
V. Gruhn and F. Oquendo (Eds.): EWSA 2006, LNCS 4344, pp. 82 – 97, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On the Modular Representation of Architectural
Aspects

Alessandro Garcia1, Christina Chavez2, Thais Batista3, Claudio Sant’anna4,
Uirá Kulesza4, Awais Rashid1, and Carlos Lucena4

1 Computing Department, Lancaster University, United Kingdom
a.garcia@lancaster.ac.uk, marash@comp.lancs.ac.uk

2 Computer Science Department, Federal University of Bahia, Brazil
flach@dcc.ufba.br

3 Computer Science Department, Federal University of Rio Grande do Norte, Brazil
thais@ufrnet.br

4 Computer Science Department, Pontifical Catholic University of Rio de Janeiro, Brazil
claudios@les.inf.puc-rio.br, uira@les.inf.puc-rio.br,

lucena@inf.puc-rio.br

Abstract. An architectural aspect is a concern that cuts across architecture
modularity units and cannot be effectively modularized using the given
abstractions of conventional Architecture Description Languages (ADLs).
Dealing with crosscutting concerns is not a trivial task since they affect each
other and the base architectural decomposition in multiple heterogeneous ways.
The lack of ADL support for modularly representing such aspectual
heterogeneous influences leads to a number of architectural breakdowns, such
as increased maintenance overhead, reduced reuse capability, and architectural
erosion over the lifetime of a system. On the other hand, software architects
should not be burdened with a plethora of new ADL abstractions directly
derived from aspect-oriented implementation techniques. However, most
aspect-oriented ADLs rely on a heavyweight approach that mirrors
programming languages concepts at the architectural level. In addition, they do
not naturally support heterogeneous architectural aspects and proper resolution
of aspect interactions. This paper presents AspectualACME, a simple and
seamless extension of the ACME ADL to support the modular representation of
architectural aspects and their multiple composition forms. AspectualACME
promotes a natural blending of aspects and architectural abstractions by
employing a special kind of architectural connector, called Aspectual
Connector, to encapsulate aspect-component connection details. We have
evaluated the applicability and scalability of the AspectualACME features in
the context of three case studies from different application domains.

Keywords: Architecture Description Languages, Aspect-Oriented Software
Development, Architectural Connection.

1 Introduction

Aspect-Oriented Software Development (AOSD) [8] is emerging as a promising
technique to promote enhanced modularization and composition of crosscutting

 On the Modular Representation of Architectural Aspects 83

concerns through the software lifecycle. At the architectural level, aspects provide a
new abstraction to represent concerns that naturally cut across modularity units in an
architectural description, such as interfaces and layers [1, 6, 9, 15]. However, the
representation of architectural aspects is not a straightforward task since they usually
require explicit representation mechanisms to address the heterogeneous
manifestation of some widely-scoped properties, such as error handling strategies,
transaction policies, and security protocols [5, 6,,10, 11]. By heterogeneous
manifestation of widely-scoped properties – or, simply, heterogeneous crosscutting –,
we mean that some properties impact multiple points in a software system, but the
behavior that is provided at each of those points is different. Such architectural
crosscutting concerns may interact with the affected modules in a plethora of different
ways. Moreover, aspects may interact with each other at well-defined points in an
architectural description. Hence, it is imperative to provide software architects with
effective means for enabling the modular representation of aspectual compositions.

Software Architecture Description Languages (ADLs) [16] have been playing a
central role on the early systematic reasoning about system component compositions
by defining explicit connection abstractions, such as interfaces, connectors, and
configurations. Some Aspect-Oriented Architecture Description Languages (AO
ADLs) [19-22] have been proposed, either as extensions of existing ADLs or
developed from scratch employing AO abstractions commonly adopted in
programming frameworks and languages, such as aspects, join points, pointcuts,
advice, and inter-type declarations. Though these AO ADLs provide interesting first
contributions and viewpoints in the field, there is little consensus on how AOSD and
ADLs should be integrated, especially with respect to the interplay of aspects and
architectural connection abstractions [1, 6, 24, 17]. In addition, such existing
proposals typically provide heavyweight solutions [1, 25], making it difficult their
adoption and the exploitation of the available tools for supporting ADLs. More
importantly, they have not provided mechanisms to support the proper modularization
of heterogeneous architectural aspects and their compositions.

This paper present AspectualACME, a general-purpose aspect-oriented ADL that
enhances the ACME ADL [14] in order to support improved composability of
heterogeneous architectural aspects. The composition model is centered on the
concept of aspectual connector, which takes advantage of traditional architectural
connection abstractions – connectors and configuration – and extends them in a
lightweight fashion to support the definition of some composition facilities such as:
(i) heterogeneous crosscutting interfaces at the connector level, (ii) a minimum set of
aspect interaction declarations at the attachment level, and (iii) a quantification
mechanism for attachment descriptions. Our proposal does not create a new aspect
abstraction and is strictly based on enriching the composition semantics supported by
architectural connectors instead of introducing elements that elevate programming
language concepts to the architecture level. This paper also discusses the applicability
and scalability of the proposed ADL enhancements in the context of three case studies
from different domains, and the traceability of AspectualACME models to detailed
aspect-oriented design models.

84 A. Garcia et al.

The remainder of this paper is organized as follows. Section 2 introduces the case
study used through the paper, and illustrates some problems associated with the lack
of explicit support for modularizing heterogeneous architectural aspects and their
interactions. Section 3 presents AspectualACME. Section 4 describes the evaluation
of our approach. Section 5 compares our proposal with related work. Finally, Section 6
presents the concluding remarks and directions for future work.

2 Health Watcher: A Case Study

In this section we present the basic concepts of the ACME ADL [14] (Section 2.1)
and discuss the architecture design of the case study that we are going to use as
running example through the paper (Section 2.2), with emphasis on the heterogeneous
crosscutting nature of some architectural concerns (Section 2.3) and their interactions
(Section 2.4).

2.1 ACME in a Nutshell

ACME is a general purpose ADL proposed as an architectural interchange language.
Architectural structure is described in ACME with components, connectors, systems,
attachments, ports, roles, and representations. Components are potentially composite
computational encapsulations that support multiple interfaces known as ports. Ports
are bound to ports on other components using first-class intermediaries called
connectors which support the so-called roles that attach directly to ports. Systems are
the abstractions that represent configurations of components and connectors. A
system includes a set of components, a set of connectors, and a set of attachments that
describe the topology of the system. Attachments define a set of port/role associations.
Representations are alternative decompositions of a given element (component,
connector, port or role) to describe it in greater detail. Properties of interest are
<name, type, value> triples that can be attached to any of the above ACME elements
as annotations. Properties are a mechanism for annotating designs and design
elements with detailed, generally non-structural, information. Architectural styles
define sets of types of components, connectors, properties, and sets of rules that
specify how elements of those types may be legally composed in a reusable
architectural domain. The ACME type system provides an additional dimension of
flexibility by allowing type extensions via the extended with construct. These ACME
concepts are illustrated through this paper.

2.2 Health Watcher Architecture

The HealthWatcher (HW) system is a Web-based information system developed by
the Software Productivity research group from the Federal University of Pernambuco
[27]. It supports the registration of complaints to the health public system. Figure 1
illustrates a partial, simplified ACME [14] textual and graphical representation of the

 On the Modular Representation of Architectural Aspects 85

HW architectural description, which combines a client-server style with a layered
style [30]. It is composed of five main architectural concerns: (i) the GUI (Graphical
User Interface) component provides a Web interface for the system, (ii) the
Distribution component externalizes the system services at the server side and support
their distribution to the clients, (iii) the Business component defines the business
elements and rules, (iv) the TransactionManager and Data components address the
persistency concern by storing the information manipulated by the system, and (v) the
ErrorHandling component which is charge of supporting forward error recovery
through exception handling.

Figure 1 also illustrates a set of provided/required ports and connectors which
make explicit the interactions between the architectural components. The saveEntity
required port from the GUI component, for example, is linked to the distributedInterface
provided port from the Distribution component by means of a connector. Despite
many of the interactions between the architectural components have been
appropriately represented using the port and connector abstractions, it is not possible
to use these common ADL abstractions to represent the crosscutting relationships
between two component services. Consider, for example, the transactionService
provided port of the Transaction Manager component. It affects the execution of the
savingService provided port of the Business component, by delimiting the occurrence
of a business transaction (operations of begin, end and rollback transaction) before
and after the execution of every operation invoked on savingService port. There is no
existing abstraction in current ADLs which explicitly captures this crosscutting
semantic between architectural component services. Because of lack of support to
represent such kinds of crosscutting interactions between components, Figure 1
alternatively models it by defining the useTransaction required port. This description,
however, does not make explicit the existence of crosscutting relationships between
the components.

2.3 Heterogeneous Architectural Crosscutting

Exception handling is considered a widely-scoped influencing concern in the HW
architectural specification [28], which is mostly realized by the Error Handling
component. This component consists of the system exception handlers, and it
provides the services in charge of determining at runtime the proper handler for each
of the exceptions exposed by the system components, such as Distribution,
Persistence [24], and TransactionManager. In fact, Figure 1 shows that the Error
Handling component has a crosscutting impact on the HW architecture since it affects
the interfaces of several components in the layered decomposition. Almost all the
architectural interfaces need to expose erroneous conditions, which in turn need to be
handled by the error handling strategy. Figure 1 gives some examples of exceptional
interfaces in the component’s ports savingService and distributedInterface. Hence, the
broadly-scoped effect of this component denotes its crosscutting nature over the
modular architecture structure of the HW system.

86 A. Garcia et al.

PERSISTENCE

TRANSACTION
MANAGER

GUI

DISTRIBUTION

BUSINESS

DATA

requestFacade

factoryFacade

saveEntity

distributedInterface

requestDistributedFacade

getFacade

saveDistributedEntity

savingService

useTransaction

transService

initPersistence

initPersistenceService

saveInfo

savingInfoService

ERROR HANDLING

Retrial

Termination

handler
Search

distributeInterface
{

save(info);
transactionExceptionalEvent;
repositoryExceptionalEvent;
communicationExceptionalEvent;

}

savingService
{

save(info);
transactionExceptionEvent();
repositoryExceptionEvent();

}

ATTACHMENTS
Distribution.distributedService to Retrial.target
Retrial.handler to ErrorHandling.handlerSearch
Business.savingService to Termination.target
Termination.handler to ErrorHandling.handlerSearch
TransactionMan.transactionService to Termination.target
Termination.handler to ErrorHandling.handlerSearch
Business.savingService to BackwardRecovery.target
BackwardRecovery.action to TransactionMan.transService
…

Termination

Bac
kw

ard

Rec
ove

ry

Fig. 1. Error Handling in the HW Architecture: A Heterogeneous Crosscutting Concern

However, the influence of this crosscutting concern is not exactly the same over
each affected HW component; it crosscuts a set of interfaces in heterogeneous ways,
depending on the way the exception should be handled in the target component. In the
HW system, there is at least two forms of interaction between a faulty component and
the Error Handling component: the termination protocol (Termination connector), and
the retry protocol (Retrial connector). However, the heterogeneous crosscutting
composition of ErrorHandling and the affected architectural modules can not be
expressed in a modular way. For instance, the connector Termination needs to be
replicated according to the number of affected interfaces, and separated connectors for
expressing the Retrial collaboration protocols need to be created. For simplification,
Figure 1 only contains some examples of those connectors; the situation is much
worse in the complete description of the HW architecture since almost all the
interfaces expose exceptions. Also the attachment section contains a number of
replicated, similar attachments created only for the sake of combining the replicated
error handling connectors (Figure 1). Finally, the “provided” interface handlingStrategy
needs to be connected with the “provided” interfaces containing exceptional events,
which is not allowed in conventional ADLs.

2.4 Aspect Interaction

In addition, there are other architectural breakdowns when using conventional ADLs to
define interactions between crosscutting concerns. For example, the TransactionManager

 On the Modular Representation of Architectural Aspects 87

is another architectural aspect that crosscuts several elements in the Business layer in order
to determine the interfaces that execute transactional operations. Most of these affected
interfaces are also connected with the error handling connectors (Section 2.2). Figure 1
illustrates this situation for the savingService interface. The problem is that it is impossible
to express some important architectural information and valid architectural configurations
involving the interaction of the ErrorHandling and TransactionManager aspects. For
example, although the attachments section allows the architect to identify that both aspects
are actuating over the same architectural elements, it is not possible to declare which
aspect has precedence over others affecting the same interfaces or whether only one or
both of the backward and forward recovery strategies should be used.

3 AspectualACME

This Section presents the description of AspectualACME. We present the ACME
extension to support the modeling of the crosscutting interactions (Section 3.1) and
the definition of a quantification mechanism (Section 3.2). This section ends with a
discussion about the AspectualACME support for modeling heterogeneous
architectural aspects (Section 3.3) and aspect interaction (Section 3.4).

3.1 Aspectual Connector

As software architecture descriptions rely on a connector to express the interactions
between components, an equivalent abstraction must be used to express the
crosscutting interactions. We define an aspectual component as a component that
represents a crosscutting concern in a crosscutting interaction. The traditional
connector is not enough to model the crosscutting interaction because the way that
an aspectual component composes with a regular component is slightly different
from the composition between regular components only. A crosscutting concern is
represented by provided services of an aspectual component and it can affect both
provided and required services of other components which can be, in turn, regarded
as structural join points [8] at the architectural level. As discussed in Sections 2.2
and 2.3, since ADL valid configurations are those that connect provided and
required services, it is impossible to represent a connection between a provided
service of an aspectual component and a provided service without extensions to the
traditional notion of architectural connections. Although ACME itself does not
support a syntactic distinction between provided and required ports, this distinction
can be expressed using properties or declaring port types.

In order to express the crosscutting interaction, we define the Aspectual
Connector (AC), an architectural connection element that is based on the connector
element but with a new kind of interface. The purpose of such a new interface is
twofold: to make a distinction between the elements playing different roles in a

88 A. Garcia et al.

crosscutting interaction – i.e., affected base components and aspectual components;
and to capture the way both categories of components are interconnected. The AC
interface contains: (i) base roles, (ii) crosscutting roles, and (iii) a glue clause.
Figure 2 depicts a high-level description of a traditional connector (Fig. 2a) and an
aspectual connector (Fig. 2b).

Connector homConnector = {

Role aRole1;
 Role aRole2;

}

AspectualConnector homConnector = {
 BaseRole aBaseRole;
 CrosscuttingRole aCrosscuttingRole;
Glue glueType;

}
(a) Regular connector in ACME (b) Aspectual connector in AspectualACME

Fig. 2. Regular and Aspectual Connectors

The base role may be connected to the port of a component (provided or required)
and the crosscutting role may be connected to a port of an aspectual component. The
distinction between base and crosscutting roles addresses the constraint typically
imposed by many ADLs about the valid configurations between provided and
required ports. An aspectual connector must have at least one base role and one
crosscutting role. The composition between components and aspectual components is
expressed by the glue clause. The aspectual glue specifies the way an aspectual
component affects one or more regular components. There are three types of aspectual
glue: after, before, and around. The semantics is similar to that of advice composition
from AspectJ [29].

AspectualConnector aConnector = {
 BaseRole aBaseRole1, aBaseRole2;
 CrosscuttingRole aCrosscuttingRole1,
 aCrosscuttingRole2;
 Glue { aCrosscuttingRole1 before aBaseRole1;
 aCrosscuttingRole2 after aBaseRole2; }
}

Fig. 3. Heterogeneous aspectual connector

The glue clause can be simply a declaration of the glue type (Figure 2b), or a block
with multiple declarations, where each relates a crosscutting role, a base role and a
specific glue type (Figure 3). The description of heterogeneous aspectual interactions
(Section 3.3) requires more elaborated glue clauses.

Although the idea of the aspectual connector is derived from the traditional
connector, it is not modeled as a subtype of the traditional connector, since the
aspectual connector can be used in a connection between two provided ports. This
would result in an invalid configuration (ill-formed connection) using the traditional
connector and its subtypes.

 On the Modular Representation of Architectural Aspects 89

Figure 4 contains a graphical notation that we propose to represent Aspectual
Connectors. C1 is an aspectual connector that defines a crosscutting and
heterogeneous interaction involving the Aspectual Component, Component 1, and
Component 2.

Aspectual
Component
Aspectual
Component

C1

p1

p2

cr1.1

cr1.2 Component 2

Component 1Component 1Component 1

Component 2

br1.1

br1.2

p3

r1

Provided Port

Required Port

Key: Crosscutting role

Base role

Provided Port

Required Port

Key: Crosscutting role

Base role

Aspectual
Component
Aspectual
Component

C1

p1

p2

cr1.1

cr1.2 Component 2

Component 1Component 1Component 1

Component 2

br1.1

br1.2

p3

r1
Aspectual

Component
Aspectual
Component

C1

p1

p2

cr1.1

cr1.2 Component 2

Component 1Component 1Component 1

Component 2

br1.1

br1.2

p3

r1
Component 2

Component 1Component 1Component 1Component 1Component 1Component 1Component 1

Component 2

br1.1

br1.2

p3

r1

Provided Port

Required Port

Key: Crosscutting role

Base role

Provided Port

Required Port

Key: Crosscutting role

Base role

Fig. 4. Graphical Notation to the Aspectual Connector

3.2 Quantification Mechanism

A base role of an aspectual connector may be bound to several ports of possibly
different components. These ports represent structural join points that may be
affected by aspectual components. To express these bindings, many attachments
should be defined, where each one binds the same base role instance to a different
component port. We propose an extension to the attachments part of an ACME
configuration to allow the use of patterns. Wildcards such as ‘*’, can be used in
attachments to concisely describe sets of ports to be attached to the same base role.

System Example = {
Component aspectualComponent = { Port aPort }
AspectualConnector aConnector = {

 BaseRole aBaseRole;
 CrosscuttingRole aCrosscuttingRole;
 glue glueType;

}
Attachments {

aspectualComponent.aPort to aConnector.aCrosscuttingRole
aConnector.aBaseRole to *.prefix* }

}

Fig. 5. ACME Description of the Composition

The attachment “aConnector.aBaseRole to *.prefix*” (Figure 5) specifies
the binding between aConnector.aBaseRole and ports from the “set of
component ports where the port name begins with prefix”. By avoiding explicit

90 A. Garcia et al.

enumeration of ports and definition of multiple attachments, this extension promotes
economy of expression and improves writability in architectural configurations.

3.3 Heterogeneous Architectural Aspects

Figure 2b presented a simple aspectual connector that has a homogeneous crosscutting
impact on the architectural decomposition. Figure 3 shows how AspectualACME
supports heterogeneous crosscutting. Multiple base and crosscutting roles can be used to
define the different ways a crosscutting concern can affect the component interfaces.
Different or similar glue types can be used in the definition of the pairs of base and
crosscutting roles. Figure 6a is an example of heterogeneous aspectual connector for the
error handling concern discussed in Section 2.2. Note that the two ways of interacting
with the ErrorHandling component – i.e. retrial and termination – can now be
modularized in a single architectural element. In addition, quantification mechanisms can
be used in the attachments specification to describe in single statements which
component ports are affected by those two crosscutting roles specified in the
ForwardRecovery connector (Figure 6b).

AspectualConnector ForwardRecovery = {

BaseRole toBeTerminatedTarget, toBeRetriedTarget;
CrosscuttingRole termination, retrial;
Glue {termination after toBeTerminatedTarget;

 retrial after toBeRetriedTarget;
 }

}
(a) an example of heterogeneous aspectual connector

Attachments {
ForwardRecovery.toBeTerminatedTarget to *.*Service

 ForwardRecovery.termination to ErrorHandling.handlerSearch
 Distribution.distributedInterface to
 ForwardRecovery.toBeRetriedTarget
 ForwardRecovery.retrial to ErrorHandling.handlerSearch
 ...// to be continued in Figure 5b
}
(b) specification of join points using AspectualACME quantification mechanisms

Fig. 6. Supporting Heterogeneous Crosscutting

Figure 7 presents a graphical notation for the HW example, where the
ForwardRecovery is defined as a heterogeneous aspectual connector. The yellow
vertical rectangle indicates that ForwardRecovery is a heterogeneous aspectual
connector.

3.4 Aspect Interaction

AspectualACME also allows the specification of aspectual architecture-level
interaction between two or more aspectual connectors which have join points in

 On the Modular Representation of Architectural Aspects 91

Fig. 7. An Example of Aspectual Connector: Forward Recovery

common. Such interactions are declared in the configuration description since the
attachments part is the place where join points are identified. The ADL supports
two basic kinds of composition operators: precedence and XOR (Figure 8b). The
architect can specify that the precedence is either valid for the whole architecture
or only at specific join points. Figure 8b illustrates both situations: (i) in general,
the Retrial connector has precedence over the Termination connector at all the join
points they have in common, and (ii) at the port savingService, it is always tried
first forward recovery through termination-based error handling and, second, the
backward recovery with abort in case the exception was not successfully handled.
When there is a precedence relation between two connectors X and Y, where the
execution of Y depends on the satisfaction of a condition associated with X, the
architect can explicitly document it using a condition statement together with an
around glue in X. Figure 8b also illustrates the use of XOR: at a given join point,
only one of the either termination or retrial should be non-deterministically
chosen. Finally, it is important to highlight that the elements participating in a
precedence or XOR clause can be components instead of connectors: it means that
the relationship applies to all the connectors involving the two components (see
Section 4.1).

92 A. Garcia et al.

AspectualConnector BackwardRecovery = {
BaseRole target;
CrosscuttingRole transBegin, transAbort, transCommit;
Glue {transBegin before target;
 transCommit after target;
 transAbort after target;
}

}
(a) an example of aspectual connector

Attachments {
 //continued from Figure 4c

Business.savingService to BackwardRecovery.target
 BackwardRecovery.transBegin to TransactionManager.transService

BackwardRecovery.transCommit to TransactionManager.transService
BackwardRecovery.transAbort to TransactionManager.transService

 Distribution.distributedInterface to ForwardRecovery.retriedTarget
 ForwardRecovery.Retrial to ErrorHandling.handlerSearch

Precedence {
 ForwardRecovery.retrial, ForwardRecovery.termination;
 savingService:
 ForwardRecovery.termination, BackwardRecovery.transAbort;
 }

XOR {
 ForwardRecovery.resumption, ForwardRecovery.termination;
 }
}
(b) specification aspectual interactions

Fig. 8. Supporting Aspect Interaction Declarations

4 Evaluation

This Section presents the evaluation of AspectualACME in three case studies with
respect to the usefulness of the proposed composition enhancements. We have
evaluated the applicability and scalability of the notion of Aspectual Connectors
(Section 3.1) and the extensions provided in AspectualACME (Sections 3.2 to 3.4) in
the context of three case studies: the HealthWatcher system [28] (Section 2), a
context-sensitive tourist information guide (TIG) system [9, 1], and AspectT – a
multi-agent system framework [10, 11, 12]. As indicated in Table 1, the TIG
architecture encompassed the manifestation of three heterogeneous architectural
aspects: replication, security, and performance. The AspectT architecture included
five main heterogeneous architectural aspects: autonomy, adaptation, learning, code
mobility, and interaction. The choice of such case studies was driven by the
heterogeneity of the aspects, and the different ways they affect the dominant
architectural decomposition and each other.

Our approach has scaled up well in all the case studies mainly by the fact that
AspectualACME follows a symmetric approach, i.e. there is no explicit distinction
between regular components and aspectual components. The modularization of the
crosscutting interaction into connectors facilitated, for example, the reuse of the
persistence component description from the first to the second case study. Persistence
was a crosscutting concern only in the HealthWatcher architecture (Figure 7). Hence,

 On the Modular Representation of Architectural Aspects 93

we have not applied an aspectual connector in the TIG architectural specification. The
definition of quantification mechanisms (Section 3.2) in attachments also has shown
to be the right decision choice as it improves the reusability of connectors. The other
reason was that is was easier to determine how multiple interacting aspects affect each
other by looking in a single place in the architectural description – i.e. the attachments
specification.

Table 1. Examples of Heterogeneous Architectural Aspects and their Interactions

Aspect Interactions Case Study Heterogeneous
Aspects #

Total
 Some Examples

Health Watcher Error Handling,
Transaction
Management,
Distribution

13 Precedence: Error Handling, Transaction
Manag.
XOR: ForwardRecovery.resumption, Forward
 Recovery.termination

TIG Replication,
Performance,
Security

7 Precedence: Security, Performance
XOR: Replication.passive, Replication.active

AspectT Autonomy, Adaptation,
Learning, Code Mobility,
Interaction

15 Precedence: Interaction, Autonomy, Adaptation
Precedence: Autonomy.execution,
 Autonomy.proactiveness
XOR: Mobility, Collaboration

Table 1 presents a summary on how AspectuaACME has been used through the

three case studies to capture certain heterogeneous architectural aspects. It also
describes how many aspectual interactions have been explicitly captured in those
studies, followed by some examples of Precedence and XOR interactions. In our
evaluation, we have noticed that two or more crosscutting roles of the same
heterogeneous aspectual connector can naturally be linked to the same join point (a
component port). Hence, the proposed aspect interaction mechanisms (Section 3.4)
can be used to define their relationships. For example, Table 1 shows a XOR
relationship in the HW architecture involving two crosscutting roles of the same
connector: ForwardRecovery. Other interesting possibilities have been also explored
in the case studies, such as declaring that all the connectors of Error Handling aspect
have precedence over all the connectors of Transaction Management in the HW
system. Also, we have observed that the explicit definition of such aspectual
relationships in the architectural stage enhances the documentation of design choices
that need to be observed later on the design of applications, and variation points in a
certain product-line design [31].

5 Related Work

There is a diversity of viewpoints on how aspects (and generally concerns) should be
modeled in ADLs. However, so far, the introduction of AO concepts into ADLs has
been experimental in that researchers have been trying to incorporate mainstream
AOP concepts into ADLs. In contrast, we argue that most of existing ADLs

94 A. Garcia et al.

abstractions are enough to model crosscutting concerns. For this purpose, it is just
necessary to define a new configuration element based on the traditional connector
concept.

Most AO ADLs are different from AspectualACME because they introduce a lot of
concepts to model AO abstractions (such as, aspects, joinpoints, and advices) in the
ADL. Navasa et al 2005 [19] present a proposal to introduce the aspect modeling in
the architecture design phase. Aspects are used to facilitate the architecture evolution
by allowing easily either to modularize crosscutting concerns, or to incorporate new
requirements in the system architecture. The composition between the architectural
components and the aspects is based on an exogenous control-driven co-ordination
model. The incorporation of the authors’ model to existing ADLs, such as ACME, is
still under investigation. Navasa et al 2002 [18] do not propose an AO ADL, but
define a set of requirements which current ADLs need to address to allow the
management of crosscutting concerns using architectural connection abstractions. The
requirements are: (i) definition of primitives to specify joinpoints in functional
components; (ii) definition of the aspect abstraction as a special kind of component;
and (iii) specification of connectors between joinpoints and aspects. The authors
suggest the use of existing coordination models to specify the connectors between
functional components and aspects. Differently from our lightweight approach, they
suggest the definition of AO specific ADL constructs. Furthermore, they do not
mention in their proposal the need for supporting important AO properties such as
quantification, interaction between aspects and heterogeneous aspects.

DAOP-ADL [22] defines components and aspects as first-order elements. Aspects
can affect the components’ interfaces by means of: (i) an evaluated interface which
defines the messages that aspects are able to intercept; and (ii) a target events
interface responsible for describing the events that aspects can capture. The
composition between components and aspects is supported by a set of aspect
evaluation rules. They define when and how the aspect behavior is executed. Besides,
they also include a number of rules concerning with interaction between aspects. With
regards to precedence, aspects can be evaluated in two ways: sequentially or
concurrently. In addition, aspects can share information using a list of input and/or
output global properties. Nevertheless, DAOP-ADL does not provide mechanisms to
support quantification at the attachment level and explicit modularization of
heterogeneous architectural aspects.

Similarly to our proposal, FuseJ [26] defines a unified approach between aspects
and components, that is, FuseJ does not introduce a specialized aspect construct. It
provides the concept of a gate interface that exposes the internal implementation
functionality of a component and offers access-point for the interactions with other
components. In a similar way to our proposal, FuseJ concentrates the composition
model in a special type of connector that extends regular connectors by including
constructs to specify how the behaviour of one gate crosscuts the behaviour of another
gate. However, differently from our work, our compositional model works in
conjunction with the component traditional interface while FuseJ defines the gate
interface that exposes internal implementation details of a component. However,
FuseJ provides explicit support neither for defining the interaction between aspects
nor for modularizing heterogeneous aspects. Moreover, it only allows quantification
over the same gate methods. In addition, FuseJ does not work with the notion of

 On the Modular Representation of Architectural Aspects 95

configuration. It includes the definition of the connection inside the connector itself.
This contrasts with the traditional way that ADLs works – that declares a connector
and binds connectors’ instances at the configuration section.

Pessemier et al [21] defines the Fractal Aspect Component (FAC), a general model
for mixing components and aspects. Their aim is to promote the integration between
aspect-oriented programming (AOP) and component-based software engineering
(CBSE) paradigms. FAC model proposes three new abstractions: (i) aspect
components – that modularize a crosscutting concern by implementing the service of
a regular component as a piece of an around advice; (ii) aspect bindings – which
define bindings between regular and aspectual components; and (iii) aspect domains –
that represents the reification of regular components affected by aspect components.
FAC model is implemented under Fractal [2], an extensible and modular component
model, and its respective ADL. There are similarities between the aspect component
from the FAC model and our aspectual connector. Both are used to specify
crosscutting concerns existing in the system architecture. The aspect bindings of FAC
define a link between a regular and an aspect component. This latter can
modify/extend the behavior of the former by affecting its exposed join points. In our
approach, this is addressed by the definition of: (i) base and crosscutting roles – which
allow specifying the binding between two components; and (ii) the glue clause – that
define the semantic of crosscutting composition between them.

6 Conclusions and Future Work

This paper has addressed current issues related to aspect-oriented architecture
modeling and design. The analysis of heavyweight solutions provided by some AO
ADLs yielded to the design of AspectualACME, a general-purpose aspect-oriented
ADL that supports improved composability of heterogeneous architectural aspects.
The composition model is centered on the concept of aspectual connector, which
takes advantage of traditional architectural connection abstractions – connectors and
configuration – and, based on them, provides a lightweight support for the definition
of some composition facilities such as: (i) heterogeneous crosscutting interfaces at the
connector level, (ii) a minimum set of aspect interaction declarations at the attachment
level, and (iii) a quantification mechanism for attachment descriptions. In this way,
AspectualACME encompasses a reduced set of minor extensions, thereby avoiding
the introduction of additional complexity in architectural descriptions. The paper also
discussed the applicability and scalability of the proposed ADL enhancements in the
context of three case studies from different domains. Our approach has scaled up well
in all the case studies mainly by the fact that AspectualACME follows a symmetric
approach, i.e. there is no explicit distinction between regular components and
aspectual components. Also, we have observed that explicit aspect interaction
declarations in the architectural stage enhances the documentation of design choices
that need to be observed later on the design of applications.

As future work, we plan to further elaborate on several issues related to the
expressiveness of the AspectualACME language, as well as on traceability issues.
Architectural descriptions in AspectualACME can be mapped to aspect-oriented
design languages that support aspect-oriented modeling at the detailed design level,

96 A. Garcia et al.

such as aSideML [5] and Theme/UML [8]. Tools need to be developed to support the
creation of AspectualACME descriptions and their transformation to design level
descriptions. Once these tools are available, designers may fully exploit the benefits
from the aspect-oriented ADL and explicitly “design” aspectual connectors.

Acknowledgments

This work has been partially supported by CNPq-Brazil under grant No.479395/2004-
7 for Christina. Alessandro is supported by European Commission as part of the grant
IST-2-004349: European Network of Excellence on Aspect-Oriented Software
Development (AOSD-Europe), 2004-2008. This work has been also partially
supported by CNPq-Brazil under grant No.140252/03-7 for Uirá, and grant
No.140214/04-6 for Cláudio. The authors are also supported by the ESSMA Project
under grant 552068/02-0.

References

1. Batista, T., Chavez, C., Garcia, A., Sant’Anna, C., Kulesza, U., Rashid, A., Filho, F.
Reflections on Architectural Connection: Seven Issues on Aspects and ADLs. Workshop
on Early Aspects ICSE'06, pages 3-9, May 2006, Shanghai, China.

2. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B. An open component
model and its support in Java. In Proc. of the Intl Symposium on Component-based
Software Engineering, Edinburgh, Scotland, May 2004.

3. Cacho, N., Sant'Anna, C., Figueiredo, E., Garcia, A., Batista, T., Lucena, C. Composing
Design Patterns: A Scalability Study of Aspect-Oriented Programming. Proc. 5th Intl.
Conference on Aspect-Oriented Software Development (AOSD'06), Bonn, Germany, 20-
24 March 2006.

4. Chavez, C. A Model-Driven Approach for Aspect-Oriented Design. PhD thesis, Pontifícia
Universidade Católica do Rio de Janeiro, April 2004.

5. Chavez, C., Garcia, A., Kulesza, U., Sant’Anna, C., Lucena, C. Taming Heterogeneous
Aspects with Crosscutting Interfaces. Journal of the Brazilian Computer Society, vol.12,
N.1, June 2006.

6. Chitchyan, R., et al. A Survey of Analysis and Design Approaches. AOSD-Europe Report
D11, May 2005.

7. Clarke, S. and Walker, R. Generic aspect-oriented design with Theme/UML. In [8], pages
425-458.

8. Filman, R.,Tzilla E., Siobhan Clarke, and Mehmet Aksit, editors. Aspect-Oriented
Software Development. Addison-Wesley, Boston, 2005.

9. Garcia, A., Batista, T., Rashid, A., Sant’Anna, C. Driving and Managing Architectural
Decisions with Aspects. Proc. SHARK.06 Workshop at ICSR.06, Turin, June, 2006.

10. Garcia, A., Kulesza, U., Lucena, C. Aspectizing Multi-Agent Systems: From Architecture
to Implementation. In: Software Engineering for Multi-Agent Systems III, Springer-
Verlag, LNCS 3390, December 2004, pp. 121-143.

11. Garcia, A., Lucena, C. Taming Heterogeneous Agent Architectures with Aspects.
Communications of the ACM, March 2006. (accepted)

12. Garcia, A., Lucena, C., Cowan, D. Agents in Object-Oriented Software Engineering.
Software: Practice & Experience, Elsevier, Volume 34, Issue 5, April 2004, pp. 489-521.

 On the Modular Representation of Architectural Aspects 97

13. Garcia, A., Sant'Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., Staa, A. Modularizing
Design Patterns with Aspects: A Quantitative Study. Transactions on Aspect-Oriented
Software Development, Springer, LNCS, pp. 36 - 74, Vol. 1, No. 1, February 2006.

14. Garlan, D. et al. ACME: An Architecture Description Interchange Language, Proc.
CASCON'97, Nov. 1997.

15. Krechetov, I., Tekinerdogan, B., Garcia, A., Chavez, C., Kulesza, U. Towards an
Integrated Aspect-Oriented Modeling Approach for Software Architecture Design. 8th
Workshop on Aspect-Oriented Modelling (AOM.06), AOSD.06, Bonn, Germany.

16. Medvidovic, N., Taylor, R. A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE Trans. Soft. Eng., 26(1):70-93, Jan 2000.

17. Mehta N., Medvidovic, N. and Phadke, S. Towards a Taxonomy of Software Connectors.
Proc. of the 22nd Intl Conf. on Software Engineering (ICSE), Limerick, Ireland, pp. 178 –
187, 2000.

18. Navasa, A. et al. Aspect Oriented Software Architecture: a Structural Perspective.
Workshop on Early Aspects, AOSD’2002, April 2002.

19. Navasa, A., Pérez, M. A., Murillo, J. M. Aspect Modelling at Architecture Design.
EWSA 2005, pp. 41-58, LNCS 3527, Pisa, Italy, 2005.

20. Pérez, J., et al., E. PRISMA: Towards Quality, Aspect-Oriented and Dynamic Software
Architectures. In Proc. of 3rd IEEE Intl Conf. on Quality Software (QSIC 2003), Dallas,
Texas, USA, November (2003).

21. Pessemier, N., Seinturier, L., Coupaye, T., Duchien, L. A Model for Developing
Component-based and Aspect-oriented Systems. In 5th International Symposium on
Software Composition (SC'06), Vienna, Austria, March 2006.

22. Pinto, M., Fuentes, L., Troya, J., "A Dynamic Component and Aspect Platform”, The
Computer Journal, 48(4):401-420, 2005.

23. Quintero, C., et al. Architectural Aspects of Architectural Aspects. Proc. of European
Workshop on Software Architecture (EWSA2005)- Pisa, Italy, June 2005, LNCS 3527.

24. Rashid, A., Chitchyan, R. Persistence as an Aspect. Proc. of the 2nd Intl. Conf. on Aspect-
Oriented Software Development (AOSD'03), USA, March 2003.

25. Rashid, A., Garcia, A., Moreira, A. Aspect-Oriented Software Development Beyond
Programming. Proc. of ICSE.06, Tutorial Notes, May 2006, Shanghai, China.

26. Suvée, D., De Fraine, B. and Vanderperren, W. (2005) FuseJ: An architectural description
language for unifying aspects and components. Software-engineering Properties of
Languages and Aspect Technologies Workshop @ AOSD2005.

27. SPG – Software Productivity Group at UFPE. http://twiki.cin.ufpe.br/twiki/bin/view/SPG,
2006.

28. Soares, S., Laureano, E. and Borba, P.. Implementing Distribution and Persistence Aspects
with AspectJ. In Proc. of OOPSLA'02, Seattle, WA, USA, 174-190, November 2002.
ACM Press.

29. The AspectJ Team. “The AspectJ Programming Guide”. http://eclipse.org/aspectj/
30. Kulesza, U., et al. Quantifying the Effects of Aspect-Oriented Programming: A

Maintenance Study. Proc. of the Intl Conf. on Software Maintenance (ICSM’06),
Philadelphia, USA, September 2006.

31. Kulesza, U., Alves, V., Garcia, A., Lucena, C., Borba, P. Improving Extensibility of
Object-Oriented Frameworks with Aspect-Oriented Programming. Proc. of the 9th Intl
Conf. on Software Reuse (ICSR’06), Turin, Italy, June 2006.

	Introduction
	Health Watcher: A Case Study
	ACME in a Nutshell
	Health Watcher Architecture
	Heterogeneous Architectural Crosscutting
	Aspect Interaction

	AspectualACME
	Aspectual Connector
	Quantification Mechanism
	Heterogeneous Architectural Aspects
	Aspect Interaction

	Evaluation
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

