
Consistent Query Answering: Five Easy Pieces�

Jan Chomicki

Dept. of Computer Science and Engineering
University at Buffalo

Buffalo, NY 14260-2000
chomicki@cse.buffalo.edu

Abstract. Consistent query answering (CQA) is an approach to query-
ing inconsistent databases without repairing them first. This invited talk
introduces the basics of CQA, and discusses selected issues in this area.
The talk concludes with a summary of other relevant work and an outline
of potential future research topics.

1 Introduction

The notion of inconsistency has been extensively studied in many contexts. In
classical logic, an inconsistent set of formulas implies every formula (triviality).
In databases, a database instance is inconsistent if it does not satisfy integrity
constraints (constraint violation). Those two kinds of inconsistency are closely re-
lated: an inconsistent database instance, together with the integrity constraints,
may be represented as an inconsistent set of formulas. However, triviality is not
a problem in the database context because the semantics of query answers does
not take integrity constraints into account.

Nowadays more and more database applications have to rely on multiple,
often autonomous sources of data. Even if the sources are separately consis-
tent, inconsistency may arise when they are integrated together. For example,
different data sources may record different salaries or addresses of the same em-
ployee. At the same time, the application may require that the integrated, global
database contain a single, correct salary or address. Similarly, different sensors
may register inconsistent readings of the same quantity that need to be resolved.

In order to deal with inconsistency in a flexible manner, database research
and practice have developed different approaches that we will illustrate using a
simple example.

Example 1. Consider a database schema consisting of two unary relations P1
and P2, and the denial integrity constraint ∀x. (¬P1(x) ∨ ¬P2(x)). Assume a
database instance consists of the following facts: {P1(a), P1(b), P2(a)}. Under
prevention (usual constraint enforcement), such instance could not arise: only
one of P1(a) and P2(a) could be inserted into the database. Under ignorance
(constraint non-enforcement), no distinction is made between P1(a) and P1(b),
� Research supported by NSF grant IIS-0119186.

T. Schwentick and D. Suciu (Eds.): ICDT 2007, LNCS 4353, pp. 1–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 J. Chomicki

despite that the latter, not being involved in a constraint violation, appears to
represent more reliable information. Under isolation [18], both P1(a) and P2(a)
are dropped (or ignored in query answering). Under weakening [6,49], P1(a) and
P2(a) are replaced by P1(a) ∨ P2(a). Allowing exceptions [15] means that the
constraint is weakened to ∀x. (¬P1(x) ∨ ¬P2(x) ∨ x = a), but query answering
is not affected.

A seperate class of responses to inconsistency is based on the notion of re-
pair: a consistent instance minimally different from the original one, in this case
{P1(a), P1(b)} or {P2(a), P1(b)}. Such repairs can be materialized [30] or virtual.
Virtual repairing, which is usually called consistent query answering [3], does
not change the database but rather returns query answers true in all repairs
(consistent query answers). So the query asking for all such consistent x that
P1(x) is true, returns only x = b.

Example 2. Consider the following instance of a relation Location, which records
the current location of employees. Such a relation may be built from active-badge
sensor readings, employee calendars, and other data sources.

Name Campus Building

Mary North Bell

Mary North Knox

John South Hayes

and the functional dependency Name → Campus Building . Note that for both
employees the database contains a single campus, while two different buildings
are recorded for Mary, violating the functional dependency.

There are two (minimal) repairs: one is obtained by removing the first tuple,
the other by removing the second tuple. (Removing more tuples violates repair
minimality.) The consistent answer to the query Q1:

SELECT * FROM Location

is just the tuple (John,South,Hayes), because neither of the first two tuples
appears in the result of the query in both repairs. On the other hand, the query
Q2:

SELECT Name, Campus FROM Location

has two consistent answers: (Mary,North) and (John,South), because Q2 returns
those two tuples in both repairs. Using Q2 the user can extract reliable infor-
mation about the campus location of both employees, despite the fact that the
information about the building where Mary is located is inconsistent.

Consistent query answering was first proposed by Arenas et al. [3]. That pa-
per was followed by numerous further papers that explored several different
dimensions of consistent query answering:

Consistent Query Answering: Five Easy Pieces 3

– different notions of repair minimality (leading to different semantics for con-
sistent query answers);

– different classes of queries and integrity constraints;
– different methods of computing consistent query answers.

What follows is a collection of short essays about consistent query answer-
ing (CQA). They address the following topics: the basic concepts and results
of Arenas et al. [3] (Section 2), computational complexity of CQA (Section 3),
referential integrity (Section 4), and improving the informativeness of CQA in
the presence of aggregation or probabilistic information (Section 5). The last
essay (Section 6) briefly summarizes other research on CQA and outlines some
directions for future work. The essay topics were chosen to introduce the central
concepts of CQA and illustrate the breadth of the area. By no means is this arti-
cle a comprehensive survey of CQA research; such surveys are already available
elsewhere [8,11,25].

2 The Basics

We use the standard setting of relational databases. We assume the existence of
a database schema R, which is a finite set of relation names and the associated
arities. Database instances are mappings from the database schema to finite sets
of tuples of the appropriate arity. We also assume that relation columns can
be labelled by attributes and typed by associating with them one of the two
domains: uninterpreted constants or rational numbers.

Given a database schema R and the built-in predicates over the numeric
domain (=, �=, <, >, ≤, ≥), we define the first-order language LR in the standard
way. Database instances can be viewed as first-order structures over LR. The
built-in predicates have infinite, fixed extensions.

2.1 Integrity Constraints

Integrity constraints are closed first-order LR-formulas. In the sequel we will
denote: relation symbols by P, P1, . . . , Pm, atomic formulas by A1, . . . , An, tuples
of variables and constants by t̄, x̄, . . ., and quantifier-free formulas referring to
built-in predicates by ϕ.

In this paper we consider the following basic classes of integrity constraints:

1. Universal integrity constraints: ∀∗. A1 ∨ · · · ∨ An ∨ ¬An+1 ∨ · · · ∨ ¬Am ∨ ϕ.
2. Denial constraints: ∀∗. ¬A1 ∨ · · · ∨ ¬Am ∨ ϕ.
3. Binary constraints: universal constraints with at most two occurrences of

database literals.
4. Functional dependencies (FDs): ∀x̄, ȳ, z̄, ȳ′, z̄′. (¬P (x̄, ȳ, z̄) ∨ ¬P (x̄, ȳ′, z̄′) ∨

ȳ = ȳ′). A more familiar formulation of the above FD is X → Y where X is

4 J. Chomicki

the set of attributes of P corresponding to x̄ and Y the set of attributes of
P corresponding to ȳ (and ȳ′).

5. Referential integrity constraints, known as inclusion dependencies (INDs):
∀x̄, ȳ. ∃z̄. (¬P2(x̄, ȳ)∨P1(ȳ, z̄)). Again, this is often written as P2[Y2] ⊆ P1[Y1]
where Y1 (resp. Y2) is the set of attributes of P1 (resp. P2) corresponding
to ȳ.

Given a set of FDs and INDs IC and a relation P1 with attributes U , a key of
P1 is a minimal set of attributes X of P1 such that IC entails the FD X → U .
In that case, we say that each FD X → Y ∈ IC is a key dependency and each
IND P2[Y] ⊆ P1[X] ∈ IC is a foreign key constraint . If, additionally, X is the
only key of P1, then both kinds of dependencies are termed primary.

Definition 1. Given an instance I of a database schema R and a set of integrity
constraints IC, we say that I is consistent if I � IC in the standard model-
theoretic sense; inconsistent otherwise.

Queries are formulas over the same language LR as the integrity constraints.
Conjunctive queries [23,1] are queries of the form ∃∗. A1 ∧ · · · ∧ An ∧ ϕ where ϕ
is a conjunction of built-in atomic formulas.

Definition 2. A tuple t̄ is an answer to a query Q(x̄) in an instance I iff I |=
Q(t̄).

2.2 Repairs and Consistent Query Answers

We introduce now the framework of Arenas et al. [3]. It is based on two fun-
damental notions: repair and consistent query answer. The symmetric difference
Δ is used to capture the distance between two instances I and I ′: Δ(I, I ′) =
(I − I ′) ∪ (I ′ − I)1.

We assume that we are dealing with satisfiable sets of integrity constraints.

Definition 3. Given a set of integrity constraints IC and database instances
I and I ′, we say that I ′ is a repair of I w.r.t. IC if I ′ � IC and there is no
instance I ′′ such that I ′′ � IC and Δ(I, I ′′) ⊂ Δ(I, I ′).

We denote by RepairsIC(I) the set of repairs of I w.r.t. IC. This set is nonempty
for satisfiable sets of constraints.

Given a query Q(x̄) to a database instance I, we want as consistent answers
those result tuples that are unaffected by the violations of IC , even when I
violates IC .

Definition 4. A tuple t̄ is a consistent answer to a query Q(x̄) in a database
instance I w.r.t. a set of integrity constraints IC iff t̄ is an answer to the query
Q(x̄) in every repair I ′ of I w.r.t. IC. We can define true being a consistent
answer to a Boolean query in a similar way.

1 The difference is defined component-wise for every relation symbol in the schema.

Consistent Query Answering: Five Easy Pieces 5

Note: If the set of integrity constraints IC is clear from the context, we omit it
for simplicity.

The notion of consistent query answer corresponds to the notion of certain an-
swer, developed in the context of incomplete databases by Lipski and Imieliński
[45,42], because repairs can be viewed as possible worlds. In some cases, as in Ex-
ample 1, one can represent the set of repairs w.r.t FDs as a disjunctive database
or a table with OR-objects [43]: disjunctive information is used to model resolved
conflicts. The correspondence in the other direction breaks down, however, al-
ready in very simple cases [5].

2.3 Query Rewriting

Arenas et al. [3] propose a method to compute consistent query answers based on
query rewriting. Given a set of integrity constraints IC, a query Q is rewritten
into a query QIC such that for every instance I the set of answers to QIC in I is
equal to the set of consistent answers to Q in I. Typically, we expect Q and QIC

to belong to the same class of queries, for example first-order queries or SQL. In
such a case, the computation of consistent query answers can be done using the
same query engine.

The method proposed in [3] is relatively simple and draws on earlier work in se-
mantic query optimization [22]. The rewriting applies to and produces first-order
queries. When a literal in the query can be resolved with an integrity constraint
the resolvent forms a residue. All such residues are then conjoined with the lit-
eral to form its expanded version. If a literal that has been expanded appears in
a residue, the residue has to be further expanded until no more changes occur.
For denial constraints, however, only a single expansion is necessary.

Example 3. Consider Example 2, the FD f1 : Name → Building and the query
Location(x, y, z). The rewritten query Qf1 :

Qf1 ≡ Location(x, y, z) ∧ ∀y′, z′.
(
Location(x, y′, z′) ⇒ z = z′

)
.

Clearly, the rewritten query can be formulated in SQL.

2.4 Limitations

The notion of repair (Definition 3) has been revisited many times since the
publication of [3]. For instance, one can minimize the cardinality of the set of
changes [50], as opposed to minimizing the set of changes under set inclusion, as
in Definition 3. Moreover, attribute-based changes were considered in [14,58,59]
(this issue is discussed further in Section 6). Surprisingly, the notion of consistent
query answer (Definition 4) has been almost universally adopted in the recent
literature of the subject (but see Section 5).

The scope of the query rewriting method detailed above (and further devel-
oped in [21]) is quite limited. It applies to first-order queries without disjunction
or quantification, and binary universal integrity constraints. So, for example,

6 J. Chomicki

the query Q2 from Example 2 cannot be handled. A rewriting method that
can handle a rather large subset of conjunctive queries at the price of limiting
integrity constraints to primary key FDs was recently proposed by Fuxman and
Miller [38]. This method, which can handle Q2 from Example 2, is discussed in
more detail in the next section. Adding quantification and disjunction has proved
to be much harder: the approach of [38] has been extended in that direction by
Lembo et al. [47]. The paper [38] was further generalized to include exclusion
dependencies by Grieco et al. [41].

3 Computational Complexity

We note first that already in the presence of a single primary key dependency
there are inconsistent relation instances with exponentially many repairs [5].
Thus Definition 4 does not yield a practical method for computing consistent
query answers. Below, we show a number of cases in which the latter problem
can be solved in polynomial time, and later we characterize the intractable cases
in detail. We limit ourselves to universal constraints here; inclusion dependencies
are discussed in Section 4. We consider two basic decision problems:

– repair checking: Is a database instance a repair of another instance w.r.t. the
integrity constraints?

– consistent query answering (CQA): Is a tuple a consistent query answer to
a query in a database instance w.r.t. the integrity constraints?

The motivation to study repair checking, in addition to CQA, comes from data
cleaning where a single, consistent database instance needs to be constructed.
The repair-checking algorithms can typically be adapted to yield such an in-
stance.

We adopt here the data complexity assumption [1,46,57], which measures the
complexity of the problem as a function of the number of tuples in a database
instance. The query and the integrity constraints are considered fixed.

3.1 Tractable Cases

It is easy to see that for denial constraints repair checking can be done in poly-
nomial time: check whether a potential repair I ′ is a subset of the database
instance I and satisfies the integrity constraints, and whether adding any other
tuple from I − I ′ to I ′ leads to a constraint violation.

Query rewriting approaches that produce first-order queries provide poly-
nomial-time algorithms for CQA: rewrite the query and evaluate the rewrit-
ten query on the original database. Note that the rewriting of the query is
done independently of the database instance, and therefore does not affect data
complexity.

However, the original query rewriting approach of [3] was applicable only
to very restricted classes of queries and constraints (see the previous section).

Consistent Query Answering: Five Easy Pieces 7

Recently, that approach was generalized by Fuxman and Miller [38] to allow
restricted existential quantification in queries in the context of primary key FDs.
The rewriting method of [38] applies to a class of conjunctive queries Cforest,
defined using the notion of the join graph of a query. The vertices of the join
graph are the query literals; an edge runs from a literal Ai to a different literal Aj

if there is an existentially-quantified variable which occurs in a nonkey attribute
of Ai and any attribute of Aj . The class Cforest consists of those conjunctive
queries that have a join graph which is a forest, and which have no repeated
relation symbols or built-in predicate symbols.

Example 4. Consider the following query Q:

Q ≡ ∃x, y, z.P1(x, y) ∧ P2(y, z).

Assume that the first attributes of both P1 and P2 are primary keys. Then Q
expresses a foreign-key2 join and belongs to Cforest. Then the rewritten query
Q′ is:

Q′ ≡ ∃x, y, z.P1(x, y) ∧ P2(y, z) ∧ ∀y′.
(
P1(x, y′) ⇒ ∃z′.P2(y′, z′)

)
.

Another way to obtain tractability is through the notion of conflict graph[5,26].
The vertices of the conflict graph are the tuples in the database; an edge connects
two vertices if they violate together an integrity constraint (we assume binary
constraints for the moment). A conflict graph is a compact, polynomial-size
representation of the set of all repairs of the database: the repairs correspond
to maximal independent sets of the graph. The conflict graph can be used to
compute consistent answers to queries. Chomicki and Marcinkowski [26] describe
a polynomial-time algorithm for CQA that is applicable to quantifier-free queries
and denial integrity constraints3. The algorithm enumerates repairs, trying to
show that a tuple is not a consistent answer. The crucial observation is that only
fixed-size fragments of repairs need to be considered.

3.2 Intractable Cases

Computational complexity analysis helps to delineate the boundary between
the tractable and the intractable cases. We start the discussion of the relevant
complexity results by recalling one of the fundamental results in this area.

Theorem 1. For conjunctive queries and primary key FDs, CQA is co-NP-
complete.

2 Note that while the variable y plays here the role of a foreign key, the corresponding
foreign-key constraint is not taken into account in CQA. We discuss such constraints
in Section 4.

3 To deal with denial constraints, conflict graphs are generalized to conflict
hypergraphs.

8 J. Chomicki

Proof. We describe here the proof of [26] because it is the simplest and was – to
our knowledge – chronologically the first. A different proof appears in [19].

The proof is by reduction from MONOTONE 3-SAT. Let β = φ1 ∧ . . . φm ∧
ψm+1 . . .∧ψl be a conjunction of propositional clauses, such that all occurrences
of variables in φi are positive and all occurrences of variables in ψi are negative.
To encode such formulas, we use two binary relation schemas P1 and P2, each
with two attributes of which the first is the key. We build a database instance
I such that I(P1) contains the tuple (i, p) if the variable p occurs in the clause
φi, and I(P2) contains the tuple (i, p) if the variable p occurs in the clause ψi.
The query Q ≡ ∃x, y, z.

(
P1(x, y) ∧ P2(z, y)

)
. Now there is an assignment which

satisfies β iff there exists a repair of I in which Q is false.

In the above proof, the query Q does not belong to Cforest because it contains
a join between nonkey attributes, which produces a cycle in the join graph.
In the full version of [38], Fuxman and Miller show that several other natural
relaxations of the Cforest property also lead to co-NP-completeness of CQA.
For a class C∗ of conjunctive queries, they prove a dichotomy result: CQA for
each query in C∗ is in P iff the join graph of the query does not contain a
cycle.

For universal constraints, repair checking is co-NP-complete and CQA Πp
2 -

complete in most cases, as recently shown by Staworko et al. [53]. The computa-
tional complexity of consistent query answering is summarized in Figure 1. For
the purpose of exposition, we refer there to subsets of relational algebra instead
of sublanguages of first-order logic. For each result, we cite the primary source,
except for those that follow from the definitions or other results.

Primary keys Arbirary keys Denial Universal

σ, ×,− P P[3] P Πp
2 -complete[53]

P(binary)[3]

σ, ×,−, ∪ P P P[26] Πp
2 -complete

σ, π P[26] co-NPC[26] co-NPC Πp
2 -complete[53]

σ, π,× co-NPC[26] co-NPC co-NPC Πp
2 -complete

P(Cforest)[38]

σ, π,×, −, ∪ co-NPC co-NPC co-NPC Πp
2 -complete

Fig. 1. Complexity of CQA: relational algebra

Proving co-NP-completeness of CQA for a class of first-order queries C is
sufficient to show that unless P=NP there is no query rewriting method that (a)
returns first-order queries, and (b) is applicable to all queries in C.

Consistent Query Answering: Five Easy Pieces 9

4 Referential Integrity Constraints

For denial constraints, integrity violations can only be removed by deleting tu-
ples, so all the repairs are subsets of the given database instance. The picture
changes when we consider general universal or referential integrity constraints.
Violations of such constraints can also be removed by adding tuples.

Example 5. Consider a database schema with two relations P1(AB) and P2(C),
the inclusion dependency P1[B] ⊆ P2[C], and the key dependency A → B.
Consider I ′ such that I ′(P1) = {(a, b), (a, c)} and I ′(P2) = {b}. Then we have
the following repairs:

I ′1(P1) = {(a, b)}, I ′1(P2) = {b}

I ′2(P1) = {(a, c)}, I ′2(P2) = {b, c}

Allowing repairs constructed using insertions makes sense if the information in
the database may be incomplete4. The latter is common in data integration ap-
plications where the data is pulled from multiple sources, typically without any
guarantees on its completeness. On the other hand, if we know that the data in
the database is complete but possibly incorrect, as in data warehousing applica-
tions, it is natural to consider only repairs constructed using deletions. Current
language standards like SQL:1999 [51] allow only deletions in their repertoire of
referential integrity actions.

The above considerations have lead to the definition of two new, more re-
stricted classes of repairs:

– D-repairs, constructed using a minimal set of deletions [26] (I ′1 in Example 5),
– I-repairs, constructed using a minimal set of deletions and some, not neces-

sarily minimal set of insertions [19] (in Example 5, this includes I ′1 and I ′2,
as well as any consistent supersets of those).

Each of those classes of repairs leads to a different notion of consistent query
answer. We consider first D-repairs. Note the following properties of this class
of repairs:

1. Every database instance has a single D-repair w.r.t. any set of INDs, which
is obtained by deleting the tuples violating the constraints.

2. Given a set of primary key FDs F and a set of foreign-key constraints IN ,
every repair of a database instance w.r.t. F ∪IN may be obtained as a repair
of the single D-repair of the instance w.r.t. IN (this is because repairing w.r.t.
F does not lead to any new violations of IN).

4 Incompleteness here does not mean that the database contains indefinite information
in the form of nulls or disjunctions [56]. Rather, it means that the Open World
Assumption is adopted, i.e., the facts missing from the database are not assumed to
be false.

10 J. Chomicki

The second property implies that one can adapt any polynomial-time method
for CQA w.r.t. primary key constraints, for example [38], to compute consistent
query answers w.r.t. any set of primary key and foreign-key constraints in poly-
nomial time. However, if one goes beyond this simple setting, the interactions
between FDs and INDs get complex, and both repair checking and CQA become
quickly intractable [26]. Ultimately, for arbitrary FDs and INDs repair checking
is co-NP-complete and CQA ΠP

2 -complete. (All of those results hold under the
definition of CQA in which D-repairs are substituted for repairs.)

We consider now I-repairs. Cal̀ı et al. [19] show that for such repairs in the
presence of primary key FDs and arbitrary INDs CQA becomes undecidable.
This is shown by a reduction from the implication problem for those constraints
which is known to be undecidable [1]. Cal̀ı et al. [19] define a class of INDs,
called non-key-conflicting, for which the interaction between FDs and INDs is
limited and consequently CQA is co-NP-complete. Technically, they relate CQA
to conjunctive query containment under integrity constraints [44]. Cal̀ı et al. [19]
also analyze repairs (in the sense of Definition 3) in the same setting, obtaining
undecidability of CQA in the general case and Πp

2 -completeness of CQA for
non-key-conflicting INDs.

5 More Informative Consistent Query Answers

In the previous section we considered varying the notion of repair. Here we
keep the original notion of repair but slightly adjust the notion of consistent
query answer. The motivation comes from aggregate queries and probabilistic
databases.

Example 6. Consider the following instance of the relation Emp(Name, Salary)
with the key Name:

Name Salary

John 50K

John 60K

Mary 55K

Now the query

SELECT MAX(Salary) FROM Emp

returns 55K in one repair and 60K in the the other. So there is no consistent
answer in the sense of Definition 4.

To provide more informative query answers to aggregation queries, Arenas et
al. [4] propose to return the minimal interval containing the set of the values
of the aggregate function obtained in some repair. In Example 6, the inter-
val [55K,60K] is returned. The paper [4] contains a detailed analysis of the data

Consistent Query Answering: Five Easy Pieces 11

|F | = 1 |F | ≥ 2

MIN(A),MAX(A),SUM(A),AVG(A),COUNT(*) P NP-complete

COUNT(A) NP-complete NP-complete

Fig. 2. Complexity of scalar aggregation queries

complexity of computing interval answers in the presence of FDs, and showed
the influence of the cardinality |F | of the given set of FDs F . The results are
summarized in Figure 2.

The tractable cases are typically obtained by query rewriting. The exception
is AVG(A), which is computed by an iterative algorithm.

Example 7. The query

SELECT MAX(Salary) FROM Emp

is rewritten as

SELECT SUM(P.MinS), SUM(P.MaxS)
FROM (SELECT MIN(Salary) AS MinS, MAX(Salary) AS MaxS

FROM Emp GROUP BY Name) P

Fuxman and Miller [37] develop a comprehensive framework for rewriting SQL
queries with aggregation by combining the methods of [38] and [4]. The frame-
work also allows grouping constructs in queries.

The notion of repair and consistent query answer has been generalized to
the context of probabilistic databases by Andritsos et al. [2]. In such databases
probabilities are associated with individual tuples. Assume the presence of a
primary key FD. Then the probabilities of the conflicting tuples sum up to
one. A repair also has an associated probability, which is the product of the
probabilities of the tuples belonging to the repair. There is a natural way to
compute the probability of an answer: sum up the probabilities of the repairs in
which the answer appears in the query result. Such answers, with the associated
probabilities, are called clean answers [2]. Clearly, consistent answers are those
clean answers that have probability one. Andritsos et al. [2] present a way to
compute clean answers through query rewriting. Their method applies to a class
of conjunctive queries closely related to Cforest (see Section 3).

Example 8. Figure 3a contains a probabilistic version of the relation Emp with
the key Name. The clean answers to the query

SELECT Name FROM Emp WHERE Salary > 52K

are shown in Figure 3b. The rewritten query that computes the clean answers is

SELECT Name, SUM(Probability) FROM Emp WHERE Salary > 52K
GROUP BY Name

12 J. Chomicki

Name Salary Probability

John 50K 0.6

John 60K 0.4

Mary 55K 1

(a)

Name Probability

John 0.4

Mary 1

(b)

Fig. 3. (a) Emp with probabilities; (b) Clean answers

6 Other and Future Work

A major line of work on CQA involves capturing repairs as answer sets of logic
programs with negation and disjunction [4,39]. Such approaches are quite gen-
eral, being able to handle arbitrary universal constraints and first-order queries.
Determining whether an atom is a member of all answer sets of such a logic
program is Πp

2 -complete [28]. Therefore, a direct implementation of CQA using
a disjunctive logic programming system like dlv [48] or smodels [52] is practical
only for very small databases. Recently, special optimization techniques in this
area have been developed by Eiter et al. [29]. Answer-set-based techniques have
been particularly effective in addressing the semantic problems of data integra-
tion, where the main issue is how to reconcile repairing the violations of integrity
constraints with satisfying the rules describing the mappings between different
databases. This issue was addressed in the context of LAV-mappings by Bravo
and Bertossi [16,9], and in the context of peer-to-peer mappings by Calvanese
et al. [20].

It is natural to consider preferences or priorities in repairing. For example, if a
database violates an FD because of conflicting data coming from different sources
such conflicts may be resolved if the sources have different reliability. Similarly,
new information may be preferred to old information. In a data cleaning process,
preferences are typically encoded using conflict resolution rules. In CQA, more
declarative approaches have been pursued. Staworko et al. [55] consider priority
relations defined on atoms and discuss various ways in which such relations could
be lifted to the level of repairs, yielding preferred repairs. Typically, optimization
with respect to an additional criterion, represented by the priority, increases the
complexity of repair checking and CQA. Flesca et al. [40] define preferred repairs
directly, using a numeric utility function.

Repairs in the sense of Definition 3 have been criticised as too coarse-grained:
deleting a tuple to remove an integrity violation potentially eliminates useful
information in that tuple. More fine-grained methods seek to define repairs by
minimizing attribute modifications [10,14,58]. In particular, Bertossi et al. [10]
and Bohannon et al. [14] use various notions of numerical distance between
tuples. In both cases the existence of a repair within a given distance of the
original database instance turns out to be NP-complete. To achieve tractability,
Bertossi et al. [10] propose approximation, and Bohannon et al. [14], heuristics.

Consistent Query Answering: Five Easy Pieces 13

Wijsen [59] has recently shown how to combine tuple- and attribute-based repairs
in a single framework. To achieve the effect of attribute-based repairing, his
approach decomposes an inconsistent relation using a lossless-join decomposition
and subsequently joins the obtained projections 5. PJ-repairs are defined to be
the repairs (in the sense of Definition 3) of the resulting relation. Thus, query
evaluation methods of Section 3 can be readily applied in that framework.

Another direction is repairs with nulls. A repair with nulls can represent a set
of ground repairs. This is particularly useful when dealing with INDs.

Example 9. Consider a slightly modified database schema from Example 5, con-
sisting now of two relations P1(AB) and P2(CD), and an inclusion dependency
P1[B] ⊆ P2[C]. Assume an instance I is as follows: I(P1) = {(a, b)} and I(P2) =
∅. This instance has a repair I1 where I1(P1) = ∅, I1(P2) = ∅. However, there
are also infinitely many repairs I ′ of the form I ′(P1) = {(a, b)}, I ′(P2) = {b, α}
where α is a constant. All such repairs can be represented as a single repair Inull

where Inull(P1) = {(a, b)}, Inull(P2) = {(b, null)}

Notice that nulls can also be used to represent a resolved version of an incon-
sistency associated with an FD, as in Example 2: there would be a single repair
consisting of the tuples (Mary,North,null) and (John,South,Hayes). Since the
formal semantics of nulls [56] is based on possible worlds that are closely re-
lated to repairs, it should be feasible to incorporate repairs with nulls into the
CQA framework, using a common semantic basis. This has not been done yet,
however. Bravo and Bertossi [17] take a different, more syntactic approach that
simulates SQL nulls (whose semantic problems are well known [56]) within a
logic programming approach to repair specification.

For the CQA framework to be applicable to XML databases, the basic notions
of repair and consistent query answer need to be redefined. This is done for DTDs
only in [54] and DTDs with functional dependencies in [34]. Staworko et al. [54]
propose to base repair minimality on tree edit distance [13], while Flesca et al.
[34] use an approach more akin to that of [3]. More expressive integrity constraint
languages for XML, for example [32], should be considered next.

There are now several prototype CQA systems: CONQUER [37] (based on
query rewriting), HIPPO [27] (based on conflict hypergraphs), and INFOMIX
[29] (based on answer set programming). Those systems are capable of handling
databases with several million tuples.

Considering the number of researchers, projects, and publications involved,
consistent query answering seems to be enjoying significant interest as a research
topic. Below we identify some of the current and future challenges in this area
(in addition to those mentioned earlier):

Coping with semantic heterogeneity. The number of different repair semantics
proposed so far, particularly when one considers variations involving nulls and
priorities, may overwhelm a potential user. The ways need to be found to provide
guidance which semantics are appropriate for specific applications. Also, methods

5 For a consistent relation such transformation is an identity but for an inconsistent
one this is usually not the case.

14 J. Chomicki

that unify various approaches within a single framework, as for example [59],
should be studied.

Integration with other tools. Ultimately, repairing and CQA should become
tools in data integration toolboxes. We have already mentioned incorporating
CQA in several data integration frameworks [16,9,20] but still more work is
needed in the context of data exchange [31]. Also, integration of CQA with
data cleaning seems to be in order. CQA is unnecessarily conservative in the
presence of data errors and duplicates. Moreover, integrity violations in an in-
tegrated database are often due to structural or semantic discrepancies between
the sources, and thus the quality of schema matching/mapping clearly influences
the usefulness of CQA [24]. In a broader sense, CQA fits within the framework
of data quality management [7].

Applications. Very few real-life applications of repairing and consistent query
answering have been reported so far. Franconi et al. [36] summarize an applica-
tion of attribute-based repairing in the area of census data. Flesca et al. [35,33]
describe a tool for acquiring and repairing balance-sheet data. That work is
notable for its use of aggregation constraints. Generally, it seems that most po-
tential applications find repairing more useful than CQA. In many cases, the
data in the database is relatively static, so it makes sense to invest a consid-
erable effort into its cleaning and repairing. Such data can then be repeatedly
used. CQA appears to be more suitable to dynamic environments, particularly
those that require real-time decisions based on the available data.

Acknowledgments

The collaboration and the interaction with the following people are gra-
tefully acknowledged: Marcelo Arenas, Leopoldo Bertossi, Wenfei Fan, Jerzy
Marcinkowski, S�lawomir Staworko, and Jef Wijsen.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. P. Andritsos, A. Fuxman, and R. Miller. Clean Answers over Dirty Databases. In
IEEE International Conference on Data Engineering (ICDE), 2006.

3. M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in Inconsistent
Databases. In ACM Symposium on Principles of Database Systems (PODS), pages
68–79, 1999.

4. M. Arenas, L. Bertossi, and J. Chomicki. Answer Sets for Consistent Query An-
swering in Inconsistent Databases. Theory and Practice of Logic Programming,
3(4–5):393–424, 2003.

5. M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad. Scalar
Aggregation in Inconsistent Databases. Theoretical Computer Science, 296(3):
405–434, 2003.

6. C. Baral, S. Kraus, J. Minker, and V. S. Subrahmanian. Combining Knowledge
Bases Consisting of First-Order Theories. Computational Intelligence, 8:45–71,
1992.

Consistent Query Answering: Five Easy Pieces 15

7. C. Batini and M. Scannapieco. Data Quality: Concepts, Methodologies and Tech-
niques. Springer, 2006.

8. L. Bertossi. Consistent Query Answering in Databases. SIGMOD Record, 35(2),
June 2006.

9. L. Bertossi and L. Bravo. Consistent Query Answers in Virtual Data Integration
Systems. In Bertossi et al. [12], pages 42–83.

10. L. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko. Complexity and Approxi-
mation of Fixing Numerical Attributes in Databases Under Integrity Constraints.
In International Workshop on Database Programming Languages, pages 262–278.
Springer, LNCS 3774, 2005.

11. L. Bertossi and J. Chomicki. Query Answering in Inconsistent Databases. In
J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for Emerging Ap-
plications of Databases, pages 43–83. Springer-Verlag, 2003.

12. L. Bertossi, A. Hunter, and T. Schaub, editors. Inconsistency Tolerance. Springer-
Verlag, 2004.

13. P. Bille. A Survey on Tree Edit Distance and Related Problems. Theoretical
Computer Science, 337(1-3):217–239, 2003.

14. P. Bohannon, M. Flaster, W. Fan, and R. Rastogi. A Cost-Based Model and Effec-
tive Heuristic for Repairing Constraints by Value Modification. In ACM SIGMOD
International Conference on Management of Data, pages 143–154, 2005.

15. A. Borgida. Language Features for Flexible Handling of Exceptions in Information
Systems. ACM Transactions on Database Systems, 10(4):565–603, 1985.

16. L. Bravo and L. Bertossi. Logic Programs for Consistently Querying Data Integra-
tion Systems. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 10–15, 2003.

17. L. Bravo and L. Bertossi. Semantically Correct Query Answers in the Presence of
Null Values. In EDBT Workshops (IIDB). Springer, 2006.

18. F. Bry. Query Answering in Information Systems with Integrity Constraints. In
IFIP WG 11.5 Working Conference on Integrity and Control in Information Sys-
tems, pages 113–130. Chapman &Hall, 1997.

19. A. Cal̀ı, D. Lembo, and R. Rosati. On the Decidability and Complexity of Query
Answering over Inconsistent and Incomplete Databases. In ACM Symposium on
Principles of Database Systems (PODS), pages 260–271, 2003.

20. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Inconsis-
tency Tolerance in P2P Data Integration: An Epistemic Logic Approach. In Inter-
national Workshop on Database Programming Languages, pages 90–105. Springer,
LNCS 3774, 2005.

21. A. Celle and L. Bertossi. Querying Inconsistent Databases: Algorithms and Imple-
mentation. In International Conference on Computational Logic, pages 942–956.
Springer-Verlag, LNCS 1861, 2000.

22. U. S. Chakravarthy, J. Grant, and J. Minker. Logic-Based Approach to Seman-
tic Query Optimization. ACM Transactions on Database Systems, 15(2):162–207,
1990.

23. A. Chandra and P. Merlin. Optimal Implementation of Conjunctive Queries in
Relational Databases. In ACM SIGACT Symposium on the Theory of Computing
(STOC), pages 77–90, 1977.

24. J. Chomicki. Consistent Query Answering: Opportunities and Limitations. In
DEXA Workshops (LAAIC), pages 527–531. IEEE Computer Society Press, 2006.

25. J. Chomicki and J. Marcinkowski. On the Computational Complexity of Minimal-
Change Integrity Maintenance in Relational Databases. In Bertossi et al. [12],
pages 119–150.

16 J. Chomicki

26. J. Chomicki and J. Marcinkowski. Minimal-Change Integrity Maintenance Using
Tuple Deletions. Information and Computation, 197(1-2):90–121, 2005.

27. J. Chomicki, J. Marcinkowski, and S. Staworko. Computing Consistent Query
Answers Using Conflict Hypergraphs. In International Conference on Information
and Knowledge Management (CIKM), pages 417–426. ACM Press, 2004.

28. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive
Power of Logic Programming. ACM Computing Surveys, 33(3):374–425, 2001.

29. T. Eiter, M. Fink, G. Greco, and D. Lembo. Efficient Evaluation of Logic Programs
for Querying Data Integration Systems. In International Conference on Logic
Programming (ICLP), pages 163–177, 2003.

30. S. M. Embury, S. M. Brandt, J. S. Robinson, I. Sutherland, F. A. Bisby, W. A.
Gray, A. C. Jones, and R. J. White. Adapting Integrity Enforcement Techniques
for Data Reconciliation. Information Systems, 26(8):657–689, 2001.

31. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and
Query Answering. Theoretical Computer Science, 336(1):89–124, 2005.

32. W. Fan and J. Simeon. Integrity Constraints for XML. Journal of Computer and
System Sciences, 66(1):254–201, 2003.

33. B. Fazzinga, S. Flesca, F. Furfaro, and F. Parisi. DART: a Data Acquisition and
Repairing Tool. In EDBT Workshops (IIDB). Springer, 2006.

34. S. Flesca, F. Furfaro, S. Greco, and E. Zumpano. Querying and Repairing In-
consistent XML Data. In Web Information Systems Engineering, pages 175–188.
Springer, LNCS 3806, 2005.

35. S. Flesca, F. Furfaro, and F. Parisi. Consistent Query Answers on Numerical
Databases under Aggregate Constraints. In International Workshop on Database
Programming Languages, pages 279–294. Springer, LNCS 3774, 2005.

36. E. Franconi, A. L. Palma, N. Leone, S. Perri, and F. Scarcello. Census Data
Repair: a Challenging Application of Disjunctive Logic Programming. In Interna-
tional Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), pages 561–578. Springer-Verlag, LNCS 2250, 2002.

37. A. Fuxman and R. J. Miller. ConQuer: Efficient Management of Inconsistent
Databases. In ACM SIGMOD International Conference on Management of Data,
pages 155–166, 2005.

38. A. Fuxman and R. J. Miller. First-Order Query Rewriting for Inconsistent
Databases. In International Conference on Database Theory (ICDT), pages
337–351. Springer, LNCS 3363, 2005. Full version to appear in JCSS.

39. G. Greco, S. Greco, and E. Zumpano. A Logical Framework for Querying and
Repairing Inconsistent Databases. IEEE Transactions on Knowledge and Data
Engineering, 15(6):1389–1408, 2003.

40. S. Greco, C. Sirangelo, I. Trubitsyna, and E. Zumpano. Preferred Repairs for In-
consistent Databases. In International Conference on Database and Expert Systems
Applications (DEXA), pages 44–55, 2004.

41. L. Grieco, D. Lembo, R. Rosati, and M. Ruzzi. Consistent Query Answering under
Keys and Exclusion Dependencies: Algorithms and Experiments. In International
Conference on Information and Knowledge Management (CIKM), pages 792–799.
ACM Press, 2005.

42. T. Imieliński and W. Lipski. Incomplete Information in Relational Databases.
Journal of the ACM, 31(4):761–791, 1984.

43. T. Imieliński, S. Naqvi, and K. Vadaparty. Incomplete Objects - A Data Model for
Design and Planning Applications. In ACM SIGMOD International Conference
on Management of Data, pages 288–297, Denver, Colorado, May 1991.

Consistent Query Answering: Five Easy Pieces 17

44. D. S. Johnson and A. Klug. Testing Containment of Conjunctive Queries under
Functional and Inclusion Dependencies. Journal of Computer and System Sciences,
28(1):167–189, 1984.

45. W. Lipski Jr. On Semantic Issues Connected with Incomplete Information
Databases. ACM Transactions on Database Systems, 4(3):262–296, 1979.

46. P. C. Kanellakis. Elements of Relational Database Theory. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, chapter 17, pages
1073–1158. Elsevier/MIT Press, 1990.

47. D. Lembo, R. Rosati, and M. Ruzzi. On the First-Order Reducibility of Unions
of Conjunctive Queries over Inconsistent Databases. In EDBT Workshops (IIDB),
2006.

48. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The
DLV System for Knowledge Representation and Reasoning. ACM Transactions on
Computational Logic, 2006. To appear.

49. J. Lin and A. O. Mendelzon. Merging Databases under Constraints. International
Journal of Cooperative Information Systems, 7(1):55–76, 1996.

50. A. Lopatenko and L. Bertossi. Complexity of Consistent Query Answering in
Databases under Cardinality-Based and Incremental Repair Semantics. In Inter-
national Conference on Database Theory (ICDT), 2007. To appear.

51. Jim Melton and Alan R. Simon. SQL:1999 Understanding Relational Language
Components. Morgan Kaufmann, 2002.

52. P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable
Model Semantics. Artificial Intelligence, 138(1-2):181–234, June 2002.

53. S. Staworko and J. Chomicki. Consistent Query Answers in the Presence of Uni-
versal Constraints. Manuscript, October 2006.

54. S. Staworko and J. Chomicki. Validity-Sensitive Querying of XML Databases. In
EDBT Workshops (dataX). Springer, 2006.

55. S. Staworko, J. Chomicki, and J. Marcinkowski. Priority-Based Conflict Resolution
in Inconsistent Relational Databases. In EDBT Workshops (IIDB). Springer, 2006.

56. R. van der Meyden. Logical Approaches to Incomplete Information: A Survey. In
J. Chomicki and G. Saake, editors, Logics for Databases and Information Systems,
chapter 10, pages 307–356. Kluwer Academic Publishers, Boston, 1998.

57. M. Y. Vardi. The Complexity of Relational Query Languages. In ACM Symposium
on Theory of Computing (STOC), pages 137–146, 1982.

58. J. Wijsen. Database Repairing Using Updates. ACM Transactions on Database
Systems, 30(3):722–768, 2005.

59. J. Wijsen. Project-Join Repair: An Approach to Consistent Query Answering
Under Functional Dependencies. In International Conference on Flexible Query
Answering Systems (FQAS), 2006.

	Introduction
	The Basics
	Integrity Constraints
	Repairs and Consistent Query Answers
	Query Rewriting
	Limitations

	Computational Complexity
	Tractable Cases
	Intractable Cases

	Referential Integrity Constraints
	More Informative Consistent Query Answers
	Other and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

