Synthesis of Concurrent and Distributed
Adaptors for Component-Based Systems

Marco Autili, Michele Flammini, Paola Inverardi,
Alfredo Navarra, and Massimo Tivoli

Computer Science Department, University of L’Aquila
Via Vetoio I-67100 I’Aquila, Italy

{marco .autili,flammini,inverard,navarra, tivoli}@di .univaq.it

Abstract. Building a distributed system from third-party components
introduces a set of problems, mainly related to compatibility and com-
munication. Our existing approach to solve such problems is to build a
centralized adaptor which restricts the system’s behavior to exhibit only
deadlock-free and desired interactions. However, in a distributed envi-
ronment such an approach is not always suitable. In this paper we show
how to automatically generate a distributed adaptor for a set of black-box
components. First, by taking into account a specification of the interac-
tion behavior of each component, we synthesize a behavioral model of
a centralized glue adaptor. Second, from the synthesized adaptor model
and a specification of the desired behavior, we generate a set of adaptors
local to the components. They cooperatively behave as the centralized
adaptor restricted with respect to the specified desired interactions.

1 Introduction

Nowadays, a growing number of software systems are built as composition of
reusable or Commercial-Off-The-Shelf (COTS) components. Component Based
Software Engineering (CBSE) is a reuse-based approach which addresses the
development of such systems. One of the main goals of CBSE is to compose and
adapt third-party components to make up a system [I]. Building a distributed
system from reusable or COTS components introduces a set of problems. Often,
components may have incompatible or undesired interactions. A widely used
technique to deal with these problems is to use adaptors and interpose them
between the components forming the system that is being assembled.

One existing approach (implemented in the SYNTHESIS tool [2]) is to build
a centralized adaptor which restricts the system’s behavior to exhibit only a
set of deadlock-free or desired interactions. However in a distributed environ-
ment it is not always possible or convenient to insert a centralized adaptor.
For example, existing legacy distributed systems might not allow the addition
of a new component (i.e., the adaptor) which coordinates the information flow
in a centralized way. Moreover, the coordination of an increasing number of
components can cause loss of information andbottlenecks, with corresponding

V. Gruhn and F. Oquendo (Eds.): EWSA 2006, LNCS 4344, pp. 17-32] 2006.
© Springer-Verlag Berlin Heidelberg 2006

18 M. Autili et al.

increase of the response time of the centralized adaptor. In contrast, building a
distributed adaptor might increase the applicability of the approach in real-scale
contexts.

In this paper we describe an approach for automatically generating a dis-
tributed adaptor for a set of black-box components. Given (i) a specification of
the interaction behavior of each component with its environment and (ii) a spec-
ification of the desired behavior that the system to be composed must exhibit,
it generates component local adaptors (one for each component). These local
adaptors suitably communicate in order to avoid possible deadlocks and enforce
the specified desired interactions. They constitute the distributed adaptor for
the given set of black-box components.

Starting from the specification of the components’ interaction behavior, our
approach synthesizes a behavioral model (i.e., a Labeled Transition System
(LTS)) of a centralized glue adaptor. This is done by performing a part of
the synthesis algorithm described in [2] (and references therein). At this stage,
the adaptor is built only for modeling all the possible component interactions.
It acts as a simple router and each request/notification it receives is strictly
delegated to the right component. By taking into account the specification of
the desired behavior that the composed system must exhibit, our approach ex-
plores the centralized glue adaptor model in order to find those states leading
to deadlocks or to interactions different from the desired ones. This process
is used to automatically derive the set of local adaptors that constitute the
correctl] and distributed version of the centralized adaptor. It is worth men-
tioning that the construction of the centralized glue adaptor is required to deal
with deadlock in a fully-automatic way. Otherwise we should make the stronger
assumption that the specification of the desired behaviors itself ensures also
deadlock-freeness. The approach presented in this paper has various advantages
with respect to the one described in [2] concerning the synthesis of centralized
adaptors. The most relevant ones are: (a) no centralized point of information
flow exists; (b) the degree of parallelism of the system without the adaptor is
now maintained. Conversely, the approach in [2] does not permit parallelism
due to the adaptor centralization; (c) all the domain-specific deployment con-
straints imposed on the adaptor can be removed. In [2] we applied the syn-
thesis of centralized adaptors to COM/DCOM applications. In this domain,
the centralized adaptor and the server components had to be deployed on the
same machine. On the contrary, the approach described in this paper allows
one to deploy each component (together with its local adaptor) on different
machines.

The remainder of the paper is structured as follows: Section [2 describes
the application domain. In Section Bl the synthesis of decentralized adaptors
is firstly described and then formalized by also proving its correctness. Section @]
describes our approach at work by means of a running example. Section
discusses related work, and finally, Section [6] concludes and discusses future
work.

1 'With respect to deadlock-freeness and the specified desired behavior.

Synthesis of Concurrent and Distributed Adaptors 19

2 The Context

In our context, a distributed system is a network of interacting black-box
components {C1,...,Cy,} that can be simultaneously executed. Components
communicate each other by message passing according to synchronous com-
munication protocols. This is not a limitation because it is well known that
with the introduction of a buffer component we can simulate an asynchronous
system by a synchronous one [3]. We distinguish between standard communica-
tion and additional communication. The first denotes the messages that com-
ponents can exchange. The latter denotes the messages that the local adaptors
exchange in order to coordinate each other. Due to synchronous communica-
tion, a deadlocking interaction might occur whenever components contend the
same request. Furthermore, by letting components interact in an uncontrolled
way, they might perform undesired interactions. To overcome this problem we
promote the use of additional components (called local adaptors). Each local
adaptor is a wrapper that performs the component’ standard communication
and mediates it by exchanging synchronizing information (i.e., additional com-
munication), when needed. Synchronizing information allow components to har-
monize their interaction on requests and notifications. Each component is di-
rectly connected to its local adaptor through a synchronous channel; each lo-
cal adaptor is connected to the other ones, through asynchronous channels, in
a peer-to-peer fashion (see for instance the right-hand side of Figure [). For
the sake of clarity, we assume the components are single-threaded and hence
all the requests and notifications can be totally ordered to constitute a set
of sequences (i.e., a set of traces). Note that this is not a restriction since a
multi-threaded component can always be modeled as a set of single-threaded
(sub)components simultaneously executed. Interaction among components is
modeled as a set of linearizations obtained by means of interleaving [4]. It
is worth noting that, in such a concurrent and distributed context, we can-
not assume either a single physical clock or a set of perfectly synchronized
ones in order to determine whether an event a occurs before an event b or
vice versa. We then need to define a relationship among the system events
by abstracting both on the absolute speed of each processor and on the ab-
solute time. In this way we ignore any absolute time scale and we use the well
known happened-before relation and time-stamps method (see [B] for a detailed
discussion).

3 Method Description and Formalization

In this section we first describe our method to deal with the adaptation prob-
lem in a component-based setting. Then, we gradually formalize it by means of
a detailed discussion and pseudo-code description of the setup and local adap-
tors interaction procedures. This section also proves the correctness of our ap-
proach and concludes with a brief discussion about the additional communication
overhead.

20 M. Autili et al.

3.1 Method Description

Our method (see Figure[ll) assumes as input: (i) a behavioral specification of the
system formed by interacting components. It is given as a set {ACY,..., AC,}
of LTS (one for each component C;). The behavior of the system is modeled by
composing in parallel all the LTS and by forcing synchronization on common ac-
tions; (ii) the specification of the desired behavior that the system must exhibit.
It is given in terms of a LTS, from now on denoted by Prrs.

AC1 AC2
synthesis of the LTS
of the centralized
glue adaptor K
network of interacting ‘
companents {LTSs)
+ synthesis of the

desired behavior actual distributed an
(LTS) correct adaptor

{i.e., actual code of

the component local |
adaptors) E

R1s

Fig. 1. 2-step method

These two inputs are then processed in two main steps. (1) By taking into
account all component LTSs, we automatically derive the LTS K that models
the behavior of a centralized glue adaptor. K, at this stage, models all the
possible component interactions and it does not apply any adaptation policy. In
other words, K performs standard communication simply routing components
requests and notifications. In this way, it represents all possible linearizations by
using an interleaving semantics. K is derived by performing the graph unification
algorithm described in [2]. It is worth mentioning that each state of K (i.e., a
global state) is a tuple < S1,...,S, > where each S; is a state of AC; (see for
instance Figure [2]). Hereafter, when the current state of a component appears
in a tuple representing a global state we simply say that the component is in
that global state] This first step is taken from the existing approach [2] for the
synthesis of centralized adaptors. As already mentioned in Section [I whenever
P s ensures itself deadlock-freeness, such a step is not required. For the sake of
presentation we will always assume that K exists. The novel contribution of this
paper is represented by the second step. (2) If K has been generated, our method
explores it looking for those states representing the last chance before entering
into an execution path that leads to deadlock. The restriction with respect to
the specified desired behavior is realized by visiting Prrs. The aim is to split
and distribute Prrg in such a way that each local adaptor knows which actions
the wrapped component is allowed to execute. The sets of last chance states and
allowed actions are stored and, subsequently, used by the local adaptors as basis
for correctly exchanging synchronizing information. In other words, the local

2 In general, a component might be in more than one global state.

Synthesis of Concurrent and Distributed Adaptors 21

adaptors interact with each other (by means of both standard and additional
communication) to perform the correct behavior of K with respect to deadlock-
freeness and Prrg. Decentralizing K, the local adaptors preserve parallelism of
the components forming the system. In the following subsection we formalize
the second step of our method by also providing its correctness.

3.2 Second Step Formalization

As described before, the second step gets in input: (i) the set {ACY,..., AC,},
(ii) K and (iii) Prrs. In order to detect deadlocks, our approach explores K
and looks for sinks. A deadlock state (see Figure IZI) is in fact a sink of K.
We call Forbidden States (F'S) the set of deadlock stated] and all the ones
within forbidden paths necessarily leading to them. A forbidden path in K is a
path that starts at a node which has no transitions that can avoid a forbidden
state and thus necessarily ends in a sink (see for instance Figure [J). The states
in F'S can be avoided by identifying a specific subset of K’s states that are
critical with respect to F'S (see for instance S in Figure 2)). In this way we can
avoid to store the whole graph at runtime as we just need to store the critical
states. More precisely, in order to avoid a state in F'S, we are only interested
in those nodes representing the last chance before entering into a forbidden
state.

.. S > ﬁ<S S >
S c z d w e \% by S,
Forbld_dsrl }2a_ths _____________
S %s VS S

{DeadLock} {DeadLock S 29

Fig. 2. A last chance node S of K

The last chance nodes have some outgoing edges leading to a forbidden state,
the dead edges, and other ones, the safe edges (see for instance the edges labeled
with @ and b y in Figure[Z). According to the labels of the dead edges we store
in the local adaptors associated to the corresponding components the last chance
node, and the critical action that each component should not perform in order
to avoid a state in F'S (in Figure[2 the action c is critical for the component z).
From the implementation point of view, each local adaptor Fg, uses a table F£©
(Last Chance table of F¢,) of pairs <last chance state of K, critical action of
AC;>. Thus, once all the graph has been visited, each local adaptor knows the
critical actions of the corresponding component. Before a component can perform
a critical action its local adaptor has to ask permissions to the other components

3 Abusing notation, sometimes we refer to the states as nodes.

22 M. Autili et al.

(see procedure KVisit). The following procedure computes and distributes the
last chance node tables among the local adaptors. Given in input the centralized
glue adaptor K of n components, the procedure makes use of the following
variables: F, CLiC is the table of last chance nodes associated to the component C;;
Flag Forbiddeng is a flag to check whether the current node S eventually leads
to deadlock or not; Dead Song counts the number of sons of the current node
S that eventually lead to forbidden states of K; Safe Song counts the number
of sons of the current node S that may lead to allowed states of K.

procedure KVisit(state of K: S;)

for each i := 1 to n do
F5C = 0;
end for
Flag Forbiddens := False;
Dead Sons := 0;
Safe Sons := 0;
mark S as Visited;
for each son S’ of S do
if the edge (9, S’) is not visited then
mark the edge (5,5’) as Visited;
if S’ is not visited then
KVisit(S");
end if
if Flag Forbiddeng then
Dead Sons++;
else
Safe Sons++;
end if
end if
: end for
: if Safe Sonsg == 0 then
Flag Forbiddens := True;
: end if
: if Safe Song > 0 && Dead Sons > 0 then
for every dead edge, let o = be the associated action, FCLTC = CLTC U< S a>;
: end if

NN DNDNDNDRNDNRF = = =
STEIVEOVPIIIT B O9

Before starting a critical action (that might lead to a state in F'S), a local
adaptor has to verify (by performing additional communication) if the global
state represents a last chance state with respect to that action. Since at runtime
we do not store K, this verification is made by enquiring the other local adaptors
about the states of the corresponding components, hence deriving the appropri-
ate consequences. If a component is not in the enquired last chance state, its
associated local adaptor immediately replies ensuring that the component will
not reach such a state. In some way it is self-blocked with respect to the enquired
state. If the component is already in the enquired last chance state or it is inter-
ested in reaching it, its local adaptor defers the answer and hence, it attempts

Synthesis of Concurrent and Distributed Adaptors 23

to block the enquiring local adaptor. The only case in which an enquiring local
adaptor has to ask the permission to all the others is when the global state is
exactly a last chance one. Once the enquiring local adaptor receives an answer it
allows its corresponding component to proceed with its standard communication
by delegating the critical action. After that, it sends a message to unblock all
the other local adaptors previously enquired (additional communication). The
unblock message is needed because once a local adaptor allows an enquiring one
to perform a critical action, it ensures also that it will not reach the last chance
state before receiving an unblock message with respect to such a state (see code
lines 7 and 14 of Procedure Ack below). In practice it is self-blocked just with
respect to the enquired state.

Concerning Prrg, we visit and distribute it among the local adaptors (see
Procedure PVisit reported below). Such a distribution is made by means of
another table Fg 4 for each local adaptor Fg, (called Updating and Allowed
actions table of Fg,) of tuples <state of Prrs, allowed action of AC;, state
of Prrs, set of components, set of components >. The first three elements of
each tuple represent an edge of Prps. The fourth (fifth) is the set of active
components, i.e., the ones that can perform some action “matching” with a
transition outgoing from the state of Prg specified by the first (third) element of
each tuple. By means of PVisit each local adaptor knows its allowed actions that
can change the state of Prrg. Moreover, a local adaptor knows also which are the
active components that can move and which must be blocked according to the
current state of Prpg. Let us assume that a component C; is going to perform an
action contained in the table FZ4. If it can proceed according to the current state
of Prrg, then all the other active components are blocked by sending a blocking
message to the corresponding local adaptors. Once C; has performed the action,
all the components that can move in the new state of P;rg are unblocked. Note
that if an action of an active component does not change the state of Prrg, it
can be performed without exchanging messages among the system components,
hence maintaining pure parallelism (this is realized by Procedure Ask, code line
34). The setup of the Last Chance and the Updating and Allowed action tables is
realized by means of two procedures K Visit (see above) and PVisit (see below).
They are depth-first visits of K and Pprg, respectively. These procedures are
executed at design-time in order to setup the corresponding tables. After their
execution, K and Prrs can be discarded. Procedures Ask and Ack, instead,
implement the local adaptors interactions at runtime. Referring to the table of
updating allowed actions, let Lookahead(state of Prrs : p) be a procedure that
given a state p of the Prrg automaton, returns the set of components that are
allowed to perform an action in the state p. The following procedure distributes
Prrs among the local adaptors. Given in input Prpg referred to n components,
the procedure makes use of the following variables: Active Components is the set
of components that are allowed to make a move in the current state p of Prrg;
Next Components is the set of components that must be allowed to move once
the current state of Prpg has changed; Fgl 4 is the table of updating and allowed
actions of the component C;.

24 M. Autili et al.

procedure PVisit(state of Prrs: p;)
for each i := 1 to n do
Fgf = (;
end for
Active Components := Lookahead(p);

5: Next Components = {;

6: mark p as Visited;

7: for each son p’ of p do

8: if the edge (p,p’) is not visited then

9: mark the edge (p,p’) as Visited;

10: Next Components := Lookahead(p');

11: for each C; € Active Components allowed to perform an action « by the
label of the edge (p,p’) do

12: ngA = ngA U < p, a, p', Active Components, Next Components >;

13: if p’ is not visited then

14: PVisit(p');

15: end if

16: end for

17 end if

18: end for

Once this procedure is performed, each local adaptor knows in which state
of Pprg it can allow the corresponding component to perform a specific action.
Moreover, once the component performs such an action, it knows also which
are the components that must be blocked and which ones must be unblocked in
order to respect the behavior specified by Prrs.

In the following we describe how a local adaptor uses the tables to correctly
interact with each other (i) in a deadlock-freeness and (ii) as specified by Prrs.
On the exchanged messages, when needed, we use the standard time-stamps
method in order to avoid problems of synchronization. In this way an ordering
among dependent messages is established and starvation problems are also ad-
dressed. Note that also a priority ordering among components is a priori fixed.
This solves ordering problems concerning messages with the same time-stamps.
A local adaptor, whose current time-stamp is TS, whenever receives a message
with associated a time-stamp ts, it makes use of the following simple procedure
in order to update T'S.

procedure UpTS(timestamp: ts;)
1. if T'S < ts then
2: TS:=ts+1;
3: end if

Let C,, be an active component that is going to perform action « (i.e., in AC,
there is a state transition labeled with a and « does not collide with respect to
Prrg). The associated local adaptor F, checks if « is either (i) a critical action
(i-e., o appears in F£9) or (ii) an updating and allowed action (i.e., a appears
in F, gTA) If it is not, Fo, delegates o with associated the current time-stamp 7'S

Synthesis of Concurrent and Distributed Adaptors 25

increased by 1 to synchronize itself with the rest of the system. If (i) then F¢,
enters in the following procedure in order to ask for the permission to delegate
. This is done by checking if for any pair < S,a >€ F&© there is at least
one local adaptor F¢, whose corresponding component C,, is not in S. If (ii)
then Fe, enters in the following procedure in order to try to block all the active
components and after having performed «, it unblocks the components that can

be activated with respect to the new state reached over Prrg.

procedure Ask(action: «;)
1: Let C5 be the current component that would perform action o and let Sc, be its
current state and p be the current state of Prrs;
Let < t; >Y* be the i-th tuple contained in the table ngA and < t; >Y4 [j] be its
j-th element;

2: flag forbidden := 0;
3:0if 3i | <t; YA 1] == p && < t; >U* [2] == a then
4: if o appears in some pair of FCLJCc then
5: for every entry < S,a >€ FCLTC do
6: i =1
7 TS + +;
8: while no “ACK, a,ts” received && i < n do
9: Let S =< S¢,,...,S¢c, >; Fc, asks to local adaptor Fg¢, if it is in or
approaching the state Sc¢, with associated T'S}
10: i+ —+;
11: end while
12: if ¢ > n then
13: WAIT for an “ACK, «, ts” message
14: end if
15: UpTS(ts);
16: if i > n then
17: 1:=mn;
18: end if
19: for j:=1toido
20: send “UNBLOCK, «, T'S” to Fg¢,;
21: end for
22: end for
23: end if
24: TS+ +;
25: if <t; >UA 1) =< t; >U4 [3] then
26: for each component C; €< t; >V [4] do
27: send “BLOCK, T'S” to Fc,;
28: end for
29: perform action «;
30: for each component C; €< t; >Y* [5] do
31: send “UNBLOCK, < t; > [3], T'S” to Fu,;
32: end for
33: else
34: perform action «;
35: end if

36: end if

26 M. Autili et al.

Note that, by code line 13, the present local adaptor is self-blocked till some
local adaptor gives the permission to proceed, i.e. an “ACK”. The “UNBLOCK”
messages of code line 20 say to all the local adaptors that were blocked with
respect to the enquired forbidden states, to proceed. The “UNBLOCK” messages
of code line 31 are instead to unblock components due to the change of state of
P rs occurred after having performed action a.. On the other hand, when a local
adaptor receives a request for a permission, after having given such a permission,
it is implicitly self-blocked in relation to the set of states it was enquired for.
The following procedure describes the “ACK” messages exchanging method.

procedure Ack(last chance state: S; action: o; timestamp: ts1;)

1: Let Fo, be the local adaptor (performing this Ack) that was enquired with respect
to the state S and the action « that C, would perform; let S’Cy be the current
state of I, and ngy be the state that Fc, would reach with the next hop.

2: UpT'S(tsl);

3. if S'Oy # S && Fc, didn’t ask the permission to get in S then

4: send “ACK, «, T'S” to F¢, that allows C, to perform the action «;

if S¢., == S then
WAIT for “UNBLOCK, «, ts2” from Fc,;

end if

Sgy := next desired state of Fg,,;

: else

10: once S'Oy # S send “ACK, «, T'S” to Fc, that allows C, to perform the action

Q;
11: if no “UNBLOCK, «, ts2” from Fc, has been received then
12: WAIT for it;

5
6
7
8:
9
0

13: end if
14: UpTS(ts2);
15: end if

The “WAIT” instructions of code lines 6 and 12 block the current local
adaptor in order to not allow the corresponding component to enter in a for-
bidden state. Note that, while the “UNBLOCK” message has a one-to-one cor-
respondence, that is, for each message there is a receiver waiting for it, the
“ACK” message can be sometimes useless. In fact a local adaptor needs just
one “ACK” message in order to allow the corresponding component to proceed
with the enquired critical action. All the other possible “ACK” messages are
ignored.

3.3 Correctness

We now provide the correctness of our method by proving that assuming K and
Prrg, the method synthesizes local adaptors that (i) allow the composed system
to be free from deadlocks and (ii) allow Prrs to be exhibited.

We prove (i) by focussing on the last chance nodes. Note that, since the
synthesis of K is correct as proved in [2], we can assume that the last chance
nodes are correctly discovered by means of the procedure K Visit that performs
a standard depth-first visit. Thus, our proof can be reduced to show that the

Synthesis of Concurrent and Distributed Adaptors 27

local adaptors disallow the system to reach a forbidden path. Note that, by
construction, such a path can be undertaken only through a last chance node by
performing an action that labels one of its outgoing dead edges. Let us assume
by contradiction that the component z can perform the critical action ¢ from
the last chance state S, and that S has an outgoing dead edge labeled by ¢ z
(see for instance Figure 2]). Since, as already noticed, the last chance nodes are
correctly discovered, when procedure K Visit is visiting S, it stores in FXC the
tuple < S, ¢ >. At runtime, whenever the component z would perform action ¢,
F, checks if ¢ is a critical action by means of code line 4 of its Ask procedure. It
then starts to ask the permission (at least an “ACK” message) to all the other
components by means of the “while” cycle of code line 8 of the same procedure.
Each enquired local adaptor F¢,, by the Ack procedure, checks if the current
state of the corresponding component C; is in S. If it is, it does not reply to z
till it does not change status (code line 10 of the Ack procedure). In doing so,
until the system state remains S, no local adaptor will reply to F.,. Since F, is
blocked on code line 13 of the Ask procedure till no “ACK” message is received,
a contradiction follows by observing that action ¢ can be performed by z at code
line 29 of the same procedure.

To prove (ii), let us assume by contradiction that the component x performs
the action @ when this is not allowed by Prrg, that is, the current state Sp of
Prrs has no outgoing edge labeled by a x. First of all, in order for a component
to be active, either its local adaptor has received an “UNBLOCK” message from
some other local adaptor (by means of code line 31 of the Ask procedure) or
the system is just started and FU4 has some entry with SO (the initial state
of K) as first element. In both cases each time a component is active, its local
adaptor knows exactly which is the current Prrg state. By construction, x can
perform action a if there exists an entry in FYV4 whose first element matches
with the current state of Prrg and whose second element matches with a (see
code line 3 of the Ask procedure). The contradiction follows by observing that
such an entry was obtained by visiting Prrs hence, by construction, there must
exist an outgoing edge whose label matches with a z from the node labeled
by Sp.

4 Running Example

In this section we show our approach at work by means of a running example.
This example concerns the semi-automatic assembly of a distributed client-server
system made of four components, two servers (denoted by C1 and C2) and two
clients (denoted by C3 and C4). The behavioral specification of C1, C2, C38 and
C4 (shown in Figure Blin form of LTSs) has been borrowed from an industrial
case study described in [6]. C1 (resp., C2) provides two methods p and FreeP
(resp., pI and FreeP1). Moreover, C2 provides also a method Connect. By re-
ferring to the method described in Figure [Il by taking into account the LTSs of
C1, C2, C3 and C4, we automatically synthesize a model of the centralized glue
adaptor K. This is done by using SYNTHESIS and performing the approach

28 M. Autili et al.

described in [2]. Finally, by taking into account the LTS specification of the
desired behavior that the composed system must exhibit, we mechanically dis-
tribute the correct behavior of K in a set of local adaptors f1, f2, f3 and f4.

4.1 Owur Approach at Work

Figure[3 shows the LTSs of C1, C2, C$ and CJ. Within the LTS of a component,
a message 7m (!m) denotes a received (sent) request or notification labeled with
m. The state with an incoming arrow denotes the initial state. For instance, C'1
(C2), from its initial state, receives a request of p (p1) followed by a request of
FreeP (FreeP1).

1C2.ConNotif
?C1.FreeP

‘
| 2C2.Connect <, ?C2.FreeP1
YL g

6D €&

C1 ‘ C2

IC2.Conne IC1.p Ic2.p1
- i) Fan
=N A

g

?C2.p1

d2aIyL di
Ld33IL2D§

C3

Fig. 3. Components’ LTSs

Moreover, C2 from the initial state can receive a request of Connect and,
subsequently, replies to it by means of the notification ConNotif. The interaction
behavior of the clients C'3 and C4 can be easily understood by simply looking
at Figure Bl

Figure M shows part of the LTS of K. Within K, a message ?m j (Im j)
denotes a request or notification labeled with m and received (sent) from (to)
C'j. The state SO with an incoming arrow denotes the initial state. K contains
filled nodes, which denote deadlocks. Deadlocks might occur, e.g., because of a
“race condition” among C3 and C4. In fact, one client (e.g., C3) performs a
request of pI (see the sequence of transitions from the state S0 to S2 in K) and
waits for performing the request p while the other client (i.e., C4) performs p
(see the sequence of transitions from the state S2 to S16 in K) and waits pI. In
this scenario C3 and C4 are in the state S4 of their LTSs (see Figure [3]). Since
none of the clients performs the corresponding FreeP method before having
performed both p and pI, a deadlock occurs (see the filled state S16 in K).
Note that, following the sequence of transitions from the state SO to S12 leads
to the symmetric scenario. By referring to Figure H] the states S15 and S29
are filled since they can only lead to deadlocks. S2 and S12 are last chance
states. The paths from S2 to S16 and from S12 to S16 are forbidden paths and
FS = {515,516, 529}. Following we show the tables of last chance nodes used by
each local adaptor as generated by procedure K Visit. For both S2 and S12 there
is just one critical action that leads to a deadlock. This is translated by procedure

Synthesis of Concurrent and Distributed Adaptors 29

IC2.Connect_2

——
T
60“‘\0‘
.y
4L

Fig. 4. Part of the LTS of the centralized glue adaptor K. The filled nodes belong to
deadlock paths.

KVisit in storing the entries < S12 =< S3¢1, 5002, 5003, 59¢4 >,!C2.p1 > in
FCL30 and < S2 =< S0¢1,53¢2, 593, 5004 >,!Cl.p > in F(%407 respectively. In
this way, each time the component C3 (C4) performs the action !C2.p1 (!IC1.p),
the corresponding local adaptor has to check that the global status is not S12
(52). After performing KVisit to derive the last chance nodes table for each
local adaptor, SYNTHESIS performs PVisit to derive the updating and allowed
actions table for each local adaptor. This is done by taking into account the
LTS specification Prrs (see Figure[]). We recall that these tables are needed to
distribute Prrs among the local adaptors.

1-C2.Connect_4 {!-C2.Connect_3,-C2.FreeP1_3,!-C2.p1_3}

‘ 1C2.Connect_3 '
SO
1C2.FreeP1_3

Fig. 5. The system’s desired behavior specified by Prrs

In our context, Prrs describes (at an high-level) a desired behavior for the
composed system. Each node is a state of the system. The node with the incoming
arrow is the initial state. The syntax and semantics of the transition labels is
the same of the LTS of K except for two kinds of action: i) a universal action
(i-e., ?true) which represents any possible action, and ii) a negative action (e.g.,
I — C2.Connect 4 in Figure [B) which represents any possible action different
from the negative action itself. Prprg specifies that it is mandatory for C3 to
perform a Connect before performing p! (see the self-transition on the state S1
and the transition from S1 to S2 showed in Figure [). The self-transition on
S1 is the logical AND of the actions in the action list delimited by '{’ and ’}’.
The semantics of this self transition is that the current state of Prpg (i.e., S1)
remains unchanged until an action different from !C2.Connect 3, 1C2.FreeP1 3
and !C2.pl 3 is performed. When C3 performs !C2.Connect 3 the current state
of Prrg becomes S2. Then, while being in the state S2 all the components but

30 M. Autili et al.

C4 simultaneously execute unconstrained (see the negative self-transition on the
state S2 in Figure[H)). Finally, FreeP! will be performed by C3 to allow another
client to perform p! (see the transition from S2 to S1 showed in Figure ().
Following we show the tables of updating and allowed actions used by each local
adaptor as generated by the procedure PVisit. Denoting by “x” any possible
value of a specified scope, Pprs is translated by procedure PVisit in storing
the entries < x, *, *, x, * > in FY{', FY5'; while < S0, !C2.Connect, S1, *,
x > < S1, ICl.p, S1, %, x >, < S1, 1C2.p1, S1, x, x >, < S1, |C1.FreeP,
S1, *, x >, < §1, 1C2.Connect, S1, *, x >, < S1, |C2.FreeP1, S0, x, * > in
FUA and < S0, %, SO, %, x >, < S1, 1Cl.p, S1, %, x >, < S1, 1C2.p1, S1, *,
* >, < S1, IC1.FreeP, S1, x, x >, < S1, IC2.FreeP1, S1, %, x > in FF{*.
Note that, when during the runtime, the state of Prprg changes from S0 to S1
by means of the action !C2.Connect performed by C3, Feg informs Fgy of the
new state of Prrg by means of the “UNBLOCK” message of code line 31 of
its Ask procedure. Consequently Fcy knows that in such a state C'4 cannot
perform !C2.Connect since the entries < S1, |C2.Connect, *, x, * > are not
present in FZ;*. Once the LC and UA tables are filled, the interactions among
local adaptors can start by means of procedures Ask and Ack. In order to better
understand such an interaction, let us consider the sequence of messages that
according to the glue coordinator of Figure [leads the global state from S0 to
S15. Note that a forbidden path starts from S15. The first message is sent by
Fes to Feog in order to ask the resource pl. This is allowed by the entry < x*, x*,
*, %, % > contained in FgQA It means, in fact, that C2 can perform any action
from any global state according to Prrs. When from S1, Fy would perform
?7C3.p 4, according to the entry < S2 =< S0¢1, 53¢2, 5903, 5004 >,!ICl.p >
contained in F(%f, it has to check if the current global state is S2 in order to
not incur in the forbidden path that starts from S15. According to procedure
Ask, it starts to ask the permission to all the other local adaptors (see code
lines 8 of procedure Ask). Since the current state is exactly S2 it will not receive
any answer from the other local adaptors (this is accomplished by code line 3
of procedure Ack since if the enquired local adaptor is in the enquired state,
the if condition is not satisfied and the ACK message cannot be sent). Such a
situation changes as soon as some component changes its status hence unblocking
Fe4 (see code line 12 of procedure Ack). Note that since such interaction concern
just an action of C'4, by construction, this allow all the other local adaptors to
continue their interaction according to Prrs hence maintaining the eventual
parallelism.

5 Related Work

The approach presented in this paper is related to a number of other approaches
that have been considered by researchers. For space reasons, we discuss only the
ones closest to our approach.

In [7] a game theoretic approach is used for checking whether incompatible
component interfaces can be made compatible by inserting a converter between

Synthesis of Concurrent and Distributed Adaptors 31

them. This approach is able to automatically synthesize the converter. Con-
trarily to what we have presented in this paper, the synthesized converter is a
centralized adaptor.

Our research is also related to [8] in the area of protocol adaptor synthesis.
The main idea is to modify the interaction mechanisms that are used to glue
components together so that compatibility is achieved. This is done by inte-
grating the interaction protocol into components. However, they are limited to
only consider syntactic incompatibilities between the interfaces of components
and they do not allow to automatically derive a distributed implementation of
the adaptor. Note that our approach can be easily extended to address syntac-
tic incompatibilities between component interfaces. We refer to [2] for details
concerning such an extension.

In another work by some of the authors [6], it is showed how to generate a
distributed adaptor by exploiting an approach to the definition of distributed In-
trusion Detection Systems (IDS). Analogously to the approach described in this
paper, the distributed adaptor is derived by splitting a pre-synthesized central-
ized one in a set of local adaptors (each of them local to each component). The
work in [6] represents a first attempt for distributing centralized adaptors and it
has two main disadvantages with respect to the approach described here: (a) the
method requires a more complex (in time and space) process for pre-synthesizing
the centralized adaptor. In fact, it does not simply model all the possible com-
ponent interactions (like our centralized glue adaptor), but it has to model the
component’ interactions that are deadlock-free and that satisfies the specified
desired behavior (Prrg). In that approach, in fact, the glue adaptor is gener-
ated and, afterwards, a suitable synchronous product with Prrg is performed.
This longer process with respect to the current approach might also lead to a
final bigger centralized adaptor. (b) The adopted solution realize distribution
but not parallelism. The distributed local adaptors realize, in fact, the strict dis-
tribution of the obtained centralized adaptor by means of the pre-synthesizing
step. This means that, since the centralized coordinator cannot parallelize its
contained traces, the interactions of the local adaptors maintain this behavior.

In [9], the authors show how to monitor safety properties locally specified (to
each component). They observe the system behavior simply raising a warning
message when a violation of the specified property is detected. Our approach
goes beyond simply detecting properties by also allowing their enforcement. In [9]
the best thing that they can do is to reason about the global state that each
component is aware of. Note that, such a global state might not be the ac-
tual current one and, hence, the property could be considered guaranteed in an
“expired” state. Furthermore, they cannot automatically detect deadlocks.

6 Conclusion and Future Work

In this paper we have presented an approach to automatically assemble concur-
rent and distributed component-based systems by synthesizing distributed adap-
tors. Our method extends our previous work described in [2] that permitted to

32 M. Autili et al.

automatically synthesize centralized adaptors for component-based systems. The
method described in this paper allows us to derive a distributed implementation
of the centralized adaptor and, hence, it enhances scalability, fault-tolerance, ef-
ficiency, parallelism and deployment. We successfully validated the approach on
a running example. We have also implemented it as an extension of our SYN-
THESIS tool [2]. The state explosion phenomenon suffered by the centralized
glue adaptor K still remains an open problem. K is required to detect the last
chance nodes that are needed to automatically avoid deadlocks. Indeed when
the deadlocks can be solved in some other ways (e.g., using timeouts) or Prrg
ensures their avoidance, generating K is not needed. Local adaptors may add
some overhead in terms of messages exchanged. In practical cases, where usu-
ally many parallel computations are allowed, the overhead is negligible since
additional communications are much less then standard ones. As future work,
whenever K is required, an interesting research direction is to investigate the
possibility of directly synthesizing the implementation of the distributed adap-
tor without producing the model of the centralized one. Further validation by
means of a real-scale case study would be interesting.

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley (2004)

2. M.Tivoli, M.Autili: Synthesis: a tool for synthesizing “correct” and protocol-
enhanced adaptors. RSTI L’Objet journal 12 (2006) 77-103

3. Milner, R.: Communication and Concurrency. Prentice Hall, New York (1989)

4. Ben-Ari, M.: Principles of concurrent and distributed programming. Prentice Hall
(1990)

5. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7) (1978) 558-565

6. P.Inverardi, L.Mostarda, M.Tivoli, M.Autili: Synthesis of correct and distributed
adaptors for component-based systems: an automatic approach. In: Proc. of 20th
IEEE/ACM International Conference on Automated Software Engineering (ASE)-
Long Beach, CA, USA. (2005)

7. Passerone, R., de Alfaro, L., Heinzinger, T., Sangiovanni-Vincentelli, A.L.: Convert-
ibility verification and converter synthesis: Two faces of the same coin. In: Proc.
of International Conference on Computer Aided Design (ICCAD) - San Jose, CA,
USA. (2002)

8. Yellin, D., Strom, R.: Protocol specifications and component adaptors. ACM Trans.
on Programming Languages and Systems 19(2) (1997) 292-333

9. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: Proc. of International Conference on Software
Engineering (ICSE) - Edinburgh - UK. (2004).

	Introduction
	The Context
	Method Description and Formalization
	Method Description
	Second Step Formalization
	Correctness

	Running Example
	Our Approach at Work

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

