
Introspective Model-Driven Development

Thomas Büchner and Florian Matthes

Chair of Software Engineering for Business Information Systems
Technische Universität München

Boltzmannstraße 3, 85748 Garching b. München
{buechner,matthes}@in.tum.de

Abstract. In this paper, we propose a new approach to model-driven
development, which we call introspective model-driven development
(IMDD). This approach relies heavily on some well-understood under-
lying abstractions, in order to bridge the abstraction gap between the
requirements and the actual executable system. These abstractions are
object-oriented programming languages and frameworks as a means of
architectural abstraction. The main idea of IMDD is to annotate the
extension points of a framework explicitly, which enables the automatic
introspection of the defined metamodel. In a second step, a model of the
customizations can be obtained by model introspection. There are two
kinds of introspective frameworks – introspective blackbox and intro-
spective whitebox frameworks. We developed an extension of the Eclipse
IDE, which supports introspective model-driven development. Further-
more, we discuss the characteristics of the proposed approach, compared
to established generative approaches.

1 Introduction

Dealing with the growing complexity of modern information systems is one of
the challenges in computer science. One way to cope with this issue is the use
of abstractions. There are some well-understood levels of abstraction as shown
in figure 1.

The basic abstraction which hides some details of the underlying executable
system is an object-oriented programming language (e.g. Java, C#). These lan-
guages are so-called General Purpose Languages (GPLs), which means that they
are used to solve a broad spectrum of problems.

On top of object-oriented programming languages there are frameworks as a
category of architectural abstraction. A framework embodies an abstract design
for solutions to a family of related problems [1]. In order to solve a concrete
problem, a framework has to be customized. The concrete task of customizing
a framework involves the manipulation of low-level constructs like XML-files
or code of the base programming language. The relationship between these con-
structs and the conceptual decisions in the problem space is not stated explicitly,
and the intellectual distance between the adaptation constructs and the problem
domain is pretty large.

V. Gruhn and F. Oquendo (Eds.): EWSA 2006, LNCS 4344, pp. 33–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



34 T. Büchner and F. Matthes

Fig. 1. Bridging the Abstraction Gap

One proposed solution to raise the level of abstraction of the framework cus-
tomization process, is the use of a domain-specific language (DSL), which rep-
resents the extension points of a framewok in a usually declarative way. This
approach is called model-driven development and implies an explicit connection
between the high-level constructs of a DSL and the corresponding customiza-
tion artifacts [3]. Technically speaking, there exists a transformation between the
model and the customization artifacts. This distinguishes MDD from so-called
model-based processes, in which models are merely used to illustrate certain as-
pects of a system in an understandable way, but the models created are not tied
directly to the executable system. In this case, the models often do not “tell
the truth” about the current system, and the creation of models is often seen
as an overhead to the actual development process. So only with an MDD ap-
proach it is possible to obtain all benefits of using models to build information
systems.

The most important point in using an MDD process is the explicit connection
between the models and the actual customization artifacts. This leads to the
question, in which direction the transformation is being applied. If the direction
points from the model to the customization artifacts, this is called a forward en-
gineering process [4]. Processes which use a transformation in the other direction
are called reverse engineering processes. In this paper, we call these processes
top-down and bottom-up.

A particular challenge for MDD processes results from the nature of the arti-
facts involved. In most cases, neither of them is sufficient to specify a complete
system. Both, the model and the customization artifacts should be editable, and
changes should lead to an immediate synchronization of the affected artifact.
This is called roundtrip engineering. Realizing roundtrip engineering with a top-
down process is a challenging task [5]. A promising approach to this problem is
that of roundtrip visualizations [6].

All proposed implementations [7], [8] of model-driven development favor a
top-down approach, in which they generate customization artifacts from
models. To emphasize this, we call this approach generative model-driven
development.



Introspective Model-Driven Development 35

We propose in this paper a bottom-up approach, in which the high-level mod-
els are a rather transient result of an introspection process. We call this approach
introspective model-driven development.

The article is structured as follows: In chapter 2 we give a short overview on
generative model-driven development. In chapter 3, we introduce introspective
model-driven development, which will be refined in chapter 4 and 5. In chapter 6,
we will conclude with a comparison of the proposed approach with the prevailing
approach to model-driven development.

2 Generative Model-Driven Development

An overview of generative model-driven development is illustrated schematically
in figure 2. Similar to the life cycle of a framework the process is divided in a core
development phase and an application development phase, with different roles of
developers involved. The first result of the core development phase is the frame-
work with its extension points. The creation of the core framework will be done
by framework developers. In order to provide a more abstract view on the exten-
sion points of the framework, a language developer extracts the metamodel of the
framework and creates a domain-specific language which reflects this metamodel.
The extracted metamodel only reflects these parts of the framework, which will
be customized in a declarative way. The metamodel will usually be specified
using an existing meta-metamodel, as e.g., EMF [9] or MOF [10]. Given the
metamodel, a transformation developer will create transformation rules which
enable the transformation of models to concrete customization constructs. This
will usually be done using a specific template language.

Fig. 2. Generative Model-Driven Development

In the application development phase, the framework user uses the meta-
model and creates a model which solves a concrete problem. The creation of



36 T. Büchner and F. Matthes

concrete customization artifacts will be done by a generator based on the pro-
vided transformation rules. This only applies to these customizations which can
be done declaratively. The imperative adaptations have to be done manually by
the framework user.

3 Introspective Model-Driven Development

In this paper, we propose a bottom-up approach to realize model-driven de-
velopment. We call this new approach introspective model-driven development
(IMDD).

The main idea of IMDD is the construction of frameworks that can be an-
alyzed in order to obtain the metamodel for customizations they define. The
process in which the metamodel is retrieved is called introspection. The term
introspection stems from the latin verb introspicere: to look within. Special em-
phasis should be put on the distinction between introspection and reflection in
this context. We use both terms as they have been defined by the OMG [11]:

Table 1. Term Definitions

introspection A style of programming in which a program is able to examine
parts of its own definition. Contrast: reflection

reflection A style of programming in which a program is able to alter
its own execution model. A reflective program can create new
classes and modify existing ones in its own execution. Examples
of reflection technology are metaobject protocols and callable
compilers.

reflective Describes something that uses or supports reflection.

According to the definition of reflective, introspective describes something
that supports introspection. An introspective framework supports introspection
in that its metamodel can be examined.

The whole process of introspective model-driven development is schemati-
cally shown in figure 3. The process is divided into the well known core devel-
opment phase and application development phase. The first result of the core
development phase is an introspective framework. An introspective framework
supports introspection by highlighting all declaratively customizable extension
points through annotations [12]. This enables the extraction of the metamodel
by metamodel introspection. It is important to understand, that the metamodel
is not an artifact to be created from the framework developer, but rather can be
retrieved at any point in time from the framework.

The central artifact of the application development phase are the customiza-
tions to be made by the framework user. In IMDD it is possible to analyze these
artifacts and to obtain a model representation of them. This is called model in-
trospection. The model is an instance of the retrieved metamodel and can be



Introspective Model-Driven Development 37

Fig. 3. Introspective Model-Driven Software Development

visualized by different viewers (i.e. visualization tools). There exist out-of-the-
box viewers which can visualize an introspective model in a generic way. In some
cases it is desirable to develop special viewers which visualize the model in a spe-
cific way. This will be done by framework developers in the core development
phase. The manipulation of the model can be either done by using the views or
by manipulating the customization artifacts directly. In both cases an updated
customization artifact leads to an updated model and subsequently to an up-
dated view. As a result of this, the model and the views are always synchronized
with the actual implementation and can never “lie”.

The main idea of introspective model-driven development is the direct extrac-
tion of the model and the metamodel from the framework artifacts which define
them. There are two categories of frameworks which differ in the way adaptation
takes place. Blackbox frameworks can be customized by changing association re-
lationships flexibly. There are as many implementations as necessary to address
all imaginable problems available as part of the framework core. The framework
user just chooses the appropriate classes and configures their properties and the
associations between them. In contrast, customization of whitebox frameworks
takes place by creating subclasses of existing classes of the framework core. In
this case the framework user has to provide concrete implementations.

Accordingly, the way introspective model-driven development is done is differ-
ent for these kinds of frameworks. In the next chapter we will discuss introspec-
tive model-driven development for blackbox frameworks. In chapter 5, IMDD
for whitebox frameworks will be introduced.

In order to enable introspective model-driven development we created a frame-
work which supports blackbox introspection as well as whitebox introspection.
This framework is called Introspective Modeling Framework – IMF. IMF pro-
vides its functionality by extending the post-IntelliJ-IDE Eclipse. Technically
speaking, IMF consists of three Eclipse plugins.

Example. The process of developing an introspective framework and customiz-
ing it is illustrated using a simple example framework. We use a “textbook”



38 T. Büchner and F. Matthes

scenario described by Martin Fowler, in which we have a system that reads files
and needs to create objects based on these files [2]. Each line can map to a dif-
ferent class, the class is indicated by a four-character code at the beginning of
the line. The rest of the line contains the data for the object to be created. The
following two lines result in the creation of two objects of type ServiceCall and
Usage with attribute values as shown in an object diagram in figure 4:

Fig. 4. Initialized Objects

#123456789012345678901234567890123456789012345678901234567890
SVCLFOWLER 10101MS0120050313.........................
USGE10301TWO x50214..7050329........................

The process of reading a file and instantiating objects accordingly should
be adaptable in a high-level model-driven way. A conceptual metamodel which
models the problem as an object-oriented design is shown in figure 5.

Fig. 5. Conceptual Metamodel

In the following we will show how to create an introspective blackbox and
whitebox framework which realize a solution to this problem.

4 Blackbox Introspection

The framework core of a blackbox framework provides ready-to-use implementa-
tions of functionality, which only has to be customized to solve a family of related
problems. The extension points of a blackbox framework are places which enable
the adaptation of either elementary properties or associations between objects.
In an introspective blackbox framework these extension points are tagged ex-
plicitly. That enables tool support for the customization process, which involves
the selection and configuration of classes to be instantiated and the creation of
associations between the objects constructed.



Introspective Model-Driven Development 39

The idea of introspective blackbox frameworks is similar to that of dependency
injection [13]. This means, that the instantiation of the framework classes is done
by a dedicated component, which can be configured declaratively. The classes
to be instantiated are rather passive in this process, they get their required
dependencies “injected”. Introspective blackbox frameworks take this idea one
step further by declaring all resources to be injected explicitly. This enables tool
support.

4.1 Core Development

The core of a blackbox framework consists of classes which can have configurable
elementary properties and associations with other classes, which are also con-
figurable. These configurable elements define the metamodel of the framework,
and a concrete configuration is a model which has to conform to the metamodel.

The key point of introspective blackbox frameworks is that these configurable
elements are tagged explicitly using annotations as being configurable. This en-
ables the automatic introspection of the metamodel and as a result of this it is
possible to support the modeling step.

There are two types of annotations, which enable the identification of config-
urable properties and associations. Configurable properties are tagged using the
annotation type Property. In order to create the configurable property code of
the class ReaderStrategy in our example, it is necessary to tag the definition
of the attribute as shown:

@Property(description="these four letters indicate this strategy")
String code;

Configurable relationships are created using the annotation type Associa-
tion. Creating the association between the classes Reader and ReaderStrategy
is done with following piece of code:

@Association List<ReaderStrategy> readerStrategies;

This leads to the meta-metamodel of blackbox introspection as shown in
figure 6. A configuration consists of many configurable classes which can have
many customizable properties and associations. An association connects config-
urable classes with each other. The icons besides the classes ConfigurableClass,
Property and Association can be used to annotate introspective elements in
class diagrams.

An implementation of the example problem as an introspective blackbox
framework looks like shown in figure 7. The introspective elements are anno-
tated using the icons mentioned above.

4.2 Application Development

So far we have looked at how to create the introspective framework core. This
task is done by the framework developer and consists in writing a “plain old



40 T. Büchner and F. Matthes

Fig. 6. The Meta-Metamodel of Blackbox Introspection

Fig. 7. Implementation of the Example Problem as an Introspective Blackbox Frame-
work

framework” with some additional annotations to tag the extension points. As
a result it is possible to retrieve the metamodel of the framework by doing
introspection on the framework core.

In the second phase of the life cycle, the framework user customizes the frame-
work to solve a concrete problem. The customization of an introspective blackbox
framework is done using the IMF Blackbox Modeler tool. Technically speaking is
this a plugin for the Eclipse IDE which analyzes the metamodel of the framework
core. Based on this metamodel the Blackbox Modeler provides a view which en-
ables the creation of a model which is an instance of the metamodel. A screenshot
of the modeler, in which the example problem is modeled, is shown in figure 8.
From the modeler view, which shows the model, it is always possible to navigate
to the corresponding metamodel element, which is also shown in figure 8.

5 Whitebox Introspection

As already mentioned, the customization of whitebox frameworks is done by pro-
viding implementations of abstract classes of the framework core. More specifi-
cally, the framework user specifies the desired behavior by implementing methods.



Introspective Model-Driven Development 41

Fig. 8. Modeling Perspective for Blackbox Introspection in the Blackbox Modeler

These methods are called hook methods and represent the extension points of
the framework [15]. Regarding introspective whitebox frameworks there are two
kinds of hook methods – introspective and non-introspective hook methods. Cus-
tomization of introspective hook methods can be done using a declarative pro-
gramming style, while implementing non-introspective hook methods requires
imperative constructs. The main idea of whitebox introspection is to annotate
introspective hook methods in the framework core and to analyze the declara-
tive customization artifacts. The analysis of the structure of the introspective
methods results in the metamodel of the framework, and the analysis of the
customizations leads to a model of the provided adaptations.

To build a whitebox framework, which addresses our example problem, we
create an abstract class ReaderStrategy. This abstract class specifies, that sub-
classes have to provide a concrete value of the code property:

public abstract class ReaderStrategy {
@Introspective public abstract String getCode();
...

The annotation type Introspective indicates, that this method is an intro-
spective method, which means that it has to be implemented in a declarative
way. In fact, this is the simplest kind of an introspective method, the so-called
value-method. A value-method has no parameters and returns either a primitive
value or an object of type String or Class.

In order to specify the programming model formally, which can be used to
implement the method we use a context-free grammar. This grammar is used
to restrict the expressive power of the underlying programming language to



42 T. Büchner and F. Matthes

a declarative programming model. We define our grammar based on the non-
terminals used by the Eclipse project JDT [16]. Non-terminals are shown in italic
type, terminal symbols are shown in fixed width font. Non-terminals introduced
by us are printed in bold italic face.

The non-terminal which defines the programming model for customizing
value-methods looks like the following:

ValueMethod M1:
{ Modifier } ValueMethodType SimpleName ( ) {

return AbstractValue ; }

ValueMethodType:
String | Class | boolean | byte | short | char |
int | long | float | double

The return type of a value-method is therefore restricted to be of either prim-
itive type or one of String or Class. The return statement is defined by the
non-terminal AbstractValue:

AbstractValue:
Value
NameV alueV ariableName

This can be either a value of one of the following types, or a variable name:

Value:
BooleanLiteral | CharacterLiteral | NumberLiteral |
StringLiteral | TypeLiteral | NullLiteral

We call these two ways to return the result by-value and by-constant. The
variable name has to be bound to a field declaration which defines a variable
which is declared as being final:

FinalValueFieldDeclaration:
[ Javadoc ] FinalModifiers

ValueMethodType SimpleNameV alueV ariableName = Value ;

The non-terminal FinalModifiers specifies a set of modifiers which contains
the final modifier. A valid implementation of the introduced method getCode
looks like the following:

@Override public String getCode() {
return "SVCL";

}



Introspective Model-Driven Development 43

An alternative solution in which case the result is returned by-constant is like
the following:

final CODE = "SVCL";

@Override public String getCode() {
return CODE;

}

Because of the declarative programming model, it is possible to analyze the
customization artifacts. This analysis is called model introspection and is sup-
ported by the IMF-Whitebox Modeler tool. A screenshot, which shows the tool,
is illustrated in figure 9. In this view, it is possible to manipulate the value of the
property, which results in a manipulation of the code and a subsequent redraw-
ing of the model. It is also possible to navigate to the construct which defines
the metamodel for the current model element.

Fig. 9. An Introspective View of a Value-Method in the Whitebox Modeler

The value-method described so far enables us to model elementary properties.
In order to build a framework which addresses the example problem we also
have to model associations. This can be done using another kind of introspective
method, the so-called objects-method. An objects-method has no parameters,
but returns either one or many objects of a specific type. Unlike for the value-
method, there are multiple introspective programming models, which can be used
to implement an objects-method. The simplest programming model returns just
a newly created object, which is similar to the programming model of the value-
method. An in-depth treatment of all identified programming models will be
provided in [14]. We introduce here the fields-by-type programming model, which
allows the definition of a set of objects by declaring variables. The specification of
an objects-method using the fields-by-type programming model in the framework
core looks like the following:



44 T. Büchner and F. Matthes

public abstract class Reader {

private List<ReaderStrategy> strategies;

@Introspective public List<ReaderStrategy> getStrategies() {
if(strategies == null) {

strategies = FieldFinder.getFields
(this,ReaderStrategy.class);

}
return strategies;

}
...

This method returns all final fields which specify an object of type Reader-
Strategy. A specification of a concrete strategy looks like this:

public class Reader1 extends Reader {
final ReaderStrategy STRATEGY_1 = new ReaderStrategy() {
...

As a result of this we have introduced a meta-metamodel of whitebox intro-
spection, which is shown in figure 10. The meta-metamodel we show here is a
simplified version of the one introduced in [14]. A model consists of introspective
classes. An introspective class has introspective methods, which can be either
value-methods or objects-methods. Using this meta-metamodel it is possible to
build introspective whitebox frameworks.

Fig. 10. The Simplified Meta-Metamodel of Whitebox Introspection

In figure 11 the four meta-layers and their equivalents in the case of whitebox
introspection are shown. The metamodel at M2 is defined by the framework
core by using introspective methods. The model at the meta-layer M1 is defined
by the framework user. The model is represented as declarative code of the
host language. Modeling can be done either by writing code manually or by
using the Whitebox Modeler to do so at a rather high level of abstraction. The
programming model, which is used to express the model, depends on the actual



Introspective Model-Driven Development 45

introspective method. The Whitebox Modeler also verifies the correct use of the
programming model.

We now study how to solve the example problem with an introspective white-
box framework. Our example can be customized completely declaratively, so it
can be solved using a blackbox framework. To demonstrate one of the advan-
tages of whitebox introspection we vary the example scenario a little bit. Let’s
assume, the created objects should be used to do some rather complex business
logic directly after their creation. This business logic should be done using a
specific API, which enables the manipulation of some data store. The most con-
venient way to express such kind of business logic is by writing some imperative
code, which encodes the desired behavior. This means, that there are declara-
tively customizable parts of the framework as well as imperatively customizable
part. One benefit of our approach lies in the uniform treatment of both intro-
spective and non-introspective hook methods. The content of the introspective
methods will be analyzed, whereas the non-introspective are not analyzed by the
modeler.

A class diagram of an introspective whitebox framework, which addresses the
modified example problem, is shown in figure 12. The method processObject
of the class ReaderStrategy is a non-introspective hook method which gets
the created object as a parameter and does the business logic. The framework
user can use the full power of the base language to specify the business logic
here.

Fig. 11. Four Meta-Layers of Whitebox Introspection



46 T. Büchner and F. Matthes

Fig. 12. Implementation of the Example Problem as an Introspective Whitebox
Framework

5.1 Case Study

In [14] we present our experience in building two whitebox frameworks as part of
a commercial knowledge management system. The first one is a web-visualization
framework. The main abstraction of this framework are so-called handlers. A
handler reacts on requests by reading parameters, doing some business logic and
rendering response pages in the end. Except for the business logic, all aspects of
the handlers are realized introspectively and can be analyzed and modeled. We
have built a derivative of the Whitebox Modeler, which is tailored specifically
to this framework. In order to render the dynamic response pages, the frame-
work uses HTML-templates. By means of the introspective model, it is possi-
ble to check the consistency of the templates with the code which instruments
them [17]. The whole knowledge management system consists of approximately
500 handlers.

6 Discussion and Concluding Remarks

We believe, that modeling as a means of building and understanding systems at
a rather high level of abstraction should play a more important role in software
engineering. Furthermore, we think, that model-driven approaches offer a lot of
benefits over merely model-based approaches. The prevailing approach to realize
model-driven development is the generation of artifacts which customize frame-
works, as shown in figure 1. In this paper, we propose an alternative approach
to realize MDD, which we call introspective model-driven development (see fig-
ure 13). In the following we will discuss the implications of using introspective
vs. generative model-driven development.

IMDD relies on some infrastructure, which has to be in place. The base lan-
guage used has to be a statically typed object-oriented programming language.
In our case, we chose Java as the base language. The second prerequisite is the
existence of a “post-IntelliJ-IDE”, on top of which a tool to support IMDD can
be created. We chose the Eclipse IDE to build IMF, which is a framework that
supports IMDD. According to the two types of introspective frameworks - intro-
spective blackbox and introspective whitebox frameworks, IMF provides generic



Introspective Model-Driven Development 47

Fig. 13. Modeling Approaches

modelers for both of them. Therefore, using IMF out-of-the-box it is possible
to do introspective model-driven development immediately. In some cases, it is
useful to create tailored modelers, which will be supported by IMF.

6.1 Advantages of IMDD

IMDD is a single-source approach, which means that the metamodel and the
model are respectively represented by exactly one artifact. This is not the case
for generative approaches, in which information about the metamodel is encoded
implicitly in the framework core, and in the explicit metamodel of the DSL. The
same is true for the models. They are represented as artifacts of the modeling
process, as well as customizations, which will be generated. To specify the trans-
formation process, there are additional artifacts, which rely on the conceptual
metamodel, and the way the concrete customization artifacts look like. All this
leads to a lot of redundancies and a lot of artifacts, which have to be consistent.

In introspective model-driven development the metamodel is represented by
the annotated framework core, and the model is represented directly by the
customization artifacts. In both cases, these artifacts are used to specify the
executable system, as well as to provide modeling information. This means, that
in IMDD “code is model” [18]. Code means here also declarative customization
artifacts, which configure an introspective blackbox framework. The model is a
transient view on the underlying code. The most striking advantages of IMDD
follow from this fact.

At first, this enables roundtrip visualizations, which are hard to achieve for
generative approaches [5]. As another immediate implication of this, the model
“never lies”. This means, that the model reflects properties of the system pre-
cisely all the time.

Because the modeling information in IMDD is represented by code, refactoring
the metamodel of the framework [19] can be done easily using a post-IntelliJ-
IDE. In the case of an introspective whitebox framework, also the model will be
refactored accordingly. Broadly speaking, keeping the involved artifacts consis-
tent is quite easy in IMDD. In a generative approach, evolving the framework
core means evolving the metamodel, the transformation rules and the models
manually in parallel.



48 T. Büchner and F. Matthes

Another advantage of IMDD is the possibility to achieve symbolic integra-
tion [2] between declarative models and imperative artifacts. This makes it easy
to mix both programming styles, and get the benefits of modeling the declarative
aspects on a high level of abstraction. Using a generative approach, it is quite
complicated to integrate both paradigms, by e.g. editing generated artifacts,
using protected source code areas.

Furthermore, we consider the introspective approach as being lightweight. This
means, that no additional meta-metamodel is needed to do IMDD, and that the
overall process is much simpler. As a meta-metamodel, we use some of the capa-
bilities of the object-oriented base language. There are no additional languages
to be learned by the developer. Generative approaches are more heavyweight,
because they involve an additional meta-metamodel, and a language to do the
transformation. As another aspect of using the base language to do metamodel-
ing, fundamental consistency constraints on the metamodel will be checked by
the compiler of the base language. In the case of introspective whitebox frame-
works, the compiler also checks some aspects of the well-formedness of the model
using rich typing, binding and scoping rules of the base language.

The code-centricity of IMDD matches well with the development approaches
used in practice.

6.2 Disadvantages of IMDD

IMDD relies on the explicit annotation of the extension points in the framework
core, so it requires the construction of introspective frameworks. It is not possible
to do IMDD with classical frameworks, which do not support this development
approach. As a consequence of this, doing introspective development with the
existing frameworks is not possible. They have to be modified, in order to be
introspective.

References

1. Ralph E. Johnson and Brian Foote, Designing reusable classes. Journal of Object-
oriented Programming, vol. 1(2), pp. 22-35, 1988.

2. Martin Fowler, Language Workbenches: The Killer-App for Domain Specific Lan-
guages?. http://www.martinfowler.com/articles/languageWorkbench.html

3. Markus Völter and Thomas Stahl, Model-Driven Software Development. John
Wiley & Sons, 2006.

4. Elliot J. Chikofsky and James H. Cross II, Reverse Engineering and Design Re-
covery: A Taxonomy. IEEE Software, vol. 7, 1990.

5. Shane Sendall and Jochen Küster, Taming Model Round-Trip Engineering. Pro-
ceedings of Workshop on Best Practices for Model-Driven Software Development
(part of 19th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications), Vancouver, Canada, 2004.

6. Stuart M. Charters, Nigel Thomas, and Malcolm Munro, The end of the line for
Software Visualization?. VISSOFT 2003: 2nd Annual ”DESIGNFEST” on Visu-
alizing Software for Understanding and Analysis, Amsterdam, September 2003.



Introspective Model-Driven Development 49

7. David S. Frankel, Model Driven Architecture – Applying MDA to Enterprise Com-
puting. Wiley Publishing, Inc., 2003.

8. Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent, Software Factories.
Wiley Publishing, Inc., 2004.

9. Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J.
Grose, Eclipse Modelling Framework. Addison-Wesley Professional, 2003.

10. OMG – Object Management Group, Meta Object Facility (MOF) 2.0 Core Speci-
fication. http://www.omg.org/cgi-bin/apps/doc?ptc/04-10-15.pdf

11. OMG – Object Management Group, Common Warehouse Metamodel (CWM),
v1.1 – Glossary. http://www.omg.org/docs/formal/03-03-44.pdf

12. Joshua Bloch, JSR 175: A Metadata Facility for the Java Programming Language.
http://www.jcp.org/en/jsr/detail?id=175

13. Martin Fowler, Inversion of Control Containers and the Dependency Injection
Pattern. http://www.martinfowler.com/articles/injection.html

14. Thomas Büchner, Introspektive modellgetriebene Softwareentwicklung. Technische
Universität München, München, Dissertation (in Vorbereitung).

15. Wolfgang Pree, Essential Framework Design Patterns. Object Magazine, vol. 7,
pp. 34-37, 1997.

16. Eclipse Foundation, Eclipse Java Development Tools (JDT) Subproject.
http://www.eclipse.org/jdt/

17. Stefan Käck, Introspektive Techniken zur Sicherung der Konsistenz zwischen
Webpräsentationsvorlagen und Anwendungsdiensten. Diplomarbeit, Technische
Universität München, 2005.

18. Harry Pierson, Code is Model. https://blogs.msdn.com/devhawk/archive/2005/-
10/05/477529.aspx

19. Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts, Refac-
toring: Improving the Design of Existing Code. Addison-Wesley Professional, 1999.


	Introduction
	Generative Model-Driven Development
	Introspective Model-Driven Development
	Blackbox Introspection
	Core Development
	Application Development

	Whitebox Introspection
	Case Study

	Discussion and Concluding Remarks
	Advantages of IMDD
	Disadvantages of IMDD



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




