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Abstract. An architectural aspect is a concern that cuts across architecture 
modularity units and cannot be effectively modularized using the given 
abstractions of conventional Architecture Description Languages (ADLs). 
Dealing with crosscutting concerns is not a trivial task since they affect each 
other and the base architectural decomposition in multiple heterogeneous ways. 
The lack of ADL support for modularly representing such aspectual 
heterogeneous influences leads to a number of architectural breakdowns, such 
as increased maintenance overhead, reduced reuse capability, and architectural 
erosion over the lifetime of a system. On the other hand, software architects 
should not be burdened with a plethora of new ADL abstractions directly 
derived from aspect-oriented implementation techniques. However, most 
aspect-oriented ADLs rely on a heavyweight approach that mirrors 
programming languages concepts at the architectural level. In addition, they do 
not naturally support heterogeneous architectural aspects and proper resolution 
of aspect interactions. This paper presents AspectualACME, a simple and 
seamless extension of the ACME ADL to support the modular representation of 
architectural aspects and their multiple composition forms. AspectualACME 
promotes a natural blending of aspects and architectural abstractions by 
employing a special kind of architectural connector, called Aspectual 
Connector, to encapsulate aspect-component connection details.  We have 
evaluated the applicability and scalability of the AspectualACME features in 
the context of three case studies from different application domains.  

Keywords: Architecture Description Languages, Aspect-Oriented Software 
Development, Architectural Connection. 

1   Introduction 

Aspect-Oriented Software Development (AOSD) [8] is emerging as a promising 
technique to promote enhanced modularization and composition of crosscutting 
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concerns through the software lifecycle. At the architectural level, aspects provide a 
new abstraction to represent concerns that naturally cut across modularity units in an 
architectural description, such as interfaces and layers [1, 6, 9, 15]. However, the 
representation of architectural aspects is not a straightforward task since they usually 
require explicit representation mechanisms to address the heterogeneous 
manifestation of some widely-scoped properties, such as error handling strategies, 
transaction policies, and security protocols [5, 6,,10, 11]. By heterogeneous 
manifestation of widely-scoped properties – or, simply, heterogeneous crosscutting –, 
we mean that some properties impact multiple points in a software system, but the 
behavior that is provided at each of those points is different. Such architectural 
crosscutting concerns may interact with the affected modules in a plethora of different 
ways. Moreover, aspects may interact with each other at well-defined points in an 
architectural description. Hence, it is imperative to provide software architects with 
effective means for enabling the modular representation of aspectual compositions. 

Software Architecture Description Languages (ADLs) [16] have been playing a 
central role on the early systematic reasoning about system component compositions 
by defining explicit connection abstractions, such as interfaces, connectors, and 
configurations.  Some Aspect-Oriented Architecture Description Languages (AO 
ADLs) [19-22] have been proposed, either as extensions of existing ADLs or 
developed from scratch employing AO abstractions commonly adopted in 
programming frameworks and languages, such as aspects, join points, pointcuts, 
advice, and inter-type declarations. Though these AO ADLs provide interesting first 
contributions and viewpoints in the field, there is little consensus on how AOSD and 
ADLs should be integrated, especially with respect to the interplay of aspects and 
architectural connection abstractions [1, 6, 24, 17]. In addition, such existing 
proposals typically provide heavyweight solutions [1, 25], making it difficult their 
adoption and the exploitation of the available tools for supporting ADLs. More 
importantly, they have not provided mechanisms to support the proper modularization 
of heterogeneous architectural aspects and their compositions.     

This paper present AspectualACME, a general-purpose aspect-oriented ADL that 
enhances the ACME ADL [14] in order to support improved composability of 
heterogeneous architectural aspects. The composition model is centered on the 
concept of aspectual connector, which takes advantage of traditional architectural 
connection abstractions – connectors and configuration – and extends them in a 
lightweight fashion to support the definition of some composition facilities such as: 
(i) heterogeneous crosscutting interfaces at the connector level, (ii) a minimum set of 
aspect interaction declarations at the attachment level, and (iii) a quantification 
mechanism for attachment descriptions. Our proposal does not create a new aspect 
abstraction and is strictly based on enriching the composition semantics supported by 
architectural connectors instead of introducing elements that elevate programming 
language concepts to the architecture level. This paper also discusses the applicability 
and scalability of the proposed ADL enhancements in the context of three case studies 
from different domains, and the traceability of AspectualACME models to detailed 
aspect-oriented design models. 
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The remainder of this paper is organized as follows. Section 2 introduces the case 
study used through the paper, and illustrates some problems associated with the lack 
of explicit support for modularizing heterogeneous architectural aspects and their 
interactions. Section 3 presents AspectualACME. Section 4 describes the evaluation 
of our approach.  Section 5 compares our proposal with related work. Finally, Section 6 
presents the concluding remarks and directions for future work. 

2   Health Watcher: A Case Study 

In this section we present the basic concepts of the ACME ADL [14] (Section 2.1) 
and discuss the architecture design of the case study that we are going to use as 
running example through the paper (Section 2.2), with emphasis on the heterogeneous 
crosscutting nature of some architectural concerns (Section 2.3) and their interactions 
(Section 2.4).   

2.1   ACME in a Nutshell 

ACME is a general purpose ADL proposed as an architectural interchange language.  
Architectural structure is described in ACME with components, connectors, systems, 
attachments, ports, roles, and representations. Components are potentially composite 
computational encapsulations that support multiple interfaces known as ports. Ports 
are bound to ports on other components using first-class intermediaries called 
connectors which support the so-called roles that attach directly to ports. Systems are 
the abstractions that represent configurations of components and connectors. A 
system includes a set of components, a set of connectors, and a set of attachments that 
describe the topology of the system. Attachments define a set of port/role associations. 
Representations are alternative decompositions of a given element (component, 
connector, port or role) to describe it in greater detail. Properties of interest are 
<name, type, value> triples that can be attached to any of the above ACME elements 
as annotations. Properties are a mechanism for annotating designs and design 
elements with detailed, generally non-structural, information. Architectural styles 
define sets of types of components, connectors, properties, and sets of rules that 
specify how elements of those types may be legally composed in a reusable 
architectural domain. The ACME type system provides an additional dimension of 
flexibility by allowing type extensions via the extended with construct. These ACME 
concepts are illustrated through this paper. 

2.2   Health Watcher Architecture 

The HealthWatcher (HW) system is a Web-based information system developed by 
the Software Productivity research group from the Federal University of Pernambuco 
[27]. It supports the registration of complaints to the health public system. Figure 1 
illustrates a partial, simplified ACME [14] textual and graphical representation of the  
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HW architectural description, which combines a client-server style with a layered 
style [30]. It is composed of five main architectural concerns: (i) the GUI (Graphical 
User Interface) component provides a Web interface for the system, (ii) the 
Distribution component externalizes the system services at the server side and support 
their distribution to the clients, (iii) the Business component defines the business 
elements and rules, (iv) the TransactionManager and Data components address the 
persistency concern by storing the information manipulated by the system, and (v) the 
ErrorHandling component which is charge of supporting forward error recovery 
through exception handling. 

Figure 1 also illustrates a set of provided/required ports and connectors which 
make explicit the interactions between the architectural components. The saveEntity 
required port from the GUI component, for example, is linked to the distributedInterface 
provided port from the Distribution component by means of a connector. Despite 
many of the interactions between the architectural components have been 
appropriately represented using the port and connector abstractions, it is not possible 
to use these common ADL abstractions to represent the crosscutting relationships 
between two component services. Consider, for example, the transactionService 
provided port of the Transaction Manager component. It affects the execution of the 
savingService provided port of the Business component, by delimiting the occurrence 
of a business transaction (operations of begin, end and rollback transaction) before 
and after the execution of every operation invoked on savingService port. There is no 
existing abstraction in current ADLs which explicitly captures this crosscutting 
semantic between architectural component services. Because of lack of support to 
represent such kinds of crosscutting interactions between components, Figure 1 
alternatively models it by defining the useTransaction required port. This description, 
however, does not make explicit the existence of crosscutting relationships between 
the components.  

2.3   Heterogeneous Architectural Crosscutting 

Exception handling is considered a widely-scoped influencing concern in the HW 
architectural specification [28], which is mostly realized by the Error Handling 
component. This component consists of the system exception handlers, and it 
provides the services in charge of determining at runtime the proper handler for each 
of the exceptions exposed by the system components, such as Distribution, 
Persistence [24], and TransactionManager. In fact, Figure 1 shows that the Error 
Handling component has a crosscutting impact on the HW architecture since it affects 
the interfaces of several components in the layered decomposition. Almost all the 
architectural interfaces need to expose erroneous conditions, which in turn need to be 
handled by the error handling strategy. Figure 1 gives some examples of exceptional 
interfaces in the component’s ports savingService and distributedInterface. Hence, the 
broadly-scoped effect of this component denotes its crosscutting nature over the 
modular architecture structure of the HW system. 
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Fig. 1. Error Handling in the HW Architecture: A Heterogeneous Crosscutting Concern 

However, the influence of this crosscutting concern is not exactly the same over 
each affected HW component; it crosscuts a set of interfaces in heterogeneous ways, 
depending on the way the exception should be handled in the target component. In the 
HW system, there is at least two forms of interaction between a faulty component and 
the Error Handling component: the termination protocol (Termination connector), and 
the retry protocol (Retrial connector). However, the heterogeneous crosscutting 
composition of ErrorHandling and the affected architectural modules can not be 
expressed in a modular way. For instance, the connector Termination needs to be 
replicated according to the number of affected interfaces, and separated connectors for 
expressing the Retrial collaboration protocols need to be created. For simplification, 
Figure 1 only contains some examples of those connectors; the situation is much 
worse in the complete description of the HW architecture since almost all the 
interfaces expose exceptions. Also the attachment section contains a number of 
replicated, similar attachments created only for the sake of combining the replicated 
error handling connectors (Figure 1). Finally, the “provided” interface handlingStrategy 
needs to be connected with the “provided” interfaces containing exceptional events, 
which is not allowed in conventional ADLs.   

2.4   Aspect Interaction  

In addition, there are other architectural breakdowns when using conventional ADLs to 
define interactions between crosscutting concerns. For example, the TransactionManager 
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is another architectural aspect that crosscuts several elements in the Business layer in order 
to determine the interfaces that execute transactional operations. Most of these affected 
interfaces are also connected with the error handling connectors (Section 2.2). Figure 1 
illustrates this situation for the savingService interface. The problem is that it is impossible 
to express some important architectural information and valid architectural configurations 
involving the interaction of the ErrorHandling and TransactionManager aspects. For 
example, although the attachments section allows the architect to identify that both aspects 
are actuating over the same architectural elements, it is not possible to declare which 
aspect has precedence over others affecting the same interfaces or whether only one or 
both of the backward and forward recovery strategies should be used. 

3   AspectualACME  

This Section presents the description of AspectualACME. We present the ACME 
extension to support the modeling of the crosscutting interactions (Section 3.1) and 
the definition of a quantification mechanism (Section 3.2). This section ends with a 
discussion about the AspectualACME support for modeling heterogeneous 
architectural aspects (Section 3.3) and aspect interaction (Section 3.4). 

3.1   Aspectual Connector 

As software architecture descriptions rely on a connector to express the interactions 
between components, an equivalent abstraction must be used to express the 
crosscutting interactions. We define an aspectual component as a component that 
represents a crosscutting concern in a crosscutting interaction. The traditional 
connector is not enough to model the crosscutting interaction because the way that 
an aspectual component composes with a regular component is slightly different 
from the composition between regular components only. A crosscutting concern is 
represented by provided services of an aspectual component and it can affect both 
provided and required services of other components which can be, in turn, regarded 
as structural join points [8] at the architectural level. As discussed in Sections 2.2 
and 2.3, since ADL valid configurations are those that connect provided and 
required services, it is impossible to represent a connection between a provided 
service of an aspectual component and a provided service without extensions to the 
traditional notion of architectural connections. Although ACME itself does not 
support a syntactic distinction between provided and required ports, this distinction 
can be expressed using properties or declaring port types.  

In order to express the crosscutting interaction, we define the Aspectual 
Connector (AC), an architectural connection element that is based on the connector 
element but with a new kind of interface. The purpose of such a new interface is 
twofold: to make a distinction between the elements playing different roles in a  
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crosscutting interaction – i.e., affected base components and aspectual components; 
and to capture the way both categories of components are interconnected. The AC 
interface contains: (i)  base roles, (ii) crosscutting roles, and (iii) a glue clause. 
Figure 2 depicts a high-level description of a traditional connector (Fig. 2a) and an 
aspectual connector (Fig. 2b).  

 
Connector homConnector = {

Role aRole1; 
 Role aRole2; 

}

AspectualConnector homConnector = { 
 BaseRole aBaseRole; 
 CrosscuttingRole aCrosscuttingRole;
Glue glueType; 

}
(a) Regular connector in ACME (b) Aspectual connector in AspectualACME  

Fig. 2. Regular and Aspectual Connectors 

The base role may be connected to the port of a component (provided or required) 
and the crosscutting role may be connected to a port of an aspectual component. The 
distinction between base and crosscutting roles addresses the constraint typically 
imposed by many ADLs about the valid configurations between provided and 
required ports. An aspectual connector must have at least one base role and one 
crosscutting role. The composition between components and aspectual components is 
expressed by the glue clause. The aspectual glue specifies the way an aspectual 
component affects one or more regular components. There are three types of aspectual 
glue: after, before, and around. The semantics is similar to that of advice composition 
from AspectJ [29].  

 
AspectualConnector aConnector = { 
  BaseRole aBaseRole1, aBaseRole2; 
  CrosscuttingRole aCrosscuttingRole1, 
                    aCrosscuttingRole2; 
  Glue { aCrosscuttingRole1 before aBaseRole1; 
         aCrosscuttingRole2 after aBaseRole2;   } 
} 

Fig. 3. Heterogeneous aspectual connector 

The glue clause can be simply a declaration of the glue type (Figure 2b), or a block 
with multiple declarations, where each relates a crosscutting role, a base role and a 
specific glue type (Figure 3). The description of heterogeneous aspectual interactions 
(Section 3.3) requires more elaborated glue clauses.  

Although the idea of the aspectual connector is derived from the traditional 
connector, it is not modeled as a subtype of the traditional connector, since the 
aspectual connector can be used in a connection between two provided ports. This 
would result in an invalid configuration (ill-formed connection) using the traditional 
connector and its subtypes. 
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Figure 4 contains a graphical notation that we propose to represent Aspectual 
Connectors. C1 is an aspectual connector that defines a crosscutting and 
heterogeneous interaction involving the Aspectual Component, Component 1, and 
Component 2. 
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Fig. 4. Graphical Notation to the Aspectual Connector 

3.2   Quantification Mechanism 

A base role of an aspectual connector may be bound to several ports of possibly 
different components. These ports represent structural join points that may be 
affected by aspectual components. To express these bindings, many attachments 
should be defined, where each one binds the same base role instance to a different 
component port. We propose an extension to the attachments part of an ACME 
configuration to allow the use of patterns. Wildcards such as ‘*’, can be used in 
attachments to concisely describe sets of ports to be attached to the same base role.  

 
System Example = { 
Component aspectualComponent = { Port aPort }  
AspectualConnector aConnector = { 

 BaseRole aBaseRole; 
 CrosscuttingRole aCrosscuttingRole;  
 glue glueType; 

} 
Attachments { 

aspectualComponent.aPort to aConnector.aCrosscuttingRole  
aConnector.aBaseRole to *.prefix* }  

} 

Fig. 5. ACME Description of the Composition 

The attachment “aConnector.aBaseRole to *.prefix*” (Figure 5) specifies 
the binding between aConnector.aBaseRole and ports from the “set of 
component ports where the port name begins with prefix”. By avoiding explicit  
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enumeration of ports and definition of multiple attachments, this extension promotes 
economy of expression and improves writability in architectural configurations.  

3.3   Heterogeneous Architectural Aspects 

Figure 2b presented a simple aspectual connector that has a homogeneous crosscutting 
impact on the architectural decomposition. Figure 3 shows how AspectualACME 
supports heterogeneous crosscutting. Multiple base and crosscutting roles can be used to 
define the different ways a crosscutting concern can affect the component interfaces. 
Different or similar glue types can be used in the definition of the pairs of base and 
crosscutting roles. Figure 6a is an example of heterogeneous aspectual connector for the 
error handling concern discussed in Section 2.2. Note that the two ways of interacting 
with the ErrorHandling component – i.e. retrial and termination – can now be 
modularized in a single architectural element. In addition, quantification mechanisms can 
be used in the attachments specification to describe in single statements which 
component ports are affected by those two crosscutting roles specified in the 
ForwardRecovery connector (Figure 6b). 

 
AspectualConnector ForwardRecovery = {

BaseRole toBeTerminatedTarget, toBeRetriedTarget; 
CrosscuttingRole termination, retrial; 
Glue {termination after toBeTerminatedTarget; 

       retrial after toBeRetriedTarget; 
 } 

}
(a) an example of heterogeneous aspectual connector 

Attachments {
ForwardRecovery.toBeTerminatedTarget to *.*Service

  ForwardRecovery.termination to ErrorHandling.handlerSearch
  Distribution.distributedInterface to
      ForwardRecovery.toBeRetriedTarget 
  ForwardRecovery.retrial to ErrorHandling.handlerSearch 
  ...// to be continued in Figure 5b
}
(b) specification of join points using AspectualACME quantification mechanisms  

Fig. 6. Supporting Heterogeneous Crosscutting 

Figure 7 presents a graphical notation for the HW example, where the 
ForwardRecovery  is defined as a heterogeneous aspectual connector. The yellow 
vertical rectangle indicates that ForwardRecovery is a heterogeneous aspectual 
connector. 

3.4   Aspect Interaction 

AspectualACME also allows the specification of aspectual architecture-level 
interaction between two or more aspectual connectors which have join points in  
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Fig. 7. An Example of Aspectual Connector: Forward Recovery 

common. Such interactions are declared in the configuration description since the 
attachments part is the place where join points are identified. The ADL supports 
two basic kinds of composition operators: precedence and XOR (Figure 8b). The 
architect can specify that the precedence is either valid for the whole architecture 
or only at specific join points. Figure 8b illustrates both situations: (i) in general, 
the Retrial connector has precedence over the Termination connector at all the join 
points they have in common, and (ii) at the port savingService, it is always tried 
first forward recovery through termination-based error handling and, second, the 
backward recovery with abort in case the exception was not successfully handled. 
When there is a precedence relation between two connectors X and Y, where the 
execution of Y depends on the satisfaction of a condition associated with X, the 
architect can explicitly document it using a condition statement together with an 
around glue in X. Figure 8b also illustrates the use of XOR: at a given join point, 
only one of the either termination or retrial should be non-deterministically 
chosen. Finally, it is important to highlight that the elements participating in a 
precedence or XOR clause can be components instead of connectors: it means that 
the relationship applies to all the connectors involving the two components (see 
Section 4.1).  
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AspectualConnector BackwardRecovery = {
BaseRole target; 
CrosscuttingRole transBegin, transAbort, transCommit; 
Glue {transBegin before target; 
      transCommit after target; 
      transAbort after target; 
}

}
(a) an example of aspectual connector 

Attachments {
  //continued from Figure 4c 

Business.savingService to BackwardRecovery.target
  BackwardRecovery.transBegin to TransactionManager.transService

BackwardRecovery.transCommit to TransactionManager.transService 
BackwardRecovery.transAbort to TransactionManager.transService 

  Distribution.distributedInterface to ForwardRecovery.retriedTarget 
  ForwardRecovery.Retrial to ErrorHandling.handlerSearch

Precedence {
    ForwardRecovery.retrial, ForwardRecovery.termination; 
    savingService: 
         ForwardRecovery.termination, BackwardRecovery.transAbort; 
  } 

XOR { 
    ForwardRecovery.resumption, ForwardRecovery.termination; 
  } 
}
(b) specification aspectual interactions 

 

Fig. 8. Supporting Aspect Interaction Declarations 

4   Evaluation 

This Section presents the evaluation of AspectualACME in three case studies with 
respect to the usefulness of the proposed composition enhancements. We have 
evaluated the applicability and scalability of the notion of Aspectual Connectors 
(Section 3.1) and the extensions provided in AspectualACME (Sections 3.2 to 3.4) in 
the context of three case studies: the HealthWatcher system [28] (Section 2), a 
context-sensitive tourist information guide (TIG) system [9, 1], and AspectT – a 
multi-agent system framework [10, 11, 12]. As indicated in Table 1, the TIG 
architecture encompassed the manifestation of three heterogeneous architectural 
aspects: replication, security, and performance. The AspectT architecture included 
five main heterogeneous architectural aspects: autonomy, adaptation, learning, code 
mobility, and interaction. The choice of such case studies was driven by the 
heterogeneity of the aspects, and the different ways they affect the dominant 
architectural decomposition and each other.  

Our approach has scaled up well in all the case studies mainly by the fact that 
AspectualACME follows a symmetric approach, i.e. there is no explicit distinction 
between regular components and aspectual components. The modularization of the 
crosscutting interaction into connectors facilitated, for example, the reuse of the 
persistence component description from the first to the second case study. Persistence 
was a crosscutting concern only in the HealthWatcher architecture (Figure 7). Hence, 
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we have not applied an aspectual connector in the TIG architectural specification. The 
definition of quantification mechanisms (Section 3.2) in attachments also has shown 
to be the right decision choice as it improves the reusability of connectors. The other 
reason was that is was easier to determine how multiple interacting aspects affect each 
other by looking in a single place in the architectural description – i.e. the attachments 
specification. 

Table 1. Examples of Heterogeneous Architectural Aspects and their Interactions 

Aspect Interactions Case Study Heterogeneous 
Aspects # 

Total  
  Some Examples 

Health Watcher Error Handling, 
Transaction 
Management, 
Distribution 

13 Precedence: Error Handling, Transaction 
Manag. 
XOR: ForwardRecovery.resumption, Forward   
            Recovery.termination 

TIG Replication, 
Performance, 
Security 

7 Precedence: Security, Performance 
XOR: Replication.passive, Replication.active 

AspectT Autonomy, Adaptation, 
Learning, Code Mobility, 
Interaction 

15 Precedence: Interaction, Autonomy, Adaptation 
Precedence: Autonomy.execution, 
                     Autonomy.proactiveness 
XOR: Mobility, Collaboration  

 
Table 1 presents a summary on how AspectuaACME has been used through the 

three case studies to capture certain heterogeneous architectural aspects. It also 
describes how many aspectual interactions have been explicitly captured in those 
studies, followed by some examples of Precedence and XOR interactions. In our 
evaluation, we have noticed that two or more crosscutting roles of the same 
heterogeneous aspectual connector can naturally be linked to the same join point (a 
component port). Hence, the proposed aspect interaction mechanisms (Section 3.4) 
can be used to define their relationships. For example, Table 1 shows a XOR 
relationship in the HW architecture involving two crosscutting roles of the same 
connector: ForwardRecovery. Other interesting possibilities have been also explored 
in the case studies, such as declaring that all the connectors of Error Handling aspect 
have precedence over all the connectors of Transaction Management in the HW 
system.  Also, we have observed that the explicit definition of such aspectual 
relationships in the architectural stage enhances the documentation of design choices 
that need to be observed later on the design of applications, and variation points in a 
certain product-line design [31]. 

5   Related Work 

There is a diversity of viewpoints on how aspects (and generally concerns) should be 
modeled in ADLs. However, so far, the introduction of AO concepts into ADLs has 
been experimental in that researchers have been trying to incorporate mainstream 
AOP concepts into ADLs. In contrast, we argue that most of existing ADLs 
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abstractions are enough to model crosscutting concerns. For this purpose, it is just 
necessary to define a new configuration element based on the traditional connector 
concept. 

Most AO ADLs are different from AspectualACME because they introduce a lot of 
concepts to model AO abstractions (such as, aspects, joinpoints, and advices) in the 
ADL. Navasa et al 2005 [19] present a proposal to introduce the aspect modeling in 
the architecture design phase. Aspects are used to facilitate the architecture evolution 
by allowing easily either to modularize crosscutting concerns, or to incorporate new 
requirements in the system architecture. The composition between the architectural 
components and the aspects is based on an exogenous control-driven co-ordination 
model. The incorporation of the authors’ model to existing ADLs, such as ACME, is 
still under investigation. Navasa et al 2002 [18] do not propose an AO ADL, but 
define a set of requirements which current ADLs need to address to allow the 
management of crosscutting concerns using architectural connection abstractions. The 
requirements are: (i) definition of primitives to specify joinpoints in functional 
components; (ii) definition of the aspect abstraction as a special kind of component; 
and (iii) specification of connectors between joinpoints and aspects. The authors 
suggest the use of existing coordination models to specify the connectors between 
functional components and aspects. Differently from our lightweight approach, they 
suggest the definition of AO specific ADL constructs. Furthermore, they do not 
mention in their proposal the need for supporting important AO properties such as 
quantification, interaction between aspects and heterogeneous aspects. 

DAOP-ADL [22] defines components and aspects as first-order elements. Aspects 
can affect the components’ interfaces by means of: (i) an evaluated interface which 
defines the messages that aspects are able to intercept; and (ii) a target events 
interface responsible for describing the events that aspects can capture. The 
composition between components and aspects is supported by a set of aspect 
evaluation rules. They define when and how the aspect behavior is executed. Besides, 
they also include a number of rules concerning with interaction between aspects. With 
regards to precedence, aspects can be evaluated in two ways: sequentially or 
concurrently. In addition, aspects can share information using a list of input and/or 
output global properties. Nevertheless, DAOP-ADL does not provide mechanisms to 
support quantification at the attachment level and explicit modularization of 
heterogeneous architectural aspects. 

Similarly to our proposal, FuseJ [26] defines a unified approach between aspects 
and components, that is, FuseJ does not introduce a specialized aspect construct. It 
provides the concept of a gate interface that exposes the internal implementation 
functionality of a component and offers access-point for the interactions with other 
components. In a similar way to our proposal, FuseJ concentrates the composition 
model in a special type of connector that extends regular connectors by including 
constructs to specify how the behaviour of one gate crosscuts the behaviour of another 
gate. However, differently from our work, our compositional model works in 
conjunction with the component traditional interface while FuseJ defines the gate 
interface that exposes internal implementation details of a component. However, 
FuseJ provides explicit support neither for defining the interaction between aspects 
nor for modularizing heterogeneous aspects. Moreover, it only allows quantification 
over the same gate methods. In addition, FuseJ does not work with the notion of 
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configuration. It includes the definition of the connection inside the connector itself. 
This contrasts with the traditional way that ADLs works – that declares a connector 
and binds connectors’ instances at the configuration section. 

Pessemier et al [21] defines the Fractal Aspect Component (FAC), a general model 
for mixing components and aspects. Their aim is to promote the integration between 
aspect-oriented programming (AOP) and component-based software engineering 
(CBSE) paradigms. FAC model proposes three new abstractions: (i) aspect 
components – that modularize a crosscutting concern by implementing the service of 
a regular component as a piece of an around advice; (ii) aspect bindings – which 
define bindings between regular and aspectual components; and (iii) aspect domains – 
that represents the reification of regular components affected by aspect components. 
FAC model is implemented under Fractal [2], an extensible and modular component 
model, and its respective ADL. There are similarities between the aspect component 
from the FAC model and our aspectual connector. Both are used to specify 
crosscutting concerns existing in the system architecture. The aspect bindings of FAC 
define a link between a regular and an aspect component. This latter can 
modify/extend the behavior of the former by affecting its exposed join points. In our 
approach, this is addressed by the definition of: (i) base and crosscutting roles – which 
allow specifying the binding between two components; and (ii) the glue clause – that 
define the semantic of crosscutting composition between them. 

6   Conclusions and Future Work 

This paper has addressed current issues related to aspect-oriented architecture 
modeling and design. The analysis of heavyweight solutions provided by some AO 
ADLs yielded to the design of AspectualACME, a general-purpose aspect-oriented 
ADL that supports improved composability of heterogeneous architectural aspects. 
The composition model is centered on the concept of aspectual connector, which 
takes advantage of traditional architectural connection abstractions – connectors and 
configuration – and, based on them, provides a lightweight support for the definition 
of some composition facilities such as: (i) heterogeneous crosscutting interfaces at the 
connector level, (ii) a minimum set of aspect interaction declarations at the attachment 
level, and (iii) a quantification mechanism for attachment descriptions. In this way, 
AspectualACME encompasses a reduced set of minor extensions, thereby avoiding 
the introduction of additional complexity in architectural descriptions. The paper also 
discussed the applicability and scalability of the proposed ADL enhancements in the 
context of three case studies from different domains. Our approach has scaled up well 
in all the case studies mainly by the fact that AspectualACME follows a symmetric 
approach, i.e. there is no explicit distinction between regular components and 
aspectual components. Also, we have observed that explicit aspect interaction 
declarations in the architectural stage enhances the documentation of design choices 
that need to be observed later on the design of applications. 

As future work, we plan to further elaborate on several issues related to the 
expressiveness of the AspectualACME language, as well as on traceability issues. 
Architectural descriptions in AspectualACME can be mapped to aspect-oriented 
design languages that support aspect-oriented modeling at the detailed design level, 
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such as aSideML [5] and Theme/UML [8]. Tools need to be developed to support the 
creation of AspectualACME descriptions and their transformation to design level 
descriptions. Once these tools are available, designers may fully exploit the benefits 
from the aspect-oriented ADL and explicitly “design” aspectual connectors. 
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