better than k bits of security,
since the probability that a signature is valid is at least 2−k, assuming that the
underlying hard problem is k′ ≥ k bits secure [13]. Hence, the problem on how
to obtain message expansion as small as possible while still preserving high
level of security has been put forward in [13]. Now it attracts more and more
cryptologists’ attention [17,4].

1.1 Optimal Paddings for Signature Schemes with Message
Recovery

To solve the problem mentioned above, many researchers are looking for the
signature schemes which have with optimal message recovery length. Granboulan
[13] has shown a theorem which says that if we want a k-bit secure signature
scheme, the message expansion should be at least k bits, and the signature
scheme must have unique signature for each message. The author also proposed
a signature scheme in the random permutation model named Basic OPSSR and
improved version in the ideal cipher model, named (OPSSR), respectively. Both
of the schemes achieve the lower bound of the message expansion.

However, the signature schemes’ security is not tightly related to the hard-
ness of the underlying cryptographic assumption since the underlying trapdoor
permutation is required to be 2k-bit secure if each signature scheme has k bits of
message expansion and security 1. Hence, the signature schemes are both with
loose security. This makes the signature schemes both inefficient according to
the theoretically secure parameters.

Katz and Wang extended Granboulan’s result and showed a signature with
optimal message recovery length, based on the claw-free permutations in the
random permutation model [17]. Different from Granboulan’s signature schemes,
their signature scheme’s security is tightly related to the hardness of breaking
a pair of claw free permutation. The scheme is essentially optimal in terms of

1 Even using a random-self-reducible permutation, the underlying trapdoor permuta-
tion is still required to be (k + qs)-bit secure.

114 H. Qian et al.

the allowable message length, but not with unique signature for each message.
The signature can achieve the highest security level due to the tight security
reduction.

More recently, Chevallier-Mames, Phan and Pointcheval proposed a universal
padding, based on the random permutation in [4], named OPbP. The padding
is shown to be optimal both for signing and encrypting. When the padding is
used to sign message, it is optimal in bandwidth of message recovery, similar to
Katz and Wang’s construction.

1.2 Idealized Models and Practical Security

To our knowledge, many of signature schemes are proven secure in the following
three idealized models: the random permutation model, ideal cipher model and
random oracle model. An idealized (oracle) model replaces some components of
the algorithm with the oracles simulated by the reduction. The number of calls to
the oracles is often assumed to be upper bounded since the actual computation
of the idealized components takes time. For a signature scheme the number of
all the queries to the oracle is always upper bounded as well.

In fact, security proofs of the signature schemes are the descriptions on how
to construct a reduction algorithm which reduces from forgery to the underlying
hard problem. A reduction algorithm in an idealized model always gives random
answers taken from the set of values that are consistent with previous answers.
Although proofs in such models do not guarantee security when the oracles are
instantiated by any particular cryptographic primitive [7], it is widely believed
that a proof in an idealized model gives some confidence in the design of a
cryptographic primitive [18].

1.3 Motivation

As far as we know, all the optimal signature schemes need the random permu-
tations (or the ideal ciphers) with a block size same as the size of element that
the underlying trapdoor way permutations act on. According to [13,17], we are
not aware of any appropriate way to instantiate the random permutation (or the
ideal cihper) for large block sizes even for 1024-bit modulus RSA [22] by now.
Even more, Granboulan’s OPSSR, based on an ideal cipher, is suggested to use
at least 1536-bit modulus for the case of RSA. Later, the practical ciphers with
large block size such as Halevi and Rogaway’s CMC-mode were proposed [14].
However, such an encipher scheme in [14] employs a secure underlying block
cipher with small block size and enciphering a plain-text once must call the un-
derlying cipher many times. This makes the previous optimal signature schemes
which use large domain permutation (or the ideal cipher) less efficient in the real
world even if there exist the methods that can encipher the messages with larger
domain.

So the previous schemes are not so efficient and practical in the real world.
The problems occur with Katz and Wang’s optimal signature scheme in [17] and
Chevallier-Mames et al.’s universal padding based on the random permutation

A Practical Optimal Padding for Signature Schemes 115

(Optimal Permutation-based Padding OPbP) when the padding is used to sign
on messages.

Meanwhile, all the practical signature schemes are not optimal in bandwidth
including PSS-R, DSA and some other signature schemes with message recovery
used as the standards now. Most of the signature schemes in the random oracle
[2] are not optimal in bandwidth. The universal padding, based on the OAEP-
3 rounds recently proposed by Chevallier-Mames, Phan and Pointcheval is not
optimal when it is used to sign on messages as well. Hence, how to design a more
practical, efficient and optimal signature scheme remains open.

1.4 Our Contribution

This paper uses two random oracles and an ideal cipher with a smaller block
size to design the optimal padding for signature schemes. In the real world the
ideal cipher we use can be implemented with a truly real block cipher and the
random oracles can be replaced by the cryptographic hash functions. Therefore,
we provide a perfect solution to the open problem. That is to say, we design
a practical, efficient and optimal padding for signature schemes. We show that
the padding is provably secure if the underlying trapdoor permutation is secure.
The padding for signature schemes leads the signature schemes to achieve tight
security reductions when the underlying trapdoor permutations are induced by
a claw free permutations. Particularly, in the case of RSA, the padding makes
the signature scheme achieve not only optimality in bandwidth but also a tight
security reduction. We believe that it will be preferred to RSA-PSSR in the
future.

2 Basic Notions of Signature Schemes

This section reviews the definition of signature scheme, the notion of security
for the digital signatures and the basic cryptographic assumptions.

2.1 Definitions of Signature Schemes

We review the functional definitions of both general signature schemes as well
as those supporting message recovery and the definition of security.

Definition 1. A signature scheme is a tuple of probabilistic algorithms (Gen,
Sign, Ver) over a message space M such that:

– On input 1k where k is the security parameter, the key-generation algorithm
Gen outputs a public key pk and a secret key sk.

– The signing algorithm Sign takes as input secret key sk and message m ∈ M
and returns a signature σ.

– If message recovery is not supported, the verification algorithm Ver takes as
input a public key pk, a message m ∈ M, and a signature σ and returns
accept or reject.

116 H. Qian et al.

– If message recovery is supported, verification algorithm Ver takes as input
public key pk and signature σ and returns either a message m ∈ M or
reject.

We make the standard correctness requirement, given here for schemes support-
ing message recovery (the other case is analogous): for all (sk, pk) output by Gen
and all m ∈ M we have Verpk(Signsk(m)) = m.

Existential Unforgeability under adaptive Chosen-Message Attacks (EUF-CMA)
[12] is a widely accepted standard notion for the security of digital signatures.
In the following, we use a generalized version of EUF-CMA, named Strong Exis-
tential Unforgeability under an adaptive Chosen-Message Attack (SEUF-CMA)
[1,17,19].

Definition 2 (SEUF-CMA). A forger F (t, qs, qh, ε)-breaks a signature scheme
if F runs in time t, makes at most qs signature queries and at most qh hash
queries; and furthermore

Pr
[
(pk, sk) ← Gen(1k); (m, σ) ← FSignsk(·)(pk) : σ /∈ Σ∗ ∧ Verpk(m, σ)=1

]
≥ ε

where Σ∗ is the set of signatures received from the signing oracle.
If the signature scheme supports message recovery, the definition is as above

except that we are interested in the probability that F outputs a signature σ such
that Verpk(σ) = m but σ was never the response of a query to the signing oracle.
That is

Pr
[
(pk, sk) ← Gen(1k); σ ← FSignsk(·)(pk) : σ /∈ Σ∗ ∧ Verpk(σ) = m

]
≥ ε

In either case, a signature scheme is (t, qs, qh, ε)-secure if no forger can (t, qs, qh, ε)-
break it.

2.2 Underlying Complexity Assumptions

Trapdoor (One-Way) permutations are among the most popular cryptographic
tools to design encryption schemes, signature schemes and protocols. The explicit
complexity definition of trapdoor permutations is defined as follows.

Definition 3 (Trapdoor Permutations). A trapdoor permutation family is a
tuple of probabilistic polynomial time (PPT) algorithms (Gen, Eval, Invert) such
that:

1. Tp-Gen(1k) outputs a pair (f, f−1), where f is a permutation over {0, 1}k.
2. Eval(1k, f, x) is a deterministic algorithm which outputs some y ∈ {0, 1}k

(assuming f was output by Gen and x ∈ {0, 1}k). We will often simply write
f(x) instead of Eval(1k, f, x).

3. Invert(1k, f−1, y) is a deterministic algorithm which outputs some x ∈ {0, 1}k

(assuming f−1 was output by Gen and y ∈ {0, 1}k). We will often simply
write f−1(y) instead of Invert(1k, f−1, y).

A Practical Optimal Padding for Signature Schemes 117

4. (Correctness.) For all k, all (f, f−1) output by Gen, and all x ∈ {0, 1}k we
have f−1(f(x)) = x.

A ppt algorithm A is said to (t, ε)-break a family of trapdoor permutations if A
runs in time at most t and outputs the preimage of a random chosen y ∈ {0, 1}k

for f generated by Gen(1k) with probability greater than ε:

Pr
[
(f, f−1) ← Gen(1k); y ∈R {0, 1}k; x ← A(1k, f, y) : f(x) = y

]
≥ ε.

A family of trapdoor permutations is (t, ε)-secure if no algorithm can (t, ε)-break
it.

The existence of claw-free permutations seems be reasonable. In fact, any ran-
dom self-reducible permutation can be seen as a trapdoor permutation induced
by a claw-free permutation [10] and almost all known examples of trapdoor per-
mutations are self-reducible. Meanwhile, the trapdoor permutations induced by
claw-free permutations can be used to obtain tight reductions[17].

Definition 4 (Claw-Free Permutations). A family of claw-free permutations
is a tuple of algorithms {Gen; fi; gi|i ∈ I} for an index set I such that:

1. Gen outputs a random index i and a trapdoor td.
2. fi, gi are both permutations over the same domain Di.
3. there is an efficient sampling algorithm which, on index i, outputs a random

x ∈ Di.
4. f−1

i (the inverse of fi) and g−1
i (the inverse of gi) are both efficiently com-

putable given the trapdoor td.

A claw is a pair (x0, x1) such that f(x0) = g(x1). Probabilistic algorithm A is
said to (t, ε)-break a family of claw-free permutations if A runs in time at most
t and outputs a claw with probability greater than ε:

Pr
[
(i, td) ← Gen(1k); (x0, x1) ← A(1k) : fi(x0) = gi(x1)

]
≥ ε.

A family of claw-free permutations is (t, ε)-secure if no algorithm can (t, ε)-break
it.

We say a signature scheme is k-bit secure when there is no forger can (t, qs, ε)-
break the scheme with log2(t/ε) ≤ k. In the same manner, we say a trapdoor
permutation (including the claw-free permutation) or a mathematic problem is
k-bit secure if there is no adversary can (t′, ε′)-break it with log2(t′/ε′) ≤ k′.
The value k (resp., k′) also depends of the time unit used for t (resp., t′). A
reduction is said to be tight if t/ε ≈ t′/ε′. Hence, a tight reduction from forgery
to the hard problem implies that the scheme achieves the same security level as
the underlying hard (mathematic) problem.

3 Efficient Optimal Paddings for Signature Schemes

Various paddings for signature schemes (with message recovery) were proposed
through the last few years [3,4,8,9,11,13,17,19,20]. Most of them are proven
secure in the random oracle model. However, none of the schemes proven secure

118 H. Qian et al.

in the random oracle model achieves optimality in bandwidth including PSS-R,
Katz and Wang’s improved PSS-R in [17]. As far as we know, all the optimal
signature schemes with message recovery are based on the random permutation
or the ideal cipher for large block sizes (i.e., block sizes larger than the block size
of a cipher such as AES)[13,17]. Thus, the optimal signature paddings become
less efficient due to the cause that larger domain cipher calls the underlying
block cipher many times[14].

In the following, we propose a more practical, efficient and optimal padding
for signature schemes with message recovery. This padding uses a block cipher
with smaller size which can be implemented with the true block ciphers. Next,
we shall prove the security of the padding for signature schemes in the idealized
models: the ideal cipher model and the random oracle model.

3.1 Our Proposal

The padding for signature schemes uses a keyed permutation E(·) : {0, 1}l ×
{0, 1}m → {0, 1}m, that we assume to behave like a truly ideal cipher. For each
key κ ∈ {0, 1}l of the block cipher E defines a random permutation Eκ = E(κ, ·)
on {0, 1}m. The ideal cipher E accepts both forward queries (E) as well as inverse
queries (E−1). Let ϕ : {0, 1}n → {0, 1}n be a trapdoor one-way permutation (or
a claw-free permutation) whose inverse is ϕ−1. The scheme uses two random
oracles H : {0, 1}∗ → {0, 1}l and G : {0, 1}m → {0, 1}n−m, where we assume
n > m > k. Finally, in the following PRFθ(·) designs a pseudorandom function
that uses a secret key θ and generates one bit. The symbol “ ‖ ” denotes the
bit-string concatenation. The signature scheme is described as follows:

Key Generation Algorithm Gen: runs Tp-Gen(1n) to obtain a pair of trap-
door permutation ϕ and ϕ−1. Sets (ϕ, ϕ−1) as the public key and secret key,
respectively.

Signature Algorithm Sign: The space of the messages is M = {0, 1}n−m ×
{0, 1}m−k, the signature algorithm outputs a signature σ into {0, 1}n: on a
message M = (m1, m2) ∈ M, one computes b = PRFθ(M), h = H(m1),
ω = Eh(m2 ‖ bk), s = G(ω) ⊕ m1 and then σ = ϕ−1(s ‖ ω).

Verification AlgorithmVer: On a signature σ, one first computes s ‖ ω =
ϕ(σ) where s ∈ {0, 1}n−m, ω ∈ {0, 1}m and then m1 = G(ω)⊕s, h = H(m1),
(m2 ‖ v) = E−1

h (ω) ∈ {0, 1}m−k × {0, 1}k. Finally, if v = 0k or v = 1k, the
verifier returns the message M = (m1, m2); otherwise returns reject.

Our scheme uses an ideal cipher with small block size which can be imple-
mented by a real block cipher. Due to this point, the signature scheme works
effectively and efficiently in the real world. All the previous optimal signature
schemes use a full domain permutation. However, the existence of such a large
block cipher is still an open problem according to [13,17]. Therefore, the previous
optimal signature schemes are theoretically effective and can’t be implemented
directly by any existing block ciphers.

The following subsection presents the security proof of the signature scheme.
We observe that the signature schemes with this padding can be proven secure

A Practical Optimal Padding for Signature Schemes 119

in the random oracle model and the ideal cipher model. The security of the sig-
nature is tightly related to the security of the underlying trapdoor permutation
when the trapdoor permutation is induced by a claw-free permutation.

3.2 Security Analysis

In the following, we prove that the security of the proposed scheme is related to
the security of the underlying trapdoor one-way permutation in the ideal cipher
model and the random oracle model.

Theorem 1. Let F be adaptively chosen-message (to the signing oracle) adver-
saries, against the signature scheme. Let us assume that F can produce an exis-
tential forgery according to the definition 2, with success probability ε (within a
time bound t, after qe = qE+qE−1 , qs, qh and qg queries to the keyed permutation
oracles (which includes qE forward queries and qE−1 inverse queries), signing
oracle, H-oracle and G-oracle, respectively). Then the underlying trapdoor per-
mutation ϕ can be inverted with probability ε′ within time t′ ≤ t+(qE +qs +1)Tϕ

where:

ε′ ≥ 1
qE + qs + 1

(ε − qE−1

2k−1
− 3(qh + qs + 1)2

2l+1
− 9(qg + qh + qs + 1) · (qE + qg + qs + 1)

2n−m+1
). (1)

Proof. We prove the theorem, with incremental games, to reduce the inversion
of the permutation ϕ on a random instance y (i.e., find μ such that y = ϕ(μ)) to
an attack against the signature scheme. We show that the forger (or adversary)
algorithm F can help us to invert ϕ(x).

– Game G0: This is the attack game, in the ideal cipher model and the random
oracle model. Several oracles are available to the adversary during the game:
the ideal cipher oracles (both (E) and (E−1)), two random oracles (H(·) and
G(·)) and the signing oracle Signϕ−1(·).

To break the signature, the adversary F outputs its forgery, one checks
whether it is actually valid or not. We denote by Forge0 the event this forged
signature is valid and use the same notation Forgej in any game Gj .

Note that if the adversary asks qs signature queries to the signing oracle
Signϕ−1(·), and qe = qE + qE−1 queries to the ideal cipher oracles, at most
qs + qE + 1 queries for encryption are asked to the ideal cipher during this
game, since each signing query may cause a new queries to the cipher oracle.
Hence, ε = Pr[Forge0].

– Game G1: In this game, we simulate the ideal cipher oracles E and E−1, by
maintaining a list E-List, using a truly ideal cipher E and its inverse E−1, the
signing oracle Signϕ−1(·) with a list Σ-list, and the random oracles H-oracle
and G-oracle, by maintaining the lists H-list and G-list, respectively.
The simulation of the real attack game is described as follow:
• E(·)(·)-Oracle: A query Eh(m2 ‖ v) is answer by ω, where
Rule EvalE(1): ω = Eh(m2 ‖ v), store the record (h, (m2 ‖ v), ω) in E-list.

120 H. Qian et al.

• E−1
(·) (·)-Oracle: A query E−1

h (ω) is answer by m2 ‖ v, where

Rule InverE(1): (m2 ‖ v) = E−1
h (ω), store the record (h, (m2 ‖ v), ω) in

E-list.
• G-Oracle: Answer to the query G(ω) is set as follow:
Rule G(1):
1. if a record (ω, g) appears in G-List, the answer is g;
2. otherwise the answer is randomly chosen from {0, 1}n−m and the

record (ω, g) is stored in G-list.
• H-Oracle: Answer to the query H(m1) is set as follow:
Rule H(1):
1. if a record (m1, h) appears in H-List, the answer is h;
2. otherwise the answer is randomly chosen from {0, 1}l and the record

(m1, h) is stored in H-list.
• Signϕ−1(·)-Oracle:
Rule S(1): For a signing query Signϕ−1(M), one first breaks up M as
(m1, m2) ∈ {0, 1}n−m × {0, 1}m−k computes b = PRFθ(m1, m2), then
asks for h = H(m1) to the H-oracle, then asks for ω = Eh(m2 ‖ bk)
to E(·)(·)-oracle, and then compute s = G(ω) ⊕ m1. The signature σ is
ϕ−1(s ‖ ω). We store the (m1, m2, b, h, ω, g, σ) in Σ-list.

• Verϕ(·)-Oracle:
Rule V(1): The game ends with the verification of the output σ from
the adversary. One first computes s ‖ ω = ϕ(σ) where s ∈ {0, 1}n−m,
ω ∈ {0, 1}m and then m1 = G(ω)⊕s, then asks for h = H(m1) to the H-
oracle, (m2 ‖ v) = E−1

h (ω) ∈ {0, 1}m−k × {0, 1}k to the E−1
(·) (·)-oracle, if

v = 0k or v = 1k, returns the message M = (m1, m2); otherwise returns
reject.

Now, we denote by Δj the statistical distance between the distribution of
the adversary’s view in the game Gj and in the game Gj−1. We see that the
perfect simulation does not modify any probability in Game G1. Therefore,
Δ1 = 0, and Pr[Forge0] = Pr[Forge1].

– Game G2: In this game, we modify the simulations of the (random oracles)
H-oracle and G-oracle in Game G1 as follows:
• G-Oracle: Answer to the query G(ω) is set as follow:
Rule G(2):
1. if a record (ω, g) appears in G-List, the answer is g;
2. otherwise one randomly chooses g from {0, 1}n−m, if g has been set

as G(ω′) for some ω′ �= ω, aborts; else returns g as the answer and
stores the record (ω, g) in G-list.

• H-Oracle: Answer to the query H(m1) is set as follow:
Rule H(2):
1. if a record (m1, h) appears in H-List, the answer is h;
2. otherwise one randomly chooses h from {0, 1}l, if h has been set as

H(m′
1) for some m′

1 �= m1, aborts; else returns g as the answer and
stores the record (m1, h) in H-list.

A Practical Optimal Padding for Signature Schemes 121

Let Δ2 be the statistical distance between the distribution of the adversary’s
view in the game G2 and in the game G1. The simulations of the H-oracle
and G-oracle in the game are indistinguishable from those in the previous
game unless the simulations abort, which event is denoted Abort. The event
Abort happens only when a collision on either G or H has occurred, which
event is denoted Col-H-G. Hence,

Δ2 = |Pr[Forge1] − Pr[Forge2]|
= Pr[Abort]
≤ Pr[Col-H-G]

≤ (qh + qs + 1)2

2l+1 +
(qg + qs + 1)2

2n−m+1 .

(2)

– Game G3: In this game, we modify the simulation of the ideal cipher oracles
E and E−1 in Game G2. The explicit rules of the simulations are set as
follows:
• E(·)(·)-Oracle: When a query Eh(m2 ‖ v) 2 is submitted, we use the

following rules:
Rule EvalE(3): Look for the record (h, (m2 ‖ v), ω) in E-list:
1. if the record is found, Eh(m2 ‖ v) = ω;
2. otherwise randomly choose a x ∈ {0, 1}n, compute (s ‖ ω) = ϕ(x)

(if it is the i-th query we may set (s ‖ ω) = y), and then look for the
record (m1, h)3 in H-list:
(a) if the record (m1, h) is found, compute g = m1 ⊕ s, if g has been

set as G(ω′) for some ω′ �= ω, stop (denoted by Stop1); otherwise
return Eh(m2 ‖ v) = ω and add (ω, g) to G-List.

(b) otherwise when the record (m1, h) isn’t found, randomly choose
m1 ∈ {0, 1}n−m, if m1 is asked to H before, stop (denoted by
Stop2); else compute g = m1 ⊕ s, if g has been set as G(ω′) for
some ω′ �= ω, stop (denoted by Stop3); otherwise return Eh(m2 ‖
v) = ω, add (ω, g) to G-List and (m1, h) to H-list.

(c) store the record (h, (m2 ‖ v), ω) in E-list and the record
(m1, m2, b, h, ω, g, x) in Σ-list where v = bk (for the i-th query
store the record (m1, m2, b, h, ω, g,⊥) in Σ-list).

• E−1
(·) (·)-Oracle: A query E−1

h (ω) is answered according to the following
rules:
Rule InverE(3): Look for the record (h, (m2 ‖ v), ω) in E-list: if the
record is found, return m2 ‖ v; otherwise randomly choose (m2 ‖ ν) ∈
{0, 1}m−k × {0, 1}k:
1. if ν ∈ {1k, 0k}, stop (denoted by Stop4);
2. otherwise return E−1

h (ω) = (m2 ‖ ν), store the record (h, (m2 ‖
ν), ω) in E-list.

2 Here, we may assume v = bk in a query Eh(m2 ‖ v) where b ∈ {0, 1}, otherwise the
signature won’t be valid.

3 In Game G2, H has no collisions, then, we can find a unique m1 as the preimage of
a given h under H if h has been set.

122 H. Qian et al.

There is no difference between Game G3 and Game G2 unless one of the
events Stop1,Stop2, Stop3 and Stop4 happens. Therefore, the difference is
the following probability

Pr[Stop1 ∨ Stop2 ∨ Stop3 ∨ Stop4] ≤ Pr[Stop1] + Pr[Stop2] + Pr[Stop3] + Pr[Stop4]. (3)

Since there are only qg + qs + 1 queries to G, we can compute Pr[Stop1] ≤
qE(qg+qs+1)

2n−m , where qE is the number of the queries to E(·)(·)-oracle. Simi-
larly, we have Pr[Stop2] ≤ qE(qh+qs+1)

2n−m and Pr[Stop3] ≤ qE(qg+qs+1)
2n−m . The

probability that the event Stop4 happens is upper bounded by 2qE−1

2k where
qE−1 is the number of queries to E−1

(·) (·)-oracle. Therefore,

Δ3 = |Pr[Forge2] − Pr[Forge3]|

≤ 2qE(qg + qs + 1) + qE(qh + qs + 1)
2n−m

+
2qE−1

2k

≤ 3qE(qg + qh + qs + 1)
2n−m

+
2qE−1

2k
.

(4)

– Game G4: In this game we shall use E-list, H-list, G-list and Σ-list to
generate signatures instead of using the trapdoor ϕ−1 in the simulation of the
signing oracle (Signϕ−1(·)-Oracle) of Game G3. The rules of the simulation
of Signϕ−1(·)-Oracle is described as follows:
• Rule S(1): For a signing query Signϕ−1(M), one first breaks up M as

(m1, m2) ∈ {0, 1}n−m × {0, 1}m−k, randomly chooses one bit b ∈ {0, 1},
then asks a query h = H(m1) to the H-oracle and a query Eh(m2 ‖ bk)
to E(·)(·)-oracle, and then finds the record (m1, m2, b, h, ω, g, x) in Σ-list.
Hence, the signature x satisfies ϕ(x) = (s ‖ ω) where s = G(ω) ⊕ m1
according to the rules of E(·)(·)-oracle in the previous game.

Except the i-th signature query, all the signature queries are answered by
valid signatures. However, in this game one needs to submit at most qs

queries to G, H and E(·)(·) oracles respectively, which may lead to the abor-
tion of the simulation. Exactly, whether such events will happen is the only
difference between Game G4 and Game G3. If the events are denoted by
AbortG, AbortH and AbortE respectively, Δ4 is upper bounded by the prob-
ability of these events. Therefore :

Δ4 = |Pr[Forge3] − Pr[Forge4]|
≤ Pr[AbortG] + Pr[AbortH] + Pr[AbortE]

≤ qs(qg + qs + 1)
2n−m

+
qs · (qh + qs + 1)

2l
+

3qs(qh + qg + qs + 1)
2n−m

≤ qs · (qh + qs + 1)
2l

+
4qs(qh + qg + qs + 1)

2n−m
.

(5)

– Game G5: This is the last game. Finally the forger will return a valid sig-
nature σ on message (m1, m2). We have ϕ(σ) = s ‖ ω, s ∈ {0, 1}n−m,

A Practical Optimal Padding for Signature Schemes 123

ω ∈ {0, 1}m and m1 = G(ω) ⊕ s. We ask for h = H(m1) to the H-oracle,
(m2 ‖ v) = E−1

h (ω) ∈ {0, 1}m−k×{0, 1}k to the E−1
(·) (·)-oracle. Hence v = b′k

where b′ ∈ {0, 1}. The event that Eh(m2 ‖ b′k) is the i-th query to E(·)(·)-
oracle which is denoted by GoodGuess, happens with probability 1

qE+qs+1 .
In this case, we shall know that ϕ(σ) = y and the reduction succeeds which
is denoted by Success. Otherwise we abort the game. Hence, we have

ε′ = Pr[Success] = Pr[Forge4 ∧ GoodGuess] =
1

qE + qs + 1
Pr[Forge4]. (6)

For all, we have

ε − (qE + qs + 1) · ε′ ≤ qE−1

2k−1
+

3(qh + qs + 1)2

2l+1
+

9(qg + qh + qs + 1) · (qE + qg + qs + 1)
2n−m+1

(7)

The running time t of the reduction includes the running time of F and is
otherwise dominated by the computation of ϕ denoted Tϕ performed for each
query to the signing oracle and the ideal cipher oracle (E(·)(·)) at most. There-
fore, we have t′ ≤ t + (qE + qs + 1)Tϕ ��
If the underlying trapdoor permutation is induced by a claw free permutation,
we can use the idea of the Katz-Wang construction [17] to achieve tight security
in signature. More precisely, we only need to modify the simulation of the sign-
ing oracle and the ideal cipher oracle in the previous proof, then the following
theorem holds.

Theorem 2. Let F be adaptively chosen-message (to the signing oracle) ad-
versaries, against the signature scheme. Let us assume that F can produce an
existential forgery according to the definition 2, with success probability ε (within
a time bound t, after qe = qE + qE−1 , qs, qh and qg queries to the keyed permu-
tation oracles (which includes qE forward queries and qE−1 inverse queries), the
signing oracle, H-oracle and G-oracle, respectively). If the function ϕ is induced
by a claw-free permutation, then we can inverse ϕ in time t′, with probability ε′

where t′ ≤ t + (qE + qs + 1)Tϕ and

ε′ ≥ 1
2
(ε − qE−1

2k−1 − 3(qh + qs + 1)2

2l+1 − 9(qg + qh + qs + 1) · (qE + qg + qs + 1)
2n−m+1).

(8)

3.3 How to Sign Long Messages

The padding in previous subsection for signature schemes only allows one to
sign messages of length n − k. To sign a message m of arbitrary length greater
than n− k, the message is split m = (m0, m1, m2) ∈ M = {0, 1}∗ ×{0, 1}n−m ×
{0, 1}m−k. m1, m2 will be recovered from the signed message. While m0 will be
transmitted in the clear. Details of the signature scheme are described as follows:

Key Generation Algorithm Gen: runs Tp-Gen(1n) to obtain a pair of trap-
door permutation ϕ and ϕ−1. Sets (ϕ, ϕ−1) as the public key and secret key,
respectively.

124 H. Qian et al.

Signature Algorithm Sign: The space of the messages is M = {0, 1}∗ ×
{0, 1}n−m×{0, 1}m−k, the signature algorithm outputs a signature (m0 ‖ σ)
into {0, 1}∗ × {0, 1}n: on a message M = (m0, m1, m2) ∈ M, one computes
b = PRFθ(M), h = H(m0, m1), ω = Eh(m2 ‖ bk), s = G(ω) ⊕ m1 and then
σ = ϕ−1(s ‖ ω), returns (m0 ‖ σ).

Verification Algorithm Ver: On a signature (m0 ‖ σ), one first computes
s ‖ ω = ϕ(σ) where s ∈ {0, 1}n−m, ω ∈ {0, 1}m and then m1 = G(ω) ⊕ s,
h = H(m0, m1), (m2 ‖ v) = E−1

h (ω) ∈ {0, 1}m−k ×{0, 1}k. Finally, if v = 0k

or v = 1k, the verifier returns the message M = (m0, m1, m2); otherwise
returns reject.

Therefore, the padding for signature schemes can be used to sign on long
messages. More precisely, part of the message can be recovered from the signed
message. The bandwidth in communication can be optimal if we use this kind
of padding for signature scheme to sign long messages.

Meanwhile, the security proof still holds if all answers to oracle queries are
independent for different values of (m0, m1) and we can obtain the same result
within a similar theorem.

4 Parameters and Discussions

For practical purpose, n and m is much greater than the bit-size of the redun-
dancy k (where m ≤ 256 since the existing largest block cipher can’t be di-
rectly used to encrypt a plaintext with block size greater than 256 bits [16]).
Since all the queries to the oracles is upper bounded, we may assume that
1 + qs + qh + qg + qE + qE−1 ≤ Q. Then, without loss of generosity, assum-
ing that Q ≤ t′ ≈ t ≤ t+Q ≤ 2k, the quantity Q ·2−l, Q ·2m−n, or even Q2 ·2−l,
Q2 ·2m−n can be ignored in front of Q ·2−k if we assume l > 3k and n−m > 3k.
Therefore, the above reduction cost provides that

ε

t
≤ Qε′

t
+

2
2k

, in the general case;

ε

t
≤ 2ε′

t
+

2
2k

, if ϕ is induced by a claw-free permutation.
(9)

In the general case, if the underlying trapdoor permutation is 2k-bit secure,
we shall get a signature scheme which is nearly k-bit secure with only k bits of
redundancy (or message expansion). According to the first theorem in [13], our
padding leads to an optimal signature. Due to the fact that ε

t ≤ Qε′

t + 2
2k , we

only require that ε′
t ≤ 2−2k, then we shall roughly get ε

t ≤ c · 2−k where c is a
small constant.

If ϕ is induced by a claw-free permutation, the padding not only achieves
the lower bounds of message expansion for signature schemes (optimal for the
length of message recovery), but also leads to a tight security reduction. Namely,
we needn’t require the underlying permutation to be 2k-bit secure. For a tight
security reduction implies that the signature scheme and underlying trapdoor

A Practical Optimal Padding for Signature Schemes 125

permutation have the same security level, the padding for signature schemes is
also optimal for the security of theoretical design.

With a usual setting of the security bound, in the case that ϕ is induced by
a claw-free permutation, k = 80 is secure enough in the real world.

4.1 How to Implement in the Real World

As we have mentioned previously, the padding for signature with message recov-
ery is also practical and efficient in the real world. Here, we explain the details on
how to implement such a padding for signature schemes using the existing cryp-
tographical primitives. Since the most popular trapdoor (one-way) permutations
are the RSA permutations we can use the RSA permutations as the underlying
permutations. Luckily, the RSA permutations are claw-free as well. Therefore,
the RSA permutations are widely used in all kinds of cryptographical standards,
such as the standards: RSA-PSSR, RSA-OAEP, etc.

Our theorem shows that the padding for signature schemes leads to a tight
security. Hence, for the particular case of RSA, we can use a 1024-bit modulus.
Due to the Lenstra-Verheul’s estimation [15], if RSA is (t′, ε′)-secure, then t′/ε′ ≥
280. Therefore, the parameters are suggest to be n = 1024, k = 81 and m = l =
256 > 3k = 243, then we shall get a signature with 80-bit security level.

We shall use two hash functions H : {0, 1}∗ → {0, 1}256 and G : {0, 1}256 →
{0, 1}768 which can be viewed as random oracles. For the ideal cipher, we may
choose the block cipher, NUSH, or a variant of the NIST AES standard, 256-bit
plaintext block Rijndael, with a 256-bit key over 14 rounds[16], to instantiate
the keyed permutation E(·) : {0, 1}l × {0, 1}m → {0, 1}m. Both the key length
and the block size can be 256 bits.

4.2 Comparison with Some Other Schemes

Various practical signature schemes (with message recovery) were proposed
through the last few years. However, most of them are proven secure in the
random oracle model. None of the schemes proven secure in the random oracle
model can achieve optimality in bandwidth including the RSA-PSSR, Katz-
Wang’s improved PSSR.

Indeed, the Katz-Wang’s paper [17] that proves that PSS with a one-bit salt
is sufficient when the underlying permutation is induced by a claw-free permu-
tation. However, it is not optimal. From theorem 3 in [17] and the suggestion in
[3], we get that the expansion (length of redundancy and randomness), in other
word, the difference between the length of the signed message and the original
message should be nearly k1 + 1 = 180 bits if taking Q = 260, ε′ = 2−60. With
the same assumption that Q = 260, ε′ = 2−60, we may see that our padding for
signature schemes only needs nearly k = 120 bits of expansion. More exactly,
Katz-Wang’s construction reduces the randomness to one bit, but keeps the
original redundancy of PSS. While, our padding for signature schemes bounds
the length of redundancy and randomness as small as possible. Therefore, Katz-
Wang’s improved PSS is not optimal in bandwidth, but ours is optimal. To our

126 H. Qian et al.

knowledge, the problem on how to construct an optimal signature scheme in the
random oracle model still remains open now.

On the other hand, all the optimal signature schemes (with message recovery)
depend on either the random permutations or the ideal ciphers. However, these
permutations (including the ideal ciphers) all require large block sizes (i.e., block
sizes larger than the block size of a cipher such as AES, etc)[13,17,4]. Therefore,
these proposals are less efficient in the real world due to the cause that larger
domain cipher calls the underlying block cipher many times[14] when it enciphers
the message (or deciphers the ciphertext).

We compare our scheme (denoted by ΣPOPSS) with practical signature schemes:
Katz-Wang’s improved PSSR[17], the signature scheme from OAEP3r [4](denoted
by ΣOAEP3r), and the short signature schemes in [5,6]. Meanwhile, we compare our
scheme with all the previous proposed optimal signature schemes: Granboulan’s
proposal [13](denoted by ΣOPSSR), the signature scheme from the universal
padding OPbP in [4] (denoted by ΣOPbP) and Katz-Wang’s scheme in [17]. Let
TP and CFP denotes trapdoor permutations and claw-free permutations, respec-
tively. CDHP denotes the computational Diffie-Hellman problem in Gap of Diffie-
Hellman Problems (GDH) groups. Details are showed in table 1.

Table 1. Comparison with Some Other Schemes

Signature Schemes: Message Recovery Tight Security Assumption Optimal Efficient
Improved RSA-PSSR in[17] yes yes RSA no yes
ΣOAEP3r yes no/yes TP/CFP no yes
Short signatures in [5,6] no no CDHP no yes
Optimal Signature Schemes:
ΣOPSSR yes no TP yes no
Katz and Wang’s Proposal in[17] yes yes CFP yes no
ΣOPbP yes yes TP/CFP yes no
ΣPOPSS yes yes TP/CFP yes yes

5 Conclusions

This paper proposes a practical, efficient optimal padding for signature schemes
with message recovery. The padding is simple and efficient only employing two
random oracles and an ideal cipher with a practical small block size. We provide
a perfect solution to the problem on whether there exists a practical optimal
padding for signature schemes with message recovery that can be efficiently im-
plemented in the real world. Exactly, we’ve designed practical, efficient optimal
signature schemes by replacing the idealized oracles with a true block cipher and
two hash functions. We show that the padding is provable secure if the under-
lying trapdoor permutation is secure. The padding for signature schemes leads
the scheme to achieve a tight security reduction when the underlying trapdoor
permutation is induced by a claw free permutation.

Particularly, in the case of RSA, the padding makes the signature scheme
achieve not only optimality in bandwidth but also a tight security.

A Practical Optimal Padding for Signature Schemes 127

Acknowledgments

We would like to thank Zhenfu Cao, Xuejia Lai and the three reviewers of CT-
RSA 2007 for their careful reading and valuable comments on earlier drafts of the
paper. The third author gratefully acknowledges the support by the NSFC grant
No. 44010860, and the Doctoral Program Foundation of EMC No. 20060081.

References

1. J. H. An, Y. Dodis, and T. Rabin.: On the security of joint signature and encryp-
tion. In: Advances in Cryptology-EUROCRYPT 2002. Lecture Notes in Computer
Science, vol. 2332, pages 83–107. Springer-Verlag, Berlin Heidelberg, New York,
2002.

2. M. Bellare, P. Rogaway.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM conference on Computer and
communications Security, pages 62–73. ACM Press, New York, 1993.

3. M. Bellare, P. Rogaway.: The exact security of digital signatures –how to sign with
RSA and Rabin. In: Advances in Cryptology-EUROCRYPT’96. Lecture Notes in
Computer Science, Vol.1070, pages 399–416. Springer-Verlag, Berlin Heidelberg,
New York, 1996.

4. B. Chevallier-Mames, D. H. Phan, and D. Pointcheval.: Optimal Asymmetric
Encryption and Signature Paddings. In: Proceedings of the Conference on Ap-
plied Cryptography and Network Security (ACNS’05), LNCS 3531, Pages 254–268.
Springer-Verlag, Berlin, 2005.

5. D. Boneh, B. Lynn, and H. Shacham.: Short signatures from the Weil pairing.
In: Advances in Cryptology-Asiacrypt’2001. Lecture Notes in Computer Science,
Vol. 2248, pages 514–532. Springer-Verlag, Berlin Heidelberg, New York, 2001.

6. D. Boneh and X. Boyen.: Short signatures without random oracles. In: Proceedings
of EUROCRYPT 2004, LNCS 3027, pages. 56–73. Springer-Verlag, Berlin Heidel-
berg, 2004.

7. R. Canetti, O. Goldreich, and S. Halevi.: The random oracle methodology, revis-
ited. In: Proceedings of 30th Annual ACM Symposium on Theory of Computing
(STOC), pages 209–218. ACM press, New York, 1998.

8. J. S. Coron.: On the exact security of full domain hash. In: Prooceedings of
CRYPTO’2000. Lecture Notes in Computer Science, Vol. 1880, pages 229–235.
Springer-Verlag, Berlin Heidelberg, New York, 2000.

9. J. S. Coron.: Optimal Security Proofs for PSS and Other Signature Schemes. In:
Advances in Cryptology-EUROCRYPT 2002. Lecture Notes in Computer Science,
vol. 2332, pages 272–287. Springer-Verlag, Berlin Heidelberg, New York, 2002.

10. Y. Dodis, L. Reyzin.: On the Power of Claw-Free Permutations. In: Third Interna-
tional Conference, SCN 2002. (Amalfi, Italy, September 11-13, 2002), Lecture Notes
in Computer Science, Vol. 2576, pages 55–73. Springer-Verlag, Berlin Heidelberg,
New York, 2003.

11. E. J. Goh, S. Jarecki.: A signature scheme as secure as the Diffie-Hellman prob-
lem. In: Advances in Cryptology-EUROCRYPT 2003. Lecture Notes in Computer
Science, vol. 2656, pages 401–415. Springer-Verlag, Berlin Heidelberg, New York,
2003.

12. S. Goldwasser, S. Micali, and R. Rivest.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal of Computing, 17(2):281–308,
April 1988.

128 H. Qian et al.

13. L. Granboulan.: Short signatures in the random oracle model. In: Proceedings of
Asiacrypt’02, volume 2501 of LNCS, pages 364–378, Springer-Verlag, Berlin, 2002.

14. S. Halevi, P. Rogaway.: A Tweakable Enciphering Mode. Advances in Cryptology -
CRYPTO ’03, Lecture Notes in Computer Science, vol. 2729, pp. 482-499, Springer-
Verlag, 2003.

15. A. Lenstra and E. Verheul.: Selecting Cryptographic Key Sizes. In PKC’00, LNCS
1751, pages 446–465. Springer-Verlag, Berlin, 2000.

16. NESSIE consortium, “NESSIE Security report”. Deliverable Type Report D21,
NESSIE, 2002. Available from http://www.cosic.esat.kuleuven.ac.be/nessie/
index.html.

17. J. Katz, N. Wang.: Efficiency improvements for signature schemes with tight se-
curity reductions. In: Proceedings of the 10th ACM conference on Computer and
communication security, ACM Press, pages 155–164. New York, USA, 2003.

18. N. Koblitz, A. Menezes.: Another look at “provable security”. Cryp-
tology ePrint Archive, Report 2004/152 (2004). Available from http://
www.cacr.math.uwaterloo.ca/~ajmeneze/publications/provable.pdf

19. B. Libert, J. J. Quisquater.: The Exact Security of an Identity Based Signature
and its Applications. Cryptology ePrint Archive, Report 2004/102. Available from
http://eprint.iacr.org/.

20. D. Pointcheval, J. Stern.: Security proofs for signature schemes. In: Advances in
Cryptology-EUROCRYPT’96. Lecture Notes in Computer Science, vol. 1070, pages
387–398. Springer-Verlag, Berlin Heidelberg, New York, 1996.

21. L. Pintsov and S. Vanstone.: Postal revenue collection in the digital age. In: Pro-
ceedings of Financial Cryptography 2000, volume 1962 of LNCS, pages 105–20.
Springer-Verlag, Berlin, 2000.

22. R. L. Rivest, A. Shamir, and L. M. Adleman.: A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):
120–126, 1978.

Directed Transitive Signature Scheme

Xun Yi

School of Computer Science and Mathematics
Victoria University, PO Box 14428, Melbourne City MC

Victoria 8001, Australia

Abstract. In 2002, Micali and Rivest raised an open problem as to
whether directed transitive signatures exist or not. In 2003, Hohen-
berger formalized the necessary mathematical criteria for generic di-
rected transitive signature scheme, showing that the edge signatures in
such a scheme form a special (and powerful) mathematical group, called
Abelian trapdoor group with infeasible inversion, which is not known
to exist. In this paper, we consider a directed graph whose transitive
reduction is a directed tree, on which we propose a natural RSA-based
directed transitive signature scheme RSADT S. In this particular case,
we have answered the open problem raised by Micali and Rivest. We
have proved that RSADT S, associated to a standard digital signature
scheme, is transitively unforgeable under adaptive chosen-message at-
tack if the RSA inversion problem over a cyclic group is hard and the
standard digital signature is secure. Furthermore, RSADT S has even
better performance than RSAT S-1 in certain circumstance.

Keywords: Directed transitive signature, transitive closure and reduc-
tion, RSA inversion problem over a cyclic group.

1 Introduction

The concept of transitive signature was envisioned by Micali and Rivest [1] in 2002.
Transitive signature aims to authenticate the transitive closure of a dynamically
growing graph G = (V, E), denoted as G̃ = (V, Ẽ), in which there exists an edge
(i, j) in Ẽ if there exists a path from nodes i to j, where i, j ∈ V . The original idea
of transitive signature is that the signer, having secret key tsk and public key tpk,
is able to sign any node and any edge of G such that given signatures on nodes i,
j, k in V , and signatures on edges (i, j), (j, k) in Ẽ, anyone in possession of tpk
can compose a signature on the edge (i, k) in Ẽ. However, without tsk, it is hard
to create a valid signature of an edge or a node outside G̃.

As suggested by Micali and Rivest [1], transitive signature for an undirected
graph can be used to authenticate administrative domains, where nodes stand
for machines and an undirected edge (i, j) means that i and j are in the same do-
main, while transitive signature for a directed graph can be used to authenticate
a military chain-of-command, where nodes stand for personnel and a directed
edge (i, j) from nodes i to j means that i commands (or controls) j.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 129–144, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

130 X. Yi

Two transitive signature schemes, DLT S and RSAT S-1, were firstly pro-
posed by Micali and Rivest [1]. Shortly afterwards, Bellare and Neven [2][3] pro-
posed a series of transitive schemes, such as FactT S-1, DLT S-1M, GapT S-1,
RSAT S-2, FactT S-2, and GapT S-2. DLT S is similar to Okamoto’s ID scheme
using two generators [4] while DLT S-1M is similar to Schnorr’s ID scheme using
one generator [5]. Recently, Shahandashti et al. [6] proposed a short transitive
signature scheme based on bilinear maps that is the same as GapT S-1 scheme.

In [1], Micali and Rivest proved that DLT S is transitively unforgeable under
adaptive chosen-message attack assuming that the discrete logarithm problem
is hard in an underlying prime-order group and an underlying standard sig-
nature scheme is secure. They pointed out that even though the natural RSA
based transitive signature scheme RSAT S-1 can be proved to be transitively
unforgeable under nonadaptive chosen-message attack, there is no known proof
of transitively unforgeable under adaptive chosen-message attack.

In [2][3], Bellare and Neven proved RSAT S-1 to be secure (transitively un-
forgeable under adaptive chosen-message attack), under the assumption that the
one-more RSA inversion problem is hard and the underlying standard digital
signature SDS scheme is secure [7] (unforgeable under adaptive chosen-message
attack). One-more RSA inversion problem was introduced by Bellare et al. [8]
in order to prove the security of Chaum’s blind signature scheme [9]. It was also
used in [10] to prove security of Guillou-Quisquater (GQ) identification scheme
[11] against the impersonation attack.

Bellare and Neven also proved that (1) FactT S-1 is secure if the factoring
problem is hard and the underlying SDS is secure; (2) DLT S-1M is secure
if one-more discrete logarithm problem [10] is hard and the underlying SDS
is secure; and (3) GapT S-1 is secure if one-more gap Diffie-Hellman problem
[12][13] is hard and the underlying SDS is secure.

DLT S, RSAT S-1, FactT S-1, DLT S-1M, and GapT S-1 [2][3] follow the
node certificate paradigm, in which: (1) The signer associates to each node i
in the current graph a node certificate consisting of a public label L(i) and
a signature on the concatenation of i and L(i) under the standard signature
scheme, and creates the signature of an edge including the certificates of its
endpoints plus an edge label δ; (2) Verification of an edge signature involves
relating the edge label to the public labels of its endpoints as provided in the
node certificates and verifying the standard signatures in the node certificates;
(3) Composition involves algebraic manipulation of edge labels.

RSAT S-2, FactT S-2, and GapT S-2 [2][3] eliminate node certificates by spec-
ifying the public label of a node i as the output of a hash function applied to
i. No explicit certification is attached to this value. In [2][3], the edge label is
shown to provide an “implicit authentication” of the associated node label and
RSAT S-2, FactT S-2, and GapT S-2 are proved to be transitively unforgeable
under adaptive chosen-message attack, in a model where the hash function is a
random oracle [14]. Therefore, the standard signature scheme and all associated
costs are removed.

Directed Transitive Signature Scheme 131

The above transitive signature schemes are designed for undirected graphs, in
which (i, j) and (j, i) stand for the same edge and therefore they have the same
edge signature. A transitive signature scheme for undirected graphs cannot be
used to authenticate directed graphs, in which (i, j) and (j, i) stand for distinct
edges and thereby they have distinct edge signatures.

In 2002, Micali and Rivest raised an open problem [1]: “The problem of finding
a directed transitive signature scheme remains a very interesting open problem.
We have not been able to make much progress on this problem.” In general, a
directed transitive signature DTS scheme allows the signer to sign a subset of
edges on a directed graph in such a way that anyone can compose the signatures
on edges (i, j) and (j, k) to obtain the signature on (i, k).

In 2003, Hohenberger [15] formalized the necessary mathematical criteria for
generic DTS scheme when the signatures can be composed in any order, showing
that the edge signatures in such a scheme form a special (and powerful) mathe-
matical group, called Abelian trapdoor group with infeasible inversion (ATGII),
which is not known to exist. Such a group would only be possible when the order
of the group remains secret [16]. Furthermore, a DTS scheme is more complex - in
a black box sense - than standard signature, public key encryption and oblivious
transfer, and a pseudo-free ATGII is sufficient for a secure DTS construction.

Kuwakado and Tanaka [17] constructed a transitive signature scheme for di-
rected trees in 2003. However, Yi et al. [18] has shown that it is insecure against
a forgery attack, in which directed edge signatures can be forged by composing
the existing directed edge signatures provided by the signer.

Hohenberger’s criteria for a generic DTS scheme is applicable for general di-
rected graphs. In a special case where the transitive reduction of a directed graph
is a directed tree, can we find a directed transitive signature scheme on it?

In this paper, we construct a natural RSA based directed transitive signature
RSADT S scheme for a directed graph whose transitive reduction is a directed
tree. Our basic idea is that a node i is mapped to an element L(i) in a cyclic
subgroup of Z∗

n for an RSA modulus n, and a directed edge (i, j) is mapped to
odd prime δij , such that L(i)δij = L(j)(mod n).

The main contributions of this paper include: (1) By RSADT S scheme, we
have answered the open problem raised by Micali and Rivest as to whether a
directed transitive signature scheme exists or not in the case where the transitive
reduction of a directed graph is a directed tree; (2) We slightly modify the
definitions of a UTS scheme, its correctness and security given by Bellare and
Neven [2][3] to fit into a RSADT S scheme; (3) We formally define the RSA
inversion problem over a cyclic group; (4) We prove RSADT S to be transitively
unforgeable under adaptive chosen-message attack if the RSA inversion problem
over a cyclic group is hard and the associated standard signature scheme is
unforgeable under adaptive chosen-message attack; (5) We find that RSADT S
has better performance than RSAT S-1 in certain circumstance.

The rest of this paper is organized as follows: Section 2 introduces notations
and definitions; Section 3 presents RSADT S scheme; Section 4 gives the security

132 X. Yi

proof of RSADT S scheme; Section 5 discusses the performance of RSADT S
scheme; Conclusions are drawn in the last section.

2 Notations and Definitions

Notations: The notation x
R←− S denotes that x is randomly selected from the

set S. Let N = {1, 2, · · · , n, · · ·} and P stand for the set of all odd primes, ∅
represent the empty set, ‖ the concatenation operator on strings, |S| the order
of a set S, and <G> a cyclic subgroup of Z∗

n generated by an integer G, where
n is a product of two safe primes p = 2p′ + 1 and q = 2q′ + 1, such that p′ and
q′ are also primes. If A is a possible randomized algorithm, then the notation
x ← A(a1, a2, · · · , an) denotes that x is assigned the outcome of the experiment
of running A on inputs a1, a2, · · · , an.

Graph: In this paper, we consider a directed graph G = (V, E), whose transitive
reduction is a directed tree, and work on its transitive closure. The transitive
closure, denoted as G̃ = (Ṽ , Ẽ), is defined to have Ṽ = V and to have an edge
(i, j) in Ẽ if and only if there is a path from nodes i to j in G. The transitive
reduction, denoted as G∗ = (V ∗, E∗), is defined to be the minimum graph with
the same transitive closure as G. It is obvious that V ∗ = V . In a directed graph,
each directed edge is associated with an ordered pair of nodes (i, j), where i is
the initial node and j the terminal node, and thus (i, j) and (j, i) stands for
distinct directed edges. A directed tree is a directed graph which is a tree if the
directions on the edges are ignored. A tree has some properties as follows:

– If it has |V | nodes, then it has exactly |V | − 1 edges.
– There is exactly one path between every pair of nodes.
– If any two of nodes which are not adjacent are joined directly by an edge,

then the resulting graph possesses exactly one cycle.

Directed Transitive Signature (DTS) Scheme: A directed transitive signature
scheme DT S = (TKG, TSign, TVf, Comp) is defined by four polynomial-time
algorithms as follows:

– The randomized key generation algorithm TKG takes 1k as input, where
k ∈ N is the security parameter, and returns a pair (tpk, tsk), where tpk is
the public key while tsk the matching secret key.

– The signature algorithm TSign, which could be stateful or randomized (or
both), takes inputs the secret key tsk and a directed edge (i, j), where i, j ∈
N , and returns an original signature σij of (i, j) relative to tsk. If stateful,
it maintains state which it updates upon each invocation.

– The deterministic verification algorithm TVf, given tpk, a directed edge (i, j),
and a candidate signature σij , returns either 1 or 0. If the output is 1, σij is
said to be a valid signature of (i, j) relative to tpk.

– The deterministic composition algorithm Comp takes tpk, two directed edges
(i, j) and (j, k), and two signatures σij and σjk as inputs, and returns either
a composed signature σik of edge (i, k) or ⊥ to indicate failure.

Directed Transitive Signature Scheme 133

In practice, it is desirable to allow users to name nodes with whatever iden-
tifiers they choose, but these names can always be encoded as integers [2]. We
assume that the nodes of the graph are positive integers.

Correctness of DTS Scheme: Naturally, it is required that if σij is an original
signature of directed edge (i, j) relative to tsk then it is a valid signature of (i, j)
relative to tpk. A transitive signature scheme allows to compose a signature σik

with two signatures σij and σik. Therefore, a signature is legitimate if it is either
obtained by the signer, or obtained by applying the composition algorithm to
legitimate signatures.

The formal definition of correctness takes into account the statefulness and
associates to any algorithm A (deterministic, halting, but not computationally
limited) and security parameter k ∈ N the experiment shown in Fig. 1, which
provides A with oracles TSign(tsk, ·, ·) and Comp(tpk, ·, ·, ·, ·, ·), where tpk, tsk
have been produced by running TKG on input 1k. In this experiment, the TSign
oracle maintains state and update this state each time it is invoked.

(tpk, tsk) ← TKG(1k)

S ← ∅, Legit ← true, NotOK ← false

Run A with its oracles until it halts, replying to its oracle queries as follows:

If A makes TSign query on (i, j) then

If [(i = j) ∨ ({i, j} ∈ V)] then Legit ← false

Else

Let σij be the output of the TSign oracle

S ← S ∪ {(i, j, σij)}
If TVf(tpk, i, j, σij) = 0 then NotOK ← true

If A makes Comp query on (i, j, k), σij , σjk then

If [(i, j, k are not all distinct)∨((i, j, σij) �∈ S) ∨ ((j, k, σjk) �∈ S)]

Then Legit ← false

Else

Let σik be the output of the Comp oracle

S ← S ∪ {(i, k, σik)}
If (TVf(tpk, i, k, σik) = 0) then NotOK ← true

When A halts, it outputs (Legit ∧ NotOK)

Fig. 1. An experiment to define the correctness of a directed transitive signature scheme
DT S = (TKG, TSign, TVf, Comp)

Definition 2.1. A directed transitive signature DTS scheme is said to be correct
if for every algorithm A and every k ∈ N , the output of the experiment of Fig. 1
is true with probability zero.

134 X. Yi

As A queries, the experiment computes a Boolean Legit which is set to false if A
makes an “illegitimate” query, and a Boolean NotOK which is set to true if an
invalid signature is returned by TSign or Comp oracles on a “legitimate” query.
To win, A must stay legitimate (meaning Legit = true), but violate correctness
(meaning NotOK = true). The experiment returns true if and only if A wins.
The definition needs that this happens with probability zero.

Different from the definition of correctness given in [2], we do not require the
real and composed signatures to be the same or statistically indistinguishable.
In fact, only one signature exists for each edge of the transitive closure, which
is either produced by TSign or composed by Comp. The signer never produce a
signature which can be composed by existing signatures.

Security of DTS Scheme: A forgery is a valid directed transitive signature on an
edge not in the transitive closure. We associate DT S = (TKG, TSign, TVf, Comp)
to any algorithm F (called dtu − cma adversary) and security parameter k ∈ N
the experiment Expdtu−cma

DT S,F (k) of Fig. 2, which provides F with input tpk and an
oracle TSign(tsk, ·, ·). The oracle is assumed to maintain states.

(tpk, tsk) ← TKG(1k)

S = {(i, j, σij)} R←− TSign(tsk, ·, ·)
(i′, j′, σ′

i′j′)
R←− F(tpk, S)

Let E = {(i, j)|∃(i, j, σij) ∈ S}, V = {i|(∃(i, j) ∈ E) ∨ (∃(j, i) ∈ E)}
Let G = (V, E), G̃ = (V, Ẽ), S̃ = {(i, j, σij)|((i, j) ∈ Ẽ) ∧ (TVf(i, j, σij) = 1)}
If (i′, j′, σ′

i′j′) ∈ S̃ ∨ TVf(i′, j′, σ′
i′j′) = 0 then return 0

Else return 1

Fig. 2. An experiment to define the security of a directed transitive signature scheme
DT S = (TKG, TSign, TVf, Comp)

The experiment Expdtu−cma
DT S,F (k) returns 1 if and only if F succeeds in producing

at least one forgery. The advantage of F in its forgery attack on DT S is defined as

Advdtu−cma
DT S,F (k) = Pr[Expdtu−cma

DT S,F (k) = 1] (1)

for k ∈ N , where the probability is taken over all the random choices made in
the experiment.

Definition 2.2. A directed transitive signature scheme DT S = (TKG, TSign,
TVf, Comp) is said to be transitively unforgeable under adaptive chosen-message
attack if the function Advdtu−cma

DT S,F (k) is negligible for any adversary F whose
running time is polynomial in the security parameter k.

Standard Digital Signature (SDS) Scheme: Our construction will use an under-
lying standard digital signature scheme SDS = (SKG, SSign, SVf), described as

Directed Transitive Signature Scheme 135

usual via its polynomial time key generation (SKG), signing (SSign), and verifi-
cation (SVf) algorithms. Based on the security definition of unforgeability under
chosen-messages attack [7], a forger is given adaptive oracle access to the signing
algorithm, meaning the forger can choose the next query based on the oracle’s
answer to the previous one, and its advantage Advuf−cma

SDS,B (k) in breaking SDS
is defined as the probability that it outputs a valid signature for a message that
was not one of its previous oracle queries. The scheme SDS is said to be un-
forgeable under adaptive chosen-message attack if Advuf−cma

SDS,B (k) is negligible for
every polynomial-time forger.

3 Directed Transitive Signature Scheme

In this section, we propose a natural RSA based directed transitive signature
scheme RSADT S for a directed graph G = (V, E) whose transitive reduction
G∗ = (V, E∗) is a directed tree.

Associated to a RSA-based cyclic group generator Krsacg and any standard sig-
nature scheme SDS = (SKG, SSign, SVf), a directed transitive signature scheme
RSADT S = (TKG, TSign, TVf, Comp) is defined as follows.

1. TKG(1k) runs as follows:
(1.1) Run SKG(1k) to generate a key pair (spk, ssk).
(1.2) Run Krsacg(1k) to produce a triple (<G>, n, ϕ(n)), where n = pq, p, q
are two safe primes, 2k−1 < n < 2k, ϕ(n) = (p − 1)(q − 1), and <G> is a
cyclic subgroup of Z∗

n generated by an integer G such that G2 �= 1(mod n).
(1.3) Output tpk = (<G>, n, spk) as the public key and tsk = (ϕ(n), ssk) as
the secret key.

2. The signing algorithm TSign maintains state (V, Δ, L, Σ) where V ⊆ N is
the set of all queried nodes, the function L: V →<G> assigns to each node
i ∈ V a public label L(i), while the function Δ: V → P assigns to each
edge (i, j) ∈ E∗ a public label δij , and the function Σ: V → {0, 1}∗ assigns
to each node i a standard digital signature Σ(i) on i‖L(i) under ssk with
SSign. The node certificate of node i is Ci = (i, L(i), Σ(i)).

Choosing a node r as a reference node, when invoked on inputs tsk =
(ϕ(n), ssk) and an edge (i, j) ∈ E∗, meaning when asked to produce a sig-
nature on the edge (i, j) ∈ E∗, TSign runs as follows:

Case 1: i = r �∈ V , j �∈ V , i �= j
(2.1) V ← V ∪ {i, j}
(2.2) L(i) ← G; Σ(i) ← SSign(ssk, i‖L(i)); Δ = ∅
(2.3) δij

R←− P ; L(j) ← L(i)δij (mod n); Σ(j) ← SSign(ssk, j‖L(j));
Δ ← Δ ∪ {δij}

(2.4) Ci ← (i, L(i), Σ(i)); Cj ← (j, L(j), Σ(j))
(2.5) Return (Ci, Cj , δij) as the signature of (i, j)

Case 2: i �∈ V , j = r �∈ V , i �= j
(2.6) V ← V ∪ {i, j}
(2.7) L(j) ← G; Σ(j) ← SSign(ssk, j‖L(j)); Δ = ∅

136 X. Yi

(2.8) δij
R←− P ; L(i) ← L(j)δ−1

ij
(mod ϕ(n))(mod n); Σ(i) ← SSign(ssk, i‖L(i));

Δ ← Δ ∪ {δij}
(2.9) Ci ← (i, L(i), Σ(i)); Cj ← (j, L(j), Σ(j))
(2.10) Return (Ci, Cj , δij) as the signature of (i, j)

Case 3: i ∈ V , j �∈ V , i �= j

(2.11) V ← V ∪ {j}
(2.12) δij

R←− P − Δ; L(j) ← L(i)δij (mod n); Σ(j) ← SSign(ssk, j‖L(j));
Δ ← Δ ∪ {δij}

(2.13) Cj ← (j, L(j), Σ(j))
(2.14) Return (Ci, Cj , δij) as the signature of (i, j)

Case 4: i �∈ V , j ∈ V , i �= j

(2.15) V ← V ∪ {i}
(2.16) δij

R←− P − Δ; L(i) ← L(j)δ−1
ij (mod n); Σ(i) ← SSign(ssk, i‖L(i));

Δ ← Δ ∪ {δij}
(2.17) Ci ← (i, L(i), Σ(i))
(2.18) Return (Ci, Cj , δij) as the signature of (i, j)

Case 5: i �∈ V , j �∈ V , i, j �= r, i �= j. Because G∗ = (V, E∗) is a directed
tree, there exists an unique undirected path (r, α1, · · · , αm, i) between nodes
r and i. Recursively applying algorithm in Cases 1-4 to each directed edge
on the path if its signature does not exist, the signature on (αm, i) or (i, αm)
can be generated at last. Since there is an unique undirected path between
i and j, so j �= α1, · · · , αm−1. If j = αm, the signature on (i, αm) has been
already produced. If j �= αm, apply algorithm in Case 3 on (i, j). Finally,
return (Ci, Cj , δij) as the signature of (i, j).

An example for Case 5 is illustrated in Fig. 3, in which there is an undirected
path (r, α1, α2, α3, i) between nodes r and i. In order to produce the signature
on edge (i, j), signatures on edges (r, α1) (Case 1), (α1, α2) (Case 3), and
(α3, α2) (Case 4) are firstly generated if they do not exist. Then the signature
on edge (i, α3(j)) (Case 4) is produced at last.

Case 6: i = j or {i, j} ∈ V , return failure.

�
�

��
�

�
�

��

	
	

	
	

		

r i

α1

α2

α3(j)

Fig. 3. An example of the signing algorithm TSign in Case 5

Directed Transitive Signature Scheme 137

3. The deterministic verification algorithm TV f , on inputs tpk = (n, spk),
(i, j), and a candidate signature σij , proceeds as follows.
(3.1) Parse σij as (Ci, Cj , δij), parse Ci as (i, L(i), Σ(i)), parse Cj as (j, L(j),
Σ(j)).
(3.2) If [(SV f(spk, Ci) = 0) ∨ (SV f(spk, Cj) = 0)] then return 0.
(3.3) Else if

L(i)δij = L(j) (mod n) (2)

then return 1 else return 0.
4. The deterministic composition algorithm Comp takes (i, j, k), signatures σij

and σjk, as inputs, and computes a composed signature for the directed edge
(i, k) as follows:
(4.1) Parse σij as (Ci, Cj , δij), parse Ci as (i, L(i), Σ(i)), parse Cj as (j, L(j),
Σ(j)).
(4.2) Parse σjk as (Cj , Ck, δjk), parse Cj as (j, L(j), Σ(j)), parse Ck as
(k, L(k),Σ(k)).
(4.3) δik ←− δij · δjk

(4.4) Return (Ci, Ck, δik) as the signature for (i, k).

Proposition 3.1. The RSADT S directed transitive signature scheme satisfies
the correctness requirement of Definition 2.1.

Proof. If (V, L, Δ, Σ) is the internal state of TSign algorithm in RSADT S
scheme, then at any time during the experiment in Fig. 1, the invariant

(Legit = false) ∨ (∀(i, j, σij) ∈ S, TVf(i, j, σij) = 1) (3)

holds true.
The above claim is proved by induction on the number of TSign oracle query

q as follows.
In the initial state, S = ∅ and the claim is trivial.
Suppose that the claim is true after q − 1 oracle queries.
If Legit = false before the q-th query, it will still be false after the q-th

queries. This proves the claim directly.
If the q-th query is a TSign query on (i, j) with i = j or {i, j} ∈ V , Legit is set

to false and thus the claim is proved. Otherwise, a new element (i, j, σij) is added
to S, where σij = TSign(tsk, i, j). All elements of S satisfying TVf(i, j, σij) = 1
in the previous state of TSign, still do so in the new state, because TSign only
adds new entries to V, L, Δ, Σ, but never change existing entries. Thus, it suffices
to show the newly added element (i, j, σij) satisfying TVf(i, j, σij) = 1. This can
be seen from the TSign algorithm.

If the q-th query is a Comp query on (i, j, k), σij , σjk with not all distinct i, j, k,
or (i, j, σij) �∈ S, or (j, k, σjk) �∈ S, Legit is set to false and thus the claim is
proved. Otherwise, a composed element (i, k, σik), where σik = (Ci, Ck, δik) and
δik = δijδjk, is added to S. Because the internal state of the TSign is not affected
by the Comp, all elements previously satisfying TVf(i, j, σij) = 1 will still do so.
We only need to verify whether the newly added element (i, k, σik) also satisfies

138 X. Yi

TVf(i, j, σij) = 1. Since i, j, k are all distinct, (i, j, σij) ∈ S, and (j, k, σjk) ∈ S,
we have SV f(spk, Ci) = 1, SV f(spk, Ck) = 1, L(i)δij = L(j)(mod n) and
L(j)δjk = L(k)(mod n). Furthermore,

L(i)δik = L(i)δijδjk = (L(i)δij)δjk = L(j)δjk = L(k) (mod n)

Therefore, TV f(i, k, σik) = 1.
A corollary of the claim is that any time during the experiment, TV f(i, j, σij)

= 1 for all (i, j, σij) ∈ S if Legit = true. By this corollary, the verification of a
signature in S always succeeds as long as Legit = true. Since the experiment
outputs (Legit ∧ NotOK) at the end of execution, the claim implies that it
returns false for every adversary A, thereby proving this proposition.

Remark 3.2. Let n = pq where p, q are safe primes, p′ = (p−1)/2, q′ = (q−1)/2,
G is an integer such that G2 �= 1(mod n), and g = |<G>|, then p′ | g or q′ | g.
When both p′ and q′ are large, |<G>| is large, too.

Proposition 3.3. If (V, L, Δ, Σ) is the internal state of TSign algorithm in
RSADT S scheme, then for any i �= j and L(i), L(j) ∈ L, there exists distinct
odd primes α1, · · · , αμ, β1, · · · , βν in Δ such that

L(j) = L(i)α−1
0 α−1

1 ···α−1
μ β0β1···βν(mod ϕ(n)) (mod n) (4)

where α0 = β0 = 1, μ ≥ 0 and ν ≥ 0. In addition, L(j)2 �= 1(mod n) for any
L(j) ∈ L.

Proof. Assume that the unique undirected path from i to j contains μ + ν
edges. There are μ directed edges in the reverse direction from i to j, whose
public edge labels are α1, · · · , αμ, while there are ν directed edges in the same
direction from i to j, whose public edge labels are β1, · · · , βν . Based on TSign
algorithm, α1, · · · , αμ, β1, · · · , βν are distinct primes, and (4) holds.

When i = r is the reference node, we have

L(j) = Gα−1
0 α−1

1 ···α−1
μ β0β1···βν(mod ϕ(n)) (mod n) (5)

If L(j)2 = 1(mod n), then G2α−1
0 α−1

1 ···α−1
μ β0β1···βν = 1(mod n) and thus G2 =

1(mod n). This contradicts with the assumption that G2 �= 1(mod n). Therefore,
L(j)2 �= 1(mod n) for any L(j) ∈ L.

4 Security Proof

In this section, we prove that RSADT S scheme is transitively unforgeable under
adaptive chosen-message attack if the RSA inversion problem over a cyclic group
is hard for the associated generator and the associated standard signature scheme
is unforgeable under adaptive chosen-message attack.

Definition 4.1. (RSA Inversion Problem in a Cyclic Group: RSA-icg).
Let k ∈ N be the security parameter. Let A be an adversary. Consider the
experiment Exprsa−icg

Krsacg,A(k) in Fig. 4.

Directed Transitive Signature Scheme 139

(<G>,n, ϕ(n)) R←− Krsacg(1k), where n = pq, p, q are safe primes, G2 �= 1(mod n)

e
R←− P , y

R←−<G>

x ← A(<G>, n, e, y)

If xe = y (mod n) then return 1 else return 0

Fig. 4. An experiment to define RSA inversion problem in a cyclic group

The advantage of A is defined as

Advrsa−icg
Krsacg,A(k) = Pr[Exprsa−icg

Krsacg,A(k) = 1] (6)

The RSA-icg problem associated to Krsacg is said to be hard if the function
Advrsa−icg

Krsacg,A(k) is negligible for any adversary A whose time-complexity is poly-
nomial in the security parameter k.

Remark 4.2. The group <G > is closed to RSA-icg problem because xe =
y(mod n)(where the probability of gcd(e, ϕ(n)) �= 1 is negligible) has an unique
solution, i.e., x = ye−1

(mod n), which belongs to <G>.

Remark 4.3. If RSA-icg problem is not hard, the RSA inversion problem is
not hard in the case: given (e, y), determine x such that xe = y(mod n), where
n = pq, p, q are two safe primes, e is an odd prime, and y belongs to <G>. Thus,
the hardness of RSA-icg problem is based on the one-wayness of the standard
RSA.

Theorem 4.4. Let Krsacg be a RSA-based cyclic group generator and SDS =
(SKG, SSign, SVf) be a standard digital signature scheme. Let RSADT S =
(TKG, TSign, TVf, Comp) be the directed transitive signature scheme associated
to Krsacg and SDS. If the RSA-icg problem associated to Krsacg is hard and
SDS is unforgeable under adaptive chosen-message attack, then RSADT S is
transitively unforgeable under adaptive chosen-message attack.

Proof. Suppose that we are given a polynomial-time adversary F for RSADT S.
It has access to an oracle TSign(tsk, ·, ·), by which it is able to obtain a set of
transitive signatures, denoted as S = {(i, j, σij)}. On input tpk and S, F outputs
a forgery,

σ′
i′j′ = ((i′, Li′ , Σi′), (j′, Lj′ , Σj′), δ′i′j′) (7)

Let G = (V, E) be the directed graph defined by the set of F’s signature
queries, where E = {(i, j)|∃(i, j, σij) ∈ S} and V = {i|(∃(i, j) ∈ E) ∨ (∃(j, i) ∈
E)}. Let G̃ = (V, Ẽ) be the transitive closure of G and S̃ = {(i, j, δij)|((i, j) ∈
Ẽ) ∧ (TVf(i, j, δij) = 1)}. F wins if (i′, j′, σ′

i′j′) �∈ S̃ and TVf(i′, j′, σ′
i′j′) = 1.

There are two cases where F wins as follows:

Case A. In the case where a F’s forgery contains recycled node certificates,
Li′ = L(i′) and Lj′ = L(j′), but (i′, j′) �∈ Ẽ. There exists an unique undirected

140 X. Yi

path from i′ to j′ in the transitive reduction of G. After joining i′ and j′ di-
rectly, one cycle containing (i′, j′) forms. In this cycle, there are two undirected
paths from i′ to j′. Based on Proposition 3.3, there exists distinct odd primes
α1, · · · , αμ, β1, · · · , βν such that

L(i′)α−1
0 α−1

1 ···α−1
μ β0β1···βν = L(j′) (mod n) (8)

where α0 = β0 = 1 and μ, ν ≥ 0.
In addition, L(i′)δ′

i′j′ = L(j′)(mod n). Therefore,

L(i′)α0α1···αμδ′
i′j′ = L(i′)β0β1···βν (9)

If μ = 0, the forgery belongs to S because there is a directed path from i to j
in G∗ and the forgery can be composed. This contradicts with the assumption.
Therefore, μ ≥ 1.

Next, we can construct a polynomial-time adversary A, to solve the RSA
inversion problem in the cyclic group <G>, i.e., determining x such that xe =
y(mod n) for given an odd prime e and y in <G>. A proceeds as follows:

First of all, A runs F to obtain α1, · · · , αμ, β1, · · · , βν and δ′i′j′ such that (9)
holds. It is obvious that α1 · · ·αμδ′i′j′ �= β0 · · ·βν . Let ρ = |α1 · · ·αμδ′i′j′ −
β0 · · ·βν |, then L(i′)ρ = 1(mod n). Based on (4), Gρ = 1(mod n).

If gcd(e, ρ) = 1, there are integers s, t such that se + tρ = 1. Therefore,
x = xse+tρ = ys(xρ)t(mod n). Because the probability of gcd(e, ϕ(n)) �= 1 is
negligible and y belongs to <G>, so x = ye−1

(mod n) belongs to <G>. At last,
xρ = 1(mod n) and x = ys(mod n).

If gcd(e, ρ) �= 1 and λ is the largest integer such that eλ|ρ, then there are two
integers s, t such that se + t ρ

eλ = 1 and x = xse+t ρ

eλ = ys(x
ρ

eλ)t(mod n). Let
gcd(ρ, ϕ(n)) = τ , then Gτ = 1(mod n). Because the probability of gcd(e, ϕ(n)) �=
1 is negligible, gcd(e, τ) = 1 and τ |(ρ/eλ). Furthermore, x belongs to <G> and
thus x

ρ

eλ = 1(mod n). At last, x = ys(mod n).

Case B. In the case where a F’s forgery contains at least one node certificate,
which includes a signature on a new message, we can construct a polynomial-
time adversary B, which is able successfully to make a chosen-message attack to
the standard digital signature (SDS) scheme.

Let E be the event that F’s forgery contains recycled node certificates. In case
E happens, A aborts. In case E happens, B gives up. Accordingly, we have

Advdtu−cma
RSADT S,F(k) = Pr[Expdtu−cma

RSADT S,F(k) = 1]

= Pr[Expdtu−cma
RSADT S,F(k) = 1 ∧ E] + Pr[Expdtu−cma

RSADT S,F(k) = 1 ∧ E]

≤ Advrsa−icg
Krsacg,A(k) + Advuf−cma

SDS,B (k)

If the RSA-icg problem associated to Krsacg is hard and SDS is unforgeable un-
der adaptive chosen-message attack, then RSADT S is transitively unforgeable
under chosen-message attack.

The theorem is proved.

Directed Transitive Signature Scheme 141

5 Performance Analysis

In this section, we analyze performance of RSADT S scheme in terms of sig-
nature size, computation cost and compare RSADT S with those undirected
transitive signature schemes using node certificates.

At first, let us consider the size of a transitive signature (Ci, Cj , δij) on an
edge (i, j), where Ci = (i, L(i), Σ(i)), Cj = (j, L(j), Σ(j)). The size of L(i) and
L(j) amounts to 2 log2 n, Σ(i) and Σ(j) are two standard signatures, and i, j
are integers. Therefore, the size of Ci or Cj is fixed. However, the size of edge
label δij , which is either a prime or a product of some primes (in the composition
case), varies case by case. In practice, we can choose small primes as δij for edges
in the transitive reduction of a directed graph so as to reduce the size of their
possible compositions. This will not affect security of RSADT S scheme.

Even though the distribution of primes seems random, the number of primes
less than an integer is surprisingly well behaved. Let p(λ) be the λ-th prime, it
has been shown in [19][20] that p(λ) ∼ λ ln(λ).

Let |V | be the number of nodes in a directed graph, then the transitive re-
duction has |V | − 1 edges, which need |V | − 1 distinct primes for edge labels. In
addition, Let m be the number of directed edges on the longest directed path.

If we assign the first |V | − 1 odd primes to |V | − 1 edges in E∗, the average
size of a single edge label is about log2(|V |ln(|V |))/2 bits. For a signature which is
composed by the longest directed path, the average size of the composed edge label
is about M = m log2(|V |ln(|V |))/2 bits. Some examples are given in Table 1.

Table 1. The size of edge label δij (|δij | = log2 δij)

(|V |, m) |δij | : (i, j) ∈ E∗ M = max{|δij |}
(100, 10) ≈ 4.5 bits ≈ 45 bits
(500, 50) ≈ 6 bits ≈ 300 bits
(1000, 100) ≈ 6.5 bits ≈ 650 bits
(10000, 100) ≈ 8 bits ≈ 800 bits
(100000, 100) ≈ 10 bits ≈ 1000 bits

Next, let us consider the computation cost of RSADT S scheme. In order to
generate a transitive signature for (i, j), two node certificates (Ci, Cj) are needed
to compute, which involves one modular exponentiations for computing L(j)
or L(i) and two standard signatures. The verification of a transitive signature
requires to check that two node certificates and L(i)δij = L(j)(mod n), involving
the verification of two standard signatures and the computation of one modular
exponentiation. The composition algorithm is efficient, involving only one integer
multiplication.

A directed transitive scheme can be trivially realized by accepting, as a valid
signature of {i, j}, any chain of signatures that authenticates a sequence of edges
forming a path from i to j. Two issues lead to exclude this trivial solution: the

142 X. Yi

growth in signature size, and the loss of privacy incurred by having signatures
carry information about their history [1].

In RSADT S scheme, the verification of a composed transitive signature do
not require information of intermediary nodes. Therefore, privacy of a directed
graph can be kept. Although the signature size of a composed transitive signature
in RSADT S scheme does increase with the growth of the edges, the growth rate
is much slower than the trivial solution.

For example, suppose that a directed graph has about 10000 nodes, each time
when a new node is added, which results in a new directed edge, the size of
a composed signature in RSADT S scheme increases about 8 bits in average.
However, the size of a composed signature in the trivial solution increases about
1024 bits if RSA signature scheme is used (where the RSA modulus has 1024
bits). The growth rate of the composed signature size in the trivial solution is
almost 128 times of that in RSADT S scheme.

Performance comparison of RSADT S with those undirected transitive sig-
nature schemes using node certificates is shown in Table 2.

Table 2. Performance comparison among transitive signature schemes (|n| = log2 n)

Scheme Signing cost Verification cost Composition cost Signature size
DLT S 2 stand. signs. 2 stand. verifs 2 adds in Zq 2 stand. signs.

2 exp. in G 1 exp. in G 2 points in G
2 points in Zq

RSAT S-1 2 stand. signs. 2 stand. verifs O(|n|2) ops 2 stand. signs.
2 RSA encs 1 RSA enc. 3 points in Z∗

n

FactT S-1 2 stand. signs. 2 stand. verifs O(|n|2) ops 2 stand. signs.
O(|n|2) ops O(|n|2) ops 3 points in Z∗

n

DLT S-1M 2 stand. signs. 2 stand. verifs 1 add in Zq 2 stand. signs.
2 exp. in G 1 exp. in G 2 points in G

1 points in Zq

GapT S-1 2 stand. signs. 2 stand. verifs O(|n|2) ops 2 stand. signs.
2 exp. in Ĝ 1 Sddh 3 points in G

RSADT S 2 stand. signs. 2 stand. verifs ≤ |M | ops 2 stand. signs.
1 exp. in <G> 1 exp. in <G> 2 points in <G>

1 label δij ≤ M

In Table 2, the word “stand.” refers to operations of the underlying stan-
dard signature scheme, G denotes the group of prime order q, and n denotes a
product of two primes, Ĝ is a gap Diffie-Hellman group and Sddh refers to the
decision Diffie-Hellman algorithm in Ĝ. Abbreviations used are: “exp.” for an
exponentiation in the group; “RSA enc.” for an RSA encryption; “RSA dec.”
for an RSA decryption; and “ops.” for the number of elementary bit operations.

From Table 2, we can see that RSADT S scheme has almost the same signing
and verification costs as other undirected transitive signature schemes (excluding

Directed Transitive Signature Scheme 143

FactT S-1). But its composition cost and signature size vary according to the num-
ber of nodes |V | in a directed graph and the number of directed edges m on the
longest directed path. When M ≤ n, RSADT S scheme has even better perfor-
mance than RSAT S-1.

In practice, directed paths of a directed graph are not very long. For example,
in a directed graph for a military chain-of-command, the longest directed path
usually contains less than 100 edges. In this case, it can be seen from Table 1
that RSADT S scheme is practical and efficient.

RSADT S scheme allows dynamically to add a new node, which results in
a new directed edge, into a directed graph. In other word, the directed graph
can dynamically grow. However, it does not allow to create a new edge (i, j) by
connecting two existing nodes i and j.

RSADT S scheme can be applied to a directed graph whose transitive reduc-
tion is a disjoint union of directed trees, where transitive signatures in different
directed trees are distinguished with different tree labels.

6 Conclusion

In 2002, Micali and Rivest raised an open problem as to whether directed tran-
sitive signatures exist or not. In this paper, we have proposed a natural RSA
based directed transitive signature scheme RSADT S for a directed graph whose
transitive reduction is a directed tree. RSADT S scheme has been proved to be
transitively unforgeable under adaptive chosen-message attack if the RSA inver-
sion problem over a cyclic group is hard and the underlying standard signature
scheme is unforgeable under adaptive chosen-message attack. Therefore, we have
answered the open problem in the case where the transitive reduction of a di-
rected graph is a directed tree. Furthermore, performance analysis has shown
that RSADT S scheme is practical and efficient. When M ≤ n, RSADT S
scheme has even better performance than RSAT S-1.

References

1. S. Micali and R. Rivest, “Transitive signature schemes”, Proc. CT-RSA’02, pp.
236-243, San Jose, CA, USA, Feb. 2002.

2. M. Bellare and G. Neven, “Transitive signature based on factoring and RSA”,
Proc. Asiacrypt’02, pp. 397-414, Queenstown, New Zealand, Dec. 2002.

3. M. Bellare and G. Neven, “Transitive signatures: new schemes and proofs”, IEEE
Transactions on Information Theory, vol. 51, no. 6, pp. 2133-2151, 2005.

4. T. Okamoto, “Provably secure and practical identification schemes and correspond-
ing signature schemes”, Proc. Crypto’92, pp. 31-53, 1993.

5. C. P. Schnorr, “Efficient identification and signatures for smart cards”, Proc.
Crypto’89, pp. 239-252, 1989.

6. S. F. Shahandashti, M. Salmasizadeh, and J. Mohajeri, “A provably secure short
transitive signature scheme from bilinear group pairs”, Proc. SCN’04, pp. 60-76,
Amalfi, Italy, Sept 2004.

144 X. Yi

7. S. Goldwasser, S. Micali and R. Rivest, “A digital signature scheme secure against
adaptive chosen-message attacks”, SIAM Journal of Computing, vol. 17, no. 2, pp.
281-308, 1988.

8. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko, “The One-more-
RSA-inversion problems and the security of Chaum’s blind signature scheme”,
Journal of Cryptology, vol. 16, no. 3, pp. 185-215, 2003.

9. D. Chaum, “Blind signatures for untraceable payments”, Proc. Crypto’82, pp. 199-
203, 1982.

10. M. Bellare and A. Palacio, “GQ and Schnorr identification schemes: Proofs of secu-
rity against impersonation under active and concurrent attack”, Proc. Crypto’02,
pp. 162-177, Aug 2002.

11. L. C. Guillou and J. J. Quisquater, “A ‘paradoxical’ identity-based signature
scheme resulting from zero-knowledge”, Proc. Crypto’88, pp. 216-231, 1988.

12. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing”,
Proc. Asiacrypt’01, pp. 514-532, 2001.

13. A. Boldyreva, “Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme”, Proc. Public-Key Cryptography
2003, pp. 31-46, 2003.

14. M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for design-
ing efficient protocols”, Proc. 1st Conf. Computer and Communications Security,
pp. 62-73, Fairfax, VA, Nov 1993.

15. S. R. Hohenberger, “The cryptographic impact of groups with infeasible inversion”,
Master’s Thesis, MIT, MA, May 2003.

16. A. R. Sadeghi and M. Steiner, “Assumptions related to discrete logarithms: Why
subtleties make a real difference”, Proc. Eurocrypt’01, pp. 244-261, 2001.

17. H. Kuwakado and H. Tanaka, “Transitive signature scheme for directed trees”,
IEICE Trans. Fundamentals, vol.E86-A, no. 5, pp. 1120-1126, May 2003.

18. X. Yi, C. H. Tan and E. Okamoto, “Security of Kuwakado-Tanaka transitive sig-
nature scheme for directed trees”, IEICE Trans. Fundamentals, vol.E87-A, no. 4,
pp. 955-957, Apr 2004.

19. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford
University Press, 1979.

20. P. Ribenboim, The New Book of Prime Number Records, 3rd Edition, Springer-
Verlag, New York, NY, 1995.

Identity-Based Multi-signatures from RSA

Mihir Bellare1 and Gregory Neven2

1 Department of Computer Science & Engineering
University of California San Diego

mihir@cs.ucsd.edu
http://www.cs.ucsd.edu/users/mihir
2 Department of Electrical Engineering

Katholieke Universiteit Leuven
and Département d’Informatique

Ecole Normale Supérieure
Gregory.Neven@esat.kuleuven.be

http://www.neven.org

Abstract. Multi-signatures allow multiple signers to jointly authenti-
cate a message using a single compact signature. Many applications how-
ever require the public keys of the signers to be sent along with the
signature, partly defeating the effect of the compact signature. Since
identity strings are likely to be much shorter than randomly generated
public keys, the identity-based paradigm is particularly appealing for the
case of multi-signatures. In this paper, we present and prove secure an
identity-based multi-signature (IBMS) scheme based on RSA, which in
particular does not rely on (the rather new and untested) assumptions
related to bilinear maps. We define an appropriate security notion for
interactive IBMS schemes and prove the security of our scheme under
the one-wayness of RSA in the random oracle model.

1 Introduction

With the increased adoption of small, energy-restricted devices such as laptops,
cell phones, PDAs and sensors, battery life has become a crucial bottleneck in the
usage of these devices — and an important distinguishing factor in their sales.
Fast progress is being made in the development of lighter and higher-capacity
batteries, but at the same time the demand for energy-preserving technology is
more pressing than ever. Much effort is being put in the design of low-power
microprocessors, but also the software running on these processors is being op-
timized for energy consumption, rather than for speed or portability.

In accordance with their wireless nature, communication on these portable
devices often takes place over wireless channels such as Bluetooth and WiFi.
Unfortunately, these communication mechanisms are rather expensive in terms
of energy consumption. Reducing the number of bits to communicate is crucial
to increase battery life: communicating a single bit of data requires significantly
more power than executing a 32-bit instruction [1], so it makes perfect sense
to invest extra computation cycles to save on bandwidth. Also, communication

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 145–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

146 M. Bellare and G. Neven

is often not reliable, so the fewer the number of bits one has to communicate,
the better. To make things worse, wireless channels are inherently vulnerable
to eavesdropping and tampering attacks by outsiders. Strong cryptography is
needed to protect the communication, adding even more overhead to the com-
munication. It is our challenge as designers of cryptographic primitives to limit
this overhead to a minimum.
Multi-signature schemes. A multi-signature (MS) scheme [20] allows n dif-
ferent signers with public keys pk1, . . . , pkn to collectively sign a message m,
yielding a multi-signature σ of roughly the same size as a standard signature,
yet that certifies m under all public keys pk1, . . . , pkn simultaneously. By trans-
mitting σ instead of n individual signatures, multi-signature schemes can help
greatly to save on communication costs.

However, one still needs the public keys of all cosigners in order to verify the
validity of such a multi-signature. In most applications these public keys will
have to be transmitted along with the multi-signature, which partially defeats
the primary purpose of using a multi-signature scheme, namely to save on band-
width. The inclusion of some information that uniquely identifies the cosigners
seems inevitable for verification, but often this information can be represented
more succinctly than by means of randomly generated public keys. For exam-
ple, the signers’ user names or IP addresses could suffice for this purpose; this
information may even already be present in package headers. Moreover, each
public key may come with an associated certificate containing a signature from
a certification authority (CA) and the CA’s public key, which on its turn may
come with a chain of certificates leading to the root CA. Altogether, this sums
up to many more bits being transmitted than strictly necessary to authenticate
the message.
Identity-based signatures. In an identity-based signature scheme [28], the
public key of a user is simply his identity, e.g. his name, email or IP address.
A trusted key distribution center provides each signer with the secret signing
key corresponding to his identity. When all signers have their secret keys issued
by the same key distribution center, individual public keys become obsolete, re-
moving the need for explicit certification and all associated costs. These features
make the identity-based paradigm particularly appealing for use in conjunction
with multi-signatures, leading to the concept of identity-based multi-signature
(IBMS) schemes.
Generic constructions. In spite of their appeal with regard to applications,
implementations of IBMS schemes are rather limited. As demonstrated in [12,2],
any standard signature scheme can be transformed into an identity-based one
using the “certification paradigm”. One can attempt to derive IBMS schemes
from existing standard MS schemes via this approach [16]. The problem is that
the resulting multi-signature is not compact due to the need to include the
certificates with each signature. Even if the signatures in the certificates can be
aggregated [6], the public keys they contain cannot. In summary, unlike the case
of standard signatures, there seems no trivial, general way to transform compact
signature schemes into identity-based ones.

Identity-Based Multi-signatures from RSA 147

An existing construction. The only provably secure IBMS scheme known
today is due to Gentry and Ramzan [17]. The scheme employs groups with bilin-
ear maps (also known as pairings), which are usually implemented by modified
Weil or Tate pairing over elliptic or hyperelliptic curves. To avoid putting all our
eggs in the same basket, it is common practice in cryptography to try to find
alternative constructions of a primitive based on different assumptions. While
pairings have turned out extremely useful in the design of cryptographic proto-
cols, they were only recently brought to the attention of cryptographers [21], and
hence did not yet enjoy the same exposure to cryptanalytic attacks by experts as
other, older problems from number theory such as discrete logarithms, factoring
and RSA. This exposure is necessary to build confidence in the hardness of the
underlying problems; without it, their use in high-security applications may not
be advisable.

Also, efficient implementations of RSA are ubiquitous, even in the public do-
main, while implementations of pairings are much harder to come by. Unlike
RSA, even building an inefficient prototype implementation of pairings is far
from straightforward for anyone but an expert, and even then it is often difficult
or impossible to generate curves with the desired security parameters [15]. Com-
panies may have invested in expensive hardware or software implementations of
RSA, and may be reluctant to reinvest in new pairing implementations.
Our contributions. We present an efficient and provably secure IBMS scheme
based on RSA, which is thereby the first provably secure IBMS scheme not re-
lying on the use of pairings. Our scheme is essentially a multi-signature variant
of the Guilliou-Quisquater (GQ) identity-based signature scheme [18], strength-
ened with techniques from [3] to provide security against concurrent attacks.
Unstrengthened variants of our scheme were proposed before (but without secu-
rity proofs) in [18,8]. The proof makes use of the general forking lemma of [3],
which, unlike the original forking lemma by Pointcheval and Stern [27], applies
to more general contexts than generic standard signature schemes. Signatures
under our scheme are 1184 bits long for typical values of the security parameters,
which is longer than the 320-bit signatures of the scheme of [17]. Verification on
the other hand is considerably cheaper: our scheme needs only a single (multi-)
exponentiation in an RSA group, as opposed to three pairing computations for
the scheme of [17]. The cost of one pairing computation is roughly that of 6–20
exponentiations.

We prove our scheme secure in the random oracle model under the one-
wayness of RSA. Unlike the scheme of [17], our scheme requires the signers
to interact to generate a signature, so we had to extend their security notion to
model this interaction in the presence of an adversary, taking inspiration from
the (non-identity-based) notions of [24,3]. We consider the strongest possible set-
ting, namely with insecure and unauthenticated communication links controlled
by the adversary, without assuming the availability of a trusted broadcast prim-
itive. In fact, we distinguish between two different notions, called single-signer
and multi-signer security, based on the number of signers whose role can be
played by the signing oracle. While not obvious at first, we prove that these

148 M. Bellare and G. Neven

notions are in fact equivalent, so that we can prove our scheme secure under the
simpler single-signer notion. As in [3], but unlike [24], we allow the adversary to
concurrently engage in as many arbitrarily interleaved signature protocols as it
wants.
Interactive vs. non-interactive schemes. As noted above, our scheme re-
quires the signers to interact in order to generate a signature. The IBMS scheme
of [17] is non-interactive, meaning that each signer independently computes its
share to the signature, and anyone can combine these shares into a compact
signature. The requirement of interaction may seem to conflict with our goal of
saving on bandwidth. We argue that this is not always the case. Consider for
example a wired network of sensors in a very remote location (e.g. in a desert, or
in space) that needs to report back to a far-away base station through wireless
communication. The sensors can use the cheap wired network to execute joint
signing protocols and send the resulting compact signatures over the expensive
wireless channel. A non-interactive scheme does not offer any real advantage
here. In particular, it does not remove the need for local communication: the
sensors still need a round of interaction to exchange signature shares. In general,
the added cost of interaction depends highly on the network topology.
Aggregate vs. multi-signatures. Aggregate signature (AS) schemes [6] can
be seen as a generalization of multi-signatures where each signer i signs a differ-
ent message mi. Only a single identity-based aggregate signature (IBAS) scheme
is known [17]; it is also based on pairings. IBAS schemes automatically give rise
to IBMS schemes, but the scheme resulting from the only known IBAS instan-
tiation [17] is less efficient than their direct IBMS construction. We note that
the distinction between aggregate and multi-signatures becomes irrelevant for
interactive schemes. Indeed, one can easily construct an interactive aggregate
signature scheme from a multi-signature scheme by letting the signers, in a first
round of communication, inform each other about the messages mi they are
about to sign. The common message m can then be taken to be the concatena-
tion of (ID i, mi) tuples. Hence, the single-message restriction of multi-signature
schemes is not really limiting in the case of interactive schemes.
Other related work. Cheng et al. [10] recently proposed another interactive
IBMS scheme based on pairings, but proved it secure only under a weak variant
of selective-ID security. To the best of our knowledge, the schemes of [10,17] are
the only instantiations of IBMS in the literature.

There is more work on compact signature schemes in the non-identity-based
setting. There is a vast literature on MS schemes, but the only provably secure
schemes are those of [24,5,22,3]. The schemes of [5,22] are based on pairings,
those of [24,3] on discrete logarithms. In a sequential aggregate signature (SAS)
scheme [23], aggregation cannot be performed by an outsider; instead, the signers
cooperate, each in turn aggregating their signature into the current aggregate
using their secret key. The only known instantiations of SAS schemes are due
to [23,22]. The scheme of [23] is based on families of certified trapdoor permuta-
tions, of which strictly speaking no instantiations exist, but the authors discuss

Identity-Based Multi-signatures from RSA 149

how to instantiate their scheme with RSA. The scheme of [22] uses pairings, and
is the only one with security in the standard (i.e., non-random-oracle [4]) model.

2 Identity-Based Multi-signatures

Notation. Let N = {1, 2, 3, . . .}. A string means a binary one. The empty
string is denoted ε. If x, y are strings, then |x| is the length of x. If x1, x2, . . .
are objects then x1‖x2‖ . . . denotes an encoding of them as strings from which
the constituent objects are easily recoverable. If S is a (multi)set, then |S| is
its cardinality, s

$← S denotes the operation of assigning to s an element of
S chosen at random, and 〈S〉 is a unique encoding of S as a string. If A is
a randomized algorithm, then A(x1, . . . ; ρ) denotes its output on inputs x1, . . .

and coins ρ, while y
$← A(x1, . . .) means that we choose ρ at random and let

y = A(x1, . . . ; ρ).
General setting. We adapt definitions from [24,3] to the identity-based set-
ting. Consider n different signers with identities ID1, . . . , IDn who collectively
want to sign the same message m so that the resulting signature σ authenticates
m under each of their identities. We consider schemes with interactive signing
algorithms, meaning that all signers are simultaneously online and interact to
produce the signature σ. We assume that signers interact in rounds, where at
the beginning of each round each signer receives an incoming message from each
of the other signers, performs some computation and sends an outgoing message
to all other signers. We let the incoming message of the first round be the local
input of the signing algorithm, consisting of the secret key, the list of co-signers,
and the message m. The outgoing message of the last round is the final signature
σ, or ⊥ to indicate failure.

We assume that each signer has a direct connection to each of its co-signers.
We do not assume these connections to be private or authenticated however, and
neither do we assume the availability of an atomic broadcast primitive. When
describing signing protocols, we let each signer refer to itself as signer 1 with
identity ID1, and let it assign an index 2, . . . , n to each of its cosigners with
identities ID2, . . . , IDn. These indices serve merely as a local pointer for the
signer to distinguish between its different cosigners and the connections over
which it communicates with them. They have no global meaning outside this
protocol instance: the signer that you refer to as signer 2 with identity ID2 may
very well be my signer 3 with identity ID3, and in a later protocol instance I
may very well refer to the same signer as signer 4 with identity ID4. The indices
have no certified relationship with identities, and are certainly not included in
the identity strings.
Syntax of IBMS schemes. Formally an identity-based multi-signature scheme
IBMS = (Setup, KeyDer, Sign, Vf) consists of four algorithms. A trusted key dis-
tribution center runs the Setup algorithm to generate a master public key mpk
and corresponding master secret key msk . To a signer with identity ID ∈ {0, 1}∗,
it provides a secret key derived via sk ID

$← KeyDer(msk , ID). The signer can

150 M. Bellare and G. Neven

use this secret key to participate in signing protocols as prescribed by the
Sign algorithm, which takes as additional input the message m and a multi-
set L = {ID1, . . . , IDn} containing the identities of all signers participating in
the protocol. After a number of interactions, the Sign algorithm outputs the
multi-signature σ, or ⊥ to indicate failure. The verification algorithm Vf takes
as input the master public key mpk , a multiset of identities L = {ID1, . . . , IDn},
the message m and a candidate signature σ, and outputs 1 if σ is a valid signature
on message m by all identities in L, or outputs 0 otherwise. (Because a cheating
signer may try to impersonate an identity for which he does not have the key,
we explicitly allow multiple occurrences of the same identity by modeling L as
a multiset.)

In the random oracle model [4], the key derivation, signing and verification
algorithms additionally have access to a random oracle H(·) : {0, 1}∗ → D,
where D depends on the scheme and possibly on the master public key mpk .
If the scheme uses multiple random oracles, these can be derived from a single
oracle H using techniques of [4].

Correctness requires that, whenever all signers correctly follow the Sign proto-
col using secret key sk IDi

$← KeyDer(msk , ID i), then with probability one they
all end up with local output a signature σ such that Vf(mpk , L, m, σ) = 1 for all
positive integers n, all (mpk ,msk) output by Setup, all ID1, . . . , IDn ∈ {0, 1}∗
and all messages m ∈ {0, 1}∗.

3 Two Security Notions and Their Equivalence

In standard (i.e., non-identity-based) multi-signature schemes, security is com-
monly defined through an experiment with a single honest “target” signer, effec-
tively viewing all other signers as corrupted [24,5,3]. Security requires that it be
infeasible to forge a multi-signature involving the target signer. The adversary
has access to a signing oracle that plays the role of the target signer, while the
adversary plays the role of all other signers participating in the protocol. The
logic underlying this simplified model is that any honestly generated public key
is “as good” as any other one; no adversary is expected to perform significantly
better in a model with multiple honest signers, as it could easily have simulated
these other signers itself.

The same logic does not go through for IBMS schemes however. Any identity
is not necessarily “as good” as any other one: the scheme may behave differently
on different identities, or may even have “weak” identities for which forging signa-
tures is easy. We therefore need to consider a stronger security notion where the
adversary can adaptively decide to corrupt signers by submitting their identities
to a key derivation oracle, resulting in it being given their secret signing keys.

The adversary is also given access to a signing oracle through which it can
engage in any number of arbitrarily interleaved signing protocols with honest
signers. Unlike the case of standard multi-signature schemes however, it is not
immediately clear whether it is sufficient to let the oracle in each protocol in-
stance play the role of a single honest signer, leaving it up to the adversary to

Identity-Based Multi-signatures from RSA 151

play the role of all other signers, or whether we should allow the oracle to play
the role of multiple honest signers simultaneously. Indeed, an adversary in the
former model could try to simulate the signing oracle of the latter model by
corrupting all but one of the honest signers, but this precludes attacking any
of the corrupted identities in the final forgery. Our goal is of course to achieve
the strongest security notion possible, but at the same time we want to avoid
making security proofs unnecessarily complicated. Since the relation between
the two notions is not immediately clear, we present both in full detail below,
and then prove that both notions are in fact equivalent (up to a factor that is
the product of the number of the adversary’s signature queries and the maximal
number of participating signers in one protocol).

Our security notions do not cover robustness [7], meaning that we do not pre-
vent malicious signers or network faults from disrupting the signing protocol or
from making honest signers end up with invalid signatures. As argued in [24], the
strong notion of unforgeability in an adversarially-controlled network strengthens
the security guarantees offered by our scheme, but prevents robustness. Indeed,
if a signer with identity ID refuses to cooperate or is unreachable due to net-
work faults, then it should be impossible for the other signers to compute any
signature involving ID , for otherwise the scheme would be forgeable.
Single-signer security. In somewhat more detail, we consider the following
three-phase game associated to multi-signature scheme IBMS = (Setup, KeyDer,
Sign, Vf) and adversary (forger) F:

Setup: The game generates a master key pair (mpk ,msk) $← Setup, and gives
the master public key mpk as input to the forger.

Attack: F can decide to corrupt a signer by querying a key derivation oracle
with any identity ID , which returns the secret key for that identity sk ID

$←
KeyDer(msk , ID). In the random oracle model [4], it also has access to a random
oracle H(·). The forger can engage in an instance of the signature protocol with
any honest signer ID that it chooses, while F itself plays the role of all other
signers. It does so by submitting the identity ID ∈ {0, 1}∗, a multiset of identities
L and a message m to a signing oracle. The multiset L contains ID at least once.
The oracle plays the role of ID as dictated by the Sign algorithm; the role of the
other (possibly cheating) signers in L is played by F. Note that the identities
in L \ {ID} need not all be corrupted; the forger is free to try to simulate
them without their secret key. The forger can schedule an arbitrary number of
protocol instances concurrently, interacting with “clones” of the same honest
signer, where each clone maintains its own state and uses its own coins. When
the honest signer terminates a signing protocol, its local output (whether ⊥ or
a compact signature σ) is returned to F.

Forgery: At the end of its execution, F outputs a multiset L = {ID1, . . . , IDn}
of identities, a message m and a forged signature σ. The forger is said to win the
game if Vf(mpk , L, m, σ) = 1, if L contains at least one uncorrupted identity,
and if the forger never submitted a query (ID , L, m) to the signing oracle for
any ID ∈ L.

152 M. Bellare and G. Neven

The advantage of F in breaking the single-signer unforgeability of IBMS is defined
as the probability that F wins the above game, where the probability is taken
over the coin tosses of the forger, the honest signers, and the setup phase. We say
that a forger F (t, qK, qS, qH, nmax, ε)-breaks the single-signer security of IBMS if
it runs in time at most t; performs at most qK key derivation queries and at most
qH random oracle queries; engages in at most qS signature interactions with up
to nmax signers; and has advantage at least ε. (If there is more than one random
oracle, qH denotes the sum of the number of queries to all random oracles.) We
say that IBMS is (t, qK, qS, qH, nmax, ε) single-signer secure in the random oracle
model if no forger F (t, qK, qS, qH, nmax, ε)-breaks it.

Multi-signer security. Alternatively, we define the notion of multi-signer
security. The game is similar to the one described above, except that the sign-
ing oracle in each protocol instance can play the role of multiple honest signers
simultaneously. In particular, it performs signature queries by submitting two
multisets of identities Lh, Lc and a message m to the signing oracle. The mul-
tiset Lh contains the identities of honest signers, whose role will be played by
the oracle as dictated by the Sign algorithm. The forger plays the role of the
(possibly) cheating signers contained in Lc.

For the communication between signers, we consider the strongest possible
notion: the adversary completely controls all network traffic, even between honest
signers. We model this by letting honest signers, when they want to send a
message to another signer, hand the message to the adversary for delivery. The
adversary can then choose to inspect, modify and whether or not to deliver
the message at will. We do not assume the availability of a trusted broadcast
primitive, so the forger can cause different honest signers to have a different view
of the protocol by providing them with different messages. Note that this is a
situation that in particular cannot arise in the single-signer notion.

The forger F is said to win the game if eventually F outputs a forgery (L, m, σ)
such that Vf(mpk , L, m, σ) = 1, L contains at least one uncorrupted identity,
and the forger never performed a signature query (Lh, Lc, m) where Lh ∪ Lc =
L. The advantage of F in breaking the multi-signer security of IBMS is de-
fined as the probability that it wins the above game. We say that a forger
F (t, qK, qS, qH, nmax, ε)-breaks the multi-signer security of IBMS if has advan-
tage at least ε and adheres to the resource restrictions as explained above.
We say that IBMS is (t, qK, qS, qH, nmax, ε) multi-signer secure if no forger F
(t, qK, qS, qH, nmax, ε)-breaks it.

Single-signer implies multi-signer security. It is obvious that the notion
of multi-signer security is at least as strong as that of single-signer security, since
the latter can be viewed as a special case of the former where each of the sets
Lh is restricted to be a singleton. The following theorem states the less obvious
direction that single-signer security also implies multi-signer security, at the loss
of a factor nmaxqH in the reduction.

Theorem 1. If the IBMS scheme IBMS is (t′, q′K, qS, qH, nmax, ε
′) single-signer

secure, then it is also (t, qK, qS, qH, nmax, ε) multi-signer secure for

Identity-Based Multi-signatures from RSA 153

ε ≥ nmax(qS + 1) · ε′, t ≤ t′ − nmaxqS · tSign and qK ≤ q′K − nmaxqS, where
tSign is the running time of an execution of the signing protocol.

Proof. Let F be a forging algorithm that (t, qK, qS, qH, nmax, ε)-breaks the multi-
signer security of IBMS. Consider the single-signer forging algorithm F′ that,
on input mpk , guesses indices i

$← {0, . . . , qS} and j
$← {1, . . . , nmax} and runs

F(mpk). F′ maintains a counter ctr , initially zero, and an identity string ID∗,
initially ⊥. It responds to F’s signature queries (Lh, Lc, m) as follows. It first
increases ctr ; if ctr = i, it sets ID∗ to the j-th identity in Lh, or aborts if
Lh contains less than j elements. If F′ already corrupted ID∗ before, it also
aborts. To simulate the signing protocol, F′ uses its own signing oracle on input
(ID∗, Lh∪Lc, m) to simulate ID∗, and corrupts all other identities in Lh so that
it can correctly simulate them using their secret keys.

When F queries for the secret key of ID∗, F′ gives up; otherwise, it forwards
the response from its own key derivation oracle. Eventually, F outputs its forgery
(L, m, σ). To be a valid forgery, L must contain at least one identity ID that
F never corrupted. If ID = ID∗, then (L, m, σ) is also a valid forgery for F′.
Likewise, if i = 0 and F never performed any signature queries involving ID ,
then (L, m, σ) is a valid forgery for F′. In all other cases, F′ aborts.

It is easy to see that F′ succeeds with probability ε′ ≥ ε/(nmax(qS + 1)), that
its running time is at most that of F plus the time of nmaxqS signing protocols,
and that it performs at most qS signature queries, qK + nmaxqS key derivation
queries, and qH random oracle queries. ��

Viewing that both security notions are essentially equivalent and that the notion
of single-signer security is much easier to work with, we will stick to the latter
throughout the rest of the paper. When we talk about the advantage of a forger or
the security of an IBMS scheme, we implicitly mean the advantage and security
under the single-signer notion.

4 Our Scheme

In this section, we present an IBMS scheme based on the GQ identity-based
signature scheme [18]. To give some intuition into our scheme, we briefly recall
the GQ scheme here. The key distribution center generates an RSA modulus
N and exponents e, d such that ed ≡ 1 mod ϕ(N). The master public key is
the pair (N, e), while d is the master secret key. The signature on a message
m by identity ID is a pair (R, s) such that se ≡ R · H2(ID)c mod N where
c = H1(R‖m) and H1,H2 are random oracles. As pointed out by [17], to make
an aggregate variant of a randomized signature scheme, one must find a way
to “aggregate the randomness” in the different signatures. In the case of GQ
signatures, this can be achieved by multiplying elements together, so that a
signature by identities ID1, . . . , IDn is a pair (R, s) such that

se ≡ R ·
n∏

i=1

H2(ID i)c mod N ,

154 M. Bellare and G. Neven

where R and s are the product of the Ri and si generated by all signers, re-
spectively, and c = H1(R‖m). Note that the combined randomness R is needed
in order to compute c, which is the reason why the scheme has an interactive
signing protocol.

The basic multi-signature scheme is not new: it was already present in [18]
and was recently strengthened to provide robustness in [8], but was never proved
secure as such. If one were to attempt such a proof, it would be complicated by
the fact that, just like for other signature scheme following the Fiat-Shamir
paradigm [14], simulation of signatures relies on the unpredictability of the ran-
domness R used in the signature. In particular, for the simulator to be able to
program the random oracle H1 to simulate signature queries, the adversary’s
view needs to be independent of R. One way to overcome this problem [24] is
by guessing, for each of the qS signature queries, the index of a random oracle
query that contains the correct R, and rewinding the adversary if the guess is in-
correct. To avoid an exponential blowup of the running time, one has to restrict
the multi-signature scheme to forbid concurrent signing sessions. This may be
a limiting restriction viewing the inherently concurrent execution setting on the
Internet. Instead, we apply a recent technique of [3] to regain provable security
for concurrent protocol executions. The trick consists of letting signers commit
to their randomness share Ri through a random oracle in the first round of the
protocol, so that the simulator, who sees all random oracle queries, can extract
these values and correctly program the random oracle before the final value of
R is known to the forger.

The RSA assumption. An RSA key generator Kgrsa is an algorithm that
generates triplets (N, e, d) such that N is the product of two large primes and
ed ≡ 1 mod ϕ(N). The advantage of A in breaking the one-wayness of RSA
related to Kgrsa is defined as

Advow-rsa
Kgrsa

(A) = Pr

[
xe ≡ y mod N ;

(N, e, d) $← Kgrsa ; y
$← Z∗

N ;
x

$← A(N, e, y)

]
.

We say that A (t, ε)-breaks the one-wayness of RSA with respect to Kgrsa if it
runs in time at most t and has advantage Advow-rsa

Kgrsa
(A) ≥ ε, and we say that the

RSA function associated to Kgrsa is (t, ε)-one-way if no algorithm A (t, ε)-breaks
it.
The scheme. We now present our scheme in more detail. Let l0, l1, lN ,∈ N,
and let H0 : {0, 1}∗ → {0, 1}l0, H1 : {0, 1}∗ → {0, 1}l1 and H2 : {0, 1}∗ → Z∗

N

be random oracles, where H2 depends on the master public key of the scheme.
Let Kgrsa be an RSA key pair generator that outputs triplets (N, e, d) such that
ϕ(N) > 2lN and with prime encryption exponents e of length strictly greater
than l1+log2 nmax bits. To these, we associate the following identity-based multi-
signature scheme IBMS-GQ.

Setup. The key distribution center runs Kgrsa to generate RSA parameters
(N, e, d). It publishes mpk = (N, e) as the master public key, and keeps the
master secret key d secret.

Identity-Based Multi-signatures from RSA 155

Key derivation. On input master secret key d and signer identity ID , the key
distribution center computes x ← H2(ID)d mod N , and sends the user secret
key x over a secure and authenticated channel to the signer with identity ID .

Signing. On input user secret key x1 for identity ID1, message m and cosigner
identities ID2, . . . , IDn, a signer proceeds as follows.
Round 1:

– Local input: x1, L = {ID1, . . . , IDn}, m

– Computation: Choose r1
$← Z∗

N , compute R1 ← re
1 mod N and t1 ←

H0(R1).
– Send to signer i: t1

Round 2:
– Receive from signer i: ti

– Send to signer i: R1

Round 3:
– Receive from signer i: Ri

– Computation: Check that ti = H0(Ri) for all 2 ≤ i ≤ n, and halt the
protocol with local output ⊥ if one of these tests fails. Otherwise, com-
pute R ←

∏n
i=1 Ri mod N , c ← H1(R‖〈L〉‖m) and s1 ← r1x

c
1 mod N .

– Send to signer i: s1

Round 4:
– Receive from signer i: si

– Computation: s ←
∏n

i=1 si mod N

– Local output: the signature σ = (c, s)

Verification. On input the master public key (N, e), a multiset of signer iden-
tities L = {ID1, . . . , IDn}, a message m and a candidate signature (c, s),
the verifier recomputes R ← se

(∏n
i=1 H2(ID i)

)−c mod N . He accepts the
signature as valid if c = H1(R‖〈L〉‖m), and rejects otherwise.

The length of a multi-signature is l1+ lN bits, or about 160+1024 = 1184 bits
for typical values of the security parameter. Signing takes two exponentiations
in Z∗

N for each signer, and verification takes a single (multi-)exponentiation,
independent of the value of n. (Note that verification time is not completely
independent of n due to the computation of

∏n
i=1 H2(ID i), but this is fast.)

While largely based on a combination of existing schemes and techniques, we
believe the above scheme is important viewing the practical attractiveness of
the identity-based setting in combination with compact signatures. Our scheme
points out that provably secure IBMS can be achieved without the use of pair-
ings, which is an interesting observation in its own right. Pairings have only
recently been introduced to cryptography, and may therefore be at a greater
risk of novel security breaches than the better-tested assumptions relating to
RSA. Moreover, hardware and software implementations of RSA are ubiquitous,
even in the public domain, while good pairing implementations are much harder

156 M. Bellare and G. Neven

to find. Many companies have invested in efficient and secure implementations
of RSA, and may prefer to recycle these investments in their future products.

5 Security of Our Scheme

The following theorem relates the unforgeability of our IBMS scheme to the one-
wayness of the RSA problem associated to Kgrsa. The proof is given below. We
stress that we do not run into the key generation issues of [24] because keys are
generated by the trusted center instead of by the signers themselves. Also, unlike
the scheme of [24], we do allow concurrent signing sessions by reusing techniques
of [3].

Theorem 2. If the RSA function associated to Kgrsa is (t′, ε′)-one-way, then
the IBMS-GQ scheme is (t, qK, qS, qH, nmax, ε)-secure whenever t′ ≥ 2t + (2qH +
2qK + 2qS(nmax + 1) + 2nmax + 4) · texp and

ε′ ≤ ε2

16q2
K(qH + 1)

− 2q2
H + 8nmaxqSqH + 8n2

maxq
2
S

2lN
− nmaxqS

2l0
− 1

2l1
, (1)

where texp is the time of an exponentiation in Z∗
N .

To prove the above theorem, we use a variant of the Forking Lemma of Pointcheval
and Stern [27] that was presented in [3]. Unlike the original Forking Lemma, this
variant is easily applicable to settings other than standard signature schemes. We
recall the lemma here.

Lemma 3. Let q ≥ 1 be an integer and H a set of size h ≥ 2. Let A be a
randomized algorithm that on input x, h1, . . . , hq returns a pair, the first element
of which is an integer in the range 0, . . . , q and the second element of which we
refer to as a side output. Let IG be a randomized algorithm that we call the input
generator. The accepting probability of A, denoted acc, is defined by

acc = Pr
[

J ≥ 1 : x
$← IG ; h1, . . . , hq

$← H ; (J, σ) $← A(x, h1, . . . , hq)
]

.

The forking algorithm FA associated to A is the randomized algorithm that takes
input x proceeds as follows:

Algorithm FA(x)
Pick coins ρ for A at random
h1, . . . , hq

$← H ; (I, σ) ← A(x, h1, . . . , hq; ρ)
If I = 0 then return (0, ε, ε)
h′

I , . . . , h
′
q

$← H ; (I ′, σ′) ← A(x, h1, . . . , hI−1, h
′
I , . . . , h

′
q; ρ)

If (I = I ′ and hI �= h′
I) then return (1, σ, σ′) else return (0, ε, ε).

Let
frk = Pr

[
b = 1 : x

$← IG ; (b, σ, σ′) $← FA(x)
]

.

Then

frk ≥ acc ·
(

acc
q

− 1
h

)
. (2)

We are now ready to prove the security of our IBMS scheme.

Identity-Based Multi-signatures from RSA 157

Proof (Theorem 2). Given a forger F, consider the following algorithm A. On
inputs (N, e, y), h1, . . . , hqH+1, algorithm A runs F on inputs mpk = (N, e).

Algorithm A maintains a counter ctr1 with initial value 0 and initially empty
associative arrays T0[·],T1[·, ·],T2[·]. It runs F on input mpk = (N, e) and an-
swers F’s oracle queries as follows.

– H0(R): If T0[R] is undefined, then A chooses T0[R] $← {0, 1}l0. It returns
T0[R] to F.

– H1(Q): A returns T1[Q], increasing ctr1 and setting T1[Q] ← hctr1 if this
entry is not yet defined.

– H2(ID): We use Coron’s technique [11] when simulating H2 to obtain a
tighter security bound. If T2[ID] = (b, x, X) then A returns X . If this entry
is not yet defined, it chooses x

$← Z∗
N and tosses a biased coin b so that

b = 0 with probability δ and b = 1 with probability 1 − δ. If b = 0, then A
sets X ← xe mod N ; if b = 1, it sets X ← xey mod N . It stores T2[ID] ←
(b, x, X) and returns X to F.

– Key derivation query for ID : Algorithm A looks up T2[ID] = (b, x, X), per-
forming an additional query H2(ID) if this entry is not yet defined. If b = 0,
then A returns x; otherwise, it sets bad0 ← true and aborts the execution
of F returning (0, ε).

– Signature query for identity ID1, multiset of cosigners L = {ID1, . . . , IDn}
and message m: Algorithm A first performs a query H2(ID1) and looks up
T2[ID1] = (b1, x1, X1). If b1 = 0, then A simulates signer ID1 following the
real Sign(x1, L, m) algorithm using x1 as a secret key. If b1 = 1, it simulates
the signing protocol as follows.
It first chooses t1

$← {0, 1}l0 and sends t1 to all other cosigners. After having
received t2, . . . , tn from all other cosigners (whose role is played by F), it
chooses c

$← {0, 1}l1, s1
$← Z∗

N and computes R1 ← se
1X

−c
1 mod N . If T0[R1]

has already been defined, then A sets bad1 ← true and halts returning (0, ε);
otherwise, it sets T0[R1] ← t1. For all 2 ≤ i ≤ n, A looks up values Ri

such that T0[Ri] = ti. If for some i multiple such values are found, A sets
bad2 ← true and halts returning (0, ε). If for some i no such value was found
then it sets alert ← true; otherwise, it computes R ←

∏n
i=1 Ri mod N and

sets T1[R‖〈L〉‖m] ← c, or sets bad3 ← true and halts with output (0, ε) if
this entry was already defined. It sends R1 to all other cosigners.
After having received R′

2, . . . , R
′
n from the cosigners, A verifies that H0(R′

i) =
ti for all 2 ≤ i ≤ n. If not, it ends this signing protocol with local output
⊥. If Ri �= R′

i for some i, then A sets bad2 ← true and halts with output
(0, ε). If alert = true then it sets bad4 ← true and halts with output (0, ε).
Otherwise, it sends si to all cosigners.
After having received s2, . . . , sn from the cosigners, A computes s ←

∏n
i=1 si

mod N and returns the signature (c, s) to F.

Eventually, F outputs a forged signature (c, s) together with multiset of identities
L = {ID1, . . . , IDn} and message m. Algorithm A computes performs additional
random oracle queries H2(ID i) for 1 ≤ i ≤ n, computes R ← se

∏n
i=1 H2(ID i)−c

and performs another random oracle query H1(R‖〈L〉‖m).

158 M. Bellare and G. Neven

Let U ⊆ {ID1, . . . , IDn} be the uncorrupted identities in L, meaning those for
which F never submitted a key derivation query. If the forgery is invalid, meaning
that Vf(mpk , L, m, (R, s)) = 0, U = ∅, or F previously made a signing query
(ID , L, m), then A returns (0, ε). Otherwise, algorithm A looks up T2[ID i] =
(bi, xi, Xi) for 1 ≤ i ≤ n. Let L0 = {ID i : bi = 0} and L1 = {ID i : bi = 1}. Since
the forgery is valid, we have that

se ≡ R ·
n∏

i=1

Xc
i ≡ R ·

n∏
i=1

xec
i ·

∏
i∈L1

yc mod N .

Let J be the index such that hJ = c = T1[R‖〈L〉‖m]. If L1 = ∅ then A sets
bad0 ← true and halts with output (0, ε). Otherwise, it lets x ←

∏n
i=1 xi,

n1 ← |L1|, and halts with output (J, (x, c, s, n1)).
We want to lower-bound the probability that A produces a “useful” output,

i.e. an output other than (0, ε). This is exactly the accepting probability acc as
defined in Lemma 3 with respect to H = {0, 1}l1 and an input generator IG that
returns triples (N, e, y) such that (N, e, d) $← Kgrsa and y

$← Z∗
N . We overload

our notation to let bad i denote the event that the flag bad i gets set to true
during the execution of A. We can lower-bound the accepting probability of A
probability by:

acc ≥ ε · Pr [¬bad0] − Pr [bad1] − Pr [bad2] − Pr [bad3] − Pr [bad4] . (3)

First, let’s take look at the factor Pr [¬bad0]. The flag bad0 gets raised whenever
F makes a key derivation query for an identity for which b = 1, and if the
final forgery does not contain any identities for which b = 1. Since the set L
in the forgery must contain at least one uncorrupted identity, we have that
Pr [¬bad0] ≥ δqK(1− δ). This function reaches a maximum for δ = qK/(qK +1);
filling in this value of δ in the above expression gives

Pr [¬bad0] ≥
(

qK

qK + 1

)qK

· 1
qK + 1

=
1
qK

·
(

1 − 1
qK + 1

)qK+1

from which we can conclude that

Pr [¬bad0] ≥ 1
4qK

, (4)

because Pr [¬bad0] = 1 if qK = 0, because Pr [¬bad0] ≥ 1/(4qK) for qK = 1, and
because (1− 1/(qK + 1))qK+1 is a monotonically increasing sequence for qK ≥ 1.

The flag bad1 gets raised during one of the qS signature queries when T0[·]
is defined for an argument that is uniformly distributed over Z∗

N and that is
independent from F’s view. Since at any moment there are at most qH + nmaxqS
entries defined in table T0, the probability that this happens is at most

Pr [bad1] ≤ qS · (qH + nmaxqS)
2lN

. (5)

Identity-Based Multi-signatures from RSA 159

The flag bad2 only gets raised when two different entries in T0 have the same
value assigned to them. Since T0 contains at most qH + nmaxqS values that are
all chosen uniformly at random from {0, 1}l0 this happens with probability at
most

Pr [bad2] ≤ (qH + nmaxqS)2

2lN+1 . (6)

To bound the probability that bad3 is raised during the i-th signing query, we
distinguish between the case that F “knows” R1, meaning that it either queried
H0(R1) directly, or saw R1 as the honest signer’s randomness in a previous
signature query, and the case that it doesn’t “know” R1. In the latter case, F’s
view is independent of R, so the probability that this happens is simply given
by the number of defined entries in T1, which is at most qH + qS, divided by
2lN . In the former case, we cannot say that F’s view is independent of R, so F
may have queried H1(R, 〈L〉, m) on purpose. Suppose F previously made a query
H0(R1). Until right before this query, F’s view was independent of R1, so it had
probability at most qH/2lN to guess it correctly during any of its qH queries.
Likewise, the probability that A previously used the same randomness R1 in a
signature simulation is at most qS/2lN . In total, we have that

Pr [bad3] ≤ qS ·
(

qH + qS

2lN
+

qH

2lN
+

qS

2lN

)
=

2qS(qH + qS)
2lN

. (7)

Lastly, the probability that bad4 gets set is bounded by the probability that
F managed to “predict” the value of H0(Ri) during one of the qS signature
protocols and for one of the at most nmax signers, which is

Pr [bad4] ≤ nmaxqS

2l0
. (8)

Combining Equations (3–8) and using nmax > 0 gives

acc ≥ ε

4qK
− qS(qH + nmaxqS)

2lN
− (qH + nmaxqS)2

2lN+1 − 2qS(qH + qS)
2lN

− nmaxqS

2l0

≥ ε

4qK
− 3qS(qH + nmaxqS)

2lN
− q2

H + 2nmaxqSqH + n2
maxq

2
S

2lN+1 − nmaxqS

2l0

≥ ε

4qK
− q2

H + 4nmaxqSqH + 4n2
maxq

2
S

2lN
− nmaxqS

2l0
. (9)

Now consider an algorithm B that on input (N, e, y) runs the forking algo-
rithm FA((N, e, y)), which with probability frk returns a tuple (1, (x, c, s, n1),
(x′, c′, s′, n′

1)) with c �= c′. Since these originate from valid forgeries, their values
are such that

se ≡ Rxecycn1 mod N and s′
e ≡ R′x′ec′

yc′n′
1 mod N .

The two executions of A when run by FA are identical up to the “crucial” random
oracle queries H1(R‖〈L〉‖m) and H1(R′‖〈L′〉‖m′), where R, L, m and R′, L′, m′

160 M. Bellare and G. Neven

are the randomness, identity sets and messages that F used in its first and second
forgeries, respectively. By the construction of A, we know that the two executions
of F are identical up to this query (because it was provided with the exact same
input, random tape and oracle responses), so in particular we have that R = R′,
L = L′ and m = m′. Since the entries T2[ID i] = (bi, xi, Xi) for ID i ∈ L = L′

are chosen by A at the latest at the time of the crucial hash query, we also have
that x = x′ and n1 = n′

1. Dividing and reorganizing the two equations above
gives

(xc−c′
s/s′)e ≡ y(c−c′)n1 mod N .

Since c �= c′ ∈ {0, 1}l1, n1 ≤ nmax, and e is a prime of length strictly greater than
l1+log2(nmax), we have that e > (c−c′)n1 and therefore that gcd(e, (c−c′)n1) =
1. Using the extended Euclidean algorithm, one can find a, b ∈ Z such that
ae + b(c − c′)n1 = 1. We then have that

y ≡ yae+b(c−c′)n1 ≡
(
ya · (xc−c′

s/s′)b
)e

mod N .

Algorithm B can therefore output ya · (xc−c′
s/s′)b as the RSA inversion of y.

The probability that algorithm B succeeds in doing so is given by

ε′ ≥ frk

≥ acc2

qH + 1
− 1

2l1

≥ ε2

16q2
K(qH + 1)

− 2 ·
(

q2
H + 4nmaxqSqH + 4n2

maxq
2
S

2lN
− nmaxqS

2l0

)
− 1

2l1

where in the last step we use Equation (9) and the facts that (a− b)2 ≥ a2 −2ab
and that 0 ≤ ε/4qK ≤ 1. The theorem follows.

We have left to show the bound for the running time t′ of B. We permit
ourselves to assume that (multi-)exponentiations in Z∗

N take time texp while all
other operations take zero time. The running time of B is twice that of A, plus
one multi-exponentiation mod N . The running time of A is that of the forger F
plus one at most nmax +1 multi-exponentiations plus the time needed to answer
F’s oracle queries. Each random oracle or key derivation query takes at most one
exponentiation. A signature simulation takes at most nmax + 1 exponentiations.
We therefore have that t′ = 2t + 2(nmax + 2 + qH + qK + qS(nmax + 1)) · texp. ��

6 Alternative Implementations

Our scheme is based on the GQ signature scheme [18], but our techniques can
be applied to other identity-based signature schemes following the Fiat-Shamir
paradigm as well. In particular, one can obtain efficient IBMS schemes based
on RSA from [28], based on factoring from [14,13,25,26], and based on pairings
from [19,9,29]. An extensive overview of the security properties of these schemes
as identity-based signature schemes can be found in [2].

Identity-Based Multi-signatures from RSA 161

Acknowledgments

Mihir Bellare was supported by NSF grant CNS-0524765, a gift from Intel Cor-
poration, and NSF CyberTrust project “CT-ISG: Cryptography for Computa-
tional Grids”. Gregory Neven is a Postdoctoral Fellow of the Flemish Research
Foundation (FWO – Vlaanderen), and was supported in part by the Concerted
Research Action (GOA) Ambiorics 2005/11 of the Flemish Government and in
part by the European Commission through the IST Programme under Contract
IST-2002-507932 ECRYPT.

References

1. K. Barr and K. Asanovic. Energy aware lossless data compression. In MobiSys
2003, pages 231–244. ACM Press, 2003.

2. M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based
identification and signature schemes. In C. Cachin and J. Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 268–286. Springer-Verlag, 2004.

3. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In ACM CCS 06. ACM Press, 2006.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pages 62–73. ACM Press, 1993.

5. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, PKC 2003,
volume 2567 of LNCS, pages 31–46. Springer-Verlag, 2003.

6. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In E. Biham, editor, EUROCRYPT 2003,
volume 2656 of LNCS, pages 416–432. Springer-Verlag, 2003.

7. C. Castelluccia, S. Jarecki, J. Kim, and G. Tsudik. A robust multisignatures scheme
with applications to acknowledgment aggregation. In C. Blundo and S. Cimato,
editors, SCN 2004, volume 3352 of LNCS, pages 193–207. Springer-Verlag, 2005.

8. C. Castelluccia, S. Jarecki, J. Kim, and G. Tsudik. Secure acknowledgment
aggregation and multisignatures with limited robustness. Computer Networks,
50(10):1639–1652, 2006.

9. J. C. Cha and J. H. Cheon. An identity-based signature from gap Diffie-Hellman
groups. In Y. Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 18–30.
Springer-Verlag, 2003.

10. X. Cheng, J. Liu, and X. Wang. Identity-based aggregate and verifiably encrypted
signatures from bilinear pairing. In O. Gervasi, M. L. Gavrilova, V. Kumar, A. La-
ganà, H. P. Lee, Y. Mun, D. Taniar, and C. J. K. Tan, editors, Computational
Science and Its Applications ICCSA 2005, volume 3483 of LNCS, pages 1046–
1054. Springer-Verlag, 2005.

11. J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 229–235. Springer-Verlag, 2000.

12. Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong key-insulated signature schemes.
In Y. Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 130–144. Springer-
Verlag, 2003.

13. U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. Journal of
Cryptology, 1(2):77–94, 1988.

162 M. Bellare and G. Neven

14. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer-Verlag, 1987.

15. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers.
http://eprint.iacr.org/, 2006.

16. D. Galindo, J. Herranz, and E. Kiltz. On the generic construction of identity-
based signatures with additional properties. To appear in ASIACRYPT 2006,
LNCS. Springer-Verlag, 2006.

17. C. Gentry and Z. Ramzan. Identity-based aggregate signatures. In M. Yung, editor,
PKC 2006, volume 3958 of LNCS, pages 257–273. Springer-Verlag, 2006.

18. L. C. Guillou and J.-J. Quisquater. A “paradoxical” indentity-based signature
scheme resulting from zero-knowledge. In S. Goldwasser, editor, CRYPTO’88,
volume 403 of LNCS, pages 216–231. Springer-Verlag, 1990.

19. F. Hess. Efficient identity based signature schemes based on pairings. In K. Nyberg
and H. M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 310–324. Springer-
Verlag, 2003.

20. K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Research & Development, 71:1–8, 1983.

21. A. Joux. A one round protocol for tripartite Diffie-Hellman. In Algorithmic Number
Theory Symposium – ANTS IV, volume 1838 of LNCS, pages 385–394. Springer-
Verlag, 2000.

22. S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. Sequential aggregate
signatures and multisignatures without random oracles. In S. Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS. Springer-Verlag, 2006.

23. A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate sig-
natures from trapdoor permutations. In C. Cachin and J. Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 74–90. Springer-Verlag, 2004.

24. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures. In ACM
CCS 01, pages 245–254. ACM Press, 2001.

25. K. Ohta and T. Okamoto. A modification of the Fiat-Shamir scheme. In S. Gold-
wasser, editor, CRYPTO’88, volume 403 of LNCS, pages 232–243. Springer-Verlag,
1990.

26. H. Ong and C.-P. Schnorr. Fast signature generation with a Fiat Shamir–like
scheme. In I. Damg̊ard, editor, EUROCRYPT’90, volume 473 of LNCS, pages
432–440. Springer-Verlag, 1990.

27. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, 2000.

28. A. Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley
and D. Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 47–53. Springer-
Verlag, 1985.

29. X. Yi. An identity-based signature scheme from the Weil pairing. IEEE Commu-
nications Letters, 7(2):76–78, Feb. 2003.

Improved Efficiency for Private Stable Matching

Matthew Franklin, Mark Gondree, and Payman Mohassel

Department of Computer Science
University of California, Davis

{franklin, gondree, mohassel}@cs.ucdavis.edu

Abstract. At Financial Crypto 2006, Golle presented a novel framework for
the privacy preserving computation of a stable matching (stable marriage). We
show that the communication complexity of Golle’s main protocol is substantially
greater than what was claimed in that paper, in part due to surprising patholog-
ical behavior of Golle’s variant of the Gale-Shapley stable matching algorithm.
We also develop new protocols in Golle’s basic framework with greatly reduced
communication complexity.

Keywords: stable matching, stable marriage, Gale-Shapley, privacy-preserving
protocols, secure multiparty computation, passive adversaries.

1 Introduction

Efficient stable matching (stable marriage) algorithms are used in a wide variety of
practical settings, including the well-known example of matching U. S. medical school
graduates to hospitals, for their residencies. Gusfield and Irving [14] have written a
good overview of stable matching algorithms.

Golle [12] argues persuasively that efficient privacy-preserving protocols for stable
matching could have great practical benefit. In fact, Golle goes on to develop just such
a protocol. We find the basic framework of his approach to be quite appealing, and
worthy of further examination. In his framework, some number of honest-but-curious
“matching authorities” (MAs) receive encrypted preference lists from the participants,
and then execute a variant of the classic Gale-Shapley algorithm that has been specially
tuned for concealment. The main cryptographic tools in Golle’s protocol are threshold
homomorphic encryption and re-encryption mixnets.

Our first contribution is to show that Golle’s protocol has substantially greater com-
munication complexity than what was reported in the original paper. For example, the
total communication is O(tn5) ciphertexts instead of O(n3) ciphertexts as reported
(where the number of matching authorities is t, and the number of participants is O(n)).
This is due in part to a surprising anomaly in Golle’s variant of the Gale-Shapley algo-
rithm that requires it to run for more rounds than Golle’s analysis suggests (quadratic
rather than linear in the number of participants).

Our second contribution is to design new privacy preserving protocols in Golle’s ba-
sic framework with reduced communication complexity (under similar cryptographic
assumptions). Our protocol in Section 4.2 has improved communication complexity
when there are an arbitrary number t of matching authorities. Our protocol in Section 5

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 163–177, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

164 M. Franklin, M. Gondree, and P. Mohassel

reduces the communication complexity even further when there are exactly two match-
ing authorities. One way we achieve our improved efficiency is by designing our own
variant of Gale-Shapley that is “tuned for concealment” but with better convergence
properties than Golle’s variant. The following table summarizes the efficiency of these
new protocols and our new analysis of Golle’s protocol.

Section Protocol MAs Total Total Round
Work Communication Complexity

4.1 Golle’s t O(n5) O(tn5) Õ(n3)
4.2 Ours t O(n4√log n) O(tn3) Õ(n2)
5 Ours 2 O(n4) O(n2) Õ(n2)

The organization of the rest of the paper is as follows. Preliminary notions (models,
definitions, primitives) are given in Section 2. In Section 3, we discuss the Gale-Shapley
stable matching algorithm, with a careful analysis of Golle’s variant and our new vari-
ant. In Section 4, we present and analyze Golle’s protocol and our protocol for the case
with multiple matching authorities. In Section 5, we describe a protocol for the case of
just two matching authorities.

2 Preliminaries

2.1 The Stable Marriage Problem

We consider the formulation of the stable matching problem with complete preference
lists (every man ranks every woman, and vice-versa) and one-to-one matchings. Due
to its simplicity, and the fact that other variants of the stable matching problem can be
reduced to this formulation, it is a particularly attractive version with which to work.
The problem is as follows. Consider two sets, one of n men and one of n women. Every
man ranks the n women, and every woman ranks the n men. A matching, or marriage,
is a bijection between the sets. A matching is stable if there is no unmatched man
and woman who rank each other higher than their own spouses. The stable marriage
problem is, given the preference lists of n men and n women, to find a stable marriage
(there is always one, and there may be several). In Section 3, we discuss algorithms for
the stable marriage problem.

2.2 Models and Definitions

We adopt the same network model as Golle [12]. At the start of the protocol, each
player sends a single encrypted message (derived from his or her preferences) to two or
more matching authorities (MA’s). These matching authorities execute a synchronous
protocol among themselves to compute the stable matching.

For simplicity (and fairness of comparison), our security model is the same as that
considered by Golle [12]. Specifically, we consider a passive adversary, meaning an ad-
versary with passive control over any of the players (men and women) and passive con-
trol over all but one of the matching authorities. More precisely, our security guarantees

Improved Efficiency for Private Stable Matching 165

hold for any adversary in the intersection of the adversarial models of the primitives we
use. Our guarantees are in relation to the following security notion, due to Golle [12]:
a protocol is a private stable matching protocol if it outputs a stable match and reveals
no other information to a passive adversary than what she can learn from the matching
and from the preferences of the participants she controls.

In all our constructions, we compose protocols that are private with respect to pas-
sive adversaries, and make use of composition theorems that guarantee security under
composition. These theorems enable us to claim our protocols private against a passive
adversary as long as our subprotocols are private. Please see [3,10] for more details.

Encryption. Unless otherwise stated, we let E denote the encryption function for
a threshold public-key encryption scheme that is additively homomorphic, such as a
threshold version [7,6] of the Paillier encryption scheme [23]. The matching authorities
are the joint holders of the decryption key, such that only a quorum of all parties can
decrypt.

Notation. We use the following asymptotic notation: o(f) denotes that the asymptotic
upper bound f is not tight; Ω(f) denotes that the asymptotic lower bound f is tight;
and Õ(f) denotes the asymptotic upper bound O(f), ignoring polylog(f) factors. We
denote the XOR operation between two equal-length bit strings a, b by a ⊕ b. In Sec-
tion 2.3 below, unless otherwise noted, “poly-log complexity” is in reference to the
security parameter for each primitive.

2.3 Primitives

Re-encryption Mix Network. In our application, when we say the authorities mix some
(Paillier) ciphertexts, we mean the authorities run a re-encryption mix network [22,15],
permuting the ciphertexts according to a secret permutation known to none of the indi-
vidual authorities. Since we consider a passive adversary, n ciphertexts can be mixed
by t mixing authorities in constant round and O(n) time, taking advantage of parallel
mixing techniques [13]. The total communication complexity of the parallel mixnet is,
like a serial mixnet, O(tn) ciphertexts.

Private Oblivious Equality Test. Let E(m1), E(m2) be two Paillier ciphertexts. De-
fine EQTEST(E(m1), E(m2)) = b where b = 1 if m1 = m2 and b = 0 otherwise.
EQTEST is a (chooser private) oblivious test of plaintext equality [16,20] if it reveals
the output to the joint holders of the decryption keys, without revealing any other infor-
mation to any other parties.

MPC Private Equality Test. Let E(m1), E(m2) be two Paillier ciphertexts. Define
EEQTEST(E(m1), E(m2)) = E(b) where b = 1 if m1 = m2 and b = 0 otherwise.
EEQTEST is the secure multiparty computation of the equality test if our parties learn
the output E(b), but no additional information about the plaintexts m1, m2. [4,17] both
give constant-round protocols with poly-log communication complexity for computing
this function, either of which are adaptable to our setting (i.e., threshold, additively
homomorphic ciphertexts).

166 M. Franklin, M. Gondree, and P. Mohassel

Private Oblivious Value Comparison. Let E(m1), E(m2) be two Paillier ciphertexts.
Define COMPARE(E(m1), E(m2)) = b where b = 1 if m1 < m2 and b = 0 other-
wise. For our purposes, we have 0 ≤ m1, m2 ≤ n. Golle instantiates this primitive
by preparing n − 1 ciphertexts, D1, . . . , Dn−1 where Di = E(m1 − m2 − i); mixing
these n ciphertexts; and finally running n parallel instances of EQTEST(Ei, E(0)). If
m1 < m2 then, for some 0 < i ≤ n, one of these instances returns 1. Otherwise, all
instances return 0.

MPC Private Value Comparison. Let E(m1), E(m2) be two Paillier ciphertexts.
Define ECOMPARE(E(m1), E(m2)) = E(b) where b = 1 if m1 < m2 and b = 0
otherwise. ECOMPARE is the secure multiparty computation of the less-than function
if our parties learn the output E(b), but no additional information about the plaintexts
m1, m2. [17,5] both give constant-round protocols with poly-log communication com-
plexity for computing this function, either of which are adaptable to our setting.

Private Reduction of a Secret Modulo a Public Integer. Let E(a) be a Paillier ci-
phertext, and q be an integer. Define MOD(E(a), q) = E(a mod q). MOD is the se-
cure multiparty computation of the modular function if our parties learn the output,
but no additional information about the plaintext integer a. [1,17] both give protocols
with poly-log communication complexity for computing this function, either of which
are adaptable to our setting. The former has a poly-log round complexity, the latter is
constant-round.

SPIR with Sublinear Communication Complexity. Let δ be a database with N el-
ements, indexed {0, . . . , N − 1}. Let SPIRδ

m(b1, . . . ,b�) represent Stern’s symmetric
private information retrieval protocol [24]. As in any PIR protocol, a chooser holds a se-
cret index i and, at the end of the protocol, the chooser learns the element of the database
at index i, while the database learns nothing about which index was accessed. Addition-
ally, the chooser learns nothing about any of the other database elements (thus, symme-
try). In SPIRδ

m, the index i is encoded following a standard trick, due to Kushilevitz
and Ostrovsky [18]. The database is imagined as a series of m sized buckets (the first
m entries in the first bucket, and so on). If element i is the jth element in one of these
buckets, then b1,j = E(1) and bi,k = E(0) for all k �= j. Define b1 = (b1,1, . . . , b1,m).
We recurse, imagining the collection of former buckets as, themselves, a series of m
sized buckets. The output of the protocol must be decrypted by the chooser � times,
to recover the element at index i. With m = N1/� and � = O(

√
log N), the protocol

has total computational complexity O(N
√

log N) and total communication complexity
2O(

√
log N). Since we consider passive adversaries, we do not include Stern’s interactive

zero-knowledge proofs showing the indices are well-formed as a part of SPIRδ
m .

Private Table Read/Write Protocols. Initially, party A holds iA and LA[1...n], and
party B holds iB and LB[1...n]. In other words, parties share the index i = iA ⊕ iB ,
and the array L such that L[j] = LA[j] ⊕ LB[j] for 1 ≤ j ≤ n. For our applications,
we assume that the indices and elements of the array are k-bit integers, for some k.
Naor and Nissim [21] design protocols for both reading and writing to the table in
this setting, requiring O(polylog(n)) communication. Their protocols use an oblivious
transfer protocol as their main building block. The read protocol returns R ⊕ L[i] to A

Improved Efficiency for Private Stable Matching 167

and R to B, where R is a random k-bit integer. In the oblivious write protocol (writing
a shared value v), each party will obtain new shares of L such that L[i] = v.

Yao’s Garbled Circuit Protocol. Yao’s garbled circuit protocol [25] is the first general
purpose secure two-party protocol. In this protocol, parties compute a functionality us-
ing the circuit for that functionality. Please see [19] for a detailed description of Yao’s
protocol. The protocol runs in a constant number of rounds, and has a communica-
tion and computation complexity that is linear in the size of the circuit. We use Yao’s
garbled circuit to design portions of our protocols. Therefore, we sometimes need to
switch from a different setting to Yao’s garbled circuit setting, and back to the original
one. Specifically, in Section 5, we need to switch to Yao’s garbled setting from a setting
where inputs are shared using XOR sharing, and have the parties share the final output
of the circuit using an XOR sharing. This can be done by adding small additional cir-
cuitry to the original circuit. This additional circuitry will not affect the complexity of
the circuit size or the protocol.

3 Stable Marriage Algorithms

In this section, we will first briefly describe the Gale-Shapley algorithm, and then take
a closer look at Golle’s variant of Gale-Shapley. We explain why the complexity of this
variant is a factor of n more than what was claimed in [12]. Finally, we design our own
variant of the Gale-Shapley algorithm, in which we avoid the factor of n increase in the
complexity while preserving the useful properties we need for a secure implementation.
This new variant is what we use in Sections 4 and 5 to design more efficient private
stable matching protocols.

3.1 The Gale-Shapley Algorithm

We review the well-known algorithm of Gale and Shapley [9], not only because of its
general importance but because the private stable matching protocols presented later
are, in fact, simulations of variants of the Gale-Shapley algorithm.

The Gale-Shapley algorithm considers a series of proposals made by men, round-by-
round. Whenever a proposal is accepted, the couple is considered engaged. If a man is
not engaged, he is considered free. The algorithm proceeds as follows. If there are any
free men, select one at random (call him A). A proposes to the woman he ranks highest
among those to whom he has not yet proposed (call her B). If B is free, she accepts and
the pair are considered engaged. If B is engaged to some A′ and she ranks A′ ahead of
A, then B and A′ remain engaged and A remains free. If B is engaged to A′ and she
ranks A′ below A, then B and A become engaged and A′ becomes free.

After O(n2) proposals, all participants will be engaged and we will have found a
stable marriage. In fact, the marriage we find is men-optimal. Due to symmetry, it is
clear we could run the algorithm to find a marriage that is women-optimal. For more
on the Gale-Shapley algorithm, the interested reader is referred to the treatment of the
subject by Gusfield and Irving [14]. One important note, however, is that by observing
the proposals, acceptances, and rejections round-by-round, one can (for some problem
instances) reconstruct the entire preference lists of all participants.

168 M. Franklin, M. Gondree, and P. Mohassel

3.2 Golle’s Variant of Gale-Shapley

In this section we describe Golle’s variant of the classic Gale-Shapley algorithm, ex-
plain its suitability for implementation as a private stable matching protocol, and present
our new complexity analysis. Consider Gale-Shapley’s algorithm where there are n real
women B1, . . . , Bn, and n real men A1, . . . , An. In Golle’s variant, n “fake” men,
An+1, . . . , A2n are introduced (no fake women are defined). The preferences of fake
men are not important, and can be chosen arbitrarily. The preferences of women need
to be augmented to account for the fake men introduced. It is only important that each
woman ranks the fake men lower than any real ones.

In what follows, let Fk and Ek denote the sets of free and engaged men in round k
of the algorithm, respectively. Initially, all the real men are free and all the fake men are
engaged (in an arbitrary way). The algorithm proceeds as follows:

For k = 1 to R:

While Fk is non-empty:
- Randomly select a man A from Fk.
- A proposes to woman B, the woman he ranks highest among the

women to whom he has never proposed before.
- Note that woman B is always already engaged to some man, A′. This

is resolved in the following manner.
* If B ranks A higher than A′, she breaks her engagement to A′ and

becomes engaged to A. Man A is removed from set Fk and added
to Ek, whereas man A′ is removed from Ek and added to Fk+1.

* If B ranks A behind A′, she stays engaged to A′. Man A is re-
moved from set Fk and added to set Fk+1.

- When Fk is empty, let Ek+1 = Ek.

Note that the above algorithm has some nice properties for designing a secure stable
matching protocol. For instance, all n women are always engaged to some man. During
round k, the number of engaged men is always |Ek| = n. Every time a new proposal is
made, the cardinality of Fk decreases by one, the cardinality of Fk+1 increases by one
and the cardinality of Ek is unchanged.

The algorithm, ends after R iterations. In [12], it is claimed that R = n is enough to
reach a stable matching. We observe that this is not the case, and for some inputs, Ω(n2)
iterations are necessary to achieve a stable matching. This implies that proposition 1,
as stated in [12], is incorrect. A problem instance explored in Gusfield and Irving [14,
pg15] is one such counterexample, and is presented in Appendix A.

The intuition behind this inefficiency is that, for some inputs, there may be many
rounds where most of the proposals are made by fake men. Such proposals do not help
the real men move forward in their preference lists, and hence do not help them reach
a stable matching. This observation implies a factor of n increase in Golle’s algorithm,
and the same increase in the communication complexity of his privacy preserving stable
matching protocol.

Improved Efficiency for Private Stable Matching 169

Claim. The algorithm of Section 3.2 (with R = n2) produces a stable matching among
the n men and n women. That is, the algorithm is correct. This claim replaces Proposi-
tion 1 of [12].

Proof. After n2 −n+ 1 proposals from real men, we will have a stable marriage (from
the same counting argument used to show the correctness of the Gale-Shapley algo-
rithm). Until a stable marriage is reached, some real man will be free. So, after n2

rounds, real men will have made at least n2 proposals and, thus, the algorithm outputs
a stable marriage. The minimal number of rounds required for correctness is less, but is
Ω(n2) (see Appendix A).

3.3 Our New Variant of Gale-Shapley

Here, we describe our variant of Gale-Shapley which improves on the complexity of
Golle’s variant by a factor of n and which also has nice properties for designing a
private matching protocol.

Once again, as with Gale-Shapley’s algorithm, there are n real men and n real women
with their corresponding preference lists. We add n fake men and n fake women to this
setting (note that Golle’s variant did not include fake women). Thus, we have: real
men {A1, . . . , An}, fake men {An+1, . . . , A2n}, real women {B1, . . . , Bn}, and fake
women {Bn+1, . . . , B2n}. Preference lists are adjusted in the following way.

Preference lists
Real men ([actual preference list], [Bn+2, . . . , B2n, in any order])
Fake men ([Bn+2, . . . , B2n, in any order], Bn+1, [B1, . . . , Bn, in any order])
Real women ([actual preference list], [An+1, . . . , A2n, in any order])
Fake women ([An+1, . . . , A2n, in any order], [A1, . . . , An, in any order])

As before, set Fk contains the free men in round k. The algorithm works as follows.

Initialization:

- F1 = {A1} (man A1 is free).
- {A2, . . . , An} are engaged to {Bn+2, . . . , B2n}, respectively.
- {An+1, . . . , A2n} are engaged to {B1, . . . , Bn}, respectively.

For k = 1 to R:

- The free man A in Fk proposes to B, the next woman in his preference list
to whom he has not yet proposed.

- Let A′ denote the man to whom B is already engaged.
* If B ranks A higher than A′, she breaks her engagement to A′ and

becomes engaged to A. Let Fk+1 = {A′}.
* If B ranks A lower than A′, she stays engaged to A′. Let Fk+1 = {A}.

Note that in each iteration, exactly one proposal is made. The number of free men
in each round is |Fk| = 1. As we will show next, the above algorithm reaches a stable

170 M. Franklin, M. Gondree, and P. Mohassel

matching in at most 2n2 iterations. In the matching reached, all the real men are engaged
to real women and all the fake men to fake women.

Claim. Once a fake man proposes to fake woman Bn+1, we have reached a stable
matching. In this stable matching, real men are engaged to real women and fake men
are engaged to fake women.

Proof. Note that woman Bn+1 is the nth preference of all the fake men. Therefore,
when a fake man proposes to Bn+1, he has already proposed to the other n − 1 fake
women in his list and has been rejected by them at some point during the execution of
the protocol. This implies that all the other n− 1 fake women were or became engaged
to other fake men (fake women rank fake men higher than real men). This, in turn,
implies that all the real women are engaged to real men.

The argument for having reached a stable matching is similar to the one for the orig-
inal Gale-Shapley algorithm. Particularly, lets assume that real man A prefers woman
B to woman B′, to whom he is engaged. Then, B must have rejected A at some point
during the execution. But, this implies that B was or became engaged to a man she
prefers to A. So B cannot prefer A to her current match. This further implies that there
are no unstable matches.

It is easy to verify that before 2n2 proposals, at least one fake man will have proposed
to Bn+1. Therefore, based on the above claim, we reach a stable matching in at most
R = 2n2 steps.

For the secure implementation of the above algorithm, it is useful to run the algorithm
for the same number of rounds for all inputs (e.g. R = 2n2). This will help us avoid
leaking the number of proposals necessary to reach a stable matching for a specific input.
But, note that in the above algorithm, once a fake man proposes to woman Bn+1, no free
man will remain and the algorithm has to end. A simple fix is to add an extra fake man
A2n+1, and initially let him be engaged to woman Bn+1. The algorithm runs exactly
as before and once a fake man proposes to woman Bn+1, the same claims as above are
true. The only advantage is that we will always have a free man who will propose next.
This is a useful invariant for the secure implementation we give in Section 4.2.

4 Privacy Preserving Stable Marriage Protocols

In this section, we present the privacy preserving implementation of the two Gale-
Shapley variants presented earlier: one for Golle’s (modified) variant in Section 4.1,
and one for our new variant in Section 4.2.

4.1 Privacy Preserving Protocol for Golle’s Variant of Gale-Shapley

In this section, we briefly present the implementation of Golle’s (modified) variant of
Gale-Shapley as a private stable matching protocol. This section will also provide a
basis for comparison with the secure variant in Section 4.2.

Protocols for the Implementation. The following are used in the secure implemen-
tation of Golle’s variant given at the end of this section. Many will be of use later, in
Section 4.2. Slight modifications to some protocols were necessary due to the observa-
tions from Section 3.2.

Improved Efficiency for Private Stable Matching 171

Notation. Let ri,j ∈ {0, . . . , n−1} be the rank given to real woman Bj by man Ai. Let
sj,i ∈ {0, . . . , n − 1} be the rank given to real man Ai by woman Bj . Our convention
is that the highest possible rank is 0, and the lowest is n − 1.

Bids. Define the (free) bid for man Ai as Wi = 〈E(i), ai,vi,qi, E(ρ)〉, where ai =
(E(ri,1), . . . , E(ri,n)), qi = (E(s1,i), . . . , E(sn,i)), and vi = (E(1), . . . , E(n)). Ini-
tially, ρ = 0.

Engaged Bids. The engaged bid 〈Wi, E(j), E(sj,i)〉 denotes that man Ai is engaged
to woman Bj . Let Fk and Ek denote the sets of free and engaged bids in round k of the
algorithm, respectively. When we mix the bids, the t matching authorities mix each of
these sets separately.

Input Submission and Initialization. Each man Ai initially sends his preference list
〈E(r1,i), . . . , E(rn,i)〉 and each woman Bj sends her list 〈E(sj,1), . . . , E(sj,n)〉 to the
matching authorities. The matching authorities jointly create the preferences for the
fake men An+1, . . . , A2n and augment the women’s preference lists with the fake men.
The matching authorities generate the 2n bids for A1, . . . , A2n and the n engaged bids
to denote the engagement of An+j to woman Bj . We add the n engaged bids to E1, and
the n free bids to F1.

Breaking an Engagement. Let 〈Wi, E(j), E(sj,i)〉 be an engaged bid. We break this
engagement by discarding E(j), E(sj,i) and keeping Wi. We also “safely” update E(ρ)
by incrementing it by the value 1−b, where E(b) = EEQTEST(E(ρ), E(n−1)), using
Paillier’s additive homomorphism (ie, we multiply E(ρ) by E(1)/E(b)). That is, we
obliviously increment the next desired rank ρ when it is less than n − 1 and, otherwise,
we do not. This is a modification from the presentation in [12]. If we did not increment
safely, the new n2 loop bound generates the possibility that we may increment some
man’s ρ more than n times which would lead, in a sense, to a pointer error.

Find a Conflicting Bid. Given a newly created engaged bid 〈Wi, E(j), E(sj,i)〉 there
will be exactly one existing engaged bid that conflicts. That is, there is some engaged
bid 〈Wi′ , E(j′), E(sj′,i′)〉 ∈ Ek where j = j′. We can find this by preparing the
set {E(j′) | 〈Wi′ , E(j′), E(sj′,i′)〉 ∈ Ek}, mixing the n ciphertexts in this set, and
then performing n parallel instances of EQTEST(E(j), E(j′)) for each E(j′) in the
mixed set.

Resolve a Conflict. Given two random conflicting engaged bids, 〈Wi, E(j), E(sj,i)〉
and 〈Wi′ , E(j), E(sj,i′)〉, we determine the “winner” and “loser” of the conflict by
doing the following. Jointly compute b = COMPARE(E(sj,i), E(sj,i′)). If b = 1 then
woman j prefers man i′ over man i and, thus, we call the first engaged bid the “loser.”
Otherwise, we call the second engaged bid the “loser.” We call the remaining bid the
“winner.”

Summary of the Privacy Preserving Implementation. The following algorithm, with
R = n2, summarizes the secure implementation of Golle’s variant of Gale-Shapley.
How to process the submitted inputs, initialize the data structures, find a conflicting

172 M. Franklin, M. Gondree, and P. Mohassel

bid, resolve the conflict, and break an engagement are explained in Section 4.1. We
have, however, omitted the details of some steps, such as internal bid mixing, opening
a bid , and some others. We refer the reader to Golle’s paper [12] for those details we
have omitted.

Briefly, when a bid Wi is “opened,” the matching authorities jointly determine E(j)
(the woman at rank ρ on man Ai’s preference list) and her preference E(sj,i) for Ai,
without learning anything about ρ, j or i.

Input submission and Initialization
For k = 1 to R:

While Fk is non-empty:
1. Randomly select a bid Wi from Fk.
2. Open Wi to recover E(j), E(sj,i)
3. Form the engaged bid 〈Wi, E(j), E(sj,i)〉
4. Find the conflicting engaged bid, 〈Wi′ , Ej, E(sj,i′)〉
5. Mix these two engaged bids
6. Resolve the conflict to find the “winner” and “loser”
7. Break the engagement for the loser and add this free bid to Fk+1
8. Add the winner to Ek

9. Mix all the bids, and perform internal bid mixing
10. If Fk is empty, let Ek+1 = Ek

Announce stable marriage

At step k = n2, all data is discarded, save the ciphertext pairs (E(i), E(j)) from each
engaged bid in En2 . These are (publicly or privately) announced to each participant.

Complexity Analysis. The work and communication complexity is dominated by run-
ning the 3 re-encryption mix networks in steps 4, 5, and 9 — specifically, the mixnet
in step 9. This re-encryption mix network is run on 2n bids, n times each round (since
|Fk| = n at the start of each round). Furthermore, each bid contains O(n) ciphertexts.
Thus, each of the t authorities does O(n5) total work. The total communication com-
plexity is O(tn5) ciphertexts. This differs from Golle’s O(n3) analysis in [12], which
claims the bid size to be constant, claims R = n instead of R = n2, and omits t
as a factor impacting the number of messages passed. For similar reasons, the round
complexity is now O(n3polylog(n)), instead of O(n2polylog(n)) as claimed in [12].

Claim. The protocol of Section 4.1 is a private stable matching protocol, assuming
Paillier encryption is semantically secure and the underlying re-encryption mix network
is private. When t matching authorities participate, the protocol’s total communication
complexity is O(tn5) ciphertexts. This claim replaces Propositions 2 and 3 of [12].

Proof (sketch). The correctness of the algorithm from Claim 3.2 shows the protocol
outputs a stable matching. To show the protocol is private, we direct the reader to the
proof sketch of Proposition 3 in [12]; our modifications to the protocol do not impact
the proof that a passive adversary learns no additional information during the protocol’s
execution. The complexity analysis is shown above.

Improved Efficiency for Private Stable Matching 173

4.2 Privacy Preserving Protocol for Our New Variant of Gale-Shapley

To implement our new variant of Gale-Shapley securely, we must modify the initializa-
tion procedure of Golle’s secure protocol to accommodate the addition of fake women.
Furthermore, we present a new procedure to open a bid with the aid of a database that
holds the participants’ encrypted preference lists. By removing the preference lists from
the bids themselves, we make our bids constant-sized. Now, we define a bid Wi for man
Ai as 〈E(i), E(ρ)〉. We assume one of the t matching authorities plays the role of the
database.

Protocols for the Implementation. From Section 4.1, the definition for an engaged
bid and the procedures for finding a conflict, breaking an engagement, and resolving
a conflict remain the same for the secure implementation of the new variant of Gale-
Shapley given at the end of this section. The following procedures are also used.

Input Submission. As before, each woman sends her preference list qi. Similarly, each
man submits a vector ai, but the vector encodes his preference list in a new way. Now,
man Ai defines ai = (E(ai,1), . . . , E(ai,n)), where ai,j ∈ {1, . . . , n} is the index of
the woman to whom he has given rank j − 1.

Initialization. The matching authorities generate the free bid for man A1 and the en-
gaged bids for man Ai, for i �= 1. The preference lists for the n + 1 fake men and n
fake women are generated, and the preference lists for the real men and women are aug-
mented, according to the rules above. Let one matching authority collect and organize
these lists, and call this authority the database δ. Let δ = [(a1,q1), . . . , (a2n,q2n)].
Thus δ[4n(i− 1) + (j − 1)] = E(ai,j) and δ[4n(i− 1) + (j − 1) + 2n] = E(sj,i), for
i, j ≤ 2n.

Open a Bid. Given a free bid 〈E(i), E(ρ)〉, we must recover E(j) (the encrypted index
of the woman at rank ρ on man Ai’s preference list) and E(sj,i). It happens that E(j) is
located at δ[4n(i−1)+(ρ−1)] and E(sj,i) is located at δ[4n(i−1)+(j−1)+2n]. We
can calculate E(4n(i−1)+ρ−1) using the Paillier additive homomorphism, given E(i)
and E(ρ). We can recover E(j) by accessing the database at this secret index, using the
protocols below. Similarly, given E(j) we can calculate E(4n(i − 1) + (j − 1) + 2n)
and, again, recover E(sj,i) by accessing the database at this secret index.

Access the Database at a Secret Index. Given E(x), we can generate a series of indices
b1, . . . ,b� which singulate the element at index x using the index conversion proce-
dure below, without learning anything about index x. Then let y = SPIRδ

m(b1, . . . ,b�).
We jointly decrypt y, � times, to recover δ[x]. For the values of m and � indicated in
Section 2.3, this joint decryption takes O(

√
log n) rounds, passing a 2O(

√
log n)/2i size

message between t authorities on round i, yielding a total communication complexity of
o(tn). After this procedure, the entire database should re-encrypt all of its entries. The
total computational complexity of this database access is O(n2√log n).

Secure Index Conversion. Given E(x), we can securely calculate the indices
b1, . . . ,b� that are used as input to the protocol SPIRδ

m. Recall thatbk =(bk,1, . . . , bk,m)

174 M. Franklin, M. Gondree, and P. Mohassel

is the encryption of an m-length bit-string of Hamming weight 1, selecting the appro-
priate item from each m sized bucket at step k. If we consider the buckets to be arranged
consecutively (the first m elements in the first bucket, and so on) then bk,j = E(ck,j)
where

ck,j = (x mod mk ?= (j − 1)mk−1 +
k−1∑
h=1

m∑
i=1

(i − 1)ch,im
h−1)

Thus, bk can be calculated using MOD, EEQTEST, and the vectors bj for j < k cal-
culated in earlier rounds. Each round, this procedure takes polylog work with polylog
communication complexity. The procedure ends after � = O(

√
log n) rounds.

Full Privacy Preserving Implementation. The secure implementation of our new
variant of Gale-Shapley is assembled using the protocols indicated above, according to
the algorithm below.

Input submission and Initialization
For k = 1 to 2n2:

1. Select the single free bid Wi from Fk.
2. Open Wi to recover E(j), E(sj,i)
3. Form the engaged bid 〈Wi, E(j), E(sj,i)〉
4. Find the conflicting engaged bid, 〈Wi′ , Ej, E(sj,i′)〉
5. Mix these two engaged bids
6. Resolve the conflict to find the “winner” and “loser”
7. Break the engagement for the loser and add this free bid to Fk+1
8. Add the winner to Ek

9. Mix the engaged bids
10. Let Ek+1 = Ek

Announce stable marriage

Complexity Analysis. As in Golle’s, the communication complexity here is dominated
by the re-encryption mix networks run in steps 4, 5, and 9 — specifically, the mixnets
run in steps 4 and 9. These mixnets runs on O(n) ciphertexts each round. The total
communication complexity is O(tn3). Accessing the database, however, dominates the
computational cost, when t ≤ n. Each step k, the database access takes O(n2√log n)
work. The total computational complexity is O(n4√log n). The round complexity is
O(n2polylog(n)).

Claim. The algorithm of Section 4.2 is a private stable matching protocol, assuming
Paillier encryption is semantically secure and the underlying re-encryption mix network
is private.

We note the above claim can be proven by a hybrid argument similar to that of the proof
of Proposition 3 in [12], or using the composition theorems mentioned in Section 2.2.
Due to length constraints (and the lack of novelty in applying either of these proof
techniques), we omit a full proof.

Improved Efficiency for Private Stable Matching 175

5 An Efficient Private Stable Matching Protocol for t = 2 MAs

In this section, we take a closer look at the case where there are only two Matching
Authorities (MAs). We design a secure protocol for this case with O(n2polylog(n))
communication complexity. This is a factor of n more efficient than our protocols for
the general case. We generalize this protocol for the setting with multiple pairs of MAs
in Appendix B of the full version of this paper [8].

We base our secure implementation on our variant of Gale-Shapley from Section 3.3.
To do so, we use rather different techniques from those we used in the general case. As
before, each participant sends shares of his/her input to the two MAs. The rest of the
protocol is performed by the two MAs without help from the participants. The final
matching is then revealed to the participants. Before we proceed with the details of the
protocol, let us define the data structures that are shared by the MAs. For simplicity, in
what follows we label men and women using only their index.

A[i][j] = ai,j , the identity of the woman ranked j − 1 by man Ai.
B[j][i] = sj,i + 1, where sj,i ∈ [0, n − 1] is the rank given to man Ai by woman Bj .
P [i] = ρi + 1, where ρi ∈ [0, n − 1] is the rank of the woman

to whom man Ai will propose next.
E[j] ∈ {1, . . . , n}, the identity of the man engaged to woman Bj .

Using the above data structures, we can rewrite our variant of the Gale-Shapley al-
gorithm (from Section 3.3), after the initialization stage, as follows.

For k = 1 to 2n2

1. Remove i from Fk

2. Let p = P [i]
3. Let j = A[i][p] (the index of the woman to whom Ai proposes)
4. Let i′ = E[j] (the index of the man currently engaged to her)
5. Let sj,i = B[j][i] and sj,i′ = B[j][i′] (her rankings for Ai and Ai′)
6. If sj,i′ > sj,i, then swap the labels i, i′

7. E[j] ← i′ (store the “winner” as her husband)
8. p′ = P [i]
9. P [i] ← p′ + 1 (increment the “loser”)

10. Fk+1 = {i} (free the “loser”)

At the end of the protocol, E[j] stores the index of the man to whom woman Bj is
married. The MAs can privately (or publicly) announce to each participant shares of
his/her partner. Now, we explain how to implement the above algorithm securely. Note
that all the data structures and intermediate values in the algorithm are shared between
the two MAs. To be compatible with the private table access primitives we use, we
employ a simple XOR sharing scheme: to share a k-bit integer a between the MAs, a
participant sends a random k-bit r to one MA and sends a ⊕ r to the other MA.

In steps 2–5 and 7–9, MAs need to privately read and write to a table. We can use the
techniques of Naor and Nissim [21] to implement these steps securely (see Section 2.3
for more detail), with O(polylog(n)) communication. We can do step 6 (compare two

176 M. Franklin, M. Gondree, and P. Mohassel

integers and potentially swapping them) and step 9 (computing shares of ρ + 1 from
shares of ρ) by switching to Yao’s garbled circuit protocol and then switching back
to the initial setting (see Section 2.3 for more detail). The circuit for performing such
computations is of size O(polylog(n)). This leads to a protocol with O(n2polylog(n))
communication between the MAs.

According to the composition theorems with respect to passive adversaries (see Sec-
tion 2.2), the above protocol is privacy-preserving as long as the underlying subproto-
cols (private table read/write protocols and Yao’s garbled circuit protocol) are secure
against passive adversaries.

References

1. Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In CRYPTO ’02,
pages 417–432, 2002.

2. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure proto-
cols. In ACM Symposium on Theory of Computing, pages 503–513, 1990.

3. Ran Canetti. Security and composition of multiparty cryptographic protocols. In Journal of
Cryptology, volume 13, pages 143–202, 2000.

4. Ronald Cramer and Ivan Damgård. Secure distributed linear algebra in a constant number of
rounds. In CRYPTO ’01, pages 119–136, 2001.

5. Ivan Damgård, Matthias Fitzi, Jesper Buus Nielsen, and Tomas Toft. How to split a shared
secret into shared bits in constant-round. Cryptology ePrint Archive, Report 2005/140, 2005.

6. Ivan Damgård and Mads Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In Public Key Cryptography, pages 119–136,
2001.

7. Pierre-Alain Fouque, G Poupard, and Jacques Stern. Sharing decryption in the context of
voting or lotteries. In Financial Crypto, 2000.

8. Matthew Franklin, Mark Gondree, and Payman Mohassel. Improved efficiency for private
stable matching. Cryptology ePrint Archive, Report 2006/332, 2006.

9. David Gale and Lloyd Stowell Shapley. College admissions and the stability of marriage.
American Mathematical Monthly, 69:9–15, 1962.

10. Oded Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.
11. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In ACM

Symposium on Theory of Computing, pages 218–229, 1987.
12. Philippe Golle. A private stable matching algorithm. In Financial Crypto, 2006.
13. Philippe Golle and Ari Juels. Parallel mixing. In ACM Computer and Communications

Security, pages 220–226, 2004.
14. Dan Gusfield and Robert Irving. The Stable Marriage Problem: Structure and Algorithms.

MIT Press, 1989.
15. Markus Jakobsson, Ari Juels, and Ron Rivest. Making mix nets robust for electronic voting

by randomized partial checking. In Proc. of USENIX’02, pages 339–353, 2002.
16. Markus Jakobsson and Claus Peter Schnorr. Efficient oblivious proofs of correct exponenti-

ation. In Communications and Multimedia Security, pages 71–86, 1999.
17. Eike Kiltz. Unconditionally secure constant round multi-party computation for equality,

comparison, bits and exponentiation. Cryptology ePrint Archive, Report 2005/066, 2005.
18. Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: single database,

computationally-private information retrieval. In Foundations of Computer Science, pages
364–373, 1997.

Improved Efficiency for Private Stable Matching 177

19. Yehuda Lindell and Benny Pinkas. A proof of Yao’s protocol for secure two-party computa-
tion. Cryptology ePrint Archive, Report 2004/175, 2004.

20. Helger Lipmaa. Verifiable homomorphic oblivious transfer and private equality test. In
ASIACRYPT 2003, pages 416–433, 2003.

21. Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function
evaluation. In ACM Symposium on Theory of Computing, pages 590–599, 2001.

22. C. Andrew Neff. A verifiable secret shuffe and its application to e-voting. In ACM Computer
and Communications Security, pages 116–125, 2001.

23. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT’99, pages 223–238, 1999.

24. Julien P. Stern. A new and efficient all-or-nothing disclosure of secrets protocol. In ASI-
ACRYPT’98, pages 357–371, 1998.

25. Andrew C. Yao. How to generate and exchange secrets. In Foundations of Computer Science,
pages 162–167, 1986.

A A Case Where [12] Requires More Than n Iterations

Here we give an example input for which Golle’s variant of Gale-Shapley requires
Ω(n2) iterations of the main loop to reach a stable matching. Consider the following
preference lists for the real men and women (the preference lists of the n fake men are
as indicated in [12]):

A1 [1, 2, . . . , n − 1, n] B1 [2, 3, . . . , n, 1]
A2 [2, 3, . . . , 1, n] B2 [3, 4, . . . , 1, 2]

.
An−1 [n − 1, 1, . . . , n − 2, n] Bn−1 [n, 1, . . . , n − 2, n − 1]
An [1, 2, . . . , n − 1, n] Bn [1, 2, . . . , n − 1, n]

After the first iteration of the main loop, n − 1 real men are engaged and 1 real man
remains free. This implies that F2 will include n− 1 fake men. In the next n2 − 2n+ 2
iterations, one real man will get engaged and another will become free. In other words,
for 2 ≤ k ≤ n2 − 2n + 2, only one real man will propose in each iteration and all
the other proposals are made by fake men. Thus, Ω(n2) iterations of the main loop is
necessary to reach a stable matching.

Compact E-Cash from Bounded Accumulator

Man Ho Au, Qianhong Wu, Willy Susilo, and Yi Mu

Center for Information Security Research
School of Information Technology and Computer Science
University of Wollongong, Wollongong 2522, Australia

{mhaa456,qhw,wsusilo,ymu}@uow.edu.au

Abstract. Known compact e-cash schemes are constructed from signa-
ture schemes with efficient protocols and verifiable random functions.
In this paper, we introduce a different approach. We construct compact
e-cash schemes from bounded accumulators. A bounded accumulator is
an accumulator with a limit on the number of accumulated values. We
show a generic construction of compact e-cash schemes from bounded
accumulators and signature schemes with certain properties and instan-
tiate it using an existing pairing-based accumulator and a new signature
scheme. Our scheme revokes the secret key of the double-spender di-
rectly and thus supports more efficient coin tracing. The new signature
scheme has an interesting property that is has the message space of a
cyclic group G1 equipped with a bilinear pairing, with efficient protocol
to show possession of a signature without revealing the signature nor the
message. We show that the new scheme is secure in the generic group
model. The new signature scheme may be of independent interest.

Keywords: compact e-cash, bounded accumulator, bilinear pairings.

1 Introduction

Electronic cash(e-cash), introduced by Chaum[8], is one of the useful ways to
pay electronically. It could play an important role in the realization of fully
online commerce. A practical electronic cash system should be secure, offline
and anonymous. Depending on the implementation, it may or may not require
some proprietary hardware.

An e-cash system consists of three parties (the bank B, the user U and the
shop S) and four main procedures (account establishment, withdrawal, payment
and deposit). The user U first performs an account establishment protocol with
the bank B. The currency circulating around is quantized as coins. U obtains
a coin by performing a withdrawal protocol with B and spends the coin by
participating in a payment protocol with S. To deposit a coin, S performs a
deposit protocol with B.

Security of e-cash refers to the fact that only the bank B can produce a coin
and for offline schemes, users who double-spent should be identified. The problem
of double-spending occurs in the electronic world due to easy duplication of
digital coins. Additionally, honest spenders cannot be slandered to have double

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 178–195, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Compact E-Cash from Bounded Accumulator 179

spent (exculpability), and when the shops deposit the money from the payee,
the bank should not be able to trace who the actual spender is (anonymity).
Many e-cash systems that provide the function of identifying double-spenders
have been proposed, but most of them rely on a trusted third party (TTP) to
revoke the anonymity so as to identify the double-spenders [4,12,7]. While the
TTP cannot slander an honest user, its existence in fact implies that even honest
users are not anonymous.

It is desirable to have coin traceability of double-spender such that all coins
of the cheating user can be traced. Certain information can be put in a blacklist
so that coins from the double-spenders can be recognized when it is spent.

High efficiency is also of key importance for practical e-cash systems. For
efficiency, we look at: (1) the time and bandwidth needed for the withdrawal,
payment and deposit protocols; (2) the size of an electronic coin; and (3) the
size of the bank’s database.

Camenisch, Hohenberger and Lysyanskaya [5] proposed a secure offline anony-
mous e-cash scheme (which we shall refer to as CHL scheme from now on) which
is compact to address the efficiency issue. In their scheme, a wallet containing k
coins can be withdrawn and stored in complexity O(λ+log(k)) for a security pa-
rameter λ, where each coin can be spent unlinkably with complexity O(λ+log(k))
as well.

CHL’s Compact E-Cash. There are two versions of CHL’s scheme with coin
traceability. We describe the one with the XDH assumption since it is simpler and
much more efficient than the other. When a user withdraws a wallet, it obtains a
signature σ from the bank on the commitment of user’s secret key and two secret
random numbers, s and t. To spend a coin, the user proves to the merchant that
it possesses such a signature σ, and uses s to generate a link tag. By using a
verifiable random function on s and counter i, the user generates a link tag Si

(called serial number). The user also generates a blinding value Bi, using the
same method, from t and counter i. For the counter i running from 0 to 2�−1, the
wallet can be spent 2� times unlinkably. The blinding value is used to compute
a value Ti = guBR

i , where gu is the secret key of the user and R is a random
challenge provided by the merchant. Ti is called a double-spending equation.
Should a user double-spent any of his coins, two double-spending equations can
be used to reveal the secret key of the user. For full coin tracing, user verifiably
encrypt certain tracing information (s, t) under his own public key. Once his
secret key is revealed due to double-spending, the bank can decrypt the tracing
information and trace all the spendings of the double-spender. Due to the nature
of the revocation mechanism, the secret key is limited to the form of gu. Thus,
CHL scheme employs a rather inefficient cut-and-choose verifiable encryption
based on the bilinear encryption[2].

Overview of Our Scheme. We present an intuition on how our scheme is
constructed. Let g, h be generators of a cyclic group of prime order p. Let y = gx

for some x ∈ Zp. It has been well known that a proof-of-knowledge of the discrete
logarithm of y can be done, with the following 3 moves.

180 M.H. Au et al.

– Commitment. The prover chooses a random r ∈R Zp, compute T = gr and
sends it to the verifier.

– Challenge. The verifier randomly generates a challenge c ∈R Zp and sends it
back to the prover.

– Response. The prover computes a response z = r − cx and sends it to the
verifier.

The verifier checks if T = ycgz and if it holds, it is convinced that the prover
indeed knows the discrete logarithm of y to the base g. Should the prover uses
the same commitment and receives different challenges to produce different re-
sponses, x can be computed efficiently. The existence of such algorithm, known
as knowledge extractor, is needed to prove that the proof system is a proof of
knowledge[10]. Such technique is employed in Brands’ E-cash [3] to reveal the
identity of the double-spender.

Now we try to use the same rationale to construct our compact e-cash scheme
as follows. Each user, equipped with key pairs (x, gx) first generates k random
numbers ri for i = 1 · · ·k and uses an accumulator[6,13] to accumulate the set of
random numbers {ri} into an accumulated value V and present it to the bank.
The bank then signs V, gx together. When the user wishes to spend a coin,
he/she uses one of the random number ri and computes the a serial number
S = hri , a masked commitment T = hrigk1 and a masked public key Y = hxgk2 ,
where k1, k2 are the some random values. The user, submit S, T, Y , and proves
to the merchant, in zero knowledge manner, that he is in possession of the bank’s
signature on V, gx and S, T, Y are correctly formed. Finally, the user uses T as
the commitment to prove the knowledge of x, k2. Should a user attempt to spend
more than k coins, he will have to use the same S and be identified. Next his
secret key x shall be revealed from the component T, Y .

That is almost our final solution. To achieve full coin tracing, we borrow the
idea from traceable signatures[11]. Instead of having the group manager storing
the tracing information, we require the user to choose the tracing information
and verifiably encrypt it under the public key of himself. When his private key
is revealed due to double-spending, all his spendings can be traced. Two prob-
lems remain, the first one being how can the bank ensure that the user only
accumulates k values in V but not more. The second problem is that there is
no existing signature with efficient protocols which allows signing on the space
of the accumulator, usually a group element itself, directly. We solve the first
problem by making the observation that the accumulator due to Nguyen[13] in
fact impose an upper bound on the number of values to be accumulated. We
solve the second problem by introducing a new signature scheme, which could
be of independent interest.

Our Contributions. Specifically, we make the following contributions

– We present generic construction for compact e-cash scheme from bounded
accumulator.

– We provide efficient instantiation.
– We propose a new signature scheme with efficient protocols, which may be

of independent interest.

Compact E-Cash from Bounded Accumulator 181

Organization. We discuss related works and technical preliminary in the next
section. A security model is shown in Section 3. The generic construction is shown
in Section 4, accompanied by security analysis. Next we present the building
blocks of our instantiations in Section 5. We show our instantiation in Section 6
and concluded with some remarks in Section 7.

2 Preliminaries

2.1 Notations

Let e be a bilinear map such that e : G1 × G2 → G3.

– G1 and G2 are cyclic multiplicative groups of prime order p.
– each element of G1, G2 and G3 has unique binary representation.
– g, h are generators of G1 and G2 respectively.
– (Bilinear) ∀x ∈ G1, y ∈ G2 and a, b ∈ Zp, ê(xa, yb) = ê(x, y)ab.
– (Non-degenerate)ê(g, h) �= 1.

G1 and G2 can be same or different groups. We say that two groups (G1, G2)
are a bilinear group pair if the group action in G1, G2 and the bilinear mapping
e are all efficiently computable.

2.2 Mathematical Assumptions

Definition 1 (Decisional Diffie-Hellman). The Decisional Diffie-Hellman
(DDH) problem in G is defined as follow: On input a quadruple (g, ga, gb, gc) ∈
G4, output 1 if c = ab and 0 otherwise. We say that the (t, ε)-DDH assumption
holds in G if no t-time algorithm has advantage at least ε over random guessing
in solving the DDH problem in G.

Definition 2 (Symmetric External Diffie-Hellman[1]). The Symmetric
External Diffie-Hellman (SXDH) Assumption state that the DDH problem is hard
in both G1 and G2 of a bilinear group pair (G1, G2). It implies that there is no
efficiently computable isomorphism from G2 to G1 or vice versa.

2.3 Bounded Accumulator

We introduce a new notion, bounded accumulator BA as follows. A bounded
accumulator is a dynamic accumulator[6,9] with the constraint that at most
k, called the bound of the accumulator, values could be accumulated into the
accumulator.

3 Syntax

A compact e-cash with full coin tracing is a tuple (BankSetup, UserSetup, With-
drawalProtocol, SpendProtocol, DepositProtocol, RevokeDoubleSpender, Trace) of
seven polynomial time algorithms/protocols between three entities, namely Bank,
Merchant and User. The following enumerates the syntax.

182 M.H. Au et al.

– BankSetup. On input an unary string 1λ, where λ is the security parameter,
the algorithm outputs the bank’s master secret bsk and the public parameter
bpk.

– UserSetup. On input bpk, the algorithm outputs a key pair (pk, sk). Since
merchants are a subset of users, they may use this algorithm to obtain keys
as well.

– WithdrawalProtocol. The user with input (pk, sk) withdraws a wallet w of
k coins from the bank. The bank’s input is the master secret bsk. After
executing the protocol, the user obtains a wallet w while the bank (possibly)
retains certain information τw, called the trace information.

– SpendProtocol. This is the protocol when the user spends a single coin to
a merchant. The user input is w and the merchant’s identity. After the
protocol, the merchant obtains a transcript including a proof of validity π
of a coin from the wallet, and possibly some auxiliary information aux, and
outputs 0/1, depending whether the payment is accepted. The user’s output
is an updated wallet w′.

– DepositProtocol. In a deposit protocol, the merchant submits (π, aux) to the
bank for deposit. The bank outputs 0/1, indicating whether the deposit is
accepted. It is required whenever an honest merchant obtains (π, aux) by
running any of the spend protocols with some user, there is a guarantee that
this transaction will be accepted by the bank. The bank adds (π, aux) to
the database of spent coins.

– RevokeDoubleSpender. Whenever a user double spent, this algorithm allows
the bank to identify the double spender. Formally, on input two spending
protocol transcripts involving the same coin, the algorithm outputs the pub-
lic key pk of the double-spender.

– Trace. On input two spending protocol transcripts of a double-spender, the
algorithm outputs a certain information tr which allows everyone to identify
all the spendings of the double-spender.

3.1 Security Notions

We first provide an informal description of the security requirements. A secure
compact e-cash scheme should possess correctness, balance, CorrectTracingOf-
DoubleSpender, anonymity and exculpability, introduced as follows.

– Correctness. If an honest user runs WithdrawalProtocol with an honest bank
and runs any of the spend protocols with an honest merchant, the merchant
accepts the payment. The merchant later runs Deposit with the bank, which
will accept the transaction.

– Balance. This is the most important requirement from the bank’s point of
view. Roughly speaking, balance means that no collusion of users and mer-
chants together can deposit more than they withdraw without being identi-
fied. More precisely, we require that collusion of users and merchants, having
run the withdrawal protocol for n times, cannot deposit more than nk coins
back to the bank without being identified, that is, if they do deposit nk + 1

Compact E-Cash from Bounded Accumulator 183

coins, at least one of the colluders must be identified. A related notion is
revocability, which means identity of the double-spender must be revoked.
It is straightforward to see that revocability is implied by the definition of
balance.

– CorrectTracingOfDoubleSpender. It means that should a user be a double-
spender, all his other spendings should be properly identified.

– Anonymity. It is required that no collusion of users, merchants and the bank
can ever learn the spending habit of an honest user.

– Exculpability. It is required that an honest user cannot be proven to have
double-spent, even all other users, merchants and the bank colludes.

From our definition, it can be seen that it is the bank’s responsibility to
identify the double-spender. The rationale behind is that a user can always
spend the same coin to different merchants in an offline e-cash system and the
merchant have no way to detect such double-spending.

Next we are going to formally define the security model. The capability of an
adversary A is modeled as oracles.

– Withdrawal Oracle: A presents a public key pk and engages in the With-
drawalProtocol as user and obtains a wallet. The oracle stores pk in a set
XA.

– Spend Oracle: A now acts as a merchant and request users to spend coins
with it.

– Hash Oracle: A can ask for the values of the hash functions for any input.

We require that the answers from the oracles are indistinguishable from the view
as perceived by an adversary in real world attack.

Definition 3 (Game Balance)

– (Initialization Phase.) The challenger C takes a sufficiently large security
parameter λ and runs BankSetup to generate bpk and also a master secret
key bsk. C keeps bsk to itself and sends bpk to A.

– (Probing Phase.) The adversary A can perform a polynomially bounded num-
ber of queries to the oracles in an adaptive manner.

– (End Game Phase.) Let qw be the number of queries to the Withdrawal Oracle
and qs be the number of queries to the Spend Oracle. A wins the game if it
can run kqw + qs + 1 deposits to C such that, on input any two of these
kqw + qs +1 deposits transcript,the RevokeDoubleSpender algorithm does not
output any of the public keys presented during the Withdrawal Oracle query.

The advantage of A is defined as the probability that A wins.

Definition 4 (Game CorrectTracing). The game to be played is the same as
game balance, except we are more generous as to what constitutes the adversary’s
success. Basically the A wins if after a double spending has been detected, it could
produce another spending, under the same public key, that could not be traced.

184 M.H. Au et al.

Definition 5 (Game Anonymity)

– (Initialization Phase.) The challenger C gives a sufficiently large security
parameter λ to A. A then generates bpk and bsk. A gives bpk to C. Since A is
in possession of bsk, only Hash oracle query is allowed in Game Anonymity.

– (Challenge Phase.) C then chooses two public keys PK and PK ′ and presents
them to A. C runs the WithdrawalProtocol with A acting as bank to obtain
several wallets w0, · · · , wt and w′

0, · · · , w′
t on behalf of the two public keys. A

then acts as merchant and ask for spending from C. A is allowed to specify
which wallet C uses, with the restriction that it cannot ask C to over-spend
any of the wallets. Finally, C randomly chooses one wallet w from user PK
and one wallet w′ from user PK ′ from the set of wallets that are legal for the
challenge, flip a fair coin to decide to use w or w′ for the challenge spending.

– (End Game Phase.) The adversary A decides which public key C uses.

A wins the above game if it guesses correctly. The advantage of A is defined
as the probability that A wins minus 1

2 .

Definition 6 (Game Exculpability)

– (Initialization Phase.) The challenger C gives a sufficiently large security
parameter λ to A. A then generates bpk and bsk. A gives bpk to C. Since A is
in possession of bsk, only Hash oracle query is allowed in Game Exculpability.

– (Challenge Phase.) C runs the WithdrawalProtocol for qj times with A acting
as bank to obtain wallets w1, · · · , wqj . A then acts as merchant and asks
for spending from C. A is allowed to specify which wallet C uses, with the
restriction that it cannot ask C to over-spend any of the wallets. A can also
ask to corrupt any of the user in the above withdrawal protocol. A corrupted
user needs to surrender its private key as well as the wallet to A.

– (End Game Phase.) A runs two deposit protocols with C. A wins the game
if RevokeDoubleSpender on this two deposit protocols points to a user in any
of the withdrawal protocol during initialization and that user has not been
corrupted.

The advantage of A is defined as the probability that A wins.

A compact e-cash with full tracing is secure if no PPT adversary can win in Game
Balance, Game CorrectTracing, Game Anonymity and Game Exculpability with
non-negligible advantage.

4 Generic Construction

We present a generic construction of compact e-cash scheme from bounded ac-
cumulator. For better presentation, we first describe the basic system. Next, we
extend the basic system to support full tracing.

Compact E-Cash from Bounded Accumulator 185

4.1 Basic System

BankSetup. Let S = (KeyGen, Sign, Verify) be a signature scheme. Let BA be a
bounded accumulator with upper bound k. The bank runs KeyGen and obtains
(sk, pk). The bank publishes pk,BA as the public key. It keeps sk as the private
key. Each user is in possession of a DL type key pairs (x, ux).

Withdrawal. To withdraw, the user generates k random numbers si for i =
1, · · · , k. He accumulates the k si’s to form an accumulated value v and obtain k
witnesses wi. The user then obtains a signature σx = Sign(v, Commit(x)) from
the bank. The user keeps (σx, {si}, {wi}, x) as its wallet secret.

Spend Protocol. For payment, the user and the merchant with identity I ∈
{0, 1}∗ first agree on the transaction information info. The user then chooses one
of the unused random number in his wallet and compute the following quantities,
S = gsi , T = gr1hsi , Y = gr2hx. The user then generates an non-interactive
zero-knowledge proof-of-knowledge (signature of knowledge) π1 of the following.

– Verify(σx, v, Commit(x)) = 1
– si is in v (using wi as witness)
– S, T, Y are correctly formed (with respect to the v, Commit(x))

Finally, the user computes a signature of knowledge π2 on the representation
of Y , using T as the commitment. This involves computing (zr = r1 − cr2, zx =
si − cx) such that T = Y cgzrhzx , where c is the challenge used in the signature
of knowledge. In both signature of knowledge π1, π2, the message to be signed
is (I||info), where || denote the concatenation operator.

The merchant accepts the payment if both π1 and π2 are valid.

Deposit. To deposit, the merchant simply gives the bank the whole communi-
cation transcript during the spend protocol. The bank verifies the transcript
exactly as the merchant did. In addition, the bank has to verify that I is indeed
the identity of the merchant and (info, I) is not used before by that merchant.
This is to prevent colluding users and merchants from submitting a double spent
coin (which have identical transcripts). It also prevents malicious merchant from
eavesdropping honest transaction and depositing it (in that case, identity of the
malicious merchant does not match with I). In case the check is successful, the
bank stores (S, c, zx) to the database.

RevokeDoubleSpender. When a new spending transcript is received, the bank
checks if S exists in the database. If yes, then it is a double-spent coin. The bank
identifies the double-spender by compute x = zx−z′

x

c′−c . Output the identity of the
double-spender as ux.

4.2 Compact E-Cash with Full Coin Tracing

To extend our system to support full tracing, we make use of the idea from
event-oriented linkable ring signatures. We highlight the differences as follow.

186 M.H. Au et al.

Withdrawal. During withdrawal, the user obtains a signature σx =
Sign(v, Commit(x, tr)) for the additional random number tr. The user also needs
to verifiably encrypts tr under his own public key ux. Since the encryptor knows
the private key x, in contrast with the normal case for verifiable encryption where
the encryptor does not have the private key of the decryptor, we can have a very
efficient implementation, as shown in the implementation. The bank keeps the
encryption of tr in the database.

SpendProtocols. The user needs to compute an additional tracing tag equals to
tag = H(I||info)tr for some cryptographic hash function H whose range is a cyclic
group where the DDH problem is hard and the modified π1 is shown below.

– Verify(σx, v, Commit(x, tr)) = 1
– si is in v (using wi as witness)
– S, T, Y, tag are correctly formed (with respect to the v, Commit(x, tr))

FullTracing (of the double-spender). As the secret key x of the double-spender
is computed, the bank can decrypt tr. Once tr is published, all shops can check
if tag = H(I||info)tr and identify the spendings of the double-spender. Note
that this tracing is regardless of wether the coin have been spent or not. All the
money withdrawn under the public key of the double-spender can be traced.

4.3 Security of the Generic Construction

Intuitively, the generic construction is secure, suppose the underlying signature
scheme is existentially unforgeable against chosen message attack, the accumu-
lator is bounded, collision resistant and with one-way domain, the protocols are
honest-verifier zero-knowledge with special soundness, together with an extra
condition stated as follows.

Condition Acc: Let {x1, · · · , xn} be a set of random values in the domain of
the accumulator. Let < g > be a cyclic group whose order is also the domain
of the accumulator. Given gx1 , gx2 , · · · , gxn and v, it is difficult to decide if v is
the accumulation of {xi}.

Proof of the claim shall appear in the full version of the paper.

5 Building Blocks of Our Instantiation

In theory, zero-knowledge proof-of-knowledge exists for any NP relations. How-
ever, efficient zero-knowledge proof-of-knowledge protocols may not exist for
all signature schemes. In particular, our generic construction requires a signa-
ture scheme which can sign on elements in G1, together with efficient proof-
of-knowledge protocols for showing possession of a signature without revealing
the message. Unfortunately, such scheme does not exist in the literature, to the
best of the authors’ knowledge. We propose the following signature scheme, ac-
companied by the security analysis in the generic group model, followed by an
extension which allows the signer to sign an element in G1 together with a block
of n messages in Zn

p .

Compact E-Cash from Bounded Accumulator 187

5.1 Special Signature

KeyGen. On input 1λ, where λ is a security parameter, output G1, G2, G3 of
order p where p is a λ-bit prime. Also output a bilinear map e : G1 × G2 → G3,
g1, g2, x, y, X = gx

1 , Y = gy
2 , A = e(X, g2) such that g1, g2 are generators of G1

and G2 respectively. The public key is (G1, G2, G3, e, g1, g2, A, Y) and the secret
key is (X, y).

Sign. For any message M in G1, randomly choose r ← Z∗
p, compute a1 =

XM r, a2 = g
1

y+r

1 , a3 = gr
2 . The resulting signature is (a1, a2, a3).

Verify. Check that e(a1, g2) = Ae(M, a3) and e(a2, a3Y) = e(g1, g2). Output 1 if
both equations hold. Else, output 0.

5.2 Security Analysis of the Signature Scheme

We derive an upper bound on the success probability of an adversary A that
could existentially forge a signature under adaptively chosen message attack
in the generic group model against our signature scheme. Under the SXDH
assumption, there is no efficient distortion maps between G1 and G2.

Let Υ = (p, G1, G2, G3, g1, g2, e) ← PairingGen(1λ), x, y ← Z∗
p, X = gx

1 ,A =
e(X, g2), Y = gy

2 . Let OX(·) be an oracle that takes as input M ∈ G1, and

outputs a tuple (XM r, g
1

r+y

1 , gr
2) for a random r ∈ Z∗

p. Let M denote the set of
M that has been queried to OX(·). Then for any PPT adversaries A(·) in the
generic group model, making a total of τ queries to the oracles computing the
group action in G1, G2, G3, the oracle computing the bilinear pairing e and the
oracle OX(·), if x ∈ Z∗

p is chosen at random, then the success probability of A is

Pr

⎡⎢⎣ x, y ← Z∗
p

Y = gy
2

A = e(gx
1 , g2)

∣∣∣∣∣∣
(M ′, σ1, σ2, σ3) ← AOX(·)(g1, g2, A, Y)
∧M ′ /∈ M ∧ M ′ ∈ G1 ∧ σ1 = XM ′r

∧σ2 = g
1

r+y

1 ∧ σ3 = gr
2

⎤⎥⎦ ≤ O(τ3/p)

Proof. Consider an algorithm B that interacts with A in the following game.
B maintains three lists of pairs L1 = {(F1,i, ξ1,i) : i = 0, · · · , τ1 − 1}, L2 =

{(F2,i, ξ2,i) : i = 0, · · · , τ2 − 1}, L3 = {(F3,i, ξ3,i) : i = 0, · · · , τ3 − 1}, such that,
at step τ in the game, we have τ1 + τ2 + τ3 = τ + 6. The ξ1,i, ξ2,j , and ξ3,k are
set to unique random strings in {0, 1}∗. B starts the game at step τ = 0 with
τ1 = 1, τ2 = 2, and τ3 = 3. These correspond to the multivariate polynomial
functions F1,0 = F2,0 = F3,0 = 1, F3,1 = x, F2,1 = F3,2 = y.

B begins the game with A by providing it with the 3 strings ξ1,0, ξ2,0, ξ2,1,
ξ3,1. Now, we describe the oracles that A may query.

Group action: A inputs two group elements ξ1,i and ξ1,j , where 0 ≤ i, j < τ1,
and a request to multiply/divide. B sets F1,τ1 ← F1,i ± F1,j . If F1,τ1 = F1,� for
some � ∈ {0, · · · , τ1 − 1}, then B sets ξ1,τ1 = ξ1,�; otherwise, it sets ξ1,τ1 to a
random string in {0, 1}∗ \ {ξ1,0, · · · , ξ1,τ1−1}. Finally, B returns ξ1,τ1 to A, adds

188 M.H. Au et al.

(F1,τ1 , ξ1,τ1) to L1, and increments τ1 by one. Group actions for G2 and G3 are
handled in the same way.

Pairing: A inputs two group elements ξ1,i and ξ1,j , where 0 ≤ i < τ1 and
0 ≤ j < τ2. B sets F3,τ3 ← F1,i ·F2,j . If F3,τ3 = F3,� for some � ∈ {0, · · · , τ1 − 1},
then B sets ξ3,τ3 = ξ3,�; otherwise, it sets ξ3,τ3 to a random string in {0, 1}∗ \
{ξ3,0, · · · , ξ3,τ3−1}. Finally, B returns ξ3,τ3 to A, adds (F3,τ3 , ξ3,τ3) to L3, and
increments τ3 by one.

We do not allow efficient distortion maps between G1 and G2.

Oracle OX(·): A inputs ξ1,m, where 0 ≤ m < τ1, followed by B choosing a new
variable sτs and setting F2,τ2 ← F2,0 · sτs , F1,τ1 ← F1,0(x + msτs), F1,τ1+1 ←
F1,0

1
sτs +y . If F2,τ2 = F2,� for some � ∈ {0, · · · , τ2 − 1}, then B sets ξ2,τ2 = ξ2,�;

otherwise, it sets ξ2,τ2 to a random string in {0, 1}∗ \ {ξ2,0, · · · , ξ2,τ2−1}. For
ı ∈ {0, 1}, if F1,τ1+ı = F1,� for some � ∈ {0, · · · , τ1 + ı− 1}, then B sets ξ1,τ1+ı =
ξ1,�; otherwise, it sets ξ1,τ1+ı to a random string in {0, 1}∗\{ξ1,0, · · · , ξ1,τ1+ı−1}.
B sends (ξ1,τ1 , ξ1,τ1+1, ξ2,τ2) to A, adding (F1,τ1 , ξ1,τ1), (F1,τ1+1, ξ1,τ1+) to L1,
(F2,τ2 , ξ2,τ2) to L2. Finally, B adds 2 to τ1, 1 to τ2 and 1 to τs.

Let A query to OX(·) totally τs times with ξ1,m1 , · · · , ξ1,mτs
. The polynomials

corresponding to elements in G1 that the adversary can compute as a linear
combination of elements in its view are

F1,α = α0 +
τs∑

i=1

α1,i(x + misi) +
τs∑

i=1

α2,i
1

si + y
(1)

where the coefficients α ∈ Zp are controlled by A and introduced after queries
to OX(·) and the group operations in G1.

The polynomials corresponding to elements in G2 that the adversary can
compute as a linear combination of elements in its view are

F2,β = β0 +
τs∑

i=1

βisi (2)

here βi ∈ Zp are controlled by A and introduced after queries to OX(·) and the
group operations in G2.

We drop the corresponding subscript i for clarity and have the following equa-
tions.

(s + y)F1,α = (α0y + α2) + (α0 + α1my)s + α1xy + α1ms2 + α1sx, (1’)
(s + y)F2,β = β0y + (β1y + β0)s + β1s

2 (2’)

Eventually A outputs a tuple of elements (ξ1,m′ , ξ1,a, ξ1,b, ξ2,c), where 0 ≤
m′, a, b < τ1 and 0 ≤ c < τ2. To later test the correctness of A’s output within
the framework of this game, B computes the polynomial:

F3,Δ = F1,a − (x + m′F2,c) (3)

F3,∇ = F1,b(F2,c + y) − 1 (4)

Compact E-Cash from Bounded Accumulator 189

For A’s response to always be correct, then F3,Δ = F3,∇ ≡ 0 holds for any
value of x ∈ Z∗

p. We argue that it is impossible for A to achieve this relation.
Now we have the following equations:

(s + y)F3,Δ = (s + y)(F1,a − (x + m′F2,c))
= a2 + (a0 + a1m − c0m

′)y + (a0 − c0m
′)s + (a1m − c1m

′)ys
+(a1 − 1)xy + (a1m − c1m

′)s2 + (a1 − 1)sx (5)

(s + y)F3,∇ = (s + d)(F1,b(F2,c + y) − 1)
= c0b2 + (b0c0 + b2c1 − 1)s + (c0b0 + b2 − 1)y + (b1mc0 + b0c1)s2

+b1c0sx + (b0c1 + b1c0m + b0)sy + b1c0xy + b1c1ms3+
b1c1s

2x + b1(1 + c1)ms2y + b1(1 + c1)sxy + b0y
2 + b1msy2+

b1xy2 (6)

To make F3,� = F3,∇ ≡ 0, the adversary cancels all the terms in both equa-
tions. In equation (6), to cancel terms y2, xy2, the adversary must set b0 = b1 = 0.
To cancel term y, noting that b0 = 0, the adversary must set b2 = 1. As a result,
to cancel term s, noting that b0 = 0, b2 = 1, the adversary must set c1 = 1.
Accordingly, to cancel the constant term c0b2, the adversary must set c0 = 0.
In equation (5), to cancel term sx, the adversary must set a1 = 1. However, to
cancel term s2, the adversary must set m′ = m which implies that M ′ = ξ1,m′

is one of the queried message M = ξ1,m.
One may note that, in the above, we have assumed that m is a constant.

Since the adversary does not show m but ξm to the oracle, m can be adaptively
related to x, s1,

1
s1+y , · · · , si−1,

1
si−1+y , for the i-th query to OX . Indeed, it can

be a linear combination of the above variables. Similarly, for simplicity, we drop
the corresponding subscript and obtain that

m = m0 + m1x + m2s + m3
1

s+y (∗)
We show that this does influence the above proof. In equation 6, substituting

m with (∗) does not introduce additional terms y2, xy2, y, s. So we still have
b0 = b1 = 0, b2 = c1 = 1, c0 = 0. In equation 5, noting that c0 = 0, substituting
m with (∗) does not introduce additional terms sx, s2. Hence, the proof above
treating m as a constant still holds. Therefore, A cannot make F3,� = F3,∇ ≡
0 hold for any value of (x, y, s1, · · · , sτs). Thus, we conclude that A’s success
depends solely on its luck when (x, y, s1, · · · , sτs) is instantiated.

Now we analyze B’s simulation. At this point B chooses random z∗ =
(x∗, y∗, s∗1, · · · , s∗τs

) ∈ (Z∗
p)

τs+2. B now tests (in equations 7,8,9) if its simulation
was perfect; that is, if the instantiation of z by z∗ does not create any equality
relation among the polynomials that were not revealed by the random strings
provided to A. B also tests (in equations 10 and 11) whether or not A’s output
was correct. Thus, A’s overall success is bounded by the probability that any of
the following holds:

F1,i(z∗) − F1,j(z∗) = 0, for some i, j such that F1,i �= F1,j , (7)

F2,i(z∗) − F2,j(z∗) = 0, for some i, j such that F2,i �= F2,j , (8)

F3,i(z∗) − F3,j(z∗) = 0, for some i, j such that F3,i �= F3,j , (9)

190 M.H. Au et al.

F3,Δ(z∗) = 0 (10)

F3,∇(z∗) = 0 (11)

From equation (∗), the polynomials F1,i, F2,i, F3,i, F3,Δ and F3,∇(z∗) have
respective degrees at most τs +2τ +1. For fixed i and j, the five cases occur with
probability at most (τs + 2τ + 1)/p. Now summing over all (i, j) pairs in each
case, we bound A’s overall success probability ε ≤ (τ1

2) τs+2τ+1
p + (τ2

2) τs+2τ+1
p +

(τ3
2) τs+2τ+1

p + (τs+2τ+1)2

p2 . Since τ1 + τ2 + τ3 ≤ τ + 6 and τs ≤ τ2, the required
bound follows: ε ≤ 9(τ + 6)2τ/p = O(τ3/p).

5.3 Extended Special Signature

We extend our special signature so that it can sign on an element in G1, together
with block of messages in a commitment. We also derive efficient protocol for
signature generations and zero-knowledge proof-of-knowledge of possession of a
signature without revealing the message. We highlight the differences.

KeyGen. Pick additional generators h0, h1, · · · , hL, u0, u1, u2, u4∈G1 and u3∈G2.

Sign. For any message M in G1 and block of messages m1, · · · , mL in ZL
p , ran-

domly choose r, s ← Z∗
p and compute a1 = XM r, a2 = (g1h

s
0h

m1
1 · · ·hmL

L)
1

y+r ,
a3 = gr

2. The resulting signature is (a1, a2, a3, s).

Signing Protocol. Suppose the block of messages to be signed is (M, m1, · · · , mL)∈
(G1 × ZL

p), the user compute the commitment as Cm = hs′
0 hm1

1 · · ·hmL

L . The
user sends M, Cm, together with a proof of knowledge of representation of Cm

to the signer. The signer randomly picks s′′ and computes a1 = XM r, a2 =
(g1h

s′′
0 Cm)

1
y+r , a3 = gr

2 and sends (a1, a2, a3, s
′′) back to the user. The user com-

putes s = s′ + s′′ and the signature on M, m1 · · · , mL is (a1, a2, a3, s). In the
protocol, the signer learns nothing about the block of messages m1, · · · , mL com-
mitted in Cm (but the signer do know M).

Verify. On input message M , a block of messages (m1, · · · , mL) and signature
(a1, a2, a3, r), output 1 if e(a1, g2) = Ae(M, a3) and e(a2, a3Y) =
e(g1, g2)e(h0, g2)se(h1, g2)m1 · · · e(hL, g2)mL . Output 0 otherwise.

Proof of Knowledge of Possession of a Signature Without Revealing the Message.
On input message M, (m1, · · · , mL) and signature (a1, a2, a3, s), compute the
following quantities. A1 = a1u

r1
1 , A2 = a2u

r2
2 , A3 = a3u

r3
3 , A4 = Mur4

4 , A5 =
ur3

0 ur5
1 for some randomly generated r1, r2, r3, r4, r5 ∈R Z∗

p.
Compute the following proof of knowledge:

Compact E-Cash from Bounded Accumulator 191

PK :
{

(r1, r2, r3, r4, r5, δ2,3, δ2,5, δ3,4, δ4,5, s, m1, · · · , mL) :

A5 = ur3
0 ur5

1 ∧ Ar2
5 = u

δ2,3
0 u

δ2,5
1 ∧ Ar4

5 = u
δ3,4
0 u

δ4,5
1 ∧

Ae(A4,A3)
e(A1,g2) = e(A4,u3)r3e(u4,A3)r4

e(u4,u3)δ3,4e(u1,g2)r1
∧

e(A2,A3Y)
e(g1,g2) = e(h0,g2)se(h1,g2)m1 ···e(h1,g2)mL e(A2,u3)r3e(u2,A3Y)r2

e(u2,u3)δ2,3

}
where δ2,3 = r2r3, δ2,5 = r2r5, δ3,4 = r3r4, δ4,5 = r4r5.

The verifier accepts the proof if the PK is valid.
It is straightforward to show that the above protocol is honest verifier zero-

knowledge with special soundness. The extended special signature can also be
proven to be existential unforgeable against adaptively chosen message attack un-
der in the generic group model in a similar manner as the special signature. Unfor-
tunately, we cannot reduce the security of these signature schemes to any existing
hard problems. It remains an open problem to construction signature scheme with
such properties under more standard assumptions in the standard model.

5.4 Bounded Accumulator

We make the observation that the accumulator due to [13] is in fact a bounded
accumulator. We recall the details of the construction here.

BA-Setup. Assume G1, G2 is a bilinear group pair as discussed. Let g1, g2, q be
generators of G1. Let α ∈ Z∗

p be a secret seed. Let k be the upper bound of the
bounded accumulator. Denote qi = qαi

for i = 1, · · · , k. The public parameter
of the bounded accumulator is then (q, q1, · · · , qk). The secret seed α can be
deleted afterwards. In practice, BA-Setup should be run by a trusted party.

Accumulation. To accumulate a set of values {si} for i = 1, · · · , k such that
si ∈ Z∗

p, compute v = q
k
j=1(α−si). Witness wi of si such that si is a value

accumulated in v is computed by wi = q
k
j=1,j �=i(α−si). Note that computation

of v and wi does not require the knowledge of α, by the use of {qi}. Note that
witness wi for si satisfies wα+si

i = v.

Proof of Knowledge of a Value in an Accumulator. Let wi be a witness of si for
the accumulator v. To prove that si is in the accumulator, the prover computes
the following quantities, A1 = gr1

1 gr2
2 , A2 = wig

r1
2 . The following zero-knowledge

proof-of-knowledge protocol is then carried out.

PK :
{

(r1, r2, δ1, δ2, si) :

A1 = gr1
1 gr2

2 ∧ Asi
1 = gδ1

1 gδ2
2 ∧ ê(v,q)

ê(A2,q1)
= ê(A2, q)si ê(g2, q)−δ1 ê(g2, q1)−r1

}
where δ1 = r1si, δ2 = r2si.

192 M.H. Au et al.

Proof Without Revealing the Accumulator. The generic construction also requires
the proof of knowledge of a value in an accumulator without revealing the ac-
cumulator. Here we propose the following protocol for such purpose. Again, let
wi be a witness of si for the accumulator v. To prove that si is in the accumu-
lator, the prover computes the following quantities, A1 = gr1

1 gr2
2 , A2 = wig

r1
2 ,

A3 = vgr3
1 . The following zero-knowledge proof-of-knowledge protocol is then

carried out.

PK :
{

(r1, r2, r3, δ1, δ2, si) :

A1 = gr1
1 gr2

2 ∧ Asi

1 = gδ1
1 gδ2

2 ∧
ê(A3,q)
ê(A2,q1) = ê(A2, q)si ê(g2, q)−δ1 ê(g2, q1)−r1 ê(g1, q)r3

}
where δ1 = r1si, δ2 = r2si.

Condition ACC: Condition ACC may not hold for this particular accumulator. In
particular, if we set g = q, then given qs1 , qs2 , it is easy to tell if v = q(α+s1)(α+s2)

given the knowledge of α. One solution is to make the XDH assumption in G1,
the other assumption is to set < g > to be a completely independent group
where DDH is hard such that there is no efficiently computable isomorphism
from < g > to G1. The latter approach is employed to build our instantiation.

6 An Instantiation

Putting the building blocks together following the generic construction, we have
an instantiation with full tracing. For completeness, the detail of the instantiation
is shown in Appendix A.

We have the following theorem regarding the security of this particular in-
stantiation. The proof is omitted due to the page limitation. We refer the reader
to the full version of this paper for the detail.

Theorem 1. Our compact e-cash with full tracing is secure under the q-SDH as-
sumption and the SXDH assumption in the random oracle model and the generic
group model.

7 Concluding Remarks

Compared with CHL, our instantiation is more efficient in both spending and
coin tracing. CHL has a noted advantage in the wallet size while our scheme has
an edge in terms of bank’s storage. Our instantiation requires an expensive accu-
mulation process, which could be done offline and could be pre-computed. One
of the problem of CHL is that it does not support concurrent withdrawal since
the underlying CL/CL+ signature used does not support concurrent signature
generation. We could not make the claim that our scheme supports concur-
rent withdrawal since our new signature scheme is secure in the generic group

Compact E-Cash from Bounded Accumulator 193

model only. Having said that we proposed generic construction of compact e-cash
scheme with private key revocation and full coin tracing from bounded accumu-
lator, we also proposed an efficient instantiation. The special signature scheme
we proposed may be of independent interest. Nonetheless, it remains an open
problem to propose such signature scheme with more standard assumptions.

References

1. Giuseppe Ateniese, Jan Camenisch, and Breno de Medeiros. Untraceable rfid tags
via insubvertible encryption. In ACM Conference on Computer and Communica-
tions Security, pages 92–101, 2005.

2. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved
proxy re-encryption schemes with applications to secure distributed storage. In
NDSS, 2005.

3. Stefan Brands. Untraceable off-line cash in wallets with observers (extended ab-
stract). In CRYPTO, pages 302–318, 1993.

4. Ernie Brickell, Peter Gemmell, and David Kravitz. Trustee-based Tracing Exten-
sions to Anonymous Cash and the Making of Anonymous Change. In SODA ’95:
Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 457–466. Society for Industrial and Applied Mathematics, 1995.

5. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact E-Cash. In
EUROCRYPT, pages 302–321, 2005.

6. Jan Camenisch and Anna Lysyanskaya. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. In CRYPTO, pages 61–76, 2002.

7. Sébastien Canard and Jacques Traoré. On fair e-cash systems based on group
signature schemes. In ACISP, pages 237–248, 2003.

8. David Chaum. Blind Signatures for Untraceable Payments. In Advances in Cryp-
tology: Proceedings of CRYPTO ’82, pages 199–203. Plenum, New York, 1983.

9. Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous
identification in ad hoc groups. In EUROCRYPT, pages 609–626, 2004.

10. Oded Goldreich. Zero-Knowledge twenty years after its invention. Cryptology
ePrint Archive, Report 2002/186, 2002. http://eprint.iacr.org/.

11. Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures. In EU-
ROCRYPT, pages 571–589, 2004.

12. Greg Maitland and Colin Boyd. Fair Electronic Cash Based on a Group Signature
Scheme. In Information and Communications Security, Third International Con-
ference, ICICS 2001, Xian, China, November 13-16, 2001, volume 2229 of Lecture
Notes in Computer Science, pages 461–465. Springer, 2001.

13. Lan Nguyen. Accumulators from Bilinear Pairings and Applications. In CT-RSA,
pages 275–292, 2005.

A Instantiation

BankSetup. On input 1λ, where λ is a security parameter, output G1, G2, G3
of order p where p is a λ-bit prime, with pairing e : G1 × G2 → G3. Output
generators g, g1, g2, g3, q of G1 and h, hq, h0, h1, h2, h3 of G2. Also output a group
GT of order p with u, u1, u2, u3 as generator. Assume DDH is hard in GT . In order

194 M.H. Au et al.

to ensure that the generators are generated fairly, they maybe set to the output
of some hash function on the bank’s identity. The bank chooses x, y, α ∈R Z∗

p,
computes X = gx, Y = hy, Z = e(X, h), w = hα

q , qi = qαi

for i = 1, · · · , k. Also
chooses a cryptographic hash function H : {0, 1}∗ → GT . The bank’s public key
is (G1, G2, G3, GT , e, H , u, u1, g, h, q, g1,g2,g3,hq, h0,h1,h2,h3,w,q1, · · · , qk, Y ,
Z) and the secret key is (X, y). α can be safely deleted.
Remarks: It is straightforward to show that, with the knowledge of α, anyone can
over-spends their wallets without being detected. On the other hand, α cannot
help breaking the anonymity nor can it helps to slander an honest user. Keeping
α is, thus, exactly against the interest of the bank and we can assume that the
bank will delete this information honestly.

UserSetup. Each user is equipped with discrete logarithm type key pairs (d, ud) ∈
Z∗

p × GT .

Withdrawal Protocol. User with public key PK computes a set of k random val-
ues {si} and V = q

k
j=1(α−si). He also computes the set of k witnesses {wi}. He

then computes Cd = gr′
0 gd

1gtr′
2 and sends V, Cd to the bank. The user is required

to prove to the bank that Cd is correctly formed by executing PK{(d, tr′) : Cd =
gtr′
0 gd

1 ∧ PK = ud}. The bank randomly picks tr′′, r, computes a1 = XV r and
a2 = (ggtr′′

0 Cd)
1

y+r , a3 = hr. The bank sends (tr′′, a1, a2, a3) back to the user.
The user computes tr = tr′ + tr′′. The user wallet is (a1, a2, a3, tr, d, {si}, {wi}).
The user also needs to verifiable encrypts tr under its public key as follows. Com-
pute T0 = ur1utr

1 , T1 = ur2ud
1. Prove that T0, T1 are correctly formed with respect

to gtr′′
0 Cd and compute zr = r1 − cr2,ztr = tr − cd with c = H(T0, T1, g

tr′′
0 Cd).

(ztr, c) is the verifiable encryption on tr and is saved in the banks database.

Spend Protocol. The user and the merchant with identity I ∈ {0, 1}∗ first agree
on the transaction information info. The user then chooses one pair of the unused
si, wi in his wallet and computes the following quantities, S = usi

1 , T = uk1
1 usi

2 ,
U = uk2

1 ud
2, Tag = H(I||info)tr for some randomly generated k1, k2 ∈R Z∗

p. The
user also computes A1 = a1g

r1
1 , A2 = a2g

r2
2 , A3 = a3h

r3
0 , A4 = V gr4

3 ,A5 = gr3
0 gr5

1 ,
B1 = gr6

0 gr7
1 , B2 = wig

r7
2 for some randomly generated r1, r2, r3, r4, r5, r6, r7 ∈R

Z∗
p. Compute the following signature of knowledge:

πspend : SPK

{
(k1, k2, r1, r2, r3, r4, r5, r6, r7, δ2,3, δ2,5, δ3,4, δ3,5, δ6, δ7, si, d, tr) :

A5 = gr3
0 gr5

1 ∧ Ar2
5 = g

δ2,3
0 g

δ2,5
1 ∧ Ar4

5 = g
δ3,4
0 g

δ4,5
1 ∧ B1 = gr6

0 gr7
1 ∧

Bsi
1 = gδ6

0 gδ7
1 ∧ e(A4,A3)

e(A1,h) = e(A4,h0)r3e(g3,A3)r4

e(g1,h)r1e(g3,A3)r4 ∧
e(A2,A3Y)

e(g,h) = e(g0,h)tre(g1,h)de(g2,A3)r2e(A2,h0)r3

e(g2,h0)δ2,3 ∧
e(A4,hq)
e(B2,w) = e(B2,hq)sie(g3,hq)r4

e(g2,w)r7e(g2,hq)δ7 ∧

S = usi
1 ∧ T = uk1

1 usi
2 ∧ U = uk2

1 ud
2 ∧ Tag = H(I||Info)tr

}
(I||Info)

where δ2,4 = r2r4, δ2,5 = r2r5, δ3,4 = r3r4, δ4,5 = r4r5, δ6 = r6si, δ7 = r7si

πspend can be abstracted as the following signature of knowledge.

Compact E-Cash from Bounded Accumulator 195

SPK

{
(a1, a2, a3, wi, si, V, k1, k2, d, tr) :

e(a1, h) = Ze(V, a3) ∧ e(a3, a3Y) = e(ggtr
0 gd

1 , h) ∧ wα+si

i = V ∧ S = usi
1 ∧

T = uk1
1 usi

2 ∧ U = uk2
1 ud

2 ∧ Tag = H(I||info)tr

}
(I||Info)

The user also computes (zk = k1 − ck2, zd = si − cd), where c is the challenge
used in πspend. The user then sends (πspend, zk, zd) to the merchant. The mer-
chant accept the payment if πspend is valid and T = U cgzkhzd . The merchant
also After the payment is accepted, the user can delete si, wi.

Deposit and RevokeDoubleSpender have been described in the generic construc-
tion.

Full Tracing. After computing d such that ud is the public key of the double-
spender, the bank computes all tr’s during the withdrawal protocols of the same
user. This is done by tr = ztr + cx where (ztr, c) is retrieved from the database.
The bank publishes tr for all shops to check the spendings. To trace past spend-
ings, the banks needs to run through its database and see if Tag = H(I||info)tr.

Batch Processing of Interactive Proofs

Koji Chida and Go Yamamoto

NTT Information Sharing Platform Laboratories, NTT Corporation,
1-1 Hikarinooka, Yokosuka-shi 239-0847 Japan

Abstract. We present a newdesign principle for building a batch process-
ing protocol for interactive proofs. First, a generic method to achieve batch
processing is proposed when dealing with an NP-relation with certain ho-
momorphicity. It is shown that the method preserves zero-knowledgeness
and knowledge-soundness. Second, for some NP-relation that has no such
homomorphicity, we illustrate that the relation can be decomposed into a
homomorphic relation(hence we have a batch process) and another NP-
relation that is proven using an efficient protocol. Such a decomposition
provides an advantage in terms of efficiency.

Keywords: Batch Processing, Proofs of Knowledge, Sigma-Protocols.

1 Introduction

Interactive proofs are pairs of algorithms with interactions between a prover
and a verifier. Usually the provers and the verifiers are modeled as a probabilis-
tic polynomial-time Turing machine. Interactive proofs with zero-knowledgeness
and knowledge-soundness are useful components for various identification sche-
mes and multi-party protocols.

In actual applications, it is often the case that a single algorithm is reiterated
many times. For example, many digital signatures are sometimes verified by
a single trusted verifier. Thus, it is important to improve the performance of
interactive proofs when a protocol is reiterated many times.

The issue addressed herein is how to reduce the amount of resources required
by the provers and verifiers when a single interactive proof is reiterated for n
distinct instances. Obviously, if the algorithm is simply reiterated n times, then
the required resources are also as much as n times. However, a better efficiency
can be achieved for many cases. For example [10] proposes an algorithm that ver-
ifies many instances of protocol efficiency. Reference [3] describes how to reduce
multiplications in exponentiations using precomputation. Reference [1] suggests
a more efficient algorithm for a verifier with modular exponents. Reference [5]
proposes a batch processing protocol for the Schnorr identification scheme, which
reduces not only the computational complexity, but also the amount of commu-
nications traffic. It is a unique and important feature that batch processing can
reduce both the computational complexity and the amount of communications.
The following subsections examine this more closely.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 196–207, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Batch Processing of Interactive Proofs 197

Batch Processing for the Schnorr Protocol. Let g be an element of finite
abelian group G, whose order is a sufficiently large prime p = |g|. The protocol
described below is well-known [12].
� �

Protocol 1
Private input to P : x ∈ Z/pZ,
Common input: y = gx

1. P chooses r ← {0, .., p − 1} randomly, sends R = gr to V .
2. V chooses c ← {0, .., p − 1} randomly, and sends it to P .
3. P computes z = r − xc mod p, and sends it to V .
4. V checks gz = y−cR. If successful, accept the proof.

� �
This protocol is honest verifier zero-knowledge and is knowledge-sound, as

defined in [8] for example.
Protocol 1 is often used as a part of identification schemes, signature schemes,

and multi-party protocols. In such situations, the protocol may be reiterated
many times.

Let us suppose that there are d provers and a verifier. In this case, the compu-
tational resources of the verifier may represent a bottleneck in the system. Refer-
ence [6] proposes a technology to improve the computational efficiency compared
to a scheme where the verifier simply repeats the verification step d times. This
approach is called batch verification.

There are some ways to improve the performance if there is a single prover
and a single verifier, where the application requests processing of Protocol 1 for
d instances. Reference [5] shows that not only can the verifier computational
complexity be reduced, but also the prover computational complexity and the
amount of communications traffic. Here we describe the protocol.
� �

Protocol 2
Private input to P : xi ∈ Z/pZ(i = 1, 2, · · · , d),
Common input: yi = gxi

1. P chooses r ← {0, .., p − 1} randomly, sends R = gr to V .
2. V chooses ci←{0, .., p − 1} randomly for each i=1, 2, · · · , d, then

sends them to P .
3. P computes z = w −

∑
i xici mod p, and sends it to V .

4. V checks gz = R
∏

i y−ci

i . If successful, accept the proof.
� �

Protocol 2 is honest verifier zero-knowledge and is a proof of knowledge for
(x1, x2, · · · , xd). Reference [7] suggests that V may send only c ← {0, .., p − 1}
and set ci = ci mod p. Since this approach processes many instances of the
entire protocol at once, we call it batch processing. In the above protocol, the
number of prover exponentiations is reduced to a constant based on d. The

198 K. Chida and G. Yamamoto

amount of communications traffic is also reduced to a constant based on d, since
ci may be generated from a single c.

We observe Protocol 2 to obtain the essential point for batch processing:
“Mix” the instances using the verifier public coin, so as not to “degenerate”
them.

Our Contribution. This paper presents a design principle to construct batch
processing protocols for NP-relations with certain homomorphicity, which we
call additivity. We will show that if interactive proof π is knowledge-sound, then
the batch processing protocol is also knowledge-sound.

Nonetheless, batch processing can be applied when dealing with some non-
additive NP-relation. Our second idea is that a non-additive NP-relation can be
“decomposed” into two statements: One is additive, the other is not necessarily
additive but easy to prove. We illustrate the idea for the proof in a multi-party
protocol in [13], which yields a new protocol for batch processing with advan-
tages in terms of both computational complexity and communications traffic
over simple repetition of the known protocol.

2 Additive NP-Relations and Batch Processing

Let us consider NP-relation R and protocol π between prover P and verifier V
where π is an interactive proof with knowledge-soundness.

Definition 1. Let R be an NP-relation and let LR = {y ∈ {0, 1}∗|(y, x) ∈
R for some x ∈ {0, 1}∗}, W (y) = {x ∈ {0, 1}∗| (y, x) ∈ R}, and W = ∪yW (y).
Suppose LR is an abelian group with polynomial-time algorithms for the op-
erations and suppose that on input x1, x2 where x1 ∈ W (y1), x2 ∈ W (y2) a
polynomial-time algorithm outputs some x such that x ∈ W (y1y2). Then we
call R additive. Moreover, if LR is a non-trivial Z/pZ-module, then we call R
p-additive where p is a prime number.

Example 1. – Let R = {(y, x)| y = gx}. Then R is p-additive.
– Let R = {((y0, y1), x)| y0 = gx and y1 = hx}. Then R is p-additive.

Note 1. For additive NP-relation R, if there exists a randomized algorithm
that outputs (y, x) ∈ R such that y is uniform in LR, then R is random self-
reducible [14].

Note 2. Even though the set of instances has an associative multiplication, the
set of witnesses may not necessarily have an associative multiplication. Let
(y1, x1), (y2, x2), (y3, x3) ∈ R and compute x12 ∈ W (y1y2) and then x(12)3 ∈
W ((y1y2)y3). In the same way compute x1(23). Then, x(12)3 and x1(23) are not
guaranteed to coincide.

For (y, x) ∈ R, we denote π(y; x) the interactive proof between P and V , where
y is the common input, and x is the private input to P .

Let d = d(k) be a family of numbers bounded by kγ where k is the secu-
rity parameter for π and γ is a constant. Let R be p-additive. Then consider

Batch Processing of Interactive Proofs 199

the protocol πd(y1, y2, · · · , yd; x1, x2, · · · , xd) as described below where (y1, x1),
(y2, x2), · · · , (yd, xd) ∈ R. We will show that πd processes d instances of π.
� �

Protocol 3
Private input to P : xi ∈ Z/pZ(i = 1, 2, · · · , d),
Common input: yi(i = 1, 2, · · · , d)

1. V chooses e ← {0, .., p − 1} randomly, and sends it to P .
2. Run π(

∏
i yei−1 mod p

i ; x) where x ∈ W (
∏

i yei−1 mod p
i). If ac-

cepted, V accepts the proof.
� �

Then we have the following theorems.

Theorem 1. If π is (perfect, statistical, computational) zero-knowledge, then
πd is (perfect, statistical, computational)zero-knowledge.

The proof is obvious.

Theorem 2. If π is knowledge-sound, then πd is knowledge sound.

Proof. Let P ∗ be a possibly cheating prover for πd. Set probability P ∗ and
make V accept the proof p(y1, y2, .., yd) = Prob[(P ∗, V) ∈ Acc] where (P ∗, V) is
a transcript between P ∗ and V .

For each e ∈ Z/pZ, let Ve be the same algorithm that the verifier processes
in πd except for the first message where Ve always outputs e.

Let KP be the knowledge extractor for π. The expected running time for K
is bounded by kc

p(y1,y2,..,yd)−ε(k) where ε is a negligible function, the knowledge
error for π.

Consider the P ∗-oracle machine as described below.

Algorithm 1

1. i ← 1,
2. Choose e ← {0, .., p−1} randomly. Run π between P ∗ and Ve. If not accepted,

repeat Step 2.
3. If e ∈ {e1, e2, · · · , ei−1} then go to Step 2.
4. Run KP ∗ until the running time reaches 4kc

p(y1,y2,..,yd)−ε(k) . If KP ∗ outputs x

such that (
∏

j yej−1 mod p
j , x) ∈ R, then proceed to the next step. Otherwise

go to Step 2.
5. Set ei ← e, xi ← x, ȳi =

∏
j yej−1 mod p

j , and i ← i + 1. If i ≤ d, then go to
Step 2.

6. Let E be a d × d matrix value on Fp defined by Ei,j = ej−1
i . If det(E) = 0,

then go to Step 1. Otherwise compute x̂i such that (
∏

j ȳ
(E−1)i,j

j , x̂i) ∈ R for
each i = 1, 2, · · · , d. Output (x̂1, x̂2, · · · , x̂d).

Consider E = {e| Pr[(P ∗, Ve) ∈ Acc] > p(y1,y2,..,yd)
2 }. A simple counting

argument proves that Pr[e ←R {0, 1, · · · , p − 1}, (P ∗, Ve) ∈ Acc : e ∈ E] > 1
2 .

200 K. Chida and G. Yamamoto

Then, Step 2 chooses e from E with the probability of at least 1
2 . If e ∈ E , then

KP ∗ outputs x such that gx =
∏

j yej−1 mod p
j in 4kc

p(y1,y2,..,yd)−ε(k) steps with the
probability of at least 1

2 .
Matrix E is non-degenerative if and only if e1, e2, · · · , ed are distinct in Fp

to each other. It is clear that
∏

j ȳ
(E−1)i,j

j = yi. Thus, we obtain the output in
4d(4kc+1)

p(y1,y2,..,yd)−ε′(k) expected steps, where ε′ is a negligible function.

3 Application to the Guillou-Quisquater Identification
Scheme

We present a useful application for Protocol 3.
Reference [9] presents an identification scheme described in Protocol 4, where

P proves its identity. Let ν be a prime number and N = pq be an RSA modulus.
� �

Protocol 4 ([9])
Private key: B ∈ (Z/NZ)∗

Public key:J = B−ν

1. P chooses r ∈ {1, 2, · · · , N − 1} randomly, computes T = rν , and
sends T to V .

2. V chooses c ∈ {0, 1, · · · , ν − 1} randomly. V sends c to P .
3. P compute D = rBc and sends D to V .
4. V checks T = DνJc. If successful, then V accepts the proof.

� �
Fix J1, J2, · · · , Jd ∈ (Z/NZ)∗. Consider NP-relation R ⊂ (Z/νZ)d × (Z/NZ)∗

defined by R = {((t1, t2, · · · , td), B)|
∏

i J ti

i = Bν}. It is clear that R is ν-
additive and Protocol 4 proves the knowledge of R.

Apply Protocol 3 where we set π in Protocol 4. Then we obtain the protocol
below that batch-processes Protocol 4, which is left open in [7].
� �

Protocol 5
Private key: Bi ∈ (Z/NZ)∗

Public key:Ji = B−ν
i

1. P chooses r ∈ {1, 2, · · · , N − 1} randomly. Then, P computes
T = rν and sends T to V .

2. V chooses e, c ∈ {0, 1, · · · , ν − 1} randomly. V sends eandc to P .
3. P compute D = r(

∏
i Bcei−1 mod ν

i) and sends D to V .
4. V checks T = Dν(

∏
i Jcei−1 mod ν

i). If successful, then V accepts
the proof.

� �

Batch Processing of Interactive Proofs 201

Table 1. Performance Comparison for Batched Schnorr, GQ, and Batched GQ

P V
multiplications multiplications communications

Batched Schnorr 3
2k 3k + kd 4k

GQ 3
2kd 5

2kd (|N | + k)d
Batched GQ k + 1

2kd 2k + 1
2kd |N | + k

We moved the step where V sends e to P to Step 2, since in this case, we are
dealing with honest verifier ZK and the first message from P does not depend
on e. In practice e can be determined by c.

Table 1 shows a performance comparison for the batched Schnorr scheme,
GQ scheme, and batched GQ scheme where we count the anticipated number of
multiplications in exponentiations using a binary method. We set |p| = 2k and
ν is a prime number close to 2k where k is the security parameter. Although
the batched Schnorr scheme is advantageous in regard to the prover efficiency
and communications traffic, if d is sufficiently large, the batched GQ scheme is
advantageous in regard to the verifier efficiency.

4 Application to an ID-Based Identification Scheme

Let E be an elliptic curve with Weil pairing el : E[l] × E[l] → G, where l is a
prime number, G is an abelian group of order l, and E[l] is the set of l-torsion
points. Let g, h ∈ E[l]. The protocol below, described in [2], provides the ID-
based identification scheme.
� �

Protocol 6
Private key: x ∈ E[l]
Public key:y ∈ E[l]

1. P chooses k ∈ {0, 1, · · · , l − 1} randomly. Then, P computes r =
el(y, g)k and sends r to V .

2. V chooses c ∈ {0, 1, · · · , l − 1} randomly. V sends c to P .
3. P computes s = cx + ky and sends s to V .
4. V checks r = el(s, g)el(y, h)−c. If successful, then V accepts the

proof.
� �

It is shown that Protocol 6 is a proof of knowledge with regard to relation

R = {(y, x) ∈ E[l] × E[l]| el(x, g) = el(y, h)}.

Then, we observe that relation R is an l-additive NP-relation.

Proposition 1. Relation R is l-additive.

202 K. Chida and G. Yamamoto

Table 2. Performance Comparison Between ID-Schnorr and Batched ID-Schnorr

V
pairings communications

ID-Schnorr 2d (2|l| + t)d
Batched ID-Schnorr 2 3|l| + t

Proof. Suppose (y1, x1), (y2, x2) ∈ R. Since el(x1, g) = el(y1, h) and el(x2, g) =
el(y2, h), we have el(x1+x2, g) = el(y1+y2, h), thus R is additive. R is l-additive
since R ⊂ E[l] × E[l].

We apply Protocol 3 where we set π Protocol 6 to obtain Protocol 7 below,
which batch-processes Protocol 6.

� �
Protocol 7
Private key: xi ∈ E[l](i = 1, 2, · · · , d)
Public key:yi ∈ E[l](i = 1, 2, · · · , d)

1. V chooses e ∈ {0, 1, · · · , l − 1} randomly. Then V sends e to P .
2. P chooses k ∈ {0, 1, · · · , l − 1} randomly. Then P computes r =∏

i el(yi, g)kei−1
and sends r to V .

3. V chooses c ∈ {0, 1, · · · , l − 1} randomly. V sends c to P .
4. P computes s =

∑
i ei−1(cxi + kyi) and sends s to V .

5. V checks r = el(s, g)el(
∑

i ei−1yi, h)−c. If successful, then V ac-
cepts the proof.

� �
In this case, we cannot move the first message, e sent by V , to Step 3, since

the first message sent by P depends on e. This implies that to convert Protocol
7 into a signature scheme replacing c with an output of a hash function, P must
obtain nonce e from the outside every time he signs.

Table 2 shows a performance comparison between the ID-Schnorr scheme
and the batched ID-Schnorr scheme where we assume that P will precompute
el(yi, g). We set t to the length of a bit string that represents points on E[l]. We
observe that the communications and the number of computations for pairings
do not depend on d.

5 Application to a Multi-party Protocol for Secure
Circuit Evaluation

We present another example that deals with non-additive NP-relation R where
we apply Protocol 3 by decomposing R.

Reference [13] provides a multi-party protocol for secure circuit evaluation.
In [13], a party is requested to prove his correctness by computing Pedersen
commitment [11], essentially by the protocol below.

Batch Processing of Interactive Proofs 203

Let g, h ∈ G be common bases for G, and Xi, Yi, Gi, Hi ∈ G is generated
randomly for each i = 1, 2, · · · , m, where m is the number of parties. It is
assumed that it is hard to compute ui such that gu0

∏
i Xui

i = 1 and so on.

� �
Protocol 8 ([13])
Private input to P : (s, t, w, x) ∈ (Z/pZ)4

Common input:i ∈ {1, 2, · · · , m},
(Z, Ḡ, H̄, X̄, Ȳ) = (gxh′w, gsGx

i , hsHx
i , gtXx

i , htY x
i) ∈ G5

1. P chooses δ, η, ρ, τ ∈R Z/pZ randomly, computes
A = gηh′ρ, B = gδGη

i , C = hδHη
i ,

D = gτXη
i , E = hτY η

i ,
and sends (A, B, C, D, E) to V .

2. V chooses c ∈ Z/pZ randomly.
3. P computes

z1 = η − cx mod p, z2 = ρ − cw mod p,
z3 = δ − cs mod p, z4 = τ − ct mod p,

and sends (c, z1, z2, z3, z4) to V .
4. V accepts the proof if

A = gz1h′z2Zc, B = gz3Gz1
i Ḡc, C = hz3Hz1

i H̄c

D = gz4Xz1
i X̄c, and E = hz4Y z1

i Ȳ c.
� �

Protocol 8 is a proof of knowledge for NP-relation

R = {((i, Z, Ḡ, H̄, X̄, Ȳ), (w, s, t, x)|

(Z, Ḡ, H̄, X̄, Ȳ) = (gxh′w, gsGx
i , hsHx

i , gtXx
i , htY x

i)}.

It is clear that R is not additive.
According to the observation in Section 3, we should “decompose” R into R1

and R2, where R1 is additive, and R2 is not additive but easy to prove.
Here we set R1 and R2 as given below.

R1 = {
(
(Z, Ḡ, H̄, X̄, Ȳ), (w, s, t, x1, · · · , xm)

)
| (Z, Ḡ, H̄, X̄, Ȳ) =

(g i xih′w, gs
∏

i

Gxi

i , hs
∏

i

Hxi

i , gt
∏

i

Xxi

i , ht
∏

i

Y xi

i)}.

R2 =
{(

(i, Ḡ), (ŝ, x̂)
)
| Ḡ = gŝGx̂

i

}
.

It is clear that R1 is p-additive. Thus, we design the batch processing of proofs
of knowledge for R according to the principle shown below.

204 K. Chida and G. Yamamoto

� �
Protocol 9
Private input to P : (s(j), t(j), w(j), x(j)) ∈ (Z/pZ)4

Common input:i(j) ∈ {1, 2, · · · , m}, (Z(j), Ḡ(j), H̄(j), X̄(j), Ȳ (j))
= (gx(j)h′w(j), gs(j)G

x(j)
i(j) , hs(j)H

x(j)
i(j) , gt(j)X

x(j),
i(j) ht(j)Y

x(j)
i(j)) ∈ G5,

j = 1, . . . , d

1. Make proofs of knowledge on R2 for (i(j), Ḡ(j)) for each j =
1, 2, · · · , d.

2. Make batch processing of proofs of knowledge on R1 for
(Z(j), Ḡ(j), H̄(j), X̄(j), Ȳ (j))j , where j = 1, 2, · · · , d.

3. If both Step 1 and Step 2 are accepted, then accept the proof.
� �
Proposition 2. Protocol 9 is knowledge-sound, if both proofs in Step 1 and in
Step 2 are knowledge-sound.

Proof. Suppose we have knowledge extractors K1 and K2 for Step 1
and for Step 2 respectively. Then for each j = 1, 2, · · · , m we obtain
(w(j), s(j), t(j), x1(j), · · · , xm(j)) such that (Z(j), Ḡ(j), H̄(j), X̄(j), Ȳ (j)) =
(g i xi(j)h′w(j), gs(j) ∏

i G
xi(j)
i , hs(j) ∏

i H
xi(j)
i , gt(j) ∏

i X
xi(j)
i , ht(j) ∏

i Y
xi(j)
i)

and (ŝ(j), x̂(j)) such that Ḡ(j) = gŝ(j)G
x̂(j)
i(j) . Hence, we have

gs(j)−ŝ(j)G
xi(j)−x̂(j)
i(j)

∏
i�=i(j) G

xi(j)
i = 1. Since g, G1(j), G2(j), · · · , Gd(j) is

chosen independently and at random, we have s(j) = ŝ(j), xi(j) = x̂(j)
if i = i(j), otherwise xi(j) = 0 by non-negligible probability. Thus, our
knowledge-extractor for Protocol 9 suffices to output (s(j), t(j), w(j), xi(j)(j))
for each j = 1, 2, · · · , m.

Here, we start to establish Step 1 and Step 2. Proofs of knowledge for R2 are
well-known. They are given for convenience.

� �
Protocol 10
Private input to P : (s, x) ∈ (Z/pZ)4

Common input:i ∈ {1, 2, · · · , m}, Ḡ=gsGx
i ∈ G

1. P chooses α, β ∈R Z/pZ randomly, computes F = gαGβ, and
sends F to V .

2. V chooses c ∈ Z/pZ randomly.
3. P computes z0 = α − cs mod p, z1 = β − cx mod p, and sends

(z0, z1) to V .
4. V accepts the proof if F = gz0Gz1Ḡc.

� �
A protocol for R1 is designed in a straight-forward way. Since R1 is additive,

we obtain a batch processing protocol as described in Protocol 11.

Batch Processing of Interactive Proofs 205

Table 3. Performance Comparison Between Simple Protocol and Batch Processing

P V
exponentiations exponentiations communications

Protocol 8 10d 15d 5d|p|
Protocol 12 6d + 6 12d + 6 (3d + 4)|p|

� �
Protocol 11
Private input to P : (s(j), t(j), w(j), x1(j), · · · , xm(j)) ∈ (Z/pZ)4

Common input: G, p, g, (h, h′) ∈ G2, (Gi, Hi, Xi, Yi) ∈ G4,
(Z(j), Ḡ(j), H̄(j), X̄(j), Ȳ (j)) ∈ G5, where j = 1, 2, · · · , d.

1. V chooses e ← Z/pZ randomly.
2. P chooses δ, ηi, ρ, τ ∈R Z/pZ for each i = 1, . . . , m randomly,

computes
A = g i ηih′ρ, B = gδ

∏
i Gηi

i ,
C = hδ

∏
i Hηi

i , D = gτ
∏

i Xηi

i ,
E = hτ

∏
i Y ηi

i ,
and sends (A, B, C, D, E) to V .

3. V chooses c ← Z/pZ randomly.
4. P computes z1,i = ηi − c

∑
j ej−1xi(j) mod p,

z2 =ρ − c
∑

j ej−1w(j) mod p, z3 = δ − c
∑

j ej−1s(j) mod p,
z4 = τ − c

∑
j ej−1t(j) mod p, (i = 1, . . . , d),

and then sends (z1,1, . . . , z1,m, z2, z3, z4) to V .
5. V accepts if

A = g i z1,ih′z2
∏

j Z(j)cej−1

B = gz3
∏

i G
z1,i

i

∏
j Ḡ(j)cej−1

,

C = hz3
∏

i H
z1,i

i

∏
j H̄(j)cej−1

,

D = gz4
∏

i X
z1,i

i

∏
j X̄(j)cej−1

,

E = hz4
∏

i Y
z1,i

i

∏
j Ȳ (j)cej−1

.
� �

Hence, we obtain Protocol 12 by applying Protocols 10 and Protocol 11 to
Protocol 9. Together with Proposition 2, Theorem 1 and Theorem 2 imply the
following.

Corollary 1. Protocol 12 is an honest verifier of zero-knowledge and is know-
ledge-sound.

It suffices to set m = d and i(j) = j to obtain batch processes for proofs of
knowledge of R.

Table 3 shows a performance comparison between Protocol 8 and Protocol 12.
Our design principle provides advantages over the simple repetition of Protocol
8 with regard to both computation and communications.

206 K. Chida and G. Yamamoto

� �
Protocol 12
Private input to P : (s(j), t(j), w(j), x(j)) ∈ (Z/pZ)4

Common input:i(j) ∈ {1, 2, · · · , m}, (Z(j), Ḡ(j), H̄(j), X̄(j), Ȳ (j))
= (gx(j)h′w(j), gs(j)G

x(j)
i(j) , hs(j)H

x(j)
i(j) , gt(j)X

x(j),
i(j) ht(j)Y

x(j)
i(j)) ∈ G5 ,where

j = 1, . . . , d

1. P chooses δ, ηi, ρ, τ ∈R Z/pZ for each i = 1, . . . , m , and
α(j), β(j) ∈R Z/pZ for each j = 1, . . . , d randomly. P computes

A = g i ηih′ρ, B = gδ
∏

i Gηi

i ,
C = hδ

∏
i Hηi

i , D = gτ
∏

i Xηi

i ,
E = hτ

∏
i Y ηi

i ,
F (j) = gα(j)Gβ(j) for each j = 1, 2, · · · , d.

Then P sends (A, B, C, D, E, F (1), · · · , F (d)) to V .
2. V chooses e, c, c(1), c(2), · · · , c(d) ← Z/pZ randomly.
3. Set xi(j) = x(j) for i = i(j), xi(j) = 0 for i �= i(j). P computes

z1,i = ηi − c
∑

j ej−1xi(j) mod p,
z2 =ρ − c

∑
j ej−1w(j) mod p, z3 = δ − c

∑
j ej−1s(j) mod p,

z4 = τ − c
∑

j ej−1t(j) mod p, (i = 1, . . . , m),
z5(j) = α(j) − c(j)s(j) mod p, z6(j) = β(j) − c(j)x(j) mod p,

and then sends
(z1,1, . . . , z1,m, z2, z3, z4, z5(1), · · · , z5(d), z6(1), · · · , z6(d)) to V .

4. V accepts if
A = g i z1,ih′z2

∏
j Z(j)cej−1

B = gz3
∏

i G
z1,i

i

∏
j Ḡ(j)cej−1

,

C = hz3
∏

i H
z1,i

i

∏
j H̄(j)cej−1

,

D = gz4
∏

i X
z1,i

i

∏
j X̄(j)cej−1

,

E = hz4
∏

i Y
z1,i

i

∏
j Ȳ (j)cej−1

,

F (j) = gz5(j)G
z6(j)
i(j) Ḡ(j)c(j) for each j = 1, 2, · · · , d.

� �

6 Conclusion and Future Work

We present a design principle to construct a batch processing protocol for various
interactive proofs. For example, the Guillou-Quisquater identification scheme is
batched, since it has an additive structure. The principle can be applied to some
NP-relations even without additivity. We illustrated a practical application for
such a non-additive case, in which both computation and communication are
reduced.

However, at this time we have no characterization for interactive proofs such
that our batch processing improves its efficiency. For example, [4] presents an
honest-verifier ZK protocol for partial knowledge. It seems that our strategy does
not apply to such NP-relations, even though an attempt can be made to decompose

Batch Processing of Interactive Proofs 207

it as in Section 5. Characterizing such NP-relations is an open problem where the
proposed batch processing can be applied to some decompositions.

Acknowledgment. The authors would like to thank anonymous referees for
their useful comments and remarks. The authors added Section 4 on a remark
that suggests adding an example of pairing-based protocol.

References

1. M. Bellare, J. Garay, and T. Rabin, “Fast Batch Verification for Modular Expo-
nentiation and Digital Signatures,” Advances in Cryptology — EUROCRYPT ’98,
LNCS 1403, pp. 236–250, Springer-Verlag, 1998.

2. D. Boneh and M. Franklin, “Identity based encryption from the Weil pairing,”
Advances in Cryptology — CRYPTO 2001, LNCS 2139, pp. 213–229, Springer-
Verlag, 2001.

3. E. Brickell, D. Gordon, K. McCurley, and D. Wilson, “Fast exponentiation with
precomputation,” Advances in Cryptology — EUROCRYPT ’92, LNCS 658, pp.
200–207, Springer-Verlag, 1992.

4. R. Cramer, I. Damg̊ard, and B. Schoenmakers, “Proofs of partial knowledge and
simplified design of witness hiding protocols,” Advances in Cryptology — CRYPTO
’94, LNCS 839, pp. 174–187, Springer-Verlag, 1994.

5. R. Cramer, “Modular Design of Secure yet Practical Cryptographic Protocols,”
Ph.D.-thesis, CWI and U. of Amsterdam, 1996.

6. A. Fiat, “Batch RSA,” Journal of Cryptology, Vol. 10, pages 75–88, 1997.
7. R. Gennaro, D. Leigh, R. Sundaram, and W. Yerazunis, “Batching Schnorr iden-

tification scheme with applications to privacy-preserving authorization and low-
bandwidth communication devices,” Advances in Cryptology — ASIACRYPT
2004, LNCS 3329, pp. 276–292, Springer-Verlag, 2004.

8. O. Goldreich, “Foundations of Cryptography,” volume I, Cambridge University
Press, 2001.

9. L. Guillou and J. Quisquater, “A practical zero-knowledge protocol fitted to se-
curity microprocessor minimizing both transmission and memory,” Advances in
Cryptology — EUROCRYPT’88, pp. 123–128, Springer-Verlag, 1988.

10. D. M’Raihi, and D. Naccache, “Batch exponentiation: a fast DLP-based signature
generation strategy,” Proceedings of the 3rd ACM conference on Computer and
Communications Security, 1996

11. T.P. Pedersen, “Non-interactive and information-theoretic secure verifiable se-
cret sharing,” Advances in Cryptology — CRYPTO ’91, LNCS 576, pp. 129–140,
Springer-Verlag, 1992.

12. C. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptology,
Vol. 4, pp. 161–174, 1991.

13. B. Schoenmakers and P. Tuyls, “Practical Two-Party Computation Based on the
Conditional Gate,” Advances in Cryptology — ASIACRYPT 2004, LNCS 3329,
pp. 119–204, Springer-Verlag, 2004.

14. M. Tompa and H. Woll, “Random Self-Reducibility and Zero Knowledge Interactive
Proofs of Possession of Information,” Proc. of FOCS, pp. 472-482, 1987.

Timing Attacks on NTRUEncrypt Via Variation in
the Number of Hash Calls

Joseph H. Silverman and William Whyte

NTRU Cryptosystems, Inc.

Abstract. This report studies timing attacks on NTRUEncrypt based on
variation in the number of hash calls made on decryption. The attacks
apply to the parameter sets of [8,6]. To mount the attacker, an attacker
performs a variable amount of precomputation, then submits a relatively
small number of specially constructed ciphertexts for decryption and mea-
sures the decryption times. Comparison of the decryption times with the
precomputed data allows the attacker to recover the key in greatly reduced
time compared to standard attacks on NTRUEncrypt. The precomputed
data can be used for all keys generated with a specific parameter set and
tradeoffs exist that increase the amount of precomputation in order to de-
crease the time required to recover an individual key. For parameter sets in
[3] that claim k-bit security but are vulnerable to this attack, we find that
an attacker can typically recover a single key with about k/2 bits of effort.

Finally, we describe a simple means to prevent these attacks by en-
suring that all operations take a constant number of SHA calls. The
recommended countermeasure does not break interoperability with the
parameter sets of [8,6] and has only a slight effect on performance.

1 NTRUEncrypt Overview

In this section we briefly review how NTRUEncrypt works in order to set notation.
For further details, see [2,3,6]. Recall that NTRUEncrypt uses the ring of truncated
polynomials (also sometime called the ring of convolution polynomials)

Z[X]/(XN − 1).

We denote multiplication in this ring by ∗. At various stages of encryption and
decryption the coefficients of these polynomials are reduced modulo q and/or
modulo p, where p and q are relatively prime integers. This reduction is always
performed so that the reduced coefficients lie in the range from 0 to p − 1 (re-
spectively 0 to q−1). In particular, reduction modulo p and reduction modulo q
do not commute with one another. For example,

(11 mod 7) mod 2 = 4 mod 2 = 0 and (11 mod 2) mod 7 = 1 mod 7 = 1.

For simplicity in this note, we restrict attention to the case p = 2, in which case
various polynomials are chosen to be binary (i.e., all coefficients 0 or 1), and in
some cases with a fixed number of zeros and ones. To ease notation, we let

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 208–224, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 209

BN = {binary polynomials},
BN(d) = {binary polynomials with exactly d ones}.

An NTRUEncrypt private key consists of a pair of (binary) polynomials f and g.
The associated public key is the polynomial

h = p ∗ f−1
q ∗ g mod q,

where f−1
q denotes the inverse of f modulo q. Similarly, we let f−1

p denote the
inverse of f modulo p. To speed decryption, the polynomial f is often taken in
the form f = 1 + pF with F ∈ BN(dF), in which case f−1

p = 1. See [3,6] for a
discussion. The special form 1 + pF will play an important role in our attack.

Encryption and decryption use two hash functions. We denote them by G
and H as in [5]. In practice, they are built using either SHA-1 or SHA-256 in
various ways, depending on the desired security level, see [8]. The attack that
we describe is based on the fact that the number of SHA calls required by G
depends on the input to G. Thus by measuring decryption time, an attacker
may obtain information about the input to G, which in turn reveals information
about the private key f.

The encryption process works as follows.

M ∈ BN Padded plaintext
r = G(M) ∈ BN (dr) Randomizer

m′ = M ⊕ H(r ∗ h mod q) Masked message representative
e = (r ∗ h + m′) mod q Ciphertext

The decryption algorithm first recovers the (padded) message representative m′

and plaintext M and then uses them to recreate the blinding value r and verify
that (m′, e) is a valid NTRUEncrypt pair.

m′ =
(
(f ∗ e mod q) mod p

)
∗ f−1

p mod p Recover candidate m′

M = m′ ⊕ H(e − m′ mod q) Unmask m′ to get M

r = G(M) Recover r used in encryption
Verify that e equals r ∗ h + m′ mod q

The basis for our timing attack lies in the way in which G uses SHA to cre-
ate r from M. Note that on decryption, e and m′ completely determine M, and
therefore the time to calculate r = G(M). The blinding value r is required to be
a binary polynomial with exactly dr ones, and the process described in [8] for
creating r from M may take a different number of SHA calls for different values
of M. Later we will describe exactly how this is done, but for now we simply
observe that this leads to a time variation that an attacker may be able to mea-
sure and show how these timing observations may be converted into information
about the private key f. We also note that a simple countermeasure, as described
in Section 7, is to perform a few extra SHA calls to ensure that every decryption
takes the same amount of time.

210 J.H. Silverman and W. Whyte

2 The Time Trail of a Ciphertext

As we saw in Section 1, the number of hash calls required to create the blinding
value r from a message representative/ciphertext pair (m′, e) may be different
for different pairs (m′, e). Each hash call requires a nontrivial amount of time,
so an adversary might be able to determine how many hash calls Bob uses in
attempting to decrypt a (possibly bogus) ciphertext e.

In practice, there will be a number K so that the number of hash calls required
to create r from (m′, e) is usually either K or K + 1. For each pair (m′, e),
regardless of whether or not it is a valid NTRUEncrypt pair, we define r(m′, e) to
be the output from the decryption algorithm,

r(m′, e) = G
((

m′ + H(e − m′ mod q
)
) mod 2

)
,

and we set β(m′, e) ∈ {0, 1} by the rule

β(m′, e) =

{
0 if it takes ≤ K hashes to create r(m′, e),
1 if it takes > K hashes to create r(m′, e).

Note that for known (m′, e), the computation of r(m′, e), and thus of β(m′, e),
requires no private knowledge.

For a given (m′, e), we look also at the rotations (X im′, X ie) for i = 0, 1,
We define the Time Trail of (m′, e) to be the binary vector

T (m′, e) =
(
β(m′, e), β(Xm′, Xe), β(X2m′, X2e), . . . , β(XN−1m′, XN−1e)

)
∈ {0, 1}N .

The Time Trail tells us how many hashes are required for each of the rotations
of the pair (m′, e).

Let P be the probability that a randomly chosen (m′, e) requires (at most) K
hash calls and similarly 1 − P is the probability that a randomly chosen (m′, e)
requires (at least) K + 1 hash calls. If neither P nor 1 − P is too small, then
the probability that two pairs (m′

1, e1) and (m′
2, e2) have the same time trails is

quite small. More precisely, it is not hard to derive the formula

Prob
(
T (m′

1, e1) = T (m′
2, e2)

)
= (1 − 2P + 2P 2)N .

This holds under the assumption that different entries in the vectors are random
and independent: this is correct so long as the main variation in running time
comes from the hash calls, and so long as the output of SHA-1 is in some sense
random. We otherwise defer the derivation of this formula to Section A.1.

3 A Timing Attack Based on Variable Number of Hash
Calls

In this section we explain how an adversary Oscar might use time trails in order
to derive information about Bob’s private key.

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 211

Oscar first chooses a collection of (possibly bogus) ciphertexts E (i.e., E is
a collection of polynomials modulo q). He also chooses a set of message repre-
sentative values M (i.e., a collection of binary polynomials) with the property
that M contains many of the polynomials in the set{

((f ∗ e mod q) mod 2) ∗ (f−1 mod 2) : e ∈ E
}
.

Note that this is exactly the set of message representative that Bob would create
during the process of decrypting the ciphertexts in E . More precisely, we assume
that the probability

pM,E := Prob
e∈E

(
((f ∗ e mod q) mod 2) ∗ (f−1 mod 2) ∈ M

)
is not too small.

Before starting the active part of the attack, Oscar creates a table consisting
of the time trails of every pair in M×E . In other words, he creates a searchable
list of binary vectors (

T (m′, e) : m′ ∈ M and e ∈ E
}
.

Thus the precomputation required for the attack has time and space require-
ments that are O

(
#M· #E

)
.

To initiate the attack, Oscar chooses a random e ∈ E , sends it to Bob,
and records how long it takes Bob to decipher it. Note that the use of NAEP
padding [5] as described above ensures that bogus ciphertexts will be rejected.
But in this case the attacker does not care that the ciphertexts are rejected, so
long as he can obtain timing information. This timing information enables him
to determine how many hash calls are required to create r from the ciphertext e
and the message representative

m′(e) := ((f ∗ e mod q) mod 2) ∗ (f−1 mod 2),

so Oscar finds the value of β(m′(e), e). Of course, Oscar does not know the value
of m′(e).

In a similar manner, Oscar sends each of the polynomials

e, Xe, X2e, X3e, . . . , XN−1e

to Bob and obtains the values β(m′(X ie), X ie) for i = 0, 1, . . . , N − 1. We now
observe that

m′(X ie) = ((f ∗ X ie mod q) mod 2) ∗ (f−1 mod 2)

= X i ∗ ((f ∗ e mod q) mod 2) ∗ (f−1 mod 2)

= X im′(e)

Thus Oscar has determined β(X im′(e), X ie) for i = 0, 1, . . . , N − 1, so he knows
the time trail T (m′(e), e) of the pair (m′(e), e).

212 J.H. Silverman and W. Whyte

Oscar now searches his precomputed list and, with reasonable probability,
finds a small number of possibilities for (m′(e), e). In other words, Oscar now has
a known polynomial e and a known polynomial m′ so that when Bob decrypted e,
Bob got m′ as the message representative. Hence Oscar knows that there is an
equation of the form

m′ ∗ f ≡ (f ∗ e mod q) (mod 2). (1)

(More precisely, Oscar knows e and he has a small list of possible m′, one of which
satisfies (1). In Section 4.1 we discuss how Oscar can disambiguate between
the possible m′ in a plausible attack scenario.) Equation (1) certainly contains
a significant amount of information concerning Bob’s private key f, although
exploiting this information will depend on the specific form of e. For example, if
the elements of E consist of polynomials with very few nonzero coefficients, then
equation (1) may give information concerning the spacing between the nonzero
coefficients of f. In Section 4 we describe a specific collection E that leads to a
practical hash timing attack when the key f has the form f = 1 + pF. (This form
is sometimes used to decrease decryption time.)

4 A Practical Hash Timing Attack for f = 1 + 2F —
Theory

For this section we consider the case where p = 2, so q is necessarily odd, and
where private keys have the form

f = 1 + 2F for some binary polynomial F ∈ BN(dF).

The parameters recommended by NTRU Cryptosystems currently take this
form [3,6,8] Note that the inverse f−1

2 = (f mod 2)−1 is equal to 1, so the for-
mula that Bob uses to recover the message representative m′ from a ciphertext e
simplifies to

m′(e) = (f ∗ e mod q) mod 2. (2)

For later computations, we write F =
∑

j FiX
j with Fj ∈ {0, 1}, and for any j ∈

Z, we let Fj denote the coefficient F(j mod N).
Let λ = 2�q/8� be the smallest even integer that is larger than q/4. To mount

the attack, Oscar uses the set of (bogus) ciphertexts defined by

E =
{
λ + λX i : 1 ≤ i < N

}
.

In other words, the e ∈ E are polynomials with two coefficients equal to λ and
all other coefficients equal to 0. In summary, Oscar’s attack is:

1. Choose a value δ.
2. Let E = {ei = λ + λX i : 0 ≤ i ≤ (N − 1)/2} and M = BN(0 < d ≤ δ).
3. Precompute and store in a suitably searchable database the time trails

T (m′, e) for every m′ ∈ M and every e ∈ E .

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 213

4. For each i, send ei, Xei,. . . ,XN−1ei to Bob and use the decryption times to
determine the time trail T (m′(ei), ei) as described in Section 3.

5. Search the database to determine m′(ei), either exactly or up to a small num-
ber of choices. Once a candidate m′(ei) is found, validate it by the methods
below.

6. Use the resulting values of m′(ei) to reconstruct F, either by an exact compu-
tation or by cutting down on the search space for F and performing a direct
search of that subset.

We now need to figure out the possible values of m′(e) that arise in (2) when
Bob decrypts the ciphertexts in E . During decryption, Bob first computes

a = f ∗ e mod q

≡ (1 + 2F) ∗ (λ + λX i) (mod q)

≡ λ + λX i +
N−1∑
j=0

2λ(Fj + Fj−i)Xj .

Thus the jth coefficient of a is given by

aj =

⎧⎪⎨⎪⎩
λ(1 + 2F0 + 2F−i) mod q if j = 0,

λ(1 + 2Fi + 2F0) mod q if j = i,

λ(2Fj + 2Fj−i) mod q if j �= 0, i

(2)

The key observation is that since λ = 2�q/8� is just slightly larger than q/4, the
quantities on the righthand side of 2 are between 0 and q−1 unless Fj = Fj−i = 1,
in which case they are greater than q. Thus there is nontrivial reduction modulo q
if and only if Fj = Fj−i = 1, which implies that

aj =

{
λ, 2λ, or 3λ if Fj = 0 or Fj−i = 0,

4λ − q or 5λ − q if Fj = Fj−i = 1.

The next step is to reduce a modulo 2, which yields the message representa-
tive m′(ei) for the (bogus) ciphertext ei = λ + λX i. Recalling that λ is even
and q is odd, we see that

aj mod 2 =

{
0 if Fj = 0 or Fj−i = 0,

1 if Fj = Fj−i = 1.

This gives the following explicit description of m′(ei):

m′(ei) =
N−1∑
j=0

(
1 if Fj = Fj−i = 1
0 otherwise

)
Xj ,

which in turn yields the following partial information about F:

214 J.H. Silverman and W. Whyte

F(ei) =
N−1∑
j=0

⎛⎜⎜⎜⎜⎜⎜⎝
1 if m′(ei)j = 1

or m′(ei)j+i = 1
0 if m′(ei)j−i = 1 and m′(ei)j �= 1

or m′(ei)j+2i = 1 and m′(ei)j+i �= 1
? unknown otherwise

⎞⎟⎟⎟⎟⎟⎟⎠Xj ,

Therefore, every m′ with dm′ ones that Oscar can recover will yield dm′ pairs
of non-zero coefficients of F, allowing him to reduce the search space for F. To
be precise, defining the “left-hand” member of a pair in the obvious way, we
see that each of the dm′ left-hand members must be distinct, at least one of the
right-hand members must not occupy the same location as the left-hand member
of another pair (because N is prime) and for the remaining dm′ − 1 right-hand
members the expected number of left-hand members that they occupy the same
position as is given by the expected value of the hypergeometric distribution,

(dm′ − 1)2

N − dm′ − 2

The expected number of distinct coefficients of value 1, c1(dm′ , N), is therefore

c1(dm′ , N) = 2dm′ − (dm′ − 1)2

N − dm′ − 2

Oscar will also have learned the location of some of the zero coefficients of F:
each 1 coefficient that is not known to have another 1 i places to its left or to its
right must have a zero in that position (as a 1 would have been detected, and the
only other option is 0). This, too, will allow him to reduce the search space for F.

Now we estimate the amount of precomputation that Oscar must carry out
in order to mount the attack.

First, we note that the running time of a standard combinatorial attack on
an NTRUEncrypt private key is [4]

τ(dF , N) =
1√
N

(
�N/2�
�dF /2�

)
If Oscar knows the locations of d1 1s and d0 0s in F , this running time becomes

τ(dF , N ; d0, d1) =
(

N − (d0 + d1 + (dF − d1)/2!)
�dF −d1

2 �

)
(3)

(the top line here is about N , rather than about N/2, because rotational symme-
try has been broken, and the factor of 1/

√
N vanishes for the same reason. Both

of these changes hinder the attacker). Oscar’s aim is to balance precomputation
work and key-specific combinatorial work so as to recover a key in as little total
effort as possible.

Oscar will start by selecting an integer δ and precomputing the time trails
for all m′ such that dm′ ≤ δ. We now estimate how many coefficients of F this

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 215

will enable him to recover. For any (dm′ , i), we want to calculate the probability
that F has exactly dm′ pairs of coefficients separated by i, or in other words the
probability that the dot product (F·X iF) = dm′ . To estimate this, consider what
would happen if F and X iF were independent. Each of the dF 1 coefficients in F
will select one of the coefficients in X iF , giving a hypergeometric distribution of
the values of (F · X iF). In practice, we know that if i �= 0, a given 1 in F cannot
select itself in X iF and we observe that

PN,dF [F · X iF = dm′] = Hyp(dm′ , dF − 1, dF , N) =

(
dF

dm′

)(
N−dF

dF−1−dm′

)(
N

dF −1

)
where Hyp(x, d, s, N), the hypergeometric distribution, is the probability of x
successes in d draws without replacement from a pool containing N items of
which s count as successes.

For any given value of dm′ , there are (N − 1)/2 different values of i and
(N − 1)/2 distinct ei. The expected number of m′s with dm′ 1s is therefore

E1(dm′) =
(N − 1)

2
∗ Hyp(dm′ , dF − 1, dF , N)

and the amount of precomputation work required to generate these time trails is

wN (dm′) =
N(N − 1)

2

(
N

dm′

)
.

Every successful time trail identifies c1 distinct 1 coefficients,

c1(dm′ , N) = 2dm′ − (dm′ − 1)2

N − dm′ − 2
.

It also identifies c0 distinct 0s, one to the left of every lefthand 1 and one to the
right of every righthand 1 except for the 1s that are lefthand in one pair and
righthand in another:

c1(dm′ , N) = 2dm′ − 2
(dm′ − 1)2

N − dm′ − 2
.

We now consider how quickly Oscar learns the distinct coefficients of F. Say
that he knows d0 0s and d1 1s, and as a result of finding a time trail he discovers
an additional c0 0s and c1 1s. Then we estimate the new expected total number
of distinct known coefficients as

(new total) = (already known) + (new) − (collisions between old and new)
d′1 = d1 + c1 − Expx(Hyp(x, c1, d1, dF))

= d1 + c1 − d1c1

dF

d′0 = d0 + c0 − Expx(Hyp(x, c0, d0, N − dF))

= d0 + c0 − d0c0

N − dF
.

216 J.H. Silverman and W. Whyte

This allows us to calculate the expected number of distinct coefficients found for
a certain amount of precomputation corresponding to a certain value of δ, and
therefore estimate the amount of work left to be done to recover the key. The
method is:

1. Set d0 = d1 = 0. Set the total work w = 0.
2. For dm′ = 1 to δ:
3. Calculate E1(dm′).
4. If E1(dm′)� ≥ 1:

(a) Calculate c1(dm′ , N), c0(dm′ , N).
(b) For i = 1 to E1(dm′)�:
(c) Set d1 = d1 + c1 − d1c1

dF
.

(d) Set d0 = d0 + c0 − d0c0
N−dF

(e) End i loop.

5. Set w = w + wN (dm′)
6. End dm′ loop.
7. Calculate τ(dF , N ; d0, d1) by (3) and output w, τ .

We emphasise that this is simply an estimate, and in particular the use of the
hypergeometric distribution is an approximation to the actual distribution. The
aim is simply to motivate a choice for δ.

4.1 Validating a Choice

The initial set of (bogus) ciphertexts E = {ei = λ + λX i} is relatively small to
reduce precomputation. Recognizing a time trail will tell Oscar that with high
probability he has identified m′(ei) for the relevant ei in his database. However,
if there is a nontrivial chance that the time trail is nonunique, Oscar may want
to check that he has in fact identified the correct ei.

To see how to do this, we note that if

ei = λ + λX i

decrypts to m′, then so do the alternate forms

e∗i = (λ + 2) + λX i, or λ + (λ + 2)X i, or . . .

or indeed many polynomials λ1 + λ2X
i with λ1 and λ2 even integers in the

vicinity of q/4 and satisfying λ1 + λ2 > q/2. Oscar therefore selects one of the
possible e∗i , calculates the time trail T (m′, e∗i) for the message representative m′

that he thinks is produced by decrypting the original ei, and then submits e∗i to
the decryption oracle to find its time trail. If the measured and the calculated
time trail match, he has confirmed the guess for m′. Otherwise, he knows that
the original match on the time trail was just coincidence.

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 217

4.2 Results

We present the results of our analysis in Table 1. Here we have calculated two
different values of δ.

The value δonekey is the value of δ that Oscar will precompute up to if he wants
to recover one key, in other words the first value of δ for which the work required
to peform the precomputation up to δ, w(δ), is greater than the remaining work
required to break the key, τ . It can be seen that, with the exception of parameter
set ees251ep4 (presented in [7]), the log of the amount of precomputation to
be performed log2 w(δ) is slightly more than half the claimed bit strength of the
parameter sets. We also present, for interest, the number of distinct 1s and 0s
that Oscar will on average have identified in a target key before he starts the
combinatorial attack on the remaining coefficients.

The value δallkeys is the value of δ at which Oscar will on average recover the
locations of all dF value-1 coefficients in F through time trail analysis alone. This
is the amount of precomputation that will allow him to recover any key at the
cost of simply submitting about N(N − 1) ciphertexts for decryption. It can be
seen that in general w(δallkeys) is greater than w(δonekey) by about 11 bits, or a
factor of about 2000.

This demonstrates that, so long as the time trails are sufficiently unique and
Oscar has an amount of storage that is customarily granted to attackers in
this kind of paper, this attack is practical. In the next section we analyse the
probability that time trails are unique.

Table 1. precomputation effort required to recover one key with minimum work and
to recover all keys for the parameter sets in [7,8]

Bit Parameter dr,
Security Set Name N dF δone key c1 c0 w τ δall keys w

80 ees251ep4 251 72 14 51.31 57.35 89.75 51.66 16 97.62
80 ees251ep6 251 48 5 40.26 64.72 47.86 23.99 7 58.36
112 ees347ep3 347 66 7 50.52 72.97 62.59 46.58 9 73.24
128 ees397ep1 397 74 8 60.81 94.48 69.95 42.74 10 80.67
160 ees491ep1 491 91 10 71.49 105.17 84.38 60.54 12 95.16
192 ees587ep1 587 108 12 79.57 110.07 98.79 88.09 14 109.62
256 ees787ep1 787 140 16 112.70 169.35 127.72 88.58 18 138.67

5 A Practical Hash Timing Attack for f = 1 + 2F —
Practice

In this section we evaluate the practicality of the attack described in Section 4
for some specific NTRUEncrypt parameter sets that appear in [6,8] (and also the
parameter set ees251ep4 described in [7], which is secure but less efficient than
the corresponding parameter sets in [8]). This practicality depends, among other

218 J.H. Silverman and W. Whyte

things, on the probability that different inputs require a greater or lesser number
of SHA calls. We begin by describing how [8] uses SHA to compute r and then
we compute the probability that this process takes a varying number of SHA
calls.

The blinding value r, which is a binary polynomial with exactly dr ones, is
created from a hash function via repeated calls to some version of SHA. Here is
the process as described in [8]:

1. Fix a value of c satisfying 2c > N . This value of c is specified in [8] for each
of the sample NTRUEncrypt parameter sets. Also let

b = �c/8� and n = 2c/N!

Thus b is the smallest integer such that b bytes contains at least c bits. (In
practice, b will be 1 or 2.) Similarly, nN is the smallest multiple of N that
is less than 2c.

2. Call the specified version of SHA and break the output into chunks of b bytes
each. Within each b byte chunk, keep the lower order c bits and discard the
upper order 8b − c bits. Convert the lower order c bits into (little endian)
integers i1, i2, . . . , it. (Here t is the integer such that the output of the spec-
ified version of SHA consist of tb bytes.) This process of splitting the output
from SHA is illustrated in Figure 1.

3. Create a list of indices j1, j2, . . . by looping through the list of i values
from (2). If i < n and i mod N is not already in the list, the adjoin i mod N
to the list, otherwise discard i. Continue until the list contains dr values of j.
If at any point you run out of i values, then call SHA and create additional i
values as specified in (2). The complete r generation algorithm is illustrated
with pseudocode in Figure 2.

i1 i2 it
. . .

c bits c bits c bits

b bytes b bytes b bytes

Fig. 1. Converting SHA output into c bit integers

(1) jList = { }
(2) Call SHA to get i1, i2, . . . , it
(3) Loop α = 1, 2, . . . , t
(4) If iα < n and (iα mod N) /∈ jList

then adjoin iα mod N to jList
(5) If jList contains dr elements, then exit
(6) End α loop
(7) Go to Step (2) to get more i values

Fig. 2. Generating r from SHA output

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 219

This description makes it clear why the number of calls to SHA may vary
for different input values. If we treat the list of numbers i1, i2, . . . as a random
sequence of integers in the range 0 ≤ i < 2c, the fundamental probabilities that
we need to compute are

PC,N,n(L, d) = Prob

⎛⎜⎝A set of L randomly chosen integers i ∈ [0, C)
includes exactly d numbers satisfying both
i ∈ [0, nN) and the values are distinct modulo N

⎞⎟⎠
It is not hard to find a recursive formula that allows one to compute PC,N,n(L, d)
reasonably quickly. See Appendix C for details.

In order to generate r, the algorithm described in Figure 2 needs to create a list
of dr distinct numbers satisfying 0 ≤ i < N . Each time the algorithm calls SHA, it
gets t numbers satisfying 0 ≤ i < 2c. Hence the probability that it suffices to call to
SHA s times is equal to the probability that st random numbers in the range [0, 2c)
contain at least dr values in [0, n) whose values modulo N are distinct. Hence

Prob(s calls to SHA suffices)=Prob

⎛⎝ st randomly chosen integers in [0, 2c)
includes at least dr values in [0, n)
that are distinct modulo N

⎞⎠
=

∑
dr≤d≤st

P2c,N,n(st, d).

In Table 2 we have assembled the NTRUEncrypt parameters from [7,8] and
computed the values of s such that it is most likely to take either s or s+1 calls
to SHA in order to generate r. The probabilities are listed in the last column of
the table. The closer that the first probability is to 50%, the greater the chance
that a time trail is unique, reducing the need to validate a time trail using the
methods of Section 4.1. In most cases except perhaps k = 80 and k = 192, it
will not be necessary to validate a time trail.

Table 2. The probability that s calls to SHA generates r

Bit SHA
Security N dr bits c b n t s : Prob(s SHA calls suffices) Pnonunique

80 251 48 160 8 1 1 20 3 : 98.14% 4 : 100.0% 2−13.5

112 347 66 160 14 2 47 10 7 : 15.65% 8 : 98.48% 2−154

128 397 74 160 11 2 5 10 8 : 12.77% 9 : 95.10% 2−144

160 491 91 160 9 2 1 10 10 : 13.87% 11 : 91.32% 2−193

192 587 108 256 11 2 3 16 8 : 4.52% 9 : 82.38% 2−76

256 787 140 256 12 2 5 16 10 : 53.04% 11 : 99.85% 2−783

6 Practicality of Attack: Availability of Timing
Information

As noted, it is possible for decryption to take a variable amount of time depend-
ing on the number of hash calls made. In this section we investigate how likely
it is that this information will be leaked.

220 J.H. Silverman and W. Whyte

On a 1.7 GHz Pentium Pro running Windows XP, NTRUEncrypt decryption
with the ees251ep6 parameter set of [8] takes 0.09 ms. A SHA-1 call takes about
1.34μs. These are average figures. The time for these averages to settle down is
obviously of interest.

We ran 100 sets of experiments, in each of which we decrypted a given
ees251ep6 ciphertext 1,000,000 times. As expected from Table 2, 98 of these
ciphertexts took 3 SHA-1 calls to generate r and the other 2 took 4. We sorted
the 100 experiments by running time and hoped to see that the 2 cases where
there had been 4 SHA-1 calls would also have the longest running times. In
fact, the noise due to other system activity overwhelms the variation in running
time due to the number of hash calls on this system: the two cases where there
had been 4 SHA-1 calls were in 29th and 68th position on the sorted list. Each
of these runs took about 90 seconds. If the noise could be eliminated by bom-
barding the decryption oracle with the same ciphertext for a period of an hour,
it would take the attacker N(N − 1)/2 hours to recover all the time trails, or
approximately 3 1

2 years. It therefore appears that this attack is unlikely to suc-
ceed against an implementation of NTRUEncryptdecryption running on a general
computing platform.

At the other end of the computing scale, on an 8051-type smart card (a Philips
Mifare ProX running at a 2.66 MHz internal clock, simulated on the Keil tools
simulator) we observed that for ees251ep4 the total time for a decryption was
58 ms, of which 30 ms was due to the 6 SHA-1 calls. In other words, on this
platform, an additional SHA call incurs an overhead of 5 ms. It seems highly
likely that in this environment the attack described in this paper is practical.

7 Conclusions and Recommendations

We have described a timing attack on the implementation of NTRUEncrypt de-
scribed in [8]. The attack relies on the fact that decryption of different (possibly
bogus) ciphertexts may require a different number of calls to a hash
function such as SHA-1 or SHA-256. We draw some conclusions and make some
recommendations.

1. The attack appears unlikely to work against NTRUEncryptrunning on a
general-purpose PC platform. However, the parameter sets of [8] are claimed
to be appropriate for any platform and as such it is worth investigating coun-
termeasures that can be put in place on any platform.

2. Although we have only described an attack that relies on keys of the special
form f = 1 + pF, it is reasonable to assume that similar attacks are possible
for more general keys. Thus the use of general keys is not a recommended
method to thwart hash timing attacks on NTRUEncrypt.

3. In order to prevent hash timing attacks, it suffices to make sure that almost
all decryptions require the same number of SHA calls. This can be accom-
plished by fixing a parameter KSHA so that almost all inputs (m′, e) require
at most KSHA SHA calls and then performing extra SHA call(s) if neces-
sary so that almost all inputs require exactly KSHA SHA calls. Here, we can

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 221

put a more concrete meaning on “almost all” by requiring that at the k-bit
security level, there is a chance of 2−k that a given (m′, e) has β(m′, e) = 1.
This yields the values given in Table 3 for KSHA. Note that even with this
number of SHA calls it is expected that decryption will take less than 0.5 s
on the smartcard platform described above.

Table 3. Recommended number of SHA calls for different security levels

Bit Expected
Security N SHA calls KSHA

80 251 3 6
112 347 8 15
128 397 9 17
160 491 11 22
192 587 9 20
256 787 10 21

Note that this recommendation will require an attacker to expend more than
2k machine cycles tomount the attack, first because a SHAcall takesmore than
one operation, and second because each attack involves KSHA > 1 SHA calls.

4. The method used to generate r from (m′, e) in [8] is easy to implement, but it
is somewhat wasteful of the pseudorandom bits produced by SHA. It might
be worthwhile to look for more efficient ways to generate r which might also
use a fixed number of calls to SHA, thereby eliminating the possibility of
a hash timing attack. However, we note that the use of a new r-generation
method would require changes to the exisiting standards, while equalization
of the number of SHA calls as in (2) is a simple implementation change that
maintains current standards.
Finally, we note that NTRUEncryptshould continue to be analysed for its
vulnerability to other side-channel attacks: this paper is by no means the
last word on the subject.

References

1. D. Brumley, D. Boneh, Remote timing attacks are practical. Journal of Computer
Networks, 2005.

2. J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key cryp-
tosystem, Algorithmic Number Theory (ANTS III), Portland, OR, June 1998, Lec-
ture Notes in Computer Science 1423, J.P. Buhler (ed.), Springer-Verlag, Berlin,
1998, 267–288

3. J. Hoffstein, J.H. Silverman, Optimizations for NTRU, Public Key Cryptogra-
phy and Computational Number Theory (Warsaw, Sept. 11–15, 2000), Walter de
Gruyter, Berlin–New York, 2001, 77–88.

4. N. A. Howgrave-Graham, J. H. Silverman, W. Whyte, A Meet-in-the-Middle At-
tack on an NTRU Private key, Technical report, NTRU Cryptosystems, June 2003.
Report #004, version 2, available at http://www.ntru.com.

222 J.H. Silverman and W. Whyte

5. N. Howgrave-Graham, J. H. Silverman, A. Singer and W. Whyte. NAEP: Provable
Security in the Presence of Decryption Failures, IACR ePrint Archive, Report 2003-
172, http://eprint.iacr.org/2003/172/

6. N. Howgrave-Graham, J. H. Silverman, W. Whyte Choosing Parameter Sets
for NTRUEncrypt with NAEP and SVES-3, Topics in cryptology—CT-RSA
2005, 118–135, Lecture Notes in Comput. Sci., 3376, Springer, Berlin, 2005.
www.ntru.com/cryptolab/articles.htm#2005 1

7. Consortium for Efficient Embedded Security, Efficient Embedded Security Standard
(EESS) #1 version 2, 2003.

8. Consortium for Efficient Embedded Security, Efficient Embedded Security Standard
(EESS) #1 version 3, 2005.

A Probability That Two Message Representatives Have
the Same Time Trail

A time trail is a binary vector of dimension N . We let P denote the probabilty
that a randomly chosen coordinate is equal to 0, so 1 − P is the corresponding
probablity that a randomly chosen coordinate is equal to 1. Then the probability
that (say) the first coordinates of two random time trails agree is

Prob(both 0) + Prob(both 1) = P 2 + (1 − P)2 = 1 − 2P + 2P 2.

In order for two entire time trails to be identical, they must agree on all N of
their coordinates. Hence

Probability that two Time Trails coincide = (1 − 2P + 2P 2)N .

Therefore for any given e ∈ E and m′ ∈ M, the probability that there exists some
other message representative m′′ ∈ M with T (e, m′′) = T (e, m′) is approximately

#M· (1 − 2P + 2P 2)N .

B The Average Number of Ones with a Given Separation
Distance

Let BN(d) be the set of binary polynomials of degree less than N with exactly d
ones and N − d zeros. Fix i. We are interested in the average number of j such
that Fj and Fj−i are both equal to 1, as F ranges over BN(d). For a given F
and i, we denote the number of such j by

νi(F) = #{0 ≤ j < N : Fj = Fj−i = 1}.

Clearly ν0(F) = d for every F ∈ BN(d). We now fix some 1 ≤ i < N and
compute the average value ν̄i(d) of νi(F) as F ranges over BN (d).

Timing Attacks on NTRUEncrypt Via Variation in the Number of Hash Calls 223

ν̄i(d) = Average
F∈BN (d)

νi(F) =
(

N

d

)−1 ∑
F∈BN (d)

νi(F)

=
(

N

d

)−1 ∑
F∈BN (d)

N−1∑
j=0

FjFj−i

=
(

N

d

)−1 N−1∑
j=0

∑
F∈BN (d)

FjFj−i

=
(

N

d

)−1 N−1∑
j=0

#
{
F ∈ BN (d) : Fj = Fj−i = 1

}
=

(
N

d

)−1 N−1∑
j=0

(
N − 2
d − 2

)

=
(

N

d

)−1

N

(
N − 2
d − 2

)
=

d(d − 1)
N

.

This proves the formula cited in Section 4.
We also observe that νi(F) appears as a coefficient of the product F ∗ Frev,

where the reversal Frev of F is the polynomial Frev =
∑

F−iX
i. Thus

F ∗ Frev =
N−1∑
j=0

N−1∑
k=0

FjF−kXj+k =
N−1∑
i=0

N−1∑
j=0

FjFj−iX
i =

N−1∑
i=0

νi(F)X i.

Thus knowledge of νi(F) for 0 ≤ i < N is equivalent to knowledge of the prod-
uct F ∗ Frev. Using this value and the public key h = f−1 ∗ g mod q, there are
practical methods for recovering F. In any case, it is certainly true that each
valid (r, m′) pair that Oscar finds contains significant information about the pri-
vate key f, and there are numerous ways to exploit such information in order to
recover f directly (if one has enough (r, m′) pairs) or by cutting down the search
space for f.

C The Probability of Choosing Distinct Values in a
Given Range

In this section we describe a recursion that can be used to compute the
probability

PC,N,n(L, d) = Prob

⎛⎜⎝A set of L randomly chosen integers i ∈ [0, C)
includes exactly d numbers satisfying
i ∈ [0, nN) and whose values are distinct modulo N

⎞⎟⎠

224 J.H. Silverman and W. Whyte

We obtain a recursion from the observation that PC,N,n(L, d) equals the sum of
the following two quantities:

– The probability after L − 1 picks of having d − 1 values in [0, nN) that
are distinct modulo N multiplied by the probability of picking an integer
in [0, nN) multiplied by the probability that it does not a repeat a previous
values modulo N .

– The probability after L − 1 picks of having d values in [0, nN) that are
distinct modulo N multiplied by the probability of picking an integer that
either is not in [0, nN) or whose value modulo N repeats a previous value.

We observe that for the first case, the probability of picking an integer in [0, nN)
multiplied by the probability that it does not a repeat a previous values mod-
ulo N is

nN

C
· N − (d − 1)

N
=

n(N − d + 1)
C

.

For the second case, there are C − nN integers in [0, C) that are not in [0, nN),
and there are nd integers in [0, nN) that are in one of the d congruence classes
modulo n that have already been selected, so the probability of picking an integer
that either is not in [0, nN) or whose value modulo N repeats a previous value is

C − nN + nd

C
= 1 − n(N − d)

C
.

This yields the recursion formula

PC,N,n(L, d) = PC,N,n(L − 1, d − 1) ·
(

n(N − d + 1)
C

)
+ PC,N,n(L − 1, d) ·

(
1 − n(N − d)

C

)
Combining this recursion with the obvious initial values

PC,N,n(L, d) = 0 if L < d and PC,N,n(L, 0) =
(

1 − nN

C

)L

,

it is an easy matter to compute PC,N,n(L, d) if the parameters are not too large.

Predicting Secret Keys Via Branch Prediction

Onur Acıiçmez1, Çetin Kaya Koç1,2, and Jean-Pierre Seifert3,4

1 School of Electrical Engineering and Computer Science
Oregon State University

Corvallis, OR 97331, USA
2 Information Security Research Center

Istanbul Commerce University
Eminönü, Istanbul 34112, Turkey

3 Applied Security Research Group
The Center for Computational Mathematics and Scientific Computation

Faculty of Science and Science Education
University of Haifa
Haifa 31905, Israel

4 Institute for Computer Science
University of Innsbruck
6020 Innsbruck, Austria

aciicmez@eecs.oregonstate.edu, koc@cryptocode.net,
jeanpierreseifert@yahoo.com

Abstract. This paper announces a new software side-channel attack —
enabled by the branch prediction capability common to all modern high-
performance CPUs. The penalty paid (extra clock cycles) for a
mispredicted branch can be used for cryptanalysis of cryptographic prim-
itives that employ a data-dependent program flow. Analogous to the re-
cently described cache-based side-channel attacks our attacks also allow
an unprivileged process to attack other processes running in parallel on the
same processor, despite sophisticated partitioning methods such as mem-
ory protection, sandboxing or even virtualization. In this paper, we will
discuss several such attacks for the example of RSA, and experimentally
show their applicability to real systems, such asOpenSSLandLinux.More-
over, we will also demonstrate the strength of the branch prediction side-
channel attack by rendering the obvious countermeasure in this context
(Montgomery Multiplication with dummy-reduction) as useless. Although
the deeper consequences of the latter result make the task of writing an ef-
ficient and secure modular exponentiation (or scalar multiplication on an
elliptic curve) a challenging task, we will eventually suggest some counter-
measures to mitigate branch prediction side-channel attacks.

Keywords: Branch Prediction, Modular Exponentiation, Montgomery
Multiplication, RSA, Side Channel Analysis, Simultaneous Multi-
threading.

1 Introduction

The contradictory requirement of increased clock-speed with decreased power-
consumption for today’s computer architectures makes branch predictors an

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 225–242, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

226 O. Acıiçmez, Ç.K. Koç, and J.-P. Seifert

inevitable central CPU ingredient, which significantly determines the so called
Performance per Watt measure of a high-end CPU, cf. [GRAB]. Thus, it is not
surprising that there has been a vibrant and very practical research on more and
more sophisticated branch prediction mechanisms, cf. [PH, Sha, She].

Unfortunately, the present paper identifies branch prediction even in the pres-
ence of recent security promises for commodity platforms from the Trusted Com-
puting area as a novel and unforeseen security risk. Indeed, although even the
most recently found security risks for x86-based CPU’s have been implicitly
pointed out in the old but thorough x86-architecture security analysis, cf. [SPL],
we have not been able to find any hint in the literature spotting branch predic-
tion as an obvious side channel attack victim. Let us elaborate a little bit on
this connection between side-channel attacks and modern computer-architecture
ingredients.

So far, typical targets of side-channel attacks have been mainly Smart Cards,
cf. [CNK, Koc]. This is due to the ease of applying such attacks to smart cards.
The measurements of side-channel information on smart cards are almost “noise-
less”, which makes such attacks very practical. On the other side, there are
many factors that affect such measurements on real commodity computer sys-
tems based upon the most successful one, the Intel x86-architecture, cf. [Sha].
These factors create noise, and therefore it is much more difficult to develop and
perform successful attacks on such “real” computers within our daily life. Thus,
until very recently the side-channel vulnerability of systems running on servers
was not “really” considered to be a danger. This was changed with the work of
Brumley and Boneh, cf. [BB], who demonstrated a remote timing attack over
a real local network. They simply adapted the attack principle as introduced
in [Sch] to show that the RSA implementation of OpenSSL [open] — the most
widely used open source crypto library — was not immune to such attacks.

Even more recently, we have seen an increased research effort on the security
analysis of the daily life PC platforms from the side-channel point of view. Here,
it has been especially shown that the cache architecture of modern CPU’s cre-
ates a significant security risk, cf. [ASK, Ber, NS, OST06, Per], which comes in
different forms. Although the cache itself has been known for a long time being
a crucial security risk of modern CPU’s, cf. [SPL, Hu], the above papers were
the first proving such vulnerabilities practically and raised large public interest
in such vulnerabilities.

Especially in the light of the ongoing Trusted Computing efforts, cf. [TCG],
which promise to turn the commodity PC platform into a trustworthy platform,
cf. also [CEPW, ELMP+, Gra, Pea, TCG, UNRS+], the formerly described side
channel attacks against PC platforms are of particular interest. This is due to
the fact that side channel attacks have been completely ignored by the Trusted
Computing community so far. Even more interesting is the fact that all of the
above pure software side channel attacks also allow a totally unprivileged process
to attack other processes running in parallel on the same processor (or even
remote), despite sophisticated partitioning methods such as memory protection,
sandboxing or even virtualization. This particularly means that side channel

Predicting Secret Keys Via Branch Prediction 227

attacks render all of the sophisticated protection mechanisms as described in
e.g. [Gra, UNRS+] as useless. The simple reason for the failure of these trust
mechanisms is that the new side-channel attacks simply exploit deeper processor
ingredients — i.e., below the trust architecture boundary, cf. [PL, Gra].

Having said all this, it is natural to identify other modern computer architec-
ture ingredients which have not yet been discovered as a security risk and which
are operating below the current trust architecture boundaries. That is the focus
of the present paper — a processor’s Branch Prediction Unit (BPU). More pre-
cisely, we will analyze BPUs and highlight the security vulnerabilities associated
with their opaque operations deep inside a processor. In other words, we will
present so called branch prediction attacks on simple RSA implementations as
a case study to describe the basics of the novel attacks an adversary can use
to compromise the security of a platform. Our attacks can also be adapted to
other RSA implementations and/or other public-key systems like ECC. We try
to refer to specific vulnerable implementations throughout this text.

The paper is organized as follows. We will first give some background informa-
tion including the structure and functionality of a general BPU and the details
of the used RSA-implementations in the next section. Then the following section
presents four different attack principles to exploit a BPU in order to break some
standard RSA implementations. To do so, we gradually develop from an obvi-
ous attack principle more sophisticated attack principles having the potential to
break even the implementations that are believed to be immune to side channel
attacks. This section is then complemented by presenting the results of some
practical implementations of our various attack scenarios. To fully articulate the
strength of our attack principles, we have only chosen to implement such attack
scenarios which are easy to achieve/expect in practice but having greatest prac-
tical significance. Hereafter, we draw some conclusions from the paper and point
the reader to further interesting research areas.

2 Background, Definitions and Preliminaries

Although it is beneficial — in order to completely understand our attacks as
described later — to know many details about modern computer architecture
and branch prediction schemes, it would be unrealistic to explain all these subtle
details here. Thus, we refer the reader to [PH, Sha, She] for a thorough treatment
of this topics. Nevertheless, we will now explain the basic concepts common
to any branch prediction unit, although the exact details differ from processor
to processor and are not completely documented in freely available processor
manuals.

2.1 Branch Prediction Unit

Superscalar processors have to execute instructions speculatively to overcome
control hazards, cf. [She]. The negative effect of control hazards on the effective
machine performance increases as the depth of pipelines increases. This fact

228 O. Acıiçmez, Ç.K. Koç, and J.-P. Seifert

makes the efficiency of speculation one of the key issues in modern superscalar
processor design. The solution to improve the efficiency is to speculate on the
most likely execution path. The success of this approach depends on the accuracy
of branch prediction. Better branch prediction techniques improve the overall
performance a processor can achieve, cf. [She].

A branch instruction is a point in the instruction stream of a program where
the next instruction is not necessarily the next sequential one. There are two
types of branch instructions: unconditional branches (e.g. jump instructions,
goto statements, etc.) and conditional branches (e.g. if-then-else clauses, for and
while loops, etc.). For conditional branches, the decision to take or not to take
the branch depends on some condition that must be evaluated in order to make
the correct decision. During this evaluation period, the processor speculatively
executes instructions from one of the possible execution paths instead of stalling
and awaiting for the decision to come through. Thus, it is very beneficial if the
branch prediction algorithm tries to predict the most likely execution path in a
branch. If the prediction is true, the execution continues without any delays. If
it is wrong, which is called a misprediction, the instructions on the pipeline that
were speculatively issued have to be dumped and the execution starts over from
the mispredicted path. Therefore, the execution time suffers from a mispredic-
tion. The misprediction penalty obviously increases in terms of clock cycles as
the depth of pipeline extends. To execute the instructions speculatively after a
branch, the CPU needs the following information:

– The outcome of the branch. The CPU has to know the outcome of a branch,
i.e., taken or not taken, in order to execute the correct instruction sequence.
However, this information is not available immediately when a branch is
issued. The CPU needs to execute the branch to obtain the necessary infor-
mation, which is computed in later stages of the pipeline. Instead of awaiting
the actual outcome of the branch, the CPU tries to predict the instruction
sequence to be executed next. This prediction is based on the history of the
same branch as well as the history of other branches executed just before
the current branch, cf. [She].

– The target address of the branch. The CPU tries to determine if a branch
needs to be taken or not taken. If the prediction turns out to be taken, the
instructions in the target address have to be fetched and issued. This action
of fetching the instructions from the target address requires the knowledge
of this address. Similar to the outcome of the branch, the target address may
not be immediately available too. Therefore, the CPU tries to keep records
of the target addresses of previously executed branches in a buffer, the so
called Branch Target Buffer (BTB).

Overall common to all Branch Prediction Units (BPU) is the following Figure 1.
As shown, the BPU consists of mainly two “logical” parts, the BTB and the
predictor. As said already above, the BTB is the buffer where the CPU stores
the target addresses of the previously executed branches. Since this buffer is
limited in size, the CPU can store only a number of such target addresses, and

Predicting Secret Keys Via Branch Prediction 229

branch address

BHR

· · ·

global

local

· · ·

· · ·

...

f

BPT

...
...

BTB

...

target address

next seq. addr.

Fig. 1. Branch Prediction Unit Architecture

previously stored addresses may be evicted from the buffer if a new address
needs to be stored instead.

The predictor is that part of the BPU that makes the prediction on the
outcome of the branch under question. There are different parts of a predictor,
i.e., Branch History Registers (BHR) like the global history register or local
history registers, and branch prediction tables, cf. [She].

2.2 Details of Popular RSA Implementations

RSA is the most widely used public key cryptosystem which was developed
by Rivest, Shamir and Adleman, cf. [MvOV]. The main computation in RSA
decryption/signing is the modular exponentiation P = Md(modN), where M
is the message or ciphertext, d is the private key that is a secret, and N is
the public modulus. Here, N is a product of two large primes p and q. If an
adversary obtains the secret value d, he can read all encrypted messages and
impersonate the owner of the key. Therefore, the usual main purpose of using
timing attacks is to reveal this secret value. If the attacker can factorize N ,
i.e., he can obtain either p or q, the value of d can be easily calculated. Hence,
the attacker tries to find p, q, or d. Since the size of the key is very large,
e.g., 1024 bits, the exponentiation is very expensive in terms of the execution
time. Therefore, actual implementations of RSA employ efficient algorithms to
calculate the result of this operation. In the next subsections we explain the
most widely used algorithms.

Binary Square-and-Multiply Exponentiation Algorithm. The binary
version of Square-and-Multiply Algorithm (SM) is the simplest way to perform
an exponentiation. We want to compute Md(mod N) , where d is an n-bit num-
ber, i.e., d = (d0, d1, ..., dn−1)2. Figure 2 shows the steps of SM, which processes

230 O. Acıiçmez, Ç.K. Koç, and J.-P. Seifert

S = M
for i from 1 to n − 1 do

S = S ∗ S (modN)
if di = 1 then

S = S ∗ M (modN)
return S

Fig. 2. Binary version of Square-and-Multiply Exponentiation Algorithm

the bits of d from left to right. The reader should note that all of the multiplica-
tions and squarings are shown as modular operations, although basic SM algo-
rithm computes regular exponentiations. This is because RSA performs modular
exponentiation, and our focus here is only on RSA. In an efficient RSA imple-
mentation all of the multiplications and squarings are actually performed using a
special modular multiplication algorithm, so called Montgomery Multiplication,
which we will also recall now.

Montgomery Multiplication. Montgomery Multiplication (MM) is the most
efficient algorithm to compute a modular multiplication [MvOV]. It simply uses
additions and divisions by powers of 2, which can be accomplished by shifting
the operand to the right. Since it eliminates time consuming integer divisions,
the efficiency of the algorithm is superior to straightforward school-book meth-
ods. Montgomery Multiplication is used to calculate Z = A ∗B ∗R−1 (modN),
where A and B are the “N -residues” of a and b with respect to R, R is a
constant power of 2, and R−1 is the inverse of R in modulus N . I.e., A =
a ∗ R (modN), B = b ∗ R (modN), R−1 ∗ R = 1 (modN), and R > N . An-
other constraint is that R has to be relatively prime to N . But since N is a
product of two large primes in RSA, choosing an R of a power of 2 is sufficient
to guarantee that these two numbers are relatively prime. Let N be a k-bit odd
number, then 2k is the most suitable value for R. A conversion to and from
N -residue format is required to use this algorithm. Hence, it is more attractive
to be used for repeated multiplications on the same residue, just like modular
exponentiations. Figure 3 shows the steps of Montgomery Multiplication Al-
gorithm. The conditional subtraction S − N on the third line is called “extra
reduction” and is of particular interest for Side Channel Attacks in general, cf.
[DKLMQ, Sch].

S = A ∗ B
S = (S − (S ∗ N−1 mod R) ∗ N)/R
if S > N then S = S − N
return S

Fig. 3. Montgomery Multiplication Algorithm

Predicting Secret Keys Via Branch Prediction 231

3 Outlines of Various Attack Principles

We will gradually develop 4 different attack principles in this section. Although
we describe these attacks on a simple RSA implementation, the underlying ideas
can be used to develop similar attacks on different implementations of RSA
and/or on other ciphers based upon ECC. In order to do so we will assume that
an adversary knows every detail of the BPU architecture as well as the imple-
mentation details of the cipher (Kerckhoffs’ Principle). This is indeed a valid
assumption as the BPU details can be extracted using some simple benchmarks
like the ones given in [MMK].

3.1 Attack 1 — Exploiting the Predictor Directly (Direct Timing
Attack)

In this attack, we rely on the fact that the prediction algorithms are determin-
istic, i.e., the prediction algorithms are predictable. We present a simple attack
below, which demonstrates the basic idea behind this attack. The presented at-
tack is a modified version of Dhem et al.’s attack [DKLMQ]. Assume that the
RSA implementation employs Square-and-Multiply exponentiation and Mont-
gomery Multiplication. Assume also that an adversary knows the first i bits of
d and is trying to reveal di. For any message m, he can simulate the first i steps
of the operation and obtain the intermediate result that will be the input of the
(i + 1)th squaring. Then, the attacker creates 4 different sets M1, M2, M3, and
M4, where
M1 = {m | m causes a misprediction during MM of (i + 1)th squaring if di = 1}
M2 = {m | m does not cause a misprediction during MM of (i+1)th squaring if di = 1}
M3 = {m | m causes a misprediction during MM of (i + 1)th squaring if di = 0}
M4 = {m | m does not cause a misprediction during MM of (i+1)th squaring if di = 0},

and MM means Montgomery Multiplication. If the difference between timing
characteristics, e.g., average execution time, of M1 and M2 is more significant
than that of M3 and M4, then he guesses that di = 1. Otherwise di is guessed
to be 0. To express the above idea more mathematically, we define:

– An Assumption Ai
t: di = t , where t ∈ {0, 1}.

– A Predicate P : (m) → {0, 1} with

P(m) =
{

1 if a misprediction occurs during the computation of m2(modN)
0 otherwise.

– An Oracle Ot : (m, i) → {0, 1} under the assumption Ai
t:

Ot(m, i) =
{

1 P(mtemp) = 1
0 P(mtemp) = 0,

where mtemp = m(d0,d1,...di−1,t)2(modN).
– A Separation Si

t under the assumption Ai
t:

(S0, S1) = ({m|Ot(m, i) = 0}, {m|Ot(m, i) = 1}).

232 O. Acıiçmez, Ç.K. Koç, and J.-P. Seifert

For each bit of d, starting from d1, the adversary performs two partitionings
based on the assumptions Ai

0 and Ai
1, where di is the next unknown bit that he

wants to predict. He partitions the entire sample into two different sets. Each
assumption and each plaintext, M , in one of these sets yields the same result for
Ot(M, i). We call these partitioning separations Si

0 and Si
1. Depending on the

actual value of di, one of the assumptions Ai
0 and Ai

1 will be correct. We define
the separation under the correct assumption as “Correct Separation” and the
other as “Random Separation”. I.e., we define the Correct Separation CSi as

CSi = Si
t = (CSi

0, CSi
1) = ({M |Ot(M, i) = 0}, {M |Ot(M, i) = 1}),

and the Random Separation RSi as

RSi = Si
1−t = (RSi

0, RSi
1) = ({M |O1−t(M, i) = 0}, {M |O1−t(M, i) = 1}),

where di = t. The decryption of each plaintext in CSi
1 encounters a misprediction

delay during the ith squaring, whereas none of the plaintext in CSi
0 results in a

misprediction during the same computation. Therefore, the adversary will realize
a significant timing difference between these two sets and he can predict the value
of di. On the other hand, the occurrences of the mispredictions will be random-
like for the sets RSi

0 and RSi
1, which is the reason why we call it a random

separation. We can define a correct decision as taking that decision di = t,
where Ot(M, i) = P(M (d0,d1,...di)2(modN), i) for each possible M .

This attack requires the knowledge of the BPU state just before the decryp-
tion, since this state, as well as the execution of the cipher, determines the
prediction of the target branch. This information is not readily available to an
adversary. However, he can perform the analysis phase assuming each possible
state one at a time. One expects that only under the assumption of the correct
state the above separations should yield a significant difference. Yet, a better
approach is to set the BPU state manually. If the adversary has access to the
machine the cipher is running on, he can execute a process to reset the BPU
state or to set it to a desired state. This will be the strategy for our other attacks.
This type of attacks can be applied on any platform as long as a deterministic
branch prediction algorithm is used on it. To break a cipher using this kind of
attack, we need to have a target branch, outcome of which must depend on the
secret/private key of the cipher, a known nonconstant value like the plaintext
or the ciphertext, and (possibly) some unknown values that can be searched
exhaustively in a reasonable amount of time.

Examples of vulnerable systems. RSA with MM and without CRT (Chi-
nese Remainder Theorem) are susceptible to this kind of attack. The conditional
branch of the extra reduction step can be used as the target branch. We have
already showed the attack on S&M exponentiation. It can be adapted to b-ary
and sliding windows exponentiation, cf. [MvOV], too. In these cases, the adver-
sary needs to search each window value exhaustively and construct the partitions
for each of these candidate window values. He encounters the correct separation
only for the correct candidate and therefore can realize the correct value of the

Predicting Secret Keys Via Branch Prediction 233

windows. If CRT is employed in the RSA implementation, we cannot apply this
attack. The reason is that the outcome of the target branch will also depend
on the values of p and q, which are not feasible to be searched exhaustively.
Similarly, if the RSA implementation does not have a branch that is taken or
not taken depending on a known nonconstant value (e.g. extra reduction step
in Montgomery Multiplication, which is input dependent to be performed), we
cannot use this approach to find the secret key. For example, the if statement in
S&M exponentiation (c.f. Line 4 in Fig. 2) as our target branch is not vulnera-
ble to this attack. This is due to the fact that the mispredictions will occur in
exactly the same steps of the exponentiation regardless of the input values, and
one set in each of the two separations will always be empty.

3.2 Attack 2 — Forcing the BPU to the Same Prediction
(Asynchronous Attack)

In this attack we assume that the cipher runs on a simultaneous multi-threading
(SMT) machine, cf. [She], and the adversary can run a dummy process simul-
taneously with the cipher process. In such a case, he can clear the BTB via
the operations of the dummy process and causes a BTB miss during the exe-
cution of the target branch. The BPU automatically predicts the branch as not
to be taken if it misses the target address in the BTB. Therefore, there will be
a misprediction whenever the actual outcome of the target branch is ‘taken’.
We stress that the two parallel threads are isolated and share only the common
BPU resource, cf. [She, Sha, OST06, Per]. Borrowed from [OST06] we named
this kind of attack an Asynchronous Attack, as the adversary-process needs no
synchronization with the simultaneous crypto process. Here, an adversary also
does not need to know any detail of the prediction algorithm. He can simulate
the exponentiations as done in the previous attack and can partition the sam-
ple based on the “actual” outcome of the branch. In other words, the following
predicate in the oracle (c.f. Section 3.1) can be used:

P(m) =
{

1 if the target branch is taken during the computation of m2(modN)
0 otherwise.

The adversary does not have to clear the entire BTB, but only that BTB set
that stores the target address of the branch under consideration, i.e., the target
branch. We define three different ways to achieve this:

– Total Eviction Method: the adversary clears the entire BTB continuously.
– Partial Eviction Method: the adversary clears only a part of the BTB con-

tinuously. The BTB set that stores the target address of the target branch
has to be in this part.

– Single Eviction Method: the adversary continuously clears only the single
BTB set that stores the target address of the target branch.

The easiest method to apply is clearly the first one, because an adversary
does not have to know the specific address of the target branch. Recall that the

234 O. Acıiçmez, Ç.K. Koç, and J.-P. Seifert

set of the BTB to store the target address of a branch is determined by the
actual logical address of that branch. The resolution of clearing the BTB plays a
crucial role in the performance of the attack. We have assumed so far that it was
possible to clear the entire BTB between two consecutive squaring operations of
an exponentiation. However, in practice this is not (always) the case. Clearing
the entire BTB may take more time than it takes to perform the operations
between two consecutive squarings. Although, this does not nullify the attack,
it will mandate (most likely) a larger sample size. Therefore, if an adversary can
apply one of the last two eviction methods, he can improve the performance
of the attack. We want to mention that, from the cryptographic point of view,
we can assume that an adversary knows the actual address of any branch in
the implementation due to Kerckhoff’s Principle. Under this assumption, the
adversary can apply the single eviction method and achieve a very low resolution,
which enables him to cause a BTB miss each time the target branch is executed.
Recall also, that there is no complicated synchronization between crypto and
adversary process needed.

Examples of vulnerable systems. The same systems vulnerable to the first
attack (c.f. Section 3.1) are also vulnerable to this kind of attack. The main
difference of this attack compared to the first one is the ease of applying it, i.e.,
unnecessity of knowing = reverse-engineering the subtle BPU details, yielding
the correct BPU states for specific time points.

3.3 Attack 3 — Forcing the BPU to the Same Prediction
(Synchronous Attack)

In the previous attack, we have specifically excluded the synchronization is-
sue. However, if the adversary finds a way to establish a synchronization with
the cipher process, i.e., he can determine for (e.g.) the ith step of the expo-
nentiation and can clear the BTB just before the ith step, then he can intro-
duce misprediction delays at certain points during the computation. Borrowed
again from [OST06], we named this kind of attack a Synchronous Attack, as the
adversary-process needs some kind of synchronization with the simultaneous
crypto process. Assume that the RSA implementation employs S&M exponen-
tiation and the if statement in S&M exponentiation (c.f. Line 4 in Fig. 2) is
used as the target branch. As stated above, the previous attacks cannot break
this system if only the mentioned conditional branch is examined. However, if
the adversary can clear the BTB set of the target branch (c.f. Single Eviction
Method in Section 3.2) just before the ith step, he can directly determine the
value of di in the following way.

The adversary runs RSA for a known plaintext and measures the execution
time. Then he runs it again for the same input but this time he clears the single
BTB set during the decryption just before the ith execution of the conditional
branch under examination, i.e., the if statement of Line 4 in Fig. 2. This con-
ditional branch is taken or not taken depending only on the value of di. If it
turns out to be taken, the second decryption will take longer time than the first

Predicting Secret Keys Via Branch Prediction 235

execution because of the misprediction delay. Therefore, the adversary can easily
determine the value of this bit by successively analyzing the execution time.

Examples of vulnerable systems. Any implementation of a cryptosystem is
vulnerable to this kind of attack if the execution flow is “key-dependent”. The
exponents of RSA with S&M exponentiation can be directly obtained even if
the CRT is used. If RSA employs sliding window exponentiation, then we can
find a significant number of bits (but not all) of the exponents. However, if b-
ary method is employed, then only 1 over 2wsize of the exponent bits can be
discovered, where wsize is the size of the window. This attack can even break
such prominent and efficient implementations that had been considered to be
immune to certain kinds of side-channel attacks, cf. [JY, Wal].

3.4 Attack 4 — Trace-Driven Attack Against the BTB
(Asynchronous Attack)

In the previous three attacks, we have considered analyzing the execution time
of the cipher. In this attack, we will follow a different approach. Again, assume
that an adversary can run a spy process simultaneously with the cipher. This
spy process continuously executes branches and all of these branches map to the
same BTB set with the conditional branch under attack. In other words, there is
a conditional branch (under attack) in the cipher, which processes the exponent
and executes the corresponding sequence of operations. Moreover, assume also
that the branches in the spy process and the cipher process can only be stored
in the same BTB set. Recall that it is easy to understand the properties of the
BTB using simple benchmarks as explained in [MMK].

The adversary starts the spy process before the cipher, so when the cipher
starts decryption/signing, the CPU cannot find the target address of the target
branch in BTB and the prediction must be not-taken, cf. [She]. If the branch
turns out to be taken, then a misprediction will occur and the target address
of the branch needs to be stored in BTB. Then, one of the spy branches has
to be evicted from the BTB so that the new target address can be stored in.
When the spy-process re-executes its branches, it will encounter a misprediction
on the branch that has just been evicted. If the spy-process also measures the
execution time of its branches (altogether), then it can detect whenever the ci-
pher modifies the BTB, meaning that the execution time of these spy branches
takes a little longer than usual. Thus, the adversary can simply determine the
complete execution flow of the cipher process by continuously performing the
same operations, i.e., just executing spy branches and measuring the execution
time. He will see the prediction/misprediction trace of the target branch, and so
he can determine the execution flow. We named this kind of attack an Asynchro-
nous Attack, as the adversary-process needs no synchronization at all with the
simultaneous crypto process — it is just following the paradigm: continuously
execute spy branches and measure their execution time.

Examples of vulnerable systems. Any implementation that is vulnerable to
the previous attack is also vulnerable to this one. Specifically any implementation

236 O. Acıiçmez, Ç.K. Koç, and J.-P. Seifert

of a cryptosystem is vulnerable to this kind of attack if the execution flow is
“key-dependent”. This attack, on the other hand, is very easy to apply, because
the adversary does not have to solve the synchronization problem at all. Con-
sidering all these aspects of the current attack, we can confidently say that it
is a powerful and practical attack, which puts many of the current public-key
implementations in danger.

4 Practical Results

We also performed practical experiments to validate the aforementioned attacks
which exploit the branch predictor behavior of modern microprocessors. Obvi-
ously, eviction-driven attacks using simultaneous multithreading are more gen-
eral, and demand nearly no knowledge about the underlying BPU — compared
to the other type of branch prediction attacks from above. Thus, we have chosen
to carry out our experimental attacks in a popular simultaneous multithreading
environment, cf. [Sha]. In this setting, an adversary can apply this kind of attacks
without any knowledge on the details of the used branch prediction algorithm
and BTB structure. Therefore we decided to implement our two asynchronous
attacks and show their results as a “proof-of-concept”.

4.1 Results for Attack 2 = Forcing the BPU to the Same Prediction
(Asynchronous Attack)

In this kind of attack we have chosen, for reasons of simplicity and practical
significance, to implement the total eviction method. We used a dummy process
that continuously evicts BTB entries by executing branches. This process was
simultaneously running with RSA on an SMT platform. It executed a large
number of branches and evicted each single BTB entry one at a time. This
method requires almost no information on the BTB structure. We performed
this attack on a very simple RSA implementation that employed square-and-
multiply exponentiation and Montgomery multiplication with dummy reduction.
We used the RSA implementation in OpenSSL version 0.9.7e as a template and
made some modifications to convert this implementation into the simple one
as stated above. To be more precise, we changed the window size from 5 to 1,
turned blinding off, removed the CRT mode, and added the dummy reduction
step. The experiments were run under the configuration shown in Table 1. We
used random plaintexts generated by the rand() and srand() functions available
in the standard C library. The current time was fed into srand() function as
the pseudorandom number generation seed. We measured the execution time in
terms of clock cycles using the cycle counter instruction RDTSC, which is available
in user-level.

We generated 10 million random single-block messages and measured their
decryption times under a fixed 512-bit randomly generated key. In our analysis
phase, we eliminated the outliers and used only 9 million of these measure-
ments. We then processed each of these plaintext and divided them into the

Predicting Secret Keys Via Branch Prediction 237

Table 1. The configuration used in the experiments

Operating System: RedHat workstation 3
Compiler: gcc version 3.2.3
Cryptographic Library: OpenSSL 0.9.7e

sets as explained in Section 3.1 and Section 3.2 based on the assumption of
the next unknown bit and the assumed outcome of the target branch. Hereafter
we calculated the difference of the average execution time of the correspond-
ing sets for each bit of the key except the first two bits. The mean and the
standard deviation of these differences for correct and random separations are
given in the following Figure 4. This figure shows also on the right side, the raw
timing differences after averaging the 9 million measurements into one single
timing difference, where a single dot corresponds to the timing difference of a
specific exponent bit, i.e., the x-axis corresponds to the exponent bits from 2 to
511. Using the values in Figure 4, we can calculate the probability of successful

-300

-250

-200

-150

-100

-50

0

50

100

150

0 100 200 300 400 500 600

Correct Seperation Random Seperation

Fig. 4. Practical results when using the total eviction method in attack principle 2

prediction of any single key bit. We interpret the measured average execution
time differences for correct and random separation as realizations of normally
(Gaussian) distributed random variables, denoted by Y and X respectively. We
may assume Y ∼ N(μY , σ2

Y) and X ∼ N(μX , σ2
X) for each bit of any possible

key, where μY = 58.91, μX = 1.24, σY = 62.58, and σX = 34.78, cf. Figure 4.
We then introduce the normally distributed random variable Z as the difference
between realizations of X and Y , i.e., Z = Y − X and Z ∼ N(μZ , σ2

Z). The
mean and deviation of Z can be calculated from those of X and Y as

μZ = μY − μX = 58.91 − 1.24 = 57.67

σZ =
√

σ2
Y + σ2

X =
√

(62.58)2 + (34.78)2 = 71.60

As our decision strategy is to pick that assumption of the bit value that yields
the highest execution time difference between the sets we constructed under that

238 O. Acıiçmez, Ç.K. Koç, and J.-P. Seifert

assumption, our decision will be correct whenever Z > 0. The probability for this
realization, Pr[Z > 0], can be determined by using the z-distribution table, i.e.,

Pr[Z > 0] = Φ((0 − μZ)/(σZ)) = Φ(−0.805) = 0.79,

which shows that our decisions will be correct with probability 0.79 if we use
N = 10 million samples. Although we could increase this accuracy by increasing
the sample size, this is not necessary. If we have a wrong decision for a bit, both
of the separations will be random-like afterwards and we will only encounter
relatively insignificant differences between the separations. Therefore, it is pos-
sible to detect an error and recover from a wrong decision without necessarily
increasing the sample size.

4.2 Results for Attack 4 = Trace-Driven Attack Against the BTB
(Asynchronous Attack)

To practically test attack 4, which is also an asynchronous attack, we used a very
similar experimental setup that is described above. But, instead of a dummy
process that blindly evicts the BTB entries, we used a real spy function. The spy-
process evicted theBTBentries by executing branches just like the dummyprocess.
Additionally, it also measured the execution time of these branches. More precisely,
it only evicted the entries in the BTB-set that contains the target address of the
RSA branch under attack and reported the timing measurements. In this experi-
ment, we examined the execution of the conditional branch in the exponentiation
routine and not the extra reduction steps of Montgomery Multiplication.

We implemented the spy function in such a way that it only checks the BTB
at the beginning or early stages of each montgomery multiplication. Thus, we
get exactly one timing measurement per montgomery operation, i.e., multiplica-
tion or squaring. Therefore, we could achieve a relatively “clean” measurement
procedure. We ran our spy and the cipher process N many times, where N is
the sample size. Then we averaged the timing results taken from our spy to de-
crease the noise amplitude in the measurements. The resulting graph shown in
Figure 5 presents our first results for different values of N — clearly visualizing
the difference between squaring and multiplication.

Average Spy Function Time

625

630

635

640

645

650

655

660

0 20000 40000 60000 80000 100000

Sample Size

C
lo

ck
 C

yc
le Squarings

Multiplications

Fig. 5. Increasing gap between multiplication and squaring steps due to missing BTB
entries

Predicting Secret Keys Via Branch Prediction 239

550

570

590

610

630

650

670

690

0 100 200 300 400 500 600 700 800

100000 measurements

550

570

590

610

630

650

670

690

0 100 200 300 400 500 600 700 800

10000 measurements

550
570
590
610
630
650
670
690
710
730
750

0 100 200 300 400 500 600 700 800

Squarings Multiplications

100 measurements

550

570

590

610

630

650

670

690

710

0 100 200 300 400 500 600 700 800

1000 measurements

Fig. 6. Connecting the spy-induced BTB misses and the square/multiply cycle gap

As said above, one can deduce very clearly from Figure 5 that there is a
stabilizing significant cycle difference between multiplication and squaring steps
during the exponentiation. Now, that we have verified this BPU-related gap
between the successive multiplication and squaring steps during the exponen-
tiation, we want to show now, how simple it is to retrieve the secret key with
this attack principle 4. To do this, we simply zoom into the following Figure 6
with N = 10000 measurements. This yields then the picture on the bottom of
Figure 6, showing from 89th to 104th montgomery operations for N = 10000 mea-
surements. Once such a sequence of multiplications and squarings is captured,
it is a trivial task to translate this sequence to the actual values of the key bits.

240 O. Acıiçmez, Ç.K. Koç, and J.-P. Seifert

We would like to remark that the sample size of 10000 measurements might appear
quite high at first sight. But using some more sophisticated tricks (which are out
of the scope of the present paper) we could have a meaningful square/multiply
cycle gap using only a few measurements.

5 Conclusions and Recommendations for Further
Research

Along the theme of the recent research efforts to explore software side-channels
attacks against commodity PC platforms, this paper has identified the branch
prediction capability of modern microprocessors as a new security risk which has
not been known so far. Using RSA, the most popular public encryption/signature
scheme, and its most popular open source implementation, openSSL, we have
shown that there are various attack scenarios how an attacker could exploit a
CPU’s branch prediction unit. Also, we have successfully implemented a very pow-
erful attack (Attack 4 = Trace-driven Attack against the BTB which even has the
power to break prominent side-channel security mechanisms like those proposed
by [JY, Wal]). The practical results from our experiments should be encourag-
ing to think about efficient and secure software mitigations for this kind of new
side-channel attacks. As an interesting countermeasure the following branch-less
exponentiation method, also known as “atomicity” from [CCJ] comes to our mind.

Another interesting research vector might be the idea to apply Branch Predic-
tion Attacks to symmetric ciphers. Although this seems at first sight a bit odd,
we would like to point out that an early study of [HK] also applied the Timing
Attack scenario of Kocher [Koc] to certain DES implementations and identified
branches in the respective DES implementations as a potential source of infor-
mation leakage. Paired with our improved understanding of branches and their
potential information leakage of secrets, it might be a valid idea, to try Branch
Prediction Attacks along the ideas of [HK].

Similar to other very recent software side-channel attacks against RSA and
AES, cf. [Per, NS, OST06, ASK], our practically simplest attacks rely on a CPU’s
Simultaneous Multi Threading (SMT) capability, cf. [Sha]. While SMT seems at
first sight a necessary requirement of our asynchronous attacks, we strongly
believe that this is just a matter of clever and deeper system’s programming
capabilities and that this requirement could be removed along some ideas as
mentioned in [Hu, OST06]. Thus, we think it is of highest importance to repeat
our asynchronous branch prediction attacks also on non-SMT capable CPU’s.

References

[ASK] O. Acıiçmez, W. Schindler, and Ç. K. Koç. Cache Based Remote Timing
Attack on the AES. Topics in Cryptology - CT-RSA 2007, The Cryptog-
raphers’ Track at the RSA Conference 2007, to appear.

[Ber] D. J. Bernstein. Cache-timing attacks on AES. Technical Report,
37 pages, April 2005. Available at: http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf

Predicting Secret Keys Via Branch Prediction 241

[BB] D. Brumley and D. Boneh. Remote Timing Attacks are Practical. Proceed-
ings of the 12th Usenix Security Symposium, pages 1-14, 2003.

[CEPW] Y. Chen, P. England, M. Peinado, and B. Willman. High Assurance
Computing on Open Hardware Architectures. Technical Report, MSR-
TR-2003-20, 17 pages, Microsoft Corporation, March 2003. Available at:
ftp://ftp.research.microsoft.com/pub/tr/tr-2003-20.ps

[CCJ] B. Chevallier-Mames, M. Ciet, and M. Joye. Low-cost solutions for pre-
venting simple side-channel analysis: side-channel atomicity. IEEE Trans-
actions on Computers, volume 53, issue 6, pages 760-768, June 2004.

[CNK] J.-S. Coron, D. Naccache, and P. Kocher. Statistics and Secret Leakage.
ACM Transactions on Embedded Computing Systems, volume 3, issue 3,
pages 492-508, August 2004.

[DKLMQ] J. F. Dhem, F. Koeune, P. A. Leroux, P. Mestre, J.-J. Quisquater, and J. L.
Willems. A Practical Implementation of the Timing Attack. Proceedings
of the 3rd Working Conference on Smart Card Research and Advanced
Applications - CARDIS 1998, J.-J. Quisquater and B. Schneier, editors,
Springer-Verlag, LNCS vol. 1820, January 1998.

[ELMP+] P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Willman. A
Trusted Open Platform. IEEE Computer, volume 36, issue 7, pages 55-62,
July 2003.

[GRAB] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A.
Saeed, Z. Sperber, and R. Valentine. The Intel Pentium M Processor: Mi-
croarchitecture and performance. Intel Technology Journal, volume 7, issue
2, May 2003.

[Gra] D. Grawrock. The Intel Safer Computing Initiative: Building Blocks for
Trusted Computing, Intel Press, 2006.

[HK] A. Hevia and M. Kiwi. Strength of Two Data Encryption Standard Im-
plementations under Timing Attacks. ACM Transactions on Information
and System Security 2(4):416-437, 1999.

[Hu] W. M. Hu. Lattice scheduling and covert channels. Proceedings of IEEE
Symposium on Security and Privacy, IEEE Press, pages 52-61, 1992.

[JY] M. Joye and S.-M. Yen. The Montgomery powering ladder. Cryptographic
Hardware and Embedded Systems - CHES 2002, B. S. Kaliski Jr, Ç. K.
Koç, and C. Paar, editors, pages 291-302, Springer-Verlag, LNCS vol. 2523,
2003.

[Koc] P. C. Kocher. Timing Attacks on Implementations of Diffie–Hellman, RSA,
DSS, and Other Systems. Advances in Cryptology - CRYPTO ’96, N.
Koblitz, editors, pages 104-113, Springer-Verlag, LNCS vol. 1109, 1996.

[MvOV] A. J. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography, CRC Press, New York, 1997.

[MMK] M. Milenkovic, A. Milenkovic, and J. Kulick. Microbenchmarks for Deter-
mining Branch Predictor Organization. Software Practice & Experience,
volume 34, issue 5, pages 465-487, April 2004.

[open] Openssl: the open-source toolkit for ssl/tls. Available online at:
http://www.openssl.org/.

[NS] M. Neve and J.-P. Seifert. Advances on Access-driven Cache Attacks on
AES. Proceedings of Selected Area of Cryptology (SAC 2006), Montreal,
Canada, August 2006, appear at Springer LNCS.

[OST05] D. A. Osvik, A. Shamir, and E. Tromer. Other People’s Cache: Hy-
per Attacks on HyperThreaded Processors. Presentation available at:
http://www.wisdom.weizmann.ac.il/∼tromer/.

242 O. Acıiçmez, Ç.K. Koç, and J.-P. Seifert

[OST06] D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Counter-
measures: The Case of AES. Topics in Cryptology - CT-RSA 2006, The
Cryptographers’ Track at the RSA Conference 2006, D. Pointcheval, editor,
pages 1-20, Springer-Verlag, LNCS vol. 3860, 2006.

[PH] D. Patterson and J. Hennessy. Computer Architecture: A Quantitative Ap-
proach. 3rd edition, Morgan Kaufmann, 2005.

[Pea] S. Pearson. Trusted Computing Platforms: TCPA Technology in Context,
Prentice Hall PTR, 2002.

[Per] C. Percival. Cache missing for fun and profit. BSDCan 2005, Ottawa, 2005.
Available at:
http://www.daemonology.net/hyperthreading-considered-harmful/.

[PL] C. P. Pfleeger and S. L. Pfleeger. Security in Computing, 3rd edition, Pren-
tice Hall PTR, 2002.

[Sch] W. Schindler. A Timing Attack against RSA with the Chinese Remainder
Theorem. Cryptographic Hardware and Embedded Systems - CHES 2000,
Ç. K. Koç and C. Paar, editors, pages 109-124, Springer-Verlag, LNCS vol.
1965, 2000.

[Sha] T. Shanley. The Unabridged Pentium 4 : IA32 Processor Genealogy.
Addison-Wesley Professional, 2004.

[She] J. Shen and M. Lipasti. Modern Processor Design: Fundamentals of Su-
perscalar Processors. McGraw-Hill, 2005.

[SPL] O. Sibert, P. A. Porras, and R. Lindell. The Intel 80x86 Processor Ar-
chitecture: Pitfalls for Secure Systems. IEEE Symposium on Security and
Privacy, pages 211-223, 1995.

[Smi1] S. W. Smith. Trusted Computing Platforms: Design and Applications,
Springer-Verlag, 2004.

[TCG] Trusted Computing Group, http://www.trustedcomputinggroup.org.
[UNRS+] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V.

Anderson, S. M. Bennett, A. Kagi, F. H. Leung, L. Smith. Intel Virtual-
ization Technology, IEEE Computer, volume 38, number 5, pages 48-56,
May 2005.

[Wal] C. D. Walter. Montgomery Exponentiation Needs No Final Subtractions.
IEE Electronics Letters, volume 35, number 21, pages 1831-1832, October
1999.

Template Attacks on Masking—Resistance
Is Futile�

Elisabeth Oswald1,2 and Stefan Mangard1

1 Graz University of Technology, Institute for Applied Information Processing and
Communications (IAIK), Inffeldgasse 16a, A–8010 Graz, Austria

{elisabeth.oswald,stefan.mangard}@iaik.tugraz.at
2 University of Bristol, Department of Computer Science, Merchant Venturers

Building, Woodland Road, Bristol, BS8 1UB, UK
eoswald@cs.bris.ac.uk

Abstract. In this article we discuss different types of template attacks
on masked implementations. All template attacks that we describe are
applied in practice to a masked AES software implementation on an 8-bit
microcontroller. They all break this implementation. However, they all
require quite a different number of traces. It turns out that a template-
based DPA attack leads to the best results. In fact, a template-based
DPA attack is the most natural way to apply a template attack to a
masked implementation. It can recover the key from about 15 traces.
All other attacks that we present perform worse. They require between
about 30 and 1800 traces. There is no difference between the application
of a template-based DPA attack to an unmasked and to a masked imple-
mentation. Hence, we conclude that in the scenario of template attacks,
masking does not improve the security of an implementation.

1 Introduction

Power analysis attacks and countermeasures are among the most active areas of
research in applied cryptography. In this field scientists investigate the practi-
cal security of implementations of cryptographic algorithms. In particular, they
study how the information that leaks through the power consumption of a cryp-
tographic device can be exploited in practice. It has turned out that unprotected
devices, no matter which cryptographic algorithm they implement, are an easy
target for power analysis attacks.

In the pioneering work of Kocher et al. [KJJ99], simple power analysis (SPA)
and differential power analysis (DPA) attacks have been introduced. SPA attacks
have been described as attacks in which the attacker has access to only a very
small set of power traces of a devices. In contrast, DPA attacks, are based on
a large number of power traces. Consequently, the description of DPA attacks
includes a statistical method that can be used to determine the unknown key.
� The work described in this paper has been supported in part by the European Com-

mission through the IST Programme under Contract IST-2002-507932 ECRYPT and
through the Austrian Science Fund (FWF) under grant number P18321.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 243–256, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

244 E. Oswald and S. Mangard

A particularly interesting class of power analysis attacks, so-called template
attacks, has been introduced by Chari et al. [CRR03]. In a template-based power
analysis attack, the attacker is assumed to know the power consumption char-
acteristics of some instructions of a device. This characterization is stored and
called template. Templates are then used as follows. In a template-based DPA
attack, the attacker matches the templates based on different key hypotheses
with the recorded power traces. The templates that match best indicate the
key. This type of attack is the best attack in an information theoretic sense,
see [CRR03].

A very popular countermeasure to defeat power analysis attacks is called
masking. In a masked implementation, all intermediate values that are com-
puted during the execution of a cryptographic algorithm are concealed by a
random value, which is called mask. This ensures, if correctly implemented, a
pairwise independence between masked values, unmasked values, and masks. As
a consequence, (first-order) DPA attacks do not work.

It has been observed previously, that masked implementations can be attacked
by second-order DPA attacks and template-based DPA attacks. However, the re-
search in this area is scattered. Several groups have applied different concepts of
attacks to different types of implementations making different assumptions. Con-
sequently, by reading the so-far published literature it is hard to evaluate which
attack strategy works best. A related question is how many power traces does
a template-based DPA attack need to break a masked implementation? And,
continuing this line of thought: is there any difference in the security between
an unmasked and a masked implementation in the template scenario?

In this article, we aim to answer these questions. We explain several ways
to apply template attacks to masked implementations of block ciphers. These
theoretical descriptions are followed by practical results of the implementation
of the described attacks. This means, we have implemented all attacks and ap-
plied them to an implementation of a masked AES on an 8-bit microcontroller.
This allows a fair comparison of the attacks on software implementations on a
typical smartcard processor. Our research leads to devastating conclusions for
the security of masked implementations of block ciphers on smartcards. In the
scenario of template attacks, there is actually no difference in the security of
masked and unmasked implementations. Template attacks work virtually in the
same way and have the same effectiveness. They can recover the key from about
15 power traces.

This article is organized as follows. Sect. 2 reviews template attacks and dis-
cusses related work. In Sect. 3 we explain several template attacks to break
masked implementations. In Sect. 4 we apply these attacks to a masked AES soft-
ware implementation on a microcontroller. We conclude our research in Sect. 5.

2 Template Attacks

The beauty of a standard DPA attack, such as described in [KJJ99], is that
it can be conducted by an attacker with relatively low effort. This means, in

Template Attacks on Masking—Resistance Is Futile 245

a standard DPA attack, the attacker is not assumed to have extensive knowledge
about the device and the implementation of the cryptographic algorithm on it.
However, in practice also more powerful attackers have to be considered. For
instance, there are attackers who are able to obtain detailed knowledge about
the power consumption characteristics of a device.

This way of thinking directly leads to the concept of template attacks. A
template attack works in two phases. In the first phase, the attacker characterizes
a device that is similar to the device that she intends to attack later on. In the
second phase, the real attack on a particular device takes place.

2.1 Template Building

During the characterization of a device, the attacker usually determines the prob-
ability distribution of the power consumption of certain instructions. Thereby
the focus is typically on instructions that are likely to occur during the exe-
cution of the cryptographic algorithm, such as different types of move (MOV)
instructions or the exclusive-or (XOR) instruction.

In this context it is common to assume that the probability distribution of the
power consumption is a multivariate normal distribution. The probability density
function of that describes a multivariate normal distribution given in (1).

f(x) =
1√

(2 · π)n · det(C)
· exp

(
−1

2
· (x − m) · C−1 · (x − m)′

)
(1)

The multivariate normal distribution is fully defined by the parameter m, which
is the mean vector, and the parameter C, which is the covariance matrix. Of
course, these two parameters are unknown and have to be estimated by the at-
tacker. Standard estimation methods can be found in textbooks such as [Kay98].
In other words, during the characterization phase, the attacker needs to acquire
a number of power traces for each instruction that should be characterized with
different data. Then, for each instruction and each data value, the mean vec-
tor m and the covariance matrix C are estimated by using the acquired power
traces. The pair (m,C) is called template and denoted by h in the remainder of
this article. As a result of the characterization phase, the attacker has a number
of templates: one template hv for each instruction using a particular data value
v. For example, if the attacker has decided to characterize a MOV instruction of
an 8-bit microcontroller, the attacker derives 256 templates: one for each 8-bit
value that can be moved.

2.2 Template Matching

During the template matching, the attacker calculates intermediate values vi,j

of the algorithm by making hypotheses about the key (actually about a part of
it). The intermediate values vi,j that depend on the input data di (1 ≤ i ≤ D)
and the key hypothesis kj (1 ≤ j ≤ K) are associated with the templates.
Hence, each key hypothesis kj suggests a template h for each input value. The

246 E. Oswald and S. Mangard

hypothetical key that corresponds to the key in the device always suggests the
template that matches best to the acquired trace ti. Matching a trace ti with a
template h means that we use (1) to calculate the probability p(ti|kj).

2.3 Template-Based DPA Attack

We start the description of template-based DPA attacks by first only consider-
ing one trace ti. In this case, the attacker is essentially interested in answering
the following question: Given the trace ti, what is the probability that the key
of the device equals kj? This conditional probability p(kj |ti) can be calculated
based on the result of the template matching using Bayes’ theorem, see for exam-
ple [Kay98]. Bayes’ theorem allows us to calculate the probability p(kj |ti) based
on the prior probability p(kl) and the probability p(ti|kl). This is shown in (2).

p(kj |ti) =
p(ti|kj) · p(kj)∑K

l=1 (p(ti|kl) · p(kl))
(2)

The prior probabilities are the probabilities for the different keys without con-
sidering the trace ti. Bayes’ theorem can hence essentially be viewed as an update
function for probabilities. The input of the function are the prior probabilities
p(kl) that do not consider ti. The output are the posteriori probabilities p(kj |ti)
that consider ti. Note that sums of the priori probabilities and the posteriori
probabilities are always 1, i.e.

∑K
l=1 p(kl) =

∑K
l=1 p(kl|ti) = 1.

Given just one trace ti, the best guess for the key that is used by the device
is the key kj that leads to the highest probability p(kj |ti). Guessing the key of
the device based on this strategy is called maximum-likelihood approach.

Now we extend this approach to multiple traces. We are hence interested in
determining the probability p(kj |T). This is the probability that, given a matrix
T = (ti,j)D×T of power consumption values, the device uses the key kj . The
number of rows of T is D because there is one trace for each input data.

The extension from p(kj |ti) to p(kj |T) is not very difficult. Since the power
traces are statistically independent, we can multiply the probabilities that cor-
respond to different traces and fill the product into (2), see (3). An alterna-
tive way to derive this formula is to apply Bayes’ rule iteratively. This means
p(kj |T) = p(kj |tD), if the prior probability p(kj) is set to p(kj |ti−1) when cal-
culating p(kj |ti).

p(kj |T) =

(∏D
i=1 p(ti|kj)

)
· p(kj)∑K

l=1

((∏D
i=1 p(ti|kl)

)
· p(kl)

) (3)

Equation (3) is the basis for template-based DPA attacks. It leads to the
probabilities p(kj |T) for j = 1, . . . , K that can be used to guess the key of the
device based on the maximum-likelihood approach.

Note, that there are some practical issues that need to be taken into account.
For instance, the number of points within a trace, which are used to build the
templates, needs to be chosen carefully. One might argue that the more points

Template Attacks on Masking—Resistance Is Futile 247

the better. However, the size of the covariance matrix grows quadratically in the
number of points. In addition, evaluating (1) requires to invert the covariance
matrix which often causes numerical problems, especially if the matrix is large.
Consequently, one needs to be careful when selecting the points that define the
template. In the literature, one commonly refers to those points as points of
interest. References [CRR03] and [RO04] have discussed ways to find a good set
of points of interest. The approach taken by these article is simple: one uses DPA
attacks to find the points of interest. A trick that can help to cope with problems
associated with the covariance matrix is to work with reduced templates. In a
reduced template, the covariance matrix is simply the identity matrix.

2.4 Related Work

Template attacks have been originally proposed by Chari et al. [CRR03]. They
have been applied in an SPA attack to break an RC4 implementation. In a later
work by Agrawal et al. [ARR03] this concept has been expanded and discussed
in the context of DPA attacks. Finally, Agrawal et al. [ARRS05] have provided
a first example of using templates to attack masking schemes. This article is of
particular interest because it actually restricts the template assumption. This
means, instead of assuming that the attacker has full control (including the
mask generation) over the device during the characterization phase, the authors
assume that the attacker has only access to a device with a defective random
number generator (RNG). Due to the defective RNG, the attacker can find the
points of interest with a DPA even though masking is applied. Consequently,
templates can be built. Peeters et al. [PSDQ05] have applied template attacks to
masked hardware implementations. They succeeded, however, with a relatively
high number of traces.

In this article, we investigate how template attacks can be applied to break
software implementations of masking schemes. We investigate the number of
required traces and the applicability in practice. Furthermore, we compare our
attacks to previous attacks on masking schemes. The purpose of all these investi-
gations is to find out whether masking improves the security if template attacks
are considered.

3 Template Attacks on Masking Schemes

As explained in the previous section, template attacks have been studied in the
literature in different contexts. Lately, they have also been applied to imple-
mentations of masking schemes. Unfortunately, previous work is scattered in the
sense that attacks under specific assumptions were applied to different imple-
mentations on different platforms. Hence, it is difficult to assess the true power
of template attacks on masking schemes.

Masking implementations of cryptographic algorithms is very popular, espe-
cially in theory, but also in practice. Papers with co-authors from the
industry such as [AG03] or [BGK05] show that even the industry investigates
masking as a practical countermeasure.

248 E. Oswald and S. Mangard

In a masked implementation, each intermediate value v is concealed by a ran-
dom value m that is called mask: vm = v ∗ m. Hence, the mask is generated
inside the cryptographic device and varies from execution to execution. It is
not known to the attacker. The operation ∗ is typically defined according to the
operations that are used in the cryptographic algorithm. In the case of implemen-
tations of block ciphers, the operation ∗ is most often the Boolean exclusive-or
function ⊕.

Masking provides security against first-order DPA attacks, because each
masked intermediate value vm is pairwise independent of v and m. In a typ-
ical implementation, the masks are directly applied to the plaintext or the key.
The implementation of the algorithm needs to be slightly changed in order to
process the masked intermediate values and in order to keep track of the masks.
The resulting is also masked. Hence, the masks need to be removed at the end
of the computation in order to get the ciphertext.

In this section, we discuss different ways to apply template attacks to break
implementations of masking schemes. First, we discuss the most natural way of
applying a template attack to a masked implementation. Second, we discuss how
templates can be used together with second-order DPA techniques.

3.1 Template-Based DPA Attack

As sketched in Sect. 2, the attacker builds templates for some intermediate op-
erations that occur in the implementation of the cryptographic algorithm. For
instance, the attacker could characterize the MOV instruction, which is often
used in implementations of block ciphers. Assuming that we characterize an
n-bit processor, the attacker produces 2n templates. During the attack, the tem-
plate matching takes place. This means, the attacker computes hypothetical
intermediate values based on key hypotheses. Recall from the previous section
that because each intermediate value is associated with a template, also each key
hypothesis is associated with a template. The obstacle that comes into play in a
masked implementation is that the intermediate values are masked, and we do
not know the value of the mask m in a certain encryption run. This implies that
we have to perform the template matching for all M values that the mask m can
take. Consequently, the template matching gives the probabilities p(ti|kj ∧ m)
and we have to derive p(ti|kj) by calculating (4).

p(ti|kj) =
M−1∑
m=0

p(ti|kj ∧ m) · p(m) (4)

With p(ti|kj) we can calculate (3). Hence, except for the extra calculation
of (4), a template-based DPA attack on a masked implementation works in
exactly the same manner as a template-based DPA attack on an unmasked
implementation.

Template Attacks on Masking—Resistance Is Futile 249

3.2 Template Attacks Combined with Second-Order Techniques

We have already seen that template attacks apply naturally to masked implemen-
tations. They are the best attacks to break unmasked implementations [ARR03].
Because they can be applied in the same way to masked implementations, they
can be expected to be the best attacks for masked implementations as well.
Nevertheless, it is still interesting to see if and how they can be combined with
second-order DPA techniques. The reason is to find out whether a combina-
tion could lead to attacks with different assumptions. The combinations that
we discuss use templates to extract some information from the (pre-processed)
traces, and then perform a DPA attack. Before we discuss some ways to com-
bine template and second-order DPA attacks, we review the working principle
of second-order DPA attacks first.

Second-Order DPA Attacks. In a second-order DPA attack, information
about two intermediate values, which are related to the same mask, is combined.
Then, after this combination, a standard DPA attack is performed. Consequently,
a second-order DPA attack on a software implementation consists of two steps. In
the first step, the preprocessing step, a function that combines points (pairwise)
within the acquired power traces is applied to the traces. In the second step, a
standard DPA attack with suitable key hypotheses is applied to the preprocessed
data. In the case of masked implementations of block ciphers on smartcards,
computing the absolute value of the difference of two points has turned out to be
a suitable preprocessing function [OMHT06]. Based on the key hypotheses, the
attacker computes the exclusive-or between two unmasked intermediate values
and uses this as hypothetical intermediate value in the DPA attack. This works
nicely for smartcards that leak the Hamming weight (HW) of the intermediate
values. In this case, the two functions HW (u⊕v) and |HW (um)−HW (vm)| are
reasonably correlated. More precisely, the correlation coefficient ρ for the correct
key ck at the time tc when the attacked intermediate result(s) are computed, is
0.24 if u and v are 8-bit values.

ρck,ct(HW (u ⊕ v), |HW (um) − HW (vm)|) = 0.24

Because a second-order DPA attack requires to pre-process the traces, we can
build templates before, during, and after this preprocessing step.

Templates Before Preprocessing. Second-order DPA attacks require more
traces than standard DPA attacks because the pre-processed data, i.e. the data
that corresponds to |HW (a⊕m)−HW (b⊕m)|, correlates only reasonably well
to the hypothetical data HW (a ⊕ b). The authors of [JPS05] have theoretically
and the authors of [OMHT06] have practically assessed that the correlation co-
efficient ρck,ct for a second-order DPA attack with this particular preprocessing
method is about 0.24 for an 8-bit device that leaks the Hamming weight. This
is still good enough for an attack but significantly less that the correlation coef-
ficient that can be expected for a standard DPA attack on such devices (which
can be close to 1, depending on the hypotheses).

250 E. Oswald and S. Mangard

Therefore, we would like to find preprocessing functions pre() that maximize
ρ(HW (u ⊕ v), pre(HW (um), HW (vm)). The function HW (u ⊕ v) has a com-
plicated structure. When approximating functions with a complicated structure,
theory suggests using trigonometric functions. Our experiments have shown that
using higher degree polynomials based on the sine function improves the correla-
tion coefficient dramatically. In addition, instead of using HW (u⊕v) we can use
more complex combination functions comb(). For example, it turns out that the
correlation between the two following sine-based functions is about 0.83 when
considering 8-bit values:

comb(u, v) = − 89.95 · sin (HW (u ⊕ v)3) −
− 7.82 · sin (HW (u ⊕ v)2) + 67.66

pre(HW (um), HW (vm)) = sin (HW (um) − HW (vm))2

ρ(comb(u, v), pre(HW (um), HW (vm))) = 0.83

There is one significant problem when using these improved preprocessing and
combination functions in practice. We have derived them based on noise-free
data (i.e. the Hamming weights). In practice however, we do not have noise free
measurements. Hence, the improved preprocessing will not work immediately.

In the light of this, templates can be useful. The idea is to build templates
that allow identifying the Hamming weight of the processed data. If such tem-
plates are available, a second-order DPA attack works as follows. The templates
are used to deduce HW (um) and HW (vm). Instead of doing the preprocess-
ing on the traces, we do the improved preprocessing on the extracted Hamming
weights. Because we now work directly with the Hamming weights, we can use an
improved preprocessing function and thereby increase the correlation coefficient.

Templates During Preprocessing. The security of any masked implementa-
tion depends on the randomness of the masks. Randomness means that the masks
are uniformly distributed. Consequently, if the random number generator which
produces the masks is biased, masking is insecure. The goal of an attacker could
be to force a bias into the masks. This can be done by active attacks, however,
a much simpler method has been pointed out in [Jaf06]. If the attacker is able
to discard some subset of the acquired traces, which belong to a certain subset
of masks, then the remaining traces and the therein used masks must be biased.

Templates can be naturally used in this context. The attacker needs to build
templates that can identify for instance the Hamming weight of some interme-
diate data. During the attack, the attacker uses these templates to identify the
Hamming weight of the processed masks. Only those traces that correspond to a
subset of the masks, for instance, the traces in which the Hamming weight of the
used mask is smaller than six are selected. This is basically the preprocessing
step of the second-order DPA attack. A standard DPA on the selected traces
reveals the key.

Templates After Preprocessing. In the last scenario, we use templates after
preprocessing. This means, the attacker builds templates for HW (u ⊕ v) (the

Template Attacks on Masking—Resistance Is Futile 251

AddRoundKey
1mdi

1mmk j

SubBytes
mkd ji mkdS ji)(

ShiftRows

Fig. 1. Part of a masked AES round. The sequence of AddRoundKey, SubBytes and
Shiftrows is applied to all bytes of the AES state. We assume that input and output
masks of SubBytes are equal.

hypothetical values that are used during the DPA attack) with the preprocessed
traces. During the DPA attack, the attacker uses these templates to extract the
Hamming weights HW (u ⊕ v) and performs a DPA attack on these values.

The preprocessing removes quite an amount of information from the power
traces. Recall that the correlation coefficient goes down from 1 to 0.24. Hence,
it cannot be expected that this strategy leads to better results than the attacks
described before.

4 Results from Attacking a Masked AES Smart Card
Implementation

In order to assess the practical value of the attacks that we described in Sect. 3,
we have applied them to a masked software implementation of AES on a micro-
controller.

In our masked software implementation of AES the inputs and outputs of
each operation are masked additively. Like in many software implementations,
we first compute AddRoundKey, SubBytes, and ShiftRows for all bytes of the
state. Then, MixColums follows. For the sake of simplicity, we will mount all our
attacks on the sequence of AddRoundKey, SubBytes and Shiftrows, see Fig.1.
We assume that plaintext di and key kj are masked and that the input mask
and the output mask of SubBytes are equal. This mask is denoted by m. This
is a quite typical implementation of a masked software AES.

The microcontroller that we have used is a standard 8-bit microcontroller
which is similar to many microcontrollers found in smartcards. Because it pre-
charges the bus lines, it leaks the Hamming weight of the data. Because of
that, it makes no sense to build templates for all 256 data values. Instead, we
have built templates for each instruction and all Hamming weights. For this
characterization, we have acquired 10000 traces.

In the remainder of this section, we present results from the actual implemen-
tation of the attacks that we have described in the previous section.

4.1 Template-Based DPA Attack

In this example, we have built templates that contain the joint leakage of two
masked intermediate values. In our AES implementation, several masked

252 E. Oswald and S. Mangard

0 50 100 150 200 255
0

0.2

0.4

0.6

0.8

1

Key hypothesis

Pr
ob

ab
ili

ty

Fig. 2. Result of a template-based DPA
attack. The correct key hypothesis has
probability one. The incorrect key hy-
potheses all have probability zero.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Traces

Pr
ob

ab
ili

ty

Fig. 3. Evolution of the probability over
an increasing number of traces. The
correct key hypothesis is plotted in
black. The incorrect key hypotheses are
plotted in gray.

intermediate values can be used. For instance, the input and output of Sub-
Bytes are both masked by m. In addition, at some time at the beginning of the
algorithm, the masks have to be generated. Hence, there is another instruction
that manipulates m at the beginning of the algorithm. In order to determine
the interesting points for our templates, [CRR03] and [RO04] proposed to per-
form DPA attacks. In this way, we have determined the points in time when m,
di ⊕ kj ⊕ m and S(di ⊕ kj) ⊕ m are computed.

Our templates take the power model of the microcontroller into account.
Hence, we have built 81 templates, one for each pair of HW (m) and HW (S(di ⊕
kj) ⊕ m):

hHW (m),HW (S(di⊕kj)⊕m)

The template matching then gives the probabilities for p(ti|kj ∧ m):

p(ti|kj ∧ m) = p(ti; hHW (m),HW (S(di⊕kj)⊕m))

With these probabilities, and by assuming that p(m) = 1/M , we have calcu-
lated (4) and subsequently we have derived p(kj |T) with (3).

The result of this attack is depicted in Figure 2. It shows that one key has
probability one whereas all other key hypotheses have probability zero. Fig-
ure 3 shows that with about 15 traces the correct key (plotted in black) can be
identified. This shows that this template-based DPA attack on a masked AES
implementation in software works in the same way as a template attack on an
unmasked implementation in software.

4.2 Templates Attacks Combined with Second-Order Techniques

We have also applied the attacks that we have described in Sect. 3.2 to the same
implementation using the same set of power traces for characterization.

Template Attacks on Masking—Resistance Is Futile 253

0 50 100 150 200 255
−1

−0.5

0

0.5

1

Key hypothesis

C
or

re
la

tio
n

Fig. 4. Result of a second-order DPA
attack that uses templates before pre-
processing

10 20 30 40 50
−1

−0.5

0

0.5

1

Traces

C
or

re
la

tio
n

Fig. 5. Evolution of the correlation co-
efficient over an increasing number of
traces

Templates before Preprocessing. In this attack, we use templates to extract
the Hamming weights of the masked intermediate values before and after Sub-
Bytes. Hence, we obtain HW ((di ⊕ kj) ⊕ m) and HW (S(di ⊕ kj) ⊕ m) with the
templates and apply the improved preprocessing function to these values. The
hypotheses are u = HW (di ⊕kj) and v = S(di ⊕kj). Based on these hypotheses,
we have calculated the improved combination.

Figure 4 shows the result of a second-order DPA attack using templates before
preprocessing. As we have extracted the Hamming weights of the two targeted
intermediate values (di ⊕kj)⊕m and S(di ⊕kj)⊕m with templates, we only get
the correlation coefficient that correspond to them. This is why Figure 4 shows
only 256 values (one for each key hypothesis). It is clearly visible that the correct
key hypothesis has a correlation coefficient of about 0.83. Figure 5 shows that
with about 30 traces, the correct key hypothesis can be distinguished from the
incorrect key hypotheses.

Templates during Preprocessing. In this attack, we have used templates to
identify the traces in which the mask has a Hamming weight that is smaller than
six. In the preprocessing step we have discarded all the traces with this property.
Then, we have performed a DPA attack on the remaining traces. Figure 6 shows
the result of such an attack. It shows the correlation for all 256 key hypotheses.
The line that is plotted in black indicates the correct key hypothesis. Figure 7
shows that with about 450 traces the correct key hypothesis can be identified.

Templates after Preprocessing. In this attack, we have built templates for
HW ((di ⊕kj)⊕S(di⊕kj)) based on the preprocessed traces. In the second-order
DPA attack we have used these templates to extract HW ((di ⊕kj)⊕S(di ⊕kj)).
Then, we have mounted a DPA attack on these values. Figure 8 shows the result
of such an attack. The figure shows the correlations for all 256 key hypotheses.
The correct key hypothesis is indicated by the highest correlation coefficient.
Figure 9 shows that about 2 000 traces are necessary to identify the correct key
hypothesis. Apparently, this attack requires a large number of power traces.

254 E. Oswald and S. Mangard

Fig. 6. Result of a second-order DPA
attack that uses templates for pre-
processing

50 500 1000
−1

−0.5

0

0.5

1

Traces

C
or

re
la

tio
n

Fig. 7. Evolution of the correlation co-
efficient over an increasing number of
traces

4.3 Comparison of Template Attacks

Our results have confirmed that a template-based DPA attack is the most powerful
attack on a masked implementation in practice. We have broken such a masked
implementation with about 15 power traces. The other attacks that we have come
up with, and the one that has been suggested by [Jaf06], are weaker. These other
attacks combine template attacks with second-order DPA techniques.

The first attack that we have described in Sect. 3.2 (the attack using templates
to improve the preprocessing in a second-order DPA attack) actually allows us
to draw another conclusion about improving preprocessing techniques. More
efficient preprocessing techniques require complex functions which are derived
based on the idealized power consumption of some intermediate values. Hence in
practice, we have to use templates to extract this ideal power consumption from
the traces. This means that in practice, improving a second-order DPA attack
leads to a template attack. Consequently, instead of doing this attack, we can
immediately do a template-based DPA attack.

The second attack that we have described in Sect. 3.2 (the attack where we
use templates to bias the masks) is slightly different. It requires to determine
only the point in time when the masks are processed. In addition, one can per-
form this attack with reduced templates, or even templates that extract even
less information than the Hamming weight. Remember that we only want to
discard a subset of the traces that correspond to some class of masks (low Ham-
ming weight, or high Hamming weight, etc.). Hence, such an attack requires
the attacker to have only little knowledge about the device and the implemen-
tation of the algorithm. In other words, the attacker does not need an explicit
characterization phase.

The last attack that we have discussed in Sect. 3.2 (the attack where we have
built templates for the pre-processed traces) works worst as expected. It has
the advantage that during characterization, the masks do not need to be known
to the attacker. However, the standard second-order DPA attack that we have

Template Attacks on Masking—Resistance Is Futile 255

0 50 100 150 200 255
−0.2

0

0.2

Key hypothesis

C
or

re
la

tio
n

Fig. 8. Result of a second-order DPA
attack that uses templates after pre-
processing

500 1000 1500 2000 2500 3000
−0.2

0

0.2

Traces

C
or

re
la

tio
n

Fig. 9. Evolution of the correlation co-
efficient over an increasing number of
traces

presented in [OMHT06], and that we have performed on the same device using
the same measurement setup, required about 450 traces. Hence, this attack does
not lead to an improvement over a standard second-order DPA attack.

5 Conclusion

In this article, we have discussed different types of template attacks on masked
implementations. All template attacks that we have described could break our
masked AES software implementation on an 8-bit microcontroller. However, they
all required quite a different amount of traces. It has turned out that a template-
based DPA attack leads to the best results. It can recover the key from about 15
traces. All other attacks that we have come up with, and the one by [Jaf06], have
performed worse (they required between about 30 and 1800 traces). A template-
based DPA attack is the best attack in theory [ARR03] and in practice. Even
when applied to a masked implementation, it only requires about 15 traces to
recover the key. We conclude that in the scenario of template attacks, masking
does not improve the security of an implementation.

References

[AG03] Mehdi-Laurent Akkar and Louis Goubin. A Generic Protection against
High-Order Differential Power Analysis. In Thomas Johansson, editor,
Fast Software Encryption, 10th International Workshop, FSE 2003, Lund,
Sweden, February 24-26, 2003, Revised Papers, volume 2887 of Lecture
Notes in Computer Science, pages 192–205. Springer, 2003.

[ARR03] Dakshi Agrawal, Josyula R. Rao, and Pankaj Rohatgi. Multi-channel At-
tacks. InColin D.Walter, Çetin KayaKoç, and Christof Paar, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2003, 5th International
Workshop, Cologne, Germany, September 8-10, 2003, Proceedings, volume
2779 of Lecture Notes in Computer Science, pages 2–16. Springer, 2003.

256 E. Oswald and S. Mangard

[ARRS05] Dakshi Agrawal, Josyula R. Rao, Pankaj Rohatgi, and Kai Schramm. Tem-
plates as Master Keys. In Josyula R. Rao and Berk Sunar, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2005, 7th International
Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings, vol-
ume3659ofLectureNotes inComputer Science, pages15–29.Springer, 2005.

[BGK05] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably Secure
Masking of AES. In Helena Handschuh and M. Anwar Hasan, editors,
Selected Areas in Cryptography, 11th International Workshop, SAC 2004,
Waterloo, Canada, August 9-10, 2004, Revised Selected Papers, volume
3357 of Lecture Notes in Computer Science, pages 69–83. Springer, 2005.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems – CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers,
volume 2523 of Lecture Notes in Computer Science, pages 13–28. Springer,
2003.

[Jaf06] Joshua Jaffe. More Differential Power Analysis: Selected DPA Attacks,
June 2006. Presented at ECRYPT Summerschool on Cryptographic Hard-
ware, Side Channel and Fault Analysis.

[JPS05] Marc Joye, Pascal Paillier, and Berry Schoenmakers. On Second-Order
Differential Power Analysis. In Josyula R. Rao and Berk Sunar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2005, 7th In-
ternational Workshop, Edinburgh, UK, August 29 - September 1, 2005,
Proceedings, volume 3659 of Lecture Notes in Computer Science, pages
293–308. Springer, 2005.

[Kay98] Steven M. Kay. Fundamentals of Statistical Signal Processing - Detection
Theory. Prentice Hall, 1998. ISBN 0-13-504135-X.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power
Analysis. In Michael Wiener, editor, Advances in Cryptology - CRYPTO
’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings, volume 1666 of Lec-
ture Notes in Computer Science, pages 388–397. Springer, 1999.

[OMHT06] Elisabeth Oswald, Stefan Mangard, Christoph Herbst, and Stefan Tillich.
Practical Second-Order DPA Attacks for Masked Smart Card Implementa-
tions of Block Ciphers. In David Pointcheval, editor, Topics in Cryptology
- CT-RSA 2006, The Cryptographers’ Track at the RSA Conference 2006,
San Jose, CA,USA, February 13-17, 2006, Proceedings, volume 3860 of Lec-
ture Notes in Computer Science, pages 192–207. Springer, 2006.

[PSDQ05] Eric Peeters, François-Xavier Standaert, Nicolas Donckers, and Jean-
Jacques Quisquater. Improved Higher-Order Side-Channel Attacks with
FPGA Experiments. In Josyula R. Rao and Berk Sunar, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2005, 7th Interna-
tional Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceed-
ings, volume 3659 of Lecture Notes in Computer Science, pages 309–323.
Springer, 2005.

[RO04] Christian Rechberger and Elisabeth Oswald. Practical Template Attacks.
In Chae Hoon Lim and Moti Yung, editors, Information Security Applica-
tions, 5th International Workshop, WISA 2004, Jeju Island, Korea, Au-
gust 23-25, 2004, Revised Selected Papers, volume 3325 of Lecture Notes
in Computer Science, pages 443–457. Springer, 2004.

Differential Power Analysis of Stream Ciphers

W. Fischer, B.M. Gammel, O. Kniffler, and J. Velten

Infineon Technologies AG, Germany

Wieland.Fischer@infineon.com,
Berndt.Gammel@infineon.com,
Oliver.Kniffler@infineon.com,
Joachim.Velten@infineon.com

Abstract. Side-channel attacks on block ciphers and public key
algorithms have been discussed extensively. However, there is only sparse
literature about side-cannel attacks on stream ciphers. The few existing
references mainly treat timing [8] and template attacks [10], or provide
a theoretical analysis [6], [7] of weaknesses of stream cipher construc-
tions. In this paper we present attacks on two focus candidates, Trivium
and Grain, of the eSTREAM stream cipher project. The attacks exploit
the resynchronization phase of ciphers. A novel concept for choosing ini-
tial value vectors is introduced, which totally eliminates the algorithmic
noise of the device, leaving only the pure side-channel signal. This at-
tack allows to recover the secret key with a small number of samples and
without building templates. To prove the concept we apply the attack
to hardware implementations of the ciphers. For both stream ciphers we
are able to reveal the complete key.

Keywords: side-channel attack, power analysis, DPA, stream cipher,
Trivium, Grain.

1 Introduction

Differential power analysis (DPA) is a well-known and thoroughly studied threat
for implementations of block ciphers, like DES and AES, and public key algo-
rithms, like RSA. However, in the field of stream ciphers this topic is rather
unknown. More generally, this is even true for any kind of side-channel analysis
(SCA). Side-channel attacks are built on the fact that cryptographic algorithms
are implemented on a physical device. SCA can use all kinds of physical em-
anation from the device, like current consumption, electromagnetic radiation,
or execution time variations. This so-called side-channel may leak information
about secret data. Even the regular output of the algorithm can be seen as a
side-channel—in the case that an attacker was able to induce a fault into the
data or control path of the computation. Although there is vast literature about
SCA on implementations of block ciphers and public key algorithms, only few
publications can be found about attacks on stream ciphers. In [4] the authors
study fault attacks on stream ciphers like LILI-128, RC4, and SOBER-t32. The

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 257–270, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

258 W. Fischer et al.

latter one was the target of a timing attack in [8]. Template attacks, which were
introduced in [2], were mounted on RC4 in [9]. So far, there are no reports on a
practical DPA targeting a hardware implementation of a stream cipher. There
is only one work, [7], which describes theoretically DPA attacks on A5/1 and
E0. These are classical DPA attacks which aim at raising the side-channel sig-
nal above the algorithmic noise1 by statistical means (by averaging over many
power traces). In contrast, the presented method cancels out the algorithmic
noise exactly, by using specially tailored sets of initial value vectors.

Differential power analysis was introduced by Kocher in [5]. In a DPA an
attacker generates a set of hypotheses (about some secret value or a partial
key) and tries to identify the (unique) true hypothesis by finding the highest
correlation between the power consumption of the physical realization of an
algorithm and those internal bits which can be computed by the attacker by
virtue of one of these hypotheses. The classical setup for a DPA is illustrated in
Figure 1. Some parts S of an implementation of a cryptographic algorithm have
the characteristic:

unknown data/partial key k

known data/message m

output bit c(m, k)

Fig. 1. Generic Setup for DPA

– input: known bits m, a few unknown bits k

– output: a bit c(m, k) with the properties
• c(m, k) = c(m, k′) for all possible m and k = k′

• c(m, k) = c(m, k′) for about 50% of all possible values of m if
k �= k′—even if k and k′ differ only by one bit.

This implies, of course, that S cannot be linear. But in any good cipher one is
always able to identify some parts with this property.

Our attack targets the resynchronization phase of stream ciphers. Unlike in
[7], were a known IV DPA attack is described, we will describe and execute a
chosen IV DPA attack. It will be shown that the signal-to-noise ratio of the
side-channel signal, which carries information about the secret key, can be op-
timized by specially chosen initial value vectors. These are constructed in such
a way, that in the statistical analysis of the power traces contributions to the
power consumption, which are not related to the correlation signal, will cancel
out. We will elaborate the attacks for two recently published stream ciphers,
Grain [3] and Trivium [1]. In the case of the first cipher, we will make partial
use of a nonlinear element S. In the case of the second cipher we will not use
1 Algorithmic noise is generated by the power consumption caused by the execution

of the algorithm. Contrary to thermal noise it cannot be eliminated by averaging
over power traces with identical input parameters.

Differential Power Analysis of Stream Ciphers 259

any nonlinearity. S will rather be an XOR gate. By virtue of the new selection
scheme for the initial value vectors we are able to mount practical attacks on
hardware implementations of the two ciphers. The attack is efficient in prac-
tice, as there is no need to construct templates. Also the number of samples is
small.

Outline—We will describe the attacks on both stream ciphers. In each case we
will first give a definition of the cipher and shortly describe a straight forward
hardware implementation, in order to state a theoretical power model for this
implementation. We will describe the actual attack on the cipher and show why
the attack works in our chosen power model. Finally the attack on a physical
implementation of Grain on a field programmable gate array device (FPGA) will
be reported.

2 Differential Power Analysis of Grain

The target of the attack will be the second version of Grain [3]. After a descrip-
tion of the structure and the implementation of the cipher the power model for
a CMOS implementation will be defined and the theory for the attack will be
elaborated. Finally we will report the results of a practical realization of the
attack on a hardware implementation.

2.1 Definition of Grain

Grain is a binary additive synchronous stream cipher with an internal state
of 160 bits si, si+1, . . . , si+79 and bi, bi+1, . . . , bi+79 residing in a linear feed-
back shift register (LFSR) and a nonlinear feedback shift register (NLFSR),
respectively. It supports a key k = (k0, . . . , k79) of 80 bits and an initial value
IV = (IV0, . . . , IV63) of 64 bits. After a run-up time of 160 iteration steps it
outputs a key stream zi. During run-up the output bits zi (0 ≤ i < 160) will
not be used, but fed back into the LFSR and NLFSR components. Run-up (for
0 ≤ i < 160) and output generation (for 160 ≤ i) is described by the following
recursion formula:

(b0, . . . , b79) := (k0, . . . , k79)
(s0, . . . , s79) := (IV0, . . . , IV63, 1, . . . , 1)

gi := g(bi+0, bi+1, . . . , bi+63)
fi := si+0 + si+13 + si+23 + si+38 + si+51 + si+62

σ̃i := bi+1 + bi+2 + bi+4 + bi+10 + bi+31 + bi+43

σi := σ̃i + bi+56

zi := σi + h(si+3, si+25, si+46, si+64, bi+63)
bi+80 := gi + si + zi · δ[0,159](i)
si+80 := fi + zi · δ[0,159](i)

260 W. Fischer et al.

All variables represent elements of the binary field F2. g : F64
2 → F2 is a

nonlinear function which we will not describe any further, since the exact form
is not essential for the attack. The function h is defined by

h : F5
2 −→ F2

(x0, . . . , x4) �−→ x1 + x4 + x0x3 + x2x3 + x3x4 +
x0x1x2 + x0x2x3 + x0x2x4 + x1x2x4 + x2x3x4.

The indicator function δ[0,159](i) is 1 for 0 ≤ i ≤ 159 and 0 otherwise. In addition
to the specification in [3] we introduced the two intermediary values σ̃i and σi.
They are not essential for the definition of the cipher. However, these values will
be a part of our hypothesis.

Notation 1. For the whole paper we will fix the secret key k. Besides k, the
sequences bi, si, gi, fi, σ̃i, σi, zi will depend on the initial value. Therefore we
will often write b

(ν)
i , s

(ν)
i , . . . , for IV = ν.

Remark 1. For i = 0, . . . , 16, the elements b
(ν)
i+63, σ

(ν)
i , σ̃

(ν)
i+17, g

(ν)
i do not depend

on the initial value ν, but only on the key k.

2.2 Implementation in Hardware

A structural view of the hardware implementation is given in Fig. 2.
It consists of the following parts:

– an LFSR of 80 flip-flops L0, . . . , L79, holding the values si, . . . , si+79
– an NLFSR of 80 flip-flops N0, . . . , N79, holding the values bi, . . . , bi+79
– a combinatorial logic block G, realizing the function g
– a combinatorial logic block F, realizing the function f
– a combinatorial logic block H, realizing the function H
– some additional XORs.

Of course there is also some control logic for loading the key and initial value,
clocking the FSRs, and switching δ.

NLFSR LFSR

G (nonlinear) F (linear)

H

3

25

64
46

i

10 43 56

63

g
i

s
i

b
i+80

f
i

s
i+80

z
ii

0 13 23 38 51 62

31

~

Fig. 2. Implementation of Grain

Differential Power Analysis of Stream Ciphers 261

2.3 Power Model

We will use a discrete, Hamming distance based power model to describe the
power consumption, since this suites the power consumption of a CMOS imple-
mentation very well. For a fixed key k and an initial value ν the power consump-
tion of Grain is a function

P : N0 −→ R,

where P (i) is the integral over the power consumption during the i-th clock
cycle. The i-th clock cycle is the period of time, when the values gi, fi, σ̃i, σi, zi,
bi+80, si+80 are evaluated and the two FSRs are shifted. Therefore we can write

P = PG + PH + PF +
79∑

j=0

PFF,Nj +
79∑

j=0

PFF,Lj + Ω,

where PG, PH, PF and PFF denote the power consumption of G, H (including
the generation of σi), F, and a flip-flop, respectively. Ω describes the noise which
is independent of the described architectural elements. It is reasonable to model
PG, PH, PF and PFF in a way, such that they only depend on the old and new
input values:

P (i) = PG(bi−1, bi, . . . , bi+63)
+ PH(bi, . . . , bi+63, si+2, si+3, si+24, si+25, si+45, si+46, si+63, si+64)
+ PF(si−1, si, si+12, si+13, si+22, si+23, . . . , si+61, si+62)

+
79∑

j=0

PFF,Nj (bi+j , bi+j+1) +
79∑

j=0

PFF,Lj (si+j , si+j+1) + Ω.

Note, that this equation may not be fully correct for i = 0, since the “old”
values may not always exist (e.g. b−1) or could have some default values (after
resetting the circuit). In this case the corresponding constant values must be
used. We will make no further assumption about the functions PG : F65

2 → R
and PH : F64+8

2 → R, since this would add an unnecessary difficulty. It turns out
that the precise form will not be needed. We define that PF : F12

2 → R is only a
function of the Hamming distances of consecutive bits of the LFSR:

PF(si−1, si, . . . , si+61, si+62) ≡ PF(si−1 ⊕ si, . . . , si+61 ⊕ si+62).

For PFF we make the usual approximation

PFF(0, 0) ≈ 0 ≈ PFF(1, 1) � PFF(1, 0), PFF(0, 1).

We do not assume that all PFF,Nj or all PFF,Lj are equal, as this cannot be
expected to hold in an arbitrary implementation. Ω contains all noise contribu-
tions which are independent of the key and the initial value, such as the noise
generated by the control hardware of the cipher or switching activity of circuits
in the environment.

262 W. Fischer et al.

Notation 2. For a fixed key k the whole cipher depends on the initial values
ν. P (ν), P

(ν)
G , . . . , denote the respective power consumption functions. P (ν) will

still be variable because of Ω. Therefore we will use its expectation value

P̄ (ν) := EP (ν),

which can be approximated by measuring the power consumption for the same
initial value ν several times and taking the arithmetic mean value. Now P̄ (ν)

depends on the initial value ν only.

2.4 Attack on Grain: Theory

The attack on Grain consists of three steps. The first two steps are differential
power analyses gaining information of 34 and 16 bits of the key, respectively.
The third step is an exhaustive search on the remaining 30 bits of the key.

Step 1. is a DPA with chosen IVs. It is done in 17 rounds. In the i-th round
(0 ≤ i ≤ 16) we set up our hypothesis (bh

i+63, σ
h
i) about the pair (bi+63, σi)

and try to verify the true hypothesis by using the recorded power traces of the
key setup phase for several initial values ν ∈ IVi. The set IVi of initial values
is tailored in such a way, that the intrinsic power consumption of Grain will
cancel out when computing the difference of the power traces (the “correlation
function”). In each round the results of the previous ones will be used. Step 1 is
illustrated in Table 1. Note that (bh

i+63, σ
h
i) as well as ν must be used in order to

Table 1. DPA Attack on Grain, Step 1

For i := 0 to 16 do
For all hypotheses (bh

i+63, σ
h
i) ∈ F2

2 do
Using hypothesis (bh

i+63, σ
h
i) and the known (bj+63, σj)i−1

j=0, compute
IV+

i := {ν ∈ IVi : s
(ν)
i+79 �= s

(ν)
i+80}, IV−

i := {ν ∈ IV i : s
(ν)
i+79 = s

(ν)
i+80}

and the “correlation function”

P̄(bh
i+63,σh

i) :=
1

#IV+
i

ν∈IV+
i

P̄ (ν) − 1
#IV−

i
ν∈IV−

i

P̄ (ν)

end
Accept the hypothesis, for which P̄(bh

i+63,σh
i)(i) is maximal.

end

compute the (hypothetical) value s
(ν)
i+80. For computing s

(ν)
i+79 the already known

(bi−1+63, σi−1) is used. The families IVi (for 0 ≤ i ≤ 16) of initial values are
defined as follows:

IVi :=
{

(ν0, . . . , ν63) ∈ F64
2 : νn =

{
0, for n − i �= 3, 13, 22, 23, 25, 46,

1, for n = i + 46.

}
IVi contains 32 initial values which toggle the bits νi+3, νi+13, νi+22, νi+23,
νi+25 and set νi+46 to 1.

Differential Power Analysis of Stream Ciphers 263

Remark 2. In our case, we have #IV+
i = #IV−

i = 16, for all 0 ≤ i ≤ 16.

A justification for this algorithm and the choice of IVs is given in the following
lemma.

Lemma 1. In round i (0 ≤ i ≤ 16) of the above algorithm we have:

P(b63,σ0)(0) =
1
2
(PFF,L79(1, 0) − PFF,L79(1, 1)),

P(bi+63,σi)(i) =
1
2
(PFF,L79(0, 1) + PFF,L79(1, 0)

−PFF,L79(0, 0) − PFF,L79(1, 1)), for 1 ≤ i,

P(bi+63,1+σi)(i) = −P(bi+63,σi)(i),
P(1+bi+63,σi)(i) = P(1+bi+63,1+σi)(i) = 0.

For an explanation of this lemma cf. the paragraph after Lemma 2.

Remark 3. Of course, this DPA also works for families IVi of randomly chosen
initial values. However, the algorithmic noise level caused by the remaining 159
flip-flops (other than L79) will be higher compared to the correlation signal. As
a consequence the number of necessary samples #IVi for each family would be
larger. The same is true for Step 2.

Step 2. works similarly to the first step, but only in 16 rounds. The hypotheses
will be (gh

i−17, σ̃
h
i), for 17 ≤ i ≤ 32. Moreover, the construction of the IVi will

make use of the previously learned data. The second step of the attack is given

Table 2. DPA Attack on Grain, Step 2

For i := 17 to 32 do

For all hypotheses (gh
i−17, σ̃

h
i) ∈ F

2
2 do

Using hypothesis (gh
i−17, σ̃

h
i) and the already known (bj+63, σj)

16
j=0, (gi−17, σ̃i)

i−1
j=17,

compute the partition of IV i

IV+
i := {ν ∈ IV i : s

(ν)
i+79 �= s

(ν)
i+80}, IV−

i := {ν ∈ IV i : s
(ν)
i+79 = s

(ν)
i+80}

and the “correlation function”

P̄(gh

i−17
,σ̃h

i
) :=

1

#IV+
i

X

ν∈IV
+

i

P̄ (ν) −
1

#IV−

i

X

ν∈IV
−

i

P̄ (ν)

end

Accept the hypothesis, for which P̄(gh

i−17
,σ̃h

i
)(i) is maximal.

end

in Table 2. Note that (gh
i−17, σ̃

h
i), (bj+63, σj)16j=0, (gj−17, σ̃j)i−1

j=17 as well as ν must

be used in order to compute the (hypothetical) value s
(ν)
i+80. For computing s

(ν)
i+79,

the already known values (bj+63, σj)16j=0, (gj−17, σ̃j)i−1
j=17 are used. The families

264 W. Fischer et al.

IVi (for 17 ≤ i ≤ 32) of initial values are defined as follows:

IVi :=
{

(ν0, . . . , ν63) ∈ F64
2 : (νi+3, νi+13, νi+22, νi+23, νi+25) ∈ F5

2,

νn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νi+22, if n = i − 16 ∧ 16 ≤ i,

bi+44, if n = i + 6 ∧ 19 ≤ i,

1, if n = i + 27 ∧ 19 ≤ i < 37,

0, if n = i + 1 ∧ 24 ≤ i,

1, if n = i − 21 ∧ 24 ≤ i,

1, if n = 63 ∧ 17 = i,

0, all other n ∈ {0, . . . , 63} \ {3, 13, 22, 23, 25} .

Remark 4. Also in this case #IV+
i = #IV−

i = 16, for all 17 ≤ i ≤ 32.

The next lemma gives the justification for the algorithm.

Lemma 2. In round i (16 ≤ i ≤ 32) of the above algorithm we have:

P(gi−17,σ̃i)(i) =
1
2
(PFF,L79(0, 1) + PFF,L79(1, 0)

−PFF,L79(0, 0) − PFF,L79(1, 1)),
P(gi−17,1+σ̃i)(i) = −P(gi−17,σ̃i)(i),
P(1+gi−17,σ̃i)(i) = P(1+gi−17,1+σ̃i)(i) = 0.

The proofs of the last two lemmata are straightforward, but involve rather
lengthy calculations. They are preferably supported by an algebraic software
package. The families of IVi of initial value vectors are constructed such that
the following properties hold:

– The toggling of the bits si+13 and si+23 directly causes a toggling of si+80,
but not of si+79. This distributes the power functions P̄ (ν), ν ∈ IVi to
the two sums in the “correlation function” in a way, such that all power
contributions not depending on si+13 and si+23 will cancel out.

– The toggling of the bit si+22 has the same effect by influencing si+79.
– Function h(x0, x1, x2, x3, x4) has the following property: If x2 = x3 = 1 and

(x0, x1) ∈ F2
2, changing x4 to its complement results in a change of h in ex-

actly 50% of the cases. This is the classical assumption for a bit to be used
in a DPA.

– The additional conditions in the definition of IVi, for 17 ≤ i ≤ 32 have the
following reason. Toggling of bit si+22 does not result in a toggling of other
bits which also depend on the bits si+13 and si+23, asserting that the first
two facts are orthogonal.

Remark 5. In a practical attack on a hardware implementation the character-
istics described in Lemmata 1 and 2 will transform into a peak for correct
hypotheses (bi+63, σi) or (gi, σ̃i), and a negative peak for hypotheses with re-
versed σi or σ̃i. Each of the other two hypotheses should not show a significant
peak. During the following 79 clock cycles peaks can still be expected because
the correlating signal remains.

Differential Power Analysis of Stream Ciphers 265

clock cycle i = 21

P
(0,0)

P
(0,1)

P
(1,0)

P
(1,1)

Fig. 3. The correlation functions P̄(0,0), P̄(0,1), P̄(1,0), P̄(1,1) for round 21 in the DPA
attack on Grain

Step 3. is now straight forward. After having obtained 50 values b63, . . . , b79,
σ0, . . . , σ16, σ̃17, . . . , σ̃32, fifty independent linear equations in k0, . . . , k79 can be
written down. Solving these equations a linear map κ : F30

2 → F80
2 is obtained,

such that the image of κ contains all possible remaining keys. Hence an ex-
haustive key search can be performed in practice. The complexity of this final
step is O(230). The whole key can be recovered with, e.g., one appropriate plain
text/cipher text pair. The attack can be improved by using the additional infor-
mation contained in (g0, . . . , g15) to exclude more keys.

2.5 Attack on Grain: Practical Realization

We implemented a version of Grain which generates one bit of key stream
per clock cycle. This is probably the realization most relevant for hardware
constrained environments. We chose an implementation on an Altera FLEX
EPF10K100ARC240-2 FPGA as our target of attack. In a standard measure-
ment setup the voltage drop at a shunt in the power supply line of the FPGA
was measured. The FPGA was operated at 2.5MHz and the power traces were
recorded using a LeCroy LC684DXL oscilloscope with a sample rate of 2 Giga
samples per second. A set of 256 power traces for each initial value in each
family IVi was obtained. The corresponding sample averages P̄ (ν) were used to
verify or falsify the hypotheses. As an example, in Figure 3 the four correlation

266 W. Fischer et al.

functions P̄(gh
i−17,σ̃h

i) for i = 21 and (gh
i−17, σ̃

h
i) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} are

shown. As indicated by the arrow at clock cycle 21 the onset of peaks clearly
verifies the correct hypothesis (1, 1).

3 Differential Power Analysis of Trivium

In this section we describe a DPA attack on the stream cipher Trivium [1].
This attack is not based on any nonlinear part, but correlations with the power
consumption of the three flip-flops B81, B82 and B83 are exploited. These flip-
flops lie behind an XOR gate, which mixes known and controllable bits with
secret bits. Again we are able to recover the whole key.

3.1 Definition of Trivium

Trivium is a stream cipher with an internal state of 288 bits ai, ai+1, . . . , ai+92,
bi, bi+1, . . . , bi+83 and ci, ci+1, . . . , ci+110—residing in three coupled feedback
shift registers A, B, and C of 93, 84, and 111 bits respectively—using a key
k = (k0, . . . , k79) of 80 bits as well as an initial value IV = (IV0, . . . , IV79) of
80 bits. After a run-up time of 4 · 288 iteration steps it outputs a key stream
zi. Run-up (for 0 ≤ i < 4 · 288) and output generation (for 4 · 288 ≤ i) can be
described by the following recursion formula:

(a0, . . . , a92) := (0, . . . , 0, k79, . . . , k0)
(b0, . . . , b83) := (0, 0, 0, 0, IV79, . . . , IV0)

(c0, . . . , c110) := (1, 1, 1, 0, . . . , 0)
ai+93 := ai+24 + ci + ci+1ci+2 + ci+45

bi+84 := bi+6 + ai + ai+1ai+2 + ai+27

ci+111 := ci+24 + bi + bi+1bi+2 + bi+15

zi := ai + bi + ci + ai+27 + bi+15 + ci+45

All variables represent elements in F2. The intermediate value σi := ai+ai+1ai+2+
ai+27 will be our hypothesis in the DPA.

3.2 Implementation in Hardware

Again, the target of attack will be an implementation of the cipher which gen-
erates one bit of key stream per clock cycle. It comprises the following parts: An
NLFSR of 93 flip-flops A0,. . . , A92, holding the values ai,. . . , ai+92, an NLFSR
of 84 flip-flops B0,. . . , B83, holding the values bi,. . . , bi+83, an NLFSR of 111
flip-flops C0,. . . , C110, holding the values ci,. . . , ci+110, three additional AND,
and a few XOR gates (as given in the recursion formula), as well as additional
control logic for loading the key and initial value, and clocking the NLFSRs.

Differential Power Analysis of Stream Ciphers 267

3.3 Power Model

We will use the same power model and notation as in the previous attack. The
model for the power consumption is

P =
92∑

j=0

PFF,Aj +
83∑

j=0

PFF,Bj +
110∑
j=0

PFF,Cj + Ω,

as well as

P (i) =
92∑

j=0

PFF,Aj (ai+j , ai+j+1) +
83∑

j=0

PFF,Bj (bi+j , bi+j+1)

+
110∑
j=0

PFF,Cj (ci+j , ci+j+1) + Ω.

Furthermore, we make the same assumption regarding the power consumption
of the flip-flops as in the previous attack. To simplify the description we ignore
the power consumption of the single AND and XOR gates. The notations, like
P̄ (ν), will also be used equivalently.

3.4 Attack on Trivium: Theory

To simplify the description we make the assumption that all flip-flops in our
power model have the same power characteristic, i.e., for all appropriate j:

exy = PFF,Aj (x, y) = PFF,Bj (x, y) = PFF,Cj (x, y)

with some constants e00 ≈ 0 ≈ e11 � e01, e10. This restriction, however, is not
necessary to mount the attack.

The DPA is done in 76 rounds. In the i-th round we will know already (σj)i−1
j=0

and evaluate σi. In fact, we will not need to make any hypothesis. The attack is

Table 3. DPA on Trivium

For i := 3 to 78 except 10 do
Using the knowledge of (σj)i−1

j=0, compute
IV+

i := {ν+} := {ν ∈ IVi : b
(ν)
i+83 = 0}, IV−

i := {ν−} := {ν ∈ IV i : b
(ν)
i+83 = 1}

and

P̄i :=
1

#IV+
i

ν∈IV+
i

P̄ (ν) − 1
#IV−

i
ν∈IV−

i

P̄ (ν)

if b
(ν+)
i+81 + b

(ν+)
i+82 + b

(ν+)
i+83 ≡ 0 (mod 2) then

if P̄i(i) > −(e01 + e10)/2 then σi := 1 else σi := 0
else

if P̄i(i) > (e01 + e10)/2 then σi := 1 else σi := 0
end

268 W. Fischer et al.

illustrated in the following Table 3. We will assume, that the values σ0, σ1, σ2,
and σ10 are already known (in this case, one may make an “external” hypothesis
on these 4 bits).2

The families IVi (for 3 ≤ i ≤ 78) of initial values are defined as follows:

IVi :=
{
(ν0, . . . , ν79) ∈ F80

2 : ν78−i = 1 + ν79−i, νn := 0 otherwise
}

.

Note, that IVi contains only 2 values. A justification for this algorithm and the
choice of IVs is given in the following:

Lemma 3. For any i, with 3 ≤ i ≤ 78, i �= 10, we have: (i) Writing IVi =
{ν1, ν2}, then b

(ν1)
i+81 = b

(ν2)
i+81 and b

(ν1)
i+82 + b

(ν1)
i+83 ≡ b

(ν2)
i+82 + b

(ν2)
i+83 (mod 2),

therefore the respective index “ν+”, in the above algorithm, can be left out. (ii)
For P̄i(i) we have the values:

(bi+81 + bi+82 bi+81 (bi+82 + bi+83) bi+84

+bi+83) mod 2 mod 2 P̄i(i) approx.
0 0 0 0 2e00 − 2e11 ≈ 0
0 0 0 1 3e00 − e01 − e10 − e11 ≈ −(e01 + e10)
0 1 1 0 0 ≈ 0
0 1 1 1 e00 + e11 − e01 − e10 ≈ −(e01 + e10)
1 0 1 0 e01 + e10 + e00 − 3e11 ≈ (e01 + e10)
1 0 1 1 2e00 − 2e11 ≈ 0
1 1 0 0 e01 + e10 − e00 − e11 ≈ (e01 + e10)
1 1 0 1 0 ≈ 0

Remark 6. In a practical attack on a hardware realization, by virtue of Lemma 3,
the two inequalities will transform into the decisions {no peak↔negative peak}
and {positive peak↔no peak}. The boundary (e01 + e10)/2 was just used for
illustration purposes.

Extraction of the key: After gaining the 79 values (σi)78i=0 (possibly depending
on the 4 hypothetical values σ0, σ1, σ2, and σ10)we can write down the equations
σi = ai+ai+1ai+2+ai+24 for 0 ≤ i ≤ 78. These are 79 equations with 80 indeter-

σ0 = k65, σ1 = k64 . . . σ11 = k54,
σ12 = k79k78 + k53,
σ13 = k79 + k78k77 + k52, . . . σ65 = k27 + k26k25 + k0,
σ66 = k26 + k25k24 + k68,
σ67 = k25 + k24k23 + k67 + 1,
σ68 = k24 + k23k22 + k66, . . . σ78 = k14 + k13k12 + k56,

minates (ki)79i=0, which are shown explicitly in the following table. One equation
is dependent on the others. For solving the system of equations, we may assume
any value in F2 for k12 and k13. By reordering the equations in the following
Table —and leaving out the equation for σ12—we can solve one equation after
2 There is an other DPA strategy for evaluating σ0,. . . , σ15. For lack of space we omit

this evaluation phase.

Differential Power Analysis of Stream Ciphers 269

σ0 = k65, σ1 = k64, . . . σ11 = k54, �k65, . . . , k54

σ27 = k65 + k64k63 + k38, . . . σ36 = k56 + k55k54 + k29, �k38, . . . , k29

σ54 = k38 + k37k36 + k11, . . . σ61 = k31 + k30k29 + k4, �k11, . . . , k4

σ78 = k14 + k13k12 + k56, . . . σ69 = k23 + k22k21 + k65, �k14, . . . , k23

σ53 = k39 + k38k37 + k12, . . . σ42 = k50 + k49k48 + k23, �k39, . . . , k50

σ26 = k66 + k65k64 + k39, . . . σ15 = k77 + k76k75 + k50, �k66, . . . , k77

σ68 = k24 + k23k22 + k66, . . . σ66 = k26 + k25k24 + k68, �k24, . . . , k26

σ41 = k51 + k50k49 + k24, . . . σ39 = k53 + k52k51 + k26, �k51, . . . , k53

σ38 = k54 + k53k52 + k27, σ37 = k55 + k54k53 + k28, �k27, k28

σ14 = k78 + k77k76 + k51, σ13 = k79 + k78k77 + k52, �k78, k79

σ62 = k30 + k29k28 + k3, . . . σ65 = k27 + k26k25 + k0, �k3, . . . , k0

the other, getting a full key for each previously chosen pair (k12, k13). Counting
also the hypotheses σ0, σ1, σ2, and σ10 we may get at most 26 = 64 different
possible keys. Finding the right one is now trivial.

4 Conclusion

In this paper we showed, that DPA attacks on stream ciphers are practically
feasible and that they constitute a real threat. We presented efficient differential
power analyses of two new stream ciphers, which are focus candidates of the
eSTREAM project. In both cases the DPA works with chosen IVs. These are
carefully chosen to eliminate the algorithmic noise. It is plausible that this kind
of attack can be applied to many stream ciphers with a similar construction
philosophy.

References

1. Ch. De Cannière and B. Preneel: Trivium Specifications, 2005. Available at
http://www.ecrypt.eu.org/stream/p2ciphers/trivium/trivium p2.pdf.

2. S. Chari, J. R. Rao, and P. Rohatgi: Template Attacks. In B. S. Kaliski Jr., Ç. K.
Koç, and Ch. Paar, editors, Chryptographic Hardware and Embedded Systems –
CHES 2002, Lecture Notes in Computer Science, vol. 2535, pp. 13–28, Springer-
Verlag, 2002.

3. M. Hell, Th. Johansson, and W. Meier: Grain – A Stream Cipher for Constrained
Environments, 2006. Available at
http://www.ecrypt.eu.org/stream/p2ciphers/grain/Grain p2.pdf.

4. J. Hoch and A. Shamir: Fault Analysis of Stream Ciphers. In M. Joye and J.-
J. Quisquater, editors, Chryptographic Hardware and Embedded Systems – CHES
2004, Lecture Notes in Computer Science, vol. 3156, pp. 240–253, Springer-Verlag,
2004.

5. P. C. Kocher, J. Jaffe, and B. Jun: Differential Power Analysis. In M. J. Wiener,
editor, Advances in Cryptology – CRYPTO’99, Lecture Notes in Computer Science,
vol. 1666, pp. 388–397, Springer-Verlag, 1999.

6. S. Kumar, K. Lemke, and Ch. Paar: Some Thoughts about Implementation Prop-
erties of Stream Ciphers. In SASC 2004 – The State of the Art of Stream Ciphers,
(Brugge, Belgium, October 14-15, 2004), Workshop Record, pp. 311–319. Available
at http://www.ecrypt.eu.org/stvl/sasc/record.html.

270 W. Fischer et al.

7. J. Lano, N. Mentens, B Preneel, and I. Verbauwhede: Power Analy-
sis of Synchronous Stream Ciphers with Resynchronization Mechanism. In
SASC 2004 – The State of the Art of Stream Ciphers, (Brugge, Bel-
gium, October 14-15, 2004), Workshop Record, pp. 327–333. Available at
http://www.ecrypt.eu.org/stvl/sasc/record.html.

8. J. Lano and G. Peeters: Cryptanalyse van NESSIE kandidaten (Dutch), Master’s
thesis, K. U. Leuven, May 2002.

9. Ch. Rechberger: Side Channel Analysis of Stream Ciphers, Master’s thesis, Insti-
tute for Applied Information Processing and Communications (IAIK), Graz Uni-
versity, 2004.

10. Ch. Rechberger and E. Oswald: Stream Ciphers and Side-Channel Analy-
sis. In SASC 2004 – The State of the Art of Stream Ciphers, (Brugge,
Belgium, October 14-15, 2004), Workshop Record, pp. 320–326. Available at
http://www.ecrypt.eu.org/stvl/sasc/record.html.

Cache Based Remote Timing Attack on the AES

Onur Acıiçmez1, Werner Schindler2, and Çetin K. Koç1,3

1 Oregon State University, School of EECS
Corvallis, OR 97331, USA

{aciicmez,koc}@eecs.oregonstate.edu
2 Bundesamt für Sicherheit in der Informationstechnik (BSI)

Godesberger Allee 185–189, 53175 Bonn, Germany
Werner.Schindler@bsi.bund.de

3 Information Security Research Center, Istanbul Commerce University
Eminönü, Istanbul 34112, Turkey

koc@cryptocode.net

Abstract. We introduce a new robust cache-based timing attack on
AES. We present experiments and concrete evidence that our attack
can be used to obtain secret keys of remote cryptosystems if the server
under attack runs on a multitasking or simultaneous multithreading sys-
tem with a large enough workload. This is an important difference to
recent cache-based timing attacks as these attacks either did not provide
any supporting experimental results indicating if they can be applied
remotely, or they are not realistically remote attacks.

Keywords: Cache Attack, Remote Attack, AES, Timing Analysis, Side
Channel Analysis.

1 Introduction

The implementations of cryptosystems may leak information through so-called
side channels due to the physical requirements of the device, e.g., power con-
sumption, electromagnetic emanation and/or execution time. In side-channel
attacks, the information obtained from one or more side-channels is used to
reveal the key of a cryptosystem. Power, electromagnetic, and timing attacks
are well-known types of side-channel attacks (c.f. [15,13,16,4,25]). Side-channel
analysis of computer systems has recently attracted increasing attention (for a
discussion see [3]). In this paper, we focus on a type of side channel cryptanalysis
that takes advantage of the information leaks through the cache architecture of
a CPU.

The feasibility of the cache based side channel attacks, abbreviated to “cache
attacks” from here on, was first mentioned by Kocher and then by Kelsey et
al. in [15,14]. D. Page described and simulated a theoretical cache attack on
DES [21]. Cache attacks were first implemented by Tsunoo et al. [27,26]. They
developed different attacks on various ciphers, including MISTY1 [26], DES and
Triple-DES [27]. The recent efforts have unleashed the actual power of cache
attacks [2,5,24,20,6,17,19,28,8].

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 271–286, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

272 O. Acıiçmez, W. Schindler, and Ç.K. Koç

None of the mentioned papers, except [5], considered whether a remote cache
attack is feasible. Although Bernstein claimed that his attack could reveal a full
AES key remotely, his experiments were purely local [5] and he did not present
sufficient evidence to support those claims. Furthermore, a thorough analysis of
this attack showed that it could not compromise remote systems and could only
recover the key partially in a local attack [18]

Despite of [7] the vulnerability of software systems against remote timing
attacks was not taken into account until Brumley and Boneh performed an attack
on unprotected SSL implementations over a local network ([10]). An improved
version of this attack can be found in [1].

In this paper, we present a robust effective cache attack, which can be used
to compromise remote systems, on the AES implementation described in [11]
for 32-bit architectures. Although our basic principles can be used to develop
similar attacks on other implementations, we will only focus on the particular
implementation stated above.

Our paper is organized as follows: we will cover the basics of cache attacks in
the next section. In Section 3, we will introduce our new cache attack on the AES.
The results of the experiments will be presented along with the implementation
details in Section 4. The paper ends with concluding remarks.

2 Basics of a Cache Attack

A cache is a small and fast storage area used by the CPU to reduce the average
time to access main memory. It stores copies of the most frequently used data.1

When the processor needs to read a location in main memory, it first checks
to see if the data is already in the cache. If the data is already in the cache
(a cache hit), the processor immediately uses this data instead of accessing the
main memory, which has a longer latency than a cache. Otherwise (a cache miss),
the data is read from the memory and a copy of it is stored in the cache. The
minimum amount of data that can be read from the main memory into the cache
at once is called a cache line or a cache block, i.e., each cache miss causes a cache
block to be retrieved from a higher level memory.

Cache attacks exploit the cache hits and misses that occur during the en-
cryption / decryption process of the cryptosystem. Even if the same instructions
are executed for all (plaintext, cipherkey) pairs the cache behavior during the
execution may cause variations in the program execution time and power con-
sumption. Cache attacks try to exploit such variations to narrow the exhaustive
search space of secret keys.

Theoretical cache attacks were first described by Page in [21]. Page char-
acterized two types of cache attacks, namely trace-driven and time-driven. In
trace-driven attacks (e.g. [2,6,17]), the adversary is able to obtain a profile of
the cache activity of the cipher. This profile includes the outcomes of every
memory access the cipher issues in terms of cache hits and misses. Therefore,
1 Although it depends on the particular data replacement algorithm, this assumption

is true almost all the time for current processors.

Cache Based Remote Timing Attack on the AES 273

the adversary has the ability to observe (e.g.) if the 2nd access to a lookup table
yields a hit and can infer information about the lookup indices, which are key
dependent. This ability gives an adversary the opportunity to make inferences
about the secret key.

Time driven attacks, on the other hand, are less restrictive since they do
not rely on the ability of capturing the outcomes of individual memory accesses
[5,27,8]. The adversary is assumed to be able to observe the total execution time
of the cipher, i.e. the aggregate profile, which at most gives hint to an approx-
imative number of cache hits and misses, or to input-dependent correlations of
particular operations. Time-driven attacks are based on statistical inferences,
and therefore require much higher number of samples than trace-driven attacks.

We have recently seen another type of cache attacks that can be named as
“access-driven” attacks [20,24,19]. In these attacks, the adversary can determine
the cache sets that the cipher process modifies. Therefore, she can understand
which elements of the lookup tables or S-boxes are accessed by the cipher. Then,
the candidate keys that cause an access to unaccessed parts of the tables can be
eliminated.

3 A New Remote Cache Attack on AES

All of the proposed cache attacks, except [5], either assume that the cache does
not contain any data related to the encryption process prior to each encryption
or explicitly force the cache architecture to replace some of the cipher data.
The implementations of Tsunoo et al. accomplish the so-called ‘cache cleaning’
by loading some garbage data into the cache to clean it before each encryption
[27,26]. The need of cleaning the cache makes an attack impossible to reveal
information about the cryptosystems on remote machines, because the attacker
must have an access to the computer to perform cache cleaning. They did not
investigate if this attack could successfully recover the key without employing
explicit cache cleaning on certain platforms.

Attacks described in [20] replace the cipher data on the cache with some
garbage data by loading the content of a local array into the cache. Again,
the attacker needs an access to the target platform to perform these attacks.
Therefore, none of the mentioned studies could be considered as practical for
remote attacks over a network, unless the attacker is able to manipulate the
cache remotely.

In this paper, we show that it is possible to apply a cache attack without em-
ploying cache cleaning or explicitly aimed cache manipulations when the cipher
under the attack is running on a multitasking system, especially on a busy server.
In our experiments we run a dummy process simultaneously with the cipher
process. Our dummy process randomly issues memory accesses and eventually
causes the eviction of AES data from the cache. This should not be considered
as a form of intentional cache cleaning, because we use this dummy process only
to imitate a moderate workload on the server. In presence of different processes

274 O. Acıiçmez, W. Schindler, and Ç.K. Koç

that run on the same machine with the cipher process, the memory accesses that
are issued by these processes automatically evict the AES data, i.e., cause the
same effect of our dummy process on the execution of the cipher.

Multitasking operating systems allow the execution of multiple processes on
the same computer, concurrently. In other words, each process is given permis-
sion to use the resources of the computer, not only the processor but also the
cache and other resources. Although it depends on the cache architecture and
the replacement policy, we can roughly say that the cache contains most recently
used data almost all the time. If an encryption process stalls for enough time, the
cipher data will completely be removed from the cache, in case of the presence
of other processes on the machine. In a simultaneous multithreading system, the
encryption process does not even have to stall. The data of the process, especially
parts of large tables, is replaced by other processes’ data on-the-fly, if there is
enough workload on the system.

The results of our experiments show that the attack can work in such a case
on a simultaneous multithreading environment. The reader should note that our
results also point the vulnerability of remote systems against Tsunoo’s attack
on DES, as well.

In this section we outline an example cache attack on AES with a key size of
128 bits. In our experiments we consider the 128-bit AES version with a block
length of 128 bits. Our attack can be adjusted to AES with key length 192 or
256 in a straight-forward manner (cf. Subsect. 3.4).

The basic attack consists of two different stages, considering table-lookups
from the first and second round, respectively. The basic attack may be considered
as an adaption of the ideas from the earlier cache attack works to a timing
attack on AES since similar equations are used. Our improved attack variant is
a completely novel approach. It employs a different decision strategy than the
basic one and is much more efficient. It does not have different parts and falls
into sixteen independent 8-bit guessing problems.

The differences of our approaches from the earlier works are the followings.
First of all, we exploit the internal collisions, i.e., the collisions between different
table lookups of the cipher. Some of the earlier works (e.g. [20,19,24,6]) exploits
the cache collisions between the memory accesses of the cipher and another
process. Exploiting such external collisions mandates the use of explicit local
cache manipulations by (e.g.) having access to the target machine and reading
a local data structure. This necessity makes these attacks unable to compromise
remote systems. On the other hand, taking advantage of internal collisions re-
moves this necessity and enables one to devise remote attacks as will be shown
in this paper. The idea of using internal collisions is employed in some of the
previous works, e.g. in [26,27,17]. The earlier timing attacks that rely on internal
collisions perform the so-called cache cleaning, which is also a form of explicit
local cache manipulations. These works did not realize the possibility of auto-
matic cache evictions due to the workload on the system, and therefore could
not show the feasibility of remote attacks.

Cache Based Remote Timing Attack on the AES 275

Fig. 1. Two different accesses to the same table

3.1 Basic Attack Model

We will use Figure 1 to explain the basic attack model. Assume there are two
accesses to the same table. Let Pi and Ki be the ith byte of the plaintext and
cipherkey, respectively. In this paper, each byte is considered to be either an
8-digit radix-2 number ∈ {0, 1}8, that can be added in GF (28) using a bitwise
exclusive-or operation, or an integer in [0, 255] that can be used as an index.
For the rest of this section, we assume that each plaintext consists of a single
16-byte message block.

The structure shown in the figure uses different bytes of the plaintext and the
cipherkey as inputs to the function that computes the index of each of these two
accesses. If both of them access to the same element of the table the latter should
find the target data in the cache, resulting a cache hit; which should reduce the
execution time. Then the key byte difference K1 ⊕ K2 follows immediately from
the values of plaintext bytes P1 and P2 using the equation

P1 ⊕ K1 = P2 ⊕ K2 ⇒ P1 ⊕ P2 = K1 ⊕ K2 .

In trace-driven attacks, we assume that the adversary can directly understand
if the latter access results a hit, thus can directly obtain K1 ⊕ K2. This goal
is more complicated in time-driven attacks. We need to use a large sample to
realize an accurate statistics of the execution. When sampling different plaintext
pairs with the corresponding execution time we would expect that the plaintext
byte difference P1 ⊕P2 that causes the shortest average execution time gives the
correct key byte difference, assuming a cache hit decreases the overall execution
time.

However, in a real environment the situation is more complicated. Even if
the latter access is to a different element other than the target of the former
access, a cache hit may still occur. Any cache miss results the transfer of an
entire cache line, not only one element, from the main memory. Therefore, if the
former access has a target, which lies in the same cache line of the previously
accessed data, a cache hit will occur. In that case, we can still obtain the key
byte difference partially as follows:

Let δ be the number of bytes in a cache line and assume that each element
of the table is k bytes long. Under this situation, there are δ/k elements in each
line, which means any access to a specific element will map to the same line with

276 O. Acıiçmez, W. Schindler, and Ç.K. Koç

(δ/k−1) different other accesses. If two different accesses to the same array read
the same cache line, the most significant parts of their indices, i.e., all of the
bits except the last 	 = log2(δ/k) bits, must be identical.2 Using this fact, we
can find the difference of the most significant part of the key bytes using the
equation

〈P1〉 ⊕ 〈P2〉 = 〈K1〉 ⊕ 〈K2〉 ,

where 〈A〉 stands for the most significant (8 −) bits of A.
Indices of table lookups are driven by the outputs of usually more complex

functions of the plaintext and the cipherkey than only bitwise exclusive-or of
their certain bytes. The structure of these functions determines the performance
of the attack, i.e., the amount of reduction in the exhaustive search space. The
basic idea presented above can be adapted to any such function in order to
develop successful attacks.

The attack model discussed so far is partially correct, except the lack of count-
ing the fact that two different accesses to the same cache line may even increase
the overall execution time. We realized during our experimentation that an inter-
nal collision, i.e. cache hit, at a particular AES access either shortens or lenghtens
the overall execution time. The latter phenomenon may occur if a cache hit oc-
curs from a logical point of view but the respective cache line has not already
been loaded, inducing double work. Thus, if we gather a sample of messages and
each of these messages generates a cache hit during the same access, then the
execution time distribution of this sample will be significantly different than that
of a random sample. We consider this fact to develop our attacks on the AES.

3.2 First Round Attack

The implementation we analyze is described in [11] and it is widely used on 32-
bit architectures. To speed up encrytion all of the component functions of AES,
except AddRoundKey, are combined into lookup tables and the rounds turn
to be composed of table lookups and bitwise exclusive-or operations. The five
lookup tables T0, T1, T2, T3, T4 employed in this implementation are generated
from the actual AES S-box value as the following way:

T0[x] = (2 • s(x), s(x), s(x), 3 • s(x)), T1[x] = (3 • s(x), 2 • s(x), s(x), s(x)),

T2[x] = (s(x), 3 • s(x), 2 • s(x), s(x)), T3[x] = (s(x), s(x), 3 • s(x), 2 • s(x)),

T4[x] = (s(x), s(x), s(x), s(x)) ,

where s(x) and • stand for the result of an AES S-box lookup for the input
value x and the finite field multiplication in GF (28) as it is realized in AES,
respectively. The round computations, except in the last round, are in the form:

(S(r+1)
(4∗i) , S

(r+1)
(4∗i+1), S

(r+1)
(4∗i+2), S

(r+1)
(4∗i+3)) :=(RKr

(4∗i), RKr
(4∗i+1), RKr

(4∗i+2), RKr
(4∗i+3)) ⊕

2 We assume that lookup tables are aligned in the memory, which is the case most of
the time. If they are not aligned, this will indeed increase the performance of the
attack as mentioned in [20].

Cache Based Remote Timing Attack on the AES 277

T0[Sr
(4∗i)] ⊕ T1[Sr

(4∗i+5 mod 16)] ⊕ T2[Sr
(4∗i+10 mod 16)] ⊕ T3[Sr

(4∗i+15 mod 16)] ,

where Sr
i is the byte i of intermediate state value that becomes the input of

round r, RKr
i is the ith byte of the rth round key and i ∈ {0, .., 3}.

The first 4 references to the first table, T0, are:

P0 ⊕ K0, P4 ⊕ K4, P8 ⊕ K8, P12 ⊕ K12 .

If any two of these four references are forced to map to the same cache line for
a sample of plaintext then we know that this will affect the average execution
time. For example, if we assign the value 〈P0 ⊕ K0 ⊕ K4〉 to 〈P4〉, i.e.,

〈P4〉 = 〈P0 ⊕ K0 ⊕ K4〉

for a large sample of plaintexts the timing characteristics of this sample will be
different than that of a randomly chosen sample. We can use this fact to guess
the correct key byte difference 〈K0 ⊕ K4〉.

Using the same idea we can find all key byte differences εi,j = 〈Ki ⊕Kj〉 with
i, j ∈ {0, 4, 8, 12}. For properly selected indices (i1, j1), (i2, j2), (i3, j3), i.e. if the
GF (2)-linear span of {Ki1 ⊕ Kj1 , Ki2 ⊕ Kj2 , Ki3 ⊕ Kj3} contains all six XOR
sums K0 ⊕ K4, K0 ⊕ K8, . . . , K8 ⊕ K12, then each εi,j follows immediately from
εi1,j1 , εi2,j2 and εi3,j3 . We can further reduce the search space by considering
the accesses to other three tables T1, T2 and T3. In general, we can obtain
〈Ki ⊕K4∗j+i〉 for i, j ∈ {0, 1, 2, 3}. Since (8−) is the size of the most significant
part of a table entry in terms of the number of bits the first round attack allows
us to reduce the search space by 12 ∗ (8 −) bits. The parameter 	 depends on
the cache architecture. For 	 = 0, which constitutes the theoretical lower bound,
the search space for a 128 bit key becomes only 32 bits. For 	 = 4 the search
space is reduced by 48 bits yielding an 80 bit problem.

On widely used processors the search space typically reduces to 56, 68, or 80
bits for 128-bit keys. In the environment where we performed our experiments
the cache line size of the L1 cache is 64 bytes, i.e. the most significant part of a
key byte difference is 4 bits long. In other words, we can only obtain the first 4
bits of Ki ⊕ K4∗j+i and the remaining 4 bits have to be searched exhaustively
unless we use a second round attack.

3.3 Second Round Attack – Basic Variant

Using the guesses from the first round a similar guessing procedure can be ap-
plied in the second round to obtain the remaining key bits. We briefly explain
an approach that exploits only accesses to T0, i.e., the first table. To simplify
notation we set Δi := Pi ⊕ Ki in the remainder of this section. In the second
round the encryption accesses four times to T0, namely to obtain the values

2 • s(Δ8) ⊕ 3 • s(Δ13) ⊕ s(Δ2) ⊕ s(Δ7) ⊕ s(K13) ⊕ K0 ⊕ K4 ⊕ K8 ⊕ 0x01 (1)

2 • s(Δ0) ⊕ 3 • s(Δ5) ⊕ s(Δ10) ⊕ s(Δ15) ⊕ s(K13) ⊕ K0 ⊕ 0x01 (2)

2 • s(Δ4) ⊕ 3 • s(Δ9) ⊕ s(Δ14) ⊕ s(Δ3) ⊕ s(K13) ⊕ K0 ⊕ K4 ⊕ 0x01 (3)

2 • s(Δ12) ⊕ 3 • s(Δ1) ⊕ s(Δ6) ⊕ s(Δ11) ⊕ s(K13) ⊕ K0 ⊕ K4 ⊕ K8 ⊕ K12 ⊕ 0x01(4)

278 O. Acıiçmez, W. Schindler, and Ç.K. Koç

where s(x) and • stand for the result of an AES S-box lookup for the input
value x and the finite field multiplication in GF (28) as it is realized in AES,
respectively. If the first access (P0 ⊕ K0) touches the same cache line as (1) for
each plaintext within a sample, i.e. if

〈P0〉 = 〈2•s(Δ8) ⊕ 3•s(Δ13) ⊕ s(Δ2) ⊕ s(Δ7) ⊕ s(K13) ⊕ K4 ⊕ K8 ⊕ 0x01〉 (5)

the expected average execution time will be different than for a randomly chosen
sample. If we assume that the value 〈K4 ⊕ K8〉 has correctly been guessed within
the first round attack this suggests the following procedure.

1. Phase: Obtain a sample of N many (plaintext, execution time) pairs.
2. Phase: Divide the entity of all (plaintext, execution time) pairs into 232 (over-

lapping) subsets, one set for each candidate (K̃2, K̃7, K̃8, K̃13) value. Put
each plaintext into all sets that correspond to candidates (K̃2, K̃7, K̃8, K̃13)
that satisfy the above equation. Note that a particular plaintext should be
contained in about N/28−� different subsets.

3. Phase: Calculate the timing characteristics of each set, i.e., the average ex-
ecution time in our case. Compute the absolute difference between each
average and the average execution time of the entire sample. There will be
a total of 24·8 timing differences, each from a different absolute value of
(K̃2, K̃7, K̃8, K̃13). The set with the largest difference should point to the
correct values for these 4 bytes.

Hence, we can search through all candidates for (K2, K7, K8, K13) ∈ GF (2)32 to
guess the true values. Applying the same idea to (2) to (4) we can recover the
full AES key. Note that in each of the consecutive steps only 4 · 4 = 16 key bits
have to be guessed since Ki and the most significant bits from some other Kj

follow from the first step and εij from the first round attack (cf. Sect. 3.2) where
i is a suitable index in {2, 7, 8, 13}.

The bottleneck is clearly the first step since one has to distinguish between
232 key hypotheses rather than between 216. Experimental results are given in
Sect 4. In the next subsection we introduce a more efficient variant that saves
both samples and computations.

3.4 A More Efficient, Universally Applicable Attack

In the previous subsection we explained a second round attack where 32, resp. 16,
key bits have to be guessed simultaneously. In this section we introduce another
approach that allows independent search for single key bytes. It is universally
applicable in the sense that it could also be applied in any subsequent round,
e.g. to attack AES with 256 bit keys.

We explain our idea at (1). Our goal is to guess key byte K8. Recall that access
to the same cache line as for (P0⊕K0) is required in the second round iff (5) holds.
If we fix the four plaintext bytes P0, P2, P7, and P13 then (5) simplifies to

〈c〉 = 〈2 • s(Δ8)〉 (6)

Cache Based Remote Timing Attack on the AES 279

with an unknown constant c = c(K0, K2, K4, K7, K8, K13, P0, P2, P7, P13). We
observe encryptions with randomly selected plaintext bytes Pi for i /∈ {0, 2, 7, 13}
and evaluate the timing characeristics with regard to all 256 possible values of
P8. For the most relevant case, i.e. 	 = 4, there are 16 plaintext bytes (2� in
the general case) that yield the correct (but unknown) value < 2 • s(Δ8) > that
meets (5). Ideally, with regard to the timing characteristics, these 16 plaintext
bytes should be ranked first, pointing at the true subkey K8; i.e. to a key byte
that gives identical right-hand sides < 2 • s(Δ8) > for all these 16 plaintext
bytes. The ranking is done similar as in Subsect. 3.2. To rank the 256 P8-bytes
one calculates for each subset with equal P8 values the absolute difference of
its average execution time with the average execution time of all samples. The
set with the highest difference is ranked first and so on. In a practical attack
our decision rule says that we decide for that key byte candidate K̃8 for which
a maximum number of the t (e.g. t = 16) top-ranked plaintext bytes yield
identical 〈2 • s(Δ8)〉 values. If the decision rule does not clearly point to one
subkey candidate, we may perform the same attack with a second plaintext P ′

0
for which 〈P0〉 �= 〈P ′

0〉 while we keep P2, P7, P13 fixed (changing 〈c〉 to 〈c′〉 :=
〈c〉 ⊕ 〈P0 ⊕ P ′

0〉). Applying the same decision rule as above, we obtain a second
ranking of the subkey candidates.

Clearly, if P8 and P ′
8 meet (6) for P0 and P ′

0, resp., then

〈P0 ⊕ P ′
0〉 = 〈2 • s(P8 ⊕ K8)〉 ⊕ 〈2 • s(P ′

8 ⊕ K8)〉. (7)

Equation (7) may be used as a control equation for probable subkey candidates
K̃8. From the ranking of P̃8 and P̃ ′

8, we derive an order for the pairs (P̃8, P̃
′
8),

e.g. by adding the ranks of the components or their absolute distances from the
respective means. For highly ranked pairs (P̃8, P̃

′
8) we substitute (P̃8, P̃

′
8, k̃) into

control equation (7) where k̃ is a probable subkey candidate from the ‘elemen-
tary’ attacks.

We note that the attack described above can be applied to exploit the relation
between any two table-lookups. By reordering a type (5)-equation one obtains
an equation of type (6) whose right-hand side depends only on one key byte (to
be guessed) and one plaintext byte. The plaintext bytes that affect the left-hand
side are kept constant during the attack. The whole key could be recovered by 16
independent one-key byte guessing problems. We mention that the (less costly)
basic first round attacks might be used to check the guessed subkey candidates
K̃0, . . . , K̃15.

Comparison with the Basic Second Round Attack from Subsect 3.3.
For sample size N the ’bottleneck’ of the basic second round attack, the 32
bit guessing step, requires the computation of the average execution times of 232

sample subsets of size ≈ N/28−�. In contrast, each of the 16 runs of the improved
attack variant only requires the computation of the average execution times of
256 subsets of size ≈ NI/256 (with NI denoting the sample size for an individual
guessing problem) and sorting two lists with 256 elements (plaintexts and key
byte candidates). Even more important, 16NI will turn out to be clearly smaller
than N (cf. Sect. 4).

280 O. Acıiçmez, W. Schindler, and Ç.K. Koç

The only drawback of the improvedvariant is that it is a chosen-input attack, i.e.,
it requires an active role of the adversary. In contrast, the basic variant explained
in the previous section is principally a known-plaintext attack, which means an
adversary does not have to actively interfere with the execution of the encryp-
tion process, i.e., the attack can be carried out by monitoring the traffic of the
encryption process. However, this is only true for the (less important) so-called
innerprocess attacks (cf. Section 4 for details). For ‘real’ attacks (interprocess and
remote attacks) the basic variant is performed as a chosen-input attack, too, since
the attacker needs to choose the plaintext to be encrypted as the concatenation of
several identical 128 bit strings in order to increase the signal-to-noise ratio.

4 Experimental Details and Results

We performed two types of experimental attacks that we call innerprocess and
interprocess attacks to test the validity of our attack variants. In innerprocess
attack we generated a random single-block of messages and measured their en-
cryption times under the same key. The encryption was just a function that is
called by the application to process a message. The execution time of the cryp-
tosystem was obtained by calculating the difference of the time just before the
function call and immediately after the function return. Therefore, there was
minimum noise and the execution time was measured almost exactly.

For the second part of the experiments, i.e., interprocess attack, we imple-
mented a simple TCP server and a client program that exchange ASCII strings
during the attack. The server reads the queries sent by the client, and sends a
response after encrypting each of them. The client measures the time between
sending a message and receiving the reply. These measurements were used to
guess the secret key. The server and client applications run on the same machine
in this attack. There was no transmission delay in the time measurements but
network stack delays were present.

Brumley and Boneh pointed out that a real remote attack over a network was
principally able to break a remote cipher, when the interprocess versionof the same
attack worked successfully. Furthermore, their experiments also showed that their
actual remote attack required roughly the same number of samples used in the
interprocess version [10]. Therefore, we only performed interprocess experiments.
Applying an interprocess attack successfully is a sufficient evidence to claim the
actual remote version would also work with (most likely) a larger sample size.

We performed our attack against OpenSSL version 0.9.7e. All of the exper-
iments were run on a 3.06 GHz. HT-enabled Xeon machine with a Linux op-
erating system. The source code was compiled using the gcc compiler version
3.2.3 with default options. We used random plaintexts generated by rand() and
srand() functions available in the standard C library. The current time is fed
into srand() function, serving as seed for the pseudorandom number generator.
We measured time in terms of clock cycles using the cycle counter.

For the experiments of innerprocess attack, we loaded 8 KB garbage data into
the L1 cache before each encryption to remove all AES data from the first level

Cache Based Remote Timing Attack on the AES 281

cache. We did not employ this type of cache cleaning during the experiments of
interprocess attack. Instead, we wrote a simple dummy program that randomly
accesses an 8 KB array and run this program simultaneously with the server in
order to imitate the effect of a workload on the computer.

We used two parameters in our experiments.

1. Sample Size (N): This is the number of different (plaintext, execution time)
pairs collected during the first phase of the attacks. We have to use a large
enough sample of queries to obtain accurate statistical characteristic of the
system. However, a very large sample size causes unnecessary increase in the
cost of the attack.

2. Message Length (L): This is the number of message blocks in each query.
We concatenated a single random block L many times with one another to
form the actual query. L was 1 during the innerprocess attack, i.e., each
query was a single block, whereas it was 1024 in the interprocess attack.
This parameter is used to increase the signal-to-noise ratio in the case of
having network delays in the measurements.

We performed our attacks on the variant of AES that has 128-bit key and
block sizes. The cache line size of L1 cache is 64 bytes, which makes 	 = 4
bits. The cipher was run on ECB mode. In our experiments, we performed all
second round guessing problems for the basic attack with only 212 different key
hypotheses, one of them being the correct key combination. Our intention was
to demonstrate the general principle but to save many encryptions. In this way,
we reduced the complexity of ‘bottleneck’ exhaustive search by even more than
a factor of 220 since less samples are sufficient for the reduced search space.

For the innerprocess attack, collecting 218 samples was enough to find the
correct value of the key. Since we only considered 212 different key hypotheses in
second round guessing problems, the required sample size would be more than
218 for a real scale innerprocess attack. In fact, statistical calculations suggest
that 4∗218 samples should be sufficient for 232 key hypotheses although in a strict
sense (13) only guarantees an error probability of at most 2ε/(1−c)−ε2/(1−c)2 >
2ε − ε2 (cf. Example 1 in the appendix). (The right-hand side denotes the error
probability for the reduced search space while c is unknown.) However, (11) is
a (pessimistic) lower bound we may expect that the true error probability is
indeed significantly smaller, possibly after increasing the sample size somewhat.

The key experiment is the interprocess attack, which shows the vulnerability
of remote servers against such cache attacks. In our experiments, we collected
50 million random but known samples and applied our attack on this sample
set. This sample size was clearly sufficient to reveal the correct key value among
212 different key hypotheses. Again, the same heuristic arguments indicate the
sufficiency of 200 million samples in a real-scale attack. We also estimated the
number of required samples in a remote attack over a local network. Rough sta-
tistical considerations indicate that increasing the sample size of the interprocess
attack by a factor of less than 6 should be sufficient to successfully apply the
attack on a remote server.

282 O. Acıiçmez, W. Schindler, and Ç.K. Koç

We tested our improved variant on the same platform with the same settings.
The only difference was the set of the plaintexts sent to the server. We only
performed interprocess attack with this new decision strategy. Our experimental
results indicate a clear improvement over the basic attack. We could recover a
full 128-bit AES key by encrypting slightly more than 6.5 million samples in
average per each of the 16 guessing problems and a total of 106 million queries,
each containing L = 1024 message blocks. Recall the further advantage of the
improved variant, namely the much lower analysis costs.

We want to mention that all of these results correspond to the minimum
number of samples from which we got the correct decision from our decision
strategy. In a real-life-attack an adversary clearly has to collect more samples
to be confident on her decisions in a real attack. More sophisticated stochastic
models that are tailored to specific cache strategies certainly will improve the
efficiency of our attack.

Our client-server model does not perfectly fit into the behavior of an actual
security application. In reality, encrypting/decrypting parties do not send
responses immediately and perform extra operations, besides encryption and de-
cryption. However, this fact does not nullify our client-server model. Although,
the less signal-to-noise ratio in actual attacks increases the cost, it does not change
the principle feasibility of our attacks. We want to mention that timing variations
caused by extra operations decrease the signal-to-noise ratio. If a security appli-
cation performs the same operations for each processed message, we expect the
“extra timing variations” to be minimal, in which case the decrease in the signal-
to-noise ratio and thus the increase in the cost of the attack also remains small.

5 Conclusion

We have presented a new cache-based timing attack on AES software imple-
mentations. Our experiments indicate that cache attacks can be used to extract
secret keys of remote systems if the system under attack runs on a server with a
multitasking or multithreading system and a large enough workload. Although
a large number of measurements are required to successfully perform a remote
cache attack, it is feasible in principle. In this regard, we would like to point the
feasibility of such cache attacks to the public, and recommend implementing ap-
propriate countermeasures. Several countermeasures [21,5,20,22,23,9] have been
proposed to prevent possible vulnerabilities and develop more secure systems.

References

1. O. Acıiçmez, W. Schindler, Ç. K. Koç. Improving Brumley and Boneh Timing At-
tack on Unprotected SSL Implementations. ACM CCS’05, C. Meadows, P. Syver-
son, editors, 139-146, Virginia, 2005.

2. O. Acıiçmez and Ç. K. Koç. Trace-Driven Cache Attacks on AES. Cryptol-
ogy ePrint Archive, Report 2006/138, 2006. Available at: http://eprint.iacr.org/
2006/138

Cache Based Remote Timing Attack on the AES 283

3. O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert. Predicting Secret Keys via Branch
Prediction. Topics in Cryptology - CT-RSA 2007, The Cryptographers’ Track at
the RSA Conference 2007, to appear.

4. D. Agrawal, B. Archambeault, J. R. Rao, P. Rohatgi. The EM Side-Channel(s).
CHES’02, B. S. Kaliski, Ç. K. Koç and C. Paar, editors, 29-45, Springer,
LNCS 2523, Berlin 2003.

5. D. J. Bernstein. Cache-timing attacks on AES. April, 2005. Available at:
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

6. G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, G. Palermo. AES Power
Attack Based on Induced Cache Miss and Countermeasure. ITCC’05, 586 - 591,
IEEE Computer Society, 2005.

7. D. Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based on the
RSA Encryption Standard PKCS #1. CRYPTO 98, H. Krawczyk, editor, 1-12,
Springer, LNCS 1462, Berlin 1998.

8. J. Bonneau and I. Mironov. Cache-Collision Timing Attacks against AES.
CHES’06, Springer, LNCS , Berlin 2006.

9. E. Brickell, G. Graunke, M. Neve, J.-P. Seifert. Software mitigations to hedge
AES against cache-based software side channel vulnerabilities. Cryptology ePrint
Archive, Report 2006/052, 2006. Available at: http://eprint.iacr.org/2006/052

10. D. Brumley, D. Boneh. Remote Timing Attacks are Practical. Proceedings of the
12th Usenix Security Symposium, 1-14, 2003.

11. J. Daemen, V. Rijmen. “The Design of Rijndael”. Springer, Berlin 2001.
12. W. Feller. An Introduction to Probability Theory. 3rd edition, revised printing,

Wiley, New York 1970.
13. K. Gandolfi, C. Mourtel, F. Olivier. Electromagnetic Analysis: Concrete Results.

CHES’01, Ç. K. Koç, D. Naccache, and C. Paar, editors, 251-261, Springer,
LNCS 2162, Berlin 2001.

14. J. Kelsey, B. Schneier, D. Wagner, C. Hall. Side Channel Cryptanalysis of Product
Ciphers. Journal of Computer Security, vol.8, 141-158, 2000.

15. P. C. Kocher. Timing Attacks on Implementations of Diffie–Hellman, RSA,
DSS, and Other Systems. CRYPTO ’96, N. Koblitz, editor, 104-113, Springer,
LNCS 1109, Berlin 1996.

16. P. C. Kocher, J. Jaffe, B. Jun. Differential Power Analysis. CRYPTO ’99, M.
Wiener, editor, 388-397, Springer, LNCS 1666, Berlin 1999.

17. C. Lauradoux. Collision attacks on processors with cache and countermeasures.
WEWoRC’05, C. Wolf, S. Lucks, and P.-W. Yau, editors, 76-85, Kl̈len, LNI P-74,
Bonn 2005.

18. M. Neve, J.-P. Seifert, Z. Wang. A refined look at Bernstein’s AES side-channel
analysis. ASIA CCS’06, 369-369, ACM Press, 2006.

19. M. Neve and J.-P. Seifert. Advances on Access-driven Cache Attacks on AES.
SAC’06, E. Biham, A. Youssef, editors, to appear.

20. D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermeasures:
The Case of AES. CT-RSA’06, D. Pointcheval, editor, 1-20, Springer, LNCS 3860,
Berlin 2006.

21. D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. Tech-
nical Report CSTR-02-003, Department of Computer Science, University of Bristol,
June 2002.

22. D. Page. Defending Against Cache Based Side-Channel Attacks. Technical Report.
Department of Computer Science, University of Bristol, 2003.

284 O. Acıiçmez, W. Schindler, and Ç.K. Koç

23. D. Page. Partitioned Cache Architecture as a Side Channel Defence Mech-
anism. Cryptography ePrint Archive, Report 2005/280, 2005. Available at:
http://eprint.iacr.org/2005/280

24. C. Percival. Cache missing for fun and profit. BSDCan’05, Ottawa, 2005. Available
at: http://www.daemonology.net/hyperthreading-considered-harmful/

25. W. Schindler: On the Optimization of Side-Channel Attacks by Advanced Stochas-
tic Methods, PKC ’05, S. Vaudenay, editor, 85–103, Springer, LNCS 3386, Berlin
2005.

26. Y. Tsunoo, E. Tsujihara, K. Minematsu, H. Miyauchi. Cryptanalysis of Block
Ciphers Implemented on Computers with Cache. ISITA’02, 803-806, IEEE Infor-
mation Theory Society, 2002.

27. Y. Tsunoo, T.Saito, T. Suzaki, M. Shigeri, H. Miyauchi. Cryptanalysis of DES
Implemented on Computers with Cache. CHES’03, C. D. Walter, Ç. K. Koç, and
C. Paar, editors, 62-76, Springer, LNCS 2779, Berlin 2003.

28. Y. Tsunoo, E. Tsujihara, M. Shigeri, H. Kubo, K. Minematsu. Improving cache
attacks by considering cipher structure. International Journal of Information Se-
curity, February 2006.

Appendix: Scaling the Sample Size N

In order to save measurements we performed our practical experiments to the
basic second round attack from Subsect. 3.3 with a reduced key space. Clearly,
to maintain the success probability for the full subkey space the sample size N
must be increased to N ′ since the adversary has to distinguish between more
admissible alternatives. In this section we estimate the ratio r := N ′/N .

We interpret the measured average execution times for the particular subkey
candidates as realizations of normally (Gaussian) distributed random variables,
denoted by Y (related to the correct subkey) and X1, . . . , Xm−1 (related to the
wrong subkey candidates) for the reduced subkey space, resp. X1, . . . , Xm′−1
when all possible subkeys are admissible. We may assume Y ∼ N(μA, σ2

A) while
Xj ∼ N(μB , σ2

B) for j ≤ m−1, resp. for j ≤ m′ −1, with unknown expectations
μA and μB and variances σ2

A and σ2
B . Clearly, μA �= μB since our attack exploits

differences of the average execution times. Since it only exploits the relation
between two table lookups σ2

A ≈ σ2
B seems to be reasonable, the variances clearly

depending on N . W.l.o.g. we may assume μA > μB . We point out that E(X1 +
... + Xm−1 + Y)/m ≈ μB unless m is very small.

Prob(correct guess)≈Prob(|Y − μB| > max{|X1 − μB|, . . . , |Xm−1 − μB |})
= Prob(min{X1,, Xm−1} > μB − (Y − μB), max{X1, ..., Xm−1} < Y)
≈ Prob(max{X1, ..., Xm−1} < Y)2 (8)

Unless m is very small the ≈ sign should essentially be “=”. If the random
variables Y, X1, . . . , Xm−1 were independent we had

Prob(max{X1, ..., Xm−1} ≤ t) =
m−1∏
j=1

Prob(Xj ≤ t) = (9)

= Φ((t − μB)/σB)m−1

Cache Based Remote Timing Attack on the AES 285

where Φ denotes the cumulative distribution function of the standard normal
distribution. From (9) one immediately deduces

Prob(max{X1, ..., Xm−1} < Y) ≈
∫ ∞

−∞
Φ((z − μB)/σB)m−1fA(z)dz (10)

where Y has density fA. In the context of Subsect. 3.3 the random variables
Y, X1, . . . , Xm−1 are yet dependent. However, for different subkey candidates ki

and kj the size of the intersection of the respective subsets is small compared
to the size of these subsets themselves. Hence we may hope that the influence
of the correlation between Xi and Xj is negligible. Under this asumption (10)
provides a concrete formula for the probability for a true guess. However, this
formula cannot be evaluated in practice since μA, μB and σ2

A ≈ σ2
B are unknown.

Instead, we prove useful Lemma.

Lemma 1. (i) Let f denote a probability density, while 0 ≤ g, h ≤ 1 are inte-
grable functions and Mc := {y : g(y) ≤ c}. Assume further that h ≥ g on R\Mc.
Then ∫

h(z)f(z)dz ≥ 1 − ε

1 − c
if

∫
g(z)f(z)dz = 1 − ε (11)

(ii) Let s, u, b > 1. Then there exists a unique y0 > 0 with Φ(y0s)ub = Φ(y0)b. In
particular, Φ(ys)ub > Φ(y)b iff y > y0.

Proof. Assertion (i) follows immediately from

(1 − c)
Mc

f(z)dz ≤
Mc

(1 − g(z))f(z)dz ≤ (1 − g(z))f(z)dz = ε

and hence

h(z)f(z) dz ≥ 0 +
R\Mc

g(z)f(z) dz = (1 − ε) −
Mc

g(z)f(z)

≥ (1 − ε) − c
Mc

f(z) dz ≥ 1 − ε − cε

1 − c
= 1 − ε

1 − c
.

Since Φ(ys)ub/Φ(y)b = (Φ(ys)u/Φ(y))b we may assume b = 1 in the remainder
w.l.o.g. Clearly, Φ(ys)u < Φ(y) for y < 0. Hence we concentrate to the case y ≥ 0.
In particular, log(1 − x) = −x + O(x2) implies

ψ(y) := log (Φ(ys)u/Φ(y)) = u log(Φ(ys)) − log(Φ(y))

= u log(1 − (1 − Φ(ys))) − log(1 − (1 − Φ(y)))

= −u (1 − Φ(ys)) + (1 − Φ(y)) + O (1 − Φ(y))2

≥ 1√
2π

1
y

− 1
y3 e−y2/2 − 1√

2π

u

ys
e−y2/2 s2

+ O
1
y

e−y2/2
2

> 0 for sufficiently large y, and lim
y→∞

ψ(y) = 0. (12)

We note that the last assertion follows immediately from the definition of ψ
while the ’≥’ sign is a consequence from a well-known inequality of the tail of

286 O. Acıiçmez, W. Schindler, and Ç.K. Koç

1 − Φ (see, e.g., [12], Chap. VII, 175 (1.8)). Since ψ is continuous and ψ(0) =
log(0.5u−1) < 0 there exists a minimal y0 > 0 with ψ(y0) = 0. For any y1 ∈ {y ≥
0 | ψ′(y) = 0} the second derivative simplifies to ψ′′(y1) = t(y1)Φ′(y1)/Φ(y1)
with t(x) := (1 − s2)x + (1 − 1/u)Φ′(x)/Φ(x). (Note that Φ′′(ys) = −ysΦ′(ys)
and Φ′′(y) = −yΦ′(y).) Assume that ψ(y00) = 0 for any y00 > y0. As ψ(0) < 0
and ψ(y0) = ψ(y00) = 0 the function ψ attains a local maximum in some ym ∈
[0, y00). Since t: [0, ∞) → R is strictly monotonously decreasing ψ cannot attain
a local minimum in (ym, ∞) (with ψ(·) ≤ 0 = ψ(y00)) which contradicts (12).
This proves the uniqueness of y0 and completes the proof of (ii).

Our goal is to apply Lemma 1 to the right-hand side of (10). We set u :=
(m′ − 1)/(m − 1), b := 1 and s :=

√
r with r := N ′/N . Further, f(z) := fA(z),

g(z) := (Φ((z − μB)/σB))m−1 and h(z) := (Φ(
√

r(z − μB)/σB))u(m−1). By (ii)
we have c = Φ((z0 − μB)/σB)m−1 and Mc = (∞, z0] with g(z0) = h(z0). Lemma
1 and (8) imply[

Prob(correct guess for (m, N)) = (1 − ε)2
]

⇒ (13)[
Prob(correct guess for (m′, N ′ = rN)) ≥

(
1 − ε

1 − c

)2
]

providing a lower probability bound for a correct guess in the full key space
attack. Note that μA, μB, σ2

A ≈ σ2
B , N, r determine ε, c and z0 which are yet

unknown in real attacks since μA and μB are unknown. Example 1 gives an idea
of the magnitude of r.

Example 1. Let m = 212, m′ = 232, and y0 := (z0 − μB)/σB = Φ−1(c1/(m−1)).
If c = 0.5 (resp., if c = 100/101) the number r = N ′/N = 3.09 (resp., r = 3.85)
gives Φ(y0

√
r)u(m−1) = Φ(y0)m−1 = 0.5 (resp., = 100/101).

Group Secret Handshakes
Or

Affiliation-Hiding Authenticated Group Key Agreement

Stanisław Jarecki, Jihye Kim, and Gene Tsudik

Computer Science Department
University of California, Irvine

{stasio, jihyek, gts}@ics.uci.edu

Abstract. Privacy concerns in many aspects of electronic communication trigger
the need to re-examine – with privacy in mind – familiar security services, such
as authentication and key agreement.

An Affiliation-Hiding Group Key Agreement (AH-AGKA) protocol (also
known as Group Secret Handshake) allows a set of participants, each with a cer-
tificate issued by the same authority, to establish a common authenticated secret
key. In contrast to standard AGKA protocols, an AH-AGKA protocol has the fol-
lowing privacy feature: If Alice, who is a member of a group G, participates in an
AH-AGKA protocol, none of the other protocol participants learn whether Alice
is a member of G, unless these participants are themselves members of group
G. Such protocols are useful in suspicious settings where a set of members of a
(perhaps secret) group need to authenticate each other and agree on a common
secret key, without revealing their affiliations to outsiders.

In this paper we strengthen the prior definition of AH-AGKA so that the se-
curity and privacy properties are maintained under any composition of protocol
instances. We also construct two novel AH-AGKA protocols secure in this new
and stronger model under the RSA and Gap Diffie-Hellman assumptions, respec-
tively. Each protocol involves only two communication rounds and few exponen-
tiations per player (e.g., no bilinear map operations). Interestingly, these costs
are essentially the same as those of the underlying (unauthenticated) group key
agreement protocol. Finally, our protocols, unlike prior results, retain their secu-
rity and privacy properties without the use of one-time certificates.

Keywords: secret-handshakes, group key agreement, authenticated group key
agreement, privacy, privacy-preserving authentication.

1 Introduction

A traditional authenticated group key agreement (AGKA) protocol is assumed to op-
erate within the confines of a common Public Key Infrastructure (PKI). At the start,
participants – who have no prior secrets in common – exchange their public key certifi-
cates (PKCs). This exchange leaks information; in particular, it always reveals a partic-
ipant’s public key certification authority (CA). However, exchange of credentials, such
as PKCs, is part and parcel of any AGKA and it seems counter-intuitive to be concerned

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 287–308, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

288 S. Jarecki, J. Kim, and G. Tsudik

about information leakage. At the same time, in many applications, the identity of the
certificate-issuing CA determines the certificate owner’s affiliation. This is not an issue
if affiliation by itself is not a sensitive attribute. However, in certain scenarios, affilia-
tion must be kept private and protected from all unauthorized parties, most commonly,
those with different affiliations. We consider two motivating examples.

• CIA agents often operate in hostile environments and their affiliation represents a
closely-guarded secret. This is mandated by the rules of the agency. Therefore, if
two or more CIA agents need to discover each other and establish a secure com-
munication channel, affiliation-leaking information cannot be exchanged for fear
of detection and unpleasant consequences.

• Federal air marshals routinely accompany civilian flights and are required to keep a
very low profile, i.e., to blend in as much as possible. When two or more marshals
in an airport (or any common vicinity) need to coordinate activities and set up a
secure conference, they must do so in an unobservable and undetectable manner,
i.e., their affiliations must be kept private.

In a two-party setting, affiliation hiding authentication schemes have been addressed
in the past with so-called secret handshake protocols [1]. The initial work [1] intro-
duced the notion of privacy in public key-based authentication schemes and proposed
the first two-party secret handshake scheme based on bilinear maps and secure under
the Gap Diffie-Hellman (GDH) assumption. A subsequent result by Castelluccia, et
al. [9] developed a slightly more efficient secret handshake scheme secure under the
Computational Diffie-Hellman (CDH) assumption. Both schemes can be used in two
versions: If the players use one-time certificates, in addition to affiliation-hiding these
protocols trivially attain a property of unlinkability, since in addition to not leaking their
affiliations, any two instances of the same player cannot be linked with each other. If
the players re-use their certificates, the protocols are affiliation-hiding but it’s possible
to trace multiple occurrences of the same party.

In this paper we consider affiliation hiding in a multi-party (two or more) setting, i.e.
for Authenticated Group Key Agreement protocols (AGKA). We construct two practi-
cal Affiliation-Hiding AGKA protocols (AH-AGKA), wherein participants compute an
authenticated common secret key as long as all participants have the same affiliation,
i.e., possess certificates issued by the same CA. At the same time, in contrast to a stan-
dard AGKA, a party engaging in an AH-AGKA protocol is assured that its affiliation is
revealed to only those other protocol participants that belong to the group governed by
the same CA. Our protocols have similar properties as the two-party secret handshakes
of [1, 9], i.e. they offer affiliation-hiding with standard re-usable certificates, and they
can offer unlinkability only if the players use one-time certificates. They can also offer
heuristic unlinkability, e.g if players limit the usage of one certificate based on their
physical mobility.

Group (or multi-party) secret handshake protocols have been considered in prior
work, notably [17] and [12]. In [17], Tsudik and Xu presented the first scheme sup-
porting any number of protocol participants and reusable certificates. However, their
approach assures that the participants in the AGKA protocol successfully compute a
shared key only if their group revocation information is synchronized (in other words,
only if each participant assumes the same revocation epoch).

Group Secret Handshakes 289

Recently, Jarecki et al. [12] constructed a practical AH-AGKA protocol which avoids
this synchronization assumption, based on the (unauthenticated) Burmester-Desmedt
group key agreement protocol [7]. However, this AH-AGKA protocol is secure only
with the use of one-time certificates.1 Also, the model of security for AH-AGKA pro-
tocols considered in [12] is restricted to a single instance of an AH-AGKA protocol
execution. Such a model makes sense if each protocol instance uses independent in-
puts, but it is insufficient in the standard PKI setting of re-usable certificates.

Our Contributions. The contributions of this paper are as follows: First, we upgrade
the notion of AH-AGKA in [12] with a more robust and thus more useful notion. The
new notion assumes a standard PKI model of re-usable certificates and it is modeled
on the standard – and very strong – notion for traditional AGKA protocols in [6, 14],
which, in turn, comes from a long line of research on Authenticated 2-party Key Agree-
ment protocols [3, 16, 8]. This upgraded security notion implies that each AH-AGKA
protocol session remains secure given arbitrary scheduling of protocol instances and any
message-interleaving pattern between these instances, e.g., a man-in-the-middle attack.
Also, the security of a protocol session is independent of the usage of keys produced by
all other protocol sessions.

Second, we construct two AH-AGKA protocols that support standard re-usable cer-
tificates and satisfy the new strong notion of AH-AGKA security. Both protocols are
implicitly-authenticated variants of the Burmester-Desmedt GKA protocol. These two
protocols are secure under the RSA and the GDH assumptions, respectively, in the
Random Oracle Model (ROM). (Moreover, the second protocol is secure also under the
CDH assumption, but the security reduction from the CDH problem is weaker.) Each
scheme involves only 2 communication rounds and few exponentiations per participant.
From both communication and computation perspective, the protocol costs are the same
as those of the unauthenticated Burmester-Desmedt group key agreement protocol [7]
and lower than those of the (non affiliation-hiding) signature-based authenticated ver-
sion of the Burmester-Desmedt protocol due to Katz and Yung [14]. Consequently, our
protocols show that Affiliation Hiding for AGKA protocol can be achieved at essentially
no additional cost. Note, however, that an AH-AGKA protocol guarantees success only
if all participants are affiliated with the same CA, which is not the case in a standard
AGKA. Moreover, we do not address perfect forward security in this paper.

Third, an independent consequence of our work is a variant of the Burmester-Desmedt
GKA protocol which is secure (in ROM), although without perfect forward secrecy, even
if the participants re-use their Diffie-Hellman key contributions. The standard Burmester-
Desmedt GKA protocol is insecure unless each player uses a new contribution in every
protocol instance. As a consequence of re-use of key contributions, this version of the
Burmester-Desmedt protocol requires 2 exponentiations per player instead of 3.

Organization. The rest of this paper is organized as follows: Section 2 formally defines
an AH-AGKA scheme and the desired security/privacy properties. Section 3 defines the

1 We want to point out that in addition to requiring more storage for group members, higher load
on the issuing CA, and longer certificate revocation structures, a protocol that requires single-
use certificates is vulnerable to depletion attacks, whereby the adversary repeatedly engages
some user in the AH-AGKA protocol, thus depleting the latter’s supply of one-time certificates.

290 S. Jarecki, J. Kim, and G. Tsudik

cryptographic assumptions required by our constructions. Section 4 presents the RSA-
based AH-AGKA protocol, and Section 5 presents the DH-based AH-AGKA protocol.
The security proofs for the RSA-based scheme are given in detail, but because of space
limitations we relegate the proofs of security for the DH-based scheme to the full ver-
sion of this paper [13].

2 Affiliation-Hiding Authenticated Group Key Agreement: Model
and Definitions

Entities. Our AH-AGKA model is based on the existing standard model for authenti-
cated group key agreement protocols [6, 14]. The main difference is that the standard
model assumes a global PKI where each entity has a private/public key-pair and a cer-
tificate issued by a CA which is part of the PKI. The PKI involves a certification hier-
archy, where the integrity of the association between entities and their public keys is
vouched by a chain of certificates all leading to some commonly trusted CA-s. In this
model, it is assumed that certificates (which in many applications contain information
about owners affiliation) are publicly available. In contrast, AH-AGKA protocols aim
to protect affiliation privacy of the participants and certificates are kept private. Another
distinctive feature of our model is its “flat” certification structure, i.e., certification hier-
archies and chains are not allowed. There are only CA-s and entities certified by CA-s;
there are no intermediate CA-s and no delegation of certificates.

An AH-AGKA scheme operates in an environment that includes a set of users U
and a set of groups G. Each group is administered by a CA responsible for creating
the group, admitting entities as members and revoking membership. We assume upper
bounds m and l, respectively, on the total number of groups and the number of members
in any given group, i.e., |G| ≤ m and |U| ≤ l. We assume that each user can be a
member of many groups. We denote the fact that user U ∈ U is a member of group
G ∈ G as U≺ G. The main part of an AH-AGKA scheme is an AH-AGKA protocol,
which is executed by any set of users Δ = {U1, ..., Un} ⊆ U , for any n ≥ 2. (More
on that below.) Hereafter, the term group member refers to a user who is a member of a
particular group, whereas the terms player and protocol participant refer to a user who
is currently taking part in some particular instance of an AH-AGKA protocol.

Groups. We note from the outset that the use of the term group is over-loaded in this
paper. First, it denotes a set of users with the same affiliation (members of group G),
i.e., with certificates issued by the same CA. Second, it refers to an ad-hoc group (Δ)
of AH-AGKA protocol participants who may or may not be all members of the same
group G. We make the desired meaning unambiguous from the context. We use pro-
tocol participants or set of players when referring to the second meaning, and we use
group only in the first meaning except when re-using the standard terminology of (Au-
thenticated) Group Key Agreement, where the word Group refers to the set of players
participating in an instance of the AGKE protocol.

AH-AGKA Protocol. Using this terminology, each player Ui ∈ Δ participating in an
instance of the AH-AGKE protocol executes the protocol instructions on inputs a public
key of some group G ∈ G s.t. Ui≺ G, and Ui’s certificate of membership in G. The

Group Secret Handshakes 291

purpose of the AH-AGKA protocol is for the players in Δ to establish an authenticated
shared secret key as long as (1) each of them run the protocol on the same public key, i.e.
the public key of the same group G, and (2) for each Ui ∈ Δ it holds that Ui≺ G. This
key is secret and authenticated in the sense that it can be used for any subsequent secure
communication, e.g., entity authentication or message encryption and/or authentication.

To avoid any misunderstanding, we stress that such protocol does not in general im-
ply an efficient solution for an (affiliation-hiding) group discovery problem, where each
participating player starts a protocol on a set of its certificates of membership in a set of
groups, and the protocol succeeds, for example, as long as all the certificates are valid
and all these sets have a non-empty union. In contrast, our AH-AGKA schemes are most
practical in scenarios where each user is a member of at most one group. However, we
stress that if a user is a member of many groups, this would affect execution efficiency
(or robustness), but it would not affect security and affiliation-hiding of our schemes.
Indeed, in the definitions that follow we assume w.l.o.g. that each user is a member of
every group.

Public Information and Network Assumptions. In our environment, all groups G ∈
G are publicly known. Their CA public keys and certificate revocation lists (CRL-s)
maintained by CA-s are publicly accessible. Before any group can be created, a common
security parameter must be publicly chosen, and a public Setup procedure is executed on
that parameter. The Setup procedure creates common cryptographic parameters which
are used as inputs in all subsequent protocols. We stress that the Setup procedure does
not need to be executed by a trusted authority: It can be executed by anyone, for example
by one of the CAs, and everyone can verify the validity of its outputs.

We assume that communication between users and CA-s, i.e. the certificate issuance
process and the CRL retrieval, are conducted over anonymous and authenticated chan-
nels. In practice, a user might communicate with the CA, e.g., while retrieving the most
recent CRL for its group, over an anonymous channel such as TOR [11]. Alternatively,
the CRL-s of all groups can be combined and stored at some highly-available site where
they can be either retrieved in bulk (if small) or via some Private Information Retrieval
(PIR) protocol, e.g., [10].

We assume that all communication within the AH-AGKA protocol takes place over
a broadcast channel. We assume weak synchrony, i.e., the protocol executes in rounds.
In practice, this assumption implies that the protocol is started by a broadcast mes-
sage indicating the number of participants. Weak synchrony among the participants
also assumes that the length of the time window assigned to each protocol round is
large enough to accommodate clock skews and reasonable communication delays. The
broadcast channel is not assumed to be authenticated. In fact, the broadcast channel is
used for purely notational convenience since we make no assumptions about its relia-
bility. Specifically, when a participant broadcasts a message, it could just as well send a
copy of this message to every other participant over a point-to-point link. In our model,
the adversary is assumed to have full control of the underlying network: it sees the mes-
sages broadcasted by each participant in a given round, and decides which messages
will be delivered to each participant in that round. The adversary can delete, modify
or substitute any message and it can choose to deliver different messages to different
participants.

292 S. Jarecki, J. Kim, and G. Tsudik

As a consequence of this model, the security and privacy (Affiliation Hiding) proper-
ties of our AH-AGKA protocols hold, by definition, given any adversarial interference
in the protocol. However, we stress that we do not claim any robustness properties of
our protocols, apart from the basic correctness, i.e. that the protocols succeeds if the
players execute the protocols on matching inputs and there is no active adversarial in-
terference in the protocol. Indeed, constructing AH-AGKA protocols which are robust
against protocol interference is an open issue.

Player Instances and Protocol Sessions. In line with prior work [8, 6, 14], our model
allows for multiple executions of the AH-AGKA protocol scheduled in an arbitrary way,
each involving any set of participants. We model this in the usual way, by assuming
that every user U ∈ U can run multiple instances of the protocol. We denote the τ -
th instance of user U as Πτ

U . When player U starts a new instance of the AH-AGKA
protocol, it creates a new instance Πτ

U for a locally unique value τ . Such instances can
run on shared state, e.g., certificates and CRLs held by player U , but each instance also
keeps separate state. Each player instance can either reject or accept and output a key.
We say that an instance Πτ

U runs a protocol session, and we use player instance and
protocol session interchangeably, denoting both as Πτ

U . When referring to a specific
user Ui we use Πτ

i as a short-hand version of Πτ
Ui

, to denote τ -th instance of user
Ui ∈ U . Each instance Πτ

i keeps a state variable, sidτ
i which can be thought of as a

session id. (However, see the remark below.) This variable is protocol-dependent, but in
our protocols it is always set to an entirety of the communication sent and received by
instance Πτ

i .

AH-AGKA Syntax. We define an AH-AGKA scheme as a collection of the following
algorithms:

• Setup: on input of security parameter κ, it generates public parameters params.
• KGen: executed by the group CA, on input params, it outputs the group public

key PK and the corresponding secret key SK for this group, and an empty cer-
tificate revocation list CRL. We denote the group corresponding to the public key
PK as Group(PK). If PK was generated by the CA that maintains group G then
Group(PK) = G.

• Add: executed by the CA of group G, on input SK and U ∈ U , it adds U to G by
generating a certificate for U , denoted cert. If cert is issued under a public key PK,
we say that cert ∈ Certs(PK).

• Revoke: executed by the group CA, on input U ∈ U , it retrieves the correspond-
ing cert ∈ Certs(PK) issued for U , and revokes it by adding a new entry to
the group CRL which uniquely identifies cert. If cert is revoked, we say that
cert ∈ RevokedCerts(CRL).

• Handshake: this is the AH-AGKA protocol itself, which is an interactive protocol
executed by some set of participants Δ = {U1, ..., Un} ⊆ U . Each Ui uses its
distinct new instance Πτ

i and runs session Πτ
i of the protocol on some inputs:

(certτ
i , PKτ

i , CRLτ
i)

Group Secret Handshakes 293

where PKτ
i is the public key of the group which, in Ui’s view, sets the context for

the protocol, certτi is Ui’s certificate in Group(PKτ
i), and CRLτ

i is the CRL of this
group.2 An instance Πτ

i either rejects or outputs an authenticated secret key Kτ
i .

Remark: Our syntax, though adopted from earlier AGKA models of [6, 14], is slightly
different from that used in some other work on Key Agreement protocols, e.g., [8],
where a protocol instance takes as additional input, a so-called session-id (different
from the sidτ

i value introduced above). In this alternative model, creation of a fresh and
locally-unique session-id’s, common to all players engaging in the protocol, is assumed
to be done before the protocol starts. In contrast, in the model of [6, 14], which we
adopt, no such agreed-upon value is assumed. (However, our protocols, similarly to the
AGKA protocol in [14], in the first protocol round create a value s which plays the role
of such unique session-id input. As a side remark, we point out that unlike the protocol
of [14], our AH-AGKA protocol manages to piggyback the creation of this session-id s
onto the first round of the protocol, thus saving one communication round.)

Partnering. The purpose of the Handshake protocol is to allow a set of participants
with matching inputs, i.e. specifying the same group G, to establish a common key. We
use the term session partnering to denote protocol instances that run on matching inputs
and where all protocol messages between them are properly delivered. Namely, we say
that a set of protocol instances {Πτ1

1 , Πτ2
2 , ..., Πτn

n } is partnered if there exists a single
public key PK and a single value sid such that, for each session Πτi

i , in this set it holds
that PKτi

i = PK and sidτi

i = sid. The latter implies complete agreement among these
player instances with regard to the set of messages sent and delivered between these
instances.

Correctness. We say that an AH-AGKA scheme is correct if, assuming that all keys,
certificates and CRL-s are generated by following the Setup, KGen, Add and Revoke
procedures, the following holds:

For any set of partnered sessions Πτ1
1 , Πτ2

2 , ..., Πτn
n where certτi

i ∈Certs(PKτi

i)
for each i, and certτi

i �∈ RevokedCerts(CRL
τj

j) for all pairs (i, j), there exists
a single unique bit-string K of length κ such that each session Πτi

i accepts and
outputs Kτi

i = K .

2.1 Definition of Security

We define AH-AGKA security similarly to standard AGKA protocols in the PKI model,
but we must adapt these security notions to our setting. In the setting of an AH-AGKA
scheme, the protocol participants, instead of recognizing one another by individual pub-
lic keys, want to establish authenticated sessions with any other participants as long as
all these participants are non-revoked members of the same group. This is reflected in
the fact that a user starts an AH-AGKE protocol instance on just his certificate and
the public key of some chosen group G. One implication this bears for the AH-AGKA

2 As in standard authentication protocols in the PKI model, the more recent CRL, the better.
However, we do not assume that a player has the most recent group CRL.

294 S. Jarecki, J. Kim, and G. Tsudik

security definition is that, unlike in a standard AGKA protocol in the PKI model, our
notion of security must explicitly include admission and revocation actions of the CA’s
which manages the groups.

AH-AGKA security is defined via a game between an adversary and a set of users
communicating over a network. In this game, the adversary gets to see the public
keys of all groups, and some number of certificates in each group, corresponding to
all corrupted players and leaked secrets. The adversary then schedules any number of
Handshake protocol instances, involving any combination of honest users and groups.
The adversary has complete control of the network, i.e., it sees all messages and can
delay, delete, modify, or inject any messages received by the honest players. The adver-
sary can also request that some key established in some protocol session be revealed.
We say that the AGKA protocol is secure if, for each (unrevealed) session executed by
an honest player, the adversary cannot distinguish the key output by the player on that
session from a random bitstring of the same length. (As discussed below, the only ex-
ception is if the adversary previously requested that a key be revealed for some protocol
session partnered with the one at hand.)

Formally, security is defined via an interaction of an adversarial algorithm A and
a challenger C on common inputs (κ, l, m). The interaction starts with C generating
params via Setup(κ), and initializing m groups G1, ..., Gm, by running the
KGen(params) algorithm m times. C initializes all members in these groups, by run-
ning the Add(SKj) algorithm, for each SKj , j = 1, ..., m, for l times. This way, C
generates m certificates for every U ∈ U , thus making every user a member of every
group. The adversary A gets all generated public keys PK1, ...,PKm. It then chooses
any subset Rev ⊆ U of initially corrupted players and gets the set of their certificates
{certi

(j) | Ui ∈ Rev, j ∈ {1, ..., m}}. For each group G in G, the challenger runs the
Revoke algorithm to revoke all corrupted members U ∈ Rev, and outputs the resulting
CRL-s for each group, i.e., CRL1, ..., CRLm.

After this initialization, A schedules any number of Handshake protocols, arbitrar-
ily manipulates their messages, requests the keys on any number of the (accepting)
sessions, and optionally corrupts any number of additional players, all of which can
be modeled by A issuing any number of the commands listed below. Finally, A stops
and outputs a single bit b′. The commands the adversary can issue, and the way the
challenger C responds to them, are listed below. In all commands we assume that
U ∈ U \ Rev.

• Start(U, G) : If U = Ui for some Ui ∈ U \ Rev and G = Gj for some Gj ∈ G,
the challenger retrieves key PKj for group Gj , certificate certi

(j) issued to player
Ui for group Gj , and the CRLj for group Gj , and initiates instance Πτ

U , where
τ is an index that has not been used by user U before. The challenger follows the
Handshake protocol on behalf of instance Πτ

U on inputs (certi(j), PKj , CRLj),
forwarding any message generated by this instance to A. The challenger keeps the
state of all initiated instances. We denote the group upon which Πτ

U is initiated as
Group(Πτ

U). If Πτ
U is triggered on Gj then Group(Πτ

U) = Gj . C also hands to A
the index τ of this instance.

• Send(U, τ, M): If instance Πτ
U has been initiated and is still active, C delivers a

set M of messages to this instance. The set M should normally contain n − 1

Group Secret Handshakes 295

messages M2, ...Mn, for n ≥ 2, which models the messages that instance Πτ
U

receives in the current round of this protocol. The instance interprets these messages
as broadcasted by n − 1 distinct instances of the protocol in the same round. (A
could send an empty set M, but an instance would invariable immediately abandon
the protocol as a result.) C forwards to A any message Πτ

U generates in response.
If Πτ

U outputs a key, C stores this key with the session state.
• Reveal(U, τ): If Πτ

U outputs a session key K , C sends K to A. If the session has
either not completed yet or has been rejected, C sends A a null value.

• Test(U, τ): This query is allowed only once. If session Πτ
U has output a session key

K , C picks a random bit b. If b = 1, then C sends K to A. If b = 0 then C sends to
A a random κ-bit long value K ′, instead of K . If the session does not exist, failed,
or is still active, the challenger ignores this command.

Session Freshness and Legitimate Adversaries. We call an active session Πτ
U of an

uncorrupted player U fresh, if for all sessions Πτ ′
U ′ partnered with Πτ

U the adversary has
not queried Reveal(U, τ) or Reveal(U ′, τ ′). Note that the adversary knows whether any
two sessions are partnered or not. We call an adversary A legitimate if it poses a Test
query on a fresh session Πτ

i , and afterwards A does not issue a Reveal query on Πτ
U or

any Πτ ′
U ′ partnered with Πτ

U .

Definition 1. Denote the final output of adversary A in the above interaction with the
challenger C on common inputs (κ, l, m) as 〈A, C(b)〉(κ, l, m). We define the adver-
sary’s advantage in the security game as

Adv sec
A = | Pr[b = b′ | b′ ← 〈A, C(b)〉(κ, l, m)] − 1/2|

where the probability is taken over the random coins used by A and C and a random
choice of the challengers bit b.

We call an AH-AGKA scheme (ε, t, qs, qH , l, m)-secure in the Random Oracle Model
if for all legitimate adversaries A who run in time t, start qs AH-AGKA sessions, and
make qH hash function queries, it holds that Adv sec

A ≤ ε.

2.2 Definition of Affiliation-Hiding

We define the affiliation-hiding property using a similar game as in the security defini-
tion in the previous section. However, the adversary’s goal in the affiliation-hiding game
is not to violate semantic security of some session key (as in the security game above)
but to learn the participants’ affiliation. We model the property of the attacker’s inabil-
ity to learn the affiliation by comparing two executions of the adversary: one where
the challenger follows the protocols faithfully on behalf of all honest participants, and
the other where the adversary interacts with a simulator, instead of the real users. The
simulator attempts to follow the adversary’s instructions, except that it is never told the
groups for which the (scheduled by the adversary) Handshake protocol instances are
executed, i.e., if the adversary issues a Start(U, G) query, the simulator gets only an
identifier (îd) which is uniquely but arbitrarily assigned to the pair (U, G) ∈ U × G.

Consequently, these inputs are also the only thing that the adversary can possibly
learn from the interaction with a simulator. The simulated protocol messages can re-
veal only whether or not two sessions involve the same (user,group) pair. However, the

296 S. Jarecki, J. Kim, and G. Tsudik

adversary does not learn which group, nor can he decide if two instances of two dif-
ferent users belong to the same group. Note that we allow the adversary to be able to
link instances which involve the same (user,group) pair because the simulator gets the
same îd for such instances. Indeed, all AH-AGKA schemes we propose in this paper
are linkable in this sense.

Formally, the game between A and Cah, on common inputs κ, l, m, starts exactly as the
game between A and C in the security definition above. Namely, Cah runs Setup(κ)→
params, then runs m instances of KGen(params) → (PKj , SKj), for j = 1, .., m, then
lm instances of the Add algorithm, Add(SKj) → certi

(j), for i = 1, ..., l and j =
1, ..., m, which generate l certificates for each of the m groups. Cah gives to A all public
keys PKj and the certificates of all corrupted users: {certi

(j) | i ∈ Rev, j ∈ {1, ..., m}},
revokes all of these certificates, and finally publishes the resulting CRL-s.

After this initialization, A schedules any number of Handshake instances and ma-
nipulates their messages in arbitrary ways. We model this interaction between A and
Cah by allowing A any number of queries Start(U, G) and Send(U, τ, M) to C, as in
the security game.

However, A does not make a Test query in this game. Instead, Cah picks a random
bit b at the beginning of the execution and performs A’s commands depending on the
value of b. If b = 0, Cah responds to A’s commands Start(U, G) and Send(U, s,M)
by following the corresponding protocol on behalf of the user, exactly as in the security
game in above. Otherwise (b = 1), Cah replies to A with messages produced by the
simulator SIM, which is an interactive machine which runs only on inputs params,
and, instead of Start(U, G) and Send(U, s, M), it gets on-line inputs Start(îd) and
Send(îd, M), respectively, where îd is a unique (and random) string assigned to this
(U, G) pair. At the end of the game, the adversary outputs a bit b′.

Definition 2. Denote the final output of adversary A in the above interaction with the
challenger Cah on common inputs (κ, l, m) as 〈A, Cah(b)〉(κ, l, m). We define the ad-
versarial advantage in the affiliation-hiding game as

Adv ah
A (κ, l, m) = | Pr[b = b′ | b′ ← 〈A, Cah(b)〉(κ, l, m)] − 1/2|

where the probability is taken over the random coins used by A and Cah and a random
choice of the challengers bit b.

We call an AH-AGKA scheme affiliation-hiding if for any probabilistic polynomial-
time adversary A, for parameters l an m polynomially related to κ, the adversarial
advantage Adv ah

A (κ, l, m) is a negligible function of κ.

Remark on the Affiliation-Hiding Notion. First, note that the above definition re-
stricts A to only Start and Send queries. This results in a restricted notion of affiliation-
hiding, which can and should be strengthened to include the information the A can
gain about session keys from higher-level protocols, modeled by Reveal queries. Such
strengthening is in fact necessary in practice because without the Reveal queries, A’s
view does not even contain information on whether a given session instance failed or
succeeded, which is something that a network adversary can very often learn in practice.
We leave consideration of stronger notions of affiliation-hiding to the full version of the
paper. Second, an exact-security version of the above notion can be easily extrapolated,

Group Secret Handshakes 297

and this too will be included in the full version, together with the exact security bounds
on affiliation-hiding for the two AH-AGKA schemes presented in this paper.

3 Cryptographic Assumptions

Definition 3. Let S-RSA-IG(κ) be an algorithm that outputs so-called safe RSA in-
stances, i.e. pairs (n, e) where n = pq, e is a small prime that satisfies gcd(e, φ(n)) =
1, and p, q are randomly generated κ-bit primes subject to the constraint that p =
2p′ + 1, q = 2q′ + 1 for prime p′, q′, p′ �= q′.

We say that the RSA problem is (ε, t)-hard on 2κ-bit safe RSA moduli, if for every
algorithm A that runs in time t we have

Pr[(n, e) ← S-RSA-IG(κ), g ← Z∗
n : A(n, e, g) = z s.t. ze = g (mod n)] ≤ ε.

Definition 4. Let G be a cyclic group of prime order q with a generator g. We say that
the Square Diffie-Hellman Problem (SDH) in G is (ε, t)-hard if for every algorithm A
running in time t we have

Pr[x ← Zq : A(g, gx) = gx2
] ≤ ε.

DDH oracle: A DDH oracle in group G is an algorithm that returns 1 on queries of the
form (g, gx, gy, gz) where z = xy mod q, and 0 on queries of the form (g, gx, gy, gz)
where z �= xy mod q.

Definition 5. We say that the Gap Square Diffie-Hellman Problem (GSDH) in group G
is (ε, t)-hard if for every algorithm A running in time t on access to the DDH oracle
DDHG in group G we have

Pr[x ← Zq : ADDHG(g, gx) = gx2
] ≤ ε.

It is well known that the SDH problem is equivalent to the computational Diffie-Hellman
(DH) problem. Just note that gxy = (g(x+y)2/(gx2

gy2
))2

−1
, and that oracle errors can

be easily corrected since both the SDH and the DH problems are random self-reducible.
Similarly, the GSDH problem is equivalent to the Gap Diffie-Hellman problem (GDH),
which is believed to be hard in many prime-order groups. In particular, generic group
algorithms cannot solve it in time better than Ω(

√
q) [5].

4 AH-AGKE Scheme Based on the RSA Assumption

• Setup: On security parameter κ, the Setup procedure picks two other parameters
κ′, and κ′′. Parameter κ is the length of the key output by the key agreement proto-
col Handshake, κ′ is an additional parameter which in practice can be 160, and κ′′

is chosen so that the RSA problem for 2κ′′-bit safe RSA moduli has at least κ-bit
security (see theorem 1 for exact bounds). Whenever we say that two distributions
D1, D2 are statistically close we mean that the statistical difference between them
is bounded by O(2−min(κ,κ′,κ′′)). The setup procedure also chooses a κ′-bit prime
q̂ and defines hash functions Hq̂ : {0, 1}∗ → Z∗

q̂ and H : {0, 1}∗ → {0, 1}κ.

298 S. Jarecki, J. Kim, and G. Tsudik

• KGen: Generate a 2κ′′-bit safe RSA modulus n = pq, where p = 2p′+1, q = 2q′+
1, and p, q, p′, q′ are primes. Pick a random element g s.t. g generates a maximum
subgroup in Z∗

n, i.e. ord(g) = 2p′q′, and s.t. −1 /∈ 〈g〉. (This holds for about half of
the elements in Z∗

n, and it is easily tested.) Note that in this case Z∗
n ≡ 〈−1〉 × 〈g〉.

Therefore, in particular, if x ← Z2p′q′ and b ← {0, 1} then (−1)bgx is distributed
uniformly in Z∗

n. RSA exponents (e, d) are chosen in the standard way, as a small
prime e and d = e−1 (mod φ(n)). The secret key is (p, q, d) and public key is
(n, g, e). Key generation also fixes a hash function Hn : {0, 1}∗ → Zn, specific to
the group modulus n.3

• Add: To add user U to the group, the manager picks a random string id ← {0, 1}κ′

and computes a (full-domain hash) RSA signature on id, σ = hd (mod n), where
h = Hn(id). U ’s certificate is cert = (id, σ).

• Revoke: To remove user U from the group, the manager appends string id to the
group CRL, where (σ, id) is U ’s certificate in this group.

• Handshake: This is an AGKA protocol executed by some set Δ = {U1, ..., Un}
of players. Each player Ui starts a session Πτi

i for a (locally) fresh τi, on some
inputs (certi, (n, e, g), CRLi) s.t. (n, e, g) is some public key, certi = (idi, σi) is
Ui’s certificate for this public key (n, e, g), i.e. certi ∈ Certs(n, e, g), and CRLi is
the (hopefully recent) CRL for group Group(n, e, g). The Handshake protocol is in
Figure 1 below (see also the note below).

Notational Simplifications. In figure 1, we make several assumptions to simplify the
notation. First, we denote the set of participating players as simply U1, ..., Un, even
though they can be any n users Ui1 , ..., Uin among U = {U1, ..., Ul}, for any n ≥ 2.
Secondly, we assume that the order between the players, which in the full protocol is de-
termined on-line according to the players’ messages in Round 1, is simply U1, ..., Un.4

For simplicity of notation, we assume that the indices cycle modulo n, i.e. Un+1 = U1.
We also assume that each instance Πτ

i starts on the same public key (n, e, g). (Since
we are not concerned with robustness properties in this paper, we do not concern our-
selves with what happens with executions of instances which are not partnered, and in
particular do not run on the same public keys.)

Affiliation hiding property of the protocol in figure 1 depends crucially on the fact
that if the distribution of variable θ̄i is indistinguishable from uniform over Zn then the
distribution of θi = θ̄i +kn is statistically close to U22κ′′+κ . There is an alternative way

3 Selecting separate hash function Hn for every group is done purely for notational convenience.
A family of hash functions Hn : {0, 1}∗ → Zn s.t. each Hn is statistically close to a random
function with range Zn, can be easily implemented in the random oracle model with a single
hash function with range 22κ′′+κ. E.g., Hn(m) = H(n, m) mod n.

4 This ordering is done as follows: In the protocol each player Ui picks a long-enough random
nonce μi (see Round 1 in figure 2), which Ui then includes in all its messages in the protocol.
After receiving some set of messages in Round 1 (note that we assume weak synchrony), every
receiver sorts all the received messages by the increasing order of these μi values. Each player
then (re)labels all the participants and the messages received in Round 1, including its own mes-
sages and its inputs, according to this order. The actual protocol runs exactly as the simplified
protocol in figure 2 in the case that this ordering of players created in Round 1 coincides with
the original labels i = 1, ..., n of the participants U1, ..., Un assumed for simplicity in figure 2.

Group Secret Handshakes 299

The inputs of instance Πτ
i of player Ui are certi = (σi, idi), (n, g, e), and CRLi. Note that

σe
i = Hn(idi) mod n.

[Round 1]: Ui picks random values bi ← {0, 1}, ti ← Zn/2, and μi ← {0, 1}3κ , computes

θ̄i = (−1)biσig
ti (mod n), sets θi = θ̄i + νn for random ν ← [0, ..., �22κ′′+κ/n�], and

Ui broadcasts (θi, idi, μi).

• Assume that player Ui received n-1 messages (θ1, id1, μ1) , ..., (θi−1, idi−1, μi−1),
(θi+1, idi+1, μi+1), (θn, idn, μn) in Round 1. (This is a simplification. In the real pro-
tocol each receiver Ui orders the received messages, and the players which sent them,
according to values μ these messages contain. See footnote 4.)
If any two messages contain the same value idj or the same value μj , player Ui rejects.

• Ui sets s = ((n, g, e), {θj , idj , μj}j=1,...,n)
• If idj ∈ CRLi for any j then Ui picks a random value Xi in Z∗

q̂ and sets reject =
T . Otherwise, Ui computes Xi = Hq̂((zi+1)ti , s)/Hq̂((zi−1)ti , s) (mod q̂) , where
zi+1 = (θi+1)2e(hi+1)−2 (mod n) and zi−1 = (θi−1)2e(hi−1)−2 (mod n).
(Note that if (idj , σj) is a certificate for public key (n, e, g) and θj = (−1)bj σjg

tj +νn
then zj = g2etj .)

[Round 2]:
Ui broadcasts (Xi, μi).

• If in Round 2 player Ui receives n-1 values Xj accompanied by μj ’s that match the
μ1, ..., μi−1, μi+1, ..., μn values above, if n

j=1 Xj = 1, and if reject �= T , then Ui

computes ki = Hq̂((zi−1)ti , s)n·(Xi)n−1·(Xi+1)n−2 · · · Xi−2 (mod q̂) and outputs
Ki = H(ki, sidi), where sidi = ((n, g, e), {θj , idj , μj , Xj}j=1,...,n). Otherwise Ui

rejects.

Fig. 1. RSA-based Affiliation-Hiding AGKE protocol

that we can use to hide the range of θi, which does not take the κ bandwidth overhead
[2], which is to repeat picking θ̄i until θ̄i ∈ {0, 1}2κ′′−1. However, the expected running
time of such procedure is twice larger than ours. Moreover, such procedure can be
subject to timing attacks. Note that the overhead of κ bits our procedure incurs is small
compared to |θ̄i| = |n|.
Protocol Correctness. To see that the protocol Handshake in Figure 1 is correct,
note that if some n sessions Πτ1

1 , ..., Πτn
n are partnered then they all run on the same

public key (n, e, g), and all the values (θ1, id1, μ1, X1),...,(θn, idn, μn, Xn) are ex-
changed between them without interference. Therefore, first of all, each participating
player will create the same order among the participants, and hence each player la-
bels all the exchanged values in the same way, so we can assume for simplicity that
this ordering coincides with the original labels i = 1, ..., n. Each player also com-
putes also the same value s and sidi. To see that each player computes the same value
ki and hence the same key Ki, note that for each j we have zj = θ2e

j h−2
j = g2etj ,

and therefore, each Xi = Hq̂(g2etiti+1 , s)/Hq̂(g2eti−1ti , s) (mod q̂). Note also that
Hq̂((zi−1)ti , s) = Hq̂(g2eti−1ti , s). It follows that for every i we have

ki = Hq̂(g2eti−1ti , s) ∗ Hq̂(g2etiti+1 , s) ∗ ... ∗ Hq̂(g2eti−2ti−1 , s) mod q̂

Therefore all the keys Ki are the same as well.

300 S. Jarecki, J. Kim, and G. Tsudik

Theorem 1. Assuming that the RSA problem is (ε′, t′)-hard on random safe RSA moduli
of length 2κ′′, the above tuple of algorithms (Setup, KGen, Add, Revoke, Handshake) is
an (ε, t, qs, qH , l, m)-secure AH-AGKE scheme in the Random Oracle Model as long as

ε ≈ m ∗ (2ε′ + 2lqH2−κ′
+ q2

s2−3κ + qs2−κ′′+2)
t ≈ t′ − (m ∗ tkg + qs ∗ qH ∗ texp)

where tkg is the time to generate an RSA private/public key pair and texp is the time of
(multi)exponentiation modulo n, for 2κ′′-bit RSA moduli.

Proof. Assume a legitimate PPT adversary A interacting with challenger C as described
in the security definition (definition 1). Assume that there are m groups and l users in
the universe, and that A runs in time t, starts at most qs sessions, and makes at most
qH queries to the hash functions Hn, Hq̂ , and H . Assume w.l.o.g. that A always makes
a test query on some session. Denote Adv sec

A = |Pr[b′ = b]|, i.e. the advantage of
the adversary A in the interaction with C, by ε. We split the security proof into two
parts. First we describe the simulation procedure, SIM, which using A, attempts to
solve for z s.t. ze = g mod n on an RSA challenge (n, e, g). This simulation procedure
will run in time t′ approximately t + (m ∗ tkg + qs ∗ qH ∗ texp). We will then argue
that the probability of SIM’s success in solving the RSA challenge is at least ε′ ≥
ε/m−(2lqH2−κ′

+q2
s2−3κ+qs2−κ′′+2), assuming that element g in SIM’s challenge

is such that 〈−1〉 × 〈g〉 = Z∗
n. Note that if n is a safe RSA modulus then for a random

g ∈ Z∗
n this holds with probability 1/2 − O(2−|n|/2) ≈ 1/2. Therefore, the success

of SIM on solving a random g ∈ Z∗
n is (statistically close to) at least half the above

expression, which completes the proof.

PART I: CONSTRUCTION OF A SIMULATOR

Setup. Given the RSA challenge (n, e, g), SIM follows the Setup algorithm with
parameters κ, κ′, and κ′′ = |n|/2. As mentioned above, we assume that 〈−1〉 × 〈g〉 =
Z∗

n.

Initialization of all groups. Let G∗ ∈ G be a group s.t. the probability that the adver-
sary A tests on Πτ

i s.t. Group(Πτ
i) = G∗ is not less than 1/m. (Recall that we assume

A always tests some session.) Simulator SIM initializes all the groups in G except
G∗ as in the real protocol. SIM also creates l certificates for each of these groups by
following the Add procedure, and in the rest of the simulation SIM simply follows the
Handshake protocol on behalf of all instances Πτ

i s.t. Group(Πτ
i) �= G∗. Thus, in the

rest of the simulation description we will only describe SIM’s actions with regard to
instances Πτ

i s.t. Group(Πτ
i) = G∗.

For group G∗, SIM sets its public key as (n, e, g), and creates the certificates for
each revoked player Ui ∈ Rev by simulating an RSA signature (idi, σi) under key
(n, e, g). Namely, SIM picks two random values idi ← {0, 1}κ′

and σi ← Z∗
n, and

assigns Hn(idi) to σe
i (mod n). If A has already queried Hn on any idi’s chosen by

SIM in this way, SIM abandons the simulation. For each Ui /∈ Rev in G∗, SIM
picks a random value idi ← {0, 1}κ′

. SIM hands to A all the public keys and the certs
of the corrupted players.

Group Secret Handshakes 301

Hash queries to Hn, Hq̂ and H . For each query x to Hn, SIM picks random a ← Z∗
n

and sets Hn(x) = ae · g−1 (mod n). W.l.o.g, assume that Hn is queried on each idi

for Ui /∈ Rev. Denote value a chosen above for x = idi as ai, and Hn(idi) = ae
ig

−1

as hi. For the queries to H and Hq̂ , SIM simply passes these queries to H and Hq̂ ,
respectively. However, for each query (r, s) to Hq̂ , SIM also tries to solve the RSA
challenge as we describe below.

After the above initialization, SIM must provide responses for A’s queries Start,
Send, Reveal, and Test, which would look to A as the real execution, i.e. as in A’s
interaction with challenger C. For notational convenience assume that the local index
τ of each instance Πτ

i is globally unique (e.g., assume that τ in Πτ
i has a suffix i).

In the following description, we add as a superscript the instance index τ to all values
related to Πτ

i . For example, θτ
i , Xτ

i will refer to messages θi, Xi sent by instance
Πτ

i . As mentioned above, SIM responds to A’s commands relating to instances Πτ
i

s.t. Group(Πτ
i) �= G∗ by simply following the honest players’ protocol. However, for

queries involving group G∗, simulator SIM respondes as follows:

Start commands. For the Start(Ui, G
∗) command, SIM initializes instance Πτ

i . SIM
picks bτ

i ← {0, 1}, γτ
i ← Zn/2, and computes θ̄τ

i = (−1)bτ
i · ai · gγτ

i (mod n). Notice
that the distribution of θ̄τ

i in this simulation and in the real protocol are statistically close
because both are statistically close to uniform in Z∗

n. Note that since hi = (ai)e/g,
therefore θ̄τ

i = (−1)bτ
i · (hig)d · gγτ

i = (−1)bτ
i ·hd

i · gd+γτ
i = (−1)bτ

i ·hd
i · gtτ

i (mod n),
where tτi = γτ

i + d (mod φ(n)/2). The simulator does not know either d or tτi , but
will use the above relation to solve for gd later. SIM also chooses μτ

i ← {0, 1}3κ,
ντ

i ← [0, ..., �22κ′′+κ/n�], sets θτ
i = θ̄τ

i + ντ
i and replies with (θτ

i , idi, μ
τ
i).

Send queries. Consider an instance Πτ
i created by the Start command above. We de-

note the Send command to this instance corresponding to Round 1 of the protocol by
Send1, and the Send command corresponding to Round 2 of the protocol by Send2. In
the following statement, just like we did in the description of the protocol, we assume
that the index of player Ui involved in session Πτ

i belongs to set i ∈ {1, .., n}. (In
general i ∈ {1, .., l} where l = |U| > n, but the proof in the general case is easy to
extrapolate from the proof we give here.)

For the Send1(Ui, τ, {θ̂τ
j , îd

τ

j , μ̂τ
j }j=1,..,n,j �=i) command, unless there are collisions

in id’s or μ’s, SIM sets sτ
i as in the protocol. If any îd

τ

j ’s are on CRLi then SIM
sets Xτ

i ← Z∗
q̂ and rejectτi = T . Otherwise, SIM sets Xτ

i = cτ
i,i+1/cτ

i,i−1 (mod q̂)
where values cτ

i,j for j = i − 1 and j = i + 1 are chosen as follows. If ∃ some Πτ ′
i′

which received the Send1 query s.t.:

1. (θτ ′
i′ , idτ ′

i′ , μτ ′
i′) = (θ̂τ

j , îd
τ

j , μ̂τ
j)

2. (θ̂τ ′
j′ , îd

τ ′

j′ , μ̂τ ′
j′) = (θτ

i , idτ
i , μτ

i) for j′ = i′ + 1 or j′ = i′ − 1

3. sτ ′
i′ = sτ

i and rejectτ ′
i′ �= T

then SIM assigns cτ
i,j ← cτ ′

i′,j′ , where cτ ′
i′,j′ is a value SIM has previously chosen

when dealing with the Send1 command to session Πτ ′
i′ . Note that this case corresponds

to an adversary who honestly routes the messages of matching instances Πτ
i and Πτ ′

i′

302 S. Jarecki, J. Kim, and G. Tsudik

from one to another. In such case in the real execution these two instances would com-
pute the same value cτ

i,j = cτ
i′,j′ , where

cτ
i,j = Hq̂((ẑτ

j)tτ
i , sτ

i) and cτ ′
i′,j′ = Hq̂((ẑτ ′

j′)tτ′
i′ , sτ ′

i′)

If any of these conditions are not met, which corresponds to the case where there is
no instance Πτ ′

i′ which runs on matching inputs as Πτ
i , or when the adversary actively

interferes in the communication between these two instances, SIM picks a fresh ran-
dom value cτ

i,j ← Z∗
q̂ . In both cases SIM stores [j, Πτ

i , sτ
i , (θ̂τ

j , îd
τ

j , μ̂τ
j), cτ

i,j] in a
table denoted THq̂

. Finally, SIM replies with (Xτ
i , μτ

i).
For all the Send2(Ui, τ, {X̂τ

j , μ̂τ
j }j=1,..,n,j �=i) commands, SIM abandons Πτ

U if

values μ̂τ
j are not correct or Πn

j=1X̂
τ
j �= 1, where X̂τ

i = Xτ
i ; otherwise SIM sets sidτ

i

as in the protocol, computes

kτ
i = (cτ

i,i−1)
n · (X̂τ

i)n−1 · (X̂τ
i+1)

n−2 · · · (X̂τ
i−2) (mod q̂) (1)

and outputs Kτ
i = H(kτ

i , sidτ
i).

Reveal queries. On Reveal(Ui, τ), if instance Πτ
i has output a session key Kτ

i , SIM
delivers it to A.

Test query. Finally, if adversary issues command Test(i, τ) then SIM picks a random
bit b as C does, and if b = 1 then SIM replies with Kτ

i to A. Otherwise, SIM returns
a random value in {0, 1}κ.

Computing the RSA challenge. Every time A makes a query (r, s) to Hq̂ , SIM at-

tempts to solve its RSA challenge as follows. For each entry [j, Πτ
i, s

τ
i , (θ̂τ

j , îd
τ

j , μ̂τ
j), cτ

i,j]
in table THq̂

s.t. sτ
i = s, SIM wants to check if

r = ((θ̂)2e(ĥ)−2)t = (θ̂)2e(γ+d)(ae/g)−2(γ+d) = (θ̂/a)2(eγ+1)g2γg2d (mod n)
(2)

where θ̂ = θ̂τ
j , a is the value s.t. ĥ = Hn(îd

τ

j) = ae · g−1 (mod n), and (t, γ) =
(tτi , γτ

i) defined when session Πτ
i was started. Note that if r = (ẑτ

j)tτ
i , i.e. A queries

Hq̂ on pair (r, s) = ((ẑτ
j)tτ

i , sτ
i), where ẑτ

j = (θ̂τ
j)2e(ĥ)−2 and tτi is the value that

satisfies θ̄τ
i = (−1)bτ

i (hi)dgtτ
i , then r = ((θ̂τ

j)2e(ĥ)−2)tτ
i .

The way SIM can verify if equation (2) holds is to compute

w = r · (θ̂/a)−2(1+eγ)g−2γ (mod n) (3)

and test if we = g2. If this holds then SIM extracts gd by computing wβgα, where α,
β satisfy eα + 2β = 1.

PART II: ANALYSIS OF THE SIMULATION

First note that if the adversary A runs in time t then the running time t′ of the above
simulator SIM is dominated by t + m ∗ tkg + qs ∗ qH ∗ texp, where tkg is the time
to generate an RSA private/public key pair and texp is the time of an exponentiation
modulo n.

Group Secret Handshakes 303

Denote as Nb the real network as executed by the challenger C with a fixed bit b.
Recall that if b = 0 then C sends to A a random κ-bit long value and if b = 1 then C
delivers the session key of the tested instance. We also denote as SIMb an execution
of the above simulator SIM with a fixed bit b on challenge (n, e, g) where g satisfies
〈−1〉 × 〈g〉 = Z∗

n.
We define the following events:

NEb: A outputs 1 on interaction with Nb.
NEG,b: A outputs 1 and tests session Πτ

i s.t. Group(Πτ
i) = G, on interaction with

Nb.
SEG,b: A outputs 1 and tests session Πτ

i s.t. Group(Πτ
i) = G, on interaction with

SIMb.
sCollision: There is a user Ui s.t. sτ1

i = sτ2
i for some τ1 �= τ2, either in an execution

or in a simulation.
HnFailure: A queries Hn on idi for some Ui ∈ Rev before this value is chosen, by
C in an execution and by SIM in a simulation.
N̄EG∗,b = NEG∗,b ∧ ¬(HnFailure ∨ sCollision)
S̄EG∗,b = GEG∗,b ∧ ¬(HnFailure ∨ sCollision)
Hq̂Query: There is a session Πτ

i s.t. A queries Hq̂ on pair (ẑτ
j)tτ

i , sτ
i), for j = i−1

or j = i+1, which relates to this Πτ
i session, i.e. ẑτ

j = (θ̂τ
j)2e(Hn(îd

τ

j))−2, and tτi
satisfies gtτ

i = (θτ
i)2e(Hn(idi))−2.

Note that by the assumption that Adv sec
A = |Pr[b′ = b]| ≥ ε we have | Pr[NE1] −

Pr[NE0]| ≥ 2ε. Also, since Pr[Eb] =
∑

G∈G Pr[NEG,b], let G∗ ∈ G be a group s.t.

| Pr[NEG∗,1] − Pr[NEG∗,0]| ≥ 2ε/m (4)

Assume that this is a group chosen by the simulator SIM above. (Note that SIM
could also guess G∗ with 1/m probability.) We will argue the following four facts:

|Pr[NEG∗,b] − Pr[N̄EG∗,b]| ≤ Pr[HnFailure ∧ sCollision] for b = 0, 1 (5)

Pr[HnFailure ∧ sCollision] ≤ lqH2−κ′
+ q2

s · 2−3κ (6)
|Pr[S̄EG∗,1] − Pr[S̄EG∗,0]| ≤ qH2−κ′

(7)

|Pr[N̄EG∗,b | ¬Hq̂Query] − Pr[S̄EG∗,b | ¬Hq̂Query]| ≤ qs2−κ′′+2 for b = 0, 1 (8)

Note that by inequalities (4)-(5) it follows that for either b = 0 or b = 1 we have:

|Pr[N̄EG∗,b] − Pr[S̄EG∗,b]| ≥ ε/m − (lqH2−κ′
+ q2

s2
−3κ + qH2−κ′

/2) ≥ ε/m − (2lqH2−κ′
+ q2

s2
−3κ)

Together with (5), this inequality implies that

Pr[Hq̂Query] ≥ ε/m − (2lqH2−κ′
+ q2

s2−3κ + qs2−κ′′+2)

Since whenever event Hq̂Query happens the simulator SIM solves its RSA challenge,
this implies our claim that ε′ ≥ ε/m − (2lqH2−κ′

+ q2
s2−3κ + qs2−κ′′+2)

304 S. Jarecki, J. Kim, and G. Tsudik

It remains for us to argue that statements (5)-(5) above indeed hold. Note that inequal-
ity (5) follows immediately from the definition of NEG∗,b. For inequality (5) observe that
Pr[HnFailure] ≤ lqH2−κ′

because |Rev| ≤ l and the response on each query to Hn is
a random element in the set of size {0, 1}κ′

. Also Pr[sCollision] ≤ q2
s · 2−3κ because a

collision in sτ
i values for any user Ui can only happen if two sessions Πτ1

i and Πτ2
i of

this user choose the same value μτ1
i = μτ2

i . Since every session chooses its μτ
i value at

random in a set of size 2−3κ, and there are at most qs sessions, the above bound follows.
Equality (5) is also straightforward to see. First note that the statistical difference

between all the values θτ
i in the execution and the simulation is qs2−κ′′+2, because

for each Πτ
i , the difference between distribution of tτi chosen as in the execution as

tτi ← Zn/2, and the distribution of values tτi = γτ
i + d (mod φ(n)/2) for γτ

i uniform

in Zn/2 (recall that this is how value tτi is defined in the simulation), is at most 2−κ′′+2.
Everything else in the execution and the simulation is distributed in the same way,
provided g is correct and event HnFailure does not happen, except for the way values cτ

i,j

are computed. Now, if Hq̂Query does not happen, i.e. if for all sessions Πτ
i , adversary

A does not query the hash function Hq̂ on the proper pair (ẑτ
j)tτ

i , sτ
i) that corresponds

to the Πτ
i session, then the way c’s are computed in the execution (as outputs of Hq̂)

and the way they are picked in the simulation (at random in Z∗
q̂ except if two sessions

are partnered) are the same from A’s point of view. The reason that’s the case is that the
only case in the protocol execution when two sessions Πτ

i , Πτ ′
i′ compute two c values

on the same input is if sτ
i = sτ ′

i′ . But if there is no collisions in s values (event sCollision)
then this implies in particular that that the adversary re-routed messages of these two
sessions between each other, and in this case the simulator SIM also makes the two c
values equal to one another.

It remains to argue that inequality (5) holds. Note that the only difference in these
two interactions is that in S̄EG∗,1 A gets key Kτ

i = H(kτ
i , sτ

i) on tested Πτ
i , while in

S̄EG∗,0 A gets a random κ-bit value instead of Kτ
i . Note that in A’s interaction with

S̄E, if we disregard for a moment the information A gets from queries to H(kτ ′
i′ , sτ ′

i′)
for any Πτ ′

i′ (this information is contained in the answers of Test and Reveal queries),
then value kτ

i is hidden from A in an information-theoretic way, i.e. it’s uniformly
distributed in Z∗

q̂ independently from everything else A sees. The reason that’s the case
is because, by equation (1), for each Πτ

i , value kτ
i is distributed independently from

A’s view as long as cτ
i,i−1 is independent from A’s view. Disregarding A’s queries

to H , the only way value cτ
i,i−1 enters into the information A gets in the simulation is

via Xτ
i = cτ

i,i+1/cτ
i,i−1 (mod q̂), where the cτ

i,i+1 is chosen independently from cτ
i,i−1,

except if Πτ
i is partnered by A’s Send1 commands with some other session Πτ ′

i′ (see the
three conditions on sessions Πτ

i and Πτ ′
i′ in the procedure for SIM on Send1 query).

In that case we have cτ
i,j = cτ ′

i′,j′ for some j = i ± 1 and j′ = i′ ± 1, and thus we have

to ask if cτ
i,i−1 is still perfectly uniform given Xτ

i , Xτ ′
i′ . Let us call a pair (Πτ

i , Πτ ′
i′)

related if this is the case and assume j = i + 1 and j′ = i′ − 1 (in general there are
three other cases for A to pair up these sessions, but the argument given here can be
extended to this general case). Let Π

τi1
i1

, ..., Π
τin

in
be sessions s.t. for each j, sessions

Π
τij

ij
and Π

τij+1
ij+1

are related in the above way. However, even in this case, each variable
cij ,ij−1 , taken by itself, is still uniformly distributed in Z∗

q̂ (although not independently

Group Secret Handshakes 305

from one another) given A’s view X
τi1
i1

, ..., X
τin

in
, because each Xi1 sets one constraint

between two c’s but there are n + 1 independently chosen c’s involved.
Finally, let us put back the additional information related to any of these cij ,ij−1

values that A gets from hash function outputs H(k
τij

ij
, s

τij

ij
). Note that A gets to see

these outputs from both its Reveal and Test queries, and A can query H to search for
the matching value k

τij

ij
for any Π

τij

ij
in a chain of related sessions Π

τi1
i1

, ..., Π
τin

in
.

Learning any such k
τij

ij
value implies learning the corresponding c

τij

ij ,ij−1 value, and

together with X
τi1
i1

, ..., X
τin

in
this leads to recovery of all values c

τi1
i1,i1−1, ..., c

τin

in,in−1.
However, A can only make qH hash queries to H , and since each of these values is
(individually) uniform in Z∗

q̂ , the ability to query H can leak information on any of

these values with probability at most qh2−κ′
, because q̂ is a κ′-bit prime. This implies

the qh2−κ′
bound on the distance between the two simulations, for b = 0 and b = 1.

Theorem 2. The AH-AGKE protocol defined by the above tuple (Setup, KGen, Add,
Revoke, Handshake) is Affiliation-Hiding.

Proof. (sketch) Since the id values are chosen independently of the group, the only val-
ues which can reveal something about the group membership of honest players are the θ
values sent in Round 1 and the X values sent in Round 2. The simulator SIM required
for the affiliation-hiding notion (see section 2.2) is very simple: On the Start(îd) com-
mand it picks μτ

i at random as in the protocol, and θτ
i as a random bitstring of length

(2κ′′ + κ), and sends back (θτ
i , îd, μτ

i). Then on the Send1(îd, M) command to the
same Πτ

i “instance” of the protocol, SIM picks Xτ
i at random in Z∗

q̂ and sends back
(Xτ

i , μτ
i).

The argument that the adversary cannot tell Xi values creates at random in the above
game from the Xi values returned by the honest parties in the protocol, follows the
same lines as the argument given in the proof of security of this protocol. In summary,
the only way A can tell these Xi values from random is by querying the Hq̂ hash
function on an “appropriate” input ((ẑτ

j)tτ
i , s), for j = i ± 1, related to this session

(these values are well-defined in both the simulation and the execution). However, by
the same argument as given in the security proof, if that happens with non-negligible
probability than such adversary can be used to break the RSA problem.

What’s new in this proof is that we must show that the distribution of value θ sent by
an honest user in this protocol is statistically close to a uniform distribution on (2κ′′ +
κ)-bit strings, denoted Z22κ′′+κ . Recall that for all groups G1, ..., Gm we have 2κ′′ =
|n1| = ... = |nm|. We use U ≈S V to denote that distribution U is statistically close to
V in the sense that the difference between these distributions is at most O(2−min(κ,κ′′)).

As we noted in the construction, values (−1)bgt (mod n) are uniformly distributed
in Z∗

n for (b, t) ← {0, 1} × Z2p′q′ . Take any h ∈ Z∗
n and σ = hd mod n. Define a

random variable θ̄b,t = (−1)bgtσ mod n. Since multiplication by σ is a permutation in
Z∗

n, we have
{θ̄b,t}(b,t)←{0,1}×Z2p′q′ ≡ Z∗

n

Since Zn/2 ≈S Z2p′q′ , the above implies that

{θ̄b,t}(b,t)←{0,1}×Zn/2
≈S Z∗

n

306 S. Jarecki, J. Kim, and G. Tsudik

Because the proportion of elements in Zn which are divisible by p′ or q′ is O(2−κ′′
),

we have Z∗
n ≈S Zn. Therefore

{θ̄b,t}(b,t)←{0,1}×Zn/2
≈S Zn

Finally, we can mask the modulus n of a random value θ̄ in Zn by choosing random
k ← [0, ..., �22κ′′+κ/n�], and adding kn to θ̄ over integers:

{θ̄b,t + kn}(b,t,k)←{0,1}×Zn/2×Z�(22κ′′+κ)/n�
≈S {0, 1}2κ′′+κ

Therefore the difference between the distribution of values θτ
i in the protocol exe-

cution and a simulation where these values are chosen uniformly among (2κ′′ + κ)-bit
strings, is about 2−min(κ,κ′′). Since there are qs sessions, the total difference in the two
views contributed by all the θ values is at most qs2−min(κ,κ′′).

5 Affiliation-Hiding AGKA Scheme Based on the Diffie-Hellman
Problem

We present the DH-based AH-AGKA scheme. Due to space constraints we present only
the scheme, a sketch of correctness, and the statements of theorems about its security
and affiliation-hiding. The proofs will be included in a full version of this paper [13].
We note that the proof of security of this AH-AGKE protocol follows a similar logic
to the proof of security of the RSA-based AH-AGKA protocol in the previous section,
but it includes rewinding, which results in the factor qH of security degradation in the
reduction.

• Setup: The setup algorithm outputs the standard discrete logarithm parameters
(p, q, g), i.e., primes p, q of size polynomial in κ, s.t. g is a generator of a sub-
group in Z∗

p of order q. We also define hash functions Hq : {0, 1}∗ → Zq,
H̄q : {0, 1}∗ → Z∗

q , and H : {0, 1}∗ → {0, 1}κ.
• KGen: The secret key is chosen as a random number x ∈ Zq and the public key is

y = gx (mod p).
• Add: For any user U in the group, CA computes the certificate cert as a Schnorr

signature [15] on an empty message under the key y, namely cert = (w, t) where
w = gr (mod p), and t = r + xHq(w) (mod q), for random r ← Zq. Note that
(w, t) satisfies equation gt = wyHq(w) (mod p).

• Revoke: To revoke user U , the CRL is appended with (hash of) w, where (w, t)
was U ’s certificate.

• Handshake: This is an AGKA protocol executed by some set Δ = {U1, ..., Un}
of players. Each player Ui starts a session Πτi

i for a (locally) fresh τi, on some
inputs (certi, y, CRLi) s.t. y is some public key, certi = (wi, ti) is Ui’s certificate
for this public key y, i.e. certi ∈ Certs(y), and CRL is the (hopefully recent) CRL
for group Group(y). The Handshake protocol is in Figure 2 below.

Group Secret Handshakes 307

The inputs of instance Πτ
i of player Ui are certi = (wi, ti), y, and CRLi. Note that gti =

wiy
Hq(wi).

[Round 1]: Player Ui picks μi ← {0, 1}3κ , and broadcasts (wi, μi)
• Assume that player Ui received n-1 messages (w1, μ1), ..., (wi−1, μi−1),

(wi+1, μi+1), ..., (wn, μn) in Round 1. (This is a simplification as in Figure 1. See
footnote 4.)
If any two messages contain the same value μj or the same value wj , player Ui rejects.

• Ui sets s = (y, {wj , μj}j=1,...,n).
• If wj ∈ CRLi for any j then Ui picks a random value Xi in Zq and sets reject =

T . Otherwise, Ui computes Xi = H̄q((zi+1)ti , s)/H̄q((zi−1)ti , s) (mod q) where
zi−1 = wi−1y

Hq(wi−1) and zi+1 = wi+1y
Hq(wi+1).

(Note that if (wi−1, ti−1) and (wi+1, ti+1) are certificates under key y then zi±1 =
gti±1 .)

[Round 2]: Player Ui broadcasts (Xi, μi).
• If in Round 2 player Ui receives n-1 values Xj accompanied by μj ’s that match the

μ1, ..., μi−1, μi+1, ..., μn values above, and if reject �= T , then Ui computes ki =
H̄q((zi−1)ti , s)n · Xn−1

i · Xn−2
i+1 · · · Xi−2 (mod q) and outputs Ki = H(ki, sidi),

where sidi = (y, {wj , μj , Xj}j=1,...,n). Otherwise U rejects.

Fig. 2. DH-based Affiliation-Hiding AGKA protocol

Protocol Correctness. Similarly to the correctness argument for the RSA-based pro-
tocol, if n instances Πτ

i are executed on the same public key y and their messages are
properly exchanges, they output same values sτ

i , sidτ
i , and they all compute the same

key material

kτ
i = H̄q(gti−1ti , s) ∗ H̄q(gtiti+1 , s) ∗ ... ∗ H̄q(gti−2ti−1 , s) mod q

where ti’s are defined by the first message as in Figure 2. Therefore all partnered ses-
sions also output the same keys Kτ

i .

Theorem 3. The AH-AGKA scheme defined by the above tuple (Setup, KGen, Add,
Revoke, Handshake) is affiliation-hiding.

Theorem 4. Assuming that the GSDH problem is (ε′, t′)-hard in the q-order subgroup
generated by g in Z∗

p , the AH-AGKA scheme defined by (Setup, KGen, Add, Revoke,
Handshake) above is (ε, t, qs, qH , l, m)-secure in the Random Oracle Model for

ε = cε ∗ (ε′ + (mlqH/q + q2
s2−3κ))

t = ct ∗ (t′/qH − (ml + qHqS)texp)

where texp is a cost of exponentiation in the subgroup generated by g and ct, cε are
small constants, assuming the cost of accessing the DDH oracle is constant.

References

[1] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H. Wong. Secret hand-
shakes from pairing-based key agreements. In 24th IEEE Symposium on Security and
Privacy, Oakland, CA, May 2003.

308 S. Jarecki, J. Kim, and G. Tsudik

[2] M. Bellare, A. Boldyreva, A. Desai and D. Pointcheval. Key-privacy in public-key encryp-
tion. In Advances in Cryptology - ASIACRYPT 2001, 2001.

[3] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and analysis
of authentication and key-exchange protocols. In 30th STOC’01, 2001.

[4] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against
Dictionary Attacks In Advances in Cryptology - EUROCRYPT 2000, 2000.

[5] D. Boneh, H. Shacham, and B. Lynn. Short signatures from the Weil pairing. In J. of
Cryptology, vol. 17, no. 4, pp. 297-319, 2004.

[6] E. Bresson, O. Chevassut, D. Pointcheval, and J. Quisquater. Provably Authenticated Group
Diffie-Hellman Key Exchange In Proceedings of the 8th ACM conference on Computer and
communications security (CCS’01), 2001

[7] M. Burmester and Y. Desmedt. A secure and efficient conference key distribution system.
In Advances in Cryptology - EUROCRYPT 1994, 1994.

[8] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Build-
ing Secure Channels. In Advances in Cryptology - CRYPTO 2001, 2001.

[9] C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from ca-oblivious encryption.
In Advances in Cryptology - ASIACRYPT 2004, 2004.

[10] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private Information Retrieval In
Journal of the ACM, Volume 45, Issue 6, Pages:965-981, 1998

[11] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation Onion Router
In 13th USENIX Security Symposium, August 2004.

[12] S. Jarecki, J. Kim, and G. Tsudik. Authentication for Paranoids: Multi-Party Secret Hand-
shakes. In ACNS’06, June 2006.

[13] S. Jarecki, J. Kim, and G. Tsudik. Group Secret Handshakes or Affiliation-Hiding Authen-
ticated Group Key Agreement. To appear on IACR eprint archives (http://eprint.iacr.org),
2007.

[14] J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange In Ad-
vances in Cryptology - ASIACRYPT 2003. 2003

[15] C. Schnorr. Efficient identification and signatures for smart cards. In Advances in Cryptol-
ogy - CRYPTO 1989, 1989.

[16] V. Shoup. On Formal Models for Secure Key Exchange. In Theory of Cryptography
Library, 1999.

[17] G. Tsudik and S. Xu. A Flexible Framework for Secret Handshakes. In Privacy-Enhancing
Technologies Workshop (PET’06), June 2006. Earlier version appeared as a Brief An-
nouncement in ACM PODC’05, August 2005.

Efficient Password-Authenticated Key Exchange
Based on RSA�

Sangjoon Park, Junghyun Nam, Seungjoo Kim��, and Dongho Won

Information Security Group, School of Information and Communication Engineering,
Sungkyunkwan University, Gyeonggi-do, 440-746, Korea

{sangjoon, jhnam, skim, dhwon}@security.re.kr

Abstract. In this paper, we propose an efficient password-authenticated
key exchange (PAKE) based on RSA, called RSA-EPAKE. Unlike SNAPI
using a prime pubic key e greater than an RSA modulus n, RSA-EPAKE
uses the public key e of a 96-bit prime, where e = 2H(n, s) + 1 for some
s. By the Prime Number Theorem, it is easy to find such an s. But
the probability that an adversary finds n and s with gcd(e, φ(n)) �= 1
is less than 2−80. Hence, in the same as SNAPI, RSA-EPAKE is also
secure against e-residue attacks. The computational load on Alice (or
Server) and Bob (or Client) in RSA-EPAKE is less than in the previous
RSA-based PAKEs such as SNAPI, PEKEP ,CEKEP, and QR-EKE. In
addition, the computational load on Bob in RSA-EPAKE is less than in
PAKEs based on Diffie-Hellman key exchange (DHKE) with a 160-bit
exponent. If we exclude perfect forward secrecy from consideration, the
computational load on Alice is a little more than that in PAKEs based on
DHKE with a 160-bit exponent. In this paper, we compare RSA-EPAKE
with SNAPI, PEKEP, and CEKEP in computation and the number of
rounds, and provide a formal security analysis of RSA-EPAKE under the
RSA assumption in the random oracle model.

1 Introduction

Key exchange protocols are cryptographic primitives which allow two communi-
cating parties to share a common secure session key over an insecure channel. In
general, two parties own predetermined secret keys with high entropy, which are
stored in cryptographic devices like smart cards, USB tokens, etc. But, needs
for cryptographic devices make cryptographic systems more complex and in-
convenient. To overcome this drawback, human memorable passwords with low
entropy are used instead of high entropy keys. But password based cryptographic
systems have a weakness against off-line dictionary attacks (or password-guessing
attacks) because passwords are generally drawn from a small space of possible
passwords. In practice, it is not easy to design secure key exchange protocols
� This work was supported by the Korean Ministry of Information and Communica-

tion under the ITRC (Information Technology Research Center) support program
supervised by the IITA (Institute of Information Technology Assessment).

�� Corresponding author.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 309–323, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

310 S. Park et al.

based on passwords. This problem, which we call password-authenticated key
exchange (PAKE), was first proposed by Bellovin and Merritt [3]. PAKE proto-
cols are attractive for their simplicity, convenience, and security against off-line
dictionary attacks. Since Bellovin and Merritt, a number of protocols for PAKE
have been proposed. Most of PAKEs use public key primitives like RSA and
Diffie-Hellman key exchange. In particular, Diffie-Hellman key exchange (DHKE)
is suited for designing PAKE rather than RSA. Most of the well-known and se-
cure PAKEs are based on Diffie-Hellman key exchange [1,4,5,7,8,9,10,11,18]. On
the contrary, many of PAKEs based on RSA have been shown to be insecure
[3,12,15]. Recently, there have been presented several PAKEs which are based
on RSA and are secure under the RSA assumption in the random oracle model
[13,19]. Unfortunately, they require two communicating parties to perform much
more computation than PAKEs based on DHKE. In general, for perfect forward
secrecy, RSA-based PAKEs have to generate an RSA modulus n in each session.
By such a reason, the computational load on Alice (or Server) is much larger
than in PAKEs based on DHKE. Even without considering perfect forward se-
crecy, Alice’s load in RSA-based PAKEs are often larger than in PAKEs based
on DHKE.

1.1 Related Works

In this subsection, we mainly summarize the previous results about PAKEs based
on RSA. In 1992, Bellovin and Merritt first presented PAKEs using public key
cryptosystems like RSA, ElGamal, and DHKE [3]. But RSA-based PAKE in
Bellovin-Merritt’s protocol is not secure against e-residue attacks as described in
[3,15]. That is, by e-residue attacks, it is feasible to filter out incorrect passwords
from a dictionary of possible passwords. They concluded that RSA is not suitable
for designing PAKE. In 1997, Lucks proposed another RSA-based PAKE which
was claimed to be secure against e-residue attacks [12].

In 2000, Mackenzie et al. showed that Lucks’ protocol is also insecure against
e-residue attacks [13]. Then, he proposed RSA-based password-authenticated key
exchange protocol, called SNAPI, and provided a formal security proof under
the RSA assumption in the random oracle model [13]. SNAPI is the first secure
RSA-based PAKE. But, to ensure that a public key e is relatively prime to φ(n),
Alice (Server) has to generate a prime e greater than n and Bob (Client) has to
test if e is a prime greater than n. Since the generation of a large prime number
and the primality test of a large prime number require massive computation,
SNAPI is not practical.

In 2004, Zhang proposed two efficient RSA-based PAKEs, which are called
PEKEP and CEKEP, and also provided a formal security proof under the RSA
assumption in the random oracle model [19,20]. To avoid a public key e of a
large prime in SNAPI, PEKEP and CEKEP uses RSA encryption keys em1

and em2 , respectively, where e is a small odd prime, m1 = �loge n�, and m2 =
�loge ε−1� for ε ≤ 2−80. In PEKEP, Alice performs two RSA decryptions and
Bob performs a single RSA encryption with a public key em1 ≈ n. In CEKEP,
Alice performs three RSA decryptions and Bob performs two RSA encryptions

Efficient Password-Authenticated Key Exchange Based on RSA 311

with a public key em2 ≈ ε−1. Alice does not need to generate a large prime e and
Bob does not have to test the primality of e. Thus, PEKEP and CEKEP are more
efficient in computation than SNAPI. In case of ε = 2−80, the computational
load on Bob in CEKEP is lighter than in Diffie-Hellman based PAKEs. Although
CEKEP reduces the computational load on Bob, it requires two additional flows
than PEKEP and consists of 6 rounds. In general, most of PAKEs, including
PEKEP and PAKEs based on DHKE, consist of 4 rounds. Zhang also proposed
PAKE using quadratic residues, called QR-EKE, which is similar to PEKEP
[21]. Instead of a small prime, e = 2 is used in QR-EKE and the encryption
key is 2t, where t = �log2 n�. Compared with PEKEP, QR-EKE reduces the
computational load on Bob by 33% in average. But Bob’s load is still more than
in PAKEs based on DHKE.

Besides, there have been presented several RSA-based PAKEs that reduce the
computational load on Alice or Bob [6,17,19,22]. But, they cause additional rounds
or large communication overhead to verify the validity of the RSA public key.

1.2 Contributions

In this paper, we propose an efficient password-authenticated key exchange based
on RSA, called RSA-EPAKE. Unlike SNAPI using a prime pubic key e greater
than an RSA modulus n, RSA-EPAKE uses the public key e of a 96-bit prime,
where e = 2H(n, s) + 1 for some s. By the Prime Number Theorem [16], it is
easy to find such an s. But the probability that an adversary finds n and s with
gcd(e, φ(n)) = 1 is less than 2−80. Hence, in the same as SNAPI, RSA-EPAKE
is also secure against e-residue attacks. We provide a formal security analysis of
RSA-EPAKE under the RSA assumption in the random oracle model. In RSA-
EPAKE, Alice (Server) has to generate a 96-bit prime together with an RSA mod-
ulus n and Bob (Client) needs to test primality for the 96-bit prime. In case of
n > 21023, the computational load for generating a 96-bit prime is less than for a
single RSA decryption and the computational load for the primality test of a 96-bit
prime is less than for a single RSA encryption with a 80-bit exponent. From these,
we can drive that the computational load in RSA-EPAKE is less than in SNAPI,
PEKEP , CEKEP, and QR-EKE. RSA-EPAKE consists of only 4 rounds, which
is less than 6 rounds of CEKEP. In addition, the computational load on Bob in
RSA-EPAKE is even less than in PAKEs based on DHKE, but the computational
load on Alice in RSA-EPAKE is larger than in PAKEs based on DHKE because
Alice has to generate an RSA modulus n and a 96-bit prime e in each session. If we
exclude perfect forward secrecy from consideration, we need not to generate them
in each session. In this case, the computational load on Alice in RSA-EPAKE is a
little more than that in PAKEs based on DHKE with a 160-bit exponent. On the
contrary, the computational load on Alice in PEKEP, CEKEP, and QR-EKE is
much larger than that in PAKEs based on DHKE.

The remainder of this paper is structured as follows. In Section 2, we introduce
an overview of the security model and definitions for password-authenticated key
exchange protocols. In Section 3, we describe RSA-EPAKE, an RSA-based proto-
col for efficient password-authenticated key exchange. In Section 4, we compare

312 S. Park et al.

RSA-EPAKE with the previous protocols in efficiency. Section 5 includes the
formal security analysis of RSA-EPAKE. Finally, conclusions are discussed in
Section 6.

2 Security Model and Definitions

We consider two-party protocol for key exchange. Let Alice and Bob be the two
entities for key exchange protocol. They share a common weak password w in
a password space D and generate a strong session key for protecting their com-
municated messages. To defeat their goal, there is an active adversary A who
totally controls the communications between Alice and Bob. The adversary A
may view, tamper with, deliver out of order, or refuse to deliver messages sent
by the honest parties. A may also initiate concurrent executions of the protocol
between Alice and Bob, and may attempt to impersonate one (or both) of the
parties. Since the space D of possible passwords is small, A can enumerate all
possible passwords and find out the correct password which matches the previ-
ous conversation. This type of attack is called an off-line dictionary attack or
an off-line password guessing attack. Many of authentication and key exchange
protocols, which are based on a password, have a weakness against off-line dic-
tionary attacks. The security goal of password-authenticated key exchange is to
design a cryptographic protocol which is secure against off-line dictionary at-
tacks by an active adversary A. To achieve the security goal, we introduce the
formal security model for password-authenticated key exchange which is based
on that of [1]. For completeness, we review main points of their definitions here,
and refer the readers to [1] for more details.

Participants and Passwords. Let I denote the identities of the protocol partic-
ipants. Each pair (A, B) of identities of I share a common secret password w
which is randomly chosen from D.

Adversarial Model. In the real world, a protocol determines how entities behave
in response to input from their environment. In the formal model, these inputs
are provided by the adversary. Each entity is assumed to be able to execute the
protocol multiple times with different partners. Let Πi

A denote the i-th instance
of the entity A. All instance may be used only once. The adversary A can make
queries to any instance and has unlimited access of Πi

A oracles. In response of
each query, an instance updates its internal state and returns its output to the
adversary. Each instance has a session key sk, a session id sid, and a partner id
pid. The query types are defined as follows:

– Send(A, i, M) : The adversary A sends a message M to the instance Πi
A. The

instance executes as specified by the protocol and sends back its response to
the adversary. Should the instance accept, this fact, as well as the sid and
pid, will be made visible to the adversary. Should the oracle terminate, this
too will be made visible to the adversary.

Efficient Password-Authenticated Key Exchange Based on RSA 313

– Execute(A, i, B, j) : This call carries out an honest execution between two
instances Πi

A and Πj
B , where A = B and instances Πi

A and Πj
B have not

been used yet, and returns a transcript of that execution to the adversary.
– Reveal(A, i) : The session key ski

A of Πi
A is given to the adversary.

– Test(A, i) : The instance Πi
A generates a random bit b and outputs its session

key ski
A to the adversary if b = 1, or else a random session key if b = 0. This

query is allowed only once.
– Oracle(M) : This gives the adversary oracle access to a function h, which is

selected at random from some probability space Ω. In random-oracle model,
h models a cryptographic hash function.

Partnering and Freshness. Let Πi
A and Πj

B be a pair of instances. We say that
the instances Πi

A and Πj
B are partnered if: (1) both instances have accepted and

have the same session id sid; and (2) the partner id of Πi
A is B and the partner

id of Πj
B is A. In general, we let the session id sid be the ordered concatenation

of all messages sent and received by the instance Πi
A (or Πj

B). We say that Πi
A is

fresh if: (1) it has accepted; and (2) an adversary A has not queried Reveal(A, i)
or Reveal(B, j).

Correctness. If Πi
A and Πj

B are partnered and they are accepted, then they
concluded with the same session key ski

A = skj
B.

Definitions of Security. Let Succ denote the event that A asks a single Test query
on a fresh instance Πi

A, and outputs b′ = b, where b is the bit selected during the
Test query. The advantage of an adversary A in an attacking protocol is defined
as Adv(A, P) = 2Pr[Succ] − 1. Now, we will define the security of password-
authenticated key exchange. A probabilistic polynomial time adversary A can
check the validity of candidate passwords by on-line impersonation. We often
call it an on-line dictionary attack. Since the password space D is finite, the
adversary A can always find out the correct password by on-line dictionary
attacks. Thus, a protocol is secure if an on-line dictionary attack is the best the
adversary can do. Since the adversary can only test a single password in each
on-line dictionary attack, the attack is bounded by the number of messages for
on-line impersonation attacks, i.e., the number of Send queries.

Definition 1. Let |D| denote the size of the password space D and let Qse denote
the number of Send queries to different instances. A password-authenticated key
exchange (PAKE) protocol is secure if, for every polynomial time adversary A,
Advake

A ≤ Qse/|D| + ε, where ε is negligible.

3 RSA-EPAKE

In this section, we present an efficient password authenticated key exchange
protocol based on RSA, which is simply called RSA-EPAKE. Before describing
our protocol, we define some notations for our protocol. Let {0, 1}k denote the

314 S. Park et al.

set of binary strings of length k and {0, 1}∗ denote the set of binary strings of
finite length. Let Zn denote the set of non-negative integers less than n and let
Z∗

n = {x ∈ Zn : gcd(x, φ(n)) = 1}, where φ() is the Euler’s totient function.
Define hash functions H : {0, 1}∗ → {0, 1}k1−1, H1, H2, H3 : {0, 1}∗ → {0, 1}k2,
and h : {0, 1}∗ → Zn, where k1, k2, and are security parameters and n is
an RSA modulus of bit. For example, we can consider k1 = 96, k2 = 160,
and = 1, 024. We assume that H, H1, H2, H3 and h are independent random
functions. Let D be a password space and let Alice and Bob share a common
password w ∈ D. Now, we present our protocol RSA-EPAKE.

RSA-EPAKE

1. Alice randomly generates r1 ∈ {0, 1}k2 and RSA modulus n with 2�−1 <
n < 2�. Next, she finds an s such that e = 2H(n, s)+1 is a k1-bit prime and
gcd(e, φ(n)) = 1. Finally, she sends (A, n, s, r1) to Bob.

2. Bob randomly generates r2 ∈ {0, 1}k2, a ∈ Z∗
n and computes α =

h(w, r1, r2, A, B, s, n) using the password w. Next, he tests if n is odd in
[2�−1, 2�], e = 2H(n, s) + 1 is a k1-bit prime, and gcd(α, n) = 1. If the test
fails, then he rejects the protocol. Otherwise, he computes c = ae · α mod n
and sends (B, r2, c) to Alice.

3. Alice computes α = h(w, r1, r2, A, B, s, n). If gcd(α, n) = 1, she rejects
the protocol. Otherwise, she computes b = (c · α−1)d mod n, where e · d =
1 mod φ(n), and μ = H1(b, r1, r2, A, B, s, n). Finally, she sends (A, μ) to Bob.

4. Bob tests if μ is equal to H1(a, r1, r2, A, B, s, n). If not, then he rejects.
Otherwise, he accepts and computes η = H2(a, r1, r2, A, B, s, n) and a session
key sk = H3(a, r1, r2, A, B, s, n). Finally, he sends (B, η) to Alice.

5. Alicetests if η is equal to H2(b, r1, r2, A, B, s, n). If not, then she rejects. Oth-
erwise, she accepts and computes a session key sk = H3(b, r1, r2, A, B, s, n).

In RSA-based PAKE, security against the e-th residue attacks has to be con-
sidered [3,12,15,13]. For an e-th residue attack, we assume that an adversary
can intentionally choose (n, e) with e|φ(n), i.e., (n, e) is not a valid RSA pub-
lic key. Next, the adversary selects a candidate password wi drawn from D
and computes c′ = c · α−1

i mod n, where c was received from Bob and αi =
h(wi, r1, r2, A, B, s, n). If wi is the correct password, then c′ always has an e-th
residue on modulo n. Otherwise, there is some possibility that c′ has no e-th
residue on modulo n. If c′ has no e-th residue, then wi is not the valid password.
Since the adversary A generates n and knows φ(n), A can determine whether
c′ has an e-th residue or not. Thus, the adversary A can filter out invalid pass-
words from the password space D. Throughout several protocols, he can reduce
the number of candidate passwords and, finally, can be able to determine only
one real password w. On the contrary, if gcd(e, φ(n)) = 1, then c′ always has
an e-th residue regardless of the correctness of the guessed password wi. In this
case, the adversary is unable to distinguish between the correct password w and
an invalid password wi. To avoid such an e-th residue attack, SNAPI uses a
prime e larger than n [13]. Since Bob checks whether e is a prime larger than

Efficient Password-Authenticated Key Exchange Based on RSA 315

Alice(A) Bob(B)

password : w password : w

Generate n = p · q ∈ [2
−1, 2
]
and r1 ∈R {0, 1}k2

Find s such that
k1-bit prime e = 2H(n, s) + 1, (A, n, s, r1)
and gcd(e, φ(n)) = 1 − − − − − → e = 2H(n, s) + 1

r2 ∈R {0, 1}k2 , a ∈R Z∗
n

α = h(w, r1, r2, A, B, s, n)
If n isn’t odd in [2
−1, 2
],
e isn’t a k1-bit prime,
or gcd(α, n) �= 1, then reject

(B, r2, c) c = ae · α mod n
α = h(w, r1, r2, A, B, s,n) ← − − − − −
d = e−1 mod φ(n)
If gcd(α, n) �= 1, then reject
b = (c · α−1)d mod n
μ = H1(b, r1, r2, A,B, s, n) (A,μ)

− − − − − → μ
?= H1(a, r1, r2, A, B, s, n)

If not, reject
η = H2(a, r1, r2, A, B, s, n)

(B, η) sk = H3(a, r1, r2, A, B, s, n)
η

?= H2(b, r1, r2, A, B, s, n) ← − − − − −
If not, reject
sk = H3(b, r1, r2, A, B, s, n)

Fig. 1. RSA-EPAKE Protocol

n, the adversary can not choose an RSA public key (n, e) with e|φ(n). But, this
requirement imposes too much computation overhead on Alice and Bob. In our
protocol RSA-EPAKE, we uses an RSA public key (n, e), where e = 2H(n, s)+1
is a k1-bit prime for some s. To ensure the security against e-th residue attacks,
we will prove that the probability of gcd(n, e) = 1 is negligible. First, we in-
troduce the Prime Number Theorem, which is also known as the Conjecture of
Gauss and Legendre.

The Prime Number Theorem [16]: Let π(x) denote the number of primes
p with 0 < p < x. Then, the asymptotic equation π(x) ≈ limx→∞

x
lnx holds.

By the Prime Number Theorem, the probability that some 0 < p < x is a
prime is π(x)

x ≈ 1
lnx ≥ 1

log2 x . If x = 2k1 , then π(x)
x ≥ 1

k1
. Thus, it is easy to find

a k1-bit prime e. But, the following Lemma says that it is hard for an adversary
A to make an RSA public key (n, e) that e is a k1-bit prime and a devisor of
φ(n).

316 S. Park et al.

Lemma 1. Let and k1 be the security parameters and n be an RSA modulus
of bit. Let H : {0, 1}∗ → {0, 1}k1−1 be a random oracle function. Then, for
any probabilistic polynomial time algorithm A, the following inequality holds:

AdvH
A(, k1) = Pr

[
e = 2H(n, s) + 1 is a k1-bit prime and
gcd(e, φ(n)) = 1 : (n, s) ← A(1�, 1k1)

]
<

Qh ·

2k1−1 ,

where Qh is the number of random oracle calls.

Proof. Let the probability P be defined by

P = Pr
[

gcd(e, φ(n)) = 1 : choose (n, e) that
n is a bit integer and e is a k1-bit prime

]
.

By the Prime Number Theorem, the number of primes in [2k1−1, 2k1] is greater
than or equal to 2k1−1

k1
, and the number of k1-bit prime factors of φ(n) is less

than or equal to � �
k1

�. Thus, P ≤ � �
k1

� · k1
2k1−1 ≤ �

2k1−1 . Since H is a random
oracle function, a k1-bit prime of type e = 2H(n, s)+1 is indistinguishable from
a random prime of k1 bit. Thus, for every adversary A, AdvH

A(, k1) = Qh · P <
Qh·�
2k1−1 . This completes the proof. ��

4 Comparisons

In this section, we compare our protocol RSA-EPAKE with the previous pro-
tocols such as SNAPI, PEKEP and CEKEP [13,19]. Table 1 shows what Alice
and Bob have to do to obtain a common session key. In Table 1, n denotes an
RSA modulus of bit, ε is less than 2−80, and q denotes a small prime such as
3, 5, 7, etc. For comparison of complexity, we assume that the complexity of an
exponentiation to the power e modulo n is O(|e| · |n|2), where |x| denotes the bit
size of x. In Table 1, “+” means an RSA encryption with a small prime public
key such as 3, 5, 7, etc. This computation is too small and can be neglected.

First, we consider the computational burden on Alice (Server). In all protocols,
Alice has to generate an RSA modulus n. Since generating an RSA modulus n
implies generating two large primes of �

2 bits, this computational load is very
large. In addition, Alice in SNAPI has to generate a prime e, which is greater than
n, and Alice in RSA-EPAKE has to generate a 96-bit prime e. The computational
load for generating a prime number greater than n is much larger than for
generating an RSA modulus n. On the contrary, it is relatively very easy to
generate a 96-bit prime. In case of n > 21023, the computational load for a 96-
bit prime generation is even less than for a single RSA decryption. Thus, the
computational load on Alice in RSA-EPAKE is less than in PEKEP and CEKEP
even if Alice in PEKEP and CEKEP can easily obtain a public key e.

Now, we consider the computational burden on Bob (Client). In SNAPI and
RSA-EPAKE, Bob has to test whether a given number e is a prime or not. The
computational load for the primality test of an (≥ 1024) bit number is also very
large, but the computational load for the primality test of a 96-bit number is even

Efficient Password-Authenticated Key Exchange Based on RSA 317

Table 1. Comparisons between PAKEs based on RSA ((n, e) : RSA public key)

SNAPI PEKEP CEKEP RSA-EPAKE

Server Computations
- Generation of n © © © ©
- Generation of e �-bit prime q�logq n� q�logq ε−1� k1-bit prime
- No. of decryptions 1 2 3 1

Client Computations
- Primality test of e �-bit prime - - k1-bit prime
- No. of encryptions 1 1+ 2+ 1
- Complexity of encryption O(�3) O(�3) O(�2 log2 ε−1) O(�2k1)

No. of Rounds 4 4 6 4

(q is a small prime and, for real applications, � = |n| = 1024, ε = 2−80, k1 = 96)

less than for a single RSA encryption with an 80 bit public key. The primality
test by the Miller-Rabin method requires only about 6 exponentiations (see
Table 4.3 in [14]). For example, in RSA-EPAKE, the computational complexity
for the primality test of a 96-bit prime e is about 6 × O(963) and, in CEKEP
with = 1024 and ε ≈ 2−80, the complexity of a single RSA encryption is about
O(2 log2 ε−1) ≈ O(10242 × 80). In SNAPI with = 1024, the complexity for a
single RSA encryption is about O(3) ≈ O(10243), which is even greater than for
two RSA encryptions in CEKEP. Thus, we can summarize the results of Table
1 as follows:

– Computational load on Alice :
RSA-EPAKE < PEKEP < CEKEP < SNAPI

– Computational load on Bob :
RSA-EPAKE < CEKEP < PEKEP < SNAPI

In the Diffie-Hellman based PAKE variant [1,5,7,8,9,10,18], both of Alice and
Bob need to compute two modular exponentiations, each having an exponent of
at least 160 bit. For perfect forward secrecy, Alice in RSA-EPAKE has to gener-
ate n and e in each session. RSA-EPAKE is more efficient in the computational
load on Bob than the Diffie-Hellman based PAKE variant, but very inefficient
in the computational load on Alice. For having trade-off between security and
efficiency, we can consider that Alice generates them once an hour or once a
day rather than in each session. In these cases, Alice performs only a single
RSA decryption using CRT (Chinese Remainder Theorem) in each session. We
performed experiments under Linux Fedora Core 4 on 2.4 GHz Pentium 4 proces-
sor. In the experiments, a single RSA decryption with 1024-bit n requires about
10, 773 × 103 clock cycles and the exponentiation of gx mod p, where |g| = 32,
|x| = 160, and |p| = 1024, requires about 4, 803×103 clock cycles. Hence, Alice’s
load in Diffie-Hellman based PAKE variant with a 160-bit exponent is about

318 S. Park et al.

90% of that in RSA-EPAKE. On the contrary, the computational loads on Al-
ice in PEKEP and CEKEP is much larger than in Diffie-Hellman based PAKE
variant. For our experiments, we used the Crypto Library of OpenSSL .

5 Formal Security Analysis

In this section, we analyze the security of RSA-EPAKE under the formal security
model in Section 2. The security proof is almost similar to that of Zhang’s
PEKEP [19,20]. Thus, we will refer to some results and definitions from Zhang’s
full paper [20].

RSA Assumption: Let be the security parameter of RSA. Let key generator
GE define a family of RSA functions, i.e., (e, d, n) ← GE(1�), where n is the
product of two primes of the same size, gcd(e, φ(n)) = 1, and e ·d = 1 mod φ(n).
For any probabilistic polynomial time algorithm C, the following probability is
negligible:

Advrsa
C () = Pr

[
xe = c mod n :

(e, d, n) ← GE(1�), c ∈R {0, 1}�, x ← C(1�, c, e, n)

]

Let Advrsa() = maxC{Advrsa
C ()}. Then, under the RSA assumption, the

following theorem holds.

Theorem 1. For any polynomial time adversary A, the following inequality
holds:

Adv(A, P0) ≤ Qse

|D| + (Qex + 3Qse)Advrsa() + O(
Qse · Qh ·

2k1−3)

where Qse ≤ |D| denotes the number of Send queries to different instances, Qex

denotes the number of Execute queries, and Qh denotes the number of random
oracle calls.

To prove the theorem, we describe five hybrid experiments by P0, P1, P2, P3, and
P4. Let Adv(A, Pi) denote the advantage ofA when participating in experiment Pi.

Hybrid experiment P0: This describes the real adversary attack. During the
attack, the adversary A makes a number of oracle calls (i.e., Send, Execute,
Reveal, and Test). In addition, the adversary A has access to five independent
random oracles H , H1, H2, H3 and h. Each random oracles have a list of input-
output pairs. If a new input of the random oracle was queried before, then the
oracle returns the output in the list. Otherwise, the oracle generates a random
number and returns it.

Efficient Password-Authenticated Key Exchange Based on RSA 319

Hybrid Experiment P1: In this experiment, the Execute oracle is modified
so that the session keys of instances for which Execute is called are all chosen
uniformly at random, that is, if the oracle Execute(A, i, B, j) is called between
two instances Πi

A and Πj
B, then the session keys ski

A and skj
B are set equal to a

random selected from {0, 1}k2.
Before we present the experiments P2, P3, and P4, we describe Send oracles

which an active adversary A uses.

• Send0(A, i): the instance Πi
A generates an RSA modulus n in [2�−1, 2�] and a

random number r1 ∈ {0, 1}k2. Next, it finds an s such that e = 2H(n, s) + 1
is a k1-bit prime and gcd(e, φ(n)) = 1. It returns A, n, s, and r1 to the
adversary.

• Send1(B, j, A, n, s, r1): the instance Πj
B selects random numbers r2 ∈ {0, 1}k2

and a ∈ Z∗
n. It queries the oracle h on (w, r1, r2, A, B, s, n) and receives the

reply α. If n isn’t odd in [2�−1, 2�], e = 2H(n, s) + 1 isn’t a k1-bit prime, or
gcd(α, n) = 1, then Πj

B rejects. Otherwise, Πj
B computes c = ae · α mod n

and returns r2 and c to the adversary.
• Send2(A, i, r2, c): the instance Πi

A obtains α as the reply of the oracle h
on (w, r1, r2, A, B, s, n). If gcd(α, n) = 1, then Πi

A rejects. Otherwise, it
computes b = (c · α−1)d mod n, where d = e−1 mod φ(n), and obtains μ as
the reply of H1 on (b, r1, r2, A, B, s, n). Then, it returns μ to the adversary.

• Send3(B, j, μ): the instance Πj
B retrieves a, r1, r2, s, n from its internal states

and queries the random oracle H1 on (a, r1, r2, A, B, s, n). If the reply of H1
is not equal to μ, then it rejects. Otherwise, it computes η and skj

B as the
replies of H2 and H3 on (a, r1, r2, A, B, s, n), respectively. Then Πj

B returns
η to the adversary.

• Send4(A, i, η): the instance Πi
A retrieves b, r1, r2, s, n from its internal states

and queries the random oracle H2 on (b, r1, r2, A, B, s, n). If the reply of H2
is not equal to η, it rejects. Otherwise, it computes ski

A as the reply of H3
on (a, r1, r2, A, B, s, n).

A message is said to have been oracle-generated if it was an output by an
instance; otherwise, it is said to have been adversarially-generated. If an instance
Πi

A receives a Πj
B-oracle-generated message (r2, c) in a Send2 oracle call but the

message (A, n, s, r1) received by Πj
B in a Send1 oracle call was not generated by

Πi
A, we treat the message (B, r2, c) as adversarially-generated.

Hybrid Experiment P2: In this experiment, an instance Πj
B receives a Πi

A-
oracle-generated message (A, n, s, r1) in a Send1 oracle call. If both instances Πj

B

and Πi
A accept, they are given the same random session keys sk ∈R {0, 1}k2, and

if Πj
B accepts but Πi

A does not accept, then only Πj
B receives a random session

key and no session key is defined for Πi
A.

Hybrid Experiment P3: In this experiment, an instance Πi
A receives a Πj

B-
oracle-generated message (B, r2, c) in a Send2 oracle call, while the instance Πj

B

has received a Πi
A-oracle-generated message (A, n, s, r1) in a Send1 oracle call.

If Πi
A and Πj

B accept, they are given the same session key sk ∈ {0, 1}k2.

320 S. Park et al.

Hybrid Experiment P4: In this experiment, we consider an instance Πi
A (or

Πj
B) that receives an adversarially-generated message in a Send2 (or Send1)

oracle call. In this case, if Πi
A (or Πj

B) accepts, then the experiment is halted and
the adversary is said to have succeeded. This certainly improves the probability
of success of the adversary.

Claim 1. For every polynomial-time adversary A making Qex oracle calls of
type Execute,

|Adv(A, P1) − Adv(A, P0)| ≤ QexAdvrsa() + QexQh/φ(n).

Claim 2. For every polynomial-time adversary A making Qse oracle calls of
type Send,

|Adv(A, P2) − Adv(A, P1)| ≤ QseAdvrsa()

Adv(A, P3) = Adv(A, P2), Adv(A, P3) ≤ Adv(A, P4).

It is clear that Adv(A) = Adv(A, P0). Claim 1 and 2 are proved in the same
way as Claim 1, Claim 2, Claim 3, and Claim 4 in Zhang’s full paper [20]. The
proofs are omitted due to lack of space. The following Claim 3 shows that the
adversary’s success probability in the experiment P4 is negligible.

Claim 3. For every polynomial-time adversary A making Qse ≤ |D|, queries to
the Send1 and Send2 oracles,

Adv(A, P4) ≤ Qse

|D| + 2QseAdvrsa() +
Qse · Qh ·

2k1−2 +
2Qse · Qh

φ(n)
+

Qse

2k2−1 .

Proof. Let Qse1 and Qse2 denote the number of Send1 and Send2 oracle calls
made by the adversary in experiment P4, respectively. We consider the following
two cases:

[Case 1]: Consider an instance Πi
A that receives an adversarially-generated mes-

sage (B, r2, c) in a Send2 oracle. If gcd(α, φ(n)) = 1, then Πi
A rejects. So,

we assume gcd(α, φ(n)) = 1. Πi
A computes b = (c · α−1)d mod n, where d =

e−1 mod φ(n), and returns μ = H1(b, r1, r2, A, B, s, n) to the adversary A. Now,
the adversary A has to return η to the instance Πi

A. Without knowledge of b,
the probability for A to generate the correct η is just 2−k2 . If A know b, then
he can compute η = H2(b, r1, r2, A, B, s, n). Let pb denote the probability that
A can recover the integer b. Solving b from a random c ∈ Z∗

n implies the RSA
decryption problem. Thus, we can prove that pb ≤ Advrsa() + Qh/φ(n)(similar
to the proof of Claim 1). In another way, A guesses a candidate password
wi and computes c = ae · αi mod n, where a is a random number in Z∗

n and
αi = h(wi, r1, r2, A, B, s, n). If A guesses the correct password wi = w, then
αi = α and the congruence xe · α = ae · αi mod n has the unique solution a
because of gcd(e, φ(n)) = 1. Hence, a is equal to b, computed from c by the

Efficient Password-Authenticated Key Exchange Based on RSA 321

instance Πi
A. If A guesses an invalid password wi = w, then αi = α and c can

be treated as a random number in Z∗
n. Hence, we have

pb ≤ Pr[αi = α] + Advrsa() + Qh/φ(n) ≤ 1
|D| + Advrsa() + Qh/φ(n)

Pr[Succ of Case 1] ≤ Qse2(pb + 2−k2)
≤ Qse2

|D| + Qse2Advrsa() + Qse2 ·Qh

φ(n) + Qse2
2k2 .

[Case 2]: Consider an instance Πj
B that receives an adversarially-generated mes-

sage (A, n, s, r1) in a Send1 oracle. Πj
B selects random numbers r2 ∈ {0, 1}k2,

a ∈ Z∗
n and computes α = h(w, r1, r2, A, B, s, n). Then, Πj

B tests if n is odd in
[2�−1, 2�], e = 2H(n, s) + 1 is a k1-bit prime, and gcd(α, n) = 1. If the test fails,
then Πj

B rejects the protocol. Otherwise, it returns r2 and c = ae · α mod n to
the adversary. Then, A has to return μ to Πj

B. Without knowledge of a, the
probability for A to compute the correct μ is just 2−k2 . Let pa denote the prob-
ability that A recovers the integer a and let AccPK denote the event that A
generates public keys (n, s), where n is odd in [2�−1, 2�] and e = 2H(n, s) + 1 is
a k1-bit prime. These keys are accepted as correct public keys by the instance
Πj

B. Thus, we have

pa = Pr[a|AccPK ∧ gcd(e, φ(n)) = 1] · Pr[AccPK ∧ gcd(e, φ(n)) = 1]
+ Pr[a|AccPK ∧ gcd(e, φ(n)) = 1] · Pr[AccPK ∧ gcd(e, φ(n)) = 1]
+ Pr[a|¬AccPK] · Pr[¬AccPK]

≤ Pr[a|AccPK ∧ gcd(e, φ(n)) = 1] + Pr[AccPK ∧ gcd(e, φ(n)) = 1]
+ Pr[a|¬AccPK]

If the event AccPK does not occur, then Πj
B rejects the protocol. Thus,

we can assume Pr[a|¬AccPK] = 0. By Lemma 1, it is clear that Pr[AccPK ∧
gcd(e, φ(n)) = 1] ≤ Qh·�

2k1−1 . Now, let us consider the event AccPK∧gcd(e, φ(n)) =
1. Then, A can compute αi = h(wi, r1, r2, A, B, s, n) using a guessing pass-
word wi. The congruence c = xe · αi mod n has a unique solution a′ because of
gcd(e, φ(n)) = 1. If A guesses the correct password wi = w, then αi = α and
the solution a′ is equal to a, selected by the instance Πj

B. Thus, we have

Pr[a|AccPK ∧ gcd(e, φ(n)) = 1] = Pr[λ = α] =
1

|D| ,

Pr[Succ of Case 2] ≤ Qse1(pa + 2−k2) =
Qse1

|D| +
Qse1 · Qh ·

2k1−1 +
Qse1

2k2
.

From the analysis in Case 1 and Case 2, the adversary’ success probability in
experiment P4 is upper bounded by

Pr[Succ] = Pr[Succ of Case 1] + Pr[Succ of Case 2]
≤ Qse

|D| + QseAdvrsa() + Qse·Qh·�
2k1−1 + Qse·Qh

φ(n) + Qse

2k2

where Qse = Qse1 + Qse2 . Since Qse/|D| ≤ 1, we have

322 S. Park et al.

Adv(A, P4) = 2Pr[Succ] − 1
≤ Qse

|D| + 2QseAdvrsa() + Qse·Qh·�
2k1−2 + 2Qse·Qh

φ(n) + Qse

2k2−1

This completes the proof of Claim 3. ��
By combining Claims 1 to 3 and assuming φ(n) > 2k2 > 2k1 , Theorem 1 holds:

Adv(A, P0) ≤ Qse

|D| + (Qex + 3Qse)Advrsa() + O(
Qse · Qh ·

2k1−3).

If (A, n, s, r1) and (r2, c) are oracle-generated messages and μ (or η) is an
adversarially-generated message in a Send3 (or Send4) oracle, then the adversary
A can not know a (or b). Without knowledge of a (or b), the probability that A
guesses the correct μ (or η) is 2−k2 and is negligible. So, in the Hybrid experiment
P4, we excluded the previous two cases from consideration.

By the RSA assumption, Advrsa() is negligible and, for sufficiently large
k1 ≥ 96, the probability Qse·Qh·�

2k1−3 is also negligible. Then, by Definition 1, the
following theorem holds.

Theorem 2. RSA-EPAKE is a secure password-authenticated key exchange
protocol under the RSA assumption in the random oracle model.

6 Conclusions

In this paper, we have proposed an efficient password-authenticated key exchange
based on RSA which is called RSA-EPAKE. We have shown that the success
probability of an e-residue attack against RSA-EPAKE is negligible and have
provided a formal security proof under the RSA assumption in the random
oracle model. RSA-EPAKE is more efficient in computation than any other
PAKEs based on RSA and the computational load on Bob (Client) is less than in
PAKEs based on Diffie-Hellman key exchange. Moreover, without consideration
of forward secrecy, the computational load on Alice (Server) is a little more than
that in PAKEs based on Diffie-Hellman key exchange.

References

1. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attack. Proc. of Eurocrypt 2000, LNCS vol.1807, Springer-
Verlag, pp.139-155, 2000.

2. M. Bellare and P. Rogaway. Entity authentication and key distribution. Proc. of
Crypto’94, LNCS vol.950, Springer-Verlag, pp.92-111, 1995.

3. S. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. Proc. of the IEEE Symposium on Research in
Security and Privacy, pp.72-84, May 1992.

4. S. Bellovin and M. Merritt. Augmented encrypted key exchange: A password-based
protocol secure against dictionary attacks and password file compromise. Proc.
of the 1st ACM Conference on Computer and Communications Security, ACM,
pp.244-250, Nov. 1993.

Efficient Password-Authenticated Key Exchange Based on RSA 323

5. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password authenticated key
excahnge using Diffie-Hellman. Proc. of Eurocrypt 2000, LNCS vol.1807, Springer-
Verlag, pp.156-171, 2000.

6. D. Catalano, D. Pointcheval, and T. Pornin. IPAKE: Isomorphism for password-
based authenticated key exchange. Proc. of Crypto 2004, LNCS vol.3152, Springer-
Verlag, pp.477-493, 2004.

7. R. Gennaro and Y. Lindell. A framework for password-based authenticated key
exchange. Proc. of Crypto 2003, LNCS vol.2656, Springer-Verlag, pp.524-542, 2003.

8. O. Goldreich and Y. Lindell. Session-key generation using human passwords only.
Proc. of Crypto 2001, LNCS vol.2139, Springer-Verlag, pp.408-432, 2001.

9. D. Jablon. Strong password-only authenticated key exchange. Computer Commu-
nication Review, ACM SIGCOMM, vol. 26, no. 5, pp.5-26, 1996.

10. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange
using human-memorable passwords. Proc. of Eurocrypt 2001, LNCS vol.2045,
Springer-Verlag, pp.475-494, 2001.

11. T. Kwon. Authentication and key agreement via memorable passwords. Proc. of
Network and Distributed System Security Symposium, Feb., 2001.

12. S. Lucks. Open key exchange: How to defeat dictionary attacks without encrypting
public keys. Proc. of Security Protocol Workshop, LNCS vol.1361, Springer-Verlag,
pp.79-90, 1997.

13. P. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key ex-
change based on RSA. Proc. of Asiacrypt 2000, LNCS vol.1976, Springer-Verlag,
pp.599-613, 2000.

14. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Pres, Oct. 1996.

15. S. Patel. Number theoretic attacks on secure password schemes. Proc. of IEEE
Symposium on Security and Privacy, May 1997.

16. V. Shoup. A Computational Introduction to Number Theory and Algebra, Cam-
bridge University Press, 2005.

17. D. Wong, A. Chan, and F. Zhu. More efficient password authenticated key exchange
based on RSA. Proc. of Indocrypt 2003, LNCS vol.2904, Springer-Verlag, pp.375-
387, 2003.

18. T. Wu. The secure remote password protocol. Proc. of Network and Distributed
System Security Symposium, Sandiego, pp.97-111, Mar. 1998.

19. M. Zhang. New approaches to password authenticated key exchange based on RSA.
Proc. of Asiacrypt 2004, LNCS vol.3329, Springer-Verlag, pp.230-244, 2004.

20. M. Zhang. New approaches to password authenticated key exchange based on RSA.
url=http://eprint.iacr.org, Cryptology ePrint Archive, Report 2004/033.

21. M. Zhang. Password authenticated key exchange using quadratic residues. Proc.
of ACNS 2004, LNCS vol.3089, Springer-Verlag, pp.233-247, 2004.

22. F. Zhu, D. Wong, A. Chan, and R. Ye. RSA-based password authenticated key ex-
change for imbalance wireless networks. Proc. of Information Security Conference
(ISC’02), LNCS vol.2433, Springer-Verlag, pp.150-161, 2002.

Non-degrading Erasure-Tolerant Information
Authentication with an Application to Multicast

Stream Authentication over Lossy Channels�

Yvo Desmedt1,�� and Goce Jakimoski2

1 Department of Computer Science, University College London
Gower Street, London WC1E 6BT, United Kingdom

y.desmedt@cs.ucl.ac.uk
2 Department of Electrical and Computer Engineering, Burchard 212,

Stevens Institute of Technology, Hoboken, NJ 07030, USA
Goce.Jakimoski@stevens.edu

Abstract. The concept of erasure-tolerant information authentication
was recently introduced to study an unconditionally secure setting where
it is allowed to lose a limited number of message letters during transmis-
sion. Even if a part of the message is lost, the verifier will still be able
to check the authenticity of some or all of the received message letters.
In general, there might be some letters whose authenticity cannot be
verified although they have arrived at the recipient’s side. These letters
will be discarded.

We consider a special case when the verifier can always check the au-
thenticity of all received message letters. This property is desirable since
no data will be lost due to the verifier’s inability to verify its authen-
ticity (i.e., the scheme does not introduce additional degradation of the
quality of the received information). We provide necessary and sufficient
conditions for a set system based erasure-tolerant authentication scheme
to be non-degrading. We also discuss efficient implementations and pro-
pose a provably secure stream authentication scheme that makes use of
erasure-tolerant authentication codes.

Keywords: cryptography, message authentication, stream authentica-
tion, erasure-tolerant information authentication, combinatorics.

1 Introduction

1.1 Erasure-Tolerant Information Authentication

In the standard information authentication model, the messages are treated as
atomic objects: The verifier cannot check authenticity of incomplete messages.

� This research was done while the authors were at Florida State University, sponsored
by NSF CCR-0209092.

�� The author is BT Professor of Information Security and a courtesy professor at the
Department of Computer Science, Florida State University, USA.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 324–338, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Non-degrading Erasure-Tolerant Information Authentication 325

The notion of erasure-tolerant message authentication was recently introduced
[17] to analyze a somewhat different setting where it is too expensive to provide
an erasure-free channel and the application allows a limited data loss (e.g., audio
and video streams). In the erasure-tolerant authentication model, it is allowed
parts of the transmitted message to be erased (lost). Even if some of the data is
lost, the receiver should be able to verify the authenticity of a part or possibly
the complete message.

In a general erasure-tolerant authentication code, it is possible that the verifier
will not be able to check the validity of all received message letters (packets). The
letters whose authenticity cannot be verified will be discarded, and thus, we will
have erasures that are due not to the data loss on the communication channel,
but to the inability of the receiver to verify the authenticity of some received
letters. Since this quality degradation introduced by the erasure-tolerant au-
thentication scheme is not desirable, we consider a special class of non-degrading
erasure-tolerant authentication schemes. In these schemes, the authenticity of
each received letter (packet) can be always checked.

1.2 Our Contribution

We provide necessary and sufficient conditions that link the non-degrading erasu-
re-tolerant authentication schemes and the cover-free families in design theory.
We also discuss efficient implementations and present an efficient and provably
secure stream authentication scheme that is based on erasure-tolerant authenti-
cation codes.

1.3 Related Work

The notion of erasure-tolerant message authentication was formally introduced
by Jakimoski [17]. A similar concept is that of content extraction signatures
introduced by Steinfeld et al [31]. A related notion is also the notion of approx-
imate message authentication codes, which was introduced by Graveman et al
[16]. Di Crescenzo et al [9] provide a security model for a rigorous study of the
approximate message authentication codes.

The theory of unconditional authentication was developed by Simmons [29,30].
He also derived some lower bounds on the deception probability. Stinson [32] stud-
ied the properties of authentication codes that have minimum possible deception
probabilities and minimum number of encoding rules. Some other fundamental re-
sults concerning authentication codes can be found in [21,6,40,33,34,35,4,10,27,1].

Cover-free families were introduced by Kautz and Singelton [18] to investigate
superimposed binary codes. Additional constructions, bounds and applications
can be found in [12,13,25,36,37,11].

Gennaro and Rohatgi [14] have proposed a stream signing scheme based on a
chain of one-time signatures. A similar scheme has been proposed by Zhang [42]
for authentication in routing protocols. The major disadvantage of the scheme
is its non-resilience to packet loss. Various improvements were proposed sub-
sequently [8,2,41,28,5,38] culminating with the solutions presented in [24] (see

326 Y. Desmedt and G. Jakimoski

also [3]). Some different approaches and possible improvements of the schemes
presented in [24] have been discussed in [22,23,7,39].

2 Preliminaries

2.1 The Erasure-Tolerant Message Authentication Model

There are three participants in the erasure-tolerantmessage authentication model
proposed in [17]: a transmitter, a receiver and an adversary. The transmitter wants
to send a source state (or plaintext) to the receiver using a public communication
channel. It is assumed that all plaintexts are strings of length k whose letters are
from some alphabet Q. The transmitter has a key source from which he obtains
a key. Prior to the message being sent, the secret key is communicated to the re-
ceiver through a secure channel. The transmitter uses the secret key to encode
the plaintext into a q-ary string of length n. The derived message (or ciphertext)
is sent through the public channel. The receiver will use the secret key to verify
the validity of the received message. If at most t < n letters are missing from
the original intact valid message and the positions of the missing letters within
the message are known, then the received message is still considered valid. In this
case, the receiver accepts a plaintext that is derived from the original plaintext by
erasing at most r (r < k) letters. If the received message is not derived from some
intact valid message by erasing at most t letters, then the receiver does not accept
a plaintext.

It is assumed that the secret key will be used only once. Hence, there are only
two types of threats: impersonation and substitution. In an impersonation at-
tack, the adversary, based only on his knowledge of the authentication scheme,
can send a fraudulent message to the receiver when in fact no message has
yet been sent by the transmitter. In a substitution attack, the adversary can
intercept one valid message and replace it with his fraudulent message. The
probability of successful impersonation is defined as the probability of success
when the adversary employs an optimum impersonation strategy. The probabil-
ity of successful substitution is defined as the probability of success when the
adversary employs an optimal substitution strategy. Finally, the adversary may
be able to select whether to employ an impersonation or a substitution attack
(a deception attack). The probability of successful deception is the probability
of success when an optimum deception strategy is employed.

2.2 Cover-Free Families

A cover-free family is defined as follows.

Definition 1. [37] Let X be a v-set and let B be a set of subsets (blocks) of
X. The set system (X, B) is called a (w, t)-cover-free family if for any w blocks
B1, . . . , Bw ∈ B and any other t blocks A1, . . . , At ∈ B, we have

w⋂
i=1

Bi �
t⋃

j=1

Aj . (1)

Non-degrading Erasure-Tolerant Information Authentication 327

Let N(w, t, b) denote the minimum number of points in any (w, t)-cover-free
family that has b blocks. The following bound can be found in [37]:

N(w, t, b) ≤ (w + t) log b

− log p
, where p = 1 − ttww

(t + w)t+w
. (2)

2.3 Multicast Stream Authentication

Most of the multicast stream authentication schemes are based on the concept de-
picted in Figure 1 (see [24]). To authenticate the packet (chunk) Pi of the stream,
the sender first commits to the key value Ki by sending H(Ki) in the packet Pi−1.
The key Ki is only known to the sender, and it is used to compute a MAC on the
packet Pi. After all recipients have received the packet Pi, the sender discloses
the key value Ki in the packet Pi+1. The recipients verify whether the received
key value corresponds to the commitment and whether the MAC of the packet Pi

computed using the received key value corresponds to the received MAC value. If
both verifications are successful, the packet Pi is accepted as authentic. Note that
Pi contains the commitment to the next key value Ki+1. To bootstrap the scheme,
the first packet, which contains the commitment H(K1) to the first symmetric key
K1, is signed using a digital signature scheme (e.g., RSA).

Di−1

Pi−1 Pi

Mi

Di

MAC(Ki, Di)

Pi+1

Mi+1

MAC(Ki+1, Di+1)

Di+1

MAC(Ki−1, Di−1)

Mi−1
H(Ki)
Ki−2

H(Ki+1)
Ki−1

H(Ki+2)
Ki

Fig. 1. Multicast stream authentication: The basic scheme

3 Erasure-Tolerant Signature Schemes

The model described in Section 2.1 can be extended to the case of digital sig-
natures and MAC schemes by adapting the notions of existential forgery and
unforgeability [15] to the setting where erasures are allowed.

The differences between an erasure-tolerant digital signature setting and the
unconditionally secure setting described in Section 2.1 are:

– The sender uses the secret key to sign a large number of messages.
– The receiver uses a public key to verify the validity of the received messages.
– The adversary has access to the public key and can query a signing oracle

many times. The goal of the adversary is to produce a forgery (i.e., a message
that is accepted as valid by the receiver, but not derived from a previously
signed message by erasing at most t letters).

328 Y. Desmedt and G. Jakimoski

– The computational power of the adversary is not unlimited. An erasure-
tolerant digital signature scheme is considered unforgeable (secure) if there
is no efficient adversary that can produce a forgery with non-negligible prob-
ability.

One can similarly define the erasure-tolerant MAC setting.

4 Non-degrading Erasure-Tolerant Message
Authentication: Constructions Based on Cover-Free
Families

Let us consider the following generic construction of erasure-tolerant uncondi-
tionally secure authentication codes or erasure-tolerant signature schemes. Given
a large message M , the sender divides it into a sequence of b smaller messages
(called letters earlier on) M1, . . . , Mb and computes v authentication tags (resp.,
signatures) τ1, . . . , τv. Each tag τj is computed over a subsequence of the se-
quence of messages using a message authentication (or signature) scheme. We
say that the authentication tag τj depends on the message Mi if Mi is in the
subsequence which is used to compute τj . The sender then constructs and sends
b packets P1, . . . , Pb. Each packet Pi includes the message Mi and all authenti-
cation tags τj with the following property: the message Mi is the last message
in the subsequence that is used to compute τj .

We allow at most t of the b packets to be lost during the transmission. The re-
cipient uses the received tags to verify the authenticity of the received messages.
In particular, if all messages that are used to compute some authentication tag
τj have arrived, the recipient uses the received τj to verify the authenticity of
the subsequence. If the verifier outputs one, then the recipient accepts all the
messages in the subsequence as valid.

Obviously, if a tag τj depends on a lost message Mi, then τj cannot be used
to verify the authenticity of the rest of the messages in the subsequence that
was used to compute τj . Hence, a situation might occur where the recipient
will not be able to verify the authenticity of a message that was not lost. If the
subsequences are chosen in such manner so that the receiver will be able to verify
the authenticity of each message that is not lost, then we say the erasure-tolerant
authentication code (resp., signature scheme) is non-degrading.

To analyze the problem of constructing non-degrading schemes, it is conve-
nient to define a dependency set system (X, B), where:

– X = {τ1, . . . , τv}
– B = {Bj|Bj = {τi|τi depends on Mj}, 1 ≤ j ≤ b}

If a message Mi is lost during the transmission, then the authentication tags in
Bi become useless. Assume that Mi1 , . . . , Mit are the lost messages. Then, the
set of all useless tags is

⋃t
l=1 Bil

(see Figure 2). The authenticity of the message
Mj can be verified if and only if Bj �

⋃t
l=1 Bil

. Hence, we have the following
theorem.

Non-degrading Erasure-Tolerant Information Authentication 329

X

Bi2 Bj

τk

Bit

Bi3

Bi1

can be verified using
The authenticity of

τk /∈ t
l=1 Bil

Mj

Fig. 2. Erasure-tolerant authentication using cover-free families

Theorem 1. An erasure-tolerant authentication code (resp., signature scheme)
constructed as above is non-degrading if and only if the corresponding dependency
set system is a (1, t)-cover-free family.

A simple example is given in Figure 3. One can easily verify that if one message
is lost (t = 1), then we can still verify the authenticity of the rest of the packets.
For example, assume M1 is lost. Then, the authentication tags τ1 and τ5 are
not usable anymore. However, the authenticity of M2, M3 and M4 still can be
verified using τ6, τ7 and τ8 respectively, and the authenticity of M5, M9 and M13
can be verified using τ2, τ3 and τ4 respectively.

Note that the number of tags in the example is eight instead of sixteen, which
is the case when we authenticate each packet separately. In general, we have two
extremes. The number of tags can be as low as a logarithm of the number of
packets (see Inequality 2). The other extreme is to use one tag per message (i.e.,
the number of tags is equal to the number of messages). The main advantages
of using a small number of tags / signatures are:

– The communication (or storage) overhead is smaller.
– When unconditionally secure message authentication is employed, we need

a fresh key material for each tag. Hence, the key generation time decreases
when the number of tags is smaller.

– In the case of digital signature schemes, the time complexity will be reduced
since the number of signatures is smaller.

Remarks. Instead of the approach presented here, one can use a combination of
authentication codes and erasure-resilient codes [19,20] resulting in full-recovery
erasure-tolerant authentication codes [17]. The advantage of the second approach
is that the sender will be able to recover the whole message M . The disadvantage
is that at least t out of the b packets must be redundant. Moreover, it is commonly

330 Y. Desmedt and G. Jakimoski

M1 M2 M4 M5M3 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

τ5 τ6
τ7 τ8

τ1 τ2 τ3 τ4

Fig. 3. (1, 1)-cover-free family

accepted that in the case of audio or video applications there will be some
data loss. The loss-tolerance of TESLA [24] was one of the main reasons it was
accepted as an Internet standard.

To simplify the description, we assumed that the messages arrive in order.
However, it might be possible that the messages can be reordered so that the
derived sequence is also valid. A malicious reordering can be prevented if the
messages also include unique numbers identifying their position.

Also, note that more than t erasures can be tolerated in a scheme derived from
a (1, t)-cover-free family. In particular, if more than t messages are lost, we can
still verify the authenticity of some of the received messages. However, we cannot
verify the authenticity of all received messages (i.e., non-degrading property does
not hold). For example, in the scheme from Figure 3, even if three messages are
lost, we will still be able to verify the validity of at least four messages.

5 Multicast Stream Authentication over Lossy Channels
Using Erasure-Tolerant Primitives

In this section, we present a provably secure multicast stream authentication
scheme that uses an authentication code instead of a MAC scheme to authenti-
cate the packets of the stream. A loss-tolerant multicast stream authentication
scheme can be obtained if one uses erasure-tolerant instead of regular authenti-
cation codes.

We first (see Section 5.1) discuss a basic method in which we are not dealing
with erasures.

5.1 Multicast Stream Authentication Using Authentication Codes

Each key Ki in the basic multicast stream authentication scheme (Figure 1) is
used only once. Hence, one can improve the security of the basic scheme without
decreasing its efficiency by using unconditionally secure instead of computation-
ally secure message authentication. However, we need to slightly modify the
scheme depicted in Figure 1. First, we assume that before sending a stream,
the sender selects a unique stream number Ns and includes this number in each
packet including the bootstrap packet. The stream number is securely commu-
nicated to the recipients, and the recipients accept only packets with the given

Non-degrading Erasure-Tolerant Information Authentication 331

stream number. Second, it is possible that given the hash of the key H(Ki), a
computationally unbounded adversary can compute the key Ki with high proba-
bility, and then, use the computed key to forge a packet. To prevent this, instead
of using a hash of the key Ki as a commitment, the sender uses a hash of a string
Si = Ki||ri, which is a concatenation of the key Ki and a random string ri (see
Figure 4). The random value ri is secret, and its goal is to “hide” Ki from a
computationally unbounded adversary by increasing the number of keys that
can hash to a given value. Ideally, the adversary should not be able to learn any-
thing about the key given the commitment H(Si). The following lemma provides
a relation between the probability of successful deception of the authentication
code in use and the probability of successful deception when the adversary is
given a commitment to the key.

Di−1

Pi−1 Pi

Di

MAC(Ki, Di)

Pi+1

MAC(Ki+1, Di+1)

Di+1

MAC(Ki−1, Di−1)

Mi−1
H(Si)
Si−2

Mi

H(Si+1)
Si−1

Mi+1
H(Si+2)
Si

Ns Ns Ns

Fig. 4. A variant of the basic multicast stream authentication scheme

Lemma 1. Let Pd be the probability of successful deception of a given authen-
tication code, and let P h

d be the probability of successful deception when the ad-
versary is given a concrete commitment value h = H(z||r) to the secret key z
which is selected uniformly at random. Then, we have

P h
d ≤ 2ΔHPd

where ΔH = H(z) − H∞(z|h) is the difference between the entropy of the secret
key and the min-entropy of the secret key given the commitment h.

The proof is given in Appendix A.
The security of the stream authentication scheme depicted in Figure 4 follows

from the following theorem.

Theorem 2. Suppose that:

– H is collision-resistant: it is hard to find Si and S′
i = Si such that H(Si) =

H(S′
i),

– the digital signature scheme that is used to bootstrap the scheme (i.e., sign
the first packet with a commitment H(S1) to the first key K1) is unforgeable,

– the deception probability of the message authentication scheme given a com-
mitment to the key is small: maxh P h

d is negligible.

Then, the variant of the basic scheme depicted in Figure 4 is computationally
secure.

332 Y. Desmedt and G. Jakimoski

Proof. Assume that the adversary can break the stream authentication scheme.
In other words, the adversary in cooperation with some of the recipients can
trick another recipient u to accept a forged packet of the stream as valid. Let
i be the smallest integer such that the content D′

i is accepted as valid by the
recipient u when the original content Di is different from D′

i. Since a unique
sequence number is associated with each stream, if i is zero, then the adversary
has managed to forge the bootstrap packet which was signed using a digital sig-
nature scheme. Let i be greater than zero. There are two possible cases: (i) the
key that u used to verify the validity of D′

i is equal to the original key Ki or
(ii) the key that u used to verify the validity of D′

i is different than the original
key Ki. In the first case, the adversary has managed to produce a forgery for
the message authentication scheme. Clearly, the probability of success in this
case is negligible (not greater than maxh P h

d). In the second case, when the key
K ′

i used by u is different from the original key Ki, the string S′
i received by u

is different from the original string Si sent by the sender. However, the corre-
sponding commitments H(Si) and H(S′

i) must be equal since i is the smallest
number such that the content D′

i is accepted as valid by the recipient u when
the original content Di sent by the sender is different from D′

i. Therefore, we
can find a collision for the hash function H .

According to the previous discussion, given an adversary for the stream au-
thentication scheme A, one can construct two adversaries: an adversary Ads for
the digital signature scheme that is used to sign the bootstrap packet and an
adversary Ah for the hash function H that is used to commit to the keys. We
can answer the signing queries of A by sending queries to the signing oracle
of the digital signature scheme, selecting random keys, committing to the keys
using H and using these keys to authenticate the packets of the stream. If A
manages to forge the first bootstrap packet, then Ads will output this forged
message/signature pair. Otherwise, it will output some randomly selected mes-
sage/signature pair. If A manages to produce a forgery by finding two different
values Si and S′

i that hash to the same value, then Ah will output the pair
(Si, S

′
i). Otherwise, it will output some random pair. Since the probability to

produce a forgery for the message authentication scheme is negligible, if A suc-
ceeds with non-negligible probability, then at least one of the adversaries Ads

and Ah must have a non-negligible success probability too. �

5.2 Erasure-Tolerant Multicast Stream Authentication by Means of
Cover-Free Families

In this section, we present an erasure-tolerant stream authentication scheme
constructed using unconditionally secure erasure-tolerant authentication codes
(η-codes).

Our scheme is derived by modifying the basic scheme depicted in Figure 4.
We divide the stream into groups, each group i being a sequence of b messages
Mi,1, . . . , Mi,b. A unique sequence number 〈Ns.i.j〉 is assigned to each message
Mi,j , where 〈Ns.i.j〉 is a concatenation of the binary representations of a unique
stream number Ns, the group number i and the position of the message in the

Non-degrading Erasure-Tolerant Information Authentication 333

group j. A commitment H(Si+1) to a key string Si+1 and a key string Si−1 are
included in t + 1 packets of the group1. Since at most t erasures are allowed,
at least one commitment copy H(Si+1) and at least one key string copy Si−1
will get to the receiver. Finally, we compute and include v authentication tags
in the sequence of b packets. The authentication tags are computed using an
unconditionally secure authentication code as in the construction from cover-
free families described in Section 4. The keys that are used to compute the tags
are extracted from Si, which is revealed in the next group of packets. If the
number of tags v is large, then Si will be a significant communication overhead.
One possible solution to this problem is to use Si as a short seed of a pseudo-
random generator that will generate the secret keys of the unconditionally secure
authentication codes.

H(Si+1)

〈Ns.i.2〉 〈Ns.i.3〉 〈Ns.i.16〉〈Ns.i.1〉

H(Si+1)

Mi,1

Si−1

Mi,2

Si−1

Mi,3

〈Ns.i.4〉

Mi,4
Mi,16

τi,1

τi,4

τi,8

. . .

Fig. 5. Multicast stream authentication using (1, 1)-CFF

In our simple example (Figure 5), the stream is divided into groups of 16
messages. Since only one erasure is allowed, the commitment H(Si+1) and the
seed Si−1 are included in only two packets. The authentication tags are computed
using a (1, 1)-cover-free family as in Figure 3. The only difference is that the tags
depend on the whole content of the packets, not just on the messages Mi,j .

5.3 Erasure-Tolerant Stream Signing by Means of Cover-Free
Families

To sign a lossy stream, we split the stream into groups of subsequent messages.
Each group i is a sequence of b messages Mi,1, . . . , Mi,b. A unique sequence
number 〈Ns.i.j〉 is assigned to each message Mi,j as in Section 5.2. The binary
string 〈Ns.i.j〉 is a concatenation of the binary representations of a unique stream
number Ns, the group number i and the position of the message in the group j.
Finally, the groups are signed using an erasure-tolerant digital signature.

An example is given in Figure 6. In this example, the erasure-tolerant digi-
tal signature is based on the (1, 1)-cover-free family depicted in Figure 3. For

1 In general, we can use an erasure code to encode the commitment and the key string
instead of sending multiple copies. This further optimizes the bandwidth.

334 Y. Desmedt and G. Jakimoski

example, the signature σi,1 is computed from Mi,1, . . . , Mi,4 and the associated
unique sequence numbers, the signature σi,2 is computed from Mi,5, . . . , Mi,8
and the associated unique sequence numbers, etc.

〈Ns.i.2〉 〈Ns.i.3〉 〈Ns.i.16〉〈Ns.i.1〉 〈Ns.i.4〉

Mi,4
. . .Mi,1 Mi,2 Mi,3

σi,1

Mi,16

σi,4

σi,8

Fig. 6. Loss-tolerant stream signing scheme based on (1, 1)-CFF

5.4 Efficiency Issues

In the generic construction described in Section 4, multiple signatures (or au-
thentication tags) can depend on a single message. Signing (or authenticating)
each subsequence of messages anew will lead to large time complexity since each
message is processed many times. Here, we present some more efficient solutions.

The Stream Authentication Case. We will use the following unconditionally
secure multiple message authentication code [1]. Let a1, a2, . . . ,av be a sequence
of v messages. The authentication tag for a message ai is computed as

hx,y,zi(ai) = y(ai0 + ai1x + . . . + ail−1x
k) + zi = yfai(x) + zi,

where x, y, zi, ai0 , . . . , ail−1 ∈ Fq (q a prime power). The key parts x and y
remain unchanged for all messages in the sequence. Only the part zi is refreshed
for each message.

We process each message only once and produce a sequence of b values
α1, . . . , αb (see Figure 7.a). The temporary values αi are then combined to pro-
duce the authentication tags.

The temporary values αi are computed as

αi = fMi(x) = m0 + m1x + . . . + ml−1x
l−1,

where m0, . . . , ml−1 ∈ Fq are the letters of the message Mi.
Given a subsequence Mi0 , . . . , Min of messages, the authentication tag that

depends on these messages can be efficiently computed as:

τ = y(fMi0
(x) + xlfMi1

(x) + . . . + xnlfMin
(x)) + zi.

In other words, we evaluate a polynomial over each message separately, and then
combine the results to evaluate polynomials over subsequences of messages. An
efficient procedure for polynomial evaluation is given in [1]. The time complexity
of the procedure is 7-13 machine instructions per word.

Non-degrading Erasure-Tolerant Information Authentication 335

Pi2

H(Pi1)

Pin

H(Pin−1)

Pi1 Pi3

H(Pi2)

M1 M2 M3 M4 . . . Mb

τ1

. . .α1 αbα4α3α2

τvτ2 . . .

(a) (b)

Fig. 7. Efficient computation: a) the stream authentication case, b) the stream signing
case

The Stream Signing Case. In order to efficiently compute the signatures
when signing a stream, we can use the hash chaining technique from [24] as
depicted in Figure 7.b. Assume that we need to compute a digital signature
over the subsequence of packets Pi1 , . . . , Pin . Instead of constructing one large
message consisting of the contents of the packets Pi1 , . . . , Pin and signing it,
we can compute the hash of Pi1 and include it in the packet Pi2 , compute the
hash of Pi2 and include it in the packet Pi3 , etc. We sign only the last packet
Pin . Clearly, we need to process the packets only once, when we compute their
hash values. Another advantage of this approach is that we can still verify the
authenticity of the packets Pil

, . . . , Pin even when Pil−1 is lost.

5.5 Security of the Schemes

Since a unique number 〈Ns.i.j〉 is associated with each chunk of the stream, it
is trivial to show that if one is able to forge a stream signature in the scheme
described in Section 5.3, then one can produce a forgery for the underlying
signature scheme. A security proof of the erasure-tolerant stream authentication
scheme depicted in Figure 5 can be easily obtained by extending the results
presented in Section 5.1.

6 Conclusion

We provide necessary and sufficient conditions for non-degrading erasure-tolerant
message authentication schemes that are based on set systems. We also present
an efficient and provably secure loss-tolerant multicast stream authentication
scheme that uses erasure-tolerant authentication code as a building block.

Acknowledgments

The authors thank Huaxiong Wang for providing references on covert free
families.

336 Y. Desmedt and G. Jakimoski

References

1. V. Afanassiev, C. Gehrmann and B. Smeets, “Fast Message Authentication Using
Efficient Polynomial Evaluation,” Proceedings of Fast Software Encryption Work-
shop 1997, pp. 190-204.

2. R. Anderson, F. Bergadano, B. Crispo, J. Lee, C. Manifavas, and R. Needham,“A
New Family of Authentication Protocols,” ACM Operating Systems Review 32(4),
pp. 9-20, 1998.

3. F. Bergadano, D. Cavagnino, B. Crispo, “Chained Stream Authentication,” Pro-
ceeding of Selected Areas in Cryptography 2000, pp. 142-155, 2000.

4. J. Bierbrauer, T. Johansson, G. Kabatianskii and B. Smeets, “On Families of Hash
Functions Via Geometric Codes and Concatenation,” Proceedings of Crypto ’93,
pp. 331-342.

5. R. Canneti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas, “Multicast
security: A taxonomy and some efficient constructions,” In Infocom ’99, 1999.

6. J.L. Carter and M.N. Wegman, “Universal Classes of Hash Functions,” Journal of
Computer and System Sciences, Vol. 18, pp. 143-154, 1979.

7. A. Chan, “A graph-theoretical analysis of multicast authentication,” Proc. of the
23rd Int. Conf. on Distributed Computing Systems, 2003.

8. S. Cheung,“An Efficient Message Authentication Scheme for Link State Routing,”
Proceedings of the 13th Annual Computer Security Application Conference, 1997.

9. G. Di Crescenzo, R. Graveman, R. Ge and G. Arce, “Approximate Message Au-
thentication and Biometric Entity Authentication,” Proceedings of FC 2005, LNCS
3570, pp. 240-254.

10. Y. Desmedt, Y. Frankel and M. Yung, “Multi-Receiver/Multi-Sender Network Se-
curity: Efficient Authenticated Multicast/Feedback,” INFOCOM, 1992, pp.2045-
2054.

11. Y. Desmedt, R. Safavi-Naini, H. Wang, L. Batten, C. Charnes and J. Pieprzyk,
“Broadcast anti-jamming systems,” Computer Networks Vol. 35 (2001), pp. 223-
236.

12. M. Dyer, T. Fenner, A. Frieze and A. Thomson, “On key storage in secure net-
works,” Journal of Cryptology Vol. 8 (1995), pp. 189-200.

13. K. Engel, “Interval packing and covering in the boolean lattice,” Combin. Probab.
Comput. Vol. 5 (1996), pp. 373-384.

14. R. Gennaro and P. Rohatgi,“How to Sign Digital Streams,” Advances in Cryptology
- Proceedings of Crypto ’97, LNCS 1294, Springer-Verlag, 1997, pp. 180-197.

15. S. Goldwasser, S. Micali, and R. Rivest, “A Digital Signature Scheme Se-
cure Against Adaptive Chosen-Message Attacks,” SIAM Journal on Computing,
17(2):281-308, April 1988.

16. R. F. Graveman, L. Xie and G. R. Arce, “Approximate Message Authentication
Codes,” submission to the IEEE Transactions on Image Processing, 2000.

17. G. Jakimoski, “Unconditionally Secure Information Authentication in Presence of
Erasures,” Proceedings of the 10th IMA International Conference on Cryptography
and Coding, LNCS 3796, pp. 304 - 321, 2005.

18. W.H. Kautz and R.C. Singleton,“Nonrandom binary superimposed codes,” IEEE
Transactions on Information Theory Vol. 10 (1964), pp. 363-377.

19. M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann,
“Practical Loss-Resilient Codes,” Proc. 29 th Symp. on Theory of Computing,
1997, pp. 150-159.

Non-degrading Erasure-Tolerant Information Authentication 337

20. M.Luby, “LT codes,” The 43rd IEEE Symposium on Foundations of Computer
Science, 2002.

21. J.L. Massey, “Contemporary Cryptology: An Introduction,” in Contemporary
Cryptology, The Science of Information Integrity, ed. G.J. Simmons, IEEE Press,
New York, 1992.

22. S. Miner and J. Staddon, “Graph-Based Authentication of Digital Streams,” IEEE
Symposium on Security and Privacy, 2001.

23. J.M. Park, E.K.P. Chong and H.J. Siegel, “Efficient Multicast Stream Authen-
tication Using Erasure Codes,” ACM Transactions on Information and System
Security, Vol. 6, No. 2, May 2003, pp. 258-285.

24. A. Perrig, R. Canneti, J. D. Tygar, D. Song, “Efficient Authentication and Signing
of Multicast Streams Over Lossy Channels,” Proceedings of the IEEE Security and
Privacy Symposium, 2000.

25. K.A.S. Quinn, “Bounds for key distribution patterns,” Journal of Cryptology Vol.
12 (1999), pp. 227-240.

26. M. Rabin,“Efficient Dispersal of Information for Security, Load Balancing, and
Fault Tolerance,” J. ACM 36, 2, pp.335-348.

27. P.Rogaway, “Bucket hashing and its application to fast message authentication,”
Proceedings of CRYPTO’95, Springer-Verlag, 1995, pp. 29-42.

28. P. Rohatgi, “A compact and fast hybrid signature scheme for multicast packet
authentication,” In 6th ACM Conference on Computer and Communications Se-
curity, November 1999.

29. G.J. Simmons,“Authentication Theory / Coding Theory,” Proceedings of Crypto
’84, pp. 411-432.

30. G.J. Simmons, “A Survey of Information Authentication,” in Contemporary Cryp-
tology, The Science of Information Integrity, ed. G.J. Simmons, IEEE Press, New
York, 1992.

31. R. Steinfeld, L. Bull and Y. Zheng, “Content Extraction Signatures,” In the Pro-
ceedings of the International Conference on Information Security and Cryptology
- ICISC 2001, LNCS 2288, p. 285, 2002.

32. D.R. Stinson, “Some Constructions and Bounds for Authentication Codes,” Jour-
nal of Cryptology 1 (1988), pp. 37-51.

33. D.R. Stinson, “The Combinatorics of Authentication and Secrecy Codes,” Journal
of Cryptology 2 (1990), pp. 23-49.

34. D.R. Stinson, “Combinatorial Characterizations of Authentication Codes,” Pro-
ceedings of Crypto ’91, pp.62-73.

35. D.R. Stinson, “Universal Hashing and Authentication Codes,” Proceedings of
CRYPTO ’91, LNCS 576 (1992), pp. 74-85.

36. D.R. Stinson, Tran van Trung and R. Wei, “Secure frameproof codes, key dis-
tribution patterns, group testing algorithms and related structures,” Journal of
Statistical Planning and Inference Vol. 86 (2000), pp. 595-617.

37. D.R. Stinson, R. Wei and L. Zhu, “Some new bounds for cover-free families,” J.
Combin. Theory A. 90 (2000), pp. 224-234.

38. P.F. Syverson, S.G. Stubblebine and D.M.Goldschlag, “Unlinkable serial transac-
tions,” In Financial Cryptography ’97, Springer Verlag, LNCS 1318, 1997.

39. C. Tartary and H. Wang, “Rateless Codes for the Multicast Stream Authentication
Problem,” to appear in the Proceedings of IWSEC 2006.

40. M.N. Wegman and J.L. Carter, “New Hash Functions and Their Use in Authenti-
cation and Set Equality,” Journal of Computer and System Sciences, Vol. 22, pp.
265-279, 1981.

338 Y. Desmedt and G. Jakimoski

41. C. K. Wong, S. S. Lam, “Digital Signatures for Flaws and Multicasts,” Proceedings
of IEEE ICNP ’98, 1998.

42. K. Zhang,“Efficient Protocols for Signing Routing Messages,” Proceedings of the
Symposium on Network and Distributed System Security, 1998.

A Proof of Lemma 1

We will first show that
P h

d ≤ ρPd

where ρ = maxz
P (z|h)
P (z) .

We say that the message y is valid when the key is z if there is a plaintext x
whose encoding under the key z is y. Let χ(y, z) be a characteristic function that
takes value 1 if y is valid when the key is z, and it is 0 otherwise. Let φ(y1, y2, z)
be a characteristic function that takes value 1 if both y1 and y2 are valid when
the key is z, and it is 0 otherwise.

For the probability of successful impersonation, we have

P h
I = max

y∈M

∑
ez∈E

χ(y, z)P (z|h)

≤ max
y∈M

∑
ez∈E

χ(y, z)ρP (z)

= ρ max
y∈M

∑
ez∈E

χ(y, z)P (z)

= ρPI .

For the probability of successful substitution, we have

P h
S =

∑
y1∈M

P (y1) max
y2∈M

∑
ez∈E

φ(y1, y2, z)P (z|h)

≤
∑

y1∈M
P (y1) max

y2∈M

∑
ez∈E

φ(y1, y2, z)ρP (z)

= ρ
∑

y1∈M
P (y1) max

y2∈M

∑
ez∈E

φ(y1, y2, z)P (z)

= ρPS .

The inequality P h
d ≤ ρPd follows from the previous two inequalities. Now,

it remains to show that ρ = 2H(z)−H∞(z|h). Using the fact that the key z is
uniformly distributed, we have

log ρ = log max
z

P (z|h)
P (z)

= log
maxz P (z|h)

P (z)
= log max

z
P (z|h) − log P (z)

= −H∞(z|h) + H(z). �

A Practical and Tightly Secure
Signature Scheme Without Hash Function�

Benôıt Chevallier-Mames1,�� and Marc Joye2

1 Gemalto, Security Labs
Avenue du Jujubier, 13705 La Ciotat Cedex, France

benoit.chevallier-mames@gemalto.com
2 Thomson R&D France

Technology Group, Corporate Research, Security Laboratory
1 avenue de Belle Fontaine, 35576 Cesson-Sévigné, France

marc.joye@thomson.net

Abstract. In 1999, two signature schemes based on the flexible RSA
problem (a.k.a. strong RSA problem) were independently introduced: the
Gennaro-Halevi-Rabin (GHR) signature scheme and the Cramer-Shoup
(CS) signature scheme. Remarkably, these schemes meet the highest se-
curity notion in the standard model. They however differ in their imple-
mentation. The CS scheme and its subsequent variants and extensions
proposed so far feature a loose security reduction, which, in turn, im-
plies larger security parameters. The security of the GHR scheme and
of its twinning-based variant are shown to be tightly based on the flex-
ible RSA problem but additionally (i) either assumes the existence of
division-intractable hash functions, or (ii) requires an injective mapping
into the prime numbers in both the signing and verification algorithms.

In this paper, we revisit the GHR signature scheme and completely
remove the extra assumption made on the hash functions without relying
on injective prime mappings. As a result, we obtain a practical signature
scheme (and an on-line/off-line variant thereof) whose security is solely
and tightly related to the strong RSA assumption.

Keywords: Digital signatures, standard model, strong RSA assumption,
tight reduction, Gennaro-Halevi-Rabin signature scheme, Cramer-Shoup
signature scheme, on-line/off-line signatures.

1 Introduction

Digital signatures are one of the most useful and fundamental primitives result-
ing from the invention of public-key cryptography by Diffie and Hellman [DH76]
in 1976. Rivest, Shamir and Adleman [RSA78] gave the first practical imple-
mentation of such a primitive. However, at that time, the security analysis of
� The work described in this paper has been supported in part by the European Com-

mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
�� Also with École Normale Supérieure, Département d’Informatique, 45 rue d’Ulm,

75230 Paris 05, France.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 339–356, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

340 B. Chevallier-Mames and M. Joye

signature schemes was studied more heuristically: a scheme was declared “se-
cure” if no attacks were found.

Provably signature schemes. Formal security notions for signature schemes
were later introduced by Goldwasser, Micali and Rivest in their seminal
paper [GMR88]. They also proposed a signature scheme provably meeting their se-
curity notion (see also [Gol86, NY89]). This tree-based signature scheme was sub-
sequently improved by Dwork and Naor [DN94], Cramer and Damg̊ard [CD96],
and Catalano and Gennaro [CG05].

Random oracle model. More efficient schemes were proven secure in the
so-called random oracle model [BR93, FS87]. The random oracle model assumes
that the output of a hash function behaves like a random generator. Provably
secure signature schemes relying on this extra assumption are presented and dis-
cussed in [BR96, PS96, GJ03, KW03, BLS04], with different underlying prob-
lems: the discrete logarithm problem [PS96], the RSA problem [BR96, KW03],
the CDH problem [GJ03, KW03], the DDH problem [KW03], or the CDH prob-
lem on certain elliptic curves [BLS04]. The idealized random oracle model has
however certain limitations [CGH98, PV05].

Standard model. Efficient signature schemes without random oracles are due
to Gennaro, Halevi and Rabin [GHR99] and to Cramer and Shoup [CS00]. They
are both based on the strong RSA assumption, which assumes that it is impos-
sible to find an e-th modular root of a given element, even if e can be chosen
arbitrarily by the attacker (provided of course that e ≥ 2). Subsequent improve-
ments and modifications include the works of [NPS01, Zhu01, CL02, Fis03], with
some better performances and signature size, or additional features for particular
use cases.

More recently, the introduction of cryptographic bilinear mappings has al-
lowed the emergence of new techniques to achieve security without random or-
acles. More precisely, the study of pairings gave rise to signature scheme based
on the strong Diffie-Hellman assumption [BB04] and even more recently on the
computational Diffie-Hellman assumption [Wat05, BSW06].

Our Contribution. This paper presents a new signature scheme based on the
strong RSA assumption, in the standard model. In contrast to the Cramer-Shoup
scheme and its variants, our security proof yields a tight reduction. Moreover, our
scheme does not rely on special-type hash functions nor injective prime functions.
In this sense, it is easier to implement than the Gennaro-Halevi-Rabin scheme
and its known variants, as one needs not to design such functions. Finally, our
scheme features an efficient on-line/off-line variant.

Organization. The rest of this paper is organized as follows. In Section 2, we
introduce some background on signature schemes, provable security and RSA-
related problems. In Section 3, we briefly review the Gennaro-Halevi-Rabin and
the Cramer-Shoup signature schemes. Section 4 is the main part of our paper.
We introduce our new signature scheme (that we call TSS) and prove its secu-
rity in the standard model. We also compare our scheme with prior RSA-based

A Practical and Tightly Secure Signature Scheme Without Hash Function 341

schemes in the standard model, and present an on-line/off-line variant. Finally,
we conclude in Section 5.

2 Preliminaries

In this section, we introduce notations and definitions that are used throughout
the paper. For convenience, we often identify an integer with its binary repre-
sentation: a ∈ {0, 1}� is also viewed as an integer in the range [0, 2� − 1]. We say
that a is an -bit integer if a is an integer in the range [2�−1, 2� − 1]. An (odd)
prime p is a strong prime if (p − 1)/2 is prime. An RSA modulus n = pq is safe
if it is the product of two equal-size strong primes.

2.1 Signature Schemes

A signature scheme Sig = (Gen, Sign, Verify) is defined by the three following
algorithms:

1. Key generation algorithm Gen. On input security parameter k, algorithm Gen
produces a pair (pk, sk) of matching public and private keys.

2. Signing algorithm Sign. Given a message m in a set M of messages and a pair
of matching public and private keys (pk, sk), Sign produces a signature σ.
The signing algorithm can be probabilistic.

3. Verification algorithm Verify. Given a signature σ, a message m ∈ M and a
public key pk, Verify checks whether σ is a valid signature on m with respect
to pk.

Several security notions have been defined for signature schemes, mostly based
on the work by Goldwasser, Micali and Rivest [GMR88]. It is now customary
to ask for the infeasibility of existential forgeries, even against adaptive chosen-
message adversaries:

– An existential forgery is a signature on a new message, valid and gener-
ated by the adversary. The corresponding security goal is called existential
unforgeability (EUF).

– A weak existential forgery is a new message/signature pair, valid and gen-
erated by the adversary. The corresponding security goal is called strong
existential unforgeability (sEUF).

– The verification key is public to anyone, including to the adversary. But more
information may also be available. The strongest kind of attack scenario is
formalized by the adaptive chosen-message attacks (CMA), where the adver-
sary can ask the signer to sign any message of her choice, in an adaptive
way.

As a consequence, we say that a signature scheme is secure if it prevents (weak)
existential forgeries against chosen-message attacks (EUF-CMA or sEUF-CMA)
with overwhelming probability.

342 B. Chevallier-Mames and M. Joye

– A signature scheme Sig is (τ, qs, ε)-secure if the success probability

SuccEUF-CMA
Sig (A, qs) := Pr

[
(pk, sk) ← Gen(1k), (m∗, σ∗) ← ASign(sk;·)(pk) :

Verify(pk; m∗, σ∗) = true

]
< ε

for any adversary A with running time bounded by τ , making (at most) qs

queries to a signing oracle Sign(sk; ·), and returning a valid signature σ∗ on
a message m∗ that was not submitted to the signing oracle.

– A signature scheme Sig is strongly (τ, qs, ε)-secure if the success probability

SuccsEUF-CMA
Sig (A, qs) := Pr

[
(pk, sk) ← Gen(1k), (m∗, σ∗) ← ASign(sk;·)(pk) :

Verify(pk; m∗, σ∗) = true

]
< ε

for any adversary A with running time bounded by τ , making (at most) qs

queries to a signing oracle Sign(sk; ·), and returning a valid message/signature
pair (m∗, σ∗) where m∗ was not submitted to the signing oracle and/or σ∗
was not returned by the signing oracle.

2.2 Provable Security

Reduction. Basically, the idea behind provable security (or reductionist se-
curity [KM04]) is to prove that a scheme is secure by exhibiting a so-called
reduction that uses a chosen-message attacker against the signature scheme, in
order to solve a hard cryptographic problem. In the standard model, the attacker
has access to a signing oracle that is simulated by the reduction, answering the
qs signature queries on chosen messages, and receiving eventually a signature
forgery.

Tightness of reduction. Two classes of provably secure signature schemes
can be distinguished. The first class proposes reductions that are said loose, as
they can turn an attacker into an algorithm solving a cryptographic problem,
but whose ratio

ρ =
running time

success probability

is far greater than those required for the attacker to produce a forgery. Hence,
this kind of reduction only proves the security asymptotically. The second class of
provable signature schemes features so-called tight reductions, using the attacker
to solve the cryptographic problem with roughly the same ratio ρ.

Signature schemes in the standard model. Of course, secure schemes
with a reduction in the standard model are the preferred ones, even if proofs in
the random oracle model are arguments for a good design. Indeed, important
differences between the idealized random oracle model and the real life have been
pointed out in the literature [CGH98, PV05].

There are just a handful of practical signature schemes with a security re-
duction in the standard model, and most of them rely on flexible problems,

A Practical and Tightly Secure Signature Scheme Without Hash Function 343

one-more problems or q-type problems. A notable exception is the recent signa-
ture scheme of Waters [Wat05] (see also [BSW06]), the security of which relies
on the computational Diffie-Hellman [DH76] assumption, in bilinear groups.

Flexible problems are cryptographic problems admitting several solutions, the
solver has just to find one of them. Its main representative is certainly the flexible
RSA problem [BP97, FO97].

Definition 1 (Flexible RSA problem – SRSA). Being given a safe RSA mod-
ulus n and an element y ∈ Z∗

n, the flexible RSA problem is defined as finding an
element x ∈ Z∗

n and an integer e > 1 such that xe ≡ y (mod n).
The strong RSA assumption conjectures that there is no attacker that can

(τ, ε)-solve the flexible RSA problem (i.e., with success probability smaller than
ε and running time bounded by τ) with τ polynomial and ε non-negligible.

One-more problems are problems where the solver has n accesses to an oracle
that solves a hard problem, in order to solve n+1 instances of this hard problem.
Typical examples include the one-more RSA, the one-more DL and the one-more
CDH [BNPS03].

Finally, q-type problems are problems where the solver receives a large in-
stance of q data, and must find a value satisfying a certain relation with this
instance. Notably, the returned value could be a (new) data of the same kind. A
typical example of this last type of problem is the strong Diffie-Hellman prob-
lem [BB04].

Devising an efficient signature scheme based on an harder type of problem such
as the RSA problem [RSA78], the discrete logarithm problem or the computa-
tional Diffie-Hellman problem — in a group without pairing — in the standard
model still remains an open question.

3 Signature Schemes Based on the Strong-RSA
Assumption

We briefly review several efficient signature schemes the security of which relies
on the strong RSA assumption, in the standard model. We refer the reader to
the original papers for a complete description.

We begin with the two main schemes introduced in 1999: the Gennaro-Halevi-
Rabin (GHR) signature scheme [GHR99] and the Cramer-Shoup (CS) signature
scheme [CS00]. The CS scheme was subsequently modified in several
directions, including the variants by Zhu [Zhu01, Zhu03], Camenisch and Lysyan-
skaya [CL02] and Fischlin [Fis03]. As the Twin-GHR scheme [NPS01], our new
scheme (see Section 4) as for it can be viewed as a variant of the GHR scheme.

In order to allow an easier comparison between the different schemes, we
deviate from the original papers and use similar notation when describing the
signature schemes. For an RSA modulus n, we let QRn ⊂ Z∗

n denote the set of
quadratic residues modulo n. The message space is denoted by M; H denotes a
hash function.

344 B. Chevallier-Mames and M. Joye

3.1 Gennaro-Halevi-Rabin Signature Scheme

The message space is M = {0, 1}∗ and H : M → {0, 1}�h is division-intractable.

Key generation: The public key is pk = {n, u} where n = (2p′ + 1)(2q′ + 1)
is a safe RSA modulus and u is a random element in Z∗

n. The private key is
sk = {p′, q′}.

Signing: The signature on a message m ∈ M is given by σ = uc−1 mod 2p′q′
mod

n where c = H(m).

Verification: Signature σ on message m ∈ M is accepted iff σH(m) ≡ u
(mod n).

In the original description, hash function H has to be a division-intractable
hash function (see [GHR99] for a precise definition). Following [CN00], the easiest
way to achieve this additional property is to define H as a hash function that
maps bitstrings to prime numbers.1

Tight variant. The GHR signature scheme as above has a loose security re-
duction to the flexible-RSA problem [GHR99, Cor00]. However, in [GHR99], the
authors also propose techniques to achieve tightness in their signature scheme.

Basically, their idea is to make use of a chameleon hash function [KR00]. Let
P be an p-bit prime, let Q be an q-bit prime divisor of P −1, and let 〈g〉 denote
the cyclic subgroup generated by an element g ∈ Z∗

P of order Q. They so obtain
a scheme such that an attacker against it can be used to solve either the discrete
logarithm problem in subgroup 〈g〉 or the flexible RSA problem modulo n, with
roughly the same success probability and running time.

The message space is M = ZQ and H : 〈g〉 → {0, 1}�h. The scheme then
becomes:

Key generation: The public key is pk = {n, u, g, y, P} where n = (2p′ +
1)(2q′ + 1) is a safe RSA modulus, u is a random element in Z∗

n and y
is a random element in 〈g〉 ⊆ Z∗

P . The private key is sk = {p′, q′}.

Signing: The signature on a message m ∈ M is given by σ = (r, s) where r is a
random element in ZQ and s = uc−1 mod 2p′q′

mod n with c = H(gmyr mod
P).

Verification: Signature σ = (r, s) on message m ∈ M is accepted iff sc′ ≡ u
(mod n) with c′ = H(gm yr mod P).

Clearly, the chameleon hash function could be of different nature: for a joint
use with GHR scheme, most interesting cases are certainly chameleon hash func-
tions based on RSA or factorization problems (e.g., [KS06]).

1 It would also be possible to remove the hash function, and to sign instead only prime
messages. However, this solution suffers from practicality.

A Practical and Tightly Secure Signature Scheme Without Hash Function 345

Twinning-based variant. The twinning paradigm was introduced by Nac-
cache, Pointcheval and Stern in [NPS01]. It particulary fits to GHR signatures.

Let P be an injective function that maps the set {0, 1}2�m into the prime
numbers. Consider for example the function

P : {0, 1}2�m → {primes}, μ �→ NextPrime(μ 2τ)

with τ ≈ 5 log2(2m), which can be evaluated with less than 40 m primality
tests [NPS01, Appendix B]. The Twin-GHR scheme is then defined as follows:

Key generation: The public key is pk = {n, N, u1, u2} where n = (2p′ +
1)(2q′ + 1) and N = (2P ′ + 1)(2Q′ + 1) are two safe RSA moduli, u1 is
a random element in Z∗

n and u2 is a random element in Z∗
N . The private key

is sk = {p′, q′, P ′, Q′}.
Signing: The signature on a message m ∈ M = {0, 1}�m is given by σ =

(μ1, s1, s2), computed, for a random μ1 ∈ {0, 1}2�m and μ2 = (m‖m) ⊕ μ1,
as s1 = u1

P(μ1)−1 mod 2p′q′
mod n and s2 = u2

P(μ2)−1 mod 2P ′Q′
mod N .

Verification: Signature σ = (μ1, s1, s2) on message m ∈ M is accepted iff
s
P(μ1)
1 = u1 mod n and s

P((m‖m)⊕μ1)
2 = u2 mod N .

The Twin-GHR signature scheme has a tight security reduction to the flexible-
RSA problem [NPS01].

3.2 Cramer-Shoup Signature Scheme

The message space is M = {0, 1}∗ and H : {0, 1}∗ → {0, 1}�h.

Key generation: The public key is pk = {n, e, x, h} where n = (2p′+1)(2q′+1)
is a safe RSA modulus, e is an (h+1)-bit prime and x, h are random elements
in QRn. The private key is sk = {p′, q′}.

Signing: The signature on a message m ∈ M is given by σ = (c, u, v) where
c is a random (h + 1)-bit prime, u is a random element in QRn and v =
(xhH(w))c−1 mod p′q′

mod n with w = ueh−H(m) mod n.
Verification: Signature σ = (c, u, v) on message m ∈ M is accepted iff (1) c

is an odd (h + 1)-bit integer and (2) vc h−H(w′) ≡ x (mod n) with w′ =
ue h−H(m) mod n.

This signature scheme, as shown in [CS00], is secure under the strong RSA
assumption. We refer the reader to the original paper for details, and just men-
tion that unfortunately, the reduction is loose, with a loss factor equal to 1

qs
,

where qs is the number of signature queries the attacker is allowed to make.2 On
2 To be complete, the reduction of CS scheme is made of two types of reductions, one

of which tightly reduces the security to the flexible RSA problem, while the other
one reduces the security to the (plain) RSA problem — but with a 1

qs
factor. Even

if flexible RSA should be easier than RSA, there is no estimation of the difference of
difficulty between these problems. Note also that a loose reduction implies the use
of larger RSA moduli.

346 B. Chevallier-Mames and M. Joye

the other hand, one of the advantages of the CS scheme compared to the GHR
scheme is that the hash function H needs not to map to prime numbers nor to
be division-intractable, but merely to be collision-resistant.

Camenisch-Lysyanskaya signature scheme. Camenisch and Lysyanskaya
introduce in [CL02] a variant of CS signature scheme (that we abbreviate in CL).
Independently, in a Chinese journal [Zhu01], Zhu propose a similar scheme (see
also [Zhu03]).

Key generation: The public key is pk = {n, x, g, h} where n = (2p′+1)(2q′+1)
is a safe RSA modulus, prime and x, g, h are random elements in QRn. The
private key is sk = {p′, q′}.

Signing: The signature on a message m ∈ M = {0, 1}�m is given by σ =
(c, t, v) where c is a random c-bit prime with c ≥ (m + 2), t is a random
(n + m +)-bit integer and v = (x gt hm)c−1 mod p′q′

mod n.
Verification: Signature σ = (c, t, v) on message m ∈ M is accepted iff (1) c is

an odd c-bit integer and (2) vc g−t h−m ≡ x (mod n).

Fischlin signature scheme. A last variant is due to Fischlin in [Fis03]. The
message space is M = {0, 1}∗ and H : {0, 1}∗ → {0, 1}�h.

Key generation: The public key is pk = {n, x, g, h} where n = (2p′+1)(2q′+1)
is a safe RSA modulus, prime and x, g, h are random elements in QRn. The
private key is sk = {p′, q′}.

Signing: The signature on a message m ∈ M is given by σ = (c, t, v) where
c is a random (h + 1)-bit prime, t is a random h-bit integer and v =
(x gt ht⊕H(m))c−1 mod p′q′

mod n.
Verification: Signature σ = (c, t, v) on message m ∈ M is accepted iff (1) c is

an odd (h + 1)-bit integer and (2) vc g−th−(t⊕H(m)) ≡ x (mod n).

A comparison of all the previous schemes is presented in Table 1, Section 4.3.

4 The TSS Signature Scheme

This section is the core of our paper. We introduce the TSS (for Tightly Secure
Signature) scheme and prove its security in the standard model. Our reduction
is tightly related to the flexible RSA problem.

The GHR scheme requires the use of a hash function that maps to prime num-
bers (or at least, that is division-intractable). The CS scheme and its variants,
on the other hand, feature a loose security reduction: there is a loss factor of
1/qs. Our goal, when designing TSS, is to combine the practicality of the CS
scheme with the tightness of the GHR scheme.

A Practical and Tightly Secure Signature Scheme Without Hash Function 347

4.1 Description

Intuitively, there are two ideas behind our scheme. First, as in the CS-like schemes
(cf. Section 3), we want to use a fresh, prime exponent c in each signature
generation and then to give a cth root modulo a safe RSA modulus n as part
of the signature. Further, we want prime c to be free of any particular relation
(except its size), in order to allow the use of fast prime generation algorithms.
The second idea is, as in the GHR scheme, to use a chameleon function in order
to tighten the security reduction. In order to base the security on the strong
RSA assumption, we define a second safe RSA modulus N and make use of an
RSA-type chameleon function.

The message space is M = {0, 1}�m. Let also n be a security parameter. A
detailed description of the TSS scheme is given below.

Gen: On input n and m:
– choose an (odd) (m + 1)-bit prime E;
– generate two random n-bit safe RSA moduli n = (2p′ + 1)(2q′ + 1)

and N = (2P ′ + 1)(2Q′ + 1) such that gcd(P ′Q′, E) = 1;
– compute D = E−1 mod 2P ′Q′;
– choose at random two elements u ∈ Z∗

n and g ∈ Z∗
N .

The public key is pk = {N, n, u, g, E} and the private key is sk =
{p′, q′, D}.

Sign: Let m ∈ {0, 1}�m be the message to be signed:
– choose a random prime c in [(N + 1)/2, N [;
– compute s = uc−1 mod 2p′q′

mod n and r = (c g−(m+1))D mod N .
The signature on m is σ = (r, s) ∈ Z∗

N × Z∗
n.

Verify: Let σ = (r, s) be a putative signature on message m ∈ {0, 1}�m. Then:
(i) check that (r, s) ∈ [0, N [× [0, n[;
(ii) check that sc ≡ u (mod n) where c = gm+1 rE mod N .
If the two conditions hold then signature σ is accepted.

Remark 1. If Condition (i) is removed in the verification phase, i.e., (r, s)
?
∈

[0, N [× [0, n[, the corresponding security level becomes EUF-CMA. It is easy to
see that the scheme is no longer sEUF-CMA because if (r, s) is a valid signature
on a message m then so is (r+r0 N, s+s0 n) on the same message m, for arbitrary
integers r0 and s0.

Remark 2. As in the CS scheme, there is no need to check the primality of c
in the verification algorithm. In the TSS scheme, the verification step is even
simpler, as one needs to verify neither the parity nor the bitsize of c.

Typically, we set m = 160 and n = 1024, for using TSS with short messages,
but there is actually no limitation on m: if signing long messages is required, one
could set m to a large value,3 and achieve security under the sole strong-RSA

3 Actually this is basically as in the Camenisch-Lysyanskaya signature scheme [CL02].

348 B. Chevallier-Mames and M. Joye

assumption. Alternatively, it is also possible to use TSS preceded by a hashing
step of the message, at the price of assuming in addition the collision resistance
of the underlying hash function.

The previous scheme is subject to numerous variants. One can for example
(slightly) speed up the signature algorithm by pre-computing g−1 mod N or
g−D mod N and then by evaluating r as r = (c (g−1)m+1)D mod N or as r =
cD (g−D)m+1 mod N .

4.2 Security Analysis

We show that the security of our scheme is tightly related the strong RSA as-
sumption. That is, given an n-bit safe RSA modulus n̂ and a random element
ŷ ∈ Z∗

n̂, we want to find a pair (x̂, ê) ∈ Z∗
n̂ × Z>1 satisfying ŷ ≡ x̂ê (mod n̂).

More formally, we prove the following theorem.

Theorem 1. Suppose that the flexible RSA problem is (τ, ε)-hard. Then, for
any qs, the TSS signature scheme is strongly (τA, qs, εA)-secure, where

ε ≥ εA
2

and τ � τA + O
(
n

5 + qs n
3 max(log qs, n)

)
.

Proof. As usual, the proof is by contradiction. We assume that there exists a
polynomial-time adversary A that is able to produce a weak existential forgery
with non-negligible success probability εA within time τA after qs queries to a
signing oracle. We then use A to (τ, ε)-solve the flexible RSA problem, i.e., to
find a pair (x̂, ê) on input challenge (n̂, ŷ).

– We toss a coin b ∈ {0, 1} and run Simulation b defined as follows.

Simulation 0

• We let n = n̂. We choose an (odd) (m + 1)-bit prime E. Next, we
generate a random n-bit safe RSA modulus N = (2P ′ +1)(2Q′ +1)
such that gcd(P ′Q′, E) = 1. We compute D = E−1 mod 2P ′Q′. We
choose a random element g ∈ Z∗

N . Finally, for all i ∈ {1, . . . , qs}, we
let ci be a random prime in [(N + 1)/2, N [and define

u = ŷ i ci mod n .

We create the public key pk = {N, n, u, g, E}. It is easy to see that
the key generation is perfectly simulated.

• When A requests the signature on a message mj ∈ {0, 1}�m, for
j ∈ {1, . . . , qs}, we simulate the signing oracle by computing

rj = (cj g−(mj+1))D mod N and sj = ŷ i�=j ci mod n .

We return σj = (rj , sj) as the signature on mj . Here too, the simu-
lation is perfect.

A Practical and Tightly Secure Signature Scheme Without Hash Function 349

Simulation 1

• We let N = n̂ and g = ŷ. We choose a random n-bit safe RSA
modulus n = (2p′ + 1)(2q′ + 1) and an (odd) (m + 1)-bit prime E.
(W.l.o.g., we may assume that (odd) prime E ∈ Z∗

2P ′Q′ as otherwise
we would have E = P ′ or E = Q′, which yields the factorization of
N .) Finally, we choose a random element u ∈ Z∗

n.
We create the public key pk = {N, n, u, g, E}. The key generation is
perfectly simulated.

• When A requests the signature on a message mj ∈ {0, 1}�m, for
j ∈ {1, . . . , qs}, we simulate the signing oracle as follows.
1. We choose a random element rj ∈ Z∗

N and define cj = gmj+1 rj
E

mod N ;
2. If cj is not a prime lying in [(N + 1)/2, N [, then we go back to

Step 1.
Next, we compute sj = ucj

−1 mod 2p′q′
mod n and return σj = (rj , sj)

as the signature on mj . The simulation is perfect.

– Eventually, adversary A outputs with probability εA a valid signature forgery
σ∗ = (r∗, s∗) ∈ [0, N [× [0, n[on a message m∗ ∈ {0, 1}�m, with (m∗, σ∗) =
(mi, σi) for all i ∈ {1, . . . , qs}. We compute c∗ := gm∗+1 r∗

E mod N .

• If c∗ = cj for all j ∈ {1, . . . , qs}, if c∗ > 1, and if b = 0 (i.e., Simulation 0
was run) then it follows that gcd(c∗,

∏
i ci) = 1, since c∗ ∈ [2, N [and all

ci’s are primes in set [(N + 1)/2, N [. Hence, from extended Euclidean
algorithm, we get integers α and β s.t. α c∗ + β

∏
i ci = 1. Therefore,

noting that ŷ i ci ≡ u ≡ s∗
c∗ (mod n) and n = n̂, we have

ŷ ≡ ŷα c∗+β i ci ≡
(
ŷα s∗

β
)c∗ (mod n̂) .

The pair (x̂, ê) with x̂ := ŷα s∗
β mod n̂ and ê := c∗ is thus a solution to

the flexible RSA problem.

• If c∗ = cj for some j ∈ {1, . . . , qs} (and thus s∗ = sj) and if b = 1 (i.e.,
Simulation 1 was run) then, remembering that N = n̂ and g = ŷ, we get⎧⎨⎩gmj+1 rj

E ≡ gm∗+1 r∗
E (mod N) =⇒ ŷ(mj−m∗) ≡

(r∗
rj

)E

(mod n̂) ,

sj = s∗ .

Note that we cannot have m∗ = mj as otherwise we would have r∗ =
rj and so (m∗, σ∗) = (mj , σj), a contradiction. Therefore, since E is
an (m + 1)-bit integer, we can find integers α and β by the extended
Euclidean algorithm so that α E + β (mj − m∗) = gcd(E, mj − m∗) = 1.
As a result, we have

ŷ ≡ ŷα E+β (mj−m∗) ≡
(
ŷα (r∗/rj)β

)E

(mod n̂)

and the pair (x̂, ê) with x̂ := ŷα (r∗/rj)β mod n̂ and ê = E is a solution
to the flexible RSA problem.

350 B. Chevallier-Mames and M. Joye

• If c∗ = 0 and if b = 0 (i.e., Simulation 0 was run) then, letting Λ =
∏

i ci,
we compute d̂ := ê−1 mod Λ for an arbitrary ê > 1 such that gcd(ê, Λ) =
1. So, the pair (x̂, ê) with x̂ := ŷd̂ mod n̂ is a solution to the flexible RSA
problem:

x̂ê ≡ ŷêd̂ ≡ ŷêd̂ mod Λ ≡ ŷ (mod n)

because c∗ = 0 implies u = 1 and thus ŷΛ mod n̂ = 1 (remember that
n = n̂ when b = 0).

• If c∗ = 1 and if b = 1 (i.e., Simulation 1 was run) then, using extended
Euclidean algorithm, we can find integers α and β s.t α E +β (m∗+1) =
gcd(E, m∗ + 1) = 1.4 Hence, since c∗ = 1 = ŷm∗+1 r∗

E mod N , we get

ŷ ≡ ŷα E+β (m∗+1) ≡
(
ŷα r∗

−β
)E (mod n̂) .

Consequently, the pair (x̂, ê) with x̂ := ŷα r∗
−β mod n̂ and ê = E is a

solution to the flexible RSA problem.

Since A’s view is perfectly simulated, the success probability of the reduction
is clearly εA/2.

For Simulation 0, we need to generate n-bit safe RSA modulus N , (m + 1)-bit
prime E, n-bit modular inverse D and n-bit parameter u in the key generation;
we also need, for each signature query, compute rj and sj . We assume that we have
algorithms so that the generation of safe prime is quintic, the generation of a prime
is quartic and the evaluation of a modular exponentiation or of a modular inverse is
cubic, in the bitlength. The evaluation of u and the qs sj ’s amounts to O(qs log qs)
n-bit exponentiations using the trick of [CLP05, § 3.3]. Hence, the running time
required by the reduction is (approximatively) τA + O(n

5 + qs log qs n
3).

For Simulation 1, further assuming that primality testing is cubic in the
bitlength, we similarly obtain that the running time required by the reduction
is (approximatively) τA + O(n

5 + qs n
4). ��

4.3 Comparison with Other Schemes

In Table 1, we compare the advantages and drawbacks of the schemes presented
in Section 3 with our TSS scheme, including the differences in tightness of se-
curity reduction in the standard model, the size of signatures and the size of
public/private keys. When applicable, we also give necessary conditions the hash
function should fulfill (in addition to collision resistance).

From this table, it appears that the TSS scheme is proven secure solely un-
der the strong-RSA assumption, with a tight security reduction. Furthermore,
this is not done at the price of extra properties on a hash function, as the
division-intractability for the GHR scheme. Twin-GHR is also tightly and solely
related to the strong RSA assumption. Twin-GHR and TSS however differ in their

4 This last case explains why (m + 1) (and not merely m) appears in the description
of TSS.

A Practical and Tightly Secure Signature Scheme Without Hash Function 351

Table 1. Performance comparison

Security
Typical

Bitsizesa

Tightness Assumptionb values σ pk skc

GHR (basic) O
(1

qs

)
Div + SRSA �n � 1024 �n 2�n

1
2 �n

GHR (tight) O(1) Div + DL + SRSA
�n = �p = 1024

�n + �q 2�n + 3�p
1
2 �n�q = 160

Twin-GHR O(1) SRSA
�n = 1024

2�n + 2�m 4�n �n�m = 160

CS O
(1

qs

)
SRSA

�n � 1024
2�n + �h 3�n + �h

1
2 �n�h = 160

CL O
(1

qs

)
SRSA

�n � 1024
2�n + 2�m + � 4�n

1
2 �n�m = 160, � = 80

Fischlin O
(1

qs

)
SRSA

�n � 1024
�n + 2�h 4�n

1
2 �n�h = 160

TSS O(1) SRSA
�n = 1024

2�n 4�n + �m �n�m = 160

a To ease the reading, the bitsizes are rounded up to a few bits.
b Div stands for the division intractability assumption and DL for the discrete loga-

rithm assumption.
c In the description of GHR and the CS-like schemes (Section 3), we have sk = {p′, q′};

however, it is possible to only store the value of p′ and to recover q′ from p′ (and
pk). Similarly, for Twin-GHR, sk = {p′, P ′} is sufficient, and for TSS, it is possible
to recover sk = {p′, q′, D} from p′, P ′ (and pk).

implementation. Compared to the former, TSS does not rely on an injective
prime generation and needs no prime generation at all in the verification algo-
rithm. Further, TSS offers shorter signatures.

On the minus side, our scheme produces longer signatures than Fischlin or
GHR (but shorter than CS or CL). Another drawback is computational. TSS
requires the generation of a large random prime. Even using efficient methods
(e.g., [JPV00]), this may be time-consuming for low-cost cryptographic devices.
We present in the next section an on-line/off-line version of our scheme to address
this issue.5

4.4 On-Line/Off-Line Version

We present hereafter a variant of our scheme that allows the signer to carry
out costly computations before knowing the message to be signed. This type
of signature scheme is usually referred to as on-line/off-line scheme [EGM96,
ST01]. Using this paradigm, once the message is known, only a very fast on-line
phase is needed. This property is paramount for time-constrained applications
or for low-cost smartcards.
5 We observe that in Twin-GHR, only part of the signature can be precomputed

(namely, s1); parameter s2 is dependent on the message to be signed.

352 B. Chevallier-Mames and M. Joye

The message space is M = {0, 1}�m. Let n and be two security parameters.
Typical values are = 80 and n = 1024. Our TSS scheme, in its on-line/off-line
version, then goes as follows.

Gen: On input n and m:
– choose an (odd) (m + 1)-bit prime E
– generate two random n-bit safe RSA moduli n = (2p′ + 1)(2q′ + 1)

and N = (2P ′ + 1)(2Q′ + 1) such that gcd(P ′Q′, E) = 1;
– compute D = E−1 mod 2P ′Q′;
– choose at random two elements u ∈ Z∗

n and g ∈ Z∗
N .

The public key is pk = {N, n, u, g, E} and the private key is sk =
{p′, q′, D}.

Sign (off-line part): To prepare a coupon:
– choose a random prime c in [(N + 1)/2, N [;
– pick a random (n + m +)-bit integer k′;
– compute s = uc−1 mod 2p′q′

mod n and r = g(k′−D) cD mod N .
The coupon is (k′, r, s).

Sign (on-line part): Let m ∈ {0, 1}�m be the message to be signed:
– take a fresh coupon (k′, r, s);
– compute k = k′ + D · m.

The signature on m is σ = (k, r, s) ∈ [0, 2�n+�m+�+1[× Z∗
N × Z∗

n.

Verify: Let σ = (k, r, s) be a putative signature on message m ∈ {0, 1}�m.
Then:

– compute c = gm+1 (r g−k)E mod N ;
– check that sc ≡ u (mod n).

If this condition holds then signature σ is accepted.

It is worth remarking that the key generation in the on-line/off-line version
is exactly the one of the regular version: the public/private keys are the same in
both versions.

Security reduction. We now show that this on-line/off-line version tightly
meets the EUF-CMA security notion under the strong RSA assumption. Actually,
we prove that an EUF-CMA adversary A∗ against the on-line/off-line version is
an sEUF-CMA adversary against the regular version of our signature scheme. In
more detail, given a public key p̂k = {N̂ , n̂, û, ĝ, Ê} and (at most) qs chosen-
message calls to a TSS signing oracle, we want to produce a TSS signature
forgery σ̂∗ = (r̂∗, ŝ∗) on a message m̂∗, using A∗.

– We let pk = p̂k (i.e., {N, n, u, g, E} = {N̂, n̂, û, ĝ, Ê}) as the public key for
the on-line/off-line version.

– When A∗ requests an [on-line/off-line] signature on a message mj ∈ {0, 1}�m,
for j ∈ {1, . . . , qs}, we call the TSS signing oracle on input message m̂j := mj

and get back a TSS signature σ̂j = (r̂j , ŝj) ∈ [0, N̂ [× [0, n̂[such that

A Practical and Tightly Secure Signature Scheme Without Hash Function 353{
ĉj := ĝmj+1 r̂j

Ê mod N̂ is a prime in [(N̂ + 1)/2, N̂ [, and
ŝj

ĉj ≡ û (mod n̂) .

Next, we pick a random (n + m +)-bit integer kj . We compute rj =
r̂j ĝkj mod N̂ and let sj = ŝj . We return σj = (kj , rj , sj) as the on-line/off-
line signature on message mj .
It is easy to see that σj is a valid signature since cj := gmj+1 (rj g−kj)E mod
N = ĝmj+1 r̂j

Ê mod N̂ = ĉj is a prime in [(N + 1)/2, N [and sj
cj ≡ ŝj

ĉj ≡
û ≡ u (mod n).

– Eventually, with probability εA∗ and within time τA∗ , A∗ returns an on-
line/off-line signature forgery σ∗ = (k∗, r∗, s∗) on a message m∗ ∈ {0, 1}�m,
with m∗ = mj for all j ∈ {1, . . . , qs}.

– From σ∗ = (k∗, r∗, s∗), we form the signature forgery σ̂∗ = (r̂∗, ŝ∗), where

r̂∗ = r∗ ĝ−k∗ mod N̂ and ŝ∗ = s∗ ,

on message m̂∗ := m∗. Again, it is easy to see that this is a valid signature.
Furthermore, as m∗ = mj , it obviously follows that (m̂∗, σ̂∗) = (m̂j , σ̂j), for
all j ∈ {1, . . . , qs}.

Tightness of the reduction. The statistical distance between the kj ’s re-
turned by the signature simulation and the kj ’s that would be returned by
an actual signer is bounded by 2−�, for each signature. Hence, there exists
a reduction that succeeds with probability ε ≥ εA∗ − 2−�qs and within time
τ � τA∗ + (qs + 1)O(n

3), neglecting the time required to generate random
numbers. As the regular version is tightly related to the flexible RSA problem,
the on-line/off-line version is tightly EUF-CMA secure under the strong RSA
assumption.

EUF-CMA vs. sEUF-CMA. The security proof assumes an EUF-CMA adversary
(as opposed to an sEUF-CMA adversary) against our on-line/off-line signature
scheme. Even testing the ranges of (k, r, s) in the verification step would not
achieve sEUF-CMA security. Indeed, imagine an sEUF-CMA adversary returning
a signature forgery σ∗ = (k∗, r∗, s∗) = σj on message m∗ = mj , for some j ∈
{1, . . . , qs}. Then, the TSS signature forgery σ̂∗ = (r̂∗, ŝ∗) on message m̂∗ = m∗
returned by the above reduction is not mandatorily a valid forgery, i.e., such that
(m̂∗, σ̂∗) = (m̂j , σ̂j), since m̂∗ = m̂j and σ∗ = σj ⇐⇒ (k∗, r̂∗ ĝk∗ mod N̂ , ŝ∗) =
(kj , r̂j ĝkj mod N̂ , ŝj) but

(k∗, r̂∗ ĝk∗ mod N̂ , ŝ∗) = (kj , r̂j ĝkj mod N̂ , ŝj) = ⇒ (r̂∗, ŝ∗) = (r̂j , ŝj) .

It is even more apparent with a counter-example: if σ = (k, r, s) is a valid
on-line/off-line signature on message m so is σ′ = (k + 1, g r mod N, s) on the
same message m. Hence, the on-line/off-line version of TSS we describe is not
sEUF-CMA secure, but only EUF-CMA secure.

For most cryptographic applications, existential unforgeability is sufficient.
Our TSS signature scheme can however be converted into an on-line/off-line

354 B. Chevallier-Mames and M. Joye

scheme to accommodate strong unforgeability (sEUF) by using standard tech-
niques [ST01], at the price of longer — and thus different — keys.

5 Conclusion

This paper presented a practical sEUF-CMA signature scheme whose security is
solely and tightly related to the SRSA assumption, in the standard model. In con-
trast to the CS scheme and its variants, the security of our TSS scheme is optimal
and, contrary to the GHR scheme, this optimal bound does not result from the use
of so-called division-intractable hash functions. Indeed, the TSS scheme does not
require the use of hash functions by its very specification. Actually, TSS scheme is
much closer, in its properties, to the twinning-based version of GHR, even if con-
structed in a completely different manner. The main differences between the two
schemes lie in the implementation and in the signature size. Moreover, the TSS
scheme also comes with an on-line/off-line version for time-constrained applica-
tions or low-cost cryptographic devices. Remarkably, this on-line/off-line version
uses exactly the same set of keys as the regular version.

References

[BB04] D. Boneh and X. Boyen. Short signatures without random oracles. In
Advances in Cryptology − EUROCRYPT 2004, LNCS 3027, pp. 56–73.
Springer-Verlag, 2004.

[BC92] J. Bos and D. Chaum. Provably unforgeable signatures. In Advances in
Cryptology − CRYPTO ’92, LNCS 740, pp. 1–14. Springer-Verlag, 1993.

[BLS04] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pair-
ing. Journal of Cryptology 17(4):297–319, 2004.

[BM92] M. Bellare and S. Micali. How to sign given any trapdoor permutation.
Journal of the ACM 39(1):214–233, 1992.

[BNPS03] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-
more-RSA-inversion problems and the security of Chaum’s blind signature
scheme. Journal of Cryptology 16(3):185–215, 2003.

[BP97] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop sig-
nature schemes without trees. In W. Fumy, editor, Advances in Cryptology
− EUROCRYPT ’97, LNCS 1233, pp. 480–494. Springer-Verlag, 1997.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In 1st ACM Conference on Computer and
Communications Security, pp. 62–73. ACM Press, 1993.

[BR96] . The exact security of digital signatures: How to sign with RSA
and Rabin. In Advances in Cryptology − EUROCRYPT ’96, LNCS 1070,
pp. 399–416. Springer-Verlag, 1996.

[BSW06] D. Boneh, E. Shen, and B. Waters. Strongly unforgeable signature schemes
based on comptutational Diffie-Hellman. In Public Key Cryptography −
PKC 2006, LNCS 3958, pp. 229–240. Springer, 2006.

[CD96] R. Cramer and I. Damg̊ard. New generation of secure and practical RSA-
based signatures. In Advances in Cryptology − CRYPTO ’96, LNCS 1109,
pp. 173–185. Springer-Verlag, 1996.

A Practical and Tightly Secure Signature Scheme Without Hash Function 355

[CG05] D. Catalano and R. Gennaro. Cramer-Damg̊ard signatures revisited: Effi-
cient flat-tree signatures based on factoring. In Public Key Cryptography
− PKC 2005, LNCS 3386, pp. 313–327. Springer-Verlag, 2005.

[CGH98] R. Canetti, O. Golreich, and S. Halevi. The random oracle methodology, re-
visited. In 30th Annual ACM Symposium on Theory of Computing, pp. 209–
217. ACM Press, 1998.

[CL02] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient pro-
tocols. In Security in Communication Networks (SCN 2002), LNCS 2676,
pp. 268–289. Springer-Verlag, 2002.

[CLP05] J.-S. Coron, D. Lefranc, and G. Poupard. A new baby-step giant-step algo-
rithm and some applications to cryptanalysis. In Cryptographic Hardware
and Embedded Systems − CHES 2005, LNCS 3659, pp. 47–60. Springer,
2005.

[CN00] J.-S Coron and D. Naccache. Security analysis of the Gennaro-Halevi-
Rabin signature scheme. In Advances in Cryptology − EUROCRYPT 2000,
LNCS 1807, pp. 91–101. Springer-Verlag, 2000.

[Cor00] J.-S Coron. On the exact security of full domain hash. In Advances in
Cryptology − CRYPTO 2000, LNCS 1880, pp. 229–235. Springer-Verlag,
2000.

[CS00] R. Cramer and V. Shoup. Signature scheme based on the strong RSA
assumption. ACM Transactions on Information and System Security
3(3):161–185, 2000.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory IT-22(6):644–654, 1976.

[DN94] C. Dwork and M. Naor. An efficient existentially unforgeable signature
scheme and its applications. In Advances in Cryptology − CRYPTO ’94,
LNCS 839, pp. 234–246. Springer-Verlag, 1994.

[EGM96] S. Even , O. Goldreich, and S. Micali. On-line/off-line digital signatures.
Journal of Cryptology 9(1):35–67, 1996.

[Fis03] M. Fischlin. The Cramer-Shoup strong-RSA signature scheme revisited. In
Public Key Cryptography − PKC 2003, LNCS 2567, pp. 116–129. Springer-
Verlag, 2003.

[FO97] E. Fujisaki and T. Okamoto. Statistical zero-knowledge protocols to prove
modular polynomial equations. In Advances in Cryptology − CRYPTO ’97,
LNCS 1294, pp. 16–30. Springer-Verlag, 1997.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Advances in Cryptology −
CRYPTO ’86, LNCS 263, pp. 186–194. Springer-Verlag, 1987.

[GHR99] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures with-
out the random oracle. In Advances in Cryptology − EUROCRYPT ’99,
LNCS 1592, pp. 123–139. Springer-Verlag, 1999.

[GJ03] E.-J. Goh and S. Jarecki. A signature scheme as secure as the Diffie-
Hellman problem. In Advances in Cryptology − EUROCRYPT 2003, LNCS
2656, pp. 401–415. Springer-Verlag, 2003.

[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme se-
cure against adaptive chosen message attacks. SIAM Journal of Computing
17(2):281–308, 1988.

[Gol86] O. Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest sig-
nature scheme. In Advances in Cryptology − CRYPTO ’86, LNCS 263,
pp. 104–110. Springer-Verlag, 1986.

356 B. Chevallier-Mames and M. Joye

[JPV00] M. Joye, P. Paillier, and S. Vaudenay. Efficient generation of prime num-
bers. In Cryptographic Hardware and Embedded Systems − CHES 2000,
LNCS 1965, pp. 340–354. Springer-Verlag, 2000.

[KM04] N. Koblitz and A. Menezes. Another look at “provable security”. Cryptol-
ogy ePrint Archive 2004/152, 2004. To appear in Journal of Cryptology.

[KR00] H. Krawczyk and T. Rabin. Chameleon signatures. In Symposium on Net-
work and Distributed System Security − NDSS 2000, pp. 143–154. Internet
Society, 2000.

[KS06] K. Kurosawa and K. Schmidt-Samoa. New online/offline signature schemes
without random oracles. In Public Key Cryptography − PKC 2006, LNCS
3958, pp. 330–346. Springer, 2006.

[KW03] J. Katz and N. Wang. Efficiency improvements for signature schemes with
tight security reductions. In 10th ACM Conference on Computer and Com-
munications Security, pp. 155–164. ACM Press, 2003.

[Mer87] R. Merkle. A digital signature based on a conventional encryption func-
tion. In Advances in Cryptology − CRYPTO ’87, LNCS 293, pp. 369–378.
Springer-Verlag, 1987.

[NPS01] D. Naccache, D. Pointcheval, and J. Stern. Twin signatures: An alternative
to the hash-and-sign paradigm. In 8th ACM Conference on Computer and
Communications Security, pp. 20–27. ACM Press, 2001.

[NY89] M. Naor and M. Yung. Universal one-way hash functions and their crypto-
graphic applications. In 21st Annual ACM Symposium on Theory of Com-
puting, pp. 33–43. ACM Press, 1989.

[PS96] D. Pointcheval and J. Stern. Security proofs for signature schemes. In
Advances in Cryptology − EUROCRYPT ’96, LNCS 1070, pp. 387–398.
Springer-Verlag, 1996.

[PV05] P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be
equivalent to discrete log. In Advances in Cryptology − ASIACRYPT 2005,
LNCS 3788, pp. 1–20. Springer-Verlag, 2005.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signa-
tures. In 22nd Annual ACM Symposium on Theory of Computing, pp. 387–
394. ACM Press, 1990.

[RSA78] R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digi-
tal signatures and public-key cryptosystems. Communications of the ACM
21(2):120–126, 1978.

[ST01] A. Shamir and Y. Tauman. Improved online/offline signature schemes.
In Advances in Cryptology − CRYPTO 2001, LNCS 2139, pp. 355–367.
Springer-Verlag, 2001.

[Wat05] B. Waters. Efficient identity-based encryption without random oracles. In
Advances in Cryptology − EUROCRYPT 2005, LNCS 3494, pp. 114–127.
Springer, 2005.

[Zhu01] H. Zhu. New digital signature scheme attaining immunity against adap-
tive chosen message attack. Chinese Journal of Electronics 10(4):484–486,
2001.

[Zhu03] . A formal proof of Zhu’s signature scheme. Cryptology ePrint
Archive, Report 2003/155, 2003.

How to Strengthen Any Weakly Unforgeable
Signature into a Strongly Unforgeable Signature

Ron Steinfeld1, Josef Pieprzyk1, and Huaxiong Wang1,2

1 Centre for Advanced Computing – Algorithms and Cryptography (ACAC)
Dept. of Computing, Macquarie University, North Ryde, Australia

2 Nanyang Technological University, Singapore
{rons,josef,hwang}@comp.mq.edu.au
http://www.ics.mq.edu.au/acac/

Abstract. Standard signature schemes are usually designed only to
achieve weak unforgeability – i.e. preventing forgery of signatures on
new messages not previously signed. However, most signature schemes
are randomised and allow many possible signatures for a single message.
In this case, it may be possible to produce a new signature on a previ-
ously signed message. Some applications require that this type of forgery
also be prevented – this requirement is called strong unforgeability.

At PKC2006, Boneh Shen and Waters presented an efficient transform
based on any randomised trapdoor hash function which converts a weakly
unforgeable signature into a strongly unforgeable signature and applied it
to construct a strongly unforgeable signature based on the CDH problem.
However, the transform of Boneh et al only applies to a class of so-
called partitioned signatures. Although many schemes fall in this class,
some do not, for example the DSA signature. Hence it is natural to
ask whether one can obtain a truly generic efficient transform based
on any randomised trapdoor hash function which converts any weakly
unforgeable signature into a strongly unforgeable one. We answer this
question in the positive by presenting a simple modification of the Boneh-
Shen-Waters transform. Our modified transform uses two randomised
trapdoor hash functions.

Keywords: Digital signature, strong unforgeability, trapdoor hash func-
tion, provable security, transform.

1 Introduction

Background. Standard signature schemes are usually designed only to achieve
weak unforgeability – i.e. preventing forgery of signatures on new messages not
previously signed. However, most signature schemes are randomised and allow
many possible signatures for a single message. In this case, it may be possible
to produce a new signature on a previously signed message. Some applications
(such as constructing chosen-ciphertext secure public key encryption schemes [3]
and authenticated key exchange protocols [9]) require that this type of forgery
also be prevented – this requirement is called strong unforgeability.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 357–371, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

358 R. Steinfeld, J. Pieprzyk, and H. Wang

At PKC2006, Boneh Shen and Waters [2] presented an efficient transform
based on a randomised trapdoor hash function which converts a weakly un-
forgeable signature into a strongly unforgeable signature, and applied it to con-
struct a strongly unforgeable signature based on the CDH problem. However,
the transform of Boneh et al only applies to a class of so-called partitioned sig-
natures. Although many schemes fall in this class, some do not, for example the
DSA signature [12]. Hence it is natural to ask whether one can obtain a truly
generic efficient transform which converts any weakly unforgeable signature into
a strongly unforgeable one.

Our Result. We answer the above question in the positive by presenting a general
efficient transform which uses randomised trapdoor hash functions to strengthen
any weakly unforegeable signature into a strongly unforgeable signature. Our
transform makes use of two randomised trapdoor hash functions (rather than just
one in the less general transform of [2]). Like the transform of [2], our transform
requires the randomised trapdoor hash functions to be strongly collision-resistant
(by the word strong we mean here that it is even hard to find two randomisers
r = r′ and a message m such that (m, r) and (m, r′) are a collision-pair for
the randomised hash function, whereas usually only weak collision resistance is
needed, i.e. it is only hard to find collisions with distinct message inputs). For
this purpose, we show that a small modification of the efficient VSH randomised
trapdoor function, which was shown to be weakly collision-resistant in [5], gives
a strongly collision-resistant function which can be used in this application.

Relation to Previous Work. The problem of converting a weakly unforgeable sig-
nature into a strongly unforgeable one can be trivially “solved” in two known
ways. The first solution is to construct a one-way function from the weakly
unforgeable signature scheme, and then apply the generic construction of a
strongly unforgeable signature from any one-way function (see Section 6.5.2
in [8]), but this results in a very inefficient scheme. The second trivial “so-
lution” is to completely ignore the original weakly unforgeable scheme, make
additional assumptions, and directly construct the strongly unforgeable scheme
from those assumptions. For example, strongly unforgeable signature schemes
from the Strong RSA assumption [7,6], Strong Diffie-Hellman assumption [1] or
Computational Diffie-Hellman in a bilinear group [2] are known. However, these
all seem quite strong and non-classical additional assumptions, and do not make
use of the given weakly unforgeable signature.

In contrast to the above trivial solutions, our weak-to-strong transform (like
the BSW transform [2]) makes non-trivial use of the given weakly unforge-
able signature scheme, and efficiently reduces the problem of strengthening it
to the problem of constructing a seemingly simpler cryptographic primitive,
namely a randomised trapdoor hash function. As evidence for the practicality
of our transform, we note that randomised trapdoor hash functions are known
to be efficiently constructible under the classical factoring or discrete-log as-
sumptions, whereas no efficient direct constructions for strongly unforgeable
signatures based on these classical assumptions are known (without random

How to Strengthen Any Weakly Unforgeable Signature 359

oracles). As an example application, we show (in Section 4.2) how to strengthen
the standard Digital Signature Algorithm (DSA) [12], assuming only the weak
unforgeability of DSA.

2 Preliminaries

Weak and Strong Unforgeability for Signature Schemes. A signature
scheme Σ consists of three efficient algorithms: a key generation algorithm KG,
a signing algorithm S and a verification algorithm V.

The strong and weak unforgeability of a signature scheme Σ are defined using
the following game. A key pair (sk, pk) = KG(k) is generated, and unforgeability
attacker A is given the public key pk. A can run for time t and can issue q
signing queries m1, . . . , mq to a signing oracle S(sk, ·), which upon each query
mi returns the signature σi = S(sk, mi) to A. At the end, A outputs a forgery
message/signature pair (m∗, σ∗). We say that A succeeds in breaking the strong
unforgeability of Σ if (m∗, σ∗) passes the verification test V with respect to public
key pk, and (m∗, σ∗) = (mi, σi) for all i = 1, . . . , q. We say that A succeeds in
breaking the weak unforgeability of Σ if (m∗, σ∗) passes the verification test
V with respect to public key pk, and m∗ = mi for all i = 1, . . . , q. A signature
scheme Σ is called (t, q, ε) strongly (respectively, weakly) existentially unforgeable
under an adaptive chosen-message attack if any efficient attacker A with run-
time t has success probability at most ε in breaking the strong (respectively,
weak) unforgeability of Σ.

Randomised Trapdoor (Chameleon) Hash Functions [10,13]. A ran-
domised trapdoor hash function scheme consists of three efficient algorithms: a
key generation algorithm KGF , a hash function evaluation algorithm F , and a
trapdoor collision finder algorithm TCF . On input a security parameter k, the
(randomised) key generation algorithm KGF (k) outputs a secret/public key pair
(sk, pk). On input a public key pk, message m ∈ M and random r ∈ R (here M
and R are the message and randomness spaces, respectively), the hash function
evaluation algorithm outputs a hash value h = Fpk(m; r) ∈ H (here H is the hash
string space). On input a secret key sk, a message/randomiser pair (m1, r1) ∈
M × R and a second message m2 ∈ M , the trapdoor collision finder algorithm
outputs a second randomiser r2 = TCF (sk, (m1, r1), m2) ∈ R such that (m1, r1)
and (m2, r2) constitute a collision for Fpk, i.e. Fpk(m1; r1) = Fpk(m2; r2).

There are two desirable security properties for a trapdoor hash function
scheme F = (KGF , F, TCF). The scheme F is called (t, ε) strongly collision-
resistant if any efficient attacker A with run-time t has success probability at
most ε in the following game. A key pair (sk, pk) = KGF (k) is generated, and
A is given the public key pk. A can run for time t and succeeds if it outputs
a collision (m1, r1), (m2, r2) for Fpk satisfying Fpk(m1, r1) = Fpk(m2, r2) and
(m1, r1) = (m2, r2). The scheme F has the random trapdoor collision property
if for each fixed secret key sk and fixed message pair (m1, m2), if r1 is chosen
uniformly at random from R, then r2

def= TCF (sk, (m1, r1), m2) has a uniform
probability distribution on R.

360 R. Steinfeld, J. Pieprzyk, and H. Wang

3 Converting Weak Unforgeability to Strong
Unforgeability

We begin by reviewing the Boneh-Shen-Waters (BSW) transform that applies
to the class of partitioned signatures. We then explain the problem that arises
in trying to apply the BSW transform to an arbitrary signature scheme while
preserving the security proof, and how we resolve the problem with our generic
transform.

3.1 The Boneh-Shen-Waters Transform for Partitioned Signatures

The BSW transform [2] converts any weakly unforgeable partitioned signature
into a strongly unforgeable signature. First we recall the definition of partitioned
signatures from [2].

Definition 1 (Partitioned Signature). A signature scheme Σ is called par-
titioned if it satisfies the following two properties:

1. The signing algorithm S can be split into two deterministic subalgorithms S1
and S2, such that a signature σ = (σ1, σ2) on a message m using secret key
sk can be computed as follows:
– choose a random ω ∈ ΩΣ,
– compute σ1 = S1(sk, m; ω) and σ2 = S2(sk; ω) (note that σ2 does not

depend on m),
– return signature σ = (σ1, σ2).

2. For each m and σ2, there exists at most one σ1 such that σ = (σ1, σ2) verifies
as a valid signature on message m under public key pk.

The BSW transform converts a partitioned signature scheme Σ = (KG, S, V)
(where the signing algorithm S is partitioned into subalgorithms S1 and S2,
and the signing algorithm randomness space is denoted ΩΣ) into a new signa-
ture scheme ΣBSW = (KGBSW, SBSW, VBSW). The transform also makes use of
a randomised trapdoor hash function scheme F = (KGF , F, TCF) (where the
randomness space is denoted RF). We remark that in [2] the authors present
their transform with a specific trapdoor hash construction for F based on the
discrete-log problem, but here we present it more generally. The new signature
scheme ΣBSW is defined as follows:

1. KGBSW(k). On input security parameter k, run KG(k) to generate a se-
cret/public key pair (sk, pk) for signature scheme Σ, and run KGF (k) to
generate secret/public key pair (skF , pkF) for trapdoor hash scheme F . The
secret and public keys for the new signature scheme ΣBSW are:

skBSW = (sk, pkF) and pkBSW = (pk, pkF).

2. SBSW(skBSW, m). On input message m and secret key skBSW = (sk, pkF), a
signature is generated as follows:

How to Strengthen Any Weakly Unforgeable Signature 361

(a) choose random ω ∈ ΩΣ and s ∈ RF ,
(b) compute σ2 = S2(sk; ω),
(c) compute m̄ = FpkF (m‖σ2; s),
(d) compute σ1 = S1(sk, m̄; ω) and return signature σ = (σ1, σ2, s).

3. VBSW(pk, m, σ). A signature σ = (σ1, σ2, s) on a message m is verified as
follows:
(a) compute m̄ = FpkF (m‖σ2; s),
(b) return V(pk, m̄, (σ1, σ2)).

The security result proven in [2] can be stated as follows (when generalised to
the case of an arbitrary trapdoor hash function in place of the composition of a
standard collision-resistant hash function and trapdoor hash function in [2]).

Theorem 1 (Boneh–Shen–Waters). The signature scheme ΣBSW is (t, q, ε)
strongly existentially unforgeable, assuming the underlying signature scheme Σ
is (t, q, ε/2) weakly existentially unforgeable and the randomised trapdoor hash
function F is (t, ε/2) strongly collision-resistant and has the random trapdoor
collision property.

Intuition. The basic idea of the BSW transform (as also explained in [2]) is
that the message-independent signature portion σ2 of a generated signature is
protected from modification by appending it to the message m before hashing
with FpkF and signing with the S1 algorithm. As a consequence, any ‘strong
unforgeability’ attacks which modify σ2 will lead to either a collision for the
hash function F or a ‘weak unforgeability’ forgery for the underlying signature
scheme. However (to set the scene for our generalised construction) we wish to
highlight two important issues and how they were addressed in [2]:

(1) Security Proof Issues: Following the above intuition, the security proof in-
volves using the strong unforgeability attacker A on ΣBSW to construct at-
tackers AF and AΣ against the collision resistance and weak unforgeability of
schemes F and Σ, respectively. But note that to answer A’s signing queries:

(1.1) AF needs to be able to simulate signatures of ΣBSW without the trapdoor
key skF for trapdoor hash scheme F .

(1.2) AΣ needs to be able to simulate signatures of ΣBSW using the signing
algorithm S(sk, ·) as a black box (i.e. without individual access to the
internal subalgorithms S1(·, sk) and S2(·, sk)).

(2) No Protection for σ1: Since the σ1 signature portion is not hashed, it is not
protected from modification by the transform.

These issues were addressed in [2] as follows. The issue (1.1) was easily resolved by
just using the signing algorithm SBSW since the latter does not make use of skF .
The issue (1.2) was resolved using an alternative signing algorithm which uses the
trapdoor key of hash function Fk and the ‘sign-then-switch’ paradigm [13] to sign
using S(sk, ·) as a black box (namely, to sign m, one picks a random s′ ∈ RF and
an arbitrary string σ′

2 and signs m̄ = FpkF (m‖σ′
2; s

′) to obtain σ = (σ1, σ2) =
S(sk, m̄), and then ‘switch’ s′ to s = TCF (skF , (m‖σ′

2, s
′), (m‖σ2)) using the trap-

door key skF , yielding the signature (σ1, σ2, s)). Finally, the issue (2) was resolved

362 R. Steinfeld, J. Pieprzyk, and H. Wang

vt using Property 2 of partitioned signatures (see Def. 1), which implies that pro-
tection of σ1 is not needed, because one cannot modify σ1 alone without making
the signature invalid.

3.2 Our Generic Transform for Arbitrary Signatures

Intuition. Our goal is to construct a generic transform which can convert any
weakly unforgeable signature to a strongly unforgeable one, i.e. we seek a trans-
form which does not rely on the properties of partitioned signatures. Suppose
we attempt to modify the BSW transform for this purpose. To address the issue
(2) in the previous section, we must protect the whole signature from modifica-
tion. Referring to Fig 1(a), suppose we modify the BSW construction by feeding
back the whole signature σ (not just σ2) into the hash function FpkF input.
The problem is that we obtain a closed loop, where message input m̄ of S(sk, ·)
depends on the output signature σ. Using the trapdoor key skF of the hash
function FpkF and the black box S(sk, ·), we can still produce valid signatures
of ΣBSW using the ‘sign-then-switch’ method outlined in the previous section,
but we can no longer produce signatures of ΣBSW without the trapdoor key skF

(even if we know sk). Therefore, the proof of security for the modified construc-
tion collapses due to issue (1.1) discussed in the previous section. Our solution
for resolving this issue is to introduce a second trapdoor hash function H in this
closed loop as shown in Fig. 1(b). This resolves the issue (1.1) by allowing us
to use the ‘hash-then-switch’ method to simulate signatures of ΣBSW using skH

and sk (without knowing skF), or using skF and sk (without knowing skH), and
the last two signing methods produce identically distributed signatures thanks
to the ‘random trapdoor collision’ property of F and H .

Construction. Following the above intuition, we now give a precise descrip-
tion and security proof for our generic transform GBSW. The GBSW transform
converts an arbitrary signature scheme Σ = (KG, S, V) (where the signing algo-
rithm randomness space is denoted ΩΣ) into a new signature scheme ΣGBSW =
(KGGBSW, SGBSW, VGBSW). The transform makes use of two randomised trapdoor
hash function schemes F = (KGF , F, TCF) (with randomness space RF) and
H = (KGH , H, TCH) (with randomness space RH). The new signature scheme
ΣGBSW is defined as follows:

1. KGGBSW(k). On input security parameter k, run KG(k) to generate a se-
cret/public key pair (sk, pk) for signature scheme Σ, and run KGF (k) and
KGH(k) to generate secret/public key pairs (skF , pkF) and (skH , pkH) for
trapdoor hash schemes F and H, respectively. The secret and public keys
for the new signature scheme ΣGBSW are:

skGBSW = (sk, skH , pkF , pkH) and pkGBSW = (pk, pkF , pkH).

2. SGBSW(skGBSW, m). On input message m and secret key skGBSW =
(sk, skH , pkF , pkH), a signature is generated as follows:

How to Strengthen Any Weakly Unforgeable Signature 363

Fig. 1. (a) Boneh–Shen–Waters (BSW) transform for partitioned signature schemes.
(b) Our Generalised BSW transform for arbitrary signature schemes.

(a) choose random elements ω ∈R ΩΣ , s ∈R RF , and r′ ∈R RH,
(b) compute h=HpkH (m′‖σ′; r′), for some arbitrary fixed strings m′ and σ′.
(c) compute m̄ = FpkF (h; s),
(d) compute σ = S(sk, m̄; ω),
(e) using trapdoor collision finder for H to compute r =

TCH(skH , (m′‖σ′, r′), m‖σ) such that HpkH (m‖σ; r) = h and re-
turn signature σGBSW = (σ, r, s).

3. VGBSW(pkGBSW, m, σGBSW). A signature σGBSW = (σ, r, s) on a message m
using public key pkGBSW = (pk, pkF , pkH) is verified as follows:
(a) compute h = HpkH (m‖σ; r),
(b) compute m̄ = FpkF (h; s),
(c) return V(pk, m̄, σ).

Remark 1: We implicitly assume of course, that the verification algorithm VGBSW

immediately rejects any signature (σ, r, s) for which r ∈ RH or s ∈ RF .

Remark 2: One can set the schemes F and H to be identical – the important
requirement is that the key pair instances (skF , pkF) and (skH , pkH) are gen-
erated by two independent runs of the key generation algorithms of F and H,
respectively.

The following theorem proves the strong unforgeability of the scheme ΣGBSW,
assuming the weak unforgeability of the underlying signature scheme Σ.

Theorem 2. The signature scheme ΣGBSW is (t, q, ε) strongly existentially un-
forgeable, assuming the underlying signature scheme Σ is (t, q, ε/3) weakly ex-
istentially unforgeable and the randomised trapdoor hash functions F and H

364 R. Steinfeld, J. Pieprzyk, and H. Wang

are both (t, ε/3) strongly collision-resistant and both have the random trapdoor
collision property.

Proof. Let A denote a (t, q, ε) attacker against the strong unforgeability of ΣGBSW.
We show how to construct attackers AΣ , AF and AH against the weak unforgeabil-
ity of Σ and strong collision-resistance of F and H, respectively, such that at least
one of AΣ , AF or AH succeeds with probability at least ε/3, and all have run-time
t, which establishes the theorem.
We first classify the forgery produced by attacker A. Suppose that A is run on
input pkGBSW = (pk, pkF , pkH) = KGGBSW(k). For i = 1, . . . , q, let mi denote the
ith sign query of A and (σi, ri, si) the answer to that query. Furthermore, let hi =
HpkH (mi‖σi; ri) and m̄i = FpkF (hi; si) be the values computed by the signing
algorithm in answering the ith sign query. Finally, let (m∗, (σ∗, r∗, s∗)) denote
the output message/signature forgery of A and define h∗ = HpkH (m∗‖σ∗; r∗)
and m̄∗ = FpkF (h∗; s∗). Let Succ denote the event that A succeeds to break the
strong unforgeability of ΣGBSW. If Succ occurs then it easy to see that at least
one of the following subevents must occur:

– subevent SuccI (Type I forgery): m̄∗ ∈ {m̄1, . . . , m̄q},
– subevent SuccII (Type II forgery): there exists i∗ ∈ {1, . . . , q} such that

m̄∗ = m̄i∗ but (h∗, s∗) = (hi∗ , si∗),
– subevent SuccIII (Type III forgery): there exists i∗ ∈ {1, . . . , q} such that

m̄∗ = m̄i∗ and (h∗, s∗) = (hi∗ , si∗) but (m∗, σ∗, r∗) = (mi∗ , σi∗ , ri∗).

Since event Succ occurs with probability ε, it follows that one of the above 3
subevents occur with probability at least ε/3. Accordingly, our attackers AΣ ,
AF and AH described below will each run A and succeed if subevents SuccI ,
SuccII and SuccIII occur, respectively. In each of those three runs of A we show
that the distribution of A’s view is perfectly simulated as in the real attack, so
that the subevents SuccI , SuccII and SuccIII occur with the same probability as
in the real attack, and hence at least one of attackers AΣ , AF and AH succeeds
with probability ε/3, as claimed.

Attacker AΣ. The attacker AΣ against the weak unforgeability of Σ runs as
follows on input public key pk (where (pk, sk) = GK(k) is a challenge key pair
for Σ).

Setup. AΣ runs KGF (k) and KGH(k) to generate secret/public key pairs
(skF , pkF) and (skH , pkH) for trapdoor hash schemes F and H, respectively,
and runs A with input public key pkGBSW = (pk, pkF , pkH).

Sign Queries. When attacker A makes its ith sign query message mi, AΣ

responds as follows:

– choose random elements si ∈R RF , and r′i ∈R RH,
– compute hi = HpkH (m′‖σ′; r′i), for some arbitrary fixed strings m′ and σ′,
– compute m̄i = FpkF (hi; si),
– query message m̄i to sign oracle of AΣ to obtain answer σi = S(sk, m̄i; ω)

for a random ω ∈R ΩΣ ,

How to Strengthen Any Weakly Unforgeable Signature 365

– use trapdoor collision finder for H to compute ri =
TCH(skH , (m′‖σ′, r′i), (mi‖σi)) such that HpkH (mi‖σi; ri) = hi and
return signature (σi, ri, si) to A.

Output. After A outputs its forgery (m∗, (σ∗, r∗, s∗)), AΣ computes h∗ =
HpkH (m∗‖σ∗; r∗) and m̄∗ = FpkF (h∗; s∗), and outputs (m̄∗, σ∗) as its forgery
for Σ.

Notice that in the above game AΣ perfectly simulates the real signing oracle
SGBSW of A (because AΣ simply follows the real signing procedure, exploiting
the fact that SGBSW makes only black box access to the signing oracle S(sk, ·) of
Σ, and that AΣ knows the trapdoor key skH for H). Furthermore, if A succeeds
and outputs a type I forgery, i.e. if subevent SuccI occurs, then (m̄∗, σ∗) verifies
as a valid message/signature pair for Σ and m̄∗ ∈ {m̄1, . . . , m̄q}, meaning that
A breaks the weak unforgeability of Σ, as required.

Attacker AF . The attacker AF against the strong collision-resistance of F runs
as follows on input public key pkF (where (pkF , skF) = GKF (k) is a challenge
key pair for F).

Setup. AF runs KG(k) and KGH(k) to generate secret/public key pairs (sk, pk)
and (skH , pkH) for schemes Σ and H, respectively, and runs A with input public
key pkGBSW = (pk, pkF , pkH).

SignQueries.When attackerA makes its ith sign querymessagemi, AF responds
with (σi, ri, si) = SGBSW(skGBSW, mi), where skGBSW = (sk, skH , pkF , pkH). AF
also stores (mi, σi, ri, si) in a table for later use.

Output. After A outputs its forgery (m∗, (σ∗, r∗, s∗)), AF computes h∗ =
HpkH (m∗‖σ∗; r∗) and then m̄∗ = FpkF (h∗; s∗), and searches its table of A’s
queries for entry i∗ ∈ {1, . . . , q} such that m̄∗ = mi∗ but (h∗, s∗) = (hi∗ , si∗). If
such entry is found, AF outputs strong collision (h∗; s∗), (hi∗ ; si∗) for F , else AF
fails.

In the above game AF perfectly simulates the real signing oracle SGBSW of A
(because AF knows both sk and skH and follows the real signing algorithm).
Furthermore, AF succeeds in breaking the strong collision-resistance of F if A
outputs a type II forgery, i.e. if subevent SuccII occurs (because (h∗, s∗) =
(hi∗ , si∗) but m̄∗ = FpkF (h∗; s∗) = FpkF (hi∗ ; si∗) = m̄i∗), as required.

Attacker AH. The attacker AH against the strong collision-resistance of H runs
as follows on input public key pkH (where (pkH , skH) = GKH(k) is a challenge
key pair for H).

Setup. AH runs KG(k) and KGF (k) to generate secret/public key pairs (sk, pk)
and (skF , pkF) for schemes Σ and F , respectively, and runs A with input public
key pkGBSW = (pk, pkF , pkH).

Sign Queries. When attacker A makes its ith sign query message mi, AH
responds as follows:

– choose random elements s′i ∈R RF , and ri ∈R RH,
– compute m̄i = FpkF (h′

i; s
′
i), for some arbitrary fixed string h′

i,

366 R. Steinfeld, J. Pieprzyk, and H. Wang

– compute σi = S(sk, m̄i; ω) for a random ω ∈R ΩΣ ,
– compute hi = HpkH (mi‖σi; ri),
– use trapdoor collision finder for F to compute si = TCF (skF , (h′

i, s
′
i), hi)

such that FpkF (hi; si) = m̄i and return signature (σi, ri, si) to A. AH also
stores (mi, σi, ri, si) in a table for later use.

Output. After A outputs its forgery (m∗, (σ∗, r∗, s∗)), AH computes h∗ =
HpkH (m∗‖σ∗; r∗) and searches its table of A’s queries for entry i∗ ∈ {1, . . . , q}
such that h∗ = hi∗ but (m∗, σ∗, r∗) = (mi∗ , σi∗ , ri∗). If such entry is found, AH
outputs strong collision (m∗‖σ∗; r∗), (mi∗‖σi∗ ; ri∗) for H, else AH fails.

In the above game, AH succeeds in breaking the strong collision-resistance
of H if A outputs a type III forgery, i.e. if subevent SuccIII occurs (because
(m∗‖σ∗, r∗) = (mi∗‖σi∗ , ri∗) but h∗ = HpkH (m∗‖σ∗; r∗) = HpkH (mi∗‖σi∗ ; ri∗) =
hi∗), as required.

It remains to show that in the above game, AH perfectly simulates the real
signing oracle SGBSW of A. For any fixed message m and fixed signature triple
(σ̂, r̂, ŝ), let Preal(σ̂, r̂, ŝ) denote the probability that the real signing algorithm
SGBSW outputs (σ̂, r̂, ŝ) for input message m (over the random choices r′ ∈R RH ,
s ∈R RF , ω ∈R ΩΣ of the real signing oracle). Similarly, let Psim(σ̂, r̂, ŝ) denote
the probability that the sign oracle simulator of AH outputs (σ̂, r̂, ŝ) for input
message m (over the random choices r ∈R RH , s′ ∈R RF , ω ∈R ΩΣ of the
simulator). Then, defining ĥ = HpkH (m‖σ̂; r̂) and ̂̄m = FpkF (ĥ; ŝ), we have:

Preal(σ̂, r̂, ŝ) =
Pr

r′,s,ω
[(TCH(skH , (m′‖σ′, r′), m‖σ̂) = r̂) ∧ (s = ŝ) ∧ (S(sk, ̂̄m; ω) = σ̂)]

= Pr
r′∈RRH

[TCH(skH , (m′‖σ′, r′), m‖σ̂) = r̂] · Pr
s∈RRF

[s = ŝ]

· Pr
ω∈RΩΣ

[S(sk, ̂̄m; ω) = σ̂]

=
(

1
|RH|

)
·
(

1
|RF |

)
· Pr

ω∈RΩΣ

[S(sk, ̂̄m; ω) = σ̂], (1)

where in the second-last row we used the independence of the r′, s, ω and in the
last row we used the random trapdoor collision property of H and the uniform
distribution of s in RF chosen by the real signing algorithm.

On the other hand, for the simulated signatures, we have:

Psim(σ̂, r̂, ŝ) =

Pr
r,s′,ω

[(r = r̂) ∧ (TCF (skF , (h′, s′), ĥ) = ŝ) ∧ (S(sk, ̂̄m; ω) = σ̂)]

= Pr
r∈RRH

[r = r̂] · Pr
s′∈RRF

[TCF (skF , (h′, s′), ĥ) = ŝ] · Pr
ω∈RΩΣ

[S(sk, ̂̄m; ω) = σ̂]

=
(

1
|RH|

)
·
(

1
|RF |

)
· Pr

ω∈RΩΣ

[S(sk, ̂̄m; ω) = σ̂], (2)

where in the second-last row we used the independence of r, s′, ω and in the
last row we used the random trapdoor collision property of F and the uniform
distribution of r in RH chosen by the simulator.

How to Strengthen Any Weakly Unforgeable Signature 367

Comparing (1) and (2), we conclude that Preal(σ̂, r̂, ŝ) = Psim(σ̂, r̂, ŝ), so AH
perfectly simulates the real signing algorithm, as required.

It follows that at least one of the attackers AΣ , AF and AH succeeds with
probability at least ε/3, completing the proof of the theorem. ��

Remark (Non-Adaptive to Adaptive Security). It is known [13,11] that randomised
trapdoor hash functions can also be used to generically upgrade non-adaptive cho-
sen message attack security to adaptive chosen message attack security for signa-
ture schemes. Suppose we start with a weakly unforgeable signature secure against
non-adaptive message attack and we wish to upgrade it to a strongly unforge-
able signature secure against adaptive message attack. A generic solution is to ap-
ply our weak-to-strong transform above followed by the non-adaptive-to-adaptive
transform from [13,11]. However, it is easy to see (by modifying the attacker AΣ in
our proof of Theorem 2 using the technique in [13,11]) that our GBSW transform
simultaneously also achieves non-adaptive-to-adaptive conversion, so there is no
need to apply the second transform. Similarly, like the transforms in [13,11], our
GBSW transform also gives an ‘on-line/off-line’ signature scheme, where the only
on-line operation is collision-finding for trapdoor hash scheme H (for this appli-
cation, H would have to be chosen appropriately to have a collision-finding algo-
rithm faster than signing algorithm S). Finally, we remark that the ‘dual’ of the
above observation does not hold, namely it is easy to see that the non-adaptive-
to-adaptive transforms in [13,11] do not upgrade weak unforgeability to strong
unforgeability in general.

4 Implementation Issues and Application

4.1 Implementation of the Randomised Trapdoor Hash Function

We discuss some possible provably secure concrete implementations of the ran-
domised trapdoor hash functions used in our transform.

Discrete-Log Based Construction. A well known Discrete-log based strongly
collision-resistant randomised trapdoor hash function is the Chaum–van Heijst–
Pfitzmann (CHP) function [4], also used in [2]. This construction HDL works
in any group G of prime order q where discrete-log is hard. Let g denote a
generator for G and let J denote a collision-resistant hash function from {0, 1}∗
to ZZq. The key generation algorithm KGHDL chooses x ∈R ZZq and outputs
public/secret key pair pkH = (g, g1 = gx) and skH = x. Given randomiser
r ∈ ZZq and message m, we define its hash value HDL(m; r) = grg

J(m)
1 . Given

a message/randomiser pair (m, r) and a second message m′, the collision-finder
algorithm computes a second randomiser r′ = r + (J(m) − J(m′))x mod q such
that HDL(m; r) = HDL(m′; r′). Any ‘strong’ collision (m; r) = (m′; r′) for HDL

(with r, r′ ∈ ZZq) implies that m = m′ (because g has order q) and hence x = (r−
r′)/(J(m′)−J(m)) mod q, revealing the discrete-log of g1 to base g. Hence HDL

is strongly collision-resistant (with randomiser space ZZq) as long as discrete-log
is hard in G and J is collision-resistant, and HDL also has the random trapdoor
collision property.

368 R. Steinfeld, J. Pieprzyk, and H. Wang

Factoring-based Construction. The above DL-based construction has a fast
collision-finding algorithm but relatively slow hash evaluation algorithm. Some
constructions based on a standard factorization problem are given in [13]. A vari-
ant of the recent VSH randomised trapdoor hash function [5] can also be used
and has the opposite performance tradeoff: a fast evaluation algorithm but rela-
tively slow collision-finding algorithm. Although the randomised trapdoor hash
function described in [5] is not strongly collision-resistant, we show how to easily
modify it to achieve this property. The original construction HV SH in [5] has
public key n = pq, where p,q are primes congruent to 3 modulo 4. The secret key
is (p, q). Let J : {0, 1}∗ → {0, 1}k be a collision-resistant hash function. The ran-
domiser space is ZZ∗

n. Given message m and randomiser r ∈ ZZ∗
n, the hash value

is HV SH(m; r) = (r2 ∏k
i=1 p

J(m)i

i)2 mod n, where J(m)i denotes the ith bit of
J(m) ∈ {0, 1}k and pi denotes the ith prime. Given a message/randomiser pair
(m, r) and a second message m′, the collision-finder algorithm computes a second
randomiser r′ such that HV SH(m; r) = HV SH(m′; r′) by choosing uniformly at
random among the 4 fourth roots of (r2 ∏

i p
J(m)i−J(m′)i

i)2 mod n in ZZ∗
n. The

function HV SH is weakly collision resistant assuming hardness of the factoring-
related ‘Very Smooth Number Non-Trivial Modular Square-Root’ (VSSR) prob-
lem, but is not strongly collision-resistant because (m; (−r mod n)) collides with
(m; r) for any m, r. However, the function H ′

V SH defined in the same way but
with randomiser space restricted to ZZ∗

n

⋂
(0, n/2) is strongly collision-resistant

under the VSSR assumption. This follows from the fact that any quadratic
residue in ZZ∗

n has two of its square roots less than n/2 and two above (the
negatives modulo n of each of the first two square-roots). The two square-roots
r,r′ below n/2 are congruent modulo one of the prime factors of n but not
modulo the other prime factor, so finding both r and r′ is as hard as factor-
ing n (since gcd(r′ − r, n) gives either p or q). The random trapdoor collisions
property also is preserved by this modification (note that the modified collision-
finder algorithm chooses r′ uniformly at random among the two fourth roots of
(r2 ∏

i p
J(m)i−J(m′)i

i)2 mod n in ZZ∗
n

⋂
(0, n/2)).

4.2 Application to Strengthen the Standard Digital Signature
Algorithm (DSA)

The Digital Signature Standard [12] (DSA) is an example of a randomised signa-
ture scheme which probably does not fall within the class of partitioned signature
schemes, as noted in [2]. In this scheme, the public key is (g, y = gx mod p), where
p is prime and g ∈ ZZ∗

p is an element of prime order q, and x ∈ ZZq is the secret
key. The signature on message m using randomiser r∈ZZq is (σ1, σ2), where σ2 =
(gr modp) mod q and σ1 =r−1(SHA(m)+xσ2) mod q (here SHA :{0, 1}∗→ZZq is
the SHA-1 hash function). To verify signature (σ1, σ2) on message m under public
key (g, y), one checks whether ((gSHA(m)yσ2)1/σ1 mod p) mod q equals σ2.

Although DSA clearly satisfies Property (1) of partitioned signatures, it prob-
ably does not satisfy Property (2). The reason is that given a valid signature
(σ1, σ2) on a message m, the number of σ′

1 values such that (σ′
1, σ2) verifies

How to Strengthen Any Weakly Unforgeable Signature 369

as a valid signature on m is the number of elements in the group G of order q
generated by g which are congruent to σ2 mod q. As σ′

1 runs through all q−1 val-
ues of ZZq except σ1, we heuristically expect the values of ((gSHA(m)yσ2)1/σ1 mod
p) mod q to behave like q−1 independent uniformly random elements in ZZq. This
heuristic suggests that with “high probability” of about 1− (1−1/q)q−1 ≈ 0.63,
we expect there exists at least one other σ′

1 = σ1 such that (σ′
1, σ2) is also a valid

signature on m. Although we do not know how to efficiently find such ‘strong
forgeries’ for DSA, the fact that DSA is not partitioned means that the BSW
transform does not provably guarantee the strong unforgeability of DSA, even
assuming that DSA is weakly unforgeable.

Applying our generalised transform to DSA with two CHP [4] randomised
trapdoor hash functions for F and H based on the hardness of discrete-log in
the group G used by DSA, we can construct a strengthened DSA signature which
is provably strongly unforgeable, assuming only the weak unforgeability of DSA
(which immediately implies the hardness of discrete-log in G and hence the
strong collision-resistance of F and H). The resulting concrete system, called
SDSA, is as follows.

1. KGSDSA(k). On input security parameter k:
(a) run DSA key generation on input k to generate a DSA key pair skDSA =

(p, q, g, x) and pkDSA = (p, q, g, y), where p is prime, q is a divisor of p−1,
g ∈ ZZ∗

p is an element of order q > 2159, x is uniformly random in ZZq and
y = gx mod p,

(b) choose uniformly random xH ∈ ZZq and compute v = gxH mod p,
(c) choose uniformly random xF ∈ ZZq and compute u = gxF mod p,
(d) the secret and public keys for signature scheme SDSA are:

skSDSA = (p, q, g, x, v, u, xH) and pkSDSA = (p, q, g, y, v, u).

2. SSDSA(skSDSA, m). On input message m and secret key skSDSA =(p, q, g, x, xH),
a signature is generated as follows:
(a) compute h = gη′

vSHA(0) mod p, for uniformly random η′ ∈ ZZq and fixed
bit string 0 (e.g. an all zero byte),

(b) compute m̄ = gsuSHA(h) mod p for uniformly random s ∈ ZZq.
(c) compute DSA signature (σ1, σ2) on “message” m̄, where σ2 = (gr mod

p) mod q for uniformly random r ∈ ZZq and σ1 = r−1(SHA(m̄) + x ·
σ2) mod q,

(d) compute η = η′ + (SHA(0) − SHA(m‖σ1‖σ2)) · xH mod q,
(e) return signature σSDSA = (σ1, σ2, η, s).

3. VSDSA(pkSDSA, m, σSDSA). A signature σSDSA = (σ1, σ2, η, s) on a message m
is verified as follows:
(a) compute h = gηvSHA(m‖σ1‖σ2) mod p,
(b) compute m̄ = gsuSHA(h) mod p,
(c) accept only if DSA signature (σ1, σ2) verifies on “message” m̄, namely

accept only if σ2 = ((gSHA(m̄)yσ2)1/σ1 mod p) mod q holds.

We have:

370 R. Steinfeld, J. Pieprzyk, and H. Wang

Corollary 1. The signature scheme SDSA is (t, q, ε) strongly existentially un-
forgeable assuming that the DSA signature is (t, max(q, 1), ε/6) weakly existen-
tially unforgeable.

Proof. Applying Theorem 2 to the GBSW transform applied to the DSA sig-
nature with two CHP trapdoor hash functions F and H, we can convert any
(t, q, ε) attacker against the strong unforgeability of SDSA into a (t, q, ε/3) at-
tacker against the weak unforgeability of DSA or a (t, ε/3) attacker against the
strong collision-resistance of F or H respectively. In turn, any (t, ε/3) attacker
against collision-resistance of F (or H) can be converted into either a (t, ε/6) at-
tacker against the discrete-log problem in the group generated by g, or a (t, ε/6)
attacker against the collision-resistance of SHA. Finally, any (t, ε/6) discrete-log
attacker can be easily converted into a (t, 0, ε/6) attacker against weak unforge-
ability of DSA, while any (t, ε/6) attacker against collision-resistance of SHA
can be easily converted into a (t, 1, ε/6) attacker against the weak unforgeability
of DSA. So in any case, we can construct a (t, max(q, 1), ε/6) attacker against
weak unforgeability of DSA, which gives the claimed result. ��

The SDSA scheme requires an extra computation of two products of two ex-
ponentiations each in both verification and signature generation over the DSA
scheme, the public key contains two additional elements of ZZp and the signature
contains two additional elements of ZZq. A feature of SDSA which may be of use
in practice is that it uses the key generation, signature generation and verifica-
tion algorithms of DSA as subroutines; hence existing implementations of these
subroutines can be used without modification to build SDSA implementations.

5 Conclusion

We presented a modification of the Boneh–Shen–Waters transform to strengthen
arbitrary weakly unforgeable signatures into strongly unforgeable signatures, and
presented applications to the Digital Signature Standard (DSA) with suggested
concrete implementations of the randomised trapdoor hash functions needed by
our transform.

Finally, we have recently learnt (by private communication with I. Teran-
ishi) that, independently and in parallel with our work, Teranishi, Oyama and
Ogata [14] propose a ‘weak to strong’ unforgeability transform which uses a sim-
ilar idea to our transform, but is less general in its implementation. In particular,
the standard model transform in [14] assumes the hardness of the discrete-log
problem, whereas our transform works with any randomised trapdoor hash func-
tion (for example, our transform can be used with the efficient factoring-based
trapdoor hash function from [5]). On the other hand, the discrete-log based
transform in [14] has a more efficient verification algorithm compared to our
general transform applied using the discrete-log based trapdoor hash function
from [4]. A more efficient transform assuming the random-oracle model along
with the discrete-log assumption is also described in [14].

How to Strengthen Any Weakly Unforgeable Signature 371

Acknowledgements. The authors would like to thank Duncan Wong for in-
teresting discussions and the anonymous referees for their useful comments.
This work was supported by Australian Research Council Discovery Grants
DP0663452, DP0451484 and DP0665035.

References

1. D. Boneh and X. Boyen. Short Signatures without Random Oracles. In EURO-
CRYPT 2004, volume 3027 of LNCS, pages 56–73, Berlin, 2004. Springer-Verlag.

2. D. Boneh, E. Shen, and B. Waters. Strongly Unforgeable Signatures Based on
Computational Diffie-Hellman. In PKC 2006, volume 3958 of LNCS, pages 229–
240, Berlin, 2006. Springer-Verlag.

3. R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-Based
Encryption. In Eurocrypt 2004, volume 3027 of LNCS, pages 207–222, Berlin, 2004.
Springer-Verlag.

4. D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically Strong Undeniable
Signatures, Unconditionally Secure for the Signer. In CRYPTO ’91, volume 576
of LNCS, pages 470–484, Berlin, 1991. Springer-Verlag.

5. S. Contini, A.K. Lenstra, and R. Steinfeld. VSH, an Efficient and Provable
Collision-Resistant Hash Function. In Eurocrypt 2006, volume 4004 of LNCS,
pages 165–182, Berlin, 2006. Springer-Verlag.

6. R. Cramer and V. Shoup. Signature Schemes Based on the Strong RSA Assump-
tion. ACM Transactions on Information and System Security (ACM TISSEC),
3:161–185, 2000.

7. R. Gennaro, S. Halevi, and T. Rabin. Secure Hash-and-Sign Signatures Without
the Random Oracle. In EUROCRYPT ’99, volume 1592 of LNCS, pages 123–139,
Berlin, 1999. Springer-Verlag.

8. O. Goldreich. Foundations of Cryptography, Volume II. Cambridge University
Press, Cambridge, 2004.

9. J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange.
In CRYPTO 2003, volume 2729 of LNCS, pages 110–125, Berlin, 2003. Springer-
Verlag.

10. H. Krawczyk and T. Rabin. Chameleon Signatures. In NDSS 2000, 2000. Available
at http://www.isoc.org/isoc/conferences/ndss/2000/proceedings/.

11. K. Kurosawa and S. Heng. The Power of Identification Schemes. In PKC 2006,
volume 3958 of LNCS, pages 364–377, Berlin, 2006. Springer-Verlag.

12. National Institute of Standards and Technology (NIST). Digital Signature Standard
(DSS). Federal Information Processing Standards Publication 186-2, January 2000.

13. A. Shamir and Y. Tauman. Improved Online/Offline Signature Schemes. In
CRYPTO 2001, volume 2139 of LNCS, pages 355–367, Berlin, 2001. Springer-
Verlag.

14. I. Teranishi, T. Oyama, and W. Ogata. General Conversion for Obtaining Strongly
Existentially Unforgeable Signatures. In INDOCRYPT 2006. To Appear.

Public Key Cryptography and RFID Tags

M. McLoone1 and M.J.B. Robshaw2

1 Institute of Electronics, Communications, and Information Technology
Queen’s University, Belfast, U.K.

M.McLoone@ecit.qub.ac.uk
2 France Telecom Research and Development

38–40, rue du Général Leclerc
92794 Issy les Moulineaux, Cedex 9, France

matt.robshaw@francetelecom.com

Abstract. When exploring solutions to some of the formidable security
problems facing RFID deployment, researchers are often willing to coun-
tenance the use of a strong symmetric primitive such as the AES. At the
same time it is often claimed that public key cryptography cannot be
deployed on low-cost tags. In this paper we give a detailed analysis of
the GPS identification scheme. We show that with regards to all three
attributes of space, power, and computation time, the on-tag demands of
GPS identification compare favourably to the landmark AES implemen-
tation by Feldhofer et al.. Thus, assumed limits to implementing asym-
metric cryptography on low-end devices may need to be re-evaluated.

1 Introduction

The problem of deploying cryptographic mechanisms when memory, power, or
processing capability is limited is as old as cryptography itself. For most con-
temporary applications in resource-rich environments, the performance of the
cryptographic primitive is typically of little concern. However, recent interest in
radio frequency identification (RFID) tags has once again brought the issue of
performance to the fore.

The radio-frequency-identification provided by an RFID tag is not new. But
recent advances now allow small devices that provide this functionality to be
manufactured cheaply. This opens the door to widespread deployment. However
the potential for a pervasive deployment of such devices raises many security and
privacy concerns and some applications would benefit from, or indeed require,
cryptographic functionality.

In reality, the term “RFID tags” covers a range of devices with different
computational capabilities. However the term “tag” tends to imply that we are
working with some of the less capable devices. At the most limited end of the
range, e.g. typical EPC Type 1 tags [4], there is in fact little that one can do.
Even the most exotic cryptographic proposals from recent years are unsuitable.
Instead, perhaps unwittingly, researchers are assuming the use of slightly more
sophisticated devices. As we will see in Section 4, one important restriction when

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 372–384, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Public Key Cryptography and RFID Tags 373

using algorithms in constrained environments is the amount of physical space
that is required. To aid comparison across different manufacturing technologies,
this is usually measured in terms of gate equivalents (GE). In practice, equally
important considerations are the peak and average power consumption. If these
are high then the practical effectiveness of a passive tag can be severely degraded
since its power is derived from the reader.

While one would like to use strong, established cryptography in principle,
the physical demands of cheaper tags prevent this. One significant paper in re-
cent years [6] has detailed an optimised implementation of the AES [17]. This
demonstrated that strong, established cryptography, is within reach of (reason-
ably) cheap RFID deployment. By contrast, the possibility of implementing an
asymmetric scheme on an RFID tag is often dismissed out of hand [1,14]. While
such a view is reasonable for most asymmetric schemes, it does not apply to all.
As we will show, there are variants of the GPS scheme that require fewer on-
tag resources than the AES. Thus, if one is willing to consider the deployment
of the AES on a tag, one should also be willing to consider the deployment of
asymmetric cryptography under similarly demanding conditions.

In its basic form, the GPS identification scheme [7,19] already has the poten-
tial for low on-tag demands. However, a range of optimisations in the literature
have extended this potential. This paper, therefore, provides the following:

1. We provide an overview of the GPS identification scheme and its optimisa-
tions. Publications on GPS span several years and so we use this paper to
bring together much of the work on this topic.

2. We provide the results of a detailed hardware performance analysis of the
GPS identification scheme. This is essential in understanding the suitability
of any cryptographic proposal for RFID deployment.

3. We outline a range of deployment costs and requirements for an implemen-
tation of the GPS scheme in an RFID tag application.

Overall, this paper is concerned with all the practical aspects of implementing
and deploying a public key solution on RFID tags.

2 The GPS Identification Scheme

GPS is a public key identification scheme due to Girault, Poupard, and Stern [7,19].
It is standardised and features within ISO/IEC 9798-5 [12] and also appears in
the final NESSIE portfolio [13]. One feature of the GPS scheme is its flexibility
and there are many variants and optimisations. We will illustrate the essential
elements of the GPS scheme using an RSA-like modulus, as featured in most
descriptions of GPS and in ISO and NESSIE documentation [12,13], but also in
an elliptic curve variant [8] that is likely to be of greater interest in practice.

The standardised form of the GPS scheme is shown in Figure 1. A crypto-
graphic hash function hash gives outputs of length h, and we use parameters ρ,
δ, and σ to denote three particular bit lengths. These values will depend on the
intended security level of the scheme, and following the specifications of GPS it

374 M. McLoone and M.J.B. Robshaw

Tag Reader

Keys and Parameters

Modulus n = pq and base g
Secret key s ∈R {0, . . . , 2σ − 1}

Public key v = g−s mod n

Protocol

Choose r ∈R {0, . . . , 2ρ − 1}
Compute x = hash(gr mod n) x−−−−−−−−→

Check 0 ≤ x ≤ 2h − 1
c←−−−−−−−− Choose c ∈R {0, . . . , 2δ − 1}

Check 0 ≤ c ≤ 2δ − 1

Compute y = r + (s × c)
y−−−−−−−−→ hash(gyvc mod n) ?= x

Fig. 1. Overview of the ISO-standardised variant of the GPS identification protocol
where h denotes the length of the output from hash. Some minor protocol details,
including opportunities for shared system parameters, are omitted and specific choices
for σ, ρ, δ, and the size of n depend on the desired security level.

is typical to set |r| = ρ = δ + σ + 80. We provide estimates for a range of para-
meter values but, by way of illustration, a basic set of parameter values might
be |c| = δ = 20, |s| = σ = 160, and |r| = ρ = δ + σ + 80 = 260. Naturally, these
parameters can be changed for a range of security/performance trade-offs.

Our focus will be on the workload for the tag (the prover) and we will as-
sume that the reader (the verifier) is more powerful. Initially the GPS scheme in
Figure 1 might not appear to be a promising candidate for compact implementa-
tion. The reader might be concerned about the large numbers that appear when
we use RSA-like moduli. This is avoided by moving to an elliptic-curve based
version of GPS, see Figure 2. Further, the first on-tag computation consists of an
expensive operation (either exponentiation in Figure 1 or elliptic curve addition
in Figure 2) while the second operation is a hash function computation. How-
ever, we can remove both operations by using coupons [8]. At initialisation, we
pre-compute and store t coupons that consist of the pairs (ri, xi) for 1 ≤ i ≤ t,
as shown in Figure 2. While there is a storage cost in using coupons (see Sec-
tion 5) the performance benefits are immediate. The on-tag performance will be
dominated by the simple integer (non-modular) calculation y = r+(s×c) which
is identical in both the classical and the elliptic curve variants of GPS. Here we
consider the cost of this operation as well as a range of computation and storage
optimisations proposed in the literature.

Public Key Cryptography and RFID Tags 375

Tag Reader

Keys and Parameters

Curve C and base point P Curve C and base point P
Secret key s ∈R {0, . . . , 2σ − 1}

Public key V = −sP Public key V = −sP

Precomputation

For 0 ≤ i ≤ t − 1
Choose ri ∈R {0, . . . , 2ρ − 1}

Compute xi = hash(riP)
Store coupon (ri, xi)

Protocol

Select coupon (ri, xi)
xi−−−−−−−−−→

Check 0 ≤ xi ≤ 2h − 1
c←−−−−−−−− Choose c ∈R {0, . . . , 2δ − 1}

Check 0 ≤ c ≤ 2δ − 1

Compute y = ri + (s × c)
y−−−−−−−−→ hash(yP + cV) ?= xi

Fig. 2. Overview of the elliptic curve-based variant of the GPS identification proto-
col. We use precomputation and coupons where h denotes the length of the output
from hash. Some minor protocol details are omitted and specific choices for different
parameters depend on the desired security level.

3 GPS Security and Implementation

The security of the GPS scheme is explored in a range of papers but particularly
in [19]. The GPS scheme is a zero-knowledge identification scheme and can be
converted into a signature scheme using established methods [15]. However it is
the identification scheme that is of interest to us here.

To give some idea of the parameter sizes we might need we consider the options
for an adversary. An attacker might attempt to recover the tag-specific secret
key s from the public information, but brute-force efforts require a square-root
work effort [9]. Thus, for a security level of 80 bits we set |s| = σ = 160. Given
the nature of some RFID applications, other security levels may be acceptable
and would allow a corresponding change to the size of s.

Independently of attempts to compromise the per-tag private key, an at-
tacker may attempt to impersonate the tag. The probability of success for
an impersonating attacker is determined by the ease with which the challenge

376 M. McLoone and M.J.B. Robshaw

c can be anticipated. Consequently we need to be sure that the set of possible
challenges is sufficiently large to deter guessing. Again, much depends on the ap-
plication. A per-challenge security level of 2−8 is conceivable, but 2−20 and 2−32

would perhaps be more typical. Taking all these issues into consideration, the
different parameters we consider in this paper are σ ∈ {128, 160}, δ ∈ {8, 20, 32},
and for the six possible sets that result we set ρ = σ + δ + 80. The importance
of generating r in a sound manner is highlighted in [13].

Considering the role and placement of different components, the most ap-
propriate way for the reader to access public keys and shared parameters will
be architecture-dependent, see Section 6. However, when using coupons, spe-
cific choices in this regard will have no impact on tag performance. Instead,
the quantities that will have the most bearing on tag performance are the
following:

s Tag-specific secret key Stored on tag
ri, xi Per-use commitment Stored/generated on tag

c Challenge Transmitted to tag
y Response Computed on tag and transmitted to reader

4 Architectures for Constrained Environments

Two significant restrictions on the suitability of cryptographic algorithms for
constrained environments are limitations to space and power. Estimates vary on
exactly what space resources might be available, but a consensus is summarised
in [14,20] where it is suggested that low-end tags might have a total gate count
of around 1000 to 10000 GE of which only around 200-2000 would be available
for security features. Passive RFID tags are powered by interaction with the
electromagnetic field generated by the reader. Thus, implementations with high
average- or peak-power consumption will degrade the practical use of the tag.
One way to reduce power consumption is to reduce the clocking rate on the tag.
However long computations might fall foul of higher-level protocols.

A landmark paper from CHES 2004 detailed a highly optimised implementa-
tion of the AES [6]. This is intended for RFID deployment and makes a useful
reference point against which to benchmark other implementations. Therefore
we will provide the results of different implementations of the GPS identification
scheme and compare these to the highly optimised AES implementation in [6].

4.1 The AES Target Architecture

The AES can be used in a challenge-response authentication protocol and, as
a result, an on-tag implementation only requires encryption [6]. While the AES
implementation requires1 3595 GE and 8.15 μA, this requires clocking the tag at
100 kHz. This impacts higher-level communication protocols since the prompt

1 Target requirements were for an implementation of less than 5000 GE with a
maximum current consumption of 15 μA.

Public Key Cryptography and RFID Tags 377

… … ...

… … ...

… … ...

… … ...

… … ...

… … ...

… … ...

… … ...

+

Control
Logicc

r

s

‘0’

Stores intermediate
multiplication values

Performs left
shift by 1-bit

8

8

7

1

22 21 20 19 18 17 0

22 21 20 19 18 17 0

22 21 20 19 18 17 0

22 21 20 19 18 17 0

22 21 20 19 18 17 0

22 21 20 19 18 17 0

22 21 20 19 18 17 0

22 21 20 19 18 17 0

y

Fig. 3. An 8-bit architecture for the GPS identification scheme implemented with pa-
rameters |s| = σ = 160, |c| = δ = 20, and ρ = 260. Some performance characteristics
are given in Table 1.

from a reader should be answered within 320 μs and at 100 kHz this implies that
a tag response is required in 320 × 10−6 × 105 = 32 clock cycles. However 32
clock cycles is not enough to encrypt a challenge using the AES, so a modified
communication protocol was proposed which allowed the interleaved authenti-
cation of multiple tags and provided an individual tag up to 1800 clock cycles to
perform the computation [6]. The implementation of Feldhofer et al. separates
out considerations such as the analogue interface, digital control, and the use of
eeprom for the storage of tag-specific ID and key information [6]. We will follow
this example and restrict our attention to the cryptographic computation itself.
While coupons have an obvious impact on storage, this is addressed in Section 5.

4.2 GPS Architectures

In our proposed GPS architectures, we assume the use of coupons (see Sections 2
and 5.2) and so the main on-tag computation is y = r + (s × c). A number
of low area and low power architectures have been developed for a range of
security levels. We provide implementations for all six parameter sets outlined
in Section 3, namely σ ∈ {128, 160}, δ ∈ {8, 20, 32}, and ρ = σ + δ + 80.

An 8-bit architecture is illustrated in Figure 3. This performs byte-wise op-
erations on the inputs s and r and bit-wise operations on the challenge c. To
illustrate, consider σ = 160 and δ = 20 for which we set ρ = 260. The overall
multiplicand of (s × c) is 180 bits in length and multiplication can be imple-
mented using the basic left-shift shift-and-add multiplication algorithm [18].
When the input challenge bit is 1 the multiplicand is shifted left by one bit

378 M. McLoone and M.J.B. Robshaw

+

Control
Logicc

r

s

‘0’

Stores intermediate
multiplication values

Performs left
shift by 1-bit

16

16

15

1

… … ...
… … ... 0

… … ...
… … ... 0

… … ... 0

… … ... 0

… … ... 0

… … ... 0

… … ... 0

… … ... 0

… … ... 0

… … ... 0

… … ... 0

… … ... 0

… … ... 0

… … ... 0

011 10 9 8 7 6

11 10 9 8 7 6

011 10 9 8 7 6

11 10 9 8 7 6

11 10 9 8 7 6

11 10 9 8 7 6

11 10 9 8 7 6

11 10 9 8 7 6

11 10 9 8 7 6

11 10 9 8 7 6

11 10 9 8 7 6

11 10 9 8 7 6

11 10 9 8 7 6

11 10 9 8 7 6

11 10 9 8 7 6

11 10 9 8 7 6

y

Fig. 4. A 16-bit architecture for the GPS identification scheme implemented with pa-
rameters |s| = σ = 160, |c| = δ = 20, and ρ = 260. Some performance characteristics
are given in Table 1.

position and the result added to the value of s. When the challenge bit is 0
the multiplicand is shifted left but no addition is performed. A low-area and
low-power architecture of this shift-and-add algorithm is designed using an
array of shift registers to store the intermediate multiplicand values. These shift
registers are also used to perform the shifting required in the algorithm as out-
lined in Figure 3. In the 8-bit architecture, values of δ ≤ 24 can be accom-
modated and as such, the architecture comprises an array of 23 × 8-bit shift
registers. An 8-bit adder is used initially to perform the addition step of the left-
shift multiplication algorithm and once the full 180-bit multiplicand is achieved,
to reduce area costs, the adder is re-used to perform the byte-wise addition
with r.

Figure 4 shows a 16-bit architecture in which s and r are considered as 16-
bit blocks. The 16-bit architecture operates in a similar manner to the 8-bit
architecture except that a 16-bit adder is used to perform addition within the
multiplication and during addition with r. For both architectures, the size of
the shift register array will vary according to the input parameters as shown
below.

δ ∈ {8, 20, 32} 8 20 32 8 20 32
σ = 128 17 19 20 9 10 10
σ = 160 21 23 24 11 12 12

8-bit registers # 16-bit registers

Public Key Cryptography and RFID Tags 379

Table 1. Some initial implementation results for the GPS identification scheme and
the architectures illustrated in Figures 3 and 4

Area Current Timing
(gates) (μA@100 kHz) (cycles)

AES [6] 3595 8.15 1016
GPS 8-bit architecture
|s| = σ |c| = δ

160 32 1541 3.07 802
128 32 1327 2.62 670
160 20 1486 2.90 585
128 20 1286 2.43 485
160 8 1371 2.72 199
128 8 1167 2.28 163

GPS 16-bit architecture
|s| = σ |c| = δ

160 32 1642 3.41 401
128 32 1411 2.93 335
160 20 1642 2.98 401
128 20 1411 2.56 335
160 8 1511 2.53 192
128 8 1298 2.22 158

4.3 Performance Results

The on-tag GPS operation was implemented using the 8-bit and 16-bit archi-
tectures of Figures 3 and 4 with UMC 180 nm CMOS technology. The designs
were tested using Modelsim and synthesised using Synopsys Physical Com-
piler. The current estimates for each design were obtained from Synopsys
PrimePower and calculated as the average plus twice the standard deviation
for a set of randomly generated input values. Table 1 outlines the area, current,
and timing measurements for both architectures and all six parameter sets. The
required area for all variants lies within the assumed resource constraint of 2000
gates for low-end RFID tags, however there are some additional considerations
(see Section 6). With regards to the current consumption, even the largest design
in Table 1 requires only 3.41 μA which easily satisfies the 15 μA limit in [6].

If we were to use the interleaved challenge response protocol proposed by
Feldhofer et al. then a tag must respond 18 ms after a challenge is issued by a
reader [6]. Under the assumption that a protocol with similar demands is used
for an implementation of the GPS identification scheme, the tag must perform its
computation in 1800 clock cycles at a clock frequency of 100 kHz. This is achieved
by all the architectures described in Table 1 with room to spare. Interestingly,
the power consumption for some variants is so modest that one might consider
a faster clocking rate on the tag. Then the response time for some GPS variants
could approach the 320 μs required by the basic communication protocol.

380 M. McLoone and M.J.B. Robshaw

Control
Logic

‘0’
8

1

c

r

s

+

8

s

r

y

1

1

Fig. 5. A basic architecture for the LHW challenge optimisation to GPS [9]. Some
performance characteristics are given in Table 2.

5 GPS Optimisations

The literature offers several optimisations to the basic GPS scheme. Broadly
speaking they aim to optimise the on-tag computation time or the storage
requirements when using coupons.

5.1 Changing the Computation Profile

Girault and Lefranc [9] proposed two ways to reduce the on-tag computational
cost. The first required a change to the form of the secret key s, and the second
a change to the form of the challenge c. Both approaches turn multiplication
into simple serial additions.

Changing the form of the secret key requires some care. The proposal in [9]
was subsequently cryptanalysed by Coron, Lefranc, and Poupard [3]. While a
patch was proposed, the remaining secure alternatives do not appear to yield
attractive performance benefits. We do not consider this proposal further here.

The second approach, however, remains very interesting. This requires using
a long challenge c with a low Hamming weight, such that the non-zero bits are at
least σ−1 zero bits apart (recall that σ is the length of s the secret key). We refer
to this as a low Hamming weight (LHW) challenge. Such a challenge reduces the
on-tag computation to a serial addition of r with a modest number of repetitions
of s. The parameters to achieve a security level consistent with a probability of
impersonation of 2−32 are proposed in [9] and constitute a challenge of length
δ ≈ 850 with Hamming weight five.

The price to pay when reducing the tag computation in this way is an increase
to δ and ρ, namely the size of the challenge and the pre-commitment. While this
appears to induce a communication and storage overhead, this is not the case in
practice. Even though the challenge is around 850 bits in length, there are com-
pact representations, of around 50 bits, that for instance merely list the positions
of the five ones. Moreover, if we use coupons together with a suitably lightweight

Public Key Cryptography and RFID Tags 381

Table 2. Some initial performance results using the LHW optimisation [9] of the
GPS identification scheme. The parameter values match the security levels provided
by σ = 160 and δ = 32 in the basic scheme.

Area Current Timing
(gates) (μA@100 kHz) (clock cycles)

AES [6] 3595 8.15 1016
GPS 8-bit architecture 1541 3.07 802
GPS 16-bit architecture 1642 3.41 401
GPS LHW optimisation 317 0.61 1088

pseudo-random number generator (PRNG) to regenerate the ri, as proposed in
ISO 9798-5 [12], then there would no impact on the required storage [9], see
Section 5.2.

We now consider the performance impact of using a LHW challenge c for
the computation y = r + (s × c). A basic architecture for GPS with the LHW
challenge is shown in Figure 5. The form of the challenge is described above
and for this implementation we use the set of parameters, σ = 160, δ = 848,
and ρ = 1088 as proposed in [9]. The values s and r are input in 8-bit blocks,
stored in shift registers and operated on serially using a 1-bit adder. The register
containing the r byte is reloaded every eight clock cycles with the next byte of
r. The register containing the s byte is reloaded with the next s byte when c =
1 and every subsequent eight cycles. The input bit of c determines when s is to
be added to r; addition is performed when c = 1.

Table 2 provides area, current, and timing measurements for the LHW ar-
chitecture and compares these with the previous designs. The advantage of the
LHW optimisation [9] is clear and, as can be seen in Table 2, the LHW archi-
tecture has very low area and current requirements. However, since s and r are
added serially the overall computation time for a basic architecture takes 1088
clock cycles. As it stands, this essentially matches the AES implementation,
but there are two ways to address the time for the computation. First, given
the low current consumption, one could consider a higher clocking rate. While
the cycle count would remain unchanged, the elapsed time for the computation
would be reduced. Second, it appears to be possible to reduce the number of
cycles required by using slightly more sophisticated designs. These require some
additional management of the challenge and secret, but early estimates suggest
the computation time could be reduced significantly at the expense of increased
area. This is the topic of ongoing research.

5.2 Reducing the Storage Requirements

While eeprom requirements are less of an immediate concern, storing coupons
costs space and therefore raise the cost of an deployment. Considering the scheme
presented in Figure 2, we would expect each coupon (ri, xi) to be ρ + h bits in
length, where h is the length of the output from hash. Since the size of the
coupons directly influences the memory requirements of the tag or, conversely,

382 M. McLoone and M.J.B. Robshaw

Table 3. Coupon storage estimates (in bits) for different GPS optimisations. With the
LHW optimisation [9], a PRNG as proposed in ISO 9798-5 [12] becomes a necessity.

Without PRNG With PRNG [12]
Number of coupons 5 10 20 5 10 20

Basic implementation 2160 4320 8640 800 1600 3200
Optimisation [10] 1710 3420 6840 350 700 1400
Optimisation [8] 322 644 1288 250 500 1000

LHW [9] + Optimisation [8] 5690 11380 22760 250 500 1000

the amount of memory limits the number of coupons that can be stored, several
optimisations address this issue. Girault and Stern [10] consider the role of the
hash function in a range of identification protocols and propose smaller values
for the hash output. By considering the capabilities of the adversary, further
improvements to the sizes of xi are proposed by Girault in [8].

Independently, another optimisation reduces the coupon storage requirements
by regenerating the ri instead of storing each value. In ISO documentation [12]
it is suggested that the ri could be generated by a PRNG and so, depending on
the size of ρ and the number of coupons required, it might be more effective to
remove the contribution of ri from the coupons at a fixed cost of implementing
the PRNG. Within the eSTREAM project [5] some promising stream cipher
proposals aimed at efficient hardware implementation appear to occupy around
1500 GE and have very low current consumption [11]. Meanwhile estimates in [2]
suggest that dedicated options for a PRNG might require as little as 1000 GE.
Thus the burden of implementing a PRNG is unlikely to be overwhelming, and
when using the LHW challenge variant of GPS (see Table 2) the total space
required for a complete implementation of GPS and a PRNG is likely to be no
more than 2000 GE.

Throughout it is important to bear in mind the essential qualities of typical
RFID tag deployments. Tags are intended to be cheap and disposable, and there
are many applications, e.g. event ticketing or visa stamps, where only a handful
of coupons might be required over the (short) lifetime of the tag. Thus a PRNG
may not be required for many applications.

5.3 Changing the Security Level

As we saw in Section 4.2, basic implementations of the GPS identification scheme
are more efficient on-tag than the AES with regards to all three measures of
space, power, and computation. As is usually the case, different performance
characteristics can be obtained by varying some of the parameter sizes.

Throughout we have aimed to provide estimates for GPS at the 80-bit secu-
rity level. In this way we match typical basic security recommendations as well
as the public-key benchmark of 1024-bit RSA. It is, however, very difficult to
assess an appropriate level of security for an RFID application. RFID tags are
not particularly secure and they would not be deployed in applications with high
security requirements. While the AES offers 128-bit security, this is likely to be

Public Key Cryptography and RFID Tags 383

far larger than required for RFID deployment in the foreseeable future. When
inviting candidate stream ciphers suitable for low-resource hardware implemen-
tation, the eSTREAM project [5] required that they offer 80-bit security. Thus,
for certain applications, there is a feeling that 80-bit security may well be ade-
quate. Nevertheless, increasing GPS parameters to give, say, a 128-bit security
level leaves the essential message of the paper unchanged. Of course, there may
also be applications for which a lower security level is appropriate.

6 Other Issues

Neither a symmetric nor an asymmetric cryptographic deployment is necessarily
better than the other. Instead, both have advantages and disadvantages and
their relative suitability will depend on the application. That said, there are
situations where asymmetric cryptography on an RFID tag can open up new
application areas; particular so when we consider the more open deployments we
might anticipate for RFID tags. Like any cryptographic algorithm GPS requires
a supporting infrastructure, and while it is essentially an architectural issue to
decide how best to present the public parameters and key information to the
reader, some proposals have been made [8].

The GPS identification scheme is a commitment-challenge-response scheme
which may carry some communication complexity. However there is much ex-
perience in implementing such protocols and some recent proposals intended
for RFID deployment, such as HB+ [14], adopt a similar structure. The prob-
lem of an adversary maliciously consuming coupons as a denial of service at-
tack is out of the scope of this paper, but is considered in [2]. Finally, while
the resistance of an RFID tag to different forms of side-channel cryptanaly-
sis might not be great, when considered in the framework of a cost-benefit
analysis such attacks are rarely worthwhile for the vast majority of RFID tag
applications.

7 Conclusions

It is often said that strong public key cryptography cannot be deployed on
cheaper RFID tags. In this paper we have investigated the implementation of
the GPS identification scheme. With regards to all three attributes of space,
power, and computation time, GPS can be implemented as efficiently as to-
day’s most efficient AES implementation. Thus, any assumed limits to imple-
menting asymmetric cryptography on low-end RFID tags may need to be
reassessed.

Acknowledgements

We thank Marc Girault and Löıc Juniot for many interesting discussions.

384 M. McLoone and M.J.B. Robshaw

References

1. G. Avoine. Cryptography in Radio Frequency Identification and Fair Exchange
Protocols. Ph.D. thesis. December 2005.
Available via http://lasecwww.epfl.ch/~gavoine/rfid/.

2. B. Calmels, S. Canard, M. Girault, and H. Sibert. Low-cost Cryptography for Pri-
vacy in RFID Systems. In J. Domingo-Ferrer, J. Posegga, and D. Schreckling, edi-
tors, Smart Card Research and Applications, Proceedings of CARDIS 2006. LNCS
3928, pages 237–251, Springer Verlag, 2006.

3. J.S. Coron, D. Lefranc, and G. Poupard. A New Baby-Step Giant-Step Algorithm
and Some Applications to Cryptanalysis. In J. Rao and B. Sunar, editors, Pro-
ceedings of CHES 2005, LNCS 3659, pages 47–60, Springer Verlag, 2005.

4. EPCglobal Inc. Home Page. Available via http://www.epcglobalinc.org/.
5. eSTREAM Project. Available via http://www.ecrypt.eu.org/estream/.
6. M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong Authentication for RFID

Systems Using the AES Algorithm. In M. Joye and J.-J. Quisquater, editors, Pro-
ceedings of CHES 2004, LNCS 3156, pages 357–370, Springer Verlag, 2004.

7. M. Girault. Self-certified Public Keys. In D. Davies, editor, Proceedings of Euro-
crypt ’91, LNCS 547, pages 490–497, Springer-Verlag, 1992.

8. M. Girault. Low-size Coupons for Low-cost IC Cards. In J. Domingo-Ferrer,
D. Chan, and A. Watson, editors, Proceedings of Cardis 2000, IFIP Conference
Proceedings 180, pages 39–50, Kluwer Academic Publishers, 2000.

9. M. Girault and D. Lefranc. Public Key Authentication With One (On-line) Single
Addition. In M. Joye and J.J. Quisquater, editors, Proceedings of CHES ’04, LNCS
3156, pages 413–427, Springer-Verlag, 2004.

10. M. Girault and J. Stern. On the Length of Cryptographic Hash-values Used in
Identification Schemes. In Y. Desmedt, editor, Proceedings of Crypto ’94, LNCS
839, pages 202–215, Springer-Verlag, 1994.

11. T. Good, W. Chelton, and M. Benaissa. Review of Stream Cipher Candidates From
a Low Resource Hardware Perspective. Available via http://www.ecrypt.eu.org/.

12. ISO/IEC. International Standard ISO/IEC 9798 Part 5: Mechanisms Using Zero-
knowledge Techniques. December, 2004

13. IST-1999-12324. Final Report of European Project IST-1999-12324: New Euro-
pean Schemes for Signatures, Integrity, and Encryption (NESSIE). Available via
https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf.

14. A. Juels and S. Weis. Authenticating Pervasive Devices with Human Protocols. In
V. Shoup, editor, Proceedings of Crypto 05, LNCS 3126, 293-198, Springer-Verlag,
2005.

15. A. Menezes, P.C. van Oorschot, and S. Vanstone. The Handbook of Applied Cryp-
tography. CRC Press, 1996.

16. G.E. Moore. Cramming More Components Onto Integrated Circuits. Electronics,
April 19, 1965. Available via www.intel.com.

17. National Institute of Standards and Technology. FIPS 197: Advanced Encryption
Standard. Available via http://csrc.nist.gov/publications/fips/.

18. B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford
University Press, 2000.

19. G. Poupard and J. Stern. Secuity Analysis of a Practical “On the Fly” Authenti-
cation and Signature Generation. In K. Nyberg, editor, Proceedings of Eurocrypt
’98, LNCS 1403, pages 422–436, Springer-Verlag, 1998.

20. S. Weis. Security and Privacy in Radio-Frequency Identification Devices. M.Sc.
Thesis. May 2003.

A Bit-Slice Implementation of the Whirlpool
Hash Function�

Karl Scheibelhofer

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A–8010 Graz, Austria

karl.scheibelhofer@iaik.tugraz.at

Abstract. This work presents a bit-slice implementation of the Whirl-
pool hash function for 64-bit CPUs, which processes a single input block
in one pass. It describes the general approach for developing the formu-
las and presents the results. This implementation does not need table
lookups that depend on the data, which makes it immune against cache
timing attacks, e.g. if used in an HMAC. Moreover, it requires 63% less
memory (code and data) than the reference implementation of Whirl-
pool, and the performance of an implementation in C that uses some
SSE2 instructions is only about 40% less. Additional improvements seem
possible.

1 Introduction

Recently, cryptanalysis of hash functions has attracted attention in the crypto
community. Theoretical and practical attacks were published (e.g. [10]) that
apply to widely used hash functions like MD5 and SHA-1. These new attacks
triggered discussions about successors for these algorithms. One of them is the
Whirlpool hash function, which was created by Paulo Barreto and Vincent Ri-
jmen. [2] specifies the version we refer to in this document. Recently, it was
adopted as an ISO standard in ISO/IEC 10118-3 [1].

In addition to the cryptographic requirements for hash functions, a hash func-
tion should be efficient to compute. The most important performance aspects
are data throughput, code size and memory footprint. However, there are also
more subtle facets like cache access behavior. Typically, a developer has differ-
ent options for the implementation of an algorithm. A very common situation is
that we can trade off memory for performance to some extent. This means, if we
use more memory we can reduce the number of computation steps and increase
the throughput. The additional memory can, for instance, hold pre-computed
values. A typical example is the S-box operation. Whirlpool contains an S-box
operation, which can be implemented in an algorithmic way or using a table
with pre-computed values.

� The work in this paper has been supported by the Austrian Science Fund (FWF),
project P18138.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 385–401, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

386 K. Scheibelhofer

Sometimes, there are completely different approaches for implementing an
algorithm. Biham [4] presented a new way to implement the DES block
cipher. This so-called bit-slicing implementation performs the calculation in a
bit-parallel manner. Simplified, we can say that we describe each bit of the re-
sult as a Boolean function of the input bits. Often, this is not that easy and
straightforward as it sounds, at least if we want to get an implementation with
an acceptable performance. [9] and [6] present bit-slice implementations of the
Rijndael and AES block cipher that are suitable for 64-bit CPUs. Bit-slicing
has the additional advantage that it does not need table-lookups that depend
on the processed data. This makes it less susceptible to cache-timing attacks as
described in [3].

In this paper, we describe a bit-slice implementation of the Whirlpool hash
function that is suitable for CPUs with 64-bit registers and logical operations.
This solution can process one 512-bit input block at a time. Due to its operation
mode, it is impossible to process more blocks in parallel, which is what bit-slice
implementations of block ciphers often do. Concurrent handling of multiple input
blocks only works if the processing of one block does not need the result of the
previous block, but generally, hash functions have such dependencies.

First, we give an introduction to Whirlpool. In the following section, we de-
velop a bit-slice implementation step by step. We aim at a solution to group
bits in 64-bit variables in a way that allows parallel processing. The resulting
formulas will use 64-bit variables and operations as if they were 64 1-bit parallel.
Thereafter, we discuss optimization issues for this approach and continue with a
comparison to a reference implementation. Our implementation is written in C
and uses SSE2 operations and x64-assembly for certain operations. The code only
contains operations with constant execution time and uses not data-dependent
table lookups, which makes is immune to timing attacks. The document closes
with a summary and an outlook to further work.

2 Components of Whirlpool

For this work, only the compression function is of interest. We leave aside the
padding and splitting of the message into blocks because these operations are
common practice. Most of the formulas in this section were taken from [2].

Whirlpool is based on a dedicated 512-bit block cipher W and iterates the
Miyaguchi-Preneel hashing scheme. The formulas for processing the blocks ml

(1 ≤ l ≤ t) of the message M are

ηl = μ(ml),
H0 = μ(IV),
Hl = W [Hl−1](ηl) ⊕ Hl−1 ⊕ ηl, 1 ≤ l ≤ t

WHIRLPOOL(M) ≡ μ−1(Ht)

Here, IV is the initialization vector, which contains 512-bit zero bits. The
function μ fills an eight by eight matrix row by row with the octets of the

A Bit-Slice Implementation of the Whirlpool Hash Function 387

block of input data. μ−1 is its inverse. Whirlpool is specified by operations on
this matrix. Each entry of the matrix is considered an element of GF (28) with
the reduction polynomial p8(x) = x8 + x4 + x3 + x2 + 1.

μ : GF (28)64 → M8×8[GF (28)]

μ(a) = b ⇔ bij = a8i+j , 0 ≤ i, j ≤ 7
The dedicated block cipher W takes a key as parameter and is defined as

W [K] = (
10
©

r=1
ρ[Kr]) ◦ σ[K0]

In this formula, K0 and Kr are the round keys and ρ[k] is the round function,
which is iterated 10 times. The keys, the input and the output are M8×8[GF (28)]
matrices. The key addition function σ[k] is an XOR operation of the key k and
the input. The round function is the composite mapping

ρ[k] ≡ σ[k] ◦ θ ◦ π ◦ γ

The function ρ[k] and its components σ[k], θ, π and γ are mappings of type

M8×8[GF (28)] → M8×8[GF (28)]

The function γ is the non-linear layer and is defined using a substitution box
(S-box) S, which contains three smaller components E, E−1 and R (see Fig. 1
and [2]).

R

E E -1

E E -1

a0a7 a3a4

b7 b4 b3 b0

Fig. 1. The S-box of the Whirlpool Hash Function [8]

The function π is the cyclical permutation function. It rotates each column
by a different offset, i.e. it leaves column zero as it is, rotates down column one
by one position, column two by two positions and so on.

π(a) = b ⇔ bij = a(i−j) mod 8,j , 0 ≤ i, j ≤ 7

388 K. Scheibelhofer

The linear diffusion layer θ multiplies the input a by the constant matrix C.

θ(a) = b ⇔ b = a · C

The round keys Kr are calculated using round constants cr and are defined as

K0 = K

Kr = ρ[cr](Kr−1) r > 0
cr
0j ≡ S[8(r − 1) + j] 0 ≤ j ≤ 7

cr
ij ≡ 0 1 ≤ i ≤ 7, 0 ≤ j ≤ 7

Fig. 2 shows that there are two block ciphers running in parallel, one for the
data path and one for the key schedule.

[k]

hi-1

cr

hi

da
ta

pa
th

ke
y

sc
he

du
le

ro
un

ds
 r

=
1,

…
,1

0

[k]ro
un

ds
 r

=
1,

…
,1

0

[k]

cti

mi

mi hi-1

operation mode

bl
oc

k
ci

ph
er

 W

Fig. 2. Structure of Whirlpool [8]

3 The General Approach

The general approach is to change the data domain from M8×8[GF (28)] to a
different domain which is better suitable for a bit-parallel computation. Having
chosen a domain, we transform the operations that comprise Whirlpool into
that domain. We will mark the bit-sliced versions of the functions with a tilde.
The functions θ, π and γ are the most important of them. In addition, we need
functions that transform the input data into our new domain and the result
back from this domain. Naturally, we adapt the input and output functions μ
and μ−1 to do the mapping. We select M64×8[GF (2)] as our new domain instead
of M8×8[GF (28)] in the original formulas, i.e. eight vectors, each with 64 bit.
This selection allows fully exploiting 64-bit registers and operations of modern
CPUs.

A Bit-Slice Implementation of the Whirlpool Hash Function 389

In addition to μ̃ and μ̃−1, we get a bit-sliced version of the round function
ρ[k] called ρ̃[k]

ρ̃[k] ≡ σ̃[k] ◦ θ̃ ◦ π̃ ◦ γ̃

The following subsections describe the components.

3.1 The Input Function μ̃ and the Output Function μ̃−1

Instead of mapping GF (28)64 to M8×8[GF (28)], we define the input function
μ̃ to1

μ̃ : GF (28)64 → M64×8[GF (2)]

μ̃(a) = b ⇔ bi = [a0|i, a8|i, a16|i, . . . , a56|i,
a1|i, a9|i, a17|i, . . . , a57|i,
...
a7|i, a15|i, a23|i, . . . , a63|i], 0 ≤ i ≤ 7

This function traverses the octets column by column if we consider the input
an eight by eight matrix as in the traditional description. It collects the bit at
index zero of each octet (i.e. an element of GF (28)) in a single 64-bit vector. It
repeats that for all eight bits. This is the reason why it is called bit-slice, because
we slice the input bit-wise and not byte-wise.

The inverse μ̃−1 takes the eight 64-bit vectors and converts it back into 64
octets.

3.2 The Non-linear Layer γ̃

This function performs the S-box operations. For getting a bit-slice implementa-
tion of the S-box, we need a Boolean formula for each output bit of the S-box in
terms of the eight input bits. [2, Appendix B] already presents suitable formulas
for the components E, E−1 and R of the S-box.2 We only need some additional
XOR operations to combine the results (see Fig. 1).

The formulas allow the computation of the eight bits of a single S-box oper-
ation. The S-box and thus the formulas are the same for all 64 octets. Thus, we
can use the same formulas with the 64-bit vectors instead of just using single-bit
variables. We use the 64-bit vectors and operations as if we had 64 parallel 1-bit
CPUs with 1-bit registers. This works because all required operations (like logi-
cal AND, OR, XOR and NOT) only affect corresponding bits in the operands,
e.g. if we XOR two 64-bit values, bit 5 of the first operand is XORed with bit 5
of the second operand. The values of all other bits have no influence for bit 5 of
the result.
1 The notation a|i means the i-th bit of element a.
2 Shorter formulas for the components may exist than those given in [2, Appendix B].

However, finding optimal formulas is a complex problem.

390 K. Scheibelhofer

3.3 The Cyclical Permutation π̃

In M8×8[GF (28)], π is just a rotation of the values of each column by a fixed
number of positions. Since the first column remains untouched, we need to load
and store 56 octets. Here, we have the bits collected in 64-bit vectors column
by column. This means, the first octet of a vector contains the eight bits of the
first column, the second octet the eight bits of the second column and so on. In
consequence, we can leave the first octet as it is because the first column needs
no rotation. We have to rotate the second octet by one bit, the third octet by
two bits and so on. This repeats for all eight 64-bit vectors.

3.4 The Linear Diffusion Layer θ̃

Developing a bit-slice version of the function θ is more work than for the other
functions because there is no prior work that we can build upon. We start by
investigating the linear diffusion layer of the original Whirlpool specification to
derive formulas for the single bits of the result of this function. Then we will
develop versions of these formulas that lend themselves to bit-slicing. On the
first glance, this function looks very complicated to adapt for our purpose, but
it turns out that it can be computed efficiently. Written out, the θ function is

⎡⎢⎢⎢⎣
b00 b01 . . . b07
b10 b11 . . . b17
...

...
...

b70 b71 . . . b77

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
a00 a01 . . . a07
a10 a11 . . . a17
...

...
...

a70 a71 . . . a77

⎤⎥⎥⎥⎦ .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 4 1 8 5 2 9
9 1 1 4 1 8 5 2
2 9 1 1 4 1 8 5
5 2 9 1 1 4 1 8
8 5 2 9 1 1 4 1
1 8 5 2 9 1 1 4
4 1 8 5 2 9 1 1
1 4 1 8 5 2 9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It is noteworthy that the columns and rows of the constant matrix C are rotations
of each other. Multiplication of an element by a constant means a polynomial
multiplication modulo the reduction polynomial p8(x) = x8 + x4 + x3 + x2 + 1.
Formulas for the products are given in Appendix A.1.

Note that the constant multipliers only rotate to down from one column to
the next. Instead of rotating the multipliers to down, we can also rotate the
operands to the left, such that operands with the same multipliers are aligned.
This leads to the following formula (indices are mod 8).3

bij = aij ⊕9ai(j+1)⊕2ai(j+2)⊕5ai(j+3)⊕8ai(j+4)⊕ ai(j+5)⊕4ai(j+6)⊕ ai(j+7)

We did not change the formulas; we only reordered the terms. Now, we have
effectively the same formula for all rows and all columns. This is what we need
for parallelization.

We have the input matrix in a bit-sliced form, all bits with index 0 in one
64-bit word. We start with the 0-bit of a00 and proceed column by column, i.e.
3 All formulas are given in Appendix A.2.

A Bit-Slice Implementation of the Whirlpool Hash Function 391

continue with a10,. . . , a70, then a01, a11,. . . , a71, and up to a07, a17,. . . , a77.
For the first term, we already have the columns in the right position. For the
other terms, we need some preparation. The second term starts one column to
the right of the result column (shown by the j + 1 index). To get the bits in the
registers in the corresponding position for an XOR operation, we have to rotate
8 bits to the left the register that holds the required input bits.

Performing the multiplications with the constants leads to formulas for the
individual bits of the output. For example, for bi0|0, we get4

bi0|0 = ai0|0 ⊕ (ai1|0 ⊕ ai1|5) ⊕ ai2|7 ⊕ (ai3|0 ⊕ ai3|6) ⊕ ai4|5 ⊕ ai5|0
⊕ai6|6 ⊕ ai7|0

After generalizing these formulas to apply to all eight columns, we get5

bij |0 = aij |0 ⊕ (ai(j+1)|0 ⊕ ai(j+1)|5) ⊕ ai(j+2)|7 ⊕ (ai(j+3)|0 ⊕ ai(j+3)|6)
⊕ai(j+4)|5 ⊕ ai(j+5)|0 ⊕ ai(j+6)|6 ⊕ ai(j+7)|0

This formula shows that we can calculate all bits with index 0 of all 64 output-
bytes in parallel. This was our goal. Implementing these formulas is straightfor-
ward if we interpret ai(j+k)|b as taking the variable that holds all bits with index
b and rotating it to the left by eight times k bits.

Let asb be the 64-bit variable that holds all bits (from all 64 input octets aij)
with bit index b.

asb = [aij |b], 0 ≤ i, j ≤ 7

We assume that the bits are collected per column as shown for μ̃. To evaluate
the values of bsb, we calculate rl8.k(asb) to get the value of an expression of
the form ai(j+k)|b, where rln(asb) is a rotation to the left of asb by n bits. For
instance, the first output value is6

bs0 = as0 ⊕ rl8(as0) ⊕ rl8(as5) ⊕ rl16(as7) ⊕ rl24(as0) ⊕ rl24(as6)
⊕rl32(as5) ⊕ rl40(as0) ⊕ rl48(as6) ⊕ rl56(as0)

3.5 The Key Addition σ̃[k̃]

The key addition function σ̃ is still a simple XOR operation. Thus, there are
only eight XOR operations with 64-bit operands. However, we have to be aware
of the fact that the key and the operand are in the bit-slice domain.

3.6 The Round Constants

The round constants are used as keys for the dedicated block cipher in the key
schedule. Our block cipher is bit-sliced, and thus, we also need the keys in bit-
slice representation. In general, we have two options. First, we can compute the
4 All formulas are given in Appendix A.3.
5 All formulas are given in Appendix A.4.
6 All formulas are given in Appendix A.5.

392 K. Scheibelhofer

round constants using the function γ̃ (maybe even every time we need them) or
second, we can compute them once and hard-code them.

A simple way for computing the round constants using γ̃ is the following. We
start with a M8×8[GF (28)] matrix. We will bit-slice this matrix using μ̃ and then
apply γ̃ to get a bit-sliced round constant. (If we calculated a round constant
in the M8×8[GF (28)] domain using γ, we would also setup a M8×8[GF (28)]
matrix.) For the first round constant, we would initialize the first row with the
values 0, 1, 2, 3, 4, 5, 6, 7. The second to the eighth row need a value which gets
zero after applying γ. 0x81 hexadecimal is the value that maps to zero, and thus,
we set all elements of the rows two to eight to the value 0x81. Then, we can apply
γ to the matrix. The rows two to eight will contain just zeros thereafter. The first
row would hold the results of the S-box operations. In bit-slicing mode, we can do
the same. The only difference is that we need to convert the input matrix (with
the same values as before) into the bit-slice domain using the function μ̃. Then
we apply function γ̃ and get the first round constant in the bit-slice domain.
For the other round constants, the procedure is the same, only the values in the
first row of the input matrix change. For the second round constant, the first
row would hold the values 8, 9, 10, 11, 12, 13, 14, 15, for the third, it would hold
16, 17, 18, 19, 20, 21, 22, 23 and so on.

4 Optimization Issues

In this section, we discuss some optimization issues of the bit-slice implementa-
tion. This includes hints for improving performance and discussion of different
implementation options.

4.1 The Input Function μ̃

Collecting the individual bits of the GF (28) octets in 64-bit vectors can be rather
expensive if we have only logical instructions. In this case, we have to copy the
bits from the octets into the 64-bit vectors, using shift and mask operations. To
get the bits out of the octet, we use an AND operation, and to insert it into the
vector, we use an OR operation (an XOR would also work). This requires nearly
2000 operations (shift, AND and OR) to process a 512 bit input block.7

New CPUs (e.g. Intel Pentium 4TM) often support Single Instruction Multi-
ple Data (SIMD) instructions sets like SSE2. SSE2 contains the PMOVMSKB
instruction, and using it can reduce the required number of operations for μ̃
to 120, and tests showed an actual throughput increase of over 80%. Section 5
presents an improved bit-slice implementation that uses this instruction.

4.2 The Non-linear Layer γ̃

We can implement the Boolean formulas of [2, Appendix B] to get the com-
ponents E, E−1 and R. Optimization of γ̃ would required shorter formulas,
however, finding optimal formulas is non-trivial.
7 A faster version is possible using the SWAPMOVE technique. See section 7.

A Bit-Slice Implementation of the Whirlpool Hash Function 393

4.3 The Cyclical Permutation π̃

In the operation domain of the normal Whirlpool specification, the function π
is rather simple. It is easy to describe and efficient to implement. Unfortunately,
in bit-slice mode, this is not the case.

We need to rotate the octets of each 64-bit vector individually. Notice that
this is not the same as a rotation of the complete 64-bit vector. In our case, we
have to treat the eight octets of a vector as isolated values. Usually, we would
have to extract each octet, rotate it as an octet value and then move it back to
its original position.

Arranging the bits in the 64-bit vectors row by row instead of column by
column (i.e. modifying the function μ̃) makes the situation even worse. In this
case, we would need to move around single bits instead of octets, which is even
more costly.

Optimizing this function is essential because it takes 344 operations within
the round function ρ̃ (see Section 5). Using Assembler instructions of an AMD-64
CPU, one can use a combination of rotations of a 64-bit register and rotations
of the 8-bit sub-register, e.g. rotating registers RAX and AL alternately. This
way, this function needs only 88 instructions.

4.4 The Linear Diffusion Layer θ̃

The formulas for the function θ̃ contain only rotations and XOR operations, and
the number of operations is comparable to the function γ̃ (S-boxes). Most CPUs
process such instructions very efficiently. However, there may still be room for
optimizations. For example, we can exploit the distributivity property of the
rotation operation.

rl8(as0) ⊕ rl8(as5) = rl8(as0 ⊕ as5)

This saves a rotation operation. In addition, we can calculate certain terms once
and reuse the result.

On some systems, it may also be feasible to implement the rotations by load-
ing a register with a suitable offset. If we write the value into the memory two
times, one right after the other, we can get the rotated value by loading a reg-
ister from this memory location with an offset. To get a rotation of eight bit to
the left, we load the register with the base address plus one byte offset. This
works because we only need rotations that are multiples of eight bits. The effi-
ciency of this approach depends on the performance of the CPU for non-aligned
memory access.

4.5 The Key Addition σ̃[k̃]

The key addition is a simple XOR operation for each of the eight 64-bit vectors.
This is negligible in contrast to the other functions of the block cipher. Moreover,
there is not much space for improvements in this function.

394 K. Scheibelhofer

4.6 The Round Constants

If we compute the round constants, the implementation is straightforward from
the description above. If we use pre-computed round constants and hard-code
them, we can use them directly. This takes eight constants for each of the ten
rounds with 64-bit each, this sums to 640 byte. In the non-bit-sliced Whirlpool,
we only have non-zero values in the first row of each round constant. Thus, we
can store all non-zero values within 80 byte. This seems to be an advantage over
the bit-sliced version. The constants for the bit-sliced version have a hamming
weight of at most eight. In addition, all bits of an octet are constantly zero except
the most significant bit. If we need an implementation with the smallest possible
memory demand, we can consider storing these constants in a compressed form.

5 Bit-Slicing vs. Non-bit-Slicing

In this section, we compare a table-based implementation of the Whirlpool hash-
ing function with two bit-slice implementations. The table-based implementation
is the reference implementation in C by Paulo Barreto and Vincent Rijmen. It
does not simply execute the formulas of the specification in C; it is optimized
for maximum speed. Popular crypto libraries like OpenSSL8 and Crypto++9

use this code, and this approach does not seem to offer significant potential for
further optimization. The first bit-sliced implementation is written in pure C,
and the second is written in C with the μ̃ function using compiler intrinsics to
access SSE2 instructions and π̃ implemented in assembly language (both versions
developed by the author of this paper). We used the Microsoft Visual C++ 2005
compiler for 64-bit platforms on a Windows 2003 Server x64 Edition with an
AMD Opteron 146 processor. The part that we analyze is the compression func-
tion of Whirlpool. Please note that we do not consider memory access operations
and overhead of function calls when we count the instructions. 10

Table 1 and 2 show that the simple bit-slice implementation needs 3.3 times
more operations than the table-based operation. The input preparation already
takes 1984 operations.

Table 2 shows the function ρ̃[k̃] of the simple bit-sliced implementation. Note,
that the block cipher W̃ [K̃] applies ρ̃[k̃] 20 times, 10 times for the key schedule
and 10 times for the data path. Here, we can see that the cyclical permutation π̃
accounts for 344 operations out of the total of 498, which is 69%. This operation
is costly if implemented in C because it needs to rotate individual byte-blocks
inside of 64-bit variables.
8 Latest version of OpenSSL as of 20 September 2006 in the CVS repository of the

project.
9 Version 5.2.1.

10 This provides realistic results. Modern CPUs usually have separate execution units
for memory access, which can operate in parallel to the ALU. If the number of
memory access operations is lower than the number of logic operations, they may
not show at all in the overall performance figures. This heavily depends on the
internal processor architecture (see [5] for further details).

A Bit-Slice Implementation of the Whirlpool Hash Function 395

Table 1. Instruction counts for the reference implementation

Step AND XOR SH Sum
μ 56 56 56 168

Apply K0 8 8
Cipher(10 R) 1120 1200 1120 3440
Miyag.-Pren. 16 16

Total 3632

Table 2. Instruction counts for the simple bit-slice implementation

Step AND XOR SH OR NOT ROT Sum
γ̃ 8 39 13 5 65
π̃ 120 112 112 344
θ̃ 25 56 81
σ̃ 8 8

Total ρ̃[k̃] 498
μ̃ 512 960 512 1984

Apply K̃0 8 8
Cipher(10 R) 2560 1440 2240 2500 100 1120 9960
Miyag.-Pren. 16 16

Total 11968

The improved bit-slice implementation performs better. This implementation
has an optimized implementation of the function μ̃ for bit-slicing the input, which
uses SSE2 instructions like PMOVMSKB and rotations. Moreover, it includes an
assembly implementation of the function π̃, which uses the combined 64-bit/8-
bit rotations as described in 4.3. This implementation requires only 88 rotation
instructions (56 8-bit rotations and 32 64-bit rotations).

Table 3 shows that the number of operations for the input preparation re-
duced to 120, and the operations for the 20 rounds of the block cipher reduced
to about the half. In total, this implementation requires only 37% more instruc-
tions than the table-based version. The actual performance may vary because
different processors execute instructions with a different speed. With the RDTSC
instruction we measured the required clock cycles on an AMD Opteron 146 CPU,
which took 2881 cycles for processing a block with the reference implementation
and 4541 cycles for the improved bit-slice variant. This is a ratio of 1.58.

A big advantage of the bit-sliced implementations is that they need less mem-
ory, as Table 4 shows, because they do not need any lookup tables for operations
like the S-boxes. In fact, the bit-slice code does not include any operation whose
execution time depends on the processed data. No data is used as a branch
condition, as an index or as bit-count in a rotation operation. These are the
best premises for countering timing attacks. Excluding tables and constants, the
pure code sizes are similar. The table-based implementation takes 5194 byte
versus 7320 byte for the improved bit-slice version. Thus, the total memory

396 K. Scheibelhofer

Table 3. Instruction counts for the improved bit-slice implementation

Step AND XOR OR NOT ROT SSE2 Sum
γ̃ 8 39 13 5 65
π̃ 88 88
θ̃ 25 56 81
σ̃ 8 8

Total ρ̃[k̃] 242
μ̃ 120 120

Apply K̃0 8 8
Cipher(10 R) 160 1440 260 100 2880 4840
Miyag.-Pren. 16 16

Total 4984

requirements are 8216 byte for the improved bit-slice version in contrast to 21914
byte for the reference variant, which is 63% less. The required memory for the
round constants of the bit-slice variant can be reduced further by storing the
constants in a compressed form (see 4.6).

Table 4. Memory requirements (in byte) of the reference and the improved bit-slice
implementation

Table-Based Bit-Sliced
Constants Round Constants 80 640

Lookup Tables 16384 0
During State 64 64

Compression Input Data 64 64
Key 64 64

Working Variable 64 64
Sum of Data 16720 896
Code Size 5194 7320

Total Memory 21914 8216

6 Conclusion

This work presented a bit-sliced version of Whirlpool that can be used as a drop-
in replacement for existing implementations. Even though our improved bit-
slice implementation shown here needs 37% more operations than the reference
implementation that uses large tables, this work shows that such an alternative
implementation has some benefits. It needs significantly less memory, about 95%
less data memory and 63% less total memory (code and data) compared to the
aforementioned reference implementation. In addition, it contains no instructions
whose execution time depends on the processed data, like data-dependent table
lookups. This prevents susceptibility to cache timing attacks, which can be an
issue in certain applications.

A Bit-Slice Implementation of the Whirlpool Hash Function 397

7 Further Work

Modern PC processors like Intel Pentium 4 or AMD Opteron support the SSE2
extension, which offers 128-bit registers and instructions. This instruction set
contains all logical operations required to implement the bit-sliced Whirlpool.
An implementation that operates with SSE2 registers only would also run on
32-bit CPUs that support SSE2, which are more common than 64-bit CPUs.
A pure SSE2 implementation would offer an additional advantage due to the
wider registers. It would allow processing the data path and the key schedule
in parallel (see Fig. 2). This can result in a big performance gain. However, the
actual results may vary depending on the execution speed of SSE2 operations
compared to operations on general-purpose registers.

Because the μ̃ function is actually a bit-permutation operation, it is possible
to implement this operation using the SWAPMOVE technique that is also used
for permutations in several DES implementations (e.g. in OpenSSL and [7]). A
first version required 24 shift, 36 XOR and 12 AND operations and reversing
the byte-order of the result, which can be implemented using 8 BSWAP opera-
tions. However, this speed-up had little influence on the speed of the complete
compression function.

Acknowledgements

We want to thank Vincent Rijmen for his support in this work. The discussions
with him and his comments were always valuable.

References

1. ISO/IEC 10118-3:2004: Information technology – Security techniques – Hash-
functions – Part 3: Dedicated hash-functions. International Organization for Stan-
dardization, Geneva, Switzerland, 2004.

2. Paulo S.L.M. Barreto and Vincent Rijmen. The WHIRLPOOL Hashing Function,
May 2003.

3. Daniel J. Bernstein. Cache-timing attacks on AES, April 2005.
4. Eli Biham. A Fast New DES Implementation in Software. In Eli Biham, editor,

Fast Software Encryption, volume 1267 of Lecture Notes in Computer Science,
pages 260–272. Springer, 1997.

5. Agner Fog. The microarchitecture of Intel and AMD CPU’s, August 2006.
6. Mitsuru Matsui. How Far Can We Go on the x64 Processors? In Fast Software

Encryption, March 2006.
7. Lauren May, Lyta Penna, and Andrew Clark. An implementation of bitsliced des

on the pentium mmxtm processor. In Ed Dawson, Andrew Clark, and Colin Boyd,
editors, ACISP, volume 1841 of Lecture Notes in Computer Science, pages 112–122.
Springer, 2000.

8. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. A compact
FPGA implementation of the hash function whirlpool. In Steven J. E. Wilton
and André DeHon, editors, FPGA, pages 159–166. ACM, 2006.

398 K. Scheibelhofer

9. Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R. Rao,
and Pankaj Rohatgi. Efficient rijndael encryption implementation with composite
field arithmetic. In CHES ’01: Proceedings of the Third International Workshop
on Cryptographic Hardware and Embedded Systems, pages 171–184, London, UK,
2001. Springer-Verlag.

10. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Com-
puter Science, pages 17–36. Springer, 2005.

A Formulas for Function θ̃

A.1 Products

The multiplications with the relevant constants are in Table 5. Each row element
shows the result of a single bit as a logical combination of bits of the input a.

Table 5. Formulas for products

Result Constant Multiplier
Bit 1 2 4 5 8 9

0 a|0 a|7 a|6 a|0⊕a|6 a|5 a|0⊕a|5
1 a|1 a|0 a|7 a|1⊕a|7 a|6 a|1⊕a|6
2 a|2 a|1⊕a|7 a|0⊕a|6 a|0⊕a|2⊕a|6 a|5⊕a|7 a|2⊕a|5⊕a|7
3 a|3 a|2⊕a|7 a|1⊕a|6⊕a|7 a|1⊕a|3⊕a|6⊕a|7 a|0⊕a|5⊕a|6 a|0⊕a|3⊕a|5⊕a|6
4 a|4 a|3⊕a|7 a|2⊕a|6⊕a|7 a|2⊕a|4⊕a|6⊕a|7 a|1⊕a|5⊕a|6⊕a|7 a|1⊕a|4⊕a|5⊕a|6⊕a|7
5 a|5 a|4 a|3⊕a|7 a|3⊕a|5⊕a|7 a|2⊕a|6⊕a|7 a|2⊕a|5⊕a|6⊕a|7
6 a|6 a|5 a|4 a|4⊕a|6 a|3⊕a|7 a|3⊕a|6⊕a|7
7 a|7 a|6 a|5 a|5⊕a|7 a|4 a|4⊕a|7

A.2 Formulas for Column 0 in the Result

The elements bi0 to bi7 (0 ≤ i ≤ 7) in a result column are calculated as follows:

bi0 = ai0 ⊕ 9ai1 ⊕ 2ai2 ⊕ 5ai3 ⊕ 8ai4 ⊕ ai5 ⊕ 4ai6 ⊕ ai7

bi1 = ai0 ⊕ ai1 ⊕ 9ai2 ⊕ 2ai3 ⊕ 5ai4 ⊕ 8ai5 ⊕ ai6 ⊕ 4ai7

bi2 =4ai0 ⊕ ai1 ⊕ ai2 ⊕ 9ai3 ⊕ 2ai4 ⊕ 5ai5 ⊕ 8ai6 ⊕ ai7

bi3 = ai0 ⊕ 4ai1 ⊕ ai2 ⊕ ai3 ⊕ 9ai4 ⊕ 2ai5 ⊕ 5ai6 ⊕ 8ai7

bi4 =8ai0 ⊕ ai1 ⊕ 4ai2 ⊕ ai3 ⊕ ai4 ⊕ 9ai5 ⊕ 2ai6 ⊕ 5ai7

bi5 =5ai0 ⊕ 8ai1 ⊕ ai2 ⊕ 4ai3 ⊕ ai4 ⊕ ai5 ⊕ 9ai6 ⊕ 2ai7

bi6 =2ai0 ⊕ 5ai1 ⊕ 8ai2 ⊕ ai3 ⊕ 4ai4 ⊕ ai5 ⊕ ai6 ⊕ 9ai7

bi7 =9ai0 ⊕ 2ai1 ⊕ 5ai2 ⊕ 8ai3 ⊕ ai4 ⊕ 4ai5 ⊕ ai6 ⊕ ai7

A.3 Bits for Column 0 in the Result

The notation b00|0 denotes the bit at index 0 of element b00. The individual bits
of bi0 are as follows:

A Bit-Slice Implementation of the Whirlpool Hash Function 399

bi0|0 = ai0|0 ⊕ (ai1|0 ⊕ ai1|5) ⊕ ai2|7 ⊕ (ai3|0 ⊕ ai3|6) ⊕ ai4|5 ⊕ ai5|0
⊕ai6|6 ⊕ ai7|0

bi0|1 = ai0|1 ⊕ (ai1|1 ⊕ ai1|6) ⊕ ai2|0 ⊕ (ai3|1 ⊕ ai3|7) ⊕ ai4|6 ⊕ ai5|1
⊕ai6|7 ⊕ ai7|1

bi0|2 = ai0|2 ⊕ (ai1|2 ⊕ ai1|5 ⊕ ai1|7) ⊕ (ai2|1 ⊕ ai2|7)
⊕(ai3|0 ⊕ ai3|2 ⊕ ai3|6) ⊕ (ai4|5 ⊕ ai4|7) ⊕ ai5|2
⊕(ai6|0 ⊕ ai6|6) ⊕ ai7|2

bi0|3 = ai0|3 ⊕ (ai1|0 ⊕ ai1|3 ⊕ ai1|5 ⊕ ai1|6) ⊕ (ai2|2 ⊕ ai2|7)
⊕(ai3|1 ⊕ ai3|3 ⊕ ai3|6 ⊕ ai3|7) ⊕ (ai4|0 ⊕ ai4|5 ⊕ ai4|6)
⊕ai5|3 ⊕ (ai6|1 ⊕ ai6|6 ⊕ ai6|7) ⊕ ai7|3

bi0|4 = ai0|4 ⊕ (ai1|1 ⊕ ai1|4 ⊕ ai1|5 ⊕ ai1|6 ⊕ ai1|7)
⊕(ai2|3 ⊕ ai2|7) ⊕ (ai3|2 ⊕ ai3|4 ⊕ ai3|6 ⊕ ai3|7)
⊕(ai4|1 ⊕ ai4|5 ⊕ ai4|6 ⊕ ai4|7) ⊕ ai5|4
⊕(ai6|2 ⊕ ai6|6 ⊕ ai6|7) ⊕ ai7|4

bi0|5 = ai0|5 ⊕ (ai1|2 ⊕ ai1|5 ⊕ ai1|6 ⊕ ai1|7) ⊕ ai2|4
⊕(ai3|3 ⊕ ai3|5 ⊕ ai3|7) ⊕ (ai4|2 ⊕ ai4|6 ⊕ ai4|7)
⊕ai5|5 ⊕ (ai6|3 ⊕ ai6|7) ⊕ ai7|5

bi0|6 = ai0|6 ⊕ (ai1|3 ⊕ ai1|6 ⊕ ai1|7) ⊕ ai2|5 ⊕ (ai3|4 ⊕ ai3|6)
⊕(ai4|3 ⊕ ai4|7) ⊕ ai5|6 ⊕ ai6|4 ⊕ ai7|6

bi0|7 = ai0|7 ⊕ (ai1|4 ⊕ ai1|7) ⊕ ai2|6 ⊕ (ai3|5 ⊕ ai3|7)
⊕ai4|4 ⊕ ai5|7 ⊕ ai6|5 ⊕ ai7|7

A.4 Bits for All Elements in the Result

These are the generalized formulas the the bits of all result elements.

bij |0 = aij |0 ⊕ (ai(j+1)|0 ⊕ ai(j+1)|5) ⊕ ai(j+2)|7 ⊕ (ai(j+3)|0 ⊕ ai(j+3)|6)
⊕ai(j+4)|5 ⊕ ai(j+5)|0 ⊕ ai(j+6)|6 ⊕ ai(j+7)|0

bij |1 = aij |1 ⊕ (ai(j+1)|1 ⊕ ai(j+1)|6) ⊕ ai(j+2)|0 ⊕ (ai(j+3)|1 ⊕ ai(j+3)|7)
⊕ai(j+4)|6 ⊕ ai(j+5)|1 ⊕ ai(j+6)|7 ⊕ ai(j+7)|1

bij |2 = aij |2 ⊕ (ai(j+1)|2 ⊕ ai(j+1)|5 ⊕ ai(j+1)|7) ⊕ (ai(j+2)|1 ⊕ ai(j+2)|7)
⊕(ai(j+3)|0 ⊕ ai(j+3)|2 ⊕ ai(j+3)|6) ⊕ (ai(j+4)|5 ⊕ ai(j+4)|7)
⊕ai(j+5)|2 ⊕ (ai(j+6)|0 ⊕ ai(j+6)|6) ⊕ ai(j+7)|2

bij |3 = aij |3 ⊕ (ai(j+1)|0 ⊕ ai(j+1)|3 ⊕ ai(j+1)|5 ⊕ ai(j+1)|6)
⊕(ai(j+2)|2 ⊕ ai(j+2)|7)
⊕(ai(j+3)|1 ⊕ ai(j+3)|3 ⊕ ai(j+3)|6 ⊕ ai(j+3)|7)
⊕(ai(j+4)|0 ⊕ ai(j+4)|5 ⊕ ai(j+4)|6) ⊕ ai(j+5)|3
⊕(ai(j+6)|1 ⊕ ai(j+6)|6 ⊕ ai(j+6)|7) ⊕ ai(j+7)|3

400 K. Scheibelhofer

bij |4 = aij |4 ⊕ (ai(j+1)|1 ⊕ ai(j+1)|4 ⊕ ai(j+1)|5 ⊕ ai(j+1)|6 ⊕ ai(j+1)|7)
⊕(ai(j+2)|3 ⊕ ai(j+2)|7)
⊕(ai(j+3)|2 ⊕ ai(j+3)|4 ⊕ ai(j+3)|6 ⊕ ai(j+3)|7)
⊕(ai(j+4)|1 ⊕ ai(j+4)|5 ⊕ ai(j+4)|6 ⊕ ai(j+4)|7) ⊕ ai(j+5)|4
⊕(ai(j+6)|2 ⊕ ai(j+6)|6 ⊕ ai(j+6)|7) ⊕ ai(j+7)|4

bij |5 = aij |5 ⊕ (ai(j+1)|2 ⊕ ai(j+1)|5 ⊕ ai(j+1)|6 ⊕ ai(j+1)|7) ⊕ ai(j+2)|4
⊕(ai(j+3)|3 ⊕ ai(j+3)|5 ⊕ ai(j+3)|7)
⊕(ai(j+4)|2 ⊕ ai(j+4)|6 ⊕ ai(j+4)|7) ⊕ ai(j+5)|5
⊕(ai(j+6)|3 ⊕ ai(j+6)|7) ⊕ ai(j+7)|5

bij |6 = aij |6 ⊕ (ai(j+1)|3 ⊕ ai(j+1)|6 ⊕ ai(j+1)|7) ⊕ ai(j+2)|5
⊕(ai(j+3)|4 ⊕ ai(j+3)|6) ⊕ (ai(j+4)|3 ⊕ ai(j+4)|7)
⊕ai(j+5)|6 ⊕ ai(j+6)|4 ⊕ ai(j+7)|6

bij |7 = aij |7 ⊕ (ai(j+1)|4 ⊕ ai(j+1)|7) ⊕ ai(j+2)|6 ⊕ (ai(j+3)|5 ⊕ ai(j+3)|7)
⊕ai(j+4)|4 ⊕ ai(j+5)|7 ⊕ ai(j+6)|5 ⊕ ai(j+7)|7

A.5 64-Bit Vectors of the Result

These formulas show how to compute all eight 64-bit vectors of the result.

bs0 = as0 ⊕ rl8(as0) ⊕ rl8(as5) ⊕ rl16(as7) ⊕ rl24(as0) ⊕ rl24(as6)
⊕rl32(as5) ⊕ rl40(as0) ⊕ rl48(as6) ⊕ rl56(as0)

bs1 = as1 ⊕ rl8(as1) ⊕ rl8(as6) ⊕ rl16(as0) ⊕ rl24(as1) ⊕ rl24(as7)
⊕rl32(as6) ⊕ rl40(as1) ⊕ rl48(as7) ⊕ rl56(as1)

bs2 = as2 ⊕ rl8(as2) ⊕ rl8(as5) ⊕ rl8(as7) ⊕ rl16(as1) ⊕ rl16(as7)
⊕rl24(as0) ⊕ rl24(as2) ⊕ rl24(as6) ⊕ rl32(as5) ⊕ rl32(as7)
⊕rl40(as2) ⊕ rl48(as0) ⊕ rl48(as6) ⊕ rl56(as2)

bs3 = as3 ⊕ rl8(as0) ⊕ rl8(as3) ⊕ rl8(as5) ⊕ rl8(as6) ⊕ rl16(as2)
⊕rl16(as7) ⊕ rl24(as1) ⊕ rl24(as3) ⊕ rl24(as6) ⊕ rl24(as7)
⊕rl32(as0) ⊕ rl32(as5) ⊕ rl32(as6) ⊕ rl40(as3)
⊕rl48(as1) ⊕ rl48(as6) ⊕ rl48(as7) ⊕ rl56(as3)

bs4 = as4 ⊕ rl8(as1) ⊕ rl8(as4) ⊕ rl8(as5) ⊕ rl8(as6) ⊕ rl8(as7)
⊕rl16(as3) ⊕ rl16(as7) ⊕ rl24(as2) ⊕ rl24(as4) ⊕ rl24(as6)
⊕rl24(as7) ⊕ rl32(as1) ⊕ rl32(as5) ⊕ rl32(as6) ⊕ rl32(as7)
⊕rl40(as4) ⊕ rl48(as2) ⊕ rl48y(as6) ⊕ rl48(as7) ⊕ rl56(as4)

bs5 = as5 ⊕ rl8(as2) ⊕ rl8(as5) ⊕ rl8(as6) ⊕ rl8(as7) ⊕ rl16(as4)
⊕rl24(as3) ⊕ rl24(as5) ⊕ rl24(as7) ⊕ rl32(as2) ⊕ rl32(as6)
⊕rl32(as7) ⊕ rl40(as5) ⊕ rl48(as3) ⊕ rl48(as7) ⊕ rl56(as5)

A Bit-Slice Implementation of the Whirlpool Hash Function 401

bs6 = as6 ⊕ rl8(as3) ⊕ rl8(as6) ⊕ rl8(as7) ⊕ rl16(as5) ⊕ rl24(as4)
⊕rl24(as6) ⊕ rl32(as3) ⊕ rl32(as7) ⊕ rl40(as6) ⊕ rl48(as4)
⊕rl56(as6)

bs7 = as7 ⊕ rl8(as4) ⊕ rl8(as7) ⊕ rl16(as6) ⊕ rl24(as5) ⊕ rl24(as7)
⊕rl32(as4) ⊕ rl40(as7) ⊕ rl48(as5) ⊕ rl56(as7)

Author Index

Acıiçmez, Onur 225, 271
Au, Man Ho 178

Bellare, Mihir 145
Biham, Eli 20

Chen, Zhijie 112
Chevallier-Mames, Benôıt 339
Chida, Koji 196

Desmedt, Yvo 324
Dunkelman, Orr 20

Fischer, W. 257
Franklin, Matthew 163

Gammel, B.M. 257
Gondree, Mark 163

Jakimoski, Goce 324
Jameel, Hassan 67
Jarecki, Stanis�law 287
Joye, Marc 339

Keller, Nathan 1, 20
Kim, Jihye 287
Kim, Seungjoo 309
Kniffler, O. 257
Koç, Çetin Kaya 225, 271

Lamberger, Mario 101
Lano, Joseph 85
Lee, Heejo 67
Lee, Sungyoung 67
Li, Zhibin 112

Mangard, Stefan 243
McLoone, M. 372
Mendel, Florian 85
Miller, Stephen D. 1
Mironov, Ilya 1

Mohassel, Payman 163
Mu, Yi 178

Nam, Junghyun 309
Neven, Gregory 145

Oswald, Elisabeth 243

Paillier, Pascal 31
Park, Sangjoon 309
Pieprzyk, Josef 357
Pramstaller, Norbert 101
Preneel, Bart 85

Qian, Haifeng 112

Rechberger, Christian 101
Rijmen, Vincent 101
Robshaw, M.J.B. 372

Scheibelhofer, Karl 385
Schindler, Werner 271
Seifert, Jean-Pierre 225
Shaikh, Riaz Ahmed 67
Silverman, Joseph H. 208
Steinfeld, Ron 357
Susilo, Willy 178

Tsudik, Gene 287

Velten, J. 257
Venkatesan, Ramarathnam 1
Verheul, Eric R. 49

Wang, Huaxiong 357
Whyte, William 208
Won, Dongho 309
Wu, Qianhong 178

Yamamoto, Go 196
Yang, Siman 112
Yi, Xun 129

	Frontmatter
	Symmetric-Key Encryption
	MV3: A New Word Based Stream Cipher Using Rapid Mixing and Revolving Buffers
	A Simple Related-Key Attack on the Full SHACAL-1

	Signatures and Authentication
	Impossibility Proofs for RSA Signatures in the Standard Model
	Selecting Secure Passwords
	Human Identification Through Image Evaluation Using Secret Predicates

	Hash Functions
	Cryptanalysis of Reduced Variants of the FORK-256 Hash Function
	Second Preimages for SMASH

	Digital Signatures (I)
	A Practical Optimal Padding for Signature Schemes
	Directed Transitive Signature Scheme
	Identity-Based Multi-signatures from RSA

	Cryptographic Protocols (I)
	Improved Efficiency for Private Stable Matching
	Compact E-Cash from Bounded Accumulator
	Batch Processing of Interactive Proofs

	Side-Channel Attacks (I)
	Timing Attacks on {\sf NTRUEncrypt} Via Variation in the Number of Hash Calls
	Predicting Secret Keys Via Branch Prediction

	Side-Channel Attacks (II)
	Template Attacks on Masking---Resistance Is Futile
	Differential Power Analysis of Stream Ciphers
	Cache Based Remote Timing Attack on the AES

	Cryptographic Protocols (II)
	Group Secret Handshakes Or Affiliation-Hiding Authenticated Group Key Agreement
	Efficient Password-Authenticated Key Exchange Based on RSA
	Non-degrading Erasure-Tolerant Information Authentication with an Application to Multicast Stream Authentication over Lossy Channels

	Digital Signatures (II)
	A Practical and Tightly Secure Signature~Scheme Without Hash Function
	How to Strengthen Any Weakly Unforgeable Signature into a Strongly Unforgeable Signature

	Efficient Implementation
	Public Key Cryptography and RFID Tags
	A Bit-Slice Implementation of the Whirlpool Hash Function

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

