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Abstract. Functional criteria often drive the component selection in the assem-
bly of a software system. Minimal distance strategies are frequently adopted
to select the components that require minimal adaptation effort. This type of
approach hides to developers the non-functional characteristics of components,
although they may play a crucial role to meet the system specifications. In this
paper we introduce the CODER framework, based on an optimization model, that
supports “build-or-buy” decisions in selecting components. The selection crite-
rion is based on cost minimization of the whole assembly subject to constraints
on system reliability and delivery time. The CODER framework is composed by:
an UML case tool, a model builder, and a model solver. The output of CODER
indicates the components to buy and the ones to build, and the amount of testing
to be performed on the latter in order to achieve the desired level of reliability.

1 Introduction

When the design of a software architecture reaches a good level of maturity, software
engineers have to undertake selection decisions about software components. COTS have
deeply changed the approach to software design and implementation. A software sys-
tem is ever more rarely built “from scratch”, as part of the system comes from buy-
ing/reusing existing components.

Even though in the last years numerous tools have been introduced to support deci-
sions in different phases of the software lifecycle, the selection of the appropriate set
of components remains a hard task to accomplish, very often left to the developers’
experience. Without the support of automation, the selection is frequently driven from
functional criteria related to the distance of the characteristics of available components
from those specified in the architectural description. This is due to the deep under-
standing that software designers have developed on functional issues, as well as to the
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introduction of sophisticated compositional operators (e.g. connectors with complex
internal logics) that help to assembly systems satisfying the functional requirements.

As opposite, limited contributions have been brought to support the selection of com-
ponents on the basis of their non-functional characteristics. As a consequence, software
developers have no automated tools to support the analysis “aimed at characterizing the
performance and reliability behavior of software applications based on the behavior of
the “components” and the “architecture” of the application” [6]. This analysis might be
used to answer questions such as: (i) which components are critical to the performance
and reliability of the application? and (ii) how are the application performance and reli-
ability influenced by the performance and reliabilities of individual components? If the
software application is to be assembled from a collection of components, then answer
to such questions can help the designers to make decisions such as which components
should be picked off the shelf, and which components should be developed in-house [6].

A recent empirical study on COTS-based software development [17] shows that
component selection is part of new activities integrating the traditional development
process, and it is always based on the experience of project members. The same study
evidences a similar practice that bases the COTS component selection either on the
developer familiarity or on license issues and vendor reputation. None of the studied
projects uses decision-making algorithms.

Beside all the above considerations, real software projects ever more suffer from
limited budgets, and the decisions taken from software developers are heavily affected
by cost issues. The best solutions might not be feasible due to high costs, and wrong
cost estimations may have a critical impact for the project success. Therefore tools that
support decisions strictly related to meet functional and non-functional requirements,
while keeping the costs within a predicted budget, would be very helpful to the software
developer’s tasks.

In this paper we introduce CODER (Cost Optimization under DElivery and Reliabil-
ity constraints), a framework that helps developers to decide whether buying or building
components of a certain software architecture. Once built a software architecture, each
component can be either bought, and probably adapted to the new software system, or
it can be developed in-house. This is a “build-or-buy” decision that affects the software
cost as well as the ability of the system to meet its requirements.

CODER supports the component selection basing on cost, delivery time and reliabil-
ity characteristics of the components. We assume that several instances of each software
component may be available as COTS. Basically, the instances differ with respect to
cost, reliability and delivery time. Besides, we assume that several in-house instances
of each software component may be built. In fact, the developers of a system could build
an in-house component by adopting different strategies of development. Therefore, the
values of cost, reliability and delivery time of an in-house developed component could
vary due to the values of the development process parameters (e.g. experience and skills
of the developing team). CODER indicates the assembly of (in-house and COTS) com-
ponents that minimizes the cost under constraints on delivery time and reliability of the
whole system. In addition, for each in-house developed component CODER suggests
the amount of testing to perform in order to achieve the required level of reliability.
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The paper is organized as follows: in section 2 we provide the formulation of the opti-
mization model that represents the CODER core; in section 3 we introduce the CODER
structure and underlying mechanisms; in section 4 we illustrate the usage of CODER
in the development of a mobile application; in section 5 we summarize recent work in
software cost estimation vs. quality attributes and outline the novelty of our approach
with respect to the existing literature; conclusions are presented in section 6. In [5] we
have collected all the details that are not strictly necessary for this paper understanding.

2 The Optimization Model Formulation

In this section, we introduce the mathematical formulation of the optimization model
that CODER generates and solves, and that represents the core of our approach (1).

Since our framework may support different lifecycle phases, we adopt a general def-
inition of component: a component is a self-contained deployable software module
containing data and operations, which provides/requires services to/from other com-
ponents. A component instance is a specific implementation of a component.

The solution of the optimization model determines the instance to choose for each
component (either one of the available COTS products or an in-house developed one)
in order to minimize the software costs under the delivery time and reliability con-
straints. Obviously when no COTS products are available the in-house development of
a component is a mandatory decision whatever being the cost incurred. Viceversa for
components that cannot be in-house built (e.g. for lack of expertise) one of the available
COTS products must be chosen.

Due to our additional decision variables, the model solution also provides the amount
of testing to be performed on each in-house component in order to achieve a certain
reliability level.

2.1 The Problem Formulation

Let S be a software architecture made of n components. Let Ji (J̄i) be the set of
COTS (in-house developed) instances available for the i-th component, and m = maxi

|Ji ∪ J̄i|.
Let us suppose to be committed to assemble the system by the time T while ensuring

a minimum reliability level R and spending the minimum amount of money.

COTS Component Model Parameters

The parameters that we define for a COTS product Cij ∈ Ji are:

– the cost cij ;
– the delivery time dij ;
– the average number si of invocations;
– the probability μij of failure on demand.

1 For sake of readability, we report model details in [5], thus we ask readers interested to a
deeper understanding of the model construction to refer to [5].
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The estimate of the cost cij is outside the scope of this paper, however, the following
expression can be used to estimate it:

cij = cbuy
ij + cadapt

ij

where cbuy
ij is the purchase cost, and cadapt

ij is the adaptation cost. The adaptation cost
takes into account the fact that, in order to integrate a software component into a system,
the component must support the style of the interactions of the system’s architecture to
correctly work together with other components. If a COTS product has another style of
interaction, developers have to introduce glueware to allow correct interactions.

Yakimovich et al. in [24] suggest a procedure for estimating the adaptation cost.
They list some architectural styles and outline their features with respect to a set of
architectural assumptions. They define a vector of variables, namely the interaction
vector, where each variable represents a certain assumption. An interaction vector can
be associated either to a single COTS or to a whole software architecture. To estimate
the adaptation cost of a COTS they suggest to compare its interaction vector with the
software architecture one.

Furthermore, cadapt
ij could include the cost needed to handle mismatches between the

functionalities offered by alternative COSTs and the functional requirements of the sys-
tem. In fact, it may be necessary to perform a careful balancing between requirements
and COTS features, as claimed in [2].

The purchase cost cbuy
ij is typically provided by the vendor of the COTS component.

The delivery time dij might be decomposed in the sum of the time needed to the
vendor to deliver the component, and the adaptation time.

For sake of model formulation, in this paper we do not explicitly preserve the above
decompositions of cost and delivery time parameters, although we implicitly take into
account them in the example of Section 4.

The parameter si represents the average number of invocations of a component
within the execution scenarios considered for the software architecture. Note that this
value does not depend on the component instance, because we assume that the pattern
of interactions within each scenario does not change by changing the component in-
stance. This value is obtained by processing the execution scenarios that, in the CODER
framework, are represented by UML Sequence Diagrams (see Section 3). The number
of invocations is averaged overall the scenarios by using the probability of each scenario
to be executed. The latter is part of the operational profile of the application.

The parameter μij represents the probability for the instance j of component i to
fail in one execution [20]. A rough upper bound 1/Nnf of μij can be obtained upon
observing the component being executed for a Nnf number of times with no failures.
However, several empirical methods to estimate COTS failure rates can be found in [17].

In-House Component Model Parameters

The parameters that we define for an in-house developed instance Cij ∈ J̄i are:

– the unitary development cost c̄ij ;
– the estimated development time tij ;
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– the average time τij required to perform a test case;
– the average number si of invocations;
– the probability pij that the instance is faulty;
– the testability Testabij .

The unitary cost c̄ij is intended as the per-day cost of a software developer, that may
depend on the skills and experience required to develop Cij . Well-assessed cost/time
models are available to estimate the first three parameters (e.g. COCOMO [4]).

The parameter pij is an intrinsic property of the instance that depends on its internal
complexity. The more complex the internal dynamics of the component instance is, the
higher is the probability that a bug has been introduced during its development. In [18]
an expression for pij has been proposed as a function of the component instance internal
reachability.

The definition of testability that we adopt in our approach is the one given in [21],
that is:

Testabij = P (failure|prob. distribution of inputs) (1)

Their definition of testability expresses the conditional probability that a single exe-
cution of a software fails on a test case following a certain input distribution. In [5] we
suggest a procedure to estimate it.

Model Variables. In general, a “build-or-buy” decisional strategy can be described as
a set of 0/1 variables defined as follows (∀i = 1 . . . n):

xij =
{

1 if the Cij instance is chosen (j ∈ J̄i or j ∈ Ji)
0 otherwise

Obviously, if the i-th component has only m̄ < m instances then the xij ’s are defined
for 1 ≤ j ≤ m̄.

For each component i, exactly one instance is either bought as COTS or in-house
developed. The following equation represents this constraint:

∑
j∈Ji∪J̄i

xij = 1, ∀i = 1 . . . n (2)

Finally, let N tot
ij be an additional integer decision variable of the optimization model

that represents the total number of tests performed on the in-house developed instance
j of the i-th component (2).

Basing on the testability definition, we can assume that the number Nsuc
ij of success-

ful (i.e. failure-free) tests performed on the same component can be obtained as:

Nsuc
ij = (1 − Testabij)N tot

ij , ∀i = 1 . . . n, j ∈ J̄i (3)

2 The effect of testing on cost, reliability and delivery time of COTS products is instead assumed
to be accounted in the COTS parameters.
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Cost Objective Function (COF). The development cost of the in-house instance Cij

can be expressed as: c̄ij(tij + τijN
tot
ij ). The objective function to be minimized, as

the sum of the costs of all the component instances selected from the “build-or-buy”
strategy, is given by:

COF =
n∑

i=1

⎛
⎝∑

j∈J̄i

c̄ij(tij + τijN
tot
ij )xij +

∑
j∈Ji

cijxij

⎞
⎠ (4)

Delivery Time Constraint (DT). A maximum threshold T has been given on the de-
livery time of the whole system. In case of a COTS product the delivery time is given by
dij , whereas for an in-house developed instance Cij the delivery time shall be expressed
as tij + τijN

tot
ij . Therefore the following expression represents the delivery time DTi

of the component i:

DTi =
∑
j∈J̄i

(tij + τijN
tot
ij )xij +

∑
j∈Ji

dijxij (5)

Without loss of generality, we assume that sufficient manpower is available to inde-
pendently develop in-house component instances. Therefore the delivery constraint can
be reformulated as follows:

max
i=1...n

(DTi) ≤ T (6)

which can be decomposed in the set of constraints DT1 ≤ T, . . . , DTn ≤ T .

Reliability Constraint (REL). We consider systems that may incur only in crash fail-
ures, that are failures that (immediately and irreversibly) compromise the behaviour of
the whole system (3).

A minimum threshold R has been given on the reliability on demand [20] of the
whole system. The reliability of the whole system can be obtained as a function of the
probability of failure on demand of its components, as we show in this section.

The probability of failure on demand μij , j ∈ Ji, for COTS components has been
discussed in section 2.1.

The probability of failure on demand θij of the in-house developed instance Cij , j ∈
J̄i, can be formulated as follows:

θij =
Testabij · pij(1 − Testabij)Nsuc

ij

(1 − pij) + pij(1 − Testabij)Nsuc
ij

(7)

A proof of this formulation is given in [5].
Now we can write the average number of failures fnumi of the component i as

follows:

fnumi =
∑
j∈J̄i

θijsixij +
∑
j∈Ji

μijsixij (8)

3 Note that, although promising formulations of the component capability of propagating errors
have been devised (see for example [1]), no closed form expression for system reliability
embedding error propagation has yet been found.
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In agreement with [11], the probability that no failure occurs during the execution of
the i-th component is given by φi = e−fnumi , which represents the probability of no
failures occurring in a Poisson distribution with parameter fnumi.

Therefore the probability of a failure-free execution of the system is given by
∏n

i=1 φi.
The reliability constraint is then given by:

n∏
i=1

φi ≥ R (9)

Model Summary. The objective function (4), under the main constraints (2), (6) and
(9), plus the obvious integrality and non-negativity constraints on the model variables,
represent the optimization model adopted within the CODER framework.

The model solution provides the optimal “build-or-buy” strategy for component se-
lection, as well as the number of tests to be performed on each in-house developed
component. The solution guarantees a system reliability on demand over the thresh-
old R, a system delivery time under the threshold T while minimizing the whole sys-
tem cost. The applied reliability model is a light-weighted one, as we work in favor of
model solvability. However, it can be replaced by a profound reliability growth model
from literature [7] to increase the result accuracy. This can be done without essentially
changing the overall model structure, with the side effect of increasing complexity. In
[5] we report the mathematical formulation of the whole model.

With regard to the accuracy of the model, there are some input parameters (e.g. the
probability of failure on demand, the cost) that may be characterized by a not negligible
uncertainty (i.e. only a range for the costs may be available [14]). The propagation of
this uncertainty should be analyzed, but it is outside the scope of this paper. However,
several methods to perform this type of analysis can be found, e.g. it has been done in
[8] for a reliability model.

3 The CODER Framework

In Figure 1 the CODER framework is shown within its working environment.
The input to the framework is an UML model constituted by: (i) a Component Dia-

gram representing the software architecture, (ii) a set of Sequence Diagrams represent-
ing the possible execution scenarios.

CODER accepts UML models in XMI format [25]. In theory, any tool exporting
diagrams to XMI can be used to generate input models for CODER. In practice this
is not the case because XMI exporting formats may sensibly differ from each other.
For this paper example (in Section 4) we have used ArgoUML [26] to build and export
UML diagrams.

The CODER framework is made of two components, which are a model builder and
a model solver.

The model builder first allows users to annotate the UML diagrams with additional
data that represent the optimization model parameters (see Section 2), such as failure
probabilities of software components. Then it transforms the annotated model into an
optimization model in the format accepted from the solver.
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UML design tool
(ArgoUML)

Software model
(Component Diagram, 

Sequence Diagram)

CODER framework

Model builder

Model solver
(LINGO)

Annotate

Transform

Optimization
model

Model results

- component
selection

- amount of 
testing on 
in-house

comp.

Fig. 1. The CODER framework and its environment

The model solver processes the optimization model received from the builder and
produces the results, that consist in the selection of components and the amount of
testing to perform on in-house components.

The optimization model solver that we have adopted in CODER is LINGO [27].
The integration between the model builder and the model solver has been achieved as
follows. LINGO makes use of a callable Dynamic Link Library (DLL) to provide a
way to bundle its functionalities into a custom application. In particular, the DLL gives
the ability to run a command script containing an optimization model and a series of
commands that allows to gather data, to populate and solve the model. The integration
of data between the calling application (i.e. the model builder in our case) and the solver
can be obtained by means of the Pointer functions in the data section of the script. These
functions act as a direct memory links and permit direct and fast memory transfers of
data in and out of the solver memory area.

As a result of this integration, LINGO can be directly run from the main interface of
the model builder, as shown in Figure 2. The main interface can be partitioned in 3 areas:
(i) the working area (upper right side of Figure 2), where the imported UML diagrams
are shown, and where components and lifelines can be selected for annotations; (ii) the
annotation area, where the model parameters related to software components can be
entered (lower side of Figure 2); (iii) the model constraint area, where values of model
constraint bounds can be assigned (upper left side of Figure 2). The four ellipses of
Figure 2 highlight, respectively, from the top to the bottom of the figure: the button
to run the model solver LINGO, the title of the area where constraint bounds can be
entered and the titles of areas where COTS and in-house component parameters can be
entered.

Summing up, CODER allows to specify ranges for model parameters and sets of al-
ternative optimization models can be automatically generated (by sampling parameters
in the given ranges) and solved. The output of CODER, for each model, is a suggested
selection of available components and the suggested amount of testing to perform on
each in-house developed component. In the next section, we apply the model to an
example.
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Fig. 2. A screenshot of the CODER model builder

network A network B

network C

Home
Agent

Foreign
Agent

Correspondent
Agent

Server

Fig. 3. The example architecture

4 Using CODER in the Development of a Mobile Application

We have considered an application that allows the mobility of a user without loosing its
network connection based on Mobile IP [19].

Figure 3 shows the architecture of the application. A user of the network A can
exchange data with users of the network C through a server located in C. A user of
network A can also move to network B and continue to interact with a user of network
C without generating a new connection. Four software components are deployed: Home
Agent (running on network A), Foreign Agent (running on network B), Correspond
Agent and Server (running on network C).

The scenario that we consider can be described as follows: interactions between
users in A and users in C change only when a user moves from A to B; the effect of
this move is that Foreign Agent provides the user’s new address to Home Agent; as soon
as users in C attempt to interact with the moving user through her/his old address in
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Table 1. First Configuration : parameters for COTS products

Component COTS Cost Average Average no. Prob. of fail.
name alternatives cij delivery time dij of invocations si on demand μij

C0 Correspond Agent C01 12 4 200 0.0005
C02 14 3 0.00015
C03 15 3 0.0001

C1 Server C11 6 4 40 0.0003
C12 12 3 0.0001

C2 Home Agent C21 12 2 80 0.00015
C3 Foreign Agent C31 7 4 25 0.0002

C32 10 3 0.00015
C33 8 7 0.00015

Table 2. First Configuration : parameters for in-house development of components

Component Development Testing Unitary Average no. of Faulty Testability
name Time ti0 Time τi0 development cost c̄i0 invocations si Probability pi0 Testabi0

C0 Correspond Agent 10 0.007 1 200 0.03 0.00001
C1 Server 5 0.007 1 40 0.01 0.001
C2 Home Agent 6 0.007 1 80 0.04 0.001
C3 Foreign Agent 5 0.007 1 25 0.05 0.002

A, Home Agent provides the user’s new address to Correspond Agent so that, without
interruption, users in C switch their interactions towards network B [19].

We show the support that the CODER framework can provide to select components
during the development of this application. We apply our approach on two different
configurations. In order to keep our model as simple as possible, in both configurations
we assume that only one in-house instance for each component can be developed.

The number of COTS instances does not change across configurations, but each con-
figuration is based on a different set of component parameters. We have solved the
optimization model in both configurations for a set of values of reliability and delivery
time bounds.

4.1 First Configuration

Table 1 shows the parameter values for the COTS available instances, likewise
Table 2 does for in-house developed ones, where J̄i = {0}(i = 0, ..., 3), J0 = {1, 2, 3},
J1 = {1, 2}, J2 = {1} and J3 = {1, 2, 3}.

The third column of Table 1 lists, for each component, the set of COTS alternatives
available at the time of system development. For each alternative: the buying cost cij

(in KiloEuros, KE) is given in the fourth column, the average delivery time dij (in days)
is given in the fifth column, the average number of invocations of the component in the
system si is given in the sixth column, finally the probability of failure on demand μij

is given in the seventh column.
For each component in Table 2: the average development time ti0 (in days) is given

in the third column and the average time required to perform a single test τi0 (in days)
is given in the fourth column, the unitary development cost c̄i0 (in KE per day) is given
in the fifth column, the average number of invocations si is given in the sixth column,
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Fig. 4. Model solutions for first configuration

the probability pi0 that the component instance is faulty at the execution time is given
in the seventh column, and finally the component testability Testabi0 is given in the
last column.

Note that each component can be in-house built. This configuration is characterized
by the fact that the in-house instance of each component is less reliable than all the
COTS available components, but it is less expensive than all the latter ones.

In Figure 4 we report the results obtained from solving the optimization model for
multiple values of bounds T and R. Each bar represents the minimum cost for a given
value of the delivery time bound T and a given value of the reliability bound R. The
former spans from 3 to 10 whereas the latter from 0.85 to 0.95.

As expected, for the same value of the reliability bound R, the total cost of the
application decreases while increasing the delivery time bound T (i.e. more time to
achieve the same goal). On the other hand, for the same value of T the total cost almost
always decreases while decreasing the reliability bound R (i.e. less reliable application
required) and, in two cases, it does not increase.

With regard to the component selection: for T < 10, the model solution proposes
different combinations of COTS and in-house instances almost always without test on
the latter ones; for T = 10, the model proposes, for all R values, the same solution
made of all in-house instances without test. In [5] we report the solution vectors for
each pair of bounds (T ,R).

4.2 Second Configuration

Similarly to the first configuration, Table 3 shows the parameter values for the COTS
available components, whereas Table 4 shows the ones for the in-house instances.

Again note that each component can be in-house built. The component parameters
in this configuration have been set to induce a certain amount of testing on in-house
instances. In particular: the in-house instance of C0 is less reliable, but earlier available
and less expensive than all the available COTS instances for this component; the C1
and C2 in-house instances are less reliable than all the corresponding COTS available
instances, but are less expensive than these last ones; the in-house instance of C3 is



Automated Selection of Software Components 77

Table 3. Second Configuration : parameters for COTS products

Component COTS Cost Average Average no. Prob. of fail.
name alternatives cij delivery time dij of invocations si on demand μij

C0 Correspond Agent C01 12 4 200 0.00015
C02 14 3 0.00015
C03 15 3 0.00001

C1 Server C11 18 4 40 0.0001
C12 18 3 0.00003

C2 Home Agent C21 15 2 80 0.00001
C3 Foreign Agent C31 9 4 25 0.0002

C32 14 3 0.00015
C33 9 7 0.00002

Table 4. Second Configuration: parameters for in-house development of components

Component Development Testing Unitary Average no. of Faulty Testability
name Time ti0 Time τi0 development cost c̄i0 invocations si Probability pi0 Testabi0

C0 Correspond Agent 1 0.007 1 200 0.08 0.008
C1 Server 10 0.007 1 40 0.08 0.009
C2 Home Agent 10 0.007 1 80 0.08 0.007
C3 Foreign Agent 6 0.007 1 25 0.05 0.004

as reliable as (but more expensive than) the first COTS instance, whereas all the other
COTS instances are more reliable than it.

In Figure 5 we report again the results obtained from solving the optimization model
for multiple values of bounds T and R. Here the former spans from 3 to 15 whereas the
latter from 0.90 to 0.98. In [5] we report the solution vectors for each pair of bounds
(T ,R).

Similarly to the first configuration, for the same value of the reliability bound R, the
total cost of the application decreases while increasing the delivery time bound T . On
the other hand, for the same value of T the total cost decreases while decreasing the
reliability bound R.

As shown in [5], the component selection for this configuration is more various.
While T increases, the model tends to select in-house components because they are
cheaper than the available COTS instances. This phenomenon can be observed even for
low values of T . The total cost decreases while T increases because ever more in-house
instances can be embedded into the solution vectors. The in-house instances remain
cheaper than the corresponding COTS instances even in cases where a non negligible
amount of testing is necessary to make them more reliable with respect to the available
COTS.

5 Related Work

The correlation between costs and non-functional attributes of software systems has
always been of high interest in the software development community. After a phase
of experimental assessment, in the last years new methodologies and tools have been
introduced to systematically model and evaluate issues related to this aspect from the
architectural phase.
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Fig. 5. Model solutions for second configuration

The Architecture Tradeoff Analysis Method (ATAM) [13] provides to software de-
velopers a framework to reason about the software tradeoffs at the architectural level.
The Attribute-based Architectural Styles (ABAS) [16], used within ATAM, help soft-
ware architects to reason (quantitatively and qualitatively) about the quality attributes
and the stimulus/response characteristics of the system. ATAM/ABAS framework is
based on roughly approximated cost-characteristic curves, usually elicited from experi-
ence, that show how costs will behave with respect to each architectural decision. Our
context differs from ATAM/ABAS because it is model-based, as opposed to experience-
based, and the model we propose focuses on component selection decisions.

A significant breakthrough in this area has been the Costs Benefit Analysis Method
(CBAM) [14]. CBAM, laying on the artifacts produced from ATAM, estimates costs,
(short-term and long-term) benefits and uncertainty of every potentially problematic
architectural design decision devised from ATAM. The estimates come out from infor-
mation collected from stakeholders in a well assessed elicitation process. Architectural
decisions are represented in a space whose dimensions are costs, benefits and (some
measure of) uncertainty. The graphical representation of decisions is an excellent mean
to support the developers’ choices. Architectural strategies (ASs) typically have effects
on several quality attributes (QAs). In order to evaluate the benefits of ASs on the whole
software system, CBAM framework proposes that stakeholders assign contributions of
ASs to QAs, and quality attribute score to QAs. The benefit of an AS is then computed
as the sum of its contributions weighted on the QAs quality attribute scores. CBAM
framework, however, deals neither with the elicitation of such contributions and scores
nor with the assessment of ASs implementation costs. Actually, cost estimation often
has to take into account some critical time-to-market goals such as delivery times and
shared use of resources.

Although CBAM is a very promising technique to support software developers giv-
ing priorities among architectural decisions on the basis of their costs and benefits, it
requires to stakeholders to estimate a large number of scores, contributions and costs by
resorting to qualitative judgements based of their own expertise. In this context an an-
alytical approach taking into account all architectural alternatives and tradeoffs among
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qualitative attributes is extremely suitable. A key issue is to capture the relationships
among costs and quality attributes, as well as across different quality attributes.

An optimization model may play the role of decision support in the early develop-
ment phases, where the decisions are usually based on stakeholders’ estimates. Later
on, it can be an actual decision-making tool, when the software architecture and the
bounds on the quality attributes have been devised, and implementation choices (such
as resource allocation and amount of testing) may heavily affect costs and quality of the
system. A classical approach for cost management is the portfolio-optimization, based
on a knapsack-like integer linear programming model [15]. The models and techniques
that we refer to in the remainder of this section follow this approach.

Optimization techniques appeared first in the area of software development in [10],
where a variant of the 0-1 knapsack model is introduced to select the set of soft-
ware requirements that yields the maximum value while minimizing costs. The concept
of value is kept quite general and may be interpreted as an implementation priority.
The knapsack model is first used to maximize the total value of requirements under
budget constraints, thereafter to minimize the total cost without loosing requirement
value.

The same authors in [12] introduce an interesting generalization of the model as-
sumptions. The idea is that each COTS has a generic quality attribute, the objective
function is the system quality as the weighted sum of COTS qualities, and the maxi-
mization is budget-constrained.

In the reliability domain, an interesting formulation of a cost minimization model has
been given in [11]. Again 0-1 variables allow to select alternative COTS components,
under a constraint on the failure rate of the whole system. The latter quantity is modeled
as a combination of the failure rates of single components, their execution times, and a
rough measure of the system workload. This is the closest model formulation to the one
that we propose here.

In [22,23] the reliability constraints also cope with hardware failures, but the non-
linear complexities of the models impose heuristic solutions.

An extensive optimization analysis of the tradeoff between costs and reliability of
component-based software systems has been presented in [9]. A reliability constrained
cost minimization problem is formulated, where the decision variables represent the
component failure intensities. Three different types of cost functions (i.e., linear, loga-
rithmic exponential, inverse power) have been considered to represent the dependency
of the component cost on the component failure intensity, that is the cost to attain a
certain failure intensity. An exponential function has been used to model the system
reliability as a combination of component failure intensities, operational profile (i.e.
probability of component invocation) and time to execute the invoked service. The goal
of this type of analysis is quite different from the one of this paper. The model in [9]
works after the components have been chosen, as its solution provides insights about the
failure intensities that the (selected) components have to attain to minimize the system
cost.

The formulation of our model that we proposed in section 2 is close to the one in
[11] with an additional constraint on the system delivery time. However, none of the
existing approaches, supports “build-or-buy” decisions.
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The following major aspects characterize the novelty of our approach:

– From an automation viewpoint, CODER is (at the best of our knowledge) the first
thorough framework that supports a process of component selection based on cost,
reliability and delivery time factors.

– CODER is not tied to any particular architectural style or to any particular
component-based development process. Values of cost and reliability of in-house
developed components can be based on parameters of the development process (e.g.
a component cost may depend on a measure of developer skills).

– From a modeling viewpoint, we introduce decision variables that represent the
amount of testing performed on each in-house component. The cost objective func-
tion, the reliability and delivery time constraints depend on these variables, there-
fore our model solution not only provides the optimal combination of COTS/in-
house components, but also suggests the amount of testing to be performed on
in-house components in order to attain the required reliability.

6 Conclusions

We have presented a framework supporting “build-or-buy” decisions in component se-
lection based on cost, reliability and delivery time factors. The framework not only
helps to select the best assembly of COTS components but also indicates the compo-
nents that can be conveniently developed in-house. For the latter ones, the amount of
testing to perform is also provided.

The integration of an UML tool (like ArgoUML), a model builder, and a model
solver (like LINGO) has been quite easy to achieve due to XML interchange formats
on one side, and to the Dynamic Link Library of LINGO on the other side. The CODER
framework has been conceived to be easily usable from developers, and it indeed shows
two crucial usability properties: transparency and automation. The software is annotated
without modifying the original UML model, but producing a new annotated model, thus
attaining transparency with respect to software modeling activities. Besides, the model
building and solving is a completely automated tool supported process.

The results that we have obtained on the example shown in this paper provides ev-
idence of the viability of such approach to the component selection. The components
selected from the framework evidently constitute an optimal set under the existing con-
straints. It would be hard to obtain the same results without tool and modeling support.
In addition, the tool also provides the amount of testing to perform, thus addressing the
classical problem of: “How many tests are enough?” [18].

We are investigating the possibility of embedding in CODER other types of opti-
mization models that may allow to minimize costs under different non-functional con-
straints (e.g. under security constraints). In general, these types of models are well
suited to study the tradeoffs between different non-functional attributes, that are usu-
ally very hard to model and study in current (distributed, mobile) software systems.
Furthermore, we intend to enhance CODER by introducing the multi-objective opti-
mization [3] to provide the configuration of components that minimizes, for example,
both the cost of construction of the system and its probability of failure on demand.
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