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Abstract. Assembling software components into an architecture is a
difficult task because of its combinatorial complexity. There is thus a
need for automating this building process, either to assist architects at
design time or to manage the self-assembly of components at runtime.
This paper proposes an automatic architecture building process that uses
ports, and more precisely composite ports, to manage the connection of
components. Our solution extends the Fractal component model. It has
been implemented and experiments have been run to verify its good time
performance, thanks to several optimization heuristics and strategies.

1 Introduction and Motivation

Software engineering aims at optimizing the cost of design and maintenance while
preserving both the quality and reliability of the produced software. Component-
based development techniques try to enhance reuse [1,2,3]. The design process of
an application is led by an architect and decomposes into three steps: he selects
components, defines an architecture by assembling them1 and then uses a tool to
control the consistency of the assembly to determine if the assembled components
are compatible. Components are generally described as a set of interfaces that
define what a component can provide and must require. Component assemblies
are then built by connecting component interfaces together [4,5,6,7,8].

Most existing works do not provide architects with any guidance during the
selection and assembly steps. They rather focus on checking the validity of a
previously built architecture [6,9,10,11,12]. The consistency check techniques
cannot be used in an iterative building process because of the combinatorial
complexity [13]. To guide the architect, we propose an efficient approach to
automatically build potentially valid architectures. It produces a reduced set
of preselected component assemblies on which it is relevant to perform checks
to find valid architectures. It relies on the use of ports, and more precisely
of composite ports, to describe known usages of components. A construction

1 In these works, we will consider that the selected components need no adaptation
(or might have already been adapted).
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algorithm has been successfully implemented and experimented in the Fractal
component model [7].

The remainder of this paper is organized as follows. Section 2 discusses the
issues raised by the building of valid architectures and introduces a component
model which features primitive and composite ports. Section 3 describes a ba-
sic algorithm to automatically build architectures along with its optimizations.
Section 4 concludes and draws perspectives.

2 Building Valid Architectures

2.1 An Augmented Component Model to Ease Construction

Not to start from scratch, we choose to extend an existing component model
named Fractal [7]2. Classically, a Fractal component is described as a black box
that defines the services the component provides and requires through server
and client interfaces and a content (called the architecture) that allows a
component to be recursively described. Fractal components are assembled into
architectures by connecting client interfaces to server interfaces. This allows
components to collaborate by exchanging messages along these connections.

The Fractal model is first extended with ports. As in UML2 [4], ports are used
to group together the client and server interfaces that are used by a component
in a given collaboration. Ports are thus used to specify various usage contexts for
components. We define two kinds of ports. Primitive ports are composed of in-
terfaces, as in many other component models [4,6,10,12,14]. Composite ports
are composed of other ports. Composite ports are introduced to structurally
represent complex collaborations. Figure 1 shows an architecture where ATM
is an example of component, Question one of its provided interfaces, Trans-
action one of its required interfaces and Money Withdraw its composite port
which is composed of the two Money Dialogue and Money Transaction primi-
tive ports. Two primitive ports are connected together when all the interfaces of
the first port are connected to interfaces of the second port (and reciprocally). A
composite port is connected when all the primitive ports it is composed of (di-
rectly or indirectly) are connected. Component architectures can then be built
by connecting together component ports (what entails interface connections).
Next section details how ports, and more precisely composite ports, make the
building of architectures easier.

2.2 Validity of an Architecture

An architecture is said to be valid if it is both correct and complete.

Correctness. Stating the correctness of an architecture relies on techniques
that verify the coherence of connections, to check whether they correspond to
2 We choose Fractal mainly because it is a hierarchical composition model that sup-

ports component sharing, its structure is simple but extensible and respects the
separation of concerns principle and an open-source implementation exists.
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possible collaborations between the linked components. These verifications use
various kinds of meta-information (types, protocols, assertions, etc.) associated
with various structures (interfaces, contracts, ports, etc.).

A first level of correctness, called syntactic correctness, can be verified by
comparing the types of the connected interfaces [5,7]. This ensures that com-
ponents can ”interact” because the signatures of the functionalities to be called
through the required interface match the signatures of the functionalities of
the provided interface. A second level of correctness, called semantic correct-
ness [15,9], can then be verified to determine if the connected components can
”collaborate” i.e. exchange sequences of messages that are coherent with each
other’s behavior. Semantic verifications require that protocols – valid sequences
of messages – be defined. The semantic correctness of the connection between
two ports is handled as a classic comparison of their associated protocols. This
is a time-consuming process because of the highly combinatorial complexity of
the algorithms used to compare all the possible message sequences [13].

Completeness. A component architecture is built to achieve some functional
objectives [1,15,16]. Functional objectives are defined as a set of functionalities
to be executed on selected components. The set of connections in the architecture
must be sufficient to allow the execution of collaborations that reach (include)
all the functional objectives. Such an architecture is said to be complete.

Starting from a set of components corresponding to the functional objectives,
a naive algorithm can be to try to build an architecture where all the inter-
faces of all the components are connected, so that all the execution scenarios
may be executed. When no solution exists in the current architecture to connect
an interface, the repository is searched for a component that has a compatible
interface. If one exists, it is added to the architecture and the interfaces are
connected. If several connections are possible, they represent alternative build-
ing paths to be explored. In case a dead end is reached, the construction is
backtracked to a previous configuration, in order to try alternative connection
combinations. The problem with this building process is the size of the solution
space to be explored. It is amplified by the cost of the semantic verifications
that must be calculated for any candidate connection between two components.
Therefore, the automatic construction of valid architectures still is an open prob-
lem. We then have studied different ways to reduce the complexity of the building
process.

3 Taming the Complexity of Automation

3.1 Using Composite Ports to Connect Components

To reduce the complexity, the building process can try to connect only the in-
terfaces that are useful to reach the functional objectives. However, the proper
use of a functionality of a component is not independent from other function-
alities. The behavior protocol of a component specifies the different valid ex-
ecution scenarios where a functionality is called. The execution of a scenario
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requires the connection of all the interfaces that it uses: regarding the scenario,
these interfaces are said to be dependent. Thus, a given functional objective
can be reached only when precise sets of (dependent) interfaces, correspond-
ing to valid scenarios, are connected. An analysis of the behavior protocol of
a component could be used to determine those scenarios but a means is re-
quired to capture and to express this information in an explicit and simple
way, in order to ease the connection process. Ports are introduced as a kind of
structural meta-information, complementary to interfaces, that group together
the interfaces of a component corresponding to a given valid scenario. Ports
could be produced automatically, by the analysis of behavior protocols or be
manually added by the designer in order to document a given usage of the
component.

Port connections make the building process more abstract (port-to-port con-
nections) and more efficient (no useless connections). Considering a port that
needs to be connected, the availability of a compatible port is an important
issue. The more numerous interfaces are in a given port, the more specific the
port type is and the less chances exist to find compatible ports. Composite ports
are used to solve this issue: they allow short scenarios, composed of few inter-
faces, to be described as small primitive ports that are then composed together
to describe more complex scenarios. Large flat primitive ports can then be re-
placed by small primitive ports hierarchically structured into larger composite
ports. The result is that smaller ports are less specialized and thus provide more
connection possibilities. From a different point of view, a primitive port can be
considered as the expression of a constraint to connect a set of interfaces both at
the same time and to a unique component. A composite port is the expression
of a constraint to connect a set of interfaces at the same time but possibly to
different components. As they relax constraints, composite ports increase the
amount of possible connection combinations. Moreover, composite ports provide
a means to precisely specify how interfaces must be connected: to a unique com-
ponent – for functionality calls to produce cumulative effects – or to distinct
components.

3.2 Building Quasi-valid Architectures

Semantic verifications are very expensive. Our approach keeps semantic verifi-
cations separated from the building process so as not to waste time verifying
the semantics of connections as long as the completeness of the architecture
cannot be guaranteed. To achieve this, a quasi-valid architecture is first built.
A quasi-valid architecture is a syntactically correct and complete architecture.
The connection of a port enforces the completeness of an architecture, regarding
the execution of a scenario. Once all the ports corresponding to the functional
objectives are connected, an architecture is quasi-valid. Quasi-validity is a pre-
condition for an architecture to be valid.

We wrote an algorithm that automatically builds quasi-valid architectures.
The building process uses a set containing the ports that still have to be con-
nected – the functional objective set (FO-set). The FO-set contains only
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primitive ports: composite ports are systematically decomposed into the set of
primitive ports they are directly or indirectly composed of. The FO-set is ini-
tialized with the ports that correspond to the functional objectives. One of the
primitive ports is picked up from the FO-set and a compatible port is searched
for. If a compatible unconnected port is found, the ports are connected together.
If the compatible port belongs to a component that does not yet belong to the
architecture, the component is added to the architecture. If the chosen compati-
ble port belongs to a composite port, all the other primitive ports that composed
the composite port are added to the FO-set. This way, no port dependencies –
and therefore no interface dependencies – are left unsatisfied. The building pro-
cess is iterated until the FO-set is empty. All the initial primitive ports that
represent functional objectives are then connected along with all ports they are
recursively dependent upon: the resulting architecture is quasi-valid.

Figure 1 shows the example of an architecture built by our algorithm. It starts
with a FO-set that contains the Money Withdraw primitive port of the Client
component. This port is taken out of the FO-set and a connection is searched
for. It is connected to the compatible Money Dialogue primitive port of the ATM
component. As this latter port belongs to the Money Withdraw composite port,
it depends on the Money Transaction primitive port which is thus added to the
FO-set before the building process iterates. The Money Transaction primitive
port of the ATM component is now considered for connection. It is compatible
with the Money Transaction primitive port of the Bank component which be-
longs to the composite port Money Withdraw. After connection, the other prim-
itive port of this composite port, Request Data, is in turn added to the FO-set.
At the next iteration, the Request Data primitive port of the Bank component
is connected with the compatible primitive port Provide Data of the Database
component. As this primitive port does not belong to a composite port, no primi-
tive port is to be added to the FO-set. The FO-set is now empty: the architecture
of Fig.1 is quasi-valid.

Fig. 1. A quasi-valid architecture built with the support of composite ports



Automating the Building of Software Component Architectures 233

Several special situations can occur during this process. When several free
compatible ports are candidate for connection, they correspond to alternate so-
lutions that are to be explored. Conversely, when no free compatible port is
found the building algorithm has reached a dead end. The construction is then
backtracked to a previous situation where unexplored connection possibilities ex-
ist. Our algorithm is implemented as the searching of a construction tree using a
depth-first policy. Breadth search is used to explore all the alternate construction
paths. This complete exploration of the construction tree is used to guarantee
that any possible solution is always found.

3.3 Strategies, Heuristics and Experiments

The performance of the building algorithm has been measured. For this purpose,
we have implemented a small environment that generates random component
sets which provide different building contexts, in size and complexity. Once a
component set is generated, an arbitrary number of ports can be chosen as
functional objectives and the building algorithm be launched. Our experiments
show that the combinatorial complexity of the building process is very high. To
be able to use our approach in demanding situations, such as the deployment
and configuration of components at runtime, we have studied various heuristics
that speed up the building process.

Building Minimal Architectures. A first strategy is to try to find not all
the possible architectures but only the most interesting ones. Minimality is
an interesting metrics for the quality of an architecture [17]. We apply this
minimality criterion to the number of connection. Less connections entail less
semantic verifications, less interactions and therefore less conflict risks. Less
connections also entail more evolution capabilities (free ports). To efficiently
search for minimal architectures, we have added a branch-and-bound strategy
to our building algorithm. The bound is the maximum number of connections
allowed for the construction of the architecture. When this maximum is reached
when exploring a branch of the construction tree, the rest of the branch can be
discarded as any new solution will be less optimal than the previously found
(pruning).

Min Domain Heuristic. This heuristic is used to efficiently choose ports from
the FO-set. The port for which a minimum of free compatible ports exists is
chosen first. This minimizes the effort to try all the connection possibilities:
in case of repeated failures, this allows impossible constructions to be detected
sooner.

Minimum Effort Heuristic. In the branch-and-bound strategy, every time
the bound is lowered, the traversal of the tree is speeded up. To connect a
primitive port, the algorithm first chooses the free compatible primitive port
that belongs to the ”smallest” composite port. It corresponds to the choice of
the less dependent ports, that minimize future efforts to connect them.
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No New Dependency Heuristic. When a compatible port can be found in
the FO-set its connection will add no new dependency, and furthermore, satisfy
two dependencies at once. Indeed, when a port belongs to the FO-set, the other
primitive ports it depends on are already in the FO-set.

Look-ahead Strategy. Calculi can be used to predict if the traversal of the
current construction branch can lead to a minimal solution. They are based on
an estimate of the minimum number of connections required to complete the
building. A soon as the sum of the existing connections with this estimate is
greater than the bound, the current branch can be pruned. A simple example of
this estimate is the number of ports in the FO-set divided by two.

Experimental Results: An Outline. Experiments show that performance
mainly depends on the number of initial functional objectives. This is log-
ical since more functional objectives implies not only a larger search space
but also more constraints, thus more failures and backtracks. For example,
series of experiments have been run with a library of 38 generated compo-
nents. Each component had at most 4 primitive ports and at most 2 com-
posite ports. Each primitive port had at most 5 interfaces. Starting with 5
initial functional objectives, the following typical results are obtained. A ba-
sic construction algorithm, implemented in Java and executed on a standard
computer, without any of the above optimizations, is able to find 325 000 quasi-
valid architectures, when stopped after 15 hours. This gives an idea of the
gigantic size of the search space. Among those quasi-valid architectures, the
largest ones are composed of 48 connections. The smallest architecture found
is composed of 18 connections. As a comparison, the optimized construction
algorithm finds the only minimal architecture composed of 7 connections in
less than a second. This motivates our proposal for an efficient building ap-
proach. It is difficult to build quasi-valid architectures, because the more fre-
quent ones are rather large (around 40 connections in the above example). It
is even more difficult to build minimal ones, because they are scarce in a large
search space.

4 Conclusion and Perspectives

While other works focus on the validation of complete architectures, our work
studies the building process of architectures and proposes a practical solution
to automate it. It enables the candidate architectures, on which validation al-
gorithms are to be applied, to be systematically searched for. Besides the many
optimization strategies and heuristics used for the traversal of the construction
space, the use of ports, and particularly of composite ports, is prominent in our
approach. As they express the dependencies that exist between interfaces, ports
provide a simple means to evaluate the completeness of an architecture. Finally,
being composed of interfaces, they provide means to abstract the many con-
nections of interfaces to single connections and thus reducing the combinatorial
complexity of the building.
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A perspective for this work is to integrate it to a component-based develop-
ment framework, for example as part of a trading service, to provide a means to
manage the self-assembling of components in open, dynamic systems (autonomic
computing).
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