


Lecture Notes in Computer Science 4344
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Volker Gruhn Flavio Oquendo (Eds.)

Software
Architecture

Third European Workshop, EWSA 2006
Nantes, France, September 4-5, 2006
Revised Selected Papers

13



Volume Editors

Volker Gruhn
University of Leipzig
Applied Telematics / e-Business
Klostergasse 3, 04109 Leipzig, Germany
E-mail: volker.gruhn@informatik.uni-leipzig.de

Flavio Oquendo
University of South Brittany
VALORIA – Formal Software Architecture and Process Research Group
B.P. 573, 56017 Vannes Cedex, France
E-mail: flavio.oquendo@univ-ubs.fr

Library of Congress Control Number: 2006938908

CR Subject Classification (1998): D.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-69271-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69271-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11966104 06/3142 5 4 3 2 1 0



Preface

Following the successful workshops held in St. Andrews, Scotland, UK in 2004
(EWSA 2004, Springer LNCS 3527) and in Pisa, Italy in 2005 (EWSA 2005,
Springer LNCS 3047), the 3rd European Workshop on Software Architecture
(EWSA 2006) held in Nantes, France during September 4–5, 2006 provided an
international forum for researchers and practitioners from academia and industry
to present innovative research and discuss a wide range of topics in the area of
software architecture.

Software architecture has emerged as an important subdiscipline of software
engineering encompassing a broad set of languages, styles, models, tools, and
processes. The role of software architecture in the engineering of software-
intensive systems has become more and more important and widespread. Chal-
lenging applications include support for dynamic, adaptive, autonomic and
mobile systems.

The workshop focused on formalisms, technologies, and processes for describ-
ing, verifying, validating, refining, building, and evolving software systems, in
particular based on component and service-oriented architectures. Topics cov-
ered included architecture modeling, architectural aspects, architecture analysis,
transformation and synthesis, quality attributes, model-driven engineering, and
architecture-based support for assembling components and developing compo-
nent and service-oriented systems.

EWSA 2006, distinguished between two types of papers: research papers,
which describe authors novel research work, and position papers, which present
concise arguments about a topic of software architecture research or practice.

The Program Committee selected 18 papers (13 research papers and 5 posi-
tion papers) out of 53 submissions from 25 countries (Algeria, Austria, Belgium,
Brazil, Canada, Chile, China, Czech Republic, Finland, France, Germany, In-
dia, Ireland, Italy, Norway, Oman, Poland, Portugal, Russia, Spain, Switzerland,
The Netherlands, Tunisia, UK, USA). All submissions were reviewed by three
members of the Program Committee. Papers were selected based on originality,
quality, soundness and relevance to the workshop. Credit for the quality of the
proceedings goes to all the authors. In addition, the workshop included an in-
vited talk by Richard N. Taylor (University of California, Irvine, USA) and a
panel on Research Directions.

We would like to thank the members of the Program Committee for providing
timely and significant reviews and for their substantial effort in making EWSA
2006 a successful workshop.

As with EWSA 2004 and 2005, the EWSA 2006 submission and review pro-
cess was extensively supported by the Paperdyne Conference Management Sys-
tem. We are indebted to Clemens Schäfer for his outstanding support.



VI Preface

EWSA 2006 was held in conjunction with the 1st French Conference on
Software Architecture (CAL 2006). We acknowledge Tahar Khammaci, Dalila
Tamzalit and the other members of both Organizing Committees for their ex-
cellent service.

Finally, we acknowledge the prompt and professional support from Springer,
which published these proceedings in printed and electronic volumes as part of
the Lecture Notes in Computer Science series.

September 2006 Volker Gruhn
Flavio Oquendo

Program Committee Chairs

Mourad Oussalah
Organizing Chair
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Primacy of Place: The Reorientation of Software
Engineering Demanded by Software Architecture

Richard N. Taylor

University of California, Irvine, USA
taylor@ics.uci.edu

http://www.ics.uci.edu/~taylor/

Abstract. Software architecture is a powerful technology that has
proven itself in numerous domains. It has been used, for example, to
shape the contemporary World Wide Web and has provided the basis
for the economic exploitation of the notion of product families. In far
too many development organizations, however, consideration of software
architecture is relegated to a specific time-period, or phase, of software
development. This talk considers how software architecture relates to
the classical conceptions of software development. What emerges is a
substantial reorientation of software engineering, for the power of ar-
chitecture demands a primacy of place. With architecture as a central
focus the very character of key software engineering activities, such as
requirements analysis and programming, are altered and the technical
approaches taken during development activities are necessarily changed.

V. Gruhn and F. Oquendo (Eds.): EWSA 2006, LNCS 4344, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Fault Tolerant Web Service Orchestration by Means of
Diagnosis�

Liliana Ardissono, Roberto Furnari, Anna Goy, Giovanna Petrone, and Marino Segnan

Dipartimento di Informatica - Università di Torino
Corso Svizzera 185, 10149 Torino - Italy

{liliana,furnari,goy,giovanna,marino}@di.unito.it

Abstract. Web Service orchestration frameworks support a coarse-grained kind
of exception handling because they cannot identify the causes of the occurring
exceptions as precisely as needed to solve problems at their origin.

This paper presents a framework for Web Service orchestration which em-
ploys diagnostic services to support a fine grained identification of the causes of
the exceptions and the consequent execution of effective exception handlers. Our
framework is particularly suitable for intelligent exception handling in Enterprise
Application Integration.

1 Introduction

The importance of Enterprise Application Integration is growing due to the emerging
demand for short software development time, and to the fact that several services have
to be developed by composing heterogeneous applications owned by different organiza-
tions. Workflow management systems have originally been developed to coordinate the
execution of tasks within a single organization. Later on, Service Oriented Architectures
[16], Web Service description languages (such as WSDL [19]) and Web Service com-
position languages (such as WS-BPEL [14]) have been introduced in order to abstract
from location, communication protocol and deployment environment issues, therefore
supporting the integration of distributed, heterogeneous software in open environments.

In current workflow management and Web Service orchestration environments, the
development of fault tolerant distributed processes is based on the adoption of excep-
tion handling techniques which support a graceful termination, rather than the service
continuation, as the recovery actions are associated to the observable effects of the oc-
curred problems, rather than to their causes. Indeed, effective recovery strategies might
be adopted to let the process progress towards the service completion, or to support
the human user in performing ad hoc corrective actions, if the causes of the exceptions
were recognized.

We thus propose to support intelligent exception management in Web Service or-
chestration environments by introducing:

� This work is supported by the EU (project WS-Diamond, grant IST-516933) and by MIUR
(project QuaDRAnTIS).

V. Gruhn and F. Oquendo (Eds.): EWSA 2006, LNCS 4344, pp. 2–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Fault Tolerant Web Service Orchestration by Means of Diagnosis 3

– Diagnostic capabilities supporting the identification of the causes of the exceptions
occurring during the execution of a composite service. The analysis of the excep-
tions is carried out by diagnostic Web Services which explain the possibly incorrect
execution of the orchestrated service providers by employing Model-Based Diag-
nosis techniques [1].

– A novel methodology to apply exception handlers, in order to make them sensitive
to diagnostic information without modifying the standard exception management
mechanisms offered by Web Service orchestration environments.

The rest of this paper is organized as follows: Section 2 outlines exception handling in
workflow systems and provides some background on Model-Based diagnosis. Section 3
presents the architecture of our framework. Section 4 describes some related work and
Section 5 concludes the paper.

2 Background

In Web Service orchestration, the development of fault tolerant distributed processes
relies on the introduction of scopes, exception handlers and compensation handlers.
When a scope fails, compensation handlers are executed to undo the completed activi-
ties. Moreover, exception handlers are performed to enable forward progress toward the
termination of the process; e.g. see [14,11].

Several classifications of exceptions in categories have been made; e.g., see [9], [18]
and [13]. These studies report a wide variety of events triggering the exceptions. For
instance, [9] introduces different types of exceptions, among which the expected and
the unexpected ones. Expected exceptions are associated to anomalies frequently occur-
ring during the execution of activities, and should be managed by means of exception
handlers. Unexpected exceptions derive from unexpected problems and typically have
to be handled via human intervention, at the workflow instance level.

Various approaches have been proposed to handle the exceptions. For instance, [11]
presents a technique based on spheres of atomicity to handle transactions. Moreover,
[13] presents strategies enabling human users to participate in the recovery of a work-
flow instance during the service execution. Furthermore, [9] proposes a classification
of activity types on the basis of factors such as the presence/absence of side-effects in
compensation, and the development of a smart execution engine which may ignore the
failure of non vital actions during the execution of a workflow.

Before concluding this section we would like to briefly introduce Model-Based Di-
agnosis (MBD), which we adopt in our framework to reason about exceptions. Model-
Based Reasoning and, in particular, MBD, have been proposed and used within the
Artificial Intelligence community for reasoning on possibly faulty physical and soft-
ware systems; e.g., see [5,10]. In both cases, the system to be diagnosed is modeled
in terms of components, and the goal of diagnostic reasoning is to determine a set of
components whose incorrect behavior explains a given set of observations.

There are several formalizations of MBD that characterize the informal notion of
explanation. In consistency-based diagnosis [17], which we utilize in our work, a diag-
nosis is an assignment of behavior modes to components that is consistent with observa-
tions. For static models this means that the hypotheses predict, for observable variables,
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a set of possible values which includes the observed one. A diagnostic engine should,
in general, explore the space of candidate diagnoses and perform discrimination among
alternative candidates, possibly suggesting additional pieces of information to be ac-
quired to this purpose.

3 Intelligent Exception Management Framework

We consider two types of failures: errors in data elaboration, and errors that either alter
or block the execution flow. Our exception handling approach relies on:

– A smart failure identification aimed at identifying the cause of an observed excep-
tion, at the level of the composite service (global diagnosis). The goal is to identify
the Web Service responsible for the occurred problem, the faulty activities and the
other Web Services that may have been involved in the failure.

– Diagnostic information aware exception handlers, executed by the orchestrated
Web Services. The global diagnosis is used to identify the recovery strategy to
be applied by the service providers.

Consistently with Model-Based Diagnosis, the analysis of the exceptions is carried out
in a component-based way1 by introducing local diagnostic services that analyze the in-
ternal behavior of the orchestrated Web Services, and by employing a global diagnostic
engine to combine the local diagnoses.

Each local diagnoser analyzes the behavior of the corresponding orchestrated Web
Service WSi by utilizing a diagnostic model Mi which describes the control and data
flow of WSi by specifying the possible correct and incorrect behavior. The diagnostic
model of a Web Service is a declarative description of its business logic and it specifies,
as precisely as possible, the activities carried out by the Web Service, the messages it
exchanges, information about dependencies between parameters of the executed activ-
ities and the fault messages it may generate [1].

Web Services have rather diverse nature: some may execute articulated workflows;
others may partially hide their internal business logic. Moreover, they may be imple-
mented in different process languages, such as WS-BPEL [7], or the OPERA [11],
XPDL [20] and BPML [3] workflow description languages. We introduced the diag-
nostic model as a separate representation of the business logic of a Web Service for two
main purposes:

– The first one is to make local diagnosers independent of the implementation lan-
guage adopted within the orchestrated Web Services.

– The second one concerns the possibility of extending the description of the business
logic of a Web Service with information useful for diagnostic reasoning, without
modifying the core of the Web Service; e.g., alarm conditions may be specified
to enable the efficient isolation of the faulty activities during the Web Service
execution.

1 Notice that the orchestrated Web Services interact only by message passing. Thus, they do not
share any data items which might influence each other’s behavior as a side-effect.
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Fig. 1. Architecture of the Proposed Framework

3.1 Architecture

Figure 1 shows the proposed architecture in a composite service based on the orches-
tration of four Web Services. The orchestrated Web Services are depicted as rectangles
with rounded corners, while the Diagnoser Web Services are represented as ovals. The
dotted double arrows between Web Services and Local Diagnosers represent the asyn-
chronous messages exchanged during both the identification of failures and the selec-
tion of the exception handlers to be executed.

– A Local Diagnoser service LDi is associated to each orchestrated Web Service WSi,
in order to generate diagnostic hypotheses explaining the occurred exceptions from
the local point of view.

• To this purpose, LDi utilizes the diagnostic model of WSi. Moreover, LDi in-
teracts with WSi by invoking a set of WSDL operations defined for diagnosis;
Figure 2 shows the additional WSDL operations (described later on) that must
be offered by an orchestrated Web Service in order to interact with its own
Local Diagnoser.

• The local hypotheses generated by LDi specify various types of information,
such as the correctness status of the input and output parameters of the opera-
tions performed by WSi and the references to other orchestrated Web Services
{WS1, ..., WSk} which might be involved in the failure of the composite ser-
vice. Errors may propagate from one Web Service to the other via message
passing; thus, {WS1, ..., WSk} is the set of orchestrated Web Services that have
sent and/or received messages from WSi.

– Global reasoning about the composite service is performed by a Global Diag-
noser service which interacts with the Local Diagnosers of the orchestrated Web
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Fig. 2. Web Service Extended for Advanced Exception Management

Services. The Global Diagnoser combines the local hypotheses generated by Local
Diagnosers into one or more global diagnostic hypotheses about the causes of the
occurred exceptions.

Local and Global Diagnosers are themselves Web Services communicating via WSDL
messages. This component-based approach has various advantages. For instance:

– Local Diagnosers may be associated to Web Services in a stable way; therefore,
the diagnostic model of a Web Service WSi has to be defined only once, at Local
Diagnoser LDi configuration time (although, as described later on, the management
of diagnosis aware exception handlers requires the introduction of supplementary
information, which is specific for the composite service invoking WSi).

– Privacy preferences possibly imposed by the organizations owning the orchestrated
Web Services may be satisfied. In fact, the diagnostic model of a Web Service
WSi can only be inspected by its Local Diagnoser LDi, which does not directly
interact with the Local Diagnosers of the other orchestrated Web Services. More-
over, the information provided by LDi during the interaction with the Global
Diagnoser concerns the presence of errors in the data received from, or
propagated to other Web Services, omitting internal details of the Web Service
implementation.

– Due to the clear separation between Local and Global Diagnosers, the latter may
be developed as general services supporting diagnosis in different composite ser-
vices; in fact, a Global Diagnoser only makes assumptions on the communication
protocol to be adopted in the interaction with the Local Diagnosers.

3.2 Smart Failure Identification

Diagnosis is needed when exceptions occur, but can be avoided when the composite
service progresses smoothly. Thus, we propose to trigger diagnosis immediately after a
problem is detected.

Specifically, when an exception occurs in a Web Service WSi, its Local Diagnoser
LDi is invoked to determine the causes. To this purpose, LDi exploits the diagnostic
model Mi and may need to analyze the messages exchanged by WSi with the other
peers (e.g., to check the parameters of the operations on which WSi was invoked). LDi

retrieves this information by requesting from WSi the log file of its activities, i.e., by
invoking the LogFile getLog() WSDL operation; see Figure 2. After the generation
of the local hypotheses, LDi invokes the Global Diagnoser (activate(Collection
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hypotheses) WSDL operation) to inform it about the local hypotheses it made on
the causes of the exception. The Global Diagnoser, triggered by the incoming message,
starts an interaction with other Local Diagnosers to identify the problem. The double
arrows between Diagnosers in Figure 1 represent the synchronous messages exchanged
in this phase.

The interaction between Global Diagnoser and Local Diagnosers is managed as a
loop where the Global Diagnoser invokes different Local Diagnosers to make them
generate their own local hypotheses, which are incrementally combined into a set of
global diagnostic hypotheses about the occurred problem. Below, we summarize the
actions performed in the loop.

– By analyzing the local hypotheses it has received, the Global Diagnoser iden-
tifies a list of Local Diagnosers to be invoked in order to make them generate
their local hypotheses.2 It then invokes the Collection extend(Collection

hypotheses) WSDL operation on each Local Diagnoser in the list. This opera-
tion, given a set of hypotheses, returns a revised set of hypotheses to the caller.

– The Global Diagnoser combines the local hypotheses and generates a set H of
global hypotheses about the causes of the occurred exceptions, consistent with the
local hypotheses; in Figure 1 the local hypotheses have been depicted as
tables.

The Global Diagnoser exits the loop when it cannot invoke any further Local Diag-
nosers. This happens either because all of them have contributed to the diagnosis, or
because the remaining ones cannot provide any discriminating information, nor can
they broaden the search for the causes of the exception. This means that, although sev-
eral messages might be exchanged by the Local and Global Diagnosers, the diagnostic
process always terminates.

The set H obtained by the Global Diagnoser at the end of the loop represents the
global result of diagnosis about the exception occurred in the composite service. H
can be seen as the solution of a Constraint Satisfaction Problem [8] where constraints
express the relation between failures and service behavior. See [1] for details about the
adopted diagnostic algorithm.

3.3 Diagnostic Information Aware Exception Handling

Local and Global Exceptions. The causes of exceptions reported in the result H of the
global diagnosis can be employed at the level of the composite service for the selection
of specific exception and compensation handlers, which might substantially differ from
those that would be adopted by the orchestrated Web Services on the sole basis of the
locally raised exceptions. The cardinality of H has to be considered:

2 The activate(Collection hypotheses) message specifies the references of the or-
chestrated Web Services possibly involved in the failure. By invoking such Web Services, the
Global Diagnoser retrieves the references of the Local Diagnosers to be contacted in order
to acquire further information. The reference to the Local Diagnoser of a Web Service is ob-
tained by invoking the LocalDiagnoser getLocalDiagnoser() WSDL operation;
see Figure 2.
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(a) If H is a singleton, the Global Diagnoser could find a single cause (h) explaining
the occurred exceptions. The Local Diagnosers might need to inhibit the default
exception handling to take h into account; in order to make the Web Services exe-
cute the appropriate handlers, Local Diagnosers should make Web Services throw
global exceptions activating the handlers needed to repair h, instead of continuing
the execution of the handlers associated to their local exceptions. Of course, if the
default exception handlers are suitable to repair h, they should continue their reg-
ular execution; this corresponds to the case where the global exception coincides
with the local one that was raised in the Web Service.

(b) If H includes more than one global diagnostic hypothesis, it should be reduced
to a singleton (e.g., via human intervention). If this is not possible, default fault
management behavior should be adopted. We leave this aspect apart as it concerns
the diagnostic algorithm, which is out of the scope of this paper.

The execution of exception handlers depending on diagnostic information requires that,
when the composite service is set up, the possible diagnostic hypotheses are mapped
to global exceptions to be handled in the overall service. Specifically, for a complex
service CS, the Local Diagnoser LDi of a Web Service WSi must store a set of map-
pings map(hx, eix, CS) between each possible global diagnostic hypothesis hx and the
corresponding exception eix to be raised in WSi. These mappings complement WSi’s
diagnostic model, as far as service CS is concerned.

Defining Diagnostic Information Aware Exception Handlers. We now describe how
default exception handling can be overridden in order to take diagnostic information
into account. If the composite service is designed by specifying the orchestration of
service providers in a process language such as WS-BPEL, a different fault handler
may be associated to each type of exception (WS-BPEL fault). Thus, we propose to
modify each orchestrated Web Service WSi as follows; see Figure 2 as a reference:

1. Make the fault handlers of the Web Service aware of the diagnostic information.
To this purpose, each fault handler f has to be modified so that it invokes the Lo-
cal Diagnoser LDi by means of a synchronousString getHypothesis(String

localFaultCode) message and waits for the result before executing any further
actions.3 The result is generated after the interaction between Local and Global Di-
agnosers and it is a String value corresponding to the global exception to be raised,
depending on H. The result received by the local fault handler f after having in-
voked the Local Diagnoser is characterized as follows:
a) If f is the appropriate handler for the current case (i.e., the global exception

coincides with the local one), the result is the value held by localFaultCode,
which means that f can continue its own regular execution.4

3 There is a chance that the Local Diagnoser fails itself and does not send the response message.
In order to handle this case, the fault handlers might be extended by introducing a time out
mechanism which enables them to resume execution after a certain amount of time. We leave
this aspect to our future work.

4 If H includes more than one global diagnostic hypotheses, the default handling behavior can be
performed by making Local Diagnosers return the localFaultCode values to the fault handlers.
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b) If the case has to be treated by means of another fault handler of the same
Web Service, the result returned by the Local Diagnoser is set to the code of
a different fault event. In that case, f has to throw the new fault and terminate
the execution of the current scope. The occurrence of the new fault event in the
same Web Service automatically triggers the appropriate fault handler.

c) If the Web Service is not requested to perform any fault handling procedure
(i.e., another Web Service has to trigger a handler of its own), the result re-
turned by the Local Diagnoser is a null String, and the active fault handler f
has to terminate the execution.

2. Possibly add new fault handlers. Most original fault handlers can be employed to
manage both local and global exceptions, after having been revised as specified in
item 1. However, additional fault handlers might be required to handle new types
of exceptions, derived from the global diagnosis.

3. Offer a WSDL operation, throwFault(String faultCode), which a Local Di-
agnoser LDi may invoke on Web Service WSi when the execution of the composite
service has failed, but no exceptions were raised in WSi, nonetheless some recov-
ery action implied by the global diagnosis has to be performed. When the Web
Service performs the throwFault(String faultCode) operation, it throws the
faultCode fault, which activates the corresponding fault handler.

All the items above, except for the last one, involve local changes to the code of the
exception handlers, which may then be performed by any standard workflow or orches-
tration engine. In contrast, item 3 has to be implemented in different ways, depending
on the characteristics of the engine. The problem is that the throwFault(String

faultCode) might be invoked at any instant of execution of a Web Service, regardless
of its business logic. It is therefore necessary that the Web Service catches the invoca-
tion of the operation as a high priority event, to be handled by possibly interrupting the
regular execution flow.

For experimental purposes, we have developed our methodology for diagnostic in-
formation aware exception handling in the JBPM workflow management environment
[12] and the following subsection provides some details about the implementation of
the throwFault(String faultCode) operation. In other environments, e.g., in a
BPEL one, the same methodology can be applied by exploiting the features provided
by the execution engine (e.g., defining an eventHandler for an onMessage event whose
activity will throw the related faultCode fault).

Flexible Exception Management in a Workflow Management Environment. An
initial prototype of the framework we propose in this paper has been developed on
top of jBPM [12], a business process management system based on Petri Net model
implemented in Java. jBPM is based on Graph Oriented Programming model, which
complements plain imperative programming with a runtime model for executing graphs
(workflows). Actions are pieces of Java code that implement the business logic and
are executed upon events in the process. In our framework the Web Service is composed
of a workflow and a client (Workflow Controller) in charge of monitoring the workflow
execution. When a fault occurs, the parent hierarchy of the graph node is searched for an
appropriate exception handler. When it is found, the actions of the handler are executed.
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customer
WS

shop
WS

warehouse
WS

1-order(custInf, item)

4-requestPay(bill)

5-notifyPay(bill)

2-book(itemCode)

3-ack(itemCode,shipCost)

6-confirmOrder(itemCode,
               custInf)

7-notifyShip(parcel)

8-complain(parcel)

Fig. 3. Portion of a Sample Sales Scenario

Using jBPM makes the implementation of our framework straightforward, in par-
ticular referring to item 3 in Section 3.3. When the Web Service receives the throw-

Fault(String faultCode) message, the Workflow Controller transfers control to
the workflow by generating a special ExternalFaultEvent. This event causes the
execution of an Action that can perform a repair or throw another exception, which
activates the corresponding exception handler. In the jBPM case the Action can access
the current state of the workflow execution by accessing the tree of the active tokens
and the associated current graph nodes.

3.4 Example

We sketch the interaction between Diagnoser services and orchestrated Web Services
in a sample scenario. Figure 3 shows a portion of the interaction diagram of an e-
commerce service based on the orchestration of three Web Services: a customer WS
enables the user to browse a product catalog and purchase goods. A shop WS manages
orders, bills and invoicing. A warehouse WS manages the stock and delivers the goods
to the customer.

In this scenario, the customer places an order for a product by specifying the name of
the good (msg 1); the shop reserves the requested item (msg 2) from the warehouse and
receives an acknowledgement message (msg 3) where the shipping cost of the parcel
is specified; we assume that the shipping cost may vary depending on the address of
the customer (included in the custInf parameter) and the size of the good that has been
purchased.

Given the shipping cost, the shop sends the bill to the customer WS (msg 4). The
customer pays the bill and notifies the shop (msg 5). At that point, the shop confirms
the order (msg 6) and the warehouse sends the package to the customer and notifies the
customer WS accordingly (msg 7).

If the customer receives a parcel including a good different from the ordered one,
she can complain about the delivery problem via the customer WS user interface and
her complaint makes the Web Service send a complain(parcel)message to the shop
WS (msg 8). The occurrence of this message denotes that there was a delivery problem;
therefore, we assume that it is interpreted as an exceptional case by the shop WS, i.e., a
case in which the execution of the corresponding WSDL operation throws an exception
within the Web Service execution instance.

Suppose that that the delivery of a wrong parcel may be due to the following alter-
native causes:
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– h1: the shop WS provided a wrong item code for the requested product.
– h2: the wrong parcel is picked within the warehouse.

When an exception occurs, the repair strategy to be adopted within the overall service
may differ depending on which is the faulty Web Service, i.e., on the global diagnostic
hypothesis (H = {h1} or H = {h2}) and on the corresponding global exceptions to be
raised in the Web Services by their own Local Diagnosers, according to the service spe-
cific mappings held by the Local Diagnosers. In our example, we assume the following
mappings:

– The Local Diagnoser of the shop WS maps h1 to the wrongItemFault exception
and h2 to a null exception: map(h1, wrongItemFault), map(h2, null).

– The Local Diagnoser of the warehouse WS maps h1 to a null exception and h2 to
the wrongParcelFault exception: map(h1, null), map(h2, wrongParcelFault).

Specifically we assume that the possible failures are handled as follows:

(a) If the shop WS provided a wrong item code for the requested product (H = {h1},
wrongItemFault exception), the order to the warehouse and possibly the shipping
cost are incorrect. Therefore, the shop WS should perform recovery actions that
include internal activities and invocations of the other Web Services.

In detail, the shop WS should execute an exception handler which prescribes to:
correct the item code, reserve the correct item from the warehouse and recompute
the bill; if the new bill differs from the previous one, send it to the customer asking
for the difference (or refund her for the extra money). The last steps of the han-
dler include requesting the warehouse to take the wrong parcel from the customer,
deliver the new parcel and refund the warehouse for the extra delivery costs.

(b) If the shop WS reserved the correct item, but the wrong parcel was picked for the
delivery within the warehouse (H = {h2}, wrongParcelFault exception), the first
part of the composite service was correctly executed and the bill was correct as well.
The problem should be repaired by the warehouse WS, which should perform an
exception handler prescribing to take the wrong parcel from the customer, deliver
the new one, and cover the extra delivery costs.

In our framework, the occurrence of a complain(parcel) message is handled as
follows (see Figures 4 and 5 for a description of the diagnosis aware fault handlers):5

1. Upon receiving the complain(parcel) message, the shop WS throws an inter-
nal wrongItemFault event to be caught by the wrongItemFaultHandler exception
handler.

The wrongItemFaultHandler invokes the Local Diagnoser of the shop WS
(message getHypothesis(wrongItemFault)) to receive the global exception.

2. The Local Diagnoser of the shop WS retrieves the global diagnostic hypothesis H
by interacting with the Global Diagnoser.

5 The fault handlers are described in a java-like syntax, as the description in the process language
would be too complex.
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wrongItemFaultHanldler {

// get exception from local diagnoser
String globException = sendReceive(shopWS, locDiagnoser,

getHypothesis("wrongItemFault"));
if (globException == null)
terminate; // no recovery action needed

else if (globException != "wrongItemFault")
throw globException; // recovery performed by other handler

else { // execute original exception handler code
// order the correct item

String newItemCode = correctCode(item);
send(shopWS, warehouseWS, book(newItemCode));
double shipCost = receive(shopWS,warehouseWS,ack(shipCost));
double newBill = computeBill(newItemCode);

// refund or additional payment
if (newBill>bill) {

double extraMoney = newBill - bill;
send(shopWS, customerWS, requestPay(extraMoney));
receive(shopWS, customerWS, notifyPay(extraMoney));
}

else
send(shopWS, customerWS, refund(bill-newBill));

send(shopWS, warehouseWS,confirmOrder(newItemCode,custInf));
send(shopWS, warehouseWS, takeBack(itemCode, custInf));
refund(warehouseWS, shipCost);
}

} // end wrongItemFaultHandler

Fig. 4. Pseudocode of wrongItemFaultHandler (shop WS), Modified to be Sensitive to Diagnosis
Information

– If H = {h1}, the Local Diagnoser of the shop WS returns the wrongItem-
Fault value as the result of the getHypothesis message. As wrongItem-
FaultHandler is the appropriate fault handler to be executed, the Web Service
continues its execution, which involves sending another order to the
warehouse WS and covering the extra costs. No fault events are handled in
the warehouse WS.

– Otherwise, if H = {h2}, the Local Diagnoser of the shop WS returns a
null value and the wrongItemFaultHandler terminates the execution. More-
over, the Local Diagnoser of the warehouse WS invokes the throwFault

(wrongParcelFault) message on the warehouse WS, which throws the
wrongParcelFault. The occurrence of such fault event starts the appropriate
fault handler (take wrong parcel from customer, deliver the correct one, notify
the shop WS about the shipping and cover extra delivery costs).
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wrongParcelFaultHanldler {

// get exception from local diagnoser
String globException = sendReceive(warehouseWS, locDiagnoser,

getHypothesis("wrongParcelFault"));
if (globException == null)
terminate; // no recovery action needed

else if (globException != "wrongParcelFault")
throw globException;// recovery performed by other handler

else { // execute original exception handler code
// re-execute the operations for the correct parcel
String newParcel = correctParcel(itemCode);
double shipCost = computeShipCost(item, custInf);
takeBack(wrongParcel, custInf);
deliver(parcel, custInf);
send(warehouseWS, shopWS, notifyShip(newParcel));
coverShipCost(shipCost);
}

} // end wrongParcelFaultHandler

Fig. 5. Pseudocode of wrongParcelFaultHandler (warehouse WS), Modified to be Sensitive to
Diagnosis Information

4 Related Work

Various proposals for the management of transactional behavior in centralized Web
Service orchestration are being proposed in order to support the development of re-
liable composite Web Services; e.g., see WS-Transaction [6] and OASIS BTP [15].
In decentralized orchestration there is the additional problem that the entire state of
the original composite Web Service is distributed across different nodes. To address
this issue, Chafle and colleagues propose a framework where Local Monitoring Agents
check the state of the orchestrated Web Services and interact with a Status Monitor that
maintains a view on the progress of the composite service [4]. Although there is a di-
rect correspondence with our Local and Global Diagnoser services, the authors apply
traditional error detection and are therefore subject to the limitations we discussed.
Moreover, the Status Monitor holds complete information about fault and compen-
sation handlers of the orchestrated services; thus, it is only suitable for closed envi-
ronments where the orchestrated services are allowed to expose complete information
about themselves.

Biswas and Vidyasankar propose a finer-grained approach to fault management in
[2], where spheres of visibility, control and compensation are introduced to establish dif-
ferent levels of visibility among nested Web Services and composite ones in hierarchical
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Web Service composition. Although the described approach sheds light in how the
most convenient recovery strategies can be selected, the paper does not clarify how
the exception handlers to be executed are coordinated at the various levels of the
hierarchy.

5 Discussion

We have described a framework enhancing the failure management capabilities in Web
Service orchestration by employing diagnostic reasoning techniques and diagnosis
aware exception handlers. Our framework is based on the introduction of a set of Lo-
cal Diagnosers aimed at explaining incorrect behavior from the local viewpoint of the
orchestrated Web Services and on the presence of a Global Diagnoser which, given the
local diagnostic hypotheses, generates one or more global hypotheses explaining the
occurred exceptions from the global point of view.

The introduction of Local and Global Diagnosers enhances the exception manage-
ment capabilities of the composite service by steering the execution of exception han-
dlers within the orchestrated Web Services on the basis of a global perspective on the
occurred problem. However, it introduces at least two main kinds of overhead, concern-
ing the composite service set up and execution time, respectively:

– At set up time, the administrator of the composite service and those of the or-
chestrated Web Services have to do some configuration work in order to define
service specific settings and possibly to define service specific exception handlers.
This aspect obviously restricts the applicability of our framework to Enterprise Ap-
plication Integration, where explicit agreements between the administrator of the
composite service and those of the orchestrated service providers may be defined.
It should be however noticed that EAI currently represents the most important
application for Web Services, if compared with Web Service invocation in open
environments.

– At run time, the interaction between diagnosers, and the time needed to find a global
diagnostic hypothesis, may delay the execution of the composite service. However,
the diagnostic process is only activated when one or more exceptions occur (thus,
in situations where the service execution is already challenged). Moreover, the in-
teraction between the diagnosers and the orchestrated Web Services is limited to
the retrieval of the log files and the final notification of the global exception to be
handled; therefore, the individual Web Services are not affected by the possibly
complex interaction concerning diagnosis.

Our future work concerns two main aspects: first of all, as our approach currently sup-
ports the recovery from occurred exceptions, we want to extend it in order to support
the early detection of failures. To this purpose, we are analyzing the possibility of mon-
itoring the message flow of a composite service (i.e., the progress in the execution of
a conversation graph describing the message exchanges which may occur among the
orchestrated Web Services) and to trigger diagnostic reasoning as soon as a deviation
from the expected behavior is detected.
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Second, our current contribution is related to a rather specific aspect in the general
topic of fault tolerant computing. However, our work is part of the WS-DIAMOND Eu-
ropean Project which also deals with redundancy and Web Service replacement aspects,
to be taken into account in order to recover from faults in complex systems. For more
information about such project, see [21].

References

1. L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan, and D. Theseider
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Abstract. Building a distributed system from third-party components
introduces a set of problems, mainly related to compatibility and com-
munication. Our existing approach to solve such problems is to build a
centralized adaptor which restricts the system’s behavior to exhibit only
deadlock-free and desired interactions. However, in a distributed envi-
ronment such an approach is not always suitable. In this paper we show
how to automatically generate a distributed adaptor for a set of black-box
components. First, by taking into account a specification of the interac-
tion behavior of each component, we synthesize a behavioral model of
a centralized glue adaptor. Second, from the synthesized adaptor model
and a specification of the desired behavior, we generate a set of adaptors
local to the components. They cooperatively behave as the centralized
adaptor restricted with respect to the specified desired interactions.

1 Introduction

Nowadays, a growing number of software systems are built as composition of
reusable or Commercial-Off-The-Shelf (COTS) components. Component Based
Software Engineering (CBSE) is a reuse-based approach which addresses the
development of such systems. One of the main goals of CBSE is to compose and
adapt third-party components to make up a system [1]. Building a distributed
system from reusable or COTS components introduces a set of problems. Often,
components may have incompatible or undesired interactions. A widely used
technique to deal with these problems is to use adaptors and interpose them
between the components forming the system that is being assembled.

One existing approach (implemented in the SYNTHESIS tool [2]) is to build
a centralized adaptor which restricts the system’s behavior to exhibit only a
set of deadlock-free or desired interactions. However in a distributed environ-
ment it is not always possible or convenient to insert a centralized adaptor.
For example, existing legacy distributed systems might not allow the addition
of a new component (i.e., the adaptor) which coordinates the information flow
in a centralized way. Moreover, the coordination of an increasing number of
components can cause loss of information andbottlenecks, with corresponding
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increase of the response time of the centralized adaptor. In contrast, building a
distributed adaptor might increase the applicability of the approach in real-scale
contexts.

In this paper we describe an approach for automatically generating a dis-
tributed adaptor for a set of black-box components. Given (i) a specification of
the interaction behavior of each component with its environment and (ii) a spec-
ification of the desired behavior that the system to be composed must exhibit,
it generates component local adaptors (one for each component). These local
adaptors suitably communicate in order to avoid possible deadlocks and enforce
the specified desired interactions. They constitute the distributed adaptor for
the given set of black-box components.

Starting from the specification of the components’ interaction behavior, our
approach synthesizes a behavioral model (i.e., a Labeled Transition System
(LTS)) of a centralized glue adaptor. This is done by performing a part of
the synthesis algorithm described in [2] (and references therein). At this stage,
the adaptor is built only for modeling all the possible component interactions.
It acts as a simple router and each request/notification it receives is strictly
delegated to the right component. By taking into account the specification of
the desired behavior that the composed system must exhibit, our approach ex-
plores the centralized glue adaptor model in order to find those states leading
to deadlocks or to interactions different from the desired ones. This process
is used to automatically derive the set of local adaptors that constitute the
correct1 and distributed version of the centralized adaptor. It is worth men-
tioning that the construction of the centralized glue adaptor is required to deal
with deadlock in a fully-automatic way. Otherwise we should make the stronger
assumption that the specification of the desired behaviors itself ensures also
deadlock-freeness. The approach presented in this paper has various advantages
with respect to the one described in [2] concerning the synthesis of centralized
adaptors. The most relevant ones are: (a) no centralized point of information
flow exists; (b) the degree of parallelism of the system without the adaptor is
now maintained. Conversely, the approach in [2] does not permit parallelism
due to the adaptor centralization; (c) all the domain-specific deployment con-
straints imposed on the adaptor can be removed. In [2] we applied the syn-
thesis of centralized adaptors to COM/DCOM applications. In this domain,
the centralized adaptor and the server components had to be deployed on the
same machine. On the contrary, the approach described in this paper allows
one to deploy each component (together with its local adaptor) on different
machines.

The remainder of the paper is structured as follows: Section 2 describes
the application domain. In Section 3 the synthesis of decentralized adaptors
is firstly described and then formalized by also proving its correctness. Section 4
describes our approach at work by means of a running example. Section 5
discusses related work, and finally, Section 6 concludes and discusses future
work.

1 With respect to deadlock-freeness and the specified desired behavior.
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2 The Context

In our context, a distributed system is a network of interacting black-box
components {C1, . . . , Cn} that can be simultaneously executed. Components
communicate each other by message passing according to synchronous com-
munication protocols. This is not a limitation because it is well known that
with the introduction of a buffer component we can simulate an asynchronous
system by a synchronous one [3]. We distinguish between standard communica-
tion and additional communication. The first denotes the messages that com-
ponents can exchange. The latter denotes the messages that the local adaptors
exchange in order to coordinate each other. Due to synchronous communica-
tion, a deadlocking interaction might occur whenever components contend the
same request. Furthermore, by letting components interact in an uncontrolled
way, they might perform undesired interactions. To overcome this problem we
promote the use of additional components (called local adaptors). Each local
adaptor is a wrapper that performs the component’ standard communication
and mediates it by exchanging synchronizing information (i.e., additional com-
munication), when needed. Synchronizing information allow components to har-
monize their interaction on requests and notifications. Each component is di-
rectly connected to its local adaptor through a synchronous channel; each lo-
cal adaptor is connected to the other ones, through asynchronous channels, in
a peer-to-peer fashion (see for instance the right-hand side of Figure 1). For
the sake of clarity, we assume the components are single-threaded and hence
all the requests and notifications can be totally ordered to constitute a set
of sequences (i.e., a set of traces). Note that this is not a restriction since a
multi-threaded component can always be modeled as a set of single-threaded
(sub)components simultaneously executed. Interaction among components is
modeled as a set of linearizations obtained by means of interleaving [4]. It
is worth noting that, in such a concurrent and distributed context, we can-
not assume either a single physical clock or a set of perfectly synchronized
ones in order to determine whether an event a occurs before an event b or
vice versa. We then need to define a relationship among the system events
by abstracting both on the absolute speed of each processor and on the ab-
solute time. In this way we ignore any absolute time scale and we use the well
known happened-before relation and time-stamps method (see [5] for a detailed
discussion).

3 Method Description and Formalization

In this section we first describe our method to deal with the adaptation prob-
lem in a component-based setting. Then, we gradually formalize it by means of
a detailed discussion and pseudo-code description of the setup and local adap-
tors interaction procedures. This section also proves the correctness of our ap-
proach and concludes with a brief discussion about the additional communication
overhead.
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3.1 Method Description

Our method (see Figure 1) assumes as input: (i) a behavioral specification of the
system formed by interacting components. It is given as a set {AC1, . . . , ACn}
of LTS (one for each component Ci). The behavior of the system is modeled by
composing in parallel all the LTS and by forcing synchronization on common ac-
tions; (ii) the specification of the desired behavior that the system must exhibit.
It is given in terms of a LTS, from now on denoted by PLTS .

Fig. 1. 2-step method

These two inputs are then processed in two main steps. (1) By taking into
account all component LTSs, we automatically derive the LTS K that models
the behavior of a centralized glue adaptor. K, at this stage, models all the
possible component interactions and it does not apply any adaptation policy. In
other words, K performs standard communication simply routing components
requests and notifications. In this way, it represents all possible linearizations by
using an interleaving semantics. K is derived by performing the graph unification
algorithm described in [2]. It is worth mentioning that each state of K (i.e., a
global state) is a tuple < S1, . . . , Sn > where each Si is a state of ACi (see for
instance Figure 2). Hereafter, when the current state of a component appears
in a tuple representing a global state we simply say that the component is in
that global state.2 This first step is taken from the existing approach [2] for the
synthesis of centralized adaptors. As already mentioned in Section 1, whenever
PLTS ensures itself deadlock-freeness, such a step is not required. For the sake of
presentation we will always assume that K exists. The novel contribution of this
paper is represented by the second step. (2) If K has been generated, our method
explores it looking for those states representing the last chance before entering
into an execution path that leads to deadlock. The restriction with respect to
the specified desired behavior is realized by visiting PLTS . The aim is to split
and distribute PLTS in such a way that each local adaptor knows which actions
the wrapped component is allowed to execute. The sets of last chance states and
allowed actions are stored and, subsequently, used by the local adaptors as basis
for correctly exchanging synchronizing information. In other words, the local

2 In general, a component might be in more than one global state.
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adaptors interact with each other (by means of both standard and additional
communication) to perform the correct behavior of K with respect to deadlock-
freeness and PLTS . Decentralizing K, the local adaptors preserve parallelism of
the components forming the system. In the following subsection we formalize
the second step of our method by also providing its correctness.

3.2 Second Step Formalization

As described before, the second step gets in input: (i) the set {AC1, . . . , ACn},
(ii) K and (iii) PLTS . In order to detect deadlocks, our approach explores K
and looks for sinks. A deadlock state (see Figure 2) is in fact a sink of K.
We call Forbidden States (FS) the set of deadlock states3 and all the ones
within forbidden paths necessarily leading to them. A forbidden path in K is a
path that starts at a node which has no transitions that can avoid a forbidden
state and thus necessarily ends in a sink (see for instance Figure 2). The states
in FS can be avoided by identifying a specific subset of K’s states that are
critical with respect to FS (see for instance S in Figure 2). In this way we can
avoid to store the whole graph at runtime as we just need to store the critical
states. More precisely, in order to avoid a state in FS, we are only interested
in those nodes representing the last chance before entering into a forbidden
state.

S’’

n<S , ..., S >

DeadLock DeadLock

1 nx<S , ..., S’, ..., S >

1 ny<S , ..., S’’, ..., S >

a_x

e_vd_wc_z
b_y

Forbidden Paths

S S’
1

Fig. 2. A last chance node S of K

The last chance nodes have some outgoing edges leading to a forbidden state,
the dead edges, and other ones, the safe edges (see for instance the edges labeled
with a x and b y in Figure 2). According to the labels of the dead edges we store
in the local adaptors associated to the corresponding components the last chance
node, and the critical action that each component should not perform in order
to avoid a state in FS (in Figure 2, the action c is critical for the component z).
From the implementation point of view, each local adaptor FCi uses a table FLC

Ci

(Last Chance table of FCi) of pairs <last chance state of K, critical action of
ACi>. Thus, once all the graph has been visited, each local adaptor knows the
critical actions of the corresponding component. Before a component can perform
a critical action its local adaptor has to ask permissions to the other components

3 Abusing notation, sometimes we refer to the states as nodes.
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(see procedure KVisit). The following procedure computes and distributes the
last chance node tables among the local adaptors. Given in input the centralized
glue adaptor K of n components, the procedure makes use of the following
variables: FLC

Ci
is the table of last chance nodes associated to the component Ci;

Flag ForbiddenS is a flag to check whether the current node S eventually leads
to deadlock or not; Dead SonS counts the number of sons of the current node
S that eventually lead to forbidden states of K; Safe SonS counts the number
of sons of the current node S that may lead to allowed states of K.

procedure KVisit(state of K: S;)
1: for each i := 1 to n do
2: F LC

Ci
:= ∅;

3: end for
4: F lag ForbiddenS := False;
5: Dead SonS := 0;
6: Safe SonS := 0;
7: mark S as Visited;
8: for each son S′ of S do
9: if the edge (S, S′) is not visited then

10: mark the edge (S, S′) as Visited;
11: if S′ is not visited then
12: KV isit(S′);
13: end if
14: if F lag ForbiddenS′ then
15: Dead SonS++;
16: else
17: Safe SonS++;
18: end if
19: end if
20: end for
21: if Safe SonS == 0 then
22: F lag ForbiddenS := True;
23: end if
24: if Safe SonS > 0 && Dead SonS > 0 then
25: for every dead edge, let α x be the associated action, F LC

Cx
= F LC

Cx

⋃
< S, α >;

26: end if

Before starting a critical action (that might lead to a state in FS), a local
adaptor has to verify (by performing additional communication) if the global
state represents a last chance state with respect to that action. Since at runtime
we do not store K, this verification is made by enquiring the other local adaptors
about the states of the corresponding components, hence deriving the appropri-
ate consequences. If a component is not in the enquired last chance state, its
associated local adaptor immediately replies ensuring that the component will
not reach such a state. In some way it is self-blocked with respect to the enquired
state. If the component is already in the enquired last chance state or it is inter-
ested in reaching it, its local adaptor defers the answer and hence, it attempts
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to block the enquiring local adaptor. The only case in which an enquiring local
adaptor has to ask the permission to all the others is when the global state is
exactly a last chance one. Once the enquiring local adaptor receives an answer it
allows its corresponding component to proceed with its standard communication
by delegating the critical action. After that, it sends a message to unblock all
the other local adaptors previously enquired (additional communication). The
unblock message is needed because once a local adaptor allows an enquiring one
to perform a critical action, it ensures also that it will not reach the last chance
state before receiving an unblock message with respect to such a state (see code
lines 7 and 14 of Procedure Ack below). In practice it is self-blocked just with
respect to the enquired state.

Concerning PLTS , we visit and distribute it among the local adaptors (see
Procedure PVisit reported below). Such a distribution is made by means of
another table FUA

Ci
for each local adaptor FCi (called Updating and Allowed

actions table of FCi) of tuples <state of PLTS, allowed action of ACi, state
of PLTS, set of components, set of components >. The first three elements of
each tuple represent an edge of PLTS . The fourth (fifth) is the set of active
components, i.e., the ones that can perform some action “matching” with a
transition outgoing from the state of PLTS specified by the first (third) element of
each tuple. By means of PVisit each local adaptor knows its allowed actions that
can change the state of PLTS . Moreover, a local adaptor knows also which are the
active components that can move and which must be blocked according to the
current state of PLTS . Let us assume that a component Ci is going to perform an
action contained in the table FUA

Ci
. If it can proceed according to the current state

of PLTS , then all the other active components are blocked by sending a blocking
message to the corresponding local adaptors. Once Ci has performed the action,
all the components that can move in the new state of PLTS are unblocked. Note
that if an action of an active component does not change the state of PLTS , it
can be performed without exchanging messages among the system components,
hence maintaining pure parallelism (this is realized by Procedure Ask, code line
34). The setup of the Last Chance and the Updating and Allowed action tables is
realized by means of two procedures KVisit (see above) and PVisit (see below).
They are depth-first visits of K and PLTS , respectively. These procedures are
executed at design-time in order to setup the corresponding tables. After their
execution, K and PLTS can be discarded. Procedures Ask and Ack, instead,
implement the local adaptors interactions at runtime. Referring to the table of
updating allowed actions, let Lookahead(state of PLTS : p) be a procedure that
given a state p of the PLTS automaton, returns the set of components that are
allowed to perform an action in the state p. The following procedure distributes
PLTS among the local adaptors. Given in input PLTS referred to n components,
the procedure makes use of the following variables: Active Components is the set
of components that are allowed to make a move in the current state p of PLTS ;
Next Components is the set of components that must be allowed to move once
the current state of PLTS has changed; FUA

Ci
is the table of updating and allowed

actions of the component Ci.
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procedure PVisit(state of PLTS : p;)
1: for each i := 1 to n do
2: F UA

Ci
:= ∅;

3: end for
4: Active Components := Lookahead(p);
5: Next Components := ∅;
6: mark p as Visited;
7: for each son p′ of p do
8: if the edge (p, p′) is not visited then
9: mark the edge (p, p′) as Visited;

10: Next Components := Lookahead(p′);
11: for each Ci ∈ Active Components allowed to perform an action α by the

label of the edge (p, p′) do
12: F UA

Ci
:= F UA

Ci

⋃
< p, α, p′, Active Components, Next Components >;

13: if p′ is not visited then
14: PV isit(p′);
15: end if
16: end for
17: end if
18: end for

Once this procedure is performed, each local adaptor knows in which state
of PLTS it can allow the corresponding component to perform a specific action.
Moreover, once the component performs such an action, it knows also which
are the components that must be blocked and which ones must be unblocked in
order to respect the behavior specified by PLTS .

In the following we describe how a local adaptor uses the tables to correctly
interact with each other (i) in a deadlock-freeness and (ii) as specified by PLTS .
On the exchanged messages, when needed, we use the standard time-stamps
method in order to avoid problems of synchronization. In this way an ordering
among dependent messages is established and starvation problems are also ad-
dressed. Note that also a priority ordering among components is a priori fixed.
This solves ordering problems concerning messages with the same time-stamps.
A local adaptor, whose current time-stamp is TS, whenever receives a message
with associated a time-stamp ts, it makes use of the following simple procedure
in order to update TS.

procedure UpTS(timestamp: ts;)
1: if TS < ts then
2: TS := ts + 1;
3: end if

Let Cx be an active component that is going to perform action α (i.e., in ACx

there is a state transition labeled with α and α does not collide with respect to
PLTS). The associated local adaptor FCx checks if α is either (i) a critical action
(i.e., α appears in FLC

Cx
) or (ii) an updating and allowed action (i.e., α appears

in FUA
Cx

). If it is not, FCx delegates α with associated the current time-stamp TS
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increased by 1 to synchronize itself with the rest of the system. If (i) then FCx

enters in the following procedure in order to ask for the permission to delegate
α. This is done by checking if for any pair < S, α >∈ FLC

Cx
there is at least

one local adaptor FCy whose corresponding component Cy is not in S. If (ii)
then FCx enters in the following procedure in order to try to block all the active
components and after having performed α, it unblocks the components that can
be activated with respect to the new state reached over PLTS .

procedure Ask(action: α;)
1: Let Cx be the current component that would perform action α and let SCx be its

current state and p be the current state of PLTS ;
Let < ti >UA

x be the i-th tuple contained in the table F UA
Cx

and < ti >UA
x [j] be its

j-th element;
2: flag forbidden := 0;
3: if ∃ i | < ti >UA

x [1] == p && < ti >UA
x [2] == α then

4: if α appears in some pair of F LC
Cx

then
5: for every entry < S, α >∈ F LC

Cx
do

6: i := 1;
7: TS + +;
8: while no “ACK, α,ts” received && i ≤ n do
9: Let S ≡< SC1 , . . . , SCn >; FCx asks to local adaptor FCi if it is in or

approaching the state SCi with associated TS;
10: i + +;
11: end while
12: if i > n then
13: WAIT for an “ACK, α, ts” message
14: end if
15: UpTS(ts);
16: if i > n then
17: i := n;
18: end if
19: for j := 1 to i do
20: send “UNBLOCK, α, TS” to FCi ;
21: end for
22: end for
23: end if
24: TS + +;
25: if < ti >UA

x [1]! =< ti >UA
x [3] then

26: for each component Cj ∈< ti >UA
x [4] do

27: send “BLOCK, TS” to FCj ;
28: end for
29: perform action α;
30: for each component Cj ∈< ti >UA

x [5] do
31: send “UNBLOCK, < ti >UA

x [3], TS” to FCj ;
32: end for
33: else
34: perform action α;
35: end if
36: end if
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Note that, by code line 13, the present local adaptor is self-blocked till some
local adaptor gives the permission to proceed, i.e. an “ACK”. The “UNBLOCK”
messages of code line 20 say to all the local adaptors that were blocked with
respect to the enquired forbidden states, to proceed. The “UNBLOCK” messages
of code line 31 are instead to unblock components due to the change of state of
PLTS occurred after having performed action α. On the other hand, when a local
adaptor receives a request for a permission, after having given such a permission,
it is implicitly self-blocked in relation to the set of states it was enquired for.
The following procedure describes the “ACK” messages exchanging method.

procedure Ack(last chance state: S; action: α; timestamp: ts1;)
1: Let FCy be the local adaptor (performing this Ack) that was enquired with respect

to the state S and the action α that Cx would perform; let S′
Cy

be the current
state of FCy and S′′

Cy
be the state that FCy would reach with the next hop.

2: UpTS(ts1);
3: if S′

Cy
�= S && FCy didn’t ask the permission to get in S then

4: send “ACK, α, TS” to FCx that allows Cx to perform the action α;
5: if S′′

Cy
== S then

6: WAIT for “UNBLOCK, α, ts2” from FCx ;
7: end if
8: S′′

Cy
:= next desired state of FCy ;

9: else
10: once S′

Cy
�= S send “ACK, α, TS” to FCx that allows Cx to perform the action

α;
11: if no “UNBLOCK, α, ts2” from FCx has been received then
12: WAIT for it;
13: end if
14: UpTS(ts2);
15: end if

The “WAIT” instructions of code lines 6 and 12 block the current local
adaptor in order to not allow the corresponding component to enter in a for-
bidden state. Note that, while the “UNBLOCK” message has a one-to-one cor-
respondence, that is, for each message there is a receiver waiting for it, the
“ACK” message can be sometimes useless. In fact a local adaptor needs just
one “ACK” message in order to allow the corresponding component to proceed
with the enquired critical action. All the other possible “ACK” messages are
ignored.

3.3 Correctness

We now provide the correctness of our method by proving that assuming K and
PLTS , the method synthesizes local adaptors that (i) allow the composed system
to be free from deadlocks and (ii) allow PLTS to be exhibited.

We prove (i) by focussing on the last chance nodes. Note that, since the
synthesis of K is correct as proved in [2], we can assume that the last chance
nodes are correctly discovered by means of the procedure KVisit that performs
a standard depth-first visit. Thus, our proof can be reduced to show that the
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local adaptors disallow the system to reach a forbidden path. Note that, by
construction, such a path can be undertaken only through a last chance node by
performing an action that labels one of its outgoing dead edges. Let us assume
by contradiction that the component z can perform the critical action c from
the last chance state S, and that S has an outgoing dead edge labeled by c z
(see for instance Figure 2). Since, as already noticed, the last chance nodes are
correctly discovered, when procedure KVisit is visiting S, it stores in FLC

z the
tuple < S, c >. At runtime, whenever the component z would perform action c,
Fz checks if c is a critical action by means of code line 4 of its Ask procedure. It
then starts to ask the permission (at least an “ACK” message) to all the other
components by means of the “while” cycle of code line 8 of the same procedure.
Each enquired local adaptor FCi , by the Ack procedure, checks if the current
state of the corresponding component Ci is in S. If it is, it does not reply to z
till it does not change status (code line 10 of the Ack procedure). In doing so,
until the system state remains S, no local adaptor will reply to Fz. Since Fz is
blocked on code line 13 of the Ask procedure till no “ACK” message is received,
a contradiction follows by observing that action c can be performed by z at code
line 29 of the same procedure.

To prove (ii), let us assume by contradiction that the component x performs
the action a when this is not allowed by PLTS , that is, the current state SP of
PLTS has no outgoing edge labeled by a x. First of all, in order for a component
to be active, either its local adaptor has received an “UNBLOCK” message from
some other local adaptor (by means of code line 31 of the Ask procedure) or
the system is just started and FUA

x has some entry with S0 (the initial state
of K) as first element. In both cases each time a component is active, its local
adaptor knows exactly which is the current PLTS state. By construction, x can
perform action a if there exists an entry in FUA

x whose first element matches
with the current state of PLTS and whose second element matches with a (see
code line 3 of the Ask procedure). The contradiction follows by observing that
such an entry was obtained by visiting PLTS hence, by construction, there must
exist an outgoing edge whose label matches with a x from the node labeled
by SP .

4 Running Example

In this section we show our approach at work by means of a running example.
This example concerns the semi-automatic assembly of a distributed client-server
system made of four components, two servers (denoted by C1 and C2 ) and two
clients (denoted by C3 and C4 ). The behavioral specification of C1, C2, C3 and
C4 (shown in Figure 3 in form of LTSs) has been borrowed from an industrial
case study described in [6]. C1 (resp., C2 ) provides two methods p and FreeP
(resp., p1 and FreeP1 ). Moreover, C2 provides also a method Connect. By re-
ferring to the method described in Figure 1, by taking into account the LTSs of
C1, C2, C3 and C4, we automatically synthesize a model of the centralized glue
adaptor K. This is done by using SYNTHESIS and performing the approach
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described in [2]. Finally, by taking into account the LTS specification of the
desired behavior that the composed system must exhibit, we mechanically dis-
tribute the correct behavior of K in a set of local adaptors f1, f2, f3 and f4.

4.1 Our Approach at Work

Figure 3 shows the LTSs of C1, C2, C3 and C4. Within the LTS of a component,
a message ?m (!m) denotes a received (sent) request or notification labeled with
m. The state with an incoming arrow denotes the initial state. For instance, C1
(C2 ), from its initial state, receives a request of p (p1 ) followed by a request of
FreeP (FreeP1 ).

C1 C2

C3 C4

Fig. 3. Components’ LTSs

Moreover, C2 from the initial state can receive a request of Connect and,
subsequently, replies to it by means of the notification ConNotif. The interaction
behavior of the clients C3 and C4 can be easily understood by simply looking
at Figure 3.

Figure 4 shows part of the LTS of K. Within K, a message ?m j (!m j)
denotes a request or notification labeled with m and received (sent) from (to)
Cj. The state S0 with an incoming arrow denotes the initial state. K contains
filled nodes, which denote deadlocks. Deadlocks might occur, e.g., because of a
“race condition” among C3 and C4. In fact, one client (e.g., C3 ) performs a
request of p1 (see the sequence of transitions from the state S0 to S2 in K) and
waits for performing the request p while the other client (i.e., C4 ) performs p
(see the sequence of transitions from the state S2 to S16 in K) and waits p1. In
this scenario C3 and C4 are in the state S4 of their LTSs (see Figure 3). Since
none of the clients performs the corresponding FreeP method before having
performed both p and p1, a deadlock occurs (see the filled state S16 in K).
Note that, following the sequence of transitions from the state S0 to S12 leads
to the symmetric scenario. By referring to Figure 4, the states S15 and S29
are filled since they can only lead to deadlocks. S2 and S12 are last chance
states. The paths from S2 to S16 and from S12 to S16 are forbidden paths and
FS = {S15, S16, S29}. Following we show the tables of last chance nodes used by
each local adaptor as generated by procedure KVisit. For both S2 and S12 there
is just one critical action that leads to a deadlock. This is translated by procedure
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Fig. 4. Part of the LTS of the centralized glue adaptor K. The filled nodes belong to
deadlock paths.

KVisit in storing the entries < S12 ≡< S3C1, S0C2, S0C3, S9C4 >, !C2.p1 > in
FLC

C3 and < S2 ≡< S0C1, S3C2, S9C3, S0C4 >, !C1.p > in FLC
C4 , respectively. In

this way, each time the component C3 (C4) performs the action !C2.p1 (!C1.p),
the corresponding local adaptor has to check that the global status is not S12
(S2). After performing KVisit to derive the last chance nodes table for each
local adaptor, SYNTHESIS performs PVisit to derive the updating and allowed
actions table for each local adaptor. This is done by taking into account the
LTS specification PLTS (see Figure 5). We recall that these tables are needed to
distribute PLTS among the local adaptors.

Fig. 5. The system’s desired behavior specified by PLTS

In our context, PLTS describes (at an high-level) a desired behavior for the
composed system. Each node is a state of the system. The node with the incoming
arrow is the initial state. The syntax and semantics of the transition labels is
the same of the LTS of K except for two kinds of action: i) a universal action
(i.e., ?true ) which represents any possible action, and ii) a negative action (e.g.,
! − C2.Connect 4 in Figure 5) which represents any possible action different
from the negative action itself. PLTS specifies that it is mandatory for C3 to
perform a Connect before performing p1 (see the self-transition on the state S1
and the transition from S1 to S2 showed in Figure 5). The self-transition on
S1 is the logical AND of the actions in the action list delimited by ’{’ and ’}’.
The semantics of this self transition is that the current state of PLTS (i.e., S1)
remains unchanged until an action different from !C2.Connect 3, !C2.F reeP1 3
and !C2.p1 3 is performed. When C3 performs !C2.Connect 3 the current state
of PLTS becomes S2. Then, while being in the state S2 all the components but



30 M. Autili et al.

C4 simultaneously execute unconstrained (see the negative self-transition on the
state S2 in Figure 5). Finally, FreeP1 will be performed by C3 to allow another
client to perform p1 (see the transition from S2 to S1 showed in Figure 5).
Following we show the tables of updating and allowed actions used by each local
adaptor as generated by the procedure PVisit. Denoting by “∗” any possible
value of a specified scope, PLTS is translated by procedure PVisit in storing
the entries < ∗, ∗, ∗, ∗, ∗ > in FUA

C1 , FUA
C2 ; while < S0, !C2.Connect, S1, ∗,

∗ >, < S1, !C1.p, S1, ∗, ∗ >, < S1, !C2.p1, S1, ∗, ∗ >, < S1, !C1.F reeP ,
S1, ∗, ∗ >, < S1, !C2.Connect, S1, ∗, ∗ >, < S1, !C2.F reeP1, S0, ∗, ∗ > in
FUA

C3 and < S0, ∗, S0, ∗, ∗ >, < S1, !C1.p, S1, ∗, ∗ >, < S1, !C2.p1, S1, ∗,
∗ >, < S1, !C1.F reeP , S1, ∗, ∗ >, < S1, !C2.F reeP1, S1, ∗, ∗ > in FUA

C4 .
Note that, when during the runtime, the state of PLTS changes from S0 to S1
by means of the action !C2.Connect performed by C3, FC3 informs FC4 of the
new state of PLTS by means of the “UNBLOCK” message of code line 31 of
its Ask procedure. Consequently FC4 knows that in such a state C4 cannot
perform !C2.Connect since the entries < S1, !C2.Connect, ∗, ∗, ∗ > are not
present in FUA

C4 . Once the LC and UA tables are filled, the interactions among
local adaptors can start by means of procedures Ask and Ack. In order to better
understand such an interaction, let us consider the sequence of messages that
according to the glue coordinator of Figure 4 leads the global state from S0 to
S15. Note that a forbidden path starts from S15. The first message is sent by
FC3 to FC2 in order to ask the resource p1. This is allowed by the entry < ∗, ∗,
∗, ∗, ∗ > contained in FUA

C2 . It means, in fact, that C2 can perform any action
from any global state according to PLTS . When from S1, FC4 would perform
?C3.p 4, according to the entry < S2 ≡< S0C1, S3C2, S9C3, S0C4 >, !C1.p >
contained in FLC

C4 , it has to check if the current global state is S2 in order to
not incur in the forbidden path that starts from S15. According to procedure
Ask, it starts to ask the permission to all the other local adaptors (see code
lines 8 of procedure Ask). Since the current state is exactly S2 it will not receive
any answer from the other local adaptors (this is accomplished by code line 3
of procedure Ack since if the enquired local adaptor is in the enquired state,
the if condition is not satisfied and the ACK message cannot be sent). Such a
situation changes as soon as some component changes its status hence unblocking
FC4 (see code line 12 of procedure Ack). Note that since such interaction concern
just an action of C4, by construction, this allow all the other local adaptors to
continue their interaction according to PLTS hence maintaining the eventual
parallelism.

5 Related Work

The approach presented in this paper is related to a number of other approaches
that have been considered by researchers. For space reasons, we discuss only the
ones closest to our approach.

In [7] a game theoretic approach is used for checking whether incompatible
component interfaces can be made compatible by inserting a converter between
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them. This approach is able to automatically synthesize the converter. Con-
trarily to what we have presented in this paper, the synthesized converter is a
centralized adaptor.

Our research is also related to [8] in the area of protocol adaptor synthesis.
The main idea is to modify the interaction mechanisms that are used to glue
components together so that compatibility is achieved. This is done by inte-
grating the interaction protocol into components. However, they are limited to
only consider syntactic incompatibilities between the interfaces of components
and they do not allow to automatically derive a distributed implementation of
the adaptor. Note that our approach can be easily extended to address syntac-
tic incompatibilities between component interfaces. We refer to [2] for details
concerning such an extension.

In another work by some of the authors [6], it is showed how to generate a
distributed adaptor by exploiting an approach to the definition of distributed In-
trusion Detection Systems (IDS). Analogously to the approach described in this
paper, the distributed adaptor is derived by splitting a pre-synthesized central-
ized one in a set of local adaptors (each of them local to each component). The
work in [6] represents a first attempt for distributing centralized adaptors and it
has two main disadvantages with respect to the approach described here: (a) the
method requires a more complex (in time and space) process for pre-synthesizing
the centralized adaptor. In fact, it does not simply model all the possible com-
ponent interactions (like our centralized glue adaptor), but it has to model the
component’ interactions that are deadlock-free and that satisfies the specified
desired behavior (PLTS). In that approach, in fact, the glue adaptor is gener-
ated and, afterwards, a suitable synchronous product with PLTS is performed.
This longer process with respect to the current approach might also lead to a
final bigger centralized adaptor. (b) The adopted solution realize distribution
but not parallelism. The distributed local adaptors realize, in fact, the strict dis-
tribution of the obtained centralized adaptor by means of the pre-synthesizing
step. This means that, since the centralized coordinator cannot parallelize its
contained traces, the interactions of the local adaptors maintain this behavior.

In [9], the authors show how to monitor safety properties locally specified (to
each component). They observe the system behavior simply raising a warning
message when a violation of the specified property is detected. Our approach
goes beyond simply detecting properties by also allowing their enforcement. In [9]
the best thing that they can do is to reason about the global state that each
component is aware of. Note that, such a global state might not be the ac-
tual current one and, hence, the property could be considered guaranteed in an
“expired” state. Furthermore, they cannot automatically detect deadlocks.

6 Conclusion and Future Work

In this paper we have presented an approach to automatically assemble concur-
rent and distributed component-based systems by synthesizing distributed adap-
tors. Our method extends our previous work described in [2] that permitted to
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automatically synthesize centralized adaptors for component-based systems. The
method described in this paper allows us to derive a distributed implementation
of the centralized adaptor and, hence, it enhances scalability, fault-tolerance, ef-
ficiency, parallelism and deployment. We successfully validated the approach on
a running example. We have also implemented it as an extension of our SYN-
THESIS tool [2]. The state explosion phenomenon suffered by the centralized
glue adaptor K still remains an open problem. K is required to detect the last
chance nodes that are needed to automatically avoid deadlocks. Indeed when
the deadlocks can be solved in some other ways (e.g., using timeouts) or PLTS

ensures their avoidance, generating K is not needed. Local adaptors may add
some overhead in terms of messages exchanged. In practical cases, where usu-
ally many parallel computations are allowed, the overhead is negligible since
additional communications are much less then standard ones. As future work,
whenever K is required, an interesting research direction is to investigate the
possibility of directly synthesizing the implementation of the distributed adap-
tor without producing the model of the centralized one. Further validation by
means of a real-scale case study would be interesting.
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Abstract. In this paper, we propose a new approach to model-driven
development, which we call introspective model-driven development
(IMDD). This approach relies heavily on some well-understood under-
lying abstractions, in order to bridge the abstraction gap between the
requirements and the actual executable system. These abstractions are
object-oriented programming languages and frameworks as a means of
architectural abstraction. The main idea of IMDD is to annotate the
extension points of a framework explicitly, which enables the automatic
introspection of the defined metamodel. In a second step, a model of the
customizations can be obtained by model introspection. There are two
kinds of introspective frameworks – introspective blackbox and intro-
spective whitebox frameworks. We developed an extension of the Eclipse
IDE, which supports introspective model-driven development. Further-
more, we discuss the characteristics of the proposed approach, compared
to established generative approaches.

1 Introduction

Dealing with the growing complexity of modern information systems is one of
the challenges in computer science. One way to cope with this issue is the use
of abstractions. There are some well-understood levels of abstraction as shown
in figure 1.

The basic abstraction which hides some details of the underlying executable
system is an object-oriented programming language (e.g. Java, C#). These lan-
guages are so-called General Purpose Languages (GPLs), which means that they
are used to solve a broad spectrum of problems.

On top of object-oriented programming languages there are frameworks as a
category of architectural abstraction. A framework embodies an abstract design
for solutions to a family of related problems [1]. In order to solve a concrete
problem, a framework has to be customized. The concrete task of customizing
a framework involves the manipulation of low-level constructs like XML-files
or code of the base programming language. The relationship between these con-
structs and the conceptual decisions in the problem space is not stated explicitly,
and the intellectual distance between the adaptation constructs and the problem
domain is pretty large.
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Fig. 1. Bridging the Abstraction Gap

One proposed solution to raise the level of abstraction of the framework cus-
tomization process, is the use of a domain-specific language (DSL), which rep-
resents the extension points of a framewok in a usually declarative way. This
approach is called model-driven development and implies an explicit connection
between the high-level constructs of a DSL and the corresponding customiza-
tion artifacts [3]. Technically speaking, there exists a transformation between the
model and the customization artifacts. This distinguishes MDD from so-called
model-based processes, in which models are merely used to illustrate certain as-
pects of a system in an understandable way, but the models created are not tied
directly to the executable system. In this case, the models often do not “tell
the truth” about the current system, and the creation of models is often seen
as an overhead to the actual development process. So only with an MDD ap-
proach it is possible to obtain all benefits of using models to build information
systems.

The most important point in using an MDD process is the explicit connection
between the models and the actual customization artifacts. This leads to the
question, in which direction the transformation is being applied. If the direction
points from the model to the customization artifacts, this is called a forward en-
gineering process [4]. Processes which use a transformation in the other direction
are called reverse engineering processes. In this paper, we call these processes
top-down and bottom-up.

A particular challenge for MDD processes results from the nature of the arti-
facts involved. In most cases, neither of them is sufficient to specify a complete
system. Both, the model and the customization artifacts should be editable, and
changes should lead to an immediate synchronization of the affected artifact.
This is called roundtrip engineering. Realizing roundtrip engineering with a top-
down process is a challenging task [5]. A promising approach to this problem is
that of roundtrip visualizations [6].

All proposed implementations [7], [8] of model-driven development favor a
top-down approach, in which they generate customization artifacts from
models. To emphasize this, we call this approach generative model-driven
development.
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We propose in this paper a bottom-up approach, in which the high-level mod-
els are a rather transient result of an introspection process. We call this approach
introspective model-driven development.

The article is structured as follows: In chapter 2 we give a short overview on
generative model-driven development. In chapter 3, we introduce introspective
model-driven development, which will be refined in chapter 4 and 5. In chapter 6,
we will conclude with a comparison of the proposed approach with the prevailing
approach to model-driven development.

2 Generative Model-Driven Development

An overview of generative model-driven development is illustrated schematically
in figure 2. Similar to the life cycle of a framework the process is divided in a core
development phase and an application development phase, with different roles of
developers involved. The first result of the core development phase is the frame-
work with its extension points. The creation of the core framework will be done
by framework developers. In order to provide a more abstract view on the exten-
sion points of the framework, a language developer extracts the metamodel of the
framework and creates a domain-specific language which reflects this metamodel.
The extracted metamodel only reflects these parts of the framework, which will
be customized in a declarative way. The metamodel will usually be specified
using an existing meta-metamodel, as e.g., EMF [9] or MOF [10]. Given the
metamodel, a transformation developer will create transformation rules which
enable the transformation of models to concrete customization constructs. This
will usually be done using a specific template language.

Fig. 2. Generative Model-Driven Development

In the application development phase, the framework user uses the meta-
model and creates a model which solves a concrete problem. The creation of
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concrete customization artifacts will be done by a generator based on the pro-
vided transformation rules. This only applies to these customizations which can
be done declaratively. The imperative adaptations have to be done manually by
the framework user.

3 Introspective Model-Driven Development

In this paper, we propose a bottom-up approach to realize model-driven de-
velopment. We call this new approach introspective model-driven development
(IMDD).

The main idea of IMDD is the construction of frameworks that can be an-
alyzed in order to obtain the metamodel for customizations they define. The
process in which the metamodel is retrieved is called introspection. The term
introspection stems from the latin verb introspicere: to look within. Special em-
phasis should be put on the distinction between introspection and reflection in
this context. We use both terms as they have been defined by the OMG [11]:

Table 1. Term Definitions

introspection A style of programming in which a program is able to examine
parts of its own definition. Contrast: reflection

reflection A style of programming in which a program is able to alter
its own execution model. A reflective program can create new
classes and modify existing ones in its own execution. Examples
of reflection technology are metaobject protocols and callable
compilers.

reflective Describes something that uses or supports reflection.

According to the definition of reflective, introspective describes something
that supports introspection. An introspective framework supports introspection
in that its metamodel can be examined.

The whole process of introspective model-driven development is schemati-
cally shown in figure 3. The process is divided into the well known core devel-
opment phase and application development phase. The first result of the core
development phase is an introspective framework. An introspective framework
supports introspection by highlighting all declaratively customizable extension
points through annotations [12]. This enables the extraction of the metamodel
by metamodel introspection. It is important to understand, that the metamodel
is not an artifact to be created from the framework developer, but rather can be
retrieved at any point in time from the framework.

The central artifact of the application development phase are the customiza-
tions to be made by the framework user. In IMDD it is possible to analyze these
artifacts and to obtain a model representation of them. This is called model in-
trospection. The model is an instance of the retrieved metamodel and can be
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Fig. 3. Introspective Model-Driven Software Development

visualized by different viewers (i.e. visualization tools). There exist out-of-the-
box viewers which can visualize an introspective model in a generic way. In some
cases it is desirable to develop special viewers which visualize the model in a spe-
cific way. This will be done by framework developers in the core development
phase. The manipulation of the model can be either done by using the views or
by manipulating the customization artifacts directly. In both cases an updated
customization artifact leads to an updated model and subsequently to an up-
dated view. As a result of this, the model and the views are always synchronized
with the actual implementation and can never “lie”.

The main idea of introspective model-driven development is the direct extrac-
tion of the model and the metamodel from the framework artifacts which define
them. There are two categories of frameworks which differ in the way adaptation
takes place. Blackbox frameworks can be customized by changing association re-
lationships flexibly. There are as many implementations as necessary to address
all imaginable problems available as part of the framework core. The framework
user just chooses the appropriate classes and configures their properties and the
associations between them. In contrast, customization of whitebox frameworks
takes place by creating subclasses of existing classes of the framework core. In
this case the framework user has to provide concrete implementations.

Accordingly, the way introspective model-driven development is done is differ-
ent for these kinds of frameworks. In the next chapter we will discuss introspec-
tive model-driven development for blackbox frameworks. In chapter 5, IMDD
for whitebox frameworks will be introduced.

In order to enable introspective model-driven development we created a frame-
work which supports blackbox introspection as well as whitebox introspection.
This framework is called Introspective Modeling Framework – IMF. IMF pro-
vides its functionality by extending the post-IntelliJ-IDE Eclipse. Technically
speaking, IMF consists of three Eclipse plugins.

Example. The process of developing an introspective framework and customiz-
ing it is illustrated using a simple example framework. We use a “textbook”
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scenario described by Martin Fowler, in which we have a system that reads files
and needs to create objects based on these files [2]. Each line can map to a dif-
ferent class, the class is indicated by a four-character code at the beginning of
the line. The rest of the line contains the data for the object to be created. The
following two lines result in the creation of two objects of type ServiceCall and
Usage with attribute values as shown in an object diagram in figure 4:

Fig. 4. Initialized Objects

#123456789012345678901234567890123456789012345678901234567890
SVCLFOWLER 10101MS0120050313.........................
USGE10301TWO x50214..7050329........................

The process of reading a file and instantiating objects accordingly should
be adaptable in a high-level model-driven way. A conceptual metamodel which
models the problem as an object-oriented design is shown in figure 5.

Fig. 5. Conceptual Metamodel

In the following we will show how to create an introspective blackbox and
whitebox framework which realize a solution to this problem.

4 Blackbox Introspection

The framework core of a blackbox framework provides ready-to-use implementa-
tions of functionality, which only has to be customized to solve a family of related
problems. The extension points of a blackbox framework are places which enable
the adaptation of either elementary properties or associations between objects.
In an introspective blackbox framework these extension points are tagged ex-
plicitly. That enables tool support for the customization process, which involves
the selection and configuration of classes to be instantiated and the creation of
associations between the objects constructed.
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The idea of introspective blackbox frameworks is similar to that of dependency
injection [13]. This means, that the instantiation of the framework classes is done
by a dedicated component, which can be configured declaratively. The classes
to be instantiated are rather passive in this process, they get their required
dependencies “injected”. Introspective blackbox frameworks take this idea one
step further by declaring all resources to be injected explicitly. This enables tool
support.

4.1 Core Development

The core of a blackbox framework consists of classes which can have configurable
elementary properties and associations with other classes, which are also con-
figurable. These configurable elements define the metamodel of the framework,
and a concrete configuration is a model which has to conform to the metamodel.

The key point of introspective blackbox frameworks is that these configurable
elements are tagged explicitly using annotations as being configurable. This en-
ables the automatic introspection of the metamodel and as a result of this it is
possible to support the modeling step.

There are two types of annotations, which enable the identification of config-
urable properties and associations. Configurable properties are tagged using the
annotation type Property. In order to create the configurable property code of
the class ReaderStrategy in our example, it is necessary to tag the definition
of the attribute as shown:

@Property(description="these four letters indicate this strategy")
String code;

Configurable relationships are created using the annotation type Associa-
tion. Creating the association between the classes Reader and ReaderStrategy
is done with following piece of code:

@Association List<ReaderStrategy> readerStrategies;

This leads to the meta-metamodel of blackbox introspection as shown in
figure 6. A configuration consists of many configurable classes which can have
many customizable properties and associations. An association connects config-
urable classes with each other. The icons besides the classes ConfigurableClass,
Property and Association can be used to annotate introspective elements in
class diagrams.

An implementation of the example problem as an introspective blackbox
framework looks like shown in figure 7. The introspective elements are anno-
tated using the icons mentioned above.

4.2 Application Development

So far we have looked at how to create the introspective framework core. This
task is done by the framework developer and consists in writing a “plain old



40 T. Büchner and F. Matthes

Fig. 6. The Meta-Metamodel of Blackbox Introspection

Fig. 7. Implementation of the Example Problem as an Introspective Blackbox Frame-
work

framework” with some additional annotations to tag the extension points. As
a result it is possible to retrieve the metamodel of the framework by doing
introspection on the framework core.

In the second phase of the life cycle, the framework user customizes the frame-
work to solve a concrete problem. The customization of an introspective blackbox
framework is done using the IMF Blackbox Modeler tool. Technically speaking is
this a plugin for the Eclipse IDE which analyzes the metamodel of the framework
core. Based on this metamodel the Blackbox Modeler provides a view which en-
ables the creation of a model which is an instance of the metamodel. A screenshot
of the modeler, in which the example problem is modeled, is shown in figure 8.
From the modeler view, which shows the model, it is always possible to navigate
to the corresponding metamodel element, which is also shown in figure 8.

5 Whitebox Introspection

As already mentioned, the customization of whitebox frameworks is done by pro-
viding implementations of abstract classes of the framework core. More specifi-
cally, the framework user specifies the desired behavior by implementing methods.
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Fig. 8. Modeling Perspective for Blackbox Introspection in the Blackbox Modeler

These methods are called hook methods and represent the extension points of
the framework [15]. Regarding introspective whitebox frameworks there are two
kinds of hook methods – introspective and non-introspective hook methods. Cus-
tomization of introspective hook methods can be done using a declarative pro-
gramming style, while implementing non-introspective hook methods requires
imperative constructs. The main idea of whitebox introspection is to annotate
introspective hook methods in the framework core and to analyze the declara-
tive customization artifacts. The analysis of the structure of the introspective
methods results in the metamodel of the framework, and the analysis of the
customizations leads to a model of the provided adaptations.

To build a whitebox framework, which addresses our example problem, we
create an abstract class ReaderStrategy. This abstract class specifies, that sub-
classes have to provide a concrete value of the code property:

public abstract class ReaderStrategy {
@Introspective public abstract String getCode();
...

The annotation type Introspective indicates, that this method is an intro-
spective method, which means that it has to be implemented in a declarative
way. In fact, this is the simplest kind of an introspective method, the so-called
value-method. A value-method has no parameters and returns either a primitive
value or an object of type String or Class.

In order to specify the programming model formally, which can be used to
implement the method we use a context-free grammar. This grammar is used
to restrict the expressive power of the underlying programming language to
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a declarative programming model. We define our grammar based on the non-
terminals used by the Eclipse project JDT [16]. Non-terminals are shown in italic
type, terminal symbols are shown in fixed width font. Non-terminals introduced
by us are printed in bold italic face.

The non-terminal which defines the programming model for customizing
value-methods looks like the following:

ValueMethod M1:
{ Modifier } ValueMethodType SimpleName ( ) {

return AbstractValue ; }

ValueMethodType:
String | Class | boolean | byte | short | char |
int | long | float | double

The return type of a value-method is therefore restricted to be of either prim-
itive type or one of String or Class. The return statement is defined by the
non-terminal AbstractValue:

AbstractValue:
Value
NameV alueV ariableName

This can be either a value of one of the following types, or a variable name:

Value:
BooleanLiteral | CharacterLiteral | NumberLiteral |
StringLiteral | TypeLiteral | NullLiteral

We call these two ways to return the result by-value and by-constant. The
variable name has to be bound to a field declaration which defines a variable
which is declared as being final:

FinalValueFieldDeclaration:
[ Javadoc ] FinalModifiers

ValueMethodType SimpleNameV alueV ariableName = Value ;

The non-terminal FinalModifiers specifies a set of modifiers which contains
the final modifier. A valid implementation of the introduced method getCode
looks like the following:

@Override public String getCode() {
return "SVCL";

}
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An alternative solution in which case the result is returned by-constant is like
the following:

final CODE = "SVCL";

@Override public String getCode() {
return CODE;

}

Because of the declarative programming model, it is possible to analyze the
customization artifacts. This analysis is called model introspection and is sup-
ported by the IMF-Whitebox Modeler tool. A screenshot, which shows the tool,
is illustrated in figure 9. In this view, it is possible to manipulate the value of the
property, which results in a manipulation of the code and a subsequent redraw-
ing of the model. It is also possible to navigate to the construct which defines
the metamodel for the current model element.

Fig. 9. An Introspective View of a Value-Method in the Whitebox Modeler

The value-method described so far enables us to model elementary properties.
In order to build a framework which addresses the example problem we also
have to model associations. This can be done using another kind of introspective
method, the so-called objects-method. An objects-method has no parameters,
but returns either one or many objects of a specific type. Unlike for the value-
method, there are multiple introspective programming models, which can be used
to implement an objects-method. The simplest programming model returns just
a newly created object, which is similar to the programming model of the value-
method. An in-depth treatment of all identified programming models will be
provided in [14]. We introduce here the fields-by-type programming model, which
allows the definition of a set of objects by declaring variables. The specification of
an objects-method using the fields-by-type programming model in the framework
core looks like the following:
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public abstract class Reader {

private List<ReaderStrategy> strategies;

@Introspective public List<ReaderStrategy> getStrategies() {
if(strategies == null) {

strategies = FieldFinder.getFields
(this,ReaderStrategy.class);

}
return strategies;

}
...

This method returns all final fields which specify an object of type Reader-
Strategy. A specification of a concrete strategy looks like this:

public class Reader1 extends Reader {
final ReaderStrategy STRATEGY_1 = new ReaderStrategy() {
...

As a result of this we have introduced a meta-metamodel of whitebox intro-
spection, which is shown in figure 10. The meta-metamodel we show here is a
simplified version of the one introduced in [14]. A model consists of introspective
classes. An introspective class has introspective methods, which can be either
value-methods or objects-methods. Using this meta-metamodel it is possible to
build introspective whitebox frameworks.

Fig. 10. The Simplified Meta-Metamodel of Whitebox Introspection

In figure 11 the four meta-layers and their equivalents in the case of whitebox
introspection are shown. The metamodel at M2 is defined by the framework
core by using introspective methods. The model at the meta-layer M1 is defined
by the framework user. The model is represented as declarative code of the
host language. Modeling can be done either by writing code manually or by
using the Whitebox Modeler to do so at a rather high level of abstraction. The
programming model, which is used to express the model, depends on the actual
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introspective method. The Whitebox Modeler also verifies the correct use of the
programming model.

We now study how to solve the example problem with an introspective white-
box framework. Our example can be customized completely declaratively, so it
can be solved using a blackbox framework. To demonstrate one of the advan-
tages of whitebox introspection we vary the example scenario a little bit. Let’s
assume, the created objects should be used to do some rather complex business
logic directly after their creation. This business logic should be done using a
specific API, which enables the manipulation of some data store. The most con-
venient way to express such kind of business logic is by writing some imperative
code, which encodes the desired behavior. This means, that there are declara-
tively customizable parts of the framework as well as imperatively customizable
part. One benefit of our approach lies in the uniform treatment of both intro-
spective and non-introspective hook methods. The content of the introspective
methods will be analyzed, whereas the non-introspective are not analyzed by the
modeler.

A class diagram of an introspective whitebox framework, which addresses the
modified example problem, is shown in figure 12. The method processObject
of the class ReaderStrategy is a non-introspective hook method which gets
the created object as a parameter and does the business logic. The framework
user can use the full power of the base language to specify the business logic
here.

Fig. 11. Four Meta-Layers of Whitebox Introspection
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Fig. 12. Implementation of the Example Problem as an Introspective Whitebox
Framework

5.1 Case Study

In [14] we present our experience in building two whitebox frameworks as part of
a commercial knowledge management system. The first one is a web-visualization
framework. The main abstraction of this framework are so-called handlers. A
handler reacts on requests by reading parameters, doing some business logic and
rendering response pages in the end. Except for the business logic, all aspects of
the handlers are realized introspectively and can be analyzed and modeled. We
have built a derivative of the Whitebox Modeler, which is tailored specifically
to this framework. In order to render the dynamic response pages, the frame-
work uses HTML-templates. By means of the introspective model, it is possi-
ble to check the consistency of the templates with the code which instruments
them [17]. The whole knowledge management system consists of approximately
500 handlers.

6 Discussion and Concluding Remarks

We believe, that modeling as a means of building and understanding systems at
a rather high level of abstraction should play a more important role in software
engineering. Furthermore, we think, that model-driven approaches offer a lot of
benefits over merely model-based approaches. The prevailing approach to realize
model-driven development is the generation of artifacts which customize frame-
works, as shown in figure 1. In this paper, we propose an alternative approach
to realize MDD, which we call introspective model-driven development (see fig-
ure 13). In the following we will discuss the implications of using introspective
vs. generative model-driven development.

IMDD relies on some infrastructure, which has to be in place. The base lan-
guage used has to be a statically typed object-oriented programming language.
In our case, we chose Java as the base language. The second prerequisite is the
existence of a “post-IntelliJ-IDE”, on top of which a tool to support IMDD can
be created. We chose the Eclipse IDE to build IMF, which is a framework that
supports IMDD. According to the two types of introspective frameworks - intro-
spective blackbox and introspective whitebox frameworks, IMF provides generic
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Fig. 13. Modeling Approaches

modelers for both of them. Therefore, using IMF out-of-the-box it is possible
to do introspective model-driven development immediately. In some cases, it is
useful to create tailored modelers, which will be supported by IMF.

6.1 Advantages of IMDD

IMDD is a single-source approach, which means that the metamodel and the
model are respectively represented by exactly one artifact. This is not the case
for generative approaches, in which information about the metamodel is encoded
implicitly in the framework core, and in the explicit metamodel of the DSL. The
same is true for the models. They are represented as artifacts of the modeling
process, as well as customizations, which will be generated. To specify the trans-
formation process, there are additional artifacts, which rely on the conceptual
metamodel, and the way the concrete customization artifacts look like. All this
leads to a lot of redundancies and a lot of artifacts, which have to be consistent.

In introspective model-driven development the metamodel is represented by
the annotated framework core, and the model is represented directly by the
customization artifacts. In both cases, these artifacts are used to specify the
executable system, as well as to provide modeling information. This means, that
in IMDD “code is model” [18]. Code means here also declarative customization
artifacts, which configure an introspective blackbox framework. The model is a
transient view on the underlying code. The most striking advantages of IMDD
follow from this fact.

At first, this enables roundtrip visualizations, which are hard to achieve for
generative approaches [5]. As another immediate implication of this, the model
“never lies”. This means, that the model reflects properties of the system pre-
cisely all the time.

Because the modeling information in IMDD is represented by code, refactoring
the metamodel of the framework [19] can be done easily using a post-IntelliJ-
IDE. In the case of an introspective whitebox framework, also the model will be
refactored accordingly. Broadly speaking, keeping the involved artifacts consis-
tent is quite easy in IMDD. In a generative approach, evolving the framework
core means evolving the metamodel, the transformation rules and the models
manually in parallel.
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Another advantage of IMDD is the possibility to achieve symbolic integra-
tion [2] between declarative models and imperative artifacts. This makes it easy
to mix both programming styles, and get the benefits of modeling the declarative
aspects on a high level of abstraction. Using a generative approach, it is quite
complicated to integrate both paradigms, by e.g. editing generated artifacts,
using protected source code areas.

Furthermore, we consider the introspective approach as being lightweight. This
means, that no additional meta-metamodel is needed to do IMDD, and that the
overall process is much simpler. As a meta-metamodel, we use some of the capa-
bilities of the object-oriented base language. There are no additional languages
to be learned by the developer. Generative approaches are more heavyweight,
because they involve an additional meta-metamodel, and a language to do the
transformation. As another aspect of using the base language to do metamodel-
ing, fundamental consistency constraints on the metamodel will be checked by
the compiler of the base language. In the case of introspective whitebox frame-
works, the compiler also checks some aspects of the well-formedness of the model
using rich typing, binding and scoping rules of the base language.

The code-centricity of IMDD matches well with the development approaches
used in practice.

6.2 Disadvantages of IMDD

IMDD relies on the explicit annotation of the extension points in the framework
core, so it requires the construction of introspective frameworks. It is not possible
to do IMDD with classical frameworks, which do not support this development
approach. As a consequence of this, doing introspective development with the
existing frameworks is not possible. They have to be modified, in order to be
introspective.
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Abstract. Connectors are used to realize component interactions in
component systems. Apart from their primary function, which is mediat-
ing the communication, their implementation can also support additional
features that, while unrelated to the primary function, may benefit from
their placement in connectors. Such features are often optional in the
sense that they can be activated and deactivated at run-time. The prob-
lem is that even if they are disabled, their very presence in the connector
incurs certain overhead. In this paper, we describe an approach to elim-
inate this overhead by reconfiguration of the connector implementation.
Besides connectors, the approach is applicable to similar technologies
such as reflective middleware and other architecture-based component
systems and frameworks.

Keywords: Component systems, software connectors, runtime recon-
figuration.

1 Introduction

In component systems with support for distribution, the design-time connections
among components usually represent a more powerful concept than just a plain
reference as known from programming languages. Such connection, a hyper-edge
in general, connects components that participate in some kind of interaction. The
endpoints of a connection correspond to the roles the connected components
assume in the interaction.

At runtime, besides entities implementing the components, additional entities
are required to realize the interaction modeled by such connections. The exact
composition of entities required to implement a given interaction depend on the
communication style governing the interaction. In case of e.g. procedure call,
these entities could be a stub and a skeleton, or a plain reference, depending on
the location of the participating components.
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To model the component interactions, many component systems have intro-
duced connectors as first-class design entities that model the interactions among
components. At the design level, connectors represent a high-level specification
of the interactions they model, aggregating requirements imposed on the interac-
tion. The specification is then used for transformation of a design-time connector
into runtime connector, which implements the interaction and has to satisfy the
requirements from the specification.

Some of the requirements may not be directly related to the primary function
of a connector, which is to enable communication among components. The prop-
erties a runtime connector needs to have to satisfy such requirements are called
non-functional properties. A connector implementation gains such properties by
implementing additional functionality unrelated to its primary function, such as
logging, performance and behavior monitoring, security1, etc.

Some of the features implemented by a connector to satisfy connection re-
quirements may be optional, which means that they do not need to be active at
all times. The implementation of a connector may support selective activation
and deactivation at runtime, especially if a feature incurs considerable dynamic
overhead when active.

The problem is that even when an optional feature is disabled, its presence
in a connector may incur certain static overhead. The overhead is caused by
the mechanism used to integrate an optional feature with other code. Com-
pared to its dynamic overhead, static overhead of an optional feature tends
to be small or even negligible, depending on the integration mechanism. Nev-
ertheless, the existence of the static overhead and the lack of data quanti-
fying its impact is often a reason for not including useful features such as
logging or monitoring in production-level applications. Such features can pro-
vide an application administrator with tools for diagnosing problems in a running
application.

As discussed in [1], due to complexity of contemporary software, problems
and misbehavior occurring in production environment, which typically does not
provide sufficient diagnostic tools, are hard to reproduce in development envi-
ronment where the tools are available. For this reason, even production-level
applications should always provide features that can be activated at runtime
and that can assist in diagnosing hardly reproducible problems. Moreover, as
long as they are not used, those features should have no impact on the execution
of the application.

In this paper, we present an approach to eliminate static execution over-
head of disabled optional features in the context of one particular model [4] of
architecture-based connectors. The model is being developed within our research
group with focus on automatic generation of connector implementation from the
high-level specification. The issues concerning efficiency of generated connectors
have prompted the research presented in this paper.

1 Security properties such as authentication or encryption cannot be considered
entirely unrelated, but are still considered non-functional, because they are not
essential.
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Even though we present it on a specific connector model, the scope in which
the approach can be applied is much broader. The principal requirements are
construction through composition and the ability to track dependencies in a
composite at runtime. These requirements are satisfied even in very simple com-
ponent environments, therefore the presented approach is directly applicable e.g.
to component-based middleware (e.g. the reflective middleware by Blair et al.
[2], Jonathan [3], etc.), which in fact plays the role of connectors.

1.1 Goals of the Paper

The main goal is to eliminate the static execution overhead associated with
optional connector features that have been disabled. This will allow including
optional features such as logging, or monitoring even in production-level appli-
cations without impacting performance while the features are disabled.

To solve the problem in the context of architecture-based connectors, we
need an algorithm that allows us to propagate changes in the runtime struc-
ture of a connector implementation through the connector architecture. This in
turn cannot be done without imposing certain requirements on the connector
runtime.

The goals are therefore to devise an algorithm for propagating changes in a
connector architecture, to formulate the requirements that a connector runtime
must satisfy for the algorithm to work, and to prove that the algorithm always
terminates in a finite number of steps.

1.2 Structure of the Text

The rest of the paper is organized as follows: Section 2 gives an overview of
the connector model used as a testbed for our approach, Section 3 provides dis-
cussion of the overhead associated with optional features with respect to the
connector model, Section 4 outlines the solution and Section 5 describes in de-
tail the proposed changes in connector runtime and the reconfiguration process
used to eliminate the static execution overhead of disabled optional features,
Section 6 provides an overview of related work, and Section 7 concludes the
paper.

2 Connector Model

Throughout the paper, we use a connector model described in our earlier work
[4] as a test bed. The model has a number distinguishing features, which are
not commonly present in other connector models. Connectors are modeled by
connector architectures describing composition of entities with limited, but well-
defined functionality. The key feature with respect to the approach presented in
this paper is that the design architecture of a connector is reflected in runtime
architecture of the connector implementation and can be traversed and manip-
ulated at runtime.
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2.1 Connectors from the Outside

Conceptually, a connector is an entity exposing a number of attachment points
for components participating in an interaction. Technically, due to its inherently
distributed nature, a connector comprises a number of connector units. Each unit
represents a part of a connector that can exist independently in a deployment
dock, which hosts instances of components and connectors. A connector unit
communicates (strictly) locally with components attached to it and remotely
(using middleware) with other connector units.

An example in Figure 1 shows client components A, B, and C connected to
the Server component using connectors. In case of components B and C the
respective connectors cross the distribution boundary between address spaces.

Fig. 1. Using connectors to mediate communication among components

2.2 Connectors from the Inside

The construction of connectors is based on hierarchical composition of well-
defined entities with limited functionality. A connector is made of connector
units, and connector units are made of connector elements. The composition of
connector elements is described by connector architecture.

Since the connector elements can be nested, the entire architecture forms
a hierarchy with the connector as a whole represented by its root. The in-
ternal nodes represent composite elements which can contain other elements,
and the leaves represent primitive elements which encapsulate implementation
code. Connector units at the second level of the hierarchy are also connec-
tor elements, except with certain restrictions on bindings among other
elements.

While the connector architecture models composition of connector element
types [4], connector configuration provides a white-box view of a connector, which
is obtained from the architecture by assigning concrete implementation to the
element types present in the architecture. A connector configuration therefore
fully determines the connector implementation and its properties.
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An example of a connector configuration is given in Figure 2, which shows
a connector realizing a remote procedure call. The connector consists of one
server unit and one client unit. The client unit consists of an adaptor (an el-
ement realizing simple adaptations in order to overcome minor incompatibility
problems) and a stub. The server unit comprises a logger (element responsible
for call tracing), a synchronizer (element realizing a specific threading model),
and a skeleton collection (element which groups together multiple skeleton im-
plementation using different middleware, thus enabling access to the server unit
via different protocols).

Fig. 2. Connector at runtime

A connector element communicates with other elements or with a component
interface only through designated ports. There are three basic types of element
ports in the model: (a) provided ports, (b) required ports, and (c) remote ports.
Based on the types of ports connected together we distinguish between local
(required-to-provided or provided-to-required ports) and remote (between mul-
tiple remote ports) bindings.

Local bindings are realized via local calls, which limits their use to a single
address space. Ports intended for local bindings thus serve for (a) element-to-
element communication within a connector unit and (b) element-to-component
communication with the component attached to a respective connector unit.

Remote bindings represent a complex communication typically realized by
middleware (e.g., RMI, JMS, RTP, etc.). We do not attempt to model this com-
munication or capture the direction of the data flow in our connector model –
instead we view these bindings as undirected. To support other communication
schemes than just point-to-point (e.g., broadcast), we model a remote binding
as a hyper-edge which connects multiple remote ports.

The exact implementation of a remote binding depends on the participating
elements. Their responsibility is to provide remote references or use remote ref-
erences for establishing a connection. From the point of view of the connector
model, a remote binding only groups together ports of elements sharing the same
set of remote references.

Due to inherently distributed nature of a connector, there are restrictions on
the occurrence of local and remote ports in the architecture and the bindings
among them. At the top level of the architecture, a connector can only expose
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local ports. Remote bindings can only occur at the second level of the architec-
ture, i.e. among connector elements representing connector units. In composite
elements, only local bindings between child elements, and delegations between
the child and parent element ports are allowed. Remote port occurring in a
non-unit element must be delegated to the parent element.

2.3 Connectors at Runtime

At runtime, each connector element is represented by a primary class which
allows the element to be recognized and manipulated as an architectural element.
Depending on the types of declared ports, the primary class has to implement
the following interfaces: ElementLocalClient (if the element has a required port),
ElementLocalServer (if the element has a provided port), ElementRemoteClient
(if the element has a remote port and acts as a client in a remote connection),
and ElementRemoteServer (if the element has a remote port and acts as a server
in a remote connection). The primary class aggregates the control interfaces that
can be used for querying references to element ports (server interfaces) and for
binding ports to target references (client interfaces). The signatures of the control
interfaces are shown in Figure 3.

2.4 Optional Features in Connectors

Since the local bindings among connector elements are realized by local calls,
a sequence of connector elements with complementary ports with the same in-
terface may result in a chain of elements through which method invocations
have to pass. From this point of view, optional features utilizing interception
or filtering to perform their function will fit well in the connector model. In-
terception is used to include activity related to invocation of specific methods
in the call path, while filtering operates on the content passed along the call
path.

Examples of optional features implemented through interception are logging,
performance or behavior monitoring, or any other function requiring method-
level interception, such as the stub and skeleton. Features implemented through
filtering may include encryption, compression, and other data transformations.
Figure 2 shows a connector architecture with an optional logging feature imple-
mented by the logger element.

3 Overhead of Optional Features

The activity of optional features is the source of dynamic memory and execution
overhead. The overhead tends to be significant, but is only present when an
optional feature is enabled. For this reason, the dynamic overhead is not further
analyzed in this paper.

The presence of an optional feature in a connector (or an application in gen-
eral) is the source of static memory and execution overhead. The overhead is
caused by the mechanism used to optionally include the implementation of a
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Fig. 3. Interfaces implemented by an element

feature in a connector and by itself it tends to be rather small, even insignif-
icant. The approach presented in this paper aims to address situations where
these isolated cases accumulate.

3.1 Static Memory Overhead

The static memory overhead associated with optional features in connectors
is caused by the additional code required to implement the desired operation.
Eliminating the static memory overhead of a disabled optional feature requires
eviction of the code that implements it from memory.

The ability to evict code from memory depends on the environment and may
not be always possible. In case of virtual machine environment with garbage
collection such as Java, the code cannot be evicted explicitly – we can only
attempt to ensure that it can be garbage-collected.

Considering the relatively light-weight connector runtime and the nature of
the optional features, we assume the code implementing them will represent only
a small fraction of all application code. Therefore we expect the static memory
overhead to be negligible and do not specifically target it in our approach.
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3.2 Static Execution Overhead

The static execution overhead associated with optional features is tied to the
mechanism through which these features are included in the application call
paths. This mechanism is based on invocation indirection, which is inherent to
the connector model we are using (and to all component environments where the
architecture is preserved at runtime). The concept of a connector architecture
consisting of connector elements allows us to compose connectors from smaller
blocks providing a clearly defined function, while the hierarchy serves to limit
an element’s awareness of its surroundings.

This allows adding optional features to connectors, because each element im-
plementing a pair of complementary ports of the same type can serve as a proxy
for another element. This is the case of the logger element in Figure 2. However,
if multiple elements implementing optional features are chained together, the
method invocation will have to go through all the elements in the chain, even if
all optional features in these elements are disabled.

One may argue that in case of a single element, the execution overhead of
one additional layer of indirection is negligible and can be tolerated. However,
as mentioned above, connector elements are simple building blocks intended for
composition. Therefore we expect connector architectures combining multiple
optional features to achieve that through combination of multiple connector
elements. In such case, the method invocation will accumulate overhead in each
element of the chain, because before passing the invocation to the next element,
each element must also decide whether to invoke the code implementing the
feature. The overhead thus accumulated most probably will not be prohibitive,
but it may not be negligible anymore.

4 Outline of the Solution

Eliminating the static execution overhead associated with a disabled optional
feature on a specific application component interface requires removal of an
element implementing the feature from a chain of elements intercepting method
invocations on that interface.

This operation is similar to removal of an item from a single-linked list – the
predecessor of the item must be provided with a link to its new successor. How-
ever, in case of connector architecture, the list items are not data but code. The
problem thus gets complicated by the fact that connectors are distributed enti-
ties, and that each connector element is autonomous in deciding (anytime during
execution) when it wants to be removed from the call chain and when it wants
to be part of it again. Additionally, the connector architecture is hierarchical,
which further complicates the management of the call chain.

Connector elements in a chain intercepting particular component interface
are linked to each other using a pair of complementary ports. Their required
ports are bound to ports of the same type provided by their successors. Since
each element is aware of its internal architecture but not of its place in the sur-
rounding architecture, the binding between ports of two sibling elements must be
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established by the parent element. Based on its architecture, the parent element
queries the child elements for references to their provided ports and provides
these references to other child elements that require them.

Thus, when an element wants to be excluded from a call chain, it can simply
realize it by providing the target reference associated with its required port as a
reference to its own provided port. In other words, when queried for a reference
to its provided port, an element returns a reference it has already obtained as
a target for one of its required ports. Method invocations on the provided port
are thus passed directly to the next element in the call chain.

Although the trick for excluding elements from the call path is simple, there
are several problems that complicate its usage (a) for initial setup of connector
architecture at startup and (b) for reconfiguration at runtime, because of the
above mentioned connector element autonomy.

When creating the initial architecture (with some of the optional features
disabled by default), it is necessary to bind the elements in certain order for
the idea to work. The order would correspond to a breadth-first traversal of a
graph of dependencies among the ports. The binding has to be done recur-
sively for all levels of the connector architecture hierarchy, because through
delegation and subsumption between the parent and child elements, the (vir-
tual) graph of dependencies between the ports may cross multiple levels of
the connector architecture hierarchy. Additionally, since the concept of connec-
tor elements is based on strong encapsulation, the child elements appear to
their parent entity as a black-box. Consequently, there is neither central infor-
mation about the connector architecture as a whole (viewed as a white-box),
nor is it possible to explicitly construct the dependency graph for the entire
connector.

In our approach, we address both mentioned situations by a reconfiguration
process initiated within an element. The reconfiguration process starts when
an event occurs that causes a reference to a provided port (exposed by an ele-
ment) to be no longer valid and it is necessary to instruct all neighboring ele-
ments using this reference (through their required ports) to obtain an updated
one. Because an element where such even occurs does not have information
about its neighbors, it notifies its parent entity (the containing element or the
connector runtime), which uses its architecture information to find the neigh-
boring elements that communicate with the originating element, and are thus
affected by the change of the provided reference. If there is a delegation leading
to the originating element, the parent entity must also notify its own parent
entity.

This reconfiguration process may trigger other reconfigurations when a de-
pending element is excluded from the call chain – a change of the target reference
on its required port causes a change of a reference to its provided port.

The reconfiguration process addresses the two situations – (a) initial setup
of the connector architecture and (b) runtime reconfiguration – in the follow-
ing way. In case of (a) we do not impose any explicit ordering on instantiation
and binding of connector elements. When an element that wants to be excluded
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from the call chain is asked to provide a reference which it does not have yet
(because its required port has not been bound yet), it returns a special refer-
ence UnknownTargetReference. As soon as the required port gets bound and
the target reference (that should have been returned for the provided port)
becomes known, the element initiates the reconfiguration process for the af-
fected provided port, which ensures propagation of the reference to the affected
elements.

In (b) the inclusion/exclusion of an element in/from a call chain affects a
reference provided by a particular provided port – either a reference to an internal
object implementing the port (including the optional feature code in the call
path) or a target reference of a particular required port should be provided. In
both cases the change is propagated to the depending neighbor elements through
the reconfiguration process.

5 Reconfiguration Process

The reconfiguration process outlined in the previous section allows us to elim-
inate the static execution overhead of disabled optional features in connectors.
In this section we show what extensions must be introduced to the connector
runtime and what functionality must be added to the element control interfaces
presented in Section 2.3.

Additionally, we show that the algorithm always terminates, which is not
an obvious fact due to reconfiguration process triggering other reconfigurations.
Due to space constraints, we have omitted additional discussion of the algorithm.
The discussion, along with a more detailed description of the algorithm and the
proof of termination can be found in [5].

5.1 Reconfiguration Algorithm

The reconfiguration algorithm is executed in a distributed fashion by all entities
of the connector architecture. Because it operates on a hierarchical structure
with strong encapsulation, each participant only has local knowledge and a link
to its parent entity to work with.

The link is realized through ReconfigurationHandler interface, which is im-
plemented by all non-leaf entities of the connector architecture, i.e. composite
elements and connector runtime, and is provided during instantiation to all non-
root entities, i.e. composite and primitive elements. When the reconfiguration
process needs to traverse the connector architecture upwards (along the del-
egated ports), the respective connector element uses that interface to initiate
the reconfiguration process in its parent entity. In the case of our connector
model, the ReconfigurationHandler interface contains two methods that serve
for invalidating provided and remote server ports of the element initiating the
reconfiguration process.

When disabling an optional feature, the element providing the feature remains
in the connector architecture but is excluded from a call path passing through
its ports. As described in Section 4, when an element wants to be excluded from
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the call chain, it provides target reference associated with its required port as a
reference to its provided port. This constitutes an internal dependency between
the ports which the reconfiguration process needs to be able to traverse. Since
this dependency is not allowed between all port types, we enumerate the allowed
cases and introduce the notion of a pass-through port.

An element port is considered pass-through, iff one of the following holds:

1. the port is provided and is associated with exactly one required port of the
same element; if the reference to the port is looked up, the target of the
associated required port is returned instead,

2. the port is provided and is associated with exactly one remote client port of
the same element; if the reference to the port is looked up, a single target
from the reference bundle of the associated remote port is returned instead,

3. the port is remote server and is associated with one or more required ports of
the same element, and if the reference to the port is looked up, the returned
reference bundle contains also the targets of the associated required ports.

Pass-through target is a target object of a required port that is associated
with a pass-through port and to which the invocations on the pass-through port
are delegated.

The reconfiguration process can be initiated at any non-root entity of the
connector architecture, whenever a connector element needs to change a reference
to an object implementing its provided or remote server port. This can happen
either when an element’s required or remote client port associated with a pass-
through port is bound to a new target, or when an element needs to change the
reference in response to an external request.

The implementation of each element must be aware of the potential internal
dependencies between the pass-through ports and their pass-through targets.
Whenever a change occurs in an element that changes the internal dependencies,
the element must initiate the reconfiguration process by notifying its parent
entity about its provided and remote server ports that are no longer valid.

The implementation of the reconfiguration algorithm is spread among the
entities of the connector architecture and it differs depending on the position
of an entity in the connector hierarchy (root, node, and leaf entities). Bellow,
we list the operations that implement the reconfiguration process. Due to space
constraints, the pseudo-code of the operations along with additional comments
can be found in [5].

Lookup Port. Serves for looking up a local reference to an object implementing
a particular provided port.

Lookup Remote Port. Serves for looking up a bundle of remote references
to objects providing entry-points to the implementation of a particular remote
server port. Each reference in the bundle is associated with an access scheme.

Bind Port. Serves for binding a particular required port to a provided port. If
there is a pass-through port dependent on the port being bound, reconfiguration
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is initiated. Bind Port also checks for re-entrant invocations for the same ports
to detect cyclic dependencies between pass-through ports.

Bind Remote Port. Serves for binding a particular remote client port to a
remote server port. If there is a pass-through port dependent on the port being
bound, reconfiguration is initiated.

Invalidate Port. Serves for invalidating a reference to an object implementing
a particular provided port. Used by connector elements to indicate that the
provided port should be queried for a new reference.

Invalidate Remote Port. Serves for invalidating a bundle of remote references
to objects providing an entry point to the implementation of a particular remote
server port. Used by connector elements to indicate that the remote server port
should be queried for a new reference bundle.

Rebind Connector Units. Serves for establishing a remote binding – gathers
reference from remote ports with server functionality (using Lookup Remote
Port) and distributes the references to remote ports with client functionality
(using Bind Remote Port).

Bind Component Interface. Serves for binding a particular component inter-
face to a provided connector element port implementing the interface. Serviced
by a method specific to a particular component-model.

5.2 Algorithm Termination

Given the recursive nature of the algorithm, an obvious question is whether it
always terminates. We show that the answer is yes, even when an implemen-
tation of a connector architecture is invalid (i.e. there are cyclic dependencies
between pass-through ports), in which case the algorithm detects the cycle and
terminates. In proving that the algorithm always terminates, we will examine
the reasons for the algorithm not to terminate and show that such situation
cannot happen. We believe that the use of informal language does not affect the
correctness of the proof.

As a requisite for the proof, we construct a call graph of the algorithm oper-
ations (see Figure 4). Implementation variants of the operations as well as in-
vocations on different instances are not distinguished. This simplifies reasoning,
because it abstracts away from unimportant details. The cycles in the graph
mark the problem places that could prevent the algorithm from terminating.
Even though the graph in Figure 4 does not reflect the algorithm as accurately
as the more detailed graphs would, the structure of the cycles is preserved, there-
fore the graph is adequate for the purpose of the proof.

The first step is to analyze the trivial cycles associated with the nodes labeled
LP, LRP, BP, BRP, IP, and IRP. In case of the LP, LRP, BP, and BRP nodes,
these cycles correspond to delegation of the respective Lookup Port, Lookup
Remote Port, Bind Port, and Bind Remote Port operations from the parent
elements to the child elements, down the connector architecture hierarchy. The
recursion of these operations is limited by the depth of the connector architecture
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Fig. 4. Static call graph of the reconfiguration algorithm operations

hierarchy, because eventually the methods must reach a primitive element, which
is a leaf entity of the connector architecture. In case of the IP and IRP nodes,
the cycles correspond to the propagation of the Invalidate Port and Invalidate
Remote Port operations from a connector element to its parent entity (another
connector element or connector runtime). The recursion is again limited by the
depth of the connector architecture hierarchy, but in this case these operations
must eventually reach to root entity (connector runtime).

The cycles associated with the BP, BRP, IP, and IRP nodes can be also part of
other, non-trivial, cycles. One class of them can be derived from the IP-BP cycle,
which corresponds to the distribution of a new port reference to other elements.
The Bind Port operation traverses the connector architecture downwards, while
the Invalidate Port operation upwards. Because the number of required ports
in a connector element is finite, then if there is a cyclic dependency between
pass-through ports, the Bind Port operation will inevitably get called again for
the same port before the previous call finished. Since the Bind Port operation
has to be part of every such cycle, the operation is guarded against re-entrant
invocation for the same port using a per port flag indicating that reconfiguration
is already in progress for the port. The use of the flag corresponds to marking
of the path during traversal to detect cycles. Therefore if a Bind Port operation
finds the flag set already set in the port it was called for, there must be a cyclic
dependency between pass-through ports and the algorithm is terminated.

The other non-trivial class of cycles can be derived from the IP-BP-IRP-
RCU-BRP cycle. These cycles can be longer and more complex than in the
previous case, but it is bounded by from the same reason as above – the bind
port operation is guarded against re-entrant invocations and thus this cycle is
also bounded by the number of required ports in a connector.

Because no other cycles are possible in the call graph, the algorithm al-
ways terminates in finite number of steps because the connector architecture is
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finite. In case of invalid implementation of a connector architecture, the algo-
rithm is terminated prematurely when a cycle between pass-through ports is
detected.

6 Evaluation and Related Work

The approach presented in this paper is best related to other work in the
context of its intended application. Including optional features in connectors
can be related to instrumenting applications with code that is not directly
related to their primary function. There are various instrumentation techniques,
distinguished by the moment of instrumentation, the transparency of its
usage, whether the instrumentation is performed on application source or
binary, etc.

Eliminating the overhead associated with disabled optional features allows
us to always include these features even in production-level applications, where
they only impact the execution of an application when they are used. The most
prominent examples of such features are are logging, tracing, or performance
and behavior monitoring. With respect to tracing, our approach can be used for
dynamic tracing of component-based applications, which would provide func-
tionality similar to that of DTrace [6]. While DTrace provides tracing mainly on
the level of system and library calls, our approach is targeted at tracing at the
level of design-level elements, such as components.

Similar relation can be found in performance evaluation of component-based
and distributed applications, where the original applications are instrumented
with code for collecting performance data. Since the code is orthogonal to the
primary function of the applications, the instrumentation can take place as late
as during deployment or just before execution. Such functionality is provided by
the COMPAS framework [7] by Adrian Mos, which instruments an EJB appli-
cation with probes that can report performance information during execution
of the application. The operational status of the probes can be controlled at
runtime, but even when disabled, the static overhead of the instrumentation
is still present. However, since the instrumentation mechanism serves only a
single purpose (it is not designed to allow combining multiple features in con-
trast to the compositional approach in case of connector architecture), it po-
tentially adds only a single level of indirection and its overhead is therefore
negligible.

When evaluating performance of CCA [8] applications using the TAU [9] tools
for CCA, a proxy component must be generated for each component that should
be included in the evaluation. The integration of these into the original applica-
tion requires modification of the architecture description to redirect the original
bindings to the proxy components. The proxy components, even when inactive,
still contribute certain overhead to the execution of the instrumented applica-
tion. Using connectors for the same purpose would allow the instrumentation to
be completely transparent to the component application, and the static overhead
of the proxy components could be eliminated as well.



64 L. Bulej and T. Bureš

Similar goals, i.e. performance monitoring of distributed CORBA-based appli-
cations are pursued in [10] and in the WABASH [11] tool. The former
approach uses BOA inheritance and TIE classes to add instrumentation code,
while WABASH uses CORBA interceptors to achieve the same. In both cases,
the instrumentation mechanism does not incur significant performance overhead,
but requires source code of the application to perform the instrumentation, the
availability of which cannot be always assured.

From a certain point of view, the changes performed in connector runtime
could be seen as dynamic reconfiguration of middleware, and therefore be re-
lated to reflective middleware by Blair et al. [2]. However, the relation is only
marginal, because the dynamic reconfiguration of middleware is a more general
and consequently more difficult problem to solve. What makes our approach
feasible is that the architecture of a connector in fact remains unchanged and
that the reconfiguration is initiated by a connector element from inside of the
architecture and only requires local information in each step.

7 Conclusion

In this paper, we have presented an approach to elimination of static execu-
tion overhead associated with disabled optional features in a particular model
of architecture-based connectors. The approach is based on structural recon-
figuration of runtime entities implementing a connector and utilizes runtime
information on connector architecture to derive dependencies among the entities
implementing a connector.

Even though the reconfiguration process which forms the basis of the ap-
proach has been presented on a specific connector model, the approach can be
used in similarly structured environments, such as simple component models
and componentized middleware, if the necessary information and facilities for
manipulating implementation entities are available.

Apart from atomicity of a reference assignment, the reconfiguration algorithm
makes no other technical assumptions and requires no operations specific to any
particular programming language or platform. This makes it well suitable for
use in heterogeneous execution environments.

While the reconfiguration algorithm itself would not be difficult to implement,
for routine use in connectors [4] the implementation of the algorithm has to be
generated. This requires implementing a generator of the algorithm implemen-
tation and integrating it with a prototype connector generator. This project is
currently under way, but no case study with connectors utilizing the algorithm
is available at the moment.

The algorithm undoubtedly improves the efficiency of a connector by elimi-
nating unnecessary indirections, but the improvement has not yet been experi-
mentally evaluated and it remains to be seen how many eliminated indirections
are required to witness a non-trivial improvement. In case of features such as log-
ging or monitoring, the main achievement is that such features can be included
even in production-level applications without impact on normal execution.
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More promising is the application of the algorithm during initial configuration
of a connector which takes place at application startup. This may result in
elimination of all connector code (mainly stub and skeleton) from the call path
between locally connected components.
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Abstract. Functional criteria often drive the component selection in the assem-
bly of a software system. Minimal distance strategies are frequently adopted
to select the components that require minimal adaptation effort. This type of
approach hides to developers the non-functional characteristics of components,
although they may play a crucial role to meet the system specifications. In this
paper we introduce the CODER framework, based on an optimization model, that
supports “build-or-buy” decisions in selecting components. The selection crite-
rion is based on cost minimization of the whole assembly subject to constraints
on system reliability and delivery time. The CODER framework is composed by:
an UML case tool, a model builder, and a model solver. The output of CODER
indicates the components to buy and the ones to build, and the amount of testing
to be performed on the latter in order to achieve the desired level of reliability.

1 Introduction

When the design of a software architecture reaches a good level of maturity, software
engineers have to undertake selection decisions about software components. COTS have
deeply changed the approach to software design and implementation. A software sys-
tem is ever more rarely built “from scratch”, as part of the system comes from buy-
ing/reusing existing components.

Even though in the last years numerous tools have been introduced to support deci-
sions in different phases of the software lifecycle, the selection of the appropriate set
of components remains a hard task to accomplish, very often left to the developers’
experience. Without the support of automation, the selection is frequently driven from
functional criteria related to the distance of the characteristics of available components
from those specified in the architectural description. This is due to the deep under-
standing that software designers have developed on functional issues, as well as to the
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introduction of sophisticated compositional operators (e.g. connectors with complex
internal logics) that help to assembly systems satisfying the functional requirements.

As opposite, limited contributions have been brought to support the selection of com-
ponents on the basis of their non-functional characteristics. As a consequence, software
developers have no automated tools to support the analysis “aimed at characterizing the
performance and reliability behavior of software applications based on the behavior of
the “components” and the “architecture” of the application” [6]. This analysis might be
used to answer questions such as: (i) which components are critical to the performance
and reliability of the application? and (ii) how are the application performance and reli-
ability influenced by the performance and reliabilities of individual components? If the
software application is to be assembled from a collection of components, then answer
to such questions can help the designers to make decisions such as which components
should be picked off the shelf, and which components should be developed in-house [6].

A recent empirical study on COTS-based software development [17] shows that
component selection is part of new activities integrating the traditional development
process, and it is always based on the experience of project members. The same study
evidences a similar practice that bases the COTS component selection either on the
developer familiarity or on license issues and vendor reputation. None of the studied
projects uses decision-making algorithms.

Beside all the above considerations, real software projects ever more suffer from
limited budgets, and the decisions taken from software developers are heavily affected
by cost issues. The best solutions might not be feasible due to high costs, and wrong
cost estimations may have a critical impact for the project success. Therefore tools that
support decisions strictly related to meet functional and non-functional requirements,
while keeping the costs within a predicted budget, would be very helpful to the software
developer’s tasks.

In this paper we introduce CODER (Cost Optimization under DElivery and Reliabil-
ity constraints), a framework that helps developers to decide whether buying or building
components of a certain software architecture. Once built a software architecture, each
component can be either bought, and probably adapted to the new software system, or
it can be developed in-house. This is a “build-or-buy” decision that affects the software
cost as well as the ability of the system to meet its requirements.

CODER supports the component selection basing on cost, delivery time and reliabil-
ity characteristics of the components. We assume that several instances of each software
component may be available as COTS. Basically, the instances differ with respect to
cost, reliability and delivery time. Besides, we assume that several in-house instances
of each software component may be built. In fact, the developers of a system could build
an in-house component by adopting different strategies of development. Therefore, the
values of cost, reliability and delivery time of an in-house developed component could
vary due to the values of the development process parameters (e.g. experience and skills
of the developing team). CODER indicates the assembly of (in-house and COTS) com-
ponents that minimizes the cost under constraints on delivery time and reliability of the
whole system. In addition, for each in-house developed component CODER suggests
the amount of testing to perform in order to achieve the required level of reliability.
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The paper is organized as follows: in section 2 we provide the formulation of the opti-
mization model that represents the CODER core; in section 3 we introduce the CODER
structure and underlying mechanisms; in section 4 we illustrate the usage of CODER
in the development of a mobile application; in section 5 we summarize recent work in
software cost estimation vs. quality attributes and outline the novelty of our approach
with respect to the existing literature; conclusions are presented in section 6. In [5] we
have collected all the details that are not strictly necessary for this paper understanding.

2 The Optimization Model Formulation

In this section, we introduce the mathematical formulation of the optimization model
that CODER generates and solves, and that represents the core of our approach (1).

Since our framework may support different lifecycle phases, we adopt a general def-
inition of component: a component is a self-contained deployable software module
containing data and operations, which provides/requires services to/from other com-
ponents. A component instance is a specific implementation of a component.

The solution of the optimization model determines the instance to choose for each
component (either one of the available COTS products or an in-house developed one)
in order to minimize the software costs under the delivery time and reliability con-
straints. Obviously when no COTS products are available the in-house development of
a component is a mandatory decision whatever being the cost incurred. Viceversa for
components that cannot be in-house built (e.g. for lack of expertise) one of the available
COTS products must be chosen.

Due to our additional decision variables, the model solution also provides the amount
of testing to be performed on each in-house component in order to achieve a certain
reliability level.

2.1 The Problem Formulation

Let S be a software architecture made of n components. Let Ji (J̄i) be the set of
COTS (in-house developed) instances available for the i-th component, and m = maxi

|Ji ∪ J̄i|.
Let us suppose to be committed to assemble the system by the time T while ensuring

a minimum reliability level R and spending the minimum amount of money.

COTS Component Model Parameters

The parameters that we define for a COTS product Cij ∈ Ji are:

– the cost cij ;
– the delivery time dij ;
– the average number si of invocations;
– the probability μij of failure on demand.

1 For sake of readability, we report model details in [5], thus we ask readers interested to a
deeper understanding of the model construction to refer to [5].
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The estimate of the cost cij is outside the scope of this paper, however, the following
expression can be used to estimate it:

cij = cbuy
ij + cadapt

ij

where cbuy
ij is the purchase cost, and cadapt

ij is the adaptation cost. The adaptation cost
takes into account the fact that, in order to integrate a software component into a system,
the component must support the style of the interactions of the system’s architecture to
correctly work together with other components. If a COTS product has another style of
interaction, developers have to introduce glueware to allow correct interactions.

Yakimovich et al. in [24] suggest a procedure for estimating the adaptation cost.
They list some architectural styles and outline their features with respect to a set of
architectural assumptions. They define a vector of variables, namely the interaction
vector, where each variable represents a certain assumption. An interaction vector can
be associated either to a single COTS or to a whole software architecture. To estimate
the adaptation cost of a COTS they suggest to compare its interaction vector with the
software architecture one.

Furthermore, cadapt
ij could include the cost needed to handle mismatches between the

functionalities offered by alternative COSTs and the functional requirements of the sys-
tem. In fact, it may be necessary to perform a careful balancing between requirements
and COTS features, as claimed in [2].

The purchase cost cbuy
ij is typically provided by the vendor of the COTS component.

The delivery time dij might be decomposed in the sum of the time needed to the
vendor to deliver the component, and the adaptation time.

For sake of model formulation, in this paper we do not explicitly preserve the above
decompositions of cost and delivery time parameters, although we implicitly take into
account them in the example of Section 4.

The parameter si represents the average number of invocations of a component
within the execution scenarios considered for the software architecture. Note that this
value does not depend on the component instance, because we assume that the pattern
of interactions within each scenario does not change by changing the component in-
stance. This value is obtained by processing the execution scenarios that, in the CODER
framework, are represented by UML Sequence Diagrams (see Section 3). The number
of invocations is averaged overall the scenarios by using the probability of each scenario
to be executed. The latter is part of the operational profile of the application.

The parameter μij represents the probability for the instance j of component i to
fail in one execution [20]. A rough upper bound 1/Nnf of μij can be obtained upon
observing the component being executed for a Nnf number of times with no failures.
However, several empirical methods to estimate COTS failure rates can be found in [17].

In-House Component Model Parameters

The parameters that we define for an in-house developed instance Cij ∈ J̄i are:

– the unitary development cost c̄ij ;
– the estimated development time tij ;
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– the average time τij required to perform a test case;
– the average number si of invocations;
– the probability pij that the instance is faulty;
– the testability Testabij .

The unitary cost c̄ij is intended as the per-day cost of a software developer, that may
depend on the skills and experience required to develop Cij . Well-assessed cost/time
models are available to estimate the first three parameters (e.g. COCOMO [4]).

The parameter pij is an intrinsic property of the instance that depends on its internal
complexity. The more complex the internal dynamics of the component instance is, the
higher is the probability that a bug has been introduced during its development. In [18]
an expression for pij has been proposed as a function of the component instance internal
reachability.

The definition of testability that we adopt in our approach is the one given in [21],
that is:

Testabij = P (failure|prob. distribution of inputs) (1)

Their definition of testability expresses the conditional probability that a single exe-
cution of a software fails on a test case following a certain input distribution. In [5] we
suggest a procedure to estimate it.

Model Variables. In general, a “build-or-buy” decisional strategy can be described as
a set of 0/1 variables defined as follows (∀i = 1 . . . n):

xij =
{

1 if the Cij instance is chosen (j ∈ J̄i or j ∈ Ji)
0 otherwise

Obviously, if the i-th component has only m̄ < m instances then the xij ’s are defined
for 1 ≤ j ≤ m̄.

For each component i, exactly one instance is either bought as COTS or in-house
developed. The following equation represents this constraint:

∑
j∈Ji∪J̄i

xij = 1, ∀i = 1 . . . n (2)

Finally, let N tot
ij be an additional integer decision variable of the optimization model

that represents the total number of tests performed on the in-house developed instance
j of the i-th component (2).

Basing on the testability definition, we can assume that the number Nsuc
ij of success-

ful (i.e. failure-free) tests performed on the same component can be obtained as:

Nsuc
ij = (1 − Testabij)N tot

ij , ∀i = 1 . . . n, j ∈ J̄i (3)

2 The effect of testing on cost, reliability and delivery time of COTS products is instead assumed
to be accounted in the COTS parameters.
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Cost Objective Function (COF). The development cost of the in-house instance Cij

can be expressed as: c̄ij(tij + τijN
tot
ij ). The objective function to be minimized, as

the sum of the costs of all the component instances selected from the “build-or-buy”
strategy, is given by:

COF =
n∑

i=1

⎛
⎝∑

j∈J̄i

c̄ij(tij + τijN
tot
ij )xij +

∑
j∈Ji

cijxij

⎞
⎠ (4)

Delivery Time Constraint (DT). A maximum threshold T has been given on the de-
livery time of the whole system. In case of a COTS product the delivery time is given by
dij , whereas for an in-house developed instance Cij the delivery time shall be expressed
as tij + τijN

tot
ij . Therefore the following expression represents the delivery time DTi

of the component i:

DTi =
∑
j∈J̄i

(tij + τijN
tot
ij )xij +

∑
j∈Ji

dijxij (5)

Without loss of generality, we assume that sufficient manpower is available to inde-
pendently develop in-house component instances. Therefore the delivery constraint can
be reformulated as follows:

max
i=1...n

(DTi) ≤ T (6)

which can be decomposed in the set of constraints DT1 ≤ T, . . . , DTn ≤ T .

Reliability Constraint (REL). We consider systems that may incur only in crash fail-
ures, that are failures that (immediately and irreversibly) compromise the behaviour of
the whole system (3).

A minimum threshold R has been given on the reliability on demand [20] of the
whole system. The reliability of the whole system can be obtained as a function of the
probability of failure on demand of its components, as we show in this section.

The probability of failure on demand μij , j ∈ Ji, for COTS components has been
discussed in section 2.1.

The probability of failure on demand θij of the in-house developed instance Cij , j ∈
J̄i, can be formulated as follows:

θij =
Testabij · pij(1 − Testabij)Nsuc

ij

(1 − pij) + pij(1 − Testabij)Nsuc
ij

(7)

A proof of this formulation is given in [5].
Now we can write the average number of failures fnumi of the component i as

follows:

fnumi =
∑
j∈J̄i

θijsixij +
∑
j∈Ji

μijsixij (8)

3 Note that, although promising formulations of the component capability of propagating errors
have been devised (see for example [1]), no closed form expression for system reliability
embedding error propagation has yet been found.
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In agreement with [11], the probability that no failure occurs during the execution of
the i-th component is given by φi = e−fnumi , which represents the probability of no
failures occurring in a Poisson distribution with parameter fnumi.

Therefore the probability of a failure-free execution of the system is given by
∏n

i=1 φi.
The reliability constraint is then given by:

n∏
i=1

φi ≥ R (9)

Model Summary. The objective function (4), under the main constraints (2), (6) and
(9), plus the obvious integrality and non-negativity constraints on the model variables,
represent the optimization model adopted within the CODER framework.

The model solution provides the optimal “build-or-buy” strategy for component se-
lection, as well as the number of tests to be performed on each in-house developed
component. The solution guarantees a system reliability on demand over the thresh-
old R, a system delivery time under the threshold T while minimizing the whole sys-
tem cost. The applied reliability model is a light-weighted one, as we work in favor of
model solvability. However, it can be replaced by a profound reliability growth model
from literature [7] to increase the result accuracy. This can be done without essentially
changing the overall model structure, with the side effect of increasing complexity. In
[5] we report the mathematical formulation of the whole model.

With regard to the accuracy of the model, there are some input parameters (e.g. the
probability of failure on demand, the cost) that may be characterized by a not negligible
uncertainty (i.e. only a range for the costs may be available [14]). The propagation of
this uncertainty should be analyzed, but it is outside the scope of this paper. However,
several methods to perform this type of analysis can be found, e.g. it has been done in
[8] for a reliability model.

3 The CODER Framework

In Figure 1 the CODER framework is shown within its working environment.
The input to the framework is an UML model constituted by: (i) a Component Dia-

gram representing the software architecture, (ii) a set of Sequence Diagrams represent-
ing the possible execution scenarios.

CODER accepts UML models in XMI format [25]. In theory, any tool exporting
diagrams to XMI can be used to generate input models for CODER. In practice this
is not the case because XMI exporting formats may sensibly differ from each other.
For this paper example (in Section 4) we have used ArgoUML [26] to build and export
UML diagrams.

The CODER framework is made of two components, which are a model builder and
a model solver.

The model builder first allows users to annotate the UML diagrams with additional
data that represent the optimization model parameters (see Section 2), such as failure
probabilities of software components. Then it transforms the annotated model into an
optimization model in the format accepted from the solver.
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(ArgoUML)
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Fig. 1. The CODER framework and its environment

The model solver processes the optimization model received from the builder and
produces the results, that consist in the selection of components and the amount of
testing to perform on in-house components.

The optimization model solver that we have adopted in CODER is LINGO [27].
The integration between the model builder and the model solver has been achieved as
follows. LINGO makes use of a callable Dynamic Link Library (DLL) to provide a
way to bundle its functionalities into a custom application. In particular, the DLL gives
the ability to run a command script containing an optimization model and a series of
commands that allows to gather data, to populate and solve the model. The integration
of data between the calling application (i.e. the model builder in our case) and the solver
can be obtained by means of the Pointer functions in the data section of the script. These
functions act as a direct memory links and permit direct and fast memory transfers of
data in and out of the solver memory area.

As a result of this integration, LINGO can be directly run from the main interface of
the model builder, as shown in Figure 2. The main interface can be partitioned in 3 areas:
(i) the working area (upper right side of Figure 2), where the imported UML diagrams
are shown, and where components and lifelines can be selected for annotations; (ii) the
annotation area, where the model parameters related to software components can be
entered (lower side of Figure 2); (iii) the model constraint area, where values of model
constraint bounds can be assigned (upper left side of Figure 2). The four ellipses of
Figure 2 highlight, respectively, from the top to the bottom of the figure: the button
to run the model solver LINGO, the title of the area where constraint bounds can be
entered and the titles of areas where COTS and in-house component parameters can be
entered.

Summing up, CODER allows to specify ranges for model parameters and sets of al-
ternative optimization models can be automatically generated (by sampling parameters
in the given ranges) and solved. The output of CODER, for each model, is a suggested
selection of available components and the suggested amount of testing to perform on
each in-house developed component. In the next section, we apply the model to an
example.
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Fig. 2. A screenshot of the CODER model builder

network A network B

network C

Home
Agent

Foreign
Agent

Correspondent
Agent

Server

Fig. 3. The example architecture

4 Using CODER in the Development of a Mobile Application

We have considered an application that allows the mobility of a user without loosing its
network connection based on Mobile IP [19].

Figure 3 shows the architecture of the application. A user of the network A can
exchange data with users of the network C through a server located in C. A user of
network A can also move to network B and continue to interact with a user of network
C without generating a new connection. Four software components are deployed: Home
Agent (running on network A), Foreign Agent (running on network B), Correspond
Agent and Server (running on network C).

The scenario that we consider can be described as follows: interactions between
users in A and users in C change only when a user moves from A to B; the effect of
this move is that Foreign Agent provides the user’s new address to Home Agent; as soon
as users in C attempt to interact with the moving user through her/his old address in
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Table 1. First Configuration : parameters for COTS products

Component COTS Cost Average Average no. Prob. of fail.
name alternatives cij delivery time dij of invocations si on demand μij

C0 Correspond Agent C01 12 4 200 0.0005
C02 14 3 0.00015
C03 15 3 0.0001

C1 Server C11 6 4 40 0.0003
C12 12 3 0.0001

C2 Home Agent C21 12 2 80 0.00015
C3 Foreign Agent C31 7 4 25 0.0002

C32 10 3 0.00015
C33 8 7 0.00015

Table 2. First Configuration : parameters for in-house development of components

Component Development Testing Unitary Average no. of Faulty Testability
name Time ti0 Time τi0 development cost c̄i0 invocations si Probability pi0 Testabi0

C0 Correspond Agent 10 0.007 1 200 0.03 0.00001
C1 Server 5 0.007 1 40 0.01 0.001
C2 Home Agent 6 0.007 1 80 0.04 0.001
C3 Foreign Agent 5 0.007 1 25 0.05 0.002

A, Home Agent provides the user’s new address to Correspond Agent so that, without
interruption, users in C switch their interactions towards network B [19].

We show the support that the CODER framework can provide to select components
during the development of this application. We apply our approach on two different
configurations. In order to keep our model as simple as possible, in both configurations
we assume that only one in-house instance for each component can be developed.

The number of COTS instances does not change across configurations, but each con-
figuration is based on a different set of component parameters. We have solved the
optimization model in both configurations for a set of values of reliability and delivery
time bounds.

4.1 First Configuration

Table 1 shows the parameter values for the COTS available instances, likewise
Table 2 does for in-house developed ones, where J̄i = {0}(i = 0, ..., 3), J0 = {1, 2, 3},
J1 = {1, 2}, J2 = {1} and J3 = {1, 2, 3}.

The third column of Table 1 lists, for each component, the set of COTS alternatives
available at the time of system development. For each alternative: the buying cost cij

(in KiloEuros, KE) is given in the fourth column, the average delivery time dij (in days)
is given in the fifth column, the average number of invocations of the component in the
system si is given in the sixth column, finally the probability of failure on demand μij

is given in the seventh column.
For each component in Table 2: the average development time ti0 (in days) is given

in the third column and the average time required to perform a single test τi0 (in days)
is given in the fourth column, the unitary development cost c̄i0 (in KE per day) is given
in the fifth column, the average number of invocations si is given in the sixth column,
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Fig. 4. Model solutions for first configuration

the probability pi0 that the component instance is faulty at the execution time is given
in the seventh column, and finally the component testability Testabi0 is given in the
last column.

Note that each component can be in-house built. This configuration is characterized
by the fact that the in-house instance of each component is less reliable than all the
COTS available components, but it is less expensive than all the latter ones.

In Figure 4 we report the results obtained from solving the optimization model for
multiple values of bounds T and R. Each bar represents the minimum cost for a given
value of the delivery time bound T and a given value of the reliability bound R. The
former spans from 3 to 10 whereas the latter from 0.85 to 0.95.

As expected, for the same value of the reliability bound R, the total cost of the
application decreases while increasing the delivery time bound T (i.e. more time to
achieve the same goal). On the other hand, for the same value of T the total cost almost
always decreases while decreasing the reliability bound R (i.e. less reliable application
required) and, in two cases, it does not increase.

With regard to the component selection: for T < 10, the model solution proposes
different combinations of COTS and in-house instances almost always without test on
the latter ones; for T = 10, the model proposes, for all R values, the same solution
made of all in-house instances without test. In [5] we report the solution vectors for
each pair of bounds (T ,R).

4.2 Second Configuration

Similarly to the first configuration, Table 3 shows the parameter values for the COTS
available components, whereas Table 4 shows the ones for the in-house instances.

Again note that each component can be in-house built. The component parameters
in this configuration have been set to induce a certain amount of testing on in-house
instances. In particular: the in-house instance of C0 is less reliable, but earlier available
and less expensive than all the available COTS instances for this component; the C1
and C2 in-house instances are less reliable than all the corresponding COTS available
instances, but are less expensive than these last ones; the in-house instance of C3 is
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Table 3. Second Configuration : parameters for COTS products

Component COTS Cost Average Average no. Prob. of fail.
name alternatives cij delivery time dij of invocations si on demand μij

C0 Correspond Agent C01 12 4 200 0.00015
C02 14 3 0.00015
C03 15 3 0.00001

C1 Server C11 18 4 40 0.0001
C12 18 3 0.00003

C2 Home Agent C21 15 2 80 0.00001
C3 Foreign Agent C31 9 4 25 0.0002

C32 14 3 0.00015
C33 9 7 0.00002

Table 4. Second Configuration: parameters for in-house development of components

Component Development Testing Unitary Average no. of Faulty Testability
name Time ti0 Time τi0 development cost c̄i0 invocations si Probability pi0 Testabi0

C0 Correspond Agent 1 0.007 1 200 0.08 0.008
C1 Server 10 0.007 1 40 0.08 0.009
C2 Home Agent 10 0.007 1 80 0.08 0.007
C3 Foreign Agent 6 0.007 1 25 0.05 0.004

as reliable as (but more expensive than) the first COTS instance, whereas all the other
COTS instances are more reliable than it.

In Figure 5 we report again the results obtained from solving the optimization model
for multiple values of bounds T and R. Here the former spans from 3 to 15 whereas the
latter from 0.90 to 0.98. In [5] we report the solution vectors for each pair of bounds
(T ,R).

Similarly to the first configuration, for the same value of the reliability bound R, the
total cost of the application decreases while increasing the delivery time bound T . On
the other hand, for the same value of T the total cost decreases while decreasing the
reliability bound R.

As shown in [5], the component selection for this configuration is more various.
While T increases, the model tends to select in-house components because they are
cheaper than the available COTS instances. This phenomenon can be observed even for
low values of T . The total cost decreases while T increases because ever more in-house
instances can be embedded into the solution vectors. The in-house instances remain
cheaper than the corresponding COTS instances even in cases where a non negligible
amount of testing is necessary to make them more reliable with respect to the available
COTS.

5 Related Work

The correlation between costs and non-functional attributes of software systems has
always been of high interest in the software development community. After a phase
of experimental assessment, in the last years new methodologies and tools have been
introduced to systematically model and evaluate issues related to this aspect from the
architectural phase.
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Fig. 5. Model solutions for second configuration

The Architecture Tradeoff Analysis Method (ATAM) [13] provides to software de-
velopers a framework to reason about the software tradeoffs at the architectural level.
The Attribute-based Architectural Styles (ABAS) [16], used within ATAM, help soft-
ware architects to reason (quantitatively and qualitatively) about the quality attributes
and the stimulus/response characteristics of the system. ATAM/ABAS framework is
based on roughly approximated cost-characteristic curves, usually elicited from experi-
ence, that show how costs will behave with respect to each architectural decision. Our
context differs from ATAM/ABAS because it is model-based, as opposed to experience-
based, and the model we propose focuses on component selection decisions.

A significant breakthrough in this area has been the Costs Benefit Analysis Method
(CBAM) [14]. CBAM, laying on the artifacts produced from ATAM, estimates costs,
(short-term and long-term) benefits and uncertainty of every potentially problematic
architectural design decision devised from ATAM. The estimates come out from infor-
mation collected from stakeholders in a well assessed elicitation process. Architectural
decisions are represented in a space whose dimensions are costs, benefits and (some
measure of) uncertainty. The graphical representation of decisions is an excellent mean
to support the developers’ choices. Architectural strategies (ASs) typically have effects
on several quality attributes (QAs). In order to evaluate the benefits of ASs on the whole
software system, CBAM framework proposes that stakeholders assign contributions of
ASs to QAs, and quality attribute score to QAs. The benefit of an AS is then computed
as the sum of its contributions weighted on the QAs quality attribute scores. CBAM
framework, however, deals neither with the elicitation of such contributions and scores
nor with the assessment of ASs implementation costs. Actually, cost estimation often
has to take into account some critical time-to-market goals such as delivery times and
shared use of resources.

Although CBAM is a very promising technique to support software developers giv-
ing priorities among architectural decisions on the basis of their costs and benefits, it
requires to stakeholders to estimate a large number of scores, contributions and costs by
resorting to qualitative judgements based of their own expertise. In this context an an-
alytical approach taking into account all architectural alternatives and tradeoffs among
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qualitative attributes is extremely suitable. A key issue is to capture the relationships
among costs and quality attributes, as well as across different quality attributes.

An optimization model may play the role of decision support in the early develop-
ment phases, where the decisions are usually based on stakeholders’ estimates. Later
on, it can be an actual decision-making tool, when the software architecture and the
bounds on the quality attributes have been devised, and implementation choices (such
as resource allocation and amount of testing) may heavily affect costs and quality of the
system. A classical approach for cost management is the portfolio-optimization, based
on a knapsack-like integer linear programming model [15]. The models and techniques
that we refer to in the remainder of this section follow this approach.

Optimization techniques appeared first in the area of software development in [10],
where a variant of the 0-1 knapsack model is introduced to select the set of soft-
ware requirements that yields the maximum value while minimizing costs. The concept
of value is kept quite general and may be interpreted as an implementation priority.
The knapsack model is first used to maximize the total value of requirements under
budget constraints, thereafter to minimize the total cost without loosing requirement
value.

The same authors in [12] introduce an interesting generalization of the model as-
sumptions. The idea is that each COTS has a generic quality attribute, the objective
function is the system quality as the weighted sum of COTS qualities, and the maxi-
mization is budget-constrained.

In the reliability domain, an interesting formulation of a cost minimization model has
been given in [11]. Again 0-1 variables allow to select alternative COTS components,
under a constraint on the failure rate of the whole system. The latter quantity is modeled
as a combination of the failure rates of single components, their execution times, and a
rough measure of the system workload. This is the closest model formulation to the one
that we propose here.

In [22,23] the reliability constraints also cope with hardware failures, but the non-
linear complexities of the models impose heuristic solutions.

An extensive optimization analysis of the tradeoff between costs and reliability of
component-based software systems has been presented in [9]. A reliability constrained
cost minimization problem is formulated, where the decision variables represent the
component failure intensities. Three different types of cost functions (i.e., linear, loga-
rithmic exponential, inverse power) have been considered to represent the dependency
of the component cost on the component failure intensity, that is the cost to attain a
certain failure intensity. An exponential function has been used to model the system
reliability as a combination of component failure intensities, operational profile (i.e.
probability of component invocation) and time to execute the invoked service. The goal
of this type of analysis is quite different from the one of this paper. The model in [9]
works after the components have been chosen, as its solution provides insights about the
failure intensities that the (selected) components have to attain to minimize the system
cost.

The formulation of our model that we proposed in section 2 is close to the one in
[11] with an additional constraint on the system delivery time. However, none of the
existing approaches, supports “build-or-buy” decisions.
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The following major aspects characterize the novelty of our approach:

– From an automation viewpoint, CODER is (at the best of our knowledge) the first
thorough framework that supports a process of component selection based on cost,
reliability and delivery time factors.

– CODER is not tied to any particular architectural style or to any particular
component-based development process. Values of cost and reliability of in-house
developed components can be based on parameters of the development process (e.g.
a component cost may depend on a measure of developer skills).

– From a modeling viewpoint, we introduce decision variables that represent the
amount of testing performed on each in-house component. The cost objective func-
tion, the reliability and delivery time constraints depend on these variables, there-
fore our model solution not only provides the optimal combination of COTS/in-
house components, but also suggests the amount of testing to be performed on
in-house components in order to attain the required reliability.

6 Conclusions

We have presented a framework supporting “build-or-buy” decisions in component se-
lection based on cost, reliability and delivery time factors. The framework not only
helps to select the best assembly of COTS components but also indicates the compo-
nents that can be conveniently developed in-house. For the latter ones, the amount of
testing to perform is also provided.

The integration of an UML tool (like ArgoUML), a model builder, and a model
solver (like LINGO) has been quite easy to achieve due to XML interchange formats
on one side, and to the Dynamic Link Library of LINGO on the other side. The CODER
framework has been conceived to be easily usable from developers, and it indeed shows
two crucial usability properties: transparency and automation. The software is annotated
without modifying the original UML model, but producing a new annotated model, thus
attaining transparency with respect to software modeling activities. Besides, the model
building and solving is a completely automated tool supported process.

The results that we have obtained on the example shown in this paper provides ev-
idence of the viability of such approach to the component selection. The components
selected from the framework evidently constitute an optimal set under the existing con-
straints. It would be hard to obtain the same results without tool and modeling support.
In addition, the tool also provides the amount of testing to perform, thus addressing the
classical problem of: “How many tests are enough?” [18].

We are investigating the possibility of embedding in CODER other types of opti-
mization models that may allow to minimize costs under different non-functional con-
straints (e.g. under security constraints). In general, these types of models are well
suited to study the tradeoffs between different non-functional attributes, that are usu-
ally very hard to model and study in current (distributed, mobile) software systems.
Furthermore, we intend to enhance CODER by introducing the multi-objective opti-
mization [3] to provide the configuration of components that minimizes, for example,
both the cost of construction of the system and its probability of failure on demand.
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Abstract. An architectural aspect is a concern that cuts across architecture 
modularity units and cannot be effectively modularized using the given 
abstractions of conventional Architecture Description Languages (ADLs). 
Dealing with crosscutting concerns is not a trivial task since they affect each 
other and the base architectural decomposition in multiple heterogeneous ways. 
The lack of ADL support for modularly representing such aspectual 
heterogeneous influences leads to a number of architectural breakdowns, such 
as increased maintenance overhead, reduced reuse capability, and architectural 
erosion over the lifetime of a system. On the other hand, software architects 
should not be burdened with a plethora of new ADL abstractions directly 
derived from aspect-oriented implementation techniques. However, most 
aspect-oriented ADLs rely on a heavyweight approach that mirrors 
programming languages concepts at the architectural level. In addition, they do 
not naturally support heterogeneous architectural aspects and proper resolution 
of aspect interactions. This paper presents AspectualACME, a simple and 
seamless extension of the ACME ADL to support the modular representation of 
architectural aspects and their multiple composition forms. AspectualACME 
promotes a natural blending of aspects and architectural abstractions by 
employing a special kind of architectural connector, called Aspectual 
Connector, to encapsulate aspect-component connection details.  We have 
evaluated the applicability and scalability of the AspectualACME features in 
the context of three case studies from different application domains.  

Keywords: Architecture Description Languages, Aspect-Oriented Software 
Development, Architectural Connection. 

1   Introduction 

Aspect-Oriented Software Development (AOSD) [8] is emerging as a promising 
technique to promote enhanced modularization and composition of crosscutting 
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concerns through the software lifecycle. At the architectural level, aspects provide a 
new abstraction to represent concerns that naturally cut across modularity units in an 
architectural description, such as interfaces and layers [1, 6, 9, 15]. However, the 
representation of architectural aspects is not a straightforward task since they usually 
require explicit representation mechanisms to address the heterogeneous 
manifestation of some widely-scoped properties, such as error handling strategies, 
transaction policies, and security protocols [5, 6,,10, 11]. By heterogeneous 
manifestation of widely-scoped properties – or, simply, heterogeneous crosscutting –, 
we mean that some properties impact multiple points in a software system, but the 
behavior that is provided at each of those points is different. Such architectural 
crosscutting concerns may interact with the affected modules in a plethora of different 
ways. Moreover, aspects may interact with each other at well-defined points in an 
architectural description. Hence, it is imperative to provide software architects with 
effective means for enabling the modular representation of aspectual compositions. 

Software Architecture Description Languages (ADLs) [16] have been playing a 
central role on the early systematic reasoning about system component compositions 
by defining explicit connection abstractions, such as interfaces, connectors, and 
configurations.  Some Aspect-Oriented Architecture Description Languages (AO 
ADLs) [19-22] have been proposed, either as extensions of existing ADLs or 
developed from scratch employing AO abstractions commonly adopted in 
programming frameworks and languages, such as aspects, join points, pointcuts, 
advice, and inter-type declarations. Though these AO ADLs provide interesting first 
contributions and viewpoints in the field, there is little consensus on how AOSD and 
ADLs should be integrated, especially with respect to the interplay of aspects and 
architectural connection abstractions [1, 6, 24, 17]. In addition, such existing 
proposals typically provide heavyweight solutions [1, 25], making it difficult their 
adoption and the exploitation of the available tools for supporting ADLs. More 
importantly, they have not provided mechanisms to support the proper modularization 
of heterogeneous architectural aspects and their compositions.     

This paper present AspectualACME, a general-purpose aspect-oriented ADL that 
enhances the ACME ADL [14] in order to support improved composability of 
heterogeneous architectural aspects. The composition model is centered on the 
concept of aspectual connector, which takes advantage of traditional architectural 
connection abstractions – connectors and configuration – and extends them in a 
lightweight fashion to support the definition of some composition facilities such as: 
(i) heterogeneous crosscutting interfaces at the connector level, (ii) a minimum set of 
aspect interaction declarations at the attachment level, and (iii) a quantification 
mechanism for attachment descriptions. Our proposal does not create a new aspect 
abstraction and is strictly based on enriching the composition semantics supported by 
architectural connectors instead of introducing elements that elevate programming 
language concepts to the architecture level. This paper also discusses the applicability 
and scalability of the proposed ADL enhancements in the context of three case studies 
from different domains, and the traceability of AspectualACME models to detailed 
aspect-oriented design models. 
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The remainder of this paper is organized as follows. Section 2 introduces the case 
study used through the paper, and illustrates some problems associated with the lack 
of explicit support for modularizing heterogeneous architectural aspects and their 
interactions. Section 3 presents AspectualACME. Section 4 describes the evaluation 
of our approach.  Section 5 compares our proposal with related work. Finally, Section 6 
presents the concluding remarks and directions for future work. 

2   Health Watcher: A Case Study 

In this section we present the basic concepts of the ACME ADL [14] (Section 2.1) 
and discuss the architecture design of the case study that we are going to use as 
running example through the paper (Section 2.2), with emphasis on the heterogeneous 
crosscutting nature of some architectural concerns (Section 2.3) and their interactions 
(Section 2.4).   

2.1   ACME in a Nutshell 

ACME is a general purpose ADL proposed as an architectural interchange language.  
Architectural structure is described in ACME with components, connectors, systems, 
attachments, ports, roles, and representations. Components are potentially composite 
computational encapsulations that support multiple interfaces known as ports. Ports 
are bound to ports on other components using first-class intermediaries called 
connectors which support the so-called roles that attach directly to ports. Systems are 
the abstractions that represent configurations of components and connectors. A 
system includes a set of components, a set of connectors, and a set of attachments that 
describe the topology of the system. Attachments define a set of port/role associations. 
Representations are alternative decompositions of a given element (component, 
connector, port or role) to describe it in greater detail. Properties of interest are 
<name, type, value> triples that can be attached to any of the above ACME elements 
as annotations. Properties are a mechanism for annotating designs and design 
elements with detailed, generally non-structural, information. Architectural styles 
define sets of types of components, connectors, properties, and sets of rules that 
specify how elements of those types may be legally composed in a reusable 
architectural domain. The ACME type system provides an additional dimension of 
flexibility by allowing type extensions via the extended with construct. These ACME 
concepts are illustrated through this paper. 

2.2   Health Watcher Architecture 

The HealthWatcher (HW) system is a Web-based information system developed by 
the Software Productivity research group from the Federal University of Pernambuco 
[27]. It supports the registration of complaints to the health public system. Figure 1 
illustrates a partial, simplified ACME [14] textual and graphical representation of the  
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HW architectural description, which combines a client-server style with a layered 
style [30]. It is composed of five main architectural concerns: (i) the GUI (Graphical 
User Interface) component provides a Web interface for the system, (ii) the 
Distribution component externalizes the system services at the server side and support 
their distribution to the clients, (iii) the Business component defines the business 
elements and rules, (iv) the TransactionManager and Data components address the 
persistency concern by storing the information manipulated by the system, and (v) the 
ErrorHandling component which is charge of supporting forward error recovery 
through exception handling. 

Figure 1 also illustrates a set of provided/required ports and connectors which 
make explicit the interactions between the architectural components. The saveEntity 
required port from the GUI component, for example, is linked to the distributedInterface 
provided port from the Distribution component by means of a connector. Despite 
many of the interactions between the architectural components have been 
appropriately represented using the port and connector abstractions, it is not possible 
to use these common ADL abstractions to represent the crosscutting relationships 
between two component services. Consider, for example, the transactionService 
provided port of the Transaction Manager component. It affects the execution of the 
savingService provided port of the Business component, by delimiting the occurrence 
of a business transaction (operations of begin, end and rollback transaction) before 
and after the execution of every operation invoked on savingService port. There is no 
existing abstraction in current ADLs which explicitly captures this crosscutting 
semantic between architectural component services. Because of lack of support to 
represent such kinds of crosscutting interactions between components, Figure 1 
alternatively models it by defining the useTransaction required port. This description, 
however, does not make explicit the existence of crosscutting relationships between 
the components.  

2.3   Heterogeneous Architectural Crosscutting 

Exception handling is considered a widely-scoped influencing concern in the HW 
architectural specification [28], which is mostly realized by the Error Handling 
component. This component consists of the system exception handlers, and it 
provides the services in charge of determining at runtime the proper handler for each 
of the exceptions exposed by the system components, such as Distribution, 
Persistence [24], and TransactionManager. In fact, Figure 1 shows that the Error 
Handling component has a crosscutting impact on the HW architecture since it affects 
the interfaces of several components in the layered decomposition. Almost all the 
architectural interfaces need to expose erroneous conditions, which in turn need to be 
handled by the error handling strategy. Figure 1 gives some examples of exceptional 
interfaces in the component’s ports savingService and distributedInterface. Hence, the 
broadly-scoped effect of this component denotes its crosscutting nature over the 
modular architecture structure of the HW system. 
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Fig. 1. Error Handling in the HW Architecture: A Heterogeneous Crosscutting Concern 

However, the influence of this crosscutting concern is not exactly the same over 
each affected HW component; it crosscuts a set of interfaces in heterogeneous ways, 
depending on the way the exception should be handled in the target component. In the 
HW system, there is at least two forms of interaction between a faulty component and 
the Error Handling component: the termination protocol (Termination connector), and 
the retry protocol (Retrial connector). However, the heterogeneous crosscutting 
composition of ErrorHandling and the affected architectural modules can not be 
expressed in a modular way. For instance, the connector Termination needs to be 
replicated according to the number of affected interfaces, and separated connectors for 
expressing the Retrial collaboration protocols need to be created. For simplification, 
Figure 1 only contains some examples of those connectors; the situation is much 
worse in the complete description of the HW architecture since almost all the 
interfaces expose exceptions. Also the attachment section contains a number of 
replicated, similar attachments created only for the sake of combining the replicated 
error handling connectors (Figure 1). Finally, the “provided” interface handlingStrategy 
needs to be connected with the “provided” interfaces containing exceptional events, 
which is not allowed in conventional ADLs.   

2.4   Aspect Interaction  

In addition, there are other architectural breakdowns when using conventional ADLs to 
define interactions between crosscutting concerns. For example, the TransactionManager 
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is another architectural aspect that crosscuts several elements in the Business layer in order 
to determine the interfaces that execute transactional operations. Most of these affected 
interfaces are also connected with the error handling connectors (Section 2.2). Figure 1 
illustrates this situation for the savingService interface. The problem is that it is impossible 
to express some important architectural information and valid architectural configurations 
involving the interaction of the ErrorHandling and TransactionManager aspects. For 
example, although the attachments section allows the architect to identify that both aspects 
are actuating over the same architectural elements, it is not possible to declare which 
aspect has precedence over others affecting the same interfaces or whether only one or 
both of the backward and forward recovery strategies should be used. 

3   AspectualACME  

This Section presents the description of AspectualACME. We present the ACME 
extension to support the modeling of the crosscutting interactions (Section 3.1) and 
the definition of a quantification mechanism (Section 3.2). This section ends with a 
discussion about the AspectualACME support for modeling heterogeneous 
architectural aspects (Section 3.3) and aspect interaction (Section 3.4). 

3.1   Aspectual Connector 

As software architecture descriptions rely on a connector to express the interactions 
between components, an equivalent abstraction must be used to express the 
crosscutting interactions. We define an aspectual component as a component that 
represents a crosscutting concern in a crosscutting interaction. The traditional 
connector is not enough to model the crosscutting interaction because the way that 
an aspectual component composes with a regular component is slightly different 
from the composition between regular components only. A crosscutting concern is 
represented by provided services of an aspectual component and it can affect both 
provided and required services of other components which can be, in turn, regarded 
as structural join points [8] at the architectural level. As discussed in Sections 2.2 
and 2.3, since ADL valid configurations are those that connect provided and 
required services, it is impossible to represent a connection between a provided 
service of an aspectual component and a provided service without extensions to the 
traditional notion of architectural connections. Although ACME itself does not 
support a syntactic distinction between provided and required ports, this distinction 
can be expressed using properties or declaring port types.  

In order to express the crosscutting interaction, we define the Aspectual 
Connector (AC), an architectural connection element that is based on the connector 
element but with a new kind of interface. The purpose of such a new interface is 
twofold: to make a distinction between the elements playing different roles in a  
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crosscutting interaction – i.e., affected base components and aspectual components; 
and to capture the way both categories of components are interconnected. The AC 
interface contains: (i)  base roles, (ii) crosscutting roles, and (iii) a glue clause. 
Figure 2 depicts a high-level description of a traditional connector (Fig. 2a) and an 
aspectual connector (Fig. 2b).  

 
Connector homConnector = {

Role aRole1; 
 Role aRole2; 

}

AspectualConnector homConnector = { 
 BaseRole aBaseRole; 
 CrosscuttingRole aCrosscuttingRole;
Glue glueType; 

}
(a) Regular connector in ACME (b) Aspectual connector in AspectualACME  

Fig. 2. Regular and Aspectual Connectors 

The base role may be connected to the port of a component (provided or required) 
and the crosscutting role may be connected to a port of an aspectual component. The 
distinction between base and crosscutting roles addresses the constraint typically 
imposed by many ADLs about the valid configurations between provided and 
required ports. An aspectual connector must have at least one base role and one 
crosscutting role. The composition between components and aspectual components is 
expressed by the glue clause. The aspectual glue specifies the way an aspectual 
component affects one or more regular components. There are three types of aspectual 
glue: after, before, and around. The semantics is similar to that of advice composition 
from AspectJ [29].  

 
AspectualConnector aConnector = { 
  BaseRole aBaseRole1, aBaseRole2; 
  CrosscuttingRole aCrosscuttingRole1, 
                    aCrosscuttingRole2; 
  Glue { aCrosscuttingRole1 before aBaseRole1; 
         aCrosscuttingRole2 after aBaseRole2;   } 
} 

Fig. 3. Heterogeneous aspectual connector 

The glue clause can be simply a declaration of the glue type (Figure 2b), or a block 
with multiple declarations, where each relates a crosscutting role, a base role and a 
specific glue type (Figure 3). The description of heterogeneous aspectual interactions 
(Section 3.3) requires more elaborated glue clauses.  

Although the idea of the aspectual connector is derived from the traditional 
connector, it is not modeled as a subtype of the traditional connector, since the 
aspectual connector can be used in a connection between two provided ports. This 
would result in an invalid configuration (ill-formed connection) using the traditional 
connector and its subtypes. 
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Figure 4 contains a graphical notation that we propose to represent Aspectual 
Connectors. C1 is an aspectual connector that defines a crosscutting and 
heterogeneous interaction involving the Aspectual Component, Component 1, and 
Component 2. 
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Component
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cr1.1

cr1.2 Component 2

Component 1Component 1Component 1
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Provided Port

Required Port
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Base role

Provided Port

Required Port

Key: Crosscutting role

Base role
 

Fig. 4. Graphical Notation to the Aspectual Connector 

3.2   Quantification Mechanism 

A base role of an aspectual connector may be bound to several ports of possibly 
different components. These ports represent structural join points that may be 
affected by aspectual components. To express these bindings, many attachments 
should be defined, where each one binds the same base role instance to a different 
component port. We propose an extension to the attachments part of an ACME 
configuration to allow the use of patterns. Wildcards such as ‘*’, can be used in 
attachments to concisely describe sets of ports to be attached to the same base role.  

 
System Example = { 
Component aspectualComponent = { Port aPort }  
AspectualConnector aConnector = { 

 BaseRole aBaseRole; 
 CrosscuttingRole aCrosscuttingRole;  
 glue glueType; 

} 
Attachments { 

aspectualComponent.aPort to aConnector.aCrosscuttingRole  
aConnector.aBaseRole to *.prefix* }  

} 

Fig. 5. ACME Description of the Composition 

The attachment “aConnector.aBaseRole to *.prefix*” (Figure 5) specifies 
the binding between aConnector.aBaseRole and ports from the “set of 
component ports where the port name begins with prefix”. By avoiding explicit  
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enumeration of ports and definition of multiple attachments, this extension promotes 
economy of expression and improves writability in architectural configurations.  

3.3   Heterogeneous Architectural Aspects 

Figure 2b presented a simple aspectual connector that has a homogeneous crosscutting 
impact on the architectural decomposition. Figure 3 shows how AspectualACME 
supports heterogeneous crosscutting. Multiple base and crosscutting roles can be used to 
define the different ways a crosscutting concern can affect the component interfaces. 
Different or similar glue types can be used in the definition of the pairs of base and 
crosscutting roles. Figure 6a is an example of heterogeneous aspectual connector for the 
error handling concern discussed in Section 2.2. Note that the two ways of interacting 
with the ErrorHandling component – i.e. retrial and termination – can now be 
modularized in a single architectural element. In addition, quantification mechanisms can 
be used in the attachments specification to describe in single statements which 
component ports are affected by those two crosscutting roles specified in the 
ForwardRecovery connector (Figure 6b). 

 
AspectualConnector ForwardRecovery = {

BaseRole toBeTerminatedTarget, toBeRetriedTarget; 
CrosscuttingRole termination, retrial; 
Glue {termination after toBeTerminatedTarget; 
       retrial after toBeRetriedTarget; 
 } 

}
(a) an example of heterogeneous aspectual connector 

Attachments {
ForwardRecovery.toBeTerminatedTarget to *.*Service

  ForwardRecovery.termination to ErrorHandling.handlerSearch
  Distribution.distributedInterface to
      ForwardRecovery.toBeRetriedTarget 
  ForwardRecovery.retrial to ErrorHandling.handlerSearch 
  ...// to be continued in Figure 5b
}
(b) specification of join points using AspectualACME quantification mechanisms  

Fig. 6. Supporting Heterogeneous Crosscutting 

Figure 7 presents a graphical notation for the HW example, where the 
ForwardRecovery  is defined as a heterogeneous aspectual connector. The yellow 
vertical rectangle indicates that ForwardRecovery is a heterogeneous aspectual 
connector. 

3.4   Aspect Interaction 

AspectualACME also allows the specification of aspectual architecture-level 
interaction between two or more aspectual connectors which have join points in  
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Fig. 7. An Example of Aspectual Connector: Forward Recovery 

common. Such interactions are declared in the configuration description since the 
attachments part is the place where join points are identified. The ADL supports 
two basic kinds of composition operators: precedence and XOR (Figure 8b). The 
architect can specify that the precedence is either valid for the whole architecture 
or only at specific join points. Figure 8b illustrates both situations: (i) in general, 
the Retrial connector has precedence over the Termination connector at all the join 
points they have in common, and (ii) at the port savingService, it is always tried 
first forward recovery through termination-based error handling and, second, the 
backward recovery with abort in case the exception was not successfully handled. 
When there is a precedence relation between two connectors X and Y, where the 
execution of Y depends on the satisfaction of a condition associated with X, the 
architect can explicitly document it using a condition statement together with an 
around glue in X. Figure 8b also illustrates the use of XOR: at a given join point, 
only one of the either termination or retrial should be non-deterministically 
chosen. Finally, it is important to highlight that the elements participating in a 
precedence or XOR clause can be components instead of connectors: it means that 
the relationship applies to all the connectors involving the two components (see 
Section 4.1).  
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AspectualConnector BackwardRecovery = {
BaseRole target; 
CrosscuttingRole transBegin, transAbort, transCommit; 
Glue {transBegin before target; 
      transCommit after target; 
      transAbort after target; 
}

}
(a) an example of aspectual connector 

Attachments {
  //continued from Figure 4c 

Business.savingService to BackwardRecovery.target
  BackwardRecovery.transBegin to TransactionManager.transService

BackwardRecovery.transCommit to TransactionManager.transService 
BackwardRecovery.transAbort to TransactionManager.transService 

  Distribution.distributedInterface to ForwardRecovery.retriedTarget 
  ForwardRecovery.Retrial to ErrorHandling.handlerSearch

Precedence {
    ForwardRecovery.retrial, ForwardRecovery.termination; 
    savingService: 
         ForwardRecovery.termination, BackwardRecovery.transAbort; 
  } 

XOR { 
    ForwardRecovery.resumption, ForwardRecovery.termination; 
  } 
}
(b) specification aspectual interactions 

 

Fig. 8. Supporting Aspect Interaction Declarations 

4   Evaluation 

This Section presents the evaluation of AspectualACME in three case studies with 
respect to the usefulness of the proposed composition enhancements. We have 
evaluated the applicability and scalability of the notion of Aspectual Connectors 
(Section 3.1) and the extensions provided in AspectualACME (Sections 3.2 to 3.4) in 
the context of three case studies: the HealthWatcher system [28] (Section 2), a 
context-sensitive tourist information guide (TIG) system [9, 1], and AspectT – a 
multi-agent system framework [10, 11, 12]. As indicated in Table 1, the TIG 
architecture encompassed the manifestation of three heterogeneous architectural 
aspects: replication, security, and performance. The AspectT architecture included 
five main heterogeneous architectural aspects: autonomy, adaptation, learning, code 
mobility, and interaction. The choice of such case studies was driven by the 
heterogeneity of the aspects, and the different ways they affect the dominant 
architectural decomposition and each other.  

Our approach has scaled up well in all the case studies mainly by the fact that 
AspectualACME follows a symmetric approach, i.e. there is no explicit distinction 
between regular components and aspectual components. The modularization of the 
crosscutting interaction into connectors facilitated, for example, the reuse of the 
persistence component description from the first to the second case study. Persistence 
was a crosscutting concern only in the HealthWatcher architecture (Figure 7). Hence, 
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we have not applied an aspectual connector in the TIG architectural specification. The 
definition of quantification mechanisms (Section 3.2) in attachments also has shown 
to be the right decision choice as it improves the reusability of connectors. The other 
reason was that is was easier to determine how multiple interacting aspects affect each 
other by looking in a single place in the architectural description – i.e. the attachments 
specification. 

Table 1. Examples of Heterogeneous Architectural Aspects and their Interactions 

Aspect Interactions Case Study Heterogeneous 
Aspects # 

Total  

  Some Examples 

Health Watcher Error Handling, 
Transaction 
Management, 
Distribution 

13 Precedence: Error Handling, Transaction 
Manag. 
XOR: ForwardRecovery.resumption, Forward   
            Recovery.termination 

TIG Replication, 
Performance, 
Security 

7 Precedence: Security, Performance 
XOR: Replication.passive, Replication.active 

AspectT Autonomy, Adaptation, 
Learning, Code Mobility, 
Interaction 

15 Precedence: Interaction, Autonomy, Adaptation 
Precedence: Autonomy.execution, 
                     Autonomy.proactiveness 
XOR: Mobility, Collaboration  

 
Table 1 presents a summary on how AspectuaACME has been used through the 

three case studies to capture certain heterogeneous architectural aspects. It also 
describes how many aspectual interactions have been explicitly captured in those 
studies, followed by some examples of Precedence and XOR interactions. In our 
evaluation, we have noticed that two or more crosscutting roles of the same 
heterogeneous aspectual connector can naturally be linked to the same join point (a 
component port). Hence, the proposed aspect interaction mechanisms (Section 3.4) 
can be used to define their relationships. For example, Table 1 shows a XOR 
relationship in the HW architecture involving two crosscutting roles of the same 
connector: ForwardRecovery. Other interesting possibilities have been also explored 
in the case studies, such as declaring that all the connectors of Error Handling aspect 
have precedence over all the connectors of Transaction Management in the HW 
system.  Also, we have observed that the explicit definition of such aspectual 
relationships in the architectural stage enhances the documentation of design choices 
that need to be observed later on the design of applications, and variation points in a 
certain product-line design [31]. 

5   Related Work 

There is a diversity of viewpoints on how aspects (and generally concerns) should be 
modeled in ADLs. However, so far, the introduction of AO concepts into ADLs has 
been experimental in that researchers have been trying to incorporate mainstream 
AOP concepts into ADLs. In contrast, we argue that most of existing ADLs 
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abstractions are enough to model crosscutting concerns. For this purpose, it is just 
necessary to define a new configuration element based on the traditional connector 
concept. 

Most AO ADLs are different from AspectualACME because they introduce a lot of 
concepts to model AO abstractions (such as, aspects, joinpoints, and advices) in the 
ADL. Navasa et al 2005 [19] present a proposal to introduce the aspect modeling in 
the architecture design phase. Aspects are used to facilitate the architecture evolution 
by allowing easily either to modularize crosscutting concerns, or to incorporate new 
requirements in the system architecture. The composition between the architectural 
components and the aspects is based on an exogenous control-driven co-ordination 
model. The incorporation of the authors’ model to existing ADLs, such as ACME, is 
still under investigation. Navasa et al 2002 [18] do not propose an AO ADL, but 
define a set of requirements which current ADLs need to address to allow the 
management of crosscutting concerns using architectural connection abstractions. The 
requirements are: (i) definition of primitives to specify joinpoints in functional 
components; (ii) definition of the aspect abstraction as a special kind of component; 
and (iii) specification of connectors between joinpoints and aspects. The authors 
suggest the use of existing coordination models to specify the connectors between 
functional components and aspects. Differently from our lightweight approach, they 
suggest the definition of AO specific ADL constructs. Furthermore, they do not 
mention in their proposal the need for supporting important AO properties such as 
quantification, interaction between aspects and heterogeneous aspects. 

DAOP-ADL [22] defines components and aspects as first-order elements. Aspects 
can affect the components’ interfaces by means of: (i) an evaluated interface which 
defines the messages that aspects are able to intercept; and (ii) a target events 
interface responsible for describing the events that aspects can capture. The 
composition between components and aspects is supported by a set of aspect 
evaluation rules. They define when and how the aspect behavior is executed. Besides, 
they also include a number of rules concerning with interaction between aspects. With 
regards to precedence, aspects can be evaluated in two ways: sequentially or 
concurrently. In addition, aspects can share information using a list of input and/or 
output global properties. Nevertheless, DAOP-ADL does not provide mechanisms to 
support quantification at the attachment level and explicit modularization of 
heterogeneous architectural aspects. 

Similarly to our proposal, FuseJ [26] defines a unified approach between aspects 
and components, that is, FuseJ does not introduce a specialized aspect construct. It 
provides the concept of a gate interface that exposes the internal implementation 
functionality of a component and offers access-point for the interactions with other 
components. In a similar way to our proposal, FuseJ concentrates the composition 
model in a special type of connector that extends regular connectors by including 
constructs to specify how the behaviour of one gate crosscuts the behaviour of another 
gate. However, differently from our work, our compositional model works in 
conjunction with the component traditional interface while FuseJ defines the gate 
interface that exposes internal implementation details of a component. However, 
FuseJ provides explicit support neither for defining the interaction between aspects 
nor for modularizing heterogeneous aspects. Moreover, it only allows quantification 
over the same gate methods. In addition, FuseJ does not work with the notion of 
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configuration. It includes the definition of the connection inside the connector itself. 
This contrasts with the traditional way that ADLs works – that declares a connector 
and binds connectors’ instances at the configuration section. 

Pessemier et al [21] defines the Fractal Aspect Component (FAC), a general model 
for mixing components and aspects. Their aim is to promote the integration between 
aspect-oriented programming (AOP) and component-based software engineering 
(CBSE) paradigms. FAC model proposes three new abstractions: (i) aspect 
components – that modularize a crosscutting concern by implementing the service of 
a regular component as a piece of an around advice; (ii) aspect bindings – which 
define bindings between regular and aspectual components; and (iii) aspect domains – 
that represents the reification of regular components affected by aspect components. 
FAC model is implemented under Fractal [2], an extensible and modular component 
model, and its respective ADL. There are similarities between the aspect component 
from the FAC model and our aspectual connector. Both are used to specify 
crosscutting concerns existing in the system architecture. The aspect bindings of FAC 
define a link between a regular and an aspect component. This latter can 
modify/extend the behavior of the former by affecting its exposed join points. In our 
approach, this is addressed by the definition of: (i) base and crosscutting roles – which 
allow specifying the binding between two components; and (ii) the glue clause – that 
define the semantic of crosscutting composition between them. 

6   Conclusions and Future Work 

This paper has addressed current issues related to aspect-oriented architecture 
modeling and design. The analysis of heavyweight solutions provided by some AO 
ADLs yielded to the design of AspectualACME, a general-purpose aspect-oriented 
ADL that supports improved composability of heterogeneous architectural aspects. 
The composition model is centered on the concept of aspectual connector, which 
takes advantage of traditional architectural connection abstractions – connectors and 
configuration – and, based on them, provides a lightweight support for the definition 
of some composition facilities such as: (i) heterogeneous crosscutting interfaces at the 
connector level, (ii) a minimum set of aspect interaction declarations at the attachment 
level, and (iii) a quantification mechanism for attachment descriptions. In this way, 
AspectualACME encompasses a reduced set of minor extensions, thereby avoiding 
the introduction of additional complexity in architectural descriptions. The paper also 
discussed the applicability and scalability of the proposed ADL enhancements in the 
context of three case studies from different domains. Our approach has scaled up well 
in all the case studies mainly by the fact that AspectualACME follows a symmetric 
approach, i.e. there is no explicit distinction between regular components and 
aspectual components. Also, we have observed that explicit aspect interaction 
declarations in the architectural stage enhances the documentation of design choices 
that need to be observed later on the design of applications. 

As future work, we plan to further elaborate on several issues related to the 
expressiveness of the AspectualACME language, as well as on traceability issues. 
Architectural descriptions in AspectualACME can be mapped to aspect-oriented 
design languages that support aspect-oriented modeling at the detailed design level, 
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such as aSideML [5] and Theme/UML [8]. Tools need to be developed to support the 
creation of AspectualACME descriptions and their transformation to design level 
descriptions. Once these tools are available, designers may fully exploit the benefits 
from the aspect-oriented ADL and explicitly “design” aspectual connectors. 
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Abstract. Compared to UML 1.x, UML 2.x has improved the mechanisms for 
describing the architecture of systems. We show how to make UML 2.x 
describe configurations, not only in terms of setting values of system properties 
but also in terms of rearranging elements of the architecture. We also argue that 
the instance model of UML 2.x can be replaced by our notion of configurations 
and that this may imply a generalization of the notions of snapshot and 
constructor. 

1   Introduction 

By a configuration we mean the relative arrangement of parts [9]. In the field of 
computing we also consider binding of free variables and deciding the number of 
objects as being covered by configuring. One may wonder what distinguishes a 
configuration from an architecture as the latter term is often defined in very much the 
same way. It is not necessarily very important to make the distinction, but we 
consider a configuration more particular than an architecture. An architecture is most 
often intended to cover a set of concrete implementations or a set of concrete systems, 
and thus an architecture may define a set of configurations. 

Applying UML 2 [10] to the modeling of system families (product lines), the need 
for modeling configurations has emerged. There are more or less well-established 
ways of modeling variations[6], and in the Families project [4] we have surveyed 
these and also shown how standard UML 2 mechanisms like ports with well-defined 
interfaces, specialization (with redefinition of types) and templates can be used for 
variation modeling [1]. 

Given models of variation in terms of explicit variation point model elements, 
specific systems are made by resolving feature variation models and thereby deciding 
on the variations in the family model [3, 7]. 

There is, however, a class of system families where the specific systems are merely 
configurations of the general system family. There are no explicit variation elements, 
but the specific systems are characterized by different configurations of structural 
properties of the general system family and by different values on attributes of parts 
of the system.  

In this paper we will give a list of configuration challenges based on an example 
access control system, and analyze how existing UML 2 may handle such a challenge. 
Furthermore we shall see how this leads to generalized notions of snapshot and 
constructor without actually adding much to UML. We finally conclude that the UML 
2 instance model may for these purposes be redundant. 
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The remainder of the paper is organized as follows: In Section 2 we present the 
general Access Control System that constitutes our motivating baseline. In Section 3 
we present the challenges that should result in a description that clearly is derived 
from the baseline, but still have introduced a number of new elements. Section 4 
answers the challenges. In Section 5 we argue that our approach can also be applied to 
system snapshots and as constructors. Thus we end up with a notation that can not 
only describe structures, but also the corresponding behavior. We also argue that the 
UML instance model is superfluous. Section 6 concludes the paper. 

2   The Access Control System Example 

We will use an example (described in [2]) – an access control system – to illustrate 
the need for configuration modeling. In connection with UML 2 this example has 
been reused in [8]. 

Access control has to do with controlling the access of users to a set of access 
zones. Only a user with known identity and correct access rights shall be allowed to 
enter into an access zone. Access control systems will provide services like 

1. User Access: The user will enter an access zone through an access point. The 
authentication of a user shall be established by some means for secret personal 
identification (PIN code). The authorization is based on the identity of the user and the 
access rights associated with that user relative to the security level of the access zone. 

2. New User: A supervisor will have the ability to insert new users into the system. 
3. PIN change: Users shall be able to change their personal code. 

Fig. 1 is a simple domain class model for access control systems: An AccessPoint 
controls access to a Door, through which the user enters the AccessZone. The 
Authorizer controls access through an AccessPoint, and thus governs access to each 
AccessZone. Users interact with a Panel of the AccessPoint or the Console. There 
may be a Panel on either side of the Door. 

ACSystem
Console

AccessPoint

Authorizer Door

Panel

controlscontrols

AccessZone

access

governsAccess

*

1

1

1..2

1

*

1

*

1

 

Fig. 1. Domain model for access control 
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A system family design model for access control systems typically include the 
modeling of the common architecture of all systems in the system family and the 
modeling of variations on parts of this architecture. 

The class ACSystem (see Fig. 2) defines the common architecture of all access 
control systems: Each access control system contains a number of access points (from 
2 to 100), represented by the part ap typed by the class AccessPoint (ap: AccessPoint 
[2...100]). The access points interact with the users (via the port User) who request 
access and are granted or denied access to the access zones, and access points control 
the doors via the port Door. The access points communicate with objects of type 
Authorizer to verify the validity of an access request. The ACSystem further has a 
Console that allows a supervisor to interact with the system (via the port Supervisor). 
Ports and parts are connected by means of connectors, and these specify potential 
communication.  

ACSystem

ap.:AccessPoint[2...100]

aut:Authorizer[2]

c:Console

User

Supervisor

Door

 

Fig. 2. Composite structure of the access control system class 

Any object of class AccessPoint will have two integer attributes, one for the floor 
number and one for the security level. The floor number should always be between 0 
and 10, and the security level between 1 and 4, see Fig. 3. 

floor: Integer {0..10}
seclev:Integer {1..4}

AccessPoint
User

Door Authorizer  

Fig. 3. Constraints in general on objects of class AccessPoint 

For the access control system we consider the following variations: two kinds of 
access points. Blocking access points are access points where an operator may 
block/unblock the access points, while logging access points are access points, that 
log what is going on by sending signals to a logging device. The variations in types of 
access points are represented by two subclasses of AccessPoint, see Fig. 4. 
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AccessPoint

BlockingAccessPoint LoggingAccessPoint

 

Fig. 4. Different kinds of access points 

3   The Challenges – MyACSystem 

The Access Control system sketched is a very general one. In any specific case, we 
shall have to add more information and be more specific. Let us assume that we want 
to describe an access control system MyACSystem for a specific building such that: 

1. The number of access points on each floor differ, but within each floor the access 
points will have the same security level. 

2. On the ground floor the security level is high and the access points will be 
LoggingAccessPoints. 

3. On all other floors the security level is lower, and the access points are 
BlockingAccessPoints. 

4. The access points on the ground floor are connected to one specific authorizer, 
while the other access points are connected to another authorizer. The reason for 
this is due to the difference in security level. 

One question is whether MyACSystem can be modeled by the present UML 2. As 
mentioned in the introduction, variation on types is readily covered by class 
specialization, so the challenge here is the configuration in terms of specifying more 
accurately parts of the structure of the system and more closely values of attributes. 

We argue that the challenges listed above are examples of challenges that we find 
in most real systems. Configuring a real system is sometimes comparable in size with 
a design job. Here we argue that configuring may be seen as a continuation of the 
design and that the same concepts can be applied. 

The first challenge is about cardinal numbers and that the identified parts may have 
significant subsets where the objects of different subsets have important 
distinguishing characteristics. Assume that we were configuring an airline seat 
management system to be used for the in-plane entertainment system. We have a set 
of seats with some general properties, but then we want to characterize e.g. the seat 
width or earplug position, and that differs whether the seat is a window, middle or 
aisle seat. 

The second and third challenge recognizes that all the access points may not be of 
the same class even though they are of the same abstract class (or implement the same 
interface) and that it may be advantageous to type subsets with this new information. 
In the seat management system we may want to distinguish between business seats 
and economy seats as they typically have very different entertainment possibilities. 



102 Ø. Haugen and B. Møller-Pedersen 

The fourth challenge may look simple and trivial, but this challenge represents the 
very architectural challenge. We do not want to express only properties that refer to 
individual objects, but we also want to express how the objects may be logically 
interlinked for communication. In UML 2 this major architectural concept is achieved 
in the composite structure by connectors between parts. It should be well known that 
this cannot properly be achieved through classes and associations alone [5]. 

In our assumed seat management system it is obvious that the business class seats 
need a very different cable set than do the economy seats. We may for the sake of the 
discussion assume that each business seat is connected to its own media provider center 
while all the economy seats are connected to one special economy media provider. 

The answer to these challenges must not only be technically sound, but it should 
also be visually pleasing and give intuitively the correct understanding. 

4   Answering the Challenges 

In this Section we shall try and answer the challenges from Section 3. 

4.1   A Specialized Class or an Instance? 

Firstly we need to decide whether MyACSystem is one of its kind, or a more specia-
lized class of access control system of which there in principle may be more than one. 

In UML there is a significant language difference between modeling a system that 
is the only one of its kind, and modeling a specialized class of systems. In case of 
only one, the modeler may use the “instance model” (with a separate set of modeling 
concepts), otherwise the modeler will use the same set of concepts as when modeling 
the general access control system class.  

For now we will assume that our more particular system description is not a 
description of one of its kind, but still a description that a number of systems will 
potentially satisfy. One clue that this is the case may be that we have said nothing 
about the number of access points on each floor. 

Thus our task is to model a class MyACSystem satisfying the informal description 
given above. The underlying assumption is that all the systems that satisfy the more 
specific system description should also satisfy the general system description. As this 
is exactly what class specialization of UML2.1 provides, we make MyACSystem a 
subclass of ACSystem (see Fig. 5). 

ACSystem

MyACSystem

 

Fig. 5. Inheritance used for the specific system class 
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The UML 2 language specification states that the special class inherits all the 
features and constraints of the general class. The question is what the specialization 
can express regarding the properties defined in the general class. 

4.2   Specializing the Type of a Property 

With a liberal interpretation of the UML 2 language specification we may in a 
subclass specialize the type of a property defined in the superclass. In our example 
this means that the ap set of AccessPoints may be specialized to consist of 
LoggingAccessPoints and that the Authorizers may be SpecialAuthorizers. Such a 
system is described in Fig. 6. 

ACSystem

MyACSystem

ap.:LoggingAccessPoint[2...100]

aut:SpecialAuthorizer[2]

User

Supervisor

Door

 

Fig. 6. System with LoggingAccessPoints and SpecialAuthorizers 

We could have achieved the same effect by using class redefinition as supported by 
UML 2. We may redefine the types AccessPoint and Authorizer in the specialization 
to be LoggingAccessPoint and SpecialAuthorizer, respectively (see Fig. 7). 

ACSystem

AccessPoint Authorizer

ACSystemWithLoggingAccessPoint

LoggingAccessPoint
redefines

AccessPoint

SpecialAuthorizer
redefines

Authorizer

 

Fig. 7. Using redefinition to achieve the specialized effect 
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The problem with both solutions is that neither of them can be used to model our 
specific system described informally at the start of this section. Both solutions can be 
used to define the particularities of the ground floor, or alternatively the particularities 
of the top floors. Neither of them can model the particularities of the ground floor and 
the top floors at the same time. We are looking for a mechanism that can model 
different subsets of a given property set (ap) which is what we think is the only 
reasonable formalization of the challenge. 

Given our specialized definition in Fig. 7 we could add (in ACSystemWithLogging 
AccessPoint) the necessary information about the top floors. By adding this 
information these top floors would not be elements of the ap set of AccessPoints. 
They would represent some completely new property not known before, and that was 
not the intention. We still want to say that the top floors are indeed a subset of the 
original set of AccessPoint named ap.  

There are means in UML to express that properties of a given set is of different 
specific subsets. The set ap of AccessPoints may contain objects of Logging 
AccessPoint and of BlockingAccessPoint or other subclasses, and the way to express 
it in UML 2 is through special subset constraints.  

4.3   The UML Secret of Subsetting Parts 

Subset-constraints were introduced in UML 2 to cope with the need to express 
association specialization [11]. Such subsetting on association ends can be found 
numerous places in the UML 2 metamodel. This can help us part of the way to 
express what we want for our particular access control system where the set  ap of 
AccessPoints has been split into one set of BlockingAccessPoints for the top floors 
and one set of LoggingAccessPoints for the ground floor. 

ACSystem AccessPoint
ap

MyACSystem BlockingAccess
Point

top {subsets ap}

LoggingAccess
Point

ground {subsets ap}

 

Fig. 8. Subsetting association ends 

Fig. 8 shows a legal construction in UML 2 and it does bring us closer to our 
description goal. 

Our answer to the challenge is to apply subsetting to parts. Later we shall use 
constraints to enhance our approach. 
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We would like to express that the set ap of AccessPoints should be seen as a 
number of subsets. These subsets must have a clear relation to the original ap set, but 
should also describe individual peculiarities.  

In fact the notation used in Fig. 8 can also be used directly for all Properties since 
attributes, parts, and association ends were unified into the Property concept in UML 
2. We show how this would look in Fig. 9. 

MyACSystem

top:BlockingAccessPoint[2...99] 
{subsets ap}

aut:Authorizer[2]

User

Supervisor

Door

ground:LoggingAccessPoint[1...25] 
{subsets ap}

ACSystem

 

Fig. 9. Naming subsets 

4.4   Introducing Notation to Name Subsets 

We have in Fig. 9 expressed that ap has two subsets ‘ground’ and ‘top’. The two 
subsets have the same connectors to other parts as ap had. By applying subsetting also 
to composite structure parts we have made the model more readable than the model in 
Fig. 8. Still we find the subset-constraint notation less than satisfactory transparent 
when it comes to giving new names to subsets of sets already defined in more general 
notions. Rather we shall use an alternative notation also defined in UML 2: The 
notation for roles played by part instances of a composite structure is <role-
name>’/’<part-name>. It is defined within the notation for StructuredClassifier, but 
intended to be used when modeling instances (of structured classifiers). We will use 
this notation separating the subset name from the subsetted name simply by a ‘/’. 

In Fig. 10 we illustrate this new notation for subsetting, and in addition we show 
how the three first points of the challenge can be modeled by adding more constraints 
to the parts of Fig. 9. 
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MyACSystem

top/ap.:BlockingAccessPoint[2...99]
{floor>0 and seclev <4}

aut:Authorizer[2]

User

Supervisor

Door

ground/ap.:LoggingAccessPoint[1...25]
{floor==0 and seclev==4}

ACSystem

 

Fig. 10. Named subsets with individual constraints and multiplicities 

Note that in this way the notion of role has been generalized: While UML 2 can 
only have that individual instances play roles, we can have that a subset of instances 
play the same role. In this example, ‘ground’ and ‘top’ are roles played by different 
subsets of ap.  

We have now been able to express that the set ap of AccessPoints is divided in two 
sets where the ground set is on the ground floor and has high security level. The 
ground set consists of LoggingAccessPoints (or subclasses thereof) and there are 
between 1 and 25 of them. The property of the top set is that it contains only 
BlockingAccessPoints and there are between 2 and 99 of them. The top set access 
points are not on the ground floor and their security level is not at the very highest. 

4.5   Architectural Diversity 

We have now shown that the subsets can have different specifications and thereby 
fulfill the description challenge numbers one to three. The fourth point of the 
challenge is concerned with the architecture of the composite structure. We want 
to express that the ground set of access points have different connections than the 
top set of access points. It is actually straight forward to achieve this also since we 
have two distinct descriptive elements that may have different connections. We 
must make sure that even though the connections are different, they must still 
satisfy the general description of the ACSystem (that is how ap is connected in 
ACSystem). 
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MyACSystem

top/ap.:BlockingAccessPoint[2...99]
{floor>0 and seclev <4}

/aut:Authorizer[1]

User

Supervisor

Door

ground/ap.:LoggingAccessPoint[1...25]
{floor==0 and seclev==4}

ACSystem

secure/aut:SpecialAuthorizer[1]

c:Console

 

Fig. 11. A specialized composite architecture 

We see in Fig. 11 that we have now been able to make a description that is the 
answer to all four parts of the challenge. We have described configurations based on 
property subsets combined with a systematic application of constraints. 

4.6   Could We Achieve Such Configurations by Other UML Means? 

What we have shown in Section 4 is that UML does have mechanisms that can be 
effectively applied to define configurations and that can be seen as a continuation of 
the normal UML modeling practices. 

Still the diagrams of configurations that we have shown are not at all commonplace 
in UML models, and therefore we should ask ourselves whether there are other UML 
mechanisms that could have been applied and that would have done the job equally 
well. 

We have shown that simple specialization cannot cope with both retaining the 
refinement relation to the original and adding diversity of the description. We need to 
define subsets. Subsets are constraints and the obvious suggestion is to use constraints 
all the way (e.g. in a subclass of the original system class). It is simple to declare that 
everything can be done with OCL, but in fact it is not true. 

First, constraints are textual and do not really convey the same kind of message to 
the readers as does a UML diagram. Adding a bunch of constraints in a subclass is not 
very readable, especially since this text must also introduce new names. In our case 
the new names for the subsets must be introduced by the constraints. This is hardly 
how OCL constraints are normally intended to work integrated with UML. Typically 
the OCL constraints refer to names defined in the graphical UML model. 

Second, even if we accept that new names may be defined in the constraints, the 
description of new connectors in OCL which will be needed to cope with the last 
challenge of architectural diversity is clearly far beyond the useful domain for OCL. 

Third, such complex use of OCL is far beyond the capacity of the average UML 
modeler while the need to define configurations is absolutely within the domain of the 
average UML modeler. 
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Fourth, the modeler is free to use OCL constraints where graphic means are not 
sufficient. When new parts are graphically defined (including the introduction of 
names) the textual constraints will be much simpler, as the constraints then can use 
these names. 

Are there other UML mechanisms that can be applied to define configurations? 
Some UML modelers may point to the instance model and corresponding graphics. 
The UML 2 instance model is intended to define an object value where all values of 
all attributes are described. The UML instance model is described in the Instances 
Diagram Figure 7.8 in the Kernel package of the OMG recommendation [10] and 
through the class descriptions of the classes in that diagram. The concepts of the 
UML instance model are InstanceSpecification, Slot and Valuespecification. 
InstanceSpecification has a number of Slots, each  corresponding to an attribute 
defined for the class. The concrete syntax is recognized by the underlining of the 
names of the symbols. For certain examples a configuration may be defined by the 
instance model, but our example has not described all values and as such cannot be 
defined by an instance model. 

We are tempted to return the argument and will in the following section discuss 
how our configuration approach can replace the UML instance model. 

5   Snapshots, Constructors and Instances 

In this Section we shall see that our approach may also naturally bridge the gap 
between refined structure and refined behavior since behavior is included in the 
general UML model description. 

5.1   Snapshots 

Is the system in Fig. 11 a snapshot of the general ACSystem? A snapshot is a term 
often used to describe a situation in full detail at a specific point in time. The UML 
specification [10] says “an entity at a point in time (a snapshot)”. A strict 
interpretation of the term will probably conclude that MyACSystem as defined in 
Fig. 11 is not a snapshot since the values are not all fixed. We have not defined how 
many there are in each of the sets ground and top, and we have not explicitly defined 
what the floor attribute value should be in all BlockingAccessPoints. Thus it is not a 
snapshot. 

But is this a fruitful definition of a snapshot? We shall argue otherwise. It is 
obvious that we, through our strategy with subsets and constraints, could get very 
close to a snapshot. 

By using the same simple mechanisms as in Fig. 11 we have in Fig. 12 defined 
every object (on this level of abstraction) and fixed every value. We notice that we 
may apply the naming of subsets repeatedly as we have now subsets zero, first and 
second in MyACSnapshot in Fig. 12. Is this now a snapshot? It is hard to argue 
against it as the definition seems to contain full information. 
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MyACSnapshot

first/top/ap.:BlockingAccessPoint
{floor==1 and seclev==3}

/aut:Authorizer[1]

User

Supervisor

Door

zero/ground/ap.:LoggingAccessPoint
{floor==0 and seclev==4}

ACSystem

secure/aut:SpecialAuthorizer[1]

c:Console

MyACSystem

second/top/ap.:BlockingAccessPoint
{floor==2 and seclev==3}

 

Fig. 12. A snapshot? 

Still it is a little unsatisfactory that by showing one single bit of uncertainty the 
model is no longer a snapshot. If we did not know whether the security level of 
the second floor was 3 or 2, we could still apply the same mechanisms and state in the 
constraint that seclev of second is either 2 or 3. Is this such a big difference that 
suddenly the model changes character completely and it is no longer something that 
can be called a snapshot? For many purposes it is irrelevant whether the security level 
is 2 or 3 and sometimes the value of something is dependent upon the measuring 
accuracy. E.g. what is the length of the Norwegian coast? 

Is every subclass therefore a snapshot? A snapshot is a description that focuses on 
the data state of something. The constraints on variables must hold throughout the 
lifespan of the object. In our snapshot MyACSnapshot it may be argued that the 
variables will not change, but in the general case a snapshot will instantly transform 
into another snapshot and the variable values are changed. A traditional snapshot has 
a lifespan that consists of only one time instant. We believe that whether every value 
is exact or not is of secondary importance.  

But our definition in Fig. 12 of MyACSnapshot may be seen to describe more than 
only the data. By being based on MyACSystem, it also inherits the behavior 
specification of the ACSystem. We choose to interpret a snapshot such that the 
constraints are not constraints of the whole system lifespan, but rather only constraints 
of the starting time instance. The snapshot shall contain also all necessary behavioral 
data about the state of the execution. In programs we are talking about the execution 
stacks and program counter, in modeling we are talking about the current value of the 
state stack of a nested state machine, or the position within a sequence diagram. 



110 Ø. Haugen and B. Møller-Pedersen 

In fact every generalized snapshot is the complete description of the continued 
behavior of that system. It is the complete description of all possible continuations of 
that system from that snapshot. 

Since the snapshot has special interpretation of its constraints it is not a simple 
specialization, and we should rather use a stereotyped dependency than a 
generalization relation to show the association between MyACSystem and 
MyACSnapshot. We have shown this in Fig. 13. 

5.2   Constructor 

A constructor can be seen as a snapshot that describes the initial configuration for a 
given object of a class. With our generalized notion of a snapshot which includes the 
behavioral continuation of the system, the constructor becomes an even more 
expressive concept. 

It may be reasonable to restrict constructors such that the behavior status values 
(program counter, current state and so forth) cannot refer to other symbols than the 
initial ones. 

UML 2 defines a constructor to be any operation of the class that returns (a reference 
to) a single instance of that class. There may be an instance value of the class associated 
with the constructor through a create-dependency. That instance value is the default 
value of the constructor operation. It is not obvious what “default” means here, either 
the constructor operation returns the instance value associated or it does not. It is 
reasonable to interpret UML 2 such that constructor operations can only be applied to 
objects that have just been created by a create action (CreateObjectAction). Given that 
an instance value is associated with the operation it is reasonable to believe that the 
newly created object will assume the given instance value. 

MyACSnapshot

first/top/ap.:BlockingAccessPoint
{floor==1 and seclev==3}

/aut:Authorizer[1]

User

Supervisor

Door

zero/ground/ap.:LoggingAccessPoint
{floor==0 and seclev==4}

secure/aut:SpecialAuthorizer[1]

c:Console

initMyACS()

MyACSystem
«create»

second/top/
ap.:BlockingAccessPoint
{floor==2 and seclev==3}

«snapshot»

 

Fig. 13. Constructor similar to UML 2 

In Fig. 13 we see that MyACSnapshot is associated with a constructor of 
MyACSystem, initMyACS(). Application of this would mean that in e.g. an activity 
diagram there would be a CreateObjectAction referring to MyACSystem and then 
subsequently an invocation of initMyACS() on the resulting object. 
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Alternatively UML could take advantage of our more generalized notion of 
snapshot and use that the constructor MyACSnapshot actually also contains all 
possible continuations. There is really no need for a separate constructor opera- 
tion. All we need is to apply CreateObjectAction on MyACSnapshot and then let 
it run.  

5.3   The UML 2 Instance Model and Notation Revisited 

As demonstrated above, the notion of configuration (as a combination of property 
subsetting and constraints) covers the modeling of both snapshots and constructors.  
The InstanceSpecification part of the UML 2 metamodel was intended for modeling 
snapshots and constructors, and we therefore reconsider this part of the UML 2 
metamodel.  

From a metamodel point of view, configuration relies on the existing meta- 
model elements like Classifier, Property, etc. From a notational point of view we 
have merely added flexibility to the naming of subsetted properties. We have 
adopted the notation for subsets from the notation of the instance model, using the 
slash-notation rather than the more voluminous constraint notation. What are 
those subsets? Are they still properties? Yes, actually, no new meta-concepts need 
to be added to the metamodel other than the definition of the «snapshot» 
dependency.  

The UML instance model consists of a set of very general elements: 
InstanceSpecification, Slot and ValueSpecification, and their main purpose is to refer 
into the main metamodel of classifiers, properties and associations. Slot has e.g. no 
name, the idea being that the name is the name of the defining feature.  

This can also be seen by the way the slash-notation is described in the UML 
specification document. The notation section of InstanceSpecification only refers to 
the section on notation for classifiers, while in the notation section for 
StructuredClassifier, notation for instance specification is defined, and here the slash-
notation is defined as the notation for roles played by subsets of parts: 

 
 “The namestring of a role in an instance specification obeys the following syntax: 

{<name> [‘/’ <rolename>] | ‘/’ <rolename>} [‘:’ <classifiername> [‘,’ <classifiername>]*] 
The name of the instance specification may be followed by the name of the part  
which the instance plays. The name of the part may only be present if the instance  
plays a role.”. 
 
For the modeling of snapshots and constructors the Instance model adds little 

information by itself and it is actually superfluous as we have shown earlier in this 
paper. The main modeling concepts are themselves expressive enough and actually 
even more flexible than the instance model. The only added feature of the instance as 
described by the syntax above is that an instance may be typed by multiple classifiers, 
while a property may only have one classifier as type. It is not obvious what it means 
to have several classifiers as types. 
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6   Conclusion 

We have investigated how UML 2 may be applied as an architectural description 
language applying mechanisms that were not in UML 1. We have used a concrete 
access control example to motivate and illustrate the general notions. 

We have shown that UML 2 to a certain extent has the mechanisms needed for the 
modeling of configurations, by a combination of inheritance with property subsetting 
and constraints. By applying subsetting and constraints to properties in general and to 
parts of composite structures in particular, we have described model configurations. 
The application of these mechanisms ensures a clear architectural refinement relation 
based on class inheritance. 

We have adopted the slash notation for instances playing roles represented by parts 
and used that for naming subsets of parts: different subsets play different roles. 

Through our generalized definitions of snapshot and constructor based on a special 
«snapshot» dependency we have shown that classes defining configurations may 
replace the UML instance model. We have also shown that our notions of snapshot 
and of constructor are more expressive that that of the instance model since also the 
behavioral continuations are included in our concept. 
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Abstract. Modern systems are heterogeneous, geographically distribu-
ted and highly dynamic since the communication topology can vary and
the components can, at any moment, connect to or detach from the
system. Service Oriented Computing (SOC) has emerged as a suitable
paradigm for specifying and implementing such global systems. The va-
riety and dynamics in the possible scenarios implies that considering such
systems as belonging to a single architectural style is not helpful. This
considerations take us to propose the notion of Mode as a new element of
architectural descriptions. A mode abstracts a specific set of services that
must interact for the completion of a specific subsystem task. This pa-
per presents initial ideas regarding the formalization of modes and mode
transitions as explicit elements of architectural descriptions with the goal
of providing flexible support for the description and verification of com-
plex adaptable service oriented systems. We incorporate the notion of
mode to the Darwin architectural language and apply it to illustrate how
modes may help on describing systems from the Automotive domain.

1 Introduction

Distributed systems are very complex dealing with a high number of architec-
tures and communicating infrastructures. Modern systems are heterogeneous,
geographically distributed and highly dynamic since the communication topol-
ogy can vary and the components can, at any moment, connect to or detach
from the system. As an answer to these requirements, Service Oriented Comput-
ing (SOC) has emerged as a suitable paradigm for specifying and implementing
such global systems. Engineering issues are tackled by exploiting the concept
of services, which are the building blocks of systems. Services are autonomous,
platform-independent, mobile/stationary computational entities. In the deploy-
ment phase, services can be independently described, published and categorized.
At runtime they are searched/discovered and dynamically assembled for building
wide area distributed systems.

All these require, on the one hand, the development of foundational theories
to cope with the requirements imposed by the global computing context, and,
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on the other hand, the application of these theories for their integration in a
pragmatic software engineering approach.

At the architectural level, the fundamental features to take into account for
the description of components and their interactions include: dynamic reconfigu-
ration, self-organisation, mobility, coordination, complex synchronization mech-
anisms, multiple communication contexts, and awareness of quality of service.
The variety and dynamics in the possible scenarios implies that considering such
systems as belonging to a single architectural style is not helpful. These consid-
erations take us to propose the notion of Mode as a new element of architectural
descriptions. A mode abstracts a specific set of services that must interact for the
completion of a specific subsystem task, i.e., a mode will determine the structural
constraints that rule a (sub)system configuration at runtime. Therefore, pass-
ing from one mode to another and interactions among different modes formalize
the evolution constraints that a system must satisfy: the properties that recon-
figuration must satisfy to obtain a valid transition between two modes which
determine the structural constraints imposed to the corresponding architectural
instances.

This paper presents initial ideas regarding the formalization of modes and
mode transitions as explicit elements of architectural descriptions with the goal of
providing flexible support for the description and verification of complex adapt-
able service oriented systems. We consider that the concept of mode helps on
closing the gap between requirements and software architectures by using modes
as a scenario-based abstraction to relate specific use cases with service config-
urations. Also, we hope that it will permit the verification of reconfiguration
correctness (for example, by a predefined set of reconfiguration operations that
will carry one subsystem from one mode to another respecting the mode tran-
sition specification). It is worth noticing, that the relation between scenarios
and modes is not necessarily one-to-one. The idea is that the scenario-based ap-
proach can help in understanding how the scenarios and modes can be related
providing feedback for the validation of requirements with respect to reconfigu-
ration issues at the architectural level. In particular, we think that modes can
help on verifying correctness of coordination policies and deployment issues for
self-organising/healing systems.

Our work is funded on the basic ideas from software architecture, as it is con-
cerned with the selection of architectural elements, their interactions, and the con-
straints on those elements and their interactions necessary to provide a framework
in which to satisfy the requirements and serve as a basis for the design [16,1].
A fundamental aspect of software architecture is that it is an abstraction that
helps manage complexity. To deal with these issues, architecture-based formal
modeling notations and analysis and development tools that operate on architec-
tural specifications have been developed (i.e.Architecture Description Languages
(ADLs) [15]). Also, notation standards like UML have been proposed to support
architectural design [5,6,14]. In this respect, our contribution is the proposal of
a ( scenario-based) approach that introduces modes as a new first class primi-
tive for languages (with special emphasis on service oriented ones) supporting the
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work that has been done in recent years for self-orginising and reconfigurable sys-
tems [2,3]. It is worth noticing that modes are already used in other areas such
as synchronous programming [13]. In [13], the notion of mode is related to collec-
tions of executing states, focusing on behavior. In our case, we are interested in
studying modes with respect to system structure. Nevertheless, in future work we
plan to study the behavioral side of modes (see Section 4).

In the rest of this paper we present our first ideas on how the notion of
mode can be incorporated to an existing ADL (Darwin [9]). The extension is
obtained by adding to the language component model an attribute that indicates
the component mode in the corresponding architectural instance. We show the
usefulness of modes by illustrating how they can help on describing systems
from the Automotive domain. Also, in Section 4 we will discuss the next steps
on possible approaches for the mode based analysis of systems.

Modern automotive systems contain a continuously increasing number of soft-
ware components that must assist in a big range of operations. These include
critical vehicle functions (ABS systems, road repair, etc.) or other less relevant
to the vehicle primary function but of importance for nowadays client necessi-
ties (for example, road sights, infotainment, etc.). Moreover, these operations are
continuously activated and deactivated and component reconfiguration is set up
dynamically in a self-organising way. Also, due to advances in mobile technology
communication is very complex in automotive software systems, where com-
munication happens within the vehicle (intra vehicle communication), between
vehicles (inter vehicle) and between the vehicle and the environment (vehicle-
environment). This variety in nature, number, communication and dynamicity
makes service-oriented techniques a natural choice for coping with the engineer-
ing of automotive systems. We base our work on one of the case studies for the
GC2 EU Project Sensoria (Software Engineering for Service-Oriented Overlay
Computers) [18]. The variety in the possible scenarios in this context provides a
interesting testbed for the introduction of modes.

In Section 2 we give a brief introduction of the ADL language Darwin. Then in
Section 3 we present modes and apply them for the description of a case study
from the automotive domain. In Section 4 we discuss possible approaches for
their formalization and how to they can help on the analysis of system properties.
Section 5 concludes the paper with final remarks and future work.

2 Darwin

Darwin is a declarative component-based ADL. It supports a hierarchical model,
tractable and it is accompanied by a corresponding graphical notation. The over-
all objective is to provide a soundly based notation for specifying and construct-
ing distributed software architectures [9].

Component Model. The central abstractions managed by Darwin are com-
ponents and ports. Ports are the means by which components interact. Ports
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represent services that components either provide to or require from other com-
ponents. A port is associated with a type: the interface of the service it provides
or requires. Figure 1 shows the textual and graphical representation in Darwin
of a filter component which provides an out service (filled circle) and requires
an in service (empty circle), both of type Stream.

Fig. 1. Filter Component in Darwin

Bindings define a one-to-many mapping relation between provided and re-
quired ports. A binding associates the service provided by one component with
the service required by another. A provided port may have many required ports
bound to it. A required port can be bound to at most one provision. Darwin
does not have any special construct to model connectors. Instead connectors,
whenever required, are modelled using components and ports.

Components may be nested within composite components to form hierarchical
structures. Composite components hide the complexity of the contained struc-
ture allowing the specification of the architecture in a varying level of detail.
Regular bindings are allowed only between components of the same container.
Bindings crossing container boundaries are indirect through port aliases (inward
and outward bindings, Figure 2). A port alias is a port in the container compo-
nent that exports a port from an inner component. Port aliases offer control over
the scope of ports in nested constructs while preserving the benefits of nesting.
Figure 2 shows a composite component for a pipeline that is obtained from two
filters.

Behavioural Specification. The behaviour of components in Darwin is speci-
fied both graphically as a Labelled Transition System (LTS) and textually using
the Finite State Processes (FSP) notation [12]. The behaviour of an architec-
ture in Darwin is the composition of the behaviours of its individual component
constituents, i.e. the parallel composition of the respective LTSs. The resulting
LTS can be checked for such properties as the preservation of system invariants
or the existence of deadlocks.

Dynamism. Darwins concern in supporting dynamic structures is to capture
as much as possible of the structure of the evolving system while maintaining
its purely declarative form. Architectural modifications at runtime may cause
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Fig. 2. A composite component with an inward (in port) and an outward (out port)
binding

disruption to behavioural aspects of the system such as triggering a deadlock.
In [10], it is stated that changes to a systems structure may only be performed
when the components involved in the changes are in a quiescent state. A compo-
nent is considered quiescent if it is not in the process of exchanging application
messages with its environment.

Mode Extension. The extension of Darwin with modes is obtained by adding
a new attribute to components (boxed names in Figure 3) that indicates the
mode in which the component is in the corresponding architectural instance
(see Section 3 for the case study details). In the case of basic components, the
mode identifies the state of the component. For composite ones, the mode for a
composite component is directly related with the modes of its constituents. We
assume that each component is in one mode at a time. Ports in gray color mean
that the interface port is not ”enabled” for binding to another component.

3 Modes for SA: A Scenario for the SENSORIA
Automotive Case Study

In this section we introduce an approach to the use of modes at the architectural
level by applying it over a case study from the automotive domain. The case
study is taken from the Sensoria Project Automotive Case Study [18]. The
Sensoria case study presents some typical automotive scenarios as they might be
available to drivers in the near future. We derive three scenarios which are used
to identify the modes and transitions needed to describe the desired evolution
of a specific vehicle subsystem. The three scenarios are:

– Road Sights Scenario: The driver has subscribed to the dynamic sight ser-
vice. The vehicles GPS coordinates are automatically sent to the dynamic



118 D. Hirsch et al.

sight server. The dynamic sight server searches a sight seeing database for
appropriate sights and displays them on the in-car map of the vehicle navi-
gation system.

– Low Oil Level Scenario: During a drive, the vehicles oil lamp reports low oil
levels. This triggers the in-vehicle diagnostic system. The diagnostic system
reports a problem with the pressure in one cylinder head and sends a message
with the diagnostic data as well as the vehicles GPS data to the repair server.
The service discovery system identifies an adequate repair shop in the area.
The repair shop coordinates are sent to the vehicle guiding system to direct
the vehicle to the shop.

– Accident Scenario: Due to a collision on the route, an automated mes-
sage is triggered and sent to the accident assistance server that contains
the vehicles GPS data. Approaching vehicles are warned about the accident
ahead through wireless messages suggesting alternative routes to avoid traffic
jams.

In the next section we present a specific vehicle subsystem, the Route Planning
Subsystem. We will describe the modes for this subsystem and show how they
are used to assist modeling architectural instances for the different scenarios we
have introduced.

3.1 Route Planning Modes

Our case study is a Route Planning Subsystem (RPS) for a vehicle, which is
in charge of providing guiding indications to the driver. The RPS has three
possible modes of operation that are specified with Darwin in Figure 3 (described
below). To simplify the example we omit port names and port types which are
not relevant in this case.

The RPS architecture is composed of three basic components and is shown in
Figure 3:

– Planner (P): This component is in charge of determining the solutions for
the trip to be done by receiving routing information from the environment
and sending it to the User Prompt. Depending on its mode the Planner may
send also planning information to the environment for example to guide
another vehicle.

– User Prompt (UP): This component receives the information from the Plan-
ner and follows and provides the User Interface with the information relative
to the real time progression of the trip (i.e. actual position, next turns, etc.).

– User Interface (UI): This component handles the information arriving from
the User Prompt and how it is visualized by the Driver. Depending on
its mode the User Interface can be reconfigured to connect directly to the
environment.

Each diagram in Figure 3 shows the acceptable configurations of the RPS in
a specific mode. The interpretation of these diagrams can be dual. In the first
place, a composite component mode can be seen as constraining the instances,
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Fig. 3. RPS modes

bindings as well as the modes of its inner components. On the other hand, it can
be interpreted as the modes and bindings of the basic components determine the
valid mode for the corresponding composite component.

The first RPS mode is the autonomous mode. In this mode the driver indicates
his destination and the route planner proposes the best route for him. The second
mode is the convoy mode where the driver has to follow another vehicle from
whom is receiving the indications to destination. And finally, the third one is
the detour mode where the route planner is overrode by an external authority
that guides the driver to a detour and in this way avoiding some problem in the
route (i.e., an accident or works in the street). In more detail:

– autonomous: This mode represents the scenario where the vehicle is planning
the trip autonomously (Planner in master mode), for example by using the
information provided by a GPS system in the vehicle or internal information
already present in the Planner. As you can see, in this mode the Planner is
in master mode, and User Prompt and User Interface are in enable mode.
For User Interface, enable is the only mode allowed for this component. In
autonomous mode we have only intra vehicle communication.

– convoy: This mode represents the scenario where the Planner component
is guided by the information received by another vehicle in front of him.
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The binding to the master vehicle is done through a binding between the
required and provided port aliases of the vehicle Planners (see Figure 4). In
convoy mode the Planner is set to slave mode identifying the change in the
configuration. In this mode we have inter vehicle communication.

– detour: This mode is considered for scenarios like the Accident and Low
Oil Level scenarios. In this mode the User Prompt is in disable mode and
the User Interface is reconfigured to attend instructions from an external
system (Police or Highway Emergency System for example). Also, the Plan-
ner maintains its master mode as the vehicle may be used by the external
system as relaying point for additional planning information to be passed
to other vehicles (that switch to convoy mode) that are approaching, but
are further away and may have more alternatives to choose from. The exter-
nal system sends instructions directly to the driver redirecting the vehicle
to avoid traffic problems or to guide him to the required assistance. In this
mode we have vehicle-environment communication.

The point is that in the highly dynamic domain of automotive systems, there
are different scenarios that this subsystem must handle that imply reconfigura-
tions changing the architectural style of the system, i.e., the architectural con-
straints that configurations must satisfy. We use modes to capture these changes
of scenarios. A mode is related to a (possible set of) configurations which char-
acterized it. The diagrams in Figure 3 define the RPS component mode types,
while in Figures 4, 6 and 7, system configuration instances using the RPS subsys-
tem present different alternatives of these modes. For example, Figure 4 shows a
configuration for three RPSs of three cars where the head is in autonomous mode
and the other two are in convoy mode. Figure 6 shows an instance of the detour
mode where the Highway Emergency System is taking control of the planner and
sending additional information to the Planner (the ??? mode name indicates
that it is not relevant for the example). Finally, Figure 7 shows the autonomous
mode with its planner connected to an external GPS system.

Figure 5 shows a way of modeling multiple alternatives using � symbol in the
mode attribute (although, other less restrictive alternatives can be proposed)
meaning that that component can be in any mode. In this case, Figure 5 identifies
the set of possible configuration instances using one RPS in convoy mode which
can be connected to another RPS in any of the three possible modes. Note that
all these configurations follow similar structural constraints.

Modes of a composite component depend on their constituents modes defin-
ing mode-based composition. Note that modes not only determine configuration
but also coordination and communication mechanisms. In our case study, each
one of the RPS modes requires a different type of automotive communication.
Figure 8 shows the modes for the RPS and the possible transitions (i.e. recon-
figurations) among them. This transition system at the architectural level can
help in understanding how the scenarios can be related providing feedback for
the validation of requirements.

It is worth noticing, that the relation between scenarios and modes is not
one-to-one. For example, a system including the RPS can have a mode for the
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Accident scenario that may combine the detour with the convoy modes of the
RPS, where the external system only passes the alarm to the nearest cars ap-
proaching the accident zone, which in turn forward the alarm to the other cars
behind them by using the convoy mode. These may be of help on providing feed-
back from the architectural level to the requirements by indicating that some
scenario may need refinement in more detailed or specific ones.

Fig. 4. Convoy mode configuration

With this example we have shown how modes relate scenarios with architec-
tural configurations defining the structure of the system (and type of communi-
cation and/or coordination). Also, we can see how modes can help on specifying
the possible reconfigurations that are allowed (or not) to handle the relationship
among different scenarios (self-organisation), or on guiding the system to take
repairing actions in case of some problem (self-healing/reparing). For example,
if a system is in a mode where some component fails ending in a non valid con-
figuration (i.e., non valid mode), then depending on the last mode it was, it can
determine the resources and operations necessary to reach a valid (maybe the
same) mode.
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Fig. 5. Unconstrained Leader of a 2-RPS convoy

Fig. 6. Detour mode configuration

Fig. 7. Autonomous mode configuration

4 Discussing Modes

In Section 3 we have introduced modes over the Darwin language and shows how
it is applied to the Automotive domain. We have seen how the mode abstraction
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Fig. 8. RPS Modes

can help on closing the gap from requirements to the architectural level by a
scenario-based approach which allow to capture the highly dynamics arising in
configuration and coordination of service oriented systems. At the same time,
this new notion of mode arises interesting questions that our research must try
to answer. In this section we will discuss on some alternatives to study in our
future work.

Mode Formalization. In Section 3.1 we have incorporated to Darwin, in an
informal way, the notion of mode as an attribute of component interfaces. Our
idea (at least initially) is to obtain a conservative extension of Darwin that re-
spects its original semantics. In fact, in the original language the mode attribute
can be modeled by including a dedicated required port to each component. This
port is bounded to a special mode component whose only function is to indicate
the mode in which the component is. This shows that Darwin has enough ex-
pressive power to capture the abstraction we needed. Although, incorporating
modes as a first class primitive is fundamental to our goals of providing new
language abstractions that can cope with the new requirements of global and
service oriented systems.
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Another future step for the formalization of mode is to study possible ex-
tensions of UML. The relation between scenarios and modes, may indicate that
extending UML with modes may be useful for relating scenario-based notations
with structural ones. One possible way of incorporation modes to UML can be
via the definition of specific stereotypes.

Self-* and Reconfiguration Support. Given that self-organisation is fun-
damental for service oriented computing, another approach we are investigating
for the formalization of modes is based on the work done in [4]. The work of [4]
presents a software architecture based approach for the specification and verifi-
cation of self-organising systems. A declarative method is introduced to describe
systems underlying software architecture style and then use it to build and main-
tain system structure during its runtime evolution.

Specifically, based on Darwin component model, system valid structural and
evolution constraints are described using the Alloy Language [7]. Alloy spec-
ifications consist of definitions of sets, relations among them, and constraints
over sets and relations. We plan to extend the Alloy model for Darwin in [4] by
adding modes as a new basic element of the model. One benefit of using Alloy
is to use the analyser of Alloy models [8] that can be used to generate sample
instances that conform to the model or to verify properties of behaviour over a
given space of instances. We consider that by incorporating modes to the Alloy
constraint model we may be able to identify more clearly configuration issues of
self-organising systems.

Another motivation to apply the ideas from [4], is that it provides a method
to specify reconfiguration rules over Alloy models as a constraint satisfaction
problem. A set of configuration actions is generated when the structure of the
system is no longer valid with respect to its architectural description due to ei-
ther a scheduled change or a failure. Then, the execution of these actions should
lead to an architectural instance that remains valid with respect to the style
model. In the same way, we can think of using a mode-based approach to re-
configuration and self-organisation which we consider can help to manage the
increased complexity is software systems, specially in highly dynamic reconfig-
urable systems.

Alloy allows us to add structural and evolution constraints to Darwin mod-
els obtaining more detailed characterizations of system configurations and their
properties. For example, taking the diagram in Figure 5, we may be able to add
a structural constraint that only allows autonomous and detour as the leader
mode, exactly identifying the valid configurations with two RPSs. Anyhow, we
do not think of Alloy as the final or best approach but as a first step and bench-
marking of other languages we plan to study.

Analysis. A main goal for the introduction of modes is in helping on the veri-
fication and validation of systems. Our initial approach focuses on the study of
techniques for analysing systems structure, but also our future plans will profit
from previous experience on scenario-based synthesis of behaviour models from
Message Sequence Charts (MSCs) for the identification and validation of modes.
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This technique allows the user to specify scenarios in the form of MSCs that
capture a desired set of actions, and then to combine them to form one or more
state machines (LTS) [17] for deriving the tasks . This allows to use the LTSA
tool [11] to analyse models for safety, liveness and temporal logic properties.
We consider that the introduction of the mode abstraction in this context can
help on reducing complexity and facilitating the validation of correctness be-
tween requirements and scenarios derived from modes at the architectural level.
It is interesting to think that a component mode may be visible for the state
machines that describe the behaviour of the component.

5 Conclusions

In this paper we propose to exploit the notion of modes at the architectural
level, where modes are related with specific architectural constraints over the
corresponding subsystem configurations. This allows us to assign specific modes
to components defining their style and also allows us to specify the interactions
and transitions among different modes.

We have introduced the notion of mode by proposing a case study from the
Automotive Domain. Our goal is to provide flexible support for the descrip-
tion and verification of complex service oriented systems. We consider that the
concept of mode helps on closing the gap between requirements and software
architectures by using modes as a scenario-based abstraction to relate specific
use cases with service configurations.
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Abstract. Model Driven Development (MDD) is one of the main trends in 
Software Engineering nowadays. Its main feature is to consider models as first-
class concepts. Model Driven Architecture (MDA), the MDD proposal by the 
OMG, defines an infrastructure which considers models at three different levels 
of abstraction, namely Computer-Independent Model (CIM), Platform-
Independent Model (PIM) and Platform-Specific Model (PSM). Although it is 
becoming ever more important, the MDA approach has still some gaps. In our 
opinion, the lack of an adequate support for architectural design has been, 
ironically, one of its main drawbacks. MIDAS is an specific Model Driven 
Architecture for Web Information Systems (WIS) Development. It proposes to 
model a WIS by considering three different viewpoints, namely Content, 
Hypertext and Behaviour Viewpoints, which are orthogonal to MDA 
abstraction levels. In this paper, we propose to extend MIDAS by integrating 
architectural design aspects. Software architecture is therefore conceived as an 
crosscutting perspective, which is in turn orthogonal to those three viewpoints. 
MDA abstraction levels are still considered, and therefore both Platform-
Independent Architecture and Platform-Specific Architecture models are 
defined. This approach, named Architecture-Centric Model-Driven Architecture 
(ACMDA), has several advantages, as it allows architectural design to benefit 
from the adaptability and flexibility of an MDD process; and on the other hand 
it extends MDA philosophy by integrating true architectural concerns, 
effectively turning it into an Architecture-Centric Model-Driven Development 
(ACMDD) process. 

Keywords: Architectural Model, Model Architecture, MDD, Model-Driven 
Architecture, Architecture-Centric Design, ACMDD. 

1   Introduction 

In the last few years, Model Driven Architecture (MDA) [20], as proposed by the 
OMG, has become a leading trend in Software Engineering. MDA is a framework for 
software development which conceives models as first-class elements during system 
design and implementation; its most important feature is the definition of mappings 
between these models, which make the automation of model transformations possible. 
Therefore MDA gave rise to a new way of developing software, which is known as 
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Model Driven Development (MDD) [20, 23]. Among the specific features of the 
“original” MDA is the concrete grouping of models in three categories, according to 
their abstraction level; namely, Computation-Independent Models (CIMs), Platform-
Independent Models (PIMs) and Platform-Specific Models (PSMs). CIMs are able to 
model system requirements by defining computer-independent models of the system 
at hand; these might include domain models, business models, and several others. 
PIMs are in turn able to model the system’s functionality without considering any 
specific platform, but they are already conceived as computational models. So, PIMs 
include such models as UML class diagrams, use case models, or statechart diagrams. 
Finally, systems as described at the PIM level are adapted to a specific platform by 
means of different PSMs. For instance, the PSM for a database system could either be 
a relational model or a XML Schema, depending on the chosen technology. 

MDA has increasingly become one of the most popular development frameworks 
in current research, due to the advantages it claims to provide. The supposed benefits 
of MDA include an improvement in portability, due to the separation of the 
knowledge of the application from its mapping to a specific implementation 
technology; an improvement in productivity, due to the automation of this mapping; 
an improvement in quality, due to the reuse of well-tested patterns and best practices 
during the mapping of models; and an improvement in maintainability, due to a better 
separation of concerns and the achievement of a better consistency and traceability 
between models and the code [8]. However, and unfortunately, the MDA approach 
has still some gaps that must be filled in as soon as possible. In our opinion, perhaps 
one of its main drawbacks is that MDA doesn’t really take into account the the 
software architecture design. Although there are already some works which are 
somehow related both to architectural design and MDA [1, 6, 19], still there is a lot of 
work to do to obtain a solid and consistent proposal which could achieve general 
acceptance. In this paper, we present an extended Model Driven Architecture which 
includes support for software architecture design, in the framework of MIDAS. 

MIDAS [17, 25] is a methodological framework for the development of Web 
Information Systems (WIS). It proposes a Model Driven Architecture supported by 
two orthogonal dimensions (see Figure 1). In the vertical axis (Y), models are located 
according to its level of abstraction, using the standard MDA approach: so, they 
define CIM, PIM and PSM models. In the horizontal axis (X), models are located 
according to the aspect of the system being modeled. In this dimension, we have 
considered the main aspects of every WIS, namely Content, Hypertext and Behavior. 
In this paper, we propose a way to integrate a software architecture aspect into the 
MIDAS model architecture. This approach can be considered similar to the one used 
in [19], where the authors also propose the integration of architectural design into a 
model driven architecture. However, we disagree in the way this work integrates the 
architecture into MDA. A deeper analysis of that approach is presented later, after our 
own proposal is explained (refer to section 3.3).  

The integration of a new software architecture perspective into our model-driven 
architecture has the following advantages:  

1. On the one hand, it allows software architectural design to benefit from the 
same advantages of the MDA approach, as listed above. 

2. On the other hand, it causes a change in the development philosophy, turning 
the MDD approach into an architecture-centric MDD, or ACMDD. The use 
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of a MDA usually implies also that the process follows a MDD philosophy. 
This means that if the corresponding model architecture does not specifically 
deal with software architecture, the development process leaves architectural 
concerns out. This is, in our opinion, one of the major drawbacks in most of  
“traditional” MDA approaches. By including software architecture as a part 
of our model architecture, we are able to change our development approach. 
Now, the development process is supported by the software architecture. For 
this reason this approach has been christened as Architecture-Centric Model-
Driven Development (ACMDD). 

The proposal presented here is the result of our previous work on using MDA for 
WIS development. By applying MIDAS during the development of different WIS’s, 
we identified the need to specifically consider architectural concerns. Different ways 
to integrate architectural design into our MDA framework have consequently been 
tested; here, we present the outcome of this work. In this paper we also provide the 
description of a suitable case study, which applies the ACMDD approach to the 
development of a specific kind of WIS, namely a web portal which results from the 
integration of multiple web portals. 

The rest of the paper is organized as follows. Section 2 provides a brief overview 
of the MIDAS Model Driven Architecture as the starting point of this work. Section 3 
proposes a Model Driven Architecture that includes the software Architecture Design; 
this new model architecture becomes the Model Driven Development (MDD) 
approach in an Architecture Centric Model Driven Development (ACMDD). In 
section 4, as a case study, we use the previous ACMDD approach to the development 
of a WIS. Finally, section 5 sums up the main conclusions as well as the future work. 

2   MIDAS Model-Driven Architecture 

MIDAS is defined as a methodological framework for WIS development. It proposes 
a model driven architecture supported by two orthogonal dimensions (see Fig. 1): 

• Vertical Axis (Y): Models are separated according to their level of abstract-
tion. Thus, they are classified as CIM, PIM and PSM models.  

• Horizontal Axis (X): Models are separated according to the aspect of the 
system they model. Considering this, MIDAS distinguises the main aspects of 
every WIS, namely Content, Hypertext and Behavior. As seen in the Figure, 
the separation of aspects affects only the PIM and PSM levels. This happens 
because the CIM level just focuses on domain and business models. 

A more detailed description of the MIDAS architecture can be found in [17, 25], 
about the Content view; [5], about the Hypertext view; [9, 18], about the Behavioral 
view; [10], about the CIM level; and, finally [24], about our development tool.  

The main problem found when applying this architecture was that the software 
architecture design was not being considered. MIDAS was designed for WIS and then 
it implies the most common architecture for a WIS, which usually consists of three 
layers: an user interface layer (which corresponds to the MIDAS hypertext aspect), a 
persistence layer (which corresponds to the MIDAS content aspect) and a business 
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layer (which corresponds to the MIDAS behaviour aspect). Therefore, to develop a 
standard client/server web-based database system is easy applying MIDAS. 

However, though the three layer architecture is probably the most popular choice 
for WIS’s, it is not the only option. We found this problem when applying MIDAS to 
the development of any WIS which uses a platform other than the classic client/server 
style; a good example could be a WIS built on top of a Service-Oriented Architecture 
(SOA) support. We have also found the same problem when trying to apply MIDAS 
to more complex WIS’s than the classic Web Database, in particular when the website 
must include some complex functionality, such as on-line purchases. This is also the 
case of the example presented in section 4, which consists of a web portal build 
created by the integration several different web portals.  

 

Fig. 1. Simplified MIDAS Architecture 

In every real case we have developed with MIDAS which has required a different 
software architecture than a basic client/server or three-layered architecture, we have 
always found the same problem: What happens with the architectural design? When 
should we tackle the software architecture design? How does it affect the rest of the 
WIS development process? To be able to answer these questions, we have included 
the architectural design in the MIDAS model architecture, as an aspect located on a 
new dimension, orthogonal to the existing two we have shown in Fig. 1. 

3   Introducing Architecture into the MIDAS MDA 

There are, of course, different ways of including the software architecture in a model 
driven architecture. We’ll firstly explain our proposal to later discuss our reasons for 
choosing this solution among different alternatives. 

3.1   Architectural Model vs. Model Architecture 

We should perhaps begin by clarifying our choice of terminology. There are several 
overlapping terms, which are used in more than one sense; in fact, the work brings 
together the tradition of two different communities (those of software architecture and 
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model-driven development); though they both share a common Software Engineering 
background, there are still some differences. 

In particular, the central term, architecture, is used here to refer to two different 
concepts. First, when using the isolated term architecture, we usually refer to 
software architecture, that is, “the fundamental organization of a system, embodied in 
its components, their relationships to each other and the environment, and the 
principles governing its design and evolution” [14]. From this point of view, 
architecture is an abstraction of the structure of a system, therefore an abstract entity. 
But this entity can be made concrete by means of an explicit representation, which is 
also informally referred to as “the” architecture; but it has also the classic name of 
architectural description, usually provided in terms of an Architecture Description 
Language (ADL). Of course, an ADL is just a particular kind of domain-specific 
language which provides a certain model of the system. Therefore, the architectural 
description is also the architectural model of the system. Therefore, in this paper, we 
use the terms architecture and architecture model interchangeably. 

The role of architecture in system development has always been important, though 
sometimes disminished or even forgotten by methodology definitions. In recent years, 
however, several methodologies and process definitions have given architecture a 
central role. These architecture-centric [4, 12] processes consider architecture as the 
main artifact in the software development process. It does not only provide the basic 
skeleton for the system, but also the basic guide which drives the development itself. 
Every refinement or extension step during the development process is preceded by a 
refinement or compositional step in the architecture. 

On the other hand, a different tradition is that of model-driven development, as 
described in e.g. [23]. This well-known approach defines models as the basic 
artifacts in software development. The idea is to define the system as a set of 
models which are progressively refined and composed to get a defined picture of 
the system, which can ultimately be transformed into some executable form. The 
approach as a whole is sometimes dubbed as Model-Driven Engineering (MDE); 
meanwhile, the expression Model-Driven Development (MDD) is reserved to refer 
to any software development process in which models play the central role. The 
best known MDD approach is that of OMG’s Model-Driven Architecture (MDA) 
[20]. In fact, the term model-driven architecture has itself a generic meaning: it 
refers to the structure (or the definition of the structure) of a particular MDD 
proposal. Specifically, the list of models to create, where should they be located, 
and the relationships between them. However, OMG’s MDA has acquired such 
relevance that it has taken over the most generic meaning, and now the expression 
is mostly used to refer to this particular proposal. 

In the context of MDD, we can use also the term model architecture (not to be 
confused with the architectural model described above). It refers to the structure of 
the set of models we are dealing with during the MDD process, and the term can also 
be used to refer to the set of models itself. The model architecture is not the generic 
definition of the structure provided by the MDD definition (in fact, the model-driven 
architecture we just defined, which provides the distinction between PIM and PSM 
models, for instance), but the concrete set of models we are dealing with at every step 
and every moment during the MDSD process. 
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Finally, recent work has brought together these two approaches, by including an 
architecture model into the model architecture, and giving it a central role in the 
software development process. These mixed approaches are known as architecture-
centric model-driven development (ACMDD) processes [16]. There can be several 
different kinds of ACMDD, depending on the way the architectural model is defined, 
and how it is used in the model-driven process.  

The role of the architectural model is described as a part of the generic structure of 
the ACMDD process, which is referred to as the architecture-centric model-driven 
architecture (ACMDA). Here we recover the generic meaning of the “MDA” part of 
the acronym, which it is not used to refer to OMG’s approach (even when our own 
proposal uses some MDA terminology, like the PIM-PSM distinction). We also use 
the ACMDA acronym to refer to the proposal we describe in this paper, for the 
reasons we expose in section 3.4. 

The work by Manset et al [16] is among the first ACMDD process proposals. The 
work described in this paper defines the ACMDA extension of our previously existing 
MIDAS development process for WIS [17]. They describe different approaches to the 
ACMDD concept, as detailed in section 3.4. 

The architecture-centric MIDAS model is a ACMDA in the sense that it describes 
a certain architecture which implements an ACMDD process. But our use of the term 
“ACMDA” is also justified by the fact that, in our particular proposal, architecture is 
used in both senses of the word, as the acronym suggest.  We explain this in more 
detail again in section 3.4, when discussing its meaning. 

3.2   Software Architecture as a New Dimension in a Model Architecture  

After different attempts to include the software architecture design in the MIDAS 
model architecture, finally, we have decided that the software architecture has to be a 
different aspect, but in a new dimension. This new dimension will be orthogonal to 
the level of abstraction and to the aspect ones (see Fig. 2). This is because the 
software architecture design is related with each of the other system aspects (content, 
hypertext and behaviour). Moreover, the software architecture will determine which 
models of each aspect we’ll need for modeling a specific WIS. This way, our MDD 
process gets transformed, as already explained above, into an Architecture-Centric, 
Model-Driven development process, under the ACMDD umbrella. This way, we 
obtain one of the benefits outlined in the introduction, which is provided by the 
inclusion of software architecture into model driven architecture (refer to section 1).  

For example, suppose a very simple Web site that only has some static Web pages. 
The architecture of this WIS is very simple; it has just one layer corresponding with 
the user interface. This simple architecture will indicate to the developer that he just 
needs to model the hypertext; so, he’ll use only the models required for the hypertext 
aspect. This is a very simple example, but it can illustrate the implications of the 
software architecture in the model driven development. A more complex architecture, 
of course, will imply using models of different aspect. For instance, a WIS for 
electronic purchase, with dynamic pages, implemented with SOA, will require models 
of the hypertext, content and behaviour aspects. The specific models needed for each 
WIS will be determined by the software architecture design. In section 3.4 we’ll better 
illustrate this idea by means of a case study.  
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Fig. 2. MIDAS model architecture, including the software architecture model 

As you can see in 0 the software architecture aspect, as well as the other aspects, 
affects only to the PIM and PSM levels. This is because, modeling the architecture, as 
well as modeling the content, hypertext or behaviour, fall down into the solution 
space. At CIM level we model the application domain and the architecture doesn’t 
depend on the domain; it’s part of the solution. 

Finally, we can appreciate how the software architecture can be designed at PIM 
and at PSM levels. In fact, it is possible, and recommendable in a MDA framework, 
to model the architecture independently of the implementation platform. In this 
way, the architecture model, as well as any other model of the system, will be 
transformed into different PSM models, depending on the chosen specific platform. 
In this way, we get the other benefit posed in the introduction derived of the 
inclusion of the software architecture in a model driven architecture (see again 
section 1).  

3.3   Discussion: Alternate Approaches 

We have studied, of course, others ways of including the software architecture into a 
model architecture, but for different reasons why we have been rejecting them. 

• Software architecture as a new aspect in the same dimension that the content, 
hypertext and behavior ones 
As we have argued above, including the software architecture as a new aspect, but 
in the same dimension (see Fig. 3), places the architecture in the same position to 
the other aspects with regard to the development process. However, in our opinion, 
the architecture is not just one aspect more of the system but the aspect that has to 
drive the development process. Being an orthogonal aspect, it allows managing the 
process, indicating which aspects and models are needed according to the software 
architecture design.  
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Fig. 3. Including the software architecture as a new aspect 

• Software architecture as a new level between the CIM and the PIM ones 
We’ve found two reasons for not accepting this solution. On the one hand, because 
the software architecture design falls down into the solution space, and the solution 
space starts at the PIM level; the CIM level describes the problem space instead. 
On the other hand, because an architecture design defined between the CIM and 
PIM levels would be a high level architecture design, leaving in this way no pace 
for the design of a more specific architecture model.  

 

Fig. 4. Including the architecture between CIM and PIM levels 

Apart from the already provided process-oriented reasoning, there is another 
reason which is obvious in the light of the above figure (Fig. 4). Consider that our 
MDD proposal, MIDAS, has consciously chosen a concern-based approach; the 
different aspects in a WIS development have been explicitly separated, following 
again the well-known principle of SoC [7]. Though this choice was made due to 
the specific features of a WIS, this is an established and useful practice, which is 
not necessarily linked to systems of this nature. 
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But if we had chosen the approach in 0, the architecture model would be the 
only one which is not concern-oriented. This defines an intrinsic asymmetry, 
which perhaps makes some sense in an architecture-centric approach, but it does 
not seem to be an reasonable solution in our context.  

• Software architecture as a new level between the PIM and the PSM ones 
This proposal is the option chosen by [19], and in fact there are some reasons to 
support it. But we have also found two reasons for not accepting this solution in our 
context. On the one hand, if we have not the architecture design until completing 
the PIM models, the software architecture couldn’t drive the development process. 
So, we’ll have a MDD approach instead of an ACMDD one. Designing the 
architecture after the PIMs of the rest of the aspects, prevent the architecture to be 
the guide that allows choosing the aspects and models required for a specific 
application. On the other hand, what will be the level of abstraction of the 
architecture designed at this level? Will it be an independent platform architecture? 
Or should it be already a platform dependent one? Note, that this approach doesn’t 
allow modeling the architecture at different levels of abstraction (PIM and PSM), 
missing in this way the benefices derived of a MDA approach for the software 
architecture.  

 

Fig. 5. Including the architecture between PIM and CIM levels 

3.4   The Role of the Architectural Aspect: MIDAS as an ACMDA 

So far, we have discussed the question in terms of Model-Driven Engineering and its 
influence over software development processes; but a detailed discussion in the light 
of existing Software Architecture description theory is still missing. Therefore, the 
purpose of this section is to fill in this gap, at least in part, by providing some initial 
reflections about our proposal from the architectural point of view. 

As we’ll see, the discussion is perhaps deceiving, as it appears to be more complex 
than it actually is. The reason is the persistent tension between what the models seem 
to be, and what they actually are. To decide this, we must consider the two meanings 
of the word architecture (first as architectural model, then as model architecture), as 
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already exposed in section 3.1. And then, we must define the role the former one 
plays in the context of the latter one. 

In our two-dimensional model1, the levels of abstraction from MDA (CIM, PIM 
and PSM levels) define the dimension which represents evolution in the development 
process, and how models are refined into more detailed stages. As already exposed, 
architecture is a model itself, and therefore it is also inside the MDD process. As it 
belongs to the solution space, we don’t consider a CIM-level for architecture, but 
there are indeed PIM- and PSM-level instances of architecture. These models, namely 
platform-independent architecture and platform-specific architecture (see Fig. 6 and 
Fig. 7 to get an example) represent different stages in the evolution of the architecture 
model, and therefore the role of architecture is orthogonal to this dimension. 

The three basic models in MIDAS (content, navigation, behaviour) are indeed 
architectural views, in the sense of [14], and in fact they can also be adequately 
conceived as architectural aspects, in the sense of [7]. This provides a comfortable 
framework to deal with them, and we could consider if the architectural model can be 
considered as another aspect. In fact, it also provides a view of the system, a complete 
description of it which uses a different viewpoint. But that is not a good approach. As 
we have already explained in the first option in section 3.3, this contradicts the fact 
that the architecture is the driver of the MDD process, making it architecture-centric. 
Also, architecture is strongly related to every other view. 

The latter sentence hints towards another idea. Architecture can be seen as a 
crosscutting aspect, not just simply a symmetric view. This is quite similar to the 
distinction between views and perspectives in the work by Rozanski and Woods [22]. 
In this sense, architectural model is a perspective. There are some more perspectives 
in the MIDAS model, as it is the case with the semantic view included in 0. We will 
not focus on it here, as it is better described in previous work [1, 2]. 

Architecture is therefore a perspective, not an view. But it does not play the role of 
just a perspective, as it is in charge of controlling the process. That is the reason why 
our approach is an ACMDD process. Then, apart from providing a description of the 
system (which is inherent on it being a model), it is controlling the way in which the 
elements from the other views are distributed. In fact, it has to decide and explicitly 
state which views are instantiated during the ACMDD process, and which of them are 
not. Therefore it serves also as a meta-model for the ACMDD process itself. And this 
meta-model quality is lacked in what the rest of the models. So, architecture is still a 
perspective, but it is also something else.  

We might compare to approach to the one in some other ACMDD processes, in 
particular the already mentioned proposal by Manset et al [16]. This approach is 
architecture-centric because it defines the model-driven development process on top 
of a powerful architecture description language and platform, Archware. The whole 
development process is supported by a formal model of development, which has an 
architectural nature: everything is conceived on top of the architecture. 

Then, the approach by Manset is an ACMDD, because every model in the model 
architecture is an architectural model (or it is supported by an architectural model); 
therefore it is an architecture-centric process because the model driving the process is 

                                                           
1 It does not need to be 2-dimensional, and in fact there is a 3-dimensional variant of this 

model; but this is not relevant for the discussion at hand, and it is not commented here. 
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an architecture. Our approach is similar but different. In our proposal, architecture is a 
high-level description of the system which guides the rest of the development process, 
and plays the central role in our model architecture. In fact, our architecture viewpoint 
is the “map” to provide the structure of the model architecture, deciding which views 
are instantiated and which of them are not. Then our approach in also an ACMDD, 
but it is quite different from Manset’s. 

In summary, both Manset’s [16] proposal and ours are ACMDDs, though using a 
different perspective, and they are even compatible. 

In our proposal, the architectural model (the first A in the ACMDA acronym) is 
a model in the model-driven process, which takes the form of a perspective which 
is, also, located in an orthogonal dimension. It is indeed the model which drives 
the development process, and that’s why it is architecture-centric. But it is also the 
one which defines the structure of our concrete model architecture, and decides 
which models are considered and which are not. So it is also the “metamodel” for 
the MDD process, in summary the MDA for it. And therefore, the same model 
plays also the role of the second A in the ACMDA acronym. This is the reason 
why we justify our use of the term ACMDA to refer to this specific extension of 
MIDAS. 

4   Case Study: Applying the ACMDA Approach 

This section elucidates the use of the proposed ACMDD by means of a case study.  
The case study deals with the development of integration web a portal, that is a web 
portal which integrates information and data from different underlying web portals. In 
order to develop integration web portals, we have defined software architecture which 
was previously presented in [1,2]. 

Section 4.1 introduces the platform-independent architecture and Section 4.2 
introduces the platform-specific deployment of such architecture using Semantic Web 
Services implemented by WSMO (Web Services Modeling Ontology) as the specific 
platforms. Finally section 4.3 discusses how the advantages of ACMDD are applied 
to this case study. 

4.1   Architectural Modelling at PIM Level 

The proposed platform-independent architecture shown in Figure 6 aims to offer a 
service-based platform-independent architecture for web portal integration.  

The services involved in the architecture can be split in two groups; core services 
group, depicted with a dashed line in figure 6, and the access services group. Each 
service has a service description, which is used to advertise its capabilities, interfaces, 
behaviour, and quality. Publication of such information about available services 
provides the necessary means for discovery, selection, binding, and composition of 
services. 
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Fig. 6. Platform-Independent Architecture (Architectural PIM) 

The Core Services are the mandatory services which provide all the tasks necessary 
to achieve integration. The Access Service Group is composed of the services that 
give access to the data or services provided for Web portals. They are a special type 
of Web services that must implement data retrieval and service accessing operations. 
There are two main tasks that have to be performed by the access services. First, they 
provide the needed capabilities for data extraction from the sources. These 
capabilities have to deal with two main tasks: to automatically perform navigational 
sequences to access the pages containing the required data and to extract the desired 
information from the retrieved pages. By accessing the information sources by means 
of access services, the information sources retain their autonomy (the owner of the 
sources is different from the owner of the integration system). The data source owner 
retains control over the shared data, and it decides which data are shared. Second, 
they must allow access to the specific services offered by the Web portals. 

4.2   Architectural Modelling at PSM Level 

We have decided to implement the above described architecture by means of semantic 
web services (SWS). There are several proposals for SWS description; among the best 
known we can find WSMO (Web Services Modeling Ontology) [12], OWL-S[21] and 
WSDL-S [3], but there are some others. WSMO and OWL-S are the most prominent 
proposals. Nevertheless, we have chosen WSMO in this case, mainly because it was 
specifically developed to be used on integration, because it includes an execution 
environment called WSMX (Web Services Execution Environment) and because 
WSMO is now the SWS initiative with the most intensive research activity.  

WSMX enacts as a middleware to ease the execution of SWS described using 
WSMO, that way WSMX could be considered as black box component in architecture 
of the PSM level. 0 depicts the architecture at PSM level; this is the platform-specific 
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architectural model, or platform-specific architecture for short. This approach to 
architecture is different from, but somehow similar to, what many people in the 
software development community understands as “architecture”, namely the choice of 
technology, components and services. But this related notion of technical architecture, 
or tarchitecture, is conceived from a different point of view [13], as opposed to non-
technical viewpoints; instead of that, the architectural PSM in our proposal is just the 
last stage in the system’s refinement, and consequently the one which has more 
specific and technical details.  

Therefore our model-driven approach to architectural refinement provides a way to 
distinguish between differently detailed architectural descriptions, sometimes even 
models of the same system. Now we are able to define relationships between these 
architectural models, in an unprecedented way. It has been known for long that two 
different systems can share the same architecture; but now the level of abstraction can 
be taken into account, so that we are now able to say that two systems share the same 
PIM-level architecture, but have different PSM-level architectures. Of course, this is 
implying a smaller distance than the existing between two systems with two different 
architectural PIMs, even when they finally use the same low-level platform. 

WSML descriptions of Web Services, ontologies, mediators and goals are sent to 
WSMX for compilation. The user interface, that is, the integration web portal 
creates a service requirement in the form of a WSML message consisting of a goal 
that describes what WSMX should execute. The goal is then sent to WSMX for 
execution. When WSMX receives the WSML message with a specific goal, it 
discovers the WS that best matches that goal, mediates the service requirement data 
following mapping rules between the source format ontology and the ontology of 
the discovered WS, and finally invokes it, providing the data to it in the concepts 
and formats it expects. 

 

Fig. 7. Platform Specific Architecture (Architectural PSM) 
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Note that, in this PSM level architecture, the access services are transformed into 
SWS, the services description used at PIM level are split in two different descriptions, 
a syntactic one materialized by a WSDL document and the semantic one, that is a 
WSML document. It is supposed that these Web Services are already developed by 
the web portals that are going to be integrated. Nonetheless the semantic descriptions 
should be developed. 

4.3   Improving the Development Process Using ACMDD 

As was previously stated, the inclusion of the software architecture in the model 
driven architecture yield two main advantages. On the one hand, it allows software 
architecture design to profit from the same advantages, explained above, of the 
MDA approach. This fact is clearly noticed in the case study proposed. To get a 
web portal integration architecture that can be used in different scenarios, it is 
important to address the architectural design following a MDA fashion.  At PIM 
level the design of a platform-independent architecture is addressed. That way it is 
possible to define all the abstract components needed in every integration system 
from a conceptual point of view, allowing an architectural design free from the 
technological constraints existing at design time. Next, after some design decisions, 
all the required components for web portal integration could be implemented by 
different specific technologies depending on specific needs, available technologies, 
etc. at PSM level. 

Even though the case study tries to propose an integration framework for web 
portals, note that the architecture depicted in Figure 6 is based on a service- oriented 
paradigm, so it can be implemented in a web environment just as well as any other 
one. For that reason we consider this architecture as platform independent one. 

On the other hand, to include the software architecture in the model driven 
architecture will determine which models should be boarded in each particular WIS 
development. To explain this advantage on our case study, first, Fig. 8 depicts an 
extended model architecture for MIDAS, where just the aspects of Content, 
Hypertext, Behaviour, and Semantics are provided for reasons of clarity. 

The Semantics view (already briefly mentioned in section 3.4), is an additional 
view in the MIDAS model, which has not been explained before due to its particular 
nature, and to the fact that it does not affect the current discussion. In fact, it plays the 
role of a crosscuting view and therefore it is easier to conceive as a perspective; but 
we will not discuss this view in the rest of the paper, and here it is just provided to 
have a complete example. Reader is referred to [2] for more details. 

Taking up again the platform independent architecture depicted in figure 6, from 
this picture we can clearly choose which models of the PIM level of the other aspect 
should be used to model each component. For example, The user interface 
component is addressed at PIM level of the Hypertext aspect, using the Extended 
Slice Model and the Extended Navigation Model. The Service Registry and the 
Meta-Schemas Repositories modeling is boarded by the Conceptual Data Model at 
PIM level of the Content aspect. The functionality of the Core Service Group is 
analyzed by means of the models proposes by MIDAS at the PIM level of the 
Behavior Level.  
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Fig. 8. Model Architecture in MIDAS 

The same occurs with the platform specific architecture depicted in figure 7. To 
model the User Interface component, we need to transform the Extended Navigation 
Model obtained at PIM level into an HTML or XML model. The ontologies, goals, 
web services, and mediators descriptions in WSML are modeled by the models at 
PSM level of the semantic aspect of MIDAS. However, note that the we do not use 
the models at the PSM level of the content aspect, that is because at PSM level we use 
WSMX, and WSMX already provide their own structure for the ontology, services, 
and meta-schema storage. 

5   Conclusions and Future Work 

Currently, one of the most important trends in software development is related to 
model driven architectures. However, the basic MDA approach has still some gaps, as 
it mostly ignores the architectural design. This gives rise to two main problems: 

• On the one hand, the software architecture design is unable to be supported 
by a MDA approach itself. 

• On the other hand, architecture is left out of the development process. 

With the aim to solve these problems, we have proposed to include the software 
architecture design as a new aspect in a MDA architecture. This aspect is orthogonal 
to other aspects of the system (such as Content, Hypertext or Behaviour) and also 
considers the standard PIM and PSM levels of abstraction. Then, we have discussed 
the way in which this solves the two problems mentioned above, namely: 

• Software architecture will be considered both at PIM and PSM levels, then 
achieving the benefits of a MDA approach.  

• Software architecture can now guide the development process, consequently 
turning the original MDD approach into a ACMDD approach.  

This proposal is the result of our previous work in MDA for WIS development and 
we have illustrated it by means of a real case study. In the future we plan to apply the 
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MDA-based framework proposed here to other WIS’s with different architectural 
styles. Currently, we are applying it in the context of SOA-based plaftorms and on top 
of a Grid architectured. These case studies will allow us to test the real applicability 
of the extended MIDAS model architecture, and also to refine it, if necessary. 
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Abstract. Service-oriented architecture is a recent paradigm for archi-
tectural design. The software engineering aspects in this context, that
have not been sufficiently addressed, are software evolution and software
migration. Architectures are of great importance if large software systems
change. Architectural transformations can guide and make this change
controllable. In this paper, we present a modelling and transformation
method for service-based software systems. Architectural configurations,
expressed through architectural patterns, form the core of an underlying
specification and transformation calculus. Patterns on different levels of
abstraction form transformation invariants that structure and constrain
the transformation process. We explore the role layered patterns can play
in modelling and as invariants for transformation techniques.

Keywords: Service-oriented Architecture, Service Processes, Architec-
ture Specification, Architecture Transformation, Web Services.

1 Introduction

The development of distributed software systems based on service architectures
is rapidly gaining momentum. Service-oriented architecture (SOA) is emerging
as a new paradigm for the architectural design of widely distributed software
systems, supported by platforms such as the Web Services Framework (WSF) [1].
Due to the ubiquity of the Web, the WSF platform and SOA paradigm can be
expected to play a major role in the future of software development.

Architectural design is about separating computation from communication. In
service-based, distributed environments such as the WSF, a notion of processes
is central to capture service composition and interaction between services. We
present an architectural model and engineering techniques to support, firstly,
modelling and specification of services and service-based processes and, secondly,
property-preserving transformations of service-based architectures.

Our solution is an approach to the architectural configuration of services, based
on formal modelling of service communication and interaction processes. One of
the distinguishing features of our approach is a three-layered architecture model
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addressing different architectural levels of abstraction. Each layer is supported
through a pattern-based modelling approach. A service-based architectural config-
uration calculus that combines patterns and process behaviour in architectures
forms the backbone of this approach. The exploration of the role of layered
process-oriented patterns is the central objective here.

Formality is required in this framework to obtain precise and unambiguous
specifications of process-based service architectures and to complement specifica-
tion by analysis and reasoning facilities. In particular architectural change and
evolution requires a technique for process-oriented property-preserving trans-
formations. Various formal approaches to the representation of processes have
been suggested in the past. Process calculi such as the π-calculus [2] are suitable
frameworks for architectural configurations due to their abstraction from service.

A number of different modelling approaches exist, using different formalisms,
e.g. [5,4] using Petri nets. We use the π-calculus as the basis, which helps us to
define a notation for service-based architectural configuration. The π-calculus, a
calculus for mobile processes, is particularly useful due to a similarity between
mobility and evolution – both are about changes of a service in relation to its
neighbourhood – which helps us to support architectural transformations.

We give some background and an introduction to our layered architecture
model, called SAM, and our transformation calculus, called SACC, in Section 2.
Pattern-based architecture modelling and specification, supported by the archi-
tecture configuration calculus SACC, is addressed in Section 3. Architectural
transformations are defined in Section 4. Finally, we discuss related work in Sec-
tion 5 and end with some conclusions in Section 6. A Web-based, service-oriented
learning technology system serves as a case study throughout the paper.

2 Architecture Model and Specification Calculus

The objective of software architecture [3] is the separation of communication from
computation. Architectures are about components (i.e. loci of computation) and
connectors (i.e. loci of communication). This allows a developer to focus on struc-
tures and the dynamics between components separately from component imple-
mentation. Various architecture description languages (ADL) and modelling and
development techniques have been proposed [6,7,8]. An architectural model cap-
tures common concepts found in a variety of architectural description languages:
components provide computation, interfaces provide access to blackbox compo-
nents, and connectors provide connections between components. In service-based
architectures, the focus shifts towards the composition of services to processes
and the overall configuration of services and service processes. Process and in-
teraction behaviour is an essential part of modelling service architectures [3].

A service is usually defined as a coherent set of operations provided at a
certain location [1]. A service provider makes an abstract service interface de-
scription available, which can be used by potential service users to locate and
invoke this service. Services are often used ’as is’ in single request-response in-
teractions. More recently, research has focussed on the composition of services to
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processes [1]. Existing services can be reused to form business or workflow pro-
cesses. The principle of architectural composition that we look at here is process
assembly. The discovery and invocation infrastructure – a registry or market-
place, where potential users can search for suitable services, and an invocation
protocol – with the services and their clients form a service-oriented platform.

At the core of our architecture modelling and transformation technique is a
conceptual architecture model. The objective of this architecture model is to
capture the characteristics of service-based architectures. A layered conceptual
service architecture model (SAM), that is tailored towards the needs of service-
and process-oriented platforms, shall address the different levels of abstraction
in service-based architectures:

– Reference architectures are high-level specifications representing common
structures of architectures specific to a particular domain or platform.

– Architectural design patterns are medium-scale patterns – usually referred to
as design patterns or architectural frameworks.

– Workflow patterns are process-oriented patterns that represent common
business or workflow processes in an application domain.

Based on the architecture model SAM, we define a calculus for architectural
specification and transformation – the service-based architectural configuration
calculus (SACC) – that has features of an abstract architectural description
language (ADL) at its core1. Its main aim is to support the architectural con-
figuration of services. Two elements define our calculus:

– a description notation to capture architectural properties,
– rules and techniques for transformation.

The calculus is directly based on the π-calculus [2]. However, it adds a few com-
binators to express workflow and design patterns. A simulation notion from the
π-calculus helps us to capture the idea of property-preservation and permitted
structure and behaviour variations during transformation.

Our architectural process specification notation consists of basic process ac-
tivities, activity combinators, and process abstractions. The basic element de-
scribing process activity is an action. Actions π are combined to service process
expressions. Actions of a service can be divided into

– invocations inv x(y) of other services via channel x, which connects to the
remote service, passing y as a parameter,

– activations receive rcvx(a) from other services and the dual reply repx(b),
with channel x and parameters a and b.

The process combinators are basic forms of workflow patterns :

– Actions π are primitive processes.
– Sequences are represented as P1;P2, meaning that process P1 is executed and

the system transfers to P2, where the next action is executed.
1 This calculus does not qualify as an ADL since our focus is on processes and archi-

tectural configuration, neglecting interfaces and connector specifications.
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– Exclusive Choice means that one Pi (i = 1, 2) from choice P1,P2 is chosen.
– Multi-Choice mchoice P1,P2 allows any number of the processes Pi (i = 1, 2)

to be chosen and executed in parallel.
– Iteration repeat P executes process P an arbitrary number of times.
– Parallel composition par (P1,P2) executes processes P1 and P2 concurrently.

Additionally, restriction restr m.P means that m is only visible in P. A(a1, . . . ,
an) = PA is a process abstraction, where P is a process expression and the ai are
free variables in P. A local variable is introduced using let x = π in P. Inaction
is denoted by 0.

The semantics can be defined in terms of the π-calculus [2]. The language
constructs can be directly mapped to π-calculus constructs. The basic actions
are defined in terms of send x〈y〉 (for invocation inv and reply rep) and receive
x(y) (for receive rcv) of the π-calculus. The combinators are defined directly
through their π-calculus counterparts, except the multichoice mchoice P1,P2,
which is defined in terms of π-calculus-supported combinators as choice ( A, B,
par (A,B) ) – essentially a parallel composition of all elements of the powerset
of the mchoice argument list. The abstraction is the π-calculus abstraction.

3 Pattern-Based Service Architecture Modelling

The service-based architectural configuration calculus SACC enables modelling
and specification of pattern-based service architecture configurations. We will
use an e-learning system called IDLE – the Interactive Database Learning En-
vironment – to illustrate our approach [9]. IDLE is based on a Web software
architecture that provides a range of educational services:

– It is a multimedia system that uses different mechanisms to provide access
to learning content, e.g. Web server and a (synchronised) audio server.

– It is a composite, interactive system that integrates components of a database
development environment (a design editor, a programming interface, and an
analysis tool) into a teaching and learning context.

– It is a constructive environment in which learners can develop their database
applications, supported by shared storage and workspace.

In this section, we introduce a pattern-based modelling method that is suitable
for modelling architectural configuration and processes of service architectures at
different levels of abstraction, using IDLE for illustration. Our hypothesis is that
the presented service process calculus SACC provides a suitable specification
technique for modelling service architectures for all pattern types.

3.1 Patterns and Abstraction Levels

Architecture and design patterns are recurring solutions to software design
problems [10]. These patterns are about the design and interaction of objects,
as well as providing a communication platform concerning reusable solutions
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Fig. 1. Reference Architecture – Overview of the Reference Architecture LTSA

to commonly encountered design problems. Patterns at different levels of
abstraction – reference architectures, architectural design patterns, and workflow
patterns – form an essential part of our service-specific architectural transfor-
mation approach. We cover the three layers of the architecture model SAM with
our notation. Workflow operators for service processes are directly integrated
as operators. An architectural design pattern expressing service interaction pat-
terns can be formulated as an expression of a number of concurrently executing
processes. Reference architectures can be modelled at the level of abstractions.

Reference Architectures. Reference architectures, if they exist for a plat-
form or a domain, can play an essential role in the architectural definition of
a software system. They often emerge in an abstracted and standardised form
from successful architectural assemblies. Reference architectures define accepted
structures that help us to built maintainable and interoperable systems.

In the context of educational software systems, our case study domain, the
IEEE-defined Learning Technology Standard Architecture (LTSA) provides a
service-oriented reference architecture [11], see the UML-style class diagram in
Fig. 1. Six central components such as Delivery or Coach are identified. These
components provide services to other components, e.g. the Delivery component
provides a Multimedia delivery service to the LearnerEntity. These services are
usually related to processing data in different types of media.

Besides domain-specific architectures, platform-specific reference architecture
are important. Examples of classical Web-based architectures are client-server
architectures or three-tiered architectures.

Design Patterns. Design patterns are recognised as important building blocks
in the development of software systems [10]. Their purpose is the identification
of common structural and behavioural patterns. A rich set of design patterns has
been described, which can be used to structure a software design at an intermedi-
ate level of abstraction. Usually, architectural patterns (such as model-view-
controller) are distinguished from design patterns (such as factory, composite, or
iterator). We see both forms of patterns as intermediate-level constraints on a sys-
tem architecture, i.e. on services and on their interaction patterns.
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Learner = repeat ( inv requestEducServ = requestConnection();
inv res = requestEducServ(resId) )

Delivery = inv registerEducServ(id);

repeat ( rcvacceptConnection(c); rcvrequestEducServ(s);
reprequestEducServ(run(s)) )

Coach = choice (

choice ( rcvregisterEducServ(id); rcvunregisterEducServ(id) )
repeat ( rcvrequestConnection();

let c = getChannel()
in par ( inv acceptConnection(c); reprequestConnection(c) ) ) )

Fig. 3. Specification – Educational Service (EducServ) Registration and Provision in
IDLE based on the Client-Dispatcher-Server Design Pattern

Design patterns also play a role in the design of Web services architectures
[12]. An example of an architectural design pattern is the client-dispatcher-server
pattern [12]. The pattern architecture with its interactions is visualised in Fig. 2
in UML-style representation. The client requests a service in the pattern. The
server is the provider of the service. The dispatcher is the mediator between
client and server. Servers register their services with the dispatcher and clients
request connection channels to servers in order to use the services.

Example 1 . In IDLE, a learner requests content from a resources server. The
IDLE specification in SACC, Fig. 3, is based on the client-dispatcher-server
pattern, Fig. 2, with the learner (as client), a coach (as dispatcher), and the
resources and delivery subsystem (as server). The learner is a client invoking
services of the delivery (request a connection and an educational service). The
coach handles the service registration (from the delivery) and forwards the deliv-
ery channel (provides by the delivery component) to the learner. Passing channel
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WorkSpace = choice (
repeat ( rcvretrieve(resId); inv provide(res) ) ,
repeat ( rcvstore(resId, res) ) )

Fig. 4. Specification – Specification of the IDLE Storage and Workspace Service

names over channels is a typical example of the π-calculus ability to model dy-
namic infrastructures. The learner then uses the provided channel to use the
delivery component’s educational service.

Abstracted pattern definitions such as client-dispatcher-server can act as
building blocks in higher-level architectural specifications. Patterns are defined
as process expressions and made available as process abstractions. These macro-
style building blocks also form a pattern repository. A detailed discussion of
pattern-based specification of IDLE can be found in [13].

Workflow patterns. Workflow patterns are small-scale process patterns [14].
Workflow patterns relate to connector types that are used in the composition
of services – we provide them as built-in operators. An example of a workflow
pattern is the Unix-style pipe, which is similar to a sequencing workflow pattern.
Workflow patterns are small compositions of basic activities. Workflow patterns
and their implementation in Web services architectures are described in [15].

Example 2 . The multichoice operator is an example for process compositions
[15]:

mchoice(Lecture, Tutorial, Lab)

expresses that any selection of the IDLE services Lecture, Tutorial, and Lab can
be used concurrently, e.g. a user can use lecture and lab services in parallel.

To identify these workflow patterns in the architecture specification is important
since often not all pattern are supported by the implementation languages. Then,
workarounds based on architectural transformations have to be found.

choice(A, B, C,par(A, B),par(A, C),par(B, C),par(A, B, C))

is an equivalent workaround to the multichoice workflow, needed if the imple-
mentation language does not support the multichoice pattern mchoice( A, B,
C ) – which is the case with some WS-BPEL implementations [15].

3.2 Modelling Service Architectures

Modelling service-oriented architectures starts with the identification of services.
Two cases can be distinguished:

– Some of the components of a system will clearly exhibit service character
– an SQL execution element, which is part of the IDLE lab resources and
delivery subsystem, is an example.
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– Some components might not be implemented as services, but could easily
be wrapped up if required. An example of this category is a storage and
workspace feature.

In our case study, the problem is re-engineering of a legacy system into a
service-based system. The existing architecture – even though not adequately
designed and documented – provides a starting point for service identification.

Example 3 . We use the LTSA reference architecture as the starting point for the
service-based modelling of IDLE due to the LTSA’s SOA character. We, however,
realise the storage and workspace function, which could have been integrated into
either learning resources or learner records in terms of the LTSA, as a separate
service. This IDLE feature can be specified as a service process, see Fig. 4. The
workspace service either deals with incoming retrieval or storage requests.

Once all services have been identified, the connections and interactions between
services have to be modelled. We propose a top-down method starting with ref-
erence architectures, followed by architecture and design patterns and finally
workflow patterns. Subsystems and composite components of high-level archi-
tectures are refined down to the workflow level. For instance, top-level LTSA
services can be internally composed of small-scale interacting services. The pre-
sented modelling technique allows us to adequately address the modelling aspects
of a service-based educational software system. We have presented this technique
within a method for top-down, pattern-based layered modelling.

4 Transformation

Software architecture addresses more than the high-level system design. Soft-
ware change resulting from maintenance and evolution is equally important.
We focus on architecture transformations – a central software change technique.
Often, architectural transformations are a necessity. Interoperability can be a
transformation objective. For instance, a new reference architecture might need
to be adopted. Another objective can be to accommodate changes in the inter-
face and interaction processes of individual services. Workflow pattern are often
transformed if implementation restrictions have to be dealt with.

A central objective of architecture transformation is to implement the planned
changes, but also to preserve existing properties. Here, the existing service
processes shall be preserved, i.e. process expressions act as invariants of the
transformation. These processes are expressed as patterns at different levels of
abstraction. While the idea of preserving patterns at all layers is obvious, a ver-
ifiable transformation technique is needed. A notion of simulation shall capture
the ideas of equivalence and refinement of services and service processes – an
essential element of the modelling aspect.

A prerequisite for the transformation is the explicit architecture specification
of the existing system. A complete specification is not necessary; accuracy and
level of preservation of the transformation, however, depend on the degree of
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detail and number of patterns identified. In IDLE, we have for instance analysed
an inadequately documented system to extract structures and patterns.

4.1 Simulation and Transformation Rules

Our transformation technique is based on a notion of simulation andon simulation-
based transformation rules. It has to address the needs of layered pattern-based
models and the focus on patterns as transformation invariants.

– Reference architectures. Each service abstraction is mapped to a service ab-
straction in the new architecture. The transformation objective determines
whether the service process definition will have to be changed. The transfor-
mation is subject to invariants, i.e. pattern preservation.

– Architectural design patterns. Often, interaction processes needs to be
changed to accommodate new or modified service functionality. Ideally,
newly emerging patterns the service participates in will simulate the original
patterns.

– Workflow patterns. Workflow pattern transformations can often be handled
automatically in architecture implementations.

Property preservation is a central goal of our architecture transformations.
A simulation notion shall capture service process pattern preservation in the
transformation technique. A simulation definition, adopted from the π-calculus,
satisfies the pattern preservation requirement for the processes that we envisage:

A process Q simulates a process P if there exists a binary relation S over
the set of processes such that if whenever PSQ and P

m−→P ′ then there
exists Q′ such that Q

n−→Q′ and P ′SQ′ for service processes n and m.

This simulation definition expresses when a process Q based on service expres-
sions n preserves, or simulates, the behaviour of a process P based on service
expressions m. The services n and m can be unrelated, as this definition is about
observable behaviour.

In order to automate transformation support based on this simulation defini-
tion, a constructive theorem supporting this definition is required. This will be
the basis of a transformation rule which allows the verification of preservation
and the automation of the transformation. In [16], we have developed a con-
structive simulation test based on the construction of transition graphs for the
process expressions of the SACC calculus.

Since usually not the entire specified behaviour should be preserved, we have
introduced the notion of patterns to capture common behavioural aspects that
need to be preserved. Patterns at different levels of abstraction identify reli-
able and maintainable interaction patterns between services. These are ideally
preserved. Central in our transformation technique is, therefore, the following
transformation rule, which associates patterns and simulation:

Given an architecture specification S in SACC, create an architecture
specification S′ as follows. For each abstraction A in S (apply this rule
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recursively from top to bottom), map A to A′ where A′ is another ab-
straction such that for any pattern P , which A participates in, A′ simu-
lates P ′ with P ′ = P [A/A′], i.e. A′ substitutes A in P . P is replaced by
P ′ to cater for renaming of abstractions.

The determination of an invariant, the pattern P , is a common, but often
non-trivial problem. This problem can be alleviated through domain-specific
patterns. We will address this methodological aspect below.

4.2 Applying Pattern-Preserving Transformations

We will demonstrate the adoption of a new reference architecture, the LTSA, on
the highest level of abstraction for the IDLE system. The transformation aim
is interoperability of IDLE services and components with other LTSA-specified
components and reuse. This interoperability objective, however, can have an
impact on all levels of abstraction. For instance, the SCORM Run Time En-
vironment standard prescribes interfaces for learning technology objects, which
would have to be reflected in service interfaces here.

Example 4 . The starting point for the transformation is the architecture speci-
fication of an existing system – in our case IDLE in its current form. IDLE on
the highest level of abstraction is a parallel composition of composite processes:

IDLE = par ( Learner, Delivery, StudentModel
PedagogyModel, Workspace, Evaluation, . . . )

where each top-level service is an abstraction of a process expression based on
other, more basic services. Some of these are already similar to LTSA compo-
nents – we have indicated this fact by using the similar names – others such as
StudentModel and PedagogyModel have no direct counterpart in the LTSA. Sev-
eral different combinations of individual services can form patterns; these might
actually overlap. We will discuss an example later on.

The first transformation step is to describe IDLE’s architectural characteristics
– ideally in terms of LTSA to simplify the transformation, see Fig. 1.

Example 5 . The client-server-dispatcher pattern, see Fig. 2, is not identical to
the structure that can be found in the IDLE system, see Fig. 3. We have added
the interaction with the resources server. The pattern itself as an identifiable
pattern is nonetheless worth preserving and is, thus, one of the invariants. In
our case, the client-dispatcher-server pattern:

par (Client, Dispatcher, Server)

is simulated by the composite IDLE process:

par (LearnerEntity, Coach, Delivery)
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resulting from the composition of learner, coach, and resources and delivery sub-
systems of the IDLE reformulation in LTSA terminology. This means that the
pattern is a good abstraction of IDLE functionality that needs to be preserved.

LTSA is a high-level pattern. In IDLE, we add functionality. This architectural
change arises from the workspace service integration into IDLE.

Example 6 . The explicit storage and workspace service, see Fig. 4, requires the
services LearnerEntity and Delivery to be modified in their interaction patterns.
Again, the pattern shall be the invariant of the transformation, but some refine-
ments – constrained by the simulation definition – need to be made to accommo-
date the added service within the system.

In order to identify workflow patterns that need to be preserved, these can easily
be identified due to their implementation as operators in the notation.

Example 7 . The specification of the IDLE educational service system based on
the client-dispatcher-server architectural design patterns in Fig. 3 based on Fig.
2 is defined in terms of workflow patterns. The Learner is based on a sequence
of activities. The Coach is based on choice in the first part, and a concurrent
split and merge in the second part. These are candidates for invariants.

The transformation task is to transform IDLE into LTSA-IDLE – an architec-
tural variant of IDLE with LTSA-conform interfaces and interaction processes.

Example 8 . In the transformation, we need to consider the source, the invariant,
the target construction, and the preservation proof:

– Source: The starting point of the transformation is the original IDLE speci-
fication. Since in our case a full specification did not exist, we analysed the
system and extracted central features. The high-level architecture is given in
Example 4 and some detailed excerpts are presented in Figs. 3 and 4.

– Invariant: The invarant is determined by patterns on different levels of ab-
straction. The LTSA determines the high-level architecture. We focus here
on the client-dispatcher-server pattern as the architectural pattern invariant
as explained in Example 5.

– Target Construction: The LTSA-based architecture specification of some
IDLE services – which is the transformation result – can be found in Fig. 5.
It is constructed based on our transformation rule as follows. At the refer-
ence architecture level, IDLE is mapped to LTSA-IDLE where the merger of
StudentModel and PedagogyModel simulates the Coach. At the architectural
design pattern level, the parallel composition of the individual components is
changed at the subcomponent level (Coach) to reflect the merger.

– Simulation and Preservation: The invariants – LTSA and client-dispatcher-
server – are two patterns that have to be simulated by the new architecture:

• We have adapted our original terminology to the LTSA terminology. For
instance, Learner becomes LearnerEntity. The two components Student-
Model and PedagogyModel are merged into Coach, i.e. the model com-
ponents were abstracted by a single Coach interface, which results in the
LTSA pattern being simulated.
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LearnerEntity = inv preferencesInfo = getPreferences();
inv setPreferences(alter(preferencesInfo));
inv learnResource = multimedia()

Coach’ = repeat (

choice (
rcvgetPreferences(); repgetPreferences(prefInfo),
rcvsetPreferences(preferencesInfo),
rcvgetLearnerInfo(id); repgetLearnerInfo(info),
inv uri = locator(resource) ) )

Delivery’ = rcvlocator(uri); inv learnResource = retrieveResource(uri);

repmultimedia(learnResource)
LearningResources = rcvretrieveResource(uri); repretrieveResource(retrieve(uri))

LearnerRecords = rcvgetLearnerInfo(id); repgetLearnerInfo(info(id))

Fig. 5. Transformation – Resulting Adaptive Delivery in IDLE Architecture (selected
components and services) based on the LTSA

• The new Coach’ service handles the interaction with the learner and peda-
gogy model components internally. The original Coach specification from
Fig. 3 has been adapted to reflect this fact. The structural and behavioural
properties of the client-dispatcher-server pattern P := par(Client, Dis-
patcher, Server) are still intact, i.e. the pattern is preserved accroding to the
transformation with pattern P and the original Coach adapted to Coach’.
The three pattern components are still present and the externally visible
interaction behaviour is the same2.

The specification in Fig. 5 describes the adaptive delivery of resources. After
updating preferences by interacting with the coach, the learner entity requests
and receives learning resources via a multimedia channel from the delivery ser-
vice. The learning resources service retrieves the actual content for the delivery
service, which in turn delivers it to the learner entity.

In our method, design patterns that can be identified in an existing system, such
as the original IDLE, should be invariants of the architectural transformation.
In [13], we have shown that design patterns that were identified for object-based
systems also occur in service-oriented architectures. This method can be sup-
ported by transformation tools. The architect provides the source system model
and identifies preservable patterns from the model patterns and, if necessary,
renamings and non-standard transformations. The tool would then carry out
the transformation by applying the transformation rule subsitutions to patterns
and discharging the preservation proof obligations.

The combination of the most frequent patterns seem to be domain-specific, as
our investigation indicates [13]. Examples of frequently occurring design patterns
that we have identified in IDLE, other learning technology systems, and also the
2 The formal proof is based on a constructive simulation test developed in [16], which

is beyond the scope of this paper.
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LTSA are the factory, proxy, observer, composite, and serialiser patterns. Other,
less frequent patterns that we have found include the iterator and the strategy
pattern. These common patterns could result in a domain-specific formulation of
patterns such as LearnerEntity-Coach-Delivery (see Example 5) and a repository
of domain-specific patterns, which would help software architects in the difficult
task of identifying invariants of the transformation.

5 Related Work

Some ADLs are similar to our approach in terms of formality and their focus on
processes. Darwin [17] is a π-calculus based ADL. Darwin focuses on component-
oriented development approach, addressing behaviour and interfaces. Restric-
tions based on the declarative nature of Darwin make it rather unsuitable for
the design of service-based architectures, where both binding and unbinding on
demand are required features. Wright [18] is an ADL based on CSP as the process
calculus. Wright supports compatibility and deadlock checks through formalised
specifications, based on explicit connector types. This is an aspect that we have
neglected here, but that could enable further analysis techniques, if we intro-
duced typed channels. In [19], the formal foundations of a notion of behaviour
conformance are explored, based on the π-calculus bisimilarity relation. We chose
the π-calculus as our basis, since it caters for mobility, and, consequently, allows
us to address architecture evolution and transformation [8]. Mobility allows us
to deal with changes in the interaction infrastructure. The client-dispatcher-
server pattern is an example where a new channel is dynamically formed. On
the metalevel, architecture transformation also means controlled changing of ar-
chitectural structures. The impact of observational semantics based on states
denoting a family of bisimilar configurations has yet to be investigated in detail.

Patterns have recently been discussed in the context of Web service archi-
tectures [12,15]. In [15], a collection of workflow patterns is compiled. We have
based our operator calculus on this collection, aiming at a support for most of
the patterns described. The client-dispatcher-server pattern that we have iden-
tified in our IDLE system is also discussed in [12]. Other patterns that we have
mentioned mainly originate from [10].

A recent software architecture approach for service-based systems is Model-
Driven Architecture (MDA) [20]. MDA emphasises the importance of modelling
and transformations. The latter are, in contrast to our framework, part of the
modelling process between modelling layers. Our framework addresses the trans-
formation of multi-layered architecture specifications. While MDA is vertically
oriented, i.e. mapping from abstract domain models to more concrete platform
and implementation models, we follow a more horizontal transformation ap-
proach on the level of architecture models.

6 Conclusions

A new architectural design paradigm such as service-oriented architecture (SOA)
requires adequate methodological support for design, maintenance, and evolution.



Layered Patterns in Modelling and Transformation 157

While an underlying deployment platform exists in the form of the Web Services
Framework (WSF), an engineering methodology and techniques are still largely
missing. We have presented a layered architecture model (SAM) that captures
architectural structures at different levels of abstraction through patterns. A cal-
culus (SACC) allows the process behaviour in architectures and architectural con-
figurations to be captured. Interaction behaviour and composite processes within
the architecture have turned out to be an essential aspect for the development and
maintenance of service-based systems.

The importance of modelling for SOA has been recognised – and has resulted
in the development of Model-Driven Architecture (MDA) as an approach to sup-
port the design of service-based software systems. We have focussed on layered
pattern-based process modelling and architectural configuration – two aspects
that can complement the MDA approach. The formality of our approach satisfies
the automation requirements of MDA and even adds reasoning aspects. We are
currently working on an architectural configuration tool for Web services that
supports workflow and architectural patterns in the specification and that auto-
matically translates these platform-independent specifications into Web service-
specific notations such as WS-BPEL. Our emphasis here was on the applicability
of the method by demonstrating the usefulness for a service-based learning tech-
nology system. We have investigated the role that layered pattern modelling can
play for service-oriented architecture. The purpose of the SAM model and the
SACC calculus is to provide a support technique for this modelling.

We have applied the presented framework in the ongoing design, maintenance,
and evolution of the IDLE environment. The transformation technique was only
outlined in its principles – our objective was the motivation of the method. In
general, some of the architectural engineering activities can be better supported.
The pattern framework could be extended to include distribution patterns, which
would complement the existing layered functional patterns. A critical aspect of
the approach is the reliance on the quality of the architectural description of
the original system and the adequacy of the identified patterns. Transforma-
tions depend on the detail of the input architecture and the patterns that define
the transformation invariant. The extraction of a system’s architecture and the
correct identification of intended patterns for undocumented systems is a dif-
ficult aspect that, although essential for the success has been addressed only
through the idea of domain-specific patterns. Re-engineering approaches for the
architectural level can provide further solutions here.
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Abstract. Aspect-Oriented (AO) Software Development has been cre-
ated to offer improved separation of concerns mechanisms. AO concepts
first appeared at the programming level and are now being addressed at
the early stages of the software development life cycle. Currently, there
are several AO approaches available for the various software development
phases, but each one usually encompasses a single phase of the software
process. This results in a wide gap between proposals at different levels
of abstractions, raising several problems when trying to map artifacts
between proposals from adjoining levels. This gap is clearly noticeable
when an AO architecture design is intended to be derived from an AO
requirements specification, since some requirements artifacts in AO ap-
proaches cannot be easily mapped to architectural artifacts. This paper
explains how to reduce this gap by using model transformations between
AO requirements engineering models and AO architecture design models.
The goal is to automate part of the process of deriving an AO software
architecture from an AO requirements specification.

1 Introduction

The Software Architecture of a computing system usually has to satisfy a set
of requirements (functional and extra- or non-functional) specified during the
requirements analysis phase. It is the responsibility of the software architect to
design an architecture for the system that meets the functional requirements and
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satisfies the quality concerns, or non-functional requirements, such as robustness,
security, distribution, etc.

Such concerns normally affect various artifacts of the application architecture.
However, in traditional architectural representations these concerns, known as
crosscutting concerns, cannot be properly modularised. The tyranny of the dom-
inant decomposition is acknowledged as the main cause that hinders an effec-
tive separation of concerns [1]. Crosscutting concerns normally appear scattered
across different components of the application architecture, resulting, as a side
effect, in tangled base architectural artifacts, which makes software architecture
definition, adaptation, maintenance and evolution more difficult.

Aspect-Oriented Software Development (AOSD)1 is an emerging discipline
that promotes the separation of crosscutting concerns, by encapsulating them in
special modules, the aspects.

AOSD initial research focused mainly on the implementation level. Recently,
the main concepts of AOSD are slowly being considered at the earlier stages
of the software development lifecycle. Several Early Aspects approaches have
been proposed2 [2] recently, including Aspect-Oriented Requirements Engineer-
ing (AORE) approaches as well as Aspect-Oriented Architecture Design (AOAD)
approaches. These proposals normally focus only on requirements or on the ar-
chitecture, but do not address how to map aspects identified at requirements
level into architectural artefacts, in an integrated fashion. Therefore, the bene-
fits of identifying aspects at requirements level may be lost at architectural level,
or the step of specifying application architecture is simply skipped [3].

There are some initial approaches that try to map proposals from different au-
thors [4,5,6], providing a set of guidelines to relate concerns gathered during the
requirement analysis to architectural concerns. Even when a clear mapping pro-
cess is available, a manual application of the process can be a repetitive, labori-
ous and error-prone task. So our goal is to automate the process of deriving an
AO architecture from an AO requirements specification. The resulting architec-
ture descriptions will benefit from AORE processes, since these already identify
aspects that will be reflected, and also managed, in the architecture. We will use
Model-Driven Development(MDD) to support the automation of this process.

Since many of the aspects identified at the requirements level are typical of
distributed systems (e.g. security, fault tolerance, response time) their transfor-
mation to the architecture level can be reused in many systems. The application
of repetitive common solutions is encapsulated in a model transformation, which,
in this case, takes a requirements model and produces an architectural model.

By combining AOSD and MDD technologies to derive software architecture
descriptions, the following benefits are obtained:

– Repetitive, laborious and error-prone tasks, required to create a model from
another model, are automated using MDD transformations.

– Transformations from requirements analysis models to architectural models
are performed in a consistent manner, since they are automated.

1 http://www.aosd.net
2 http://www.early-aspects.net
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– Best practices and recurring scenarios can be encapsulated in automatic
transformations.

– AOSD improves modularisation, therefore improving software development,
maintenance and evolution. New requirements can be incorporated into the
AORE model and consistently and automatically propagated to the archi-
tecture level.

– AOSD promotes the reuse of architectural (and requirements analysis) arte-
facts. As base artefacts do not contain crosscutting concerns, they are highly
reusable. Also, as crosscutting concerns are well-encapsulated in aspectual
modules, these are also potentially reusable.

– As the obtained architecture is better modularised, opportunities for parallel
development are also increased.

After this introduction the paper is structured as follows: Section 2 provides
some background on AOSD. Section 3 describes our proposal, with its main
tasks, model transformations and tool support. Section 4 discusses some related
work. Finally, Section 5 outlines our conclusions and gives directions for future
work.

2 Aspect-Oriented Software Development

When decomposing a system at a specific development level, some concerns may
not fit the selected decomposition criteria. In Figure 1.a, the concerns partici-
pating in a specific system are shown in the upper level. A system decomposition
for a particular stage (requirements, architecture, implementation, etc.) is shown
below. In classic decomposition techniques (object-oriented, component-based,
etc.) some concerns, named crosscutting concerns do not align well with the de-
composition criteria and therefore cannot be adequately modularised, appearing
tangled and scattered in several decomposition artifacts. For instance, the con-
cern AccessControl is tangled with the concerns Encryption and Registration in the
artefact B, which should ideally only encapsulate the Registration concern. Ac-
cessControl is also scattered along with artifacts A and B. Crosscutting concerns
hinder software development, maintainability and evolution. AOSD improves

a) b)
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Fig. 1. Modularisation of crosscutting concerns
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the system modularisation providing mechanisms to encapsulate crosscutting
concerns, in special modules called aspects (see Figure 1.b).

Special composition rules (dotted-dashed lines) indicate how the aspects are
woven into the base units (in this case artifacts A, B and C), avoiding the tangling
and the scattering of the crosscutting concerns (AccessControl, Encryption and
Persistence).

When applied to requirements engineering, base artifacts usually are use
cases, viewpoints, goals, etc. Aspect-Oriented Requirements Engineering pro-
vides a systematic means for the identification, modularization, representation
and composition of crosscutting properties, both functional and nonfunctional
ones. These crosscutting concerns are encapsulated in separate modules, known
as aspects, and special composition mechanisms are offered to support influence
analysis and trade-offs before the architecture design is derived.

When applied to software architecture, base units are components and aspects
are a special kind of component which encapsulate crosscutting behaviours. As-
pectual components are composed (woven, in AO terminology) with base compo-
nents in order to obtain the whole application. Following the component technol-
ogy principles, those points in which aspect behaviour can be added (join points,
in AO terminology) to a base component behaviour can only be those that appear
as part of the component public interface (i.e. component creation/destruction,
message sending/receiving, etc.).

3 From AO Requirements Engineering to AO
Architecture Using MDD

3.1 Our Approach

Our aim is to derive an AO architecture from an AO requirement specification,
preserving, whenever possible, the information contained in the requirements
specification. This is achieved through the process depicted in Figure 2.

AORE. The first task is to collect system requirements through interviews
with stakeholders, analysis of business rules, etc. Using an AORE approach,
system concerns are identified, captured, composed and analysed. The output
of this process is a requirements textual specification describing the relevant
information about the system concerns (either functional, such as Billing or

Stakeholders
Requirements AO Requirements

Specification

AORE
task

AO
Requirements

Modelling 
task

AO Requirements
Scenarios Model

MDD 
Transformations

AO Architectural 
Model

Fig. 2. Process for automatic transformation of an AO requirements model into an AO
architectural model
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non-functional such as Integrity). According to [7], functional requirements can
be described at different levels of granularity: sky (broad system goals), kite
(more detailed goals containing several subgoals), sea (a single system interac-
tion), or mud (low-level and highly detailed requirement) levels. Our approach
is independent of the AORE approach selected, but a constraint is imposed
on the output of this process: functional requirements should be modelled at
the sea- level to facilitate model transformations. Since there will be fewer ele-
ments in each scenario, they are affected by fewer non-functional requirements,
and architectures can be constructed by small increments of simple scenario
transformations.

AO Requirements Analysis Modelling. A UML model is constructed for
the textual AO requirements specification obtained in the previous step. We
have developed a UML Profile for modelling AO requirements. It is the starting
point of our approach. Using this Profile, AO requirements are modelled as
a set of scenarios, and each one may have several non-functional concerns as
explained in following subsections. Therefore, the output of this process is an
AO requirements scenario model.

MDD Transformations. The AO requirements scenario model is transformed
into an AO architectural model using predefined MDD transformations. The AO
architectural model is constructed incrementally by transforming each scenario
individually. To transform each scenario, each functional requirement is trans-
formed first, and then, the non-functional requirements are injected into the
transformed functional requirement to ensure all the information present in the
requirements model is used at architectural level. The architectural model is ex-
pressed using the UML 2.0 Profile for CAM [8], one of the few AO architectural
approaches currently available, and model transformations are expressed using
the QVT (Query, View, Transformations) standard.

Since there may be different strategies to design an architectural solution, it
is possible to define several transformations for a single non-functional require-
ment. It is the responsibility of the software architect to select the appropriate set
of transformations in order to generate an architecture that satisfies the required
quality attributes. On the other hand, architects may first generate several candi-
date architectures, each one attending to different architectural design decisions,
and then analyse them and select the best one. In general, some non-functional
requirements might be lost during the transformation, not appearing explicitly
in the resulting architectural model. To handle this, an auxiliary traceability file
would be required.

Each step is detailed in the following subsections.

3.2 AORE

The fist step in our approach is to apply an Aspect-Oriented Requirements En-
gineering (AORE) approach in order to gather the system requirements, func-
tional and non-functional (quality attributes), which are going to be used to



164 P. Sánchez et al.

drive the architecture design. Our approach is independent of the AORE ap-
proach selected. The only restriction imposed, as commented before, is related
to the sea-level granularity of the description of the functional requirements [7],
to guarantee that each one contains a single interaction with the system, plus a
set of associated non-functional requirements.

In order to explain some of the concepts introduced in this paper we use the
Portuguese Automatic Toll Collection System case study described as:

In a road traffic pricing system, drivers of authorised vehicles are automat-
ically charged at toll gates. The gates are placed in special lanes called green
lanes. A driver has to install a device (a gizmo) in his/her vehicle. The regis-
tration of authorised vehicles includes the owners personal data, bank account
number and vehicle details. The gizmo is sent to the client to be activated using
an ATM that informs the system upon gizmo activation. The toll gate sen-
sors read a gizmo. The information read is stored by the system, and used to
debit the respective account. When an authorised vehicle passes through a green
lane, a green light lights up, and the amount being debited is displayed. If an
unauthorised vehicle passes through it, a yellow light is turned on and a cam-
era takes a photo of the number (used to find the owner of the vehicle). There
are three types of toll gates: single toll, where the same type of vehicles pays
a fixed amount, entry toll to enter a motorway and exit toll to leave it. The
amount paid on motorways depends on the type of the vehicle and the distance
travelled.

For illustration purposes, we have adopted the Aspect-Oriented Requirements
Analysis (AORA) [9,10,11] approach for AORE, since we have previous experi-
ence handling it. However, as we said, other approaches could also be selected.
The application of this approach to our case study is briefly described below.
This approach, as are most of AORE approaches [12]. is composed of three
main tasks: Identify Concerns, Specify Concerns, and Compose Concerns. The
identified kite-level [7] concerns are:

– Register Vehicle: It registers vehicle and owners data. It includes the return
payment information from the bank and the gizmo activation.

– Pass Single Toll: This handles usage in a single point tollgate. If the vehicle
is registered a light turns green, the amount to be debited in the owner’s
account is displayed and the passage is stored. Otherwise, the light turns
yellow and the vehicle plate number is photographed.

– Enter Motorway: It handles vehicles joining a motorway. If the vehicle is reg-
istered, a light turns green and the entry data is stored. Otherwise, the light
turns yellow and the vehicle registration number is photographed.

– Exit Motorway: This handles vehicles leaving the motorway. If the vehicle is
registered and entered correctly, a light turns green and the amount to debit
is displayed. Otherwise, the light is turns yellow and the vehicle registration
number photographed. Data about the usage is stored in the system.

– Pay Monthly Bill: This bills the system users on a monthly basis. Payments
are effected through bank transfers from the vehicle owner’s account.
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We now need to refine these concerns to the sea-level [7]. For example, the
Authorise Vehicle scenario is identified as part of the Pass Single Toll, Enter Motor-
way and Exit Motorway broader scenarios. This scenario is responsible for iden-
tifying a vehicle (by its gizmo) each time it passes through a toll gate.
Additionally, it has to satisfy a set of quality attributes (or non-functional re-
quirements). In this paper, only a subset of all non-functional concerns asso-
ciated with this scenario will be considered. In particular, the Authorise Vehicle
scenario needs to guarantee that only authenticated drivers use the system and
it needs to be executed within a low time frame (response-time). Therefore the
Authorise Vehicle scenario will be defined by the functional Identification and
the non-functional Authenticity and Response Time scenarios. The AORA pro-
cess identifies Authenticity and Response Time as crosscutting concerns at the
requirements level. We will use the Authorise Vehicle scenario to illustrate our
approach.

3.3 AO Requirements Modelling with Scenarios

Once the system has been decomposed in simple scenarios, the next step is to
model them in UML. We have developed a UML Profile, similar to [13], to
address this goal.

Figure 3 shows how the Authorised Vehicle scenario is modelled according to
that Profile. For each scenario identified, a package is created, which contains a
UML sequence diagram describing the functional requirements of that scenario.
In Figure 3 (left) the simple functional concern Identification is modelled. The
non-functional concerns are also modelled as UML diagrams. To improve sepa-
ration of concerns, non-functional concerns are described independently of func-
tional concerns as parameterised UML diagrams, following an approach similar
to Theme [3]. Therefore, non-functional concerns do not contain any reference
to specific base concerns. For instance, the Response Time between two messages
can be described abstractly using a UML sequence diagram plus a time con-
straint as shown in Figure 3 (central part). Authenticity could be described by
means of another diagram or textually (see Figure 3, right). To guarantee Au-
thenticity between messageA, sent by A to B, and messageB, sent by B to A, some

<< scenario >>
Authorise Vehicle

<<functional >>
Identification  

TollGate Gizmo

who()

i_am(id)

<< bind >>
[who, i_am, time]

<< aspect >>
ResponseTime 

A B

messageA

messageB
 < t ms

messageA,
messageB, t

<< aspect >>
Authenticity

messageA, 
messageB

<< bind >>
[who, i_am]

Fig. 3. UML representation of Authorised Vehicle scenario
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extra mechanisms have to be provided. At the requirements level, this textual
description would be enough. How non-functional requirements are modelled
does not affect their transformations (as will be mentioned in the next section).

Although these diagrams are shown inside the packages representing the sce-
narios, they are really defined outside these packages, and later imported by
them. This avoids scattered representations of non-functional requirements.

Functional and non-functional requirements are composed by means of bind re-
lationships, also adopted from the Theme approach [3]. These binds relationships
specify how and where non-functional concerns affects the functional concerns.
For instance, the bind(who, i am, time) provides specific elements, coming from
functional concerns, to the Response Time template parameters. With these ac-
tual values, the template can be instantiated, specifying how Response Time is
applied on the Identification scenario.

The model of Figure 3 illustrates how AOSD improves modularisation. Cross-
cutting concerns, like Response Time (between a request and its answer) and
Authenticity (of the answer to a request), are encapsulated in diagrams, which are
described independently and kept separate from functional concerns.

3.4 Transformations

These transformations are specified using the QVT (Query, View, Transforma-
tions) standard [14]. QVT is a standard model transformation language proposed
by OMG3 and comprises three sublanguages: QVT-Relational, QVT-Core and
QVT-Operational, which offer different styles and abstraction levels for specify-
ing transformation specifications.

We have opted for specifying transformations using QVT-Relational, since it
is more user-friendly. A transformation expressed in this language can be viewed
as a graph transformation, called relation, which contains two patterns, described
based on instances of the metaclasses of the corresponding metamodel and their
relationships. Thus, to specify transformations in QVT requires in depth knowl-
edge of the source and target metamodels. Transformations are executed in one
direction, which determines which are the source and the target models. The
semantics of a model transformation is: whenever the source pattern is found in
the source model, the target pattern has also to appear in the target metamodel.
To satisfy the relation, it is allowed to create, update and delete objects of the
target metamodel.

Transformations of requirements models in architectural models is achieved
in three main steps:

1. Components, ports and the interfaces of the architectural models are created
based on information of functional concerns. For each kind of lifeline in the
sequence diagram representing the functional concern, a component is cre-
ated with a port. If a lifeline A receives a message, an interface IA is created.
A provided relationship is established at the architectural level between the

3 Object Management Group, http://www.omg.org
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Fig. 4. Message transformation specified in QVT

component A (resulting from transforming the lifeline A) and the newly cre-
ated interface IA. For each lifeline B that sends messages to the lifeline A,
a required relationship is added to the architecture from the corresponding
component B (created previously by transformation of lifeline B) and the
newly created interface IA.

2. A partial sequence diagram for each functional scenario is created. This
diagram contains the transformation of the interactions which do not appear
as parameters in bind relationships, i.e. are not affected by aspects.

3. Interactions affected by aspects are transformed into interactions of the ar-
chitectural model using pattern-based transformations. These kinds of trans-
formations, a certain pattern encapsulates the design of a solution for the
aspectual requirement. This pattern is instantiated using the parameters of
the bind relationships that compose aspects and base functional concerns.
This transformation completes the sequence diagram created in the previous
step. For instance, the message who() sent from the TollGate lifeline to the
Gizmo lifeline would not be transformed in the previous step because it is af-
fected by an Authentication aspect. Then, in this third step, it is transformed
into an augmented interaction with new elements (added by the pattern)
which provides the required authentication support.

Figure 4 shows one of the transformations relate to functional concerns, specif-
ically the transformation for creating an interface, provided/required relation-
ships, and an operation in the interface for each message exchanged between
lifelines at requirements level. The left pattern specifies, in terms of the UML
metamodel, that each time a message between two lifelines is found in the source
model (left pattern), an interface with a specific name should exist. This inter-
face is provided by the port associated with the component resulting from trans-
forming the lifeline which receives the message(right pattern). This interface is
required by the port associated with the component resulting from transforming
the lifeline which sends the message(right pattern). The when clause, in a QVT
relation, indicates that before satisfying this relation, the Life2line2Component re-
lation has to be satisfied by the lifelines l1 and l2. It ensures that components



168 P. Sánchez et al.

Marking Response Time 

name = scenario

f1 : Fragment

l1 : Lifeline

covered

sendEvent

f2 : Fragment

l2 : Lifeline

receiveEvent

covered

m1 : Message

name = mess1

m1 : Message

name = mess1

f2 : Fragment

l2 : Lifeline

covered

sendEvent

f1 : Fragment

l1 : Lifeline

receiveEvent

m2 : Message

name = mess2

m2 : Message

name = mess2

C E

s :AORE
scenarios

a : AO
Architecture

C E

s :AORE
scenarios

a : AO
Architecture

i2 : Interaction

l1 : Lifeline

c1 : Class

name = A

c1 : Class

name = A

at1 : Attribute

type

represent

l2 : Lifeline

c2 : Class

name = B

c2 : Class

name = B

at2 : Attribute

event

mim:TimeExpression

first = true

mim:TimeExpression

first = true

max:TimeExpression

first = false

max:TimeExpression

first = false

ti : TimeInterval

ls : LiteralString

value = timeValue

ls : LiteralString

value = timeValue

tc : TimeConstraint

type

represent

event

d1 : Dependency

n1 :NamedElement

name = “ ResponseTime ”

n1 :NamedElement

name = “ ResponseTime ”

s1 : StereotypeInstance

name=“Functional”

s1 : StereotypeInstance

name=“Functional”

s2 :StereotypeInstance

name = bind

s2 :StereotypeInstance

name = bind

sl2 : Slot

v1 : ValueSpecification

value = mess1

v1 : ValueSpecification

value = mess1

sf4: StructuralFeature

name =“messageA ”

sf4: StructuralFeature

name =“messageA ”

s3 : StereotypeInstance

name=“aspect”

s3 : StereotypeInstance

name=“aspect”

sl1 : Slot

v2 : ValueSpecification

value = mess2

v2 : ValueSpecification

value = mess2

sf5: StructuralFeature

name =“messageB ”

sf5: StructuralFeature

name =“messageB ”client

supplier

ownedAttribute

ownedAttribute

definingFeature

value

definingFeature

value

p : Package

name = scenario

p : Package

name = scenario

i1 : Interaction

ownedMember sl3 : Slot

v2 : ValueSpecification

value = timeValue

v2 : ValueSpecification

value = timeValue

sf5: StructuralFeature

name =“t”

sf5: StructuralFeature

name =“t”
definingFeature

Fig. 5. Response Time Pattern Transformation in QVT

and associated ports have already been created when the MessageTransformation
relation is trying to be satisfied.

Figure 5 depicts a pattern transformation for the aspectual requirement Re-
sponse Time. The main elements for performing this transformation are shown in
gray. Basically, each time, inside a scenario, a bind relationship is found associ-
ating a functional concern with a ResponseTime concern (top pattern), a UML
temporal constraint for the messages influenced by the ResponseTime aspect is
injected at the architectural level (bottom pattern). For the injection of the tem-
poral constraint, actual values of the bind relationship parameters mess1, mess2
and timeValue are used.

3.5 Architectural Description Obtained

After applying the transformations to the Authorise Vehicle scenario the architec-
tural solution of Figure 6 is obtained. This architecture is expressed by means
of the UML 2.0 Profile for CAM [8]4.

In the UML 2.0 Profile for CAM, components are represented as common
UML 2.0 components. Aspects are depicted as a special kind of component,
stereotyped as �aspect. Provided/required interfaces are represented in the
usual UML 2.0 notation. CAM components never interchange messages directly,
instead, they communicate through their ports. Messages sent to a port from

4 This reference contains only the CAM description and the UML 1.x Profile for
CAM. A complete description of the UML 2.0 CAM Profile will be published soon
by authors as a Technical Report.
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Fig. 6. Architectural representation of the Authorise Vehicle scenario

outside a component are forwarded to component internals, while messages sent
to the port from the inside are forwarded to the connected external components.
This approach enables the sender to declare required interfaces, and to send
messages to its own ports when communicating with the environment, rather
than identifying an external target component directly. Components defined in
this way are assembled by wiring them together by means of provided/required
interfaces. CAM models contain two different views, a structural view, detailing
components, ports, interfaces and connections, and a behavioural view detailing
how components interact exchanging messages. Aspects are executed on compo-
nent interactions.

In the structural view (Figure 6.a), that an aspect crosscuts an interface can
be indicated by means of a dependency stereotyped as �crosscuts from the as-
pect to the crosscut interface. This relationship is optional and it only serves for
the purposes of drawing attention to relevant crosscuttings in structural views.
To indicate all the existing crosscuttings in structural views can lead to clut-
tered diagrams. How aspects are composed with base components is indicated
by means of sequence diagramas (Figure 6.b), placing a message, stereotyped as
�aspectual, from a port to an aspect, when an aspect has to be executed on a
component interaction. In Figure 6.b, the who() message (label 1) sent from the
TollGatePort to the aspect AuthenticationSend, and stereotyped as �aspectual,
represents the interception by this aspect of the who() message, originally sent
from the TollGate to the GizMo. The same idea applies to the message I am(x)
sent from the GizMo port and intercepted by the aspect AuthtenticationReceive.
Although an aspect execution is modelled as an explicit method call, what it
actually means is that between the time when a port receives a message and
when this message is dispatched, the crosscutting behaviour (an advice in As-
pectJ [15] terminology) is executed obliviously to the component. It should be
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noticed that aspects are applied outside the components and interactions be-
tween a component and its ports are aspect free. Therefore, components are not
aware of aspects applied to them, which improves components reusability and
composition.

When the transformations are applied to the scenario in Figure 3, the TollGate
and Gizmo lifelines of the functional requirement Identification are transformed into
components, and the messages who() and i am(x) are transformed into operations
of the interfaces ITollGate and IGizmo respectively. These interfaces are associated
with the previously created components as shown in Figure 6.a. The aspectual
components AuthenticationSend and AuthenticationReceive are also introduced in
the architecture to satisfy the non-functional requirement Authenticity.

The behavioural view of this architecture is depicted in Figure 6.b. These
diagrams show the interaction between components that fulfils the functional
requirement Identification (messages who() and I am(x) outgoing and incoming
from/to components). In addition, this functional requirement is performed
achieving Authenticity (who() and I am(x) messages intercepted by the aspects
AuthenticationSend and AuthenticationReceive; dialogues between these aspects). It
should also be noted that all of the identification process, including the authen-
tication task, has to be performed within a specific time constraint.

The main contributions of this architectural description are: (1) Interactions
between component internals and ports are not affected by non-functional re-
quirements, which are satisfied outside the components by means of aspects.
It promotes parallel development and component reuse. (2) Trade-offs between
non-functional requirements are preserved and reflected at architectural level.
The AORE process has to able to detect a trade-off between Authenticity and
ResponseTime. This trade-off is reflected in the architectural description since
the time constraint includes the authentication dialogues. It means that when
designers select specific algorithms to perform the authentication process, they
should take the time constraint into account.

3.6 Tool Support

In the development of this approach, we have tried to use standard tools and
languages, whenever possible.

As our approach is independent of the AORE process selected, the tool sup-
port for this stage depends on the toll support provided by the specific AORE
process chosen. However, as any AORE process is allowed, the requirements en-
gineer can select the process that s/he prefers thereby decreasing the adoption
effort required for this approach.

Both the AO scenario model and the architectural model are based on UML
2.0 Profiles. The AO scenario model serves as input for transformations, which
returns AO architectural models. Transformation tools manage UML models
using their XMI representation (XMI is a standard to serialize models accord-
ing to a machine-readable XML format). Therefore, to produce input models
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and/or visualize output models, any UML 2.0 tool with an XMI import/export
facility can be selected. Currently, there is a sufficient number of modelling tools
supporting this5, so development teams can choose their preferred one.

Although QVT is a standard supported by OMG, there is, as yet, a lack of
stable tools supporting any of its languages. We have specified transformations
in QVT for two reasons:

1. When stable tools are released, QVT-relations might be implemented di-
rectly on them;

2. In the meanwhile, QVT-relations serve as a great guide to specify how to
implement transformations in other languages.

Since AO scenario models and AO architectural models can be serialized in
XML, the problem of implementing a model transformation (QVT-relation) can
be considered as a problem of creating an XML document (target model) from
another XML document (source model). XSLT can be adopted for implementing
QVT-relations, because it offers a standard, vendor-independent and high-level
solution for transforming an XML document into another XML document. Other
solutions for parsing and creating XML documents, such as SAXP6 or DOM7,
could be used.

As model transformations become more and more complex, implementing
them by dealing with XMI representations of the models becomes more diffi-
cult and tedious to maintain. If the transformation complexity is quite high, the
use of non-standard model transformation languages, such as ATL8 or MTF9

should be considered. These languages hide the complexity of dealing with the
XMI representation of the models, providing high level constructs to manip-
ulate them. In this sense, ATL seems to be the most suitable choice, since
it is more or less similar to the QVT standard. However, if the complexity
of the transformations is manageable, the effort of learning a non-standard
language which will probably disappear in the next few years, would not be
justified.

4 Related Work

To the best of our knowledge, this is one of the initial approaches combining
MDD and AOSD to produce aspect-oriented architectures from aspect-oriented
requirements models. However, there are several works combining AOSD and
MDD at different developmental phases. As clearly stated in [16,17,18], the
main motivation for applying AOSD to MDD/MDA is to solve the problem
that MDD presents regarding the lack of specific mechanisms for the separation
of crosscutting concerns at each modelling level. If all concerns can be modelled
5 http://www.uml.org/#Links-UML2Tools
6 JSR 173 - http://www.jcp.org/en/jsr/detail?id=173
7 http://www.w3.org/DOM/
8 http://www.sciences.univ-nantes.fr/lina/atl/
9 http://www.alphaworks.ibm.com/tech/mtf
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separately at a certain level of abstraction, models of that level will become more
manageable, extensible and maintainable. An alternative approach, close to ours,
consists of applying the MDD philosophy to the development of aspect-oriented
applications, by proposing MDD/MDA generation processes to transform AO
models at different phases of the software life cycle. The AOMDF (Aspect-
Oriented Model Driven Framework) proposal [19] combines both approaches,
but it focus on the detailed design development phase.

Deriving an aspect-oriented requirements specification from aspect-oriented
architectural models has been addressed in [4,20], where the authors establish
some guidelines and heuristics about how this mapping should be performed.
However, these mapping processes are manual, since they do not cope with new
MDD techniques.

5 Conclusions and Future Work

This paper presents an initial step towards automating the generation of aspect-
oriented architectures from aspect-oriented requirements specifications. The pro-
cess discussed uses MDD and it is (semi)automatic, as the architects have to
select a specific set of transformations from among several possible choices, each
one corresponding to a candidate architecture which satisfies the functional and
the non-functional requirements. When architects have doubts regarding what
would be the best software architecture, they can generate several architecture
candidates with less effort, because architecture generation is performed auto-
matically. They can then apply an aspect-oriented software architecture analysis
approach [21].

A case study has been used to illustrate our approach. After producing an
AO requirement specification using the AORA [9,10,11] process, we identify
a set of AO scenarios, each one containing a simple (sea-level) functional
requirement and a set of non-functional requirements. Then, this model is trans-
formed into an AO architecture model. Transformations are implemented us-
ing the QVT-relational notation. Finally, an architecture for a simple scenario
is obtained. This architecture satisfies functional and non-functional require-
ments, preserves trade-offs, and it is better modularized because crosscutting
concerns are well encapsulated, avoiding scattering and tangling, by using AO
techniques.

As future work, we will investigate the conflicts, dependencies and interac-
tions between scenarios, how to deal with requirements information which can-
not be naturally mapped into an architecture and more powerful techniques for
trade-off analysis. As part of our ongoing work, we are testing different ways
of implementing transformations. Currently, simple transformations have been
implemented by means of XSLT sheets, but we are investigating the adoption of
specific transformation languages, such as ATL, which decrease the complexity
of dealing with XMI.
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Abstract. The emerging behavior of a mobile system is determined by
its software architecture (structure, dynamics, deployment), the under-
lying communication networks (topology, properties like bandwidth etc.)
and interactions undertaken by the users of the system. In order to assess
whether a mobile system fulfills its non-functional requirements like re-
sponse times or availability already at design time, the emergent behavior
of such a system can be simulated by using an architectural model of the
system and applying an simulation approach where a network model and a
user interaction model are used for providing the contextual information.

In this paper we show how such an architectural model can expressed
in our ADL Con Moto, how functional and non-functional properties of
an architecture can be modeled and how simulation of the mobile system
can be used to yield the desired properties.

1 Motivation

Modeling the architecture of mobile distributed systems using a domain-specific
architecture description language (ADL) is considered as an useful approach [3],
since the influence of mobility emphasizes the necessity to examine functional
properties of software architectures as well as non-functional properties. This
corresponds to the fact that “mobility represents a total meltdown of all stabil-
ity assumptions ... associated with distributed computing” [15], which subsumes
the problems software engineers have to face in practice when they build mobile
distributed systems. Examples for these problems are network structures, which
are no longer fixed and where nodes may come and go, communication failures
due to lost links over wireless networks, or restricted connectivity due to low
bandwidth of mobile communications links. These all have in common that they
affect the emergent non-functional properties of a system like performance, ro-
bustness, security or quality of service. Besides non-functional properties, these
intrinsic challenges of mobile systems may also affect the functional aspects of a
system, since a mobile system may have to provide extra functionality like repli-
cation facilities or caching mechanisms in order to ensure usability in situations
where the aforementioned problems occur. With our ADL Con Moto (Italian
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for “with motion”) we propose a language which enables system developers to
address these issues during the early stages of system development in order to
allow them to make appropriate design choices for the mobile system.

2 Introduction

Mobile systems show complex emergent behavior due to the combination of soft-
ware aspects with telecommunication issues and the therefore eroding stability
assumptions. In order to determine whether a mobile system fulfills non-functional
requirements like response time or availability of service, a quite complex model
of the system is needed.

1. The model must reflect the system’s physical structure, comprising physical
components (devices) and physical connectors (communication links, net-
work topology) as well as the properties of these items like bandwidth or
bandwidth distribution and computational resources, since for example a
mobile component might take more time being executed on a mobile client
compared to the execution on a server.

2. The logical structure of the system must be modeled in detail, comprising
information about software components, their dependencies and deployment
on the physical components and the possible changes in the deployment
structure.

3. The model has to reflect the dynamics of the system, i.e. the behavior of the
logical components, their interactions and the exchanged information.

4. Finally, user interaction with the system must be expressed, specifying how
many users are existing and how these users interact with the system.

These aspects show that the challenge in modeling mobile system lies in the
need to find an appropriate level of abstraction, since over-simplification will
cause meaningless analysis results; however, too detailed models are not practical
during the design process. Any modeling approach should remain as abstract and
as free from technological implementations of real mobile systems as possible;
nevertheless, realistic assumptions about the technological implementation of a
mobile system are sometimes necessary to yield feasible simulation results.

The remainder of this paper is structured as follows. First, an overview about
related work is given. Next, our approach for modeling mobile systems using Con
Moto is presented. After depicting an example system and simulation results for
this system, results are discussed.

3 Related Work

ADLs in general have been a topic of research in previous years. The necessity
for modeling non-functional properties in architecture description has been rec-
ognized by Shaw and Garlan [16]. The classification work of Medvidovic and
Taylor [8] presents a sound compilation of properties of existing ADLs. From
their work it becomes obvious, that none of the ADLs presented there is suitable
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for modeling dynamic aspects of mobile systems. In the past, this fact lead to
the development of mobile ADLs which have recently been presented. The Arch-
Ware project with its π-ADL [12] is one result of these efforts. Another mobile
ADL can be found in the works of Issarny et al. [5]. Both present an ADL for
mobile systems based on Milner’s π-calculus [9]. These two ADLs have in com-
mon that they are able to model the dynamics of mobile systems, which is due
to their theoretical foundation in the π-calculus. Although they vary in terms of
elaboration and tool support, the fundamental difference—from the perspective
of this paper—is the treatment of non-functional properties, which is absent in
the π-calculus ADL approach. Issarny et al. address non-functional properties in
their work, but the treatment of non-functional properties is bound to a global
conformance condition, which must hold for a predefined set of non-functional
properties assigned to components and connectors, and does not allow the com-
position of non-functional properties, which is novel in our approach. Besides the
design of mobile ADLs there is other research in the area of non-functional prop-
erties of software systems. This work is mainly based on the Lamport’s TLA+
language [6], which is a logic for specifying and reasoning about concurrent and
reactive systems. Zschaler [17] presents a specification of timeliness properties of
component based systems, but these as well as the underlying work of Aagedal
[1], where the integration of TLA+ approach into architectural description is
proposed, are not regarded further in our context, since the models in TLA+
lack the support for mobility. Other approaches based on Markov Chains and
process algebras (e.g. the work of Hermanns and Katoen [4]) are not promising
for out purposes, since fall short for the support for mobility.

4 Approach

In the following we describe the constituents of the Con Moto approach. All
elements in the following are necessary to derive properties like bandwidth uti-
lization, network congestion, dynamic evolvement of software deployment, trans-
action times or service availability for a system under analysis. Retrieving these
properties during simulation is quite straight-forward if an appropriate repre-
sentation of the mobile system and its usage is chosen.

Figure 1 shows an overview about the different elements of a Con Moto model
and the simulation environment: The core architectural model is made from a
behavioral and a structural specification of the system. This is due to the fact
that in addition to the obviously existing structural model of mobile systems
their behavior influences evolvment of the architecture and thus has to be mod-
eled as well. Together with instantiation information, the simulator can create
instances of the architectural model for simulation purposes. During simulation,
communication network structures will be provided for the system as they are
modeled in the network model. By applying user interactions by instantiating
the Usage Patterns, the modeled system can evolve in the simulator and the eval-
uation results can be calculated. In the following, we will present the different
aspects of this model and exemplify their use by showing an example.
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out(serv, info);
rep in(proc, data) {
   ...
}

Fig. 1. Con Moto constituents

4.1 Behavioral Model

Mobile systems have to react to external conditions; the dynamically changing
configuration is inherent to mobile systems. Therefore it makes sense to base
architectural modeling on a behavioral model, assuming that any structural as-
pects like components or connectors can be seen as constraints for the behavioral
model of the system.

Like other ADLs for mobile systems [13], we build our behavioral model on
π-calculus. π-Calculus [10] is a process algebra with explicit support for mobility.
It is based on communication primitives which allow the exchange of processes
or communication nodes among processes. However, π-calculus in its full beauty
offers features which are not necessary for our approach. Since we build a simula-
tion environment, only constructs which reflect typical programming situations
are used; others are discarded for the sake of simplicity. Such a restriction has
also been done in the work of Pierce and Turner: with Pict [14] they present a
π-calculus-based programming language, where they also omit some features of
core-π-calculus, slightly reducing expressive power, but removing nondetermin-
ism and making it appropriate for programmers.

As shown in Table 1, Con Moto provides different constructs for modeling
processes: The output action allows the communication of an object over a so-
called Pin in Con Moto (in π-calculus, the pins are called names). Other than in
Pict, we only allow the synchronous output like in π-calculus, since we decouple
input and output by means of the connectors.

Similar to Pict, we restrict π-calculus’s replication prefix to input statements.
Hence we do not allow the replication of processes; nevertheless, new processes
can be created together with input operations, which is a quite realistic assump-
tion, as it allows easily the creation of processes which respond to input data.
The choice operator as a source for nondeterminism is omitted, but a if/then/else
construct is added.
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Table 1. Notation

π-Calculus Con Moto
xy out(x,y) synchronous output
x(y) in(x,y) input
e1 | e2 par e1, e2 parallel composition
(νx)e new x; e channel creation
!x(y).e rep in(x,y) e replicated input

Modeling behavior includes messages that will be exchanged by processes
will be implemented in Con Moto. Usually, abstractions of real-world messages
are used in such situations; only that portion of a message is modeled, which is
absolutely necessary to reflect the message’s impact on control flow and behavior
of the system. In Con Moto, we also specify meta-information about the size of
messages, because in simulation situation the real-world size of such objects is
necessary for simulation, hence supporting non-functional properties, since these
meta information can be used e.g. by the network part of the model to calculate
transmission times etc..

4.2 Structural Model

Having identified the processes as basis for the model of a mobile system, struc-
tural information has to be added since a solely behavioral view of the system
would be unappropriate. Therefore, a structural model of the mobile system is
set up. The challenges are twofold: On the one hand we now need an abstraction
which allows us to set up a decomposition of a mobile system and on the other
hand we need some decision on what the smallest entity of mobile code is.

Structural aspects have been considered in all ADLs so far. It is commonly
accepted that an structural model comprises components, connectors and config-
urations. The components are the locus computandi : calculations are preformed
on the components, whereas connectors model the communication relationships
among components. Configuration can be seen as the state of a system and
represents all interconnections between components by means of connectors.

Components. For modeling mobile systems we have to clarify the notion of
components and connectors. In Con Moto, we distinguish between physical com-
ponents and logical components. Physical components are devices like PDAs or
servers, are constrained in their resources (memory size, CPU power etc.) and
act as execution environment for logical components. Logical components model
software components. They do not have resource constraints in our understand-
ing and can occur as components and component instances. Instances of logical
components have a state. In order to allow communication, physical as well as
logical components have ports, which are aggregations of ports and pins, which
finally allow the interconnected processes to communicate.
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Connectors. In Con Moto there are two different kinds of connectors, namely
physical connectors and logical connectors. Logical connectors are used for com-
munication between logical components and are ideal: they have an unbounded
bandwidth and null latency. In contrast, physical connectors connect physical
components and these are not ideal, having a limited bandwidth and a latency
time greater than zero.

Logical connectors can be embedded in physical connectors. This is necessary,
if logical components on different physical components shall communicate. The
logical connector between the two connected logical components is embedded in
the physical connector between the two physical components, which act as the
execution environments for the two logical components.

Mobility. Components are the smallest entity of mobile code in Con Moto. We
assume that the component should be the element which is mobile. We do not
take the extreme view of Mascolo et al. that every line of code is potentially
mobile [7], because we want to model systems where this assumption would be
unrealistic. We allow logical components as well as logical component instances
to be communicated among processes. The same is true for logical connectors.
This allows us to cover all kinds of mobility which are shown in the work of
Fuggetta et al. [2]:

– Client-server, where a data file f is transferred from a node nu to a node
np. A program p executes on node np and the results are transferred to node
nu. The client on node nu controls the operation. This is the situation as
shown in our example below.

– Remote evaluation, where a program p is transferred from node nu to node
np, and executed there. Results are returned to nu. The client controls the
operation. Using Con Moto, this can be expressed by sending a logical com-
ponent (which is the program p) to the computing node.

– Code-on-demand. Data file f and program p are transferred to nu and exe-
cutes there. The user demanding the code controls the operation.

– Mobile agents. Program p is transferred to nf and executes there. Results
are transferred to nu. The agent itself controls the operation.

Configuration. It is obvious that configuration of mobile systems evolve over
time, since components can connect and disconnect to other components due
to their behavior. For mobile systems, however, developers usually express con-
straints on the possible configurations which might occur. By means of deploy-
ment diagrams like in UML 2.0 [11], developers of systems can express where
components are deployed, hence which logical components are placed on which
physical components. However, to be able to express constraints for configu-
ration evolvement, this is not sufficient. Besides expressing an initial state of
the deployment, there should be the possibility of expressing where components
may be deployed during runtime, because then and only then runtime checks
are possible whether the configuration of an mobile system evolves correctly.
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Architectural Connection. Architectural connection, hence the way how
components are connected to each other by means of connectors, is a crucial
aspect for mobile systems, since here all imponderabilities of mobility arise. For
realistic systems, there may be many and complex dependencies among logi-
cal components leading to many logical connections. Physical connections are
fewer: usually only a small number of physical connectors from among physical
components.

In our system, logical connections must be embedded in physical connections;
logical connections hence cannot be ideal–there is no synchronicity or parallelism.

In order to allow different communication protocols like synchronous calls (e.g.
Remote Procedure Calls, Service Invocation) and asynchronous communication
(events), our approach using pins where processes can exchange information is
sufficient. Nevertheless, when a system is modeled on a quite high-level basis,
there is the requirement for provides– and uses–interfaces and for services.

In order to provide a general basis, we introduce in Con Moto the possibility of
ports which can consist of other ports and pins. By expressing bind rules, high-
level ports can be connected, and by resolving the port hierarchy and subsequent
application of binding rules various pins will be connected.

5 Example System

For illustration purposes we will use a simple example system. This example
system is a mobile client/server system. The users of the mobile system carry
mobile devices, which are connected to a server via mobile communication links;
in our example, we provide either an GPRS link, which has a rather low band-
width, and an UMTS (3G) link, which has a higher bandwidth. There are three
software components in the example system: a user interface component (UI) is
deployed on the mobile devices; a database component (DATA) is deployed on
the server. The actual business logic of our system is captured in the component
BUSINESS, which is a mobile component and thus can be either deployed on
the server or on the mobile devices. When the user invokes a service of the UI
component, a request is sent to the BUSINESS component (either on the mobile
device or on the server). This component itself invokes a service of the DATA
component before it returns its calculation results to the UI component. The
structure of the example system is shown in Figure 2.

5.1 Modeling in Con Moto

At the end of this paper, the Con Moto code, which is actually a document in an
XML dialect, of the described example is shown. The two hardware components
MOBILE and SERVER are declared in the section <physical-components>. For
both, their CPU power is set and the possible connections to the network, which
ends up in physical connectors during simulation. The <network-access> for
MOBILE allows connection either to UMTS or GPRS network, the SERVER can
only connect to the WAN.
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Fig. 2. Example system

The actual network model is given in the section <network-config>. Here,
the network types UMTS, GPRS and WAN are defined. For all these network
types, the bandwidth is specified (10.0, 2.0 and 1000.0 kBit/s). Latency times
are not given. An additional network node named backbone is also given. All
network connections via UMTS, GPRS and WAN automatically connect to this
backbone, allowing to address any device from any other device which is con-
nected to the network, i.e. physical components can communicate when they
have connected to the network–which is a model similar to the internet. For
UMTS and GPRS nodes in the network, we define that these nodes are equally
distributed, which is necessary information if during simulation the number of
network nodes is increased.

By introducing ports and port hierarchies in the section <connection> it is
possible to have complex ports which act as an method provider interface or
method invoker interface. By specifying macros for ports a certain behavior can
be implemented in the port definition and easily reused in the actual process
definition. In the example, the invokation of a service is modeled as a macro in
port methodInvoker. Since port methodsProvider has an extendable process
which provides the counterpart for this macro, method invocation, waiting for
execution and returning of a method result can be specified in π-calculus using
in and out command on pins. In the processes in definition of the logical compo-
nents, however, these macros and processes can be reused, yielding a code which
is structurally equivalent to code in an imperative programming environment.

The logical components DATA, BUSINESS and UI are specified in the section
logical-components. For the components BUSINESS and UI startup processes
are defined, which execute when the components are deployed. During these
processes, lookups of the components (BUSINESS in case of UI and DATA in case
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of BUSINESS) are performed and the logical connections to the components are
established.

The processes of the methodProvider ports are extended for implementing
services on components, such that the action which is to be undertaken after a
service has been called is implemented in the processes on the logical components.
On DATA the service getData sets a size of the return package of 100 bytes and
blocks the CPU for 100ms. This return package size is used by the simulator to
calculate the transmission time through the network. On BUSINESS the service
getInfo makes a call to getData before a return package size of 5000 bytes is
set and the CPU is blocked for 500ms.

5.2 Simulation

We have simulated the example system described here using our Con Moto
simulator and have varied the users (and respectively, the MOBILE devices) from
10 to 150. The users use the system as modeled by a Poisson-process with an
arrival rate of 10 per hour. The simulations have been performed for an time
resolution of 1ms, and each simulation took not more than approximately 10
seconds on a 2 GHz Pentium PC, using a prototypical implementation of the
simulator written in Java. Figure 3 shows the simulations results, meaning that
starting with 90 users, the system gets increasingly congested and the response
times of the services at the UI component increase drastically. Differences can
be seen in the response times of GPRS and UMTS, which is due to the higher
bandwidth of UMTS compared to GPRS.
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Fig. 3. Simulation result

6 Discussion

In this paper we have described how mobile systems can be modeled using the
Con Moto approach with the goal of determining quality-of-service parameters
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during design time by means of an simulation approach. By basing an architec-
tural description on π-calculus and making a clear distinction between logical
and physical components and connectors, modeling of mobile systems on a quite
high level is possible with feasible effort. First simulation results on an toy ex-
ample system show that the general approach is promising. Nevertheless, further
formalization of the approach is necessary and subject to ongoing work.

Areas of further work are the discussion of models for physical communica-
tion channels. So far, we assume just constant bandwidth and latency time, but
more complex models of modeling transmission characteristics of communication
channels and–especially–availability characteristics of these channels are neces-
sary for realistic simulation results. The area of user interaction with a mobile
system is also part of further investigation, since not only the stochastic processes
for user behavior need careful consideration–also the question how to derive user
interaction patterns suitable from simulation from business process models is in-
teresting. Finally, evaluation of the approach by comparing simulation results to
real-world measurements is a future task.
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Example Code

<system>
<connection>
<port-role name="in" />
<port-role name="out" />

<port-role name="methodsInvoker" extends-role="out" >
<ports name="methodInvoker" />

</port-role>

<port-role name="methodInvoker" >
<pin name="call" />
<pin name="return" />

<macro>
<parameter name="argument" />
<result name="result" />
<pi>

out(call, argument);
in(return, result);

</pi>
</macro>

</port-role>

<port-role name="methodsProvider" extends-role="in" >
<ports name="methodProvider" />

</port-role>

<port-role name="methodProvider" >
<pin name="invoke" />
<pin name="response" />

<process>
<pi>

object arg, result;
rep in(invoke, arg) {
<extension-point />
out(response, result);



186 C. Schäfer

}
</pi>

</process>
</port-role>

<bind-rule>
<scope>

<from>methodsInvoker</from>
<to>methodsProvider</to>

</scope>
<bind>

<from>methodsInvoker.methodInvoker</from>
<to>methodsProvider.methodProvider</to>

</bind>
</bind-rule>

<bind-rule>
<scope>

<from>methodInvoker</from>
<to>methodProvider</to>

</scope>
<bind>

<from>methodInvoker.call</from>
<to>methodProvider.invoke</to>

</bind>
<bind>

<from>methodInvoker.response</from>
<to>methodProvider.return</to>

</bind>
</bind-rule>

</connection>

<network-config>
<passive-node name="backbone" />

<active-node name="UMTS">
<multiplicity>0.5</multiplicity>
<auto-link>

<node>backbone</node>
<bandwidth>10.0</bandwidth>

</auto-link>
</active-node>

<active-node name="GPRS">
<multiplicity>0.5</multiplicity>
<auto-link>

<node>backbone</node>
<bandwidth>2.0</bandwidth>

</auto-link>
</active-node>

<active-node name="WAN">
<multiplicity>unbounded</multiplicity>
<auto-link>

<node>backbone</node>
<bandwidth>1000.0</bandwidth>

</auto-link>
</active-node>

</network-config>

<logical-components>
<component name="DATA">

<port type="methodProvider" name="getData">
<extend-process>
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<pi>
result.size = 100;
useCpu(100);

</pi>
</extend-process>

</port>
</component>

<component name="BUSINESS">
<size>200</size>

<start-process>
<pi>

PhysComp remoteHW = lookupPhysComp("SERVER");
LogComp remoteSW = remoteHW.lookupLogComp("DATA");
connect(this.getData, remoteSW.getData);

</pi>
</start-process>

<port type="methodInvoker" name="getData" />

<port type="methodProvider" name="getInfo" >
<extend-process>

<pi>
object res;
object par;
res = getData(par);
result.size = 5000;
useCpu(500);

</pi>
</extend-process>

</port>
</component>

<component name="UI">
<port type="methodInvoker" name="getInfo" />

<start-process>
<pi>

PhysComp remoteHW = lookupPhysComp("SERVER");
LogComp remoteSW = remoteHW.lookupLogComp("BUSINESS");
connect(this.getInfo, remoteSW.getInfo);

</pi>
</start-process>

<pin name="action">
<process>

<pi>
object dummy;
rep in(action, dummy) { getInfo(dummy); }

</pi>
</process>

</pin>
</component>

</logical-components>

<physical-components>
<component name="MOBILE">

<memory>unbounded</memory>
<cpu>10</cpu>

<network-access>
<xor>

<type>UMTS</type>
<type>GPRS</type>

</xor>
</network-access>
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<logical-component-deployment>
<name>UI</name>
<instance>on-start</instance>

</logical-component-deployment>

<logical-component-deployment>
<name>BUSINESS</name>
<instance>client-controlled</instance>

</logical-component-deployment>

</component>

<component name="SERVER">
<memory>unbounded</memory>
<cpu>1000</cpu>

<network-access>
<type>WAN</type>

</network-access>

<logical-component-deployment>
<name>BUSINESS</name>
<instance>on-start</instance>

</logical-component-deployment>

<logical-component-deployment>
<name>DATA</name>
<instance>on-start</instance>

</logical-component-deployment>
</component>

</physical-components>

</system>
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Abstract. In this paper, we present a pattern-based software development
method that preserves usability and security quality characteristics using a
role-driven mapping of requirements analysis documents to architectural design
artifacts. The quality characteristics usability and security are captured using spe-
cialized problem frames, which are patterns that serve to structure, character-
ize, and analyze a given software development problem. Each problem frame is
equipped with a set of appropriate architectural styles and design patterns reflect-
ing usability and security aspects. Instances of these architectural patterns consti-
tute solutions of the initially given software development problem. We illustrate
our approach by the example of a chat system.

1 Introduction

Besides the functional aspects of a software system, a software engineer must face qual-
ity characteristics such as security and usability. In general, all software systems have
quality requirements, even if they are often acquired insufficiently and less considered
compared to functional aspects during the software development life cycle. Causing
serious damage to the economy (e.g., a stock market system, market share, and sales
market of software product), endangering personal privacy or threatening people’s life
(e.g., a medical chip card system, traffic accidents, or airplane disasters) can be possible
consequences if software neglects usability needs or security demands. Many security-
critical software systems fail because their designers protected the wrong things, or
protect the right things but in the wrong way. Inadequate usability is a reason for user
activities causing undesired and dangerous software system effects. Thus, adequate se-
curity and usability engineering requires to have an explicit understanding of the secu-
rity and usability requirements and to provide effective techniques to accomplish them.

Knowing that building systems with security and usability demands is a highly sen-
sitive process, it is important to reuse the experience of commonly encountered chal-
lenges in these fields. This idea of using patterns has proved to be of value in software
engineering for years, and it is also a promising approach in security and usability en-
gineering. Patterns are a means to reuse software development knowledge on different
levels of abstraction. They classify sets of software development problems or solutions
that share the same structure or behavior. Patterns are defined for different activities
at different stages of the software development lifecycle. Problem frames [9] are pat-
terns that classify software development problems. Architectural styles are patterns that
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characterize software architectures [2]. In Software Engineering design patterns [6] are
commonly used for finer-grained software design and they are as well used for coarse-
grained architectural design.

Using patterns, we can hope to construct software in a systematic way, making use
of a body of accumulated knowledge, instead of starting from scratch each time. The
problem frames defined by Jackson [9] cover a large number of software development
problems, because they are quite general in nature. To support software development in
more specific areas such as security and usability engineering, however, HCI-oriented
problem frames (HCIFrames) [18] have been developed for usability engineering, while
security problem frames and concretized security problem frames [8] have been devel-
oped for security engineering.

In this paper, we show how to use the problem frames approach in the area of security
and usability engineering to develop architectures. We propose a pattern-based method
developed for preserving security and usability characteristics from requirements anal-
ysis to architectural design. Section 2 gives an overview of this method. Initially, a
software engineer must understand the context of a software development problem and
decompose the overall problem situation into smaller subproblems (Sections 2.1 and
2.2). For this purpose, we apply problem frames defined by Jackson [9] and special-
ized problem frames for security and usability demands (Sect. 3). To preserve the qual-
ity characteristics identified and collected using specialized problem frames, we equip
each problem frame with corresponding architectural patterns. Then, entities, facets,
and their interactions in the problem description represented within the instantiated
problem frames are mapped by a role-driven process to corresponding components and
classes of the solution description (Sect. 4).

Additionally, security and usability problem frames can be systematically trans-
formed into notations of the Unified Modeling Language (UML) [17]. This increases
their value in later software development phases. Thus, we obtain a software design
based on commonly known architectural patterns and achieve a seamless transition
from requirements analysis to software design, preserving quality characteristics. We
illustrate our approach by developing a chat system, and conclude our in Sect. 5.

2 A Pattern-Based Software Development Approach

We propose a pattern-based software development process consisting of four steps,
which will be described in detail in the following sections:

1. Understand the problem situation (Sect. 2.1)
2. Decompose overall problem into simple subproblems (Sect. 2.2)
3. Fit subproblems to problem frames (Sect. 3.1)

(a) Identify quality characteristics (Sect. 3.2)
(b) Classify subproblems according to quality demands (Sect. 3.3)

4. Instantiate corresponding architectural and design patterns (Sect. 4)

We illustrate our approach by the pattern-based development of a chat application,
starting from the requirements analysis and leading to the derivation of software design
artifacts.
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The starting point for the analysis of our software development project (the system
mission) can be outlined in one simple sentence:

“A text-message-based communication platform shall be developed
which allows multi-user communication via private I/O-devices.”

Requirements describe the application environment when our developed software
is in operation. They represent desired properties of the problem domain. In contrast,
domain knowledge describes given properties of the environment (facts) and important
environmental conditions (assumptions). Desired and given properties of the problem
domain are summarized by a context diagram. It describes the overall problem situation,
which we want to improve through our software product.

In Tab. 1 requirements R1 - R10 and domain knowledge (consisting of some facts
F1 - F2 and assumptions A1 - A2) are collected to elaborate our system mission.

Table 1. Requirements and domain knowledge for the chat application

R1 Users can phrase text-messages, which are shown on their private graphical displays.
R2 Users send their phrased text-messages to the chat, which are stored in the public

course of the chat in their correct temporal order.
R3 The course of the chat is shown to the users on their private graphical displays.
R4 Sending text-messages changes the presentation of the course of the chat on the user’s

graphical displays.
R5 Each text-message is related to its respective user, so that the originator of a message

can be identified.
R6 All users are stored in a list of participants, which is visible to every chat user.
R7 To each course of the chat a corresponding list of participants is shown.
R8 Various chat sessions considering different subjects of discussion are offered to the users.
R9 All available chat sessions are shown to the users.
R10 Users can switch among different chat sessions.

F1 Users can only understand the course of the chat, if the text-messages are presented
in their correct temporal order (First In - First Out (FIFO)).

F2 If more than two users participate in the chat, it is required to relate messages to their
originators in order to maintain a comprehensible chat communication.

A1 Users will follow the course of the chat on their private graphical display.
A2 Several users will participate in the chat.

2.1 Understand the Problem Situation

In the terminology of Jackson [9], the software development goal is to build a machine
that changes the environment in a specified way. Thus, an intensive investigation of
the given and desired properties of the problem environment is mandatory (cf. Tab. 1).
This requirements and domain analysis process is accompanied using a context diagram
that represents the interactions between the machine (software to be developed) and its
application environment (see Fig. 1). It shows where in the environment the software
development problem is located.
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Fig. 1. Context diagram of the chat application

A context diagram consists of domains (rectangles) and sets of shared phenomena
(labeled links between rectangles), which are derived from the requirements and do-
main knowledge (cf. Tab. 1). Domains correspond to entities or facets of the real world,
whereas the machine domain (rectangle with two vertical lines) represents the software
product which ought to be developed, in our case: the chat application itself. Hence,
there is exactly one machine domain contained in a context diagram (chat application
in the center of Fig. 1). Any arbitrary number of additional domains can be part of the
overall problem situation. They can be further classified. Data types, data structures,
database schemata, or other representations of information, that need to be built and
introduced by the software developer, are denoted by designed domains (rectangle with
only one vertical line), for instance text-message. Given domains (simple rectangles)
are concepts of the real world, which already exist and do not need to be constructed.
They are relevant for the problem description and its solution, and need to be considered
in the context diagram, too, for instance display.

Shared phenomena are operations, actions, events, or states which are common to
two domains. For instance, the machine domain chat application shares the phenomenon
AvailableSessions (which is derived from requirement R8) with the designed domain
sessions, cf. interface j in Fig. 1. Context diagram, requirements, and domain knowl-
edge are created and collected iteratively to cover the overall problem situation and
help to understand the given and desired interactions of environment and machine.
Requirements and domain knowledge that are found through software analysis are
expressed by domains and shared phenomena in the context diagram (cf. Tab. 1 and
Fig. 1).
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2.2 Decompose Overall Problem into Simple Subproblems

As the context diagram in Fig. 1 illustrates, it would become difficult to start a struc-
tured software development process based on such a complex problem situation. The
problem needs to be split into simple subproblems for which known solution methods
are available. This is achieved by decomposing the context diagram with the help of the
requirements by means of knowledge-based projection into smaller subproblems. For
each subproblem, all other subproblems are assumed as already solved (separation of
concerns). The subproblems are derived from the context diagram using operators for
problem decomposition (e.g., by combining domains or omitting shared phenomena).
Those simple and independent subproblems are represented by instantiated problem
frames in the following.

3 Patterns for Software Development Problems

Problem frames [9] are patterns to structure and classify software development prob-
lems. Each problem frame is represented by a frame diagram, which relates a set of
requirements via several problem domains to the machine domain, using shared phe-
nomena. The outcome is a fixed and abstract problem structure.

A problem frame needs to be instantiated by concrete problem content, taken out
of the context diagram with the help of requirements. An instance of a problem frame
shows the relation of the respective requirements to the particular domains of the cor-
responding problem context, which are relevant to reflect the requirements.

Requirements describe desired properties of the environment after the machine is in
action. In contrast, shared phenomena at the interface of machine and environment are
used to formulate the specifications, which are descriptions that are sufficient to develop
the machine.

Problem frames support the creation of adequate software specifications (e.g., rep-
resented using UML sequence diagrams) by elaborating the essential interactions of
environment and machine. The specification constitutes the basis for the development
of the machine. It is used for software design, coding, testing, and acceptance of the
final software product.

Sometimes it is necessary to compose and create new problem frames to be able to
detail and classify a certain software development problem more precisely. Therefore,
we merged and extended the basic problem frames introduced by Jackson where appli-
cable. Some selected frame instances of the chat application example are presented to
exemplify our pattern-based software development approach. In the following, we show
the abstract frame diagram elements (in italic style) together with the concrete problem
pattern instance (content of a domain and corresponding shared phenomena).

3.1 Fit Subproblems to Problem Frames

Figure 2 shows the instance of the problem frame ”commanded model display”. Its
frame diagram is a variant of the ”commanded display” frame developed by Jackson
[9] and an enhancement of the ”query” frame developed by Choppy and Heisel [3]. The
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Fig. 2. Instance of the problem frame ”commanded model display”

problem frame ”commanded model display” can be composed out of the basic problem
frames ”commanded behaviour” and ”model display”, too.

The problem frame ”commanded model display” in Fig. 2 describes the following
problem situation: If the operator (user) sends a command (phenomenon signUpChat-
Session of interface E3) to the machine (chat application), it will be executed by the
machine and yields some according effects. Here, the state of the model (list of partic-
ipants) is shown on a display (display) using the phenomenon showPL of the interface
E2. In addition, the actual state of the model (public course of the chat) is shown, Fig. 2.

To extract this subproblem from the overall problem, we applied two decomposi-
tion operators. We combine domains, e.g., list of participants (listOfPart.) and course of
the chat (CoC). Additionally, we omit shared phenomena, e.g., registerUserID at the
interface Y7, because it is not relevant for this subproblem.

Compared to the context diagram in Fig. 1, this frame instance contains only those
domains and shared phenomena, which are relevant to fulfill a subset of all requirements
namely R3, R4, R7, and R10 (see Tab. 1). The oval on the right-hand side of the frame
diagram contains the requirements which are mapped to according parts of the problem
context (dashed lines to the domains). The left-hand side of the frame diagram relates
the corresponding problem context to the machine. Thus, an instantiated problem frame
that is read from right to left indicates the translation of natural-language requirements
(in the oval) via the problem context (domains) into technical descriptions which are
sufficient to build the machine. Phenomena at the interface of environment and machine
can be used to derive specifications. The arrowhead pointing to a domain constrains
the domain’s behavior or characteristics as stated in the requirements. For example, the
requirementsR3 and R7 in our application example describe a restriction on the domain
display.

Each domain in a frame diagram is marked by a character such as X, C, or B to
distinguish the different domain types. The designed domain text message is a lexical
domain (marked X) which has symbolic phenomena associated to it. The display is a
causal domain (marked C) which does not need to be built but can be controlled using
phenomena, too. The user is represented by a biddable domain (marked B). His or her
behavior cannot be predicted or controlled by the machine. Indeed, the user can make
inputs to the software, but cannot be forced by requirements to act in a predetermined
way. However, assumptions as part of the domain knowledge are used to make explicit
the expected user behavior (cf. Tab. 1).
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Symbolic values are indicated by Y, events are annotated with E, and C indicates
causal phenomena. The characters are numbered for indexing the shared phenomena.
The exclamation mark (!) specifies which domain controls a shared phenomenon. How-
ever, this does not imply control flow. For example, LC!Y7 in Fig. 2 in fact expresses
that the merged domain list of participants & course of the chat (abbreviated LC) is
responsible for administrating the symbolic phenomena in the set Y7. However, the
chat application determines when to query the required information. All subproblems
contain exactly one machine domain (cf. Fig. 2, Fig. 3, Fig. 4, and Fig. 6). In con-
trast to Jackson who gives different names to each machine domain, we prefer iden-
tical names (here: chat application) to indicate that they constitute parts of a common
machine.

3.2 Identify Quality Characteristics

The problem frames approach and more common software development notations such
as UML share the same deficiency: they do not offer adequate notations to record soft-
ware quality characteristic. Although it is commonly accepted that software quality is
mainly reflected by non-functional properties (soft goals) [12], only a few approaches
exist to elicitate and document them systematically [4]. Software quality characteristics
are difficult to grasp, and its hard to maintain them during the software life cycle appro-
priately. One reason can be that software quality actually is seen as a global attribute of
the overall software product, which cannot be related explicitly to local functionality of
parts of the software. The idea that software quality is related to the system as a whole
rather than to individual system features can be found likewise in requirements engi-
neering [15] and in architectural design [14]. In our approach, we identify and assign
quality characteristics to a local set of software functionality. To do so we use problem
frames to represent the local behavior and annotate relevant local quality characteris-
tics to them. We extend Jackson’s problem frames approach by explicitly annotating
software quality characteristics in frame diagrams.

3.3 Classify Subproblems According to Quality Demands

Based on our chat application example, we show how the basic behavior of a system
can be expressed using problem frames and how quality characteristics such as usability
and security can be considered by detailing the core software features with the help of
special usability and security problem frames.

Usability Engineering Using Problem Frames. Usability Engineering contributes to
the improvement of human-computer interaction (HCI). It takes psychological aspects
into consideration to support the design of software and user interfaces that are easy
to use. Although various usability techniques (guidelines, standards, and patterns) ex-
ist, they lack of systematical applicability, because often no technical description is
available. Some authors of HCI design patterns [16,13] refuse a technical detailing of
patterns to keep them comprehensible for non-experts. In contrast, other authors [5]
transformed HCI design patterns into UML, but do not offer a process of how and
when to apply them exactly. There is an urgent need to integrate usability aspects into
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Fig. 3. Instance of the HCIFrame ”commanded workpiece display”

the software development process. To bridge the gap between informal descriptions
of HCI design patterns and the wish to apply usability concerns systematically during
the software development process, the problem descriptions of HCI design patterns are
used in requirements analysis using HCI-oriented problem frames (HCIFrames)[18].
HCIFrames allow to identify and express usability demands already in the early soft-
ware development phases. As we will show, usability problems which can be elicited
and documented in software analysis can be considered in software design more easily
and finally lead to a software product which realizes software quality requirements in a
traceable way.

Instantiating HCIFrames. Figures 3 and 4 show selected subproblems that describe
different aspects of the given problem situation. They already consider usability re-
quirements. The problem frame ”commanded workpiece display” in Fig. 3 which is
a composite of the basic problem frames ”simple workpiece” and ”commanded be-
haviour” from Jackson is extended by HCI-related problem descriptions taken from the
HCI design patterns of Tidwell [16], namely input hints: ”place a sentence to explain
what is required” (workpiece meta information) and input prompt: ”prefills telling the
user what to do” (workpiece default). The two new domains default text-message (in-
dicating that a initial text-message should have a default value like ”Hello World!”)
and description of text-message (requiring a label or explanation of what kind of in-
put is expected from the user, for instance ”type your chat message here:”) which are
related to the workpiece text-message. A workpiece is a lexical domain that can be
altered.

In fact, a software development problem that fits into a problem frame containing a
workpiece can explicitly describe quality characteristics like in this example for usabil-
ity, if the workpiece domain is extended by workpiece meta information and a workpiece
default which support self-explanatory user interfaces.

The problem frame ”commanded transformation” in Fig. 4 consists of the basic
frames ”commanded behaviour” and ”transformation”. It is extended by the problem
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domain transformation display, which reflects the problem description of the HCI de-
sign pattern progress: ”tell user whether or not an operation is still performed and how
long it will take” from van Welie [10]. The meaning of this HCIFrame is that when-
ever there is a transformation in progress (machine internal working process repre-
sented by a transformation problem frame) this is indicated to the user. For instance,
in the following software design we decide to realize this transformation informa-
tion by a progress bar or an information like ”sending your text-message” or ”please
wait...operation in process” on a transformation display (display). In software anal-
ysis, we are only interested in identifying this usability requirement, whereas in soft-
ware design, we will decide on its implementation. Figures 3 and 4 show that
software quality aspects such as usability can be expressed with the help of HCIFrames.
After we have introduced problem frames to express security requirements, we show
how the final instantiated problem frames for our chat application example can be
mapped to patterns of software architecture and design, preserving all specified quality
characteristics.

Security Engineering Using Problem Frames. To meet the special demands of soft-
ware development problems occurring in the area of security engineering, we are devel-
oping a catalog of security problem frames considering different security problems [8],
[7]. Security problem frames consider security requirements. The goal is constructing a
machine that fulfills the security requirements. The security problem frames strictly re-
fer to the problems concerning security. They do not anticipate a solution. For example,
we may require the confidential transmission of data without being obliged to mention
encryption, which is a means to achieve confidentiality. Solving a security problem is
achieved by choosing generic security mechanisms (e.g., encryption to keep data confi-
dential). For this purpose we are developing a catalog of concretized security problem
frames [8], [7]. They consider concretized security requirements, which take the func-
tional aspects of a security problem into account. For each of the developed security
problem frames there is at least one concretized counterpart providing a generic secu-
rity mechanism. The security problem frame and its concretized counterpart used in this
paper serve to treat the security requirement of anonymity and the concretized security
requirement of pseudonymity, respectively.
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Instantiating Security Problem Frames. We now extend the requirements to be con-
sidered when developing the chat system by the security requirement anonymity of the
chat participants. Anonymity of users and other systems is an important issue in many
security-critical systems. Anonymity is the state of being not identifiable within a set of
subjects [11].

Anonymity can be considered from different views, e.g., anonymity on the level
of the graphical user interface (GUI), and anonymity on the level of the network. In
this paper, we focus on GUI anonymity. Figure 5 depicts the security problem dia-
gram for GUI anonymity. It is an instance of the underlying security problem frame for
anonymity, which is not depicted separately in this paper.

The problem diagram in Fig. 5 contains the machine domain chat application. The
lexical domain text message & Id represents the sent text message including the real id
of the sender represented by the biddable domain anonymous user. The text message
is received by the other chat participants represented by the biddable domain receiving
user. Both, anonymous user and receiving user are specializations of the domain user
(see Fig. 1). The security requirement SR states that the receiver of the text message
should not know sender’s real Id.

Resolve conflicting Quality Characteristics. The chat application’s functional require-
ments and quality characteristics are now identified and described. In order to be able
to derive a specification, we must ensure that the elicited requirements do not contain
any conflicts. When checking for conflicts it becomes apparent that the requirement R5
(cf. 1) “Each text-message is related to its respective user so that the originator of a mes-
sage can be identified.” is at odds with the required SR (cf. 5) “anonymity of the chat
participants”. A convincing compromise to resolve this conflict can be found by negoti-
ating both requirements. As a result, we decide to choose a generic security mechanism
that uses pseudonyms [11]. With this approach, the text messages can be related to their
originators (represented by pseudonyms), and at the same time the originators’ identity
is kept confidential.

Instantiating Concretized Security Problem Frames. In the course of transforming the
security requirement for GUI anonymity into a concretized security requirement, the
domain text message & nick name (see Fig. 6) is introduced.
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The domain part nickname represents a pseudonym. A pseudonym is a string which,
to be meaningful in a certain context, is

– unique as ID
– suitable to be used to authenticate the holder and his/her “items of interest” (e.g.,

messages and network packets)

The holder of a pseudonym must be linked to the pseudonym itself. Then, the links
must be kept confidential in order to achieve anonymity. In Fig. 6 the links are admin-
istrated by the machine domain chat application. Therefore, we may assume that chat
application will keep the links confidential. The concretized security requirement CSR
in Fig. 6 constrains the domain text message & nickname. The domain part nickname
should be known to the receiving user, while the domain part Id should be unknown
to them.

4 Role-Driven Mapping of Requirements Analysis Documents to
Architectural Design Artifacts

Whatever a pattern is used for (in software analysis or design, in security or usability
engineering), it generally assigns roles to entities or facets and their interaction in an
abstract fashion. Patterns need to be instantiated to specify who take a certain role and
to bring them into action for a concrete situation. We make use of this observation to
match patterns used in requirements analysis with patterns of software architecture and
design.

Starting with the problem frame instance in Fig. 2, we identify the different roles
taken by the respective domains and shared phenomena. Three roles can easily iden-
tified from the problem frame diagram, namely operator (user), display (display) and
model (list of participants & course of the chat). Now, we search for a corresponding
architectural style or design pattern reflecting these roles.

Figure 7 shows the architectural style ”Model-View-Controller” [2] in its upper half.
The classes of this architectural style can be regarded as descriptions of the roles that ob-
jects of these classes can take. Accordingly, we map the roles model, display, operator
of our problem frame to the classes Model, View, Controller of the architectural style.
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Fig. 7. Instantiated architectural style ”Model-View-Controller” for the chat application

This mapping is appropriate, because the domain roles of the problem frame and the
roles of the corresponding classes in the architectural style are comparable. Since the
problem frame in Fig. 2 is instantiated, we can reuse its concrete domains and shared
phenomena to instantiate the chosen architectural style, too. The lower half of Fig. 7
shows how the domains and shared phenomena are mapped to the respective classes of
”Model-View-Controller” via an inheritance relation, which can be used in the UML to
express assignment of roles. The chat application becomes the controller, because the
machine operates according to the user commands. For the given problem situation in
Fig. 2, we found one possible design which satisfies its requirements R3, R4, R7, and
R10 for the chat application example.

To illustrate how quality characteristics can be preserved from requirements engi-
neering to software design we consider the HCIFrame instance of ”commanded work-
piece display” in Fig. 3 in detail. Similar to the previous problem frame instance of
Fig. 2, it can be mapped to model-view-controller, because the role of a workpiece is
comparable to the role of a model, both relying on being processed by the machine. To
trace the quality characteristics stated in the HCIFrame instance of Fig. 3, it is necessary
to consider the class text-message in Fig. 7 in more detail. The default text-message and
the description of the text-message were translated from the interfaces Y8 and Y9 of the
usability requirements into the interface Y2 containing TMDefault and TMMeta of the
specification in Fig. 3. The latter have become attributes of the class text-message in
Fig. 7. The frame instance of ”commanded transformation” in Fig. 4 requires an addi-
tional View in order to consider the transformation (in process) display domain display.
The usability requirement which demands a transformation display is considered by
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Fig. 8. Global architecture of the chat application
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Fig. 9. Proxy design pattern/instance for GUI anonymity

the rolename TiPDisplay at the class display of Fig. 7. The role-driven mapping of the
HCIFrame instances in Fig. 3 and Fig. 4 shows that all specified quality characteristics
are preserved.

The architectural style ”Model-View-Controller” is instantiated to become the global
architecture of the chat application. This architecture is depicted in Fig. 8. The ”Model-
View-Controller” architecture consists of the three components Model, View, and Con-
troller, which themself have an architecture.

Analyzing the security requirements concerning the GUI anonymity in Sect. 3.3
shows that the machine to be developed must be able to act like a placeholder. The
text messages including the Id of the user are received by the placeholder. Then, the
placeholder is responsible for exchanging the user’s Id by a pseudonym and sending
the text messages and the pseudonym to the receiving chat participants. Because the
behavior described above can be generally observed when applying the concretized
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security problem frame for anonymity using pseudonyms, we link this frame to the
design pattern Proxy [6] in combination with the architectural style Pipe-and-Filter [1].

The ”Proxy” design pattern (in combination with its instance for GUI anonymity)
is depicted in Fig. 9. The ”Proxy” design pattern is a structural pattern that introduces
a placeholder (Proxy) in order to control access to the originator Subject. Hence, we
can map the domains of the concretized security problem diagram shown in Fig. 6 to
the components of the ”Proxy” pattern. The domain text message & Id is represented
by the class TM & Id, the domain text message & nickname is represented by the class
TM & NickName, and the machine domain chat application is represented by the class
ChatProxy. The domains Anonymous user and Receiving user are represented by Client.
ChatProxy receives the text messages including the chat participants’s Id. Then, the
ChatProxy anonymizes the received data and forwards the text message including a
nickname to the actual receiving chat participants.

When anonymizing received data, the ”Pipe-and-Filter” architectural style comes
into play. It sees a system as a series of filters (or transformations) on input data. Data
enter the system and then flow through the components one at a time until they reach
some final destination. Filters are connected by pipes that transfer data. We consider
the linear pipeline, in which each filter has precisely one input pipe (source in Fig. 9)
and one output pipe (sink in Fig. 9). Additionally, only one filter (filter in Fig. 9) is
needed to exchange an Id by a nickname. This functionality is reflected by the function
anonymize().

Both, the ”Proxy” and the ”Pipe-and-Filter” architectures describe the internal archi-
tecture of the component View in Fig. 8.

Role-driven mapping enables a smooth transition of patterns used to represent the
problem in software analysis to patterns used to represent a solution detailed by archi-
tectural software design. In particular, role-driven mapping serves to preserve quality
characteristics.

5 Conclusion

We have shown that functional requirements as well as quality characteristics such as
security and usability can be treated using our extension of Jackson’s problem frames
approach. We presented a software development method that preserves usability and
security quality characteristics using a role-driven mapping of requirements analysis
documents to architectural design artifacts.

With this approach, software engineers can hope to cover large parts of the early
phases in software development using patterns.

In the future, we intend to find new patterns to extend the catalogs of HCIFrames,
security problem frames, and concretized security problem frames. Furthermore, we
intend to apply our approach to other quality characteristics such as performance and
scalability.

Additionally, we plan to elaborate more on the later phases of software development.
For example, we want to investigate how to integrate component technology in the
development process. Finally, we plan to provide tool support for our pattern-based
software development method.
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Développement de Logiciels - AFADL, 2004.

4. L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulus. Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, Boston, USA, 2000.

5. Eelke Folmer and Martijn van Welie and J. Bosch. Bridging Patterns: An approach to bridge
gaps between SE and HCI. Information and Software Technology, 48(2):69–98, 2006.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading, 1995.

7. D. Hatebur, M. Heisel, and H. Schmidt. Pattern- and Component-Driven Security Engineer-
ing. Technical report, Universität Duisburg-Essen, 2006.
http://swe.uni-duisburg-essen.de/intern/seceng06.pdf.

8. D. Hatebur, M. Heisel, and H. Schmidt. Security Engineering using Problem Frames. In
G. Müller, editor, Proceedings of the International Conference on Emerging Trends in In-
formation and Communication Security (ETRICS), LNCS 3995, pages 238–253. Springer-
Verlag, 2006.

9. M. Jackson. Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley, 2001.

10. M. van Welie. Patterns in Interaction Design, 2003-2006. http://www.welie.com
Online catalogue for interaction design patterns.
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Abstract. Component-based software elaboration becomes unwieldy for
some practical situations with large numbers of components for which
information is imperfect (incomplete, imprecise and/or uncertain). This
article addresses the problem of identifying “interesting” component sets
for some given non-functional requirements (NFRs), using imperfect in-
formation about large number of components. Rather than providing
completely specified solutions, this approach allows architects to identify
and compare whole assemblies, and focus eventual information-
improvement efforts only on those components that are part of candidate
assemblies. The proposed technique builds on the Azimut layered archi-
tectural abstractions, adapting an algorithmic approach used to mine as-
sociation rules, and taking three parameters: a minimal “support score”
that candidate assemblies must meet, and two credibility-value thresh-
olds about the catalog themselves. An example illustrates the approach.

1 Introduction

Component-Based Software Development (CBD) suggests reusing existing com-
ponents to build new systems, attending to benefits like shorter development
times, lower costs and higher product quality. Thus, a key ingredient of CBD is
components selection.

This article builds on the Azimut approach [1], which proposed progressive
refinement of architectural abstractions and artifacts via architectural policies,
mechanisms, components and assemblies, and on “support scores” [2] that reflect
the aggregate credibility of component assemblies to satisfy specific sets of re-
quirements. It uses an algorithmic approach to generate and compare whole com-
ponent assemblies, taking imperfect information (incomplete, imprecise and/or
uncertain) and identifying assemblies that are solutions and/or that may deserve
a second look (and focused information gathering).

The reminder of this article is structured as follows: section 2 motivates the
problem, proposes key characteristics of a solution, and examines some previous
and related work; section 3 describes the Azimut architectural abstractions and a
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measure to relate component assemblies to requirements; section 4 presents and
illustrates a parametric algorithm for systematic identification of “interesting”
assemblies; and section 5 presents future work and conclusions.

2 Motivation and Related Work

The construction of software systems using components offers great promise of
reducing development times and costs while increasing quality, but its realization
requires that architects be able to choose among alternative solutions composed
from available components. A straightforward strategy could identify all pos-
sible component combinations, perhaps incorporating some technical matching
restrictions, followed by their evaluation and comparison; yet this brute force
approach is unfeasible due to three main issues.

1. It is sometimes quite complex to relate components (and sets thereof) to
specific requirements, and specially to NFRs (non-functional requirements)
due to their systemic nature.

2. In real situations, architects have at hand incomplete, imprecise and uncer-
tain component information.

3. Resulting search spaces may be quite hard to explore systematically by
humans; generation and evaluation of component-sets could be very time-
consuming: with n components there are

∑n
i=1

(
n
i

)
possible component-sets.

Thus, a practical, scalable approach to component-sets identification must:

1. Relate component-sets to requirements (especially to NFRs).
2. Record imperfect information; perhaps it should even stimulate it, in the

spirit of incremental gathering of information from the field.
3. Avoid the combinatorial explosion of testing each possible combination (ac-

tually, for enough components even valid combinations are huge in number).

We are concerned with the problem of identifying candidate component as-
semblies from imperfect information about huge numbers of components. In this
context, “components” is to be taken as a coarse-grained COTS component.

Several techniques have been proposed for component evaluation and selec-
tion [3,4,5,6,7,8,9] that identify individual components as reuse candidates, using
search criteria such as functionality, non-functional requirements (NFRs) or ar-
chitectural restrictions. However, none of them allows to deal with situations
where large number of components are characterized with imperfect information
(i.e. imprecise, incomplete and/or unreliable).

Some MDA (Model-Driven Architecture) [10] projects, such as CoSMIC [11]
and UniFrame [12], generate component-based systems, but require the use of
formal component specification languages to describe available components, and
from these descriptions (consistent and precise) they automate the component
selection and integration process. Such approaches are appropriate when archi-
tects have good information and relatively few components at hand; when these
conditions do not hold, architects should hope at least for help in identifying
candidate assemblies.
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3 Azimut Approach

The Azimut approach [1] supports architects in generating component assem-
blies for a given set of requirements by using intermediate abstract constructs
as stepping stones in a derivation chain (see Fig. 1). Key constructs are:

Fig. 1. Matching process

Architectural Policy: The first reification from NFRs to architectural con-
cepts. Architectural policies can be characterized with dimensions that de-
scribe NFR-related concerns. Valid dimensions and policies are collected
from globally authoritative sources of the relevant discipline (e.g. Tannen-
baum [13] for replication and Britton [14] for middleware communication).

Architectural Mechanism: The constructs that satisfy architectural policies.
Several mechanisms may satisfy any given architectural policy. This infor-
mation may be gathered from globally or locally authoritative sources for
the relevant discipline.

Component Characterization: Components are characterized by the archi-
tectural mechanisms that they implement (which implies coarse-grained
components). A given component may implement several mechanisms, and
several components may implement a same mechanism. Instead of a global,
perfect components catalog, we propose that component characterizations be
done locally at organization level, and that architects integrate local catalogs
with others obtained from third-party suppliers. To deal with unreliability,
credibility levels must be assigned to catalog entries (see [15] for details).

Architects identify some NFRs for a specific concern, and refine them to some
architectural policies (defined by the Azimut vocabulary,), which are system-
atically reified to mechanisms and then components, to finally obtain a set
of component assemblies (candidate solutions), among which architects may
choose.

As a brief example (see [1] for details), consider communication among ap-
plications. One architectural concern is the communication type, which might
have the dimensions of sessions, topology, sender, and integrity v/s timeliness
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[14]; to this we add synchrony. Then, the requirement send a private report to
subscribers by Internet might be mapped in some project (in architectural terms)
as requiring communication ‘asynchronous, with sessions, with 1:M topology,
with a push initiator mechanism, and priorizing integrity over timeliness’. Based
on these architectural requirements, an architect could search among known
mechanisms for a combination that provides this specified policy; lacking addi-
tional restrictions and using well-known standards and software, a good first fit
for mechanism is SMTP (the standard e-mail protocol). Finally, in absence of fur-
ther restrictions, any available component that provides SMTP should be a good
fit for the given requirement.

3.1 Support Scores: Modeling Imperfect Information

Consider D, P , M , C be the sets of dimensions, mechanisms and components,
and nd, np, nm, nc the respective set sizes. A policy p ∈ P is represented by
dimensions in D if there exists a set Dp ⊂ D helping to describe it. Let μ(x, y) ∈
[0, 1] be defined as the credibility level that an abstraction x supports (satisfies,
implements) an abstraction y; then, a mechanism m ∈ M supports a policy p on
the dimension d ∈ Dp with credibility μ(m, d). Analogously, a component ci ∈
C (i = 1, . . . , nc) is described with the set ci = {mi,1, mi,2, . . . , mi,nm ∈ M} of
mechanisms it implements.

Given a n-item component assembly A, the support score of a component
assembly A for policy p is

Sassem(p, A, α, β) =
| C(A, Dp) |

| Dp | (1)

Sassem counts dimensions in favor of the statement “assembly A satisfies policy
p”. | C(A, Dp) | is the number of policy dimensions in p satisfied by the com-
ponents in A, and | Dp | is the total number of dimensions referenced by p,
to be satisfied. Given that information on mechanisms and components may be
unreliable [15], parameters α and β denote the minimum credibility level for a
mechanism-policy or component-mechanism relation, respectively.

In normal circumstances [16], α ≥ 0.5 (or β ≥ 0.5) suggests that architects
need strong arguments, whilst α < 0.5 (or β < 0.5) accepts weak arguments.

4 Generation of “Interesting” Component Assemblies

Given large number of components and imperfect information about them, a
systematic way is needed to identify component assemblies that may deserve
a second look (i.e. are “interesting”). We adapt an algorithm for mining as-
sociation rules [17] (see Fig. 2), which incrementally generates candidate
assemblies.

Let Dk, Lk be k-item sets1; Ck a collection of k-item assemblies; minsup
the score threshold to be defined by the architect; and p a policy. On each
1 A k-item set is a set containing k elements.
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iteration k, the function candidates(.) lexicographically orders and returns the
(k+1)-item assemblies based on k-item unsatisfactory assemblies in Lk, minimiz-
ing redundancy because it does not further consider any satisfactory assemblies.

begin
D0 = {c ∈ A | support(c) >= minsup};
L1 = A \ D0;
for (k = 1; Lk �= ∅; k + +) do

begin
Ck = candidates(Lk);
for c ∈ Ck do support(c) = Sassem(p, c, α, β); od
Lk+1 = {c ∈ Ck | support(c) < minsup};
Dk = Dk−1 ∪ (Ck \ Lk+1);

end od
end
funct candidates(Fk);

begin
C = ∅;
for (f1, f2 ∈ Fk where f1 = {c1, . . . , ck−1, ck} ∧ f2 = {c1, . . . , ck−1, c

′
k} ∧ ck < c′

k) do
begin

f = {c1, . . . , ck−1, ck, c′
k};

if ∀c ∈ f : f − {c} ∈ Fk then C = C ∪ {f}; fi
end

.C;
end

Fig. 2. Algorithm to generate potential component assemblies

Example of assemblies generation. Consider how candidate assemblies are
generated for different parameter values of α, β and minsup. Mechanism and
component information may be recorded in catalogs such as partially shown
in figure 3. Take a required architectural policy with p communication: (e1:
asynchronous, e2: 1:M topology, e3: push receiver, e4: integrity over timeliness);
security: (e5: individual authorization; e6: authentication based on something
the user knows); availability: (e7: persistent state replication, and e8: replicated-
write consistency).

The components shown in Figure 3 are labeled in Table 1 as: c1 = SendMail,
c2 = Courier Mail Server, c3 = Surge Mail, c4 = DNews, c5 = Leaf Noad, c6 =
Cyrus IMAP Server, c7 = LifeKeeper, c8 = SurgeMail (Cluster).

In Table 1, supports for 1, 2 an 3-itemset assemblies are presented, when
α = 0.5 and β = 0.6. The in-parenthesis numbers represent the component-
mechanism credibilities. In this case, minsup = 0.75.

The set of solutions is reduced from
∑8

i=1

(8
i

)
= 255 to 20 combinations

to analyze. There are only 7 potential assemblies proposed to the architect,
satisfying minsup = 6/8. These solutions may be reserved by the architect for
any subsequent analysis.

Examination of “interesting” component assemblies. An examination of
Table 1 reveals that several assemblies (with 1, 2 and 3 components) have a high
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Fig. 3. Partial content of mechanisms and components catalogs

Table 1. Support of 1-, 2- and 3-item component assemblies (α = 0.5; β = 0.6)

policy p > e1 e2 e3 e4 e5 e6 e7 e8 Support
c1 1 1 1 1 1 1 6/8
c2 1 1 1 1 1(0.6) 1(0.6) 6/8
c3 1 1 1 1 1(0.6) 1(0.6) 6/8
c4 1 1 1 1 4/8
c5 1 1 1 1 4/8
c6 1 1(0.6) 1(0.6) 3/8
c7 1(0.6) 1(0.6) 2/8
c8 1(0.6) 1/8

(c4, c5) 1 1 1 1 4/8
(c4, c6) 1 1 1 1 1(0.6) 1(0.6) 6/8
(c4, c7) 1 1 1 1 1(0.6) 1(0.6) 6/8
(c4, c8) 1 1 1 1 1(0.6) 5/8
(c5, c6) 1 1 1 1 1(0.6) 1(0.6) 6/8
(c5, c7) 1 1 1 1 1(0.6) 1(0.6) 6/8
(c5, c8) 1 1 1 1 1(0.6) 5/8
(c6, c7) 1(0.6) 1(0.6) 1(0.6) 1(0.6) 4/8
(c6, c8) 1(0.6) 1(0.6) 1(0.6) 3/8
(c7, c8) 1(0.6) 1(0.6) 2/8

(c4, c5, c8) 1 1 1 1 1(0.6) 5/8
(c6, c7, c8) 1 1(0.6) 1(0.6) 1(0.6) 1(0.6) 5/8
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support score. Even in absence of detailed technical knowledge about compati-
bility and collaboration among each assembly’s components, already some good
candidates have been identified, and can be a starting point for the adopted
solution.

An inter-assembly analysis indicates that components e5, e6, e7 and e8 appear
in several highly-scored assemblies, although information about them is not top
quality. An architecture team that wished to reduce the risk in assembly selec-
tion would focus its (always scarce) resources into improving these components’
information Another team could privilege only e5 and e6 because they are part
of smaller candidate assemblies, if such assemblies are better liked (e.g. due to
some cost or complexity measure).

5 Conclusions

This article has presented an approach to component-sets identification. It is
based on the Azimut framework [1], which support systematic derivation of
component-sets from NFRs via architectural policies and mechanisms; a scoring
process borrowed from decision-aid for preference-establishment based on voting
[18]; and a generation algorithm to identify component assemblies that are po-
tential solutions and/or deserve a closer look (and possibly improved information
gathering). The described process to generate and evaluate potential assemblies
allows architects to engage in iterative exploration of design spaces.

Three main lines of further work are ongoing. First, the model currently only
records the credibility of a relation between a component and a mechanism,
but not its strength (i.e. how well one supports the other); current work will
extend modeling to both strength and credibility of relations. Second, given that
the robustness of solutions strongly depends on the credibility thresholds, the
proposed approach encourages architects to use aggregate credibility information
to focus information improvement on interesting assemblies; unfortunately, a
detailed discussion of robustness is beyond the scope of the present paper.

Finally, generated assemblies must be checked by architects for technical fea-
sibility of integration, as well as for business-related properties (e.g. global cost,
or development complexity). Domain-specific catalogs are being gathered from
industry sources.
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Abstract. Architecture Description Languages (ADLs) have emerged in recent 
years as a tool for providing high-level descriptions of software systems in 
terms of their architectural elements and the relationships among them. Most of 
the current ADLs exhibit limitations which prevent their widespread use in 
industrial applications. In this paper, we discuss these limitations and introduce 
ALI, an ADL that has been developed to address such limitations. The ALI 
language provides a rich and flexible syntax for describing component 
interfaces, architectural patterns, and meta-information. Multiple graphical 
architectural views can then be derived from ALI’s textual notation. 
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1   Introduction 

Architecture Description Languages (ADLs) have emerged as viable tools for 
formally representing the architectures of systems at a reasonably high level of 
abstraction to enable better intellectual control over the systems [1]. ADLs usually 
help in architectural analysis with issues such as consistency, modifiability, 
performance, etc. However, there is no general agreement on what ADLs are expected 
to capture/represent about an architecture (behavior, structure, interfaces, etc.). Most 
work on ADLs today has been undertaken with academic rather than commercial 
goals in mind and they tend to be very vertically optimized towards a particular kind 
of analysis [2]. 

The ADL community generally agrees that a Software Architecture is a set of 
components and the connections among them conforming to a set of constraints. 
Component interfaces usually comprise a set of provided and required services (a 
service could be a function call, a message type, etc.). 

Although some ADLs have been put to industrial use [3], the majority of ADLs 
have not scaled up well, and their use remains confined to small-scale case studies. 

In this paper we discuss a number of limitations evident in most current ADLs 
which might have constrained their use to small-scale academic applications. We then 
present the major concepts behind the ALI ADL which has been designed with the 
identified limitations in mind. ALI also built upon our experience with the ADLARS 
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[4] ADL and adopted much of the solution space provided by ADLARS such as its 
support for Software Product Lines. 

In the following, we begin in Section 2 by discussing the limitations within current 
ADLs. Section 3 then highlights the rationale behind the ALI language. Finally, 
discussion and future work is presented in Section 4. 

2   Limitations Within Existing ADLs 

In this section we discuss the potential limitations identified by examining a number 
of existing and mature ADLs selected from across the literature to reflect the state-of-
the-art in the domain. Among these ADLs are: ACME [7], Koala [3], Rapide [8], and 
Wright [9]. 

It is worth mentioning here that the Unified Modeling Language (UML) [5],  even 
though it is used within different stages of the development process (and without 
doubt a de facto modeling language), is not considered a strong candidate as an ADL 
due to many issues including it being a pure graphical notation and the fact that it 
does not treat connectors as first class citizens (even though UML 2.0 [6] took one 
step further in the ADLs' direction with the introduction of ports and interfaces). 
Furthermore, UML initially was geared more towards code description rather than 
architecture description. 

We have examined and experimented with these ADLs to identify the novelty and 
the strengths of each. We have also identified a number of shared limitations, 
particularly in the context of real-life applications. These are summarized below. 

2.1   ADLs Are Over-Constraining 

Current ADLs force architects to use specific styles/interface types throughout their 
architecture by providing a single component interface type model. For example, 
while interfaces are described in terms of input and output ports in Wright, interfaces 
are described in terms of services provided/required in Koala, and messages 
sent/received in ADLARS [4]. With current advances in different domains including 
Service Oriented Architectures (SOA) and adaptive systems, within a single system 
we could have a number of different interface types used (which is often the case). 
Capturing such architectures with most current ADLs entails abstracting a number of 
interface types to the single interface type supported by the ADL. This could be 
problematic especially when the interface types form a crucial part of the architecture 
description (e.g. in SOAs). Also, by requiring that components have specific types of 
interfaces (hardware-like input/output ports, e.g. ACME; message based 
communication, e.g. ADLARS; etc.), ADLs may be indirectly enforcing the style of 
communication to be used in the system on the architect. 

2.2   ADLs Provide a Single View of the System 

It has become widely recognized in the software architecture community that software 
architectures contain too much information to be adequately captured and displayed in 
one view. Multiple views are needed to describe an architecture where each view can 
encompass a set of related concerns. This has been recognised in a number of 
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industrial approaches [10, 11] and standards [ANSI/IEEE 1471-2000] (while others 
went one step further to consider also perspectives [12]). When this is the trend in 
industry, there is no reason why ADLs should not support multiple views. The reason 
why most ADLs are restricted to one view of a system may be attributed to the fact 
that ADLs inherently focus on the structural aspects of the architecture which has 
traditionally been the central issue. Hence, ADLs provide only the structural view of 
the system. Today’s concerns have gone beyond purely structural factors, and issues 
such as quality attributes, design decisions, etc. are now  considered an intrinsic part 
of architecture description [13]. 

2.3   ADLs Lack Proper CASE Tool Support 

CASE tool support availability varies from one ADL to another. Some ADLs have 
parser/syntax validation tool support, others have basic simulation tools, while others 
have no tool support at all. For an industrial buy-in, tool support is a major selling 
point for any ADL due to the size and complexity involved in real-life systems. Even 
for those ADLs with tool support, most of the tools developed do not scale up to work 
with large system descriptions (e.g. hundreds of components and connectors). While 
some simulators are unable to cope with systems comprising over 100 components, 
most graphical tools have no mechanism to properly display systems with 30-40 
components or more. This problem, however, differs from the previous two in the 
sense that for a commercial level tool support to be developed for an ADL, the ADL 
should be adopted by a tool vendor. For a tool vendor to adopt an ADL, the ADL 
should demonstrate a commercial potential (which is best done using proper tools!). A 
potential solution to this problem would be to make use of existing tool support for 
other notations such as UML in the first stage. This could perhaps be done by 
transforming back and forth between the ADL notation and UML (e.g. using meta 
ADLs like in [14]). 

In the following section, we will introduce the rationale behind the ALI language 
which was designed with the aforementioned limitations in mind. 

3   ALI Rationale 

ALI has been designed on the basis of our previous work on ADLs, including the 
ADLARS notation [4]. It seeks to address a number of the issues discussed above.  

While adopting successful concepts from ADLARS, such as the relationship 
between the feature model [15] and the architectural structure [16], ALI introduces, 
among other things, a high level of flexibility for interface description. Major 
concepts behind the ALI ADL are discussed in this section.   

3.1   Flexible Interface Description  

Revisiting the first limitation discussed in the previous section, current ADLs allow 
only for fixed interface types. Providing a specific interface type restricts the usage of 
an ADL to domains where most components would only have that particular type 
of interface. This is in addition to restricting the architect to use a specific style of 
communication among components (e.g. message-based, method invocation, hard-
ware-like ports, etc.). 
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The ALI ADL attempts to address this limitation by providing no pre-defined 
interface types. Instead, ALI introduces a sub-language (which is a sub-set of the 
JavaCC [17] notation) that gives users the flexibility to define their own interface 
types. 

For example, consider a simple web service having a WSDL (Web Services 
Description Language) interface and containing a number of components which are 
described with input/output ports as interfaces. Assume also, that each component  
contains a number of objects/classes that have interfaces defined in terms of functions 
provided/required (summarized in Fig. 1). This is a fairly standard level of nesting/ 
abstraction within today’s service oriented architectures. 

If we were to model this using any of the existing ADLs, we would have to 
abstract the different interface types with the single interface type supported by the 
ADL used. By doing so, we would be unnecessarily abstracting away useful and 
important architectural information - especially in domains such as SOA where 
interface descriptions/types are of important architectural value. 

It would also be difficult to identify a comprehensive set of interface types 
beforehand to be provided by an ADL due to the large number of interface types that 
already exist in the literature. In addition, new interface types emerge with the 
advancement of different technologies (e.g. GWSDL emerging from the work on grid 
computing, etc.). So, an ADL may benefit from a flexible mechanism that allows the 
architect to define his/her own interface types along with the binding constraints. This 
is the model that is adopted by ALI. 

 

Fig. 1. An example architecture of a simple web service 

3.2   Architectural Pattern Description 

Architectural patterns (or architectural styles) express a fundamental structural 
organization or schema for software systems and sub-systems. As these patterns are 
often reused within the same system (and sub-systems) or across multiple systems, 
providing syntax for capturing/describing these patterns to enable better pattern reuse 
is important. This is another major aspect of the ALI notation. ALI envisages 
architectural patterns as the architectural level equivalent of functions (methods) in 
programming languages. 
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Within ALI, patterns are defined and reused as functions. Pattern templates are 
first defined by specifying the way components are connected to form the 
architectural pattern. Then, these pattern templates are instantiated throughout the 
architecture definition to connect sets of components (whose interfaces are passed as 
arguments to the pattern template) according to the pattern template definition 
(e.g. Fig 2).   

As shown in Fig. 2, simple architectures can be constructed through the usage of a 
number of patterns.  

 

Fig. 2. A simple architecture assembled from a number of components using two pattern 
templates: PipesAndFilters and ClientServer 

3.3   Formal Syntax for Capturing Meta-information 

As discussed in section 2, there is more to architecture than the structural aspects of 
the system.  Issues such as component implementation cost/benefit, design decisions, 
versions, quality attributes, etc. have not been the focus of most existing ADLs.  
ADLs such as ADLARS [4] and few others allow the addition of free textual 
comments to the architecture description using standard commenting syntax similar to 
that used in programming languages (e.g. through the usage of “/*”, “//”, etc.). This, 
however, proves to be problematic if CASE tools are to be used to analyze or produce 
useful documentation from the free textual comments. 

One of the challenges with formalizing the syntax for capturing the meta-
information is in deciding on the information to be captured in the architecture 
description. Although there is some information that is usually captured in most 
architecture documentations (e.g. design decisions, quality attributes, etc.) some other 
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information may vary from one domain to the other and from one enterprise to 
another (depending on the nature of the domain, the structure of the enterprise, etc.). 

In ALI, a special syntax has been introduced to allow for creating meta types. 
Different meta types can be created within a system to act as packages of information 
(quality attributes, versions, design decisions) which could be attached to different 
architectural structures throughout the system description. 

3.4   Linking the Feature and Architecture Spaces 

As Feature Models [18] are built to capture end-users' and stake-holders' concerns and 
architectures are designed from technical and business perspectives, a gap exists 
between the two spaces. This gap introduces a number of challenges including:  
feature (requirements) traceability into the architecture; the ability to verify variability 
implementation (in Software Product Lines), etc. 

ALI attempts at bridging this gap by allowing the architect to link directly the 
architectural structures to the feature model. Within ALI, it is possible to relate 
components, connectors, patterns etc. in an architecture description to features in the 
feature model using first order logic. This permits the capture of complex 
relationships that might arise between the two spaces in real-life systems.  

ALI has adopted and enhanced this concept from ADLARS [4] which was the first 
ADL to introduce support for linking the feature space to architectural components. 

4   Discussion and Future Work  

In this paper we have discussed the main issues that might be restricting most current 
ADLs to small-scale case-studies rather than real-life industrial applications. 
Restrictive syntax/structure, lack of tool support, and single view presentation are 
among the limitations discussed. 

ALI was created with these limitations in mind and was designed to provide a 
blend between flexibility and formalism. While flexibility gives freedom for the 
architect during the design process, formalism allows for architecture analysis and 
potential automation using proper CASE tool support (e.g. on-the-fly architecture 
documentation, code generation, etc.). 

This paper has focused on the concepts behind ALI. Further information about the 
ALI notation can be found in [19].  

ALI adopts a flexible model for its graphical notation. The textual notation serves 
as a central database of the architecture description. CASE tools use this information 
as the source to derive the different relevant architectural views (which can be 
customized using CASE tools). This model will help alleviate the problem of 
mismatches among multiple views of the system when maintained separately. 

As different architects in different domains (e.g. IS, Telecom, Grid, etc.) would be 
more comfortable drawing or representing architectures using their own set of 
symbols/figures (e.g. a cylinder to show a database rather than the standard box of 
ADLs, etc.), ALI allows for replacing boxes in the graphical notation with any figure 
the architect chooses as long as interfaces are displayed and labeled properly on that 
figure. As a comparison between the two approaches (boxes vs figures to represent 
components), the problem with boxes is that all boxes look basically alike, so it would 
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be relatively difficult to identify and locate a component in a large architecture. On 
the other hand, the problem with having different images for different components is 
that, with a large number of component types, the architecture may appear unduly 
cluttered. So, whether to use boxes or images is left to the architect to decide upon 
based on the nature and size of the system in any particular project. 

As for future work, two major issues top the list for the work on the ALI project:  

− Tool support: while the work on a toolset for ALI is in progress (using the 
ADLARS toolset as a starting point), the plan is to make the ALI toolset (and the 
notation) an open source project. In this way the notation and the toolset will, it is 
hoped, benefit from a broad range of contributions, both from industry and 
academia.  

− Providing “round-trip” to code: the ability to go from architecture to code and 
back has always been an appealing concept for people working in industry. Work 
on Model Driven Architectures (MDA) is one successful example of communities 
working on code generation from architecture specification. In ALI, the possibility 
of attaching code to components (and glue code to connectors) will be studied. 
This, if found feasible, will potentially allow for automated generation of 
substantial parts of the system implementation. 
 
Finally, as the major idea behind ALI is to bridge the gap between industry and 

academia in the field of ADLs, devising a proper “roll-out” plan for the adoption of 
ALI in industrial pilot projects (in the first instance) will be considered. Once 
experience is gained with the language in industrial settings, the aim is to have 
libraries of meta types, interface types, connector types, etc. for each application 
domain which architects could then use off-the-shelf. 
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Abstract. In this paper, we identify and define the architectural prop-
erties of the different levels of abstraction necessary for adaptability
management. The distinguished levels allow describing service-level,
component-level and process-level architectural properties. Using graph
grammars and graph transformation, we enforce the conventional graph-
based representation of system and software architectures. We go be-
yond past informal studies by providing formal rules for architecture
refinement and transformation. We focus on applications where commu-
nication is used to support the cooperation between distributed group
members. We consider a concrete case study of Military Emergency Op-
eration (MEO). Operation management.

Keywords: Graph grammars, self-adaptability, model-oriented
automated management, service-oriented dynamic architecture, QoS,
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1 Introduction

Adaptability management still remains an unsolved problem. Several issues need
to be tackled such as the discovery of objects, components and services. Eval-
uation of resources availability for network and machines as well as evaluation
of the current adaptation policy has also to be defined. New parameters and
services have also to be considered. Adaptability is required at several levels si-
multaneously. For instance, for QoS adaptability in group communication-based
activities, both changing communication and computation resources and evolv-
ing group structures have to be managed. However, managing adaptation at
various levels requires coordination without which it can lead to performances
way below the targeted ones. For example, having to react to network con-
gestion, an adaptation of the sending rate both at the Application layer (e.g.
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by reduction of images size) and at the Transport layer (e.g. by a rate con-
trol) could result in over-reaction and as such a non-optimal solution. Differ-
ent abstraction levels of adaptability have to be distinguished, and adaptation
has to be managed in a coordinated manner both within and between these
abstraction levels [1,2]. In this way, [1] proposes an approach for identifying
the adaptation level (in this case, OSI layers) to be considered depending on
the network predictability. However, this work does not consider important as-
pects associated with group activities. For group communication-based coop-
erative activities, different abstraction levels have to be addressed in order to
provide group-aware QoS management policies. Adaptation at the highest lev-
els should be guided by the evolving of the activity requirements. Adaptation
at the lowest levels should be driven by the changes due to device/network
constraints.

In this paper, we identify and define the architectural properties of the
different levels of abstraction necessary for adaptability management. The
distinguished levels allow describing service-level, and component/process-level
architectural properties. Using graph grammars and graph transformation, we
enforce the conventional graph-based representation of system and software ar-
chitectures. We go beyond past informal studies by providing formal rules for
architecture refinement and transformation. We focus on applications where
communication is used to support the cooperation between distributed group
members. We consider a concrete case study of Military Emergency Operation
(MEO) management involving several participants with different roles carrying
machines with different capacities for communication and computation. The ac-
tivity is organized around two main steps: the exploration step and the acting
step. For each of these steps, we have elaborated the grammars that define all
the possible correct architectures that may implement communication in confor-
mance with the cooperation requirements. Switching between these architectures
constitutes an architectural adaptation action that may solve lower level con-
straints ! while remaining in conformance with the upper level requirements.
We also implemented graph transformation rules that allow architecture to be
adapted when moving from one step to another in both directions. We defined
the graph grammars that allow implementing the mapping of a given level ar-
chitecture onto the underlying level. This paper is organized as follows. The
related work is described in section 2. Section 3 presents a case study to which
the introduced modeling approach is applied. The graph-based description and
the transformation grammars and rules are presented in section 4. Conclusions
and future work are finally presented in section 5.

2 Related Work for Adaptation in Distributed and
Communicating Systems

Adaptation objectives, actions and properties are among the main facets of
adaptability. They are studied and classified in this section.



222 C. Chassot et al.

2.1 Adaptability Objectives

Several objectives are targeted by dynamic provisioning and adaptability. QoS
such as connectivity or access bandwidth when roaming from a wireless net-
work to another (i.e. handover management) is very considered [3,4]. End to end
QoS optimization is also very addressed, for instance in the Best Effort Internet
[5,7]. Security, such as data confidentiality, firewalls activation, bypass and deac-
tivation, is more and more considered, particularly when wireless networks are
involved [8]. Resource optimization is also addressed. They may be related to
devices energy, computation or storage capability [9]. Cooperation aspects have
to be considered in group activities. For instance, this can deal with management
of user input/output for a distributed game exercise.

2.2 Adaptation Actions and Scopes

Several adaptation solutions have been developed in the last decade. Their scope
covers both high and low layers of the OSI model. Application layer. At the Ap-
plication level, [5] addresses the need for adaptation in video streaming appli-
cations distributed over the Best-Effort Internet. Several techniques have been
proposed based on two mechanisms: an applicative congestion control, which
can be implemented in several ways: rate control, rate-adaptive video encoding,
rate shaping; and error control integrating concepts such as delay-constrained
retransmissions and forward error correction. At Middleware and Transport lev-
els, TCP’s reaction to network congestion is a well-known adaptation example;
however, it does not handle applicative QoS requirements such as transit delay
or bandwidth requirements. The IETF DCCP protocol [10] allows users to acti-
vate a less penalizing congestion control. However, it does not provide more QoS
guarantees than UDP. SCTP targets the need for adaptation to network failures
via the multi connection and multi homing concepts [11].

2.3 Adaptation Properties

The adaptation solutions suggested in the literature are defined in various ways.
Behavioral vs. Architectural adaptation. Adaptation may be ruled by architec-
ture or behavior-based transformation laws. In general, the adaptation is be-
havioural (or algorithmic) when the behaviour of the adaptive service can be
modified, without modifying its structure. Standard protocols such as TCP and
specific protocols such as [5] [7] provide behavior-based adaptation mechanisms.
Behavioural adaptation is easy to implement but limits the adaptability prop-
erties. Indeed, the addition of new behaviours may be required. In this case,
the component has to be recompiled and the adaptation can no longer be per-
formed during run-time. The adaptation is architectural when the structure of
adaptive services can be modified. [12,14] provides frameworks for designing mid-
dleware/Transport protocols whose internal structure can be modified according
to the application requirements and network constraints. The replacement of a
processing module by another(s) can be easily implemented, following a plug
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and play approach where the new component has the same interfaces as the re-
placed one. Vertical vs. Horizontal adaptation. Adaptation may have a vertical
(or local) or an horizontal (or distributed) scope. Adaptive components can be
deployed on a single machine or distributed on several machines. In the first
case, the adaptation is vertical and only local changes are performed. In the sec-
ond case, it is horizontal and synchronization problems between peer adaptive
entities have to be managed [15].

3 Cooperation and Communication in MEO-Like
Activities

We consider a MEO team composed of a fixed controller, say C, and two inves-
tigators, say A and B, moving within the exploration field. Functions performed
by investigators include Observing the explored field and Reporting feedbacks
to the controller. Two kinds of feedbacks are distinguished. Feedbacks D are
Descriptive data; they represent information describing the situation. They are
transmitted as audio/video (a,v) data. Feedbacks P are Produced data; they
may represent comments, reports or any analysis information explaining the sit-
uation. They are transmitted by means of audio (a). The controller’s function
includes Supervising the whole mission, i.e. deciding actions to be performed
from the analysis of the observation feedbacks D and P.

The scenario is divided into two successive steps. The first step, Step 1, is the
investigation step. Two investigators, A and B, provide continuous feedbacks
D to a controller, C; they also provide periodical feedbacks P. There is no pri-
ority difference between communication links A-C and B-C, but transmitting
feedbacks D is considered to be more important than transmitting feedbacks P.

The first step ends when a critical situation is discovered by an investigator,
say A for instance. In the action step, Step 2, A conserves the same functions of
observing and reporting (O, R) as in the exploration step but provides feedbacks
D to both controller C and investigator B. A also provides feedbacks P to C. B
reports now only feedbacks of type P to controller C on the basis of the feedback
D received from investigator A. Due to the criticism of the situation reported
by A, communication link A-C is considered to be more important than A-B
and B-C. Moreover, we consider that exchanges of feedbacks D between A and
C have the highest importance; feedbacks P between A and C have a medium
importance; feedbacks D between A and B, and feedback P between B and C
have the lowest importance.

4 Architectural Adaptation Models

We distinguish two abstraction levels for adaptability management the service
adaptation level (S-Adapt) and the middleware adaptation level (M-Adapt).
For space limitation, we present only the model of the S-Adapt abstraction level.
An architectural reconfiguration, or horizontal model transformation, consists in
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transforming an architecture into another architecture of the same abstraction
level. Such reconfigurations may be guided by constraints evolving (such as link
bandwidth variations) or by new objectives required by the group communication
activity. A refinement, or vertical model transformation, associates a high level
architectural model with a lower level model. Different mappings are possible
for a given model.

The Service-level Adaptation (S-Adapt). Two services are provided by
the investigators: observing (O) and reporting (R). A single service is provided
by the controller: supervising (S) the mission. Two kinds of data are exchanged
for performing controller’s and investigators’ services: descriptive data (D) and
produced data (P).

Considering that M1, M2 and M3 represent the machines used respectively
by A, B and C, we can define the communication links and priorities using
graph-based notations as follows.

– Gstep 1 = (InvO,R(A, M1)
〈Dhigh,Pmedium〉−−−−−−−−−−→ ContS(C, M3),

InvO,R(B, M2)
〈Dhigh,Pmedium〉−−−−−−−−−−→ ContS(C, M3)).

– Gstep 2 = (InvO,R(A, M1)
〈Dhigh,Pmedium〉−−−−−−−−−−→ ContS(C, M3),

InvR(B, M2)
〈Plow〉−−−−→ ContS(C, M3),

InvO,R(A, M1)
〈Dlow〉−−−−→ InvR(B, M2)).

Where nodes are labelled by the roles and the provided services (O, R, S), the
participant identifer (A, B, C) and the machine she/he uses (M1, M2, M3). The
edges are labelled by the type of exchanged information (D, P ). The communi-
cation priority (high, medium, low) is associated with each type of information.

When passing from step1 to step2, architectural transformation includes
changes in the whole set of communications. A new communication is introduced
between machines M1(A) and M2(B) ; and the communication of descriptive
data (D) between M2(B) and M3(C) is removed. Moreover, priorities between
communications are also changed.

The Middleware-level Adaptation (M-Adapt). Different architectures of
the M-Adapt level may be considered to implement the current architecture of
the S-Adapt level: they differ depending on the push/pull modes repartition,
on the kind and the number of channels implemented by the channel manager
and on the deployment of these channels. For instance in this example, two
channels are considered for the channel manager: each channel is in charge of a
specific pair (data, priority). Assuming a mobile participant is always allowed to
host one event service component, the two channel managers (CM1 and CM2)
are deployed on machines M1(A) and M2(B). M3(C), a fixed machine with
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permanent energy uses the pull mode. M1(A), M2(B) are mobile machines
whose energy has to be preserved; for consumers. They use the push mode that
consumes less energy than the pull mode.

4.1 The Graph Grammars for Architecture Transformation

This section provides an example of graph grammar to implement architecture
reconfiguration. For space limitation reasons, we do not present grammars of
the architecture refinement. In both cases, the proposed grammars generalize
the use case by considering a variable number of investigators.

We use productions of type (L; K; R; C) where (L; K; R) corresponds to
the structure of a DPO production [16] and where C is a set of connection
instructions. The instructions belonging to C are of the edNCE type [17]. They
are specified by a system (n, p/q, δ, d, d′) where n corresponds to a node belonging
to the daughter graph R, p and q are two edge labels, δ is a node label, and
d and d’ are elements of the set in, out. For example, a production defined by
the system (L; K; R; (n, p/q, δ, d, d′)) is applicable to a graph G if it contains an
occurrence of the mother graph L. The application of this production involves
transforming G by deleting the subgraph (Del = L\K) and adding the subgraph
(Add = R\K) while the subgraph K remains unchanged. All dangling edges will
be removed. The execution of the connection instruction implies the introduction
of an edge between the node n belonging to the daughter graph R and all nodes
n’ that are p-neighbours1 of and d-neighbours2. This edge is introduced following
the direction indicated by d’ and labelled by q.

The following transformation rules allow transforming an architecture of the
S-Adapt level in the exploration phase (step 1) to its corresponding configuration
in the action phase (step 2). The graph grammar is reduced to a single production
grammar Pexp→act (Table 1) which is parameterized by the identification of
the investigator (here, noted A) that has discovered the critical situation. The
architecture is transformed by splitting the communication channels between
the controller and the other investigators into a communication channel of type
P between these investigators and the controller and another communication
channel of type D between them and A.

Table 1. Production grammar Pexp→act

Pexp→act(A) = (p1, C = {ic1, ic2}) with:

p1 = (L = Cont(c, M1), Inv(A,M2), A
<Dhigh,Pmedium>−−−−−−−−−−−−→ c,

K = {},
R = Cont(c, M1), Inv(A,M2), A

<Dhigh,Pmedium>−−−−−−−−−−−−→ c)
ic1 = (c, < Dhigh, Pmedium > / < Plow >, Inv, in/in)
ic2 = (A, < Dhigh, Pmedium > / < Dlow >, Inv, in/out)

1 p-neighbours of a node n are all nodes n’ such that there exists an edge labelled by
p which connects n and n’.

2 In-neighbours if d=in and out-neighbours otherwise.
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5 Conclusion

In this paper, we studied adaptability approaches aiming to support QoS
provisioning in service-oriented communication-centric systems. We proposed
graph-based architectural adaptability management models. The application of
adaptability models and their transformation and mapping rules can help in
automatically managing service provisioning in general. This may include func-
tions such as power saving and service robustness. The management scope can
involve the different steps of service provisioning including deployment. It can
also address the design-time and the run-time architectural evolving manage-
ment problems. Our models are now being completed and implemented. For
this purpose, we have implemented a scalable graph transformation module. We
built, on top of this module, an architecture transformation generic interface.
For behavior-oriented adaptability actions, we have implemented a new trans-
port protocol that supports run-time configuration actions for QoS optimization.
Our present and future works focus on implementing the architecture-oriented
and the behavior-oriented solutions by integrating our two separate solutions.
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Abstract. Assembling software components into an architecture is a
difficult task because of its combinatorial complexity. There is thus a
need for automating this building process, either to assist architects at
design time or to manage the self-assembly of components at runtime.
This paper proposes an automatic architecture building process that uses
ports, and more precisely composite ports, to manage the connection of
components. Our solution extends the Fractal component model. It has
been implemented and experiments have been run to verify its good time
performance, thanks to several optimization heuristics and strategies.

1 Introduction and Motivation

Software engineering aims at optimizing the cost of design and maintenance while
preserving both the quality and reliability of the produced software. Component-
based development techniques try to enhance reuse [1,2,3]. The design process of
an application is led by an architect and decomposes into three steps: he selects
components, defines an architecture by assembling them1 and then uses a tool to
control the consistency of the assembly to determine if the assembled components
are compatible. Components are generally described as a set of interfaces that
define what a component can provide and must require. Component assemblies
are then built by connecting component interfaces together [4,5,6,7,8].

Most existing works do not provide architects with any guidance during the
selection and assembly steps. They rather focus on checking the validity of a
previously built architecture [6,9,10,11,12]. The consistency check techniques
cannot be used in an iterative building process because of the combinatorial
complexity [13]. To guide the architect, we propose an efficient approach to
automatically build potentially valid architectures. It produces a reduced set
of preselected component assemblies on which it is relevant to perform checks
to find valid architectures. It relies on the use of ports, and more precisely
of composite ports, to describe known usages of components. A construction

1 In these works, we will consider that the selected components need no adaptation
(or might have already been adapted).

V. Gruhn and F. Oquendo (Eds.): EWSA 2006, LNCS 4344, pp. 228–235, 2006.
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algorithm has been successfully implemented and experimented in the Fractal
component model [7].

The remainder of this paper is organized as follows. Section 2 discusses the
issues raised by the building of valid architectures and introduces a component
model which features primitive and composite ports. Section 3 describes a ba-
sic algorithm to automatically build architectures along with its optimizations.
Section 4 concludes and draws perspectives.

2 Building Valid Architectures

2.1 An Augmented Component Model to Ease Construction

Not to start from scratch, we choose to extend an existing component model
named Fractal [7]2. Classically, a Fractal component is described as a black box
that defines the services the component provides and requires through server
and client interfaces and a content (called the architecture) that allows a
component to be recursively described. Fractal components are assembled into
architectures by connecting client interfaces to server interfaces. This allows
components to collaborate by exchanging messages along these connections.

The Fractal model is first extended with ports. As in UML2 [4], ports are used
to group together the client and server interfaces that are used by a component
in a given collaboration. Ports are thus used to specify various usage contexts for
components. We define two kinds of ports. Primitive ports are composed of in-
terfaces, as in many other component models [4,6,10,12,14]. Composite ports
are composed of other ports. Composite ports are introduced to structurally
represent complex collaborations. Figure 1 shows an architecture where ATM
is an example of component, Question one of its provided interfaces, Trans-
action one of its required interfaces and Money Withdraw its composite port
which is composed of the two Money Dialogue and Money Transaction primi-
tive ports. Two primitive ports are connected together when all the interfaces of
the first port are connected to interfaces of the second port (and reciprocally). A
composite port is connected when all the primitive ports it is composed of (di-
rectly or indirectly) are connected. Component architectures can then be built
by connecting together component ports (what entails interface connections).
Next section details how ports, and more precisely composite ports, make the
building of architectures easier.

2.2 Validity of an Architecture

An architecture is said to be valid if it is both correct and complete.

Correctness. Stating the correctness of an architecture relies on techniques
that verify the coherence of connections, to check whether they correspond to
2 We choose Fractal mainly because it is a hierarchical composition model that sup-

ports component sharing, its structure is simple but extensible and respects the
separation of concerns principle and an open-source implementation exists.



230 N. Desnos et al.

possible collaborations between the linked components. These verifications use
various kinds of meta-information (types, protocols, assertions, etc.) associated
with various structures (interfaces, contracts, ports, etc.).

A first level of correctness, called syntactic correctness, can be verified by
comparing the types of the connected interfaces [5,7]. This ensures that com-
ponents can ”interact” because the signatures of the functionalities to be called
through the required interface match the signatures of the functionalities of
the provided interface. A second level of correctness, called semantic correct-
ness [15,9], can then be verified to determine if the connected components can
”collaborate” i.e. exchange sequences of messages that are coherent with each
other’s behavior. Semantic verifications require that protocols – valid sequences
of messages – be defined. The semantic correctness of the connection between
two ports is handled as a classic comparison of their associated protocols. This
is a time-consuming process because of the highly combinatorial complexity of
the algorithms used to compare all the possible message sequences [13].

Completeness. A component architecture is built to achieve some functional
objectives [1,15,16]. Functional objectives are defined as a set of functionalities
to be executed on selected components. The set of connections in the architecture
must be sufficient to allow the execution of collaborations that reach (include)
all the functional objectives. Such an architecture is said to be complete.

Starting from a set of components corresponding to the functional objectives,
a naive algorithm can be to try to build an architecture where all the inter-
faces of all the components are connected, so that all the execution scenarios
may be executed. When no solution exists in the current architecture to connect
an interface, the repository is searched for a component that has a compatible
interface. If one exists, it is added to the architecture and the interfaces are
connected. If several connections are possible, they represent alternative build-
ing paths to be explored. In case a dead end is reached, the construction is
backtracked to a previous configuration, in order to try alternative connection
combinations. The problem with this building process is the size of the solution
space to be explored. It is amplified by the cost of the semantic verifications
that must be calculated for any candidate connection between two components.
Therefore, the automatic construction of valid architectures still is an open prob-
lem. We then have studied different ways to reduce the complexity of the building
process.

3 Taming the Complexity of Automation

3.1 Using Composite Ports to Connect Components

To reduce the complexity, the building process can try to connect only the in-
terfaces that are useful to reach the functional objectives. However, the proper
use of a functionality of a component is not independent from other function-
alities. The behavior protocol of a component specifies the different valid ex-
ecution scenarios where a functionality is called. The execution of a scenario
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requires the connection of all the interfaces that it uses: regarding the scenario,
these interfaces are said to be dependent. Thus, a given functional objective
can be reached only when precise sets of (dependent) interfaces, correspond-
ing to valid scenarios, are connected. An analysis of the behavior protocol of
a component could be used to determine those scenarios but a means is re-
quired to capture and to express this information in an explicit and simple
way, in order to ease the connection process. Ports are introduced as a kind of
structural meta-information, complementary to interfaces, that group together
the interfaces of a component corresponding to a given valid scenario. Ports
could be produced automatically, by the analysis of behavior protocols or be
manually added by the designer in order to document a given usage of the
component.

Port connections make the building process more abstract (port-to-port con-
nections) and more efficient (no useless connections). Considering a port that
needs to be connected, the availability of a compatible port is an important
issue. The more numerous interfaces are in a given port, the more specific the
port type is and the less chances exist to find compatible ports. Composite ports
are used to solve this issue: they allow short scenarios, composed of few inter-
faces, to be described as small primitive ports that are then composed together
to describe more complex scenarios. Large flat primitive ports can then be re-
placed by small primitive ports hierarchically structured into larger composite
ports. The result is that smaller ports are less specialized and thus provide more
connection possibilities. From a different point of view, a primitive port can be
considered as the expression of a constraint to connect a set of interfaces both at
the same time and to a unique component. A composite port is the expression
of a constraint to connect a set of interfaces at the same time but possibly to
different components. As they relax constraints, composite ports increase the
amount of possible connection combinations. Moreover, composite ports provide
a means to precisely specify how interfaces must be connected: to a unique com-
ponent – for functionality calls to produce cumulative effects – or to distinct
components.

3.2 Building Quasi-valid Architectures

Semantic verifications are very expensive. Our approach keeps semantic verifi-
cations separated from the building process so as not to waste time verifying
the semantics of connections as long as the completeness of the architecture
cannot be guaranteed. To achieve this, a quasi-valid architecture is first built.
A quasi-valid architecture is a syntactically correct and complete architecture.
The connection of a port enforces the completeness of an architecture, regarding
the execution of a scenario. Once all the ports corresponding to the functional
objectives are connected, an architecture is quasi-valid. Quasi-validity is a pre-
condition for an architecture to be valid.

We wrote an algorithm that automatically builds quasi-valid architectures.
The building process uses a set containing the ports that still have to be con-
nected – the functional objective set (FO-set). The FO-set contains only
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primitive ports: composite ports are systematically decomposed into the set of
primitive ports they are directly or indirectly composed of. The FO-set is ini-
tialized with the ports that correspond to the functional objectives. One of the
primitive ports is picked up from the FO-set and a compatible port is searched
for. If a compatible unconnected port is found, the ports are connected together.
If the compatible port belongs to a component that does not yet belong to the
architecture, the component is added to the architecture. If the chosen compati-
ble port belongs to a composite port, all the other primitive ports that composed
the composite port are added to the FO-set. This way, no port dependencies –
and therefore no interface dependencies – are left unsatisfied. The building pro-
cess is iterated until the FO-set is empty. All the initial primitive ports that
represent functional objectives are then connected along with all ports they are
recursively dependent upon: the resulting architecture is quasi-valid.

Figure 1 shows the example of an architecture built by our algorithm. It starts
with a FO-set that contains the Money Withdraw primitive port of the Client
component. This port is taken out of the FO-set and a connection is searched
for. It is connected to the compatible Money Dialogue primitive port of the ATM
component. As this latter port belongs to the Money Withdraw composite port,
it depends on the Money Transaction primitive port which is thus added to the
FO-set before the building process iterates. The Money Transaction primitive
port of the ATM component is now considered for connection. It is compatible
with the Money Transaction primitive port of the Bank component which be-
longs to the composite port Money Withdraw. After connection, the other prim-
itive port of this composite port, Request Data, is in turn added to the FO-set.
At the next iteration, the Request Data primitive port of the Bank component
is connected with the compatible primitive port Provide Data of the Database
component. As this primitive port does not belong to a composite port, no primi-
tive port is to be added to the FO-set. The FO-set is now empty: the architecture
of Fig.1 is quasi-valid.

Fig. 1. A quasi-valid architecture built with the support of composite ports
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Several special situations can occur during this process. When several free
compatible ports are candidate for connection, they correspond to alternate so-
lutions that are to be explored. Conversely, when no free compatible port is
found the building algorithm has reached a dead end. The construction is then
backtracked to a previous situation where unexplored connection possibilities ex-
ist. Our algorithm is implemented as the searching of a construction tree using a
depth-first policy. Breadth search is used to explore all the alternate construction
paths. This complete exploration of the construction tree is used to guarantee
that any possible solution is always found.

3.3 Strategies, Heuristics and Experiments

The performance of the building algorithm has been measured. For this purpose,
we have implemented a small environment that generates random component
sets which provide different building contexts, in size and complexity. Once a
component set is generated, an arbitrary number of ports can be chosen as
functional objectives and the building algorithm be launched. Our experiments
show that the combinatorial complexity of the building process is very high. To
be able to use our approach in demanding situations, such as the deployment
and configuration of components at runtime, we have studied various heuristics
that speed up the building process.

Building Minimal Architectures. A first strategy is to try to find not all
the possible architectures but only the most interesting ones. Minimality is
an interesting metrics for the quality of an architecture [17]. We apply this
minimality criterion to the number of connection. Less connections entail less
semantic verifications, less interactions and therefore less conflict risks. Less
connections also entail more evolution capabilities (free ports). To efficiently
search for minimal architectures, we have added a branch-and-bound strategy
to our building algorithm. The bound is the maximum number of connections
allowed for the construction of the architecture. When this maximum is reached
when exploring a branch of the construction tree, the rest of the branch can be
discarded as any new solution will be less optimal than the previously found
(pruning).

Min Domain Heuristic. This heuristic is used to efficiently choose ports from
the FO-set. The port for which a minimum of free compatible ports exists is
chosen first. This minimizes the effort to try all the connection possibilities:
in case of repeated failures, this allows impossible constructions to be detected
sooner.

Minimum Effort Heuristic. In the branch-and-bound strategy, every time
the bound is lowered, the traversal of the tree is speeded up. To connect a
primitive port, the algorithm first chooses the free compatible primitive port
that belongs to the ”smallest” composite port. It corresponds to the choice of
the less dependent ports, that minimize future efforts to connect them.
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No New Dependency Heuristic. When a compatible port can be found in
the FO-set its connection will add no new dependency, and furthermore, satisfy
two dependencies at once. Indeed, when a port belongs to the FO-set, the other
primitive ports it depends on are already in the FO-set.

Look-ahead Strategy. Calculi can be used to predict if the traversal of the
current construction branch can lead to a minimal solution. They are based on
an estimate of the minimum number of connections required to complete the
building. A soon as the sum of the existing connections with this estimate is
greater than the bound, the current branch can be pruned. A simple example of
this estimate is the number of ports in the FO-set divided by two.

Experimental Results: An Outline. Experiments show that performance
mainly depends on the number of initial functional objectives. This is log-
ical since more functional objectives implies not only a larger search space
but also more constraints, thus more failures and backtracks. For example,
series of experiments have been run with a library of 38 generated compo-
nents. Each component had at most 4 primitive ports and at most 2 com-
posite ports. Each primitive port had at most 5 interfaces. Starting with 5
initial functional objectives, the following typical results are obtained. A ba-
sic construction algorithm, implemented in Java and executed on a standard
computer, without any of the above optimizations, is able to find 325 000 quasi-
valid architectures, when stopped after 15 hours. This gives an idea of the
gigantic size of the search space. Among those quasi-valid architectures, the
largest ones are composed of 48 connections. The smallest architecture found
is composed of 18 connections. As a comparison, the optimized construction
algorithm finds the only minimal architecture composed of 7 connections in
less than a second. This motivates our proposal for an efficient building ap-
proach. It is difficult to build quasi-valid architectures, because the more fre-
quent ones are rather large (around 40 connections in the above example). It
is even more difficult to build minimal ones, because they are scarce in a large
search space.

4 Conclusion and Perspectives

While other works focus on the validation of complete architectures, our work
studies the building process of architectures and proposes a practical solution
to automate it. It enables the candidate architectures, on which validation al-
gorithms are to be applied, to be systematically searched for. Besides the many
optimization strategies and heuristics used for the traversal of the construction
space, the use of ports, and particularly of composite ports, is prominent in our
approach. As they express the dependencies that exist between interfaces, ports
provide a simple means to evaluate the completeness of an architecture. Finally,
being composed of interfaces, they provide means to abstract the many con-
nections of interfaces to single connections and thus reducing the combinatorial
complexity of the building.
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A perspective for this work is to integrate it to a component-based develop-
ment framework, for example as part of a trading service, to provide a means to
manage the self-assembling of components in open, dynamic systems (autonomic
computing).
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Abstract. Software architectures are often designed with respect to
some architecture patterns, like the pipeline and peer-to-peer. These pat-
terns are the guarantee of some quality attributes, like maintainability
or performance. These patterns should be dynamically enforced in the
running system to benefit from their associated quality characteristics
at runtime. In dynamic hosting platforms where machines can enter the
network, offering new resources, or fail, making the components they
host unavailable, these patterns can be affected. In addition, in this kind
of infrastructures, some resource requirements can also be altered. In
this paper we present an approach which aims at dynamically assist
deployment process with information about architectural patterns and
resource constraints. This ensures that, faced with disconnections or ma-
chine failures, the runtime system complies permanently with the original
architectural pattern and the initial resource requirements.

1 Introduction

When we design software architectures, we often make use of architecture pat-
terns, like for example the pipe and filter, the client and server, peer-to-peer
pattern, etc. These vocabularies of recurrent solutions to recurrent problems1

are the guarantee of some quality attributes in the designed system. These qual-
ity attributes include maintainability, portability, reliability and performance.
Starting from these high-level design documents (architecture descriptions), we
can produce low-level implementation entities that will be deployed.

One of the characteristics of emerging distributed platforms is their dynamism.
Indeed, such dynamic platforms are not only composed of powerful and fixed
workstations but also of mobile and resource-constrained devices (laptops, PDAs,
smart-phones, sensors, etc.). Due to the mobility and the volatility of the hosts,
connectivity cannot be ensured between all hosts, e.g. a PDA with a wireless con-
nection may become unaccessible because of its range limit. As a consequence,
in a dynamic network, partitions may occur, resulting in the fragmentation of
the network into islands. Machines within the same island can communicate
whereas, no communication is possible between two machines that are in two
1 With analogy to design patterns but at a more coarse-grained level of abstraction.
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different islands. Moreover, as some devices are characterized by their mobility,
the topology of islands may evolve.

Dynamism in the kind of networks we target is not only due to the nature
of the devices but also to their heterogeneity making difficult to base a de-
ployment on resource’s availability. When deploying component-based software
in dynamic distributed infrastructures it is required that the deployed system
complies permanently with its corresponding architecture pattern(s). By taking
advantages of changes in the environment (e.g. availability of a required re-
source), the initial deployment can evolve but any reconfiguration must respect
architectural choices. This makes the running system benefit from the targeted
quality attributes, and more particularly those which are dynamically observed,
like performance or reliability.

In this paper, we present an approach to drive component deployment and
component deployment evolution in this kind of dynamic networks, based on in-
formation about architecture patterns and resource requirements. This approach
uses two kinds of constraints: the first one represents patterns and resource re-
quirements formalisation; the second one corresponds to the result of transform-
ing the former constraints into run-time ones. These run-time constraints are
checked dynamically and are used to drive component deployment and compo-
nent deployment evolution.

In the next section we present how we can formalize architecture patterns and
resource requirements using a constraint language, and we illustrate this formal-
ization by a short example of a client/server pattern. We present in section 3,
the deployment process and the resolution mechanisms of these constrained
component-based software in dynamic infrastructures. Before concluding, we
present some related work in section 4.

2 Formalization of Architectural Decisions with ACL

In order to make explicit architectural decisions, we proposed ACL, an Archi-
tecture Constraint Language [11]. Architectural decisions are thus formalised as
architecture predicates which have as a context an architectural element (com-
ponent, connector, etc.) that belongs to an architecture metamodel. ACL is a
language with two levels of expression. The first level encapsulates concepts used
for basic predicate-level expression, like quantifiers, collection operations, etc. It
is represented by a slightly modified version of UML’s OCL [9], called CCL (Core
Constraint Language). The second level embeds architectural abstractions that
can be constrained by the first level. It is represented by a set of MOF ar-
chitecture metamodels. Architectural constraints are first-order predicates that
navigate in a given metamodel and which have as a scope a specific element in
the architecture description. Each couple composed of CCL and a given meta-
model is called an ACL profile. We defined many profiles, like the ACL profile for
xAcme (which is an XML extension of Acme ADL [3].), for UML 2, for OMG’s
CORBA Components [8] (CCM) or the profile for ObjectWeb’s Fractal [1].
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2.1 Architectecture Pattern Description

Suppose that we have developed, at architecture design-time, a component soft-
ware that represents a company printing system. We would like to automate the
installation and the reconfiguration of this system to all company employees.
This printing system is organised according to the client/server pattern. The
printing service is based on a ServerPrinter which receives print jobs from Client-
Printer. The client/server pattern is characterized by the following constraints:
i) there is no direct communication between ClientPrinters, ii) each ServerPrinter
can accept jobs from at most 10 different clients, and iii) a ClientPrinter can use
at most two ServerPrinters. These first two constraints can be described using
ACL profile for Fractal as following:

context ClientServer :CompositeComponent inv:
ClientServer .binding ->forAll(b|b.client.component .kind
<> b.server.component .kind)
and
ClientServer .subComponents ->select(c|c.kind=’Server ’)
.interface ->oclAsType (Server). binding ->size () <= 10

These constraints navigate in the MOF metamodel of Fractal ADL which is
presented in Figure 1. This metamodel abstracts components, which can be com-
posite or primitive. Composite (or hierarchical) components are entities which
have an explicit description of their internal parts. Primitive (or atomic) com-
ponents are directly implemented by an object class. Components express their
functionalities and requirements through respectively, server and client inter-
faces. In addition, controller interfaces embed non-functional specifications, such
as predefined operations which manage the lifecycle or the contents of a given
component. A composite component specifies also a set of bindings which are
simple method invocation connectors. These bindings are attachments between
client and server interfaces. Bindings can represent either hierarchical or assem-
bly connectors (with analogy to UML’s delegation and assembly connectors).
Hierarchical connectors bind interfaces of composite components to interfaces
of their sub-components. Assembly connectors bind interfaces of components of
the same level of hierarchy.

2.2 Resource and Location Requirements Description

In addition to these architecture design constraints, the deployment of each com-
ponent is governed by some resource and location requirements. Indeed, at design
time, we are unlikely to know the machines that are involved in the deployment
and thus where to deploy each component. However, one can define for each
component its requirements in term of resources, that is, the characteristics of
the machines that will host the component. For example, a ServerPrinter must
be hosted by a machine that has at least 512MB of free memory, a CPU scale
greater than 1 GHz (1000MHz) and that is connected to a printer.
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Fig. 1. A MOF metamodel of Fractal ADL

Resource constraints can be defined using an ACL profile (i.e. a CCL and a
metamodel), called R-ACL (Resources-ACL). R-ACL integrates in its
metamodels concepts related to system resources and their properties2. Resource
constraints introduced above and related to ServerPrinters components are de-
scribed in R-ACL as following:

context ServerPrinter :Component inv:
ServerPrinter .resource -> oclAsType (Memory). free >= 512
and
ServerPrinter .resource -> oclAsType (CPU). processors
->select(cpu:CPU_Model |cpu.speed > 1000)-> size () >= 1
and
ServerPrinter .resource -> oclAsType (Devices)
->select(printer:Printer)->size () >= 1

As discussed above, these constraints navigate in the resources metamodel,
but have as a scope a specific architectural element (ServerPrinter component).

Besides resource constraints, it is sometimes required to control the placement
of the components, especially when several machine can host the same compo-
nent. For example in the Client/Server system we designed, we would require
that for reliability reasons (redundancy at the server side), all ServerPrinters have
to be located on distinct hosts. The following listing illustrates this constraint
expressed in R-ACL.

context ClientServer:CompositeComponent inv:
ClientServer.subComponent ->select(c1 ,c2:Component|c1.kind=’Server ’
and c2.kind=’Server ’ and c1.location.id <> c2.location.id)

2 The resources metamodel is not presented in this paper due to space limitations.
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3 Constrained Components’ Deployment in Dynamic
Infrastructures

When the choice of the placement of every component has to be made, the initial
configuration of the target platform may not fulfil all resources’ requirements of
the application and some needed machines may not be connected. We are thus
interested in a deployment that allows the instantiation of the components as
soon as resources become available or new machines become connected. We qual-
ify this deployment as propagative. We propose a general framework to guarantee
the designed architecture and its instances for each deployment evolution.

We present first the requirements of a deployment driven by pattern and re-
source specifications. Then, we detail the deployment process and the resolution
of constraints in dynamic environments.

3.1 From Architectural Constraints to Runtime Constraints

At design time, we are unlikely to know what are the machines that are in-
volved in the deployment and thus what are their characteristics. Hence, a valid
configuration of the client/server pattern presented in section 2, can only be
computed at runtime. A valid configuration is a set of component instances, in-
terconnected and for which, a target host has been chosen. Every architectural
constraint (e.g. on bindings or number of instances) has to be verified and the
selected hosts must not contradict the resource and location constraints.

Our approach consists in manipulating all the architectural and resource con-
straints at runtime in order to reflect the state of the deployed system with
respect to these constraints. The reified constraints are generated automatically
from the R-ACL constraints and correspond to a constraint satisfaction problem
(CSP). In a CSP, one only states the properties of the solution to be found by
defining variables with finite domains and a set of constraints restricting the val-
ues that the variables can simultaneously take. The use of solvers such as Cream3

can then be used to find one or several solutions. The CSP that corresponds to
our patterns consists of the following constraints:

C1 the number of instances allowed for each component
C2 the resource constraints (e.g. Mem.free ≥ 512)
C3 the location constraints (e.g. x �= y)
C4 a binding constraint between every component that can be bound
C5 the number of outgoing bindings allowed on a client interface
C6 the number of incoming bindings allowed on a server interface

Each Ci corresponds to a set of constraints. As we will detail below, these
sets are sufficient to generate a valid configuration regarding to an architectural
pattern. The deployment process that is presented in the next section relies on
these constraints in order to build a mapping between the component instances
and the hosts of the target platform.

3 http://kurt.scitec.kobe-u.ac.jp/∼shuji/cream/
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3.2 Deployment Process

When dealing with dynamic networks where partitions may occur and hosts
availability has to be faced with, it is hardly feasible to rely on a specific machine
which would be responsible of the deployment. We made the most of the results
obtained in [5] in which we have used a consensus algorithm to elect a manager
that decides on the placement of a set of components. The consensus algorithm
ensures that no contradictory decisions can be made in two different islands, e.g.
the same component cannot be instantiated in two distinct islands.

The deployment descriptor contains the identity of the machines that are in-
volved in the deployment. This requirement is necessary in order to define the
notion of majority on which the consensus relies. However, when the deploy-
ment is triggered, some machines may not be connected. The first step of the
deployment consists in broadcasting the architecture and deployment descriptors
to at least one machine that belongs to the deployment target, which in turn
broadcasts the descriptors to all the machines that are connected in the network.
Each machine that receives these descriptors, creates the constraints described
in the listing above depending on the deployment and architecture descriptors.
Then a process is launched on each host. Locally, each machine maintains its
own set of constraints (C1 to C6) and tries to make the deployment evolve until
(a) solution(s) exist(s) for constraints C1, that is, some components can still be
instantiated. The main steps of this process for the machine mi and a component
C that can be deployed on mi are:

– For each resource constraint associated with C, a dedicated probe is launched
(e.g. a probe to get the amount of free memory required by component C)
in order to check if locally, all the required resources are available (C2). The
observation of the resources is made periodically.

– If this is the case, that is, the component can be hosted locally, mi sends its
candidatures to all the machines involved in the deployment. This candida-
ture indicates that mi can host component C.

– Thus, mi may receive several candidatures from others for the instantiation
of C. When a candidature is received, mi has to resolve a placement solution
regarding to constraints C3. Depending on location constraints, a placement
solution may require a sufficient number of candidatures.

– Once a solution has been found by mi, it tries to make it adopt by the
consensus algorithm. If the consensus terminates, mi updates the deployment
descriptor with the new information of placement and broadcasts it to all
the nodes that are currently connected.

– When a new descriptor is received, mi updates the set C1 and C3 in order
to take into account the placement decision made previously.

– mi can then resolve some bindings towards newly instantiated (remote) com-
ponents (C4) by sending a request to the machines hosting them. This is
possible only if constraints C5 are still verified.

– When mi receives a request of bindings, according to C6, it can accept or
not this request and inform the sender of its answer.
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– Depending on the answer, the definition domain that corresponds to the
binding constraint (C4) is updated (removed from the constraint set if the
binding is not possible or set to the remote host otherwise).

This process defines a propagative deployment driven by architectural and re-
sources concerns. Since the observation of resources is made periodically, when a
resource becomes available on a specific machine, this may yield the deployment
to evolve. Similarly, when a machine enters the network (e.g. it is switch on),
it announces its presence to the other nodes which will send it the current ver-
sion of the architecture and deployment descriptors, making possible this newly
connected machine to participate in the deployment evolution. In our current
prototype, each machine maintains the list of connected hosts.

4 Related Work

Many ADLs provide capabilities to describe architecture patterns. Medvidovic
and Taylor in [7] makes an overview of some existing ADLs offering such func-
tionalities. Descriptions of architecture patterns with these ADLs make possible
some reasoning about the modeled system, analysing its structure and evaluat-
ing its quality. At the best of our knowledge, only a few of these ADLs allow the
enforcement of architecture patterns on an implementation deployed at runtime
in a dynamic infrastructure. Some of the works targeting this goal are presented
below. In addition, resource and location requirements are not well handled in
all these languages in a homogeneous manner with architecture patterns like in
R-ACL. If we would like to change an implementation technology (from Fractal
to CORBA components, for example), R-ACL constraints can be easily trans-
formed, as demonstrated in [12]. The solution adopted in this work which aims
at transforming R-ACL constraints into runtime constraints makes also simpler
the transformation of these new R-ACL constraints (in CORBA components
ACL profile, for example).

We share similarities with researches on self-healing and self-organizing sys-
tems [6]. Indeed, the proposed approach here ressembles to the approach of [4,10]
in which the architecture of the system to deploy is not described in terms of
component instances and their interconnections but rather by a set of constraints
that define how components can be assembled. In both cases the running system
is modelled by a graph. The main difference with our work is that reconfigura-
tions of the systems are explicitly defined in a programmatic way while this is
achieved automatically by the resolution of the constraints Ci in our work.

The work presented in [2] shares the same motivation to define high level
deployment description with regard to constraints on the application assembly
and on the resources the hosts of the target platform should meet. The authors
present the Deladas language that allows the definition of a deployment goal in
terms of architectural and location constraints. A constraint solver is used to
generate a valid configuration of the placement of components and reconfigura-
tion of the placement is possible when a constraint becomes inconsistent. This
centralized approach does not consider resource requirements.
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5 Conclusion and Ongoing Work

Deploying distributed systems in dynamic infrastructures remains a challeng-
ing task as resources and hosts availability cannot be predicted. In this paper
we presented an approach which helps at assisting the deployment process with
information about architecture patterns and resource requirements. This infor-
mation is formally specified at design-time as constraints, written with a specific
predicate language. These constraints allow the definition of complex component
interaction and platform dependencies. In order to react on changes in the en-
vironment, these constraints are transformed and manipulated dynamically. By
using these constraints, a propagative deployment is defined: components are
instantiated as soon as needed resources become available and required hosts
become connected while ensuring architecture consistency.

Our implementation is based on existing prototypes: ACE [11] for the descrip-
tion and the evaluation of ACL constraints, and a deployment manager based on
Cream to maintain and solve runtime constraints. An evaluation of the behavior
of our approach in a dynamic network is in progress.
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