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Preface

This volume collects the papers presented at the 11th International Conference
on Database Theory, ICDT 2007, held during January 10–12, 2007, in Barcelona,
Spain.

ICDT (http://alpha.luc.ac.be/∼lucp1080/icdt/) now has a long tradition of
international conferences, providing a biennial scientific forum for the commu-
nication of high-quality and innovative research results on theoretical aspects
of all forms of data management systems and database technology. The confer-
ence usually takes place in Europe, and previous conferences were held in Rome
(1986), Bruges (1988), Paris (1990), Berlin (1992), Prague (1995), Delphi (1997),
Jerusalem (1999), London (2001), Siena (2003) and Edinburgh (2005). ICDT has
merged with the Symposium on Mathematical Fundamentals of Database Sys-
tems (MFDBS), initiated in Dresden in 1987, and continued in Visegrad in 1989
and Rostock in 1991.

This year ICDT received 111 paper submissions (after 138 titles and abstracts
were first announced). Two of the papers were later withdrawn and one was
rejected as it was 24 pages long (instead of 15). From the remaining 108 sub-
missions, the ICDT Program Committee selected 25 papers for presentation at
the conference. Most of these papers were “extended abstracts” and preliminary
reports on work in progress. It is anticipated that most of these papers will ap-
pear in a more polished form in scientific journals. The proceedings also contain
three invited papers by Jan Chomicki, Cynthia Dwork, and Laura Haas. The
Best Newcomer Award, for the best submission written solely by authors who
had never published in earlier ICDT proceedings, was given by the Program
Committee to Piotr Wieczorek for his paper “Complexity of Typechecking XML
Views of Relational Databases.”

We would like to thank a number of people who made ICDT 2007 a success-
ful event. First of all, the authors who submitted papers, the members of the
Program Committee for their efforts in reviewing and selecting the papers, the
external referees for their help, and, importantly, Andrei Voronkov for supply-
ing his marvelous conference management system EasyChair. A great thanks is
owed to Albert Atserias and his Organizing Committee for hosting the confer-
ence and for running the conference website. We are also deeply indebted to Wim
Martens for preparing the proceedings. Last but not least, we are very grateful
to the sponsors, Departament d’Universitats Recerca i Societat de la Informació
de la Generalitat de Catalunya; Universitat Politècnica de Catalunya; and Grup
de recerca ALBCOM.

January 2007 Thomas Schwentick and Dan Suciu
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Consistent Query Answering: Five Easy Pieces�

Jan Chomicki

Dept. of Computer Science and Engineering
University at Buffalo

Buffalo, NY 14260-2000
chomicki@cse.buffalo.edu

Abstract. Consistent query answering (CQA) is an approach to query-
ing inconsistent databases without repairing them first. This invited talk
introduces the basics of CQA, and discusses selected issues in this area.
The talk concludes with a summary of other relevant work and an outline
of potential future research topics.

1 Introduction

The notion of inconsistency has been extensively studied in many contexts. In
classical logic, an inconsistent set of formulas implies every formula (triviality).
In databases, a database instance is inconsistent if it does not satisfy integrity
constraints (constraint violation). Those two kinds of inconsistency are closely re-
lated: an inconsistent database instance, together with the integrity constraints,
may be represented as an inconsistent set of formulas. However, triviality is not
a problem in the database context because the semantics of query answers does
not take integrity constraints into account.

Nowadays more and more database applications have to rely on multiple,
often autonomous sources of data. Even if the sources are separately consis-
tent, inconsistency may arise when they are integrated together. For example,
different data sources may record different salaries or addresses of the same em-
ployee. At the same time, the application may require that the integrated, global
database contain a single, correct salary or address. Similarly, different sensors
may register inconsistent readings of the same quantity that need to be resolved.

In order to deal with inconsistency in a flexible manner, database research
and practice have developed different approaches that we will illustrate using a
simple example.

Example 1. Consider a database schema consisting of two unary relations P1
and P2, and the denial integrity constraint ∀x. (¬P1(x) ∨ ¬P2(x)). Assume a
database instance consists of the following facts: {P1(a), P1(b), P2(a)}. Under
prevention (usual constraint enforcement), such instance could not arise: only
one of P1(a) and P2(a) could be inserted into the database. Under ignorance
(constraint non-enforcement), no distinction is made between P1(a) and P1(b),
� Research supported by NSF grant IIS-0119186.

T. Schwentick and D. Suciu (Eds.): ICDT 2007, LNCS 4353, pp. 1–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 J. Chomicki

despite that the latter, not being involved in a constraint violation, appears to
represent more reliable information. Under isolation [18], both P1(a) and P2(a)
are dropped (or ignored in query answering). Under weakening [6,49], P1(a) and
P2(a) are replaced by P1(a) ∨ P2(a). Allowing exceptions [15] means that the
constraint is weakened to ∀x. (¬P1(x) ∨ ¬P2(x) ∨ x = a), but query answering
is not affected.

A seperate class of responses to inconsistency is based on the notion of re-
pair: a consistent instance minimally different from the original one, in this case
{P1(a), P1(b)} or {P2(a), P1(b)}. Such repairs can be materialized [30] or virtual.
Virtual repairing, which is usually called consistent query answering [3], does
not change the database but rather returns query answers true in all repairs
(consistent query answers). So the query asking for all such consistent x that
P1(x) is true, returns only x = b.

Example 2. Consider the following instance of a relation Location, which records
the current location of employees. Such a relation may be built from active-badge
sensor readings, employee calendars, and other data sources.

Name Campus Building

Mary North Bell

Mary North Knox

John South Hayes

and the functional dependency Name → Campus Building . Note that for both
employees the database contains a single campus, while two different buildings
are recorded for Mary, violating the functional dependency.

There are two (minimal) repairs: one is obtained by removing the first tuple,
the other by removing the second tuple. (Removing more tuples violates repair
minimality.) The consistent answer to the query Q1:

SELECT * FROM Location

is just the tuple (John,South,Hayes), because neither of the first two tuples
appears in the result of the query in both repairs. On the other hand, the query
Q2:

SELECT Name, Campus FROM Location

has two consistent answers: (Mary,North) and (John,South), because Q2 returns
those two tuples in both repairs. Using Q2 the user can extract reliable infor-
mation about the campus location of both employees, despite the fact that the
information about the building where Mary is located is inconsistent.

Consistent query answering was first proposed by Arenas et al. [3]. That pa-
per was followed by numerous further papers that explored several different
dimensions of consistent query answering:
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– different notions of repair minimality (leading to different semantics for con-
sistent query answers);

– different classes of queries and integrity constraints;
– different methods of computing consistent query answers.

What follows is a collection of short essays about consistent query answer-
ing (CQA). They address the following topics: the basic concepts and results
of Arenas et al. [3] (Section 2), computational complexity of CQA (Section 3),
referential integrity (Section 4), and improving the informativeness of CQA in
the presence of aggregation or probabilistic information (Section 5). The last
essay (Section 6) briefly summarizes other research on CQA and outlines some
directions for future work. The essay topics were chosen to introduce the central
concepts of CQA and illustrate the breadth of the area. By no means is this arti-
cle a comprehensive survey of CQA research; such surveys are already available
elsewhere [8,11,25].

2 The Basics

We use the standard setting of relational databases. We assume the existence of
a database schema R, which is a finite set of relation names and the associated
arities. Database instances are mappings from the database schema to finite sets
of tuples of the appropriate arity. We also assume that relation columns can
be labelled by attributes and typed by associating with them one of the two
domains: uninterpreted constants or rational numbers.

Given a database schema R and the built-in predicates over the numeric
domain (=, �=, <, >,≤, ≥), we define the first-order language LR in the standard
way. Database instances can be viewed as first-order structures over LR. The
built-in predicates have infinite, fixed extensions.

2.1 Integrity Constraints

Integrity constraints are closed first-order LR-formulas. In the sequel we will
denote: relation symbols by P, P1, . . . , Pm, atomic formulas by A1, . . . , An, tuples
of variables and constants by t̄, x̄, . . ., and quantifier-free formulas referring to
built-in predicates by ϕ.

In this paper we consider the following basic classes of integrity constraints:

1. Universal integrity constraints: ∀∗. A1 ∨ · · · ∨ An ∨ ¬An+1 ∨ · · · ∨ ¬Am ∨ ϕ.
2. Denial constraints: ∀∗. ¬A1 ∨ · · · ∨ ¬Am ∨ ϕ.
3. Binary constraints: universal constraints with at most two occurrences of

database literals.
4. Functional dependencies (FDs): ∀x̄, ȳ, z̄, ȳ′, z̄′. (¬P (x̄, ȳ, z̄) ∨ ¬P (x̄, ȳ′, z̄′) ∨

ȳ = ȳ′). A more familiar formulation of the above FD is X → Y where X is
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the set of attributes of P corresponding to x̄ and Y the set of attributes of
P corresponding to ȳ (and ȳ′).

5. Referential integrity constraints, known as inclusion dependencies (INDs):
∀x̄, ȳ. ∃z̄. (¬P2(x̄, ȳ)∨P1(ȳ, z̄)). Again, this is often written as P2[Y2] ⊆ P1[Y1]
where Y1 (resp. Y2) is the set of attributes of P1 (resp. P2) corresponding
to ȳ.

Given a set of FDs and INDs IC and a relation P1 with attributes U , a key of
P1 is a minimal set of attributes X of P1 such that IC entails the FD X → U .
In that case, we say that each FD X → Y ∈ IC is a key dependency and each
IND P2[Y ] ⊆ P1[X ] ∈ IC is a foreign key constraint . If, additionally, X is the
only key of P1, then both kinds of dependencies are termed primary.

Definition 1. Given an instance I of a database schema R and a set of integrity
constraints IC, we say that I is consistent if I � IC in the standard model-
theoretic sense; inconsistent otherwise.

Queries are formulas over the same language LR as the integrity constraints.
Conjunctive queries [23,1] are queries of the form ∃∗. A1 ∧ · · · ∧ An ∧ ϕ where ϕ
is a conjunction of built-in atomic formulas.

Definition 2. A tuple t̄ is an answer to a query Q(x̄) in an instance I iff I |=
Q(t̄).

2.2 Repairs and Consistent Query Answers

We introduce now the framework of Arenas et al. [3]. It is based on two fun-
damental notions: repair and consistent query answer. The symmetric difference
Δ is used to capture the distance between two instances I and I ′: Δ(I, I ′) =
(I − I ′) ∪ (I ′ − I)1.

We assume that we are dealing with satisfiable sets of integrity constraints.

Definition 3. Given a set of integrity constraints IC and database instances
I and I ′, we say that I ′ is a repair of I w.r.t. IC if I ′ � IC and there is no
instance I ′′ such that I ′′ � IC and Δ(I, I ′′) ⊂ Δ(I, I ′).

We denote by RepairsIC(I) the set of repairs of I w.r.t. IC. This set is nonempty
for satisfiable sets of constraints.

Given a query Q(x̄) to a database instance I, we want as consistent answers
those result tuples that are unaffected by the violations of IC , even when I
violates IC .

Definition 4. A tuple t̄ is a consistent answer to a query Q(x̄) in a database
instance I w.r.t. a set of integrity constraints IC iff t̄ is an answer to the query
Q(x̄) in every repair I ′ of I w.r.t. IC. We can define true being a consistent
answer to a Boolean query in a similar way.

1 The difference is defined component-wise for every relation symbol in the schema.
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Note: If the set of integrity constraints IC is clear from the context, we omit it
for simplicity.

The notion of consistent query answer corresponds to the notion of certain an-
swer, developed in the context of incomplete databases by Lipski and Imieliński
[45,42], because repairs can be viewed as possible worlds. In some cases, as in Ex-
ample 1, one can represent the set of repairs w.r.t FDs as a disjunctive database
or a table with OR-objects [43]: disjunctive information is used to model resolved
conflicts. The correspondence in the other direction breaks down, however, al-
ready in very simple cases [5].

2.3 Query Rewriting

Arenas et al. [3] propose a method to compute consistent query answers based on
query rewriting. Given a set of integrity constraints IC, a query Q is rewritten
into a query QIC such that for every instance I the set of answers to QIC in I is
equal to the set of consistent answers to Q in I. Typically, we expect Q and QIC

to belong to the same class of queries, for example first-order queries or SQL. In
such a case, the computation of consistent query answers can be done using the
same query engine.

The method proposed in [3] is relatively simple and draws on earlier work in se-
mantic query optimization [22]. The rewriting applies to and produces first-order
queries. When a literal in the query can be resolved with an integrity constraint
the resolvent forms a residue. All such residues are then conjoined with the lit-
eral to form its expanded version. If a literal that has been expanded appears in
a residue, the residue has to be further expanded until no more changes occur.
For denial constraints, however, only a single expansion is necessary.

Example 3. Consider Example 2, the FD f1 : Name → Building and the query
Location(x, y, z). The rewritten query Qf1 :

Qf1 ≡ Location(x, y, z) ∧ ∀y′, z′.
(
Location(x, y′, z′) ⇒ z = z′

)
.

Clearly, the rewritten query can be formulated in SQL.

2.4 Limitations

The notion of repair (Definition 3) has been revisited many times since the
publication of [3]. For instance, one can minimize the cardinality of the set of
changes [50], as opposed to minimizing the set of changes under set inclusion, as
in Definition 3. Moreover, attribute-based changes were considered in [14,58,59]
(this issue is discussed further in Section 6). Surprisingly, the notion of consistent
query answer (Definition 4) has been almost universally adopted in the recent
literature of the subject (but see Section 5).

The scope of the query rewriting method detailed above (and further devel-
oped in [21]) is quite limited. It applies to first-order queries without disjunction
or quantification, and binary universal integrity constraints. So, for example,
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the query Q2 from Example 2 cannot be handled. A rewriting method that
can handle a rather large subset of conjunctive queries at the price of limiting
integrity constraints to primary key FDs was recently proposed by Fuxman and
Miller [38]. This method, which can handle Q2 from Example 2, is discussed in
more detail in the next section. Adding quantification and disjunction has proved
to be much harder: the approach of [38] has been extended in that direction by
Lembo et al. [47]. The paper [38] was further generalized to include exclusion
dependencies by Grieco et al. [41].

3 Computational Complexity

We note first that already in the presence of a single primary key dependency
there are inconsistent relation instances with exponentially many repairs [5].
Thus Definition 4 does not yield a practical method for computing consistent
query answers. Below, we show a number of cases in which the latter problem
can be solved in polynomial time, and later we characterize the intractable cases
in detail. We limit ourselves to universal constraints here; inclusion dependencies
are discussed in Section 4. We consider two basic decision problems:

– repair checking: Is a database instance a repair of another instance w.r.t. the
integrity constraints?

– consistent query answering (CQA): Is a tuple a consistent query answer to
a query in a database instance w.r.t. the integrity constraints?

The motivation to study repair checking, in addition to CQA, comes from data
cleaning where a single, consistent database instance needs to be constructed.
The repair-checking algorithms can typically be adapted to yield such an in-
stance.

We adopt here the data complexity assumption [1,46,57], which measures the
complexity of the problem as a function of the number of tuples in a database
instance. The query and the integrity constraints are considered fixed.

3.1 Tractable Cases

It is easy to see that for denial constraints repair checking can be done in poly-
nomial time: check whether a potential repair I ′ is a subset of the database
instance I and satisfies the integrity constraints, and whether adding any other
tuple from I − I ′ to I ′ leads to a constraint violation.

Query rewriting approaches that produce first-order queries provide poly-
nomial-time algorithms for CQA: rewrite the query and evaluate the rewrit-
ten query on the original database. Note that the rewriting of the query is
done independently of the database instance, and therefore does not affect data
complexity.

However, the original query rewriting approach of [3] was applicable only
to very restricted classes of queries and constraints (see the previous section).
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Recently, that approach was generalized by Fuxman and Miller [38] to allow
restricted existential quantification in queries in the context of primary key FDs.
The rewriting method of [38] applies to a class of conjunctive queries Cforest,
defined using the notion of the join graph of a query. The vertices of the join
graph are the query literals; an edge runs from a literal Ai to a different literal Aj

if there is an existentially-quantified variable which occurs in a nonkey attribute
of Ai and any attribute of Aj . The class Cforest consists of those conjunctive
queries that have a join graph which is a forest, and which have no repeated
relation symbols or built-in predicate symbols.

Example 4. Consider the following query Q:

Q ≡ ∃x, y, z.P1(x, y) ∧ P2(y, z).

Assume that the first attributes of both P1 and P2 are primary keys. Then Q
expresses a foreign-key2 join and belongs to Cforest. Then the rewritten query
Q′ is:

Q′ ≡ ∃x, y, z.P1(x, y) ∧ P2(y, z) ∧ ∀y′.
(
P1(x, y′) ⇒ ∃z′.P2(y′, z′)

)
.

Another way to obtain tractability is through the notion of conflict graph[5,26].
The vertices of the conflict graph are the tuples in the database; an edge connects
two vertices if they violate together an integrity constraint (we assume binary
constraints for the moment). A conflict graph is a compact, polynomial-size
representation of the set of all repairs of the database: the repairs correspond
to maximal independent sets of the graph. The conflict graph can be used to
compute consistent answers to queries. Chomicki and Marcinkowski [26] describe
a polynomial-time algorithm for CQA that is applicable to quantifier-free queries
and denial integrity constraints3. The algorithm enumerates repairs, trying to
show that a tuple is not a consistent answer. The crucial observation is that only
fixed-size fragments of repairs need to be considered.

3.2 Intractable Cases

Computational complexity analysis helps to delineate the boundary between
the tractable and the intractable cases. We start the discussion of the relevant
complexity results by recalling one of the fundamental results in this area.

Theorem 1. For conjunctive queries and primary key FDs, CQA is co-NP-
complete.

2 Note that while the variable y plays here the role of a foreign key, the corresponding
foreign-key constraint is not taken into account in CQA. We discuss such constraints
in Section 4.

3 To deal with denial constraints, conflict graphs are generalized to conflict
hypergraphs.
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Proof. We describe here the proof of [26] because it is the simplest and was – to
our knowledge – chronologically the first. A different proof appears in [19].

The proof is by reduction from MONOTONE 3-SAT. Let β = φ1 ∧ . . . φm ∧
ψm+1 . . .∧ψl be a conjunction of propositional clauses, such that all occurrences
of variables in φi are positive and all occurrences of variables in ψi are negative.
To encode such formulas, we use two binary relation schemas P1 and P2, each
with two attributes of which the first is the key. We build a database instance
I such that I(P1) contains the tuple (i, p) if the variable p occurs in the clause
φi, and I(P2) contains the tuple (i, p) if the variable p occurs in the clause ψi.
The query Q ≡ ∃x, y, z.

(
P1(x, y) ∧ P2(z, y)

)
. Now there is an assignment which

satisfies β iff there exists a repair of I in which Q is false.

In the above proof, the query Q does not belong to Cforest because it contains
a join between nonkey attributes, which produces a cycle in the join graph.
In the full version of [38], Fuxman and Miller show that several other natural
relaxations of the Cforest property also lead to co-NP-completeness of CQA.
For a class C∗ of conjunctive queries, they prove a dichotomy result: CQA for
each query in C∗ is in P iff the join graph of the query does not contain a
cycle.

For universal constraints, repair checking is co-NP-complete and CQA Πp
2 -

complete in most cases, as recently shown by Staworko et al. [53]. The computa-
tional complexity of consistent query answering is summarized in Figure 1. For
the purpose of exposition, we refer there to subsets of relational algebra instead
of sublanguages of first-order logic. For each result, we cite the primary source,
except for those that follow from the definitions or other results.

Primary keys Arbirary keys Denial Universal

σ, ×,− P P[3] P Πp
2 -complete[53]

P(binary)[3]

σ, ×,−, ∪ P P P[26] Πp
2 -complete

σ, π P[26] co-NPC[26] co-NPC Πp
2 -complete[53]

σ, π,× co-NPC[26] co-NPC co-NPC Πp
2 -complete

P(Cforest)[38]

σ, π,×, −, ∪ co-NPC co-NPC co-NPC Πp
2 -complete

Fig. 1. Complexity of CQA: relational algebra

Proving co-NP-completeness of CQA for a class of first-order queries C is
sufficient to show that unless P=NP there is no query rewriting method that (a)
returns first-order queries, and (b) is applicable to all queries in C.
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4 Referential Integrity Constraints

For denial constraints, integrity violations can only be removed by deleting tu-
ples, so all the repairs are subsets of the given database instance. The picture
changes when we consider general universal or referential integrity constraints.
Violations of such constraints can also be removed by adding tuples.

Example 5. Consider a database schema with two relations P1(AB) and P2(C),
the inclusion dependency P1[B] ⊆ P2[C], and the key dependency A → B.
Consider I ′ such that I ′(P1) = {(a, b), (a, c)} and I ′(P2) = {b}. Then we have
the following repairs:

I ′1(P1) = {(a, b)}, I ′1(P2) = {b}
I ′2(P1) = {(a, c)}, I ′2(P2) = {b, c}

Allowing repairs constructed using insertions makes sense if the information in
the database may be incomplete4. The latter is common in data integration ap-
plications where the data is pulled from multiple sources, typically without any
guarantees on its completeness. On the other hand, if we know that the data in
the database is complete but possibly incorrect, as in data warehousing applica-
tions, it is natural to consider only repairs constructed using deletions. Current
language standards like SQL:1999 [51] allow only deletions in their repertoire of
referential integrity actions.

The above considerations have lead to the definition of two new, more re-
stricted classes of repairs:

– D-repairs, constructed using a minimal set of deletions [26] (I ′1 in Example 5),
– I-repairs, constructed using a minimal set of deletions and some, not neces-

sarily minimal set of insertions [19] (in Example 5, this includes I ′1 and I ′2,
as well as any consistent supersets of those).

Each of those classes of repairs leads to a different notion of consistent query
answer. We consider first D-repairs. Note the following properties of this class
of repairs:

1. Every database instance has a single D-repair w.r.t. any set of INDs, which
is obtained by deleting the tuples violating the constraints.

2. Given a set of primary key FDs F and a set of foreign-key constraints IN ,
every repair of a database instance w.r.t. F ∪IN may be obtained as a repair
of the single D-repair of the instance w.r.t. IN (this is because repairing w.r.t.
F does not lead to any new violations of IN).

4 Incompleteness here does not mean that the database contains indefinite information
in the form of nulls or disjunctions [56]. Rather, it means that the Open World
Assumption is adopted, i.e., the facts missing from the database are not assumed to
be false.
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The second property implies that one can adapt any polynomial-time method
for CQA w.r.t. primary key constraints, for example [38], to compute consistent
query answers w.r.t. any set of primary key and foreign-key constraints in poly-
nomial time. However, if one goes beyond this simple setting, the interactions
between FDs and INDs get complex, and both repair checking and CQA become
quickly intractable [26]. Ultimately, for arbitrary FDs and INDs repair checking
is co-NP-complete and CQA ΠP

2 -complete. (All of those results hold under the
definition of CQA in which D-repairs are substituted for repairs.)

We consider now I-repairs. Cal̀ı et al. [19] show that for such repairs in the
presence of primary key FDs and arbitrary INDs CQA becomes undecidable.
This is shown by a reduction from the implication problem for those constraints
which is known to be undecidable [1]. Cal̀ı et al. [19] define a class of INDs,
called non-key-conflicting, for which the interaction between FDs and INDs is
limited and consequently CQA is co-NP-complete. Technically, they relate CQA
to conjunctive query containment under integrity constraints [44]. Cal̀ı et al. [19]
also analyze repairs (in the sense of Definition 3) in the same setting, obtaining
undecidability of CQA in the general case and Πp

2 -completeness of CQA for
non-key-conflicting INDs.

5 More Informative Consistent Query Answers

In the previous section we considered varying the notion of repair. Here we
keep the original notion of repair but slightly adjust the notion of consistent
query answer. The motivation comes from aggregate queries and probabilistic
databases.

Example 6. Consider the following instance of the relation Emp(Name, Salary)
with the key Name:

Name Salary

John 50K

John 60K

Mary 55K

Now the query

SELECT MAX(Salary) FROM Emp

returns 55K in one repair and 60K in the the other. So there is no consistent
answer in the sense of Definition 4.

To provide more informative query answers to aggregation queries, Arenas et
al. [4] propose to return the minimal interval containing the set of the values
of the aggregate function obtained in some repair. In Example 6, the inter-
val [55K,60K] is returned. The paper [4] contains a detailed analysis of the data
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|F | = 1 |F | ≥ 2

MIN(A),MAX(A),SUM(A),AVG(A),COUNT(*) P NP-complete

COUNT(A) NP-complete NP-complete

Fig. 2. Complexity of scalar aggregation queries

complexity of computing interval answers in the presence of FDs, and showed
the influence of the cardinality |F | of the given set of FDs F . The results are
summarized in Figure 2.

The tractable cases are typically obtained by query rewriting. The exception
is AVG(A), which is computed by an iterative algorithm.

Example 7. The query

SELECT MAX(Salary) FROM Emp

is rewritten as

SELECT SUM(P.MinS), SUM(P.MaxS)
FROM (SELECT MIN(Salary) AS MinS, MAX(Salary) AS MaxS

FROM Emp GROUP BY Name) P

Fuxman and Miller [37] develop a comprehensive framework for rewriting SQL
queries with aggregation by combining the methods of [38] and [4]. The frame-
work also allows grouping constructs in queries.

The notion of repair and consistent query answer has been generalized to
the context of probabilistic databases by Andritsos et al. [2]. In such databases
probabilities are associated with individual tuples. Assume the presence of a
primary key FD. Then the probabilities of the conflicting tuples sum up to
one. A repair also has an associated probability, which is the product of the
probabilities of the tuples belonging to the repair. There is a natural way to
compute the probability of an answer: sum up the probabilities of the repairs in
which the answer appears in the query result. Such answers, with the associated
probabilities, are called clean answers [2]. Clearly, consistent answers are those
clean answers that have probability one. Andritsos et al. [2] present a way to
compute clean answers through query rewriting. Their method applies to a class
of conjunctive queries closely related to Cforest (see Section 3).

Example 8. Figure 3a contains a probabilistic version of the relation Emp with
the key Name. The clean answers to the query

SELECT Name FROM Emp WHERE Salary > 52K

are shown in Figure 3b. The rewritten query that computes the clean answers is

SELECT Name, SUM(Probability) FROM Emp WHERE Salary > 52K
GROUP BY Name
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Name Salary Probability

John 50K 0.6

John 60K 0.4

Mary 55K 1

(a)

Name Probability

John 0.4

Mary 1

(b)

Fig. 3. (a) Emp with probabilities; (b) Clean answers

6 Other and Future Work

A major line of work on CQA involves capturing repairs as answer sets of logic
programs with negation and disjunction [4,39]. Such approaches are quite gen-
eral, being able to handle arbitrary universal constraints and first-order queries.
Determining whether an atom is a member of all answer sets of such a logic
program is Πp

2 -complete [28]. Therefore, a direct implementation of CQA using
a disjunctive logic programming system like dlv [48] or smodels [52] is practical
only for very small databases. Recently, special optimization techniques in this
area have been developed by Eiter et al. [29]. Answer-set-based techniques have
been particularly effective in addressing the semantic problems of data integra-
tion, where the main issue is how to reconcile repairing the violations of integrity
constraints with satisfying the rules describing the mappings between different
databases. This issue was addressed in the context of LAV-mappings by Bravo
and Bertossi [16,9], and in the context of peer-to-peer mappings by Calvanese
et al. [20].

It is natural to consider preferences or priorities in repairing. For example, if a
database violates an FD because of conflicting data coming from different sources
such conflicts may be resolved if the sources have different reliability. Similarly,
new information may be preferred to old information. In a data cleaning process,
preferences are typically encoded using conflict resolution rules. In CQA, more
declarative approaches have been pursued. Staworko et al. [55] consider priority
relations defined on atoms and discuss various ways in which such relations could
be lifted to the level of repairs, yielding preferred repairs. Typically, optimization
with respect to an additional criterion, represented by the priority, increases the
complexity of repair checking and CQA. Flesca et al. [40] define preferred repairs
directly, using a numeric utility function.

Repairs in the sense of Definition 3 have been criticised as too coarse-grained:
deleting a tuple to remove an integrity violation potentially eliminates useful
information in that tuple. More fine-grained methods seek to define repairs by
minimizing attribute modifications [10,14,58]. In particular, Bertossi et al. [10]
and Bohannon et al. [14] use various notions of numerical distance between
tuples. In both cases the existence of a repair within a given distance of the
original database instance turns out to be NP-complete. To achieve tractability,
Bertossi et al. [10] propose approximation, and Bohannon et al. [14], heuristics.
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Wijsen [59] has recently shown how to combine tuple- and attribute-based repairs
in a single framework. To achieve the effect of attribute-based repairing, his
approach decomposes an inconsistent relation using a lossless-join decomposition
and subsequently joins the obtained projections 5. PJ-repairs are defined to be
the repairs (in the sense of Definition 3) of the resulting relation. Thus, query
evaluation methods of Section 3 can be readily applied in that framework.

Another direction is repairs with nulls. A repair with nulls can represent a set
of ground repairs. This is particularly useful when dealing with INDs.

Example 9. Consider a slightly modified database schema from Example 5, con-
sisting now of two relations P1(AB) and P2(CD), and an inclusion dependency
P1[B] ⊆ P2[C]. Assume an instance I is as follows: I(P1) = {(a, b)} and I(P2) =
∅. This instance has a repair I1 where I1(P1) = ∅, I1(P2) = ∅. However, there
are also infinitely many repairs I ′ of the form I ′(P1) = {(a, b)}, I ′(P2) = {b, α}
where α is a constant. All such repairs can be represented as a single repair Inull

where Inull(P1) = {(a, b)}, Inull(P2) = {(b, null)}

Notice that nulls can also be used to represent a resolved version of an incon-
sistency associated with an FD, as in Example 2: there would be a single repair
consisting of the tuples (Mary,North,null) and (John,South,Hayes). Since the
formal semantics of nulls [56] is based on possible worlds that are closely re-
lated to repairs, it should be feasible to incorporate repairs with nulls into the
CQA framework, using a common semantic basis. This has not been done yet,
however. Bravo and Bertossi [17] take a different, more syntactic approach that
simulates SQL nulls (whose semantic problems are well known [56]) within a
logic programming approach to repair specification.

For the CQA framework to be applicable to XML databases, the basic notions
of repair and consistent query answer need to be redefined. This is done for DTDs
only in [54] and DTDs with functional dependencies in [34]. Staworko et al. [54]
propose to base repair minimality on tree edit distance [13], while Flesca et al.
[34] use an approach more akin to that of [3]. More expressive integrity constraint
languages for XML, for example [32], should be considered next.

There are now several prototype CQA systems: CONQUER [37] (based on
query rewriting), HIPPO [27] (based on conflict hypergraphs), and INFOMIX
[29] (based on answer set programming). Those systems are capable of handling
databases with several million tuples.

Considering the number of researchers, projects, and publications involved,
consistent query answering seems to be enjoying significant interest as a research
topic. Below we identify some of the current and future challenges in this area
(in addition to those mentioned earlier):

Coping with semantic heterogeneity. The number of different repair semantics
proposed so far, particularly when one considers variations involving nulls and
priorities, may overwhelm a potential user. The ways need to be found to provide
guidance which semantics are appropriate for specific applications. Also, methods

5 For a consistent relation such transformation is an identity but for an inconsistent
one this is usually not the case.
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that unify various approaches within a single framework, as for example [59],
should be studied.

Integration with other tools. Ultimately, repairing and CQA should become
tools in data integration toolboxes. We have already mentioned incorporating
CQA in several data integration frameworks [16,9,20] but still more work is
needed in the context of data exchange [31]. Also, integration of CQA with
data cleaning seems to be in order. CQA is unnecessarily conservative in the
presence of data errors and duplicates. Moreover, integrity violations in an in-
tegrated database are often due to structural or semantic discrepancies between
the sources, and thus the quality of schema matching/mapping clearly influences
the usefulness of CQA [24]. In a broader sense, CQA fits within the framework
of data quality management [7].

Applications. Very few real-life applications of repairing and consistent query
answering have been reported so far. Franconi et al. [36] summarize an applica-
tion of attribute-based repairing in the area of census data. Flesca et al. [35,33]
describe a tool for acquiring and repairing balance-sheet data. That work is
notable for its use of aggregation constraints. Generally, it seems that most po-
tential applications find repairing more useful than CQA. In many cases, the
data in the database is relatively static, so it makes sense to invest a consid-
erable effort into its cleaning and repairing. Such data can then be repeatedly
used. CQA appears to be more suitable to dynamic environments, particularly
those that require real-time decisions based on the available data.
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Abstract. Cryptographic techniques for reasoning about information
leakage have recently been brought to bear on the classical problem of
statistical disclosure control – revealing accurate statistics about a pop-
ulation while preserving the privacy of individuals. This new perspective
has been invaluable in guiding the development of a powerful approach
to private data analysis, founded on precise mathematical definitions,
and yielding algorithms with provable, meaningful, privacy guarantees.

1 Introduction

The problem of statistical disclosure control – revealing accurate statistics about
a population while preserving the privacy of individuals – has a venerable his-
tory. An extensive literature spans multiple disciplines: statistics, theoretical
computer science, security, and databases. In recent years the problem has been
revisited, bringing to the discussion techniques from the cryptographic commu-
nity for defining and reasoning about information leakage. This new perspective
has been invaluable in guiding the development of a powerful approach to private
data analysis, founded on precise mathematical definitions, and yielding algo-
rithms with provable, meaningful, privacy guarantees and, frequently, excellent
accuracy.

Statistical databases may be of two types: non-interactive (the traditional
model) and interactive. In the former, a sanitization of the data is published. All
statistical analysis is carried out on the published, sanitized, data. Sanitization
is a broad concept, and can include summaries, histograms, and even synthetic
databases generated from a model learned from the actual data. The principal
aspect here is the “one-shot” nature of the non-interactive approach: once the
sanitization has been published the original data have no further use; they could
even be destroyed. In contrast, in the interactive model a privacy mechanism sits
between the data and the user. The user interacts with the privacy mechanism,
which may modify the actual query or the query outcome, in order to preserve
privacy.

The division between the models is somewhat artificial; nevertheless, separa-
tion results exist, and it is now clear that the interactive setting is much more
powerful; for example, to obtain statistically meaningful information in the non-
interactive case can provably require a huge database (exponential in the number
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of attributes) [12], which is simply not the case for interactive mechanisms. We
may use the term privacy mechanism for either type of mechanism.

Dinur and Nissim [7] initiated a rigorous study of the interactive model; in
particular, they focused on a class of techniques that Adam and Wortmann,
in their encyclopedic 1989 survey of statistical disclosure control methods, call
output perturbation [1]. Roughly speaking, this means that noise is added to the
output of the query, so a true answer of, say, 4,286, may be reported as 4,266 or
4,300. The degree of distortion, that is, the expected magnitude of the noise, is
an important measure of the utility of the statistical database. Dinur and Nissim
investigated the question of how large the magnitude of the noise must be when
the number of queries is large.

They began with a very simplistic and abstract setting, in which the database
consists of a single Boolean attribute. That is, each row of the database is either
zero or one. A query is a subset of the rows, and the defined true answer to the
query is the sum of the rows in the subset (equivalently, the number of ones in the
specified set of rows). It is helpful to think of the query as a vector x ∈ {0, 1}n,
where n is the number of rows in the database, henceforth denoted DB. The
true answer to the query is x · DB. An output perturbation mechanism adds
noise to the true answer, and returns this sum as the response to the query. We
use the terms true answer to denote the real number of ones in the rows specified
by the query, and response to denote the output of the privacy mechanism.

Dinur and Nissim did not initially explicitly define privacy. Instead they
defined what we will call blatant non-privacy: the ability to reconstruct, say,
99.99%, or, more precisely, n − o(n), entries of a database of n rows (the adver-
sary will not necessarily know which of the reconstructed entries are the correct
ones). They showed that to prevent blatant non-privacy, the magnitude of the
noise added in each response cannot always be small:

1. The magnitude of the noise cannot always be o(n) if the adversary can make
2n queries to the database (in fact, if the error is always within a bound E
then the database can be approximated by a candidate of Hamming distance
at most O(E) from the real database);

2. If the adversary is polynomial time bounded and makes only O(n log2 n)
randomly chosen queries, the magnitude of the noise cannot always be o(

√
n).

These results are independent of the distribution of the noise.
The first result uses brute force to rule out databases that are too far from the

actual database. The second uses linear programming to accomplish the same
task; the result holds with all but negligible probability over the choice of queries.

The Dinur-Nissim setting, while at first blush simplistic, is in fact sufficiently
rich to capture many natural questions. For example, the rows of the database
may be quite complex, but the adversary-user may know enough information
about an individual in the database to uniquely identify his row. In this case
the goal is to prevent the learning of any additional bit of information about the
individual. Of course, even knowing enough to identify a single individual does
not give the adversary the power to identify everyone in the database. However,
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careful use of hash functions can handle the “row-naming problem.” Thus, we
may have a scenario in which an adversary reconstructs a close approximation
to the database, in which each row is identified with a set of hash values, and
a “secret bit” is learned for many rows. If the adversary knows (or later learns)
enough about an individual to identify, directly or through elimination, his row
in the database, then the adversary can learn the individual’s secret bit.

“Just Give Me a Noisy Table”. Research statisticians like to “look at the
data.” Indeed, conversations with experts in this field frequently involve pleas
for a “noisy table” that will permit significantly accurate answers to be derived
for computations that are not specified at the outset. The Dinur-Nissim results
say that no “noisy table” can provide very accurate answers to all questions;
otherwise the table could be used to simulate the interactive mechanism, and a
Dinur-Nissim style attack could be mounted against the table. But what about
a table that yields reasonably accurate answers to “most” questions, permitting
some questions to have wildly inaccurate answers? We will see in Section 2
that this relaxation is of little help in protecting privacy. We therefore advocate
switching to an interactive strategy using the techniques of Section 3.

1.1 When n Is Very Large

Dinur and Nissim obtained their negative results while we were thinking about
privacy for enormous databases, in particular, the Hotmail user database of
over n = 100, 000, 000 users. In such a setting, asking n log2 n queries is simply
unreasonable. This suggests the following natural question: suppose the number
of queries is limited, so the attacks above cannot be carried out. For example,
suppose the number of queries is sub-linear in n. Can privacy be preserved by
noise that is, say, always of magnitude o(

√
n)? Since the sampling error for a

property that occurs in a constant fraction of the population is on the order of
Θ(

√
n), this would mean that the noise added for protecting privacy is smaller

than the sampling error.
More generally, let T be an upper bound on the number of queries to be

tolerated. What magnitude noise is sufficient to ensure privacy against T queries?
As we will see, the answer to this question is very satisfactory. In particular, the
magnitude of the noise will depend only on T , and not on n.

To answer our question we must pose it precisely, which means that we must
define privacy, preferably in a way that makes sense for arbitrary databases, and
not just n-bit vector databases. Of course, when the databases are arbitrary the
queries may be more complex than a simple inner product – which may not even
make sense, depending on the data type.

Organization of This Paper. The rest of this paper is organized as follows. Sec-
tion 2 summarizes some recent extensions of the Dinur-Nissim results. Section 3.1
describes a natural definition of a privacy-preserving statistical database, held
as a desideratum for 29 years, and gives some intuition for why it cannot be
achieved. However, just as the negative results of [7] yielded insight into how to
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permit accuracy while ensuring privacy by focusing our attention on “reason-
able” numbers of queries, the counter-example to the natural definition exhibited
flaws in the definition – the wrong question was being asked! The deeper un-
derstanding resulted in a new concept, differential privacy. This is described
in Section 3.2. Finally, a concrete privacy mechanism achieving differential pri-
vacy is presented in Section 3.3, and our question about the magnitude of noise
sufficient to maintain privacy against T queries is answered.

2 Strengthening the Impossibility Results

We1 have recently extended the Dinur-Nissim results in several ways summarized
in Theorem 1. The proof of Part 1 is the “right” version of Dinur-Nissim: it
specifies an explicit set of exactly n queries that always yields blatant non-
privacy. Parts 2-4 consider the case in which there may be some small errors but
also a constant fraction of the errors may be unbounded. The case of unbounded
errors with zero small errors is similar to the situation with error-correcting
codes, when a symbol is either correct (zero error) or incorrect (no assumptions).
We have one result of this type, and several with “mixed” errors.

Theorem 1. In each case below a query is defined by an n-dimensional vector
x, the database is an n-dimensional vector DB, and the true answer is x · DB.
The response is the true answer plus noise. All the results will hold independent
of how the noise is generated, and even if the privacy mechanism knows all
questions in advance.

1. If the noise is restricted to o(
√

n) in every response, then the system is
blatantly non-private against a polynomial time bounded adversary asking
exactly n queries x ∈ {±1}n. More generally, a noise bound of α translates
to reconstruction of n − 9α2 entries. The attack uses Fourier analysis in a
straightforward way.

2. Let ρ be any constant less than 0.239. If the noise is unbounded on up to a
ρ fraction of the responses and restricted to o(

√
n) on the remaining (1 − ρ)

fraction, then the system is blatantly non-private against a polynomial time
bounded adversary asking Θ(n) queries in N (0, 1)n, that is, each query is a
vector of standard normals. More generally, a bound of α on the small noise
yields reconstruction in n − Θ(α2) entries.

3. For any fixed δ > 0, if the noise is unbounded on a (1/2 − δ) fraction of the
queries and restricted to o(

√
n) on the remaining (1/2+ δ) fraction, then the

system is blatantly non-private against
(a) an exponential-time adversary asking only O(n) queries
(b) a polynomial time adversary against a non-interactive solution (eg, a

noisy table) asking only O(n) questions, where the break is in the list-
decoding sense; that is, the adversary can produce a constant-sized list

1 These results were obtained jointly with Frank McSherry, Kunal Talwar, and Sergey
Yekhanin.
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of candidate databases containing at least one that agrees with the true
database in at least n − o(n) entries.

The queries for both parts of this result are randomly chosen vectors x ∈
{±1}n and the attack works with overwhelming probability over the choice
of queries.

4. If the noise is unbounded on up to 1/2− δ of the responses, but is zero in the
remaining 1/2+δ, then the system is blatantly non-private against a polyno-
mial time bounded adversary making O(n) queries with integer coefficients
in the interval [−c, c], where c = c(δ) is a constant that goes to infinity as δ
approaches 0. The attack uses algebraic geometry codes.

In all but Part 4, if the database has Ω(n) ones, then x · DB has expected
magnitude close to

√
n. Thus, even on the queries on which the system gives

“small” error o(
√

n), the magnitude of the error is close to the magnitude of the
answer. And still the system is blatantly non-private.

The attack in Theorem 1.2 is inspired by recent results of Donoho [8, 9] and
Candes, Rudelson, Tao, and Vershynin [4], in which linear programming is used
for compressed sensing and decoding in the presence of errors. Indeed, our query
matrices are exactly the ones studied in [4]. Our result is stronger in two ways: we
tolerate small noise everywhere, and our proof is more direct, yielding a better
decoding bound and a sharp threshold even in the zero small noise case2.

3 Differential Privacy

3.1 Motivation for the Definition

Development of the notion of differential privacy was guided by a different type
of impossibility result than those discussed so far. A classical desideratum for
statistical databases was articulated in [5]:

(Dalenius, 1977) Access to a statistical database should not enable one
to learn anything about an individual that could not be learned without
access3.

This goal cannot be achieved when the database has any utility [10]:

“The obstacle is in auxiliary information, that is, information available
to the adversary other than from access to the statistical database, and
the intuition behind the proof of impossibility is captured by the fol-
lowing example. Suppose one’s exact height were considered a highly

2 In an alternate version of Theorem 1.2 the queries may be randomly chosen vectors
in {±1}n. Unlike the case with Gaussian queries, this alternate version does not
necessarily return the exact database when size of the “small” errors is set to 0
(instead of o(

√
n)).

3 This is analagous to Goldwasser and Micali’s definition of semantic security against
an eavesdropper, which says, roughly, that nothing can be learned about a plaintext
from the ciphertext that could not be learned without seeing the ciphertext [15].
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sensitive piece of information, and that revealing the exact height of an
individual were a privacy breach. Assume that the database yields the
average heights of women of different nationalities. An adversary who has
access to the statistical database and the auxiliary information “Terry
Gross is two inches shorter than the average Lithuanian woman” learns
Terry Gross’ height, while anyone learning only the auxiliary informa-
tion, without access to the average heights, learns relatively little.”

As further noted in [10], the impossibility result applies regardless of whether
or not Terry Gross is in the database. This led to the following, alternative
notion [10, 12]:

Differential Privacy: Access to a statistical database should not enable
one to learn anything about an individual given that her data are in the
database than can be learned when her data are not in the database.

While differential privacy does not rule out a bad disclosure, it assures the indi-
vidual that it will not be the inclusion of her data in the database that causes it,
nor could the disclosure be avoided through any action or inaction on the part
of the user of the database.

3.2 Formal Definition

The privacy mechanism is a randomized algorithm that takes the database as
input and produces an output.

Definition 1. A randomized function K gives ε-differential privacy if for all
data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S] (1)

A mechanism K satisfying this definition ensures a participant that even if she
removed her data from the data set, no outputs (and thus consequences of out-
puts) would become significantly more or less likely. For example, if the database
were to be consulted by an insurance provider before deciding whether or not to
insure Terry Gross, then the presence or absence of Terry Gross in the database
will not significantly affect her chance of receiving coverage.

This definition naturally extends to group privacy as well. If the definition is
satisfied as written, then the inclusion/exclusion of the data of any c participants
yields a factor of exp(εc) (instead of exp(ε)), which may be tolerable for small c.
Since the sine qua non of a statistical database is to teach information about the
population as a whole, it is natural, indeed essential, that the privacy bounds
deteriorate as group size increases.

3.3 Achieving Differential Privacy

We now describe a concrete interactive privacy mechanism achieving ε-differential
privacy (see [12] for a full treatment). The mechanism works by adding appro-
priately chosen random noise to the true answer a = f(X), where f is the query
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function and X is the database. A helpful example to keep in mind is (a vector
of d) queries of the form “How many rows in the database satisfy predicate P?”
where the true answer is a vector of d integers (one per query). It is notewor-
thy that “counting” queries of this type are a very powerful privacy-preserving
interface to the database. For example, it is shown in [3] that many popular
datamining tasks, including principal component analysis, association rules, k-
means clustering, and the ID3 decision tree creation, can be carried out with
excellent accuracy while only using a small number of counting queries.

The magnitude of the noise is chosen as a function of the largest change a
single participant could have on the output to the query function; we refer to
this quantity as the sensitivity of the function.

Definition 2. For f : D → Rd, the L1-sensitivity of f is

Δf = max
D1,D2

‖f(D1) − f(D2)‖1 (2)

for all D1, D2 differing in at most one element.

Note that sensitivity is a property of the function alone, and is independent of
the database. So we may assume that sensitivity is known to the user. For many
types of queries Δf will be quite small. In particular, the counting queries “How
many rows have property P?” have Δf = 1. Our techniques will introduce the
least noise when Δf is small.

The privacy mechanism, denoted Kf for a query function f , computes f(X)
and independently adds noise with a scaled symmetric exponential distribution
with variance σ2 (to be determined in Theorem 2) in each component. This
distribution is described by the density function

Pr[Kf (X) = a] ∝ exp(−‖f(X) − a‖1/σ) (3)

and the mechanism simply adds, to each coordinate of f(X), independently
generated samples of this distribution.

Theorem 2. [10, 12] For f : D → Rd, Kf gives (Δf/σ)-differential privacy.

Proof. Starting from (3), we apply the triangle inequality within the exponent,
yielding for all possible responses r

Pr[Kf (D1) = r] ≤ Pr[Kf (D2) = r] × exp(‖f(D1) − f(D2)‖1/σ) . (4)

The second term in this product is bounded by exp(Δf/σ). Thus (1) holds for
singleton sets S = {a}, and the theorem follows by a union bound.

Theorem 2 describes a relationship between Δf , σ, and the privacy differential.
To achieve ε-differential privacy, it suffices to choose σ ≥ ε/Δf . Significantly,
the theorem holds regardless of any auxiliary information that may be available
to the adversary, and is independent of the computational power of the adver-
sary. Moreover, composition is simple: to handle T adaptively chosen queries of
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respective sensitivities Δf1, . . . , ΔfT it suffices to replace Δf with
∑T

i=1 Δfi in
the noise generation procedure4.

We may now answer our earlier question: What magnitude noise is sufficient to
ensure privacy against T queries? The sensitivity of each query in Theorems 1.1,
1.3, and the ±1 variant of 1.2, is Δf = 1 (and the sensitivity of a query in
Theorem 1.4 is c). The sensitivity of any sequence of T such queries is thus at
most TΔf = T (or Tc = O(T ) for the case of Theorem 1.4), so the answer in
all these cases is O(T/ε).

The situation for Theorem 1.2 is a bit different: there is no upper bound
on |N (0, 1)|, and a sanitizer that rejects Gaussian queries if they exceed any
fixed constant in even one coordinate would be unreasonable. A simple-minded
approach would be to take log2 n to be an upper bound on Δ (and reject any
query vector with L∞ norm exceeding this amount), which yields T log2 n as an
upper bound on the sensitivity of any sequence of T queries. This yields noise
magnitude O(T log2 n/ε). However, we can design a solution that does better.
We do this for the pedagogic value of exhibiting the tightness of the tradeoff
between accuracy (smallness of noise) and privacy.

A series of T queries implicitly defines a T ×n matrix A, where each row of the
matrix corresponds to a single inner product query, and the output is the T × 1
matrix given by A ·DB. To put things in context, Theorem 1.2 discusses blatant
non-privacy when T = Ω(n) and the matrix A is drawn from N (0, 1)T×n; we
are now looking at smaller values of T .

The privacy mechanism will use noise calibrated to sensitivity Δ = 2T . It will
also impose a sensitivity budget of 2T on each row of the database, as we now
explain. Let x be a query vector. For each 1 ≤ i ≤ n the budget for row i is
charged |xi|. More generally, the cost of A to the budget for row i of the database
is the L1 norm of the ith column of A. The privacy mechanism will answer a
query unless is would break the budget of even one row in the database, in which
case the mechanism will answer no further questions. Note that the budget and
the charges against it are all public and are independent of the database, so this
stopping condition reveals nothing about the data.

Since the noise is calibrated for sensitivity 2T and no sensitivity budget of 2T
is exceeded, differential privacy is ensured. We claim that for T ≥ polylog(n),
with overwhelming probability over choice of A, the privacy mechanism will
answer all T questions before shutting down. Note that A contains nT standard
normals, and so with overwhelming probability the maximum magnitude of any
entry will not exceed, say, log2 nT . In the sequel we assume we are in this high
probability case.

Consider random variables X1, . . . , XT , each in [0, log2 nT ]. Let S =
∑T

i=1 Xi.
Hoeffding’s inequality says that

Pr[S − E[S] ≥ tT ] ≤ exp

(
− 2T 2t∑T

i=1 log4 nT

)
4 There are compelling examples in which it is possible to do much better. The

interested reader is referred to [12].
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We may use this as follows. Since aij is distributed according to a standard
normal, its expected magnitude is

√
2/π. Consider a column j of A, and let

Xi = |aij | for I = 1, . . . , T . By linearity of expectation, E[S] = TE[|N (0, 1)|].
So Hoeffding’s bound says that

Pr[S − T (
√

2/π) ≥ tT ] ≤ exp

(
− 2T 2t∑T

i=1 log4 nT

)
= exp

(
− 2T t

log4 nT

)
In particular when T ≥ log6(Tn) this is negligible for all t ∈ Ω(1). By a union
bound we see that, as desired, the probability that even one of the n per-row
budgets is exceeded is negligible in n.

The bottom line is that, even in the setting of Theorem 1.2, noise of magnitude
O(T/ε) is sufficient to ensure privacy against T queries.

We remark that a “better” answer appears in the literature [7, 13, 3]. This
is obtained using a slightly weaker, but also reasonable, definition of privacy, in
which, roughly speaking, the mechanism is permitted to fail to deliver full ε-
differential privacy with some small probability δ. Under this relaxed definition
one may employ Gaussian noise rather than symmetric exponential noise. This
leads to noise of magnitude Ω((

√
log 1/δ)

√
T/ε). We prefer the exponential noise

because it “behaves better” under composition and because the guarantee is
absolute (δ = 0).

4 Final Remarks

A Trusted Center. Throughout this paper we have assumed that the data col-
lector and the privacy mechanism are trustworthy. Thus, we are making the
problem as easy as possible, yielding stronger lower bounds and impossibility
results. The literature also studies the setting in which the data contributors do
not trust the data collector to maintain privacy and so first randomize their own
data [14, 2]. Of course, since randomized response is a non-interactive mech-
anism it is subject to the negative conciseness result of [12] mentioned in the
Introduction.

“Our Data, Ourselves”. A different tack was taken in [11], where, using cryp-
tographic techniques for secure function evaluation, the data collector/protector
is replaced by a distributed privacy mechanism.

When Noise Makes no Sense. McSherry and Talwar have initiated an exciting
investigation of differential privacy in cases in which adding noise may not make
sense; for example, the output of a “query,” or in general of any operation on a
set of private inputs, may not be a number. Given an input vector x (playing the
role of a database) and a possible outcome y, assume there is a real-valued utility
function u(x, y) that evaluates the outcome y for the input set x. As an example,
x could be bids for a digital good, y could be a price, and u(x, y) could be the
resulting revenue. This has resulted in the design of approximately-truthful and
collusion-resistant mechanisms with near-optimal revenue. More generally, y can
be a classifer, an expert, or a heuristic.
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Abstract. Information integration is becoming a critical problem for businesses 
and individuals alike. Data volumes are sky-rocketing, and new sources and 
types of information are proliferating. This paper briefly reviews some of the 
key research accomplishments in information integration (theory and systems), 
then describes the current state-of-the-art in commercial practice, and the 
challenges (still) faced by CIOs and application developers. One critical 
challenge is choosing the right combination of tools and technologies to do the 
integration. Although each has been studied separately, we lack a unified (and 
certainly, a unifying) understanding of these various approaches to integration. 
Experience with a variety of integration projects suggests that we need a 
broader framework, perhaps even a theory, which explicitly takes into account 
requirements on the result of the integration, and considers the entire end-to-end 
integration process. 
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1   Introduction 

“For us…growth is a way of life. So we’ll continue to grow”1. Nearly two thirds of 
CEOs surveyed recently said that growth is the key priority, requiring quick delivery 
of new products and services in response to rapidly changing market conditions [2]. 
Yet only 13% felt that their business was well-positioned to react quickly [2]. They 
stressed the need to capture and understand all available information to make rapid 
business decisions, but today that is not such an easy task. In fact, 68% of the CEOs 
listed the integration of disparate applications and infrastructure as a key issue for 
their business, one that slows them down and stops the flow of information [2]. 
Meanwhile, customers tell us that 30% of their people’s time is spent just looking for 
the information they need to do their jobs. 

Why is information so hard to find? Partly, this is due to the increasing volumes of 
information available on line. But there is a second, deeper problem, and that is the 
fragmentation of information, and the proliferation of information sources. Even 
                                                           
1 Mukesh Ambani, chairman and managing director of Reliance Industries, India’s largest 

private sector company, as quoted in [1]. 
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within a relatively controlled environment such as an enterprise Information 
Technology (IT) organization, customers report many database instances, often 
hidden behind applications, not to mention document repositories and other sources of 
unstructured information. For example, analysts report [3] that 79% of companies (of 
all sizes) have more than two document stores, while 25% have more than fifteen. 
Information is not only hard to find, but further complications such as overlapping, 
conflicting and incomplete information are inevitable. Almost any business with 
multiple business units has multiple sources of customer information, for example – 
often with conflicting information for the same customers. 

Information integration is the database community’s answer to these problems. The 
goal of information integration is to enable rapid development of new applications 
requiring information from multiple sources. This simple goal hides many challenges, 
from identifying the best data sources to use, to creating an appropriate interface to 
(or schema for) the integrated data. Much research has focused on how best to do the 
integration itself, for example, how to query diverse sources with differing 
capabilities and how to optimize queries or execution plans. Other issues concern how 
to cleanse information to get a consistent view, how to deal with uncertainty and trace 
data lineage, and how to identify the same object in different data sources (a problem 
known by various names, including entity resolution). There has been a lot of 
progress on individual challenges, but information integration remains a difficult task. 
We believe that one reason for that is that these challenges are inter-related, part of 
the overall process of integration, and yet have been largely considered in isolation. 
Thus, the separate solutions do not always work well together. Perhaps more 
importantly, the solutions that are relevant to a particular integration task depend 
heavily on the application requirements regarding data qualities (e.g., currency, 
consistency, completeness) and quality of service (e.g., response time, availability, 
resources consumed). We lack a clear view of information integration that positions 
the various technologies relative to each other and relative to the application 
requirements for the integration problem that must be solved. 

The rest of this paper is structured as follows. Section 2 elaborates on the overall 
information integration challenge, and presents an extended example of a real 
integration problem to motivate our suggestions for future work. In Section 3, we 
briefly survey the research underpinnings of information integration, showing how the 
research applies to our example, while Section 4 reviews the state of the art in the 
industry today, showing what products are available for use.  Section 5 comes back to 
the issue of unification and the end-to-end information integration problem.  We pose 
a new challenge to the research community with both theoretical and systems 
implications, and explore several possible approaches.  Finally, the paper concludes in 
section 6. 

2   Information Integration Illustrated 

There is no one integration problem; the challenges vary depending on the 
environment. In this paper, we focus on information integration within an enterprise. 
This environment typically includes a broad mix of sources, many structured (e.g., 
relational or other databases), but increasingly many unstructured (e.g., document 
repositories, web pages, email). The uses for the integrated data are likely to vary 
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greatly, from mission-critical applications to exploratory queries and everything in 
between. A broad range of technologies is used to handle this range of needs. In this 
section, we first provide an overview of the integration process in the enterprise 
context, and then illustrate it through an extended example. 

2.1   The Information Integration Process 

Research on information integration has focused on particular aspects of integration, 
such as schema mapping or replication, individually. But for businesses, information 
integration is really a process, with four major tasks: understanding, standardization, 
specification and execution.   

Understanding. The first task in information integration is to understand the data. 
This may include discovering relevant information (including keys, constraints, data 
types, and so on) and analysing it to assess quality and to determine statistical 
properties (for example, data distributions, frequent values, inconsistent values). 
During this task the integrator may look for relationships among data elements (such 
as foreign keys, or redundant columns) and possibly (for unstructured data) meaning. 
Metadata is central to this phase, though used in all. Both tools and end users leverage 
it to find and understand the data to be integrated. It is also produced as the output of 
analysis, to be exploited by later tasks in the process. 

Standardization. This task typically leverages the work of the previous task to 
determine the best way to represent the integrated information.  This includes 
designing the “target” or integrated schema, deciding at the field level what the 
standard representation should be (e.g., will full names be represented as first name 
followed by last name, or last name comma first name?), and even defining the 
terminology and abbreviations to use (“str” vs. “st” for “street”). In addition to these 
rules on how data is represented, other rules that specify how to cleanse or repair data 
may be provided. Issues here include how to handle inconsistent or incomplete data 
(for example, if we find multiple phone numbers for the same person, should we keep 
all of them, or only the most recent?) and how to identify data that refers to the same 
objects (for example, is John Q Public the same person as John Public?).  

Specification. In this step, the artifacts that will control the actual execution are 
produced. As a result, the techniques and technologies used for specification are 
intimately linked to the choice of execution engine(s). For example, mapping tools 
specify the relationship between source(s) and target(s), and then typically can 
generate a query or other executable artifact (e.g., XSLT) that would produce data in 
the desired target form. Often, however, the specification is part of actually 
configuring an integration engine to do the desired integration. Thus, determining the 
execution engine should be thought of as part of specification.  

Execution. This is where the integration actually happens. Integration can be 
accomplished via materialization, federation and/or indexing. Materialization creates 
and stores the integrated data set; this may be thought of as eager integration. There 
are many techniques for materialization. Extract/Transform/Load (ETL) jobs extract 
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data from one or more data sources, transform them as indicated in the job script, and 
then store the result in another data source. Replication makes and maintains a copy 
of data, often differentially by reading database log files. Caching captures query 
results for future reuse. Federation creates a virtual representation of the integrated 
set, only materializing selected portions as needed; it can be thought of as lazy 
integration. Federation is a form of mediation; in general, mediation refers to an 
integration technique in which requests are sent to a “mediator” process which does 
routing and translation of requests. Search takes a different approach, creating a 
single index over the data being integrated. This is commonly used for unstructured 
data, and represents a partial materialization, since typically the index identifies 
relevant documents, which will be fetched dynamically at the user’s request. 

Note that these tasks are interdependent, and existing tools often support (pieces 
of) several of these tasks. They may be overlapped in practice; for instance, it is not 
necessary to have a complete understanding before starting to standardize. Likewise, a 
particular integration may not require all of the subtasks for any task, and in really 
simple cases, some tasks may seem to vanish altogether. 

The integration process is iterative, and never-ending. Change is constant; there is 
always another source to deal with, a new application with new requirements, an 
update to some schema, or just new data that requires analysis. 

2.2   An Extended Example 

Consider a typical integration problem. A major company, Grande, acquires a small 
company, Chico, with less than fifty employees. Chico has three products, several 
“databases” per product (ranging from design docs scattered about the file system to 
requirements docs in a document management system to relational databases tracking 
line items and owners, and so on), two orders databases (one for mail orders, one for the 
web), a defect tracking database for support, and other information sources.  Several 
Chico IT staff members quit in the transition, so knowledge about the data is lost.   

The combined enterprise needs to ensure that Chico continues to do business 
during the transition (so their sales, support and development databases and processes 
must continue to operate). But the duplication of databases, processes and IT staff is 
costly, so they also need to consolidate their operations reasonably quickly. In the 
meantime, they have immediate needs to correlate information across the old and new 
systems. For example, Chico’s customers overlap with Grande’s. The new, bigger 
Grande wants to send mail to all existing customers who might be interested in 
Chico’s products, but not to those who already have them. They may want to quickly 
get to a single phone number for support across the combined product set.  

For our example, we’ll focus on this latter scenario. The support representative 
answering the phone needs to be able to check customer entitlement quickly, i.e., he 
must be able to look up a customer and discover the level of service for which the 
customer has paid. Ideally, this would be solved by providing the support person with  
a single list of customers, duplicates removed, information merged, or the equivalent. 
But that is not so easy, as customer information for Chico is scattered across multiple 
tables; there is no single customer list, even for Chico alone. Further, Chico checked 
entitlement by looking up the product registration number in the orders database(s) to  
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Fig. 1. Chico’s customer-related data is spread over multiple data sources, in multiple formats. 
Only partial schemas are shown; the real data would have many more tables, and columns, as 
well as richer XML document types. Gathering full information on customer entitlement 
requires detailed knowledge of the sources, a complex join and understanding the service types.   

see if the customer bought support, and if so, at what level. Grande was more focused 
on customer accounts, with a certain level of service for a customer based on overall 
sales (e.g., Gold vs. Platinum customers). So not only is the information about 
customers organized differently, but the semantics of customer entitlement are also 
different for the two companies. Eventually, the combined company will want to 
settle on a single scheme, but in the short term, they just want to continue to support 
both customer sets, smoothly. 

Janet Lee, a Grande IT architect, is asked to set up this combined customer support 
system. Janet is not familiar with the Chico systems, of course, and because of the 
loss of Chico staff, she will not have the benefit of their expertise. She needs first to 
understand what information is available to her. She will need to find the Chico 
customer information and information on what types of support exist. This 
information is spread over order, billing and defect tables in multiple databases and in 
the document management system that tracks contracts (Figure 1). She will probably 
need to talk to someone in sales to understand the Chico support semantics, and she 
will likely want to inspect or analyze the relational data so that she knows what she is 
up against in terms of standardization. For that task, she will need to specify how to 
represent various data, such as address (Chico doesn’t store state, and the address is 
all in a single field, where Grande has state, city and zip all in separate fields). She 
will design a merged representation, and define the rules that determine what happens 
when there is disagreement (for example, when the same customer appears in both 
databases with different information)2. She may also need to write rules to determine 
when data refers to the same customer. Janet then needs to specify how to do the 

                                                           
2 Note that the order of these may vary a bit, for example, some tools would allow Janet to 

write these “cleansing” rules as part of specifying the integration.   
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integration. Although there are some tools that will support an abstract, nonprocedural 
way of doing this, for example, mapping tools, even these today tend to be associated 
with a particular integration engine.  

So Janet now faces the question of how to execute the actual integration. She 
could, for example, choose to materialize the combined customer list. To do that, 
she’ll need to define an Extract/Transform/Load (ETL) job, deciding how often it 
needs to run, or whether it can be run once, and then refreshed incrementally at 
regular intervals. A differential refresh might be better handled using a replication 
product – and if the transformations needed are simple enough, the replication engine 
might be all that is needed. In any case, she will need to set up one or both products 
and configure them to reach the actual data sources, and to run her job or jobs. 
Alternatively, she could choose to federate the various data sources, providing a 
single (virtual) view of the combined data. In this case, she will need to set up and 
configure the federation software to reach the data sources, and then define 
appropriate views over the data. In a customer support environment, a good search 
capability is typically critical. It is possible that Janet could return the information 
needed by the support representative just via search.  She will want to evaluate that 
possibility, and possibly set up search software, configuring crawlers, getting an index 
built, and so on. Of course, a combination of these various integration engines may be 
the best approach – materializing critical information for the first, fast check, keeping 
it up-to-date via replication, using federation to “drill down” if the customer has 
further questions about their account, and using search as a way to retrieve details of 
the relevant service plans.  

How will Janet decide? To make her decision, she must take a number of factors 
into account. She will think about the requirements of the task: how quickly must the 
information be returned, how many end users will be using the system 
simultaneously, whether it will be needed 24x7, and so on.  Other requirements apply 
to the data quality: how current must the data be, how complete, how accurate.  Janet 
will also think about the physical constraints on the solution, for example, how much 
storage space is available, the processing power at her disposal, a limit on total cost, 
perhaps. Finally, the policies Grande has in place for security or to comply with 
relevant industry regulations will also affect the solution. For purposes of this paper, 
we will refer to these varied types of requirements – qualities of service, qualities of 
data, physical constraints and policies – as the solution desiderata.  These desiderata 
are critical to determining the best techniques to use for a particular scenario; 
however, only Janet’s experience allows her to make the decision – there are no 
studies or formal guidance on what desiderata require which integration techniques. 

To summarize, in order to integrate enough data for this one critical but simple 
scenario, Janet must go through quite a complex process. She will need to develop an 
understanding of the data and its semantics. She will need to assess the quality and 
degree of overlap of the data, identifying common customers and merging and 
standardizing their information while dealing with any inconsistencies.  She will need 
to design the integrated view or target schema. Finally, she will need to choose one or 
more integration engines to deploy, configure them to reach the various data sources, 
and create the instructions needed (the ETL script, view, or program) for them to 
instantiate the target schema. In our simple example, Janet is dealing with primarily 
relational data. If some of the data is unstructured, her task is harder still. Fortunately, 
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the research and development communities have made great strides towards tools to 
address these challenges. In the next two sections, we examine some of the highlights 
of this work. 

3   Research in Information Integration 

There are thousands of papers relevant to information integration.  Many focus on 
some aspect of one of the stages of the process described above, e.g., discovering 
primary keys (one piece of understanding the data). Others propose broader solutions 
for specific environments, for example, querying deep web data sources.   It is beyond 
the scope of this paper to survey the literature (see [4] for an excellent introduction).  
Instead, we categorize the work into four broad areas, one for each step in the 
integration process, and provide a few pointers to work in each category, to give a 
feeling for the accomplishments to date.  Not all of the literature is amenable to this 
crude categorization, as we also briefly illustrate. Despite the weighty body of 
literature, the information integration challenge is far from solved, especially in the 
enterprise context. 

In the area of understanding the data and data sources, there has been much recent 
cross-disciplinary work (spanning data management, information retrieval, statistics 
and machine learning). Key areas of focus include structure discovery [5], which aims 
to determine the schema for data automatically, data summarization and analysis  
[6, 7], to determine characteristics such as value distributions and dependencies, text 
analytics [8], which tries to find specific concepts in text, and source selection [9, 10], 
which chooses the best data source(s) to answer a particular query.  

Research on standardization has focused around several aspects of reconciling 
different data sets [11, 12]. A key challenge is entity resolution (often known as 
semantic resolution or deduplication), the problem of determining when two data 
objects refer to the same real-world entity [13]. Other aspects under study include 
dealing with inconsistent data [14, 15], and how to measure quality and incorporate it 
in systems [16]. In general, if data can be inconsistent, there can be uncertainty, 
sparking a renewed surge of interest in probabilistic databases [17]. 

In specification, the major topics of interest have been schema mapping and 
schema matching [18, 19]; although work on dataflow systems [20] and workflow 
[21] is also relevant, these technologies have not typically been applied to information 
integration by the research community (though they are used in enterprises). Model 
management [22] takes a broad view of managing and manipulating schemas. Schema 
mapping tools such as Clio [23] help the user align a target schema with (potentially 
multiple) source schemas, allowing a nonprocedural specification and typically 
generating the runtime artifacts needed to populate the target schema from the 
source(s). Dataflow programming could be used as a more procedural way to specify 
how to create the target data; workflow tools are similarly procedural, but centered on 
the operations rather than the data.  

There are many ways to integrate information. As described in our example, 
materialization, federation, search, as well as “application integration” techniques 
(workflow or business process integration, hard-wired code, composing Enterprise 
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Java Beans, and so on) all may apply to the execution step. Initially, the research 
community focused on integration via materialization, with emphasis on data 
transformation [24], and replication [25, 26]. In the early 1980’s, attention shifted to 
querying across distributed databases [27, 28], and more recently, to mediation  
[29, 30, 31] approaches.  The Garlic project [32] explored a form of mediation now 
known as federation, which extended a relational query processor [33], and thus fit 
easily into enterprise environments. Database theory has made strong contributions in 
this area, both formalizing and extending these basic techniques [4, 34, 35]. While 
search [36] was initially conceived of as a way to find unstructured information, it has 
rapidly become a means of information integration [37], though with radically 
different properties than either materialization or federation. While those integration 
techniques allow for precise queries spanning data from multiple sources with 
structured results composed of data from multiple sources, search poses an imprecise 
query to one or more sources, and returns a ranked list of results, each typically from 
a single source. This form of integration is “good enough” for some integration 
scenarios, requires much less work for the initial three integration tasks in our 
process, and may also be used as an aid to understanding the data. 

Of course, not all work fits nicely into one of these categories. For example, many 
papers are now focusing on integration in the context of the world-wide web [38]. 
These papers often tackle multiple steps, but in this narrower context. Likewise, much 
research has been done on integration in the context of bioinformatics [39]. 
Specialized integration languages [40] and the use of domain ontologies [41] have 
gained some traction in this community.   

This discussion is far from comprehensive, but gives a flavor for both the broad 
range of problems and the types of approaches that have been taken. The results have 
led to great progress in the tools available to the industry, as we show in the following 
section. However, while research has solved subsets of the overall problem, there is 
little today in the way of complete and unified solutions.  

4   The State of Information Integration in Practice 

Out in the marketplace, tools for integrating information are proliferating. Many 
smaller companies sell products addressing one or more of the integration steps we 
have enumerated. Meanwhile, larger companies, most notably IBM and Informatica, 
are consolidating tools for the various steps into powerful platforms for information 
integration and access [42, 43]. Rather than trying to cover all the products on the 
market, we will instead describe in some detail the present market leader, namely, 
IBM Information Server [44]. 

IBM Information Server (IIS) is a platform for information integration. It consists 
of a suite of products (Figure 2) that together cover all the integration tasks. There are 
multiple products for any task. For example, IIS includes three products, each aimed 
at a different level of understanding of the data. WebSphere Information Analyzer 
analyzes source data, discovering schema elements such as primary and foreign keys, 
and checking adherence to integration and quality rules defined by the user; it  
supports understanding the physical data. It provides detailed profiling of the data in 
each column (cardinality, nullability, range, scale, length, precision, etc.). WebSphere  
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Understand: 
• WebSphere Information Analyzer 
• WebSphere Business Glossary 
• Rational Data Architect 

Standardize: 
• Rational Data Architect 
• WebSphere QualityStage 

Specify: 
• Rational Data Architect 
• Each execution engine 

Execute: 
• WebSphere DataStage 
• WebSphere Federation Server 
• WebSphere Replication Server 
• WebSphere Data Event Publisher 

Operational platform: 
• Connectors to databases, applications, and web sources 
• WebSphere Metadata Server and Metadata Workbench 
• WebSphere Information Services Director 

Fig. 2. Individual products comprising IBM Information Server, listed by the integration task 
they support. Additional products in the suite provide a common platform for the products 
listed to run on. That platform includes connectivity to a broad range of sources, shared 
metadata, and the ability to invoke the various products as services, from a range of different 
programming environments. 

Business Glossary lets the user define and manage a vocabulary for their enterprise, 
and link the terms to the underlying data (providing business-level understanding). It 
is designed for business users and subject-matter experts to define data standards and 
record business terminology definitions, rules and taxonomies. It is useful both for 
understanding and standardization in our framework.   

IBM Rational Data Architect (RDA) is a full-function data modeling tool that can 
be used with any database management system. RDA supports understanding of data 
at the logical level. It allows the design and exploration of logical schemas, including 
relationship discovery (i.e., finding foreign keys), and production of physical 
schemas. RDA also incorporates the Clio [23] mapping capabilities, which are useful 
in conjunction with an integration project. Thus, RDA also spans our understanding 
and standardization tasks. In fact, from a mapping, RDA can generate out the artifacts 
needed by the federation engine, hence it handles specification for federation as well.3   

IIS includes WebSphere Metadata Server to capture the insight gained (and 
standardization decisions made) in using these products and to make that knowledge 
available to the other tools in the suite.  Metadata Server provides a unified repository 

                                                           
3 In fact, it handles specification for any integration that can be done by an SQL engine today. 

Incorporating additional Clio capabilities would give it the ability to also handle XML to 
SQL, SQL to XML and XML to XML transformations. 
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for metadata access and analysis.  It provides import and export to twenty common 
modeling and business intelligence tools, as well as being leveraged by the products 
of the IIS suite. 

A key component of standardization is data cleansing, provided for IIS by 
WebSphere QualityStage. QualityStage allows the user to set the formats for data 
records, examine, correct and enrich data fields, and match and link records that may 
represent the same object. The user can specify rules to determine which values 
should “survive” merging of similar records. A graphic interface allows the user to set 
up the rules for this cleansing in a dataflow design metaphor, and to tune the rules by 
observing their impact on a dataset. The dataflow design metaphor of QualityStage is 
also exploited by WebSphere DataStage, one of several products in the suite aimed at 
execution. The same graphic interface allows the user to design complex 
transformation logic visually, exploiting a large library of transforms (shared with 
QualityStage). DataStage is used for materialization. It can be invoked in batch or 
real-time, and can extract, transform and load vast volumes of information.   

IIS also includes other integration engines, most notably WebSphere Federation 
Server, which allows query access to heterogeneous data sources as if all the data 
were in a single (virtual) database. Federation Server supports full SQL and 
SQL/XML [45] access, with optimized query plans and materialized query tables for 
caching data. It can be configured graphically using Rational Data Architect, or using 
a Wizard in its own control center. Other integration engines include several 
replication products, which allow synchronization of multiple copies of data. Each 
product addresses a specific set of requirements. For example, one product focuses on 
flexible scheduling, SQL-based transformation, and support for a variety of 
configurations to handle typical business intelligence and application integration 
scenarios, while another focuses on high throughput, low latency replication, for high 
availability or workload distribution. The suite also provides event-publishing 
capabilities (allowing database changes to be captured as XML messages and put on a 
queue for an application to interpret). Event publishing is often used as a way of 
integrating applications (by sending messages between them), and also as a way to 
feed information to ETL engines to trigger a job. For example, using WebSphere 
Event Publisher with WebSphere DataStage allows DataStage ETL jobs to be fed a 
stream of data values to transform and load, so that it can integrate information in 
real-time, driven by changes to the data, as opposed to batch processing.  

This is a wide range of products, but even IIS is not sufficient for all integration 
needs. In particular, while several of the products deal with both structured and 
unstructured data, as a whole they offer more features to deal with structured datasets. 
Hence, the various engines are increasingly interoperating with related IBM products 
for content federation [46] and enterprise search and text analysis [47, 48]. 

This brief description is offered as an example of the types of products that exist 
today. For each product mentioned, there are many competitive products that could be 
substituted. Each typically has its own unique strengths.  Further, a particular function 
(e.g., finding relationships among data records) may be present in many products. 
Different vendors will package functionality differently, depending on the strengths of 
their products and the market niche they expect to address with them.  

Looking back to the extended example from Section 2.2, Janet’s pain becomes 
more concrete. Which products should she use for which steps in the integration? Will 
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Rational Data Architect and WebSphere Federation Edition provide better results than 
WebSphere QualityStage and DataStage? How can she know that the products she 
chooses will meet the application desiderata? 

5   The “Big I” Challenge  

Despite the many products available today, there are still many opportunities for 
research in each of the basic functions needed. We don’t have an ultimate answer on 
how to tell that two pieces of data refer to the same object, for example. We are still 
learning how to automate schema integration. The wealth of research pointed to in 
Section 3 shows how rich an area integration is for new discoveries.  

However, in working with customers such as Janet over the last few years, we have 
come to believe that there is a more global problem that needs to be addressed.  The 
issue that we see is that there is no theoretical – nor much practical – guidance for the 
many Janets of the world on how to make these choices.  This is problematic, because 
the wrong choice can lead to bad results: orders of magnitude difference in 
performance, lack of flexibility to accommodate changes in the company’s processes, 
or just difficult, time-wasting implementations. 

More concretely, what is wrong with today’s products, from the consumer 
standpoint? There are too many, with too much functional overlap. (We have 
described a relatively simple situation, in which they were all IBM products. In 
general, the poor customer would be choosing from many products from many 
different companies, much less compatible with each other than the IBM suite). Once 
an integration approach is chosen, it is hard to switch; for example, the work done to 
use federation today would have to be largely redone to move to a materialization 
approach, as might be desired if the data were really massive or response time were 
critical, for example. This is too bad, as federation is much better for rapid 
prototyping to show the benefits of integration than materialization, which typically 
requires months (and sometimes years) of effort before the benefits are visible.  When 
you consider that integration is an ongoing effort (new sources and new requirements 
for information arrive constantly), flexibility becomes a major issue. 

The products are also too hard to use together to support a complete integration 
scenario. Most of the industrial-strength integration products available today have 
many knobs that must be set to configure them to meet a particular set of 
requirements. They are typically too focused on their own functionality and not on 
smooth interoperability with other tools needed in the integration process. Hence, they 
may be difficult or expensive to use in combination. The emergence of product suites 
such as IIS as described above is a start at addressing this problem, but there is still 
progress needed, especially when dealing with products from multiple vendors. 

Ultimately, the time until the customer realizes value from the integration project 
(and her investment in the tools) is too long, and the costs are too high. Because of the 
complexity of these decisions, even for a simple case such as that in our example, 
consulting engagements are frequently needed in even the best-staffed IT departments 
in order to deliver a successful integration. Bringing in a specialist makes the project 
more likely to succeed, but with high associated cost.  It also adds another step to the 
process – finding the right expert.   
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We need enormous advances in integration technology to get beyond these issues. 
In an ideal world, integration would happen almost automatically. In this world, the 
user would specify what information he wants, what he wants the result to look like, 
and what properties he needs the result to have, and the system would “do it” (though 
probably with user involvement at various points to verify key decisions, etc).  This is 
hardly a new vision. We are basically arguing for nonprocedural information access. 
In a simpler time, relational databases were the answer to the same quest. The 
difference is that in today’s world, the information needed for a new application is 
likely to come from multiple heterogeneous sources. 

More concretely, we would like to see the various integration execution engines 
converge, so that, to the user, there is no visible difference between an ETL engine, a 
replication engine, federation or even search in terms of the first three steps of the 
integration process. Understanding, standardization and specification should be done 
the same way, regardless. The execution will just happen, based on the solution 
desiderata: the qualities of service desired, the constraints, and so on. The user might 
be blissfully unaware of what execution engine (or engines) does the actual 
integration under the covers. 

To reach this information integration “nirvana”, a number of advances in 
technology are needed. We must raise the level of abstraction significantly above 
where it is today, where characteristics of individual products become primary 
concerns for the integrator. A critical challenge is to represent all the information 
needed for the task. Today, an important component of that information is found only 
in the user’s head, or, in a well-disciplined IT department, perhaps in one or more 
requirement documents. This is the information on the solution desiderata. Because it 
is not available in a machine interpretable format, we have no way for an integration 
tool to consider those requirements and hence, automate integration. 

The level of abstraction needs to rise in other ways, as well. For example, it must 
support logical or even business-level descriptions of what information is needed, as 
opposed to concrete physically-linked descriptions such as column and table names, 
or existing view definitions. Janet should be able to say she wants customer 
information and the system should find and deliver it. That will require much richer 
metadata than we have today, much of which will need to be derived automatically. 
To support the rising level of abstraction, more sophisticated techniques are needed to 
automate the various parts of the process, from discovery to entity resolution to 
configuration and tuning. 

There are challenges here for both the theoretical and the more systems-oriented 
research communities. From the theoretical perspective, we lack a deep understanding 
of what fundamental operations are needed to integrate information.  While Bernstein 
[22] has suggested a set of operations, we do not know if they are complete, nor do 
we have precise semantics for them. Is there a unifying theory of integration that 
subsumes the separate problems of data integration and data exchange? We have 
posited that achieving our goal requires being able to represent the solution 
desiderata. What role do these properties or characteristics of the result play, what 
aspects can be represented and how? We need a model of these desiderata, and how 
they relate to the integration task. We have wished for fully automatic integration. 
How close to our goal can we possibly get? 
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From a systems research perspective, there are several approaches one might take 
to this challenge. Perhaps the simplest is to start by building an “Integration Advisor”, 
on the model of today’s physical design advisors [49, 50].  This tool would lead the 
user through the various integration steps, asking for input on the desiderata, and then 
recommend the appropriate engines, and perhaps even generate the configuration 
information needed. This would simplify the integration process greatly. However, 
there are still many issues to be addressed in creating this tool, such as what input 
must the user provide, what really are the tradeoffs among the different integration 
approaches, which desiderata matter, and so on. Another approach would be to start 
with a language to express the integration desired (covering data plus desiderata), and 
then build a system to interpret (or compile) that request against the tools and engines 
on hand today. In other words, this approach would treat the current set of integration 
engines as given, and the result of compilation would be a script that invoked one or 
more of them to accomplish the integration. Alternatively, the system could compile 
to a new engine with a complete set of operators for integration. In this last case, we 
are returned to the questions of what is the model of information and what are the 
basic operations that we posed above to the theory community, as presumably this 
system would be the interpreter of some subset of those operations. 

These are big challenges, and they hide a raft of further interesting problems.  How 
can we deal with uncertainty in a general way within the integration context?  How 
can we exploit the results of the discovery algorithms that are being developed to tell 
us more about the data? Can we extend our theories of integration to include 
uncertainty and newly produced knowledge?  How much can we model, and how 
much must we just make informed engineering choices? 

We have focused in this paper on an information-centric view of integration. But in 
fact, the most common form of integration today is still enterprise application 
integration (EAI). Confronted with a myriad of choices of tools and techniques, many 
customers fall back on the most popular alternative: writing a special-purpose 
application, possibly exploiting some workflow or other process support tools. We 
call this application-level, procedural style of integration process integration. 
Integration at the application level is unfortunate, for several reasons. First, it is not 
clear that writing a special-purpose application will be simpler even for an easy first 
project as in our example. All of the initial hard work to understand the data and 
standardize on an integrated representation will need to be done anyway, and an 
integration approach chosen, i.e., whether to materialize, federate and/or search. 
Without the use of at least some information integration tools, a lot of code will be 
written to accomplish the integration [51]. Second, when the code for the integration 
is in the application, it can only be optimized by the programmer, so performance will 
be only as good as the programmer [52]. Third, it may be harder to reuse the work 
done for this application when the next application over the same data or data sources 
comes along. 

We will never be able to stop programmers from writing code to do integration if 
they want to do it. But we can ask how far we can and should go in terms of 
simplification. What if we could not only relieve customers from deciding whether 
ETL or federation was the answer, but also unify many of the basic tools that are used 
in the application for integration (for example, business process integration, message 
queuing, and so on)? Can we replace all the process integration and information 
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integration techniques with a single integration engine?  This is what we refer to as 
the “Big I” vision: a single engine for all integration needs, which takes a 
nonprocedural specification of those needs and automatically chooses the right 
approach or combination of approaches.   

6   Conclusion 

In this paper, we have presented a snapshot of the world of information integration as 
it stands today. We have made great progress in both the theoretical foundations of 
information integration and in the algorithms and tools that support it. Still, 
information integration remains a daunting task. There are many improvements 
needed: to the basic integration engines themselves, to the tools for understanding, 
standardizing and specifying what is needed, and to the theory behind them. These 
improvements will simplify certain aspects of the task, but they will not, by 
themselves, eliminate the many choices that must be made by a talented expert today. 
We therefore posed a challenge to the research community: can we move beyond the 
individual techniques for integration to a fundamental understanding of what 
integration is, and armed with that understanding, can we build a single integration 
engine that automatically uses the right techniques for the right situation? We 
hypothesized that the key to achieving this goal may lie in being able to represent and 
reason about the full set of desiderata for the integrated system.  

There is plenty of work to do, and many areas we could not touch on in this paper. 
We focused on the problem of integration within the enterprise.  In recent years, much 
research has focused on the exciting world of data outside the enterprise, on the 
worldwide web. Much of this work is applicable within the enterprise, though it 
typically requires significant adaptation to work effectively with the constraints and 
issues of that environment. More recently, research is emerging (again) on integration 
of personal information, for example the information on your laptop [52]. New 
challenges and techniques will doubtless be found in this environment as well. 
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Abstract. We introduce approximate data exchange, by relaxing clas-
sical data exchange problems such as Consistency and Typechecking to
their approximate versions based on Property Testing. It provides a nat-
ural framework for consistency and safety questions, which first con-
siders approximate solutions and then exact solutions obtained with a
Corrector.

We consider a model based on transducers of words and trees, and
study ε-Consistency, i.e., the problem of deciding whether a given source
instance I is ε-close to a source I ′, whose image by a transducer is also
ε-close to a target schema. We prove that ε-Consistency has an ε-tester,
i.e. can be solved by looking at a constant fraction of the input I . We
also show that ε-Typechecking on words can be solved in polynomial
time, whereas the exact problem is PSPACE-complete. Moreover, data
exchange settings can be composed when they are close.

1 Introduction

Data exchange considers the situation when a source send information to a
target and respects a target schema and specific constraints which link the source
and the target structures. Fagin et al. [7] consider relational structures with a
source schema, a target schema, constraints associated with tuple-generated-
dependencies, and define the Existence-of-Solution problem. Arenas and Libkin
[3] extend the framework to ordered and unordered trees where schemas are
regular properties, and constraints are Source to Target dependencies.

We introduce approximate data exchange which applies to classical data-
exchange but also to the situation where sources may be imperfect. Let Source-
consistency be the decision problem, where given a data-exchange setting and
an input structure I, we decide if there is a solution J in the target schema.
We define the ε-Source-consistency problem by relaxing the source instance I to
an I ′ close to I and a solution J ′ for I ′ close to the schema. We consider the
special case when a transducer provides the solution and show that this prob-
lem is simpler than its exact version. Given an instance source I in the source
schema KS , we also find in linear time a target instance J in the target schema,
using a Corrector. If the Source is imperfect because of noise, we still provide
� Work supported by ACI Vera of the French ministry of research.
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a solution which maybe approximate or exact. The ranking of Web data, i.e. to
determine if XML documents are close or far from predefined DTDs, is a typical
application of this problem. The Transducer may provide a translation from tags
in foreign languages into english tags used by the DTDs, and we determine if
each document is ε-Source-consistent to the setting defined by the Transducer
and a DTD.

Property Testing is a framework for approximate decision problems, which
considers classes of finite structures with a distance between structures. Given a
parameter 0 ≤ ε ≤ 1, an ε-tester [15,11] for a property P decides if a structure
satisfies the property P or if it is ε-far from satisfying the property P . A property
is testable if for all ε, there exists an ε-tester whose time complexity is indepen-
dent of the size of the structure and only depends on ε. When the structure is
ε-close to the property, a corrector finds in linear time a structure which satisfies
the property and which is ε-close to the initial structure. Although we use an
approximate version of data-exchange, we may provide an exact target structure
(the Target-search problem) in linear time, when the source is ε-consistent.

The main results of the paper use the Edit Distance with Moves on words
and trees, and a transducer model to link source and target instances. Under
these hypotheses, we show that many approximate data exchange problems can
be efficiently solved.

– ε-Source-consistency on words and trees, i.e. the problem to decide if a given
source instance I is ε-close to a source I ′ such that its image by the trans-
ducer is ε-close to the target schema, has a tester, i.e. can be solved by
looking at a constant fraction of the input I.

– ε-Target composition on words and trees can be solved in linear time, for ε-
composable settings, i.e. when the target schema of the first setting is closed
to the source schema of the second setting.

These results are based on the testers and correctors for words (resp. trees)
introduced in [12] for regular words (resp. regular trees) and depend on this
specific Edit Distance with Moves. We also use the embedding of words and trees
into statistical vectors introduced in [9] which yields natural testers to decide
Equality, Membership of a regular language and a polynomial time algorithm
to decide if two non-deterministic automata are ε-equivalent. A corrector for
XML along this theory presented in [4], is also used for ε-Target search and
ε-composition.

Although the main motivation is on trees, we first study these problems on
words, as unranked trees are coded as binary trees with the Rabin encoding,
and then coded as data words. The statistical representation of a tree is the
statistical embedding of its encoded data word.

In section 2, we review the basic data exchange models, and define approx-
imate data exchange problems. We study some of these problems on words in
section 3, and on trees in section 4, in the special case when the data exchange
setting uses transducers.
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2 Preliminaries

2.1 Data Exchange

Let K be a class of finite structures, KS,KT ⊆ K two subclasses, and a binary
relations T between structures I ∈ KS and J ∈ KT . A pair of structures (I, J)
satisfies a data exchange setting Δ = (KS, T ,KT) if I ∈ KS, J ∈ KT and
(I, J) ∈ T . The motivation is to view a source instance I as a finite model of a
schema KS and study which possible target instances J can be found such that
they are models of a target schema KT and satisfy a relation T between the two
schemas. Such possible target instances are called solution for I with respect to
the data exchange setting and are written SolΔ(I).

Fagin and al. [7] studied the relational case and defined several decision prob-
lems, given a data exchange setting Δ = (KS, T ,KT) where KS is a source
schema, KT the target schema and T is specified by formulae Ψ called tuple-
dependencies. Arenas and Libkin [3] studied the case of trees when the schemas
are regular tree languages and T is specified by source-to-target dependencies.
In both cases the relation T is defined as the set of pairs (I, J) such that
(I, J) |= ∧Ψ∈T Ψ .

Given a finite alphabet Σ and a finite set A of attributes, we consider a class
KΣ,A of (Σ, A) labeled tree structures I which can be ordered or unordered.
They have two domains: D is the set of nodes, and Str the set of attribute
values.
– On unordered trees, I = (D, Str, Child, r, L, λ)}
– On ordered trees, I = (D, Str, Firstchild, Nextsibling, r, L, λ)}

where r is the root of the tree, L : D → Σ defines the node label, and λ :
D × A → Str is a partial function which defines the attributes values of a node,
when they exist. On unordered trees Child is the edge relation of an unranked
tree, whereas on ordered trees Firstchild defines the first child of a node and
Nextsibling defines the successor along the siblings. Target schemas KΣ,A may
have their value set StrT = Str ∪ V for V ⊆ V ar and V ar is a fixed infinite set
of values distinct from Str, called nulls.

Example 1. Strings, Relations and Trees as KΣ,A classes.

(a) Let Σ = {0, 1}, A = ∅, D = {1, ..., n}, Str = ∅, K1 = {I = (D, Str,Child, r, L, λ)}
where Child in the natural successor over D and L : D → {0, 1}. This class
represents binary words of length n. If A′ = {A1, A2}, Str = {a, c}, we have
binary words with two attributes, and values in Str.
For example 1.0[A1=a].1[A1=c,A2=c].0[A1=a].1.0[A1=a] is a word where certain letters
have attribute values. For example L(2) = 0 and λ(2, A1) = a.

(b) Let Σ = ∅, A = {A1, A2, A3}, D = {1, ..., n}, and Str an arbitrary set of string
values, K2 = {I = (D, Str,Child, r, L, λ)}, such that Child is the edge relation of
an unranked tree of depth 1 whose leaves have attributes A1, A2, A3 and values in
Str. This class represents ternary relations with n − 1 tuples having values in Str.

(c) Let Σ = {0, 1}, D = {d1, ..., dn}, A = ∅,Str = ∅. The class of unranked ordered
trees with n nodes without attributes is given by

K3 = {I = (D, Str, Firstchild, Nextsibling, L, λ)}
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2.2 Transformations

Two main approaches can be used to specify transformations between a source
instance and possible target instances. Let T be a binary relation defined by
some pairs of structures (I, J) where I ∈ KS and J ∈ KT for a target schema
KT. The transformation T can be defined by regular transductions or by logical
formulas linking source and target structures. In the first case, a deterministic
transducer without null transitions associates a unique J , whereas in the second
case there may be infinitely many J .

Transducers. A transduction transforms a source structure I into a target
structure J in the language of the target. It does not change the basic structure
of I but transforms the tags from the source language to tags of the target
language. There is a large literature on tree transducers and our model is close
to the top-down tree transducers of [13], but also handles attributes values.

Let KS be a set of (ΣS , AS) trees and KT be a set of (ΣT , AT ) trees. A
transducer associates in a top-down manner with a node v with label in ΣS

and attribute values along attributes in AS = {A1, ..., Ak}, a local new finite
(ΣT , AT ) subtree and new attribute values for each node of that tree. In partic-
ular, a node v with attribute values A1 = a can generate a child node with label
A1 and data-value a, and conversely. This setting is motivated by the XSLT
language where this feature is standard.

Let HΣT ,AT be the set of finite sequences of finite trees (hedges) with at-
tributes in AT and values in Str ∪ V ar. Let HΣT ,AT [Q] be the set of finite
sequences of finite trees where one leaf of each tree is a distinguished element
labelled by a sequence of states in Q, which is possibly empty.

The transducer is defined by three functions. The function δ defines the local
tree transformation at each node, the function h defines the transformation of
attribute values (into possibly null values) and the partial function μ defines the
positions of the new attribute values in the new finite tree t introduced by δ.

Definition 1. A tree transducer between (ΣS , AS) trees and (ΣT , AT ) trees is
defined by (Q, q0, δ, h, μ) where:

– δ : ΣS × Q → HΣT ,AT [Q]
– h : ΣS × Q × AS → {1} ∪ V ar,
– μ : ΣS × Q × AT × DT → {1, 2, ...k}, where DT is the set of nodes of the

sequence of trees (hedge) defined by δ.

The function h extends to a function h′ : ΣS × Q × Str → Str ∪ V ar as fol-
lows. For label l ∈ LS, state q ∈ Q, if h(l, q, Ai

S) = 1 then h′(l, q, xi) = xi. If
h(l, q, Ai) = V ∈ V ar then h′(l, q, xi) = V . Notice that this model is precisely
what XSLT allows, but some attribute values may be kept in some state, i.e.
when h(l, q, Ai

S) = 1, and assigned Null values in some other states.
A top-down run starts with the root node in state q0 and transforms each

node in a top-down manner. A node v with label l ∈ LS , state q, attributes in
AS and attribute values in Str is replaced by a finite subtree with labels in LT ,
attributes in AT and attribute values in Str ∪ V ar, through the transformation
T (l, q) defined by:
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– δ(l, q) = (t1, t2, ..ts) a set of finite trees with a distinguished leaf element
labelled by a sequence of states. The trees ti are inserted below the node v
as siblings, as defined in [13], where duplications and deletions are allowed.

– Let v a node with attribute values x1, ..., xk ∈ Str. The function h extends
to a function h′ which determines if the value is kept or assigned to a Null
value.

– If μ(l, q, A1
T , w) = i then the value of the first attribute of node w ∈ DT

is the value h′(xi). The function sets the value of the attribute of w as the
image through h′, defined by h of the i − th value of the node v.

Notice the μ is a finite object as it only depends on finite trees and finitely many
attributes. The set Str is not finite as it depends on arbitrary trees but the set
V ar of Null values is finite and determined by the labels and states. At each
node, we apply the transformation T (l, q) for label l and state q and we obtain
a tree T ′ with labels in ΣT , attributes in AT , and attribute values in Str ∪V ar.
In the case of strings, if each δ(a, p) = u[q] where u is a finite word, we obtain
the classical transducer which replaces in state p a letter a with the word u and
goes to state q. The transducer is linear when no duplication is allowed.

Example 2. Linear transduction on strings with attributes. Let ΣS = {0, 1},
AS = {N, M}, D = {1, ..., n}, KS = {I = (D, Str, Child, r, L, λ)} where Child
in the natural successor over D and L : D → {0, 1}, as in example 1 of binary
words. Let ΣT = {a, b, c}, AT = {P}, and the corresponding KT, defined by the
transducer (Q, q, δ, h, μ):

– Q = {q}, δ(0, q) = c.d[q], δ(1, q) = b.d[q], i.e. words with only one successor,
– for all l, q, h(l, q, M) = 1, h(l, q, N) = V1. Hence h′(l, q, a) = a, h′(l, q, c) =

V1 ∈ V ar,
– μ sets the value of the attribute M on the node c of the word c.d with the

value @M of the attribute M .

The image of the word on the label set {0, 1}, with attributes N, M defined by
1.0[N=a].1[N=c,M=c].0[M=c].1.0[N=a] is a word on the label set {a, b, c} with at-
tribute P and attribute values in Str ∪ V ar, i.e. b.d.c[P=a].d.b.d.c[P=V1].b.d.c.d

In practice, the transducer is deterministic and defined by an XSLT program π.

Example 3. Consider the following Source and Target XML structures associated
with an XSLT transducer.

db

workwork
title ="Computers & I."

year="1979"
title ="The Art of C. P."

year="1967"

author authorauthor
name ="Garey" name="Johnson" name="Knuth"T−→

bib

livre

Computers & I. The Art of C. P.Garey Johnson Knuth

livre

titretitreauteur auteur auteur

The transducer takes the db tree as input and produces the bib tree as output.

Logic based transformations. For a source instance I and a target instance
J , a logical specification of source to target dependencies (tgd) is typically given
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by formulae Ψ where a notion of satisfaction for (I, J) |= Ψ is defined. In this
model, TSTD(I) = SolΔ(I) is understood as {J : (I, J) |= Ψi, ∀Ψi ∈ T } A
Data Exchange setting Δ = (KS, T ,KT) is specified by a Source schema KS, a
Target Schema KS, and the relation T .

A Tree pattern formula [3] is a formula ϕS(x, y) → ψT (x, z) defined by a con-
junctive formula ϕS(x, y) in the language of KS with free variables for attribute
values and a conjunctive formula ψT (x, z) in the language of KT with free vari-
ables for attribute values. Define (I, J) |= ϕS(x, y) → ψT (x, z) if a node v in I is
such that I, v |= ϕS(x, y) there exists a node v’ in J such that J, v′ |= ψT (x, z).
Such formulas Ψi are called STDs for Source to Target Dependencies.

Example 4. Some STDs lead to transducers. On a relational setting: R(x, x, y) →
T (x, y). On an XML setting: bd[book(@title = x[author(@name = y)]] →
bib[livre(@auteur = y, @titre = x)]

In this approach, the settings do not compose, if we strictly rely on first-order
formulas [8]. The search for minimal target structures may lead to structures
much smaller then the sources, using optimization techniques, and therefore
which may be far from target structures obtained by transductions.

Main Data Exchange problems. Let Δ be a data exchange setting where
the relation T is arbitrary and I a source instance.

– Source-consistency decides if a source instance I given as input is such that
there is J ∈ T (I) satisfying J ∈ KT.

– Target-search takes a source instance I given as input and produces a target
structure J as output such that (I, J) ∈ T and J ∈ KT.

– Typechecking or Safeness decides if a data exchange Δ given as input is such
that for all I ∈ KS, T (I) ⊆ KT.

– Boolean Query Answering decides if an instance I is such that all J such
that (I, J) ∈ T satisfy a boolean query, i.e. a subclass KQ

T on the target
structures.

The Source-consistency, Target-search become simple (linear time) for determin-
istic transducers, regular words and regular trees, as we only check if T (I) ∈ KT.
The typechecking problem is PSPACE complete on words and NEXPTIME com-
plete on trees, as a function of the size of the regular expression or of the DTD
[16]. For two settings Δ1 = (K1

S, T 1,K1
T) and Δ2 = (K2

S, T 2,K2
T), we wish to

compose the Target-search problems and find a new setting Δ = (KS, T ,KT)
such that SolΔ(I) = { J : ∃ J ′, J ′ ∈ SolΔ1(I) ∧ J ∈ SolΔ2(J ′)}.

2.3 Property Testing and Approximation

Property Testing has been initially defined in [15] and studied for graph prop-
erties in [11]. It has been successfully extended to various classes of finite struc-
tures, such as words where regular languages are proved testable [2,1] for the
Hamming distance, and trees where regular tree languages are proved testable
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[12] for the Edit Distance with Moves. A tester decides if an input structure
satisfies a property or is far from this property by looking at a constant fraction
of the input, independent of the global size of the input.

We say that two unary structures Un, Vm ∈ K such as words and trees, whose
domains are respectively of size n and m, are ε-close if their distance dist(Un, Vm)
is less than ε×max(n, m). They are ε-far if they are not ε-close. The distance of a
structure Un to a class K is dist(Un,K) = MinV ∈K{dist(Un, V )}. In this paper,
we consider this notion of closeness for words and trees since the representation
of their structure is of linear size. For other classes, such as binary structures or
graphs, one may define the closeness relatively to the representation size (e.g.
ε.n2 for graphs) instead of the domain size.

Definition 2. Let ε ≥ 0 be a real. An ε-tester for a class K0 ⊆ K is a random-
ized algorithm A such that:
(1) If U ∈ K0, A always accepts;
(2) If U is ε-far from K0, then Pr[A rejects] ≥ 2/3.

The query complexity is the number of boolean queries to the structure U of
K. The time complexity is the usual time complexity where the complexity of
a query is one and the time complexity of an arithmetic operation is also one.
A class K0 ⊆ K is testable if for every sufficiently small ε > 0, there exists an
ε-tester whose time complexity depends only on ε.

Definition 3. An ε-corrector for a class K0 ⊆ K is a (randomized) algorithm
A which takes as input a structure I which is ε-close to K0 and outputs (with
high probability) a structure I ′ ∈ K0, such that I ′ is ε-close to I.

Let the Edit distance with moves between two strings w and w′, written
dist(w, w′), the minimal number of elementary operations on w to obtain w′,
divided by max{|w|, |w′|}. An elementary operation on a word w is either an in-
sertion, a deletion of a letter, a modification of a letter or of an attribute value,
or a move of a subword of w into another position.

Let the Edit distance with moves between two ordered unranked trees T and
T ′, written dist(T, T ′), the minimal number of elementary operations on T to
obtain T ′, divided by max{|T |, |T ′|}. An elementary operation on a tree T is
either an insertion, a deletion of a node or of an edge, a modification of a letter
(tag) or of an attribute value, or a move of an entire subtree of T into another
position. When an XML file is given by its DOM representation, these operations
take unit costs.

Approximate Schemas. We first consider classes of structures on the same
language L, i.e. with the same alphabet Σ and attibutes A.

Definition 4. Let ε ≥ 0. Let K1,K2 be two classes of structures. We say that
K1 is ε-contained in K2, if all but finitely many words of K1 are ε-close to K2.
K1 is ε-equivalent, written ≡ε, to K2, if both K1 is ε-contained in K2 and K2

is ε-contained in K1.

Example 5. Let K1 = O∗1∗ and K2 = c(ab)∗ca∗ be two regular expressions.
There is a transducer with one state which replaces the letter 0 by ab and the
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letter 1 by a. The transducer T is specified by 0|ab and 1|a. The image of O∗1∗

by T is T (O∗1∗) = (ab)∗a∗, which is ε-close to c(ab)∗ca∗ for any ε. Any word
w ∈ (ab)∗a∗ of length n is at distance 2/n from a word of c(ab)∗ca∗, as two
insertions of c are required.

A Statistical Embedding on Strings and Trees. For a finite alphabet Σ
and a given ε, let k = 1

ε . Let the dist(w, w′) be the Edit distance with moves
and the embedding of a word in a vector of k-statistics, describing the number
of occurrences of all subwords of length k in w. Let w be a word of length n, let
#u be the number of occurrences of u of length k in w and:

ustat(w)[u] def= #u
n−k+1

The vector ustat(w) is of dimension |Σ|k is also the probability distribution that
a uniform random subword of size k of w be a specific u, i.e.

ustat(w)[u] = Pr
j=1,...,n−k+1

[w[j]w[j + 1] . . . w[j + k − 1] = u]

This embedding is a generalized Parikh mapping [14] and is also related to [5],
where the subwords of length k were called shingles. The statistical embedding of
[9] associates a statistics vector ustat(w) of fixed dimension with a string w and
a union of polytopes H in the same space to a regular expression r, such that
the distance between two vectors (for the L1 norm) is approximately dist(w, w′)
and the distance between a vector and a union of polytopes is approximately
dist(w, L(r)). Other embeddings on words [6] and trees [10] depend on the size
of the structures.

Example 6. For a lexicographic enumeration of the length 2 binary words, w =
000111, r1 = 0∗1∗, r2 = (001)∗1∗, k = 2,

ustat(w) =

⎛⎜⎜⎝
2/5
1/5
0

2/5

⎞⎟⎟⎠ .Let s0 =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ , s1 =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ , s2 =

⎛⎜⎜⎝
1/3
1/3
1/3
0

⎞⎟⎟⎠
H1 = Convex − Hull(s0, s1) is the polytope associated with r1 and H2 =
Convex − Hull(s1, s2) the polytope associated with r2.

These techniques yield the simple testers of [9] for:

– Equality tester between two words w and w′ of approximately the same
length. Sample the words with at least N ∈ O( (ln|Σ|)|Σ|2/ε

ε3 ) samples, definêustat(w) and ̂ustat(w′) as the ustat of the samples. Reject if | ̂ustat(w) −̂ustat(w′)|1 ≥ ε.
– Membership tester between a word and a regular expressions r. Computêustat(w) as before and the polytope H associated with r in the same space.

Reject if the geometrical distance from the point ̂ustat(w) to the polytope
H is greater then ε.
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– Equivalence tester between two regular expressions r1 and r2. Associate the
polytopes H1 and H2 in the same space as ustat(w), represented by the nodes
H1,ε and H2,ε on a grid of step ε. If H1,ε �= H2,ε then r1 and r2 are ε far.

The membership tester is polynomial in the size of the regular expression (or
non-deterministic automaton) whereas it was exponential in this parameter in
[12]. In this paper, we use the Membership tester and the Equivalence tester.

Unranked trees can be coded as binary trees with the Rabin encoding, i.e.
ordered trees of degrees at most 2. We define the k-compression of a tree T , as
in figure 1. We remove every node whose subtree has size ≤ k = 1/ε, and encode
the removed subtrees into the labels of their ancestor nodes. The resulting tree
has at most ε.n nodes with two successors, as most of the nodes have only one
successor. Using at most ε.n moves, we end up with a word with labels w(T ) that
encodes T such that ustat(w(T )) can be approximately sampled from samples
on T . The previous results on words are extended to trees trough this encoding.

s

(b) (c)(a)

s

Fig. 1. Binary tree in (a), its k-compressed form in (b) and its word embedding in (c)

Approximate Data Exchange. Consider a distance dist between structures
of a class K. We can consider the ε-approximate version of the classical data
exchange problems. Let Δ be a data exchange setting, I a source instance and
a parameter ε.

– ε-Source-consistency decides if a source instance I given as input is ε-close
to a source I ′ such that there exists J ′ ε-close to KT and (I ′, J ′) ∈ T .

– ε-Target search computes, given a source instance I as input, a target in-
stance J ∈ KT which is ε-close to T (I).

– ε-Typechecking or ε-Safeness decides if a data exchange Δ given as input is
such that for all I ∈ KS, T (I) is ε-close to KT.

– ε-Boolean Query Answering decides if an instance I is ε-close to a source I ′

such that all J ′ such that (I ′, J ′) ∈ T are ε-close to a subclass KQ
T on the

target structures.

We took the most liberal definitions where we allow approximations on the source
instance I and on the solution J . We could restrict these definitions and allow
asymetric approximations. We consider the special case of Transducers, as a first
step, and show that ε-Source-consistency can be decided in O(1), whereas the
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exact version is decided in O(n). We give a condition to compose such data
exchange settings, based on similar approximations: only close schemas can be
composed.

Definition 5. Let ε ≥ 0. Two settings Δ1 = (K1
S, T 1,K1

T) and Δ2 =
(K2

S, T 2,K2
T), are ε-composable is they are ε-safe and if K1

T is ε-close to K2
S.

We will show how to compose settings, using correctors. We will nest the trans-
ducers with the correctors and obtain an ε-composition.

3 Approximate Data Exchange on Strings

In this section a data exchange setting is defined with a deterministic transducer
and we consider the approximate Data Exchange problems when Schemas are
regular.

3.1 ε-Source-Consistency

We present an ε-Tester for ε-Source-consistency, first for the case of a transducer
with one state, and generalize it in a second step.

Example 7. Let Δ1 be defined as in example 3. The setting Δ1 is not consistent
as T 1 does not output the character c. For a given instance such as 0001111,
T 1(I) = ababab.aaaa is at distance 1

5 from the target schema c(ab)∗ca∗. A
corrector for KT will transform ababab.aaaa into c.ababab.c.aaaa in linear time.

Notice that we cannot apply a direct approach where we would test if I is ε-close
to T −1(KT) ∩ Ks, as the distances are not kept by the inverse transformation.
The Tester follows a simple sampling approach. It samples I to obtain a random
subword u and estimate ustat(I). We then look at T (u) and obtain a subword
v of T (I), which we will sample with specific probabilities. As the transducer
produces words of different lengths, we have to adjust the sampling probabilities
to guarantee a uniform distribution on T (I).

Transducer with One State. Let k = 1/ε, α = mina∈Σs |T (a)| > 0, β =
LCMa∈Σs |T (a)|, i.e. the Least Common Multiplier of the lengths T (a).

Tester1(w, k, N) :
1. Repeat until N outputs are generated.
{ Choose i ∈r {1, ..., n} uniformly, let a = w[i] and γ = |T (a)|,

choose b ∈r {0, 1} whith Prob(b = 1) = γ
β ,

If (b=1) { Choose j ∈r {0, ..., γ − 1} uniformly and
output the subword of length k begining at position j in T (a) and
continuing with k letters on the right side }

}.
2. If the geometrical distance between ûstat and H(KT) is greater than ε
then reject else accept.

Let N0 = O(β ln(1/ε) ln(|ΣT |)/(αε3)).
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Lemma 1. For any data exchange setting Δ, ε>0 and N ≥N0, Tester1(w, k, N)
is an ε-tester which decides if a source word w is ε-Source consistent with respect
to Δ.

General Transducer. Let A be a deterministic transducer with m states. We
generalize the previous tester, and sample subwords u of w which yield subwords
of T (w). We do not know however the state q in which the transducer is, on
sample u. We will consider all the possible states Su ⊆ Q but need to make sure
that the possible states of the samples, i.e. Su1 , ...SuN are compatible, i.e. can
be obtained by paths which meet only a set Π of connected components of the
automaton. We will enumerate all possible such Π in the acyclic graph defined
by the connected components, and apply a Tester which tests if w is close to
a word w′ such that a run on w′ starting in some state of Π meets only the
connected components of Π .

A connected component of A is a set S of states such that for each pair (s, s′)
of states of S there is a path from s to s′ in A. Let G be the directed acyclic
graph (DAG) associated with the connected components of A, i.e. a node is a
connected component Ci and there is an edge from Ci to Cj if there is a path
in A from a state s ∈ Ci to a state s′ ∈ Cj

Definition 6. A set Π of connected components is admissible for A if there
exists a word x and a state q in one of the connected components of Π such that
the run from q on x meets exactly the connected components of Π. Such a word
x is called Π-compatible from q.

A word w is ε-source consistent along Π , if there is an ε-close w′ which is Π-
compatible from the initial state q0 such that T (w′) is ε-close to K. Let HΠ be
the polytope associated to the automaton reduced to Π .

Tester2(w, k, N, Π) :
Generate u1...uN words of length k in w.
Estimate ̂ustat(w): if it is ε-far from HΠ , reject.
If it is ε-close to HΠ , associate a set of states Sui with each ui from which ui

is Π-compatible.
Apply Tester1(w, k, N) for each possible states of Sui , as T (ui) is well defined.
Accept if there is choice of states such that Tester1(w, k, N) accepts, else
reject.

Let N0 = O(β ln(1/ε) ln(|ΣT |)/(αε3)).

Lemma 2. For N ≥ N0, ε > 0, Tester2(w, k, N, Π) is an ε-tester which decides
if a source word w is ε-source consistent along Π.

Tester3(w, k, N) :
Generate all Π and apply Tester2(w, k, N, Π).
If there is a Π such that Tester2(w, k, N, Π) accepts, then accept, else reject.
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Theorem 1. If N ≥ β ln(1/ε) ln(|ΣT |)/(αε3), ε > 0, Tester3(w, k, N) is an
ε-tester which decides if a source word w is ε-Source-consistent.

Intrepretation with the Word Embedding. Let ustat(w) be the statistics
vector of dimension |ΣS |k, associated with w. There are two tasks to perform:
find a w′ close to w readable by T and find the image T (w′) close to KT. Let HT

be the target union of polytopes associated with KT by the embedding. Consider
the automaton associated with T where all states accept, when we ignore the
output. Let GT be the union of polytopes associated with the language accepted
by this automaton. Each polytope corresponds to a Π .

All the polytopes of GT which are ε-close to ustat(w) indicate a possible
w′ given by its statistics vector ustat(w′)[u] along a fixed Π . Define the image
ustat(T (w′)) relative to Π as the set of statistics vector ustat[v] of dimension
|ΣT |k which are possible images of w′ by T . This set is defined as the convex-hull
C of the ustat[v] limit vectors such that there exist states s1.....sp in Π such that
for some i T (si, ui) = vj , and ustat[vj ] = ustat(w′)[ui] if |vj | = k. If |vj | > k,then
the weight of ustat(w′)[ui] is uniformly distributed over all subwords v of length
k of vj . The set of i for which there is no si must be of density less than ε. The
Tester is simply: If C is ε-close to HT , then Accept, else Reject.

3.2 ε-Typechecking

The Typechecking (or Safety) problem is hard in general, as it involves the
comparison of schemas, a PSPACE problem for regular schemas on strings, but
an undecidable problem on context-free schemas. In [9], it is shown that ε-
equivalence and ε-containment are PTIME for regular schemas and EXPTIME
for context-free schemas. We then obtain:

Theorem 2. Given ε > 0, a transducer T and regular schemas KS and KT,
there exists an ε-tester which decides ε-safety of (KS, T ,KT), in Polynomial
time.

3.3 ε-Composition

Let Δ1 = (K1
S, T 1,K1

T) and Δ2 = (K2
S, T 2,K2

T) be two settings. Let Δ2◦1 =
(K1

S, T 2◦1,K2
T) such that T 2◦1 = C2

T ◦ T 2 ◦ C2
S ◦ C1

T ◦ T 1 where Ci
X is a corrector

for Ki
X. Recall that a corrector for a regular schema Ki

X is a deterministic linear
time program wich takes a word w ε-close to Ki

X as input and produces a word
w′ ∈ Ki

X which is ε-close to w. An ε-solution of I ∈ K1
S with respect to Δ2◦1 is

an instance J2◦1 ∈ K2
T such that ∃J1

T ∈ K1
T, I2

S ∈ K2
S, ε1, ε2, ε3, ε1 +ε2 +ε3 ≤ ε

such that:

dist(T 1(I), J1
T ) ≤ ε1 ∧ dist(J1

T , I2
S) ≤ ε2 ∧ dist(T 2(I2

S), J2◦1) ≤ ε3

Theorem 3. Let Δ1 and Δ2 be two ε-composable settings. Then J = T2◦1(I) is
an ε-solution for I with respect to Δ2◦1.



56 M. de Rougemont and A. Vieilleribière

Proof. Let J1 = T 1(I). There is a J1
T ∈ K1

T which is ε1-close to J1. There is
a J2

S ∈ K2
S which is ε3-close to J1

T . Let J2 = T 2(J2
S). There is a J2◦1 ∈ K2

T
which is ε2-close to J2. Using the triangular inequality, we conclude that J2◦1 a
ε-Solution for I with respect to Δ2◦1.

Example 8. Let Δ1 be defined as in example 3(a) and let Δ2 = (K2
S, T 2,K2

T)
such that K2

S = a∗d(ab)∗, K2
T = 0+(022)∗3 and T 2 : a|0, b|22, d|3. Let us apply

the transformations:

I = 00011 T 1

−→ ababababaa
C1
T−→ cababababcaa

C2
S−→ aadabababab

T 2

−→ 003022022022
C2
T−→ 000220220223 = J2◦1

(1)

The second corrector C2
S makes one move (aa moves to the end) and two deletions

(c are removed) and C2
T makes one move (“3” moves to the end). Δ1 and Δ2

are ε-composable and therefore this sequence of operations guarantees that the
result is in the target shema and is obtained by few corrections.

4 Approximate Data Exchange on Trees

The basic results on approximate data exchange on words generalize to unranked
ordered trees via a coding of a tree T as binary tree e(T ). Consider the classical
(Rabin) encoding, where each node v of the unranked tree is a node v in the
binary encoding, the left successor of v in the binary tree is its first successor in
the unranked tree, the right successor of v in the binary tree is its first sibling in
the unranked tree. New nodes with labels ⊥ are added to complete the binary
tree when there are no successor or no sibling in the unranked tree. If we remove
the leaves labelled with ⊥, we consider trees with degree at most 2, where nodes
may only have a left or a right successor and call these structures extended
2-ranked trees. The Edit distance with moves on unranked trees is equivalent
to the same distance on these extended 2-ranked trees, on which we apply the
k-compression and obtain a word w(T ).

4.1 ε-Source-Consistency Via the Tree Embedding

Let ustat(T ) be the statistical vector of T defined by the tree embedding, i.e.
the statistics vector of the word w(T ), obtained in the compression described in
section 2.

From the ustat(T ) vector, we have to find a close ustat′(T ) vector whose
image by the transducer has a statistics vector close to the polytope HT of the
target schema KT defined by the embedding. Consider a grid of step ε on each
dimension, and the set Iε of ustat′(T ) points on the grid which are ε-close to
ustat(T ) and to some polytope of HT as in the case of words.

For each of the points of Iε, construct its image C by T with set of con-
nected component Π , determined with one of the polytopes of HT . C is the
convex-hull of the ustat[v] limit vectors in the target space, such that there
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exist states s1.....s|ΣS|k in Π such that: (i) for most i, T (si, ui) = vj , and
ustat[vj ] = ustat(w′)[ui] if |vj | = k. If |vj | > k,then the weight of ustat(w′)[ui] is
uniformly distributed over all subwords v of length k of vj . (ii) the fraction of i
for which there is no such si is of density less than ε, i.e.

∑
i ustat[ui] ≤ ε.

Given a point ustat ∈ Iε the test is: If C is ε-close to HT , then Accept, else
Reject this point. We need the following lemmas:

Lemma 3. If there is a point in Iε such that its C is ε close to HT , there exists
a T ′ ε-close to T such that its image is ε-close to KT.

Lemma 4. If C is ε far to HT for all points of Iε, T is not ε-close to a T ′

whose image is ε-close to KT.

Tree Consistency Tester(T, k) :
Generate all points of Iε.
{For each point Iε and compatible Π , compute C.
If C is close to HT accept,}

Else reject.

Theorem 4. For all ε, k = 1/ε, Tree Consistency Tester(T, k) is an ε-tester for
the ε-Source consistency problem on trees.

4.2 ε-Source-Consistency Via Sampling

The Tester follows an approach, similar to the one presented for strings and
uses the Membership ε-Tester presented in [12]. It samples I to obtain a random
subtree t with a uniform distribution. We look at T (t) and obtain a subtree t′

of T (I). As the transducer produces trees of different sizes, we have to adjust
the sampling probabilities to guarantee the near-uniform distribution of t′. A
random subtree of size k in an unranked tree is defined through the encoding of
an unranked tree as as an extended 2-ranked tree.

Theorem 5. For any data exchange setting Δ, and ε > 0, there is an ε-tester
which decides if a source tree T is ε-Source consistent with respect to Δ.

4.3 ε-Typechecking ε-Composition

The image of a regular by a transducer is regular for linear transducers but not
in general. In this case, we generalize the methods introduced in section 3.

Theorem 6. For any data exchange setting Δ with a linear transducer, and
ε > 0, ε-Safety with respect to Δ can be decided in time exponential in the
representation.

Theorem 7. Let Δ1 and Δ2 be ε-composable settings J = T2◦1(I) is an ε-
Solution for I with respect to Δ2◦1 = (K1

S, T 2◦1,K2
T).
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5 Conclusion

We introduced a framework for approximate data exchange and considered the
ε-Source-consistency, ε-Typechecking and ε-Composition problems in the special
case of deterministic transducers.

We showed that for the Edit distance with Moves, ε-Source-consistency is
testable on words and trees, and that ε-Typechecking is polynomial on words.

We need to generalize this approach to transformations which may generate
an infinite set of solutions, for example with transducers with null transitions
and more generally with Logic-based transformations.
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Abstract. Suppose we are given a set of exact conjunctive views V and
a conjunctive query Q. Suppose we wish to answer Q using V, but the
classical test for the existence of a conjunctive rewriting of Q using V
answers negatively. What can we conclude: (i) there is no way Q can
be answered using V, or (ii) a more powerful rewriting language may
be needed. This has been an open question, with conventional wisdom
favoring (i). Surprisingly, we show that the right answer is actually (ii).
That is, even if V provides enough information to answer Q, it may not
be possible to rewrite Q in terms of V using just conjunctive queries –
in fact, no monotonic language is sufficiently powerful. We also exhibit
several well-behaved classes of conjunctive views and queries for which
conjunctive rewritings remain sufficient. This continues a previous in-
vestigation of rewriting and its connection to semantic determinacy, for
various query and view languages.

1 Introduction

The question of whether a given set V of views on a database can be used
to answer another query Q arises in many different contexts. For instance, it
is a central issue in data integration, semantic caching, security and privacy.
The question can be formulated at several levels. The most general definition is
information theoretic: V determines Q (which we denote V�Q) iff V(D1) =
V(D2) → Q(D1) = Q(D2), for all database instances D1 and D2. Intuitively,
determinacy says that V provides enough information to uniquely determine the
answer to Q. However, it does not say that this can be done effectively, or using
a particular query language. The next formulation is language specific: a query
Q can be rewritten in terms of V using a rewriting language R iff there exists
some query R ∈ R such that Q(D) = R(V(D)) for all databases D.

What is the relationship between determinacy and rewriting? Suppose R is
a rewriting language. Clearly, if Q can be rewritten in terms of V using some
query R ∈ R, then V�Q. The converse is generally not true. Given a view
language V and query language Q, if R can be used to rewrite a query Q in Q
in terms of a set of views V in V whenever V�Q, we say that R is complete for
V-to-Q rewritings.
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Query rewriting using views has been investigated in the context of data inte-
gration for some query languages, primarily conjunctive queries (CQs). However,
the connection between rewriting and the semantic notion of determinacy has re-
ceived little attention. For example, a classical algorithm allows to test whether
a CQ query has a CQ rewriting using a set of exact CQ views. Suppose the
algorithm says there is no such rewriting. Does this mean that the view does not
determine the query, or could it be that CQs are just not powerful enough to
rewrite Q in terms of V ? If so, what is the language needed for the rewriting?

In [14], a subset of the authors undertook a systematic investigation of these
issues. They considered view languages V and query languages Q ranging from
first-order logic (FO) to CQ and studied two main questions:

(i) is it decidable whether V�Q for V in V and Q in Q?
(ii) is Q complete for V-to-Q rewritings? If not, how must Q be extended in

order to express such rewritings?

As usual, all definitions and results come in two flavors: in the unrestricted case,
databases can be finite or infinite. In the finite case, databases are assumed to
be finite. The results of [14] concern languages ranging from FO to CQ, in both
the unrestricted and finite cases. However, the main questions remained open
for CQ, the simplest and most common language for defining views and queries.
In the present paper we report some progress on this front. First, we settle in
the negative the question of whether CQ is complete for CQ-to-CQ rewriting. In
fact, no monotonic language can be complete for CQ-to-CQ rewriting. We then
provide several classes of CQ views and queries for which CQ remains complete
for rewriting, and for which determinacy is decidable. One such class consists of
monadic CQ views and arbitrary CQ queries. Beyond monadic views, CQ can
only remain complete for very limited classes of views. Indeed, we show that
non-monotonic rewrite languages are required even for very simple CQ views
whose patterns are trees, and that differ from simple paths by a single edge. We
show that CQ remains complete for binary views consisting of a simple path.

Related work. Answering queries using views arises in numerous contexts
including data integration [15], query optimization and semantic caching [8],
data warehousing, support of physical data independence by describing storage
schemas as views [9], etc. The problem comes in several flavors, depending on
assumptions on the views and their use. Mainly, the different settings vary along
these dimensions:

(i) assumptions on the views: these may be exact (i.e. contain precisely the set
of tuples in their definitions), or just sound (they provide only a subset of
the tuples in the answer).

(ii) how the views are used: query rewriting requires reformulating the query in
terms of the views, using some query language. One may require an equivalent
rewriting, or just a maximally contained one. Another use of views is called
query answering. This consists of finding all certain answers to a query given
an instance of the view [1].
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In our investigation, we focus on exact view definitions, and equivalent query
rewritings, with the accompanying information-theoretic notion of determinacy.
Results on equivalent query rewriting using exact views have focused primarily
on CQs and UCQs (unions of CQs). It is shown in [12] that it is NP-complete
whether a given (U)CQ query has an equivalent (U)CQ rewriting in terms of
given (U)CQ views. Several polynomial-time special cases are identified for CQs
in [7]. Answering queries using views in the presence of binding patterns is con-
sidered in [13]. Views and queries defined by CQs with arithmetic comparisons
over dense orders are considered in [3], where it is shown that the existence of
an equivalent rewriting using Datalog with comparisons is decidable.

The relation of rewriting to the information-theoretic notion of determinacy
has received little attention. In [10,11], Grumbach and Tininini consider the prob-
lem of computing an aggregate function using a given set of aggregate functions
including count, average, sum, product, maximum. In particular, [11] introduces
the notion of subsumption of a query by a view, which is identical to our notion
of determinacy. Using this, they define completeness of a rewriting algorithm,
and produce such an algorithm for simple aggregate functions on a single rela-
tion. Despite the similarity in flavor, none of the results transfer to the setting
we consider.

In [5], the authors consider the notion of lossless view with respect to a query,
in the context of regular path queries on semi-structured data. Losslessness is
considered under the exact view assumption and under the sound view assump-
tion. In the first case, losslessness is equivalent to determinacy and it remains
open whether losslessness is decidable for regular path views and queries. In the
second case, losslessness is shown to be decidable using automata-theoretic tech-
niques. Again, these results have no bearing upon ours because of the differences
in the settings and because we consider exact views.

Bancilhon and Spyratos [4] defined the notion of determinacy in the context of
their investigation of view updates. In particular, they defined the notion of view
complement. The complement of a view is another view so that together they
uniquely determine the underlying database. Thus, a view and its complement
determine the identity query on the database.

This paper is a direct follow-up of [14]. We briefly summarize the results
of [14] for some key combinations of query and view languages. In the unre-
stricted case, FO turns out to be complete for FO-to-FO rewritings, as a conse-
quence of Craig’s Interpolation theorem [6]. Unfortunately this does not extend
to the finite case: FO is no longer complete for FO-to-FO rewritings. In fact,
any language complete for FO-to-FO rewritings must express all computable
queries.

For views expressed in weaker languages, less powerful rewriting languages are
needed. If views are expressed in ∃FO (existential FO), FO is still not complete
for ∃FO-to-FO rewritings. However, both ∃SO and ∀SO (existential and universal
second-order logic formulas) are complete for such rewritings. In fact ∃SO ∩ ∀SO
is a lower bound, even if views are restricted to UCQs.
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Consider UCQ views and queries. Similarly (but for different reasons), UCQ is
not complete for UCQ-to-UCQ rewritings, nor are much more powerful languages
such as Datalog �=. This also turns out to hold for CQ �=-to-CQ rewritings.

The results on determinacy are mostly negative: it is shown that determinacy
is undecidable even for UCQ views and queries. The question is left open for
CQs (although completeness of CQ and, as a corollary, decidability of deter-
minacy, are erroneously claimed for CQs in the unrestricted case, as discussed
below).

Organization. After recalling some basic concepts and notation in Section 2,
we show in Section 3 that CQs are not complete for CQ-to-CQ rewriting. For
the unrestricted case, we exhibit an effective FO rewriting of Q in terms of V,
whenever V determines Q. For the finite case, the upper bound of ∃SO ∩ ∀SO
shown in [14] remains the best available. In Section 4 we consider special cases of
CQs for which determinacy is decidable and CQ remains complete as a rewriting
language.

2 Basic Concepts and Notation

We begin with some basic definitions and notation. A database schema σ is a
finite set of relation symbols with associated non-negative arities. A relation with
arity zero is referred to as a proposition. A database instance D over σ associates
a relation D(R) of appropriate arity with values from some fixed infinite domain
dom to each relation symbol R in σ (true/false for propositions). The domain
of an instance D consists of the set of elements in dom occurring in D and is
denoted dom(D). The set of all instances over σ is denoted by I(σ). By default,
all instances are assumed to be finite unless otherwise specified. Queries are
defined as usual, as computable mappings from instances of an input schema to
instances of an output schema that are generic, i.e. commute with isomorphisms
of dom (e.g., see [2]). We assume familiarity with the query languages first-order
logic (FO) and conjunctive queries (CQ).

Let σ and σV be database schemas. A view V from I(σ) to I(σV) is a set
consisting of one query QV : I(σ) → I(V ) for each V ∈ σV. We refer to σ and
σV as the input and output schemas of V, respectively.

Consider a query Q over schema σ and a view V with input schema σ and
output schema σV. We say that V determines Q, denoted V�Q, iff for all
D1, D2 ∈ I(σ), if V(D1) = V(D2) then Q(D1) = Q(D2). Suppose V�Q and
let R be a query over I(σV). We say that Q can be rewritten in terms of V using
R iff for each D ∈ I(σ), Q(D) = R(V(D)). In other words, Q = R ◦V. This
is denoted by Q ⇒V R. Note that several R’s may satisfy this property, since
such R’s may behave differently on instances in I(σV) that are not in the image
of V.

Let Q be a query language and V a view language. A query language R is
complete for Q-to-V rewritings iff for every Q ∈ Q and V ∈ V for which V�Q,
there exists R ∈ R such that Q⇒V R.
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In the unrestricted case, where database instances may be infinite, we will
denote by V

∞� Q and by Q ∞⇒V R the fact that V determines Q and that R
is a rewriting of Q using V. Note that

∞� implies � and ∞⇒ implies ⇒ but that
the converse does not generally hold [14].

3 CQ Is Not Complete for CQ-to-CQ Rewriting

In this section, we show that CQ is not complete for CQ-to-CQ rewriting. In
fact, no monotonic language can be complete for CQ-to-CQ rewriting. We exhibit
effective FO rewritings of CQ queries in terms of CQ views, whenever the views
determine the query in the unrestricted case.

Before stating the main result of the section, we recall a test for checking
whether a CQ query has a CQ rewriting in terms of a given set of CQ views.
The test is based on the chase.

Let σ be a database schema and Q(x̄) a CQ over σ with free variables x̄. The
frozen body of Q, denoted [Q], is the instance over σ such that (x1, . . . , xk) ∈ R
iff R(x1, . . . , xk) is an atom in Q. For a set V of CQs, [V] is the union of the
[Q]’s for all Q ∈ V. For a mapping α from variables to variables and constants,
we denote by α([Q]) the instance obtained by applying α to all variables in [Q].

Recall that a tuple c̄ is in Q(D) iff there exists a homomorphism hc̄ from [Q]
to D such that hc̄(x̄) = c̄. In this case we say that hc̄ witnesses c̄ ∈ Q(D), or
that c̄ ∈ Q(D) via hc̄.

Let V be a CQ view from I(σ) to I(σV). Let S be a database instance
over I(σV) and C a set of elements. We define the V-inverse of S relative to a
domain C, denoted V−1

C (S), as the instance D over σ defined as follows. Let V
be a relation in σV, with corresponding query QV (x̄). For every tuple c̄ belonging
to V in S, we include in D the tuples of αc̄([QV ]) where αc̄(x̄) = c̄ and αc̄ maps
every variable of [QV ] not in x̄ to some new distinct value not in dom(S) ∪ C.
Thus, V−1

C (S) is obtained as a chase of S in which all values introduced as
witnesses are outside dom(S) and C. To simplify, we usually assume that C
consists of the entire domain of the instance when V−1 is applied, and omit
specifying it explicitly. Thus, all witnesses introduced by an application of V−1

are new elements.
The following key facts are observed in [9] and [14]:

Proposition 1. Let Q(x̄) be a CQ and S = V([Q]). Let QV(x̄) be the CQ over
σV for which [QV] = S. We have the following:

(i) QV ◦V is equivalent to the CQ whose frozen body is V−1(S);
(ii) Q ⊆ QV ◦V;
(iii) If x̄ ∈ Q(V−1(S)) then Q = QV ◦V. In particular, V�Q.
(iv) If Q has a CQ rewriting in terms of V, then QV is such a rewriting.

Note that Proposition 1 applies both to the finite and unrestricted cases. We
can now show the following.
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Theorem 1. CQ is not complete for CQ-to-CQ rewriting.

Proof. We exhibit a set of CQ views V and a CQ Q such that V�Q but x̄ �∈
Q(V−1(S)), where S = V([Q]). By Proposition 1, this shows that Q has no CQ
rewriting in terms of V.

Let the database schema consist of a single binary relation R. Consider the
set V consisting of the following three views (with corresponding graphical rep-
resentations):

V1(x, y) = ∃α∃β[R(α, x) ∧R(α, β) ∧R(β, y)] x ← α→ β → y
V2(x, y) = ∃α[R(x, α) ∧R(α, y)] x → α→ y
V3(x, y) = ∃α∃β[R(x, α) ∧R(α, β) ∧R(β, y)] x → α→ β → y

Let Q(x, y) = ∃a∃b∃c[R(a, x) ∧R(a, b) ∧R(b, c) ∧R(c, y)].
We first show that V�Q. To do so, we prove that the formula

ϕ(x, y) : ∃d[V1(x, d) ∧ ∀e(V2(e, d)→ V3(e, y)]

is a rewriting of Q using V. In other words, for each database D over σ and
u, v ∈ dom(D), 〈u, v〉 ∈ Q(D) iff ϕ(u, v) holds on the instance V (D).

Suppose 〈u, v〉 ∈ Q(D) via a homomorphism h. Note that we also have 〈x, c〉 ∈
V1([Q]), via a homomorphism h′. It follows that h ◦ h′ is a homomorphism from
[V1] to D mapping 〈x, c〉 to 〈u, h(c)〉. We let d = h(c) and from the above we
have 〈u, d〉 ∈ V1(D). Now because there is an edge 〈c, y〉 in [Q] we have an edge
〈h(c), v〉 in D. Therefore for every e such that 〈e, d〉 ∈ V2(D), 〈e, v〉 ∈ V3(D).
Thus, ϕ(u, v) holds on V (D). Conversely, suppose ϕ(u, v) holds on V (D). Then
there exists d such that 〈u, d〉 ∈ V1(D), so by definition of V1 there exist α, β
such that R(α, u) ∧ R(α, β) ∧ R(β, d) holds in D. But then 〈α, d〉 ∈ V2(D) so
by definition of ϕ, 〈α, v〉 ∈ V3(D). It follows that there exist b′, c′ such that
R(α, b′)∧R(b′, c′)∧R(c′, v) holds in D. This together with the fact that R(α, u)
holds in D, implies that 〈u, v〉 ∈ Q(D). Thus, ϕ(x, y) is a rewriting of Q using
V, so V�Q.

In view of Proposition 1, it remains to show that 〈x, y〉 �∈ Q(V−1(S)), where
S = V([Q]). Clearly, S = V([Q]) is the instance:

V1

x c
b c
c y

V2

a c
b y

V3

a y

and V−1(S) is depicted in Figure 1.
It is easily checked that 〈x, y〉 does not belong to Q applied to the above

instance. Thus, Q has no CQ rewriting in terms of V. �

Remark 1. Note that Theorem 1 holds in the finite as well as the unrestricted
case. This shows that Theorem 3.3 in [14], claiming that CQ is complete for CQ-
to-CQ rewriting in the unrestricted case, is erroneous. Also, Theorem 3.7, claim-
ing decidability of determinacy in the unrestricted case as a corollary, remains
unproven. The source of the problem is Proposition 3.6, which is unfortunately
false (the views and queries used in the above proof are a counterexample).
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a β1 γ1 y

β2 γ3 γ4

β3

c β5 α5 b

β6

α6 x

Fig. 1. The graph of V−1(S) (elements in dom(S) are in boldface)

As a consequence of the proof of Theorem 1 we have:

Corollary 1. No monotonic language is complete for CQ-to-CQ rewriting.

Proof. Consider the set of CQ views V and the query Q used in the proof of
Theorem 1. It was shown that V�Q. Consider the database instances D1 = [Q]
and D2 = R where R is the relation depicted in figure 1. By construction,
V(D1) ⊂ V(D2). However, 〈x, y〉 ∈ Q(D1) but 〈x, y〉 /∈ Q(D2), so Q(D1) �⊆
Q(D2). Thus the mapping QV is non-monotonic. �

FO rewriting in the unrestricted case. For the set of views V and query Q
above, we showed that Q has a simple FO rewriting in terms of V. We next
exhibit general FO rewritings of CQ queries in terms of CQ views, when these
determine the query in the unrestricted case. First, we recall a characterization
of determinacy in the unrestricted case, based on the chase. Let V be a set
of CQ views and Q(x̄) a CQ over the same database schema σ. We construct
two infinite instances D∞ and D′

∞ such that V(D∞) = V(D′
∞) as follows.

We first define inductively a sequence of instances {Dk, Sk, Vk, V ′
k, S′

k, D′
k}k≥0,

constructed by a chase procedure. Specifically, Dk, D′
k are instances over the

database schema σ, and Sk, Vk, V ′
k, S′

k are instances over the view schema σV.
We will define D∞ =

⋃
k Dk and D′

∞ =
⋃

k D′
k. For the basis, D0 = [Q], S0 =

V0 = V([Q]), S′
0 = V ′

0 = ∅, and D′
0 = V−1(S0). Inductively, V ′

k+1 = V(D′
k),

S′
k+1 = V ′

k+1 − Vk, Dk+1 = Dk ∪ V−1(S′
k+1), Vk+1 = V(Dk+1), Sk+1 =

Vk+1 − V ′
k+1, and D′

k+1 = D′
k ∪ V−1(Sk+1) (recall that new witnesses are

introduced at every application of V−1).
Referring to the proof of Theorem 1, note that the instance depicted in Fig-

ure 1 coincides with D′
0.

The following properties are easily checked.

Proposition 2. Let D∞ and D′
∞ be constructed as above. The following hold:

1. V(D∞) = V(D′
∞).

2. There exist homomorphisms from D∞ into [Q] and from D′
∞ into [Q] that

are the identity on dom([Q]).
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3. For every pair of database instances I, I ′ such that V(I) = V(I ′) and
ā ∈ Q(I), there exists a homomorphism from D′

∞ into I ′ mapping the free
variables x̄ of Q to ā.

As a consequence of the above we have the following.

Proposition 3. Let V be a set of CQ views and Q(x̄) a CQ over the same
database schema, where x̄ are the free variables of Q. Then V

∞� Q iff x̄ ∈
Q(D′

∞).

Proof. Suppose V
∞� Q. By (1) of Proposition 2, V(D∞) = V(D′

∞). It follows
that Q(D∞) = Q(D′

∞). But [Q] = D0 ⊂ D∞, so x̄ ∈ Q(D∞). It follows that x̄ ∈
Q(D′

∞). Conversely, suppose that x̄ ∈ Q(D′
∞). Let I, I ′ be database instances

such that V(I) = V(I ′). We have to show that Q(I) = Q(I ′). By symmetry, it
is enough to show that Q(I) ⊆ Q(J). Let ā ∈ Q(I). By (3) of Proposition 2,
there exists a homomorphism from D′

∞ into I ′ mapping x̄ to ā. It follows by (2)
of Proposition 2 that there is a homomorphism from Q into I ′ mapping x̄ to ā,
so ā ∈ Q(I ′). �

We are now ready to show that FO is complete for CQ-to-CQ rewriting in the un-
restricted case. Let V be a set of CQ views and Q(x̄) be a CQ with free variables
x̄, both over database schema σ. Recall the sequence {Dk,Sk,Vk,V ′

k,S′
k,D′

k}k≥0
defined above for each V and Q. For each finite instance S over σV, let φS be
the conjunction of the literals R(t) such that R ∈ σV and t ∈ S(R). Let k > 0
be fixed. We define a sequence of formulas {ϕk

i }k
i=0 by induction on i, backward

from k. First, let
ϕk

k = ∃ᾱkφSk
,

where ᾱk are the elements in dom(Sk)− dom(V ′
k).

For 0 ≤ i < k let

ϕk
i = ∃ᾱi[φSi ∧ ∀ᾱ′

i+1(φS′
i+1

→ ϕk
i+1)]

where ᾱi are the elements in dom(Si)− dom(V ′
i ), and ᾱ′

i+1 are the elements in
dom(S′

i+1)− dom(Vi).
We can now show the following (proof omitted).

Theorem 2. Let V be a set of CQ views and Q be a CQ, both over database
schema σ. If V

∞� Q, then there exists k ≥ 0 such that Q ∞⇒V ϕk
0 .

Remark. In [14] we showed, using Craig’s Interpolation Theorem, that for any
set V of FO views and FO query Q such that V

∞� Q there exists an FO rewrit-
ing of Q using V. However, this result is not constructive, as the interpolation
theorem itself is not constructive. On the other hand, Theorem 2 provides a con-
structive algorithm to obtain the rewriting formula. Indeed, assume that V

∞� Q
and V and Q are CQs. Then we know that there is a k such that x̄ ∈ Q(D′

k).
Therefore, k can be computed by generating the D′

i until x̄ ∈ Q(D′
i). Once we
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have k, the formula ϕk
0 is easy to compute. Note that Theorem 2 works only for

CQ views and queries, while the interpolation argument applies to all FO views
and queries. �

Note that the complexity of the formula ϕk
0 provided by Theorem 2 for rewriting

Q in terms of V when V
∞� Q is intimately related to the minimum k for which

x̄ ∈ Q(D′
k). Indeed, ϕk

0 has exactly k quantifier alternations. It is therefore of
interest to know whether there might be a constant bound on k. In addition
to yielding a simpler rewriting with a fixed number of quantifier alternations,
this would also provide a decision procedure for unrestricted determinacy: just
test that x̄ ∈ Q(D′

k). Recall that it remains open whether determinacy is decid-
able. Unfortunately, there is no constant bound on k. This is shown below by a
generalization of the example used in the proof of Theorem 2.

Example 1. The following shows that for each k > 0 there exists a set of CQ
views V and a CQ query Q(x̄) such that x̄ ∈ Q(D′

k) but x̄ �∈ Q(D′
i) for i < k.

Let Pn(x, y) be the CQ on a binary relation R stating that there is a path of
length n from x to y in R. Consider the set V of views consisting of

V1(x, y) = ∃α[R(α, x) ∧ Pk+1(α, y)],
V2(x, y) = Pk+1(x, y),
V3(x, y) = Pk+2(x, y).

Let Q(x, y) = ∃a[R(a, x) ∧ P2k+1(a, y)].
It can be shown that 〈x, y〉 ∈ Q(D′

k), but 〈x, y〉 �∈ Q(D′
i) for i < k. Note that

the example in the proof of Theorem 1 is a special case of the above with k = 1.

4 Well-Behaved Classes of CQ Views and Queries

We next consider restricted classes of views and queries for which CQ remains
complete for rewriting. As a consequence, determinacy for these classes is
decidable.

4.1 Monadic Views

In this section we consider the special case when the views are monadic. A
monadic conjunctive query (MCQ) is a CQ whose result is unary. We show the
following.

Theorem 3. (i) CQ is complete for MCQ-to-CQ rewriting.
(ii) Determinacy is decidable for MCQ views and CQ queries.

Note that (ii) is an immediate consequence of (i), in view of Proposition 1.
Towards proving (i), we first note that it is enough to consider monadic

queries. Indeed, we show that for MCQ views, determinacy of arbitrary CQ
queries can be reduced to determinacy of MCQ queries.
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Proposition 4. Let V be a set of MCQ views and Q(x1, . . . , xk) a CQ query
with free variables x1, . . . , xk, over the same database schema σ. Let Qi(xi) be
the MCQ with free variable xi, obtained by quantifying existentially in Q all xj

for j �= i.

(i) if V�Q then Q is equivalent to
∧

Qi(xi);
(ii) if Q =

∧
Qi(xi) then V�Q iff V�Qi(xi) for 1 ≤ i ≤ k.

Proof. Consider (i). Suppose V�Q and consider [Q]. We show that for i �= j,
no tuple ti of [Q] containing xi is connected to a tuple tj of [Q] containing xj in
the Gaifman graph of [Q]. This clearly proves (i).

Consider instances A and B over σ defined as follows. Let D consist of k
elements {a1, . . . , ak}. Let A = {R(a, . . . , a) | R ∈ σ, a ∈ D}, and let B contain,
for each R ∈ σ of arity r, the cross-product Dr. Clearly, V(A) = V(B) (all views
return D in both cases), so Q(A) = Q(B). But Q(B) = Dk, so Q(A) = Dk. In
particular, 〈a1, . . . , ak〉 ∈ Q(A). This is only possible if there is no path in the
Gaifman graph of [Q] from a tuple containing xi to one containing xj for i �= j.
Part (ii) is obvious. �

In view of Proposition 4, it is enough to prove that CQ is complete for MCQ-
to-MCQ rewriting. As a warm-up, let us consider first the case when V consists
of a single view V (x), and the database schema is one binary relation. Let Q(x)
be an MCQ, and suppose that V �Q. We show that Q is equivalent to V . Since
QV is a query, Q ⊆ V (Q cannot introduce domain elements not in V ). It
remains to show that V ⊆ Q. If Q(D) �= ∅ it follows by genericity of QV that
V (D) ⊆ Q(D); however, it is conceivable that Q(D) = ∅ but V (D) �= ∅. Let
A = [V ] and B = {(v, v) | v ∈ V ([V ])}. Clearly, V (A) = V (B). It follows that
Q(A) = Q(B). Clearly, x ∈ Q(B), since x ∈ V ([V ]) and (x, x) ∈ B. But then
x ∈ Q(A) = Q([V ]), so there exists a homomorphism from [Q] to [V ] fixing x.
It follows that V ⊆ Q, which completes the proof.

Unfortunately, the above approach for single views does not easily extend to
multiple monadic views. Indeed, suppose we have two views V1, V2. The stum-
bling block in extending the proof is the construction of two instances A and
B such that V1(A) = V1(B) and V2(A) = V2(B), and forcing the existence of a
homomorphism showing that Q can be rewritten using V1, V2. As we shall see,
the multiple views case requires a more involved construction.

Given two instances D and D′ over the same schema, we say that D′ retracts
to D if D ⊆ D′ and there is a homomorphism from D′ to D fixing the domain
of D.

Let V be a set of MCQ views and Q(x) an MCQ query with free variable x,
both over database schema σ, such that V�Q. We wish to show that Q has a
CQ rewriting in terms of V. The idea of the proof is the following. Recall, from
Proposition 1 (iii), that Q has a CQ rewriting in terms of V iff QV is such a
rewriting, where QV is the CQ over σV whose body is V([Q]). This in turn holds
iff there is a homomorphism from [Q] into V−1(V([Q])) fixing x. To show that
this is the case, consider A0 = [Q] and B0 = V−1(V([Q])).

We show the following key lemma.
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Lemma 1. There exist finite instances A and B over σ such that A retracts to
A0, B retracts to B0, and V(A) = V(B).

Note that the lemma suffices to conclude the proof of Part (i) of Theorem 3.
Indeed, V(A) = V(B) implies that Q(A) = Q(B). But x ∈ Q(A) (since A
contains [Q]) so x ∈ Q(B). Since B retracts to B0 and x ∈ dom(B0), this
implies that x ∈ Q(B0) so there is a homomorphism fixing x from [Q] to B0 =
V−1(V([Q])). This establishes (i) of Theorem 3.

Let us fix V = {V1, . . . , Vk} where the Vi are MCQs over database schema
σ. Consider an instance D over the schema σV of the image of V. For each
element a in the domain of D, we denote its type in V(D) as the set τ(D, a) =
{i | a ∈ Vi(D)}. More precisely, a type S of σV is a subset of [k] = {1, . . . , k}.
A type S is realized in D if τ(D, c) = S for some c ∈ dom(D). A type S is
realizable if it is realized in some D. We also denote by #(S, D) the number of
elements c ∈ dom(D) for which τ(D, c) = S. Note that two instances over σV
are isomorphic iff for all types S, the number of elements of type S in the two
instances is the same. Also, if we construct instances A and B over σ such that
V(A) and V(B) are isomorphic and x has the same type in V(A) and V(B), then
there are instances A′ and B′ isomorphic to A and B by isomorphisms preserving
x, such that V(A′) = V(B′). Thus, to establish Lemma 1, it is enough to prove
the following variant.

Lemma 2. There exist finite instances A and B over σ such that A retracts
to A0, B retracts to B0, x has the same type in V(A) and V(B), and for each
type S, the number of elements of type S in V(A) is the same as the number of
elements of type S in V(B).

The proof of the lemma requires some technical development, to which the rest
of the section is dedicated. For conciseness, we introduce the following notation.
Let A and B be structures, with a ∈ dom(A) and b ∈ dom(B). We write A → B
to mean that there is a homomorphism h from A to B, and Aa ◦→ Bb if
furthermore h(a) = b. We also write Aa ←◦→ Bb if Aa ◦→ Bb and Bb ◦→ Aa.

We assume wlog that for all i, Vi is minimized, and that no two Vi are equiva-
lent. We also use the following notation. For each type S, let VS be the minimized
body of the query

∧
i∈S Vi(xS), where xS is a fresh variable. For technical rea-

sons, we enforce that the VS for distinct S’s have disjoint domains. By slight
abuse of notation, we use VS to denote both the query

∧
i∈S Vi(xS) and its

body, as needed.
We construct instances A and B satisfying the requirements of Lemma 2.

Consider first A0 and B0. Recall that, by construction, B0 retracts to A0 and
for all V ∈ V, V (B0) and V (A0) agree on dom(A0). In particular, all elements
in A0, including x, have the same type in V(A0) and V(B0). Note that, if A
retracts to A0 and B retracts to B0, then x also has the same type in V(A) and
V(B).

Observe that we can assume wlog that the body of each view Vi is connected.
Otherwise, let Wi be the MCQ whose body is the connected component of Vi

containing xi. Suppose A retracts to A0 and B retracts to B0. Recall that B0
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retracts to A0. If it is not the case that Vi → A0 then Vi(A) = Vi(B) = ∅,
and for each S such that i ∈ S, #(S, A) = #(S, B) = 0. Thus, Vi can be
eliminated from V in our construction. Otherwise, Vi → A0, so Vi(A) = Wi(A)
and Vi(B) = Wi(B). Thus, Vi can be replaced by Wi. In view of the above, we
henceforth assume that all views in V have connected bodies.

To construct A and B satisfying the requirements of the lemma, we augment
A0 and B0 with special instances that we call bricks. Let Δ be the set of realizable
types S in [k] for which #(S, A0) �= #(S, B0), and let Δ = {S1, . . . , Sr}. For each
i ∈ [r] and ni > 0, let V ni

Si
be the instance constructed from VSi by replacing xSi

with ni + 1 copies (xSi , m) of xSi , 0 ≤ m ≤ ni, connected to the other elements
in VSi in the same way as xSi . Clearly, VSixSi ←◦→ V ni

Si
(xSi , m) for 0 ≤ m ≤ ni.

A brick Z consists of the disjoint union of the V ni

Si
, 1 ≤ i ≤ r for some choice

of the ni. Furthermore, we ensure that dom(Z) is disjoint from dom(A0) and
dom(B0). Let Z0 denote the brick where each ni = 0, i.e. Z0 is isomorphic to
VS1 ∪ . . . ∪ VSr .

Lemma 3. Let Δ = {S1, . . . , Sr} and Z be a brick. Then for each i ∈ [r],
τ(Z, (xSi , m)) = Si, 0 ≤ m ≤ ni. In particular, #(Si, Z) = #(Si, Z0) + ni,
1 ≤ i ≤ r.

Proof. Consider i ∈ [r], and fix m, 0 ≤ m ≤ ni. Clearly, (xSi , m) ∈ VSi(Z), so
Si ⊆ τ(Z, (xSi , m)). Suppose j ∈ τ(Z, (xSi , m)). Then (xSi , m) ∈ Vj(Z). Since
Vj is connected and V ni

Si
is disjoint from the rest of Z, (xSi , m) ∈ Vj(V ni

Si
). As

noted earlier, V ni

Si
(xSi , m) ◦→ VSixSi . Thus, xSi ∈ Vj(VSi), so VSi ⊆ Vj . Since

Si is realizable, this implies that j ∈ Si. Thus, τ(Z, (xSi , m)) = Si. Also, it is
easily seen that for each v ∈ dom(VSi) where v �= xSi , τ(v, Z0) = τ(v, Z). As a
consequence, #(Si, Z) = #(Si, Z0) + ni. �

For each Si ∈ Δ let αi = #(Si, A0) and βi = #(Si, B0). Let ZA be the brick for
which nj = βj , 1 ≤ j ≤ r, and ZB be the brick for which nj = αj , 1 ≤ j ≤ r.
Then the following holds.

Lemma 4. Let Δ = {S1, . . . , Sr}. Let ZA and ZB be the bricks constructed as
above, A = A0 ∪ ZA, and B = B0 ∪ ZB. The following hold:

(i) A retracts to A0 and B retracts to B0;
(ii) #(S, A) = #(S, B) for all realizable types in [k].

Proof. Consider (i). Let i ∈ [r]. Since #(Si, A0) �= #(Si, B0), VSi → A0 or
VSi → B0, so VSi → A0. Since V n1

Si
→ VSi , it follows that V ni

Si
→ A0 for all

i ∈ [r]. It follows that ZA → A0 so A retracts to A0. Similarly, since VSi → A0,
a ∈ VSi(A0) for some a ∈ dom(A0). By construction, a ∈ VSi(B0), so VSi → B0
for all i ∈ [r]. Similarly to the above, ZB → B0 so B retracts to B0.

Next consider (ii). Since A retracts to A0, τ(A, a) = τ(A0, a) for every a ∈
dom(A0). Since A0 and ZA are disjoint and all view bodies are connected,
τ(A, a) = τ(ZA, a) for every a ∈ dom(ZA). Thus, #(S, A) = #(S, A0)+#(S, ZA)
for every type S. Similarly, #(S, B) = #(S, B0)+#(S, ZB) for every type S. Let
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S be a realizable type. Suppose first S �∈ Δ, so #(S, A0) = #(S, B0). It remains
to show that #(S, ZA) = #(S, ZB). By Lemma 3, τ(ZA, (xi, m)) = Si for each
Si ∈ Δ. It follows that {a | a ∈ ZA, τ(ZA, a) = S} = {a | a ∈ Z0, τ(Z0, a) = S}.
Thus, #(S, ZA) = #(S, Z0). Similarly, #(S, ZB) = #(S, Z0). Thus, #(S, ZA) =
#(S, ZB) so #(S, A) = #(S, B).

If Si ∈ Δ, let zi = #(Si, Z0). Recall that αi = #(Si, A0) and βi = #(Si, B0).
By the above, #(Si, A) = #(Si, A0) + #(S, ZA). By Lemma 3, #(Si, ZA) =
#(Si, Z0) + ni = zi + βi, so #(Si, A) = αi + zi + βi. Similarly, #(Si, B) =
#(Si, B0) + #(Si, ZB) = βi + zi + αi. It follows that #(Si, A) = #(Si, B),
proving (ii).

This concludes the proof of Lemma 2 and that of Theorem 3.

4.2 Path Views

We have seen above that CQ is complete for MCQ-to-CQ rewriting. Unfortu-
nately, extending this result beyond monadic views is possible only in a very
limited way. Recall the example used in the proof of Theorem 1. It shows that
even very simple binary views render CQ incomplete. Indeed, the views used
there are trees, and differ from simple paths by just a single edge. In this section
we show that CQ is complete (and therefore determinacy is decidable) in the
case where the database schema is a binary relation R, and V consists of a single
view

Pk(x, y) = ∃x1 . . .∃xk−1R(x, x1) ∧R(x1, x2) ∧ . . . ∧R(xk−1, y)

where k ≥ 2, providing the nodes connected by a path of length k. Note that the
case where the view in a path of length 1 is trivial since then the view provides
the entire database.

We show the following.

Theorem 4. Let Q be a CQ query over R and k ≥ 2.
(i) If Pk�Q then Q has a CQ rewriting in terms of Pk.
(ii) Given a CQ query Q, it is decidable whether Pk�Q.

Proof. In view of (iv) of Proposition 1, the existence of a CQ rewriting is decid-
able, so (ii) follows from (i).

Consider (i). Let Q be a CQ and suppose Pk�Q. We show that there is a
CQ rewriting of Q using Pk. To this end, we construct two finite instances I
and J such that Pk(I) = Pk(J), J consists of several disjoint copies of D′

0, and
x̄ ∈ Q(I). This implies that x̄ ∈ Q(D′

0) and (i) follows from Proposition 1.
The construction of I and J is done using a careful modification of the chase
procedure.

Consider the beginning of the chase sequence as defined in Section 3. Let
D0 = [Q], S0 = V (D0), D′

0 = V −1(S0), V ′
1 = V (D′

0), and S′
1 = V ′

1 − S0.
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Lemma 5. S0 and S′
1 have disjoint domains.

Proof. Suppose that 〈a, b〉 ∈ Pk(D′
0) for some a ∈ dom(S0) (the case when

b ∈ dom(S0) is similar). We show that b cannot be in dom(D′
0)−dom(S0). Since

〈a, b〉 ∈ Pk(D′
0), there is a path of length k from a to b. Note that D′

0 has no
cycles of length less than k. It follows that either a = b or d(a, b) = k. In the
first case we are done. If d(a, b) = k, by construction of D′

0, b can only be in
dom(S0). �

Next, let us construct a special binary relation M as follows. The domain
of M consists of dom(S′

1) and, for each α ∈ dom(S′
1), new distinct elements

xα
1 , . . . , xα

k−1. M has the following edges:

for each α ∈ dom(S′
1), the edges α → xα

1 → . . .→ xα
k−1;

and for each 〈α, β〉 ∈ S′
1, an edge xα

k−1 → β.

The following is easily shown by construction of M .

Lemma 6. Let M be constructed as above. Then Pk(M) consists of k disjoint
copies of S′

1. Specifically, 〈α, β〉 ∈ S′
1 iff 〈α, β〉 ∈ Pk(M) and 〈xα

i , xβ
i 〉 ∈ Pk(M)

for 1 ≤ i ≤ k − 1.

We now use M to construct our desired instances I and J . Let I consist of
k disjoint copies of [Q] together with M , and J consist of k disjoint copies of
D′

0. Then by Lemma 5, respectively Lemma 6, Pk(J) and Pk(I) both consist of
k disjoint copies of S0 and k disjoint copies of S′

1. By appropriately renaming
elements as needed, we obtain Pk(I) = Pk(J). Since Pk�Q, Q(I) = Q(J). But
x̄ ∈ Q(I) since I contains [Q]. It follows that x̄ ∈ Q(J). Since J retracts to D′

0
it follows that x̄ ∈ Q(D′

0) so by Proposition 1, Q has a CQ rewriting in terms
of Pk. This completes the proof of Theorem 4. �

5 Conclusion

Several important questions remain unresolved for conjunctive queries. First, de-
cidability of determinacy remains open in both the finite and unrestricted cases.
In fact, it remains open whether unrestricted and finite determinacy coincide.
Note that if the latter holds, this implies decidability of determinacy. Indeed,
then determinacy would be r.e. (using the chase procedure) and co-r.e. (because
failure of finite determinacy is witnessed by finite instances).

If it turns out that finite and infinite determinacy are distinct for CQs, then
it may be the case that unrestricted determinacy is decidable, while finite de-
terminacy is not. Also, we can obtain FO rewritings whenever V determines
Q in the unrestricted case, while the best complete language in the finite case
remains ∃SO ∩ ∀SO. Since unrestricted determinacy implies finite determinacy,
an algorithm for testing unrestricted determinacy could be used in practice as
a sound but incomplete algorithm for testing finite determinacy: all positive
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answers would imply finite determinacy, but the algorithm could return false
negatives. When the algorithm accepts, we would also have a guaranteed FO
rewriting. Thus, the unrestricted case may turn out to be of practical interest if
finite determinacy is undecidable, or to obtain FO rewritings.

While we exibited some classes of CQ views for which CQ remains complete
as a rewriting language, we do not yet have a complete characterization of such
well-behaved classes. Note that a slight increase in the power of the rewrite
language, such as using UCQ or CQ �= instead of CQ, does not help. Indeed, a
consequence of our results here and in [14] is that there is gap, in the following
sense: if CQ is not sufficient to rewrite Q in terms of V, then a non-monotonic
language is needed for the rewriting.

Acknowledgments. The authors would like to thank Alin Deutsch and Sergey
Melnik for useful discussions related to the material of this paper.
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Abstract. We consider data dissemination in a peer-to-peer network,
where each user wishes to obtain some subset of the available information
objects. In most of the modern algorithms for such data dissemination,
the users periodically obtain samples of peer IDs (possibly with some
summary of their content). They then use the samples for connecting
to other peers and downloading data pieces from them. For a set O
of information objects, we call a sample of peers, containing at least k
possible providers for each object o ∈ O, a k-sample.

In order to balance the load, the k-samples should be fair, in the sense
that for every object, its providers should appear in the sample with equal
probability. Also, since most algorithms send fresh samples frequently,
the size of the k-samples should be as small as possible, to minimize
communication overhead. We describe in this paper two novel techniques
for generating fair and small k-samples in a P2P setting. The first is
based on a particular usage of uniform sampling and has the advantage
that it allows to build on standard P2P uniform sampling tools. The
second is based on non-uniform sampling and requires more particular
care, but is guaranteed to generate the smallest possible fair k-sample.
The two algorithms exploit available dependencies between information
objects to reduce the sample size, and are proved, both theoretically and
experimentally, to be extremely effective.

1 Introduction

We consider in this paper data dissemination in a peer-to-peer network, where
each user wishes to obtain some subset of the available information objects. In
most of the modern algorithms for such data dissemination, the users period-
ically obtain samples of peer IDs, (possibly with some summary of the peers’
content). They then use the samples for connecting to other peers and down-
loading data pieces from them. It is desirable that the peer samples (1) contain
enough providers for each requested object, so that users have a sufficient choice
of data sources, (2) are ‘fair’, so that the requests for objects are spread evenly
over their providers, and (3) are as small as possible, so that the communication
overhead is minimized when samples are sent frequently. The goal of this paper
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is to devise peer-sampling algorithms that achieve the above three goals. Our
algorithms take advantage of “correlations” between data objects to improve
performance. To motivate the study of this problem, let us briefly describe its
practical origin and explain how a good solution to the problem can contribute
to better performance of data dissemination platforms.

Motivation. In a data dissemination scenario, various information objects are to
be disseminated to peers in the network. The original distributors of the objects
are one or more source peers who initially hold the data. The other peers are
interested in obtaining some subset of the available objects. When the number of
peers to which the data is to be disseminated is large, it is practically impossible
to have all peers downloading the data directly from the original sources. Indeed,
most data dissemination platforms are based on peer cooperation, where each
peer provides to other needing peers the objects (or parts thereof) which she
has already acquired [3].1 In such a setting, all peers serve essentially both as
information consumers and information providers - a peer interested in obtaining
a certain object serves also as a provider for it.

In order for a peer to connect with peers that may assist her in obtaining
a certain object, she needs to obtain information about other peers in the sys-
tem holding it. For this end, data dissemination algorithms typically supply the
requesting peer with information about a set of k peers (for some constant k),
chosen randomly from the set of all peers in the system that hold the object [14].
The peer then chooses a subset that is most beneficial to her, e.g. in terms of
bandwidths or available object pieces, and connects to those peers to obtain the
data. New peer samples may be supplied periodically (or upon request) to the
peers to allow them to acquire new, possibly more suitable, data sources. De-
pending on the particular data dissemination algorithm being used, the details
of which object pieces are available at each of the sample peers may be either
encoded as summary information given in the sample or, alternatively, may be
obtained by querying the given peer [18]. To abstract this and ignore the specific
implementation details, we assume the existence of a function objects(n) that,
given a network peer n, tells which (pieces of) objects may be provided by n.

The sampling domain for an object o may consist of those peers that actually
hold (pieces of) of o, or of the peers that declared their wish to obtain that
object. The rationale for the latter is that such peers, being interested in o, are
likely to have already obtained some of its pieces (or will soon manage to). Most
algorithms take the latter approach as it guarantees the sampling domain to be
fairly stable (it is determined once the peers declare their wishes) [5]. This is also
what we assume here. In order not to overload certain peers, the samples are
required to be fair, in the sense that for every object o the peers (potentially)
providing o should appear in the sample with equal probability [8]. Also, since
most algorithms send fresh samples frequently it is desirable that their size be
as small as possible, to minimize communication overhead. Finally, to be able
1 Data objects are typically fragmented into blocks. A peer who shares an object might

not have yet completed its download and hence shares only the blocks downloaded
thus far.
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to guarantee that a certain number of samples can be sent within a fixed time
period, the dissemination algorithms need to know the bound on the samples’
size. To put this in terms of the problem mentioned at the beginning of the
section, one would like the samples sent to a given peer to contain at least k
providers for each of the objects that she requested, be fair, and have the worst-
case bound on their size be as small as possible.

For a set of objects O, we call a fair sample of the network peers, containing
at least k providers for each object o ∈ O, a k-sample (the formal definition is
given in sec. 2). Our goal is to devise sampling algorithms that minimize the
worst-case bound on the k-samples’ size. Before presenting our results, let us
consider a simple example.

Example. Consider a peer-to-peer network consisting of a set N of peers and
holding a set O of distinct information objects. Let n be some network peer that
is interested in obtaining a set of objects O ⊆ O. For simplicity, assume a simple
network architecture where some coordinating peer is informed of the peer’s
request and is in charge of providing her with corresponding k-samples. (In more
general architectures the task may be distributed among several peers). Consider
first a simple method that the coordinator peer can use for generating k-samples
for O: For each o ∈ O, sample (uniformly) k peers among the providers for o (we
will see in the following section standard techniques to perform such sampling).
The k-sample then consists of the union of the sampled sets. Clearly its size
is bounded by k |O |. Interestingly, although rather näıve, the bound obtained
by this simple algorithm is in fact the tightest we could find in the existing
literature since current systems treat the dissemination of distinct information
objects separately (see more on that in Section 5). So the question motivating
the present work is can one do better?

It turns out that the answer is often positive. The key observation is that,
in practice, one can typically detect correlations between object requests, which
can be used to significantly reduce the k-sample size. As a simple example, con-
sider three objects A, B and C. The näıve sampling algorithm described above
yields for them a k-sample of size 3k. Now, assume that the coordinator knows
that every peer interested in obtaining B also wants A (implying that the set
of potential providers of B is included in that of A). If the two sets of providers
happen to be identical then clearly a k-sample of size 2k suffices: the same set of
k peers sampled for A can also be used for B. Even if the B’s are not provided
by all the A-peers but only by say, 75% of them, a k-sample of size 2 1

3k still
suffices: a sample of 1 1

3k A-peers contains on the average k B-peers.

Our results. Based on the above observation, we present in this paper two
classes of algorithms for generating compact k-samples. The first employs uni-
form peer sampling. Its main advantage is that it allows to build on standard
P2P uniform sampling tools e.g.[16,13]. The sampling procedure here amounts
to (1) grouping the requested objects, based on the correlations between their
providers, and (2) uniformly sampling providers for each object group. The crux
is to determine the optimal objects’ grouping, i.e. the one that minimizes the
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resulting samples’ size. We show the problem to be NP-hard but provide a linear
time, constant-factor approximation algorithm for it. Furthermore, we show, ex-
perimentally, that our approximation algorithm yields in practice results much
better than its worse case bound - indeed, the generated k-samples are of size
very close to the minimal possible. We next consider non-uniform sampling. We
first show that for k-samples generated using non-uniform sampling, the size of
the minimal possible k-sample can be determined in linear time. We then propose
a new simple distributed sampling technique that allows to generate such mini-
mal k-samples in a decentralized P2P environment. To illustrate the benefit that
our new sampling techniques can bring to existing data dissemination platforms,
we tested experimentally the performance improvement that can be obtained by
incorporating them in the popular BitTorrent[2], showing significant gain.

The paper is organized as follows. Section 2 introduces the basic formalisms
used throughout the paper. Section 3 studies the generation of compact k-
samples via uniform sampling. Non-uniform sampling is considered in Section 4.
We conclude in Section 5 considering related work. The full proofs of the results
as well as a detailed description of the experiments can be found in the full
version of the paper [17].

2 Preliminaries

We introduce here the basic formalisms used throughout the paper, including
our abstraction of the P2P network as an objects-providers bipartite graph, and
the notions of k-samples and uniform peer sampling.

Objects-Providers graph. As mentioned in the Introduction, peer requests
serve as a good indication for the availability of objects on the given peers. The
rationale is that peers that are interested in a given object are likely to quickly
obtain (at least some pieces of) the object and be able to provide them to other
peers. Consequently we consider from now on each network peer n that requested
a certain object o as a provider of o. Consider a peer-to-peer network consisting
of a set N of peers and holding a set O of distinct information objects. The
availability of the objects in the network peers can be represented as a bipartite
graph consisting of two sets of nodes, one representing the objects and the other
representing peers, with edges connecting each peer node to the nodes of the
objects that it provides. Overloading notation, we will use O for both the objects
and the nodes representing them. Peers that provide the same set of objects are
grouped together and represented in the graph by a single node. We associate
with each such node a weight that reflects the number of peers that it represents
(as a fraction of the overall number of all peers). More formally,

Definition 1. An objects-providers graph g = (O, P, E, w) is a weighted bipar-
tite graph where O and P are two disjoint sets of nodes called the object nodes
and the provider nodes, resp.; E ⊆ O × P is the set of edges of the graph; and
w : P → [0, 1] is a weight function, associating to each provider node p ∈ P
some weight w(p), s.t. Σp∈P w(p) = 1.
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Fig. 1. An objects-providers graph

We will use below o, o1, . . . to denote object nodes as well as the informa-
tion objects that they represent. We use p, p1, . . . to denote provider nodes and
n, n1, . . . to denote the actual network peers. We use v to denote an arbitrary
graph node. Consider the objects-providers graph in Fig. 1, which will serve as
a running example throughout this paper. O here consists of six information
objects o0 . . . o5 which are provided by six types of providers. Here, the peers
represented by the node p2 provide the objects o0, o1 and o2 and form 15% of
the overall set of peers providing objects in O.

For a set of nodes s in the graph g, we denote by N(s) the set of nodes in
g that are neighbors of some node in s. When s is a singleton set consisting of
a single node v, we use N(v) as a shorthand for N({v}). Observe that for any
information object o ∈ O, the nodes in N(o) represent the set of peers that
provide o. Indeed, the sum of the neighbors’ weight,

∑
p∈N(o) w(p), describes

precisely the number of o’s providers (as a fraction of the overall number of the
providers of O). We refer to this sum as the popularity of o (in g). To continue
with our running example, the popularity of o4 is w(p5) + w(p6) = 0.54.

The objects-providers graph for a given network may be constructed in dif-
ferent ways, depending on the particular application setting: for instance by
considering the full set of peers’ requests (e.g. in a centralized setting or when
the number of peers is not too big); by drawing a random sample of the net-
work peers as representatives for the requests distribution (e.g. in a distributed
setting with a large number of peers); using logs and history information (in
environments where peers tend to repeatedly request similar data); using known
dependencies between information objects (when such dependencies are avail-
able); or by some combination of the above.

In the remainder of this paper we assume that we are given an objects-
providers graph, and ignore the particular method used for its construction.
We will return to this topic in Section 3.3, showing that the algorithms that we
propose do not require in practice to actually build the objects-providers graph
but use only a very partial knowledge of its shape, which can be easily obtained
in a distributed manner by simple uniform sampling.

k-samples. Consider a network peer that is interested in obtaining a set of
objects O ⊆ O. A k-sample for O is a fair sample of the network peers containing
at least k providers for each object o ∈ O. More precisely,

Definition 2. A k-sample (for a set O of information objects) is a randomly
generated entity consisting of a subset K ⊆ N of the network peers and
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supporting a function Providers(o) which returns, for each object o ∈ O, a
subset Ko ⊆ K of providers for o, where the following two properties hold:

1. ( sufficient number of providers) For each object o ∈ O, the expected size of
Providers(o) is at least k, i.e. E[|Ko|] ≥ k;

2. ( fairness) For each object o ∈ O, each of o’s providers has an equal probability
of appearing in Providers(o).

Our goal here is to design sampling algorithms that - given as input, an objects-
providers graph g describing the availability of objects in the network peers, a
request for a set of objects O and a number k - generate small k-samples (for O).
When measuring the quality of a sampling algorithm, we look at the maximal
size of K in the samples generated for the given input. We are interested in
devising sampling algorithms where for any g, O, and k, the worst-case bound
on the size of K is minimal.

Uniform sampling. For the generation of k-samples, we naturally need a
method to sample the network peers. We present in the following sections some
particular sampling techniques aimed at minimizing the sampled set’s size. But
before doing so, let us consider some of the standard methods used nowadays
for peer sampling in P2P networks. Peer sampling has received much attention
in recent research on P2P networks and is used in various applications for data
dissemination, gossip-based communications and querying (see e.g. [11,15,9]).
Much of the work has focused on uniform sampling of network peers, proposing
various techniques that vary in their resilience to failures, communication over-
head, etc. [16,13]. Ignoring the particular algorithmic details, a uniform peer
sampling technique can be viewed as a function GetProvidersSample(R, l),
where R is a Boolean predicate on peers and l is the size of the required sam-
ple. GetProvidersSample(R, l) returns l peers, drawn with uniform probability,
from the set of all network peers that satisfy the predicate R. In our context we
are interested in sampling peers that provide a certain set of objects. For a set of
information objects O, RO will denote the predicate that is true for those peers
that provide some object in O. Namely, for a network peer n, RO(n) = True iff
O∩objects(n) �= ∅.

3 Uniform k-Sampling

Given an objects-providers graph g and a set of objects O in g, our goal is to
generate the smallest possible k-samples for O. Namely k-samples where the
maximal size of the set K of peer IDs (in any of the random instances) is mini-
mal. The first sampling method that we present is based on uniform sampling.
It has the advantage that it can employ any of the standard P2P sampling tech-
niques mentioned in the previous section (hence enjoy whatever benefits they
bring, such as resilience to failures, communication efficiency, etc.). To get some
intuition, let us first describe two simple (not necessarily optimal) ways to use
uniform sampling for the generation of a k-sample. Our novel sampling method
is presented next (first intuitively and then formally). In all the examples below
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we assume that we are given the objects-providers graph of Figure 1 and we
want to generate a k-sample for the set of objects O = {o1, o2, o3, o4}.

Method 1: Individual sample for each object. The näıve sampling algo-
rithm, described in the introduction, samples k providers for each object o ∈ O,
by running GetProvidersSample(R{o}, k). The set K of the k-sample then con-
sists of the union of the sampled sets, with the function Providers(o) returning
o’s sample. Clearly the size of the k-sample here is bounded by k|O|. In our run-
ning example, for k = 3 the size is bounded by 3 · 4 = 12.

Implementation wise, the K peers are transmitted in an array, containing
essentially a concatenation of the individual object samples. Providers(o) re-
turns for each object o the corresponding array fragment. It is important to note
that a simplistic implementation of Providers(o) that simply returns all the
peers in K that provide o would be inadequate as it may violate the fairness of
the k-sample. To see this, consider the following simple example. Assume that
the set O contains two objects, ou, an unpopular object provided by a very small
fraction of the peers, and op, a very popular object provided by most peers. Con-
sider a peer n that happens to provide both objects. n has a high probability
of being sampled for ou (hence of appearing in K), a higher probability than
any of the other providers of op. To guarantee the fairness of Providers(op),
it is essential to restrict its answer to those peers sampled (uniformly) for op,
ignoring those other peers in K (like n) which happen to also provide op.

Method 2: One sample for all objects. An alternative method is to run only
one sampling instance, GetProvidersSample(RO, l), drawing a single sample
of size l (for some constant l, to be defined below), from the set of all the
providers of objects in O. The set K here consists of all the peers in this sample,
with the function Providers(o) returning the network peers n ∈ K for which
o ∈ objects(n). The use of uniform sampling guarantees that requirement 2 (fair
sample) holds. To satisfy requirement 1 (at least k providers for each object),
the size l of the sample should be large enough to contain k providers even
for non-popular objects (i.e. objects provided only by few peers). Clearly if the
least popular object o ∈ O is provided by β of the providers of O, to assure an
expectancy of k providers for o, the sample size should be at least l =

⌈
k · 1

β

⌉
.

In our running example, the least popular objects o1 and o2 are each provided
by 0.29 of the providers of O. Consequently, the size of the required sample (hence
also the bound on size of the k-sample) is

⌈
3 · 1

0.29

⌉
= 11, a bit smaller than the

one obtained with the previous näıve construction.
In general this method beats the näıve construction whenever |O| > 1

β , β
being the relative popularity of the least popular object in O. It performs par-
ticularly well when there are no “very unpopular” objects. For instance, in the
extreme case where all objects are provided by all providers, β = 1 and a k-
sample of size k suffices. The näıve construction, on the other hand, is superior
when some objects are provided by only a very small fraction of the peers.



Compact Samples for Data Dissemination 81

Method 3: Object Partitioning. The new method that we propose in this
paper combines the advantages of the two previous ones. It partitions the objects
into several sets s1, . . . , sm. A sample is then drawn for each set si, from the set
of all the providers of objects in si. The size of the sample for si is dictated,
as above, by the popularity of the least popular object in si. The set K of the
k-sample consists of the union of the si samples. Finally, for any object o ∈ si,
the function Providers(o) returns the peers, in si’s sample, which provide o.2

Observe that the previous two methods are in fact special cases of this new
method: In the first näıve sampling we have |O| singleton sets, one per each
object in O; in the second method there is a single set s1 consisting of all the
objects in O. If the least popular object in a set of objects si is provided by βsi

of the providers of si, then a call to GetProvidersSample(Rsi ,
⌈
k · 1

βsi

⌉
) will

draw a sample with an expectancy of at least k providers for each object o ∈ si.
The maximal size of the obtained k-sample is thus

∑
si

⌈
k · 1

βsi

⌉
. The challenge

is to find the optimal partitioning of objects into sets so as to minimize this sum.
Consider again our running example and assume that we partition the objects

in O into two sets, s1 = {o1, o2} and s2 = {o3, o4}. The providers of objects in
s1 (represented in the graph by p1, p2 and p3) form 0.43 of the overall set of
peers. o1 and o2 are each provided by 0.67 of these providers, hence the required
size of s1, for k = 3, is

⌈
3 · 1

0.67

⌉
= 5. Similarly, the providers of objects in

s2 (represented by p3, . . . , p6) form 0.61 of the overall set of peers. o3 and o4
are each provided by 0.76 of these providers, hence the required size of s2 is⌈
3 · 1

0.76

⌉
= 4. Thus, the size of the k-sample here is bounded by 5 + 4 = 9,

smaller than in any of the previous two methods. In this example this is also the
optimal partitioning.

Observe that the reduction in size here, relative to the previous two methods,
is not too big because our running example contains, for simplicity, only very
few information objects. In practice, results on real-life scenarios demonstrate
significant size reduction [17].

3.1 Formal Problem Statement

Consider a partitioning of the objects in O into (not necessarily disjoint) sets
s1, . . . , sm. As explained above, the size of the k-sample generated for such a
partitioning is bounded by

∑
si

⌈
k · 1

βsi

⌉
, where βsi is the fraction of peers,

among the providers of si, providing the least popular object o in si. To make
this more precise we use the following notations.

Given an objects-providers graph g and a set s of information objects in g, the
popularity of the set s (in g), denoted SPop(s), is the fraction of peers, among
all providers, that provide some object in s. Putting this in terms of the graph g,

2 Implementation wise, the sent k-sample is an array containing the concatenation of
the samples drawn for the si sets. Given the partitioning details (the object sets
and their samples’ size), Providers(o) returns for each o ∈ si, the peers n in the si

fragment of the array s.t. o ∈ objects(n).
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SPop(s) is the sum of the weights of the provider nodes in g that are neighbors
to the object nodes in s. Namely, SPop(s) =

∑
p∈N(s) w(p).

Observe that when s contains a single object o, the set’s popularity is pre-
cisely the popularity of o, as defined in Section 2, namely the fraction of peers,
among all providers, that provide o. The relative-popularity of o w.r.t s, denoted
relPop(o, s), is the fraction of peers, among the providers of s, that provide o.
Namely, relPop(o, s) = SPop({o})

SPop(s) .
Going back to the generation of our k-sample, the sample size for a set si

is dictated by the object o ∈ si with the least relative-popularity. Namely, the
sample size for si should be at least

⌈
k · 1

mino∈si
relPop(o,si)

⌉
. Consequently, for

a partitioning S of the objects in O to sets, the overall size of the k-sample is
bounded by

(∗)
∑
si∈S

⌈
k · 1

mino∈sirelPop(o, si)

⌉
=
∑
si∈S

⌈
k · SPop(si)

mino∈siSPop({o})
⌉

The value of (∗) naturally depends on the particular partitioning of objects to
sets. We denote by size
�(S) the value of (∗) for a given partitioning S. For an
objects-providers graph g, a set of objects O in g, and an integer k, we refer to
the problem of finding a partitioning S of the objects in O for which size
�(S) is
minimal as the Object Partitioning Problem (denoted OPP
�). We will call such
a partitioning S an optimal solution (for g, O, and k) and denote the value of
size
�(S) for it by opt
�.

We will also define a variant of this problem, denoted OPP (with no ceiling),
where the objective is to minimize the value of

(∗∗) size(S) =
∑
si∈S

k · SPop(si)
mino∈siSPop({o})

The size of an optimal solution for OPP is denoted by opt. For some purposes,
such as to prove NP-Hardness of OPP
�, we will go through OPP first.

3.2 Observations

We provide next some observations about the possible structure of an optimal
solution. These will be useful later for studying the complexity of the problem
and for proposing algorithms to solve it.

Provider contribution. Consider some objects-providers graph g, a set of
objects O, and a partitioning S of the objects of O into sets. Let si ∈ S be some
objects set and let oi ∈ Si be the least popular object in si. Looking at the
formula (∗) from the previous subsection, it is easy to see that for every object
o ∈ si, each of its providers p (neighbor nodes in the graph g) contributes to
size
�(S) a value k·w(p)

SPop({oi}) (not yet regarding the ceiling we have to take). If
a provider provides objects that belong to different sets, then the provider will
contribute to size
�(S) such a value for each of these sets. We can therefore see
that a provider’s contribution to the value of size
�(S) depends on the number
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of sets that the objects that it provides participate in, and on the popularity of
the least popular object in each of these sets.

Looking at things from the provider’s view point, the partitioning of the ob-
jects into groups can be viewed as labeling each provider with labels that iden-
tify the sets to which the objects that it provides belong. Each label placed on
a provider induces a cost that he has to pay, and all providers who provide a
given object must have at least one label common to all of them (describing the
set(s) that contain the object). Our problem can thus be described as a labeling
problem: we want to find an optimal labeling for the providers, namely one that
minimizes their overall contribution to size
�(S). This alternative description of
the problem will prove useful later on in the various proofs.

“Nice” partitioning. Given an objects-providers graph g and a set of objects
O, a partitioning S for the objects in O is called a nice partitioning if (1) all the
sets s ∈ S are pairwise disjoint and (2) there are no two distinct sets s, s′ in S
whose least popular objects are equally unpopular. Namely for all s, s′ ∈ S,s �=
s′ → mino∈sSPop({o}) �= mino′∈s′SPop({o′}).

The following lemma shows that when searching for an optimal solution for
OPP
� (resp., OPP) it is sufficient to look at nice partitioning.

Lemma 1. For every objects-providers graph g, a set of objects O in g, and an
integer k, there always exists a nice partitioning for the objects in O which is an
optimal solution for OPP
� (resp., for OPP).

Proof. We prove the lemma for OPP
�. The proof for OPP follows exactly the
same lines. Let us look at some optimal solution S for OPP
�. Consider the nice
partitioning S′ obtained from S by removing redundant objects and unifying
sets with equal least object popularity. It is easy to see from formula (∗) that
size
�(S′) ≤ size
�(S). Since S is an optimal solution it must be the case that
size
�(S′) = size
�(S), hence S′ is an optimal solution as well.

The above lemma is interesting since it allows to reduce the search space when
searching for an optimal solution. Specifically, in every nice partitioning the
number of sets is bounded by the number of the distinct popularity values for
objects in O. We will use this extensively in our analysis of the problem.

3.3 Algorithms and Complexity

We will see below that both OPP
� and OPP are NP-Hard and will propose
linear and polynomial approximation algorithms for them. But before we do
that, let us first consider a restricted case that can be solved in polynomial time
and can shed some light on the structure of optimal solutions.

Consider an objects-providers graph g and a set O of information objects
in g, where the objects in O each have one of two possible popularity values.
This is for instance the case in our running example, where objects in O have
popularity 0.29 or 0.54. Indeed, the popularities of {o1, o2, o3, o4} are respectively
{0.29, 0.29, 0.54, 0.54}.
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By Lemma 1 we know that in this case there exists a nice optimal partitioning
for O consisting of (at most) two sets, s1 and s2, such that all the less popular
objects belong to s1 while the more popular objects may be spread between s1
and s2. To find the optimal partitioning we only need to to determine which
popular objects belong to s1 and which to s2. We show next that this can be
determined in PTime. We first consider OPP and then OPP
�.

Theorem 1. OPP can be solved in polynomial time when the information ob-
jects in O each have one of two possible popularity values.

Proof. (sketch) We provide here an intuition for the polynomial algorithm. The
full algorithm and its correctness proof appear in the full version of the paper
[17]. The algorithm works as follows. First, given the objects-providers graph g
and a set of objects O, we construct a new weighted bipartite graph G. For every
provider node p ∈ g that provides some object in O, the graph G contains two
nodes, v1

p and v2
p. The node vi

p, i = 1, 2 will be used to represent the case where
none of the O objects provided by p belongs to the set si (The graph edges and
the weights of the nodes are described later on).

Next, we find a maximum-weight independent set3 W for G (known to be
polynomially solvable for bipartite graphs [12]). Finally, we use W to determine
the partitioning of objects of O into the sets s1, s2: For every provider node p s.t.
v1

p ∈ W , all the objects in O provided by p are placed in s2. For every provider p
s.t. v2

p ∈ W , all the objects in O provided by p are placed in s1. The remaining
objects are placed arbitrarily.

Theorem 2. The same algorithm is an approximation algorithm for OPP
�

that gives a solution whose value is at most opt
� + 1, where opt
� is the size of
an optimal solution.

Proof. Let opt
� be the optimal value of OPP
� for an objects-providers graph
g and a set of objects O in g. Let S be the solution produced by the above
algorithm. Let opt be the optimal value of OPP on the same instance. We have
shown that opt = size(S). We wish to prove that size
�(S) ≤ opt
� + 1. Obvi-
ously, opt ≤ opt
�. On the other hand, size
�(S) < opt + 2, because the only
change in the objective function is the ceiling sign added to each of the two
summands. Therefore, size
�(S) < opt
� + 2. Since both expressions here are
integral, it follows that size
�(S) ≤ opt
� + 1.

It is open whether OPP
� has an exact polynomial solution in the case of two
object popularities. We can show however that as soon as objects have more
than two distinct popularities, both OPP and OPP
� become NP-Hard. The
proof appears in [17].

Theorem 3. OPP
� and OPP are both NP-Hard, even for objects-providers
graphs where the object nodes have only three popularity values and all the weights
of the provider nodes are equal.
3 An independent set is defined as a subset W of the nodes in the graph G such that

no pair of nodes in W is connected by an edge in G.
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Proof. (sketch) We prove that the problems are NP-Hard by reduction from the
problem of minimum unweighted 3-multiway cut (3MC) (also referred to in the
literature as 3-Terminal cut or 3-multiterminal cut), known to be NP-Hard [6].
In the 3MC problem a graph G and three distinguished nodes v1, v2, v3 are given.
The objective is to find a partitioning of the nodes in G into three sets V1, V2, V3
s.t. for i = 1, 2, 3 node vi is in partition Vi, so as to minimize the number of
edges going between different partitions. The full reduction is given in [17].

Clearly an optimal solution can be found in exponential time by enumerating
all possible solutions. As this is too expensive, we propose next two simple algo-
rithms that approximate the optimal solution up to a constant factor.

The PartitionByPopularity algorithm. Our first approximation algorithm
partitions the information objects into sets based on their popularity. It has
several advantages: (1) It is simple and runs in linear time. (2) It does not
require knowing the exact structure of the objects-providers graph but only the
popularity of the objects.4 (3) It is on-line for the objects, namely if a new object
is added then the partitioning of already-existing objects does not change.

To describe the algorithm we use the following notation. For two numbers
c > 1 and x > 0, let IPowerc(x) = c�logc x. That is, IPowerc(x) is the
integral power of c smaller than x and closest to it. Given a constant num-
ber c, the algorithm PartitionByPopularity(c) partitions the objects in
O into sets based on the value of IPowerc(SPop({o})). Formally, we define
si = {o : IPowerc(SPop({o})) = ci}, and the solution S is simply the collection
of all non-empty si’s.

Theorem 4. PartitionByPopularity(c) is a c2

c−1 -approximation algorithm

for OPP for any c>1. Namely, it gives a solution whose value is at most c2

c−1 ·opt,
where opt is the size of an optimal solution.

Corollary 1. (Optimizing on the value of c) PartitionByPopularity(2) is
a 4-approximation algorithm for OPP.

The proof is omitted for space constraints. We have a slightly weaker bound for
OPP
�.

Theorem 5. PartitionByPopularity(c) is a 2c2

c−1 -approximation algo. for
OPP�� for any c > 1.

Corollary 2. (Optimizing on the value of c) PartitionByPopularity(2) is
an 8-approximation algorithm for OPP
�.

We conclude with a remark about the tightness of the approximation factor of
PartitionByPopularity(2). We provide in [17] a particular example of inputs
to OPP for which the algorithm indeed produces a result 4 times the value of

4 This can be easily obtained in a distributed manner by a simple uniform peers
sampling.
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the optimal solution (it is open whether the 8 factor for OPP
� is indeed tight).
Our experiments[17] show however that this algorithm yields in practice results
much better than its worst case bound.

The OrderByPopularity algorithm. Our second approximation algorithm is
of polynomial time complexity. While its worst-case constant factor is the same
as that of PartitionByPopularity, it yields in practice even better results.
The algorithm first sorts the information objects according to their popularity,
and puts them (in sorted order) into an array. To partition the objects it splits
the array into non-overlapping intervals. Each partition contains the objects in
the corresponding interval. To find the optimal splitting it employs standard
dynamic programming. The overall complexity of the dynamic programming
phase here is o(|g| · |O|2): There are o(|O|2) possible intervals (i.e. partitions)
to check, and the contribution of each partition to the overall length of the
k-samples can be computed in time linear in g.

It is easy to see that partitions obtained by Methods 1 and 2 described pre-
viously, as well as by PartitionByPopularity, all belong to the search space
of this algo.: in all these algorithms, each partition, when sorted internally by
object popularity, forms a continuous interval of the overall popularity order of
objects. The k-samples constructed by OrderByPopularity are thus assured
to be at least as compact as those generated by the previous algos.

4 Non-uniform Sampling

The sampling methods described in the previous section build on standard P2P
uniform sampling tools. An alternative approach, based on non-uniform sam-
pling, is considered briefly next. We first show that, given an objects-providers
graph g and a set O of requested objects, the minimal bound on the size of the
k-samples (for O) can be determined in time linear in g. Next we describe a
non-uniform sampling method achieving this bound.

Size. Consider a P2P network with a set N of peers providing some object in
O. Let p be some provider node in the object-providers graph g. We denote by
op the least popular object in O that p provides. Note that for any object o ∈ O,
SPop({o}) · |N | is the absolute number of nodes that provide o (for definition
of SPop see Sec. 3). Define X̄p = k·w(p)

SPop({op}) . Denote l̄ =
∑

p∈g X̄p, and l =
⌈
l̄
⌉
.

We claim that l is the minimal possible bound on the size of the k-sample for
O. A proof to the claim is in [17].

Sampling. To generate a sample of this size, we sample the network peers, non-
uniformly: For every provider node p in the graph g, each of the nodes n that it
represents is selected with probability Xn = k

SPop({op})·|N | . In [17] we describe
a simple distributed P2P algorithm to perform such sampling. The algorithm
is an adjustment of an existing P2P uniform-sampling method (RanSub [16])
to non-uniform sampling. Let K be the set of sampled peers. To complete the
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k-sample’s definition, we define what subset of peers (K0 ⊆ K) is returned by
Providers(o) for every object o ∈ O. To ensure fairness, Providers(o) samples
peers from K as follows: Each peer n ∈ K that provides o is chosen to be in Ko

with probability k
SPop({o})·|N |/Xn

5. We prove in [17] that the sampling is fair
and that E[|Ko|] ≥ k.

5 Related Work and Conclusion

We studied in this paper the problem of peer sampling for the dissemination
of data in a peer-to-peer network. We introduced the notion of k-samples -
fair samples that contain a sufficient number of providers for each requested
object. We then proposed algorithms with varying complexity for the gener-
ation of compact k-samples. To illustrate the benefit that our new sampling
techniques can bring to existing data dissemination platforms, we tested exper-
imentally the performance improvement that can be obtained by incorporating
them in the popular BitTorrent[2] platform, showing significant gain. The ex-
perimental result are reported in[17]. Two questions that remain open are the
existence of an exact polynomial solution for OPP
� in the case of two object
popularities, and the tightness of the 8 factor in the approximation algorithm
for OPP
�.

Peer sampling is used extensively in epidemic/gossip-based methods for dis-
seminating information between network nodes. Such data dissemination is the
basis of a wide range of application, including replicated databases [1], content
distribution [11], failure detection [20] and probabilistic multicast [9]. Those
methods depend on nodes acquiring information about other nodes in the net-
work, or a sample in large networks. Peer sampling is also used in a variety of
P2P systems (e.g. [4]) and for load balancing [7]. The compact samples generated
by our algorithms may help to reduce the communication overhead in such appli-
cations. There has been an extensive previous work on uniform peer sampling in
P2P networks, ranging from dedicated techniques developed for a particular sys-
tem or protocol (e.g. [8]), to general-purpose sampling algorithms (e.g. [16,13]).
All these methods sample each requested object separately, yielding, for a set
O of requested objects, samples of size bounded by k|O|. To our knowledge the
present work is the first attempt to use correlations between object requests
to reduce the sample size. Non-uniform sampling has received relatively little
attention. An algorithm in which a probability for each node to appear in the
sample may be defined, is given for instance in [21]. Our non-uniform k-sampling
method from Section 4 can be built on top of such an algorithm.

We are currently incorporating our k-sampling algorithms in the Information
Dissemination Platform (IDiP) developed in Tel Aviv University. More generally
we believe them to be useful in the general context of publish/subscribe systems
[10,19], where users inherently have heterogeneous needs.

5 This probability is ≤ 1 because k
SPop({o})·|N|/Xn = SPop({op})

SPop({o}) and we assumed that
SPop({op}) ≤ SPop({o}).
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Abstract. We define and study formal privacy guarantees for information inte-
gration systems, where sources are related to a public schema by mappings given
by source-to-target dependencies which express inclusion of unions of conjunc-
tive queries with equality. This generalizes previous privacy work in the global-
as-view publishing scenario and covers local-as-view as well as combinations of
the two.

We concentrate on logical security, where malicious users have the same level
of access as legitimate users: they can issue queries against the global schema
which are answered under “certain answers” semantics and then use unlimited
computational power and external knowledge on the results of the queries to
guess the result of a secret query (“the secret”) on one or more of the sources,
which are not directly accessible. We do not address issues of physical security,
which include how to prevent users from gaining unauthorized access to the data.

We define both absolute guarantees: how safe is the secret? and relative guar-
antees: how much of the secret is additionally disclosed when the mapping is
extended, for example to allow new data sources or new relationships between
an existing data source and the global schema? We provide algorithms for check-
ing whether these guarantees hold and undecidability results for related, stronger
guarantees.

1 Introduction

We define and analyze formal privacy guarantees for information integration systems.
Such guarantees have been recently studied for the case of database publishing where
views of the underlying sources are exposed to users (see Related Work). This cor-
responds to the global-as-view closed-world scenario. Here we extend this study to
include the case of database integration.

We study the case where sources are related to a public schema by mappings given
by source-to-target dependencies which express inclusion of unions of conjunctive que-
ries with equality. Such framework is also known as global-local-as-view (GLAV) and
was introduced in [12] and studied in [4,5,15,11] as a generalization of global-as-view
(GAV) and local-as-view (LAV) integration [22,14,16]. Users may issue queries against
the public schema for which the information integration system returns the certain
answers [22,14,16].
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We consider the case where the attacker is a malicious user who has no further access
to the sources than any other user. All the attacker can do is issue queries against the
integration system and apply arbitrary computational power on the answers to these
queries together with external knowledge to obtain some information (“the secret”)
which the defender wishes to conceal. We do not address such security issues as how to
prevent unauthorized access to the data sources.

The goal of the defender is to determine to what extent the information system is
vulnerable to attacks of this kind. The defender specifies the secret as a query against
one or several data sources. The objective of the attacker is to obtain the answer to or
at least partial information on the answer to the secret on the data sources which the
defender wants to conceal.

Database Publishing versus Data Integration. Prior work on privacy in databases has
not addressed the data integration setting, but has focused on database publishing, in
which materialized views of the underlying source are exposed, thus corresponding to
a global-as-view, closed-world integration scenario [14]. In database publishing, the at-
tacker can access the full extent of any view V by simply issuing the identity query
SELECT * FROM V . Therefore every attack strategy considered in the literature as-
sumes the availability of all view extents. This assumption no longer holds in a data in-
tegration setting, where there is no materialized view instance and queries posed by the
attacker are answered under so-called certain answers semantics [16]. Consequently,
the intuitive attack based on the identity query is in general ineffective.

Example 1. Assume there is one source S in the system over a private schema consist-
ing of the single binary relation PA(patient , ailment), recording what ailment each pa-
tient is treated for. The information integration system exports the public schema which
consists of two binary relations PD(patient , doctor) and DA(doctor , ailment), con-
necting patients to doctors they see and doctors to ailments they treat. The source S is
registered via the single source-to-target constraint φ: ∀p, a PA(p, a)→ ∃d PD(p, d)∧
DA(d, a). This registration is a standard source-to-target embedded dependency [11],
and it is an equivalent way to capture the local-as-view registration [14] using the con-
junctive query view PA(p, a) :− PD(p, d), DA(d, a). The registration basically means
that the private database owner cannot provide doctor information, but states that each
patient is treated by some doctor for the ailment.

Now consider an attack modeled after the classic privacy breach strategy in data-
base publishing. It would start by issuing the queries QPD(p, d) :− PD(p, d) and
QDA(d, a) :− DA(d, a), in an attempt to find the patient-doctor and doctor-ailment
associations in order to subsequently join them and to thus reduce the possible patient-
ailment combinations to guess among [18,8].

However, the certain answers to QPD—which are the tuples in QPD(T ) for ev-
ery target instance T satisfying constraint φ—give precisely the empty set, regard-
less of the extent of source instance S. To see why, notice that the doctor name
is not specified, so for each particular name constant, there is at least one possible
T which does not contain it. A similar argument shows that QDA has no certain answers
either.
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Therefore our first task in studying the defense strategies in data integration is to iden-
tify what queries the attacker should pose to gain the most insight into the secret. For
Example 1 above, it turns out that one well-chosen query suffices.

Example 2. In the setting of Example 1, all the attacker needs to do to reveal the source
completely is to issue the query Qφ(p, a) :− PD(p, d), DA(d, a). Under certain an-
swer semantics, the result is precisely the extent of source table PA. Therefore, the
query Qφ is optimal for the attacker, since after obtaining the extent of PA she may
compute any secret query on PA.

In general however, determining the “optimal” queries to start the attack with is chal-
lenging. It is a priori not even clear that there exists one single set of queries leading
to the highest privacy breach. Even if this were the case, it is not clear that such a set
would be finite; an infinite series of queries (each possibly depending on the answer to
its predecessors) could potentially outperform any finite series of queries.

Contributions. We study privacy in the context of information integration systems,
which introduces substantial new aspects over data publishing. To the best of our knowl-
edge, this is the first such study. Our specific contributions include the following.

(a) We identify optimal attack (and therefore defense) strategies. In particular, we
show that there is a finite set of unions of conjunctive queries which the attacker can
issue that are optimal in the sense that no further information is gained by issuing ad-
ditional queries. The required queries are very different in LAV and GAV integration
scenarios, but our approach unifies the attack strategy extending it to a GLAV setting.

(b) We define absolute and relative privacy guarantees, dependent on the source S0,
and provide corresponding algorithms to check them against the optimal attack strategy.
The absolute guarantees depend only on the current state of the information integration
system, while the relative ones relate the state of the information integration system be-
fore and after a change in the mapping between the data sources and the public schema.
Such a change may arise for example as a result of introducing new data sources, or if a
source owner decides to publish additional proprietary data. The guarantees (formalized
in Section 4) are:

1. The source is not completely exposed (i.e. the attacker cannot infer its exact extent
without resorting to external knowledge).

2. The secret is not completely exposed.
3. The secret has not been further exposed (i.e. nothing new can be learned about it)

by extending the source-target mapping to export further information.
4. The source has not been further exposed by extending the source-target mapping.

Note that Guarantee 1 does not depend on the secret; if the source is completely ex-
posed, the attacker may compute the result of any query whatsoever against it. Further-
more, we identify Guarantee 4 as the natural adaptation to data integration of the notion
of perfect privacy introduced in data publishing [18].

(c) While in general the complexity of our algorithms ranges from NP to ΠP
2 in the

size of the source instance, we identify a practically relevant PTIME case.
(d) We define additional guarantees corresponding to the ones above, but defined in

terms of all possible sources. These guarantee flavors are of significant interest as they
do not require re-checking after each update on the sources. We show however that all
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but one of them are undecidable (we do not know whether the latter is decidable or not).
These results establish the source-dependent guarantees as the best we can hope for in
the trade-off between strength of guarantees and their decidability.

Paper Outline. The remainder of this paper is organized as follows. In Section 2 we
introduce the required notation. In Section 3, we model the general strategy the attacker
follows and in Section 4 we present the guarantees that the defender can provide. In
Section 5 we provide algorithms to check the guarantees and our theoretical results,
which include correctness and complexity of the algorithms. We discuss related work
in Section 6 and conclude in Section 7. The proofs are shown in the extended version
of this paper [19].

2 Preliminaries

Queries. Unless otherwise specified, all our queries are UCQ= queries; that is, unions
of conjunctive queries with equalities (we also allow constants). We only consider safe
queries (i.e. with all head variables appearing in their body). Given a query Q and a
database D, Q(D) is the answer to Q on D.

Constraints. A constraint is a boolean query. We denote sets of constraints with cap-
ital Greek letters and individual constraints with lowercase Greek letters. We consider
constraints of the form ∀x̄(P (x̄) → Q(ȳ)), where {ȳ} ⊆ {x̄}, where {x̄} is the set of
free variables in the premise P , where {ȳ} is the set of free variables in the conclusion
Q, and where P and Q are UCQ= queries. In constraints, we allow Q to be unsafe;
intuitively, the safety of the constraint comes from the safety of P . Such constraints
are similar to and generalize embedded dependencies [1] by allowing disjunctions; we
call them IC(UCQ=) constraints because they express containment of UCQ= queries.
Unless otherwise specified, all our constraints are of this kind. We write D |= Σ if the
database D satisfies the set of constraints Σ.

Information Integration Systems. As in [16], we define an information integration
system to consist of four parts (σS , σT , Σ, S): σS is the source or private schema, σT is
the target or public schema, Σ is a finite set of constraints over the joint schema σS∪σT

specifying how the sources relate to the targets, and S is the source. We assume that σS

and σT are disjoint. We say that T is a possible target of S under Σ if (S, T ) |= Σ.
That is, if the database obtained from putting S and T together satisfies Σ. We define
the certain answers to a query Q over σT under the constraints Σ on source S to be
certQ

Σ(S) :=
⋂

(S,T )|=Σ Q(T ). That is, certQ
Σ(S) is the set of tuples which appear in

Q(T ) for every possible target T of S. This corresponds to what is known as the open
world assumption. We say that Σ is source-to-target if every constraint in Σ contains
only relation symbols from σS in the premise and relation symbols from σT in the
conclusion. All our information systems are given by source-to-target mappings, in the
spirit of the Clio system [11].

GAV, LAV and GLAV Integration. This setting generalizes two very important par-
ticular cases occurring frequently in practice and in the literature [14,16]. In Global-
As-View (GAV) integration systems, the conclusion of each constraint in Σ is a single
relational atom, with all variables appearing in the premise (see Example 4 below). In
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Local-As-View (LAV) integration, the premise is a single relational atom, with all vari-
ables appearing in the conclusion (as seen in Example 1). The general case is therefore
also known as Global-Local-As-View (GLAV).

3 Modeling Attacks Against the Integration System

Recall that we consider the scenario where each of the user’s queries Q is processed
by the information integration system I := (σS , σT , Σ, S0) and the certain answers
certQ

Σ(S0) are returned to the user. The user has no other access to the source S0.
The attacker is a malicious user whose objective is to obtain the answer to or at least

partial information on secret, specified as the answer to a query QZ against the source
S0. The attacker has no further access to the sources than ordinary users.

However, we consider that all users know the source schema and how it relates to
the target schema using source-to-target constraints. It has been argued before even
in the context of database publishing [18] that assuming otherwise would be naive.
After all, the only way of communicating to users the meaning of data contributed by
a source is via a source schema (be it the real one, or an abstract, conceptual one)
and its relationship to the target schema. For instance, even if users do not know the
names of the hospital database tables and their attributes, they understand enough about
the application domain to assume that these include patients, doctors, ailments, and
they can easily observe whether patient names and ailments are hidden or not. It is
therefore prudent to assume that in most applications, attackers can reverse-engineer a
source schema, or an abstraction thereof which is equivalent with respect to information
capacity. The attack against privacy can then be conducted using the real or the reverse-
engineered schema.

Since the attacker understands the semantics of the source schema, she will have no
trouble formulating the query QZ which specifies the secret.1 The only obstacle in her
way is the integration system’s rejection of queries which are not formulated against
its target schema. Instead, the attacker may issue several queries against the integration
system, then apply arbitrary computational power on the answers in order to obtain
information about the secret QZ(S0).

Possible sources and secrets. Note that the attacker cannot distinguish among sources
that lead to the same answers for the queries she issued. She thus reduces the set of
possible sources/secrets to those which are indistinguishable w.r.t. the issued queries,
applying external knowledge to distinguish among the reduced set. Clearly, the optimal
outcome for the attacker is to reduce the set of sources/secrets to guess from as much
as possible by posing the “right” queries. To state our guarantees, we formalize the
notions of “possible sources” and “possible secrets.” Intuitively, possible sources and
possible secrets are those which cannot be distinguished, respectively, from the source
S0 and the secret QZ(S0) exclusively by issuing queries to I; discriminating among
them requires the attacker to use external knowledge.

We say that S is a possible source if the certain answers to any query Q for (σS , σT ,
Σ, S) are exactly the same as the certain answers to Q for (σS , σT , Σ, S0). That is,

1 For brevity, we refer to QZ as the “secret query”, though we assume that only its answer is
secret, not its definition.
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for all queries Q, certQ
Σ(S) = certQ

Σ(S0). We say that Z is a possible secret if it is
the result QZ(S) of the secret query QZ on some possible source S. In particular, the
source S0 is a possible source and the secret QZ(S0) is a possible secret. Clearly, any
source which has the same possible targets as S0 is a possible source.

The attacker wishes to obtain a set of secrets/sources which approximates as best as
possible the set of possible secrets/sources. She will then distinguish among these using
external knowledge and, if necessary, randomly guess among the secrets/sources which
remain indistinguishable even by external knowledge.

Attacker’s external knowledge. The attacker’s external knowledge has been modeled
in the literature as additional constraints on the secrets or on the sources, or as a proba-
bility distribution on them [18,8]. Here, we abstract away from the particular representa-
tion, modeling it with two “black box” oracles PICKSOURCE and PICKSECRET. These
represent any means of reducing the input possibilities based on external knowledge,
followed by a random pick from the reduced set (if it is not a singleton).

PICKSECRET accepts as input a finite description of a set Z which is an approxima-
tion of the set of possible answers to the query QZ , and picks one secret from Z . The
following is a general strategy for the attacker in case PICKSECRET is available:

Procedure ATTACKSECRET

1. Issue several queries Q1, . . . , Qk against I to obtain A1, . . . , Ak where Ai := certQi
Σ (S0).

2. Using A1, . . . , Ak, compute a finite description ΣZ which approximates as well as possible
the set Z of possible secrets (that is, the set of answers to QZ(S) for those sources S which
satisfy Ai = certQi

Σ (S)).
3. Return PICKSECRET(ΣZ)

Similarly, PICKSOURCE accepts as input a finite description ΣS of a set which ap-
proximates the possible sources and picks one of them. The following is a general strat-
egy for the attacker in case only PICKSECRET is available:

Procedure ATTACKSOURCE

1. Issue several queries Q1, . . . , Qk against I to obtain A1, . . . , Ak where Ai := certQi
Σ (S0).

2. Using A1, . . . , Ak, compute a finite description ΣS which approximates as well as possible
the set S of possible sources S (that is, those which satisfy Ai = certQi

Σ (S)).
3. Set S := PICKSOURCE(ΣS)
4. Return QZ(S).

The attacker’s access to PICKSECRET, but not to PICKSOURCE models the case
when she has no external knowledge about the possible sources, but may have sufficient
independent knowledge to form an opinion about the possible secrets. We assume that
PICKSOURCE may use PICKSECRET as a subroutine whenever both are available and
that the attacker chooses to use PICKSOURCE whenever it is available.

4 Privacy Guarantees

The goal of the defender is to determine to what extent the information system I =
(σS , σT , Σ, S0) is vulnerable to attacks of the kind outlined in Section 3. The de-
fender specifies the secret as a query QZ over σS . We analyze what kinds of guarantees
the defender can provide and how he can verify whether they hold. We consider both
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absolute guarantees, pertaining to how private the secret is for I and relative guaran-
tees, pertaining to whether the secret has been exposed further in going from I to a new
system I ′.

Our privacy guarantees focus on the crucial steps 1 and 2 in the general attack strate-
gies. In these, the attacker attempts to facilitate the task of the oracle as much as possible
by restricting the set of options to guess from. The fewer options are obtained, the less
external knowledge is needed to guess the secret.

In Section 5, we investigate how good an approximation of possible secrets and
sources the attacker can obtain. We obtain there the following surprising result:

Corollary 1 (of Theorem 1 in Section 5). There exists a finite set of queries whose
certain answers can be used to construct a finite axiomatization of the sets of possible
sources and secrets.

A conservative defender must therefore assume that any attacker is able, by posing a
carefully chosen set of queries, to obtain a precise description of the sets of possible
sources and secrets. This is why we focus our guarantees on these sets.

Absolute Guarantees. We now introduce two minimal guarantees guarding against
full disclosure of the source, respectively secret. The worst case for the defender is
when the certain answers to some finite set of queriesQ are sufficient to determine the
source S0 exactly. In this case, the attacker may obtain not only the secret QZ(S0), but
any information she wishes of the source under our assumptions.

Guarantee 1. The source S0 is not completely exposed by the information system I.
That is, there are at least two possible sources.

Even if the source is not completely exposed, the secret might be. That is, there is more
than one possible source, but the result of the secret query on all of them is the same
(in short, there is only one possible secret). In this case the attacker may not know the
source S0, but she may learn the secret QZ(S0).

Guarantee 2. The secret QZ(S0) is not completely exposed by the information system
I. That is, there are at least two possible secrets.

Relative Guarantees. Guarantees 1 and 2 only avoid a complete privacy breach in
which source, respectively secret are fully exposed. This is of course the weakest guar-
antee one could provide. Ideally, we would like the guarantee that nothing can be
“learned” about the secret given the information system. The following example how-
ever shows that such a guarantee is unreasonably strong and is violated by most systems,
which is why we need to set our sights on more relaxed guarantees.

Example 3. Consider an information system whose only source relation contains tu-
ples associating the patient with the ailment he suffered from and the doctor who
treated him: PDA(patient,doctor,ailment). The secret, as in Example 1, is the asso-
ciation between patients and their ailment: QZ(p, a) :− PDA(p, d, a). The source
registration only exports the projection of this source relation on its doctor attribute:
∀p, d, a PDA(p, d, a) → D(d) (where D is the target schema). Since neither patients
nor ailments are registered, this registration is seemingly safe. However, an attacker can
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still learn from it some (small amount of) information about the secret. Indeed, if the
registered list of doctors is empty, then the source relation must be empty as well, so
no patient can suffer from any ailment. If however there is even one doctor in the reg-
istered list, then there is a non-zero probability of a certain patient suffering from some
disease. Clearly, the attacker has “learned” something about the secret upon observing
the list of doctors, and the idealized guarantee is violated. At the same time, ruling out
this registration boils down to asking the source owner to not register any data, even if
it avoids the attributes involved in the secret query.

Since the absolute Guarantees 1 and 2 are too weak and the idealized guarantee con-
sidered above is too strong, we consider a more pragmatic class of relative guarantees.
These assume that the data owner is willing to live with the current exposure of the se-
cret or source, but wants to make sure that changing the constraints of the information
system will not lead to further exposure.

There are two strong relative guarantees the defender can provide. The first applies
in case the defender knows that the attacker has no external knowledge about possible
sources (but may have external knowledge about possible secrets):

Guarantee 3. If the attacker has no external knowledge about the possible sources,
then secret QZ(S0) has not been further exposed in going from the information system
I := (σS , σT , Σ, S0) to the information system I ′ := (σS , σT , Σ′, S0). That is, the set
of possible secrets under Σ is the same as the set of possible secrets under Σ′.

The second guarantee applies when the defender cannot safely assume that the attacker
will not distinguish among sources.

Guarantee 4. The secret QZ(S0) has not been further exposed in going from the infor-
mation system I := (σS , σT , Σ, S0) to the information system I ′ := (σS , σT , Σ′, S0).
That is, the set of possible sources under Σ is the same as the set of possible sources
under Σ′.

Example 2 in the introduction illustrates a case when Guarantee 1 fails, as there is a
client query which fully reveals the source. Therefore, for any secret query QZ , Guar-
antee 2 fails as well, since the attacker can retrieve the full secret by running QZ on
the exposed source. There are cases when the underlying source is not fully exposed
(Guarantee 1 holds), but the secret is (Guarantee 2 fails). For lack of space, we illus-
trate such a scenario in the extended version [19], where we also show a scenario where
Guarantee 3 holds but Guarantee 4 fails.

Source-independent guarantees. Guarantees 1, 2, 3, and 4 are all given in terms of a
specific source S0. For each such Guarantee i, we can define a corresponding Guarantee
i′ which has the same statement, but instead of referring to some source S0, is quantified
over all sources. These source-independent guarantee flavors are of significant interest
as they do not require re-checking after each update on the sources.

5 Algorithms

In this section we outline algorithms for checking Guarantees 1 through 4. These algo-
rithms are based on reduction to the problem of checking implication of constraints.
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The implication problem for constraints is to determine whether, given a set of con-
straints Σ and a constraint φ, Σ implies φ, written Σ |= φ. Σ |= φ holds if every
database that satisfies Σ also satisfies φ. In general, checking implication of IC(UCQ=)
constraints is undecidable, as this class includes functional and inclusion dependencies,
for which the implication problem is undecidable [1]. However, our reduction yields
constraints which we call convergent for which checking implication and equivalence of
two sets of constraints is in ΠP

2 (Theorem 2). Checking whether Σ |= φ holds for con-
vergent constraints can be done by a well-known procedure known as the chase [1]. We
do not describe this procedure here; instead we assume we have a procedure IMPLIES

to check whether Σ |= φ holds. We say that Σ and Σ′ are equivalent (which we write
Σ ≡ Σ′) in case Σ implies every constraint in Σ′ and conversely.

We now reduce the problem of checking guarantees to the implication problem. For
instance, to check Guarantee 1 and Guarantee 2, the idea is to find a set of constraints
Δ1 which axiomatize the possible sources (respectively, possible secrets) and a set of
constraints Δ2 which axiomatize the actual source (respectively, the actual secret) and
to check whether Δ1 implies Δ2. Guarantee 1 (respectively, Guarantee 2) holds if and
only iff Δ1 �|= Δ2. Since as it turns out Δ1 and Δ2 are convergent sets, the latter
implication is decidable.

The constraints are obtained by the following procedures: AXINSTANCE(D) returns
constraints which axiomatize the database D. That is, D′ |= AXINSTANCE(D) iff D =
D′. AXSOURCES yields constraints which axiomatize the possible sources. AXSE-
CRETS returns constraints which axiomatize the possible secrets. Before detailing the
procedures, we show how they yield an algorithm for checking the various guarantees.
The algorithm is inspired by the following corollary of Theorem 1 below.

Corollary 2 (of Theorem 1)

1. Guarantee 1 holds iff AXSOURCES(I) �|= AXINSTANCE(S0).
2. Guarantee 2 holds iff AXSECRETS(I, QZ) �|= AXINSTANCE(QZ(S0)).
3. Guarantee 3 holds iff AXSECRETS(I, QZ) ≡ AXSECRETS(I ′, QZ).
4. Guarantee 4 holds iff AXSOURCES(I) ≡ AXSOURCES(I ′).

For instance by Corollary 2 we can use the procedures IMPLIES, AXINSTANCE and
AXSOURCES to check Guarantee 1 as follows (Guarantees 2 through 4 are checked
similarly):

Procedure GUARANTEEONEHOLDS(I)
Set Δ1 := AXSOURCES(I). Set Δ2 := AXINSTANCE(S0). Return not IMPLIES(Δ1, Δ2).

We define our procedures next.
In Algorithm 1, RD denotes the extent of relation R in database D, and c̄ ∈ RD

ranges over all tuples in RD. In Algorithm 2, given a constraint φ ∈ IC(UCQ=) we
define Qφ to be the UCQ= query whose body is the conclusion of φ and whose head is
Qφ(x̄) where x̄ are the free variables in the conclusion of φ. We define Pφ similarly as
the query obtained from the premise of φ.

Notice that the procedure which issues queries against the integration system is AX-
SOURCES, and that these queries are precisely those corresponding to the conclusions
of the source-to-target constraints. The auxiliary procedure AXONE used within AX-
SOURCES gives constraints which are satisfied precisely by the sources that agree with
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Algorithm 1. AXINSTANCE(D)
returns constraints which are satisfied precisely by database D.
That is, D′ |= AXINSTANCE(D) iff D = D′.

1: for every relation R in the signature σ(D) of D do
2: Set δ1

R := R(x̄) → ∨
c̄∈RD x̄ = c̄.

3: Set δ2
R := R(x̄) ← ∨

c̄∈RD x̄ = c̄.
4: end for
5: return {δi

R : R ∈ σ(D), i ∈ {1, 2}}.

Algorithm 2. AXSOURCES(I)
returns constraints axiomatizing the possible sources.
That is, S |= AXSOURCES(I) iff S is a possible source.

1: for every φ ∈ Σ do
2: Issue the query Qφ against I to obtain AQφ := cert

Qφ

Σ (S0).
3: end for
4: return

⋃
φ∈Σ AXONE(Σ, Qφ, AQφ).

Algorithm 3. AXONE(Σ, Qφ, AQφ
)

returns constraints which are satisfied precisely by the sources which agree with S0 on the
result AQφ of query Qφ (which is the conclusion of constraint φ).

1: Set Rφ := REWRITE(Σ, Qφ)
// Set Σr

φ to the set of constraints over schema σS ∪ {Qφ} which capture Rφ:
2: let Rφ be the UCQ= query Rφ(x̄) :− ∨i Bi(x̄)

Set Σr
φ = {∀x̄

∨
i Bi(x̄) → Qφ(x̄), ∀x̄ Qφ(x̄) → ∨

i Bi(x̄)}
3: Set Σe

φ := AXINSTANCE(AQφ)
4: Set Σφ := Σr

φ ∪ Σe
φ.

5: return Σφ.

Algorithm 4. AXSECRETS(I, QZ)
returns constraints which axiomatize the possible secrets.

1: Set Φ1 := AXSOURCES(I).
// Set Φ2 to the set of constraints over schema σS ∪ {QZ} which capture QZ:

2: Let QZ be the UCQ= query QZ(x̄) :− ∨i Bi(x̄)
Set Φ2 := {∀x̄

∨
i Bi(x̄) → QZ(x̄), ∀x̄ QZ(x̄) → ∨

i Bi(x̄)}
3: return Φ1 ∪ Φ2.

S0 on the query Qφ (the conclusion of constraint φ). AXONE employs the auxiliary
procedure REWRITE(Σ, Q) which produces a rewriting R of Q in terms σS satisfying
R(S) = certQ

Σ(S) for any S. Such an algorithm was provided in [9] for the case where
Q is a Datalog program and Σ ⊆ IC(UCQ=) gives a local-as-view mapping. The
extension to source-to-target constraints Σ ⊆ IC(UCQ=) is straightforward (see e.g.,
[23]). For the purposes of procedure AXSOURCES defined below, it is sufficient to have
R axiomatizable by IC(UCQ=). However, to ensure decidability of implication on the
result of AXSOURCES, we need R to be a UCQ= query. It is known from [9] that when
Σ is source-to-target R is a UCQ= query.
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Due to space limitations, we leave a detailed illustration of the algorithm for the
extended version [19]. Here we only remark that in Example 1, the identity queries
against the target schema turned out to be useless to the attacker, in contrast to the case
of database publishing where the identity queries are the first step required to reveal
the extent of the views. This is now explainable by our results: the identity queries are
not the conclusions of the source-target constraints. On the other hand, query Qφ in
Example 2 constitutes the optimal attack. Our results also imply that when the inte-
gration system conforms to a global-as-view case, identity queries against the relations
in the target schema lead to optimal attack strategies. We illustrate such an attack in
Example 4 below (more examples can be found in [19]).

Example 4. Source S now conforms to schema {H (ssn, patient , doctor , ailment)}
where H is a history relation listing the social security number and name of patients,
as well as the doctor who treated them for an ailment. The registration is given by
constraint φ1 = ∀s, p, d, a H(s, p, d, a) → PD(p, d) which exports the projection
of H on patient and doctor into PD. Note that this specification corresponds to the
standard global-as-view registration given by view PD(p, d) :− H(s, p, d, a). Since
the projection of H is all that the source exports, the best an attacker can hope for is to
retrieve its exact extent. But how should she query the system to this end? It is easy to
show that the projection of H on patients and doctors coincides with the certain answers

certQφ1
Σ (S) to the identity query Qφ1 on table PD (Qφ1(p, d) :− PD(p, d)). This is

precisely the conclusion of φ1.

5.1 Correctness

In this section we show (in Theorem 1) that AXSOURCES(I) axiomatizes precisely the
set of possible sources (indistinguishable modulo all queries) and that AXSECRETS(I)
axiomatizes precisely the set of possible secrets for an information integration system
I := (σS , σT , Σ, S0). In particular, the finite setQ0 of UCQ= queries issued by proce-
dure AXSOURCES and consisting of the conclusions of all constraints in Σ suffices to
obtain as much information about the source and about the secret as is possible to obtain
by querying I. Therefore, among the attacks following the general strategy outlined in
Section 3, the optimal algorithms OPTATTACKSOURCE and OPTATTACKSECRET are
obtained from ATTACKSOURCE and ATTACKSECRET by replacing lines 1 and 2 with
calls to respectively, AXSOURCES and AXSECRETS.

We define the equivalence class of S under the mapping given by Σ to be [S]Σ :=
{S′ : ∀T (S, T ) |= Σ iff (S′, T ) |= Σ}. That is, [S]Σ is the set of all sources
which have the same possible targets as S. Clearly, given I := (σS , σT , Σ, S0), the
members of [S0]Σ cannot be distinguished from the actual source S0 or from each
other by querying I. Indeed, for any query Q and any S ∈ [S0]Σ , certQ

Σ(S) =⋂
(S,T )|=Σ Q(T ) =

⋂
(S0,T )|=Σ Q(T ) = certQ

Σ(S0). The following theorem shows that
AXSOURCES(I) axiomatizes [S0]Σ which is hence precisely the set of possible sources.
It also shows that {QZ(S) : S ∈ [S0]Σ)} is the set of possible secrets, axiomatized by
AXSECRETS(I, QZ).
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Theorem 1. Given an information system I := (σS , σT , Σ, S0):

1. The equivalence class [S0]Σ is axiomatized by AXSOURCES(I)
and AXSOURCES(I) ⊆ IC(UCQ=).

2. For any secret query QZ , the set {QZ(S) : S ∈ [S0]Σ)} is axiomatized by
AXSECRETS(I, QZ) and AXSECRETS(I, QZ) ⊆ IC(UCQ=).

This fundamental theorem allows us to (a) state the guarantees independently of the
class of queries which the attacker is allowed to issue (we assume that the attacker can
issue at least conjunctive queries), (b) outline an optimal attack strategy, and (c) provide
algorithms for checking the guarantees.

As an immediate implication of Theorem 1, we obtain some interesting results for
pure LAV and pure GAV integration, prefigurated by the discussion preceding Sec-
tion 5.1: The source is always completely exposed in LAV information integration sys-
tems, since the optimal query is the view definition itself, for which the certain answers
are exactly the tuples in the source. That is, Guarantee 1 always fails. Moreover, in this
case the identity queries are useless, since they always return the empty set if the view
registration contains at least one existential variable. The only queries required by an
optimal attack against a GAV information integration system are the identity queries.

5.2 Complexity

We call a finite set of constraints Σ convergent if there exists a polynomial p such that
for every Q ∈ UCQ=, the result QΣ of chasing Q with Σ is the union of conjunctive
queries Q1, . . . , Qk ∈ CQ= satisfying |Qi| ≤ p(|Q|) for i ∈ {1, . . . , k}.

Theorem 2. If Σ, Σ′ ⊆ IC(UCQ=) are finite sets of convergent constraints and φ ∈
IC(UCQ=), then checking whether Σ �|= φ is decidable in ΠP

2 in the combined size of
Σ and φ and checking whether Σ |= Σ′ or Σ ≡ Σ′ is decidable in ΠP

2 in the combined
size of Σ and Σ′. Furthermore, if φ or Σ′ have a single model, then the complexity is
coNP.

Theorem 3. AXSOURCES(I) and AXSECRETS(I, QZ) each yield a set of convergent
constraints, in time polynomial in the combined size of S0 and of REWRITE(Σ, Qφ) for
every φ ∈ Σ.

Corollary 3. Checking whether Guarantees 1 and 2 hold is in NP in the combined
size of S0, REWRITE(Σ, Qφ) for every φ ∈ Σ, and in the case of Guarantee 2, QZ .

Corollary 4. Checking whether Guarantees 3 and 4 hold is ΠP
2 in the combined size

of S0, REWRITE(Σ, Qφ) for every φ ∈ Σ, REWRITE(Σ′, Qφ) for every φ ∈ Σ′, and
in the case of Guarantee 3, QZ .

5.3 An Important Tractable Case

Our algorithms for checking guarantees are in general prohibitively expensive, as the
NP and ΠP

2 upper bounds (in Corollaries 3 and 4) include the size of the instance S0.
In this section we show that a practically relevant integration setting, which we call
tagged-union integration, admits polynomial-time guarantee checking.
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Definition 1. An integration is said to have tagged-unions if each target relation R has
some attribute a such for each constraint φ ∈ Σ and each R-atom occurring in the
conclusion Qφ, a constant cφ occurs in the attribute a such that cφ �= c′φ for all distinct
φ, φ′ ∈ Σ. No constant is needed if R appears in only one constraint.

All of our examples have tagged-union, since relation names are not shared across con-
clusions. The tagged-union restriction is quite realistic. While in a car dealership portal
there will be many local dealers exporting their car ads into the same target ad relation,
each dealer would likely tag the ad with the dealership name, address or phone number.
Similarly for scenarios integrating any large community of vendors. Even for our medi-
cal example, one would expect various wards or hospitals to tag the published patient or
doctor names with their affiliation. For example, consider a Honda and a Toyota dealer
who integrate their private data into a brokerage portal (of target schema deals), using
the tagged-union constraints φH , respectively φT :
(φH)∀x̄ myhondas(x̄) → deals(“Honda”, x̄) (φT )∀x̄ mytoyotas(x̄) → deals(“Toyota”, x̄).

Theorem 4. In tagged-union integration systems, Guarantees 1 through 4 are decid-
able in polynomial time in the size of the source instance S0.

The NP and ΠP
2 upper bounds of Corollaries 3 and 4 are now confined to the combined

size of the constraints in Σ and the size of each REWRITE result, but these are data-
independent.

5.4 Undecidability of Source-Independent Guarantees

We use the following undecidability results in our proofs below. A view V determines
a query Q iff for all databases D1, D2, if V (D1) = V (D2), then Q(D1) = Q(D2).
Checking whether V determines Q when V, Q ∈ UCQ is undecidable ([21]).

Theorem 5. Checking Guarantee 2′ is undecidable.

Theorem 6. Checking Guarantee 4′ is undecidable.

Since Guarantee 4′ is a particular case of Guarantee 3′ (for QZ the identity query over
σS), we obtain the following corollary:

Corollary 5. Checking Guarantee 3′ is undecidable.

The decidability of Guarantee 1′ remains an open problem.

6 Related Work

One line of prior research focused on implementing access control in data publishing,
i.e. allowing clients to see only those published views which they are authorized to. The
techniques are based on cryptographically encoding the data (see [17] and references
within). Our work is orthogonal to work on access control, as it helps data owners design
the views (and more generally, mappings) such that attackers cannot breach privacy
using only authorized accesses.

[2] introduces c-tables, a compact formalism for finitely representing large (and po-
tentially infinite) sets of possible worlds, and shows ΠP

2 -complete data complexity for
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checking that the sets of possible sources represented by two c-tables are the same.
c-tables are not sufficiently expressive to model the set of possible sources correspond-
ing to a materialized view instance. [13] introduces database templates to this end and
shows how to compute them using the chase, but does not address the comparison of the
sets of possible sources. We describe possible sources by a different formalism, namely
a finite axiomatization.

[10] focuses on limiting privacy breaches in a scenario in which the aggregation of
a set of private client data items is computed at the server. [3] takes aggregation into
account and shows that exposing the result of counting queries allows the retrieval of
an isomorphic copy of the structure of the database.

[20] takes a dual approach to ours (though in a closed world). While we use queries
to specify the secret, [20] uses conjunctive query views to specify what may be seen
by outsiders. In this setting, conjunctive client queries asked against the proprietary
database are answered only if they have a rewriting using the allowable views.

Perfect Privacy. [18] addresses privacy in database publishing, i.e. in a closed-world,
GAV scenario. The work pioneers the idea of specifying the secret as a conjunctive
query over the base schema and checking the so-called perfect privacy guarantee. This
consists in checking that a newly exported view does not modify the attacker’s a priori
belief about the secret. The attacker’s belief is modeled as a probability distribution on
the set of possible sources, with the simplifying assumption that the tuples in the secret
answer are independent events. [8] adopts the notion of perfect privacy from [18] (still
in a publishing, not integration scenario), but provides a more general formalization
of attacker’s beliefs by lifting the independence assumption on secret tuples. With this
formalization, perfect privacy is shown in [8] to reduce to the preservation of the set of
possible sources. Consequently, Guarantee 4 in this paper is the natural adaptation of
perfect privacy from data publishing (in the flavor of [8]) to a data integration scenario.

Probabilistic Databases. One could envision quantitative privacy guarantees, e.g. by
requiring a particular secret tuple to appear in no more than a fraction of the possible
sources. Such approaches face the challenge of the set of possible sources being po-
tentially infinite, in which case “counting” it must be defined carefully (see [6,7] for
pioneering work in this direction, though in a database publishing setting).

7 Discussion

Privacy-preserving Updates. We can express guarantees corresponding to Guaran-
tees 3 and 4, in which the mapping does not change (that is, Σ = Σ′), but the extent
of the source does (S0 is replaced by S′

0). The new guarantees would check that the
possible sources, respectively secrets, do not change when S0 is updated.

Conceptually, we can straightforwardly adapt our algorithms for checking Guaran-
tees 3 and 4 to this new situation. All we need to do is call AXSOURCES (AXSECRETS)
on the information system before and after the update (in the case of AXSECRETS,
using the same QZ). Then we check that the obtained source (secret) axiomatizations
imply each other. However, as such a test would have to be performed at run time,
further work on efficient run-time algorithms is required towards a practical tool.
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Target Constraints. We have modularized our privacy algorithms to work in the pres-
ence of arbitrary constraints on the target schema, provided that (i) the integration
system can return the certain answers in this case, and (ii) there exists an algorithm
REWRITE(Σ, Q) which produces a rewriting of Q in terms of σS returning the certain
answers of Q on any source, and (iii) REWRITE(Σ, Q) returns a UCQ= query. It is
known from [9] that when there are no target constraints, REWRITE(Σ, Q) returns a
UCQ= query, but returns a recursive Datalog program when the target constraints are
full dependencies. In this case, Theorem 1 still holds but the obtained constraints are not
convergent and therefore Theorem 3 does not apply so we can not make any claims on
the complexity of checking these guarantees. [9] provides no rewriting for more general
target constraints.
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Abstract. We review key constraints in the context of XML as intro-
duced by Buneman et al. We show that one of the proposed inference
rules is not sound in general, and the axiomatisation proposed for XML
keys is incomplete even if key paths are simple. Therefore, the axiomati-
sation and also the implication problem for XML keys are still unsolved.

We propose a set of inference rules that is indeed sound and complete
for the implication of XML keys with simple key paths. Our complete-
ness proof enables us to characterise the implication of XML keys in
terms of the reachability problem of nodes in a digraph. This results in a
quadratic time algorithm for deciding XML key implication, and shows
that reasoning for XML keys is practically efficient.

1 Introduction

The eXtensible markup language (XML,[6]) has recently evolved to the stan-
dard for data exchange on the Web, and also represents a uniform model for
data integration. It provides a high degree of syntactic flexibility but has little
to offer to specify the semantics of its data. Consequently, the study of integrity
constraints has been recognised as one of the most important yet challenging
areas of XML research [15,28,31,33]. The importance of XML constraints is due
to a wide range of applications ranging from schema design, query optimisation,
efficient storing and updating, data exchange and integration, to data clean-
ing [15]. Therefore, several classes of integrity constraints have been defined for
XML including keys [8], path constraints [10,11], inclusion constraints [16,17]
and functional dependencies [3,20,22,32]. However, for almost all classes of con-
straints the complex structure of XML data results in decision problems that are
intractable. It is therefore a major challenge to find natural and useful classes of
XML constraints that can be reasoned about efficiently [15,16,17,28,31]. Prime
candidates of such classes are absolute and relative keys [8,9] that are defined
independently from any specification such as a DTD [6] or XSD [30]. Keys are
based on the representation of XML data as trees. This is commonly used by
DOM [2], XSL [24], and XML Schema [30]. Figure 1 shows such a representation
in which nodes are annotated by their type: E for element, A for attribute, and
S for string (PCDATA).
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Keys are defined in terms of path expressions, and determine nodes either
relative to a set of context nodes or the root. Nodes are determined by (com-
plex) values on some selected subnodes. In Figure 1, an example of a reasonable
absolute key is that the isbn values identify the book node. That is, the isbn
subnodes of different book nodes must have different values.

In contrast, an author cannot be identified in the entire tree by its first and last
subnodes since the same author can have written more than one book. However,
the author can indeed be identified by its first and last subnodes relatively to
the book node. That is, for each individual book node, different author subnodes
must differ on their first or last subnodes.

〈db〉
〈book isbn=0198532741〉

〈title〉Toposes and Local Set Theories〈/title〉
〈author〉〈first〉John〈/first〉〈last〉Bell〈/last〉〈/author〉

〈/book〉
〈book isbn=0720428440〉

〈title〉A course in mathematical logic〈/title〉
〈author〉〈first〉John〈/first〉〈last〉Bell〈/last〉〈/author〉
〈author〉〈first〉Moshe〈/first〉〈last〉Machover〈/last〉〈/author〉

〈/book〉
〈/db〉

E
db

EE

A E

S

E author

E

S

E

S

A

A course in
mathematical logic

E

S

title

E author

E

S

E

S

first last

BellJohn

E author

E

S

E

S

first last

Moshe Machover

bookbook

@isbn
title

first last

@isbn

Toposes and 
Local Set Theories

John Bell

"0198532741" "0720428440"

Fig. 1. XML data fragment and its tree representation

Contributions. We review XML key constraints. We show that one of the
inference rules for key implication [9] is only sound for keys with simple key
path expressions [8], but not sound in general as stated in [9]. The incorrectness
is not just a minor detail but shows that the choice of a path language for defining
XML keys can be crucial. We demonstrate that the axiomatisation proposed in
[9] is not only incomplete in the general case but already incomplete in the case
of simple key path expressions, i.e., for XML keys as defined in [8].

Since keys have had a significant impact on XML [8,9] we believe that it
is important to provide an axiomatisation and show that automated reasoning
about XML keys is practically efficient. We propose an axiomatisation of XML
keys with simple key path expressions. Our completeness proof is based on a
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characterisation of key implication in terms of reachability of nodes in a digraph.
Utilising the efficient evaluation of Core XPath queries [18] this results in a
decision procedure for XML key implication that is quadratic in the size of the
keys given. The simplicity of our algorithm is a result of the technique used for
proving the completeness of our inference rules. Notice that the original (flawed)
technique resulted in a heptic (n7) algorithm, cf. [9].

Related Work. Constraints have been extensively studied in the context of the
relational model of data, some excellent surveys include [14,29]. Dependencies
have also been investigated in nested data models, cf. [19,21,27]. Recent work
on XML constraints include [3,4,8,9,10,11,16,17,32], for a brief survey see [15].

2 Prerequisites

We review the definition of keys and their properties [8,9]. Throughout the paper
we assume familiarity with basic concepts from graph theory [23].

2.1 The XML Tree Model

XML documents can be modelled as node-labelled trees. We assume that there
is a countably infinite set E denoting element tags, a countably infinite set A
denoting attribute names, and a singleton {S} denoting text (PCDATA). We
further assume that these sets are pairwise disjoint, and put L = E ∪A ∪ {S}.
We refer to the elements of L as labels.

An XML tree is a 6-tuple T = (V, lab, ele, att, val, r) where V denotes a set
of nodes; lab is a mapping V → L assigning a label to every node in V ; a node
v in V is called an element (E) node if lab(v) ∈ E, an attribute (A) node if
lab(v) ∈ A, and a text (S) node if lab(v) = S; ele and att are partial map-
pings defining the edge relation of T : for any node v in V , if v is an element
node, then ele(v) is a list of element and text nodes in V and att(v) is a set
of attribute nodes in V ; if v is an attribute or text node then ele(v) and att(v)
are undefined; val is a partial mapping assigning a string to each attribute and
text node: for any node v in V , if v is an A or S node then val(v) is a string,
and val(v) is undefined otherwise; and r is the unique and distinguished root
node.

An XML tree is said to be finite if V is finite. For a node v ∈ V , each node w
in ele(v) or att(v) is called a child of v, and we say that there is an edge (v, w)
from v to w in T . An XML tree has a tree structure: for each node v ∈ V , there
is a unique (directed) path of edges from the root r to v.

We can now define value equality for pairs of nodes in XML trees. Informally,
two nodes u and v of an XML tree T are value equal if they have the same label
and, in addition, either they have the same string value if they are S or A nodes,
or their children are pairwise value equal if they are E nodes. More formally, two
nodes u, v ∈ V are value equal, denoted by u =v v, if and only if the following
conditions are satisfied:
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(a) lab(u) = lab(v),
(b) if u, v are A or S nodes, then val(u) = val(v),
(c) if u, v are E nodes, then (i) if att(u) = {a1, . . . , am}, then att(v) =

{a′
1, . . . , a

′
m} and there is a permutation π on {1, . . . , m} such that ai =v a′

π(i)
for i = 1, . . . , m, and (ii) if ele(u) = [u1, . . . , uk], then ele(v) = [v1, . . . , vk]
and ui =v vi for i = 1, . . . , k.

That is, two nodes u and v are value equal whenever the subtrees rooted at u
and v are isomorphic by an isomorphism that is the identity on string values.
For example, the first and second author node (according to document order) in
Figure 1 are value equal.

2.2 Path Languages

In order to define keys we need a path language that is expressive enough to be
practical, yet sufficiently simple to be reasoned about efficiently. This is the case
for the path languages PLs and PL [8,9].

Table 1. The path languages PLs and PL

Path Language Syntax
PLs P ::= ε | �.P
PL Q ::= ε | � | Q.Q | ∗

A path expression is a (possibly empty) finite list of symbols. In this paper,
a simple path expression is a path expression that consists of labels from L. We
use the languages PLs and PL to describe path expressions. Both languages
are fragments of regular expressions. PLs expressions and PL expressions are
defined by the grammars in Table 1. Herein, ε denotes the empty path expression,
“.” denotes the concatenation of two path expressions, and � denotes any element
of L. The language PL is a generalisation of PLs that allows the distinguished
symbol “ ∗” to occur. We call ∗ the don’t care symbol. It serves as a combination
of the wildcard “ ” and the Kleene star “∗”. Note that every PLs expression is
a PL expression, too.

We now introduce some more terminology [8,9] used throughout this paper.
Note that for PL expressions, the equalities Q.ε = ε.Q = Q for all Q ∈ PL,
and ∗. ∗ = ∗ hold. A PL expression Q in normal form [8,9] does not contain
consecutive ∗, and it does not contain ε unless Q = ε. A PL expression can
be transformed into normal form in linear time, just by removing superfluous ∗

and ε symbols. To simplify discussion, we usually assume that PL expressions
are already given in normal form. The length |Q| of a PL expression Q is the
number of labels in Q plus the number of ∗ in the normal form of Q. The empty
path expression ε has length 0.

When replacing all ∗ in a PL expression Q by simple path expressions, we
obtain a simple path expression P and write P ∈ Q. Thus, a PL expression Q
gives rise to a regular language of simple path expressions P ∈ Q. In particular,
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a PLs expression represents a single simple path expression. For convenience,
we will sometimes refer to PLs expressions as simple path expressions, too.

We will use path expressions to describe sets of paths in an XML tree T . Recall
that each attribute or text node is a leaf in T . Therefore, a path expression is
said to be valid if it does not contain a label � ∈ A or � = S in a position other
than the last one. In the sequel, we use a valid PL expression to represent only
valid simple path expressions. For example, ∗.author is a valid PL expression
that represents (among others) the valid simple path expression book.author.

A path p is a sequence of pairwise distinct nodes v0, . . . , vm where (vi−1, vi)
is an edge for i = 1, . . . , m. We call p a path from v0 to vm, and say that vm is
reachable from v0 following the path p. The path p gives rise to a valid simple
path expression lab(v1). · · · .lab(vm), which we denote by lab(p). Let P be a
simple path expression, and Q a PL expression. A path p is called a P -path if
lab(p) = P , and a Q-path if lab(p) ∈ Q. If p is a path from v to w, then w is said
to be reachable from v following a P -path or Q-path, respectively. We also write
T |= P (v, w) and T |= Q(v, w) when w is reachable from v following a P -path or
Q-path, respectively, in an XML tree T . For example, in the XML tree in Figure
1, all first nodes are reachable from the root following a book.author.first -path.
Consequently, they are also reachable from the root following a ∗.first-path.

For a node v of an XML tree T , let v[[Q]] denote the set of nodes in T that
are reachable from v by following the PL expression Q, i.e., v[[Q]] = {w | T |=
Q(v, w)}. We shall use [[Q]] as an abbreviation for r[[Q]] where r is the root of
T . For example, let v be the second book node in Figure 1. Then v[[author]] is
the set of all author nodes that are children of the second book. Furthermore,
[[ ∗.author]] is the set of all author nodes in the entire XML tree.

For nodes v and v′ of T , the value intersection of v[[Q]] and v′[[Q]] is given
by v[[Q]] ∩v v′[[Q]] = {(w, w′) | w ∈ v[[Q]], w′ ∈ v′[[Q]], w =v w′} [9]. That is,
v[[Q]] ∩v v′[[Q]] consists of all those node pairs in T that are value equal and are
reachable from v and v′, respectively, by following Q-paths.

A PL expression Q is said to be contained in a PL expression Q′, denoted by
Q ⊆ Q′, if for any XML tree T and any node v of T we have v[[Q]] ⊆ v[[Q′]]. That
is, every node that is reachable from v by following a Q-path is also reachable
from v by following a Q′-path. Note that Q ⊆ Q′ holds if and only if every valid
path expression P ∈ Q satisfies P ∈ Q′ [9]. The containment problem of PL
is to decide, given any PL expressions Q and Q′, whether Q ⊆ Q′ holds. The
containment problem of PL is decidable in O(|Q| × |Q′|) time [9].

Note that although we have presented the language PL using the syntax of
regular expressions, there is an easy conversion of PL expressions to XPath [12]
expressions, just be replacing “ ∗” of a PL expression with “//”, and “.” with
“/”. Also, if a PL expression is meant to start from the root, the converted path
is preceded with the symbol “/”.

The choice of a path language is directly influenced by the complexity of its
containment problem. Buneman et al. [8,9] argue that PL is simple yet expressive
enough to be adopted by XML designers and maintained by systems for XML
applications.
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2.3 Keys for XML

In [9], Buneman et al. define a key ϕ as an expression (Q, (Q′, {Q1, . . . , Qk}))
where Q, Q′, Qi are PL expressions such that Q.Q′.Qi is a valid PL expression
for all i = 1, . . . , k. Herein, Q is called the context path, Q′ is called the target
path, and Q1, . . . , Qk are called the key paths of ϕ.

An XML tree T satisfies the key (Q, (Q′, {Q1, . . . , Qk})) if and only if for
any node q ∈ [[Q]] and any nodes q′1, q

′
2 ∈ q[[Q′]] such that there are nodes

xi ∈ q′1[[Qi]], yi ∈ q′2[[Qi]] with xi =v yi for all i = 1, . . . , k, then q′1 = q′2 [9]. More
formally, ∀q ∈ [[Q]]∀q′1, q′2 ∈ q[[Q′]]⎛⎝ ∧

1≤i≤k

q′1[[Qi]] ∩v q′2[[Qi]] �= ∅

⎞⎠⇒ q′1 = q′2.

Moreover, Buneman et al. [9] present a finite set of inference rules which they
state is sound and complete for the implication of XML keys, as well as an
implication decision algorithm based on this axiomatisation.

Table 2. An axiomatisation of XML keys whose key paths are PLs expressions

(Q, (ε, S))
(Q, (Q′, S ∪ {ε, P}))

(Q, (Q′, S ∪ {ε, P.P ′}))
(Q, (Q′, S))

(Q, (Q′, S ∪ {P}))
(epsilon) (prefix-epsilon) (superkey)

(Q, (Q′.P, {P ′}))
(Q, (Q′, {P.P ′}))

(Q, (Q′, S))
(Q′′, (Q′, S))

Q′′⊆Q
(Q, (Q′, S))
(Q, (Q′′, S))

Q′′⊆Q′

(subnodes) (context-path-containment) (target-path-containment)

(Q, (Q′.Q′′, S))
(Q.Q′, (Q′′, S))

(Q, (Q′.P, {ε, P ′}))
(Q, (Q′, {ε, P.P ′}))

(Q, (Q′, {P.P1, . . . , P.Pk})),
(Q.Q′, (P, {P1, . . . , Pk}))
(Q, (Q′.P, {P1, . . . , Pk}))

(context target) (subnodes-epsilon) (interaction)

Let S denote the set of inference rules from Table 2 without the subnodes-
epsilon rule. This is the axiomatisation proposed in [9] when only PLs expres-
sions are allowed for the key paths. Unfortunately, S turns out to be incomplete
since the subnodes-epsilon rule is sound for the implication of XML keys and
independent from S.

The soundness of the subnodes-epsilon rule is not difficult to see. Suppose
an XML tree T violates (Q, (Q′, {ε, P.P ′})). Then there is some node q ∈ [[Q]]
and some nodes q′1, q

′
2 ∈ q[[Q′]] such that q′1 �= q′2, q′1 =v q′2, and there exist

p′1 ∈ q′1[[P.P ′]] and p′2 ∈ q′2[[P.P ′]] such that p′1 =v p′2. By definition, there exists
some p1 ∈ q′1[[P ]] such that p′1 ∈ p1[[P ′]]. Since q′1 =v q′2 it is easy to see that there
exists some node p2 ∈ q′2[[P ]] such that p1 �= p2, p1 =v p2 and p′2 ∈ p2[[P ′]]. But
then p1 ∈ q[[Q′.P ]] and p2 ∈ q[[Q′.P ]]. Hence, T also violates (Q, (Q′.P, {ε, P ′})).
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Moreover, the subnodes-epsilon rule is independent from S, i.e., there is a
finite set Σ ∪ {ϕ} of XML keys such that ϕ cannot be derived from Σ by S,
but ϕ can be derived from Σ using S and the subnodes-epsilon rule. A simple
example is given by Σ = {(ε, (A.B, {ε, C}))} and ϕ = (ε, (A, {ε, B.C})). In fact,
subnodes is the only inference rule in S that allows us to make an infix of the
target path in the premise of a rule a prefix of a key path in the conclusion of
the rule. Since subnodes only permits a singleton as the set of key paths, and the
other inference rules do not allow us to generate conclusions with a single key
path from premises that have at least two key paths, it is impossible to derive
ϕ from Σ using S. On the other hand, however, ϕ can be inferred from Σ by
a single application of subnodes-epsilon. The soundness of the subnodes-epsilon
rule shows that ϕ is implied by Σ, but ϕ cannot be inferred from Σ by S.
Consequently, S is incomplete, even for the implication of XML keys with PLs

expressions as key paths.
In the more general case where one allows key paths to be in PL the subnodes

rule
(Q, (Q′.Q′′, {P}))
(Q, (Q′, {Q′′.P}))

is not even sound for the implication of XML keys. A simple counter-example
is the XML tree T illustrated in Figure 2. T satisfies the absolute key σ =
(ε, (a. ∗.b.c. ∗.d, {e})), but violates the absolute key ϕ = (ε, (a. ∗.b, {c. ∗.d.e}))
since v3, v6 ∈ [[a. ∗.b]], v3 �= v6 and v3[[c. ∗.d.e]] ∩v v6[[c. ∗.d.e]] = {(v10, v10)},
i.e., ϕ is not implied by σ. However, ϕ can be inferred from σ using the subnodes
rule. Therefore, the inference rules proposed in [9] are not sound for the implica-
tion of keys as defined in [9]. Unfortunately, this is not just a minor detail since
the completeness proof [9] makes use of the subnodes rule and is therefore not cor-
rect. Consequently, there is no completeness proof at all. The conference paper [7]
contains a much more restrictive definition of value intersection which leaves the
subnodes rule sound in the presence of arbitrary PL expressions for the key paths,
but this does not affect the incorrectness of the results in the journal paper [9].

E E E E E E E E E E E S

1v v2 v6 v7 v8 v9 v10 v11v3 v4 v5

root a z b c z b c z d e "oops"

Fig. 2. The subnodes rule is not sound for key paths in PL

In this paper we study the implication of XML keys with simple key paths.

Definition 1. A key constraint ϕ for XML (or short XML key) is an expression
(Q, (Q′, S)) where Q, Q′ are PL expressions and S is a non-empty finite set
of PLs expressions such that Q.Q′.P are valid PL expressions for all P in
S. Herein, Q is called the context path, Q′ is called the target path, and the
elements of S are called the key paths of ϕ. If Q = ε, we call ϕ an absolute key;
otherwise ϕ is called a relative key. ��
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Let K denote the language of XML keys. For an XML key ϕ, we use Qϕ to denote
its context path, Q′

ϕ to denote its target path, and Pϕ
1 , . . . , Pϕ

kϕ
to denote its

key paths, where kϕ is the number of its key paths. The size |ϕ| of a key ϕ
is defined as the sum of the lengths of all path expressions in ϕ, i.e., |ϕ| =
|Qϕ|+ |Q′

ϕ|+
∑kϕ

i=1 |P
ϕ
i |.

Example 1. We formalise the examples from the introduction. In an XML tree
that satisfies the absolute key (ε, ( ∗.book, {isbn})) one will never be able
to find two different book nodes that have value equal isbn subnodes. Fur-
thermore, under a book node in an XML tree that satisfies the relative key
( ∗.book, (author, {first, last})) one will never find two different author subnodes
that are value equal on their first and last subnodes. ��

It is stated in [8] “that allowing arbitrary path expressions for the Pi [key paths]
merely complicates the definition of key but does not change much in the way of
the theory”. This is not true since the subnodes rule is sound according to the
original XML key definition [8] but not if the Pis are arbitrary PL expressions
as the example above shows.

We will prove that the inference rules from [9] together with the subnodes-
epsilon rule are sound and complete for the implication of XML keys as defined
in Definition 1.

Theorem 1. The inference rules from Table 2 are sound and complete for the
implication of XML keys in K. ��

3 An Axiomatisation

Let Σ be a finite set of keys in K. An XML tree T satisfies Σ if and only if T
satisfies every σ ∈ Σ. Let Σ ∪ {ϕ} be a finite set of keys in K. We say that Σ
(finitely) implies ϕ, denoted by Σ |=(f) ϕ, if and only if every (finite) XML tree
T that satisfies Σ also satisfies ϕ. The (finite) implication problem is to decide,
given any finite set of keys Σ ∪ {ϕ}, whether Σ |=(f) ϕ. For a set Σ of keys in
K, let Σ∗ = {ϕ ∈ K | Σ |= ϕ} be its semantic closure, i.e., the set of all keys
implied by Σ. Finite and unrestricted implication problem coincide for the class
of keys in K [9]. We will therefore commonly speak of the implication problem
for keys in K.

The notion of derivability (�R) with respect to a set R of inference rules can
be defined analogously to the notion in the relational data model [1, pp. 164-
168]. For a set Σ of keys in K, let Σ+

R = {ϕ | Σ �R ϕ} be its syntactic closure
under inference using R.

The aim in this section is to demonstrate that the set R of inference rules
in Table 2 is sound (i.e., Σ+

R ⊆ Σ∗) and complete (i.e., Σ∗ ⊆ Σ+
R) for the

implication of keys as defined in Definition 1.
Our completeness argument is fundamentally different from the technique

proposed in [9]. Buneman et al. [9] apply the following strategy: for any ϕ /∈ Σ+

they construct a finite XML tree T that violates ϕ. Subsequently, they chase
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those keys in Σ which are violated by T and maintain at the same time the
violation of ϕ. Eventually, this results into a chased version of T which finitely
satisfies all keys in Σ and violates ϕ. This would show that ϕ is not implied by Σ.
However, the completeness proof is flawed since it requires the soundness of the
subnodes rule, but the subnodes rule is not sound as discussed above. Moreover,
the subnodes-epsilon rule is sound and independent from the inference rules of
[9]. Therefore, the rules are not complete even for the original definition of XML
keys [8] whose key paths are PLs expressions.

Our technique does not use a chase: we will first represent ϕ /∈ Σ+ in terms of a
finite node-labelled tree TΣ,ϕ, and then calculate the impact of each key in Σ on a
finite XML tree T that satisfies Σ, but violates ϕ. We keep track of the impacts by
inserting edges into a node-labelled digraph GΣ,ϕ, called witness graph. Finally,
we apply a reachability algorithm to GΣ,ϕ to generate the desired XML tree T .
This approach turns out to provide even more than just proving completeness.
In fact, Σ implies ϕ if and only if there is a path from a distinguished node q′ϕ
to a distinguished node qϕ in GΣ,ϕ. We will see later on that this observation
results in a surprisingly efficient decision procedure for the implication problem
of XML keys.

3.1 Mini-trees and Witness Graphs

Let Σ∪{ϕ} be a finite set of keys in K. Let LΣ,ϕ denote the set of all labels � ∈ L
that occur in path expressions of keys in Σ ∪{ϕ}, and fix a label �0 ∈ E−LΣ,ϕ.
Further, let Oϕ and O′

ϕ be the PLs expressions obtained from the PL expressions
Qϕ and Q′

ϕ, respectively, when replacing each ∗ by �0.
Let p be an Oϕ-path from a node rϕ to a node qϕ, let p′ be an O′

ϕ-path from a
node r′ϕ to a node q′ϕ and, for each i = 1, . . . , kϕ, let pi be a Pϕ

i -path from a node
rϕ
i to a node xϕ

i , such that the paths p, p′, p1, . . . , pkϕ are mutually node-disjoint.
From the paths p, p′, p1, . . . , pkϕ we obtain the mini-tree TΣ,ϕ by identifying the
node r′ϕ with qϕ, and by identifying each of the nodes rϕ

i with q′ϕ. Note that qϕ

is the unique node in TΣ,ϕ that satisfies qϕ ∈ [[Oϕ]], and q′ϕ is the unique node
in TΣ,ϕ that satisfies q′ϕ ∈ qϕ[[O′

ϕ]].
In the sequel, we will discuss how to construct an XML tree from TΣ,ϕ that

could serve as a counter-example for the implication of ϕ by Σ. A major step
in this construction is the duplication of certain nodes of TΣ,ϕ. To begin with,
we determine those nodes of TΣ,ϕ for which we will generate two value equal
copies in a possible counter-example tree. The marking of the mini-tree TΣ,ϕ is a
subsetM of the node set of TΣ,ϕ: if for all i = 1, . . . , kϕ we have Pϕ

i �= ε, thenM
consists of the leaves of TΣ,ϕ, and otherwiseM consists of all descendant-or-selfs
of q′ϕ in TΣ,ϕ. The nodes in M are said to be marked.

Example 2. The left of Figure 3 shows the mini-tree TΣ,ϕ for the key ϕ =
(ε, ( ∗.book, (author, {first,last})) and some Σ, where library is the fixed label
chosen from E− LΣ,ϕ. The marking of the mini-tree consists of its leaves (em-
phasised by ×). ��
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Fig. 3. A mini-tree and two witness graphs

We use mini-trees to calculate the impact of a key in Σ on a possible counter-
example tree for the implication of ϕ by Σ. To distinguish keys that have an
impact from those that do not, we introduce the notion of applicability.

Definition 2. Let TΣ,ϕ be the mini-tree of the key ϕ with respect to Σ, and let
M be its marking. A key σ is said to be applicable to ϕ if and only if there are
nodes wσ ∈ [[Qσ]] and w′

σ ∈ wσ[[Q′
σ]] in TΣ,ϕ such that w′

σ[[P σ
i ]] ∩M �= ∅ for all

i = 1, . . . , kσ. We say that wσ and w′
σ witness the applicability of σ to ϕ. ��

Example 3. Let Σ consist of the two keys σ1 = (ε, ( ∗.book, {isbn})) and σ2 =
( ∗.book, (author, {first,last})), and let ϕ = (ε, ( ∗.book.author, {first,last})). We
find that σ1 is not applicable to ϕ, while σ2 is indeed applicable to ϕ. ��

We define the witness graph GΣ,ϕ as the node-labelled digraph obtained from
TΣ,ϕ by inserting additional edges: for each key σ ∈ Σ that is applicable to
ϕ and for each pair of nodes wσ ∈ [[Qσ]] and w′

σ ∈ wσ[[Q′
σ]] that witness the

applicability of σ to ϕ, GΣ,ϕ should contain the edge (w′
σ, wσ). Subsequently,

we refer to these additional edges as witness edges, while the original edges from
TΣ,ϕ are referred to as downward edges of GΣ,ϕ. This is motivated by the fact
that for every witness wσ and w′

σ, the node w′
σ is a descendant-or-self of the

node wσ in TΣ,ϕ, and thus the witness edge (w′
σ , wσ) is an upward edge or loop

in GΣ,ϕ.

Example 4. Let Σ = {σ1, σ2} as in Example 3, and let ϕ be the key
(ε, ( ∗.book.author, {first,last})). The witness graph GΣ,ϕ is illustrated in the
middle of Figure 3. It contains a witness edge arising from σ2. ��

Example 5. Let Σ consist of the single key σ = ( ∗.book, (author, {ε})), and let
ϕ = ( ∗.book, (author, {first,last})). The witness graph GΣ,ϕ is illustrated in the
right of Figure 3. It does not contain any witness edges since σ is not applicable
to ϕ due to q′ϕ[[ε]] ∩M = ∅. ��

3.2 Reachability vs. Derivability

We show that if there is a dipath from q′ϕ to qϕ in GΣ,ϕ, then ϕ ∈ Σ+. In other
words, if ϕ /∈ Σ+, then there is no dipath from q′ϕ to qϕ in GΣ,ϕ.

The proof idea of the Main Lemma is illustrated in Figure 4. If there is a
dipath D from q′ϕ to qϕ in the witness graph GΣ,ϕ, then D takes the form
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illustrated in the left of Figure 4 resulting from applicable keys σ1, . . . , σn ∈ Σ.
For the existence of derivable keys applicable to ϕ we can assume without loss
of generality that Σ = Σ+

R. Notice that the context-target rule can be applied
to extend context paths by shortening target paths appropriately. Hence, there
are applicable keys in Σ that give rise to a dipath D′ from q′ϕ to qϕ that takes
the form illustrated in the middle of Figure 4. The inference rules from Table 2
show that there is a single key σ ∈ Σ that gives rise to a dipath D0 from q′ϕ to
qϕ in GΣ,ϕ illustrated in the right of Figure 4.
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Fig. 4. Proof idea of main lemma

Lemma 1 (Main Lemma). Let Σ ∪ {ϕ} be a finite set of XML keys in K. If
qϕ is reachable from q′ϕ in the witness graph GΣ,ϕ, then ϕ ∈ Σ+. ��

Example 6. In RSA the modulus n is the product of two large primes p
and q which are part of the user’s private key. Common modulus attacks
are avoided by choosing a distinct modulus n for each user, i.e., we spec-
ify the key (ε, (group.user, {private.p,private.q})) denoted by σ1. Let σ2 de-
note (group, (user.private, {p,q})) stating that private keys can be identified by
their prime numbers p and q relatively to the user’s group; and let ϕ denote
(ε, (group.user.private, {p,q})) stating that there are no two private keys that
contain the same primes p and q. Finally, let Σ = {σ1, σ2}. The mini-tree TΣ,ϕ

and witness graph GΣ,ϕ are shown as first and second picture of Figure 5, re-
spectively. We apply context-target to σ2 to derive (group.user, (private, {p,q}))
denoted by σ′

2. Let Σ′ = {σ1, σ
′
2}. The witness graph GΣ′,ϕ is shown as third

picture in Figure 5. An application of the interaction rule to σ1 and σ′
2 results

in ϕ which shows that ϕ ∈ Σ+, illustrated on the right of Figure 5. ��

3.3 An Illustration of the Completeness Argument

Let Σ ∪ {ϕ} be a finite set of keys in K such that ϕ /∈ Σ+. In order to show
completeness one needs to demonstrate that ϕ /∈ Σ∗. Indeed, we can construct
a finite XML tree T which satisfies Σ, but violates ϕ. Since ϕ /∈ Σ+ we know by
Lemma 1 that qϕ is not reachable from q′ϕ in GΣ,ϕ. Let u denote the bottom-most
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descendant-or-self of qϕ in TΣ,ϕ such that qϕ is still reachable from u in GΣ,ϕ.
Further, u must be a proper ancestor of q′ϕ because otherwise u and thus qϕ

were reachable from q′ϕ in GΣ,ϕ. Let T0 denote a copy of the path from r to u,
and T1, T2 denote two node-disjoint copies of the subtree of TΣ,ϕ rooted at u.
T1 and T2 are populated with text-leaves such that a node of T1 and a node of
T2 become value-equal precisely when they are copies of the same marked node
in TΣ,ϕ. The counter-example tree T is obtained from T0, T1, T2 by identifying
the terminal node of T0 with the roots of T1 and T2.

The left side of Figure 6 shows a counter-example tree T for the implication of
ϕ by Σ = {σ1, σ2} from Example 4. In this case, u is the single db-node in TΣ,ϕ,
and T1, T2 are two node-disjoint copies of the entire tree TΣ,ϕ. Furthermore, T1
and T2 carry the same text under their first -nodes and their last-nodes, respec-
tively, and carry different text anywhere else. T itself is obtained by identifying
the three copies of the db-node from T0, T1 and T2.
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Fig. 6. Counter-example trees for the implication of ϕ by Σ = {σ1, σ2} from Example 4,
and for the implication of ϕ by σ in Example 5

.

4 Deciding Implication

We will show in this section how our technique of proving completeness can
be applied to obtain an algorithm for deciding XML key implication in time
quadratic in the size of the constraints. Notice that the heptic time algorithm
from [9] is flawed since it is based on the soundness of the subnodes rule. Even
if only PLs expressions are considered for the key paths, the algorithm is still
flawed since it is based on the incomplete set S of inference rules.
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4.1 The Algorithm

The first step is to show that XML key implication can be completely charac-
terised in terms of the reachability problem of nodes in the witness graph.

Theorem 2. Let Σ ∪ {ϕ} be a finite set of keys in K. We have Σ |= ϕ if and
only if qϕ is reachable from q′ϕ in GΣ,ϕ. ��
Theorem 2 suggests to utilise the following algorithm for deciding XML key
implication. Our technique for proving the completeness of our inference rules
results in a very compact and easily comprehensible algorithm.

Algorithm 1 (XML Key-Implication)
Input: finite set Σ ∪ {ϕ} of XML keys

Output: yes, if Σ |= ϕ; no, if Σ �|= ϕ

Method:
(1) Construct GΣ,ϕ from Σ and ϕ;
(2) IF qϕ is reachable from q′ϕ in GΣ,ϕ THEN RETURN(yes)
(3) ELSE RETURN(no).

The correctness of Algorithm 1 is an immediate consequence of Theorem 2.

4.2 The Time Complexity

We analyse the time complexity of Algorithm 1. The problem of deciding whether
qϕ is reachable from q′ϕ in GΣ,ϕ can be solved by applying a depth-first search
algorithm to GΣ,ϕ with root q′ϕ. This algorithm works in time linear in the
number of edges of GΣ,ϕ [23]. Since the number of nodes in GΣ,ϕ is just |ϕ|+1,
step (2) of Algorithm 1 can be executed in O(|ϕ|2) time. It therefore remains to
investigate the time complexity for generating the witness graph GΣ,ϕ from Σ
and ϕ. This can be done as follows:

1. Initialise GΣ,ϕ with TΣ,ϕ;
2. For all σ ∈ Σ, add the edge (w′

σ, wσ) to GΣ,ϕ whenever wσ and w′
σ witness

the applicability of σ to ϕ (and the edge does not already exist).

A semi-naive way to execute the last of these steps is to evaluate w′
σ[[P σ

i ]] for
i = 1, . . . , kσ, for all w′

σ ∈ wσ[[Q′
σ]] and all wσ ∈ [[Qσ]]. Recall that a query of the

form v[[Q]] is a Core XPath query and can be evaluated on a node-labelled tree
T in O(|T | × |Q|) time [18]. Hence, we can evaluate w′

σ[[P σ
i ]] for all i = 1, . . . , kσ

in time O(|ϕ|× |σ|). Since [[Qσ]] and wσ[[Q′
σ]] contain at most |ϕ| nodes each, this

step can be executed in O(|ϕ|3 × |σ|) time for each σ. If ||Σ|| denotes the sum
of all sizes |σ| for σ ∈ Σ, then we need O(||Σ|| × |ϕ|3) time to generate GΣ,ϕ.

Using a more involved analysis of witness edges, we can show that qϕ is
reachable from q′ϕ in GΣ,ϕ if and only if qϕ is reachable from q′ϕ in HΣ,ϕ -
where HΣ,ϕ is a subgraph of GΣ,ϕ in which certain witness edges are omitted.
Moreover, HΣ,ϕ can be computed in time O(||Σ|| × |ϕ|). Hence, we obtain:

Theorem 3. Let Σ ∪ {ϕ} be a finite set of XML keys in K. The implication
problem Σ |= ϕ can be decided in O(|ϕ| × (||Σ||+ |ϕ|)) time. ��
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5 Future Work

One area that warrants future research is the study of keys with respect to
more expressive path languages [5,13,25,26,34]. In particular, the problems of
axiomatising and developing efficient algorithms that decide the implication of
XML keys as defined in [9] are still open.

A different way of increasing the expressiveness is to view keys from a differ-
ent angle. Indeed, keys restrict the number of nodes, which have the same value
on certain selected subnodes, to 1. It is therefore natural to introduce numerical
keys that simply restrict the number of nodes, having the same value on cer-
tain selected subnodes, to an arbitrary finite number. We can axiomatise this
class of XML constraints and provide practically efficient algorithms to reason
about them. Due to lack of space we omit details. Efficient reasoning about such
constraints allows to precompute upper bounds on the number of query answers.

6 Conclusion

We have reviewed the key constraint language for XML [8,9] and observed that
their axiomatisation [9] is not sound for XML key implication in general [9] and
not complete even for XML keys with simple key path expressions [8]. Based
on this observation we have provided an axiomatisation of XML keys as defined
in [8]. Our technique allows us to characterise XML key implication in terms of
the reachability problem for nodes in a digraph. This results in a first correct
decision procedure, that is also practically efficient, i.e., quadratic in the size
of the input. Keys form a very natural class of XML constraints that can be
utilised effectively by designers, and the complexity of their associated decision
problems indicates that they can be maintained efficiently by database systems
for XML applications.
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Abstract. With the rise of XML as a standard model of data exchange, XML
functional dependencies (XFDs) have become important to areas such as key
analysis, document normalization, and data integrity. XFDs are more compli-
cated than relational functional dependencies because the set of XFDs satisfied
by an XML document depends not only on the document values, but also the tree
structure and corresponding DTD. In particular, constraints imposed by DTDs
may alter the implications from a base set of XFDs, and may even be inconsistent
with a set of XFDs. In this paper we examine the interaction between XFDs and
DTDs. We present a sound and complete axiomatization for XFDs, both alone
and in the presence of certain classes of DTDs; we show that these DTD classes
induce an axiomatic hierarchy. We also give efficient implication algorithms for
those classes of DTDs that do not use disjunction or nesting.

1 Introduction

Functional dependencies have proved to be a very useful class of integrity constraints
for traditional database systems. They are integral to key analysis, normalization, and
query optimization [1]. As XML is increasingly becoming the standard model of data
exchange, there is much interest in formulating a definition of XML functional depen-
dency. In addition to the benefits found in relational databases, a proper XFD definition
would also aid in many new areas, such as verifying data consistency, preserving se-
mantics during data exchange, and XML-SQL translation [10].

Several different XFD definitions have been suggested [3,20,14,19,16,13]. The major
XFD definitions are similar to the relational definition except that, instead of attributes
and table rows, they use path identifiers and subtrees. Informally, these definitions say
that an XFD A → B is satisfied in a document if, for any two subtrees, whenever
they agree on the paths in A, they also agree on the paths in B. The definitions differ
primarily in how they choose subtrees, specify path identifiers, or test equality between
XML nodes.

XFDs differ from their relational counterparts in that they must take into account
the tree structure of XML documents. For example, a language for defining XFDs must
allow us to specify when one path is a prefix of another. Another issue is the definition
of equality: nodes can be compared by identity or value equality. In the relational model,
no duplicate tuples are allowed, and so value equality is sufficient in FDs. However, in
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an XML document, we can have two different subtrees that are isomorphic and have
exactly the same values. This is a clear instance of data duplication, but one allowed
by the data model. Therefore, if XFDs are to be used for keys or normalization, they
must be able to detect identity (in)equality between nodes. Finally, as XML represents
semi-structured data that is often incomplete, XFDs must properly handle null values.

The implication problem is fundamental to all of the applications mentioned
above [1]; hence this has been the focus of much of the work on XFDs. There are
two important approaches to the implication problem. One approach is that of efficient
decision algorithms, which allow us to determine whether an XFD is implied by a set of
XFDs; some feasible decision algorithms have been discovered already [3]. The other
approach is axiomatization, which often gives us slower decision algorithms, but which
is important for understanding the underlying theory of XFDs [1]. For example, every
child XML node has a unique parent node. Thus for any two path identifiers q and p,
where p is an identifier for the parent of q, every XML document satisfies the XFD
q → p. A decision algorithm would allow us to check for each specific instance of
parent-child p, q that q → p holds. However, an axiomatization would allow us to prove
this entire general class of XFDs.

Fig. 1. XML Document for Medical Admissions

The implication problem becomes more complicated in the presence of a DTD. Con-
sider the XML document illustrated in Figure 1. This document represents admissions
at a special charity hospital and has the following entry in its DTD:

<!ELEMENT patient (name,DOB,insurance?,doctor,doctor)>

In particular, each patient must have a recommendation from exactly two doctors (who
are unordered), and may or may not have insurance. Note that in this DTD, every pa-
tient has exactly one name node. So every document conforming to this DTD must
satisfy the XFD p → q, where p is a path identifier for a patient node, and q is a path
identifier for the name node of that patient. This suggests that we should be able to
use the structure of a DTD to make deductions about classes of XFDs satisfied by con-
forming documents. While there are several decision algorithms for XFDs conforming
to certain classes of DTDs, to our knowledge there is no existing sound and complete
axiomatization for XFDs with identity equality in the presence of a DTD.
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1.1 Contributions

This paper is a study of the theory of XFDs and their interaction with various classes of
DTDs, focusing on axiomatization and the implication problem. In this paper, we make
the following contributions.

– We adapt the definition of XFDs presented in [3] to include documents without a
DTD so that we can identify the base theory of XFDs.

– We adapt the chase algorithm to XFDs, and use it to improve existing bounds on
the implication problem for XFDs, in some cases to linear time.

– We use the chase to formulate the first sound and complete axiomatization for XFD
implication (using identity equality), in the absence of a DTD.

– We expand these techniques to explore the interactions between XFDs and several
classes of DTDs. In particular, for all DTDs that can be rewritten without disjunc-
tion or nesting, we present an efficient chase algorithm for checking implication, as
well as a sound and complete axiomatization of the same problem.

The remainder of the paper is organized as follows: Section 2 introduces the prelim-
inary notation, while Section 3 presents our definition of XFDs. Sections 4 and 5 are
devoted, respectively, to the implication problem in the absence and in the presence of
a DTD. We discuss related work in Section 6 and conclude in Section 7.

2 Preliminaries

2.1 The Document Model

Throughout this paper, our notation is similar to that in the literature [3], though with
some noticeable differences. These differences are necessary because this existing no-
tation requires that an XML document have a corresponding DTD. In order to study the
theory of XFDs, we need to decouple the definition of an XFD from a DTD.

Our model for an XML document is a tree representing the underlying DOM struc-
ture. We associate each part of the document, including text and attribute data, with a
labeled node in the tree. For these labels, we have two disjoint sets EL and VAL. The
set EL is the label alphabet for the XML nodes and the attribute names, while VAL is
the alphabet of attribute values.

Formally, our model is the same in as Arenas and Libkin [3] with only two minor
modifications. First, our alphabet EL contains two special elements ρ and α. The label
ρ is used to identify the unique root element of each XML tree. This corresponds to
the <?xml> tag in an XML document, and is necessary because documents without a
DTD have no constraints on the root label.

The label α is used to decouple an attribute from its value. Within any XML docu-
ment, an attribute is split into two tree nodes: one for its identifier and one for its value.
The value node is labeled by α, and is the sole child of the identifier for that attribute.
Furthermore, we have a function that maps each α node to is value in VAL. The intro-
duction of α is a purely technical device; it simplifies the notation in settings where we
need to refer to both the address and the value of attribute nodes.

To illustrate this model, consider the XML document from Figure 1. Our model
would represented this document by the labeled tree in Figure 2.
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Fig. 2. Encoding of Medical XML Document

A path identifier is a finite list of labels in EL. For clarity, we separate the elements in
a path identifier by periods, such as ρ.admissions.patient. We say that a path identifier
p occurs in a tree T if there is a path v1, v2, · · · vn in T such that the labels for the vi

form a string equal to p. For the rest of the paper, we refer to path identifiers as paths,
with the understanding that a single identifier may represent more than one actual path
in the tree. We say that a path is rooted if its first identifier is ρ. We denote the set of all
rooted paths that occur in T as paths(T ); note that this is a prefix-closed set.

Finally, we work with two kinds of equality on the nodes of T : identity equality
and value equality. We compare internal tree nodes by identity; on the other hand, we
compare α leaf nodes by their value in VAL.

2.2 DTDs

Our definition of a DTD is the standard one [3], namely a pair D = (E, P ), where
E is a finite subset of EL and P is a set of productions that map elements of E to
regular expressions over E. As in the definition in Arenas and Libkin [3], we ignore
order in these regular expressions. This is acceptable because XFDs are not influenced
by document order.

It is usual notation, when working with DTDs, to use arrows in the notation for
productions (i.e. a → bc∗). In this paper, we need to avoid a notational conflict with
another sense of →, which is used for XFDs. Therefore, we use � instead for DTD
productions. Informally, a document T satisfies D, written T � D, if for each node
v, the labels of the children of v can be produced from the label for v via P . A more
formal definition is available in Arenas and Libkin [3].

We assume that all DTDs considered from now on are consistent (i.e. there is at least
one finite tree satisfying the DTD). Furthermore, we denote by paths(D) all the possible
rooted paths that may occur in any T such that T � D.

We now define several classes of DTDs, according to the complexity of the regular
expressions present in the productions. Bear in mind that we disregard order in defin-
ing these classes. Our DTD classes form a hierarchy and they are described below in
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increasing order of generality. We note that given a DTD, deciding which class it be-
longs to may be nontrivial in the worst case. However, we do not expect this to be an
issue in practice, as humans do not typically write DTDs with complex nested regular
expressions.

Simple DTDs: Our definition of a simple DTD is similar to that given in Arenas and
Libkin [3]. Given an alphabet A, a regular expression over A is called trivial if it is
of the form s1 · · · sn, where for each si there is a letter ai ∈ A such that si is either
ai, ai?, a+

i or a∗
i , and for i �= j, ai �= aj . A simple DTD is one where the right-hand

side of any production is trivial. An example of a simple DTD is

ρ � ab∗, a � c∗, b � d+e∗

#-DTDs: #-DTDs are a proper extension of simple DTDs. This extension allows pro-
ductions having more than one occurrence of the same alphabet symbol (the # is in-
tended to represent the concept of number). In other words, a #-DTD is an simple DTD
which allows the right hand side to contain expressions of the form an

i . This class in-
cludes any DTD which does not use disjunction or nesting in its productions. (Nesting
refers to parenthesised expressions in productions such as ρ � (aab)+, which induces a
correlation on the numbers of a and b children of the root). An example of a non-simple
#-DTD is

ρ � aaab∗, a � c∗, b � ddeee∗

The DTD for the example in Figure 1 is a concrete example of a #-DTD. Every
patient must have two recommending doctors. We give no preference to either doctor,
and we may want to assert an XFD from the license number of a doctor to its text
content, so we do not wish to give the doctors different tags.

Arbitrary DTDs: Arbitrary DTDs represent the most general class of DTDs. They
allow all features, including arbitrary disjunction and nesting.

2.3 Mapping an XML Tree to a Nested Relation

Many existing definitions of XFDs implicitly rely on the nested relational structure of
XML documents. In order to use the existing theory of relational functional dependen-
cies, we make this connection explicit. To each tree T , we associate a nested relation
R(T ), which we unnest to a flat relation U(R(T )). Note however, that this translation
is conceptual only; we do not normally materialize U(R(T )).

In this section, we give a high-level illustration of U(R(T )); a more formal con-
struction, together with a discussion of the close relationship between U(R(T )) and
tuplesD(T ) from Arenas and Libkin [3], appears in the expanded version of this paper
[15]. Our illustration makes use of the example in Figure 3. We have separated the tree
elements vi from their labels in EL to make clear the difference between nodes and their
labels.

We start with a tree T for an XML document. First, we must normalize the tree to
make it suitably homogeneous. For each path p that occurs in T , we take each prefix
q of p. For each occurrence of q in T , we guarantee that q can be extended to a path
matching p by adding special null nodes as necessary. In Figure 3, ρ.a.b.f.α matches a
path in the tree, so we have to extend the second path matching ρ.a.b with null nodes
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Fig. 3. Mapping an XML Document to an Unnested Relation

to extend it to ρ.a.b.f.α. If we add only one instance of every required null node, the
normalization is unique.

After normalizing the tree, we take each maximal rooted path p occurring in the tree.
We make a table with an attribute for each non-empty prefix of p. For each match to
p in the normalized tree, we construct a row in this table. In this case, each attribute
corresponds to a unique node v and we assign this attribute v if v is an internal node
(i.e. the label is not α) or is null; otherwise we assign it the attribute value for α in VAL.
The top table on the right hand side of Figure 3 represents the table for the path ρ.a.c.α.

We then join all of these tables together. For each pair of tables, we use the common
prefix of the pair as our join key. The bottom table on the right hand side of Figure 3 is
the result of joining the tables for ρ.a.b.e.α and ρ.a.b.f.α.

3 XML Functional Dependencies

Given the basic notation, we can now define XFDs, and describe the implication and
consistency problems. As we mentioned before, our definition of XFDs must account
explicitly for the possibility of null values. Several means of handling null values have
been suggested for the relational model [4,17]. We adopt the definition in [4], which is
also the one used in Arenas and Libkin [3]: given a relation R over a set of attributes U
and A, B ⊆ U , A→ B holds if for any two tuples t1, t2 ∈ R that agree and are nonnull
on all of A, the ti are equal (though possibly both null) for each attribute in B.

3.1 Tree Patterns and Functional Dependencies

Relational functional dependencies are defined on tuples in the relation. The corre-
sponding notion for an XML tree is a match for a tree pattern. Syntactically, a tree
pattern ϕ is a document in which none of the attribute nodes (i.e. nodes labeled α) are
yet mapped to a value in VAL. A simple pattern is a tree pattern where no node has two
children with the same label l ∈ EL. In a simple pattern, every rooted path occurs at
most once; from now, we assume that all patterns are simple.
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In order to use tree patterns to define XML functional dependencies, we must first
define what it means to match a pattern in a document T . Intuitively, we want to match
the pattern in the document “as far as possible”, allowing incomplete matches only
when the document does not allow a full match. Formally, given a tree T and a pattern
ϕ, a match for ϕ in T is a function μ : nodes(ϕ) → nodes(T ) ∪ {null} where

– μ maps the root of ϕ to the root of T .
– For all nodes v, μ(v) is either null, or it preserves the label of v.
– If v′ is a child of v and μ(v′) is not null, then μ(v) is also not null and μ(v′) is a

child of μ(v).
– If v′ is a child of v and μ(v′) is null while μ(v) is not, then μ(v) could not have had

any child with the same label as v′ (i.e. no “premature” null values are allowed).

For any path p ∈ ϕ, we use μ(p) to represent the image under μ for the node at the end
of this path. We letMϕ,T = {μ |μ is a match for ϕ in T }.

Fig. 4. Sample Tree Pattern Matches

Definition 1. A functional dependency σ = A → B consists of two subsets A, B ⊆
PATHS. We let ϕ(σ) be the smallest tree pattern (with respect to number of nodes) in
which all paths in A and B occur; note that this pattern is unique. Furthermore, we
let =fd be an equality relation that compares nodes by identity equality if they are not
attribute nodes (i.e. labeled by α), and by value equality otherwise. The dependency
holds if, for any two matches μ1, μ2 ∈ Mϕ(σ),T , whenever we have μ1(p), μ2(p) �=
null and μ1(p) =fd μ2(p) for all p ∈ A, then for all q ∈ B, either μ1(q) = μ2(q) =
null or μ1(q) =fd μ2(q).

We illustrate this definition in Figure 4. Recall that our patterns are simple, and so each
path in the pattern must occur exactly once. This means that there are only two matches
for the pattern ϕ(ρ.a.b.e.α → ρ.a.b.f) within this tree; no match for a simple pattern
can contain both v7 and v6. If x �= z then the corresponding XFD is satisfied, otherwise
it is not, as the f node is null in one match and non-null in another. Similarly, there
are four matches for the pattern ϕ(ρ.a.b → ρ.a.c) in Figure 4; this XFD can never be
satisfied in this tree.
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Lemma 1.

1. A tree pattern XFD A → B holds on T if and only if the relational FD A → B
holds on U(R(T )).

2. Tree tuple XFDs [3] are expressible as tree pattern XFDs.

3.2 The Implication Problem

Our primary area of focus is the implication problem. Given an XFD σ and document
T , we write T � σ to mean σ holds in T . Given a set Σ, we write T � Σ if every
τ ∈ Σ holds in T . Finally, we write Σ � σ to mean that, for all T � Σ, T � σ.
Similarly, for a DTD D, Σ �D σ means that, for any T � Σ and T � D, we have
T � σ. Given (Σ, σ) [or in the case of a DTD, (Σ, σ, D)], the implication problem is
to decide whether Σ � σ) [respectively, Σ �D σ].

As in the relational literature, we allow implication to be unrestricted (i.e. the docu-
ments can be potentially infinite). However, finite and unrestricted implication coincide
in the absence of a DTD, and in the presence of a nonrecursive DTD [15]. Dealing with
unrestricted implication means that we have to be able to reason about trees of infinite
height and/or branching. However, for any particular problem instance, we need only
consider a finite subtree of any document. For details, see [15].

In our chase algorithm, we will assume that each instance (Σ, σ) is given so that σ
has the form A → b, with b a single path, and all C → d ∈ Σ have a single path on
the right-hand side as well. As we will see from the soundness of our axiomatization
in Section 4.2, this assumption is without loss of generality. By making it, we can give
a clearer presentation and properly compare our complexity results with existing work,
which makes the same assumption [3]. If our input is not in this form, conversion is
polynomial, so tractability is not affected.

4 Implication Without a DTD

Before we understand how DTDs affect the XFDs satisfied by a document, we must
first understand the theory of XFDs alone.

4.1 Chase Algorithm for XFD Implication

This section presents a fast algorithm for deciding XFD implication. This algorithm
is essentially the standard chase algorithm adapted to XML documents. Suppose σ =
A→ b. We set up a tableau T as follows: there are two rows, and one column for every
path (and prefix of a path) in A and b. In the ρ column and in each column corresponding
to a path in A itself, we insert two identical variables from some indexed set {vi}i∈I ;
however, no variables are repeated between columns. For all other entries in the tableau,
we assign unique variables.

Consider, as an example, the dependency {ρ.a.b, ρ.a.c} → ρ.a.d.e. This corresponds
to the tableau in Figure 5. Next, we define the set Σ̂ of functional dependencies that are
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used to chase on T . We let X be the set of attributes of T (equal to paths(ϕ(σ))); Σ̂
consists exactly of Σ plus the following additional dependencies:

– p.d→ p for every p.x ∈ X, x ∈ EL (non-attribute parents are unique).
– p → p.α for every p.α ∈ X (attributes have unique values).

ρ ρ.a ρ.a.b ρ.a.c ρ.a.d ρ.a.d.e

v1 v2 v3 v4 v5 v7

v1 v9 v3 v4 v6 v8

Fig. 5. Tableau for {ρ.a.b, ρ.a.c} → ρ.a.d.e

The algorithm now involves chasing with Σ̂. At each step of the chase we have a
dependency C → d and attempt to unify the two variables in the d column. This is a
legal move if either (or both) the following hold:

1. All C column values of both rows are equal.
2. Let q be the longest prefix of d on which the two rows agree. The rows agree on all

paths in C of the form q.x.t, x ∈ EL, where q.x is a prefix of d.

The correctness of the first chase rule is clear, as it is the standard one. To understand the
second rule, consider the tableau T represented by the first two rows in Figure 6, and
suppose we are chasing with the dependency {ρ.a.b, ρ.a.c} → ρ.a.c.f . This tableau
corresponds to the tree on the right hand side of Figure 6. However, when we convert
this tree T back to its relation U(R(T )), the tree structure gives us two additional rows
to the tableau. And from these two new rows we see that we need to unify v8 and v9 to
satisfy our dependency.

Fig. 6. Chasing with {ρ.a.b, ρ.a.c} → ρ.a.c.f

One way to solve this problem is to construct our tableau so that it is closed under
transformation to a tree and back to U(R(T )). However, the size of this tableau could
be exponential in the size of our XFD σ. Fortunately, the regularity of the tree structure
makes this unnecessary. We see that the two rows in the tableau for Figure 6 have the
same value of ρ.a.c. As ρ.a.b is a branch independent of ρ.a.c, the tree structure ensures
that the equality between the values for ρ.a.c is enough to unify ρ.a.c.f . The second
chase rule generalizes this idea, allowing us to restrict our chase to just two rows.

When the chase terminates (as it clearly must), we can construct a tree Tchase from
the tableau. By the following theorem, the values in the two columns for d are equal if
and only if Σ � σ.
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Theorem 1. After the chase terminates, Tchase � σ if and only if Σ � σ.

Computing the chase naively is O(|Σ||σ|). We have at most |σ| iterations of the outer
loop, and finding a dependency that satsifies either rule 1 or rule 2 requires a scan of
Σ. There is the issue that we are chasing with Σ̂ and not Σ. However, the functional
dependencies in Σ̂ \ Σ depend on a single column and can be attached to that column
for constant time evaluation.

It is easy to create a data structure that tracks, for each C → d ∈ Σ, the greatest
prefix of d unified in the chase so far. This allows us to adapt rule 2 to the linear time
chase presented in Beeri and Bernstein [5]. We refer the reader to [15] for details.

Corollary 1. Given (Σ, σ), implication can be decided in O(|Σ|+ |σ|) time.

4.2 Axiomatization

Nonnull constraints and fictitious functional dependencies. Given the chase algo-
rithm, we can now extract an axiomatization using traditional techniques[1]. Our ax-
iomatization requires that our axiom language be able to express two additional types
of constraints on XML documents. The first are the nonnull constraints; intuitively, cer-
tain nodes in a tree may not be null provided that certain other nodes are not null. For
example, the root may never be null, and every nonnull node must have a nonnull par-
ent. Formally, for A, B ⊆ PATHS, we say that nn(A, B) if in the smallest tree pattern
for A and B, whenever the paths in A are not null, neither are the paths in B.

The second constraint is a variation on the FD concept. Following Atzeni and Mor-
funi [4], we refer to these constraints as fictitious functional dependencies (FFDs).

Definition 2. A fictitious functional dependency σ = A
C→ B consists of three subsets

A, B, C ⊆ PATHS. We let ϕ(σ) be the smallest tree pattern in which all paths in A,
B, and C occur, and let =fd be as in a normal XFD. The dependency holds if, for any
two matches μ1, μ2 ∈ Mϕ(σ),T , whenever we have μ1(p) =fd μ2(p) for all p ∈ A,
and μ1(s) �= null for all s ∈ C, then for all q ∈ B, either μ1(q) = μ2(q) = null or
μ1(q) =fd μ2(q).

It is absolutely essential to note that the condition μ1(p) and μ2(p) �= null for all p ∈ A,
present for ordinary XFDs, is missing from the above definition. Thus the matches are
now no longer required to be nonnull on A, only equal. For example, suppose we add
an additional node v13 to the tree in Figure 3; we add this node as a child of v2 and
label it e (the label of v7). Then this tree satisfies the XFD ρ.a.b.f → ρ.a.e because
there is a unique occurrence of each path below v1, but it does not satisfy the FFD

ρ.a.b.f
ρ.a.b→ ρ.a.e.

The Axiomatization. To axiomatize XFDs, we start with the axioms that Atzeni and
Morfuni [4] introduced for relation FDs in the presence of null values. We let
X, Y, Z, W ⊆ PATHS. The following set of 12 axioms are sound and complete for
relational FDs in the presence of nulls.

1. If Y ⊆ X , then nn(X, Y ).
2. If nn(X, Y ) then nn(XZ, Y Z).
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3. If nn(X, Y ) and nn(Y, Z) then nn(X, Z)
4. If Y ⊆ X , then X → Y
5. If X → Y , then XZ → Y Z
6. If X → Y and X → Z , then X → Y Z
7. If X → Y Z, then X → Y and X → Z

8. If Y ⊆ X ⊆ Z then X
Z→ Y (reflexivity for FFDs)

9. If X
Z→ Y and W ⊆ Z , then XW

Z→ Y W (augmentation for FFDs)

10. If X
W→ Y and Y

W→ Z then X
W→ Z (transitivity for FFDs)

11. If X → Y and X ⊆ Z then X
Z→ Y (FDs to FFDs)

12. If X
Z→ p and nn(Xp, Z) then X → p (FFDs to FDs)

We introduce an additional technical axiom for working with FFDs.

13. If X
Z→ Y and nn(W, Z) then X

W→ Y

Furthermore, we need several axioms to capture the tree structure of an XML document.
We let p, q ∈ PATHS, q is a prefix of p, x, y ∈ EL, x �= α.

14. nn(ρ) (root is never null)
15. X → ρ (root is unique)
16. nn(p, q) (if a node is not null, neither are any of its ancestors).
17. p.x→ p (every non-attribute child has a unique parent).
18. p → p.α (unique attribute child)

Finally, we need one axiom to capture the ability to “splice” paths together as we saw
with the second chase rule illustrated in Figure 6. For this axiom, if s ∈ PATHS, let s.Y
denote a set of paths all having s as a prefix.

19. If X, q.Y
Z→ q.y.s, q not a prefix of any path in X , where X, q.Y ⊆ Z and

q.y.W ⊆ q.Y includes all paths in q.Y with q.y as a prefix, then q, q.y.W
Z→ q.y.s.

Theorem 2. Axioms 1-19 are sound and complete for XFD implication without a DTD.

5 XFDs in the Presence of a DTD

Our chase algorithm and axiomatization for XFDs can be extended to documents that
conform to certain classes of DTDs.

5.1 Simple DTDs

The chase algorithm. It is possible to modify our chase algorithm from Section 4.1
to include the presence of a simple DTD. For a problem instance (Σ, σ), we set up
the tableau exactly as before, with a column for every path and prefix of a path in
ϕ(σ). However, in addition, we add a column for every path p ∈ paths(Σ) such that D
enforces nn(ϕ(σ), p).

As before, we define the extension Σ̂ of Σ. However, we also add XFDs of the form
p.d1 → p.d1.d2 for every column p.d1.d2 such that D contains a production of the form
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d1 � d2γ or d1 � d2?γ, d2 /∈ γ. These additional XFDs represent the unique child
constraints specified by D.

With this new tableau and Σ̂ we run the chase as before; the values in the b column
are equal if and only if Σ �D σ. To see this, we construct a tree Tchase from the
tableau. Note that this tree may not satisfy the DTD D; however, we can extend Tchase

to a document 〈Tchase〉D that does.

Theorem 3. After the chase terminates, 〈Tchase〉D � σ if and only if Σ �D σ.

The only additional cost for running this chase comes from the additional number of
columns and the additional XFDs for the DTD D. This allows us to improve on the
previous quadratic bound obtained in [3] for this variant of the implication problem:

Corollary 2. Given (Σ, σ, D) with D a simple DTD, implication can be decided in
O(|Σ|+ |σ|+ |D|) time.

Axiomatization. To axiomatize XFD implication for simple DTDs, we need only ac-
count for the additional XFDs that we added to Σ̂ in the chase. However, instead of an
additional axiom, we add an axiom schema. That is, the actual axioms depend on our
DTD D, but we have a single schema for specifying these axioms from the DTD.

Theorem 4. In the presence of a simple DTD D, a sound and complete set of axioms
for (unrestricted) XFD implication includes exactly Axioms 1-19 from Section 4.2 with

20. nn(p.x, p.x.y), for each production x � yγ, x � y+γ ∈ D
(i.e. the DTD does not allow certain children to be null).

21. p.x→ p.x.y, for each production x � yγ, x � y?γ ∈ D, where γ ∈ (EL−{y})∗
(i.e. XFDs enforced by the DTD).

5.2 #-DTDs

The implication problem in the presence of #-DTDs is more complicated because it
is possible for these DTDs to be inconsistent with an XFD. Consider the DTD of the
example in Figure 1, with the XFD p → q, where p is a path identifier for a patient, and q
is a path identifier for a recommending doctor. This XFD is inconsistent with our DTD;
there is no document that can satisfy both the DTD and the functional dependency.

For many classes of DTDs, consistency is trivial, in the sense that there is no set
of XFDs inconsistent with the DTD. #-DTDs are the lowest class in our hierarchy for
which consistency becomes an issue. Consistency and implication are in fact related
problems, as the former can be reduced to the latter [11].

However, in our extension of the chase algorithm and our axiomatization to #-DTDs,
we solve the consistency problem directly. In particular, given an instance (Σ, σ, D)
of an implication problem, if Σ and D are inconsistent then Σ �D σ is trivially true.
Therefore, out algorithm for deciding implication in the presence of #-DTDs starts by
checking for inconsistency directly, in order to rule out this case.

To make this possible, we introduce a quadratic time algorithm for checking con-
sistency of a set of XFDs Σ with a #-DTD. In this paper, we only present a naı̈ve
exponential algorithm. The details of the polynomial algorithm can be found in [15].
Our algorithm rests on the fact that issues of consistency can be decided on the smallest
tree satisfying D.
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Lemma 2. Let TD be the smallest tree such that TD � D. (Σ, D) is consistent if and
only we can assign attribute values to any α-nodes in TD so that TD � Σ.

With this in mind, our algorithm is as follows:

1. Construct the minimal TD from D. Initialize all the attribute nodes to different
values from VAL, and convert TD to the flat relation U(R(TD)).

2. Partition Σ into Σa, which contains all the XFDs with an attribute node on the
right-hand side, and Σi = Σ \Σa.

3. Treat U(R(TD)) as a very large chase tableau, and perform a standard relational
chase (no use of the second rule) on it with Σ. Any unification from Σa is allowed
to proceed normally, but any attempt at a unification from Σi causes the algorithm
to return “no”.

4. If the chase completes successfully, return “yes”.

Lemma 3. There is an assignment of attribute values to attribute nodes of TD under
which TD � Σ if and only if the algorithm returns “yes”.

This algorithm is possibly exponential because of the duplicate paths that may appear
in TD, resulting in a large U(R(TD)). However, using special encoding techniques to
compress duplicate paths, we can implement this algorithm in polynomial time.

Proposition 1. Given a pair (Σ, D) where D is a #-DTD, checking consistency re-
quires O(|D| + |Σ|2) time.

The chase algorithm. As we mentioned above, our first step in handling any implica-
tion problem instance (Σ, σ, D), is to determine whether (Σ, D) is consistent. A second
special situation that can arise is that, while Σ is consistent with D, we cannot have a
tree T such that T � D, T � Σ and T contains even one nonnull match for all of ϕ(σ).
This can happen, for instance, in the case where D has productions ρ � a∗b, a � cc,
Σ = {ρ.a → ρ.a.c} and σ = ρ.b → ρ.a. Clearly there is only one tree satisfying D
and Σ: the tree consisting of the root and one b child. On this one tree, σ also holds,
precisely because there is no nonnull match for all of ϕ(σ). In cases like this one also,
Σ �D σ vacuously. Fortunately, we can adapt our consistency checking algorithm to
check for this case as well, without affecting the complexity.

Having ruled out the above two “pathological” cases, we can decide implication by
using exactly the same chase that we used for simple DTDs. That gives us the result
below. This proof of this theorem is quite technical; see [15].

Theorem 5. Given (Σ, σ, D) where D is a #-DTD, implication can be decided in
O(|Σ|2 + |σ|+ |D|) time.

Axiomatization. To axiomatize implication for #-DTDs, we need to account for the
two pathological cases described above. Mathematically, the pathological cases arise
because the DTD prevents certain XFDs from holding unless all matches of the left-
hand side are null. Again, this requires the introduction of an axiom schema.

Theorem 6. In the presence of a simple DTD D, a sound and complete set of axioms
for (unrestricted) XFD implication includes exactly Axioms 1-21 from Section 5.1 with

22. If p.x
X→ p.x.y, then for W

X,p.x→ Z , for all W , Z and all x � yyγ ∈ D.
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5.3 Arbitrary DTDs

It is known that the presence of even very limited disjunction in a DTD makes the
complexity of the implication problem rise to co-NP complete. For arbitrary DTDs,
implication is co-NP hard and computable in co-NEXPTIME, while consistency is NP-
hard and computable in NEXPTIME [2].

As for axiomatization, Arenas and Libkin [3] have shown that axiomatization is also
difficult in the presence of disjunction; they prove that in their axiom language (which
is less rich than ours) no finite axiomatization is possible for arbitrary DTDs. We note,
however, that this result need not carry over to all possible axiom languages.

6 Related Work

In the relational model, functional dependencies [1] and chase algorithms [1,5] have
been studied extensively. Our axiomatization draws on the theory developed for rela-
tional FDs in the presence of null values [4,17]. Functional dependencies have also been
studied for nested relations [12].

In XML, functional dependencies have attracted much research attention
[3,20,14,19,16,13]; see [21] for a survey. Our work uses a definition of XFD that is
equivalent to the one in [3]; we have highlighted throughout the paper how our results
extend these. The other FD definitions in the literature differ from ours in several ways.
However, we believe that our definitions allow us to strike a good balance between gen-
erality of the framework and the ability to obtain strong tractability and axiomatization
results.

Finally, there has been much work on other constraints in XML documents, no-
tably keys [7], foreign keys [11], path constraints [8] and XICs [9]. For a recent, gen-
eral survey on XML constraints, see [10]. DTDs are known to interact in a complex
fashion with keys [11] and to affect the satisfiability and containment of XPath
queries [18,6].

7 Future Directions

Several areas emerge as obvious directions for future work. While we know that ax-
iomatization and the implication problem become intractable in the presence of dis-
junction, these problems are still open for DTDs with nested operations. In addition,
the language used in the definition of XFDs can be made richer, for instance by adding
wildcard descendant navigation to our tree patterns. Furthermore, our investigation of
XFD interaction with DTDs can be broadened to include other popular XML constraint
specifications, such as XML Schema.
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Abstract. The first aim of this paper is to present the logical core of
XPath 2.0: a logically clean, decidable fragment, which includes most
navigational features of XPath 2.0 (complex counting conditions and
data joins are not supported, as they lead to undecidability). The sec-
ond aim is to provide a list of equations completely axiomatizing query
equivalence in this language (i.e., all other query equivalences can be
derived from these).

The introduction of Core XPath, the navigational core of XPath 1.0 [8], has
been a very fruitful move. It has given rise to many new results enhancing our
understanding of XPath. The full language of XPath 1.0 is too rich for a rigorous
logical analysis, and Core XPath is a concise and well defined sublanguage, for
which a detailed analysis is feasible (e.g., concerning its expressive power and
complexity). Many of these results were established by relating Core XPath to
other, more familiar logical languages on trees such as first-order logic or MSO,
and applying known results and techniques for the latter.

XPath 2.0, the successor of XPath 1.0, has received less attention in the
theoretical literature. In particular, no concrete proposal for its logical core has
been made. One feature of XPath 2.0 is that it is expressively complete for first-
order logic (in fact, it was designed to be). This does not mean that there are
no interesting and challenging open problems for this language! In this paper we
address one interesting problem, concerning query equivalence.

We identify the logical core of XPath 2.0, which we call Core XPath 2.0, and
we present a complete axiomatization of query equivalence for this language, in
the form of a finite list of remarkably simple algebraic equations. Our results
might serve as a step towards improved query optimization methods for XPath
2.0 and XQuery (note that XQuery contains XPath 2.0 as a sublanguage).

Our axiomatization is based on a number of other results, including (i) a
known complete axiomatization of Tarski’s algebra of binary relations [16], which
can be seen as a sublanguage of Core XPath 2.0, and (ii) an axiomatization of
the first-order theory of finite trees based on [6].

To summarize, the main contributions are:

1. the definition of the logical core of XPath 2.0, together with an analysis of
the redundancies in the language,

2. a finite list of equations axiomatizing query equivalence in this language.

� The full version of this paper is available at http://staff.science.uva.nl/∼bcate

T. Schwentick and D. Suciu (Eds.): ICDT 2007, LNCS 4353, pp. 134–148, 2007.
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It is worth noting that, in relational database theory, complete axiomatizations
of query equivalence are rather scarse. SQL and datalog both have undecid-
able query equivalence problems, and hence query equivalence is not recursively
axiomatizable for these languages (on finite structures). Entailment relations
between different types of constraints have been successfully axiomatized [1].

Organization of the paper. Section 1 defines Core XPath 2.0 and establishes some
simple equivalences. Section 2 shows undecidability of query equivalence for a
number of extensions of Core XPath 2.0. Section 3 contains axiomatizations both
for Core XPath 2.0 and for its variable free fragment. We conclude in section 4.

1 A Decidable Logical Core of XPath 2.0

In this section, we define the syntax and semantics of the logical core of
XPath 2.0, and we discuss some basic properties of this language, as well as
how it relates to other languages (viz. first-order logic and relation algebra).

1.1 Design Choices

The following two criteria guided our choice of XPath 2.0 operators to be in-
cluded in the navigational core: (i) expressions should manipulate sets of nodes,
just as in Core XPath. This leads to a simple set theoretic semantics; (ii) the
query equivalence problem should be decidable. Undecidability would imply non-
axiomatizability, because the models we are concerned with are finite.

These criteria have the following repercussions:

1. In Core XPath 2.0, all expressions manipulate sets of nodes. More precisely,
the meaning of each path expression is a function that, given a node (the
“context node”) returns a set of nodes (the “answer set”). In contrast, in
XPath 2.0, path expressions return sequences of elements, of various types. In
particular, the for construct returns unsorted sequences, possibly contain-
ing duplicates. In our logic, we treat for $i in R return S as equivalent
to (for $i in R return S)/., which always returns a document-order
sorted list without duplicates.

2. In order to keep the logic decidable, we excluded the positional and aggregate
functions position(), last() and count() and value comparison operators.
Section 2 presents undecidability results in the presence of these functions.

The crucial differences with Core XPath are that besides union, also Boolean
intersection and complementation can be applied to path expressions, and that
the language contains variables, node comparison tests, and the for-loop.

1.2 Syntax and Semantics of Core XPath 2.0

We are ready to define the Navigational Core of XPath 2.0. The grammar of
Core XPath 2.0 is given in Fig. 1. Just like in Core XPath, it has productions
for path expressions PathExpr and filter expressions TestExpr. In addition, there
is the node comparison expression CompTest.
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Axis := self | child | parent | descendant | ancestor
| following sibling | preceding sibling

NameTest := QName | ∗
Step := Axis::NameTest

NodeRef := . | $i

PathExpr := Step | NodeRef | ()
| PathExpr/PathExpr

| PathExpr union PathExpr

| PathExpr intersect PathExpr

| PathExpr except PathExpr

| PathExpr[TestExpr]
| for $i inPathExpr returnPathExpr

TestExpr := PathExpr | CompTest | not TestExpr

| TestExpr and TestExpr | TestExpr or TestExpr

CompTest := NodeRef is NodeRef

Fig. 1. Syntax of Core XPath 2.0

The semantics is provided in Fig. 2. Expressions are evaluated on finite un-
ranked node-labeled and sibling-ordered trees as usual. Because of the variables
in the language we need an assignment function g mapping variables to nodes.
For g an assignment, $i a variable and x a node, g$ix denotes the assignment
which is just like g except that g($i) = x. The value of a NodeRef expression a
relative to an assignment g and a node x, denoted by [a]g,x, is x if a = ., or g(a)
if a is a variable.

Given a model and an assignment g, the meaning [[R]]g of a PathExpr R is
always a binary relation. Of course this is just another way of specifying a func-
tion from the set of nodes to the powerset of the set of nodes (the answer-set
semantics).

The meaning of a TestExpr expression is given by the function [[ · ]]gTest, which
always yields a set of nodes: x ∈ [[TestExpr]]gTest if and only if TestExpr evaluates to
true at node x. It is straightforward to check that the given semantics extends the
semantics of Core XPath given in e.g. [8], and agrees with the official XPath 2.0
semantics as presented in e.g., [12], provided sequences are treated as nodesets.

Definition 1. Two path expressions R, S are said to be equivalent if for every
model, for every assignment g, [[R]]g = [[S]]g.

Remark. We excluded the attribute axis because it only adds expressivity in
the presence of data value comparisons. Because we focus on relative path equiv-
alence, we also excluded the absolute path expression /R. This is term definable
as (ancestor :: ∗ union self :: ∗)[not ancestor :: ∗]/R.

Syntactic sugar. XPath 2.0 contains a number of extra axes, operations and
functions that, when restricted to the navigational fragment, are just syntac-
tic sugar. They are listed in Fig. 3. As indicated, all these connectives can be
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[[Axis::NameTest]]g = {(x, y) | x(Axis)y and y satisfies NameTest}
[[.]]g = [[self :: ∗]]g
[[$i]]g = {(x, y) | g(i) = y}
[[()]]g = ∅
[[R/S]]g = [[R]]g ◦ [[S]]g

[[R union S]]g = [[R]]g ∪ [[S]]g

[[R intersect S]]g = [[R]]g ∩ [[S]]g

[[R except S]]g = [[R]]g \ [[S]]g

[[R[T ]]]g = {(x, y) ∈ [[R]]g | y ∈ [[T ]]gTest}
[[for $i inR returnS]]g = {(x, y) | ∃z((x, z) ∈ [[R]]g and (x, y) ∈ [[S]]g

$i
z )}

[[PathExpr]]gTest = {x | ∃y(x, y) ∈ [[PathExpr]]g}
[[not T ]]gTest = Nodes \ [[T ]]gTest
[[T1 and T2]]gTest = [[T1]]gTest ∩ [[T2]]gTest
[[T1 or T2]]gTest = [[T1]]gTest ∪ [[T2]]gTest

[[a is b]]gTest = {x | [a]g,x = [b]g,x}.

Fig. 2. Semantics of the Navigational Core of XPath 2.0

term-defined in terms of the connectives of Fig. 1. With the exception of the
if-then-else construct, all definitions are linear.

1.3 Some Convenient Shorthand Notations

We will be making use of a slightly more compact notation in following
sections. We will use ↓, ↓+, ↑, ↑+,→,→+,←,←+ and . as shorthands for
the respective axes child::*, descendant::*, parent::*, ancestor::*,
(following sibling::* except following sibling::*/following -
sibling::*), following sibling::*, (preceding sibling::* except
preceding sibling::*/preceding sibling::*), preceding sibling::*,
and self::*. We will use � as shorthand for the universal relation
(↑+ union .)/(↓+ union .) and ⊥ as shorthand for (). We will use <<
to denote the document order (depth-first left-to-right) relation in a tree, as
defined by ↓+ union (↑+ union .)/ →+ /(↓+ union .). Finally, we will use
the function (·)�, which, when applied to a path expression, yields its converse:

(Axis :: NameTest)� ≡ self :: NameTest/Axis� :: ∗
.� ≡ .
$i� ≡ .[. is $i]/

()� ≡ ()
(R/T � ≡ T �/R�

(R union T )� ≡ R� union T �

(R intersect T )� ≡ R� intersect T �

(R except T )� ≡ R� except T �

(R[X])� ≡ .[X]/R�

where Axis� is the converse of Axis (i.e., ↓�=↑, etc). The reader may verify
that R� indeed defines the converse of R, i.e., (x, y) ∈ [[R�]]g iff (y, x) ∈ [[R]]g.
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Definable path expressions:

descendant or self :: NameTest ≡ descendant :: NameTest union self :: NameTest
ancestor or self :: NameTest ≡ ancestor :: NameTest union self :: NameTest
following : NameTest ≡ (ancestor :: ∗ union self :: ∗)/following sibling/

(descendant :: NameTest union self :: NameTest)
preceding : NameTest ≡ (ancestor :: ∗ union self :: ∗)/preceding sibling/

(descendant :: NameTest union self :: NameTest)
if T then R else S ≡ .[T]/R union .[not T]/S

Definable node expressions:

true() ≡ .
false() ≡ ()
exists(R) ≡ R
empty(R) ≡ not (R)
some $i in R satisfies T ≡ for $i in R return .[T]
every $i in R satisfies T ≡ not (for $i in R return .[not (T)])

Fig. 3. Definable XPath 2.0 operations

1.4 Relations with Other Languages

First order logic. XPath 2.0 was designed to be expressively complete for first-
order queries [12]. More precisely, we mean here first-order logic in the signature
with binary relations symbols < and ≺ denoting the descendant and following
sibling relations, and arbitrarily many unary predicates for the node tags. It
is easy to see that there are linear translations between the two languages. In
the absence of data value comparions the for-loop and the variables are not
even needed for expressive completeness: even Core XPath extended with the
except operator is already expressively complete for this first-order language
[13]. Whether this holds in the presence of data value comparisons depends on
a longstanding open problem in finite model theory, namely whether FO has a
finite variable property on finite ordered structures [5].

A complete axiomatization of the first-order theory of finite node-labelled
sibling ordered trees (in the signature described above) is given in Fig. 4.

Theorem 1. The FO theory of finite node-labelled sibling ordered trees is com-
pletely axiomatized by the axioms and axiom scheme in Fig. 4.

The proof is given in the full version of this paper.

Relation Algebra. The variable free fragment of Core XPath 2.0 (which already
has the full expressive power of Core XPath 2.0) is closely related to Tarski’s
algebra of binary relations (“Relation Algebra”) [16] Cf., also [11,9]. This elegant
and purely algebraic language consists of

– atomic expressions denoting binary relations (over some set)
– constants �, ⊥ and ., denoting the total relation, the empty relation and the

identity relation, respectively.
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QT1. ∀xyz(x < y ∧ y < z → x < z) < is transitive
QT2. ¬∃x(x < x) < is irreflexive
QT3. ∀xy(x < y → ∃z(x <imm z ∧ z ≤ y)) immediate children
QT4. ∃x∀y¬(y < x) there is a root
QT5. ∀xyz(x < z ∧ y < z → x ≤ y ∨ y ≤ x) linearly ordered ancestors

QT6. ∀xyz(x ≺ y ∧ y ≺ z → x ≺ z) ≺ is transitive
QT7. ¬∃x(x ≺ x) ≺ is irreflexive
QT8. ∀xy(x ≺ y → ∃z(x ≺imm z ∧ z 	 y)) immediately next sibling
QT9. ∀x∃y(y 	 x ∧ ¬∃z(z ≺ y)) there is a least sibling
QT10. ∀xy((x ≺ y ∨ y ≺ x) ↔ (∃z(z <imm x ∧ z <imm y) ∧ x �= y))

≺ linearly orders siblings

QT11. ∀xy(x = y ∨ x < y ∨ y < x ∨ ∃x′y′(x′ < x ∧ y′ < y ∧ (x′ ≺ y′ ∨ y′ ≺ x′)))
connectedness

Ind. ∀x(∀y(x << y → φ(y)) → φ(x)) → ∀x.φ(x)

where
x <imm y is shorthand for x < y ∧ ∀z(x < z → y ≤ z),
x ≺imm y is shorthand for x ≺ y ∧ ∀z(x ≺ z → y 	 z), and
x << y is shorthand for x < y ∨ ∃x′y′(x′ ≤ x ∧ y′ ≤ y ∧ x′ ≺ y′)

Fig. 4. Axioms of the FO theory of finite trees

– operators for taking union (∪), intersection (∩), complement (−), composi-
tion (/) and converse (·�).

As the reader can observe, the main syntactic differences between the vari-
able free fragment of Core XPath and Relation Algebra are (i) Relation
Algebra has a converse operator, while in Core XPath 2.0 each individual
expression has a definable converse, (ii) Relation Algebra uses a unary com-
plementation operator, whereas Core XPath 2.0 uses relative complementation,
(iii) Relation Algebra includes a constant � denoting the universal relation,
whereas in Core XPath 2.0 the universal relation is defined by (ancestor::*
union self::*)/(descendant::* union self::*), (iv) Core XPath 2.0 fea-
tures predicates, which are not present in Relation Algebras.

These differences in syntax are mostly cosmetic. The most important differ-
ence between Relation Algebra and Core XPath 2.0 lies in the semantics : Core
XPath 2.0 is interpreted on finite trees whereas Relation Algebra is traditionally
concerned with arbitrary relations. Still, in this paper, we will make important
use of known results about Relation Algebra.

2 Undecidable Extensions

Because we want to axiomatize query equivalence on finite models it is neccessay
that query equivalence is decidable. Here we show how value comparisons and
functions as position(), last(), and count() can lead to undecidability.

Positional information. XPath supports reference to positional information in
predicates, via the functions position(), last(), and count(). For example,
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child::*[position()=1] and child::*[position()=last()] (abbreviated as
child::*[1] and child::*[last()], respectively) return the first and last child
of the context node, in document order. The simplest type of position predicates,
of the form R[k] or R[last()-k], is quite harmless. They can be eliminated
at the cost of an exponential blowup, using the following equivalences:

R[1] ≡ R except (R/ <<)
R[k + 1] ≡ (R intersect (R[k]/ <<))[1]

and symmetrically for R[last()-k]. These equivalences may be added to the
axiomatisation we will give below in order to obtain completeness w.r.t. this
enrichment of the language.

More advanced use of positional information quickly makes the logic
undecidable:

Theorem 2. Core XPath 2.0 extended with expressions of any of the following
forms can define the equilevel predicate, and hence is undecidable:

– R[count(R′) = count(R′′)], or
– R[position() = count(R′)] (equivalently written as R[count(R′)]), or
– R[position() = last()/2] (equivalently written as R[last()/2])

The equilevel predicate holds between two nodes if they are at the same distance
from the root. First order logic on trees with the equilevel predicate is known to
be undecidable [15]. More details, as well as a proof of Theorem 2, can be found
in the full version of this paper.
Comparison operators. XPath 2.0 has three sets of operators to compare nodes.
Here we just discuss the three types of equality: =, eq and is. Each takes two
path expressions as input. = and eq compare the data values of input nodes
(in XPath terminology, the atomization of the input), while is compares node
identity. a eq b is true if the nodes a and b have the same data value, and a is b is
true if a and b are the same node. = can be defined in terms of eq: R=S iff some
$r in R satisfies some $s in S satisfies $r eq $s (recall from Fig. 3
that some can be expressed in terms of for). Node equality is term definable
in XPath 2.0 using intersection (see axiom Eq1 in Fig. 7). Data value equality
quickly leads to undecidability: already in the context of Core XPath [7]; or in
first order logic with three variables having only the child relation interpreted
on unary trees [3]. Both proofs use Post’s correspondence problem. In our setting,
we can use the equilevel predicate again: one can force that two nodes have the
same data value iff they are at the same distance from the root.

3 A Complete Equational Calculus

In this section, we will give a complete equational axiomatization of equivalence
in Core XPath 2.0. First, we axiomatize the variable free fragment, and then we
show how the axiomatization can be extended to the full language of Core XPath
2.0. We will make use of the shorthand notations introduced in Section 1.3. All
missing proofs can be found in the full version of this paper.
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3.1 The Variable Free Fragment

The variable free fragment of Core XPath 2.0 is the fragment without variables,
for and node comparison tests. It is closely related to Tarski’s algebra of binary
relations (“Relation Algebra”) [16]. Unlike the latter, however, it is interpreted
on a specific class of structures, namely finite node-labelled sibling-ordered trees
(“finite trees”, for short). The calculus we will present essentially extends a
known complete axiomatization of Relation Algebra with axioms that capture
the special properties of these structures.

We do not enforce that, as in real XML document trees, each node is labelled
by exactly one node label. Given a finite alphabet, this can always be enforced.

Our axioms are given in Fig. 5. Keep in mind that these axioms describe
relative path equivalence (as opposed to equivalence when evaluated at the root).
We leave it to the reader to check that axioms in Fig. 5 are indeed sound.

In this table, and in what follows, we use R ⊆ S as shorthand for S ≡ S∪R. We
say that R is provably equivalent to S in our calculus (notation: R ≡∗ S), if the
equivalence of R and S can be proved from substitution instances of the axioms
using the transitivity, symmetry and reflexivity of ≡ and replacement of equals
by equals (if R ≡ S and T ′ is obtained from T by replacing some occurences of
R by S, then T ≡ T ′). Likewise, we use ⊆∗ for provable containment.

It is sometimes easier to prove mutual containment of two expressions than
equivalence. Fortunately, the two are equivalent:

Fact 1. For all expressions R and S, R ≡∗ S iff both R ⊆∗ S and S ⊆∗ R.

In proofs of containment, the following fact can be very useful. Call a subexpres-
sion of an expression R positive (negative), if it occurs under the scope of an
even (odd) number of polarity switching operators. Here, by polarity switching
operators we mean not and except , and the latter is only counted as polarity
switching with respect to the second argument.

Fact 2 (Monotonicity ([10])). Suppose R ⊆∗ S, and let T ′ be obtained from T
by replacing some positive occurences of R by S, and/or replacing some negative
occurences of S by R. Then T ⊆∗ T ′.

In the completeness proof we will use the derivable equivalences listed in Fig. 6.

Lemma 1. All equivalences and containments in Fig. 6 are derivable.

Let us now proceed to prove completeness. First, we need to establish an impor-
tant lemma. For any path expression R, let us use the following shorthands:

first-pair(R) := R except (>> /R/� union R/ <<)
other-pair(R) := (� except .)/R/� union �/R/(� except .)

Observe that first-pair(R) denotes the subrelation of R consisting only of the
first pair, in lexicographic document order, and other-pair(R) holds of all pairs
(x, y) for which R contains some different pair (x′, y′) (i.e., such that x′ �= x or
y′ �= y). The following lemma combines these two, and shows that first-pair(R)
always holds of at most one pair.
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Axioms of Boolean Algebra and Relation Algebra

BA1. R union (S union T ) ≡ (R union S) union T
BA2. R intersect (S intersect T ) ≡ (R intersect S) intersect T
BA3. R union S ≡ S union R
BA4. R intersect S ≡ S intersect R
BA5. R union (S intersect T ) ≡ (R union S) intersect (R union T )
BA6. R intersect (S union T ) ≡ (R intersect S) union (R intersect T )
BA7. R union (R intersect S) ≡ R
BA8. R intersect (R union S) ≡ R
BA9. R union (� except R) ≡ �
BA10. R intersect (� except R) ≡ ⊥
BA11. R intersect (� except S) ≡ R except S

RA1. (R/S)/T ≡ R/(S/T )
RA2. R/. ≡ R
RA3. (R union S)/T ≡ (R/T ) union (S/T )
RA7. (S/(� except (S�/R))) ⊆ � except R

Axioms for eliminating predicates

Pred1. R[X and Y ] ≡ R[X][Y ]
Pred2. R[X or Y ] ≡ R[X] union R[Y ]
Pred3. R[not(X)] ≡ R except R[X]
Pred4. R[S] ≡ R/((S/�) intersect .)

Axioms for finite trees:

Tr1. ↓+ / ↓+ ⊆ ↓+

Tr2. ↓+ intersect ↑+ ≡ ⊥
Tr3a. ↓+ ≡ ↓ union (↓ / ↓+)
Tr3b. ↓ ≡ ↓+ except (↓+ / ↓+)
Tr4. .[↑] ≡ .[↑+ [not(↑)]]
Tr5. ↓+ / ↑+ ≡ ↓+ union .[↓] union .[↓]/ ↑+

Tr6. →+ / →+ ⊆ →+

Tr7. →+ intersect ←+ ≡ ⊥
Tr8a. →+ ≡ → union (→ / →+)
Tr8b. → ≡ →+ except (→+ / →+)
Tr9. .[←] ≡ .[←+ [not(←)]]
Tr10. →+ union ←+ ≡ (↑ / ↓) except .

Tr11. . union ↑+ union ↓+ union
(↑∗ /→+ /↓∗) union (↑∗ /←+ /↓∗) ≡ �

Ind. �[R] ≡ �[R except (R/ <<)]]

Axioms for tag-names:

Tag1. Axis::NameTest ≡ Axis::*/self::NameTest
Tag2. self::NameTest ⊆ .

Fig. 5. Axioms for Core XPath 2.0 query equivalence
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RA4. (R union S)� ≡ R� union S�

RA5. (R/S)� ≡ S�/R�

RA6. (R�)� ≡ R

RA8. R/(S union T ) ≡ R/S union R/T
RA9. ./R ≡ R
RA10. R/⊥ ≡ ⊥
RA11. �/� ≡ �
RA12. .� ≡ .
RA13. ⊥� ≡ ⊥
RA14. �� ≡ �
RA15. (R intersect S)� ≡ R� intersect S�

RA16. (R except S)� ≡ R� except S�

RA17. (� except R/S)/S� ⊆ (� except R)
RA18. (R intersect .)/(R intersect .) ≡ (R intersect .)
RA19. (R intersect .)� ≡ (R intersect .)
RA20. ((R/�) intersect .)/� ≡ R/�

Pred6. R/S ≡ R[S]/S
Pred7. R[S[T ]] ≡ R[S/T ]
Pred8. (R[S])� ≡ .[S]/R�

Pred9. �[S]/R ≡ �[R�/S]
Pred10. R[S and not(T )] ⊆ R[(S except T )]

Fig. 6. Derivable equivalences

Lemma 2. first-pair(R) intersect other-pair(first-pair(R)) ≡∗ ⊥

The intuition behind the next lemma is best understood as follows: if R �≡∗ �,
for some path expression R, then first-pair(� except R) acts as a witness of this
fact: it denotes a pair that is a counterexample to the validity of R.

Lemma 3. For all path expressions R, R ≡∗ � iff first-pair(� except R) ⊆∗ R.

Theorem 3 (Completeness). For all equivalent variable-free expressions R
and S, R ≡∗ S.

Proof. The proof essentially proceeds in two steps: first, we will prove complete-
ness with respect to arbitrary structures (i.e., possibly infinite, and in which the
atomic expressions ↓+,→+, etc. can denote arbitrary binary relations), then we
prove completeness with respect to actual finite trees. Throughout the proof, we
will restrict attention to expressions without predicates. This is safe because,
by the axioms Pred1–Pred4, every expression is provably equivalent to one that
does not contain predicates.

Call an expression consistent if it is not provably equivalent to ⊥. To prove
completeness of our axiomatization, it suffices to show that every consistent
expression is satisfiable (in a finite tree). For, suppose R �≡∗ S. Then, by Fact 1,
either R �⊆∗ S or S �⊆∗ R, which implies that either R except S or S except R
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is consistent. Any finite tree model in which either of these expressions is satisfied
constitutes a counterexample for the equivalence of R and S.

Call a set of expressions consistent if no intersection of finitely many elements
of the set is provably equivalent to ⊥. A maximal consistent set (“MCS”) is a
consistent set of expressions Γ , such that, for any expression R, either R ∈ Γ or
(� except R) ∈ Γ .

Claim. Every consistent expression can be extended to an MCS.

Proof of claim. This follows from the fact that our axiomatization includes the
axioms of Boolean Algebra. �

Claim. For every consistent set of expressions Γ there is a model M (not neces-
sarily a finite tree) and a pair (d, e) of elements of the domain of M , such that
(d, e) ∈ [[Γ ]]M .

Proof of claim. This follows from a result of Venema [18], who showed that this
claim holds for any axiomatization of Relation Algebra that includes BA1–RA7,
and such that for each expression R there is an expression R′ such that

1. R′ intersect other-pair(R′) ≡ ⊥ is provable.
2. R′ ⊆ R is provable iff R ≡ � is provable.

Lemma 2 and 3 show that our axiomatization indeed satisfies this property (pick
R′ to be first-pair(� except R)). �

Claim. Let Γ be any MCS, and let (d, e) ∈ [[Γ ]]M for some model M . Then M
satisfies all FO axioms in Fig. 4.

Proof of claim. First, we will show that Tr1, . . . , Tr11 hold in M .
Let R ≡ S be any of these axioms (recall that we treat R ⊆ S
as being shorthand for S ≡ S ∪ R). Then Γ must contain the ex-
pression � except (�/((R except S) union (S except R))/�), for other-
wise, by maximality, Γ would have to contain �/((R except S) union
(S except R))/�, which would immediately yield inconsistency.

It follows that the axioms Tr1, . . . , Tr11 all hold in M , and hence M satisfies
the first-order properties defined by these axioms, which include the first-order
formulas QT1, . . . , QT11 of Fig. 4.

Similarly, one can show that all instances of the Ind axiom hold in M . Here,
we use the fact that Relation Algebra is expressively complete for the three-
variable fragment of first-order logic [17], and that, on models satisfying QT1–
QT11, every first-order formulas in at most two free variables is equivalent to
one containing at most three variables in total [13].1 �

It follows by Theorem 1 that every first-order formula, and therefore also every
Core XPath 2.0 expression, satisfied in M is satisfied in some finite tree. ��
1 In [13] this three-variable property was proved with respect to the class of finite

trees, but the proof generalizes to models satisfying QT1–QT11.
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Axioms enforcing that each variable denotes a constant function:

Var1. �/$i ≡ $i
Var2. $i/(� except .) ≡ � except $i

Axiom for node-equality tests:

Eq1. R[S is T ] ≡ R[S intersect T ]

Rule for eliminating variables in a derivation:

Name. From $i/R ≡ $i/S derive R ≡ S, provided $i does not occur in R and S

Axioms for for:

For1. $x/for $y in R return S ≡ $x/R/(for $y in . return $x/S)
For2. $x/for $y in . return S ≡ $x/S$y

$x

where S$y
$x is the result of replacing all free occurences of $y by $x,

provided that this is a safe substitution.

Fig. 7. Additional axioms for variables and for

3.2 Adding Variables

We will now extend our axiomatization to the full language of Core XPath 2.0,
including variables and for-expressions. The extra axioms and rule of inference
that we need are given in Fig. 7.

The For2 axiom deserves special attention, as it involves variable substitution.
As is customary for quantified logics such as first-order logic, we prohibit unsafe
substitution. For example, replacing the free occurence of $j by $i in for $i in
↓ return $i/ ↓[not(. is $j)] constitutes an unsafe substitution, because it
has the side-effect that the variable becomes bound by the for-quantifier.

The inference rule Name allows us, when trying to prove equivalence of two
expressions, to assign a variable to the current node. This sometimes makes it
easier to prove the equivalence.

Lemma 4 (A variant of the Name rule). For all path expres-
sions R and S, and for all variables $i not occuring in R and S, if
($i/R/� union (� except (�/R/�)) ⊆∗ S then S ≡∗ �.

Theorem 4 (Completeness). For all equivalent expressions R, S, R ≡∗ S.

Proof. The completeness proof proceeds as before, with two important differ-
ences: (i) the language now contains variables and for-clauses. However, most of
this proof, we will treat these simply as atomic expressions (thus we treat ex-
pressions of the form for $i in R return S as atomic, ignoring their internal
structure). (ii) we use a more refined MCS construction:

Claim. Every consistent expression can be extended to an MCS Γ satisfying the
following additional condition: for each expression R there is a variable $i such
that if (�/R/�) ∈ Γ then ($i/R/�) ∈ Γ .
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Proof of claim. Let S be the given consistent expression, and let R1, R2, . . . be
an enumeration of all (countably many) expressions of the language. For each
Rk (k ∈ N) pick a variable $ik distinct from $i1, . . . , $ik−1 and not occurring in
R1, . . . , Rk. It is not hard to see that this can be done. Let

Σ = {S} ∪ {($ik/Rk/�) union (� except �/Rk/�) | k ≤ �}

and let Σ =
⋃

∈N
Σ. We claim that each Σ is consistent, and hence also

Σ is consistent. The proof is by induction on Σ. For � = 0, Σ = {S},
which is consistent by assumption. Next, suppose, for the sake of contradic-
tion, that Σ is consistent but Σ+1 is not. Then it follows by Boolean reasoning
that (($i+1/R+1/�) union (� except �/R+1/�)) ≡∗ (� except

⋂
Σ).

By Lemma 4, this implies that
⋂

Σ ≡∗ ⊥, a contradiction.
Finally, any MCS extending Σ will satisfy the required property. �

Next, we proceed as before: given a consistent expression R, we extend it to
a maximal consistent set Γ , and construct a model M with elements d, e such
that (d, e) ∈ [[Γ ]]M . Recall that we treat variables and for-clauses as atomic
expressions, interpreted by the model. Now, the axioms Var1 and Var2 ensure
that each variable denotes a constant function. As we will see next, the axioms
For1 and For2 also force for-clauses to have the correct denotation.

A special feature of Venema’s [18] model construction is that every element
d of the domain of M is uniquely identified by some expression R, in the sense
that [[R]]M = {(d, d)}. It follows by the construction of the MCS that d is also
uniquely identified by a variable $i, in the sense that rng([$i]) = {d}. It follows
by the axioms For1 and For2 that for-clauses are correctly interpreted in M . ��

3.3 Further Remarks on the Axiomatization

Minimality. Our axiomatization was not intended to be a minimal list of axioms.
Rather than being concise, our aim was to formulate the axioms as naturally as
possible. It is quite likely that some of the axioms can be derived from others.

Stronger forms of completeness. Properly speaking, many of our axioms should
be called axiom schemes. For instance, BA1 says that R union (S union T ) is
equivalent to (R union S) union T for all path expressions R, S and T . This
leads to an interesting question: let R and S be two path expressions containing
“path-variables” R, S, . . ., such that R is equivalent to S under all assignments
of path expressions to these path-variables. Then can we derive R ≡ S as a
scheme in our axiomatization? The answer is negative. In fact, no recursive
axiomatization of Core XPath 2.0 can be complete in this strong sense, for the
following reason.

Theorem 5. Equivalence of Core XPath 2.0 path expressions containing a sin-
gle path-variable is undecidable.

Proof (sketch). It follows from results in [4,16] that the equivalence problem
for expressions of Tarski’s relation algebra in a single binary relation, over fi-
nite models is undecidable. In terms of XPath, this means that equivalence of
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Core XPath 2.0 path expressions containing a variable standing for an arbitrary
binary relation is undecidable. Since, within any given XML document, all bi-
nary relations are definable in Core XPath 2.0, this problem coincides with the
equivalence problem for Core XPath 2.0 path expressions containing a variable
standing for a Core XPath 2.0 path expression. ��
Sequence semantics versus set semantics. The soundness of some of our axioms
(in particular, RA2 and Pred2–Pred4 ) depends on the set-theoretic semantics we
provided for Core XPath 2.0. If, as in the official XPath 2.0 semantics, expressions
are taken to manipulate sequences rather than sets of nodes, these axioms no
longer hold. However, our results are still meaningful in this setting.

First, observe that, if ≡ is interpreted as equivalence up to sorting and du-
plicate removal, henceforth ≡sdr, then all axioms remain sound. Secondly, all
equivalences derivable from the axioms remain sound, because ≡srd is an equiv-
alence relation, and it admits replacement of equals by equals (e.g., if R ≡sdr R′

and S ≡sdr S′ then for $i in R return S ≡sdr for $i in R′ return S′).
Thus, all derivable equivalences hold, if equivalence is interpreted as equivalence
up to sorting and duplicate removal. In fact, it is not hard to see that both
axiomatizations (the one from Section 3.1 and the one from Section 3.2) are
complete under this interpretation. In particular, for any path expression R,
R ≡∗ ⊥ iff R is unsatisfiable according to the sequence semantics.

4 Conclusions

We have defined the navigational core of XPath 2.0, analogously to Core XPath,
and we gave an intuitive and rather simple axiomatization of the equivalence of
relative path expressions by combining three sets of algebraic axioms: Tarski’s
axiom system RA of relation algebras, a first order axiomatization of the theory
of finite ordered trees, and an axiomatization of the variable binder.

We have provided axiomatizations for the complete Core XPath 2.0 language
and its equally expressive fragment without the for-loop and variables. By the
linear embedding of first order logic, Core XPath 2.0 inherits its non-elementary
space lower bound for query equivalence [14]. Still, we hope that our axiomatiza-
tions will be useful for query optimization. The connection with Tarski’s relation
algebras might be fruitfully exploited by using results from the relation algebra
theorem proving community [2].

Of particular practical importance seems to be the elimination of the for-loop
and the use of variables. Empirical tests have shown us that rewritings into
the for-free fragment can lead to speedups of up to 3 orders of magnitude with
commercial XQuery processors. We obtained these results with the following two
queries:

(1) descendant :: ∗ [P] except (descendant :: ∗ [not Q]/descendant :: ∗)
(2) for $startin . returndescendant :: ∗ [P and (#)],

with (#) the test expression
every$i in ancestor :: ∗ [ancestor :: ∗ [. is $start]] satisfies$i[Q].
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where P and Q are filter expressions of the form @attribute=’value’. Both ex-
press the relation (child :: ∗ [Q])∗/child :: ∗ [P], with (·)∗ the transitive closure
operation. By completeness, our axiom system can derive their equivalence. An
important issue is whether such query rewritings can be performed efficiently.
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Query Evaluation on a Database Given by a
Random Graph

Nilesh Dalvi

University of Washington, Seattle

Abstract. We consider random graphs, and their extensions to random
structures, with edge probabilities of the form βn−α, where n is the num-
ber of vertices, α, β are fixed and α > 1 (α > arity − 1 for structures
of higher arity). We consider conjunctive properties over these random
graphs, and investigate the problem of computing their asymptotic con-
ditional probabilities. This provides us a novel approach to dealing with
uncertainty in databases, with applications to data privacy and other
database problems.

1 Introduction

Let R = {R1, R2, . . . , Rm} be a vocabulary of relation symbols, and A(Ri)
denote the arity of relation Ri. We fix two functions α, β : R → R+ that map
relations to positive real numbers, where α satisfies α(Ri) > A(Ri)−1 for all Ri ∈
R. For any n > 0, denote μn the probability distribution over the structures with
domain [n] given by the following experiment: for each Ri ∈ R and t ∈ [n]A(Ri),
choose t to be in Ri with probability β(Ri)n−α(Ri). Let CQ(c, �=) denote the class
of boolean conjunctive properties (queries) with constants (c) and inequalities
(�=), i.e. formulas of the form: ∃x1∃x2...(A1 ∧A2 ∧ · · · ∧Ak) where each Ai is a
predicate of the form Ri(y1, · · · , yj), or y1 �= y2, where y1, . . . , yj denote variables
or constants. CQ(c), CQ(�=), and CQ denote the classes of conjunctive queries
without �=, without constants, and without either �= or constants respectively.

In this paper, we study the probabilities of conjunctive properties over the
class μn of random structures. Lynch [17] has shown that if we consider the
set of first order properties, of which conjunctive properties are a subset, then
for each property q, μn(q) is either cn−d + o(n−d) for some c > 0, d ≥ 0, or
is e−Ω(nk) for some k > 0. Thus, the probability of every first order property
is either asymptotically equal to a polynomial in 1/n or is exponentially small.
Further, the problem of determining which of the two cases hold for a given
query is undecidable.

Here we show that when q is a conjunctive query, then we always have μn(q) =
cn−d + o(n−d). A consequence is that for any two conjunctive queries q, v, the
quantity μ(q | v) = limn→∞ μn(q | v) = limn μn(q ∧ v)/μn(v) exists and is a real
number in [0, 1]. In this paper we investigate the complexity of computing this
limit, in various settings, and the main result is below.

T. Schwentick and D. Suciu (Eds.): ICDT 2007, LNCS 4353, pp. 149–163, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Problem Combined Complexity Data Complexity
(inputs: q, v, v′) (inputs: v, v′; fixed: q)

Compute μ(q | v) #coNP-complete #coNP-complete
Decide if μ(q | v) = 0 Θp

2 -complete Θp
2-complete

Decide if μ(q | v) ∈ (0, 1) Σp
2 -complete Θp

2-complete
Decide if μ(q | v) = 1 Πp

2 -complete Θp
2-complete

Decide if μ(q | v) < p for p ∈ (0, 1) P.coNP-complete P.coNP-complete
Decide μ(q | v) < μ(q | v′) P.coNP-complete P.coNP-complete
Decide μ(q | v) < μ(q | vv′) P.coNP-complete. P.coNP-complete

Fig. 1. Summary of Main Results

Theorem 1. Fig. 1 shows the complexities of various decision problems and
computation problems concerning their asymptotic conditional probabilities. Up-
per bounds hold for q, v, v′ ∈ CQ(c, �=); lower bounds hold for both q, v, v′ ∈ CQ(c)
and for q, v, v′ ∈ CQ(�=). For q, v, v′ ∈ CQ all problems are in PTIME.

1.1 Motivation

Our motivation comes from the following problem in databases: evaluate a prop-
erty q of an unknown database instance I given some facts v about the instance.
The problem appears in a wide range of applications, for instance in data pri-
vacy [8] where we want to analyze a sensitive query using published facts, in
data integration [12,15] where we want to answer queries using views and in car-
dinality estimation [10,2] where we want to estimate the size of a query using
known statistics about the data. In many applications, the standard approach
is to use the notion of certain answers [12], where the property q is said to be
certain if it is true on every possible instance I that is consistent with the facts
v. However, this approach has two limitations that make it unsuitable for certain
applications. First, it does not revel anything about tuples that are not certain
answers to the query, whereas in applications like data privacy, we are interested
in knowing which tuples are more (or less) likely to be the query answers given
the facts in v. The second limitation of the approach is that it cannot incorporate
any knowledge about the relative likelihood of possible instances. Applications
often have auxiliary information, like statistical knowledge, that makes certain
instances more likely than others. In data privacy setting, it is important to take
the auxiliary information into account; in cardinality estimation this is often the
only kind of information available.

Example 1. (K-Anonymity) Suppose a medical agency wants to publish its data
patients data for research purposes, but wants to protect the identity of individ-
ual patients. The data is in the table Patients(name, age, zipcode, disease).
The agency publishes the following view:
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Diseases(age, zipcode, disease) :− Patients(name, age, zipcode, disease)

In addition, suppose the following view is publically known:

Name(name, age, zipcode) :− Patients(name, age, zipcode, disease)

The contents of the views are given below. Note that some of the values in the
view are partially hidden.

Names=

name age zipcode
JOHN 25 98190
MARY 25 98192
MARK 31 98100
FRANK 31 98111
LARRY 32 98100

Diseases=

age zipcode disease
25 9819* FLU
25 9819* FEVER
31 981** FLU
** ***** CANCER

We want to analyze the information given by v = {Diseases, Names} about
the following query q(name, disease) :− Patients(name, age, zipcode, disease).
The Diseases table is 2-anonymous [19], meaning that for every tuple in the
Diseases table, there are at least two individuals that may have that record.
For instance, the tuple (25, 98192, FLU) could either refer to JOHN or MARY
or a third person that does not appear in the views. There are no certain answers
to the query.

The technique of k-anonymization guarantees that each record in the pub-
lished data refers to at least k individuals. However, Machanavajjhala et al. [19]
have shown that k-anonymization does not guarantee data privacy when the at-
tacker has auxiliary/background knowledge about the data, and they raise the
problem of analyzing data privacy in the presence of such information. Exam-
ples of background information are: (i) every (age, zipcode) occurs four times in
expectation and (ii) around 80% of all the patients have FLU. We need a frame-
work where we can use such statistics on the data and evaluate the likelihood
that a particular tuple is the answer to the query given the views.

Bayesian Approach. In order to provide such a framework, we consider an
alternative approach to the problem using a technique from knowledge represen-
tation based on degrees of beliefs [3]. Here the uncertainty about the underlying
database is expressed as a probability distribution P, called the prior probability
distribution, or simply the prior, which is an assessment of the likelihood of each
data instance to occur before observing any facts about the database. Starting
from this prior distribution, any subsequent knowledge v about the database is
encapsulated by conditioning P on v. Thus, the probability that the database
satisfies a property q is given by the conditional probability P(q | v). Query eval-
uation thus amounts to computing the conditional probabilities on the prior.

Example 2. Let us revisit Example 1 where we have the relation Patients(name,
age, zipcode, disease), where each attribute takes value from a domain1 of size
n. Suppose that the only background knowledge we have is that the expected
1 Assume for simplicity that all attributes take values from the same domain.
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size of the table is 100. Consider the following probability distribution: there are
n4 tuples that are possible over the domain, pick each of them randomly and
independently with probability 100/n4. The resulting distribution is a sparse
random structure with each tuple having probability p(n) = 100/n4. Further, it
is easy to see that the expected size of Patients under this distribution is 100.

Now suppose we want to check if q≡Patients(JOHN, 25, 98190, CANCER)
is true given the views v = {Names, Patients}. We compute the probability that
q is true given v, i.e. the quantity P(q | v). It can be shown that P(q | v) =
1/101 + O(1/n). Intuitively, there are 100 records expected in the database,
so there is around 1/100 chance that the facts Names(JOHN, 25, 98190) and
Diseases(∗∗, ∗∗∗∗∗, CANCER) talk about the same tuple.

Using a Sparse Random Graph as a Prior. Choosing a suitable prior dis-
tribution is an important step in this analysis, and the problem is well studied
in the area of Knowledge Representation [3]. In our previous work [6], we look at
this problem from a database perspective. We consider a framework for specify-
ing prior knowledge about the database that allows statistics like the expected
size of a relation, the expected number of distinct values of an attribute and
integrity constraints like functional dependencies and inclusion dependencies.
Under this framework, we describe how to represent such prior knowledge as a
probability distribution using a technique from Knowledge Representation called
entropy maximization. Applying this technique to Example 2, with the statistics
that the expected size of Patients relation is 100, we get exactly the probability
distribution where each tuple is chosen independently with probability 100/n4,
which is a sparse random structure.

Other Prior Distributions. The probability distribution in Example 2 belongs
to a special class of sparse random structures where pRi(n) = cin

−Arity(Ri) for
each Ri. We studies these distributions in one of our previous works [5]. One of
the properties of these distributions is that with high probability, all the tuples in
the structure are disjoint. For instance, in Example 2, all the zipcode values in
the Patients tables are distinct with high probability. If we want to incorporate
the knowledge that each zipcode is expected to have 10 records, we can add
this statistics in our framework to obtain a new prior distribution. In this new
distribution, the tuples are not independent since each zipcode value occurs 10
times in expectation, hence the new distribution will not be a random structure.
In [6], we show that statistics like these can be captured using a generalization
of random structures. For lack of space, we only describe results in this paper
for random structures, but the results also extend to these generalized random
structures described in [6].

Domain Size. Given a sparse random structure with probability distribution
μn, and conjunctive properties q and v, we seek the conditional probability
μn(q | v). In general, we do not know the domain size, n. But the domain is
usually large. Hence, we study the behavior of conditional probability for large
n by looking at the limit limn→∞ μn(q | v), which we denote μ(q | v). Below, we
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describe some specific problems related to the computation of μ(q | v) motivated
by the data privacy application.

Data Privacy. Here, the owner of a database wishes to publish certain facts
about a private database, while keeping certain sensitive information hidden.
There are two basic problems. The first is leakage: does the view v leak infor-
mation about a sensitive property s ? Various authors [8,20,14] have modeled
non-leakage by requiring the a priori probability of s to be close to the a pos-
teriori probability after seeing v, i.e. P(s) ≈ P(s | v). We make this precise by
requiring μ(s | v) = μ(s), which amounts to μ(s | v) = 0 since, as we show,
μ(s) = 0 for all practical queries. The second problem is usage: a legitimate user
wants to check a property q over the data, by examining v, and this amounts to
checking μ(q | v) = 1. In addition to these basic questions, we consider two more
complex questions motivated by real application scenarios. In collusion detection
we know that μ(s | v) = μ(s | v′) = 0 and have to decide if μ(s | v, v′) = 0.
In relative security the data owner has already published some view v, possibly
leaking some information about the secret s: the damage cannot be undone, but
the data owner wants to publish a second view v′ and wants to know if there
any additional leakage, i.e. μ(s | v, v′) > μ(s | v)?

Query Evaluation. Vardi [23] has studied the query evaluation problem in
databases: given I, q, decide if I |= q. In the combined complexity both I and
q vary, while in the data complexity, q is fixed and I varies. The problem we
investigate in this paper is related to query evaluation: evaluate q on the obser-
vations v, i.e. compute μ(q | v). The database is given by v, with the unknown
part filled in by the random graph. Data complexity corresponds here to a fixed
q and a variable v.

1.2 Related Work

The study of convergence laws for logical statements on random graphs has been
a widely explored areas of model theory. Fagin [9] and Glebskĭi et al. [11] con-
sidered random graphs with p(n) a constant and proved a 0-1 law for statements
of first order logic. However, asymptotic limits for conditional probabilities do
not always exist [9] for this class of graphs, and even the problem of determining
if they exist is undecidable [16]. The class of random graphs with edge proba-
bilities of the form βn−α with α > 1 have also been studied before and there
are results on the existence of asymptotic probabilities for statements of first or-
der logic [21,17,18]. However, existence of asymptotic conditional probabilities,
and the complexity of computing them, has not been studies previously. The
applications of sparse random graphs and their generalizations [5,6] have been
discussed before, but again these works did not study the complexity of query
evaluation.

2 Computing Asymptotic Probabilities

For a conjunctive query q given by Eq.(1) let goals(q) denote the set of its
relational predicates (i.e. of the form Ri(y1, · · · , yj), and called “subgoals”),
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V ar(q) = {x1, x2, . . .} the set of variables, Const(q) the set of constants men-
tioned in q. Here we show that the asymptotic conditional probabilities always
exist for conjunctive queries and are computable. The basic result is:

Theorem 2. For any conjunctive query q ∈ CQ(c, �=), there exists two constants
coeff(q) and exp(q), such that

μn(q) = coeff(q)(1/n)exp(q) + o((1/n)exp(q))

Corollary 1. For q ∈ CQ(c, �=), the asymptotic probability μ(q) always exists.
It equals coeff(q) if exp(q) = 0 and 0 otherwise.

Corollary 2. For q1, q2 ∈ CQ(c, �=), the conditional asymptotic probability,
μ(q1 | q2), always exists and is as follows:

μ(q1 | q2) =

{
0 exp(q1q2) > exp(q2)
coeff(q1q2)
coeff(q2) exp(q1q2) = exp(q2)

In the remainder of the section, we show how to compute coeff(q) and exp(q).
For a subgoal g ∈ goals(q), let α(g) and β(g) denote α(R) and β(R) where R is
the relation to which g refers. Define

V (q) = the number of distinct variables in q

α(q) =
∑
{α(g) | g ∈ goals(q)}

β(q) =
∏
{β(g) | g ∈ goals(q)}

D(q) = α(q) − V (q)

A substitution η for a query q is a mapping η : V ar(q) → V ar(q) ∪ Const(q)
that does not violate the inequalities in q. We denote η(q) the result of applying
η to the subgoals of q. For example, if q ← R(a, x), R(x, y), R(y, z), x �= y then
the substitution η = {x → b, y → y, z → y} is defined on q and by applying
it we obtain the query q0 = η(q), q0 ← R(a, b), R(b, y), R(y, y), b �= y. If η(q)
results in duplicate subgoals, we remove duplicates2. We call a query of the
form η(q) a unifying query for q, since it unifies some of the subgoals in q, and
denote with UQ(q) the set of all unifying queries for q up to isomorphism. Let
P be the partition on goals(q) induced by η, where two subgoals g, g′ are in the
same equivalence class if η(g) = η(g′). Call η a most general unifier if, for any
other unifier η′ inducing P there exists a substitution θ s.t. η′ = θ ◦ η. In this
case we call η(q) a most general unifying query of q, and we define mguq(q) the
set of most general unifying queries of q (up to isomorphism). Define:

E(q) = min{D(q0) | q0 ∈ mguq(q)}
mguq0(q) = {q0 | q0 ∈ mguq(q), D(q0) = E(q)}

aut(q) = |{η | η(q) is isomorphic to q}|
2 While this sounds evident, we insist on it because the functions D(−) and β(−)

return different (and wrong) results if we fail to eliminate duplicates.
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We view a subset q1 ⊆ goals(q) as another conjunctive query, q1 = ∃x1∃x2 . . .
(
∧

g∈q1
g). Construct a graph whose nodes are goals(q) and edges are pairs of

sub-goals that share a variable, and consider all queries q1, q2, . . . given by its
connected components. We write qi  qj to denote that the queries qi and qj

are isomorphic, and let k be the number of distinct isomorphism types among
queries qi with D(qi) = 0. Define the following partition on goals(q) into k + 2
classes:

– qN =
⋃
{qi | D(qi) < 0}.

– qP =
⋃
{qi | D(qi) > 0}.

– rt1
1 , · · · , rtk

k , where D(ri) = 0, rti

i =
⋃
{qj | qj  ri}, ti =| {qj | qj  ri} |.

We call qP the kernel of q and we call rt1
1 , · · · , rtk

k the zero subgoals or q.
Let Γ (x, m) =

∑m
j=1 xje−m/j be the Poisson distribution function. Given a

query qs of the form rt1
1 , · · · , rtk

k , define

f(qS) =
k∏

i=1

(1 − Γ (
β(ri)

aut(ri)
, ti))

If qS is empty, then f(qS) = 1. Given a set Qs, where each element is a query of
the form qS , define

F (Qs) =
∑

S⊆Qs

(−1)|S|f(∧qs∈Sf(qs)

Now we are ready to describe the coeff(q). Group the queries in mguq0(q)
so that all queries that have the same kernel are in one group. Define a pair
(qP , Qs) for each group where qP is the kernel, and Qs is the set consisting of
sets of zero sub-goals of all queries in the group. Let G(q) be the set of such
pairs and let

C(q) =
∑

(qP ,Qs)∈G(q)

β(qP )
aut(qP )

F (Qs)

Theorem 3. For any q ∈ CQ(c, �=), exp(q) = max(E(q), 0) and coeff(q) =
C(q).

Example 3. For a simple illustration, consider the following query q. Assume
α(R) = 4.

∃x∃y∃z∃u∃v.R(a,x, y, c), R(z, z, u, c)R(v, a, b, c), y �= b

Here a, b, c are constants. Define:

q1 ≡ ∃y∃v.R(a, a, y, c), R(v, a, b, c), y �= b

q2 ≡ ∃x∃y.R(a, x, y, c), R(a, a, b, c), y �= b

Then mguq = {q, q1, q2}, D(q) = 7, D(q1) = D(q2) = 6, hence exp(q) = 6,
mguq0 = {q1, q2}, G(q) = {(q1, ∅), (q2, ∅)}, aut(q1) = aut(q2) = 1 and β(q) =
2β2(R). Thus: μn(q) = 2β2(R)/n6 + o(1/n6)
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3 Complexity Results

We state, explain, and expand here our complexity results that were briefly
mentioned in Th. 1.

3.1 Computing coeff and exp

A direct application of the definitions for exp(q) and coeff(q) leads to an expo-
nential time algorithm. The following gives a tight bound on their complexity:

Theorem 4. ∀C ∈ {CQ(c),CQ(�=),CQ(c, �=)}
1. The problem: given q ∈ C and a number k, decide if exp(q) < k, is NP-

complete.
2. The problem: given q ∈ C compute coeff(q), is #coNP-complete.

The complexity class #coNP [13] is the class of counting problems of the follow-
ing form

f(A) = #x ∀y R(x, y, A)

where R is some polynomial function. Thus, #coNP counts the number of x that
satisfies a certain property where checking the property itself requires an coNP
machine.

For pure conjunctive queries, we have:

Theorem 5. Given a query q ∈ CQ over some fixed schema, both exp(q) and
coeff(q) can be computed in PTIME.

For q ∈ CQ one can compute exp(q) in PTIME because here it is always possible
to unify completely all subgoals referring to the same relation name, and this
unifier has the minimal D. (However, to compute coeff(q) one needs to consider
additional unifiers, but it can still be done in polynomial time for a fixed schema).
It follows that for conjunctive queries q, v, μ(q | v) can be computed in PTIME
and all the problems we described in Sec 1 have PTIME complexity.

Pure conjunctive queries are not very interesting because in practice there is
not much we can express without constants. For example, in k-anonymity we
need constants to refer to the constants being published and need �= to state
that two published rows correspond to distinct rows in the data. We consider
only CQ(c), CQ(�=), and CQ(c, �=) in the rest of the paper.

3.2 Conditional Probabilities

We now consider the two decision problems for conditional probabilities that we
formulated in Sec 1: deciding μ(q | v) = 0 and deciding μ(q | v) = 1.

In the following discussion, C denotes any of CQ(c),CQ(�=),CQ(c, �=): all re-
sults hold for any of these three classes. Let S ⊆ [0, 1]. We define the Asymptotic
Conditional Probability problem for S to be:

ACPS = {(q, v) | q, v ∈ C, μ(q | v) ∈ S}

We only consider the cases when S = {0}, (0, 1) or {1}.
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Theorem 6. ACP{0} is Θp
2-complete. ACP(0,1) is Σp

2 -complete. ACP{1} is
Πp

2 -complete.

The complexity class Θp
2 [24], also referred to as PNP[O(log n)], is the class of

languages that can be decided by a polynomial time oracle Turing-machine that
makes O(log n) calls to an NP oracle. Thus, Θp

2 ⊆ PNP = Δp
2 ⊆ Πp

2 , Σp
2 .

The ACP{1} property is related to query containment, a well studied problem
in finite model theory. For boolean queries containment becomes logical impli-
cation, and v ⇒ q iff ∀n.μn(q | v) = 1 , while ACP{1} means limn μn(q | v) = 1.
The complexity of query containment for CQ is NP-complete[4]. Similarly ACP0

is related to non-containment, which, by complementation, is coNP-complete.

Data complexity. We study two notions of data complexity. In the first setting,
we fix the query and study the complexity as a function of the size of the view.
For a query q and set S ⊆ [0, 1] we define the following problem:

ACPS
q = {v | μ(q | v) ∈ S}

Theorem 7. Let q be any query in CQ(c, �=) and S be any of {0}, (0, 1) and
{1}. Then, ACPS

q is in Θp
2 . Further, there exists a query q ∈ CQ(c, �=) such that

ACPS
q is Θp

2-complete.

In the second setting, we fix the query as well as a non-boolean view definition
and study complexity as a function of the size of the view instance. A non-
boolean conjunctive query V is a formula Eq.(1) possibly with free variables.
For example the following query V has free variables {x, y}:

∃zR(x, a, z), S(z, y) (1)

Let V̄ = V1, . . . , Vm be a set of non-boolean views and let J̄ = J1, . . . , Jm be sets
of tuples, with Ji having the same arity as the arity of Vi. Denote vi ≡ Vi/Ji

the boolean conjunctive query stating that all tuples in Ji must be in the result
of Vi. For example, if V is given by Eq 1, and J = {(a, b), (c, b)}, then V/J ≡
∃z1∃z2R(a, a, z1), S(z1, b), R(c, a, z2), S(z2, b).

For a query q, view definitions V̄ , and set S ⊆ [0, 1] we define the following
problem:

ACPS
q,V̄ = {J | μ(q | V̄ /J̄) ∈ S}

Theorem 8. For any q, V̄ ∈ CQ(c, �=) and S ∈ {{0}, (0, 1), {1}}, the problem
ACPS

q,V̄ is in Θp
2 . Further, there exists q, V̄ ∈ CQ(c, �=) such that ACPS

q,V̄ is
Θp

2-complete.

Here, too, the problem ACP{1}
q,V̄

is related to another well studied problem in
the literature: the query answering using views problem, under the open world
assumption [12]. Indeed, the latter is ∀n.μn(q | V̄ /J̄) = 1, since this means that
q is true on all instances I consistent with the observations J , i.e. q is “certain”.
This problem is known to be in PTIME [1], even for CQ(c, �=). (One can also check
it immediately, since it can be restated as the containment problem V̄ /J̄ ⊆ q,
where q is a fixed query.)
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μ(q | v1) μ(q | v2) μ(q | v1v2) v1 v2 q
0 0 0 R(a1,−) R(a2,−) R(−, b)
0 0 (0,1) R(a,−) R(−, b) R(a, b)
0 0 1 R(a, b,−) R(−, b, c) R(a, b, c)
0 (0,1) 0 R(a, b, d) R(a, b,−), R(−,−, c) R(a, −, c)
0 (0,1) (0,1) R(a,−) R(a,−), R(−, b) R(a, b)
0 (0,1) 1 R(a, b,−) R(a,−,−), R(−, b, c) R(a, b, c)
0 1 0 R(a, b, d) R(a, b,−), R(−, b, c) R(a, b, c)
0 1 (0,1) R(−, b, d) R(a, b,−), R(−, b, c) R(a, b, c)
0 1 1 R(−, b, c) R(a, b,−), R(−, b, c) R(a, b, c)

(0,1) (0,1) 0 R(a, b,−), R(−, −, c), R(a, e, d) R(a, e,−), R(−, −, c), R(a, b, d) R(a, −, c)
(0,1) (0,1) (0,1) R(a,−), R(−, b) R(a,−), R(−, b) R(a, b)
(0,1) (0,1) 1 R(a, b,−), R(−, −, c) R(a,−,−), R(−, b, c) R(a, b, c)
(0,1) 1 0 R(a, b,−), R(−, −, c), R(a, e, d) R(a, e,−), R(−, e, c), R(a, b, d) R(a, −, c)
(0,1) 1 (0,1) R(a, e, −,−), R(−,−, c, f), R(a, b, g,−) R(a, b,−,−), R(−, b, c, h) R(a, −, c,−)
(0,1) 1 1 R(a, b,−), R(−, −, c) R(a,−, c), R(−, b, c) R(a, b, c)

1 1 0 R(a, b,−), R(−, b, c), R(a, e, d) R(a, e,−), R(−, e, c), R(a, b, d) R(a, −, c)
1 1 (0,1) R(a, b,−), R(−, b, c), R(−, e, d) R(a, e,−), R(−, e, c), R(−, b, d) R(a, −, c)
1 1 1 R(a, b,−), R(−, b, c) R(a,−, c), R(a, b,−) R(a, b, c)

Fig. 2. Each of the 27 classes ACPS
S1,S2 is nonempty, assuming α(R) = A(R)

3.3 Complex Problems

Collusions. For S, S1, S2 ∈ {0, (0, 1), 1}, denote ACPS
S1,S2

the problem of decid-
ing, for queries (q, v1, v2), whether (q, v1v2) ∈ ACPS given that (q, v1) ∈ ACPS1

and (q, v2) ∈ ACPS2 .

Theorem 9. The complexity of ACPS
S1,S2

is same as that of ACPS.

The theorem essentially contains 27 statements, for all combinations of S1, S2, S.
A priori, it is not even clear why all the 27 classes ACPS

S1,S2
are nonempty. To

see that, Fig. 2 shows for each class ACPS
S1,S2

an example of v1, v2 and q in
that class. For queries, we use the shorthand notation where each ”-” stands for
a unique existentially quantified variable. There are less than 27 entries due to
the symmetry between S1 and S2.

Fig. 2 reveals an interesting and counter-intuitive phenomenon, which we
refer to as the non-monotonicity of information disclosure: publishing more in-
formation results in less information disclosure. For example, the entry corre-
sponding to 1, 1, 0 shows that with v1, v2, q as given in the figure, we have
μ(q | v1) = μ(q | v2) = 1 but μ(q | v1v2) = 0. Here the query q is very likely true
given either v1 or v2 alone but is very likely false given both v1 and v2.

Relative Security. Finally, we explain the last three entries in Fig. 1 The
complexity class P.coNP, also called probabilistic coNP, is the set of languages
L for which there is a coNP Turing machine M that uses random bits such
that for all strings x: (1) x ∈ L ⇒ Pr(M accepts x) > 1/2, and (2) x �∈ L ⇒
Pr(M accepts x) ≤ 1/2.

4 Proofs of Main Results

We include here some proofs and defer the rest to our technical report [7].
Recall the definition of zero sub-goals and expression for exp(q) and coeff(q)

from Sec. 2. In all the proofs in this section, we consider only those queries
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that do not have any zero sub-goals and that they do not have any non-trivial
automorphisms, i.e aut(q) = 1. We call such queries simple conjunctive queries. It
is tedious but straightforward to incorporate zero-subgoals and automorphisms
in these results, and we omit their discussion here.

For simple conjunctive queries, the expression for exp and coeff can be sim-
plified to exp(q) = minη D(η(q)) and coeff(q) =

∑
η|D(η(q))=exp(q) β(η(q)).

Proposition 1. Given a conjunctive query q, the complexity of evaluating coeff(q)
is #coNP-complete.

Proof. coeff(q) is simply the size of the set

{(η, k) | ∀η0D(η(q)) ≤ D(η0(q)) ∧ k < β(η(q))}

Thus, computing coeff(q) is in #coNP.
To prove the #coNP-hardness, we will give a reduction from #NSAT. In

#NSAT, we are given a 3-CNF formula φ where the set of variables can be par-
titioned into two sets X and Y , and we need to count the number of assignments
of X that can be extended to an assignment of φ. #NSAT is known [22] to be
#coNP-hard.

Given any 3-CNF formula φ over variables X and Y , we construct two queries
q1 and q2. Let φ have c clauses and let |X | = k. The vocabulary consists of a
relation R of arity 4 and a relation S of arity 3 with β(R) = β(S) = B, where B
is some integer greater than 2k. We create a unique constant kx for each variable
x a unique constant kC for each clause C in φ, and two extra constants t and f .
The query q consists of q1q2 where q1 and q2 are two queries as described below.

q1 is constructed as follows. For each clause C(x, y, z) in φ, q1 contains 7 sub-
goals of the form R(kC ,vi, vj ,vk), where vi, vj and vk are such that C(vi, vj , vk)
is true. In addition, for each variable x ∈ X in φ, v contains three subgoals
S(kx, x, x), S(kx, t,−) and S(kx, f,−).

q2 is constructed as follows. For each clause C(x, y, z) in φ, q2 contains a
subgoal R(kC , x′, y′, z′), where x′, y′ and z′ are variables. Also, for each variable
x ∈ X in φ, v contains a subgoal S(kx,−, x′).

Claim: #φ = (coeff(q1q2) mod B7c+2k+1) / B7c+2k.
To verify the claim, lets first look at the unifiers of just q1. Each S(kx, x, x)

can be unified with either S(kx, t,−) or S(kx, f,−). There are 2k such unifiers,
one corresponding to each assignment of t or f to variables in X . If η is any
such unifier, β(η(q1)) = B7c+2k since there are 7c + 2k subgoals.. Further, if η
corresponds to an assignment that can be extended to an assignment of φ, then
q2 can be completely mapped to q1, i.e. η(q1)q2 ≡ η(q1).

There are two cases, #φ is either 0 or its greater than 0. In the latter case,
there is at least one η with the property that η(q1)q2 ≡ η(q1). Every such η adds
the term B7c+2k to the coeff resulting in coeff(q1q2) = #φ∗B7c+2k. The claim
follows since B is chosen to be greater than 2k and #φ is at most 2k. In the
former case, when #φ = 0, every minimal unifier of q1q2 must contain at least
7c + 2k + 1 subgoals, so coeff(q1q2) is a multiple of B7c+2k+1. The claim follows.
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Theorem 10. ACP{1} is Πp
2 -complete.

Proof. We first show that ACP{1} belongs to Πp
2 . (q, v) ∈ ACP{1} can be

restated as

∀η0(∀η1D(η0(v)) ≤ D(η1(v)) ⇒ ∃η2 η2(qv) = η0(v))

Thus, ACP{1} ∈ Πp
2 .

For completeness, we give a reduction from the ∀∃SAT problem defined below,
which is known to be Πp

2 -complete.

∀∃SAT = {(X, Y, φ(X, Y )) | X ,Y sets of variables,φ(X, Y ) a 3CNF formula,
and ∀X∃Y φ(X, Y )}

Given (X, Y, φ(X, Y )), we construct two conjunctive queries q and v. The vocab-
ulary consists of R, S of arities 4 and 2 respectively, and there are two constants
t and f.

The query v is constructed as follows. Every clause C(x, y, z) in φ(X, Y ),
which is a disjunction of x,y and z or their negations, contributes seven subgoals
to v. These are of the form R(kC , vi, vj , vk), where kC is a unique constant for
each clause and each of vi,vj ,vk is either t or f so that the resulting assignment
makes the clause true. Every x ∈ X contributes four subgoal to v given by
S(kx, t ,−), S(kx, f ,−), S(kx,−, 0) and S(kx,−, 1), where kx is a unique constant
for each x.

The query q is constructed as follows. Corresponding to every clause C(x, y, z)
in φ, there is a subgoal R(kC , x, y, z), where kC is the same constant for the
clause as used in the definition of v and x,y,z are variables. For each x ∈ X ,
there is a subgoal G(kx, x, 0), where again kx is the same constant used in v for
variable x.

Claim: (q, v) ∈ ACP{1} iff (X, Y, φ(X, Y )) ∈ ∀∃SAT.
To see this, let us analyze the set mguq0(v). The subgoals corresponding

to R relations cannot be unified with anything else, as all of them contain
only constants. The S subgoals corresponding to two different x cannot be uni-
fied because of the kx constants. For same x ∈ X , the four S subgoals can
be maximally unified in two possibles ways leading to S(kx, t , 0), S(kx, f , 1) or
S(kx, f , 0), S(kx, t , 1). The choice can be made independently for each x. Thus,
the size of mguq0(v) is 2|X|. Now, μ(q | v) = 1 iff for each of the query vi in
mguq0(v), q can be mapped to vi. Each vi, for each x, contains exactly one of
S(kx, t , 0) and S(kx, f , 0). The subgoal S(kx, x, 0) in q has to map to this subgoal.
Thus, x will be equated to t or f . After all the S subgoals in q are mapped, each
of the X variables will have a truth assignment. As we iterate over vi, we get
all possibles truth assignments for X . Also, after X is given a truth assignment,
all the R subgoals of q must map to one of the subgoals of v. This is possible
iff the Y variables can be given a truth assignment so that all clauses in φ are
satisfied. This proves that (q, v) ∈ ACP{1} iff (X, Y, φ(X, Y )) ∈ ∀∃SAT. Thus,
ACP{1} is Πp

2 -complete.
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Theorem 11. ACP(0,1] is Θp
2-complete.

Wagner [24] has provided a very useful tool for proving Θp
2-hardness of problems,

which we state below.

Theorem 12 (Wagner [24]). Let D be an NP-complete set and let A be any
arbitrary set. LetχD be the characteristic function ofD. If there exists a polynomial-
time computable function f such that

|{i | xi ∈ D}|is odd⇔ f(x1, . . . , x2k) ∈ A

for all k ≥ 1 and x1, . . . , x2k with χD(x1) ≥ · · · ≥ χD(x2k), then A is Θp
2-

complete3.

Before we give the proof of Thm. 11, we need few results. Call a 3-CNF formula
with k clauses almost satisfiable if there exists an assignment that satisfies at
least k − 1 clauses.

Lemma 1. There exists a polynomial-time function F such that if φ is a 3-
CNF formula, F (φ) is an almost satisfiable 3-CNF formula with the property
φ⇔ F (φ).

Lemma 2. There exists PTIME functions g, h s.t. if φ1 and φ2 are almost sat-
isfiable formulas, then φ1 ⇒ φ2 iff μ(g(φ1, φ2) | h(φ1, φ2)) > 0.

Proof. For each φi (i = 1, 2), we define two conjunctive queries q1(φi) and q2(φi).
q1(φi) is a query over a relation Ri of arity 4. Corresponding to each clause
C(x, y, z) in φi, there are seven subgoals in q1(φi) of the form Ri(kC , vj , vk, vl, 0),
where kC is a unique constant for each clause and (vj , vk, vl) ∈ {t , f }3 such that
C(vj , vk, vl) is true. We call these the type-0 subgoals since all of them end with
the constant 0. In addition, q1(φi) contains eight more subgoals of the form
Ri(xi, vj , vk, vl, 1), where xi is a variable and (vj , vk, vl) ∈ {t , f }3. We call these
the type-1 subgoals. q2(φi) is also a query over Ri. For each clause C(x, y, z) in
φi, q1(φi) contains a subgoal Ri(kC , x, y, z,−) where x,y,z are variables. Let S
be a new relation and a,b,c fresh constants:

g(φ1, φ2) = q2(φ2)

h(φ1, φ2) = q1(φ1)q2(φ1)q1(φ2)S(x1, x2, c), S(a, b, c)

We will show that g and h satisfy the required property, i.e. φ1 ⇒ φ2 iff
μ(g(φ1, φ2) | h(φ1, φ2)) > 0. Let us first analyze the set mguq0(h(φ1, φ2)). Also,
assume without loss of generality that φ1 and φ2 have distinct set of variables.
Then, the sub-query q1(φ1)q1(φ2) cannot be further unified. There are two cases:
(i) φ1 is satisfiable. Then, the sub-query q2(φ1) can be completely mapped to
the type-0 subgoals of q1(φ1). Further, S(x1, x2, c) can be unified with S(a, b, c).
The resulting query is the only one in mguq0(h(φ1, φ2)). Note that it equates x2
to b. (ii) φ2 is not satisfiable. Then, q2(φ1) cannot be completely mapped to the

3 The class Θp
2 is referred to as PNP

bf in [24].
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type-0 subgoals of q1(φ1). But since φ2 is almost satisfiable, all but one subgoal
of q2(φ1) can be mapped to the type-0 subgoals. The remaining subgoal can be
unified with a type-1 subgoal, by equating x1 with the constant for the corre-
sponding clause. S(x1, x2, c) can no more be unified with S(a, b, c), since x1 has
been equated with a different constant. One can easily check that the resulting
query is the only one in mguq0(h(φ1, φ2)). Also note that x2 is still a free vari-
able in this query. In both cases, there is a unique query in mguq0(h(φ1, φ2)).
Call it q0. μ(g(φ1, φ2) | h(φ1, φ2)) > 0 holds iff g(φ1, φ2) = q2(φ2) maps to q0.
If φ1 is not satisfiable, q0 contains q1(φ2) as a sub-query, otherwise it contains
q1(φ2) with x2 equated to b. If φ2 is satisfiable, it can be mapped to the type-1
subgoal of q1(φ2), and hence can be mapped to q0. If φ2 is not satisfiable, it can
still be mapped to q1(φ2) by using a type-1 subgoal, but then x2 should be a free
variable, i.e., φ1 should also be not satisfiable. Hence, μ(g(φ1, φ2) | h(φ1, φ2)) > 0
iff φ1 ⇒ φ2.

Proof. (Thm. 11) First we show that ACP(0,1] belongs to Θp
2 . By Cor. 2, (q, v) ∈

ACP(0,1] iff exp(v) = exp(qv). The language {(q, k) | exp(q) ≤ k} is in NP
since given any (q, k), one only needs to check if there is a substitution η with
D(η(q)) ≤ k. Further, exp(q) cannot exceed D(q), which is polynomial in size of
q. Thus, exp(q) is determined by a binary search issuing O(log n) queries to an
NP oracle. Since exp(v) = exp(qv) can be checked by explicitly computing exp(v)
and exp(qv), we have ACP(0,1] ∈ Θp

2 . For completeness, let D = 3-SAT be the
set of all satisfiable 3-CNF formulas. We know D is NP-complete. Let x1, . . . , x2k

be s.t. χD(x1) ≥ · · · ≥ χD(x2k). For i = 1, . . . , k, let Qi = g(F (x2i−1), F (x2i))
and Vi = h(F (x2i−1), F (x2i)), where F, g, h are functions as defined in Lemmas 1
and 2. Assume that Qi and Vi use different set of relations for different i. Let
v = V1V2 . . . Vk and q = Q1Q2 . . . Qk. Then, μ(v | q) =

∏k
i=1 μ(Vi | Qi). By

Lemma 2, μ(Vi | Qi) > 0 ⇔ χD(x2i−1) = χD(x2i). Thus, μ(v | q) > 0 ⇔ |{i |
xi ∈ D}|is odd. By Thm. 12, ACP1 is Θp

2-complete.

5 Conclusions

We investigate the complexity of a new approach to incompleteness in databases,
based on Bayes’s notion of a prior probability distribution. In this new framework
we study the complexity of several fundamental problems, with applications
to information disclosure and query answering using views, and provide tight
complexity bounds.
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Abstract. We study query answering in Description Logics (DLs). In
particular, we consider conjunctive queries, unions of conjunctive queries,
and their extensions with safe negation or inequality, which correspond
to well-known classes of relational algebra queries. We provide a set of de-
cidability, undecidability and complexity results for answering queries of
the above languages over various classes of Description Logics knowledge
bases. In general, such results show that extending standard reasoning
tasks in DLs to answering relational queries is unfeasible in many DLs,
even in inexpressive ones. In particular: (i) answering even simple con-
junctive queries is undecidable in some very expressive DLs in which
standard DL reasoning is decidable; (ii) in DLs where answering (unions
of) conjunctive queries is decidable, adding the possibility of expressing
safe negation or inequality leads in general to undecidability of query an-
swering, even in DLs of very limited expressiveness. We also highlight the
negative consequences of these results for the integration of ontologies
and rules. We believe that these results have important implications for
ontology-based information access, in particular for the design of query
languages for ontologies.

1 Introduction

Description Logics (DLs) [5] are currently playing a central role in the research
on ontologies and the Semantic Web. Description Logics are a family of knowl-
edge representation formalisms based on first-order logic (in fact, almost all DLs
coincide with decidable fragments of function-free first-order logic with equal-
ity) and exhibiting well-understood computational properties. DLs are currently
the most used formalisms for building ontologies, and have been proposed as
standard languages for the specification of ontologies in the Semantic Web [24].

Recently, a lot of research and implementation work has been devoted to
the extension of DL knowledge bases towards expressive query languages: one
of main motivations for this effort is to provide users of the Semantic Web
with more powerful ontology accessing tools than the ones deriving from the
standard reasoning services provided by DL knowledge bases [17]. To this aim,
relational database query languages have been considered as very promising
query languages for DLs, in particular conjunctive queries (CQs) and unions of
conjunctive queries (UCQs). A lot of the current research in DLs is studying

T. Schwentick and D. Suciu (Eds.): ICDT 2007, LNCS 4353, pp. 164–178, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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this problem, and many results have recently been obtained, both from the
theoretical side (see Section 2) and the implementation side (see e.g., [21,26]).

These studies are in principle very close to relational databases, not only
because of the common query language, but also because, from the semantic
viewpoint, query answering in DLs corresponds to a well-known problem in
database theory, namely query answering over databases with incomplete infor-
mation [18,29], or query answering in databases under Open-World Assumption
[31]. Then, of course, there is an important difference between the two set-
tings, which lies in the different “schema language” adopted: DLs and relational
schemas indeed correspond to two different subsets of function-free first-order
logic. Nevertheless, there are well-known and important correspondences be-
tween DLs and (relational) data models (see e.g., [12,8]): more generally, the
relationship between DLs and databases is now quite well-assessed.

In this paper we study query answering over Description Logics knowledge
bases. In particular, we do not restrict our attention to (unions of) conjunctive
queries, and analyze several subclasses of first-order queries.1 In particular, we
consider CQs, UCQs, and their extensions with safe negation (CQ¬ss, UCQ¬ss)
and inequality (CQ �=s, UCQ �=s), which correspond to well-known classes of re-
lational algebra queries.

We provide a set of decidability, undecidability and complexity results for
answering queries of the above languages over various classes of Description
Logics knowledge bases. In particular, we mainly consider the following, rather
inexpressive, DLs: RDFS (DL) [16], EL [4], DL-LiteR [9], and AL [5]. Many of
the results obtained for such logics extend to more expressive DLs. A summary
of the results obtained is reported in Figure 1 (Section 6).

In general, such results show that extending standard reasoning tasks in DLs
to answering relational queries is unfeasible in many DLs, even in rather inex-
pressive ones. In particular:

– answering CQs and UCQs is already an unsolvable problem in decidable
fragments of FOL, in particular in L2, the two-variable fragment of function-
free FOL, which is very close to many DLs, and in which all standard DL
reasoning tasks are decidable;

– in DLs where CQs and UCQs are decidable, adding safe negation gener-
ally leads to undecidability of query answering (even in DLs of very limited
expressiveness);

– in the same way, adding inequality (and more generally, comparison opera-
tors) generally leads to undecidability of query answering.

We believe that these results have important implications for ontology-based
information access, in particular for the design of query languages for ontologies,
since they clearly highlight critical combinations of DL constructs and query
constructs with respect to the decidability and complexity of query answering.

1 We recall that, even for empty knowledge bases, the problem of answering arbitrary
first-order queries is undecidable, both over finite and over unrestricted models [28].
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Finally, we briefly point out that the above results have also important con-
sequences in the design of rule layers for the Semantic Web, which is currently
under standardization by the Rule Interchange Format (RIF) working group2 of
the World Wide Web Consortium (W3C). Indeed, almost all the rule formalisms
proposed in this setting allow for posing relational queries (e.g., are able to ex-
press forms of Datalog queries). The results reported in this paper establish that
not only recursion may lead to undecidability of reasoning in DL knowledge bases
augmented with rules (which has been shown in [20,13]), but also the presence
of very restricted forms of nonrecursive negation and/or inequality in the rules
might easily lead to undecidability of reasoning.

2 Description Logics and Query Languages

In this section we briefly introduce Description Logics and the query languages
analyzed in the paper.

2.1 Description Logics

We now briefly recall Description Logics (DLs). We assume that the reader is
familiar with first-order logic (FOL). For a more detailed introduction to DLs,
we refer the reader to [5].

We start from an alphabet of concept names, an alphabet of role names and
an alphabet of constant names. Concepts correspond to unary predicates in
FOL, roles correspond to binary predicates, and constants corresponds to FOL
constants.

Starting from concept and role names, concept expressions and role expres-
sions can be constructed, based on a formal syntax. Different DLs are based on
different languages concept and role expressions. Details on the concept and role
languages for the DLs considered in this paper are reported below.

A concept inclusion is an expression of the form C1 " C2, where C1 and C2
are concept expressions. Similarly, a role inclusion is an expression of the form
R1 " R2, where R1 and R2 are role expressions.

An instance assertion is an expression of the form A(a) or P (a, b), where
A is a concept expression, P is a role expression, and a, b are constant names.
We do not consider complex concept and role expressions in instance assertions,
since we are interested in data complexity of query answering, as explained
below.

A DL knowledge base is a pair 〈T ,A〉, where T , called the TBox, is a set
of concept and role inclusions, and A, called the ABox, is a set of instance
assertions.

The DLs mainly considered in this paper are the following (from now on, we
use the symbol A to denote a concept name and the symbol P to denote a role
name):

2 http://www.w3.org/2005/rules/
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– DL-LiteRDFS is the DL whose language for concept and role expressions is
defined by the following abstract syntax:

CL ::= A | ∃R
CR ::= A
R ::= P | P−

and both concept inclusions of the form CL " CR and role inclusions P1 " P2
are allowed in the TBox. Such DL corresponds to (a subset of) RDFS [1],
the schema language for RDF.3

– DL-LiteR is the DL whose language for concept and role expressions is de-
fined by the following abstract syntax:

CL ::= A | ∃R
CR ::= A | ¬CR | ∃R
R ::= P | P−

and both concept inclusions of the form CL " CR and role inclusions R1 "
R2 are allowed in the TBox.

– EL is the DL whose language for concept expressions is defined by the fol-
lowing abstract syntax:

C ::= A | C1 �C2 | ∃P .C

and only concept inclusions C1 " C2 are allowed in the TBox.
– AL is the DL whose language for concept expressions is defined by the

following abstract syntax:

C ::= A | � | ⊥ | ¬A | C1 �C2 | ∃P | ∀P .C

and only concept inclusions C1 " C2 are allowed in the TBox.
– ALC is the DL whose language for concept expressions is defined by the

following abstract syntax:

C ::= A | ¬C | C1 � C2 | ∃P .C

and only concept inclusions C1 " C2 are allowed in the TBox.
– ALCHIQ is the DL whose language for concept and role expressions is

defined by the following abstract syntax:

C ::= A | ¬C | C1 � C2 | (≥ n R C)
R ::= P | P−

and both concept inclusions C1 " C2 and role inclusions R1 " R2 are allowed
in the TBox.

3 DL-LiteRDFS is very similar to the description logic RDFS(DL) defined in [16].
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Besides the inclusions defined by the concept and role expressions introduced
above, in the following we will also consider role inclusions of the form ¬P1 " P2,
where P1, P2 are role names.

We give the semantics of DLs through the well-known translation of DL knowl-
edge bases into FOL theories with counting quantifiers (see [5]).

ρfol (〈T ,A〉) = ρfol (T ) ∪ ρfol (A)
ρfol (C1 " C2) = ∀x.ρfol (C1, x) → ρfol (C2, x)
ρfol (R1 " R2) = ∀x.ρfol (R1, x, y)→ ρfol (R2, x, y)

ρfol (A, x) = A(x)
ρfol (¬C, x) = ¬ρfol (C, x)

ρfol (C1 � C2, x) = ρfol (C1, x) ∧ ρfol (C2, x)
ρfol(∃R, x) = ∃y.ρfol (R, x, y)

ρfol (∃R.C, x) = ∃y.ρfol (R, x, y) ∧ ρfol (C, y)
ρfol ((≥ n R C), x) = ∃≥ny.ρfol (R, x, y) ∧ ρfol (C, y)

ρfol (P, x, y) = P (x, y)
ρfol (P−, x, y) = P (y, x)
ρfol (¬P, x, y) = ¬P (x, y)

A model of a DL-KB K = 〈T ,A〉 is a FOL model of ρfol (K). Therefore, DLs
inherit the classical semantics of FOL, hence, in every interpretation, constants
and predicates are interpreted over a non-empty interpretation domain which is
either finite or countably infinite. In this paper the only reasoning service we
are interested in is query answering, whose semantics is defined in the following
subsection.

We will also mention the following logics: (i) the DL DLR [11], which extends
ALCHIQ essentially through the use of n-ary relations, and for which decidabil-
ity results on query answering are known; (ii) L2, i.e., the two-variable fragment
of function-free first-order logic with equality [7]; (iii) C2, i.e., the extension of
the two-variable fragment L2 through counting quantifiers [15]. The above two
fragments of FOL are very much related to DLs, since almost all DLs are sub-
sets of L2 or C2. Indeed, it can be easily seen that the above mentioned DLs
and fragments of FOL satisfy the following partial order with respect to their
relative expressive power (see [5] for details):

DL-LiteRDFS ⊂ DL-LiteR ⊂ ALCHIQ ⊂ DLR
EL ⊂ ALC ⊂ ALCHIQ ⊂ C2

AL ⊂ ALC ⊂ L2 ⊂ C2

DL-LiteR ⊂ L2

2.2 Queries

We now introduce the query languages that will be considered in the paper. A
union of conjunctive queries (UCQ) is an expression of the form

{x | conj1(x, c) ∨ . . . ∨ conjm(x, c)} (1)

where each conji(x, c) is an expression of the form conji(x, c) = ∃y.a1 ∧ . . .∧ an

in which each ai is an atom whose arguments are terms from the sets of variables
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x, y, and from the set of constants c and such that each variable from x and y
occurs in at least one atom ai. The variables x are called the head variables (or
distinguished variables) of the query.

A UCQ with safe negation (UCQ¬s) is an expression of the form (1) in which
each ai is either an atom or a negated atom (a negated atom is an expression of
the form ¬a where a is an atom) and such that in each conji(x, c) each variable
from x and y occurs in at least one positive atom.

A UCQ with inequalities (UCQ �=) is an expression of the form (1) in which
each conji(x, c) is a conjunction ∃y.a1 ∧ . . .∧an where each ai is either an atom
or an expression of the form z �= z′, where z and z′ are variables.

A UCQ with universally quantified negation (UCQ¬∀) is a UCQ with negated
atoms in which the variables that only appear in negated atoms are universally
quantified. Formally, a UCQ¬∀ is an expression of the form (1) in which each
conji(x, c) is of the form

∃y.∀z.conj(x, y, z, c)

where conj is a conjunction of literals (atoms and negated atoms) whose argu-
ments are terms from the sets of variables x, y, z and from the set of constants c,
in which each variable from x and y occurs in positive atoms, and each variable
in z only occurs in negated atoms. An example of a UCQ¬∀ is the following:

{x | (∃y, z.∀w.r(x, y) ∧ ¬s(y, z) ∧ ¬t(w, z)) ∨ (∃y.∀u.r(x, y) ∧ ¬s(x, u))}

Notice that all the classes of queries above considered correspond to classes
of relational algebra queries (hence they are classes of domain-independent first-
order queries) [3].

We call a UCQ a conjunctive query (CQ) when m = 1. Analogously, we
define the notions of CQ with negation (CQ¬), safe negation (CQ¬s), inequalities
(CQ �=), and universally quantified negation (CQ¬∀).

A Boolean CQ is a CQ without head variables, i.e., an expression of the form
conj1(x, c) ∨ . . . ∨ conjm(x, c). Since it is a sentence, i.e., a closed first-order
formula, such a query is either true or false in a database. In the same way,
we define the Boolean version of the other kinds of queries introduced above.
Finally, the arity of a query is the number of head variables, while the size of a
CQ q is the number of atoms in the body of q.

The semantics of queries in DL knowledge bases is immediately obtained by
adapting the well-known notion of certain answers in indefinite databases (see
e.g. [29]). Let q be a query of arity n, let x1, . . . , xn be its head variables, and let
c = c1, . . . , cn be a n-tuple of constants. We denote by q(c) the Boolean query
(i.e., the FOL sentence) obtained from q by replacing each head variable xi with
the constant ci.

Let q be a query of arity n. A n-tuple c of constants occurring in K is a certain
answer to q in K iff, for each model I of K, I satisfies the sentence q(c) (in this
case we write I |= q(c)). For a Boolean query q, we say that true is a certain
answer to q in K iff, for each model I of K, I |= q.

Finally, in this paper we focus on data complexity of query answering, which
is a notion borrowed from relational database theory [30]. First, we recall that
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there is a recognition problem associated with query answering, which is defined
as follows. We have a fixed TBox T expressed in a DL DL, and a fixed query
q: the recognition problem associated to T and q is the decision problem of
checking whether, given an ABox A, and a tuple c of constants, we have that
〈T ,A〉 |= q(c). Notice that neither the TBox nor the query is an input to the
recognition problem.

Let C be a complexity class. When we say that query answering for a certain
DL DL is in C with respect to data complexity, we mean that the corresponding
recognition problem is in C. Similarly, when we say that query answering for
a certain DL DL is C-hard with respect to data complexity, we mean that the
corresponding recognition problem is C-hard.

2.3 Previous Results on Query Answering in DLs

So far, only conjunctive queries and union of conjunctive queries have been
studied in DLs. In particular, the first results in this field appear in [20], which
proves that answering CQs and UCQs is decidable in ALCNR, a DL whose
expressiveness lies between ALC and ALCHIQ. Then, in [11] it has been shown
that answering CQs and UCQs is decidable in the very expressive Description
Logic DLR. The same paper also establishes undecidability of answering CQ �=s
in DLR, which so far is the only known result for DLs concerning the classes
of queries (apart from CQs and UCQs) studied in this paper. Another decid-
ability result appears in [21] and concerns answering conjunctive queries in
ALCIHQ(D), which is the extension of ALCHIQ with concrete domains.

As for computational characterizations of query answering in DLs, the above
mentioned work [20] has shown that the data complexity of answering CQs and
UCQs in ALCNR is coNP-complete. Then, [27] presents the first algorithm
for answering conjunctive queries over a description logic with transitive roles.
Moreover, [10] provides a set of lower bounds for answering conjunctive queries
in many DLs, while in [22] it has been shown that the complexity of answering
conjunctive queries in SHIQ (which is the extension ofALCHIQ with transitive
roles) is coNP-complete, for CQs in which transitive roles do not occur. This
result (with the same restriction on roles occurring in queries) has been further
extended in in [23] to unions of conjunctive queries, and in [14] to CQs for
SHOQ, a DL which extends ALCHIQ with transitive roles and nominals, but
does not allow for expressing inverse roles anymore.

3 Results for Positive Queries

We start our analysis of query answering in DLs by considering, among the
queries introduced in the previous section, the classes of positive queries. Thus,
we first examine conjunctive queries, and then consider unions of conjunctive
queries. In both cases, we identify sets of expressive features of a DL which are
sufficient to make query answering undecidable.



The Limits of Querying Ontologies 171

Theorem 1. Let DL be any DL such that: (i) its concept language allows for
binary concept disjointness (A1 " ¬A2), concept disjunction (C1 �C2), unqual-
ified existential quantification (∃R), and universal quantification (∀R.C); (ii) it
allows for concept inclusions and role inclusions of the form ¬P1 " P2, where
P1, P2 are role names. Then, answering UCQs in DL is undecidable.

Proof (sketch). The proof is by a reduction from the unbounded tiling problem
[6]. Let (S,H,V) be an instance of the tiling problem, where S = {t1, . . . , tn}
is a finite set of tiles, and H and V are binary relations over S × S. For each
i ∈ {1, . . . , n}, let T i

h = {thi
1
, . . . , thi

ki

} be the subset of S such that T i
h = {x ∈

S | (ti, x) ∈ H}, and let T i
v = {tvi

1
, . . . , tvi

ji
} be the subset of S such that

T i
v = {x ∈ S | (ti, x) ∈ V}.
Now let T be the following TBox (in which we use a set of concept names

T1, . . . , Tn in one-to-one correspondence with the elements t1, . . . , tn of S, and
the roles H , V and V ):

� " ∃H
� " ∃V
� " T1 � . . . � Tn

Ti " ¬Tj for each i �= j, i, j ∈ {1, . . . , n}
Ti " ∀H.Thi

1
� . . . � Thi

ki

for each i ∈ {1, . . . , n}
Ti " ∀V .Tvi

1
� . . . � Tvi

ji
for each i ∈ {1, . . . , n}

¬V " V

and let q be the CQ ∃x1, x2, y1, y2.H(x1, x2)∧ V (x1, y1)∧H(y1, y2)∧ V (x2, y2).
We prove that there exists a model M for T such that q is false in M iff the
tiling problem instance (S,H,V) has a solution. ��
Notice that the two-variable fragment L2 satisfies the conditions of Theorem 1
(in the sense that a DL satisfying the conditions of Theorem 1 can be translated
into an equivalent L2 theory), which implies the following property.

Corollary 1. Answering CQs in L2 is undecidable.

Actually, the above property shows that answering CQs is undecidable already
in a very small fragment of L2.

We point out that, although the syntax of the description logic DLR satisfies
the conditions of the above theorem, such theorem actually does not apply to
DLR, due to a different interpretation of negated roles in DLR with respect to
the standard semantics [11].

Then, we analyze unions of conjunctive queries. The next two theorems iden-
tify two sets of DL constructs which are sufficient to make query answering
undecidable.

Theorem 2. Let DL be any DL whose concept language allows for unqualified
existential quantification (∃P ) and concept disjunction (C1 � C2), and which
allows for concept inclusions and role inclusions of the form ¬P1 " P2, where
P1, P2 are role names. Then, answering UCQs in DL is undecidable.
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Proof (sketch). The proof is analogous to the proof of Theorem 1. The only
difference is that the concept inclusions defined in the above proof and involving
either concept disjointness or universal quantification are encoded by suitable
Boolean CQs that are added to the query, thus producing a UCQ. ��
The proof of the next theorem is based on a reduction from the word problem
for semigroups to answering UCQs in a description logic DL.

Theorem 3. Let DL be any DL whose concept language allows for unqualified
existential quantification (∃R) and inverse roles (∃P−), and which allows for
concept inclusions and role inclusions of the form ¬P1 " P2, where P1, P2 are
role names. Then, answering UCQs in DL is undecidable.

Then, we provide an upper bound for the data complexity of answering UCQs
in the DL EL (we recall that hardness with respect to ptime has been proved
in [9]).

Theorem 4. Answering UCQs in EL is in ptime with respect to data
complexity.

Proof (sketch). We prove the thesis by defining a query reformulation algorithm
for EL. More precisely, we define an algorithm perfectRefEL that takes as input
an EL TBox T and a UCQ q, and computes (in a finite amount of time) a
positive Datalog query q′ which constitutes a perfect rewriting [19] of the query
q, in the sense that, for each ABox A, the set of certain answers of q in 〈T ,A〉 is
equal to the answers returned by the standard evaluation of the Datalog query
q′ in the ABox A considered as a relational database. Since the evaluation of a
positive Datalog query is in ptime with respect to data complexity, and since
the computation of the reformulation q′ is independent of the data, it follows
that the data complexity of answering UCQs in EL is in ptime. ��

4 Results for Queries with Inequality

We now give decidability and complexity results for answering queries with in-
equality in DL knowledge bases. We first examine CQ �=s, then we turn our
attention to UCQ �=s.

We first prove undecidability of answering CQ�=s in AL.

Theorem 5. Answering CQ �=s in AL is undecidable.

Proof (sketch). Again, the proof is by reduction from the tiling problem. Let
(S,H,V) be an instance of the tiling problem, where S = {t1, . . . , tn} is a finite
set of tiles, H and V are binary relations over S ×S. For each i ∈ {1, . . . , n}, let
T i

h = {thi
1
, . . . , thi

ki

} be the subset of S such that T i
h = {x ∈ S | (ti, x) �∈ H}, and

let T i
v = {tvi

1
, . . . , tvi

ji
} be the subset of S such that T i

v = {x ∈ S | (ti, x) �∈ V}.



The Limits of Querying Ontologies 173

Now let T be the following TBox:

� " ∃H
� " ∃V
¬T1 � . . . � ¬Tn " ⊥
Ti " ¬Tj for each i �= j, i, j ∈ {1, . . . , n}
Ti " ∀H.¬Thi

1
� . . . � ¬Thi

ki

for each i ∈ {1, . . . , n}
Ti " ∀V .¬Tvi

1
� . . . � ¬Tvi

ji

for each i ∈ {1, . . . , n}

and let q = ∃x1, x2, y1, y2.H(x1, x2)∧V (x1, y1)∧H(y1, y2)∧V (x2, y
′
2)∧y2 �= y′

2.
We prove that there exists a model M for T such that q is false in M iff the
tiling problem instance (S,H,V) has a solution. ��

The above theorem improves the undecidability result of containment of CQ �=s
presented in [11].

Then, we consider the DL DL-LiteR: for this logic, we prove the following
hardness result.

Theorem 6. Answering CQ �=s in DL-LiteR is coNP-hard with respect to data
complexity.

Proof (sketch). The proof is by reduction from satisfiability of a 3-CNF propo-
sitional formula. The reduction is inspired by an analogous reduction reported
in [2] which proves coNP-hardness of answering CQ�=s using views. ��
Finally, we show a (quite obvious) property which allows us to immediately
define upper bounds for answering CQ�=s in the DLs DL-LiteRDFS and EL.
In the following, we call singleton interpretation for K an interpretation whose
domain Δ is a singleton {d}, all constants occurring in K are interpeted as d,
the interpretation of every concept name A is Δ, and the interpretation of every
role name P is Δ×Δ.

Theorem 7. Let DL be a DL such that, for each DL-KB K, any singleton
interpretation for K is a model of K. Then, answering CQ �=s in DL has the
same complexity as answering CQs.

It is immediate to see that both DL-LiteRDFS and EL satisfy the condition of the
above theorem.4 This allows us to extend the computational results of answering
CQs to the case of CQ�=s for both the above DLs.

For UCQ�=s, we start by considering DLs allowing for inverse roles and un-
qualified existential quantification in concept expressions.

The proof of the next theorem is based on a reduction from the word problem
for semigroups.

4 Notice, however, that this property does not hold anymore if the Unique Name
Assumption (UNA) [5] is adopted in such description logics (i.e., different constant
names must be interpreted as different elements of the domain). Anyway, all the
other results of this paper also hold in the case when the DL adopts the UNA.
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Theorem 8. Let DL be any DL whose concept language allows for unqualified
existential quantification (∃R) and inverse roles (∃P−), and which only allows for
concept inclusions in the TBox. Then, answering UCQ �=s in DL is undecidable.

Notice that the above theorem holds for the description logic DL-LiteR.
Then, we turn our attention to the description logic EL, and prove a result

analogous to the previous theorem (whose proof is obtained by slightly modifying
the reduction of the previous proof).

Theorem 9. Answering UCQ�=s in EL is undecidable.

Finally, in a similar way we prove the same undecidability result for the descrip-
tion logic AL.

Theorem 10. Answering UCQ �=s in AL is undecidable.

Actually, the above theorem implies undecidability of answering UCQ�=s already
in FL−, which is obtained from AL disallowing negation on atomic concepts [5].

Finally, we turn our attention to answering UCQ �=s in DL-LiteRDFS , and are
able to easily prove the following upper bound.

Theorem 11. Answering UCQ �=s in DL-LiteRDFS is in logspace with respect
to data complexity.

5 Results for Queries with Negation

In this section, among the queries introduced in Section 2, we consider the classes
containing forms of negation. So we first consider CQ¬ss, then UCQ¬ss, and
finally UCQ¬∀s.

We start by proving that answering CQ¬ss is undecidable in the description
logicAL (the proof of next theorem is again by reduction from the tiling problem,
in a way similar to the proof of Theorem 5).

Theorem 12. Answering CQ¬ss in AL is undecidable.

Then, we show a hardness result for answering CQ¬ss in DL-LiteR.

Theorem 13. Answering CQ¬ss in DL-LiteR is coNP-hard with respect to
data complexity.

Proof (sketch). We prove the thesis by a reduction from graph 3-colorability.
Let G = (V, E) be a directed graph. We define the DL-LiteR-KB K = 〈T ,A〉,
where T is the following TBox (independent of the graph instance):

Red " ¬Green
Red " ¬Blue
Green " ¬Blue

∃EdgeR " Red
∃EdgeG " Green
∃EdgeB " Blue

∃EdgeR− " ¬Red
∃EdgeG− " ¬Green
∃EdgeB− " ¬Blue
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and A is the following ABox: A = {Edge(v1, v2) | (v1, v2) ∈ E}. Finally, let q be
the CQ¬s ∃x, y.Edge(x, y) ∧ ¬EdgeR(x, y) ∧ ¬EdgeG(x, y) ∧ ¬EdgeB (x, y). We
prove that G is 3-colorable iff true is not a certain answer to q in K. ��

Notice that the above theorem actually proves coNP-hardness of answering
CQ¬ss already for DLs much less expressive than DL-LiteR, i.e., for the DL ob-
tained from DL-LiteR by eliminating both role inclusions and existential quan-
tification on the right-hand side of concept inclusions.

Finally, we turn our attention to the description logics DL-LiteRDFS and EL,
and prove a property analogous to Theorem 7. We call saturated interpreta-
tion for K an interpretation whose domain Δ is in one-to-one correspondence
with the constants occurring in K, all constants are interpreted according to
such correspondence, the interpretation of every concept name A is Δ, and the
interpretation of every role name P is Δ×Δ.

Theorem 14. Let DL be a DL such that, for each DL-KB K, any saturated
interpretation for K is a model of K. Then, answering CQ¬ss in DL has the
same complexity as answering CQs.

It is immediate to see that both DL-LiteRDFS and EL satisfy the condition of the
above theorem. This allows us to extend the computational results of answering
CQs to the case of CQ¬ss for both the above DLs.

Then, we analyze UCQ¬ss. First, we prove a very strong undecidability result.

Theorem 15. Let DL be any DL allowing for unqualified existential quantifi-
cation (∃P ) in concept expressions. Answering UCQ¬ss in DL is undecidable.

Proof (sketch). Given a tiling problem instance (S,H,V) as in the proof of
Theorem 1, we define the following TBox T : {� " Point ,� " ∃H,� " ∃V }.
Then, let q be the UCQ¬s containing the following conjunctions:

∃x.Point(x) ∧ ¬T1(x) ∧ . . . ∧ ¬Tn(x)
∃x.Ti(x) ∧ Tj(x) for each i �= j, i, j ∈ {1, . . . , n}
∃x1, x2, y1, y2.H(x1, x2) ∧ V (x1, y1) ∧H(y1, y2) ∧ ¬V (x2, y2)
∃x, y.Ti(x) ∧H(x, y) ∧ ¬Thi

1
(y) ∧ . . . ∧ ¬Thi

ki

(y) for each i ∈ {1, . . . , n}
∃x, y.Ti(x) ∧ V (x, y) ∧ ¬Tvi

1
(y) ∧ . . . ∧ ¬Tvi

ji
(y) for each i ∈ {1, . . . , n}

We prove that there exists a model M for T such that q is false in M iff the
tiling problem instance (S,H,V) has a solution. ��

The above theorem implies that answering UCQ¬ss is undecidable in all the
DLs analyzed in this paper, with the exception of DL-LiteRDFS , in which the
concept inclusions defined in the above proof cannot be expressed. So we turn
our attention to answering UCQ¬ss in DL-LiteRDFS , and prove the following
computational characterization.

Theorem 16. Answering UCQ¬ss in DL-LiteRDFS is coNP-complete with re-
spect to data complexity.
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CQ UCQ CQ �= UCQ �= CQ¬s UCQ¬s UCQ¬∀

DL-LiteRDFS ≤logspace ≤logspace ≤logspace ≤logspace ≤logspace = coNP UNDEC.
[10] [10] [10]+Thm. 7 Thm. 11 [10]+Thm. 14 Thm. 16 Thm. 17

DL-LiteR ≤logspace ≤logspace ≥coNP UNDEC. ≥coNP UNDEC. UNDEC.
[10] [10] Thm. 6 Thm. 8 Thm. 13 Thm. 15 Thm. 17

= ptime = ptime = ptime UNDEC. = ptime UNDEC. UNDEC.
EL ≥: [10] ≥: [10] ≥: [10] Thm. 9 ≥: [10] Thm. 15 Thm. 17

≤: Thm. 4 ≤: Thm. 4 ≤: Thm.7+4 ≤: Thm.14+4
AL, = coNP = coNP UNDEC. UNDEC. UNDEC. UNDEC. UNDEC.
ALC, ≥: [10] ≥: [10] Thm. 5 Thm. 10 Thm. 12 Thm. 15 Thm. 17

ALCHIQ ≤: [22] ≤: [23]
DLR ≥ coNP[10] ≥ coNP[10] UNDEC. UNDEC. UNDEC. UNDEC. UNDEC.

DECID. [11] DECID. [11] [11] [11] Thm. 12 Thm. 15 Thm. 17
L2 UNDEC. UNDEC. UNDEC. UNDEC. UNDEC. UNDEC. UNDEC.

Thm. 1 Thm. 1 Thm. 1 Thm. 1 Thm. 1 Thm. 1 Thm. 1

Fig. 1. Summary of results

Finally, we turn our attention to unions of conjunctive queries with universally
quantified negation, and show that answering queries of this class is undecidable
in every DL.

The proof of the next theorem is based on a reduction from the word problem
for semigroups.

Theorem 17. Answering UCQ¬∀s is undecidable in every DL.

This result identifies a very restricted fragment of FOL queries for which query
answering is undecidable, independently of the form of the knowledge base/FOL
theory to which they are posed.

6 Summary of Results and Conclusions

The table displayed in Figure 1 summarizes the results presented in this paper
(as well as the already known results for the DLs considered in this paper). In
the table, each column corresponds to a different query language, while each
row corresponds to a different DL. Each cell reports the data complexity of
query answering in the corresponding combination of DL and query language.
If the problem is decidable, then hardness (≥) and/or membership (≤) and/or
completeness (=) results are reported (with reference to the Theorem or the
publication which proves the result).

Besides the considerations reported in the introduction about these results, a
further interesting aspect is the existence of cases in which adding the possibility
of expressing unions changes the complexity of query answering. E.g., in the case
of EL, adding the possibility of expressing unions (i.e., going from CQs to UCQs)
in the presence of safe negation or inequality makes query answering undecidable,
while it is decidable in the absence of unions in queries.

These results are of course only a small step towards a thorough analysis of
expressive query languages in DLs. Among the DLs and the query languages
studied in this paper, two interesting open problems concern the full compu-
tational characterization of answering CQ¬ss and CQ �=s in DL-LiteR. Actually,
even decidability of query answering in these cases is still unknown.
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Finally, we remark that the present research is related to the work reported
in [25], which presents a similar analysis for the same query classes in relational
databases with incomplete information (instead of DL knowledge bases). How-
ever, we point out that none of the results reported in the present paper can be
(either directly or indirectly) derived from the proofs of the results in [25], due
to the deep differences between the database schema language considered there
and the DLs examined in this paper.
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Abstract. A database D may be inconsistent wrt a given set IC of in-
tegrity constraints. Consistent Query Answering (CQA) is the problem
of computing from D the answers to a query that are consistent wrt IC .
Consistent answers are invariant under all the repairs of D, i.e. the consis-
tent instances that minimally depart from D. Three classes of repair have
been considered in the literature: those that minimize set-theoretically
the set of tuples in the symmetric difference; those that minimize the
changes of attribute values, and those that minimize the cardinality of
the set of tuples in the symmetric difference. The latter class has not
been systematically investigated. In this paper we obtain algorithmic
and complexity theoretic results for CQA under this cardinality-based
repair semantics. We do this in the usual, static setting, but also in a dy-
namic framework where a consistent database is affected by a sequence of
updates, which may make it inconsistent. We also establish comparative
results with the other two kinds of repairs in the dynamic case.

1 Introduction

The purpose of consistent query answering (CQA) is to compute query answers
that are consistent with certain integrity constraints (ICs) that the database as
a whole may fail to satisfy. Consistent answers have been characterized as those
that are invariant under minimal forms of restoration of the consistency of the
database [1, 5]. A particular and first notion of minimal restoration of consistency
was captured in [1] in terms of database repairs, i.e. consistent database instances
that share the schema with the original database, but differ from the latter by
a minimal set of whole tuples under set inclusion. In this paper we call this
semantics “the S-repair semantics”, for being set oriented. In [5, 15, 1, 7, 3, 9],
complexity bounds for CQA under the S-repair semantics have been reported.

Two other repair semantics naturally arise and have been considered in the lit-
erature. The A-repair semantics is based on changing in a minimal way attribute
� Current affiliation: Google, Zürich.
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values in database tuples in order to restore consistency. CQA under the A-repair
semantics has also been investigated [29, 14, 4, 12]. The C-repair semantics is
based on repairs of the original database that minimize the cardinality of the set
of tuples by which the instances differ [2]. This semantics has received much less
attention so far.

Example 1. Consider a database schema P (X, Y, Z) with the functional depen-
dency X → Y . The inconsistent instance D = {P (a, b, c), P (a, c, d), P (a, c, e)},
seen as a set of ground atoms, has two S-repairs, D1 = {P (a, b, c)} and D2 =
{P (a, c, d), P (a, c, e)}, because the symmetric set differences with D, Δ(D, D1)
and Δ(D, D2), are minimal under set inclusion. However, only for D2 the car-
dinality |Δ(D, D2)| of the symmetric set difference is minimum; and D2 is the
only C-repair.

The query P (x, y, z) has consistent answers (a, c, d) and (a, c, e) under the C-
repair semantics (they are classic answers in the only C-repair), but none under
the S- repair semantics (the two S-repairs share no classic answers). �

The consistent query answers under C-repairs form a superset of the consistent
answers under S-repairs, because every C-repair is also an S-repair. Actually, in
situations where the S-repair semantics does not give any consistent answers,
the C-repair semantics may return answers. These answers could be further fil-
tered out according to other criteria at a post-processing stage. For example,
in the extreme case where there is only one database tuple in semantic conflict
with a possibly large set of other tuples, the existence of an S-repair contain-
ing the only conflicting tuple would easily lead to an empty set of consistent
answers. The C-repair semantics would not allow such a repair (c.f. Example 3
below).

Furthermore, the C-repair semantics has the interesting property that CQA,
a form of cautious or certain reasoning (declaring true what is true in all re-
pairs), and its brave or possible version (i.e. true in some repair), are mutually
reducible in polynomial time and share the same data complexity. This is estab-
lished in Section 3 by proving first some useful graph-theoretic lemmas about
maximum independent sets that are interesting in themselves, and have a wider
applicability in the context of CQA.

In [2], C-repairs were specified using disjunctive logic programs with sta-
ble model semantics [17] and weak cardinality constraints [6]. In this paper,
applying the graph-theoretic techniques and results mentioned above, we ob-
tain the first non-trivial complexity results for CQA under the C-repair seman-
tics. Our emphasis is on CQA, as opposed to computing or checking specific
repairs.

All the complexity bounds on CQA given so far in the literature, no matter
which repair semantics is chosen, consider the static case: Given a snapshot of
a database, a set of integrity constraints, and a query, the problems are the
computation and verification of consistent answers to the query. In this paper
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we also take into account dynamic aspects of data, studying the complexity of
CQA when the consistency of a database may be affected by update actions.

Example 2. (example 1 continued) The C-repair D2 = {P (a, c, d), P (a, c, e)}
is obviously consistent, however after the execution of the update operation
insert(P (a, f, d)) it becomes inconsistent. In this case, the only C-repair of D2∪
{P (a, f, d)} is D2 itself. So, CQA from D2 ∪ {P (a, f, d)} amounts to classic
query answering from D2. However, if we start from the consistent instance
D′ = {P (a, c, d)}, executing the same update operation leads to two C-repairs,
D′ and also {P (a, f, d)}, and now CQA from D′ ∪ {P (a, f, d)} is different from
classic query answering from D′, because two repairs have to be considered. �

Understanding and handling CQA in a dynamic setting is crucial for its applica-
bility. Incremental methods should be developed, since it would be inefficient to
compute a materialized repair of the database or a consistent answer to a query
from scratch after every update.

While we think that the right repair semantics may be application dependent,
being able to compare the possible semantics in terms of complexity may also
shed some light on what may be the repair semantics of choice. This comparison
should consider both static and incremental CQA, because a specific semantics
might be better than others in terms of complexity when the database is affected
by certain updates. In this paper we compare the C-repair semantics with the S-
and A-repair semantics mentioned before, and both in the static and incremental
settings.

In Section 3 we prove that static CQA under C-repairs is PNP(log(n))-hard for
denial constraints and ground atomic queries; which contrasts with the PTIME
result for S-repairs in [9]. On the other side, in Section 4, we prove that incre-
mental CQA, i.e. CQA in the dynamic setting, under the C-repair semantics
is in PTIME for denial constraints and conjunctive queries; and that the same
problem under S-repairs is coNP -hard (in data).

The naive algorithms for incremental CQA under the C-repair semantics
are polynomial in data, but exponential in the size of the update sequence.
In consequence, we also study the parameterized complexity [10, 13] of incre-
mental CQA under the C-repair semantics, being the parameter the size of the
update sequence. We establish that the problem is fixed parameter tractable
(FPT).

For establishing comparisons with the C-repair semantics, we obtain new re-
sults on the static and incremental complexity both under the classic, i.e. S-
repair semantics, and the A-repair semantics. We prove, for the former, that
incremental CQA is coNP-hard; whereas for the latter, static and incremental
CQA become both PNP -hard in data.

We concentrate on relational databases and denial integrity constraints, which
include most of the constraints found in applications where inconsistencies natu-
rally arise, e.g. census-like databases [4], experimental samples databases, biolog-
ical databases, etc. Complexity results refer to data complexity. For complexity
theory we refer to [26]; and to [13] for parameterized complexity. Proofs of the
results in this paper can be found in [22].
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2 Semantics for Consistent Query Answering

A relational database instance D is a finite set of ground atoms R(t̄) (also called
database tuples1), where R is a relation in the schema D, and t̄ is a finite sequence
of constants from the domain U . A database atom is of the form R(t̄), where R
is a predicate in D, and t̄ may contain constants or variables. A database literal
is a database atom or a negation of a database atom. With Δ(D′, D) we denote
the symmetric difference (D′�D)∪(D�D′) between instances D, D′, conceived
both as sets of ground atoms.

The relational schema D determines a first-order language L(D) based on the
relation names, the elements of U , and extra built-in predicates. In the language
L(D), integrity constraints are sentences, and queries are formulas, usually with
free variables. We assume in this paper that sets IC of ICs are always consistent
in the sense that they are simultaneously satisfiable as first-order sentences.
A database is consistent wrt to a given set of integrity constraints IC if the
sentences in IC are all true in D, denoted D |= IC . An answer to a query Q(x̄),
with free variables x̄, is a tuple t̄ that makes Q true in D when the variables in
x̄ are interpreted as the corresponding values in t̄, denoted D |= Q[t̄].

Definition 1. For a database D, integrity constraints IC , and a partial order
$D,S over databases that depends on the original database D and a repair
semantics S, a repair of D wrt IC under S is an instance D′ such that: (a)
D′ has the same schema and domain as D; (b) D′ |= IC ; and (c) there is no
D′′ satisfying (a) and (b), such that D′′ ≺D,S D′, i.e. D′′ $D,S D′ and not
D′ $D,S D′′. The set of all repairs is denoted with Rep(D, IC ,S). �

The class Rep(D, IC ,S) depends upon the semantics S, that determines the
partial order $ and the way repairs can be obtained, e.g. by allowing both
insertions and deletions of whole database tuples [1], or deletions of them only
[9], or only changes of attribute values [29, 4, 12], etc. (c.f. Definition 2.) We
summarize here the most common repair semantics.

Definition 2. (a) S-repair semantics [1]: D′ $D,S D′′ iff Δ(D′, D) ⊆ Δ(D′′, D).
(b) C-repair semantics: D′ $D,C D′′ iff |Δ(D′, D)| ≤ |Δ(D′′, D)|.
(c) A-repair semantics : D′ $D,A D′′ iff f(D, D′) ≤ f(D, D′′), where f is a fixed
numerical aggregation function over differences of attribute values. �

More details about the A-repair semantics can be found in Section 4.3. Particular
cases of A-repairs can be found in [14, 12], where the aggregation function to be
minimized is the number of all attribute changes; and in [4], where the function is
the overall quadratic difference obtained from the changes in numerical attributes
between the original database and the repair. S-repairs and C-repairs are “tuple-
based”, in the sense that consistency is restored by inserting and/or deleting
whole database tuples; whereas A-repairs are obtained by changing attributes
values in existing tuples only.
1 We also use the term tuple to refer to a finite sequence t̄ = (c1, . . . , cn) of constants

of the database domain U , but a database tuple is a ground atomic sentence with
predicate in D (excluding built-ins predicates, like comparisons).
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In Example 1, attribute-based repairs could be {P (a, c, c), P (a, c, d), P (a, c, e)},
suggesting that we made a mistake in the second argument of the first tuple, but
also {P (a, b, c), P (a, b, d), P (a, b, e)}. If the aggregate function in Definition 2(c)
is the number of changes in attribute values, the former would be a repair, but not
the latter. A-repairs may not be S- or C-repairs if the changes of attribute values
have to be simulated via deletions followed by insertions.

Definition 3. Let D be a database, IC a set of ICs, and Q(x̄) a query. (a) A
ground tuple t̄ is a consistent answer to Q wrt IC under semantics S if for every
D′ ∈ Rep(D, IC ,S), D′ |= Q[t̄]. (b) Cqa(Q, D, IC ,S) is the set of consistent
answers to Q in D wrt IC under semantics S. If Q is a sentence (a boolean
query), Cqa(Q, D, IC ,S) := {yes} when D′ |= Q for every D′ ∈ Rep(D, IC ,S),
and Cqa(Q, D, IC ,S) := {no}, otherwise. (c) CQA(Q, IC ,S) := {(D, t̄) | t̄ ∈
Cqa(Q, D, IC ,S)} is the decision problem of consistent query answering. �

Denial constraints are integrity constraints expressed by L(D)-sentences of the
form ∀x̄¬(A1 ∧ . . . ∧ Am ∧ γ), where each Ai is a database atom and γ is a
conjunction of comparison atoms. In particular, functional dependencies (FDs),
e.g. ∀x∀y∀z¬(R(x, y) ∧ R(x, z) ∧ y �= z), are denial constraints. For denial ICs,
tuple-based repairs are obtained by tuple deletions only [9].

3 Complexity of CQA Under the C-Repair Semantics

As a consequence of the specification of C-repairs as the stable models of dis-
junctive logic programs with non-prioritized weak constraints [2] and the results
in [6], we obtain that an upper bound on the data complexity of CQA under the
C-repair semantics is the class ΔP

3(log(n)).
In [3], conflict graphs were first introduced to study the complexity of CQA for

aggregate queries wrt FDs under the S-repair semantics. They have as vertices
the database tuples; and edges connect two tuples that simultaneously violate
a FD. There is a one-to-one correspondence between S-repairs of the database
and the set-theoretically maximal independent sets in the conflict graph. Sim-
ilarly, there is a one-to-one correspondence between C-repairs and maximum
independent sets in the same graph (but now they are maximum in cardinality).

Conflict graphs for databases wrt general denial constraints become conflict
hypergraphs [9] that have as vertices the database tuples, and as hyperedges the
(set theoretically minimal) collections of tuples that simultaneously violate one
of the denial constraints. The size of the hypergraph (including vertices and
hyperedges) is polynomial in the size of the database, because we have a fixed
set of denial constraints. The correspondence for conflict graphs between repairs
and independent sets −maximum or maximal depending on the semantics− still
holds for hypergraphs, where an independent set in an hypergraph is a set of
vertices that does not contain any hyperedges [9].

Notice that, unless an IC forces a particular tuple not to belong to the
database,2 every tuple in the original database belongs to some S-repair, but

2 We do not consider in this work such non generic ICs [5].
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not necessarily to a C-repair (c.f. Example 1, where the tuple P (a, b, c) does not
belong to the only C-repair).

In consequence, testing membership of vertices to some maximum indepen-
dent set becomes a relevant for C-repairs. The complexity of this problem will
determine the complexity of CQA under the C-repair semantics. For this purpose
we will use some graph-theoretic constructions and lemmas about maximum in-
dependent sets, whose proofs use a self-reducibility property of independent sets
that can be expressed as follows: For any graph G and vertex v, every maximum
independent set that contains v (meaning maximum among the independent sets
that contain v) consists of vertex v together with a maximum independent set
of the graph G′ that is obtained from G by deleting all vertices adjacent to v.

To keep the presentation simpler, we concentrate mostly on conflicts graphs
and FDs. However, the results obtained carry over to denial constraints and their
hypergraphs. Notice, as a motivation for the next lemmas, that a ground atomic
query is consistently true when it belongs, as a database tuple, i.e. as a vertex
in the conflict graph, to all the maximum independent sets of the conflict graph.

Lemma 1. Consider a graph G and a vertex v in it. (a) For the graph G′

obtained by adding a new vertex v′ that is connected only to the neighbors of
v, the following properties are equivalent: 1. There is a maximum independent
set of G containing v. 2. v belongs to every maximum independent set of G′. 3.
The sizes of maximum independent sets in G and G′ differ by one.
(b) There is a graph G′ extending G that can be constructed in logarithmic
space, such that v belongs to all maximum independent sets of G iff v belongs
to some maximum independent set of G′. �

From this lemma and the membership to FPNP(log(n)) of computing the size of
a maximum clique in a graph [21], we obtain

Lemma 2. The problems of deciding for a vertex in a graph if it belongs to
some maximum independent set and if it belongs to all maximum independent
sets are both in PNP(log(n)). �

Theorem 1. For functional dependencies and ground atomic queries, CQA un-
der the C-repair semantics belongs to PNP(log(n)). �

Considering the maximum independent sets, i.e. C-repairs, as a collection of
possible worlds, the previous lemma shows a close connection between the certain
C-repair semantics (true in every repair), that is the basis for CQA, and the
possible C-repair semantics (true in some repair). CQA under these semantics
and functional dependencies are polynomially reducible to each other; actually
also for negations of ground atomic queries.

Lemma 3. The following problems are mutually LOGSPACE -reducible to each
other: (1) Certain positive: Given a vertex v and a graph G, decide if v belongs
to every maximum independent set of G. (2) Certain negative: Given a vertex
v and a graph G, decide if all the maximum independent sets of G do not
contain v. (3) Possible negative: Given a vertex v and a graph G, decide if
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there is a maximum independent set of G that does not contain v. (4) Possible
positive: Given a vertex v and a graph G, decide if v belongs to at least one
maximum independent set of G. �

Since the negation ¬R(t̄) of a ground atomic query R(t̄) is consistently true wrt
the C-repair semantics iff the vertex corresponding to R(t̄) in the conflict graph
does not belong to any maximum independent set, using Lemma 3 we can extend
Theorem 1 to conjunctions of literals.3 Actually, since Lemmas 1, 2 and 3 still
hold for hypergraphs, we obtain

Theorem 2. For denial constraints and queries that are conjunctions of literals,
CQA under the C-repair semantics belongs to PNP(log(n)). �

Now we will represent the maximum independent sets of a graph as C-repairs of
an inconsistent database wrt a denial constraint. This is interesting, because con-
flict graphs for databases wrt denial constraints are, as indicate before, actually
conflict hypergraphs.

Lemma 4. There is a fixed database schema D and a denial constraint ϕ in
L(D), such that for every graph G, there is an instance D over D, whose C-
repairs wrt ϕ are in one-to-one correspondence with the maximum independent
sets of G. Furthermore, D can be built in polynomial time in the size of G. �

From Lemma 4 and the PNP(log(n))-completeness of determining the size of a
maximum clique [21], we obtain

Theorem 3. Determining the size of a C-repair for denial constraints is com-
plete for FPNP(log(n)). �

t

b

Ik

Ik+1

G1

G2

Fig. 1. The block Bk(G, t)

In order to obtain hardness for CQA
under the C-repair semantics, we need

to construct the block graph Bk(G, t)
(c.f. Figure 1), consisting of two copies
G1, G2 of G, and two internally discon-
nected subgraphs Ik, Ik+1, with k and
k + 1 vertices, resp. Every vertex in G
(G′) is connected to every vertex in Ik

(resp. Ik+1).

Lemma 5. Given a graph G and
a number k, a graph Bk(G, t) can be
computed in polynomial time in the
size of G, where t is a distinguished
vertex in it that belongs to all its max-
imum independent sets iff the cardinal-
ity of a maximum independent set of G
is equal to k. �

3 This can also be obtained, less directly, from the closure of PNP(log(n)) under
complement.
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Lemma 6. Deciding if a vertex belongs to all maximum independent sets of a
graph is PNP(log(n))-hard. �

This result can be proved by reduction from the following PNP(log(n))-complete
decision problem [21]: Given a graph G and an integer k, is the size of a maximum
clique in G equivalent to 0 mod k? G is reduced to a graph G′ that is built by
combining a number of versions of the block construction in Figure 1. Now,
the graph G′ used in Lemma 6 can be represented according to Lemma 4 as a
database consistency problem, and in this way we obtain

Theorem 4. For denial constraints, CQA under the C-repair semantics for
queries that are conjunctions of ground literals is PNP(log(n))-complete. �

This theorem still holds for ground atomic queries, which is interesting, because
for this kind of queries and denial constraints CQA under the S-repair semantics
is in PTIME [9].

4 Incremental Complexity of CQA

Assume that we have a consistent database instance D wrt to IC . D may be-
come inconsistent after the execution of an update sequence U composed of
operations of the forms insert(R(t̄)), delete(R(t̄)), meaning insert/delete tuple
R(t̄) into/from D, or change(R(t̄), A, a), for changing value of attribute A in
R(t̄) to a, with a ∈ U . We are interested in whether we can find consistent query
answers from the possibly inconsistently updated database U(D) more efficiently
by taking into account the previous consistent database state.

Definition 4. For a consistent database D wrt IC , and a sequence U of update
operations U1, . . . , Um, incremental consistent query answering for query Q is
CQA for Q wrt IC from instance U(D), that results from applying U to D. �

Update sequences U will be atomic, in the sense that they are completely exe-
cuted or not. This allows us to concentrate on “minimized” versions of update
sequences, e.g. containing only insertions and/or attribute changes when dealing
with denial constraints, because deletions do not cause any violations. We are
still interested in data complexity, i.e. wrt the size |D| of the original database.
In particular, m is fixed, and usually small wrt |D|.

A notion of incremental complexity has been introduced in [23], and also in [20]
under the name of dynamic complexity. There, the instance that is updated can
be arbitrary, and the question is about the complexity for the updated version
when information about the previous instance can be used. In our case, we are
assuming that the initial database is consistent. As opposed to [23, 20], where
new incremental or dynamic complexity classes are introduced, we appeal to
those classic complexity classes found at a low level in the polynomial hierarchy.

4.1 Incremental Complexity: C-Repair Semantics

In contrast to static CQA for the C-repair semantics, it holds
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Theorem 5. For the C-repair semantics, first-order boolean queries, denial con-
straints, and update sequences U of fixed length m applied to D, incremental
CQA is in PTIME in |D|. �

The proof of this theorem provides an upper bound of of O(m · nm), that is
polynomial in the size n of the initial database, but exponential in m, which
makes the problem tractable in data, but with the size of the update sequence
in the exponent. We are interested in determining if queries can be consistently
answered in time O(f(m)×nc), for a constant c and a function f(m) depending
only on m. In this way we isolate the complexity introduced by U .

The area of parameterized complexity studies this kind of problems [19, 25].
A decision problem with inputs of the form (I, p), where p is a distinguished
parameter of the input, is fixed parameter tractable, and by definition belongs to
the class FPT [10], if it can be solved in time O(f(|p|) · |I|c), where c and the
hidden constant do not depend on |p| or |I| and f does not depend on |I|.

Definition 5. Given a query Q, ICs IC , and a ground tuple t̄, parameterized
incremental CQA is the decision problem CQAp(Q, IC ) := {(D, U, t̄) | D is an
instance, U an update sequence , t̄ is consistent answer to Q in U(D)}, whose
parameter is U , and consistency of answers refers to C-repairs of U(D). �

We keep Q and IC fixed in the problem definition because, except for the pa-
rameter U , we are interested in data complexity.

Theorem 6. For functional dependencies and queries that are conjunctions of
literals, parameterized incremental CQA is in FPT . �

The vertex cover problem, of deciding if graph G has a vertex cover (VC) of
size no bigger than k, belongs to the class FPT , i.e. there is a polynomial time
parameterized algorithm VC (G, k) for it [10]; actually one that runs in time
O(1.2852k + k · n), being n the size of G [8].

The algorithm whose existence is claimed in Theorem 6 is as follows: Let G be
the conflict graph associated to the database obtained after the insertion of m
tuples. By binary search, calling each time VC (G, ), it is possible to determine
the size of a minimum VC for G. This gives us the minimum number of tuples
that have to be removed in order to restore consistency; and can be done in time
O(log(m) · (1.2852m + m · n)), where n is the size of the original database. In
order to determine if a tuple R(t̄) belongs to every maximum independent set,
i.e. if it is consistently true, compute the size of a minimum VC for G � {R(t̄)}.
The two numbers are the same iff the answer is yes . The total time is still
O(log(m) ·(1.2852m+m ·n))), which is linear in the size of the original database.
The same algorithm applies if, in addition to tuple insertions, we also have
changes of attribute values in the update part; of course, still under the C-repair
semantics.

Theorem 6 uses the membership to FPT of the VC problem, which we apply to
conflict graphs for functional dependencies. However, the result can be extended
to denials constraints and their conflict hypergraphs. In our case, the maximum
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size of an hyperedge is the maximum number of database atoms in a denial
constraint, which is determined by the fixed database schema. If this number is
d, then we are in the presence of the so-called d-hitting set problem, consisting
in finding the size of a minimum hitting set for an hypergraph with hyperedges
bounded in size by d. This problem is in FPT [24].

Theorem 7. For denial constrains and queries that are conjunctions of literals,
parameterized incremental CQA is in FPT . �

Using the reductions in Section 3, this result can be extended to incremental
CQA under the possible C-repair semantics.

4.2 Incremental Complexity: S-Repair Semantics

Incremental CQA for non-quantified conjunctive queries under denial constraints
belongs to PTIME , which can be established by applying the algorithm in [9]
for the static case to U(D).

However, for quantified conjunctive queries the situation may change. Actu-
ally, by reduction from static CQA for conjunctive queries and denial ICs under
the S-repair semantics, which is coNP -hard [9], we obtain

Theorem 8. Under the S-repair semantics, incremental CQA for conjunctive
queries and denial constraints is coNP -hard. �

We can see that, for denial constraints, static CQA under the C-repair semantics
seems to be harder than under the S-repair semantics (PNP(log(n))- vs. coNP -
hard). On the other side, incremental CQA under the S-repair semantics seems to
harder than under the C-repair semantics (coNP -hard vs. PTIME). The reason
is that for the C-repair semantics the cost of a repair cannot exceed the size
of the update, whereas for the S-repair semantics the cost of a repair may be
unbounded wrt the size of an update.

Example 3. Consider a schema R(·), S(·) with the denial constraint ∀x∀y¬
(R(x)∧S(y)); and the consistent database D = {R(1), . . . , R(n)}, with an empty
table for S. After the update U = insert(S(0)), the database becomes incon-
sistent, and the S-repairs are {R(1), . . . , R(n)} and {S(0)}. However, only the
former is a C-repair, and is at a distance 1 from the original instance, i.e. as the
size of the update. However, the second S-repair is at a distance n. �

4.3 Incremental Complexity: A-Repair Semantics

Before addressing the problem of incremental complexity, we give a complexity
lower bound for the weighted version of static CQA for the A-repair semantics.
In this case, we have a numerical weight function w defined on triples of the
form (R(t̄), A,newValue), where R(t̄) is a database tuple stored in the database,
A is an attribute of R, and newValue is a new value for A in R(t̄). The weighted
A-repair semantics (wA-repair semantics) is just a particular case of Definition
2(c), where the distance is given by an aggregation function g applied to the set
of numbers {w(R(t̄), A,newValue) | R(t̄) ∈ D}.
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Typically, g is the sum, and the weights are w(R(t̄), A,newValue) = 1 if
R(t̄)[A] is different from newValue, and 0 otherwise, where R(t̄)[A] is the pro-
jection of database tuple R(t̄) on attribute A, i.e. just the number of changes is
counted [14]. In [4], g is still the sum, but w is given by w(R(t̄), A,newValue) =
αA ·(R(t̄)[A] − newValue)2, where αA is a coefficient introduced to capture the
relative importance of attribute A or scale factors. In these cases, w does not
depend on D. However, if the weight function w depended on the size of D, w
should become part of the input for the decision problem of CQA.

Theorem 9. Static CQA for ground atomic queries and denial constraints un-
der the wA-repair semantics is PNP -hard. �

In order to obtain a hardness result in the incremental case and for denial con-
straints (for which we are assuming update sequences do not contain tuple dele-
tions), we can use the kind of A-repairs introduced in [4].

Theorem 10. Incremental CQA for atomic queries and denial constraints un-
der the wA-repair semantics is PNP -hard. �

These results still hold for tuple insertions as update actions, the fixed weight
function that assigns value 1 to every change, and the sum as aggregation func-
tion. In case we have numerical values as in [4] or a bounded domain, we can
obtain as in [4, theorem 4(b)] that the problems in Theorems 9 and 10 belong
both to ΠP

2 .
Under the A-repair semantics, if the update sequence consist of change ac-

tions, then we can obtain polynomial time incremental CQA under the additional
condition that the set of attribute values than can be used to restore consistency
is bounded in size, independently from the database (or its active domain).
Such an assumption can be justified in several applications, like in census-like
databases that are corrected according to inequality-free denial constraints that
force the new values to be taken at the border of a database independent re-
gion [4]; and also in applications where denial constraints, this time containing
inequalities, force the attribute values to be taken in a finite, pre-specified set.
The proof is similar to the one of Theorem 5, and the polynomial bound now
also depends on the size of the set of candidate values.

Theorem 11. For a database independent and bounded domain of attribute
values, incremental CQA under the A-repair semantics, for first-order boolean
queries, denial constraints, and update sequences containing only change actions
is in PTIME in the size of the original database. �

Now, we present a lower bound for CQA under the A-repair semantics for first-
order ICs and tuple deletions, which now may affect their satisfaction.

Lemma 7. For any planar graph G with vertices of degree at most 4, there exists
a regular graph G′ of degree 4 that is 4-colorable, such that G′ is 3-colorable iff
G is 3-colorable. G′ can be built in polynomial time in |G|. �

Notice that graph G, due to its planarity, is 4-colorable. The graph G′, is an
extension of graph G that may not be planar, but preserves 4-Colorability. We use
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the construction in Lemma 7 as follows: Given any planar graph G of degree 4,
construct graph G′ as in the lemma, which is regular of degree 4 and 4-colorable.
Its 4-colorability is encoded as a database problem with a fixed set of first-order
constraints. Since G′ is 4-colorable, the database is consistent. Furthermore, G′

uses all the 4 colors in the official table of colors, as specified by the ICs. In the
update part, deleting one of the colors leaves us with the problem of coloring
G′ with only three colors (under an A-repair semantics only changes of colors
are allowed to restore consistency), which is possible iff the original graph G is
3-colorable. Deciding about the latter problem is NP -complete [16]. We obtain

Theorem 12. For ground atomic queries, first-order ICs, and update sequences
consisting of tuple deletions, incremental CQA under the A-repair semantics is
coNP -hard. �

To obtain this result it is good enough to use the sum as the aggregation
function and the weight function that assigns 1 to each change. Clearly, this
lower bound also applies to update sequences containing any combination of
insert , delete, change.

5 Conclusions

The dynamic scenario for consistent query answering that considers possible
updates on a database had not been considered before in the literature. Doing
incremental CQA on the basis of the original database and the sequence of
updates is an important and natural problem. Developing algorithms that take
into account previously obtained consistent answers that are possible cached
and the updates at hand is a crucial problem for making CQA scale up for real
database applications. Much research is still needed in this direction.

In this paper we have concentrated mostly on complexity bounds for this
problem under different semantics. When we started obtaining results for incre-
mental CQA under repairs that differ from the original instance by a minimum
number of tuples, i.e. C-repairs, we realized that this semantics had not been
sufficiently explored in the literature in the static version of CQA, and that a
full comparison was not possible. In the first part of this paper we studied the
complexity of CQA for the C-repair semantics and denial constraints. In doing
so, we developed graph-theoretic techniques for polynomially reducing each of
the certain and possible (or cautious and brave) C-repair semantics for CQA
to the other. A similar result does not hold for the S-repair semantics, con-
junctive queries, and denial constraints: CQA (under the certain semantics) is
coNP -complete [9], but is in PTIME for the possible semantics.

The complexity of CQA in a P2P setting was studied in [18], including a form
a cardinality-based repairs. However, a different semantics is used, which makes
it difficult to compare results. Actually, in that setting it is possible that repairs
do not exist, whereas in our case, since S-repairs always exist [1], also C-repairs
exist. The complexity result for CQA in [18], that seems to be shared by C- and
S-repairs, is obtained on the basis of the complexity of checking the existence of
repairs (a problem that in our case is trivial).
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The C-repair semantics can be generalized considering weights on tuples. Un-
der denial constraints, this means that it may be more costly to remove certain
tuples than others to restore consistency. More precisely, database tuples R(t̄)
have associated numerical costs w(R(t̄)), that become part of the input for the
CQA decision problem. Now, the partial order between instances is given by
D1 $D,wC D2 iff |D%D1|w ≤ |D%D2|w, where, for a set of database tuples S,
|S|w is the sum of the weights of the elements of S. It can be proved that CQA
for ground atomic queries wrt denial constraints under this semantics belongs
to PNP [22, proposition 5].

Furthermore, it possible to reduce CQA under the C-repair semantics to CQA
under least-squares A-repairs semantics that minimizes the sum of the quadratic
differences between numerical values [4], which is a particular case of the general
semantics studied in Section 4.3.

Theorem 13. Given a database schema D, a set IC of denial constraints in
L(D), and a ground atomic query Q ∈ L(D), there are a schema D′ with some
fixable numerical attributes, a set IC ′ of ICs in L(D′), and a query Q′ ∈ L(D′),
such that: For every database D over D, there is a database D′ over D′ that can
be computed from D in LOGSPACE (in data) for which it holds: Q is consistently
true wrt IC in D under the C-repairs semantics iff Q′ is consistently true wrt to
IC ′ in D′ under the least-squares A-repair semantics. �

This result also applies to other numerical A-repair semantics as discussed in [4],
and is about data complexity. For fixed D, IC , Q, D, also fixed D′, IC ′, Q′ can be
obtained in LOGSPACE from D, IC , Q. Theorem 13, together with Theorem 4,
allows us to obtain a simple proof of the PNP(log n)-hardness of the least-squares
repair semantics. In [4], PNP -hardness is obtained for the latter as a better lower
bound, but the proof is more complex. This theorem can be extended to the
weighted C-repair semantics if integer numerical weights are used.

Our results show that the incremental complexity is lower than the static one
in several useful cases, but sometimes the complexity cannot be lowered. It is a
subject of ongoing work the development of concrete and explicit algorithms for
incremental CQA.

We obtained the first results about fixed parameter tractability for incremen-
tal CQA, where the input, for a fixed database schema, can be seen as formed
by the original database and the update sequence, whose length is the relevant
parameter. This problem requires additional investigation. In particular, the pa-
rameterized complexity of incremental CQA under the S- and A-repair semantics
has to be investigated, and a more complete picture still has to emerge.

It would be interesting to examine the area of CQA in general from the point of
view of parameterized complexity, including the static case. Natural candidates
to be a parameter in the classic, static setting could be: (a) the number of
inconsistencies in the database, (b) the degree of inconsistency, i.e. the maximum
number of violations per database tuple, (c) complexity of inconsistency, i.e. the
length of the longest path in the conflict graph or hypergraph. These parameters
may be practically significant, since in many applications, like census application
[4], inconsistencies are “local”.
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We considered a version of incremental CQA that assumes that the database is
already consistent before updates are executed, a situation that could have been
achieved because no previous updates violated the given semantic constraints or
a repaired version was chosen before the new updates were executed.

We are currently investigating the dynamic case of CQA in the frameworks of
dynamic complexity [20, 28] and incremental complexity as introduced in [23]. In
this case we start with a database D that is not necessarily consistent on which a
sequence of basic update operations U1, U2, ..., Um is executed. A clever algorithm
for CQA may create or update intermediate data structures at each atomic
update step, to help obtain answers at subsequent steps. We are interested in the
complexity of CQA after a sequence of updates, when the data structures created
by the query answering algorithm at previous states are themselves updatable
and accessible.
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Abstract. Uncertain information is commonplace in real-world data
management scenarios. An important challenge in this context is the
ability to represent large sets of possible instances (worlds) while sup-
porting efficient storage and processing. The recent formalism of world-
set decompositions (WSDs) provides a space-efficient representation for
uncertain data that also supports scalable processing. WSDs are com-
plete for finite world-sets in that they can represent any finite set of
possible worlds. For possibly infinite world-sets, we show that a natu-
ral generalization of WSDs precisely captures the expressive power of
c-tables. We then show that several important problems are efficiently
solvable on WSDs while they are NP-hard on c-tables. Finally, we give
a polynomial-time algorithm for factorizing WSDs, i.e. an efficient algo-
rithm for minimizing such representations.

1 Introduction

Recently there has been renewed interest in incomplete information databases.
This is due to the important applications of systems for representing incomplete
information in data cleaning and integration and more generally in all forms of
information systems that have to deal with uncertainty.

An important concept in this context are strong representation systems
[18,3,17], that is, formalisms for representing sets of possible worlds that are
closed under query operations in a given query language. The prototypical strong
representation system are the so-called c-tables [18,15,16]. Two recent works pre-
sented strong, indeed complete, representation systems for finite sets of possible
worlds. The approach of the Trio x-relations [8] relies on a form of intensional
information (“lineage”) only in combination with which the formalism is strong.
In [6] large sets of possible worlds are managed using world-set decompositions
(WSDs). The approach is based on relational decomposition to permit space-
efficient representation. [6] describes a prototype implementation and shows the
efficiency and scalability of the formalism in terms of storage and query evalua-
tion in a large census data scenario.

While there have been numerous other approaches to dealing with incom-
plete information, such as closing possible worlds semantics using certain an-
swers [1,7,12], constraint or database repair [13,10,9], and probabilistic ranked
retrieval [14,4], strong representation systems form a compositional framework

T. Schwentick and D. Suciu (Eds.): ICDT 2007, LNCS 4353, pp. 194–208, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Table 1. Decision Problems for Representation Systems

Input Representation system W, instance I = (RI), tuple t

Problems Tuple Possibility: ∃A ∈ rep(W) : t ∈ RA

Tuple Certainty: ∀A ∈ rep(W) : t ∈ RA

Instance Possibility: ∃A ∈ rep(W) : RI = RA

Instance Certainty: ∀A ∈ rep(W) : RI = RA

Tuple Q-Possibility (query Q fixed): ∃A ∈ rep(W) : t ∈ Q(A)
Tuple Q-Certainty (query Q fixed): ∀A ∈ rep(W) : t ∈ Q(A)
Instance Q-Possibility (query Q fixed): ∃A ∈ rep(W) : RI = Q(A)
Instance Q-Certainty (query Q fixed): ∀A ∈ rep(W) : RI = Q(A)

that is minimally intrusive by not requiring to lose information, even about the
lack of information, present in an information system. (In fact, computing certain
answers entails a loss of possible but uncertain information.) Strong represen-
tation systems can be nicely combined with the other approaches; for example,
data transformation queries and data cleaning steps effected within a strong rep-
resentation systems framework can be followed by a query with ranked retrieval
or certain answers semantics, closing the possible worlds semantics.

The main goal of this work is to develop expressive yet efficient representation
systems for incomplete information. In [17], a strong argument is made support-
ing c-tables as a benchmark for the expressiveness of representation systems;
we concur. Concerning efficient processing, we adopt v-tables as a lower bound
regarding succinctness and complexity. The main development of this paper is a
representation system that combines, in a sense, the best of all worlds: (1) It is
just as expressive as c-tables, (2) it is exponentially more succinct than unions
of v-tables, and (3) on the classical decision problems, the complexity bounds
are not worse than those for v-tables.

In more detail, the technical contributions of this paper are as follows:

– We introduce gWSDs, an extension of the WSD model of [6] with variables
and (in)equality conditions.

– We show that gWSDs are expressively equivalent to c-tables and are there-
fore a strong representation system for full relational algebra.

– We study the complexity of the main data management problems [3,18]
regarding WSDs and gWSDs, summarized in Table 1. Table 2 compares the
complexities of these problems in our context to those of existing strong
representation systems like the well-behaved ULDBs of Trio1 and c-tables.

– We present an efficient algorithm for optimizing gWSDs, i.e., for computing
an equivalent gWSD whose size is smaller than that of a given gWSD. In
the case of WSDs, this is a minimization algorithm that produces the unique
maximal decomposition of a given WSD.

One can argue that gWSDs are a practically more applicable representa-
tion formalism than c-tables: While having the same expressive power, many
1 The complexity results for Trio are from [8] and were not verified by the authors.
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Table 2. Comparison of data complexities for standard decision problems. (∗ Result
for positive relational algebra.)

v-tables [3] gWSD Trio [8] c-tables [3]
Tuple Possibility PTIME PTIME PTIME NP-complete
Tuple Certainty PTIME PTIME PTIME coNP-compl.
Instance Possibility NP-complete NP-complete NP-hard NP-complete
Instance Certainty PTIME PTIME NP-hard coNP-compl.
Tuple Q-Possibility PTIME∗ PTIME∗ ? NP-complete
Tuple Q-Certainty coNP-compl. coNP-compl. ? coNP-compl.
Instance Q-Possibility NP-complete NP-complete NP-hard NP-complete
Instance Q-Certainty coNP-compl. coNP-compl. NP-hard coNP-compl.

important problems are easier to solve. Indeed, as shown in Table 2, the com-
plexity results for gWSDs on the most important decision problems are identical
to those for the much weaker v-tables. At the same time WSDs are still concise
enough to support the space-efficient representation of very large sets of possible
worlds (cf. the experimental evaluation on WSDs in [6]). Also, while gWSDs are
strictly stronger than Trio, the complexity characteristics are better.

The results on finding maximal product decompositions relate to earlier work
done by the database theory community on relational decomposition given
schema constraints (cf. e.g. [2]). Our algorithms do not assume such constraints
and only take a snapshot of a database at a particular point in time into consider-
ation. Consequently, updates may require to alter a decomposition. Nevertheless,
our results may be of interest independently from WSDs as for instance in cer-
tain scenarios with very dense relations, decompositions may be a practically
relevant technique for efficiently storing and querying large databases.

Note that we do not consider probabilistic approaches to representing uncer-
tain data (e.g. the recent work [14]) in this paper. However, there is a natural
and straightforward probabilistic extension which directly inherits many of the
properties studied in this paper, see [6].

The structure of the paper basically follows the list of contributions. Due to
space limitations, we have to refer to the technical report [5] for the proofs of a
number of results presented in this paper.

2 Preliminaries

We use the named perspective of the relational model and relational algebra
with the operations selection σ, projection π, product ×, union ∪, difference −,
and renaming δ.

A relation schema is a construct of the form R[U ], where R is a relation
name and U is a nonempty set of attribute names.2 Let D be an infinite set of
atomic values, the domain. A relation over schema R[A1, . . . , Ak] is a finite set
2 For technical reasons involving the WSDs presented later, we exclude nullary rela-

tions and will represent these (e.g., when obtained as results from a Boolean query)
using unary relations over a special constant “true”.
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of tuples (A1 : a1, . . . , Ak : ak) where a1, . . . , ak ∈ D. A relational schema is a
tuple Σ = (R1[U1], . . . , Rk[Uk]) of relation schemas. A relational structure (or
database) A over schema Σ is a tuple (RA

1 , . . . , RA
k ), where each RA

i is a relation
over schema Ri[Ui]. When no confusion may occur, we will also use R rather
than RA to denote one particular relation over schema R[U ]. For a relation R,
sch(R) denotes the set of its attributes, ar(R) its arity and |R| the number of
tuples in R.

A set of possible worlds (or world-set) over schema Σ is a set of databases
over schema Σ. Let W be a set of finite structures, and let rep be a function
that maps each W ∈ W to a world-set of the same schema. Then (W, rep) is
called a strong representation system for a query language if, for each query Q
of that language and each W ∈W such that the schema of Q is consistent with
the schema of the worlds in rep(W), there is a structure W ′ ∈ W such that
rep(W ′) = {Q(A) | A ∈ rep(W)}.

2.1 Tables

We now review a number of representation systems for incomplete information
that are known from earlier work (cf. e.g. [16,2]).

Let X be a set of variables. We call an equality of the form x = c or x = y,
where x and y are variables from X and c is from D an atomic condition, and
will define (general) conditions as Boolean combinations (using conjunction,
disjunction, and negation) of atomic conditions.

Definition 1 (c-table). A c-multitable [18,16] over schema (R1[U1],. . . , Rk[Uk])
is a tuple

T = (RT
1 , . . . , RT

k , φT , λT )

where each RT
i is a set of ar(Ri)-tuples over D∪X, φT is a Boolean combination

over equalities on D ∪ X called the global condition, and function λT assigns
each tuple from one of the relations RT

1 , . . . , RT
k to a condition (called the local

condition of the tuple). A c-multitable with k = 1 is called a c-table.
The semantics of a c-multitable T , called its representation rep(T ), is defined

via the notion of a valuation of the variables occurring in T (i.e., those in the
tuples as well as those in the conditions). Let ν : X → D be a valuation that
assigns each variable in T to a domain value. We overload ν in the natural way
to map tuples and conditions over D ∪ X to tuples and formulas over D.3 A
satisfaction of T is a valuation ν such that ν(φT ) is true. A satisfaction ν takes
T to a relational structure ν(T ) = (Rν(T )

1 , . . . , R
ν(T )
k ) where each relation R

ν(T )
i

is obtained as R
ν(T )
i := {ν(t) | t ∈ RT

i ∧ ν(λT (t)) is true}. The representation of
T is now given by its satisfactions, rep(T ) := {ν(T ) | ν is a satisfaction of T }.

�

Proposition 1 ([18]). The c-multitables are a strong representation system for
relational algebra.
3 Done by extending ν to be the identity on domain values and to commute with the

tuple constructor, the Boolean operations, and equality.
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We consider two important restrictions of c-multitables.

1. By a g-multitable [3], we refer to a c-multitable in which the global condition
φT is a conjunction of possibly negated equalities and λT maps each tuple to
“true”.

2. A v-multitable is a g-multitable in which the global condition φT is a con-
junction of equalities.

Without loss of generality, we may assume that the global condition of a
g-multitable is a conjunction of inequalities and the global condition of a v-
multitable is simply “true”.4 Subsequently, we will always assume these two
normal forms and omit local conditions from g-multitables and both global and
local conditions from v-multitables.

φT = (x �= y)

RT A B

x 1
2 x

ST C

y
3

R A B

1 1
2 1

S C

2
3

ν :
{

x �→ 1
y �→ 2

(a) (b) (c)

Fig. 1. A g-multitable T (a), possible world A (b), and a valuation s.t. ν(T ) = A (c)

Example 1. Consider the g-multitable T = (RT , ST , φT ) of Figure 1 (a). Then
the valuation of Figure 1 (c) satisfies the global condition of T , as ν(x) �= ν(y).
Thus A ∈ rep(T ), where A is the structure from Figure 1 (b). �
Remark 1. It is known from [18] that v-tables are not a strong representation
system for relational selection, but for the fragment of relational algebra built
from projection, product, and union.

The definition of c-multitables used here is from [16]. The original definition
from [18] has been more restrictive in requiring the global condition to be “true”.
While c-tables without a global condition are strictly weaker (they cannot repre-
sent the empty world-set), they nevertheless form a strong representation system
for relational algebra.

In [2], the global conditions of c-multitables are required to be conjunctions
of equalities and inequalities. It will be a corollary of a result of this paper
(Theorem 2) that this definition is equivalent to c-multitables with arbitrary
global conditions. �

3 Representation Systems

This section studies a number of new representation systems, leading from sets
of tables to product decompositions.
4 Each g-multitable resp. v-multitable can be reduced to one in this normal form by

variable replacement and the removal of tautologies such as x = x or 1 = 1 from the
global condition.
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3.1 Tabsets and Tabset Tables

We consider finite sets of multitables as representation systems, and will refer
to such constructs as tabsets (rather than as multitable-sets, to be short).

A c-(resp., g-, v-)tabset T = {T1, . . . , Tn} is a finite set of c-(g-, v-)multitables.
The representation of a tabset is the union of the representations of the con-
stituent multitables,

rep(T) := rep(T1) ∪ · · · ∪ rep(Tn).

We next construct an inlined representation of a tabset as a single table by
turning each multitable into a single tuple.

Let A be a g-tabset over schema Σ. For each R[U ] in Σ, let |R|max =
max{|RA| : A ∈ A} denote the maximum cardinality of R in any multitable
of A. Given a g-multitable A ∈ A with RA = {t1, . . . , t|RA|}, let inline(RA) be
the tuple obtained as the concatenation (denoted ◦) of the tuples of RA padded
with a special symbol ⊥ up to arity |R|max · ar(R),

inline(RA) := t1 ◦ · · · ◦ t|RA| ◦ (⊥, . . . . . . . . . . . . ,⊥︸ ︷︷ ︸
(|R|max−|RA|)·ar(R)

).

Then tuple
inline(A) := inline(RA

1 ) ◦ · · · ◦ inline(RA
|Σ|)

encodes all the information in A.

Definition 2 (gTST). The g-tabset table (gTST) of a g-tabset A is the pair
(W, λ) consisting of the table5 W = {inline(A) | A ∈ A} and the function λ
which maps each tuple inline(A) of W to the global condition of A. �

A vTST (TST) is obtained in strict analogy, omitting λ (λ and variables).
To compute inline(RA), we have fixed an arbitrary order of the tuples in RA.

We represent this order by using indices di to denote the i-th tuple in RA for
each g-multitable A, if that tuple exists. Then the TST has schema

{R.di.Aj | R[U ] in Σ, 1 ≤ i ≤ |R|max, Aj ∈ U}.

An example translation from a tabset to a TST is given in Figure 2.
The semantics of a gTST (W, λ) as a representation system is given in strict

analogy with tabsets,

rep(W, λ) :=
⋃
{rep(inline−1(t), λ(t)) | t ∈W}.

Remark 2. Computing the inverse of “inline” is an easy exercise. In particular,
we map inline(RA) to RA as

(a1, . . . , aar(R)·|R|max) &→ {(aar(R)·k+1, . . . , aar(R)·(k+1)) | 0 ≤ k < |R|max,

aar(R)·k+1 �= ⊥, . . . , aar(R)·(k+1) �= ⊥}.
5 Note that this table may contain variables and occurrences of the ⊥ symbol.
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φA φB φC

RA A B

a1 a2

a3 a4

SA C

a5

a6

RB A B

b1 b2

b3 b4

b5 b6

SB C RC A B

c1 c2

SC C

c3

c4

c5

(a) Three (R[A, B], S[C])-multitables A, B, and C.

R.d1.A R.d1.B R.d2.A R.d2.B R.d3.A R.d3.B S.d1.C S.d2.C S.d3.C λ

a1 a2 a3 a4 ⊥ ⊥ a5 a6 ⊥ φA

b1 b2 b3 b4 b5 b6 ⊥ ⊥ ⊥ φB

c1 c2 ⊥ ⊥ ⊥ ⊥ c3 c4 c5 φC

(b): TST of tabset {A, B, C}.

Fig. 2. Translation from a tabset (a) to a TST (b)

By construction, the gTST capture the g-tabsets and thus the c-tables.

Proposition 2. The g-(resp., v-)TST capture the g-(v-)tabsets.

Finally, there is an noteworthy normal form for gTSTs.

Proposition 3. The gTST in which λ maps each tuple to a unique common
global condition φ, i.e. λ : · &→ φ, capture the gTST.

Proof. Given a g-tabset A, w.l.o.g., we may assume that no two g-multitables
from A share a common variable, either in the tables or the conditions, and
that all global conditions in A are satisfiable. (Otherwise we could safely remove
some of the g-multitables in A.) But, then, φ is simply the conjunction of the
global conditions in A. For any tuple t of the gTST of A, the g-multitable
(inline−1(t), φ) is equivalent to (inline−1(t), λ(t)). �

Proviso. We will in the following write gTSTs as pairs (W, φ), where W is the
table and φ is a single global condition shared by the tuples of W .

3.2 World-Set Decompositions

We are now ready to define world-set decompositions, our main vehicle for effi-
cient yet expressive representation systems.

A product m-decomposition of a relation R is a set of non-nullary relations
{C1, . . . , Cm} such that C1× · · · ×Cm = R. The relations C1, . . . , Cm are called
components. A product m-decomposition of R is maximal(ly decomposed) if there
is no product n-decomposition of R with n > m.

Definition 3 (attribute-level gWSD). Let (W, φ) be a gTST. Then an attri-
bute-level world-set m-decomposition (m-gWSD) of (W, φ) is a pair of a product
m-decomposition of W together with the global condition φ. �
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R A B

d1 1 2
d2 5 6

R A B

d1 1 2
R A B

d1 3 4
d2 5 6

R A B

d1 3 4
C1 R.d1.A R.d1.B

1 2
3 4

×
C2 R.d2.A R.d2.B

5 6
⊥ ⊥

Fig. 3. Four worlds and a corresponding 2-WSD

We also consider two important simplifications of (attribute-level) gWSDs, those
without inequalities (called vWSDs), i.e., without a global condition, and vWSDs
without variables (called WSDs). An example of a WSD is shown in Figure 3.

The semantics of a gWSD is given by its exact correspondence with a gTST,

rep ({C1, . . . , Cm}, φ)︸ ︷︷ ︸
gWSD

:= rep (C1 × · · · × Cm, φ)︸ ︷︷ ︸
gTST

.

To decompose W , we treat its variables and the ⊥-value as constants. Clearly,
A and any gWSD of A represent the same set of possible worlds.

It immediately follows from the definition of WSDs that

Proposition 4. Any finite set of possible worlds can be represented as a 1-WSD.

Corollary 1. WSDs are a strong representation system for any relational query
language.

The lack of power to express inequalities, despite the ability to express disjunc-
tion, keeps vWSDs (and thus equally v-tabsets) from being strong.

Proposition 5. vWSDs are a strong representation system for projection, prod-
uct and union but do not form a strong representation system for selection or
difference.

A proof of this is given in [5].

Remark 3. Note that verifying nondeterministically that a structure A is a pos-
sible world of gWSD ({C1, . . . , Cm}, φ) is easy: all we need is choose one tuple
from each of the component tables C1, . . . , Cm, concatenate them into a tuple t,
and check whether a valuation exists that satisfies φ and takes inline−1(t) to A.

Already the vWSDs are exponentially more succinct than the v-tabsets. As is
easy to verify,

Proposition 6. Any v-tabset representation of the WSD⎧⎨⎩
C1 R.d1.A

a1
b1

· · ·
Cn R.dn.A

an

bn

⎫⎬⎭
where the ai, bi are distinct domain values takes space exponential in n.

This greater succinctness is obtained at a price:
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Theorem 1. Given an attribute-level (g)WSD W, checking whether the empty
world is in rep(W) is NP-complete.

A proof of this is given in [5]. Note that this NP-hardness is a direct consequence
of the succinctness increase in gWSDs as compared to gTSTs. On gTSTs, check-
ing for the empty world is a trivial operation.

Corollary 2. Tuple certainty is coNP-hard for attribute-level WSDs.

This problem remains in coNP even for general gWSDs. Nevertheless, since com-
puting certain answers is a central task related to incomplete information, we will
consider also the following restriction of gWSDs. As we will see, this alternative
definition yields a representation system in which the tuple and instance cer-
tainty problems are in polynomial time while the formalism is still exponentially
more succinct than gTSTs.

Definition 4 (gWSD). An attribute-level gWSD is called a tuple-level gWSD
if for any two attributes Ai, Aj from the schema of relation R, and any tuple
id d, the attributes R.d.Ai, R.d.Aj of the component tables are in the same
component schema. �

In other words, in tuple-level gWSDs, values for one and the same tuple cannot
be split across several components – that is, here the decomposition is less fine-
grained than in attribute-level gWSDs. In the remainder of this paper, we will
exclusively study tuple-level (g-, resp. v-)WSDs, and will refer to them as just
simply (g-, v-)WSDs. Obviously, tuple-level (g)WSDs are just as expressive as
attribute-level (g)WSDs, since they all are just decompositions of 1-(g)WSDs.

However, tuple-level (g)WSDs are less succinct than attribute-level (g)WSDs.
For example, any tuple-level WSD equivalent to the attribute-level WSD⎧⎨⎩

C1 R.d.A1

a1
b1

· · ·
Cn R.d.An

an

bn

⎫⎬⎭
must be exponentially larger. Note that the WSDs of Proposition 6 are tuple-
level.

4 Main Expressiveness Result

In this section we study the expressive power of gWSDs. We show that gWSDs
and c-multitables are equivalent in expressive power, that is, for each gWSD
one can find an equivalent c-multitable that represents the same set of possible
worlds and vice versa. Thus, gWSDs form a strong representation system for
relational algebra.

Theorem 2. The gWSDs capture the c-multitables.

Corollary 3. gWSDs are a strong representation system for relational algebra.
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Corollary 4. The g-tabsets capture the c-tabsets.

That is, disjunction on the level of entire tables plus conjunctions of inequali-
ties as global conditions, as present in g-tables, are enough to capture the full
expressive power of c-tables. In particular, we are able to eliminate all local
conditions.

We prove Theorem 2 by providing back and forth translations between c-
multitables and gWSDs.

Lemma 1. gWSDs can be translated in linear time into equivalent c-multitables.

Proof (Sketch). Let W = ({C1, . . . , Cm}, φ) be a (tuple-level) m-gWSD over
relational schema (R1[U1], . . . , Rk[Uk]), where Cj = {w1, . . . , wnj}. We define a
translation f from W to an equivalent c-multitable T = (RT

1 , . . . , RT
k , φT , λT )

in the following way.

1. The global condition φ of W becomes the global condition φT of the c-
multitable T .

2. For each relation schema R[U ] we create a table RT with the same schema.
3. We translate each component Cj = {w1, . . . , wnj} ofW in the following way.

Let wi ∈ C. Let d be a tuple identifier for a relation R defined in Cj and t
be the tuple for d in wi. If t is not a ⊥-tuple, then we add the tuple t with
local condition λT (t) to RT , where RT is the corresponding table from the
c-multitable. The local condition λT (t) is defined as

λT (t) =

⎧⎪⎨⎪⎩
true nj = 1
(xj = i) 1 ≤ i < nj

(xj �= 1 ∧ . . . ∧ xj �= nj − 1) 1 < i = nj .

Here xj is a new variable for the component Cj not occurring in W , which
encodes to which row of component Cj a tuple belongs to.

The proof of the correctness of the translation is given in [5]. �

Example 2. Consider the 1-gWSD ({C1}, φ) given in Figure 4(a). The first tuple
of C1 encodes a g-table R with a single tuple (with identifier d1), and the second
tuple of C1 encodes two v-tuples with identifiers d1 and d2. The encoding of C1
as a c-table T with global condition φT is given in Figure 4(b). �

C1 R.d1.A R.d1.B R.d2.A R.d2.B

x y ⊥ ⊥
1 z z 3

φ = (x �= 1) ∧ (x �= y) ∧ (z �= 2)
(a) 1-gWSD

T A B cond

φT = (x �= 1) ∧ (x �= y) ∧ (z �= 2)
x y (x1 = 1)
1 z (x1 �= 1)
z 3 (x1 �= 1)

(b) c-table equivalent to the 1-gWSD (a)

Fig. 4. Translating gWSDs into c-multitables



204 L. Antova, C. Koch, and D. Olteanu

For the other, somewhat more involved direction,

Lemma 2. Any c-multitable can be represented by an equivalent gWSD.

Due to space limitations, we have to refer to [5] for a proof.

5 Complexity of Managing gWSDs

We consider the decision problems defined in Section 1. Note that in the liter-
ature the tuple (q-)possibility and (q-)certainty problems are sometimes called
bounded or restricted (q-)possibility, and (q-)certainty respectively, and the in-
stance (q-)possibility and (q-)certainty are sometimes called (q-)membership and
(q-)uniqueness [3]. A comparison of the complexity results for these decision
problems in the context of gWSDs to those of c-tables [3] and Trio [8] is given
in Table 2. Remarkably, gWSDs and WSDs have the same complexities for all
these decision problems. We next state the results and give some of their proofs.

Theorem 3. Tuple possibility and certainty are in PTIME for gWSDs.

Proof. Given a tuple-level gWSD W = ({C1, . . . , Cm}, φ) and a tuple t.
Tuple Possibility: Tuple t is in at least one world of rep(W) if and only if there

are i, j such that (t1, . . . , tk) ∈ Ci and θ(tj) = t for a mapping θ from variables
and domain values to domain values that is the identity on the domain values
and for which θ(φ) is true. Thus, all we have to do is iterate over each tuple
tj occurring in a component tuple (looking at the components individually; this
requires a linear scan over W), and try to fix θ on the variables that appear in
tj such that θ(tj) = t. If this is possible for tj , we map the remaining variables
x to new domain values ‘x’. This will render θ(φ) true and consequently t part
of a possible world iff φ is satisfiable, a condition that is easy to check since φ is
simply a conjunction of inequalities.

Tuple certainty: Tuple t is certain exactly if φ is unsatisfiable or there is a
component Ci such that each tuple of Ci contains t (without variables).

Suppose φ is satisfiable and for each component Ci there is at least one tuple
wi ∈ Ci that does not contain t. Then there is a world-tuple w ∈ C1 × · · · ×Cm

such that tuple t does not occur in w. If there is a mapping θ that maps some
tuple in w to t and for which θ(φ) is true, then there is also a mapping θ′ such
that θ′(w) does not contain t but θ′(φ) is true. Thus t is not certain. �

Theorem 4. Instance possibility is in NP for gWSDs and NP-hard for WSDs.

Proof (Sketch). A proof of this result is presented in [5]; here we only give a brief
sketch. Checking membership in NP is straightforward once we have guessed
which tuples from the gWSD components constitute the input instance. NP-
hardness can be shown by reduction from Exact Cover by 3-Sets. Given a set X
with |X | = 3q and a set C of 3-subsets of X , we turn X into a unary relation
and C into a ternary relation. We construct a WSD by taking q copies of C as
component relations. There is an exact cover of X by 3-sets from C iff X is a
world in the WSD representation. �
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Theorem 5. Instance certainty is in PTIME for gWSDs.

Proof. Given an instance I and a gWSD W representing a relation R, the prob-
lem is equivalent to checking for each world A ∈ rep(W) whether (1) I ⊆ RA

and (2) RA ⊆ I. Test (1) is reducible to checking whether each tuple from I
is certain in R, and is thus in PTIME (cf. Theorem 3). For (2), we check in
PTIME whether there is a non ⊥-tuple in some world of rep(W) that is not in
the instance I. If W has variables then it cannot represent certain instances. �

Theorem 6. Tuple q-possibility is in PTIME for gWSDs and pos. rel. algebra.

A proof is given in [5]. Note that by adding negation to the query language, tuple
q-possibility becomes NP-hard even for v-tables where each variable occurs at
most once (also called Codd tables) [3].

Theorem 7. Tuple and instance q-certainty are coNP-complete for gWSDs.

Proof. Hardness follows from the PTIME reduction of v-tables to gWSDs and
the coNP-hardness of tuple and instance q-certainty problems even for Codd
tables, i.e., v-tables where each variable occurs at most once [3]. Completeness
follows from the PTIME reduction of gWSDs to c-tables (Lemma 1) and coNP-
completeness of c-tables for both problems. �

Theorem 8. Instance q-possibility is NP-complete for gWSDs.

6 Optimizing gWSDs

In this section we study the problem of optimizing a given gWSD by further
decomposing its components using the product operation. We note that prod-
uct decomposition corresponds to the notion of relational factorization. We then
define this new notion and study some of its properties, like uniqueness and
primality or minimality. It turns out that any relation admits a unique minimal
factorization, and there is an algorithm that can compute it efficiently. Because
gWSD components are special relations with variables and the ⊥-symbol, they
can admit several minimal factorizations and our efficient algorithm can not al-
ways find one of them (but it can still find good non-optimal factorizations by
treating variables as constants). However, the (tuple-level) WSDs admit prime
factorizations that are unique modulo the ⊥-symbol6 and can be efficiently com-
puted by a trivial extension of our algorithm with the tuple-level constraint.

6.1 Prime Factorizations of Relations

Definition 5. Let there be schemata R[U ] and Q[U ′] such that ∅ ⊂ U ′ ⊆ U . A
factor of a relation R over schema R[U ] is a relation Q over schema Q[U ′] such
that there exists a relation R′ with R = Q×R′.
6 Two tuples (A1 : ⊥, . . . , An : ⊥) and (A1 : a1, . . . , An : an) of a relation defined by

a (g)WSD, where at least one ai is ⊥, are equivalent modulo the ⊥-symbol.
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A factor Q of R is called proper, if Q �= R. A factor Q is prime, if it has no
proper factors. Two relations over the same schema are coprime, if they have no
common factors.

Definition 6. Let R be a relation. A factorization of R is a set {C1, . . . , Cn}
of factors of R such that R = C1 × . . .× Cn.

In case the factors C1, . . . , Cn are prime, the factorization is said to be prime.
From the definition of relational product and factorization, it follows that the
schemata of the factors C1, . . . , Cn are a disjoint partition of the schema of R.

Proposition 7. For each relation a prime factorization exists and is unique.

6.2 Computing Prime Factorizations

This section first gives two important properties of relational factors and factor-
izations. Based on them, it further devises an efficient yet simple algorithm for
computing prime factorizations.

Proposition 8. Let there be two relations S and F , an attribute A of S and
not of F , and a value v ∈ πA(S). Then, for some relations R, E, and I holds

S = F ×R ⇔ σA=v(S) = F × E and σA �=v(S) = F × I.

Corollary 5. A relation S is prime iff σA=v(S) and σA �=v(S) are coprime.

The algorithm prime-factorization given in Figure 5 computes the prime factor-
ization of an input relation S as follows. It first finds the trivial prime factors
with one attribute and one value (line 1). These factors represent the prime
factorization of S, in case the remaining relation is empty (line 2). Otherwise,
the remaining relation is disjointly partitioned in relations Q and R (line 4) us-
ing any selection with constant A = v such that Q is smaller than R (line 3).
The prime factors of Q are then probed for factors of R and in the positive case

algorithm prime-factorization (S)

// Input: Relation S over schema S[U ].
// Result: Prime factorization of S as a set Fs of its prime factors.

1. Fs := {{πB(S)} | B ∈ U, |πB(S)| = 1}; S := S ÷ ∏
F ∈F s

(F );

2. if S = ∅ then return Fs;
3. choose any A ∈ sch(S), v ∈ πA(S) such that |σA=v(S)| ≤ |σA�=v(S)|;
4. Q := σA=v(S); R := σA�=v(S);
5. foreach F ∈ prime-factorization(Q) do
6. if (R ÷ F ) × F = R then Fs := Fs ∪ {F};
7. if

∏
F ∈F s

(F ) �= S then Fs := Fs ∪ {S ÷ ∏
F ∈F s

(F )};
8. return Fs;

Fig. 5. Computing the prime factorization of a relation
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become prime factors of S (lines 5 and 6). This property is ensured by Propo-
sition 8. The remainder of Q and R, which does not contain factors common to
both Q and R, becomes a factor of S (line 7). According to Corollary 5, this
factor is also prime.

Theorem 9. The algorithm of Figure 5 computes the prime factorization of any
relation.

Our relational factorization is a special case of algebraic factorization of Boolean
functions, as used in multilevel logic synthesis [11]. In this light, our algorithm
can be used to algebraically factorize disjunctions of conjunctions of literals. A
factorization is then a conjunction of factors, which are disjunctions of conjunc-
tions of literals. This factorization is only algebraic, because Boolean identities
(e.g., x · x = x) do not make sense in our context and thus are not considered
(Note that Boolean factorization is NP-hard, see e.g., [11]).

The algorithm of Figure 5 computes prime factorizations in polynomial time
and linear space, as stated by the following theorem.

Theorem 10. The prime factorization of a relation S with arity m and size n
is computable in time O(m · n · log n) and space O(n).

We can further trade the space used to explicitly store the temporary relations
Q, R, and the factors for the time needed to recompute them. For this, the
temporary relations computed at any recursion depth i are defined intentionally
as queries constructed using the chosen selection parameters. This leads to a
sublinear space complexity at the expense of an additional logarithmic factor for
the time complexity.

Proposition 9. The prime factorization of a relation S with arity m and size
n is computable in time O(m · n · log2 n) and space O(m · log n).

Remark 4. An important property of our algorithm is that it is polynomial in
both the arity and the size of the input relation S. If the arity is considered
constant, then a trivial prime factorization algorithm (yet exponential in the
arity of S) can be devised as follows: First compute the powerset PS (U) over
the set U of attributes of S. Then, test for each set U ′ ∈ PS (U) whether πU ′(S)×
πU−U ′ (S) = S holds. In the positive case, a factorization is found with factors
πU ′(S) and πU−U ′ (S), and the same procedure is now applied to these factors
until all prime factors are found. �

6.3 Optimization Flavors

The gWSD optimization discussed here is a facet of the more general problem
of finding minimal representations for a given g-tabset or world-set. To find a
minimal representation for a given g-tabset A, one has to take into account all
possible inlinings for the g-tables of A in g-tabset tables. Recall from Section 3
that we consider a fixed arbitrary inlining order of the tuples of the g-tables in A.
Such an order is supported by common identifiers of tuples from different worlds,
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as maintained in virtually all representation systems [18,3,16,8] and exploited
in practitioner’s representation systems such as [8,4]. We note that when no
correspondence between tuples from different worlds has to be preserved, smaller
representations of the same world-set may be possible.

Acknowledgments. The authors were supported in part by DFG project grant
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On the Expressiveness of Implicit Provenance in
Query and Update Languages
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Abstract. Information concerning the origin of data (that is, its prove-
nance) is important in many areas, especially scientific recordkeeping.
Currently, provenance information must be maintained explicitly, by
added effort of the database maintainer. Since such maintenance is te-
dious and error-prone, it is desirable to provide support for provenance in
the database system itself. In order to provide such support, however, it
is important to provide a clear explanation of the behavior and meaning
of existing database operations, both queries and updates, with respect
to provenance. In this paper we take the view that a query or update im-
plicitly defines a provenance mapping linking components of the output
to the originating components in the input. Our key result is that the
proposed semantics are expressively complete relative to natural classes
of queries that explicitly manipulate provenance.

1 Introduction

The provenance of data – its origins and how it came to be included in a database
– has recently sparked interest in database research [4,12,14]. The topic is partic-
ularly important in those scientific databases, sometimes referred to as curated
databases, that are constructed by a labor-intensive process of copying, correct-
ing and annotating data from other sources. The value of curated databases
lies in their organization and in the trustworthiness of their data. Provenance is
particularly important in assessing the latter. In practice, provenance – if it is
recorded at all – is recorded manually, which is both time-consuming and error-
prone. Automated provenance recording support is desirable, and for this it is
essential to have a proper semantic foundation to guide us on what should be
recorded and to understand what effect database operations have on provenance.

We focus on a specific kind of provenance associated with the copying and
modification of data by query and update languages. We use a formalization
based on the “tagging” or “propagation” approach of Wang and Madnick [15]
and Bhagwat et al. [3]. In this approach, it is assumed that each input data
item has an identifying color. Existing database operations are then given a new
semantics as functions mapping such colored databases to colored databases in
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Fig. 1. Color propagation for query (a) and updates (b) and (c)

which colors are propagated along with their data item during computation of
the output. The provenance of a data item in the output is then simply that
input data item with the same color. To illustrate this approach, consider a
table R(A, B) with tuples {(1, 2), (8, 9)}, and consider the following SQL query.

(select * from R where A <> 1)
union (select A, 5 as B from R where A = 1)

(a)

The input tree at the left of Fig. 1 is a representation of R in which the atomic
data values, the tuples and the table R itself are all annotated with colors
c1, c2, . . .. We could then define the colored semantics of query (a) to map the
input to the colored table represented by the tree (a) in Fig. 1. This defines the
provenance of the atom 1 in the output to be the corresponding atom in R, the
provenance of the tuple (8, 9) to be the second tuple in R, and so on. The color
⊥ indicates that a data item is introduced by the query itself. Hence, this par-
ticular colored semantics takes the view that queries construct new tables and
that the second select subquery constructs a new tuple rather than copying an
existing one.

Color-propagating functions from colored databases to colored databases can
hence be used to formally define the provenance behavior of existing database
operations. By “color-propagating” we mean that the function should only use
colors to indicate the origin of output items: if the function is applied to a
recolored version of the input, then it should produce an output with the same
recoloring applied. In particular, the input colors cannot influence the uncolored
part of the output and the function’s behavior is insensitive to the actual choice
of colors used in the input. We shall refer to such propagating functions as
provenance-aware operations.

The particular provenance ascribed to query (a) in Fig. 1 has the property
that if an output item j has the same color as an input item i, then i and j are
identical. We shall call provenance-aware operations with this property copying.
A copying operation has the property that if some item is colored ⊥ (“blank”),
all items that contain it will also be colored ⊥.

The provenance of query (a) described in Fig. 1 is exactly the “intuitive” or
“default” provenance of SQL queries proposed by Bhagwat et al. [3], although
they only consider provenance of atomic values. In particular, the default prove-
nance is always copying, as it views constant and tuple constructors in queries as
creating new items. Of course, this default semantics may not be the provenance
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semantics that a curator wants to give to a particular query. For this reason, [3]
proposes an extension to query languages that allows provenance to be defined
explicitly. Our first result is to propose a default provenance semantics for query
languages, similar to that given in [15] and [3], and show that it is complete
in the sense that it expresses exactly the explicitly definable provenance-aware
operations that are copying. This shows that the default provenance semantics
is a reasonable semantics for queries.

Turning to updates, we note that simple update languages, such as the expres-
sions of SQL that modify data, do not express more database transformations
than SQL queries do. As a result, update languages have largely been ignored in
database theory. The following examples, however, show that the story is very
different when we take account of provenance.

update R set B = 5 where A = 1 (b)
delete from R where A = 1; insert into R values (1,5) (c)

Since updates do not construct new databases, but modify existing ones in-
place, it is reasonable to define their provenance semantics in a way that agrees
with how tuple identifiers are preserved in practical database management sys-
tems. For example, the provenance of updates (b) and (c) would behave on R
as illustrated in Fig. 1(b) and Fig. 1(c), respectively. Note that this provenance
semantics is no longer copying. For example, the provenance of the tuple (1, 5) in
Fig. 1(b) is the tuple (1, 2) from the input, although they are clearly not identical.
For this reason we introduce a weaker semantic restriction on provenance-aware
operations, and consider the kind-preserving ones. By “kind-preserving” we mean
that if output item j has the same color as input item i, then they are of the
same kind: they are both sets, both tuples, or identical atoms. Kind-preserving
operations allow the output type of an item to differ from its input type, and
this is practically important in considering operations such as SQL’s add column
update, which extends a tuple but does not change its provenance.

We propose a default provenance semantics for updates as kind-preserving
operations, and show this semantics to be complete in the sense that every
explicitly definable kind-preserving provenance-aware operation can be expressed
by the default provenance semantics of an update.

Most previous work on provenance focuses on the relational model. We shall
work in the more general “nested relational” or complex object data model [1,7]
for two reasons. First, as our examples indicate, we are interested in prove-
nance at all levels: atoms, tuples, and tables (sets of tuples); a complex object
model allows us to provide a uniform treatment of these levels. Second, com-
plex object models are widely used in scientific data, where provenance is of
paramount importance. Liefke and Davidson [11] proposed a simple and ele-
gant language that extends SQL-style updates to complex objects. To be more
precise about our completeness result for updates: it is the default provenance
of this language that we show complete with regard to the explicitly definable,
kind-preserving provenance-aware operations. It is therefore a natural choice for
updating complex-object databases when one wants to record provenance.
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Related work. There is a substantial body of research on provenance (sometimes
termed lineage or pedigree) in both database and scientific computing settings,
which is nicely surveyed in [4,12,14]. In early approaches to provenance [15,8]
the provenance of an output tuple consists of sets of input tuples that directly
or indirectly influenced the output. These techniques only track the provenance
of tuples in relational data. In [6] a distinction is made between “why” and
“where” provenance for queries in a tree-structured model. More recently, [5] in-
vestigated tracking where-provenance for manual updates to curated databases.
The Trio project [2] has investigated the combination of tuple-level lineage with
uncertainty and accuracy information.

There has also been significant work on the properties of “tagging” or “an-
notation” in databases. Tan [13] studied theoretical issues of query containment
and equivalence in the presence of annotations. The DBNotes system [3] uses
variations on why- and where-provenance to propagate annotations on source
data through queries. Geerts et al. have developed Mondrian [10], a database
system that supports block annotations, in which a color can be associated with
a subset of the fields in a table, not just a single value.

Finally, provenance has also been studied in the geospatial and Grid comput-
ing communities [4,9,12]. Here, the motivation is to record the workflow that
constructs large data sets in order to avoid repeated computation.

2 Preliminaries

Let us first sketch the languages used throughout this paper. As query languages,
we employ the nested relational algebra NRA and the nested relational calculus
NRC [7]. We also use the nested update language NUL, based on the complex
object update language CUCA [11], which generalizes familiar SQL updates to
complex objects. All of these languages deal with complex objects in the form
of nested relations, whose types are given by the following grammar:

s, t ::= b | s× t | {s}.

Here, b ranges over some unspecified finite collection of base types like the
booleans, the integers, and so on. We assume this collection to include at least
the special base type unit . Types denote sets of objects. The type unit consists
only of the empty tuple (); objects of s× t are pairs (v, w) with v and w objects
of type s and t, respectively; and objects of {s} are finite sets of objects, each of
type s. We write v : s to indicate that v is an object of type s. Furthermore, we
feel free to omit parentheses and write s1×· · ·×sn for (. . . ((s1×s2)×s3) · · ·×sn).
Our results hold if we use labeled records instead of pairs; but the syntax of pairs
is more manageable.

The expressions ofNRA,NRC, andNUL are explicitly typed and are formed
using the typing rules of Fig. 2. Here, we range over NRA expressions by f, g,
and h; over NRC expressions by e; and over NUL expressions by u. We will
often omit the explicit type annotations in superscript when they are clear from
the context.
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EXPRESSIONS OF NRA.

Ka : unit → b ids : s → s

h : r → s g : s → t

g ◦ h : r → t

!s : s → unit πs,t
1 : s × t → s πs,t

2 : s × t → t

h : r → s g : r → t

〈g, h〉 : r → s × t

ηs : s → {s} μs : {{s}} → {s} K{}s : unit → {s} ∪s : {s} × {s} → {s}

ρs,t
2 : s × {t} → {s × t}

f : s → t

map(f) : {s} → {t} cond t : s × s × t × t → t

EXPRESSIONS OF NRC.

a : b xs : s

e : t

λxs.e : s → t

e1 : s → t e2 : s

e1 e2 : t

() : unit
e : s × t

π1 e : s π2 e : t

e1 : s e2 : t

(e1, e2) : s × t {}s : {s}
e : s

{e} : {s}
e1 : {s} e2 : {s}

e1 ∪ e2 : {s}
e1 : {s} e2 : {t}⋃{e2 | xs ∈ e1} : {t}

e1 : s e2 : s e3 : t e4 : t

if e1 = e2 then e3 else e4 : t

EXPRESSIONS OF NUL.

skip
s : s → s

u1 : r → s u2 : s → t

u1; u2 : r → t

e : t

repl
s e : s → t

u : s → t

[xs] u : s → t

e : {s}
insert e : {s} → {s}

e : {s}
remove e : {s} → {s}

u : s → t

iter u : {s} → {t}
u : r → t

updl
s u : r × s → t × s

u : s → t

updr
r u : r × s → r × t

Fig. 2. Expressions of NRL

Semantics of NRA. The NRA is an algebra of functions over complex objects.
Every NRA expression f : s → t defines a function from s to t. The expres-
sion Ka is the constant function that always produces the atom a; id is the
identity function; and g ◦ h is function composition, i.e., (g ◦ h)(v) = g(h(v)).
Then follow the pair operations: ! produces () on all inputs; π1 and π2 are re-
spectively the left and right projections; and 〈g, h〉 is pair formation: 〈g, h〉(v) =
(g v, h v). Next come the set operations: η forms singletons: η(v) = {v}; K{}
is the constant function that produces the empty set; ∪ is set union; μ flat-
tens sets of sets: μ({V, . . . , V ′}) = V ∪ · · · ∪ V ′; ρ2 is the right tensor product:
ρ2(v, {w, . . . , w′}) = {(v, w), . . . , (v, w′)}; and map(f) applies f to every object
in its input set: map(f)({v, . . . , v′}) = {f(v), . . . , f(v′)}. Finally, cond is the
conditional that, when applied to a tuple (v, v′, w, w′) returns w if v = v′, and
returns w′ otherwise.
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Example 1. Here are some simple examples of the functions that are definable
in NRA. The relational projections Π1 : {s× t} → {s} and Π2 : {s× t} → {t}
on sets of pairs are given by Π1 := map(π1) and Π2 := map(π2), respectively.
The tensor product ρ1 similar to ρ2 but pairing to the left is defined as ρ1 :=
map(〈π2, π1〉)◦ρ2 ◦〈π2, π1〉. Cartesian product of two sets is then readily defined
as cartprod := μ ◦map(ρ1) ◦ ρ2.

Semantics of NRC. The semantics of NRC is that of the first-order, simply
typed lambda calculus with products and sets. As such, expression a denotes the
constant a; xs is the explicitly typed variable that can be bound to objects of type
s; λx.e is standard lambda abstraction; and e1 e2 is function application. Fur-
thermore, expression () denotes the empty tuple; (e1, e2) is pair construction; and
π1 e and π2 e are respectively the left and right projection on pairs. Expression
{} denotes the empty set; {e} is singleton construction; e1 ∪ e2 is set union; and⋃
{e2 | x ∈ e1} is set comprehension. That is,

⋃
{e2 | x ∈ e1} = f(v)∪ · · · ∪ f(v′)

where f = λx.e2 and e1 denotes {v, . . . , v′}. Finally, if e1 = e2then e3 else e4 is
the conditional expression that returns e3 if the denotations of e1 and e2 are
equal and returns e4 otherwise.

Example 2. The left relational projection Π1 : {s × t} → {s} on a sets of pairs
is defined in NRC as λU.

⋃
{{π1 x} | x ∈ U}. Right relational projection is

defined similarly. SQL query (a) from the Introduction is defined in NRC as
e(a) :=

⋃
{if π1 x = 1 then {(π1 x, 5)} else {y} | y ∈ R}. Here, the table R(A, B)

is represented as a set of pairs R : {b× b}. Finally the expression,⋃
{
⋃
{if π1 x = π1 y then {((π1 x, π2 x), π2 y)} else {} | y ∈ S} | x ∈ R}

defines the relational join of two sets of pairs R : {r × s} and S : {r × t}.

We note that the power of NRC is not restricted to simple select-project-join
queries. It is well-known that the conditional expression allows definition of all
other non-monotone operations such as difference, intersection, set membership
testing, subset testing, and nesting [7]. Furthermore,

Proposition 1 ([7]). NRA ≡ NRC in the sense that every function definable
by an expression f : s → t in NRA is definable by a closed expression e : s → t
in NRC, and vice versa.

Semantics of NUL. Note that most NUL updates syntactically contain NRC
expressions. Each NUL update u : s → t defines a function that intuitively
modifies objects of type s “in-place” to objects of type t. First, we have some
“control” updates: skip is the trivial update with skip(v) = v; while u1; u2 is
update composition: (u1; u2)(v) = u2(u1(v)). The expression repl e replaces the
input object by the object denoted by e. Next, [x] u binds all free occurrences of
x in NRC expressions occurring in u to the input object and then performs u.
For example, ([x] repl (x, x))(v) = (v, v). Note that the value of x is immutable;
it is not affected by the changes u makes to the input object. In particular,
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[x]
(
repl(); repl(x, x)

)
is equivalent to [x] repl(x, x). Next come the set updates:

(insert e)(V ) = V ∪W where W is the denotation of e; (remove e)(V ) = V −W
where W is the denotation of e; and iter u applies u to every object in its input:
(iter u)({v, . . . , v′}) = {u(v), . . . , u(v′)}. Finally we have the updates on pairs:
(updl u)(v, w) = (u(v), w) and (updr u)(v, w) = (v, u(w)).

Example 3. We express the SQL updates (b) and (c) from the Introduction in
NUL. Here, the table R(A, B) is represented as an object R : {b × b}, which
serves as the context object for the NUL updates. Example (b) is expressed as
u(b) := iter

(
[x] updr repl(if π1 x = 1 then 5 else π2 x)

)
. Example (c) is expressed

as u(c) := [x] remove
⋃
{if π1 y = 1 then {y} else {} | y ∈ x}; insert {(1, 5)}. We

can also express schema modifying updates such as alter tableR drop column
B that transforms R : {b× b} into R : {b} in NUL by iter ([x] repl π1 x).

Theorem 1. NRA, NRC, and NUL are all equally expressive.

Hence, we may view expressions in each of the three languages as “syntactic
sugar” for expressions in the other languages. This allows us to freely combine
NRA, NRC, and NUL into the single nested relational language NRL.

3 A Model of Provenance

In this section we begin our study of provenance. Let color be an additional base
type (not included in the unspecified collection of base types of NRL) whose
infinite set of elements we will refer to as colors. Let the color-extended types be
the types in which color may also occur:

s, t := color | b | s× t | {s}.

To avoid possible confusion, r, s, and t will range over color-extended types and
r, s and t will range over ordinary NRL types. Let s ∗ t be the type of objects
of type s that are recursively paired with objects of type t:

color∗t := color × t b∗t := b×t (r× s)∗t := (r∗t×s∗t)×t {s}∗t := {s∗t}×t

We then define the type s of colored objects of type s as s ∗ color . A colored
object is hence an object in which each subobject is paired with a color. Let
⊥ be a special color that describes the provenance of newly created objects. A
distinctly colored object is a colored object in which ⊥ does not occur and in
which each other color occurs at most once.

As we have already illustrated in the Introduction, we can describe the prove-
nance behavior of database operations by color-propagating functions from dis-
tinctly colored objects to colored objects. For our further formalisation it is more
convenient, however, to consider color-propagating functions f : s → t that op-
erate on all colored objects. Here, color-propagating means that f cannot let
input colors influence the uncolored part of the output and that f ’s behavior
is insensitive to the actual colors used in the input. In particular, a function
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Fig. 3. The provenance semantics of left relational projection

g : b× b→ b that outputs (1, red) when its two input atoms are colored equally,
but outputs (2, blue) otherwise is not color-propagating. Formally, we require
that f ◦α∗

s = α∗
t ◦ f for any “recoloring” α : color → color that maps ⊥ to ⊥.

Here, α∗
r : r → r is the canonical extension of α to type r:

α∗
b := id ×α α∗

r×r′ := (α∗
r × α∗

r′)× α α∗
{r} := map(α∗

r)× α,

where h×h′ is an abbreviation of 〈h ◦π1, h
′ ◦ π2〉. Note that “color-propagating”

is a different concept than “generic w.r.t. colors” since α above is not required to
be bijective. Also note that this definition ensures that all colors in f(v), except
⊥, also occur in v. Finally, note that the behavior of f is fully determined by its
behavior on distinctly colored objects, as the following lemma shows.

Lemma 1. If f : s → t and g : s → t are two color-propagating functions such
that f(v) = g(v) for each distinctly colored v : s, then f ≡ g.

Proof. Let w : s be arbitrary and fix some distinctly colored v : s that equals w
modulo colors. Then there obviously exists some recoloring α such that α∗

s(v) =
w. Hence, f(w) = f(α∗

s(v)) = α∗
t (f(v)) = α∗

t (g(v)) = g(α∗
s(v)) = g(w). ��

Database operations are typically “domain-preserving” and are hence limited in
their ability to create new atomic data values. In particular, if o : s → t is a
query or update that creates atom a (in the sense that a appears in o(v) but
not in v for some v), then a appears as a constant in o. We want our concept
of “provenance-aware operation” to reflect this behavior. We therefore define
f : s → t to be bounded-inventing if there exists a finite set A of atoms such that
for every distinctly colored v : s and every (a, c) : b occurring in f(v), if f says
that it created a (i.e., if c = ⊥), then a ∈ A.

Definition 1. A provenance-aware database operation (pado for short) is a
color-propagating, bounded-inventing function f : s → t.

It is important to note that a pado may define an object in the output to come
from multiple parts in the input. For example, we will define the provenance
semantics of the left relational projection Π1 such that it maps the colored
object R : {b× b} from Fig. 3 to R′ in that figure. Note that atom 1 originated
from both the first and the second pair in the input, as it appears both with
colors c5 and c7 in R′.
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In what follows, we will consider two natural classes of pados: copying and
kind-preserving. Intuitively, a pado is copying if every object in the output that
was not created by f was copied verbatim from the input.

Definition 2 (Copying). A pado f : s → t is copying if for every v : s and
every colored subobject (w, c) : r of f(v), if c �= ⊥ then (w, c) occurs in v.

Similarly, a pado is kind-preserving if every subobject in the output that was
not created by f originates from an object in the input of the same kind. In
particular, every copying pado is also kind-preserving.

Definition 3 (Kind-preserving). A pado f : s → t is kind-preserving if for
every v : s and every colored subobject (w, c) : r of f(v), if c �= ⊥ then there exists
(u, c) in v such that u and v are of the same kind: they are both sets, both pairs,
or the same atom.

Define NRL(color ) to be the extension of NRL with the base type color in
which ⊥ is the only color that may appear as a constant. Since NRL(color ) can
explicitly manipulate colors, it is a natural language for the “explicit” definition
of pados and a suitable benchmark to compare proposals for “standard” prove-
nance semantics of query and update languages against. Define CP and KP as
the sets of closed expressions in NRL(color ) defining respectively copying and
kind-preserving pados:

CP := { f | f : s → t in NRL(color ) defines a copying pado },
KP := { f | f : s → t in NRL(color ) defines a kind-preserving pado }.

Note that CP and KP are semantically defined. In fact both CP and KP are
undecidable: a standard reduction from the satisfiability problem of the relational
algebra shows that checking if an NRL(color ) expression is color-propagating,
bounded-inventing, copying, or kind-preserving are all undecidable.

4 Provenance for Query Languages

In this section we give an intuitive provenance-aware semantics for NRA and
NRC expressions. Concretely, we take the view that queries construct new ob-
jects. As such, all objects constructed by a constant, pair, or set constructor (in-
cluding union and map/comprehension) during a query are colored ⊥. Objects
copied from the input retain their color. The provenance semantics P [f ] : s → t
of an NRA expression f : s → t is formally defined in Fig. 4 by translation
into NRL(color ). There, we write (g × h) as a shorthand for 〈g ◦ π1, h ◦π2〉; ⊥
as a shorthand for K⊥◦ !; Π1 as a shorthand for the left relational projection
map(π1); and val s : s → s for the function that forgets colors:

val b := π1 vals×t := (vals× val t) ◦π1 val{s} := map(val s) ◦π1.

Note that P [cond ] ignores colors during comparison: applied to a colored tuple
((v, v′, w, w′), c) it returns w if val(v) = val(v′), and w′ otherwise.

The provenance semantics P [e] : s and P [e′] : s → t of NRC expressions e : s
and e′ : s → t is also defined in Fig. 4 by translation into NRL(color ).
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PROVENANCE SEMANTICS OF NRA.

P[Ka] := Ka × ⊥ P[ids] := ids P[g ◦ h] := P[g] ◦ P[h]

P[!] := ! ×⊥ P[π1] := π1 ◦ π1 P[π2] := π2 ◦ π1

P[〈g, h〉] := (P[g] × P[h]) × ⊥ P[η] := η ×⊥ P[μ] := μ ◦ Π1 × ⊥
P[K{}] := K{} × ⊥ P[∪] := ∪ × ⊥ P[ρ2] := ρ2 × ⊥

P[map(f)] := map(P[f ]) × ⊥ P[cond ] := cond ◦(val × val × id ×id) ◦ π1

PROVENANCE SEMANTICS OF NRC.

P[a] := (a, ⊥) P[λxs.e] := λxs. P[e]
P[xs] := xs P[e1 e2] := P[e1] P[e2]

P[()] :=
(
(), ⊥) P[π1 e] := π1 π1 P[e]

P[π2 e] := π2 π1 P[e] P[(e1, e2)] :=
(
(P[e1], P[e2]), ⊥

)
P[{}] := ({}, ⊥) P[e1 ∪ e2] :=

(
(π1 P[e1] ∪ π1 P[e2]), ⊥

)
P[{e}] := ({P[e]}, ⊥) P[

⋃{e2 | xs ∈ e1}] :=
(⋃{π1 P[e2] | xs ∈ π1P[e1]}, ⊥)

P[if e1 = e2 then e3 else e4] := if val(P[e1]) = val(P[e2]) then P[e3] else P[e4]

PROVENANCE SEMANTICS OF NUL.

P[skips] := skips P[u; u′] := P[u]; P[u′]
P[repls e] := repls P[e] P[[xs] u] := [xs] P[u]

P[insert e] := updl insert (π1 P[e]) P[iter u] := updl iter P[u]

P[updl u] := updl updl P[u] P[updr u] := updl updr P[u]

P[remove e] := updl
(
[x] remove {y | y ∈ x, val(y) ∈ val(P[e])})

Fig. 4. Provenance semantics of NRA, NRC, and NUL

Example 4. The provenance semantics P [Π1] of the NRA expression Π1 defin-
ing the left relational projection from Example 1 maps the colored set R : {b× b}
from Fig. 3 to the colored set R′ in that figure. The provenance semantics of the
NRC expression Π1 defining the left relational projection from Example 2 has
the same behavior. The provenance semantics of the NRA expression cartprod
from Example 1 maps the colored pair v : {b} × {b} from Fig. 5 to the colored
set w : {b× b} in that figure. The provenance semantics P [e(a)] of the NRC ex-
pression e(a) from Example 2 that defines query (a) from the Introduction has
already been illustrated: it maps the colored set R from Fig. 1 to the colored set
in Fig. 1(a).

Note that expressions that are equivalent under the normal semantics need not be
equivalent under the provenance semantics. For example, map(id) is equivalent
to id , but P [map(id)] is not equivalent to P [id] as the set returned by P [map(id)]
is colored with ⊥, while P [id ] retains the original color from the input. Likewise,
if x is a variable of type s×t then (π1 x, π2 x) is equivalent to x, but P [(π1 x, π2 x)]
is not equivalent to P [x].
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Fig. 5. The provenance semantics of cartesian product

Define PNRA and PNRC as the languages we obtain by interpreting NRA
and NRC under the new provenance semantics:

PNRA := { P [f ] | f expression in NRA },
PNRC := { P [e] | e expression in NRC }.

Proposition 2. PNRA ≡ PNRC in the sense that every function definable
by an expression P [f ] : s → t in PNRA is definable by a closed expression
P [e] : s → t in PNRC, and vice versa.

Hence, the equivalence ofNRA and NRC (as stated by Proposition 1) continues
to hold under the provenance semantics. In particular, we may continue to view
expressions in NRA and NRC as “syntactic sugar” for expressions in the other
language whenever convenient – even when we consider provenance. On the other
hand, in order to study the expressive power of provenance in these languages
it suffices to study the expressiveness of PNRA or PNRC alone. For example,
the following is straightforward to prove by induction on f :

Proposition 3. Every PNRA expression P [f ] : s → t defines a copying pado.

It readily follows from Proposition 2 that every PNRC expression also defines
a copying pado. The key result of this section is that the converse also holds:

Theorem 2. Every function in CP is also definable by a closed expression
P [f ′] : s → t in PNRC.
This theorem essentially follows from the following observations. First, The-
orem 1 continues to hold in the presence of the base type color . Hence, every
pado in CP can be expressed by some closed expression f : s → t in NRC(color ).
Second, the color-propagation of f implies that f is “polymorphic on colors” in
the sense that we can substitute the colors in f by objects of some other type
as follows. Let r be an arbitrary type, let g : r be a closed NRC expression, and
let T [f, g] : s ∗ r → t ∗ r be the NRC expression we obtain by replacing every
occurrence of color in a type annotation in f by r and subsequently replacing
every occurrence of the constant ⊥ in f by g.

Example 5. Let f : b× {b} → b× {b} be as below. Then T [f, g] is as shown.

f = λxb×{b}.
((

(5,⊥), (π1 π2 π1 x ∪ {π1 π1 x},⊥)
)
,⊥
)
,

T [f, g] = λx(b×{b})∗r.
((

(5, g), (π1 π2 π1 x ∪ {π1 π1 x}, g)
)
, g
)
.
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Note that T [f, g] propagates the objects of type r from input to output in the
same way as f propagates colors, where g takes the role of ⊥. What is more,
P [T [f, g]] : s ∗ r → t ∗ r propagates the colored objects of type r from input to
output in the same way as f propagates colors. The formal statement of this
claim is as follows.

Let r and s be types and let φ : color → r be a function. We define w : s ∗ r
to be a substitution of the colors in v : s relative to φ, denoted by v ≈φ

s w, by
induction on s:

– (a, c) ≈φ
b (((a, c′), φ(c)), c′′) with c′ and c′′ arbitrary;

– ((v, v′), c) ≈φ
s×s′ (((w, w′), φ(c)), c′) if v ≈φ

s w and v′ ≈φ
s′ w′; and

– ({v, . . . , v′}, c) ≈φ
{s} (({w, . . . , w′}, φ(c)), c′) if v ≈φ

s w, . . . , v′ ≈φ
s w′.

Proposition 4 (Color polymorphism). Let f : s → t be a closed expression
in NRC(color ) defining a color-propagating function; let g : r be a closed expres-
sion in NRC; and let φ : color → r be a function such that φ(⊥) = P [g]. Then
f(v) ≈φ

t P [T [f, g]] (w) for every v : s and every w : s ∗ r with v ≈φ
s w.

Let us now sketch how color polymorphism allows us to prove Theorem 2. In
general, given a particular copying pado f : s → t in NRC(color ) the proof
constructs a type r and closed expressions g : r, enc : s → s∗r, and dec : t∗r → t
such that P [enc] : s → s ∗ r encodes the colors in s as colored objects of type r
in s ∗ r and P [dec] : t ∗ r → t decodes the colored objects of r in t ∗ r back into
their original colors. The copying property of f is crucial for the decoding step.
Theorem 2 then follows as f is expressed in PNRC by P [dec ◦ T [f, g] ◦ enc].

The construction. To illustrate the construction, assume that f : b× {b} →
b× {b} is a copying pado in NRC(color ). We will only motivate why f is equiv-
alent to P [dec ◦ T [f, g] ◦ enc] on distinctly colored objects. Equivalence on arbi-
trary colored object then follows by Lemma 1, as both f and P [dec ◦ T [f, g] ◦ enc]
are color-propagating. Furthermore, we will use tuples of arbitrary arity, as these
can readily be simulated in the NRC. For example, (x, y, z) is an abbreviation of
((x, y), z) and the projection πn

i that retrieves the i-th component of an n-tuple
is an abbreviation of π2 π1 x.

Let s abbreviate b × {b}. Roughly speaking, we want P [enc] : s → s ∗ r to
substitute every color in a distinctly colored object v : s by the unique colored
subobject of v that is colored by c. In particular, r must hence be big enough to
store all colored subobjects of v. Hereto, we take r = b×{b}× (b×{b})×{unit},
where the first three components will be used to store colored subobjects from v,
and the last type {unit} will be used as an extra boolean flag that indicates the
encoding of ⊥. The following expressions can then be used to “inject” subobjects
of v into r and to encode ⊥:

putb : b→ r := λxb.(x, e{b}, es, {}) put{b} : {b} → r := λx{b}.(eb, x, es, {})
puts : s→ r := λxs.(eb, e{b}, x, {}) g : r := (eb, e{b}, es, {()}).

Here, eb : b, e{b} : {b}, and es : s are arbitrary but fixed closed NRC expressions.
For example, es could be (a, {}) with a : b an arbitrary constant.
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We now construct enc such that if v : s is distinctly colored and φ : color → r
is the function that maps ⊥ to P [g] and that maps every color c occurring in
v to P [puts′

](vc) where vc : s′ is the unique subobject of v colored by c, then
v ≈φ

s P [enc](v). Hereto, it suffices to let enc be

λxs.
((

(π1 x, putb(π1 x)), (
⋃
{{(y, putb(y))} | y ∈ π2 x}, put{b}(π2 x))

)
, puts(x)

)
.

Let w : s ∗ r abbreviate P [T [f, g] ◦ enc](v). Then f(v) ≈φ
s w by color poly-

morphism since v ≈φ
s P [enc](v). That is, subobjects of type r in w are sub-

stitutions of the colors in f(v) relative to φ. By inspecting these objects we
can decode w back into f(v) as follows. Let c be the color of f(v), i.e., let
c = π2(f(v)). First, we note that we can check in PNRC whether c = ⊥ in
the sense that P [λx.if π2 x = g then e1 else e2](w) executes P [e1] if c = ⊥, and
executes P [e2] otherwise. To prove this claim, it suffices to show that c = ⊥ iff
val(P [π2](w)) = val (P [g]). Suppose that c = ⊥. Because f(v) ≈φ

s w, it is eas-
ily seen that P [π2](w) = φ(c) = φ(⊥) = P [g], and hence also val(P [π2](w)) =
val(P [g]). For the only-if direction, suppose for the purpose of contradiction that
val(P [π2](w)) = val (P [g]) but c �= ⊥. Since f is color-propagating, every color
different from ⊥ occurring in f(v) must also occur in v. Hence, c occurs in v, and
thus φ(c) = P [puts′

](vc). Because f(v) ≈φ
s w, it is easily seen that P [π2](w) =

φ(c) = P [puts′
](vc). By construction, however, val (P [puts′

](v′)) �= val (P [g]) for
any s′ and any v′ : s′. Hence, val(P [π2](w)) = val (P [puts′

](vc)) �= val(P [g]),
which gives us the desired contradiction.

We now claim that P [dec] with dec : s ∗ r → s defined as follows successfully
decodes w back into f(v).

dec := λx. if π2 x = g then
(
decb(π1 π1 x), dec{b}(π2 π1 x)

)
else π4

3(π2 x)
decb := λx. if π2 x = g then inv(π1 x) else π4

1(π2 x)
dec{b} := λx. if π2 x = g then

⋃
{{decb(y)} | y ∈ π1 x} else π4

2(π2 x).

Here, inv := λx. if x = a1 then a1 else . . . else if x = ak then ak else x, where
{a1, . . . , ak} is the finite set of constants testifying that f is bounded inventing.

To see why P [dec](w) = f(v), first consider the case where c �= ⊥. Because f
is copying, we know that f(v) = vc with vc : s the unique subobject of v colored
by c. Hence, P [dec](w) = P [π4

3](P [π2](w)) = P [π4
3](φ(c)) = P [π4

3 ](P [puts](vc)).
It is not hard to see that the latter is precisely vc = f(v), as desired.

Next, consider the case where c = ⊥. Then f(v) is a “newly constructed”
colored pair. Hence, to decode w into f(v), P [dec] first decodes w1 := P [π1 π1](w)
and w2 := P [π2 π1](w) into π1(f(v)) and π2(f(v)) respectively, and constructs
a new pair to put them in. Here, P [decb] and P [dec{b}] decode w1 and w2 using
essentially the same reasoning as P [dec]: first they inspect the colors of w1 and
w2, extracting the correct value from the r-component if the color is not ⊥, and
by “reconstructing” the object otherwise.

This concludes the proof illustration of Theorem 2. As a corollary to Propo-
sition 2, Proposition 3, and Theorem 2 we immediately obtain:

Corollary 1. PNRA, PNRC, and CP are all equally expressive.
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5 Provenance for Updates

In this section we give an intuitive provenance-aware semantics for updates.
Concretely, we take the view that updates do not construct new objects, but
modify existing ones. As such, objects retain their colors during an update.

The provenance semantics P [u] : s → t of a NUL update u : s → t is formally
defined in Fig. 4 by translation into NRL(color ). Here, P [e] is the provenance
semantics of NRC expression e as defined in Section 4 and {y | y ∈ x, val(y) ∈
val(P [e])} abbreviates the expression⋃

{if val(y) ∈ val (P [e]) then {y} else {} | y ∈ x},

where the conditional if e1 ∈ e2 then e3 else e4 is known to be expressible in
NRL [7]. Note in particular that the provenance semantics of remove e ignores
colors when selecting the objects to remove.

Example 6. The provenance semantics of theNUL update iter ([x] repl π1 x) from
Example 3 maps the colored set R : {b× b} from Fig. 3 to the colored set R′′

in that figure. Note in particular that the set itself retains its color. This is in
contrast to the provenance semantics of the relational projection Π1, as we have
explained in Example 4. The provenance semantics of the updates u(b) and u(c)
from Example 3 that express respectively the SQL updates (b) and (c) from
the Introduction has already been illustrated in the Introduction. In particular,
P [u(b)] maps the colored set R from Fig. 1 to the colored set in Fig. 1(b), while
P [u(c)] maps R to the colored set in Fig. 1(c).

Define PNUL as the language we obtain by interpreting NUL under the new
provenance semantics:

PNUL := {P [u] | u expression in NUL}.

It is easy to show that PNUL ⊆ KP ; that is, every P [u] defines a kind-preserving
pado. The key result of this section is that the converse also holds. The proof
uses the same “color polymorphism” technique we have used for queries.

Theorem 3. KP ≡ PNUL in the sense that every function definable by an
expression f : s → t in KP is also definable by a closed update P [u] : s → t in
PNUL, and vice versa.

6 Discussion

Our goal in this paper has been to achieve an understanding of how query and
update languages manipulate provenance. Although the completeness results
from Sects. 4 and 5 show why our proposed provenance semantics is sensible,
there are several issues that must be tackled before we can build a practical
system that records provenance.
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Space and processing overhead are concerns even for simple, manual up-
dates [5]. From a space-efficiency point of view, it may be desirable to “merge”
objects in the same set that are equal modulo colors. For example, we could
collapse the two occurrences of atom 1 in R′ of Fig. 3 into a single atom colored
by the set {c5, c7} [15,3]. Query rewriting is also problematic. In Sect. 4 we noted
that expressions that are equivalent under traditional semantics are no longer
equivalent when provenance is considered. This may affect query optimisation.

There is also the issue of aggregation queries such as select A, sum(B)
from R group by A. This particular aggregation could be expressed in NRL
by adding a function sum : {int} → int . Since the output of sum is a new data
value, we could define P [sum] := 〈sum, K⊥◦ !〉, but it is surely more satisfactory
to record some form of workflow provenance, as known from the geospatial and
Grid computing communities [4,9,12], that tells us how the sum was formed.
Another problem is that P [sum] is no longer bounded-inventing, a problem that
also arises when we want to consider external user-defined functions. We hope
to generalize our approach to address these issues.
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Abstract. Moving objects produce trajectories. We describe a data
model for trajectories and trajectory samples and an efficient way of mod-
eling uncertainty via beads for trajectory samples. We study transfor-
mations for which important physical properties of trajectories, such as
speed, are invariant. We also determine which transformations preserve
beads. We give conceptually easy first-order complete query languages
and computationally complete query languages for trajectory databases,
which allow to talk directly about speed and beads. The queries express-
ible in these languages are invariant under speed- and bead-preserving
transformations.

1 Introduction and Summary

The research on spatial databases, which started in the 1980s from work in geo-
graphic information systems, was extended in the second half of the 1990s to deal
with spatio-temporal data. One particular line of research in this field, started
by Wolfson, concentrated on moving object databases (MODs) [4,12], a field in
which several data models and query languages have been proposed to deal with
moving objects whose position is recorded at, not always regular, moments in
time. Some of these models are geared towards handling uncertainty that may
come from various sources (measurements of locations, interpolation, ...) and of-
ten ad-hoc query formalisms have been proposed [11]. For an overview of models
and techniques for MODs, we refer to the book by Güting and Schneider [4].

In this paper, we focus on the trajectories that are produced by moving objects
and on managing and querying them in a database. We therefore think it is more
appropriate to talk about trajectory databases, rather than to refer to the moving
objects that produce these trajectories. We give a data model for trajectory
data, an efficient way of modeling uncertainty, we study transformations for
which important physical properties of trajectories are invariant and we give
first-order complete and computationally complete query languages for queries
invariant under these transformations.

We propose two types of trajectory data, namely trajectories, which are curves
in the plane (rationally parameterized by time) and trajectory samples, which are
well-known in MODs, namely finite sequences of time-space points. A trajectory
database contains a finite number of labeled trajectories or trajectory samples.
There are various ways to reconstruct trajectories from trajectory samples, of
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which linear interpolation is the most popular in the literature [4]. However,
linear interpolation relies on the (rather unrealistic) assumption that between
sample points, a moving object moves at constant minimal speed. It is more
realistic to assume that moving objects have some physically determined speed
bounds. Given such upper bounds, an uncertainty model has been proposed
which constructs beads between two consecutive time-space points in a trajec-
tory sample. Basic properties of this model were discussed a few years ago by
Egenhofer et al. [1,7] and Pfoser et al. [9], but beads were already known in the
time-geography of Hägerstrand in the 1970s [6]. A bead is the intersection of
two cones in the time-space space and all possible trajectories of the moving ob-
ject between the two consecutive time-space points, given the speed bound, are
located within the bead. Beads manage uncertainty more efficiently than other
approaches based on cylinders [12] (by a factor of 3).

Speed is not only important in obtaining good uncertainty models, but also
many relevant queries on trajectory data involve physical properties of trajecto-
ries of which speed is the most important. Geerts proposed a model which works
explicitely with the equations of motion of the moving objects, rather than with
samples of trajectories, and in which the velocity of a moving object is directly
available and used [3]. If we are interested in querying about speed, it is impor-
tant to know which transformations of the time-space space preserve the speed
of a moving object. We characterize this group V of transformations as the com-
binations of affinities of time with orthogonal transformations of space composed
with a spatial scaling (that uses the same scale factor as the temporal affinity)
and translations. In [2], transformations that leave the velocity vector invariant
were discussed, but starting from spatial transformation that are a function of
time alone. Our result holds in general. We also show that the group V contains
precisely the transformations that preserve beads. So, the queries that involve
speed are invariant under transformations of V , as are queries that speak about
uncertainty in term of beads. Therefore, if we are interested in querying about
speed and dealing with uncertainty via beads, it is advisable to use a query lan-
guage that expresses queries invariant under transformations of V . Beads have
never before been considered in the context of query languages.

As a starting point to query trajectory (sample) databases, we take a two-
sorted logic based on first-order logic extended with polynomial constraints in
which we have trajectory label variables and real variables. This logic has been
studied well in the context of constraint databases [8] and also allows the ex-
pression of speed and beads. We remark that the V-invariant queries form an
undecidable class, and we show that this fragment is captured by a three-sorted
logic, with trajectory label variables, time-space point variables and speed vari-
ables, that uses two very simple predicates: Before(p, q) and minSpeed(p, q, v).
For time-space points p and q, the former expresses that the time-component
of p is smaller than that of q. The latter predicate expresses that the minimal
constant speed to travel from p to q is v. This logic also allows polynomial
constraints on speed variables. We show that using these two, conceptually in-
tuitive, predicates, all the V-invariant first-order queries can be expressed. This
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language allows one to express all queries concerning speed on trajectory data
and all queries concerning uncertainty in terms of beads on trajectory samples.
In particular, a predicate inBead(r, p, q, v) can be defined in this logic, expressing
that r is in the bead of p and q with maximal speed v.

We also show that a programming language, based on this three-sorted logic,
in which relations can be created and which has a while-loop with first-order
stop conditions, is sound and complete for the computable V-invariant queries
on trajectory (sample) databases. The proofs of these sound and completeness
results are inspired by earlier work on complete languages for spatial [5] and
spatio-temporal databases [2]. Compared to [2], the language we propose is far
more user oriented since it is not based on geometric but speed-oriented predi-
cates. We remark that the completeness and soundness results presented in this
paper hold for arbitrary spatio-temporal data, but we present them for trajec-
tory (sample) data. In any case, in all the presented languages it is expressible
that an output relation is a trajectory (sample) relation.

This paper is organized as follows. In Section 2, we give definitions and results
concerning trajectories and Section 3 deals with uncertainty via beads. Trajec-
tory databases and queries are discussed in Section 4 and results on complete
query languages are in Section 5.

2 Trajectories and Trajectory Samples

2.1 Definitions and Basic Properties

Let R denote the set of real numbers. We will restrict ourselves to the real plane
R2 (although all definitions and results can be generalized to higher dimensions).

Definition 1. A trajectory T is the graph of a mapping I ⊆ R → R2 : t &→
α(t) = (αx(t), αy(t)), i.e., T = {(t, αx(t), αy(t)) ∈ R ×R2 | t ∈ I}. The image
of the trajectory T is the image of the mapping α that describes T . The set I is
called the time domain of T . ��

Often, in the literature, conditions are imposed on the nature of the mappings
αx and αy. For instance, they may be assumed to be continuous, piecewise
linear [4], differentiable, or C∞ [11]. For reasons of finite representability, we
assume that I is a (possibly unbounded) interval and that αx and αy are con-
tinuous semi-algebraic functions (i.e., they are given by a combination of poly-
nomial inequalities in x and t and y and t respectively). For example, the set
{(t, 1−t2

1+t2 , 2t
1+t2 ) | 0 ≤ t ≤ 1} describes a trajectory on a quarter of a circle. In

this example, αx is given by the formula x(1 + t2) = 1− t2 ∧ 0 ≤ t ≤ 1.

Definition 2. A trajectory sample is a list 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN ,
yN )〉, with xi, yi, ti ∈ R for i = 0, ..., N and t0 < t1 < · · · < tN . ��

For the sake of finite representability, we may assume that the time-space points
(ti, xi, yi), have rational coordinates. This will be the case in practice, since these
points are typically the result of observations.
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A classical model to reconstruct a trajectory from a sample is the linear-
interpolation model [4], where the unique trajectory, that contains the sample
and that is obtained by assuming that the trajectory is run through at constant
lowest speed between any two consecutive sample points, is constructed. For a
sample S = 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)〉, the trajectory LIT (S) :=⋃N−1

i=0 {(t,
(ti+1−t)xi+(t−ti)xi+1

ti+1−ti
, (ti+1−t)yi+(t−ti)yi+1

ti+1−ti
) | ti ≤ t ≤ ti+1)} is called the

linear-interpolation trajectory of S.
We now define the speed of a trajectory.

Definition 3. Let T = {(t, αx(t), αy(t)) ∈ R × R2 | t ∈ I} be a trajectory.
If αx and αy are differentiable in t0 ∈ I, then the velocity vector of T in t0 is
defined as (1, dαx(t0)

dt ,
dαy(t0)

dt ) and the length of the projection of this vector on
the (x, y)-plane is called the speed of T in t0. ��
Let S = 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN )〉 be a sample. Then for any t,
with ti < t < ti+1, the velocity vector of LIT (S) in t is (1, xi+1−xi

ti+1−ti
, yi+1−yi

ti+1−ti
) and

the corresponding speed is the minimal speed at which this distance between
(xi, yi) and (xi+1, yi+1) can be covered. At the moments t0, t1, ..., tN the velocity
vector and speed of LIT (S) may not be defined.

2.2 Transformations of Trajectories

Now, we study transformations of trajectories under mappings f : R ×R2 →
R×R2 : (t, x, y) &→ (ft(t, x, y), fx(t, x, y), fy(t, x, y)). We assume that f preserves
the temporal order of events (for a technical definition we refer to [2]). It has
been shown that this is equivalent to the assumption that ft is a monotone
increasing function of time alone, i.e., that (t, x, y) &→ ft(t) [2]. We further assume
transformations to be bijective and differentiable. We remark that if f is as
above and ft is a monotone increasing function of t, then f maps trajectories to
trajectories.

If f : R × R2 → R ×R2 transforms a trajectory, then we can roughly say

that df =

⎛⎜⎝
∂ft

∂t 0 0
∂fx

∂t
∂fx

∂x
∂fx

∂y
∂fy

∂t
∂fy

∂x
∂fy

∂y

⎞⎟⎠ , the derived transformation of f , transforms in each

point of the trajectory the velocity vector.

Theorem 1. A mapping f : R ×R2 → R × R2 : (t, x, y) &→ (ft(t, x, y), fx(t,
x, y), fy(t, x, y)) preserves at all moments the speed of trajectories and preserves
the order of events if and only if

f (t, x, y) = a ·

⎛⎝1 0 0
0 a11 a12
0 a21 a22

⎞⎠⎛⎝ t
x
y

⎞⎠+

⎛⎝ b
b1
b2

⎞⎠ ,

with a, b, b1, b2 ∈ R, a > 0, and the matrix
(

a11 a12
a21 a22

)
∈ R2×2 defining an

orthogonal transformation (i.e., its inverse is its transposed). We denote the
group of these transformations by V.
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Proof. Let f : (t, x, y) &→ (ft (t, x, y) , fx (t, x, y) , fy (t, x, y)) be a transformation.
If f preserves the order of events, then everywhere ∂ft

∂x = 0, ∂ft

∂y = 0 and ∂ft

∂t >

0 [2], which means that ft is a reparameterization of time, i.e., (t, x, y) &→ ft(t).
Consider a trajectory T = {(t, αx(t), αy(t)) ∈ R×R2 | t ∈ I}. The trajectory

T will be transformed to a trajectory f(T ) given by β : R → R × R2 : τ &→
(τ, βx (τ) , βy (τ)). Since ft is a reparameterization of time, we can write τ = ft (t)
and t = f−1

t (τ). The mapping f transforms (t, αx (t) , αy (t)) into f(T ) which is
(ft (t) , fx (t, αx (t) , αy (t)) , fy (t, αx (t) , αy (t))) and which can be written as (τ,
fx(f−1

t (τ), αx(f−1
t (τ)), αy(f−1

t (τ))), fy(f−1
t (τ), αx(f−1

t (τ)), αy(f−1
t (τ)))). This

trajectory is given as β (depending on the parameter τ).
We assume that f preserves, at all moments in time, the speed of trajec-

tories, which means that the length of (1, ∂αx(t)/∂t, ∂αy(t)/∂t) equals that of
(1, ∂βx(τ)/∂τ, ∂βy(τ)/∂τ). Since (f ◦ α)′ (t) and ∂β(τ)

∂t have to be equal, and
since (f ◦ α)′ (t) = dfα(t) ◦ α′ (t) and ∂β(τ)

∂t = β′ (τ) · ∂τ(t)
∂t = β′ (τ) · f ′

t (t), we

have dfα(t) ◦ α′ (t) = β′ (τ) · f ′
t (t) which means

(
1

f ′
t(t)

· dfα(t)

)
◦ α′ (t) = β′ (τ)

and that 1
f ′

t(t)
· df(t,x,y) must be an isometry of R×R2 for each (t, x, y).

Let A be the matrix associated to the linear mapping 1
f ′

t(t)
·df(t,x,y). Since this

linear transformation must be orthogonal, we have that A · AT = AT · A = I
and det (A) = ±1. These conditions lead to the following equations. Firstly,
(∂ft

∂t
∂fx

∂t )/(f ′
t(t))

2 = 0, which means ∂fx

∂t = 0, because ∂ft

∂t > 0. Similarly, we have
that ∂fy

∂t = 0. Secondly, (∂fx/∂x)2 + (∂fx/∂y)2 = (f ′
t (t))2. We remark that the

right-hand side is time-dependent and the left-hand side isn’t, and vice versa the
left-hand side is dependent on only spatial coordinates and the right-hand side
isn’t, which means both sides must be constant. This implies that ft (t) = at+ b
where a > 0 since ft is assumed to be an increasing function. The condition
(∂fx

∂x )2 + (∂fx

∂y )2 = a2 is known as a differential equation of light rays [10], and
has the solution fx(x, y) = a11x + a12y + b1, where a2

11 + a2
12 = a2 and where b1

is arbitrary. Completely analogue, we obtain fy (x, y) = a21x + a22y + b2 where
a2
21 + a2

22 = a2 and where b2 is arbitrary.
Thirdly,

(
∂fx

∂x
∂fy

∂x + ∂fy

∂y
∂fx

∂y

)
/ (f ′

t (t))2 = 0. And finally, det (A) = ±1 gives

a11a22 − a12a21 = ±1. If we write a′
ij = aij

a , then we all these equations lead to
the following form of f : f(t, x, y) =

a ·

⎛⎝1 0 0
0 a′

11 a′
12

0 a′
11 a′

22

⎞⎠⎛⎝ t
x
y

⎞⎠+

⎛⎝ b
b1
b2

⎞⎠
where a > 0, and the matrix of the a′

ij determines an orthogonal transformation
of the plane. It is also clear that transformations of the above form preserve at
any moment the speed of trajectories. This completes the proof. ��

Examples of speed-preserving transformations include the spatial translations
and rotations, temporal translations and scalings of the time-space space.
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3 Uncertainty Via Beads

In 1999, Pfoser et al. [9], and later Egenhofer et al. [1,7], introduced the notion of
beads in the moving object database literature to model uncertainty. Before Wolf-
son used cylinders to model uncertainty [4,12]. However, cylinders give less preci-
sion (by a factor of 3, compared to beads). Let S be a sample 〈(t0, x0, y0), (t1, x1,
y1), ..., (tN , xN , yN)〉. Basically, the cylinder approach to managing uncertainty,
depends on an uncertainty threshold value ε > 0 and gives a buffer of radius ε
around LIT (S). In the bead approach, for each pair (ti, xi, yi), (ti+1, xi+1, yi+1)
in the sample S, their bead related does not depend on a uncertainty threshold
value ε > 0, but rather on a maximal velocity value vmax of the moving object.

Definition 4. Given (ti, xi, yi), (ti+1, xi+1, yi+1), with ti < ti+1 and vmax > 0,
the bead of (ti, xi, yi, ti+1, xi+1, yi+1, vmax), denoted B(ti, xi, yi, ti+1, xi+1, yi+1,
vmax), is the set {(t, x, y) ∈ R×R3 | (x− xi)2 + (y− yi)2 ≤ (t− ti)2v2

max ∧ (x−
xi+1)2 + (y − yi+1)2 ≤ (ti+1 − t)2v2

max ∧ ti ≤ t ≤ ti+1}. ��

The bead in Figure 1 shows at each moment a disk or a lens.

(t1, x1, y1)

(t0, x0, y0)

Fig. 1. An example of a bead B(t0, x0, y0, t1, x1, y1, 1)

We remark that for a sample S = 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)〉 the
set
⋃N−1

i=0 B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) is called the bead chain of S [1].
Suppose we transform a bead B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) by a function

f : R×R2 → R×R2 : (t, x, y) &→ (ft(t), fx(t, x, y), fy(t, x, y)), with ft strictly
monotone, as we have done earlier with trajectories. We ask which class of trans-
formations map a bead to a bead. Also here we assume transformations to be
bijective and differentiable.

Theorem 2. Let f : R ×R2 → R × R2 : (t, x, y) &→ (ft(t), fx(t, x, y), fy(t, x,
y)) be a transformation that preserves the order of events. Then for arbitrary
time-space points (ti, xi, yi) and (ti+1, xi+1, yi+1) with ti < ti+1 and arbitrary
vmax > 0, f(B(ti, xi, yi, ti+1, xi+1, yi+1, vmax)) is also a bead if and only if

f (t, x, y) =

⎛⎝a 0 0
0 ca11 ca12
0 ca21 ca22

⎞⎠⎛⎝ t
x
y

⎞⎠+

⎛⎝ b
b1
b2

⎞⎠ ,
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with a, b, c, b1, b2 ∈ R, a, c > 0, and the matrix of the aij defining an orthogonal
transformation. Furthermore, if these conditions are satisfied, then f(B(ti, xi,
yi, ti+1, xi+1, yi+1, vmax)) = B(f(ti, xi, yi), f(ti+1, xi+1, yi+1), cvmax

a ).

Proof. Let f be a transformation of R×R2 that preserves the order of events.
Suppose that for any bead B = B(ti, xi, yi, ti+1, xi+1, yi+1, vmax), f(B) is a bead.

Let us first consider the special case, vmax = d((xi,yi),(xi+1,yi+1))
(ti+1−ti)

(this means
that the maximal speed is also the minimal speed). Then the bead B is the
straight line segment between (ti, xi, yi) and (ti+1, xi+1, yi+1) in the (t, x, y)-
space. This segment is not parallel to the (x, y)-plane (like all beads that are
lines). Since B is one-dimensional and since f(B) is assumed to be a bead and
since f(B) at any moment consists of one point also f(B) must be a straight line
segment not parallel to the (x, y)-plane in the (t, x, y)-space. We can conclude
that f maps line segments not parallel to the (x, y)-plane to line segments not
parallel to the (x, y)-plane.

Secondly, let us consider a bead B with (xi, yi) = (xi+1, yi+1) and vmax > 0.
This bead consists of a cone between ti and (ti + ti+1)/2 with top (ti, xi, yi) and
base the disk D = {((ti+ti+1)/2, x, y) | (x−xi)2+(y−yi)2 ≤ v2

max((ti+1−ti)/2)2}
and a cone between (ti+ti+1)/2 and ti+1 with top (ti+1, xi, yi) and the same disk
D as base. Consider the straight line segments emanating from the top (ti, xi, yi)
and ending in the central disk D. They are mapped to straight line segments in
f(B) (as we have argued before) that emanate from the top f (ti, xi, yi) of f(B)
and that end up in some figure f(D) in the hyperplane t = ft((ti + ti+1)/2).
Since f(B) is assumed to be a bead, the image of the bottom cone of B is again a
cone, and the aforementioned figure f(D) in the hyperplane t = ft((ti + ti+1)/2)
is also a closed disk. The same holds for the top cone of B. This half of B is
mapped to a cone with top f(ti+1, xi+1, yi+1) and base f(D).

Therefore, f(B) is the union of two cones, one with top f (ti, xi, yi), the other
with top f(ti+1, xi, yi) and both with base f(D). Since f(B) is a bead that at
no moment in time is a lens, it must itself be a bead with equally located tops.
This means that fx(ti, xi, yi) = fx(ti+1, xi, yi) and fy(ti, xi, yi = fy(ti+1, xi, yi).
In other words, the functions fx and fy are independent of t. This argument
also shows that ft((ti + ti+1)/2) is the middle of ft(ti) and ft(ti+1). This means
that for any ti and ti+1, ft((ti + ti+1)/2) = 1

2 (ft(ti) + ft(ti+1)). It is then easy
to show that, ft(t) = at + b with a > 0.

So, we have shown that a bead-preserving transformation f is of the form
f (t, x, y) = (at + b, fx (x, y) , fy (x, y)) . Now we determine fx and fy. If we re-
strict ourselves to a (x, y)-plane at some moment t between ti and ti+1, the
bead B = B(ti, xi, yi, ti+1, xi, yi, vmax) shows a disk. Since f(B) is a bead again,
it will also show a disk at ft(t). Since fx and fy are independent of t, they
map disks on disks, hence distances between points are all scaled by a posi-
tive factor c by this transformation. To determine what fx and fy look like we
can restrict ourselves to a mapping from R2 to R2, since fx and fy depend
only on x and y. Consider the transformation f̃ (x, y) = (fx (x, y) , fy (x, y)), we
know now that for all points x and y in R2, ‖x− y‖ = 1

c‖f̃ (x) − f̃ (y) ‖. Now
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consider f̂ = 1
c f̃ , this means ‖x− y‖ = ‖f̂ (x) − f̂ (y) ‖ and thus f̂ is an isom-

etry. Just like before (cfr. speed preserving-transformations), we can conclude
that f̃ (x, y) = (fx (x, y) , fy (x, y)) is a plane-similarity, i.e., composed of a linear
plane isometry, a scaling and a translation.

We know that (x′ − x′
i)

2 + (y′ − y′
i)

2 = c2((x− xi)
2 + (y − yi)

2) and that
(t′ − t′i)

2 = a2 (t− ti)
2. That means that if B is a bead between the points

(t1, x1, y1) and (t2, x2, y2) and speed vmax, then B′ is a bead between the points
(t′1, x

′
1, y

′
1) and (t′2, x

′
2, y

′
2) and speed v′max = c.vmax

a . This has to hold for all
beads, hence all vmax since degenerate beads must be transformed to degenerate
beads. This concludes the proof since it is clear that all transformations of this
form also map beads to beads. ��
From this result it follows that if f maps a bead B with maximal speed vmax to
a bead f(B), the latter has maximal speed cvmax

a . So, we get the following.

Corollary 1. If f : R ×R2 → R ×R2 is a transformation that preserves the
order of events, then f maps beads to beads with the same speed, if and only if, f
preserves the speed of trajectories (i.e., f belongs to V defined in Theorem 1). ��

4 A Model for Trajectory Databases and Queries

4.1 Trajectory and Trajectory Sample Databases and Queries

We assume the existence of an infinite set Labels = {a, b, ..., a1, b1, ..., a2, b2, ...}
of trajectory labels. We now define the notion of trajectory (sample) database.

Definition 5. A trajectory relation R is a finite set of tuples (ai, Ti), i = 1, ..., r,
where ai ∈ Labels can appear only once and where Ti is a trajectory. Similarly,
a trajectory sample relation R is a finite set of tuples (ai, ti,j , xi,j , yi,j), with
i = 1, ..., r and j = 0, ..., Ni, such that ai ∈ Labels cannot appear twice in
combination with the same t-value and such that 〈(ti,0, xi,0, yi,0), (ti,1, xi,1, yi,1),
..., (ti,Ni , xi,Ni , yi,Ni)〉 is a trajectory sample.

A trajectory (sample) database is a finite collection of trajectory (sample)
relations. ��
Without loss of generality, we will assume in the sequel that a database consists of
one relation. In Section 2, we have discussed how we finitely represent trajectories
and trajectory samples.

Now, we define the notion of a trajectory database query. We distinguish
between trajectory database transformations and boolean trajectory queries.

Definition 6. A (sample-)trajectory database transformation is a partial com-
putable function from (sample-)trajectory relations to (sample-)trajectory re-
lations. A boolean (sample-)trajectory database query is a partial computable
function from (sample-)trajectory relations to {0, 1}. ��
When we say that a function is computable, this is with respect to some fixed
encoding of the trajectory (sample) relations (e.g., rational polynomial functions
represented in dense or sparse encoding of polynomials; or rational numbers
represented as pairs of natural numbers in bit representation).
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4.2 V-Equivalent Trajectory Databases and V-Invariant Queries

Definition 7. Let R and S be trajectory (sample) databases. We say that R
and S are V-equivalent, if there is bijection μ : Labels → Labels and a speed-
preserving transformation f ∈ V such that (μ× f)(R) = S. ��

In this paper, we are especially interested in transformations and queries that
are invariant under elements of V .

Definition 8. A trajectory (sample) database transformation Q is V-invariant
if for any trajectory (sample) databases S1 and S2 which are V-equivalent by
μ× f , also (μ× f)(Q(S1)) = Q(S2) holds.

A boolean trajectory (sample) database query Q is V-invariant if for any V-
equivalent trajectory (sample) databases R and S, Q(R) = Q(S). ��

5 Complete Query Languages for Trajectory Databases

5.1 First-Order Queries on Trajectory (Sample) Databases

A first query language for trajectory (sample) databases we consider is the fol-
lowing extension of first-order logic over the real numbers, which we refer to as
FO(+,×, <, 0, 1, S).

Definition 9. The language FO(+,×, <, 0, 1, S) is a two-sorted logic with label
variables a, b, c, ... (possibly with subscripts) that refer to trajectory labels and
real variables x, y, z, ... (possibly with subscripts) that refer to real numbers. The
atomic formulas of FO(+,×, <, 0, 1, S) are

– P (x1, ..., xn) > 0, where P is a polynomial with integer coefficients in the
real variables x1, ..., xn;

– a = b; and
– S(a, t, x, y) (S ia a 4-ary predicate).

The formulas of FO(+,×, <, 0, 1, S) are built from the atomic formulas using the
logical connectives ∧,∨,¬, ... and quantification over the two types of variables:
∃x, ∀x and ∃a, ∀a. ��

The label variables are assumed to range over the labels occurring in the
input database and the real variables are assumed to range over R. The for-
mula S(a, t, x, y) expresses that a tuple (a, t, x, y) belongs to the input data-
base. The interpretation of the other formulas is standard. It is well-known that
FO(+,×, <, 0, 1, S)-expressible queries can be evaluated effectively [8].

The FO(+,×, <, 0, 1, S)-sentence

∃a∃b(¬(a = b) ∧ ∀t∀x∀yS(a, t, x, y) ↔ S(b, t, x, y)), (†)

for example, expresses the boolean trajectory query that says that there are two
identical trajectories in the input database with different labels.
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The FO(+,×, <, 0, 1, S)-formula

S(a, t, x, y) ∧ t ≥ 0 (∗)

returns the subtrajectories of the input trajectories at positive time moments.
Boolean queries can be expressed by sentences in FO(+,×, <, 0, 1, S) (for ex-

ample, the sentence (†)). Trajectory transformations can be expressed by formu-
las ϕ(a, t, x, y) in FO(+,×, <, 0, 1, S) with four free variables (for example, the
formula (∗)). We remark that not every FO(+,×, <, 0, 1, S)-formula ϕ(a, t, x, y)
defines a trajectory relation on input a trajectory. However, it can be syntac-
tically guaranteed that the output of such a query is a trajectory (sample),
since this can be expressed in FO(+,×, <, 0, 1, S). Indeed, it is expressible that
a semi-algebraic set is a function and also that it is continuous. By combining a
formula ϕ(a, t, x, y) with a guard that expresses that the output of ϕ(a, t, x, y) is
a trajectory, we can determine a closed or safe fragment of FO(+,×, <, 0, 1, S)
for transforming trajectories.

Property 1. There is a FO(+,×, <, 0, 1, S)-formula that expresses that S is a
trajectory (sample). ��

5.2 A Point-Based First-Order Language for Trajectory (Sample)
Databases

In this section, we consider a first-order query language, FO(Before, minSpeed, S̃),
for trajectory (sample) databases.

Definition 10. FO(Before, minSpeed, S̃) is a three-sorted logic with label vari-
ables a, b, c, ... (possibly with subscripts) that refer to labels of trajectories; point
variables p, q, r, ... (possibly with subscripts), that refer to time-space points (i.e.,
elements of R ×R2); and speed variables u, v, w, ... (possibly with subscripts),
that refer to speed values (i.e., elements of R+).

The atomic formulas of FO(Before, minSpeed, S̃) are

– P (v1, ..., vn) > 0, where P is a polynomial with integer coefficients in the
velocity variables v1, ..., vn;

– equality for all types of variables; and
– S̃(a, p) (here S̃ is a binary predicate);
– Before(p, q), minSpeed(p, q, v).

The formulas of FO(Before, minSpeed, S̃) are built from the atomic formulas us-
ing the logical connectives ∧,∨,¬, ... and quantification over the three types of
variables: ∃a, ∀a, ∃p, ∀p and ∃v, ∀v. ��

The label variables are assumed to range over the labels occurring in the input
database, the point variables are assumed to range over the set of time-space
points R×R2 and the velocity variables are assumed to range over the positive
real numbers R+.
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If p is a time-space point, then we denote its time-component by pt and its
spatial coordinates by px and py. The formula S(a, p) expresses that a tuple
(a, pt, px, py) belongs to the input database. The atomic formula Before(p, q)
expresses that pt ≤ qt. The atomic formula minSpeed(p, q, v) expresses that (px−
qx)2 +(py−qy)2 = v2(pt−qt)2∧(¬qt ≤ pt), in other words, that v is the minimal
speed to go from the spatial projection of p to that of q in the time-interval that
separates them.

For example, the FO(Before, minSpeed, S̃)-sentence

∃a∃b(¬(a = b) ∧ ∀pS̃(a, p)↔ S̃(b, p)) (†′)

equivalently expresses (†). To define equivalence of (queries expressible by) for-
mulas in FO(Before, minSpeed, S̃) and FO(+,×, <, 0, 1, S), we define the canoni-
cal mapping can : (a, p) &→ (a, pt, px, py). If Ã is an instance of S̃, then id×can(Ã)
is an instance of S. We say that a formula ϕ̃(a, p) in FO(Before, minSpeed, S̃) and
a formula ϕ(a, t, x, y) in FO(+,×, <, 0, 1, S) express equivalent transformations
if for any Ã, id × can({(a, p) | Ã |= ϕ̃(a, p)}) = {(a, t, x, y) | id × can(A) |=
ϕ(a, t, x, y)}. For boolean queries the definition is analogue.

For the formula (∗), there is no equivalent in FO(Before, minSpeed, S̃). The
reason for this is given by the following theorem in combination with the obser-
vation that the formula (∗) does not express a V-invariant transformation.

Theorem 3. A V-invariant trajectory (sample) transformation or a boolean tra-
jectory (sample) query is expressible in FO(+,×, <, 0, 1, S) if and only if it is
expressible in FO(Before, minSpeed, S̃).

Before giving the proof of Theorem 3, we introduce some more predicates on
time-space points and speed values, which will come in handy later on:

– inBead(r, p, q, v) expresses that r = (rt, rx, ry) belongs to the bead B(pt, px,
py, qt, qx, qy, v) (assuming that pt ≤ qt);

– Between2(p, q, r) expresses that the three co-temporal points p, q and r are
collinear and that q is between p and r;

– Between1+2(p, q, r) expresses that the three points p, q and r are collinear
and that q is between p and r;

– EqDist(p1, q1, p2, q2) expresses that the distance between the co-temporal
points p1 and q1 is equal to the distance between the co-temporal points p2
and q2;

– Perp(p1, q1, p2, q2) expresses that the vectors−−→p1q1 and−−→p2q2 of the co-temporal
points p1, q1, p2 and q2 are perpendicular.

Lemma 1. The expressions inBead(r, p, q, v), Between2(p, q, r), Between1+2(p,
q, r), EqDist(p1, q1, p2, q2), and Perp(p1, q1, p2, q2) can all be expressed in the logic
FO(Before, minSpeed). ��

Proof. In the proof of Theorem 3, a key predicate to simulate addition and
multiplication in FO(Before, minSpeed) is Between2. Here, we only sketch how
this predicate can be expressed. We omit the other expressions.
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Fig. 2. The geometric construction of Between2

First, we introduce predicates to denote co-spatiality and co-temporality.
Equality of the spatial coordinates, =S (p, q), is expressed as ∃v(minSpeed(p,
q, v) ∧ v = 0) ∨ p = q. Co-temporality of time-space points, =T (p, q), is ex-
pressed as Before(p, q) ∧ Before(q, p). With the help of these predicates we can
express Between2(p, r, q) as

=T(p, r) ∧=T(r, q) ∧ ¬(p = r ∨ r = q ∨ p = q) ∧
∃r′∃q′∃v(=S(r, r′) ∧=S(q, q′) ∧ ¬Before(r′, p) ∧ ¬Before(q′, r′) ∧

minSpeed(p, q′, v) ∧minSpeed(p, r′, v) ∧minSpeed(r′, q′, v)).

The first line states that p, q and r should be co-temporal and distinct. Next we
say that there exist points r′ and q′ with the same spatial coordinates as r and
q respectively. The last line states that p, r′ and q′ are collinear and that r′ is
between p and q′. Therefore the projected points p, r and q are also collinear and
r is between p and q. The above expression describes the geometric construction
illustrated in Figure 2. ��

For the purpose of the proof of Theorem 3, we need to give a more general
definition of V-invariance of FO(Before, minSpeed, S̃)-formulas.

Definition 11. A FO(Before, minSpeed, S̃)-formula ϕ(a1, ..., an, p1, ..., pm, v1, ...,
vk) expresses a V-invariant query Q if for any trajectory (sample) databases S1
and S2 for which there is a bijection μ : Labels → Labels and a transformation
f ∈ V such that (μ× f)(S1) = S2, also (μn × fm × idk)(Q(S1)) = Q(S2). ��

This definition corresponds to the definition for transformations and boolean
queries (Definition 8), if we take n = m = 1, k = 0 and n = m = k = 0.

Proof (of Theorem 3). We have to prove soundness and completeness.
Soundness: Firstly, we show that every FO(Before, minSpeed, S̃)-formula is equiv-
alently expressible in FO(+,×, <, 0, 1, S) and that every query expressible in
FO(Before, minSpeed, S̃) is V-invariant.
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We assume prenex normal form for formulas, and translate the atomic for-
mulas first. Logical connectives, and finally quantifiers, can then be added in a
straightforward manner. A label variable is left unchanged. A point variable p
is simulated by three real variables px, py and pt and a speed variable v is sim-
ulated by a real variable v and when it appears it is accompanied with the re-
striction v ≥ 0. An appearance of the trajectory predicate S̃(a, p) is translated
into S(a, pt, px, py). By switching to coordinate representations, the predicates
minSpeed(p, q, v) and Before(p, q) are translated to (px − qx)2 + (py − qy)2 =
v2 (pt − qt)

2 ∧ (¬qt ≤ pt) and pt ≤ qt respectively. Polynomial constraints on
speed variables are literally translated (adding v ≥ 0). Logical connectives, and
finally quantifiers, can then be added in a straightforward manner (∃p is trans-
lated to ∃pt∃px∃py).

Speed-preserving transformations preserve the order of events. That means
the predicate Before is V-invariant. The predicate minSpeed is also V-invariant.
If f belongs to V , then we know from Theorem 1 that f is the composition of a
scaling by a positive factor a and an orthogonal transformation and a translation.
Suppose that f(pt, px, py) = (p′t, p′x, p′y) = p′ and f(qt, qx, qy) = (q′t, q′x, q′y) = q′.
Then (p′x − q′x)2 + (p′y − q′y)2 = v2(p′t − q′t)

2 = a2((px − qx)2 + (py − qy)2) =
v2a2(pt− qt)2. So, minSpeed(p, q, v) holds if and only if minSpeed(p′, q′, v) holds.

The polynomial constraints on speed variables are by definition V-invariant
(see Definition 11). Now, it is easy to show, by induction on the syntactic struc-
ture of FO(Before, minSpeed, S̃)-formulas that they are all V-invariant.

Completeness: Now, we show that every V-invariant trajectory query, expressible
in FO(+,×, <, 0, 1, S), can equivalently be expressed in FO(Before, minSpeed, S̃).
We will sketch the proof, as a rigorous proof easily becomes long and tedious.
The general strategy that we outline is based on proof strategies introduced
in [5] for spatial data and later developed for spatio-temporal data in [2]. Label
variables are literally translated. The real variables are translated into point
variables and we simulate addition and multiplication operations and order in a
“computation plane”. To do this we need a coordinate system for R×R2 that
is the image of the standard coordinate system of R×R2 under some element
of V . Let (u0, u1, u2, u3) be such a coordinate system, meaning u0, u2 and u3
are co-temporal, −−→u0u1, −−→u0u2 and −−→u0u3 are perpendicular and have equal length
and u0 is a point Before u1. All of this is expressible in FO(Before, minSpeed, S̃)
with the predicates introduced in Lemma 1. The predicate CoSys(u0, u1, u2, u3)
expresses that (u0, u1, u2, u3) is the image of the standard coordinate system
under some speed-preserving transformation. Next all real variables are directly
translated into point variables on the line u0u2, the idea is to translate a real
variable x to a point variable px with a cross ratio (u0, u2, p

x) equal to x. Using
only Between2 we can express all addition and multiplication operations in the
plane spanned by the co-temporal points u0, u2 and u3.

At this point, we have in our translated formula too many free variables,
since we translated variables, which represent coordinates, to point variables and
added a coordinate system. We need to introduce new point variables and express
that the translated coordinate point variables are coordinates for these new point
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variables. Thus linking every triple of coordinate point variables on the line u0u2
with a single point variable. This can be done with a predicate Coordinates(u0,
u1, u2, u3, t, x, y, u) which expresses that the cross ratios (u0, u2, t), (u0, u2, x)
and (u0, u2, y) are the coordinates for the point variable u with respect to the
coordinate system (u0, u1, u2, u3). This can be done using only the predicate
Between1+2 as was shown in [5]. The relation S is translated in a similar straight-
forward manner. Finally we add existential quantifiers for all the coordinate point
variables and for the points u0, u1, u2 and u3. ��

As a corollary of Theorem 3 and Property 2, is the following.

Property 2. There is a FO(Before, minSpeed, S̃)-formula that expresses that S̃ is
a trajectory (-sample). ��

5.3 Computationally Complete Query Language for Trajectory
(Sample) Databases

In this section, we consider computationally complete query languages for trajec-
tory (sample) databases. We start by extending the logic FO(Before, minSpeed, S̃)
with a sufficient supply of relation variables (of all arities), assignment statements
and while-loops. Afterward, we will prove that this extended language is compu-
tationally sound and complete for V-invariant computable queries on trajectory
(sample) databases.

Definition 12. A program in FO(Before, minSpeed, S̃)+while is a finite sequence
of assignment statements and while-loops:

– An assignment statement is of the form

R̃ :={(a1, . . . , ak, p1, . . . , pl, v1, . . . , vm) |ϕ (a1, . . . , ak, p1, . . . , pl, v1, . . . , vm)};

where R̃ is a relation variable of arity k in the label variables, arity l in the
time-space point variables and arity m in the speed variables, and ϕ is a
formula in the language FO(Before, minSpeed, S̃) extended with the relation
labels that were previously introduced in the program.

– A while-loop
while ϕ do P ;

contains a sentence ϕ in FO(Before, minSpeed, S̃) extended with previously
introduced relation labels and a FO(Before, minSpeed, S̃)+while-program P
(again extended with previously introduced relation labels).

– One relation variable is designated as an output relation R̃out. The program
ends once that particular relation variable has been assigned a value. ��

The semantics of FO(Before, minSpeed, S̃)+while should be clear and is like that
of FO(+,×, <, 0, 1, S)+while. A program defines a query on a trajectory (sample)
database. Indeed, given an input relation, as soon as a value is assigned to the
relation R̃out, the program halts and returns an output; or the program might
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loop forever on that input. Thus, a program defines a partial function from input
to output relations. We remark that the output relation is computable from
the input.

Once we have fixed a data model for trajectories or trajectory samples (see
Section 2) and concrete data structures to implement the data model, we say
that a partial function on trajectory (sample) databases is computable, if there
exists a Turing machine that computes the function, given the particular data
encoding and data structures (see [8] for details).

We omit the proof of the following result.

Theorem 4. FO(Before, minSpeed, S̃)+while is sound and complete for the com-
putable V-invariant queries on trajectory (sample) databases. ��
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Abstract. The typechecking problem for transformations of relational
data into tree data is the following: given a TreeQL program P (called
transformation), and a DTD d (called output type), decide whether for
every database instance D the result of the transformation P of D is
of a type consistent with d (see [2]). TreeQL programs with projection-
free conjunctive queries and DTDs with arbitrary regular expressions are
considered here.

A non-elementary upper bound for the typechecking problem is given
in [2] (although in a more general setting, where equality and negation
in projection-free conjunctive queries and additional universal integrity
constraints are allowed).

In this paper we show that the typechecking problem is in coNEXP-
TIME.

As an intermediate step we consider the following problem, which can
be formulated in a language independent of XML notions. Given a set of
triples of the form (ϕ, k, j), where ϕ is a projection-free conjunctive query
and k, j are natural numbers, decide whether there exists a database D
such that for each triple (ϕ, k, j) in the set, there exists a natural number
α, such that there are exactly k + j ∗ α tuples satisfying the query ϕ in
D. Our main technical contribution consists of a NEXPTIME algorithm
for the last problem.

1 Introduction

During the last years XML has become the standard in data exchange in the web.
Often the actual data resides in relational databases. In order to be published
such data should be transformed to XML. XML documents have their types —
a type is a tree language. There are many formalisms to define a type e.g. RE-
LAX NG, which can define the full class of regular tree languages or DTD/XML
Schema, which can define some fragments of this class. Typically, a community
agrees on a certain type and then all members of the community publish doc-
uments consistent with the type. Here comes the problem of typechecking for
transformations of relational data into tree data: for a given transformation, an
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output type and a set of integrity constraints, decide whether every database
satisfying the integrity constraints is transformed to a tree consistent with the
output type. Thus the problem can be parameterized by:

– the class of transformations,
– the class of output tree languages,
– the class of integrity constraints.

Alon et al. [2] present a study of decidability and complexity of many versions
of the problem. As a formalism to define transformations the authors introduce
TreeQL programs. TreeQL is an abstraction of practical languages such as RXL
(SilkRoute [4]). A TreeQL program is a tree with each node labeled with a
symbol from a finite alphabet and with a logical formula, which in our paper is
always a projection-free conjunctive query. The result of a transformation of a
relational structure is a tree reflecting the structure of the program tree, such
that each node t of the program tree is substituted by as many nodes as there
are tuples in the database satisfying the formula being the label of t. The nodes
of the output tree inherit, as their labels, the symbols that label nodes of the
program tree. The output type is specified by a DTD — a formalism which puts
local restrictions on trees, that is, it restricts how the sequence of child labels of
a node looks like.

Decidability results in [2] include a coNEXPTIME upper bound on typecheck-
ing TreeQL programs with conjunctive queries (with negation and equality),
DTDs with star-free regular languages as the output types and the integrity con-
straints in FO(∃∗∀∗). When arbitrary regular expressions are allowed in DTDs
the authors show decidability of typechecking TreeQL programs with projection-
free conjunctive queries1 (with negation and equality) and integrity constraints
in FO(∀∗). In the latter case, however, the complexity is prohibitively high – the
proof uses a combinatorial argument based on Ramsey’s Theorem and yields a
non-elementary upper bound. It was left as an open problem in [2] whether the
bound can be improved. We show that such an improvement is possible, at least
for a restricted case. We show a coNEXPTIME upper bound on the typechecking
problem for DTDs with arbitrary regular expressions as the output types and
projection-free conjunctive queries in TreeQL programs, but without integrity
constraints.

Our approach is as follows. Inspired by the notion of the modulo property [2],
we perform the reduction of the complement of the typechecking problem to
the following problem. Given a set of triples of the form (ϕ, k, j), where ϕ is a
projection-free conjunctive query and k, j are natural numbers, decide whether
there exists a database D such that for each triple (ϕ, k, j) in the set, there
exists a natural number α, such that there are exactly k + j ∗α tuples satisfying
the query ϕ in D. Notice, that a triple (ϕ, k, j) is a kind of a constraint on
a relational database. We call such constraints modulo constraints. Our main
technical contribution consists of a NEXPTIME algorithm for the problem of

1 If conjunctive queries with projections are allowed, the problem (even in our simple
setting) is not known to be decidable.
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satisfiability of a set of modulo constraints. We use an elementary technique,
namely a direct construction of a counterexample database of exponential size
(by a counterexample database we mean such a database that is transformed to
a tree not in the output tree language).

Related work. Recently the problem of typechecking gained a lot of attention
in literature, especially in the context of typechecking XML-to-XML transfor-
mations, which, since relational structures can easily be encoded as XML trees,
is closely related to ours. In the context we are given input and output tree lan-
guages and a transformation and we are asked whether every tree in the input
tree language is transformed to a tree in the output language. The problem was
studied in [7], where the input and output types were regular tree languages
and transformations were expressed by k-pebble transducers. As long as the data
values in trees are not considered, the problem is decidable, however the com-
plexity is non-elementary. If the nodes in trees can be equipped with data values
from an infinite domain, in addition to the tags from a finite alphabet, then, as
it was shown in [3], the problem quickly gets undecidable and in the decidable
cases the complexity is rather high. In [5] and [6] Martens and Neven considered
transformations in a form of a single top-down traversal of the input tree, during
which every node can be replaced by a new tree or deleted. Such transformations
can be used for restructuring and filtering rather than for advanced querying,
but on the other hand, the obtained complexity results range from EXPTIME
to PTIME.

Outline of the paper. The rest of the paper is organized as follows. In Sect. 2
we give the necessary preliminaries. In a short Sect. 3 we state Theorem 1, which
is our main theorem, and formulate an intermediate result – the main lemma
needed for the proof of Theorem 1. In Sect. 4, which is the main technical part,
we prove the intermediate result. Finally, in Sect. 5 we use some of the ideas
from [2] and show how the intermediate result implies the main result.

2 Preliminaries

XML and XML Types. We abstract XML documents as ordered, unranked,
finite trees whose nodes are labeled with symbols from some finite alphabet Σ
(see Fig. 1). We denote the label of the node v by lab(v) and the root node of
the tree t by root(t). A Document Type Definition (DTD) is a way of defining a
tree language. A DTD d defines for each symbol σ ∈ Σ a regular language d(σ).
We say that a tree t is consistent with d if for every node v of t with children
v1, . . . , vn the word lab(v1) . . . lab(vn) is in the regular language d(lab(v)). If v
is a leaf, then the empty word ε has to be in d(lab(v)). The language of trees
consistent with a DTD d is denoted by L(d).

Databases and queries. Let S be a vocabulary consisting of relational sym-
bols. A database over S is a finite structure over S ( [1]). We denote the do-
main of a structure A by dom(A). In the paper we consider also structures over
vocabularies containing constant symbols. A projection-free conjunctive query
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(projection-free CQ) ϕ(x1, . . . , xn) is a conjunction of atomic formulas over vo-
cabulary S. By Vars(ϕ) we denote the set of variables of ϕ (note that all variables
in projection-free CQs are free). Let ϕ(x̄) be a projection-free CQ, A a database
and ā a tuple of elements in A. We define A |= ϕ(ā) in the usual way.

TreeQL and typechecking. The following definitions come from [2], but are
tailored for our setting.

Definition 1. 1. A TreeQL program is an ordered, unranked tree P with labels.

– the root is labeled with an element from alphabet Σ.
– every non-root element node is labeled with a pair (σ, ϕ), where σ ∈ Σ

and ϕ is a projection-free CQ. The formula in a node v is denoted by
formula(v).

– Vars(formula(v)) ⊆ Vars(formula(v′)), for all non-root nodes v and v′,
where v′ is a descendant of v.

2. Let A be a database and P a TreeQL program. A tree P (A) generated from
A is defined as follows:

– The root is (root(P ), ∅).
– The non-root nodes consist of pairs (v, θ), where v is a non-root node of

P and θ is a substitution for variables Vars(formula(v)), such that A |=
ϕ[θ], for every formula ϕ labeling v or labeling an ancestor of v in P .

– The edges in P (A) are ((v, θ), (v′, θ′)) such that v′ is a child of v in
P and θ′ is an extension of θ (i.e. θ′ agrees with θ on variables in the
formula in v).

– Sibling nodes in P (A) are ordered as follows: if v and v′ are siblings in P
and v occurs before v′, then all nodes (v, θ) occur before all nodes (v′, θ′)
in P (A). For a given v in P , the ordering of nodes (v, θ) and (v, θ′) is
irrelevant in our setting, so it is not considered here (see remark below).

– Finally, the label of a node (v, θ) is the Σ-label of v in P .

Remark. We use the following observation from [2]. If d is a DTD then d does
not distinguish among trees P (A) for distinct orderings of the nodes (v, θ) and
(v, θ′), for each v in P . As we consider DTDs as XML types, we abstract from
the ordering of such nodes.

Definition 2. A TreeQL program P typechecks with respect to an output type
d iff P (A) ⊆ L(d), for every database A.

Example 1. Consider a database A containing information about car owners,
with two relations PERSON(Id, FirstName, LastName) and CARS(Id, Car):

PERSON Id FirstName LastName
1 John Smith
2 John Doe

CARS Id Car
1 Ferrari
2 Porsche
2 Ferrari
2 Mini
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name, ϕ1(x, y, z) = PERSON(x, y, z)

car owners

car, ϕ2(x, y, z, w) = CARS(x, w)

(a) The program R.

car[.., w=Ferrari]
car[.., w=Porsche] car[.., w=Ferrari]

name[x=1, y=John, z=Smith] name[x=2, y=John, z=Doe]

car[.., w=Mini]

car owners

(b) The XML tree R(A) –the annotations of substi-
tutions (in brackets) are not part of the tree.

Fig. 1. A TreeQL query and its result (Example 1)

In Fig. 1 we present a program R and a tree R(A) resulting from the transfor-
mation of the database A by the program R. The tree R(A) is consistent with
the following DTD d: d(car_owners) = name∗, d(name) = car∗, d(car) = ε.

3 Our Main Result

Now we are able to formulate our main theorem.

Theorem 1 (Main Theorem). The problem of typechecking a TreeQL pro-
gram with projection-free conjunctive queries w.r.t. DTD with arbitrary regular
expressions is in coNEXPTIME.

The rest of the paper is devoted to the proof of Theorem 1.

Definition 3. A set of modulo constraints Γ is a finite set of triples of the form
(ϕ, k, j), where ϕ is a projection-free conjunctive query and k, j ∈ N. We say
that a database A satisfies a set of modulo constraints Γ (we write A |= Γ ) iff
for each (ϕi, ki, ji) ∈ Γ there exists αi ∈ N such that:

|{t̄ | A |= ϕi(t̄)}| = ki + (αi ∗ ji)

Of course, we assume that 0 ∈ N, so in particular Γ can contain some triples of
the form (ϕ, k, 0).

Now, we formulate the intermediate result, which is the main technical con-
tribution of this paper.

Theorem 2 (Intermediate Result). Let Γ be a set of constraints with
projection-free conjunctive queries. The problem whether there exists a database
A such that A |= Γ is in NEXPTIME.

In Sect. 4 we prove the intermediate result, and in Sect. 5 we show how it implies
the main result.

4 Proof of the Intermediate Result

We use the following notation. Let Γ be a set of modulo constraints, then:
ΓCONST is the set of constant constraints: ΓCONST = {(ϕ, k, j) ∈ Γ | j = 0},
and ΓPROP is the set of proper constraints: ΓPROP = {(ϕ, k, j) ∈ Γ | j > 0}. Of
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course, we have: Γ = ΓCONST ∪ ΓPROP. In the sequel, when talking about the
modulo constraints we sometimes omit the word modulo.

A canonical structure Cϕ for a projection-free CQ ϕ is defined as usually:
elements of Cϕ are variables and constants of ϕ and relations of Cϕ consist of
tuples of variables and constants from conjuncts of ϕ.

Outline of the proof. We present an algorithm, which for a satisfiable set
of (modulo) constraints Γ = ΓCONST ∪ ΓPROP constructs a witness database
B of exponential size w.r.t. the size of Γ . The general idea of the algorithm is
to guess a database ACONST satisfying ΓCONST and then to satisfy the proper
constraints ΓPROP one by one, by extending the database ACONST with some
number of copies of canonical structures of the formulas of ΓPROP. But won’t
satisfying a constraint in such a way cause some of the constraints, which have
been already satisfied, to fail? In Sect. 4.2 we show that the problem can be
overcome if constraints are in some normal form, and if the order in which we
try to satisfy them is correct. Earlier, in Sect. 4.1 we show that, for each set of
modulo constraints, one can construct, in NEXPTIME an equisatisfiable set of
constraints which is in the desired normal form.

Operation REPLACE. Suppose that formulas ϕ1, . . . , ϕn in some constraints
(ϕi, ki, ji) ∈ ΓPROP (for i ∈ {1, . . . , n}) are equivalent (i.e. canonical structures
Cϕi are isomorphic). We define a single constraint (ϕ1, k, j), where j is the least
common multiple of the numbers j1, . . . , jn (recall that ji > 0 in constraints in
ΓPROP) and k is the smallest number such that, for each i = 1, . . . , n, there exists
αi ∈ N such that it holds k = ki + αi ∗ ji. Using Chinese Remainder Theorem it
is possible to show that if the constraints are satisfiable such a number k exists,
otherwise we know that the constraints are inconsistent and the algorithm stops.

This allows us to define an operation REPLACE. The operation transforms a
set of proper constraints Γ by replacing each set of constraints having equivalent
formulas with a single constraint, while preserving satisfiability. After applying
the operation, there are no two distinct constraints in REPLACE(Γ ) with equiv-
alent formulas. Notice that equivalence of CQs is in NP, so we do not run out of
time.

Lemma 1. For every set of proper constraints Γ and every database A we have
A |= Γ iff A |= REPLACE(Γ ).

Dealing with constant constraints. In the following lemma we show that
given a satisfiable set of constraints Γ = ΓCONST ∪ΓPROP, it is possible to guess
a database ACONST of at most exponential size, such that ACONST |= ΓCONST.

Lemma 2. Let Γ = ΓCONST ∪ ΓPROP be a set of constraints. If there exists a
database A such that A |= Γ then there exists a database ACONST such that
ACONST |= ΓCONST. The size of ACONST is at most exponential w.r.t. |Γ |.
Proof (sketch). Consider the databaseA and the set Γ = ΓCONST∪ΓPROP. Since
A |= Γ obviously we have A |= ΓCONST. Let ACONST be a substructure of A
which consists exactly of the elements from A that are in some tuple satisfying
a formula in a constraint from ΓCONST or are a constant in Γ .
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The number of such elements is bounded by the sum of the number of con-
stants in Γ and the number of constraints in ΓCONST multiplied by the maximal
number of variables in formulas in ΓCONST and the value of the maximal num-
ber k from ΓCONST. Hence, the size of ACONST is at most exponential w.r.t. |Γ |.
Clearly, ACONST satisfies ΓCONST. ��

From now on we assume that the set of constraints Γ = ΓCONST ∪ ΓPROP and
the database ACONST are fixed. All databases which we are going to consider
will be superstructures of ACONST. We extend the vocabulary provided by Γ
with a new set of constants dom(ACONST), interpreted as elements of ACONST.

4.1 Construction of a Modified Set of Constraints

The algorithm starts the modifications with a set ΓPROP and goes through three
steps. Each of these steps will produce an equisatisfiable set of constraints that
will be the input of the next step. All steps are of a similar structure:

1. For each constraint t from the input set, a set Γt of new constraints is
generated.

2. The set REPLACE(
⋃

Γt) is returned as the output of the step.

Step 1. Each constraint t = (ϕ, k, j) asserts the existence of exactly k+α∗j, for
some α ∈ N, tuples ā of elements of a database such that ϕ(ā) is true. In this step
we want to fix which variables are substituted with elements of ACONST. Thus
we have to produce separate constraints for each (possibly partial) substitution
of variables of ϕ with elements of ACONST. Additionally, we ensure that such a
substitution is final i.e. we forbid the substitution of remaining variables to the
constants in the resulting constraints.

Recall the basic intuition behind the algorithm – for each proper constraint,
we want to extend ACONST with copies of the canonical structure of the formula
in the constraint. After Step 1 it is clear how to do it – the elements of the
canonical structure corresponding to the constants should be identified with
elements of ACONST and the other elements should be fresh.

Consider a constraint t = (ϕ, k, j) ∈ ΓPROP. We define Γt to be the set of
triples of the form (ψθ, kθ, j), for each V ⊆ Vars(ϕ) and θ : V → dom(ACONST),
where:

ψθ = ϕ[θ] ∧NotConstants(Vars(ϕ[θ])).

By ϕ[θ] we mean the result of the substitution θ on ϕ. NotConstants(X) is
the conjunction of inequalities of the form x �= c, for each x ∈ X and c ∈
dom(ACONST). The inequalities are introduced to ensure that for any database
A such that A |= Γt, in any tuple satisfying ϕ[θ] no variable from Vars(ϕ[θ]) is
substituted with an element from ACONST.

The numbers kθ are guessed in such a way that
∑

θ kθ = k + α ∗ j, for some
α ∈ N. It is enough to consider the numbers bounded by k + j. Intuitively
numbers kθ determine how the total number of tuples satisfying the constraint
t = (ϕ, k, j) is distributed among its versions ϕ[θ], for all θ.

We define Γ1 = REPLACE(
⋃

t∈Γ0
Γt).
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Lemma 3

1. Let A be a database, such that ACONST ⊆ A and A |= Γ . There exists a
choice of the numbers kθ in Γ1 such that A |= Γ1.

2. If there exists A′ ⊇ ACONST such that A′ |= ΓCONST and A′ |= Γ1 then
A′ |= Γ .

3. The size of Γ1 is exponential w.r.t. the size of Γ .

Step 2

Definition 4. Let B be a relational structure over the vocabulary containing re-
lational symbols from Γ and constant symbols dom(ACONST). Define GRAPH(B)
to be a graph, whose vertices are the elements of B which are not a constant in
dom(ACONST). There is an edge between vertices e1, e2 of GRAPH(B) if there
is a tuple ē of elements of B containing both e1 and e2, such that an atom R(ē)
is true in B, for some relation R in B.

Consider a formula ϕ(x̄) from one of the constraints from Γ1. The formula ϕ(x̄)
is of the form

∧
k Rk(x̄k) ∧NotConstants(x̄).

Notice that the set of vertices of GRAPH(Cϕ) (i.e. the graph for the canonical
structure for ϕ) is exactly the set of variables of ϕ.

Definition 5. A connected subformula of ϕ is a formula ϕD(x̄D) defined as∧
R∈D R(x̄R) ∧ NotConstants(x̄D), where D is a maximal set of non-ground

atoms (i.e. atoms with variables), such that GRAPH(CϕD) is a connected com-
ponent of GRAPH(Cϕ).

Notice, that the formula ϕ is a conjunction of its connected subformulas and its
ground atoms. (i.e. atoms without variables).

Example 2. Consider following formula ϕ(x1, . . . , x5):

R1(x1, x2) ∧R2(x2, x3, c1, x5, c2) ∧R1(c1, c3) ∧R1(c3, c3)

∧R1(x4, c1) ∧R1(c2, x4) ∧NotConstants({x1, . . . , x5}),
where c1, c2, c3 are constants from ACONST. Vertices of GRAPH(Cϕ) are
{x1, . . . , x5}, and edges of GRAPH(Cϕ) are {x1, x2}, {x2, x3}, {x2, x5} and
{x3, x5}. Clearly, GRAPH(Cϕ) has two connected components, namely
{x1, x2, x3, x5} and {x4}.

There are two connected subformulas of ϕ:

ϕ1(x1, x2, x3, x5) = R1(x1, x2)∧R2(x2, x3, c1, x5, c2)∧NotConstants({x1, x2, x3, x5})

and
ϕ2(x4) = R1(x4, c1) ∧R1(c2, x4) ∧NotConstants({x4}).

Ground atoms of ϕ are R1(c1, c3) and R1(c3, c3).
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The motivation for Step 2 can be best explained using the following exam-
ple. Again, recall that our goal is to order the proper constraints in such a way
that extending ACONST with the canonical structure of the formula in the con-
straint does not increase the number of tuples satisfying the earlier (in the order)
constraints.

Example 3. Let ϕ1 = R1(c1, x1) ∧ R2(c1, x2) ∧ NotConstants({x̄}) and ϕ2 =
R1(c1, x1)∧R2(c1, x2)∧R3(c1, x3)∧NotConstants({x̄}). Thus ϕ1 consists of two
and ϕ2 consists of three connected subformulas. Let t1 be a constraint containing
the formula ϕ1 and t2 a constraint containing the formula ϕ2. Clearly, it is
impossible to order t1 and t2 in a right way –adding a copy of the canonical
structure Cϕ2 changes the number of tuples satisfying ϕ1, and, in presence of
at least one copy of Cϕ2 , adding a copy of Cϕ1 changes the number of tuples
satisfying ϕ2.

Step 2 is performed in order to avoid the problem from Example 3. The step
consists of replacing each constraint t in Γ1 with separate constraints for each
connected subformula of the formula in t. We also forget about ground atoms
in formulas in the constraints. The reason is that after Step 1 the ground atoms
are already determined to be either true or false.

Let t = (ϕ, k, j) be a constraint in Γ1, let ϕ1, . . . , ϕn be connected subformulas
of ϕ and let ψ1, . . . , ψl be ground atoms of ϕ. Let mi ∈ {0, 1} be 1 if ψi holds
in ACONST and 0 otherwise (for i = 1, . . . , l). Notice that the number of tuples
satisfying t is the product of the numbers of tuples satisfying ϕi, (for i = 1 . . . , n),
times the product of mi, for i = 1, . . . , l.

Now, if k > 0 and some mi = 0, we know that the constraints are inconsistent,
so the algorithm can stop. If k = 0 and some mi = 0 the constraint is satisfied
in every superstructure of ACONST so we put Γt = ∅. If k ≥ 0 and for all
i = 1, . . . , l the number mi = 1, then Γt consists of triples (ϕi, ki, j), where the
numbers ki ≤ k + j are guessed such that

∏
i ki = k + α ∗ j, for some α ∈ N.

We define Γ2 = REPLACE(
⋃

t∈Γ1
Γt).

Lemma 4. 1. Let A be a database, such that A ⊇ ACONST and A |= ΓCONST∪
Γ1. There exists a choice of the numbers ki in Γ2, such that A |= Γ2.

2. For every database A′ such that A′ ⊇ ACONST if A′ |= ΓCONST and A′ |= Γ2
then A′ |= Γ .

3. The size of Γ2 is exponential w.r.t. the size of Γ .

Step 3. Consider a database A, a formula ϕ(x̄) from Γ2 and a tuple ā such
that A |= ϕ(ā). The substitution of elements ā for variables x̄ may map several
variables from x̄ to a single element a in ā. During Step 3 we replace each
constraint t with separate constraints for all possible ways in which variables of
the formula of t can be identified. We also disallow any further identification of
variables in the resulting constraints Γ3. In other words: if A |= ϕ(ā) then there
is a corresponding homomorphism from elements of the canonical structure Cϕ to
elements of A. The goal of this step is to obtain a new set Γ3 which can replace
Γ2, such that all homomorphisms, which correspond to the tuples satisfying
formulas in Γ3, are injective.
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The following example explains why we need this step.

Example 4. Let ϕ1 = R(x1, x2) ∧ R(x1, x3) and ϕ2 = R(x1, x2). The formula
ϕ2 is, in fact, equal to the formula ϕ1 with variables x2 and x3 identified. Let
t1 be a constraint containing the formula ϕ1 and t2 a constraint containing the
formula ϕ2. Similarly as in Example 3, these two constraints cannot be ordered
properly. If we extend a database with the canonical structure Cϕ1 we change
the number of tuples satisfying ϕ2 and vice versa.

Let t = (ϕ, k, j) be a constraint in Γ2. We define Γt to be the set of constraints of
the form: (ψθ, kθ, j) for each V ⊆ Vars(ϕ) and each θ : Vars(ϕ) \ V → V , where
ψθ is:

ϕ[θ] ∧ INEQ(Vars(ϕ[θ])).

The numbers kθ ≤ k + j are guessed such that
∑

θ kθ = k + α ∗ j, for some
α ∈ N. INEQ(Vars(ϕ[θ])) is a conjunction of inequalities of the form x �= y, for
each pair of distinct variables x, y ∈ Vars(ϕ[θ]). We introduce the inequalities
to ensure that all variables which are not identified during this step have to be
substituted with distinct elements of a database.

Finally, we define Γ3 as REPLACE(
⋃

t∈Γ2
Γt).

The following lemma states the properties of Γ3.

Lemma 5

1. Let A be a database, such that A ⊇ ACONST and A |= ΓCONST ∪ Γ2 There
exists a choice of the numbers kθ in Γ3, such that A |= Γ3.

2. For every database A′ such that A′ ⊇ ACONST if A′ |= ΓCONST and A′ |= Γ3
then A′ |= Γ .

3. The size of Γ3 is exponential w.r.t. Γ .

4.2 Construction of an Exponential Database Satisfying Γ3

In Sect. 4.1 we constructed, for a set Γ of modulo constraints a set Γ3 of con-
straints which are satisfiable if and only if Γ are, and such that formulas in the
constraints from Γ3 have the following normal form:

(A) Each formula contains the NotConstants subformula, so that the variables
cannot be substituted with elements dom(ACONST);

(B) each formula is connected and does not contain ground atoms;
(C) each formula contains the INEQ subformula, so that distinct variables can-

not be substituted with the same element of a database.

Define a partial order≤part on constraints from Γ3 as follows: (ϕ1, k1, j1) ≤part

(ϕ2, k2, j2) if there exists a tuple ā of elements of Cϕ2 such that Cϕ2 |= ϕ1(ā). In
other words: (ϕ1, k1, j1) ≤part (ϕ2, k2, j2) if Cϕ1 is isomorphic to a substructure
of Cϕ2 . We use the word substructure in a positive sense where R(a, b) is a
substructure of R(a, b), R(b, a), R(a, c).

Let ≤ be some linear order on constraints from Γ3 consistent with the partial
order ≤part. We write (ϕ1, k1, j1) < (ϕ2, k2, j2) if (ϕ1, k1, j1) ≤ (ϕ2, k2, j2) and
ϕ1 �= ϕ2 (recall that formulas in Γ3 are unique).
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Lemma 6. Let (ϕ, k, j) be a constraint in Γ3 such that Cϕ has exactly n auto-
morphisms. There are exactly n tuples ā such that Cϕ |= ϕ(ā). Moreover, for
every database B we have |{ā | B |= ϕ(ā)}| = α ∗ n, for some α ∈ N.

Notice however, that the above lemma would not be true if conjunctive queries
with projections were allowed.

Lemma 7. Let (ϕ, k, j) be a constraint in Γ3 and let B be a database such that
ACONST ⊆ B and B |= {t ∈ Γ3 | t > (ϕ, k, j)}. If the constraints Γ3 are satisfiable
then there exists a database B′ ⊇ B such that B′ |= {t ∈ Γ3 | t ≥ (ϕ, k, j)}. The
size of the database B′ is at most |B|+ |Cϕ| ∗ δ, where δ ∈ N is bounded by the
sum of k and j.

Example 5. Consider constraints t1 = (ϕ1, 2, 2) and t2 = (ϕ2, 1, 6). Let ϕ1 =
R(v, z1) ∧ R(v, z2) ∧ R′(a, b, z1) ∧ NotConstants(v, z1, z2) ∧ INEQ(v, z1, z2) and
ϕ2 = R(x, y)∧NotConstants(x, y)∧ INEQ(x, y). Clearly: t1 > t2. There are two
tuples x̄ such that Cϕ1 |= ϕ2(x̄). Let B be a database presented schematically at
Fig. 2 such that B |= {t1}. Our algorithm constructs the database B′ |= {t1, t2}.
In order to satisfy t2 three copies of Cϕ2 are added.

Cϕ1

Cϕ1

copies of Cϕ2

inside Cϕ1

ACONST

new copies of Cϕ2 in B′
The database B

Fig. 2. The database B satisfying the constraint t1 from Example 5

Proof (of Lemma 7). Let n be the number of automorphisms of Cϕ. According
to Lemma 6, the number m = |{b̄ ∈ B | B |= ϕ(b̄)}| is a multiple of n.

Let m′ be the smallest number such that m′ is a multiple of n (including 0)
and m′ + m = k + α ∗ j, for some α ∈ N. If constraints Γ3 are satisfiable such
number m′ exists and its value is bounded by j ∗ n + k.

Let x1, . . . , x|Vars(ϕ)| be variables in ϕ. The database B′ is defined as the union
of the database B and m′

n copies of the canonical structure Cϕ, with constants
dom(ACONST) from each copy of Cϕ identified with elements of ACONST ⊆ B.
Formally, elements of B′ are elements of B and new elements eh,i, for h =
1, . . . , |Vars(ϕ)| and i = 1, . . . , m′

n . Database B′ is a superstructure of B, and
additionally for each conjunct R(w1, . . . , wl) in ϕ, for each i = 1, . . . , m′

n , the
atom R(v1,i, . . . , vl,i) is true in B′, where

vh,i =
{

eg,i if wh = xg, where g ∈ {1, . . . , |Vars(ϕ)|}
a if wh = a, where a is a constant,

for h = 1, . . . , l. Clearly, the size of B′ is at most |B|+ |Cϕ| ∗ m′
n .
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Now, we show that B′ |= {t ∈ Γ3 | t ≥ (ϕ, k, j)}. We will use the following
observation:

Observation. Consider a constraint (ϕ′, k′, j′) ∈ Γ3, such that (ϕ′, k′, j′) ≥
(ϕ, k, j). Each tuple b̄ such that B′ |= ϕ′(b̄) is contained in a single connected
component of GRAPH(B′).

Proof (of the observation). This is since, by (A), the variables in ϕ′ cannot be
substituted with elements from ACONST. and since, by (B), the graph of the
canonical structure for ϕ′ consists of a single connected component. ��

We show that B′ |= (ϕ, k, j). Let us count the number of tuples b̄ such that
B′ |= ϕ(b̄): there are m tuples consisting of elements of B and m′ new tuples
(by Lemma 6), such that the elements of each of them are all contained in some
new copy of Cϕ. Since newly added copies of Cϕ are the only new connected
components of GRAPH(B′), it follows from the above observation that there are
no new tuples satisfying ϕ in B′. So there are exactly m + m′ tuples satisfying
ϕ and B′ |= (ϕ, k, j).

Now we need to prove that by extending the structure we did not spoil one of
the old constraints. We claim that, for each constraint (ϕ′, k′, j′) ∈ Γ3, such that
(ϕ′, k′, j′) > (ϕ, k, j), the number of tuples satisfying (ϕ′, k′, j′) in B′ is exactly
the same as in B: from the above observation it follows that each new tuple b̄,
such that B′ |= ϕ′(b̄), must be contained in some copy of Cϕ. But this would
mean that Cϕ |= ϕ′(b̄), which would contradict (ϕ′, k′, j′) > (ϕ, k, j). ��

Let us now construct a sequence of databases Ai, for i = 0, . . . , |Γ3|, such that
the databaseAi satisfies the set of first i (in the order≤) constraints from Γ3. We
start from the database A0 = ACONST. Then, for all i = 1, . . . , |Γ3|, we consider
the i-th (in the order ≤) constraint from Γ3 and obtain the database Ai from
the database Ai−1 using Lemma 7, which guarantees that finally: A′ = A|Γ3|
satisfies Γ3, and the size of A′ is at most exponential in |Γ |.

So far, our nondeterministic algorithm has built a database A′. As its last
step it just verifies if A′ |= Γ3 ∪ ΓCONST. This would almost finish the proof
of Theorem 2. The only thing which would still be in doubt is if in the process
of satisfying the constraints from Γ3 we did not spoil anything concerning the
constant constraints ΓCONST:

Lemma 8. Let A′ be the database resulting from the construction in the pre-
vious paragraphs. If there exists a database A such that A ⊇ ACONST and
A |= ΓCONST ∪ Γ3 then A′ |= ΓCONST.

Notice that Lemma 8 needs an additional assumption: that there exists A ⊇
ACONST satisfying all the constraints Γ3 ∪ ΓCONST. Otherwise it might happen
that new tuples satisfying the queries from ΓCONST would appear in A′, and thus
the constraints from ΓCONST would be violated in A′. But if the constraints are
satisfiable then our nondeterministic algorithm guessed ACONST correctly, and
so we can be sure that such A ⊇ ACONST indeed exists.
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Observation. Let (ϕ, k, j) ∈ Γ3. If ACONST ∪ Cϕ is a substructure of A′ then
ACONST∪Cϕ is also a substructure of A. By ACONST∪Cϕ we mean here a union
of the two structures, with constants from Cϕ identified with the respective
elements in ACONST. Again, the word substructure is used in a positive sense.

Proof (of the observation). Suppose ACONST ∪ Cϕ is a substructure of A′. Then
there exists a minimal number i such that 0 < i ≤ |Γ3| and ACONST ∪ Cϕ

is a substructure of Ai.Thus, at the i-th step of the construction of A′, while
processing some constraint (ϕ′, k′, j′) ∈ Γ3 we extended the database Ai−1 with
at least one copy of the canonical structure Cϕ. This means that Cϕ must be a
substructure of Cϕ′ . Now there are 2 cases:

Case 1: k′ > 0. ThenACONST∪Cϕ′ is a substructure ofA, and so alsoACONST∪
Cϕ is a substructure of A.

Case 2: k′ = 0. Recall that we extended Ai−1 because the number of tuples b̄
such thatAi−1 |= ϕ′(b̄) was not equal to α∗j′ for any α ∈ N, including α = 0.
Hence, ACONST ∪ Cϕ′ is a substructure of Ai−1, but therefore ACONST ∪ Cϕ

is a substructure of Ai−1. But this contradicts the minimality of i. ��
Proof (of Lemma 9). For each B′ being a substructure of A′, of a form ACONST∪
Cϕ (where ϕ is a formula in constraints from Γ3) and such that GRAPH(B′) is
a connected component of GRAPH(A′), fix one substructure B of A of the
form ACONST ∪ Cϕ (existence of B is guaranteed by Observation) and define
hB : B′ → B as identity (or, to be more precise, as isomorphism).

We define a mapping h : A′ → A. For c ∈ ACONST put h(c) = c. For a �∈
ACONST put h(a) = hB(a), where B is such that a ∈ dom(hB). Notice that we
used the fact that all connected components of GRAPH(A′) are of the form
GRAPH(Cϕ) for some (ϕ, k, j) ∈ Γ3.

Now, suppose that A′ �|= ΓCONST. So, there exists a tuple ā of elements of A′,
containing some element(s) not in ACONST such that for a constraint (ψ, k, j) ∈
ΓCONST it holds A′ |= ψ(ā). But then the tuple h(ā) contains some element(s)
not in ACONST and A |= ψ(h(ā)). (this is since negation and inequality are not
allowed in constraints from ΓCONST). The last implies that A �|= ΓCONST. ��

5 From the Intermediate Result to the Main Result

In this section we use some of the ideas from [2] to show how Theorem 2 implies
Theorem 1. We start with the following definition and lemma from [2].

Definition 6. Let R be a TreeQL-program and let d be a DTD such that R does
not typecheck with respect to d. Then:

– there is a path v̄ = v1, . . . , vk in the program R where
1. v1 is a child of the root;
2. lab(vi) = (σi, ϕi(x̄1, . . . , x̄i)), for i ∈ {1, . . . , k};
3. let x̄ = x̄1, . . . , x̄k.

The node vk has precisely n children with labels (δ1, ψ1(x̄, ȳ1)), . . . ,
(δn, ψn(x̄, ȳn));

and
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– there is a database A with elements ā = ā1, . . . , āk such that:
1. A satisfies ϕi(ā1, . . . , āi), for each i = 1, . . . , k;
2. δj1

1 . . . δjn
n /∈ d(σk) where ji = |{b̄ | A satisfies ψi(ā, b̄)}|, for all i =

1, . . . , n.

We say that (v̄,A, ā) is a breakpoint for R and d.

Lemma 9 ([2]). Let δ1, . . . , δn be symbols and let ν = (k1, j1), . . . , (k1, j1) be a
vector of n pairs of natural numbers. We denote by Lν the language of all words of
the form: δk1+α1∗j1

1 . . . δkn+αn∗jn
n where each αi ∈ N, 1 ≤ i ≤ n. For each regular

language r over alphabet {δ1, . . . , δn}, there exists a finite set Vec(r) of vectors
of pairs of natural numbers as above such that ¬r ∩ δ∗1 . . . δ∗n =

⋃
ν∈Vec(r) Lν .

Moreover, the values of the numbers in Vec(r) are bounded by the number of
states of the deterministic automaton recognizing ¬r.

We briefly sketch the beginning of the proof of the non-elementary upper bound
from [2], using the notation introduced in Definition 6. Assume that the program
R does not typecheck w.r.t. d, then there exists a breakpoint (v̄,A, ā). Let r
be the regular language d(σk) specified by the DTD d. Consider the language
¬r∩δ∗1 . . . δ∗n, it is the intersection of the language of children of the node vk (i.e.
δ∗1 · . . . · δ∗n) and the complement of r. From lemma 9 it follows that there exists
a set of vectors VecR,d,v̄ such that ¬r ∩ δ∗1 . . . δ∗n =

⋃
ν∈VecR,d,v̄

Lν

Since (v̄,A, ā) is a breakpoint then there exists a vector ν =(k1, j1), . . . ,(kn, jn)
in VecR,d,v̄, such that for each l ∈ {1, . . . , n} there exists αl ∈ N such that:
|{b̄ | A |= ψl(ā, b̄)}| = kl + αl ∗ jl.

Then it is shown that it is always possible to find a substructure A′ of A of
a size bounded independently of A such that elements ā are in A′ and for each
l ∈ {1, . . . , n} there exists α′

l ∈ N such that: |{b̄ | A′ |= ψl(ā, b̄)}| = kl + α′
l ∗ jl.

In our proof we do not require the database A′ to be a substructure of A. This
allows us to modify the structure, which makes it possible to achieve an expo-
nential upper bound, however at the cost that we can no longer have universal
formulas as integrity constraints.

Again, we use the same notation as in Definition 6. We begin by guessing a
path v̄ = v1, . . . , vk in the program R, and a vector ν = (k1, j1), . . . , (kn, jn)
of as many pairs of natural numbers as the node vk has children. The numbers
in ν are bounded by the number of states of the DFA for ¬r. Hence, the sizes
of binary representations of the numbers in ν are linear in DTD d. Then we
have to check2 whether the language {δk1+α1∗j1

1 . . . δkn+αn∗jn
n | α1, . . . , αn ∈ N}

is contained in ¬r. This step can be done in PSPACE. It is enough to check
words with values of α1, . . . , αn bounded by the number of states of the DFA for
¬r. Each of these words (represented with all numbers written in binary) can
be verified to be in ¬r in PSPACE by checking whether a final state of the NFA
for r can be reached by reading the word.
2 This is to guarantee that if for some database A there exists a node (vk, θ) in the

output tree R(A) such that the concatenation of symbols labeling children of (vk, θ)
is in the language defined by ν then R(A) is not consistent with the DTD d.
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Now, we construct a set of modulo constraints Γ over the vocabulary consist-
ing of relational symbols in the program R and constants ā = ā1, . . . , āk:

1. For formulas ϕ1, . . . , ϕk in nodes v1, . . . , vk we define the constraint t0:
(
∧

i=1,...,k ϕi(ā1, . . . , āi), 1, 0). Notice thatA |= t0 iffA satisfies ϕi(ā1, . . . , āi),
for each i = 1, . . . , k.

2. For the l-th child (l = 1, . . . , n) of the node vk we define the constraint
tl = (ψl(ā, ȳl), kl, jl). Notice that A |=

⋃
l=1,...,n{tl} iff δj1

1 . . . δjn
n is in the

language defined by ν, where jl is |{b̄ | A |= ψl(ā, b̄)}|, for all l = 1, . . . , n.

Finally, Γ is defined as {t0, . . . , tn}. We conclude with the following lemma,
which completes the proof of Theorem 1.

Lemma 10

1. If the program R does not typecheck w.r.t. d then there exists a choice of a
path v̄ in R and a choice of a vector ν, such that there exists a database A
satisfying Γ .

2. For every choice of a path v̄ in R and every choice of a vector ν, if there
exists a database A satisfying Γ then R does not typecheck w.r.t. d.

3. The construction of Γ can be done in polynomial space.
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Abstract. Stay macro tree transducers (smtts) are an expressive formalism for
reasoning about XSLT-like document transformations. Here, we consider the ex-
act type checking problem for smtts. While the problem is decidable, the involved
technique of inverse type inference is known to have exponential worst-case com-
plexity (already for top-down transformations without parameters). We present a
new adaptive type checking algorithm based on forward type inference through
exact characterizations of output languages. The new algorithm correctly type-
checks all call-by-value smtts. Given that the output type is specified by a de-
terministic automaton, the algorithm is polynomial-time whenever the transducer
uses only few parameters and visits every input node only constantly often. Our
new approach can also be generalized from smtts to stay macro forest transducers
which additionally support concatenation as built-in output operation.

1 Introduction

The extensible markup language XML is the current standard format for exchanging
structured data. Its widespread use has initiated lots of work to support processing of
XML on many different levels: customized query languages for XML, such as XQuery,
transformation languages like XSLT, and programming language support either in the
form of special purpose languages like XDuce, or of binding facilities for mainstream
programming languages like JAXB. A central problem in XML processing is the (static)
type checking problem: given an input and output type and a transformation f , can
we statically check whether all outputs generated by f on valid inputs conform to the
output type? Since XML types are intrinsically more complex than the types found in
conventional programming languages, the type checking problem for XML poses new
challenges on the design of type checking algorithms. The excellent survey [20] gives
an overview of the different approaches to XML type checking.

In its most general setting, the type checking problem for XML transformations is
undecidable. Hence, general solutions are bound to be approximative, but seem to work
well for practical XSLT transformations [19]. Another approach is to restrict the types
and transformations in such a way that type checking becomes decidable; we then refer
to the problem as exact XML type checking. For the exact setting, types can be consid-
ered as regular or recognizable tree languages — thus capturing the expressive strength
of virtually all known type formalisms for XML [21].
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Even though the class of translations for which exact type checking is possible is sur-
prisingly large [6,18,15], the price to be paid for exactness is also extremely high. The
design space for exact type checking comes as a huge “exponential wasteland”: even
for simple top-down transformations, exact type checking is exponential-time com-
plete [17]. For practical considerations, however, one is interested in useful subclasses
of transformations for which exact type checking is tractable.

The fundamental work connecting pebble tree transducers with stay macro tree
transducers [6] together with the type checking results of [15] have established (compo-
sitions of) stay macro tree transducers as an adequate formal model for XML transfor-
mations. In general, we are interested in type checking of transformations formulated
through stay macro tree transducers (smtts). Given suitable descriptions (types) of ad-
missible inputs and outputs for an smtt M , type checking M means to test whether
all outputs produced by M on admissible inputs are again admissible. Our main result
is: if admissible outputs are described by deterministic tree automata, then exact type
checking can be done in polynomial time for a large class of practically interesting
transformations obtained by putting only mild restrictions on the transducers.

Stay macro tree transducers are a combination of top-down tree transducers and
macro grammars [9]. An smtt is a recursive first-order functional program that gen-
erates output trees by top-down pattern matching its first (tree) argument while possibly
accumulating intermediate results in additional (tree) parameters. Alternatively, an smtt
can be seen as a zero-pebble tree transducer without up-moves, but with states addi-
tionally equipped by accumulating parameters. We show that exact type checking can
be solved in polynomial time for any transformation realized by one smtt which trans-
lates each node of the input tree at most once in each processing step (linear smtts) or,
more generally, which translates every node only constantly often (b-bounded copying
smtts). Note that no restriction is put on the copying that the smtt applies to its accumu-
lating parameters: parameters may freely be copied! Note further that the above results
hold for nondeterministic transducers with call-by-value semantics. Technically, our
contributions are the following. First, we generalize the well-known triple construction
for context-free grammars to provide a general construction for smtts to produce only
output trees from the language accepted by some deterministic finite automaton. Sec-
ondly, we use stay moves to cut down the numbers of function calls in right-hand sides
which crucially affect the complexity of the construction. Also, we present a formula-
tion through Datalog to obtain a practically efficient implementation. Then we exhibit
subclasses for which our approach to type checking is provably efficient and present
an adaptive algorithm which is correct for arbitrary smtts but automatically meets the
improved time bounds on the provably efficient sub-classes. Finally, the new approach
is generalized from smtts to stay macro forest transducers which additionally provide
built-in support for concatenation of forests.

Related Work. Approximative type checking for XML transformations is typically
based on (subclasses of) recognizable tree languages. Using XPath as pattern language,
XQuery [1] is a functional language for querying XML documents. It is strongly-typed
and type checking is performed via type inference rules computing approximative types
for each expression. Approximative type inference is also used in XDuce [13] and its
follow-up version CDuce [10]; navigation and deconstruction are based on an extension
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of the pattern matching mechanism of functional languages with regular expression
constructs. Recently, Hosoya et al. proposed a type checking system based on the ap-
proximative type inference of [12] for parametric polymorphism for XML [11]. Type
variables are interpreted as markings indicating the parameterized subparts. In [19] a
sound type checking algorithm is proposed (originally developed for the Java-based
language XACT [14]) based on an XSLT flow analysis that determines the possible
outcomes of pattern matching operations; for the benefit of better performance the al-
gorithm deals with regular approximations of possible outputs.

Milo et al. [18] propose the k-pebble tree transducer (k-ptt) as a formal model for
XML transformations, and show that exact type checking can be done for k-ptts using
inverse type inference. The latter means to start with an output type O of a transforma-
tion f and then to construct the type of the inputs by backwards translating O through f .
Each k-pebble transducer can be simulated by compositions of k+1 smtts [6], thus, type
checking can be solved in time (iterated) exponential in the number of used pebbles. Re-
cently [15] it was shown that inverse type inference can be done for a transformation
language providing all standard features of most XML transformation languages using
a simulation by at most three smtts. Inverse type inference is used in [16,17] to identify
subclasses of top-down XML transformation which have tractable exact type checking.
We note that the classes considered there are incomparable to the ones considered in
this paper.

2 Stay Macro Tree Transducers

An XML document can be seen as a sequential representation of sequences of unranked
trees also called hedges or forests. Here is a small example document:

<mbox>
<mail>
<sender> Homer Simpson </sender>
<address> homer@simpson.com </address>
<subject> CONFIDENTIAL </subject>
<body> ... </body> </mail>

<spam><mail> ...
<subject> V.I.A.G.R.A. </subject>
... </mail></spam></mbox>

<trash> ... </trash>

This example represents a mail file, where the elements mbox and trash collect
the incoming and deleted mails, respectively. Besides mail elements, the mbox also
contains mails inside a spam element indicating that these mails have been identified as
spam, e.g., by some automated filter.

Rather than on forests, stay macro tree transducers work on ranked trees. For a fi-
nite (ranked) alphabet Σ the set TΣ of ranked trees over Σ is defined by: t ::=
a(t1, . . . , tn) | b, where a, b ∈ Σ are symbols of rank n and zero, respectively; thus,
we assume that we are given a fixed rank for every element of Σ. Often, we consider
constructor applications together with leaf nodes by allowing n to equal 0. For a set
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mail spam mail

mbox trash

mail

mbox

spam

mail

e

trash

e

Fig. 1. An unranked forest and its binary encoding

Y = {y1, y2, . . . } of variables of rank 0, TΣ(Y ) denotes the set of trees over Σ and Y .
In the following we use the term ‘tree’ as a synonym for ranked tree.

In order to define stay macro tree transducers on XML documents, we rely on ranked
tree representations of forests, e.g., through binary trees. The empty forest then is rep-
resented by a leaf e; the content of an element node a is coded as the left child of a
while the forest of right siblings of a is represented as the right child (cf. first-child
next-sibling encoding). Accordingly, the ranks of symbols are either zero or two.

Figure 1 illustrates this relationship between unranked trees and their representation
as binary trees. Consider for example a transformation which cleans up the mail ele-
ment by moving all sub-documents marked by spam into trash, while leaving all mail
elements untouched. For our example document, the transformation produces:

<mbox>
<mail>
<sender> Homer Simpson </sender>
<address> homer@simpson.com </address>
<subject> CONFIDENTIAL </subject>
<body> ... </body></mail></mbox>

<trash>
<spam><mail> ...
<subject> V.I.A.G.R.A. </subject>
... </mail></spam> ... </trash>

Using our representation of forests by binary trees (Fig. 1), this transformation is real-
ized by a tree transducer with the following rules:

1 q(mbox(x1, x2)) →mbox(q1(x1), p(x2, q2(x1)))
2 p(trash(x1, x2), y1)→trash(app(x1, y1), e),

together with a function q1 for collecting all ordinary mails in mbox

3 q1(mail(x1, x2)) →mail(cp(x1), q1(x2))
4 q1(spam(x1, x2)) →q1(x2)
5 q1(e) →e,
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as well as a function q2 for collecting the spam mails in mbox

6 q2(mail(x1, x2)) →q2(x2)
7 q2(spam(x1, x2)) →spam(cp(x1), q2(x2))
8 q2(e) →e

where function app in line 2 is meant to copy the content of trash in front of the
accumulating parameter, here containing the spam elements collected by the call q2.
Likewise, function cp is meant to produce an exact copy of its input.

Formally, a stay macro tree transducer M (smtt for short) is a tuple (Q, Σ, R, Q0)
where Q is the (ranked) set of function names (or states), Σ is the (ranked) alphabet of
input and output symbols, Q0 ⊆ Q is the set of initial functions, and R is a finite set of
rules of the form

q(x0, y1, . . . , yk)→ t or q(a(x1, . . . , xn), y1, . . . , yk)→ t

where q ∈ Q is of rank k, a ∈ Σ is of rank n, x0, x1, . . . , xn are input variables,
y1, . . . , yk, k ≥ 0 are the accumulating parameters of q, and t is an expression describ-
ing the output actions of the corresponding rule. Possible action expressions are:

t ::= b(t1, . . . , tm) | yj | q′(xi, t1, . . . , tm),

where b is a label of an output node, yj is one of the accumulating parameters (1 ≤ j ≤
k), q′ ∈ Q of rank m, and xi is one of the input variables of the left-hand side. Also, we
assume that initial function symbols q0 ∈ Q0 have no accumulating parameters. The
rules which do not process input symbols are called stay-rules. Transducers without
stay-rules are also called (ordinary) mtts1.

Intuitively, the meaning of the action expressions is as follows: The output can ei-
ther be an element b whose content is recursively determined, the content of one of the
accumulating parameters yj , or a recursive call to some function q′ on the i-th subtree
of the current input node or on the current input node itself. Thus, the transformation
of an smtt M starts at the root node of the input with one of the initial functions. A
function q with actual accumulating parameters t1, . . . , tk is applied to an input subtree
s = a(s1, . . . , sn) as follows. If a stay rule q(x0, y1, . . . , yk) → t is chosen for q, s and
the tj are substituted in t for x0 and the variables yj , respectively. If an ordinary rule
q(a(x1, . . . , xn), y1, . . . , yk)→ t′ for q is chosen, the subterms si and tj are substituted
in t′ for the variables xi and yj , respectively. Since function calls may be nested, the
order in which they are evaluated matters. In outside-in (OI) or call-by-name evaluation
order, outermost calls are evaluated first. The parameters of a function call may them-
selves contain function calls which then are transferred to the body in an unevaluated
form [8]. In this paper, however, we consider the inside-out (IO) evaluation order. This

1 Note that in [15], smtts are defined in a slightly different way. The rules there are of the form
q(x0 as a(x1, . . . , xn), . . .) → t where variable x0 is bound to the current node and x0 as well
as x1, . . . , xn can occur in the right-hand side t. In our nondeterministic setting both formats
can be converted into each other by means of a polynomial algorithm.
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order corresponds to call-by-value parameter passing as provided by mainstream pro-
gramming languages like C or OCaml. The inside-out strategy evaluates innermost calls
first, meaning that fully evaluated output trees are passed in accumulating parameters.

As in [23], we will not use an operational semantics of smtts based on rewriting, but
prefer a denotational formulation which greatly simplifies proof arguments. Thus, the
meaning [[q]] of state q of M with k accumulating parameters is defined as a function
from input trees to sets of trees with parameters in Y = {y1, . . . , yk}, i.e., [[q]] : TΣ →
2TΣ(Y ). When, during a computation, we evaluate an innermost call q(s, t1, . . . , tk), it
suffices to substitute actual parameters tj for the formal parameters yj of all terms from
[[q]](s) to obtain the set of produced outputs. The values [[q]] for all q are jointly defined
as the least functions satisfying:

[[q]](s) ⊇ [[t[s/x0]]] for rule q(x0, y)→ t
[[q]](a(s1, . . . , sd)) ⊇ [[t′[s1/x1, . . . , sd/xd]]] for rule q(a(x1, . . . , xd), y)→ t′

where y denotes the sequence y1, . . . , yk and

[[yj ]] = {yj}
[[b(t1, . . . , tm)]] = {b(t′1, . . . , t′m) | t′i ∈ [[ti]]}

[[q′(s′, t1, . . . , tl)]] = {t′[t′1/y1, . . . , t
′
l/yl] | t′ ∈ [[q′]](s′), t′i ∈ [[ti]]},

Here, t[t′′/z] denotes the substitution of the tree t′′ for all occurrences of the variable
z in tree t. Note that the call-by-value semantics is reflected in the last equation: the
same trees t′i are used for all occurrences of a variable yi in the tree t′ corresponding to
a potential evaluation of the function symbol q′. The transformation τM realized by the
smtt M on an input tree s and sets S of input trees, respectively, is thus defined by:

τM (s) =
⋃
{[[q0]](s) | q0 ∈ Q0} and τM (S) =

⋃
{τM (s) | s ∈ S}.

3 General Properties of SMTTs

Since we are concerned with techniques for type checking, we need to define the type of
the input and output language of a transformation. Usually, types for XML documents
are given by a document type definition (DTD) [28] or by a schema (using, e.g., RELAX
NG [3]).

A convenient abstraction of the existing XML type formalisms are recognizable (or:
regular) tree languages [21,22]. In the context of this work we use bottom-up tree au-
tomata to define recognizable tree languages. As usual, a bottom-up finite state tree
automaton (fta) is a tuple A = (P, Σ, δ, F ) where P is a finite set of states, F ⊆ P
is a set of accepting states, and δ ⊆ P × Σ × P k is a set of transitions of the form
(p, a, p1 . . . pk) where a is a symbol of rank k from the alphabet Σ and p, p1, . . . , pk

are states in P . A transition (p, a, p1 . . . pk) denotes that if A arrives in state pi after
processing the tree ti, then it can assign state p to the tree a(t1, . . . , tk). A run of A on
a tree t ∈ TΣ is a mapping which assigns to each node v of t a state r(v) ∈ P w.r.t.
δ. The tree language L(A) accepted by A consists of the trees t ∈ TΣ by which A can
reach an accepting state.
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Coming back to our example, an fta describing (the binary representation of) valid
mailbox documents before applying the transformation can have as set of states P =
{pmbox, pe, pmail, ptrash, pspam, pcontent, . . .} and as set of transitions:

δ = { (pmbox, mbox, pspamptrash), (pe, e),
(pspam, mail, pcontentpspam), (pspam, mail, pcontentpe),
(pspam, spam, pmailpspam), (pspam, spam, pmailpe),
(pmail, mail, pcontentpmail), (pmail, mail, pcontentpe),
(ptrash, trash, pspampe), (pmbox, mbox, peptrash), . . . },

where pcontent is the state characterizing valid content of mails where we have omitted
further states and transitions for checking validity of, e.g., sender, address, subject,
body etc. According to this automaton, mbox contains a possibly empty sequence of
mail and spam elements where every spam element contains one mail element.

In the following, we will not mention explicitly given input types in our theorems.
Instead, we implicitly assume that this type has been encoded into the smtt. This can be
done as follows. Assume that the input type S is given by a (possibly nondeterministic)
finite tree automaton A. From an smtt M , we then build a new smtt MA whose function
symbols are pairs consisting of a function of M and an automaton state of A. E.g., from
a rule q(a(x1, x2), y1) → b(q1(x1, y1), q2(x2, y1)) we obtain the following new rule

〈q, p〉(a(x1, x2), y1) → b(〈q1, p1〉(x1, y1), 〈q2, p2〉(x2, y1))

if (p, a, p1p2) is a transition of A. Thus, the predecessor state pi corresponds to the input
variable xi and therefore occurs in the right-hand side as the second component in recur-
sive calls on xi. In order to deal with variables xi not occurring in the right-hand side,
we introduce extra functions checkp′ for every state p′ of A such that checkp′(s, y1)
produces y1 iff there is a run of A on s resulting in state p′. The new set of initial states
then is the set of all pairs 〈q0, f〉 consisting of an initial state of M and an accepting
state of A. In particular, the new smtt MA is of sizeO(|M | · |A|). Since the construction
of MA does not add new function calls in rules of M , MA is linear in x0, x1, . . . if M
is, and MA is syntactically b-bounded if M is, cf. Sections 4 and 5.

As usual, the size |M | of an smtt M is the sum of the sizes of all its rules where the
size of a rule is defined as the sum of the sizes of the terms representing the left- and
right-hand sides of the rule. The size |A| of a finite automaton A is defined analogously.
The most basic problem for a given smtt M is to decide whether or not the translation
of M is non-empty. For this problem we recall:

Theorem 1. Deciding whether τM �= ∅ for an smtt M is DEXPTIME-complete.

Proof. The lower bound follows since translation non-emptiness is DEXPTIME-hard
already in absence of accumulating parameters, i.e., for top-down tree transducers [26].

Since we will heavily rely on this algorithm, we briefly sketch the construction
for the upper bound. Assume that M = (Q, Σ, R, Q0) and, w.l.o.g., that for every
function q ∈ Q with k accumulating parameters there is a rule q(x0, y1, . . . , yk) →
q(x0, y1, . . . , yk). These rules will be used when checking the nonemptiness of several
states simultaneously where for some states stay moves are selected.
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For every subset B ⊆ Q, we introduce a propositional variable [B] where [B] = true
denotes the fact that ∃ t ∈ TΣ ∀ q ∈ B : [[q]](t) �= ∅. In particular, for the empty set
we have the fact [∅]⇐ true. We then consider the set of all propositional implications

[B] ⇐ [B1]

for all selections of rules q(x0, y1, . . . , yk) → tq ∈ R, q ∈ B, with B1 = {p ∈ Q |
∃ q ∈ B : p(x0, . . .) occurs in tq}, as well as all implications

[B] ⇐ [B1] ∧ . . . ∧ [Bn],

for which there exists an a and a selection of rules q(a(x1, . . . , xn), y1, . . . , yk) →
t′q ∈ R, q ∈ B, where Bi = {p ∈ Q | ∃ q ∈ B : p(xi, . . .) occurs in t′q}.

Let CM denote this system of implications. By construction, the size of CM is ex-
ponential in the size of M . Moreover, the translation of M is nonempty iff, for some
q ∈ Q0, [{q}] = true follows from CM . Since systems of propositional Horn clauses
can be solved in linear time, the assertion follows. ��

Next, we show how to effectively restrict a given smtt so that it only produces output
trees in a given recognizable output tree language. In fact, the corresponding construc-
tion is a straightforward generalization of the triple construction known for context-free
grammars. In case of smtts, the construction is simpler if we additionally assume that
the recognizable tree language, is given by a deterministic finite tree automaton. As
usual, we call an fta A = (P, Σ, δ, F ) deterministic (dfta) if for each symbol a ∈ Σ
of rank k ≥ 0 and every tuple p1 . . . pk of states, there is exactly one state p with
(p, a, p1 . . . pk) ∈ δ, i.e., δ is a function δ : Σ × P k → P . For a given symbol a we
also define δa : P k → P .

In our example, the output type could, e.g., indicate that after transformation, the
element mbox should contain only a list of mail elements. For this purpose we can
use a deterministic fta with set of states {pe, ptrash, pmail, pspam, pmbox, pcontent, pfail, . . .},
where state pcontent codes that a mail has a correct content. The leaf e is accepted by
the state pe. For all other symbols, we only list the transitions not resulting in the error
state pfail.

e
pe

mbox ptrash

pmail pmbox

pe pmbox

trash pe
pspam ptrash

pmail ptrash

pe ptrash

Each table represents δ for the label given in its upper left corner. States in the first
row are possible states for the right child, and accordingly states in the first column are
possible states for the left child. The transitions for mail and spam are defined as:

mail pe pmail pspam

pcontent pmail pmail pspam

spam pe pmail pspam

pcontent pspam pspam pspam
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Theorem 2. Assume M is an smtt and A is a dfta. Then there is an smtt MA with

τMA(t) = τM (t) ∩ L(A)

for all t ∈ TΣ . The smtt MA can be constructed in time O(N ·nk+1+d) where N is the
size of M , k is the maximal number of accumulating parameters of a function symbol
of M , d is the maximal number of function occurrences in any right-hand side, and n
is the size of the finite tree automaton A.

Proof. Let M = (Q, Σ, R, Q0) and A = (P, Σ, δ, PF ). The set of function symbols
of the new smtt MA consists of all tuples 〈q, p0p1 . . . pk〉 where q ∈ Q is a function
symbol of the original smtt of rank k and p0, . . . , pk ∈ P are states of the dfta A.
The new function symbol 〈q, p0 . . . pk〉 is meant to generate all trees t with variables
from y1, . . . , yk for which there is a run of A starting at the leaves yi with states pi and
reaching the root of t in state p0. Therefore, the intersection smtt MA has the rules:

〈q, p0 . . . pk〉(r, y1, . . . , yk) → t′

for every rule q(r, y1, . . . , yk) → t of M with either r = x0 or r = a(x1, . . . , xd),
and t′ ∈ T p0...pk [t]. The sets T p0...pk [t] represent all right-hand sides, where the occur-
rences of variables yi are annotated with state pi and the root node is annotated with p0.
They are inductively defined by:

T pip1...pk [yi] = {yi}
T p0p1...pk [a(t1, . . . , tm)] = {a(t′1, . . . , t

′
m) | δa(p′1, . . . , p

′
m) = p0 ∧

∀ i : t′i ∈ T p′
ip1...pk [ti] }

T p0p1...pk [q′(xj , t1, . . . , tm)] = {〈q′, p0p
′
1 . . . p′m〉(xj , t

′
1, . . . , t

′
m) |

∀ i : t′i ∈ T p′
ip1...pk [ti]}

By fixpoint induction, we verify for every state q of rank k ≥ 0, every input tree s ∈ TΣ

and states p0, . . . , pk that:

[[〈q, p0 . . . pk〉]](s) = [[q]](s) ∩ {t ∈ TΣ(Y ) | δ∗(t, p1 . . . pk) = p0} (∗)

where Y = {y1, . . . , yk} and δ∗ is the extension of the transition function of A to trees
containing variables from Y , namely, for p = p1 . . . pk:

δ∗(yi, p) = pi

δ∗(a(t1, . . . , tm), p) = δa(δ∗(t1, p), . . . , δ∗(tm, p))

The set of new initial function symbols then consists of all 〈q0, pf〉 where q0 ∈ Q0 and
pf is an accepting state of A. Then the correctness of the construction follows from (∗).

For an smtt of size N with at most k parameters and at most d occurrences of states
in right-hand sides, and a tree automaton with n states, the intersection smtt is of size
O(N ·nk+1+d): there can be in the worst case nk+1 copies of a rule of the smtt M , and
for each function occurrence in the right-hand side we may choose an arbitrary output
states. This completes the proof. ��
Note that in general, the number d of occurrences of states in a right-hand side can be
arbitrarily large. SMtts, however, allow a construction which cuts down the depth of
right-hand sides to at most 2. We have:
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Proposition 3. For every smtt M , an smtt M ′ can be constructed with:

1. The translations of M and M ′ agree;
2. Whenever a right-hand side t of M ′ is not contained in TΣ(Y ), then the depth of t

is bounded by 2;
3. The maximal number of states in a right-hand side of M ′ is at most k + 1;
4. The size of M ′ is bounded by O(|M | · k2)

where k is the maximum of the maximal rank of output symbols and the maximal number
of accumulating parameters of a state of M .

The idea of Proposition 3 is to split the right-hand sides into their subterms and to
organize the execution by stay-rules. In this way, for every internal (i.e., non-root and
non-leaf) node (of rank r) in the right-hand side of a rule of M , the transducer M ′ has
a new state of rank r. Clearly, r is bounded by the maximum rank of states and output
symbols of M . Moreover, if the corresponding left-hand side of M is a state with m
parameters, then each new state also has rank m. This means that m parameters are
passed in each of the new rules, which explains the size increase of at most k2. Note
that, given some input tree s, if there is a computation of M using n sequential rule
applications (in the conventional term rewriting sense), then there is a corresponding
computation of M ′ with at most c ·n rule applications, where c is the size of the largest
right-hand side of the rules of M .

4 Linear SMTTs

In this section we prove that type checking is in PTIME for smtts with a bounded num-
ber of parameters which process every node of the input tree at most once. Syntactically,
the latter can be guaranteed by requiring that in every right-hand side, each input vari-
able xi occurs at most once. Mtts satisfying this restriction are called linear [8].

Note that linearity for an smtt implies that the number of function calls in right-
hand sides is bounded by the maximal rank of input symbols (in our case: 2). Here,
we observe for linear smtts that their output languages can be described by means of
rules where the input arguments of all occurring function symbols is simply deleted.
Accordingly, the resulting rules no longer specify a transformation but generate output
trees. A set of rules which we obtain in this way, constitutes a context-free tree gram-
mar (cftg). As an example of a linear smtt consider the smtt q1 (lines 3-5 in our mail
transformation). The grammar characterizing q1’s output language looks as follows:

q1 → mail(cp, q1) | q1 | e

where q1, cp are nonterminals. Note that selection of rules depending on input symbols
now is replaced with nondeterministic choice.

Context-free tree grammars were invented in the 70s [24]. See [7] for a compre-
hensive study of their basic properties. Formally, a cftg G can be represented by a
tuple (E, Σ, P, E0) where E is a finite ranked set of function symbols or nonterminals,
E0 ⊆ E is a set of initial symbols of rank 0, Σ is the ranked alphabet of terminal nodes
and P is a set of rules of the form q(y1, . . . , yk) → t where q ∈ E is a nonterminal
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of rank k ≥ 0. The right-hand side t is a tree built up from variables y1, . . . , yk by
means of application of nonterminal and terminal symbols. In the example, we have
represented the cftg only by its set of rules. As for smtts, inside-out (IO) and outside-in
evaluation order for nonterminal symbols must be distinguished [7]. Here, we use the IO
or call-by-value evaluation order. The least fixpoint semantics for the cftg G is obtained
straightforwardly along the lines for smtts — simply by removing the corresponding
input components (and the substitution σ when evaluating right-hand sides). In partic-
ular, this semantics assigns to every nonterminal q of rank k ≥ 0, a set [[q]] ⊆ TΣ(Y )
for Y = {y1, . . . , yk}. The language generated by G is L(G) =

⋃
{[[q0]] | q0 ∈ E0}.

By Corollary 5.7 of [8], the output language of a linear smtt M can be characterized
by a cftg GM which can be constructed from M in linear time. During this construction
every rule q(π, y1, . . . , yk) → t (π is either a(x1, . . . , xn) or x0) is rewritten as a
production q(y1, . . . , yk) → t′, where t′ is obtained from t by deleting all occurrences
of input variables xi. A formal proof that GM indeed characterizes the output language
of M can be found, e.g., in [8].

The characterization of smtt output languages by cftgs is useful because emptiness
for (IO-)cftgs is decidable using a similar algorithm as the one for ordinary context-free
(word) grammars (see, e.g., [4]). Thus we have:

Theorem 4. It can be decided in linear time for a cftg G whether or not L(G) = ∅.

Here, we are interested in type checking transformations implemented through smtts,
i.e., we want to check whether any output of an smtt M is accepted by an automaton A
for the complement of the given output type. If M is linear, then the intersection smtt
MA is again linear — meaning that its range can be described by a cftg (thus generating
all “illegal outputs” of M w.r.t. A). Therefore, Theorem 4 gives us:

Theorem 5. Type checking for a linear smtt M can be done in time O(N · nk+1+d)
where N is the size of the smtt, k is the maximal number of accumulating parameters,
d is the maximal rank of an input symbol and n is the size of a dfta for the output type.

The complexity bound provided for the construction of Theorem 5 is a worst-case esti-
mation. Instead, we want to point out that in case of linear smtts, the triple construction
for MA can be organized in such a way that only “useful” functions are constructed. In
order to see this, we introduce for every q of M of rank k, a predicate q/(k + 1). Every
rule q( , y1, . . . , yk)→ t of M then gives rise to the Datalog implication:

q(Y0, . . . , Yk) ⇐ D[t]Y0

where D[t]X (X a variable) is defined by

D[yi]X = X = Yi

D[a(t1, . . . , tm)]X = δ(X, a, X1, . . . , Xm) ∧ D[t1]X1 ∧ . . . ∧ D[tm]Xm

D[q′(t1, . . . , tm)]X = q′(X, X1, . . . , Xm) ∧ D[t1]X1 ∧ . . . ∧D[tm]Xm

and the variables X1, . . . , Xm in the last two rows are fresh. For subsets X, X1, . . . , Xk

of the set of states of A, δ(X, a, X1, . . . , Xk) denotes the fact that (x, a, x1, . . . , xk) for
all x ∈ X and xi ∈ Xi, i = 1, . . . , k. A bottom-up evaluation of the resulting program
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computes for every q/(k + 1), the set of all tuples (p0, . . . , pk) such that the transla-
tion of 〈q, p0 . . . pk〉 is non-empty. If we additionally want to restrict these predicates
only to tuples which may contribute to a terminal derivation of the initial nonterminal
〈q0, pf 〉, we may top-down query the program with ⇐ q0(pf ). Practically, top-down
solving organizes the construction such that only useful nonterminals of the intersec-
tion grammar are considered. Using this approach, the number of newly constructed
nonterminals often will be much smaller than the bounds stated in the theorem.

The algorithm in the proof of Theorem 5 can also be applied to non-linear smtts.
Then, the constructed Datalog program does no longer precisely characterize the non-
empty functions of the intersection smtt because dependencies on input subtrees (viz.
several function calls on the same input variable xi) have been lost. Accordingly, a
superset is returned. By means of cftgs, we can express this observation as follows:

Theorem 6. Let GM be the cftg constructed for an smtt M . Then τM (TΣ) ⊆ L(GM ).

Since the cftg still provides a safe superset of produced outputs, type checking based
on cftgs is sound in the sense that it accepts only correct programs. Consider a top-
down transducer M with rule q0(x0) → c(p(x0), p(x0)), where p realizes the identity
using the rules p(a(x1)) → a(p(x1)), p(b(x1)) → a(p(x1)), p(e) → e. In this case,
the corresponding approximating cftg GM is rather coarse: it generates c(u, v) with
u, v ∈ {a, b}∗e (seen as monadic trees). Note, however, that exact tree copying can be
realized through the use of parameters: the transducer with rules q0(x0)→ q(x0, p(x0))
and q(x0, y1) → c(y1, y1) realizes the same translation as M . However, now the cftg
is not approximating but precisely captures the correct output language of M .

Note that when approximating the output languages of general smtts with cftgs, then
we no longer may assume that the maximal number d of occurrences of nonterminals
in a right-hand side of this grammar is bounded by a small constant. If d turns out to be
unacceptably large, we still can apply Proposition 3 to limit the maximal number of oc-
currences of nonterminals in each right-hand side to a number k which is the maximum
of the maximal rank of input symbols and the maximal number of parameters.

5 SMTTs with Bounded Copying

In this section we investigate in how far the exact techniques from the last section can be
extended to more general classes of smtts. The goal again is to find precise and tractable
characterizations of the output language. If the smtt is no longer linear, we must take
into account that distinct function calls could refer to the same input node and therefore
must be “glued together”, i.e., be jointly evaluated.

In general, an arbitrary number of function calls may be applied to the same sub-
document of the input. Quite a few useful transformations on the other hand consult
every part of the input only a small number of times [25]. In our running example with
mail and spam, every subtree of the input is processed at most twice. Therefore, we
consider the subclass of smtts processing every subtree of the input at most b times.
Thus in principle, b-bounded copying is a semantic property (cf. [5]).

Instead of dealing with a semantic definition, we find it more convenient to consider
syntactic b-bounded copying only. For all states q of M , we define the maximal copy
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numbers b[q] as the least fixpoint of a constraint system over N = {−∞ < 1 < 2 <
. . . < ∞}, the complete lattice of natural numbers extended with ±∞. The constraint
system consists of all constraints:

b[q] ≥ 1

whenever q has a rule without calls in the right-hand side, together with all constraints:

b[q] ≥ b[q1] + . . . + b[qm]

where q(a(x1, . . . , xl), y1, . . . , yk)→ t is a rule of M and, for some i, q1, . . . , qm is the
sequence of occurrences of calls qj(xi, . . .) for the same variable xi in the right-hand
side t. The constraints for stay-rules are constructed analogously. According to [27], the
least solution of this constraint system can be constructed in linear time. Let [q], q state
of M , denote this least solution. Then the smtt M is syntactically b-bounded (copying)
(or, a b-smtt for short) iff [q] ≤ b for all states of M . For the case where every input
node is visited only a small number of times, we have:

Theorem 7. For every syntactically b-bounded smtt M the following holds:

1. For every dfta A, the intersection smtt MA is again syntactically b-bounded.
2. Translation emptiness can be decided in time O(|M |b).

Proof. For the first assertion, we claim that for every state q of M with k parameters,
b[q] ≥ b[〈q, p0 . . . pk〉] for every sequence p0, . . . , pk of dfta states. This claim is easily
verified by fixpoint induction w.r.t. the corresponding constraint systems characterizing
b[q] and b[〈q, p0 . . . pk〉], respectively.

For a proof of the second assertion, we observe that, for syntactically b-bounded
smtts, the propositional variables [{q}], q ∈ Q0, only depend on propositional variables
[B] for sets of states B of cardinality at most b.

Theorem 2 provides us with the technical background to prove our main theorem:

Theorem 8. Type checking for a b-smtt M can be done in time O(N b · nb·(k+1+d))
where N is the size of the smtt, k is the maximal number of accumulating parameters,
d is the maximal rank of an input symbol and n is the size of a dfta for the output type.

Instead of first testing b-boundedness and then running a specialized algorithm, we
definitely prefer to have a general purpose algorithm which is correct for all smtts but
additionally will meet the better complexity bounds on the exhibited subclasses. Indeed,
our methods can be combined to construct such an adaptive algorithm. Given an smtt
M and a dfta A, we proceed as follows:

1. For M , we compute an equivalent smtt M ′ where the numbers of occurrences of
states in right-hand sides are bounded.

2. For M ′, we compute a safe superset of the states of the intersection smtt M ′
A by

means of top-down solving the corresponding Datalog program.
3. If no accepting states of A are found for the predicates q0/1, q0 initial state of M ′,

the intersection is definitely empty, and we return.
Otherwise, we precisely check the intersection smtt M ′

A for emptiness through lo-
cally solving the corresponding system of propositional Horn clauses.
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In the worst case, this algorithm will be exponential in the number of states of M
and doubly exponential in the number of parameters and, due to the lower bounds for
translation emptiness, nothing better can be hoped for. If on the other hand, the smtt is
linear or syntactically b-bounded, the algorithm’s complexity achieves the upper bounds
of Theorems 5 and 8, respectively.

6 Macro Forest Transducers

Macro tree transducers have the disadvantage that they do not operate on forests
directly. In [23], this limitation is lifted. Thus, stay macro forest transducers (smfts)
generalize smtts by providing concatenation as additional operation on output forests.
Although, smfts are more expressive than smtts, we obtain closure under intersection
with recognizable forest languages also for output languages of smfts. This
result is again based on a generalized triple construction. This time, however, we ad-
ditionally must take care that our deterministic finite-state representation of the output
type is compatible with concatenations. Therefore, we replace the concept of a dfta
by a finite forest monoid (ffm) which is a finite monoid S extended with an operation
up : S ×Σ → S that is used to handle upward movement in the forest (cf. [2]).

Since the notion of linearity for smfts is completely analogous to linearity for smtts,
the type checking algorithm for a linear smft T is almost the same as for linear smtts.
As in the ranked tree case, we can also extend the methods to syntactically b-bounded
copying smfts (b-mfts) and obtain as our main result for smfts:

Theorem 9. Type checking for a b-smft M can be done in timeO(N b ·nb·(k+3)) where
N is the size of the smft, k is the maximal number of accumulating parameters, and n
is the size of a ffm for the output type.

7 Conclusion

We have exhibited exact type checking algorithms for useful classes of XML transfor-
mations based on a precise characterization of output languages. For our approach, the
input type could always be described by a nondeterministic finite automaton. In order
to obtain tractable algorithms, we assumed for macro tree transducers, that output types
are given as deterministic finite automata, whereas for macro forest transducers, we
even assumed legal outputs to be represented by finite forest monoids. The latter was
necessary to elegantly cope with the extra ability of concatenating separately produced
output forests. Besides exact methods, we also provided approximate type checking
based on context-free tree grammars. Finally, we combined our techniques to a sim-
ple adaptive algorithm which is provably efficient on the exhibited subclasses but may
be promising also in other practical contexts. In case sets of possibly illegal outputs
are described by cf tree grammars, we can also check in PTIME whether only finitely
many illegal outputs may occur. This is called “almost always type checking” in [6].
It remains open in how far these techniques can be applied to smtts with outside-in
(call-by-name) evaluation order.



268 S. Maneth, T. Perst, and H. Seidl

References

1. S. Boag and D. Chamberlin et.al., editors. XQuery 1.0: An XML Query Language. World
Wide Web Consortium Working Draft. Available at http://www.w3.org/TR/xquery/, 2003.
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Abstract. The presence of a schema offers many advantages in pro-
cessing, translating, querying, and storage of XML data. Basic decision
problems like equivalence, inclusion, and non-emptiness of intersection
of schemas form the basic building blocks for schema optimization and
integration, and algorithms for static analysis of transformations. It is
thereby paramount to establish the exact complexity of these problems.
Most common schema languages for XML can be adequately modeled
by some kind of grammar with regular expressions at right-hand sides.
In this paper, we observe that apart from the usual regular operators of
union, concatenation and Kleene-star, schema languages also allow nu-
merical occurrence constraints and interleaving operators. Although the
expressiveness of these operators remain within the regular languages,
their presence or absence has significant impact on the complexity of
the basic decision problems. We present a complete overview of the
complexity of the basic decision problems for DTDs, XSDs and Relax
NG with regular expressions incorporating numerical occurrence con-
straints and interleaving. We also discuss chain regular expressions and
the complexity of the schema simplification problem incorporating the
new operators.

1 Introduction

XML is the lingua franca for data exchange on the Internet [1]. Within appli-
cations or communities, XML data is usually not arbitrary but adheres to some
structure imposed by a schema. The presence of such a schema not only provides
users with a global view on the anatomy of the data, but far more importantly,
it enables automation and optimization of standard tasks like (i) searching, in-
tegration, and processing of XML data (cf., e.g., [11,20,23,40]); and, (ii) static
analysis of transformations (cf., e.g., [2,15,24,30]). Decision problems like equiv-
alence, inclusion and non-emptiness of intersection of schemas, hereafter referred
to as the basic decision problems, constitute essential building blocks in solutions
for the just mentioned optimization and static analysis problems. Additionally,
the basic decision problems are fundamental for schema minimization (cf., e.g.,
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shop → regular∗ & discount-box∗

regular → cd
discount-box → cd[10,12] price
cd → artist & title & price

Fig. 1. A sample schema using the numerical occurrence and interleave operators. The
schema defines a shop that sells CDs and offers a special price for boxes of 10–12 CDs.

[9,27]). Because of their widespread applicability, it is therefore important to es-
tablish the exact complexity of the basic decision problems for the various XML
schema languages.

The most common schema languages for XML are DTD, XML Schema [36],
and Relax NG [8] and can be modeled by grammar formalisms [29]. In particular,
DTDs correspond to context-free grammars with regular expressions (REs) at
right-hand sides, while Relax NG is abstracted by extended DTDs (EDTDs) [31]
or equivalently, unranked tree automata [6], defining the regular unranked tree
languages. While XML Schema is usually abstracted by unranked tree automata
as well, recent results indicate that XSDs correspond to a strict subclass of the
regular tree languages and are much closer to DTDs than to tree automata [26].
In fact, they can be abstracted by single-type EDTDs. As detailed in [25], the
relationship between schema formalisms and grammars provides direct upper
and lower bounds for the complexity of the basic decision problems.

A closer inspection of the various schema specifications reveals that the above
abstractions in terms of grammars with regular expressions is too coarse. Indeed,
in addition to the conventional regular expression operators like concatenation,
union, and Kleene-star, the XML Schema and the Relax NG specification allow
two other operators as well:

(1) Both the XML Schema and the Relax NG specification allow a certain form of
unordered concatenation: the ALL and the interleave operator, respectively.
This operator is actually the resurrection of the &-operator from SGML
DTDs that was excluded from the definition of XML DTDs. Although there
are restrictions on the use of ALL and interleave, we consider the operator
in its unrestricted form. We refer by RE(&) to such regular expressions with
the unordered concatenation operator.

(2) The XML Schema specification allows to express numerical occurrence con-
straints which define the minimal and maximal number of times a regular
construct can be repeated. We refer by RE(#) to such regular expressions
with numerical occurrence constraints.

We illustrate these additional operators in Figure 1. The formal definition is given
in Section 2. Although the new operators can be expressed by the conventional
regular operators, they cannot do so succinctly, which has severe implications
on the complexity of the basic decision problems.

The goal of this paper is to study the complexity of the basic decision prob-
lems for DTDs, XSDs, and Relax NG with regular expressions extended with
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interleaving and numerical occurrence constraints. The latter class of regular
expressions is denoted by RE(#, &). As observed in Section 5, the complexity of
inclusion and equivalence of RE(#, &)-expressions (and subclasses thereof) car-
ries over to DTDs and single-type EDTDs. We therefore first establish the com-
plexity of the basic decision problems for RE(#, &)-expressions and frequently
occurring subclasses. These results are summarized in Table 1 and Table 2.
Of independent interest, we introduce NFA(#, &)s, an extension of NFAs with
counter and split/merge states for dealing with numerical occurrence constraints
and interleaving operators. Finally, we revisit the simplification problem intro-
duced in [26] for schemas with RE(#, &)-expressions. That is, given an extended
DTD, can it be rewritten into an equivalent DTD or a single-type EDTD?

In this paper, we do not consider deterministic or one-unambiguous regular
expressions which form a strict subclass of the regular expressions [7]. The reason
is two-fold. First of all, one-unambiguity is a highly debatable constraint (cf., e.g.,
pg 98 of [38] and [22,35]) which is only required for DTDs and XML Schema,
not for Relax NG. Actually, the only direct advantage of one-unambiguity is
that it gives rise to ptime algorithms for some of the basic decision problems for
standard regular expressions. The latter does not hold anymore for RE(#, &)-
expressions rendering the notion even less attractive. Indeed, already intersection
for one-unambiguous regular expressions is pspace-hard [25] and inclusion for
one-unambiguous RE(#)-expressions is conp-hard [17]. A second reason is that,
in contrast to conventional regular expressions, one-unambiguity is not yet fully
understood for regular expressions with numerical occurrence constraints and
interleaving operators. Some initial results are provided by Bruggemann-Klein,
and Kilpeläinen and Tuhkanen who give algorithms for deciding one-unambiguity
of RE(&)- and RE(#)-expressions, respectively [5,18]. No study investigating
their properties has been undertaken. Such a study, although definitely relevant,
is outside the scope of this paper.

Outline. In Section 2, we provide the necessary definitions. In Section 3, we define
NFA(#, &). In Section 4 and Section 5, we establish the complexity of the basic
decision problems for regular expressions and schema languages, respectively.
We discuss simplification in Section 6. We conclude in Section 7. A version of
this paper containing all proofs is available from the authors’ webpages.

2 Definitions

2.1 Regular Expressions with Counting and Interleaving

For the rest of the paper, Σ always denotes a finite alphabet. A Σ-symbol (or
simply symbol) is an element of Σ, and a Σ-string (or simply string) is a finite
sequence w = a1 · · ·an of Σ-symbols. We define the length of w, denoted by
|w|, to be n. We denote the empty string by ε. The set of positions of w is
{1, . . . , n} and the symbol of w at position i is ai. By w1 · w2 we denote the
concatenation of two strings w1 and w2. For readability, we usually denote the
concatenation of w1 and w2 by w1w2. The set of all strings is denoted by Σ∗. A
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Table 1. Overview of new and known complexity results. All results are completeness
results. The new results are printed in bold.

inclusion equivalence intersection
RE pspace ([37]) pspace ([37]) pspace ([21])
RE(&) expspace ([28]) expspace ([28]) PSPACE

RE(#) and RE(#, &) EXPSPACE EXPSPACE PSPACE

NFA(#), NFA(&), and NFA(#,&) EXPSPACE EXPSPACE PSPACE

DTDs with RE pspace ([37]) pspace ([37]) pspace ([21])
DTDs with
RE(#), RE(&), or RE(#, &) EXPSPACE EXPSPACE PSPACE

single-type EDTDs with RE pspace ([25]) pspace ([25]) exptime ([25])
single-type EDTDs with
RE(#), RE(&), or RE(#, &) EXPSPACE EXPSPACE EXPTIME

EDTD with RE exptime ([34]) exptime ([34]) exptime ([33])
EDTDs with
RE(#), RE(&), or RE(#, &) EXPSPACE EXPSPACE EXPTIME

string language is a subset of Σ∗. For two string languages L, L′ ⊆ Σ∗, we define
their concatenation L ·L′ to be the set {w ·w′ | w ∈ L, w′ ∈ L′}. We abbreviate
L·L · · ·L (i times) by Li. By w1&w2 we denote the set of strings that is obtained
by interleaving or shuffling w1 and w2 in every possible way. That is, for w ∈ Σ∗,
w&ε = ε&w = {w}, and a ·w1 &b ·w2 = ({a}·(w1 &b ·w2))∪({b}·(a ·w1 &w2)).
The operator & is then extended to languages in the canonical way.

The set of regular expressions over Σ, denoted by RE, is defined in the usual
way: ε, and every Σ-symbol is a regular expression; and when r and s are regular
expressions, then rs, r + s, and r∗ are also regular expressions. By RE(#, &)
we denote RE extended with two new operators: interleaving and numerical
occurrence constraints. That is, when r and s are RE(#, &)-expressions then so
are r & s and r[k,] for k, � ∈ N with k ≤ � and � > 0. By RE(#) and RE(&), we
denote RE extended only with counting and interleaving, respectively.

The language defined by a regular expression r, denoted by L(r), is inductively
defined as follows: L(ε) = {ε}; L(a) = {a}; L(rs) = L(r) · L(s); L(r + s) =
L(r) ∪ L(s); L(r∗) = {ε} ∪

⋃∞
i=1 L(r)i, L(r[k,]) =

⋃
i=k L(r)i; and, L(r & s) =

L(r) & L(s). The size of a regular expression r over Σ, denoted by |r|, is the
number of Σ-symbols and operators occurring in r plus the sizes of the binary
representations of the integers. By r? and r+, we abbreviate the expression
r + ε and rr∗, respectively. We assume familiarity with finite automata such
as nondeterministic finite automata (NFAs) and deterministic finite automata
(DFAs) [14].

2.2 Schema Languages for XML

The set of unranked Σ-trees, denoted by TΣ , is the smallest set of strings over
Σ and the parenthesis symbols “(” and “)” such that, for a ∈ Σ and w ∈ (TΣ)∗,
a(w) is in TΣ . So, a tree is either ε (empty) or is of the form a(t1 · · · tn) where



Optimizing Schema Languages for XML 273

each ti is a tree. In the tree a(t1 · · · tn), the subtrees t1, . . . , tn are attached to
the root labeled a. We write a rather than a(). Notice that there is no a priori
bound on the number of children of a node in a Σ-tree; such trees are therefore
unranked. For every t ∈ TΣ , the set of nodes of t, denoted by Dom(t), is the
set defined as follows: (i) if t = ε, then Dom(t) = ∅; and (ii) if t = a(t1 · · · tn),
where each ti ∈ TΣ , then Dom(t) = {ε}∪

⋃n
i=1{iu | u ∈ Dom(ti)}. In the sequel,

whenever we say tree, we always mean Σ-tree. A tree language is a set of trees.
We make use of the following definitions to abstract from the commonly used

schema languages:

Definition 1. Let M be a class of representations of regular string languages
over Σ.

1. A DTD(M) over Σ is a tuple (Σ, d, sd) where d is a function that maps Σ-
symbols to elements of M and sd ∈ Σ is the start symbol. For convenience
of notation, we denote (Σ, d, sd) by d and leave the start symbol sd implicit
whenever this cannot give rise to confusion.

A tree t satisfies d if (i) labt(ε) = sd and, (ii) for every u ∈ Dom(t) with
n children, labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the set
of trees satisfying d.

2. An extended DTD (EDTD(M)) over Σ is a 5-tuple D = (Σ, Σ′, d, s, μ),
where Σ′ is an alphabet of types, (Σ′, d, s) is a DTD(M) over Σ′, and μ is
a mapping from Σ′ to Σ.

A tree t then satisfies an extended DTD if t = μ(t′) for some t′ ∈ L(d).
Here we abuse notation and let μ also denote its extension to define a homo-
morphism on trees. Again, we denote by L(D) the set of trees satisfying D.
For ease of exposition, we always take Σ′ = {ai | 1 ≤ i ≤ ka, a ∈ Σ, i ∈ N}
for some natural numbers ka, and we set μ(ai) = a.

3. A single-type EDTD (EDTDst(M)) over Σ is an EDTD(M) D = (Σ, Σ′, d,
s, μ) with the property that for every a ∈ Σ′, in the regular expression d(a)
no two types bi and bj with i �= j occur.

We denote by EDTD, EDTD(#), EDTD(&), and EDTD(#,&), the classes
EDTD(RE), EDTD(RE(#)), EDTD(RE(&)), and EDTD(RE(#, &)), respec-
tively. The same notation is used for EDTDst and DTDs.

For clarity, we write a → r rather than d(a) = r in examples and proofs.
Following this notation, a simple example of an EDTD is the following:

shop1 → (dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗ title1 → ε

dvd1 → title1 price1 price1 → ε

dvd2 → title1 price1 discount1 discount1 → ε

Here, dvd1 defines ordinary DVDs, while dvd2 defines DVDs on sale. The rule
for shop1 specifies that there should be at least one DVD on sale. Note that the
above is not a single-type EDTD as dvd1 and dvd2 occur in the same rule.

As explained in [29,26], EDTDs and single-type EDTDs correspond to Relax
NG and XML Schema, respectively.
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2.3 Decision Problems

The following problems are fundamental to this paper.

Definition 2. Let M be a class of regular expressions, string automata, or
extended DTDs. We define the following problems:

– inclusion for M: Given two elements e, e′ ∈M, is L(e) ⊆ L(e′)?
– equivalence for M: Given two elements e, e′ ∈ M, is L(e) = L(e′)?.
– intersection for M: Given an arbitrary number of elements e1, . . . , en ∈
M, is

⋂n
i=1 L(ei) �= ∅?

– membership for M: Given an element e ∈ M and a string or a tree f , is
f ∈ L(e)?

We recall the known results concerning the complexity of REs and EDTDs.

Theorem 3. (1) inclusion, equivalence, and intersection for REs are
pspace-complete [21,37].

(2) inclusion and equivalence for RE(&) are expspace-complete [28].
(3) inclusion and equivalence for EDTDst are pspace-complete [25]; in-

tersection for EDTDst is exptime-complete [25].
(4) inclusion, equivalence, and intersection for EDTDs are exptime-

complete [33,34].
(5) membership for RE(&) is np-complete [28].

3 Automata for Occurrence Constraints and Interleaving

We introduce the automaton model NFA(#, &). In brief, an NFA(#, &) is an
NFA with two additional features: (i) split and merge transitions to handle in-
terleaving; and, (ii) counting states and transitions to deal with numerical occur-
rence constraints. The idea of split and merge transitions stems from Jȩdrzejowicz
and Szepietowski [16]. Their automata are more general as they can express
shuffle-closure which is not regular. Counting states are also used in the counter
automata of Kilpeläinen and Tuhkanen [19], and Reuter [32] although these
counter automata operate quite differently from NFA(#)s. Zilio and Lugiez [10]
also proposed an automaton model that incorporates counting and interleaving
by means of Presburger formulas. None of the cited papers consider the com-
plexity of the basic decision problems of their model. We will use NFA(#, &)s
for obtaining complexity upper bounds in Sections 4 and 5.

For readability, we denote Σ ∪ {ε} by Σε. We then define an NFA(#, &) as
follows.

Definition 4. An NFA(#, &) is a 5-tuple A = (Q, Σ, s, f, δ) where

– Q is a finite set of states. To every q ∈ Q, we associate a lower bound
min(q) ∈ N and an upper bound max(q) ∈ N.

– s, f ∈ Q is the start and final state, respectively.
– δ is the transition relation and is a subset of the union of the following sets:
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(1) Q×Σε ×Q ordinary transition (resets the counter)
(2) Q× {store} ×Q transition that does not reset the counter
(3) Q× {split} ×Q×Q split transition
(4) Q×Q× {merge} ×Q merge transition

Let max(A) = max{max(q) | q ∈ Q} be the largest upper bound occurring
in A. A configuration γ is a pair (P, α) where, P ⊆ Q is a set of states and
α : Q → {0, . . . ,max(A)} is the value function mapping states to the value of
their counter. For a state q ∈ Q, we denote by αq the value function mapping
q to 1 and every other state to 0. The initial configuration γs is ({s}, αs). The
final configuration γf is ({f}, αf). When α is a value function then α[q = 0]
and α[q++] denote the functions obtained from α by setting the value of q to 0
and incrementing the value of q by 1, respectively, while leaving all other values
unchanged.

We now define the transition relation between configurations. Intuitively, the
value of the state at which the automaton arrives is always incremented by one.
When exiting a state, the state’s counter is always reset to zero, except when we
exit through a counting transition, in which case the counter remains the same.
In addition, exiting a state through a non-counting transition is only allowed
when the value of the counter lies between the allowed minimum and maximum.
The latter, hence, ensures that the occurrence constraints are satisfied. Split and
merge transitions start and close a parallel composition.

A configuration γ′ = (P ′, α′) immediately follows a configuration γ = (P, α)
by reading σ ∈ Σε, denoted γ →A,σ γ′, when one of the following conditions
hold:

1. (ordinary transition) there is a q ∈ P and (q, σ, q′) ∈ δ such that min(q) ≤
α(q) ≤ max(q), P ′ = (P − {q}) ∪ {q′}, and α′ = α[q = 0][q′++]. That is, A
is in state q and moves to state q′ by reading σ (note that σ can be ε). The
latter is only allowed when the counter value of q is between the lower and
upper bound. The state q is replaced in P by q′. The counter of q is reset to
zero and the counter of q′ is incremented by one.

2. (counting transition) there is a q ∈ P and (q, store, q′) ∈ δ such that
α(q) < max(q), P ′ = (P − {q}) ∪ {q′}, and α′ = α[q′++]. That is, A is in
state q and moves to state q′ by reading ε when the counter of q has not
reached its maximal value yet. The state q is replaced in P by q′. The counter
of q is not reset but remains the same. The counter of q′ is incremented by
one.

3. (split transition) there is a q ∈ P and (q, split, q′1, q
′
2) ∈ δ such that

min(q) ≤ α(q) ≤ max(q), P ′ = (P − {q}) ∪ {q′1, q′2}, and α′ = α[q =
0][q′1

++][q′2
++]. That is, A is in state q and splits into states q′1 and q′2 by

reading ε when the counter value of q is between the lower and upper bound.
The state q in P is replaced by (split into) q′1 and q′2. The counter of q is
reset to zero, and the counters of q′1 and q′2 are incremented by one.
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4. (merge transition) there are q1, q2 ∈ P and (q1, q2, merge, q′) ∈ δ such
that, for each j = 1, 2, min(qj) ≤ α(qj) ≤ max(qj), P ′ = (P−{q1, q2})∪{q′},
and α′ = α[q1 = 0][q2 = 0][q′++]. That is, A is in states q1 and q2 and moves
to state q′ by reading ε when the respective counter values of q1 and q2 are
between the lower and upper bounds. The states q1 and q2 in P are replaced
by (merged into) q′, the counters of q1 and q2 are reset to zero, and the
counter of q′ is incremented by one.

For a string w and two configurations γ, γ′, we denote by γ ⇒A,w γ′ when
there is a sequence of configurations γ →A,σ1 · · · →A,σn γ′ such that w =
σ1 · · ·σn. The latter sequence is called a run when γ is the initial configuration
γs. A string w is accepted by A iff γs ⇒A,w γf with γf the final configuration.
We usually denote ⇒A,w simply by ⇒w when A is clear from the context. We
denote by L(A) the set of strings accepted by A. The size of A, denoted by |A|,
is |Q|+ |δ|+ Σq∈Q log(max(q)). So, each max(q) is represented in binary.

An NFA(#) is an NFA(#, &) without split and merge transitions. An NFA(&)
is an NFA(#, &) without counting transitions. An NFA is an NFA(#) without
counting transitions. NFA(#, &) therefore accept all regular languages.

The next theorem shows the complexity of translating between RE(#, &)
and NFA(#, &), and NFA(#, &) and NFA. In brief, the proof of part (1) is
by induction on the structure of RE(#, &)-expressions. Figure 2 illustrates the
inductive steps for expressions r

[k,]
1 and r1&r2, employing counter, and split and

merge states, respectively. For part (2), we define an NFA from an NFA(#, &)
that keeps in its state the current configuration of the latter: i.e., a set of states
and a value function.

Theorem 5. (1) Given an RE(#, &)-expression r, an equivalent NFA(#, &)
can be constructed in time polynomial in the size of r.

(2) Given an NFA(#, &) A, an equivalent NFA can be constructed in time ex-
ponential in the size of A.

We next turn to the complexity of the basic decision problems for NFA(#, &).

Theorem 6. (1) equivalence and inclusion for NFA(#, &) is expspace-
complete;

(2) intersection for NFA(#, &) is pspace-complete; and,
(3) membership for NFA(#) is np-hard, membership for NFA(&) and

NFA(#,&) is pspace-complete.

We only provide some intuition. For part (1), membership in expspace follows
directly from Theorem 5(2) and the fact that inclusion for NFAs is pspace-
complete [37]. expspace-hardness follows from Theorem 5(1) and Theorem 7(3).
For part (2), pspace-hardness follows from pspace-hardness of intersection
for REs [21]. Membership in pspace is witnessed by an in parallel simulation of
the given NFA(#, &)s on a guessed string. Finally, np-hardness of membership
for NFA(#)s is by a reduction from integer knapsack, pspace-hardness of
membership for NFA(&)s is by a reduction from corridor tiling.
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Fig. 2. From RE(#, &) to NFA(#,&)

4 Complexity of Regular Expressions

Before we turn to schemas, we first deal with the complexity of regular expres-
sions and frequently used subclasses.

Mayer and Stockmeyer already established the expspace-completeness of
inclusion and equivalence for RE(&) [28]. From Theorem 5(1) and Theo-
rem 6(1) it then directly follows that adding numerical occurrence constraints
does not increase the complexity. It further follows from Theorem 5(1) and The-
orem 6(2), that intersection for RE(#, &) is in pspace. We stress that the
latter results could also have been obtained without making use of NFA(#, &)
but by translating RE(#, &)s directly to NFAs. However, in the case of inter-
section such a construction should be done in an on-the-fly fashion in order
not to go beyond pspace. Although such an approach is possible, we prefer the
shorter and more elegant construction using NFA(#, &)s. Finally, we show that
inclusion and equivalence of RE(#) is also expspace-hard. While Mayer
and Stockmeyer reduce from REs with intersection [12], we employ a reduction
from exp-corridor tiling.

Theorem 7. 1. equivalence and inclusion for RE(#, &) is in expspace;
2. intersection for RE(#, &) is pspace-complete; and,
3. equivalence and inclusion for RE(#) is expspace-hard.

Proof. We prove (3). It suffices to show that it is expspace-hard to decide
whether a given RE(#) defines Σ∗. The proof is a reduction from exp-corridor
tiling. A tiling instance is a tuple T = (X, H, V, x⊥, x�, n) where X is a finite
set of tiles, H, V ⊆ X×X are the horizontal and vertical constraints, x⊥, x� ∈ X ,
and n is a natural number in unary notation. A correct exponential corridor tiling
for T is a mapping λ : {1, . . . , m} × {1, . . . , 2n} → X for some m ∈ N such that
the following constraints are satisfied:

– the first tile of the first row is x⊥: λ(1, 1) = x⊥;
– the first tile of the m-th row is x�: λ(m, 1) = x�;
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– all vertical constraints are satisfied: ∀i < m, ∀j ≤ 2n, (λ(i, j), λ(i+1, j)) ∈ V ;
and,

– all horizontal constraints are satisfied: ∀i ≤ m, ∀j < 2n, (λ(i, j), λ(i, j+1)) ∈
H .

The exp-corridor tiling problem asks, given a tiling instance, whether there
exists a correct exponential corridor tiling. The latter problem is easily shown
to be expspace-complete [39].

We proceed with the reduction from exp-corridor tiling. Thereto, let
T = (X, H, V, x⊥, x�, n) be a tiling instance. We construct an RE(#)-expression
r which defines the set of all strings iff there is no correct tiling for T . As ex-
pspace is closed under complement, the expspace-hardness of equivalence
and inclusion for RE(#) follows.

Let Σ = X ∪ {%}. For a set S = {s1, . . . , sk} ⊆ Σ, we abuse notation
and abbreviate (s1 + · · · + sk) simply by S. We represent a candidate tiling
consisting of m rows ρ1, . . . , ρm by the string %ρ1%· · ·%ρm%. Here, every two
successive rows are delimited by the symbol %. We now define r as a disjunction
of RE(#)-expressions where every disjunct catches an error in the candidate
tiling. Therefore, when r is equivalent to Σ∗ there can be no correct tiling for
T . It remains to define the disjuncts constituting r:

1. The string does not start or end with %: XΣ∗ + Σ∗X .
2. There are no 2n tiles between two successive delimiters:

Σ∗%(X [0,2n−1] + X [2n+1,2n+1]X∗)%Σ∗.
3. The first tile is not x⊥: %xΣ∗ for every x �= x⊥.
4. The first tile of the last row is not x�: Σ∗%xX∗% for every x �= x�.
5. Horizontal constraint violation: Σ∗x1x2Σ

∗ for every (x1, x2) �∈ H .
6. Vertical constraint violation: Σ∗x1Σ

[2n,2n]x2Σ
∗ for every (x1, x2) �∈ V .

Clearly, a Σ-string that does not satisfy any of the disjuncts in r is a correct
tiling for T . Hence, L(r) �= Σ∗ iff there is a correct tiling for T . �

Bex et al. [4] established that the far majority of regular expressions occurring in
practical DTDs and XSDs are of a very restricted form as defined next. The class
of chain regular expressions (CHAREs) are those REs consisting of a sequence
of factors f1 · · · fn where every factor is an expression of the form (a1 + · · ·+an),
(a1 + · · · + an)?, (a1 + · · · + an)+, or, (a1 + · · · + an)∗, where n ≥ 1 and every
ai is an alphabet symbol. For instance, the expression a(b + c)∗d+(e + f)? is a
CHARE, while (ab + c)∗ and (a∗ + b?)∗ are not.1

We introduce some additional notation to define subclasses and extensions of
CHAREs. By CHARE(#) we denote the class of CHAREs where also factors of
the form (a1 + · · ·+ an)[k,] are allowed. For the following fragments, we list the
admissible types of factors. Here, a, a?, a∗ denote the factors (a1 + · · · + an),
(a1 + · · ·+an)?, and (a1 + · · ·+an)+, respectively, with n = 1, while a# denotes
a[k,], and a#>0 denotes a[k,] with k > 0.
1 We disregard here the additional restriction used in [3] that every symbol can occur

only once.



Optimizing Schema Languages for XML 279

Table 2. Overview of new and known complexity results concerning Chain Regular
Expressions. All results are completeness results, unless otherwise mentioned. The new
results are printed in bold.

inclusion equivalence intersection
CHARE pspace [25] in pspace [37] pspace [25]
CHARE(#) EXPSPACE in EXPSPACE PSPACE

CHARE(a, a?) conp [25] in ptime [25] np [25]
CHARE(a, a∗) conp [25] in ptime [25] np [25]
CHARE(a, a?, a#) PSPACE-hard / in EXPSPACE in PTIME NP

CHARE(a, a#>0) in PTIME in PTIME in PTIME

Table 2 lists the new and the relevant known results. We first show that
adding numerical occurrence constraints to CHAREs increases the complexity
of inclusion by one exponential. Again we reduce from exp-corridor tiling.

Theorem 8. inclusion for CHARE(#) is expspace-complete.

Adding numerical occurrence constraints to the fragment CHARE(a, a?) and
CHARE(a, a∗), makes inclusion pspace-hard but keeps equivalence in
ptime and intersection in np.

Theorem 9. (1) equivalence for CHARE(a, a?, a#) is in ptime.
(2) inclusion for CHARE(a, a?, a#) is pspace-hard and in expspace.
(3) intersection for CHARE(a, a?, a#) is np-complete.

Finally, we exhibit a tractable subclass with numerical occurrence constraints:

Theorem 10. inclusion, equivalence, and intersection for CHARE(a,
a#>0) are in ptime.

5 Complexity of Schemas

5.1 DTDs and Single-Type EDTDs

In [25] it was shown for any subclass of the REs that the complexity of inclusion
and equivalence is the same as the complexity of the corresponding problem
for DTDs and single-type EDTDs. We next generalize this result to RE(#, &).
As a corollary, all results of the previous section carry over to DTDs and single-
type DTDs. The same holds for intersection and DTDs.

We call a complexity class C closed under positive reductions if the following
holds for every O ∈ C. Let L′ be accepted by a deterministic polynomial-time
Turing machine M with oracle O (denoted L′ = L(MO)). Let M further have
the property that L(MA) ⊆ L(MB) whenever A ⊆ B. Then L′ is also in C.
For a more precise definition of this notion we refer the reader to [13]. For our
purposes, it is sufficient that important complexity classes like ptime, np, conp,
pspace, and expspace have this property, and that every such class contains
ptime.
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Proposition 11. Let R be a subclass of RE(#, &) and let C be a complexity
class closed under positive reductions. Then the following are equivalent:

(a) inclusion for R expressions is in C.
(b) inclusion for DTD(R) is in C.
(c) inclusion for EDTDst(R) is in C.

The corresponding statement holds for equivalence.

The previous proposition can be generalized to intersection of DTDs as well.
The proof carries over literally from [25].

Proposition 12. Let R be a subclass of RE(#, &) and let C be a complexity
class which is closed under positive reductions. Then the following are equivalent:

(a) intersection for R expressions is in C.
(b) intersection for DTD(R) is in C.

The above proposition does not hold for single-type EDTDs. Indeed, there is
a class of regular expressions R′ for which intersection is np-complete while
intersection for EDTDst(R′) is exptime-complete [25].

5.2 Extended EDTDs

We next consider the complexity of the basic decision problems for EDTDs
with numerical occurrence constraints and interleaving. As the basic decision
problems are exptime-complete for EDTD(RE), the straightforward approach
of translating every RE(#, &)-expression into an NFA and then applying the
standard algorithms gives rise to a double exponential time complexity. By using
NFA(#, &), we can do better: expspace for inclusion and equivalence, and,
more surprisingly, exptime for intersection.

Theorem 13. (1) equivalence and inclusion for EDTD(#,&) is in ex-
pspace;

(2) equivalence and inclusion for EDTD(#) and EDTD(&) is expspace-
hard; and,

(3) intersection for EDTD(#,&) is exptime-complete.

Proof (Sketch).
(1) Given two EDTDs D1 = (Σ, Σ′

1, d1, s1, μ1) and D2 = (Σ, Σ′
2, d2, s2, μ2),

we compute a set E of pairs (C1, C2) ∈ 2Σ′
1 × 2Σ′

2 where (C1, C2) ∈ E iff there
exists a tree t such that Cj = {τ ∈ Σ′

j | t ∈ L((Dj , τ))} for each j = 1, 2. Here,
(Dj , τ) denotes the EDTD Dj with start symbol τ . So, every Cj is the set of
types that can be assigned by Dj to the root of t. Or when viewing Dj as a tree
automaton, Cj is the set of states that can be assigned to the root in a run on t.
The tree t is called a witness tree. Then, t ∈ L(D1) (resp., t ∈ L(D2)) if s1 ∈ C1
(resp. s2 ∈ C2). Hence, L(D1) �⊆ L(D2) iff there exists a pair (C1, C2) ∈ E with
s1 ∈ C1 and s2 �∈ C2.
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Although each witness tree can have exponential depth and therefore double
exponential size, we do not need to compute it directly. Instead, we compute the
set E in a bottom-up fashion where we make use of an NFA(#, &)-representation
of the RE(#, &)-expressions.

(2) Is immediate from Theorem 3(2) and Theorem 7(2).
(3) In brief, given a set of EDTDs, we construct an alternating polynomial

space TM which incrementally guesses a tree defined by all schemas. To be pre-
cise, the algorithm guesses the first-child-next-sibling encoding of the unranked
tree. Again, RE(#, &)-expressions are translated into equivalent NFA(#, &)s.�

6 Simplification

The simplification problem is defined as follows: Given an EDTD, check whether
it has an equivalent EDTD of a restricted type, i.e., an equivalent DTD or
single-type EDTD. In [26], this problem was shown to be exptime-complete
for EDTDs with standard regular expressions. We revisit this problem in the
context of RE(#, &).

Theorem 14. Given an EDTD(#,&), deciding whether it is equivalent to an
EDTDst(#,&) or DTD(#,&) is expspace-complete.

Proof (Sketch). We only show that the problem is hard for expspace. We use
a reduction from universality of RE(#, &), i.e., deciding whether an RE(#, &)-
expression is equivalent to Σ∗. The proof of Theorem 7(2) shows that the latter
is expspace-hard. To this end, let r be an RE(#, &)-expression over Σ and let
b and s be two symbols not occurring in Σ. By definition, L(r) �= ∅. Define
D = (Σ ∪ {b, s}, Σ ∪ {s, b1, b2}, d, s, μ) as the EDTD with the following rules:
s → (b1)∗b2(b1)∗, b1 → Σ∗, and b2 → r, where for every τ ∈ Σ ∪ {s}, μ(τ) = τ ,
and μ(b1) = μ(b2) = b. We claim that D is equivalent to a single-type DTD or
a DTD iff L(r) = Σ∗. Clearly, if r is equivalent to Σ∗, then D is equivalent to
the DTD (and therefore also to a single-type EDTD) with rules: s → b∗ and
b → Σ∗. Conversely, suppose that there exists an EDTDst which defines the
language L(D). Towards a contradiction, assume that r is not equivalent to Σ∗.
Let wr be a string in L(r) and let w¬r be a Σ-string not in L(r). Consider
the trees t1 = s(b(wr)b(w¬r)) and t2 = s(b(w¬r)b(wr)). Clearly, t1 and t2 are
in L(D). However, the tree t = s(b(w¬r)b(w¬r)) obtained from t1 by replacing
its left subtree by the left subtree of t2 is not in L(D). According to Theorem
7.1 in [26], every tree language defined by a single-type EDTD is closed under
such an exchange of subtrees. So, this means that L(D) cannot be defined by an
EDTDst, which leads to the desired contradiction. �

7 Conclusion

The present work gives an overview of the complexity of the basic decision
problems for abstractions of several schema languages including numerical occur-
rence constraints and interleaving. W.r.t. intersection the complexity remains
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the same, while for inclusion and equivalence the complexity increases by
one exponential for DTDs and single-type EDTDs, and goes from exptime to
expspace for EDTDs. The results w.r.t. CHAREs also follow this pattern. We
further showed that the complexity of simplification increases to expspace.

We emphasize that this is a theoretical study delineating the worst case com-
plexity boundaries for the basic decision problems. Although these complexities
must be studied, we note that the regular expressions used in the hardness proofs
do not correspond at all to those employed in practice. Further, w.r.tẊSDs, our
abstraction is not fully adequate as we do not consider the one-unambiguity
(or unique particle attribution) constraint. However, it is doubtful that this
constraint is the right one to get tractable complexities for the basic decision
problems. Indeed, already intersection for unambiguous regular expressions is
pspace-hard [25] and inclusion for one-unambiguous RE(#)-expressions is conp-
hard [17]. It would therefore be desirable to find robust subclasses for which the
basic decision problems are in ptime.
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Abstract. We introduce a new abstract model of database query pro-
cessing, finite cursor machines, that incorporates certain data streaming
aspects. The model describes quite faithfully what happens in so-called
“one-pass” and “two-pass query processing”. Technically, the model is
described in the framework of abstract state machines. Our main results
are upper and lower bounds for processing relational algebra queries in
this model, specifically, queries of the semijoin fragment of the relational
algebra.

1 Introduction

We introduce and analyze finite cursor machines, an abstract model of database
query processing. Data elements are viewed as “indivisible” abstract objects with
a vocabulary of arbitrary, but fixed, functions. Relational databases consist of
finitely many finite relations over the data elements. Relations are considered
as tables whose rows are the tuples in the relation. Finite cursor machines can
operate in a finite number of modes using an internal memory in which they can
store bit strings. They access each relation through finitely many cursors, each
of which can read one row of a table at any time. The answer to a query, which
is also a relation, can be given through a suitable output mechanism. The model
incorporates certain “streaming” or “sequential processing” aspects by imposing
two restrictions: First, the cursors can only move on the tables sequentially in
one direction. Thus once the last cursor has left a row of a table, this row can
never be accessed again during the computation. Second, the internal memory is
limited. For our lower bounds, it will be sufficient to put an o(n) restriction on
the internal memory size, where n is the size (that is, the number of entries) of the
input database. For the upper bounds, no internal memory will be needed. The
model is clearly inspired by the abstract state machine (ASM) methodology [16],
and indeed we will formally define our model using this methodology. The model
was first presented in a talk at the ASM 2004 workshop [29].

Algorithms and lower bounds in various data stream models have received con-
siderable attention in recent years both in the theory community (e.g., [1,2,5,6,
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13,14, 18, 25]) and the database systems community (e.g., [3, 4, 7, 12, 15, 20, 26]).
Note that our model is fairly powerful; for example, the multiple cursors can
easily be used to perform multiple sequential scans of the input data. But more
than that; by moving several cursors asynchronously over the same table, entries
in different, possibly far apart, regions of the table can be read and processed
simultaneously. This way, different regions of the same or of different tables can
“communicate” with each other without requiring any internal memory, which
makes it difficult to use communication complexity to establish lower bounds.
The model is also powerful in that it allows arbitrary functions to access and
process data elements. This feature is very convenient to model “built in” stan-
dard operations on data types like integers, floating point numbers, or strings,
which may all be part of the universe of data elements.

Despite these powerful features, the model is weak in many respects. We
show that a finite cursor machine with internal memory size o(n) cannot even
test whether two sets A and B, given as lists, are disjoint, even if besides the
lists A and B, also their reversals are given as input. However, if two sets A
and B are given as sorted lists, a machine can easily compute the intersection.
Aggarwal et al. [1] have already made a convincing case for combining streaming
computations with sorting, and we will consider an extension of the model with
a sorting primitive.

Our main results are concerned with evaluating relational algebra queries in
the finite cursor machine model. Relational algebra forms the core of the stan-
dard query language SQL and is thus of fundamental importance for databases.
We prove that, when all sorted versions of the database relations are provided
as input, every operator of the relational algebra can be computed, except for
the join. The latter exception, however, is only because the output size of a
join can be quadratic, while finite cursor machines by their very definition can
output only a linear number of different tuples. A semijoin is a projection of
a join between two relations to the columns of one of the two relations (note
that the projection prevents the result of a semijoin from getting larger than
the relations to which the semijoin operation is applied). The semijoin algebra is
then a natural fragment of the relational algebra that may be viewed as a gener-
alization of acyclic conjunctive queries [9,22,21,30]. When sorted versions of the
database relations are provided as input, semijoins can be computed by finite
cursor machines. Consequently, every query in the semijoin fragment of the rela-
tional algebra can be computed by a composition of finite cursor machines and
sorting operations. This is interesting because it models quite faithfully what is
called “one-pass” and “two-pass processing” in database systems [11]. The ques-
tion then arises: are intermediate sorting operations really needed? Equivalently,
can every semijoin-algebra query already be computed by a single machine on
sorted inputs? We answer this question negatively in a very strong way, and this
is our main technical result: Just a composition of two semijoins R � (S � T )
with R and T unary relations and S a binary relation is not computable by a
finite cursor machine with internal memory size o(n) working on sorted inputs.
This result is quite sharp, as we will indicate.
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The paper is structured as follows: After fixing some notation in Section 2, the
notion of finite cursor machines is introduced in Section 3. The power of O(1)-
FCMs and of o(n)-FCMs is investigated in Sections 4 and 5. Some concluding
remarks and open questions can be found in Section 6.

Due to space limitations, some technical details of our proofs had to be de-
ferred to the full version of this paper, available on the authors’ websites.

2 Preliminaries

Throughout the paper we fix an arbitrary, typically infinite, universe E of “data
elements”, and we fix a database schema S. I.e., S is a finite set of relation names,
where each relation name has an associated arity, which is a natural number. A
database D with schema S assigns to each R ∈ S a finite, nonempty set D(R)
of k-tuples of data elements, where k is the arity of R. In database terminology
the tuples are often called rows. The size of database D is defined as the total
number of rows in D.

A query is a mapping Q from databases to relations, such that the relation
Q(D) is the answer of the query Q to database D. The relational algebra is a
basic language used in database theory to express exactly those queries that can
be composed from the actual database relations by applying a sequence of the
following operations: union, intersection, difference, projection, selection, and
joins. The meaning of the first three operations should be clear, the projection
operator πi1,...,ik

(R) returns the projection of a relation R to its components
i1, . . . , ik, the selection operator σp(i1,...,ik)(R) returns those tuples from R whose
i1th, . . . , ikth components satisfy the predicate p, and the join operator R ��θ S
(where θ is a conjunction of equalities of the form

∧k
s=1 xis = yjs) is defined

as {(a, b) : a ∈ R, b ∈ S, ais = bjs for all s ∈ {1, . . . , k}}. A natural sub-
language of the relational algebra is the so-called semijoin algebra where, instead
of ordinary joins, only semijoin operations of the form R�θS are allowed, defined
as {a ∈ R : ∃b ∈ S : ais = bjs for all s ∈ {1, . . . , k}}.

To formally introduce our computation model, we need some basic notions
from mathematical logic such as (many-sorted) vocabularies, structures, terms,
and atomic formulas.

3 Finite Cursor Machines

In this section we formally define finite cursor machines using the methodology
of Abstract State Machines (ASMs). Intuitively, an ASM can be thought of
as a transition system whose states are described by many-sorted first-order
structures (or algebras)1. Transitions change the interpretation of some of the
symbols—those in the dynamic part of the vocabulary—and leave the remaining

1 Beware that “state” refers here to what for Turing machines is typically called “con-
figuration”; the term “mode” is used for what for Turing machines is typically called
“state”.
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symbols—those in the static part of the vocabulary—unchanged. Transitions
are described by a finite collection of simple update rules, which are “fired”
simultaneously (if they are inconsistent, no update is carried out). A crucial
property of the sequential ASM model, which we consider here, is that in each
transition only a limited part of the state is changed. The detailed definition of
sequential ASMs is given in the Lipari guide [16], but our presentation will be
largely self-contained.

We now describe the formal model of finite cursor machines.
The Vocabulary: The static vocabulary of a finite cursor machine (FCM)

consists of two parts, Υ0 (providing the background structure) and ΥS (providing
the particular input).

Υ0 consists of three sorts: Element, Bitstring, and Mode. Furthermore, Υ0 may
contain an arbitrary number of functions and predicates, as long as the output
sort of each function is Bitstring. Finally, Υ0 contains an arbitrary but finite
number of constant symbols of sort Mode, called modes. The modes init , accept ,
and reject are always in Υ0.

ΥS provides the input. For each relation name R ∈ S, there is a sort RowR in
ΥS . Moreover, if the arity of R is k, we have function symbols attributei

R : RowR→
Element for i = 1, . . . , k. Furthermore, we have a constant symbol ⊥R of sort
RowR. Finally, we have a function symbol nextR : RowR → RowR in ΥS .

The dynamic vocabulary ΥM of an FCM M contains only constant symbols.
This vocabulary always contains the symbol mode of sort Mode. Furthermore,
there can be a finite number of symbols of sort Bitstring, called registers. More-
over, for each relation name R in the database schema, there are a finite number
of symbols of sort RowR, called cursors on R.

The Initial State: Our intention is that FCMs will work on databases.
Database relations, however, are sets, while FCMs expect lists of tuples as inputs.
Therefore, formally, the input to a machine is an enumeration of a database,
which consists of enumerations of the database relations, where an enumeration
of a relation is simply a listing of all tuples in some order. An FCM M that is set
to run on an enumeration of a database D then starts with the following structure
M over the vocabulary Υ0 ∪ ΥS ∪ ΥM : The interpretation of Element is E; the
interpretation of Bitstring is the set of all finite bitstrings; and the interpretation
of Mode is simply given by the set of modes themselves. For technical reasons,
we must assume that E contains an element ⊥. For each R ∈ S, the sort RowR

is interpreted by the set D(R) ∪ {⊥R}; the function attributei
R is defined by

(x1, . . . , xk) &→ xi, and ⊥R &→ ⊥; finally, the function nextR maps each row to its
successor in the list, and maps the last row to ⊥R. The dynamic symbol mode
initially is interpreted by the constant init ; every register contains the empty
bitstring; and every cursor on a relation R contains the first row of R.

The Program of an FCM: A program for the machine M is now a program
as defined as a basic sequential program in the sense of ASM theory, with the
important restriction that all basic updates concerning a cursor c on R must be
of the form c := nextR(c).
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Thus, basic update rules of the following three forms are rules: mode := t,
r := t, and c := nextR(c), where t is a term over Υ0 ∪ ΥS ∪ ΥM , and r is a
register and c is a cursor on R. The semantics of these rules is the obvious one:
Update the dynamic constant by the value of the term. Update rules r1, . . . , rm

can be combined to a new rule par r1 . . . rm endpar, the semantics of which is:
Fire rules r1, . . . , rm in parallel; if they are inconsistent do nothing. Furthermore,
if r1 and r2 are rules and ϕ is an atomic formula over Υ0 ∪ ΥS ∪ ΥM , then also
if ϕ then r1 else r2 endif is a rule. The semantics is obvious.

Now, an FCM program is just a single rule. (Since finitely many rules can be
combined to one using the par. . . end construction, one rule is enough.)

The Computation of an FCM: Starting with the initial state, successively
apply the (single rule of the FCM’s) program until mode is equal to accept or to
reject . Accordingly, we say that M terminates and accepts, respectively, rejects
its input.

Given that inputs are enumerations of databases, we must be careful to define
the result of a computation on a database. We agree that an FCM accepts a
database D if it accepts every enumeration of D. This already allows us to use
FCMs to compute decision queries. In the next paragraph we will see how FCMs
can output lists of tuples. We then say that an FCM M computes a query Q if on
each database D, the output of M on any enumeration of D is an enumeration
of the relation Q(D). Note that later we will also consider FCMs working only
on sorted versions of database relations: in that case there is no ambiguity.

Producing Output: We can extend the basic model so that the machine
can output a list of tuples. To this end, we expand the dynamic vocabulary ΥM

with a finite number of constant symbols of sort Element, called output registers,
and with a constant of sort Mode, called the output mode. The output registers
can be updated following the normal rules of ASMs. In each state of the finite
cursor machine, when the output mode is equal to the special value out , the
tuple consisting of the values in the output registers (in some predefined order)
is output; when the output mode is different from out , no tuple is output. The
initial settings of the output registers and the output mode are as follows: each
output register contains the value ⊥; the output mode is equal to init . We denote
the output of a machine M working on a database D by M(D).

Space Restrictions: For considering FCMs whose bitstring registers are
restricted in size, we use the following notation: Let M be a finite cursor machine
and F a class of functions from N to N. Then we say that M is an F-machine (or,
an F-FCM ) if there is a function f ∈ F such that, on each database enumeration
D of size n, the machine only stores bitstrings of length f(n) in its registers. We
are mostly interested in O(1)-FCMs and o(n)-FCMs. Note that the latter are
quite powerful. For example, such machines can easily store the positions of the
cursors. On the other hand, O(1)-machines are equivalent to FCMs that do not
use registers at all (because bitstrings of constant length could also be simulated
by finitely many modes).

Example 1. The following FCM program works on a ternary relation R(A, B, C)
and produces the sum of attributes A and B for each row with C at least 100.



Database Query Processing Using Finite Cursor Machines 289

if outputmode = out then
par outputmode := init , c := nextR(c) endpar
else if outputmode <> out and attribute3

R(c) > 100 then
par outputmode := out , out1 := attribute1

R(c) + attribute2
R(c) endpar

else c := nextR(c) endif endif

3.1 Discussion of the Model

Storing Bitstrings instead of Data Elements: An important question
about our model is the strict separation between data elements and bitstrings.
Indeed, data elements are abstract entities, and our background structure may
contain arbitrary functions and predicates, mixing data elements and bitstrings,
with the important restriction that the output of a function is always a bitstring.
At first sight, a simpler way to arrive at our model would be without bitstrings,
simply considering an arbitrary structure on the universe of data elements. Let
us call this variation of our model the “universal model”.

Note that the universal model can easily become computationally complete.
It suffices that finite strings of data elements can somehow be represented by
other data elements, and that the background structure supplies the necessary
manipulation functions for that purpose. Simple examples are the natural num-
bers with standard arithmetic, or the strings over some finite alphabet with
concatenation. Thus, if we would want to prove complexity lower bounds in the
universal model, while retaining the abstract nature of data elements and oper-
ations on them, it would be necessary to formulate certain logical restrictions on
the available functions and predicates on the data elements. Finding interesting
such restrictions is not clear to us. In the model with bitstrings, however, one can
simply impose restrictions on the length of the bitstrings stored in registers, and
that is precisely what we will do. Of course, the unlimited model with bitstrings
can also be computationally complete. It suffices that the background structure
provides a coding of data elements by bitstrings.

Element Registers: The above discussion notwithstanding, it might still
be interesting to allow for registers that can remember certain data elements
that have been seen by the cursors, but without arbitrary operations on them.
Formally, we would expand the dynamic vocabulary ΥM with a finite number
of constant symbols of sort Element, called element registers. It is easy to see,
however, that such element registers can already be simulated by using additional
cursors, and thus do not add anything to the basic model.

Running Time and Output Size: A crucial property of FCMs is that all
cursors are one-way. In particular, an FCM can perform only a linear number
of steps where a cursor is advanced. As a consequence, an FCM with output
can output only a linear number of different tuples. On the other hand, if the
background structure is not restricted in any way, arbitrary computations on
the register contents can occur in between cursor advancements. As a matter
of fact, in this paper we will present a number of positive results and a num-
ber of negative results. For the positive results, registers will never be needed,
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and in particular, FCMs run in linear time. For the negative results, arbitrary
computations on the registers will be allowed.

Look-ahead: Note that the terms in the program of an FCM can contain
nested applications of the function nextR, such as nextR(nextR(c)). In some
sense, such nestings of depth up to d correspond to a look-ahead where the
machine can access the current cursor position as well as the next d positions. It
is, however, straightforward to see that every k-cursor FCM with look-ahead ≤ d
can be simulated by a (k× d)-cursor FCM with look-ahead 0. Thus, throughout
the remainder of this paper we will w.l.o.g. restrict attention to FCMs that have
look-ahead 0, i.e., to FCMs where the function nextR never occurs in if-conditions
or in update rules of the form mode := t or r := t.

The Number of Cursors: In principle we could allow more than constantly
many cursors, which would enable us to store that many data elements. We stick
with the constant version for the sake of technical simplicity, and also because
our upper bounds only need a constant number of cursors. Note, however, that
our main lower bound result can be extended to a fairly big number of cursors
(cf. Remark 11).

4 The Power of O(1)-Machines

We start with a few simple observations on the database query processing capa-
bilities of FCMs, with or without sorting, and show that sorting is really needed.

Let us first consider compositions of FCMs in the sense that one machine
works on the outputs of several machines working on a common database.

Proposition 2. Let M1, . . . , Mr be FCMs working on a schema S, let S′ be
the output schema consisting of the names and arities of the output lists of
M1, . . . , Mr, and let M0 be an FCM working on schema S′. Then there ex-
ists an FCM M working on schema S, such that M(D) = M0(D′), for each
database D with schema S and the database D′ that consists of the output rela-
tions M1(D), . . . , Mr(D).

The proof is obvious: Each row in a relation Ri of database D′ is an output row
of a machine Mi working on D. Therefore, each time M0 moves a cursor on Ri,
the desired finite cursor machine M will simulate that part of the computation
of Mi on D until Mi outputs a next row.

Let us now consider the operators from relational algebra: Clearly, selection
can be implemented by an O(1)-FCM. Also, projection and union can easily be
accomplished if either duplicate elimination is abandoned or the input is given
in a suitable order. Joins, however, are not computable by an FCM, simply
because the output size of a join can be quadratic, while finite cursor machines
can output only a linear number of different tuples.

In stream data management research [4], one often restricts attention to sliding
window joins for a fixed window size w. This means that the join operator is
successively applied to portions of the data, each portion consisting of a number
w of consecutive rows of the input relations. It is then straightforward to obtain
the following:
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Proposition 3. For every fixed window size w ∈ N there is an O(1)-FCM that
implements the sliding window join operator of width w. However, no FCM (with
registers of arbitrary size) can compute the full join of two relations of arity ≥ 2.

Using more elaborate methods, we can moreover show that even checking
whether the join is nonempty (so that output size is not an issue) is hard for
FCMs. Specifically, we will consider the problem whether two sets intersect,
which is the simplest kind of join. We will give two proofs: an elegant one for
O(1)-machines, using a proof technique that is simple to apply, and an intricate
one for more general o(n)-machines (Theorem 12). Note that the following result
is valid for arbitrary (but fixed) background structures.

Theorem 4. There is no O(1)-FCM that checks for two sets R and S whether
R ∩ S �= ∅. (This holds even if also the reversals of R and S are supplied as
input.)

Proof. We give here the proof without the reversals; the proof with reversals can
be obtained using the proof technique of our main result (Theorem 10). Let M
be an O(1)-FCM that is supposed to check whether R ∩ S �= ∅. Without loss
of generality, we assume that E is totally ordered by a predicate < in Υ0. Using
Ramsey’s theorem, we can find an infinite set V ⊆ E over which the truth of
the atomic formulas in M ’s program on tuples of data elements only depends
on the way these data elements compare w.r.t. < (details on this can be found,
e.g., in Libkin’s textbook [24, Section 13.3]). Now choose 2n elements in V , for
n large enough, satisfying a1 < a′

1 < · · · < an < a′
n, and consider the run of M

on R = {a1, . . . , an} (listed in that order) and S = {a′
n, . . . , a′

1}. We say that a
pair of cursors “checks” i if in some state during the run, one of the cursors is
on ai and the other one is on a′

i. By the way the lists are ordered, every pair
of cursors can check only one i. Hence, some j is not checked. Now replace a′

j

in S by aj . The machine will not notice this, because aj and a′
j have the same

relative order with respect to the other elements in the lists. The intersection of
R and S, however, is now nonempty, so M is wrong. ��

Of course, when the sets R and S are given as sorted lists, an FCM can easily
compute R∩S by performing one simultaneous scan over the two lists. Moreover,
while the full join is still not computable simply because its output is too large,
the semijoin R�S is also easily computed by an FCM on sorted inputs. Further-
more, the same holds for the difference R−S. These easy observations motivate
us to extend FCMs with sorting, in the spirit of “two-pass query processing”
based on sorting [11].

Formally, assume that E is totally ordered by a predicate < in Υ0. Then a
relation of arity p can be sorted “lexicographically” in p! different ways: for
any permutation ρ of {1, . . . , p}, let sortρ denote the operation that sorts a p-ary
relation ρ(1)-th column first, ρ(2)-th column second, and ρ(p)-th column last. By
an FCM working on sorted inputs of a database D, we mean an FCM that gets
all possible sorted orders of all relations of D as input lists. We then summarize
the above discussion as follows:
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Proposition 5. Each operator of the semijoin algebra (i.e, union, intersection,
difference, projection, selection, and semijoin) can be computed by an O(1)-FCM
on sorted inputs.

Corollary 6. Every semijoin algebra query can be computed by a composition
of O(1)-FCMs and sorting operations.

Proof. Starting from the given semijoin algebra expression we replace each op-
erator by a composition of one FCM with the required sorting operations. ��

The simple proof of the above corollary introduces a lot of intermediate sorting
operations. In some cases, intermediate sorting can be avoided by choosing in the
beginning a particularly suitable ordering that can be used by all the operations
in the expression [28].

Example 7. Consider the query (R−S) �x2=y2 T , where R, S and T are binary
relations. Since the semijoin compares the second columns, it needs its inputs
sorted on second columns first. Hence, if R− S is computed on sort(2,1)(R) and
sort(2,1)(S) by some machine M , then the output of M can be piped directly to
a machine M ′ that computes the semijoin on that output and on sort(2,1)(T ).
By compositionality (Proposition 2), we can then even compose M and M ′ into
a single FCM. A stupid way to compute the same query would be to compute
R− S on sort(1,2)(R) and sort(1,2)(S), thus requiring a re-sorting of the output.

The question then arises: can intermediate sorting operations always be avoided?
Equivalently, can every semijoin algebra query already be computed by a single
machine on sorted inputs? We can answer this negatively. Our proof applies a
known result from the classical topic of multihead automata, which is indeed to
be expected given the similarity between multihead automata and FCMs.

Specifically, the monochromatic 2-cycle query about a binary relation E and
a unary relation C asks whether the directed graph formed by the edges in
E consists of a disjoint union of 2-cycles where the two nodes on each cycle
either both belong to C or both do not belong to C. Note that this query is
indeed expressible in the semijoin algebra as “Is e1 ∪ e2 ∪ e3 empty?”, where
e1 := E− (E �

x2=y1
x1=y2

E), where e2 := E �
x2=y1
x1 �=y2

E, and where e3 := (E �
x1=y1

C) �
x2=y1

((π1(E) ∪ π2(E)) − C)
(We use a nonequality in the semijoin condition, but that is easily incorporated

in our formalism as well as computed by an FCM on sorted inputs.)

Theorem 8. The monochromatic 2-cycle query is not computable by an O(1)-
FCM on sorted inputs.

Proof sketch. The proof is via a reduction from the Palindrome problem. As was
proved by Hromkovič [19], the set of Palindromes cannot be decided by a one-way
multi-head deterministic sensing finite state automaton (1DSeFA(k)). It can be
shown that Hromkovič’s proof can be generalized to the presence of an arbitrary
but finite number of oblivious right-to-left heads that can only move from right
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to left on the input tape sensing other heads, but not read the symbols on the
tape. Now let M be an O(1)-FCM that is supposed to solve the monochromatic
2-cycle query. Again using Ramsey’s theorem, we can find an infinite set V ⊆ E
over which the truth of the atomic formulas in M ’s program on tuples of data
elements only depends on the way these data elements compare w.r.t. <. Hence,
there is an O(1)-FCM M ′ with only < in its rules, and equivalent to M over V .
We now come to the reduction. For a1 < · · · < an ∈ V , with n large enough, fix
relation E as {(ai, an−i+1) | 1 ≤ i ≤ n}. Given a string w = w1 · · ·wn over {0, 1},
we define relation C = {ai | wi = 1}. It is then clear that w is a palindrome
if and only if E and C form a positive instance to the monochromatic 2-cycle
query. From FCM M ′ we can then construct a 1DSeFA(k) that would decide
Palindrome, and thus arrive at a contradiction. ��

An important remark is that the above proof only works if the set C is only
given in ascending order. In practice, however, one might as well consider sorting
operations in descending order, or, for relations of higher arity, arbitrary mixes
of ascending and descending orders on different columns. Indeed, that is the
general format of sorting operations in the database language SQL. We thus
extend our scope to sorting in descending order, and to much more powerful
o(n)-machines, in the next section.

5 Descending Orders and the Power of o(n)-Machines

We already know that the computation of semijoin algebra queries by FCMs
and sortings in ascending order only requires intermediate sortings. So, the next
question is whether the use of descending orders can avoid intermediate sorting.
We will answer this question negatively, and will do this even for o(n)-machines
(whereas Theorem 8 is proven only for O(1)-machines).

Formally, on a p-ary relation, we now have sorting operations sortρ,f , where
ρ is as before, and f : {1, . . . , p} → {�, �} indicates ascending or descending. To
distinguish from the terminology of the previous section, we talk about an FCM
working on AD-sorted inputs to make clear that both ascending and descending
orders are available.

Before we show our main technical result, we remark that the availability
of sorted inputs using descending order allows O(1)-machines to compute more
relational algebra queries. Indeed, we can extract such a query from the proof of
Theorem 8. Specifically, the “Palindrome” query about a binary relation R and
a unary relation C asks whether R is of the form {(ai, an−i+1) | i = 1, . . . , n}
with a1 < · · · < an, and C ⊆ {a1, . . . , an} such that ai ∈ C ⇔ an−i+1 ∈ C.
We can express this query in the relational algebra (using the order predicate in
selections). In the following proposition, the lower bound was already shown in
Theorem 8, and the upper bound is easy.

Proposition 9. The “Palindrome” query cannot be solved by an O(1)-FCM on
sorted inputs, but can be solved by an O(1)-FCM on AD-sorted inputs.
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We now establish:

Theorem 10. The query RST := “Is R�x1=y1 (S�x2=y1 T ) nonempty?”, where
R and T are unary and S is binary, is not computable by any o(n)-FCM working
on AD-sorted inputs.

Proof. For the sake of contradiction, suppose M is a o(n)-FCM computing RST
on sorted inputs. Without loss of generality, we can assume that M accepts or
rejects the input only when all cursors are positioned at the end of their lists.

Let k be the total number of cursors of M , let r be the number of registers
and let m be the number of modes occurring in M ’s program. Let v :=

(
k
2

)
+ 1.

Choose n to be a multiple of v2, and choose 4n values in E satisfying a1 <
a′
1 < a2 < a′

2 < · · · < an < a′
n < b1 < b′1 < · · · < bn < b′n.

Divide the ordered set {1, . . . , n} evenly in v consecutive blocks, denoted by
B1, . . . , Bv. So, Bi equals the set {(i− 1)n

v + 1, . . . , in
v }. Consider the following

permutation of {1, . . . , n}:
π : (i− 1)·nv + s &→ (v − i)·nv + s

for 1 ≤ i ≤ v and 1 ≤ s ≤ n
v . So, π maps subset Bi to subset Bv−i+1, and vice

versa.
We fix the binary relation S of size 2n for the rest of this proof as follows:

S :=
{
(a, bπ) : � ∈ {1, . . , n}

}
∪
{
(a′

, b
′
π) : � ∈ {1, . . , n}

}
.

Furthermore, for all sets I, J ⊆ {1, . . . , n}, we define unary relations R(I) and
T (J) of size n as follows:

R(I) := {a : � ∈ I} ∪ {a′
 : � ∈ Ic}

T (J) := {b : � ∈ J} ∪ {b′ : � ∈ Jc},
where Ic denotes {1, . . . , n} − I. By D(I, J), we denote the database consisting
of the lists sort�

(
R(I)

)
, sort�

(
R(I)

)
, sort�

(
T (J)

)
, sort�

(
T (J)

)
, and all sorted

versions of S. It is easy to see that the nested semijoin of R(I), S, and T (J) is
empty if, and only if, (π(I) ∩ J) ∪ (π(I)c ∩ Jc) = ∅. Therefore, for each I, the
query RST returns false on instance D(I, π(I)c), which we will denote by D(I)
for short. Furthermore, we observe for later use:

the query RST on D(I, π(J)c) returns true if, and only if, I �= J . (∗)
To simplify notation a bit, we will in the following use R� and T� to denote

lists sort�

(
R(I)

)
and sort�

(
T (I)

)
sorted in ascending order, and we use R� and

T� to denote the lists sort�

(
R(I)

)
and sort�

(
T (I)

)
sorted in descending order.

Consider a cursor c on list R� of the machine M . In a certain state (i.e.,
configuration), we say that c is on position � on R� if M has executed �−1
update rules c := nextR�

(c). I.e., if cursor c is on position � on R�, then c sees
value a or a′

. We use analogous notation for the sorted lists R�, T�, and T�.
I.e., if a cursor c is on position � on R� (resp. T�, resp. T�), then c sees value
an−+1 or a′

n−+1 (resp. b or b′, resp. bn−+1 or b′n−+1).
Consider the run of M on D(I). We say that a pair of cursors of M checks

block Bi if at some state during the run
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– one cursor in the pair is on a position in Bi on R� (i.e., the cursor reads an
element a or a′

, for some � ∈ Bi) and the other cursor in the pair is on a
position in Bv−i+1 on T� (i.e., the cursor reads an element bπ or b′π, for
some � ∈ Bi), or

– one cursor in the pair is on a position in Bv−i+1 on R� (i.e., the cursor reads
an element a or a′

, for some � ∈ Bi) and the other cursor in the pair is on
a position in Bi on T� (i.e., the cursor reads an element bπ or b′π, for some
� ∈ Bi).

Note that each pair of cursors working on the ascendingly sorted lists R� and
T� or on the descendingly sorted lists R� and T�, can check at most one block.
There are v blocks and at most

(
k
2

)
< v cursor pairs. Hence, there is one block

Bi0 that is not checked by any pair of cursors working on R� and T� or on R�

and T�. In order to also deal with pairs of cursors on R� and T� or on R� and T�,
we further divide each block Bi evenly into v consecutive subblocks, denoted by
B1

i , . . . , Bv
i . So, Bj

i equals the set {(i− 1)n
v + (j − 1) n

v2 + 1, . . . , (i− 1)n
v + j n

v2 }.
We say that a pair of cursors of M checks subblock Bj

i if at some state during
the run

– one cursor in the pair is on a position in Bj
i on R� (thus reading an element

a or a′
, for some � ∈ Bj

i ) and the other cursor in the pair is on a position
in Bv−j+1

i on T� (thus reading an element bπ or b′π, for some � ∈ Bj
i ), or

– one cursor in the pair is on a position in Bv−j+1
v−i+1 on R� (thus reading an

element a or a′
, for some � ∈ Bj

i ) and the other cursor in the pair is on
a position in Bj

v−i+1 on T� (thus reading an element bπ or b′π, for some
� ∈ Bj

i ).

Note that each pair of cursors working either on R� and T� or on R� and T�, can
check at most one subblock in Bi0 . There are v subblocks in Bi0 and at most(
k
2

)
< v cursor pairs. Hence, there is at least one subblock Bj0

i0
that is not checked

by any pair of cursors working either on R� and T� or on R� and T�. Note that,
since the entire block Bi0 is not checked by any pair or cursors working either
on R� and T� or on R� and T�, the subblock Bj0

i0
is thus not checked by any

pair of cursors (on R�, R�, T�, T�).
We say that M checks subblock Bj

i if at least one pair of cursors of M checks
subblock Bj

i .
At this point it is useful to introduce the following terminology. By “block

Bj0
i0

on R”, we refer to the positions in Bj0
i0

of list R� and to the positions in
Bv−j0+1

v−i0+1 of list R�, i.e., “block Bj0
i0

on R” contains values a or a′
 where � ∈ Bj0

i0
.

By “block Bj0
i0

on T ”, however, we refer to the positions in Bj0
v−i0+1 of list T� and

to the positions in Bv−j0+1
i0

of list T�, i.e., “block Bj0
i0

on T ” contains values bπ

where � ∈ Bj0
i0

. Note that this terminology is consistent with the way we have
defined the notion of “checking a block”.

It can be shown that there exist at least two different instances D(I) and
D(J) with the following crucial properties:
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1. The query RST returns false on D(I) and on D(J) (cf. (∗));
2. M does not check block Bj0

i0
on D(I), nor on D(J);

3. D(I) and D(J) differ on R and T only in block Bj0
i0

; and

4. For each cursor c, when c has just left block Bj0
i0

(on R or T ) in the run on
D(I), the machine M is in the same state as when c has just left block Bj0

i0
in the run on D(J).

Let V0,V1, . . . be the sequence of states in the run of M on D(I) and let
W0,W1, . . . be the sequence of states in the run of M on D(J). Let tIc and tJc be
the points in time when the cursor c of M has just left block Bj0

i0
in the run on

D(I) and D(J), respectively. Because of Property 4 above, VtI
c

equals WtJ
c

for
each cursor c. Note that the start states V0 and W0 are equal.

Now consider instance Derr := D(I, π(J)c). So, Derr has the same lists R�, R�

as D(I) and the same lists T�, T� as D(J). It can now be shown that the (re-
jecting) runs of M on D(I) and D(J) can be combined to obtain a run of M on
Derr which rejects Derr. This is wrong, however, because due to (∗) the query
RST returns true on Derr. Finally, this completes the proof of Theorem 10. ��

Remark 11. (a) An analysis of the proof of Theorem 10 shows that we can make
the following, more precise statement: Let k, m, r, s : N → N such that

k(n)6 · (log m(n)) · r(n) ·max(s(n), log n) = o(n).

Then for sufficiently large n, there is no FCM with at most k(n) cursors, m(n)
modes, and r(n) registers each holding bitstrings of length at most s(n) that, for
all unary relations R, T and binary relations S of size n decides if R �x1=y1

(S �x2=y1 T ) is nonempty. (In the statement of Theorem 10, k, m, r are con-
stant.) This is interesting in particular because we can use a substantial number
of cursors, polynomially related to the input size, to store data elements and still
obtain the lower bound result.
(b) Note that Theorem 10 is sharp in terms of arity: if S would have been unary
(and R and T of arbitrary arities), then the according RST query would have
been computable on sorted inputs.
(c) Furthermore, Theorem 10 is also sharp in terms of register bitlength: Assume
data elements are natural numbers, and focus on databases with elements from
1 to O(n). If the background provides functions for setting and checking the i-th
bit of a bitstring, the query RST is easily computed by an O(n)-FCM.

By a variation of the proof of Theorem 10 we can also show the following
strengthening of Theorem 4:

Theorem 12. There is no o(n)-FCM working on enumerations of unary rela-
tions R and S and their reversals, that checks whether R ∩ S �= ∅.

Note that Theorems 10 and 12 are valid for arbitrary background structures.
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6 Concluding Remarks

A natural question arising from Corollary 6 is whether finite cursor machines
with sorting are capable of computing relational algebra queries beyond the
semijoin algebra. The answer is affirmative:

Proposition 13. The boolean query over a binary relation R that asks if R =
π1(R) × π2(R) can be computed by an O(1)-FCM working on sort(1,2),(�,�)(R)
and sort(2,1),(�,�)(R).

The proof is straightforward. Note that, using an Ehrenfeucht-game argument,
one can indeed prove that the query from Proposition 13 is not expressible in
the semijoin algebra [23].

We have not been able to solve the following:

Problem 14. Is there a boolean relational algebra query that cannot be computed
by any composition of O(1)-FCMs (or even o(n)-FCMs) and sorting operations?

Under a plausible assumption from parameterized complexity theory [10, 8] we
can answer the O(1)-version of this problem affirmatively for FCMs with a de-
cidable background structure.

There are, however, many queries that are not definable in relational algebra,
but computable by FCMs with sorting. By their sequential nature, FCMs can
easily compare cardinalities of relations, check whether a directed graph is reg-
ular, or do modular counting—and all these tasks are not definable in relational
algebra. One might be tempted to conjecture, however, that FCMs with sorting
cannot go beyond relational algebra with counting and aggregation, but this is
false:

Proposition 15. On a ternary relation G and two unary relations S and T ,
the boolean query “Check that G = π1,2(G) × (π1(G) ∪ π2(G)), that π1,2(G)
is deterministic, and that T is reachable from S by a path in π1,2(G) viewed
as a directed graph” is not expressible in relational algebra with counting and
aggregation, but computable by an O(1)-FCM working on sorted inputs.
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Constant-Memory Validation of Streaming XML
Documents Against DTDs

Luc Segoufin and Cristina Sirangelo
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Abstract. In this paper we investigate the problem of validating, with constant
memory, streaming XML documents with respect to a DTD. Such constant mem-
ory validations can only be performed for some but not all DTDs. This paper
gives a non trivial interesting step towards characterizing those DTDs for which
a constant-memory on-line algorithm exists.

1 Introduction

The Extended Markup Language (XML) is emerging as the standard for data exchange
on the Web. Many applications require on-line processing of large amounts of data
in XML format using limited memory. Such processing includes querying XML docu-
ments, computing running aggregates of streams of numerical data, and validating XML
documents against given Document Type Definitions (DTDs). For each query, for each
aggregate and for each DTD, one issue is then to see what would be the minimal amount
of memory which is really needed in order to process it on-line.

In this paper we are concerned with those validation problems that can be processed
on-line and using a constant amount of memory. The problem of validating XML doc-
uments against a given DTD is to find out whether the document conforms the specifi-
cation given by the DTD. We consider only simple DTDs that do not have any integrity
constraint, and we want to perform this validation on-line. As we consider only simple
DTDs, data values are not relevant for validation, and we can view our XML docu-
ment as a stream of symbols representing the sequence of opening/closing tags of the
document. Given such a stream, in a single pass and using a fixed amount of mem-
ory, depending on the DTD, but not on the size of the XML document, we want to be
able to tell whether the document conforms the DTD or not. In other words, we are
looking for a finite-state automaton (FSA) performing a pass on the XML document,
as it streams through the network, and testing conformance with the DTD. An easy
observation shows that this is not always possible for all DTDs ([4]).

As pointed out in [4], a FSA can certainly not check that the document is well-formed.
By this we mean that the sequence of opening/closing tags is well balanced. But even if
we take this for granted, and this is what we are going to do in this paper, many DTDs
cannot be validated on-line using a FSA.

In this paper we tackle the question of finding those DTDs that can be validated
on-line using a FSA. We call such DTDs streamable . The main questions we address
are: Which are the streamable DTDs? Is it decidable whether a DTD is streamable? If
a DTD is streamable can we compute a FSA which performs the validation?

T. Schwentick and D. Suciu (Eds.): ICDT 2007, LNCS 4353, pp. 299–313, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



300 L. Segoufin and C. Sirangelo

We don’t provide a full answer to these questions, but we make a significant step
towards answering them.

A simple observation made in [4] shows that if a DTD is not recursive then it is
streamable. When the DTD is recursive, a FSA gets immediately lost in the depth of the
tree and a first intuition that one could have is that it can only check locally whether two
successive tags are consistent with those appearing in the DTD. This was the approach
taken in [4]. Given a DTD τ , a local-automaton 1 for τ can be constructed which checks
that each two successive letters are consistent with those appearing in τ . The hope was
to prove that a DTD is streamable iff the set of trees accepted by the local-automaton
for τ equals the set of trees valid for τ . In [4] it was shown that this is indeed the case
for so called “fully-recursive” DTDs, but the paper ended with an example of a DTD
showing that doing modulo-2 counting on the number of occurrences of two successive
letters could be necessary to validate it on-line.

We thus generalize the notion of local-automaton by extending it using an arbitrary
finite group operation on the occurrences of two successive letters. In that respect, a
modulo-counting operation corresponds to the case finite groups generated by a single
element. Given any finite group H and any DTD τ we define a notion of H-local-
automaton for τ which extends local-automaton by combining it with computation in
H . We conjecture that H-local-automata capture the notion of streamability: a DTD
τ is streamable iff there exists a finite group H such that the H-local-automaton for
τ defines the same set of trees than τ . We give a necessary and sufficient condition
on a DTD τ to admit a H-local-automaton. This condition is expressed in terms of a
word problem for finite groups. Unfortunately we don’t know yet whether this condition
is decidable or not. Recall that the word problem for finite groups is undecidable in
general [3,5].

We also provide a decidable necessary and sufficient criterion on the DTDs τ for
which there exists a finite commutative group H such that the H-local-automaton for τ
defines the same set of trees as τ .

Maybe one of our most interesting contribution lies in the concepts we develop
here in order to obtain our results. We believe that those will eventually be sufficient
for finding the right characterization. We also think that they could be used in other
contexts.

Related work. This paper can be seen as a continuation of [4]. In [4] several neces-
sary conditions were given for a DTD to be streamable. We reuse one of them in an
essential way in this paper, while the others will follow from our results. Those condi-
tions were obtained using the notion of local-automaton that is also the starting brick
of our construction here. In [4] a decidable characterization of DTDs streamable by a
local-automaton was also given. Here we extend this result by providing a decidable
characterization of DTDs streamable using a H-local-automaton for some finite com-
mutative group H . The techniques we use in this paper are completely different than
the one used in [4]. We have good hope that these new techniques could be pushed to
eventually obtain the complete characterization of streamable DTDs.

1 This automaton was called “standard automaton” in [4], but we believe that this terminology
is misleading.
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The work of [4] was also continued in [2]. In this paper some limited amount of
memory was allowed by using restricted pushdown automata instead of FSA.

Testing whether a DTD is streamable can be seen as the problem of deciding which
subclass of regular tree languages a FSA could accept when trees are coded à la XML,
using a well-formed sequence of opening and closing tags. With this coding the string
abb̄cc̄ā codes the tree rooted in a node labelled with a and having two children, the
left one labelled with b and the right one labelled with c. The same question naturally
arises with any other coding for trees. For instance one could use the functional coding
which codes the tree above with the string a(b()c()). Using this coding one could now
ask which are the regular tree languages a FSA could recognize. It is easy to see that
this class is strictly contained in the class of tree languages recognized by a FSA using
the XML coding. The reason is that when reading a closing bracket in the functional
coding the FSA does not know the label of the node this bracket closes, while this is
known in the case of the XML coding. In [1] a decidable characterization of streamable
languages using the functional coding was given. It seems quite difficult to extend their
ideas to the XML coding.

The paper is organized as follows. After introducing the necessary background no-
tations in Section 2, we define in Section 3 the central notions of this paper: Graph of a
DTD and separating group for a DTD. In Section 4 we define, for any finite group H ,
the notion of H-local-automaton for a DTD and show that the existence of a separat-
ing group for a DTD is equivalent to the existence of a H-local-automaton accepting
exactly all the valid trees for this DTD. Finally in Section 5 we give a decidable char-
acterization of those DTDs having a H-local-automaton, for some finite commutative
group H , which accepts exactly all the valid trees.

2 Notations

We fix a finite set of labels Σ.

Trees. A tree with labels in Σ is a finite unranked ordered tree whose nodes have
labels from Σ. To capture the on-line behavior, we will manipulate trees via string
representations corresponding to a depth-first traversal or, equivalently, to the sequence
of opening/closing tags of the document represented by t. To this end we view Σ as the
set of opening tag symbols while Σ̄ = {ā | a ∈ Σ} is the set of closing tag symbols.
Now the string representation of a tree t is the string, also denoted by t, defined by
induction as: if t has a single node of label a, then t = aā. It t consists of a root labeled
a and subtrees t1 . . . tk then t is the string a t1 . . . tk ā.

For instance the string representation of the tree

r

a

b

c

c

a

b c

is the string rabcc̄b̄cc̄āabb̄cc̄ār̄. We denote by Ltree the set of (string representation of)
trees.
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DTDs. A DTD consists of an extended context-free grammar where each rule associates
to a label a ∈ Σ a regular expression ra over Σ, together with a distinguished initial
symbol. A tree t is conform to a DTD τ (or t is valid w.r.t τ ) if the label of its root is
the label of the initial symbol of τ and, for each node x ∈ t of label a, the sequence of
labels of the children of x form a word of ra. For instance the tree above is valid for

the DTD2:

r → a∗

a → bc
b → c?

c → ε

. Since regular expressions are closed under union, we can assume

w.l.o.g. that each DTD has a unique rule a → ra for each symbol a ∈ Σ.
Each DTD τ , defines a language of trees, denoted L(τ) consisting of all (string

representation of) trees valid for τ .

Streaming. We are interested in DTDs τ whose membership problem can be solved
using a finite memory device assuming that (the string representation of) the input tree
is well formed (is in Ltree). More formally we say that a DTD τ is streamable if there
exists a regular language R over Σ such that L(τ) = Ltree∩R. If R is such that L(τ) =
Ltree ∩ R we say that R recognizes τ . For instance the DTD τ : r → a, a → a | ε is
streamable as L(τ) = {ranānr̄ | n ∈ N} which is Ltree ∩ ra∗ā∗r̄. On the other hand it
is not too difficult to show that the DTD r → aa, a → a | ε is not streamable. We
are looking for a decidable characterization of streamable DTDs. In order to do so we
associate in Section 3 a graph to any DTD and show in Section 4 how to construct from
this graph a family of automata that could recognize the corresponding DTD.

3 DTDs, Graphs and Groups

In this Section we introduce the machinery necessary for stating our results.

Decomposition of a DTD. Given a DTD τ , we define a pre-order ≤τ on Σ as follows.
A label b is a successor of a label a relative to τ if there is a word w of ra containing
the label b. We then simply set ≤τ as the reflexive transitive closure of this successor
relation. This pre-order induces an equivalence relation ∼τ on Σ: a ∼τ b if a ≤τ

b ∧ b ≤τ a. The set Cτ of equivalence classes of ∼τ is now partially ordered by ≤τ .

Example 1. If τ is the following DTD: r → abc a→ c
c → edc | ε b → a
d → ad | ed | eb | ε e → b

Cτ contains two equivalence classes, {r} and {a, b, c, d, e} and r ≤τ a.

Graph of a DTD. We now define the central notion used in this paper. For each class
c of Cτ , we construct the labelled directed graph Gτ (c), denoted as the graph of c
relative to τ . The intuition is that the graph of c relative to τ codes all the transitions
between two successive letters of c occurring in τ .

More formally, the set of vertices of Gτ (c) is defined as {â| a ∈ c} ∪ {a∞ | a ∈ c}.
The nodes in {â | a ∈ c} are called inner nodes. If v is a node of Gτ (c), l(v) denotes

2 c? is an abbreviation for (c|ε).



Constant-Memory Validation of Streaming XML Documents Against DTDs 303

the label a ∈ c such that v = â or v = a∞. Given three labels a, b, d of c, there is
an edge of label d from â to b̂ in Gτ (c) whenever there is a word w = w1aw2bw3 in
rd such that all the labels occurring in w2 are not in c (by definition they must belong
to classes c’ of Cτ with c <τ c′). Given two labels a, d of c, there is an edge of label
d from d∞ to â whenever there is a word w = w1aw2 in rd such that all the labels
occurring in w1 are not in c. Given two labels a, d of c, there is an edge of label d from
â to d∞ whenever there is a word w = w1aw2 in rd such that all the labels occurring
in w2 are not in c. Given a label d of c, there is an edge of label d from d∞ to d∞
whenever there is a word w in rd such that all the labels occurring in w are not in c.
No other edges occurs in Gτ (c). We view Gτ (c) as a simple directed graph. That is,
whenever there are several edges, with different labels, going from vertex â to vertex b̂,
we replace them with a single edge whose label is the union of all the previous labels.
The graph Gτ is the disjoint union of all Gτ (c), c ∈ Cτ .

We illustrate this central concept with three examples that will be our running exam-
ples for the paper.

Continuation of Example 1. The graph of this DTD is (ignoring the trivial class con-
taining only r):

b∞ â d̂ ĉ a∞

d∞ ê c∞

b̂ e∞

d c

d

c, d c

c

d

d

d
d

a

a

e

e

b

b

c

d

Example 2. Consider now the DTD τ : r → abc b→ a
a → ad | af | sd | sq | bf | bq | ε f → q
q → sdch | sqg | fh | fg | ε g → q
c → afg h→ q
d→ bfh s→ q

Cτ contains again two equivalence classes, one for {r} and one for the remaining letters
(note that the last 5 rules are only here to make all the symbols but r equivalent accord-
ing to ∼τ , they don’t affect much the graph and are irrelevant for the rest of the paper).
The graph for this DTD looks like this. For the sake of simplicity we have ignored the
nodes a∞, b∞, f∞, g∞, h∞, s∞, q∞ and their corresponding edges which will not be
relevant in the sequel.

â d̂ ĉ ĥ

c∞ ŝ f̂ d∞

ĝ q̂ b̂

c

a q q

d

d

aq

c
d, a

a, c q, d

q, c

q, a

q, a
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Example 3. Our third running example is with the DTD:
r → abc j → m y → j
u → de | fe | fm | bh | jh | jm | qb | qxn | dn w → y a → u
z → xn | dn | dw | fw | fm | jm | jy | xy b → t m → s
t → bh | jh | jg | fg | fec h→ u c → z
v → adw | axy | jy | jg | fg | fw f → g n → w
s → ax | qx | qb g → v d→ f
e → t q → u x→ n
Again Cτ contains two equivalence classes, one with only r and one with all the other
labels. All the last rules are again irrelevant for the rest of the paper, they are only
needed to have a unique class containing all the symbols but r. The graph is depicted
below:

ê

d̂ ŵ f̂ ĉ

â n̂ m̂ ĝ t∞

x̂ ŷ ĵ

s∞ q̂ ĥ

b̂

s

v

u

t

u, t
t

v, t

v,
t

u, t

u, t
u, s

u, s

v, s
u, z

u, z

v, z
v, z

u, z

u, z
v, zv, z

s

t

Paths. Given the graph G of a DTD, a path p is an arbitrary sequence of vertices such
that for any two consecutive vertices of this sequence, there is an edge between them
(not necessarily from the first one to the second one). A path p is directed if it traverses
the edges in the direction induced by it. A path is simple if it traverses a vertex at most
once. A path is a cycle if it starts and ends at the same vertex of G. A path of Gτ is
internal if all its nodes, besides the first and last one, are inner nodes.

Continuation of Example 1. The path b∞âd̂ĉ is simple, internal and directed. The path
d̂êd∞âd̂ is a simple non-directed non-internal cycle.

Languages of internal paths. For each edge of Gτ from vertex â to vertex b̂ we define
Lτ (â, b̂) as the set of words w ∈ Σ∗, such that all letters of w are in a class strictly
higher that the class of a, and there exists a label d of the edge such that w1awbw2 ∈
rd for some arbitrary strings w1 and w2. Similarly we define Lτ (a∞, b̂), Lτ (â, b∞)
and Lτ (a∞, a∞). We extend this notion to any directed internal path p. Assume p is
v1 · · · vn. We set Lτ (p) = Lτ (v1, v2) l(v2) Lτ (v2, v3) l(v3) · · · l(vn−1) Lτ (vn−1, vn).
Finally for each symbol d, let Lτ (d) to be the union over all directed internal paths
p, starting and ending in d∞, of Lτ (p). Note that we take this union over all directed
internal paths, not just the simple ones (the path can go several time through the same
node).
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Continuation of Example 1. In this example we have Lτ (d) = {ad, eb, ed, ε} and
Lτ (c) = {edc, ε}.

NECESSARY CONDITION: A DTD τ satisfies condition (∗) if for all d, Lτ (d) = rd.

All the three DTDs given in Example 1,2 and 3 satisfy the condition (∗). On the other
hand, if we replace in the DTD of Example 1 the line d → ad | ed | eb | ε with
d → ad | eb | ε the edges of the underlying graph remain the same (the new graph
differs from the previous one only by the label of edge (ê, d̂) which no longer contains
d) but the DTD no longer satisfies the condition (∗). It follows from Theorem 1 below
that this DTD is not streamable.

The following result is a rephrasing of the first necessary condition for streamability
proved in [4].

Theorem 1. If a DTD τ is streamable then it satisfies (∗).

Based on this result, in the sequel we will represent our DTDs using their graph rep-
resentation. We aim at characterizing those graphs that represent streamable DTDs. In
order to do this we use the notions of monochromatic cycles and dangerous cycles that
we introduce now.

Monochromatic cycles and dangerous cycles. The set MCycles(τ) of monochromatic
cycles of τ is the set of all simple directed cycles p of Gτ such that there is a label a ∈ c
which occurs as a label of all edges traversed by p.

A directed path of Gτ (c) from â to b̂, is a source path if it consists of a simple
internal directed path from â to d∞, followed by a simple internal directed path from
d∞ to b̂, for some label d of c. A directed cycle p of Gτ is dangerous if the following
holds:

– p traverses successively vertices ân, · · · , â1 of Gτ by forming a source path from
âj to âj−1, ∀j 1 < j < n + 1, and by forming a simple internal directed path p′

from â1 to ân, where a1, · · · , an is a sequence of labels of some class c such that
all labels in the sequence are distinct, except possibly a1 and an.

– There exists a label d of class c’ <τ c and a word w of rd with
w = w1a1w2 · · ·wnanwn+1, where w1, · · · , wn+1 are arbitrary strings over Σ.

– Either w1a1Lτ (p′)anwn+1 � rd or
for all internal directed paths p1n in Gτ from â1 to ân,
a1w2a2 · · ·wnan /∈ a1Lτ (p1n)an

We denote by DCycles(τ) the set of dangerous cycles of τ .

Continuation of Example 1. In this example the set MCycles(τ) contains the monochro-
matic cycles for d and c: d∞âd̂d∞, d∞êd̂d∞, d∞êb̂d∞, d∞d∞, c∞êd̂ĉc∞, and c∞c∞.
The graph also contains the dangerous cycle d∞âd̂ĉc∞êb̂d∞. This cycle is dangerous
because: 1) r → abc, b̂d∞â and ĉc∞êb̂ are dangerous, and 2) adc /∈ rr.

Continuation of Example 2. In this example some of the monochromatic cycles in the
set MCycles(τ) are: c∞âf̂ ĝc∞, d∞b̂f̂ ĥd∞ and q∞ŝd̂ĉĥq∞. The graph also contains
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the dangerous cycle c∞âd̂ĉĥd∞b̂q̂ĝc∞. This cycle is dangerous because: 1) r → abc,
b̂q̂ĝc∞â and ĉĥd∞b̂ are dangerous, and 2) adc /∈ rr.

Continuation of Example 3. In this example some of the monochromatic cycles in the
set MCycles(τ) are: s∞âx̂s∞ v∞âd̂ŵv∞ u∞f̂ m̂u∞.

The graph has only one dangerous cycle s∞âd̂êĉt∞b̂s∞. This cycle is dangerous
because 1) r → abc, b̂s∞â is dangerous, ĉt∞b̂ is also dangerous, and 2) adec /∈ rr.

Groups versus graphs. Let H be a finite group, G be a directed graph and μ be a
mapping from the set of edges of G to H . This induces a mapping, which we also denote
by μ, between sequences of edges of G into H such that μ(e1e2) = μ(e1) ·μ(e2) where
· is the group operation of H . In particular the mapping μ induces a homomorphism
between the directed paths of G to H : If p = v1 · · · vn is a directed path of G then
μ(p) = μ((v1, v2))μ((v2, v3)) · · ·μ((vn−1, vn)).

Given a DTD τ , a separating group for τ is a finite group H together with a mapping
μ from Gτ to H such that ∀p ∈ MCycles(τ), μ(p) = 1 and ∀p ∈ DCycles(τ), μ(p) �=
1 where 1 is the neutral element of H .

Continuation of Example 1. In this example there is no separating group for τ . In-
deed assume there is a finite group H and a mapping μ from Gτ to H such that
∀p ∈ MCycles(τ), μ(p) = 1. Let x bet the edge (ê, d̂). One label of x is d and
by hypothesis all monochromatic cycles of d are mapped to 1 by μ. Simple algebraic
computation shows that then μ(x) = μ(pd) where pd is the path (ê, b̂, d∞, â, d̂). Now c
is also a label of x and similar algebraic computation shows that μ(x)μ(pc) = 1 where
pc is the path (d̂, ĉ, c∞, ê). This implies that μ(p) = 1 where p is the path pd ·pc. But p is
exactly the dangerous cycle of τ ! Therefore any mapping μ sending all monochromatic
cycles to the identity of H will also send a dangerous cycle to 1.

Continuation of Example 2. In this example there is a separating group for τ . Let H be
the group of order 3 generated by one element: H = {1, x, x2} with x3 = 1. Let μ be
the mapping sending all edges to 1 except for the q-labelled edges e1 = (d̂, ĉ), e2 =
(q̂, ĝ), e3 = (q∞, ŝ). For those three edges we set μ(e1) = μ(e2) = x and μ(e3) =
x2 = x−1. Now one can verify that we do have μ(p) = 1 for all p ∈ MCycles(τ)
(this is trivial for all monochromatic cycles of label different than q and can be done
by hand for the others) but that μ(p) = x2 �= 1 for the dangerous cycle p. Moreover,
one can verify that the group H together with the mapping μ also separates all the other
dangerous cycles of the graph from the monochromatic cycles. In particular it can be
checked that for all dangerous cycles θ of the graph other than p, μ(θ) = x �= 1.

Continuation of Example 3. In this example also there is a separating group for τ . Let
H be any finite non-commutative group with α and β two elements of H which do
no commute (αβ �= βα or equivalently α−1β−1αβ �= 1). Let μ be the mapping that
sends all edges to 1 except for μ((ĵ, m̂)) = μ((d̂, ê)) = μ((ŷ, z∞)) = μ((u∞, f̂)) =
μ((v∞, â)) = α, μ((f̂ , ĝ)) = μ((ĉ, t∞)) = μ((ŵ, v∞))=β, μ((x̂, ŷ)) = μ((z∞, ĵ)) =
μ((ê, u∞)) = μ((m̂, u∞)) = α−1, μ((v∞, f̂)) = μ((t∞, f̂)) = β−1, and μ((â, d̂)) =
α−1β−1. One can verify that we do have ∀p ∈ MCycles(τ), μ(p) = 1 but that for the
dangerous cycle p we have μ(p) = α−1β−1αβ �= 1.
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The notions of monochromatic and dangerous cycles are motivated by the following
result showing a sufficient condition for a DTD to be streamable. It is possible that this
condition is also necessary, see Section 6.

Theorem 2. If a DTD τ satisfies (∗) and has a separating group, then τ is streamable.

Theorem 2 follows from Theorem 4 below that shows how to construct, from a separat-
ing group for τ , a FSA that recognizes τ . Note that, although Theorem 4 is constructive,
we do not know yet how to decide the existence of such a separating group nor whether
we can construct it if it exists. In Section 5 we will construct such a separating group
for a special case of DTDs and in Section 6 we will indicate the difficulty of testing the
existence of a separating group.

4 Groups and Automata

Let τ be a DTD verifying (∗). Let H be a finite group and μ be a mapping from
edges of Gτ to H . From τ , H and μ we construct an automaton A(τ, H, μ), called
the H-local-automaton for τ which combines local tests on two consecutive sym-
bols with operations in H . If H is a separating group for τ we show that A(τ, H, μ)
recognizes τ .

Let 1 be the neutral element of H and · be its group operation. Consider again the
partition Cτ of Σ and its preorder ≤τ . For d ∈ Σ, recall the definition of Lτ (d) given
in Section 3.

For each class c ∈ Cτ and d ∈ c, we define an automaton Aμ(c, d) by induction
on ≤τ as follows. The intuition is that Aμ(c, d) is only concerned with symbols in
classes higher or equal to c relative to ≤τ and that it checks locally consistency with
τ while simulating the product in H for successive pairs of symbols in c: For each
sequence of two successive symbols in c it checks whether this sequence is plausible in
τ (by inspecting Gτ (c)) and, if this is the case, simulates the product in H using this
pair and μ. When a symbol in a higher class is read, local consistency with τ and the
previous symbol read is checked and a subcomputation for the new class is started. Each
subcomputation should start simulating the product in H at its neutral element 1 and
ends only when the current value of this product is 1. In summary only local tests are
performed against the DTD except for the product in H which is the only information
which is carried over the tree.

Checking that any sequence of two successive symbols in c is plausible in τ can be
read from Gτ (c): It amounts to check that, for any a, b ∈ c, if āb occurs then (â, b̂) ∈
Gτ (c), if ab occurs then (a∞, b̂) ∈ Gτ (c), if ab̄ occurs then a = b and (a∞, a∞) ∈
Gτ (c) , and, if āb̄ occurs then (â, b∞) ∈ Gτ (c).

The simulation of the product in H is done as follows. For each class c ∈ Cτ and
d ∈ c, let AH(c, d) be the automaton simulating the product in H for edges in Gτ (c)
while ignoring the symbols not related to c. It is defined formally as follows. Its states
are elements of (Σ ∪ Σ̄) × H . Its initial state is (d, 1). When reading a symbol δ ∈
(Σ ∪ Σ̄), it has a transition from (α, h) to (β, h′) exactly when one of the condition
below is satisfied.
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– δ ∈ c, β = δ, α = ȳ for y ∈ c, (ŷ, δ̂) is an edge e of Gτ , and h · μ(e) = h′.
– δ ∈ c, β = δ, α ∈ c, (α∞, δ̂) is an edge e of Gτ , and h · μ(e) = h′.
– δ ∈ c̄, β = δ, α ∈ c, δ = ᾱ, (α∞, α∞) is an edge e of Gτ , and h · μ(e) = h′.
– δ ∈ c̄, β = δ, α ∈ c̄, (ŷ′, x′

∞) is an edge e of Gτ where x′ and y′ are such that
δ = x̄′ and α = ȳ′, and h · μ(e) = h′.

– If δ �∈ (c ∪ c̄), α = β and h = h′ (those letters are ignored).

The set of final states of AH(c, d) are all the states (ā, h), a ∈ c, such that (â, d∞) is
an edge of Gτ (c) such that h · μ((â, d∞)) = 1, together with all the states (d, h), such
that (d∞, d∞) is an edge of Gτ (c) such that h · μ((d∞, d∞)) = 1.

It now remains to perform the local tests on how the class can interleave. This is also
read from Gτ .

Let c be a maximal class of Cτ and let d ∈ c. This is the simple case. Because the
class is maximal, there is no interleaving authorized and Aμ(c, d) needs only to simulate
the product in H . In this case we let Aμ(c, d) = AH(c, d).

Let now c be an arbitrary class and d ∈ c. Assuming the definition of Aμ(c′, d′)
for each class c’ and element d′ ∈ c′ such that c <τ c’, we define Aμ(c, d). In this
case we have to worry about symbols in higher classes and check for local consistency
with τ . This is done as follows. We define next an automata Aτ (c, d) that does this
local consistency tests then we set Aμ(c, d) as the product of Aτ (c, d) with AH(c, d).
For each edge e of Gτ (c), recall the definition of L(e) as given in Section 3. For each
edge e of Gτ (c), let Ae be the deterministic minimal automaton for L(e) and assume
that these automata have pairwise disjoint sets of states. We build on these automata
to construct Aτ (c, d). Aτ (c, d) contains all the states of the Ae together with one state
qx per symbol x ∈ Σ ∪ Σ̄. Let e = (α, β) be an edge of Gτ (c), let qe

0 be the initial
state of Ae and F e be its set of accepting states. For any transition (q, d′, q′) of Ae,
where d′ ∈ c′, we add in Aτ (c, d) a fresh new copy of Aμ(c′, d′) with initial state
q0 and accepting set of states F , and we add in Aτ (c, d) the transitions (q, d′, q0) and
(qf , d̄′, q′) for any qf ∈ F . Depending on α and β we also add in Aτ (c, d) the following
transitions (with a = l(α) and b = l(β)).

– If α and β are inner nodes, we add transitions qā
ε→ qe

0 and qe
f

b→ qb for any
qe
f ∈ F e.

– If α is an inner node but β is not, we add transitions qā
ε→ qe

0 and qe
f

b̄→ qb̄ for any
qe
f ∈ F e.

– If β is an inner node but α is not, we add transitions qa
ε→ qe

0 and qe
f

b→ qb for any
qe
f ∈ F e.

– If both α and β are not inner nodes (then α = β), we add transitions qa
ε→ qe

0 and

qe
f

b̄→ qb̄ for any qe
f ∈ F e.

The initial state of Aτ (c, d) is the state qd. The set of accepting states of Aτ (c, d) are all
the accepting states of the automata Ae where e is an edge ending in d∞. This finishes
the construction of Aτ (c, d) and therefore of Aμ(c, d).

Now set A(τ, H, μ) as Aμ(c, r) where r is the initial symbol of the DTD and c is the
class of r. When H is the trivial group with one element, the A(τ, H, μ) is exactly what
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was call “standard automaton” in [4]. We are now ready to state the main result of this
paper.

Theorem 3. Assume that τ satisfies (∗). There exists a separating group for τ iff there
exists a finite group H and a mapping μ such that A(τ, H, μ) recognizes τ .

The proof of Theorem 3 is given in two steps. Theorem 4 below shows that if H is a
separating group for τ then A(τ, H, μ) recognizes τ . Next, Theorem 5 shows how to
compute a separating group from a H-local-automaton recognizing τ .

Theorem 4. If τ verifies (∗) and there exists a separating group H for τ via the map-
ping μ, then A(τ, H, μ) recognizes τ .

Proof. The proof of this theorem is very technical and will appear in the full version
of this paper. We only outline it here. One first shows that if H and μ are such that for
each p ∈ MCycles(τ) μ(p) = 1, then all trees valid with respect to τ are accepted
by A(τ, H, μ). This is done by induction on ≤τ by noticing that in a valid tree, any
sequence of labels of the children of a node induces a monochromatic cycle in Gτ .

The other direction, showing that A(τ, H, μ) accepts only valid trees is more com-
plicated and requires that H is a separating group and that τ verifies (∗). The proof is
again done by induction on ≤τ . We only illustrate here the requirement on dangerous
cycles on an example. Assume the DTD has initial symbol r with the rule r → abc
and that a, b, c are symbols in the same class c and that no other classes are in τ . By
construction A(τ, H, μ) performs three successive “calls”, to Aμ(c, a), Aμ(c, b), then
Aμ(c, c). Assume we have shown by induction that all trees accepted by Aμ(c, ai) are
valid for τ , we show that this is the case for Aμ([r], r). Let t be a tree accepted by
A(τ, H, μ). We decompose the string t into s1s2s3 where si is the substring read by
Aμ(c, ai), where a1 = a, a2 = b, a3 = c. Assume moreover that those substrings are
as depicted in Figure 1.

r

a c

ab b c

v1
v2

v3

u1 w3

w1 u2 w2 u3

Fig. 1. Illustration of the run of A(τ, H,μ). We have si = uiviwi, where ui is the substring
containing all the trees in si whose root is either the first symbol of si or one of its siblings, wi is
the substring containing all the trees in si whose root is either the last symbol of si or one of its
siblings and vi is the remaining part of si.
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We further decompose si into uiviwi as depicted in Figure 1. Let νi be the se-
quence of tree nodes consisting of the roots of the trees in ui followed by the first
node processed in vi. Similarly let ωi be the sequence of tree nodes consisting of the
last node processed in vi followed by the roots of the trees in wi. As each of si is read
by Aμ(c, ai), for all i, νi and ωi correspond to paths in Gτ (c), which we denote as
αi and βi, respectively. This implies that the path p formed by the path concatenation
β3 · α3 · β2 · α2 · β1 · α1 is a cycle in τ .

By abuse of notations we denote by μ(s) the image by μ of the path induced by the
sequence of symbols of s. We know that μ(s1) = μ(s2) = μ(s3) = 1. This implies –
by denoting as v′i and v′′i the first and the last symbol of vi, respectively – that μ(vi) =
μ(uiv

′
i)

−1μ(v′′i wi)−1. By induction we know that any tree t′ entirely contained in a si

is valid for τ and therefore is such that μ(t′) = 1. This implies that μ(uiv
′
i) = μ(αi)

and μ(v′′i wi) = μ(βi). Therefore μ(v1)μ(v2)μ(v3) = μ(p)−1. Now notice that there
exist valid forests f1, f2 such that v1f1v2f2v3 is a valid tree rooted in a label of class
c, thus μ(v1f1v2f2v3) = 1. This implies μ(v1)μ(v2)μ(v3) = 1. As H was a separating
group for τ , this shows that p cannot be a dangerous cycle. Therefore (a, b) and (b, c)
must be edges of Gτ (c) and the sequence of labels in the path α1β3 must be valid
below the root. This implies that t is valid for τ . The general case requires more case
analysis but the overall idea is the same. �

Theorem 5. Assume H and μ are such that A(τ, H, μ) recognizes τ . Then there exists
a finite group H ′, constructible from τ , H and μ, such that H ′ is a separating group
for τ . Moreover if H is commutative then H ′ is also commutative.

Proof. The proof will appear in the full version of this paper. �

5 Commutative Separating Groups

In this section we provide a necessary and sufficient decidable condition for the ex-
istence of a commutative separating group for a DTD. Note that by Theorem 5 this
implies a necessary and sufficient decidable condition for the existence of a H-local-
automaton, H commutative, that recognizes a given DTD.

Throughout this section we consider a DTD τ satisfying the condition (∗). Let Xτ

be the set of edges of Gτ and m the cardinality of Xτ . Let n be the number of cycles in
MCycles(τ). Let Xτ = {x1, . . . , xm} and MCycles(τ) = {π1, . . . , πn}.

We first fix some more notations on linear algebra. For any r ∈ N, let Zr denote
the set of vectors of integers of size r, and Nr denote the set of vectors of non-negative
integers of size r. For any ȳ ∈ Zr, the i-th component of ȳ will be denoted as ȳ[i].The
maximum absolute value occurring in ȳ is denoted by max ȳ.

For each k ∈ N, and each y, z ∈ N, y ≡k z denotes that y and z agree modulo k
and [y]k is the number between 0 and k− 1 equivalent to y modulo k, and [ȳ]k denotes
its extension to Nr. Moreover, for each k ∈ N, the vector k̄r is the vector of Nr which
has all its components set to k. For each i ≤ r, the vector εr

i denotes the vector of Nr

having 1 on the i-th component, and 0 everywhere else.
For each path π of Gτ and for each edge xi ∈ Xτ we denote as |π|xi the number

of times that π traverses xi according to the edge orientation, and by |π|x−
i

the number
of times that π traverses xi in reverse direction. To each path π of Gτ , we associate a
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vector π̄ of Zm such that, for each i = 1, . . . , m, π̄[i] = |π|xi − |π|x−
i

. Notice that if π

is a directed path, π̄ is a vector of Nm, and if π is a simple path, then π̄ ∈ {−1, 0, 1}.
We denote as MCycles(τ) the subgroup of Zm generated by {π̄1, . . . , π̄n}, that is

MCycles(τ) = {ȳ ∈ Zm | ȳ =
∑n

i=1 αi · π̄i, αi ∈ Z, i = 1, .., n}.
All this notation is motivated by the following result:

Theorem 6. Given a DTD τ satisfying (∗), there exists a commutative separating group
for τ if and only if ∀p ∈ DCycles(τ), p̄ /∈ MCycles(τ).

Proof. We first prove the “only if” part. Let p ∈ DCycles(τ) be such that p̄ =
∑n

i=1 αi ·
π̄i, αi ∈ Z for i = 1, .., n.

Let D be the set of indices i ∈ 1..n such that αi ≥ 0, and R be the set of indices
i ∈ 1..n such that αi < 0, and let γi be the absolute value of αi, for each i = 1, .., n.
Then the following equality holds: p̄ +

∑
i∈R γi · π̄i =

∑
i∈D γi · π̄i

Suppose, by contradiction, that there exists a commutative separating group H with
associated mapping μ from Gτ to H .

By commutativity of H , μ(p) =
∏m

j=1 μ(xj)p̄[j] and μ(πi) =
∏m

j=1 μ(xj)π̄i[j] for
each i = 1, .., n. Let hR be the element of H obtained as hR =

∏
i∈R μ(πi)γi ; by com-

mutativity of H , hR =
∏m

j=1 μ(xj)kj , where kj =
∑

i∈R γi · π̄i[j], for j = 1, .., m.
Similarly, Let hD be the element of H obtained as hD =

∏
i∈D μ(πi)γi ; by commu-

tativity of H , hD =
∏m

j=1 μ(xj)k′
j , where k′

j =
∑

i∈D γi · π̄i[j], for j = 1, .., m.
Together with p̄+

∑
i∈R γi · π̄i =

∑
i∈D γi · π̄i this immediately implies that μ(p) =

hD · h−1
R . As H is a separating group for τ , we have hR = hD = 1 therefore μ(p) = 1

which is a contradiction.
We will now prove the “if” part. For each p ∈ DCycles(τ) we show that there exists

a finite commutative group Hp and a homomorphism μp from Gτ to Hp, such that
μp(p) �= 1 and μp(πi) = 1 for i = 1, . . . , n. The desired commutative separating group
for τ is the product of all Hp, for p ∈ DCycles(τ).

Given p ∈ DCycles(τ) such that p /∈ MCycles(τ) we effectively construct a sepa-
rating commutative group for p.

For each edge xj of Xτ , let Dj be the set of cycles of MCycles(τ) which traverse
the edge xj : Dj = {i ∈ 1..n | π̄i[j] = 1}.

For a vector ȳ = (y1, . . . , ym) over Nm, we define the following formula of Pres-
burger arithmetic:

ψ(ȳ) = ∃α1, . . . , αn

∧m
j=1

(
yj =

∑
i∈Dj

αi

)
By construction, ψ is satisfied by the vector associated to each cycle of MCycles(τ) and
is not satisfied by p̄; We will refer to this property saying that ψ is a separating formula
for p̄.

By Presburger quantifier elimination procedure, ψ can be transformed into an equiv-
alent quantifier free formula ϕ(ȳ) := ϕe(ȳ) ∧ ϕc(ȳ), where, using matrix notation, ϕe

and ϕc are formulas of the form:
ϕe(ȳ) := (Aȳ = Bȳ) ϕc(ȳ) := (Cȳ ≡δ Dȳ)

where A, B ∈ Nme×m and C, D ∈ Nmc×m, for some me, mc ∈ N.
From ϕ we define a new separating formula for p̄, ϕk(ȳ), whose terms use only the

modulo-congruence operator≡k, for some k ∈ N. We consider two cases:
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1. ϕc(p̄) is false. Then ϕk(ȳ) := ϕc(ȳ) and k = δ.
2. ϕe(p̄) is false. We choose k = max(Ap̄−Bp̄)+1 and take ϕk(ȳ) := (Aȳ ≡k Bȳ).

In both cases we have ϕk(ȳ) := (Eȳ ≡k F ȳ), where E, F ∈ Nr×m for some r ∈ N,
and the vector of p does not satisfy the formula while it is satisfied by any cycles in
MCycles(τ). We now construct, from ϕk(ȳ), a commutative finite group Hp and a
homomorphism μp from the paths of Gτ to Hp, such that μp(p) �= 1 and μp(πi) = 1
for all i = 1 . . . n.

Let K be the commutative finite group whose elements are the pairs (z̄1, z̄2) ∈ Nr×
Nr such that z̄1 < k̄r ∧ z̄2 < k̄r, with group composition defined by (z̄1, z̄2) +
(z̄3, z̄4) = ([z̄1 + z̄3]k, [z̄2 + z̄4]k). We define a mapping μK from the set of edges of
Gτ to K as follows: for each edge xi ∈ Xτ , μK(xi) = ([Eεm

i ]k, [Fεm
i ]k).

Let K= be the (normal) subgroup of K , consisting of all elements of the form (z̄, z̄).
Let Hp = K/K=, and set μp as the composition of μK with the quotient morphism.
As [Ep̄]k �= [F p̄]k, μK(p) = ([Ep̄]k, [F p̄]k) is not in K= thus, μp(p) �= 1.

Conversely if π is a cycle of MCycles(τ), [Eπ̄]k = [F π̄]k, thus μp(π) = 1. This
concludes the proof of the Theorem. �

An immediate corollary of Theorem 6 and of the constructiveness of its proof together
with Theorem 4, is the following:

Corollary 1. Given a DTD τ , it is decidable whether there exists a commutative sep-
arating group for τ , and if it exists, the group, and therefore a H-local-automaton
recognizing τ , can be effectively computed.

Continuation of Example 2. In this example a commutative separating group exists. We
have already given an example of such a group. This group could also be obtained from
Theorem 6. Indeed one can verify that the dangerous cycle p = b∞q̂ĝc∞âd̂ĉĥd∞b̂
is not a linear combination of monochromatic cycles as defined in the statement of
Theorem 6.

Continuation of Example 3. This example shows that there exist DTDs for which no
commutative separating group exists, but a separating group does exist. Indeed, the
dangerous cycle p = s∞âd̂êĉt∞b̂s∞ for that DTD τ can be shown to be such that
p̄ ∈ MCycles(τ) as follows. Let θ1, θ2, θ3, θ4, θ5 be the following non-directed cycles:
θ1 = d̂n̂x̂ŷĵm̂f̂ ŵd̂, θ2 = d̂êf̂m̂ĵĥb̂q̂x̂n̂d̂, θ3 = d̂ŵf̂ ĝĵŷx̂âd̂, θ4 = f̂ êĉt∞b̂ĥĵĝf̂ ,
θ5 = x̂q̂b̂s∞âx̂; it’s easy to check that θ̄1 is a linear sum (with weights 1 and −1) of
monochromatic cycles whose labels are all in z, the same holds for θ̄2,θ̄3, θ̄4, θ̄5, using
monochromatic cycles of label u, v, t and s, respectively.

As we alos have p̄ =
∑

i=1..5 θ̄i, p̄ ∈ MCycles(τ), thus no commutative separating
group exists for that DTD.

Unfortunately, we are not yet able to extend Theorem 6 to non-commutative groups.
See Section 6 for more details on this issue.

6 Discussion and Conclusion

The next step is obviously to prove whether it is decidable that a DTD has a separating
group or not. We have seen that this is related to the word problem for finite groups.
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The word problem for finite groups is whether, given a finite set F of words and a
word w over a finite alphabet of the form A ∪ A−, there exists a finite group H and
a morphism μ : (A ∪ A−)∗ → H interpreting words in F as the identity of H but
such that μ(w) �= 1H . We are interested in the case where F = MCycles(τ) and
w ∈ DCycles(τ). This problem is undecidable in general [5]. But we are dealing with
a very special case of the word problem as MCycles(τ) and DCycles(τ) have a lot of
similarities being both defined via the same graph. It is thus quite possible that this
special case is decidable. Note that we are not only interested in knowing whether such
a separating group exists but also in constructing it.

It would also be interesting to know whether the notion of streamability coincides
with the existence of a separating group for τ . We think that this might be the case
and would like to argue here in favor of this conjecture. An obvious extension of the
H-local-automaton would be to allow computation in an arbitrary monoid (instead of a
group). We don’t think that this will extend the expressive power. Indeed assume that
a DTD τ is recognized by a H-local-automaton A where H is now just a monoid.
Because we are dealing with DTDs, monoid computation of A on any valid subtrees
should correspond to the identity. This is because neither the context nor the content of
the subtree matters for the rest of the validation, therefore the automaton does not need
to remember anything (besides the fact that the subtree is valid or not). Now, because of
the local tests against the DTD, each time A has partially read a subtree and has not yet
rejected it, there is always a way to complete it so that it is valid for the DTD. In other
words, for any monoid element m (the current monoid state of A in the subtree), there is
always a m′ such that m ·m′ = 1: The monoid needs to be right-invertible. The reason
why we took groups instead of right-invertible monoids is more technical and might
not be necessary. It is because we deal with cycles (monochromatic and dangerous) and
therefore work modulo cyclic permutations. This implies that if m · m′ = 1 then the
cyclic permutation m′ ·m of m ·m′ should also be 1. Thus the monoid is a group.

Finally it would be interesting to go beyond the class of DTDs as defined in this
paper, and start with an arbitrary regular language. This would answer an open question
raised in [4,1] and certainly requires more ideas than those presented here.

Acknowledgment. We thank Victor Vianu for all the interesting discussions we had
with him on this subject.
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Abstract. In this paper, we introduce preferential regular path queries.
These are regular path queries whose symbols are annotated with prefer-
ence weights for “scaling” up or down the intrinsic importance of match-
ing a symbol against a (semistructured) database edge label. Annotated
regular path queries are expressed syntactically as annotated regular
expressions. We interpret these expressions in a uniform semiring frame-
work, which allows different semantics specializations for the same syn-
tactic annotations. For our preference queries, we study three important
aspects: (1) (progressive) query answering (2) (certain) query answer-
ing in LAV data-integration systems, and (3) query containment and
equivalence. In all of these, we obtain important positive results, which
encourage the use of our preference framework for enhanced querying of
semistructured databases.

1 Introduction

Regular path queries are one of the basic building blocks of virtually all the
mechanisms for querying semistructured data, commonly found in information
integration applications, Web and communication networks, biological data man-
agement, etc. Semistructured data is conceptualized as edge-labeled graphs, and
regular path queries are in essence regular expressions over the edge symbols.
The answer to a regular path query on a given graph (database) is the set of
pairs of objects, which are connected by paths spelling words in the language of
the regular path query.

Seen from a different angle, regular path queries provide the user with a
simple way of expressing preferences for navigating database paths. Let us take
an example from road network databases. Suppose that the user wants to retrieve
all the pairs of objects preferentially connected by highways, and tolerating up to
k provincial roads or city streets. Clearly, such preferences can easily be captured
by the regular path query

Q = highway∗ || (road + street + ε)k,

where || is the shuffle operator.
It is exactly this ability of regular expressions to capture pattern preferences

that has made them very popular, starting from the early days of computers.
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However, let us take a more careful look at the above example. It surely captures
the user preferences, but in a “Boolean” way. A pair of objects will be produced
as an answer if there exists a path between them satisfying the user query. In
other words, there is just a “yes” or “no” qualification for the query answers.
But, the answers are not equally good! A pair of objects connected by a highway
path with only 1 intervening road is obviously a “better” answer than a pair of
objects connected by a highway path with 5 intervening roads.

Clearly, preferences beyond the “Boolean” ones cannot be captured by simple
regular path queries.

In this paper, we introduce preferentially annotated regular path queries, which
are regular path queries (regular expressions) with a very simple syntactic addi-
tion: the user can annotate the symbols in the regular expressions with “mark-
ers” (typically natural numbers), which “strengthen” or “weaken” her (pattern)
preferences. For example, she can write

Q = (highway : 0)∗ || (road : 1 + street : 2 + ε)k,

to express that she ideally prefers highways, then roads, which she prefers less,
and finally she can tolerate streets, but with an even lesser preference. Given
such a query, the system should produce first the pairs of objects connected by
highways, then the pairs of objects connected by highways intervened by 1 road,
and so on.

The above “so on” raises some important semantical questions. Is a pair of
objects connected by a highway path intervened by two roads equally good as
another pair of objects connected by a highway path intervened by one street
only? Indeed, in this example, it might make sense to consider them equally
good, and “concatenate” weights by summing them up.

However, let us consider another example regarding travel itineraries. Assume
that the preferentially annotated user query is

Q = (viarail : 0)∗ || (greyhound : 1 + aircanada : 2 + ε)k.

Is now a pair of objects connected by a path with two greyhound segments equally
equally preferrable as a pair of objects connected with one aircanada segment?
Here the answer is not clear anymore. If the user is afraid of flying, she might
want to “concatenate” edge-weights by choosing the maximum of the weights.
Then an itinerary with no matter how many greyhound segments is preferrable
to an itinerary containing only one flight segment.

We say that in the first case the preference semantics are “quantitative,” while
in the second case they are “qualitative.” We study both semantics for regular
path queries, and leave the choice as an option specified by the user during query
time.

We also consider another choice of semantics, which is a hybrid between the
quantitative and qualitative semantics. Continuing the travel itinerary example,
by following a purely qualitative approach, greyhound itineraries are always pre-
ferrable to itineraries containing aircanada segments, while these itineraries are
equally preferrable, no matter how many lags the flight has. Although, there
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might be applications where such qualification is all what is needed, in the par-
ticular example we need to distinguish among itineraries on the same “level of
discomfort.” Namely, we should be able to (quantitatively) say for example that
a direct aircanada route is preferable to an aircanada route with a stop-over,
which again is preferrable to an aircanada route with three lags. Notably, such
user preferences can concisely be captured by our hybrid semantics.

In total, from all the above, we have four kind of preference semantics: Boolean,
quantitative, qualitative, and hybrid. Other semantics can also be proposed, tai-
lored to specific applications. In all these semantics, we aggregate (“concate-
nate”) preference markers or weights along edges of the paths, and then we
aggregate path preferences when there are multiple paths connecting a pair of
objects. Hence, we regard the preference annotations as elements of a semiring,
with two operations: the “plus” and “times.” The “times” aggregates the pref-
erences along edges of a path, while the “plus” aggregates preferences among
paths.

An interesting feature of our preference framework is that for all new se-
mantics (quantitative, qualitative, and hybrid), the syntactic user interface (i.e.
annotated regular expressions) is exactly the same. After the user writes the
query, she also specifies which semantics the system should assume for answer-
ing the query. It is straightforward for the user to preferentially annotate regular
path queries, and moreover, such annotation can be easily facilitated by system
default values.

In this paper, we study three important aspects of our preferentially annotated
queries. First, we focus on query answering and design a progressive algorithm,
which produces the answer tuples in order of their “goodness” with respect
to the user preferences. Notably, answering annotated regular path queries is
computationally no more difficult than the answering of classical regular path
queries. In both cases, a database object is accessed at most once.

Second, we turn our attention to query answering in data integration systems,
in which we have only incomplete information about databases. Such systems
have been the focus of many studies (cf. [2,3]1) and reasoning about query an-
swering in this setting is a very important technology. We introduce a technique,
which we call “query sphering” and show how to progressively compute answer
tuples in this variant of incomplete information.

Third, we study query containment and equivalence of prefential regular path
queries. We show that containment is undecidable for the quantitative and the
hybrid semantics and decidable for qualitative semantics. Then, we present an
important class of queries for which the containment is decidable for both quan-
titative and hybrid semantics.

Due to space constraints we omit this third part. The interested reader can
find it in the full version of the paper available online (see [7]). Also, the full
proofs of most of our results can be found at this online reference.

The rest of the paper is organized as follows. In Section 2, we overview re-
lated work. In Section 3, we introduce the semiring framework for preferentially

1 For the semistructured data case.
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annotated regular path queries. In Section 4, we give a progressive algorithm for
computing the answer to an annotated query. In Section 5, we define and reason
about the certain answer to annotated queries in LAV data integration systems.
In Section 6, we introduce the concept of query spheres and give a characteri-
zation of the certain answer in terms of query spheres. Finally, in Section 7, we
present algorithms for computing query spheres under the different preference
semantics.

2 Related Work

In relational databases, the most important work on preferences is by Chomicki
in a series of papers. One of his recent papers, which gives a detailed overview of
the field, is [4]. However, in Chomicki’s work, the preference framework is about
reasoning on fixed-arity tuples of attribute values. In contrast, here we define
“structural” preferences, in the sense that they apply to the paths used for
obtaining query answers. Because of this difference, the meaning of our “quanti-
tative” and “qualitative” adjectives is different from the ones mentioned in [4].

Preferences for XML are studied by [9]. These preferences are aimed at com-
paring attribute values of XML elements rather than structure of (parts of)
documents. As characterized by [4], the preferences of [9] seem to largely con-
form to the relational paradigm.

Regarding our qualitative preferences, they are similar in spirit with con-
straints in the framework of Infinitesimal Logic studied in [11]. However, [11]
focuses on the relational case only.

In [5], weighted path queries are introduced. Syntactically, such queries are
the same as our preferentially annotated queries. However, [5] do not give any
semantics on their queries. Technically, one can use their query answering algo-
rithm to answer our queries on a given database. However, we carefully study
some important details of query answering, which are not taken into consider-
ation in [5]. Moreover, query answering on a given database is not our most
important contribution in this paper.

Regarding query answering (on a given database), one can also use, assuming
quantitative semantics only, the algorithm of [6] for queries under distortions.
In that paper, there are also some technical results, which can be adapted to
help in some of our derivations. However, we do not do this, due to the high
computational complexity of constructs in [6]. Rather, we devise new and better
constructs, which are original and can contribute in research regarding formal
languages as well. Such research will be mentioned in relevant places during the
exposition of the paper.

Finally, [12] and [13] deal with distributed evaluation of weighted regular path
queries. However, the algorithms of [12] and [13] apply to quantitative semantics
only. We believe that they can also be adapted for other semantics as well, and
thus, [12,13] should be considered to nicely complement this work regarding
query answering on distributed databases.
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3 Databases and Preferential Regular Path Queries

Databases and classical regular path queries. We consider a database to
be an edge-labeled graph. Intuitively, the nodes of the database graph represent
objects and the edges represent relationships between the objects.

Formally, let Δ be an alphabet. Elements of Δ will be denoted r, s, . . .. As
usual, Δ∗ denotes the set of all finite words over Δ. Words will be denoted by
u, w, . . .. We also assume that we have a universe of objects, and objects will be
denoted a, b, c, . . . ,. A database DB is then a graph (V, E), where V is a finite
set of objects and E ⊆ V ×Δ×V is a set of directed edges labeled with symbols
from Δ.

Before introducing preferentially annotated regular path queries, it will help
to first review the classical regular path queries.

A regular path query (RPQ) is a regular language over Δ. For the ease of
notation, we will blur the distinction between regular languages and regular
expressions that represent them. Let Q be an RPQ and DB = (V, E) a database.
Then, the answer to Q on DB is defined as

Ans(Q,DB) = {(a, b) ∈ V : for some w ∈ Q, a
w−→ b in DB},

where w−→ denotes a path spelling the word w in the database.

Semirings and annotated regular path queries. By a semiring we mean a
tuple R = (R,⊕,⊗,0,1) such that

1. (R,⊕,0) is a commutative monoid with 0 as the identity element for ⊕.
2. (R,⊗,1) is a monoid with 1 as the identity element for ⊗.
3. ⊗ distributes over ⊕: for all x, y, z ∈ R,

(x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z)
z ⊗ (x⊕ y) = (z ⊗ x)⊕ (z ⊗ y).

4. 0 is an anihilator for ⊗: ∀x ∈ R, x⊗ 0 = 0⊗ x = 0.

The natural order $ on R is defined as: x $ y if and only if x ⊕ y = x. It is
easily verified that $ is a partial order.

In this paper, we will in addition require for semirings of preferences to have
a total natural order. All the preference semirings mentioned in Introduction
posses such an order.2 Observe that 0 is the “biggest” element of the semiring,
and it corresponds to the “infinitely worst” preference weight.

Now, let R = (R,⊕,⊗,0,1) be a semiring as above. An R-annotated language
Q over Δ is a function

Q : Δ∗ → R.

2 We want to note here that for database paths, it is difficult to find intuitively plau-
sible preference semantics, which would ask for a partial order only.
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We will call such Q’s annotated queries for short. Frequently, we will write
(w, x) ∈ Q instead of Q(w) = x. When such annotated queries are given by “an-
notated regular expressions,” we have annotated regular path queries (ARPQ’s).
Computationally, ARPQ’s are represented by “annotated automata.”

An annotated automaton A is a quintuple (P, Δ, R, τ, p0, F ), where τ is a
subset of P ×Δ×R× P . Each annotated automaton A defines the annotated
language (query) [[A]] defined by

[[A]] = {(w, x) ∈ Δ∗ ×R :
w = r1r2 . . . rn, x = ⊕ {⊗n

i=1xi : (pi−1, ri, xi, pi) ∈ τ, pn ∈ F}}.

Given a a database DB , and a query Q, annotated over a semiring R =
(R,⊕,⊗,0,1) we define the preferentially weighted answer of Q on DB as

Ans(Q,DB , R) = {(a, b, x) ∈ V × V ×R :

x = ⊕{{y : (w, y) ∈ Q and a
w−→ b in DB} ∪ {0}}.

Intuitively, we have (a, b,0) as an answer to Q, if there is no path in DB spelling
some word in Q.

Let us now discuss each of the preference semirings that we mentioned in
Introduction. The Boolean semiring is

B = ({T, F},∨,∧, F, T ),

where T and F stand for “true” and “false” respectively, and ∨, ∧ are the usual
“and,” and “or” Boolean operators. ARPQ’s in the Boolean semiring correspond
exactly to classical RPQ’s. The user does not annotate explicitly the regular
expression symbols by T or F . By default, all the symbols present in the query
are assumed to be annotated with T . Also, the system produces only the “T -
ranked” answers. In general, for any semiring it only makes sense to produce the
answers, which are not ranked by the 0 of the semiring. In practice, a 0-ranked
answer means in fact “no answer.” For the B semiring, we formally have that

Ans(Q,DB , B) = {(a, b, T ) : (a, b) ∈ Ans(Q,DB)} ∪
{(a, b, F ) : (a, b) �∈ Ans(Q,DB)}.

It is easy to see that a Boolean annotated automaton A = (P, Δ, B, τ, p0, F ) is
indeed an “ordinary” finite state automaton (P, Δ, τ, p0, F ).

In the case of quantitative preferences we have

N = (N ∪ {∞},min, +,∞, 0),

where min and + are the usual operators for integers. This semiring is also known
as the tropical semiring in the literature. The user annotates query symbols by
natural numbers.

In the case of qualitative preferences, we have

F = (N ∪ {∞},min,max,∞, 0).
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This semiring is also known as the fuzzy semiring in the literature. Similarly
to the quantitative case, the user annotates query symbols by natural numbers.
This is however, only syntactically “the same” as the quantitative case. The
semantics of the two cases are different. The numbers here represent the “level
of discomfort” for traversing database edges. As we mentioned in Introduction,
it is the choice of the user to specify the semantics that she desires.

Finally, for hybrid preferences, the user again uses the same query syntax
as for the quantitative and qualitative case. That is, the user annotates the
query symbols with natural numbers. However, here the set N is just the “user
interface.” In fact the support set of the semiring H , for hybrid preference
semantics is

R = {0, 1, 1(2), . . . , 2, 2(2), . . .} ∪ {∞},

where the symbolic ingredients, n and i, of a semiring element n(i) are natu-
ral numbers. [Elements 1, 2, . . . are shorthand for 1(1), 2(1), . . ..] Intutitively, n
represents the level of discomfort, while i represents how many times a user is
“forced to endure” that level of discomfort. While the subset {0, 1, 2, . . .} is the
user interface for annotating queries, set R is richer in elements in order to allow
for a finer ranking of query answers.

Regarding the semiring operations, we introduce

n(i) ⊕m(j) =

⎧⎨⎩
n(i) if n < m

m(j) if n > m

n(min{i,j}) if n = m,

n(i) ⊗m(j) =

⎧⎨⎩
n(i) if n > m

m(j) if n < m

n(i+j) if n = m

and for these we have 0 =∞, 1 = 0. It is easy to verify that the semiring axioms
are satisfied.

Reiterating, the user, the same as before, annotates query symbols with nat-
ural numbers representing her preferences. However, semantically the queries
will be different from both the quantitative and qualitative case, while bearing
similarities with both of them. Similarly with the qualitative semantics, only
database edges matched by transitions annotated with the “worst” level of dis-
comfort will really count in computing a preferential weight for a traversed path.
On the other hand, differently from the qualitative semantics, and similarly with
the quantitative semantics, paths with the the same “worst-level of discomfort”
are comparable. Namely, the best path will be the one with the fewest “worst-
level of discomfort” edges.

4 Answering Preferentially Annotated RPQ’s

Our goal here is to not only compute preferentially weighted answers to a query,
but to compute the answers in a progressive way, i.e. to compute the best answers
first. First, we will review the well-known method for the evaluation of classical
RPQ’s (cf. [1]). In essence, the evaluation proceeds by creating state-object pairs
from the query automaton and the database. For this, let A be an NFA that
accepts an RPQ Q. Starting from an object a of a database DB , we first create
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the pair (p0, a), where p0 is the initial state in A. Then, we create all the pairs
(p, b) such that there exist a transition from p0 to p in A, and an edge from a to
b in DB , and furthermore the labels of the transition and the edge match. In the
same way, we continue to create new pairs from existing ones, until we are not
anymore able to do so. In essence, what is happening is a lazy construction of
a Cartesian product graph of the query automaton with the database graph. Of
course, only a small (hopefully) part of the Cartesian product is really contructed
depending on the selectivity of the query. The implicit assumption in [1] is that
this part of the Cartesian product fits in main memory and each object is not
accessed more than once in secondary storage.

After obtaining the above Cartesian product graph, producing query answers
becomes a question of computing reachability of nodes (p, b), where p is a final
state, from (p0, a), where p0 is the intial state. Namely, if (p, b) is reachable from
(p0, a), then (a, b) is a tuple in the query answer.

Now, when having instead an annotated query automaton, we can modify
the classical matching algorithm to build an annotated (or weighted) Cartesian
product graph. This can be achieved by assigning to the edges of this graph the
corresponding (automaton) transition annotations (weights).

It is not difficult to see that, in order to compute preferentially weighted
answers, we have to find, in the Cartesian product graph, the (semiring) shortest
paths from (p0, a) to all the nodes (p, b), where p is a final state in the query
automaton A.

In our algorithm, we, in a similar spirit with [1], lazily build the above men-
tioned Cartesian product. However, we also compute “on the fly” shortest paths
needed for preferentially weighting the answer tuples.

Our algorithm is progressive, i.e. it computes answer tuples (w.r.t. each po-
tential starting object a) in the order of their preference rank. For this, Dijkstra’s
algorithm is the best choice (compared to Flloyd-Warshall algorithm). It fits per-
fectly with the lazy strategy of constructing the Cartesian product graph, and
it reaches the b objects in a “best first” fashion. Our general algorithm, which
works with all the proposed preference semirings is as follows.

Algorithm 1
Input: An ε-free automaton A for an R-annotated query Q, and a database DB .
Output: Ans(Q,DB , R).
Method: For each potential start object a3 compute the set Reacha as follows.

1. Initialize Reacha to {(p0, a,1, false)}.
2. Repeat 3–5 until Reacha no longer changes.
3. Choose a quadruple (p, b, x, false) ∈ Reacha, such that

x = ⊕{y : (p, b, y, false) ∈ Reach}.

Update (p, b, x, false) to (p, b, x, true).
3 Finding potential start objects can be facilitated by classical indexes on the database

edge labels.
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4. If p is a final state, then insert (a, b, x) in Ans(Q,DB , R).
5. If there is a transition (p, r, y, q) in A and there is an edge b

r−→ c in DB
then add (q, c, x⊗ y, false) to Reacha.

5 Preferentially Ranked Answers on Possible Databases

In a semistructured LAV data integration system (cf. [2,10,3]), we do not have a
database in the classical sense. Instead what we have is incomplete information,
which is in the form of a set of “data-sources,” characterized by an algebraic
definition over a “global schema.”

Each data-source also has a name, and the set of these names constitutes the
“local schema.” The LAV system also has a set of tuples over the local schema.
The queries are formulated on the “integrated” global schema. Since the data
exists in the local schema only, a translation from the global to the local schema
has to be performed in order to be able to compute query answers.

When the user gives an ARPQ, the question is: What does it mean to prefer-
entially answer such a query in a LAV system?

Formally, let Δ be the global schema. Let S = {S1, . . . , Sn} be a set of
data-source definitions, with each Si being a regular language over the global
schema Δ. Associated with each data-source is a name si, for i = 1, . . . , n. The
local schema is the set Ω = {s1, . . . , sn} of all the data-source names. There is a
natural mapping between the local and global schema: for each si ∈ Ω, we set
def(si) = Si. The mapping or substitution4 def associates with each data-source
name si the definition language Si. The substitution def is applied to words,
languages, and regular expressions in the usual way.

Let Ω = {s1, . . . sn} be the local schema as before. Then, a source collection
S over (S, Ω) is a database over (D, Ω). As mentioned earlier, in a LAV system,
the user formulates queries on the global schema, i.e. Δ, and the system has to
compute the answer on the data available in the local schema, i.e. Ω. For this,
we have to reason about hypothetical databases over (D, Δ) that a database
over (D, Ω) could possibly represent.

A source collection S defines a set poss(S) of databases over (D, Δ) as follows:

poss(S) = {DB : there exists a path a
w∈Si−→ b in DB for each (a, si, b) ∈ S}.

This definition reflects the intuition about the connection of an edge (a, si, b)
in S with paths between a and b in hypothetical DB ’s.

For classical regular path queries, what we usually compute is the certain
answer using S, which is the set of all tuples, which are in the query answer on
each possible database.

Consider a classical regular path query as a preferentially annotated query
over the Boolean semiring B. In a semiring terminology, what we do is an “∧”
aggregation of query answers on the possible databases. Also, let us overload ∧
operator to work for answer tuples and sets as follows:
4 In a language theoretic terminology.
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(a, b, x) ∧ (a, b, y) = (a, b, x ∧ y), and

Ans(Q,DB1, B) ∧Ans(Q,DB2, B) =
{(a, b, x ∧ y) : (a, b, x) ∈ Ans(Q,DB1, B) and (a, b, y) ∈ Ans(Q,DB2, B)}.

Then, the certain answer w.r.t. S and “weighted” over B is

CAns(Q,S, B) =
∧

DB∈poss(S)

Ans(Q,DB , B),

It is easy to verify that this definition is equivalent with the definition of the
certain answer given in other works as for example [2].

In fact, ∧ for aggregating the answers on possible databases is the “dual op-
erator” of ∨ used for aggregating paths when computing answers on databases.5

Generalizing, in order to define the certain answer for other semirings, we in-
troduce the 0 operator, which is the dual of the path aggregation operator ⊕.
Namely,

x0 y =
{

x if x⊕ y = y
y if x⊕ y = x.

This is possible since ⊕ induces a total order, and so, x⊕y is equal to either x or
y. Clearly, ∧ is the dual of ∨ according to this definition. Observe also that the
operator 0 induces the reverse order (with respect to ⊕) among the elements of
the semiring.

Similarly with the above overloading of ∧, we overload 0 to work with answer
tuples and sets. Now, for a query Q, annotated over a preference semiring R,
we define the certain answer as

CAns(Q,S, R) =
⊙

DB∈poss(S)

Ans(Q,DB , R).

In the above definition, a tuple (a, b, x), with x �= 0, will belong to
CAns(Q,S, R) iff for each DB ∈ poss(S) there exists y $ x such that (a, b, y) ∈
Ans(Q,DB , R). This definition reflects the certainty that objects a and b are
always connected with paths, which are preferentially weighted not more than
x. As an example, consider the query

Q = (highway : 0)∗ ||(road : 1 + ε)∗,

and a source collection (consisting of single source with a single tuple)
S = {(a, s, b)}, with definition

S = highway∗ ||(road + ε)5.

The possible databases for S are all those databases, which have at least a path
(between a and b) labeled by highways intervened by at most 5 roads. Now
5 The fact that this operator ∧ is the same as the “multiplication” operator of the

Boolean semiring for aggregating edge-weights along paths, is just a coincidence.



324 G. Grahne, A. Thomo, and W. Wadge

let us discuss the certain answer considering the semirings for the quantitative,
qualitative, and hybrid preference semantics.

In the quantative case, 0 is max, and we have (a, b, 5) as a certain answer.
The weight of 5 states exactly our certainty that in any possible database, there
is a path from a to b, whose preferential weight w.r.t. the given query is not more
than 5. Also, there exists a possible database in which the best path between a
and b is exactly 5.

In the qualitative case, 0 is again max. However, we have now (a, b, 1) as a
certain answer. The weight of 1 states our certainty that in any possible database,
there is a path from a to b, and the level of discomfort (w.r.t. the query) for
traversing that path is not more than 1.

Finally, in the hybrid case, 0 is as follows

n(i) 0m(j) =

⎧⎨⎩
m(j) if n < m

n(i) if n > m
n(max{i,j}) if n = m.

We have that (a, b, 1(5)) as a certain answer. This is because although the level
of discomfort of the best path connecting a with b in any possible database is 1,
in the worst case (of such best paths), we need to endure up to 5 times such
discomfort (w.r.t. the query). Of course 1(5) is infinitely better than 2.

6 Certain Answers Via Query Spheres

In [2], there is given an algorithm, which computes the certain answer of a
classical RPQ Q given a source collection S. This translates into having available
an algorithm for computing CAns(Q,S, B).

Now, let Q be an ARPQ with annotations over a preference semiring R. In
this section, we cast computing tuples in CAns(Q,S, R) into computing tuples
in CAns(Q,S, B), which is the Boolean certain answer of Q, after “collapsing”
all the annotations in Q into element T of the Boolean semiring.

For this, we introduce the notion of “query spheres.” We formally define the
y-sphere of Q, where y ∈ R, as

Qy = {(w, x) ∈ Δ∗ ×R : (w, x) ∈ Q and x $ y, or otherwise y = 0}.

Let A be an annotated automaton recognizing Q. Then, Qy will be the query
recognized by the automaton Ay obtained from A by retaining only (transition)
paths weighted by some x, which is no more than y. We show in the next
section how to obtain such automata for the different preference semirings that
we consider.

Clearly, Qx ⊆ Qy for x $ y.6

For semirings in which the notion of the “next” element is well defined,
we give a necessary and sufficient condition for a tuple (a, b, y) to belong to

6 It is this property that motivates the use of “query spheres.”
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CAns(Q,S, R). We give the following definition about the “next element” prop-
erty of a semiring.

A semiring R = (R,⊕,⊗,0,1) is said to be discrete iff for each x �= 0 in R
there exists y in R, such that (a) x ≺ y, and (b) there does not exist z in R,
such that x ≺ z ≺ y. The element y is called the next element after x.

Notably, all our preference semirings are discrete. Let R be a discrete semiring.
Also, let y (as above) be the next element after (some) x. We can show that

Theorem 1

(a, b, y) ∈ CAns(Q,S, R) iff
(a, b, T ) ∈ CAns(Qy,S, B) and (a, b, F ) ∈ CAns(Qx,S, B),

(a, b,1) ∈ CAns(Q,S, R) iff (a, b, T ) ∈ CAns(Q1,S, B).

From the above theorem, we conclude that if we are able to compute Qy for each
y (relevant to the query), then we could generate all the y-ranked tuples (a, b, y)
of CAns(Q,S, R) by computing with the algorithm of [2] CAns(Qy,S, B) and
CAns(Qx,S, B), and then taking the set difference of their T -tuples.

We present in the next section algorithms, which for a given y compute Qy,
for the different preference semirings that we study.

Now the question is, for what y’s to apply the method suggested by Theorem 1
for generating (a, b, y) tuples of the certain answer? For this, let z = 0{x :
(w, x) ∈ Q}. We state the following theorem, which can be easily verified.

Theorem 2. Qz = Q.

For the quantitative and qualitative semirings, the existence of a z ≺ 0 (strict ≺)
guarantees a terminating procedure for ranking all the tuples in the certain
answer. Simply, one has to repeat the method of Theorem 1 starting with y
equal to 1 and continuing for up to y equal to z. On the other hand, for the
hybrid semiring a “global” (upper bound) z is not enough. Rather, we need to
reason about “level-wise” z’s, as we explain later in this section.

Quantitative case. Interestingly, determining whether there exists such a z ≺ 0
coincides with deciding the “limitedness” problem for “distance automata.” The
later problem is widely known and positively solved in the literature (cf. for
example [8]).

If the query automaton is limited in distance, and this limit is z, then we
need to compute query spheres up to Qz, which will be equivalent to Q. On the
other hand, if the query automaton is not limited in distance, we can still apply
the same procedure utilizing query spheres for ranking the tuples in the certain
answer. However, the ranking in this case is only eventually computable.

In practice, the user might provide beside the query, also an upper bound z′

on the preferential weight of the answers that she is interested to retrieve. In
such a case, we need to compute not more than z′ query spheres in order to
return all the tuples weighted less or equal to z′ in CAns(Q,S, R).
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Qualitative case. Here, the existence of z ≺ ∞ (semiring 0) is guaranteed.
This is because z will be less or equal to the biggest transition weight in the
query automaton.

Hybrid case. In this case, the existence of a global z ≺ ∞ does not guarantee
the ability to rank all the tuples in the certain answer. Rather we need for this
the existence of the level-wise z’s. Namely, we define the upper bound for level n
as zn = 0{x : (w, x) ∈ Q and x ≺ n+1} (strict ≺, and recall n+1 is a shorthand
for (n + 1)(1)). If there exists i ∈ N, such that zn = n(i), we say that zn is finite.

Now, if zn is finite, then for determining the exact weight of the “n-range”
tuples (a, b, n( )) in the certain answer, we need to compute query spheres from
Q(n(1)) up to Q(n(i)).

If zn = zm for m ≺ n (strictly), then there cannot be any n-range tuple in
the certain answer.

On the other hand, if zn > n(i) for each i ∈ N, then the exact weight of the
“n-range” tuples is only eventually computable.

Hence the question is how can we determine the existence of a finite zn? For
this, we first introduce the generalized query spheres Qn(∞)

=
⋃∞

i=0 Qn(i)
. If zn is

finite, then there exists j ∈ N, such that Qn(∞)
=
⋃j

i=0 Qn(i)
. But, the existence

of such j can be found by deciding the limitedness of an automaton for Qn(∞)
.

Thus, we state that

Theorem 3. zn is finite iff Qn(∞)
is limited in distance.

The question is, how can we compute Qn(∞)
? In essence we want to extract

the paths in a query automaton A = (P, Δ, N, p0, τA, F ), which are weighted
strictly less than n + 1. Such paths cannot recognize words weighted more or
equal to n + 1. In order to perform this extraction, we build a one-state mask
automaton Mn on the alphabet {0, 1, . . . , n}. Let τA be the transition relation
of the query automaton A. Then, Mn = ({q}, {0, 1, . . . , n}, q, τn, {q}), where
τn = {(q, m, q) : (p, r, m, p′) ∈ τA and m ≤ n}.

Finally, we construct a Cartesian product automaton

Cn = A×Mn = (PA × {q}, Δ, τ, (p0, q), FA × {q}),

where τ = {((p, q), r, n, (p′, q)) : (p, r, m, p′) ∈ τA and (q, m, q′) ∈ τn}. It can be
shown that

Theorem 4. The weighted automaton Cn accepts exactly Qn(∞)
.

Here again, the user can practically specify an upper bound k on the preferential
weight of the tuples in each range that she is interested to exactly rank. Such
a bound will serve as an accuracy index. By computing query spheres up to
Q(n(k)), we accurately rank the n-range tuples having a weight, which is not
more than n(k). Finally, we can “inaccurately” derive the rest of n-range tuples,
by computing the whole CAns(Qn(∞)

,S, B). By “inaccurately” we mean that
for the n-range tuples weighted more than n(k), we only know that their weight
is from n(k) to n + 1 exclusive.
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7 Computing Query Spheres

Quantitative Case. In this section we present an algorithm, which for any
given number k ∈ N constructs the k-th sphere Qk of an ARPQ Q.

For this, we build a mask automaton Mk on the alphabet K = {0, 1, . . . , k},
which formally is as follows: Mk = (Pk, K, τk, p0, Fk), where Pk = Fk = {p0, p1,
. . . , pk}, and

τk = {(pi, n, pi+n) : 0 ≤ i ≤ k, and 0 ≤ n ≤ k − i}.

The automaton Mk has a nice property. It captures all the possible paths
(unlabeled with respect to Δ) with weight equal to k. Formally, we can show
that

Theorem 5. Mk contains all the possible paths π with weight(π) ≤ k, and it
does not contain any path with weight greater than k.

Now by using Mk, we can extract from a weighted automaton A for Q all the
transition paths with a weight less or equal to k, giving so an effective procedure
for computing the k-th sphere Q(k).

For this, let A = (PA, Δ, τA, q0, FA) be a weighted automaton for Q. We
construct a Cartesian product automaton

Ck = A×Mk = (PA × Pk, Δ, τ, (q0, p0), FA × Fk),

where τ = {((q, p), r, n, (q′, p′)) : (q, r, n, q′) ∈ τA and (p, n, p′) ∈ τk}. We can
show that

Theorem 6. The weighted automaton Ck accepts exactly the k-th sphere Q(k)

of query Q.

It can be easily seen that the size of automaton Mk is O(k2). Thus, the above
algorithm for computing Q(k) through Ck is in fact exponential in k, since k is
represented in a binary format. However, as we show by the next theorem, this
is the best one could do unless P = NP . In fact, our suggested incremental
computation of the certain answer is a parametrically optimal procedure. We
can show that

Theorem 7. Our algorithm for computing Q(k) is essentially optimal.
Qualitative Case. Here the mask automaton is polynomial in k, and it coincides
with the mask automaton for computing Qk∞

in the hybrid case (see previous
section). The procedure for computing query spheres is repeated as many times
as the number of different annotations in the query automaton, i.e. the number
of repetitions does not depend on k. Hence, we conclude that to compute the
certain answer is polynomial in k for the qualitative case.

Hybrid Case. For computing a query sphere Qy, where y = n(k), for n, k ∈ N,
we need to extract from a query automaton all the paths (not necessary simple)
with (a) any number of transitions weighted strictly less than n, and (b) not
more than k transitions weighted exactly n.
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For this, we build a mask automaton Mn,k as follows:

Mn,k = (Pn,k, {0, 1, . . . , n}, τn,k, p0, Fn,k),

where Pn,k = Fn,k = {p0, p1, . . . , pk}, and

τn,k = {(pi, m, pi) : 0 ≤ m < n and 0 ≤ i ≤ k} ∪
{(pi, n, pi+1) : 0 ≤ i < k}.

Formally, we can show that

Theorem 8. Mk contains all the possible paths π with weight(π) ≤ n(k), and
it does not contain any path with weight greater than n(k).

Now by using Mn,k, similarly with the previous cases, we can extract from an
automaton A for Q all the transition paths weighted less or equal to n(k), giving
so an effective procedure for computing the Q(n(k)) query sphere.

Observe that the above algorithm for computing Q(n(k)) is polynomial in n,
but unfortunately exponential in k (due to a binary representation of n). It is
open whether or not Q(n(k)) can be computed in better time with respect to k.
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Abstract. In many cases, users may want to consider incomplete an-
swers to their queries. Often, however, there is an overwhelming number
of such answers, even if subsumed answers are ignored and only maximal
ones are considered. Therefore, it is important to rank answers according
to their degree of incompleteness and, moreover, this ranking should be
combined with other, conventional ranking techniques that are already in
use (e.g., the relevance of answers to keywords). Query evaluation should
take the ranking into account by computing answers incrementally, i.e.,
in ranked order. In particular, the evaluation process should generate the
top-k answers efficiently.

We show how a semantics for incomplete answers to tree queries can
be combined with common ranking techniques. In our approach, answers
are rewarded for relevancy and penalized for incompleteness, where the
user specifies the appropriate quantum. An incremental algorithm for
evaluating tree queries is given. This algorithm enumerates in ranked or-
der with polynomial delay, under query-and-data complexity. Our results
are couched in terms of a formal framework that captures a variety of
data models (e.g., relational, semistructured and XML).

1 Introduction

The conventional paradigm of querying large databases using structured queries
has two major drawbacks. First, databases commonly store incomplete and ir-
regular information; for example, when data is integrated from several hetero-
geneous sources. Consequently, there may be partial answers that are highly
relevant. For dealing with this problem, the notion of incomplete answers has
been studied [7, 9, 8]. The second drawback is that of overwhelming the user
with many answers that largely differ in their semantic strength. This is a prob-
lem especially when queries involve fuzzy conditions [16] or when applying twig
patterns to graph-structured XML [17, 12]. As a solution, ranking and evalua-
tion in ranked order have been studied [11, 12, 14, 5, 15]. The second drawback
is further intensified when allowing incomplete answers, since it increases both
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the number of answers and the variation in the semantic strength due to missing
information. Therefore, it is important to combine incompleteness and ranking.

Towards this end, we introduce an approach that features both ranking and
incompleteness in tree queries. Our results are couched in an abstract data model
that easily captures XML (including ID references) as well as relational data.
Users can control the amount of missing information by specifying completeness
constraints that generalize the existence constraints of [7, 9]. Answers are partial
matches that correspond to a subtree of the query, satisfy the completeness
constraints and are maximal (i.e., not subsumed by other answers). Ranking
functions consist of two parts. One can express conventional ranking techniques
that measure, for example, the relevance of objects to the query terms [2] or
the proximity among matched objects [4, 10, 12]. The second part penalizes a
partial answer for the missing information.

The main contribution of this paper is an algorithm for efficiently evaluating
queries of the above type. Our algorithm enumerates the answers in ranked
order with polynomial delay, under query-and-data complexity. In comparison
to earlier work, the following should be noted. Efficient evaluation of incomplete
answers to queries (which are not necessarily trees) was investigated in [7, 9, 8],
but they did not consider ranking and their evaluation techniques cannot be
easily adapted to enumerating with polynomial delay (even if ranking is not
required). The algorithms of [11, 12] enumerate in ranked order with polynomial
delay, but they strongly rely on the fact that answers are complete.

Our algorithm uses two reductions. The first is an adaptation of Lawler’s
procedure [13] that enumerates in ranked order by repeatedly using a subrou-
tine that finds a top-ranked answer under constraints. This subroutine should
be developed for the specific problem at hand. In our case, it is more difficult
to do so, compared to [11, 12], for several reasons—one is that the constraints
generated by Lawler’s procedure are inherently different from the completeness
constraints mentioned above. Consequently, the second reduction is that of ap-
plying a transformation that generates constraints of a new type. This is done by
performing several reasoning steps starting with the original constraints. Finally,
we compute bottom-up the top-ranked answer under the new constraints.

A related problem is that of computing full disjunctions [3, 1]. The techniques
used in [1] for enumerating with polynomial delay can handle only a limited type
of ranking functions (namely, “c-determined”) and, therefore, cannot be applied
here. We can handle more general ranking functions as well as completeness
constraints, since queries are trees.

2 Data Model

2.1 Databases

Our results can be couched in a rather abstract data model that captures a
variety of concrete models, including the semistructured and relational mod-
els. Formally, a database D consists of a set of objects that is denoted by O(D).
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For example, in a relational database, an object is a tuple. Alternatively, a
database can be an XML document, where the objects are the document nodes.
For any given object, certain properties and tests can be computed by either
using just the object itself or the whole database. For example, in the relational
model, we can determine the name of the relation that contains a given object
(i.e., tuple) or test whether there exists another object that is join consistent
with the given one. Similarly, in an XML document, we can find the label of
an object. Computations can be performed also w.r.t. (with respect to) pairs
of objects, e.g., testing whether one given object of an XML document is the
parent of the second given object. We only consider properties and tests that can
be computed in polynomial time in the size of the database (typically they can
even be evaluated much more efficiently, i.e., in logarithmic or constant time).

Example 1. As an example, the upper-right box in Figure 1 depicts a database
D that is a labeled, directed graph where O(D) is the set of nodes. Each object
is shown as a circle, with its identifier inside the circle and its label next to it. ��

2.2 Q-Trees and Complete Matches

We consider tree-structured queries over databases. A query tree T (abbr. q-
tree) is directed tree with a designated node, called the root and denoted by
root(T ), such that each node of T is reachable from root(T ) through a directed
path. We use N (T ) and E(T ) to denote the set of nodes and the set of edges,
respectively, of T . Each node n of a q-tree is associated with a predicate that gets
a truth value when given a database D and an object o ∈ D. By a slight abuse
of notation, however, the predicate for node n, denoted by condn(X), is written
as a unary predicate over database objects. Similarly, every edge e has a binary
predicate conde(X1, X2) over pairs of database objects (although, formally, the
truth value depends also on the given database D and not just on the pair of
objects o1 and o2 that are substituted for X1 and X2, respectively).

A q-tree can represent an XPath query or a twig pattern (and the under-
lying database can be a graph, as in [17, 12], and not just a tree document).
Alternatively, a q-tree can be an acyclic join of some given relations.

A complete match (abbr. c-match) of a q-tree T in a database D is a mapping
M from N (T ) to O(D) that satisfies the node and edge predicates, i.e., for
every node n ∈ N (T ) and every edge e = (n1, n2) ∈ E(T ), both condn(M(n))
and conde(M(n1), M(n2)) are true. Given a database D, the set of answers to
T is usually defined as the set of all c-matches. However, we are interested in
incomplete answers which are defined later in this section.

Example 2. Consider again Figure 1. A q-tree T is shown inside the dashed box,
next to the database D that is described in Example 1. In this particular ex-
ample, we use the following shorthand notation. Each node of T is denoted by
nl, where l is a label, and we assume that condnl

(X) is the predicate “the la-
bel of object X is l.” For each edge e = (n1, n2), the predicate conde(X1, X2)
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Fig. 1. A query Q = 〈T, C, p+, p−〉, a database D and p-matches

simply means that the database D has an edge from object X1 to object X2.
Thus, a c-match of T in the database D must preserve labels and edges. That
is, a node nl of T must be mapped to an object that has the label l while an
edge of T must be mapped to an edge of D.

The c-match M2 of T in D is shown at the bottom of Figure 1. Note that
instead of defining the c-match M2 explicitly, we show the image of M2, i.e., the
subtree of D that corresponds to T under M2. The c-match M2 is unambiguously
derived from its image, since each node of T must be mapped to an object with
a distinct label. For example, M2 maps nA to object 2 and nF to object 10. ��

2.3 Partial and Maximal Matches

The c-match M2 (from the above example) maps every node of the q-tree T
to an object of D. Sometimes users want to consider partial matches that map
only some of the nodes to objects while the remaining nodes are mapped to the
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null value, denoted by ⊥. For a partial match to be meaningful, it must map a
connected part of T to database objects.

Formally, consider a q-tree T and a database D. We say that M is a partial
match (abbr. p-match) of T in D if there is a nonempty subtree T ′ of T , such
that M is a c-match of T ′ in D and it maps the nodes of N (T ) \ N (T ′) to the
null value. The set of nodes of T ′ is called the domain of M and is denoted by
Dom(M). Note that T ′ itself is a q-tree, but it does not necessarily have the
same root as T . Also observe that a c-match is a special case of a p-match. We
use M(T, D) to denote the set of all the p-matches of T in D.

We sometimes use n �→ o to denote the fact that node n is mapped to object o.
Consequently, a p-match M can be viewed as a set {n1 �→ o1, . . . , nj �→ oj} (and
if some node does not appear at all in this set, then it is mapped to null). Note
that by definition, the empty set is not a p-match. Thus, we use ∅ when we need
to denote that there is no p-match that satisfies certain conditions.

Consider two p-matches M1 and M2 of a q-tree T . We say that M2 subsumes
M1, denoted by M1 � M2, if M2 is equal to M1 when the latter is nonnull,
i.e., Dom(M1) ⊆ Dom(M2) and for all nodes n ∈ Dom(M1), it holds that
M1(n) = M2(n). We say that M2 properly subsumes M1 if M2 subsumes M1
but the two are not identical, i.e., M1 � M2 and Dom(M1) � Dom(M2)).

Now, consider a subset S of M(T, D). A p-match M ∈M(T, D) is said to be
maximal w.r.t. S if M ∈ S and M is not properly subsumed by any p-match of
S. If M is maximal w.r.t. M(T, D), then we say that it is globally maximal.

As an example, consider again the q-tree T and the database D of Figure 1.
Some of the p-matches of T in D are shown at the bottom of the figure. The
p-matches M1, M2, M3 and M4 are globally maximal (and these are the only
globally maximal p-matches) while the others are not. For example, the p-match
M5 is properly subsumed by the p-match M3.

2.4 Edge-Completeness Constraints

Sometimes, when a user poses a q-tree T , she may also want to specify that some
nodes of T must be assigned nonnull values. We actually allow more general
constraints that can express predicates of the form “if node n1 is assigned a
nonnull value then so is n2,” where n1 and n2 are connected by an edge. Formally,
given a q-tree T , an edge-completeness constraint (abbr. ec-constraint) has the
form n1 � n2, where either (n1, n2) or (n2, n1) is an edge of T . A p-match M of
T in a database D satisfies n1 � n2 if either M(n1) = ⊥ or M(n2) �= ⊥. Note
that since a p-match is only required to be nonnull on a subtree of T that does
not necessarily have the same root as T , the constraint n1 � n2 is nontrivial
even if the direction of the edge is from n2 to n1. Given a set C of ec-constraints,
we say that the p-match M satisfies C if M satisfies all the ec-constraints of C.

As a special case, ec-constraints can express the predicate “node n must be
assigned a nonnull value.” As a shorthand notation, we use ∗� n to denote the
set of ec-constraints that is satisfied by exactly all the p-matches that assign a
nonnull value to n. The next example shows how this set is constructed.
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Consider again Figure 1 and consider the specified set C of ec-constraints.
In this specific example, ∗� nB is a shorthand notation for nA �nB, nC � nB,
nD � nB, nE � nB, nF � nE , nG � nF , nH � nF . In addition to ∗� nB, the set
C also contains the constraints nE �nF and nF � nH . Among the p-matches
of this figure (M1, . . . , M7), only M2, M5 and M7 satisfy C. M4 does not satisfy
C since it does not include nB in its domain. M1, M3 and M6 do not satisfy C
since each one has nF , but not nH in its domain (thus, nF � nH is violated).

Consider a q-tree T with a set C of ec-constraints and a database D. A p-
match M is maximal w.r.t. C if M satisfies C and there is no p-match M ′ that
properly subsumes M and also satisfies C. We use Mmax

|C (T, D) to denote the set
of all p-matches of T in D that are maximal w.r.t. C. In Figure 1, for example,
Mmax

|C (T, D) consists of the p-matches M2 and M5. Note that M2 is also globally
maximal while M5 is not.

2.5 Ranking P-Matches

In many cases, users may be overwhelmed by a huge number of p-matches.
Therefore, ranking is important. But (to the best of our knowledge) ranking has
not been discussed in the context of partial answers to queries. We propose to
rank p-matches using two functions. The first, p+, rewards a p-match for assign-
ing nonnull values to nodes. The second, p−, penalizes a p-match for missing
information. These functions are formally described next.

Consider a q-tree T . The functions p+ and p− are associated with T . Given
a p-match M of T in a database D, the function p+ determines a nonnegative
number, denoted by p+(n, M(n)), for each node n of T that is mapped under M
to an object of D, i.e., n ∈ Dom(M). The function p+ also determines a non-
negative number, denoted by p+(e, M(n1), M(n2)), for each edge e = (n1, n1),
such that both n1 and n2 are in Dom(M). Note that both p+(n, M(n)) and
p+(e, M(n1), M(n2)) depend also on D, but by a slight abuse of notation, we do
not show D explicitly as an argument of p+ (and we do the same with p−). The
function p− determines a nonnegative number, denoted by p−(n), for each node
of T that is mapped to null. The rank of a p-match M , denoted by rank(M), is
obtained by adding all the rewards and subtracting all the penalties, that is,

rank(M) =
∑

n∈Dom(M)

p+(n, M(n)) +
∑

e=(n1,n2)∈E(T ),
n1,n2∈Dom(M)

p+(e, M(n1), M(n2))−
∑

n∈N (T ),
n/∈Dom(M)

p−(n).

As an example, consider the functions p+ and p− in Figure 1. Both are con-
stant functions, i.e., the reward is always 1 and the penalty is always 2. The rank
of each of the p-matches M1, . . . , M7 is shown in a box next to the p-match.

Generally, prizes and penalties are not necessarily constant. For example,
p+(n, o) can express ranking functions used in information retrieval [2], such
as the relevance of object o to the keywords attached to node n of the query
(e.g., a tf · idf formula), while p+(e, o1, o2) may represent the semantic proximity
(e.g., distance [4, 10, 12]) between o1 and o2.
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2.6 Queries and Answers

In our model, a query is a combination of a q-tree, ec-constraints and ranking.
Formally, a query is a tuple Q = 〈T, C, p+, p−〉, where T is a q-tree, C is a set
of ec-constraints, p+ is a reward function and p− is a penalty function. Given
a database D, the answers obtained by applying Q to D are the p-matches of
Mmax

|C (T, D). Therefore, the computational goal is defined as follows.

Given a query Q = 〈T, C, p+, p−〉 and a database D,
enumerate Mmax

|C (T, D) in ranked order.

Note that by “ranked order,” we mean that if two p-matches M1 and M2 satisfy
rank(M1) > rank(M2), then M1 should appear before M2.

As an example, Figure 1 shows the query Q = 〈T, C, p+, p−〉 in the upper-
left box (each of the elements of Q has already been described earlier) and the
database D in the upper-right box. The answers are the p-matches M2 and M5
depicted in that figure, where the rank of M2, 15, is higher than that of M5,
which is -9.

3 Efficient Ranked Evaluation

3.1 Enumeration with Polynomial Delay

In order to discern between efficient and inefficient evaluations of queries in
ranked order, we need to use the measure of query-and-data (i.e., combined)
complexity. Furthermore, measuring the running time as a function of only the
input size is inappropriate, since the output size could be exponential in the
size of the input. In such cases, there are several notions of efficiency [6]. The
conventional notion is polynomial total time, i.e., the time for evaluating the
query is polynomial in the combined size of the input and the output. This
notion, however, does not provide a sufficiently strong requirement for efficiency,
since it does not capture the need to enumerate the answers incrementally in
ranked order (or to obtain the top-k answers quickly). Therefore, we use the
strongest notion in [6], namely, enumeration with polynomial delay that is defined
as follows. After the algorithm prints the (i− 1)st answer, it generates the next
(ith) answer in time that is polynomial in the size of the input (i.e., the query
and the database). Polynomial delay implies, in particular, an efficient evaluation
of the top-k answers, since we can stop the execution after printing the first k
answers and the running time is only linear in k (and polynomial in the input).

3.2 Efficiency of Query Evaluation

Our main complexity result is that queries can be evaluated in ranked order
with polynomial delay. We assume that the predicates attached to the nodes and
edges of q-trees as well as the prize and penalty functions can all be evaluated
in polynomial time in the size of T and D. In the next two sections, we prove
the following for a query Q = 〈T, C, p+, p−〉 and a database D.
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Algorithm RankedEvaluation(Q, D)
1: Queue ← an empty priority queue, with priority based on rank
2: M ← TopRanked(Q, D, ∅, ∅)
3: if M �= ∅ then
4: Queue.insert(〈∅, ∅, M〉)
5: while Queue is not empty do
6: 〈Pos ,Neg , M〉 ← Queue.removeTop()
7: {n1, . . . , nk} ← Dom(M) \ Dom(Pos)
8: for i ← 1 to k do
9: Posi ← Pos ∪{n1�M(n1), . . . , ni−1�M(ni−1)}

10: Neg i ← Neg ∪{ni ��M(ni)}
11: Mi ← TopRanked(Q, D,Posi,Neg i)
12: if Mi �= ∅ then
13: Queue.insert(〈Posi,Neg i, Mi〉)
14: Print(M)

Fig. 2. Incrementally computing answers in sorted order

Theorem 1. The answers of Mmax
|C (T, D) can be enumerated in ranked order

with polynomial delay, under query-and-data complexity.

4 The Basic Enumeration Technique

By generalizing an algorithm of Yen [18], Lawler [13] developed a procedure for
enumerating the top-k solutions to discrete optimization problems. The algo-
rithm RankedEvaluation(Q, D) of Figure 2 is an adaptation of this procedure.
The input is a query Q = 〈T, C, p+, p−〉 and a database D. The algorithm uses
two types of constraints (in addition to the ec-constraints of C). A positive con-
straint has the form n � o and a negative constraint has the form n′ �� o′, where
n and n′ are nodes of the q-tree T while o and o′ are objects of D. A p-match
M ∈ Mmax

|C (T, D) satisfies n � o if M(n) = o. M satisfies n′ �� o′ if M(n) �= o

(in particular, note that M(n) �= o holds if n �∈ Dom(M), i.e., M(n) = ⊥). We
use Pos and Pos i to denote sets of positive constraints whereas Neg and Negi

denote sets of negative constraints. Dom(Pos) denotes the set of all the nodes
that appear on the left side of some constraint of Pos .

RankedEvaluation uses a priority queue, denoted by Queue. Each element
of Queue represents a subset of Mmax

|C (T, D) that is characterized by sets of
positive and negative constraints. At any given time, the elements of Queue cor-
respond to disjoint subsets that cover all the answers that have not yet been
printed. In particular, an element of Queue is a triplet 〈Pos ,Neg, M〉, where
Pos and Neg are sets of positive and negative constraints, respectively, and M is
the top-ranked p-match among all the p-matches of Mmax

|C (T, D) that satisfy Pos
and Neg . Priority in Queue is based on the ranking function rank ; that is, the top
element of Queue is a triplet 〈Pos ,Neg, M〉, such that rank(M) ≥ rank(M ′) for
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all triplets 〈Pos ′,Neg ′, M ′〉 of Queue. The operations on Queue take logarithmic
time in the size of Queue (hence, polynomial time in Q and D).

The first element inserted into Queue (Lines 2–4) represents the whole set
Mmax

|C (T, D). In the loop of Lines 5–14, each iteration starts by removing the
top element 〈Pos ,Neg, M〉 from Queue. The p-match M is printed in Line 14.
Let n1, . . . , nk be the set of all the nodes of Dom(M) that do not appear in Pos ,
i.e., {n1, . . . , nk} = Dom(M) \ Dom(Pos). In Lines 8–13, we partition all the
p-matches represented by 〈Pos ,Neg, M〉, except for M , into k disjoint subsets
by creating the elements 〈Pos i,Negi, Mi〉 (1 ≤ i ≤ k) and inserting them into
Queue (whenever Mi exists, i.e., Mi �= ∅). The set Pos i is obtained from Pos
by adding the constraints nj � M(nj) for j = 1, . . . , i− 1. The set Negi is ob-
tained from Neg by adding the constraint ni �� M(ni). The top-ranked p-match
Mi ∈ Mmax

|C (T, D) that satisfies Pos i and Negi is generated in Line 11 by exe-
cuting the algorithm TopRanked(Q, D,Pos i,Negi), which is described in the
next section. Designing this algorithm is the main difficulty in applying Lawler’s
procedure to a specific enumeration problem. The correctness and running time
of RankedEvaluation(Q, D) are stated by the next lemma. To prove it, we
need to show that the original method of [13] remains correct even when using
non-binary variables and allowing incomplete (yet maximal) assignments.

Lemma 1. Consider a query Q = 〈T, C, p+, p−〉 and a database D. The algo-
rithm RankedEvaluation(Q, D) enumerates Mmax

|C (T, D) in ranked order with
polynomial delay if TopRanked is correct and runs in polynomial time.

5 Finding Top-Ranked P-Matches Under Constraints

Throughout this section, Q = 〈T, C, p+, p−〉 denotes a query, D is a database,
and Pos and Neg are sets of positive and negative constraints, respectively. Our
goal is to describe the algorithm TopRanked for finding a top-ranked answer
of Mmax

|C (T, D) that satisfies Pos and Neg (in addition to C). The main idea is
to transform all the constraints of the sets C, Pos and Neg into negative rules
(which are similar to negative constraints but are applied differently) and then
use an algorithm for finding the top answer under such rules.

5.1 Negative Rules

In the algorithm of Figure 2, negative constraints are used for selecting an-
swers. That is, a negative constraint n′ �� o′ is applied to Mmax

|C (T, D) and the
result comprises all p-matches that satisfy that constraint. In this section, we
use negative constraints in a different way, similarly to the role of ec-constraints
in defining the set Mmax

|C (T, D). To emphasize this difference, we use the term
negative rules instead of negative constraints. However, the definition of when a
p-match satisfies a negative rule remains the same.

Given a set NR of negative rules, we use Mmax
|NR(T, D) to denote the set of

all p-matches of the q-tree T in the database D that are maximal w.r.t. NR. In



338 B. Kimelfeld and Y. Sagiv

other words, M ∈ Mmax
|NR(T, D) if M satisfies all the negative rules of NR and

there is no p-match M ′ that properly subsumes M and also satisfies NR.
We also use the following notation. Given a set P of p-matches and a set C

of constraints, [P ]|C denotes the set of all p-matches of P that satisfy C. Note
that TopRanked should find a top-ranked p-match of [Mmax

|C (T, D)]|Pos ∪Neg .
Consider the query Q = 〈T, C, p+, p−〉, the database D and a set NR of

negative rules. Recall that n �→ o means that node n of T is mapped to object o.
We say that n �→ o is legal if condn(o) holds and, in addition, NR does not contain
the rule n �� o. Now, suppose that n �→ o is legal and let n′ be connected to n
by an edge e (i.e., either e = (n, n′) ∈ E(T ) or e = (n′, n) ∈ E(T )). We say that
n′ �→ o′ complies with n �→ o if n′ �→ o′ is legal and, in addition, if (n, n′) ∈ E(T ),
then conde(o, o′) holds, and otherwise conde(o′, o) holds.

5.2 Transforming Constraints into Negative Rules

Positive Constraints. First, we transform positive constraints into negative
and ec-constraints by applying Pos-Trans of Figure 3. This operation replaces
each positive constraint n � o of Pos with constraints that are added to Neg and
C as follows. The ec-constraint ∗�n is added to C. For each object o′ ∈ O(D),
such that n �→ o′ is legal (w.r.t. the empty set of negative rules) and o′ �= o,
the negative constraint n �� o′ is added to Neg. Let Neg ′ and C′ be the sets of
constraints when Pos-Trans terminates, after starting with Pos , Neg and C.

Lemma 2. [Mmax
|C (T, D)]|Pos ∪Neg = [Mmax

|C′ (T, D)]|Neg′ .

Edge-Completeness Constraints. After eliminating the positive constraints,
we apply the operation EC-Trans of Figure 3 that transforms ec-constraints
into negative rules. Consider an ec-constraint n1 � n2 of C′. Suppose that o1
is an object, such that n1 �→ o1 is legal (w.r.t. NR) but there is no object o2,
such that n2 �→ o2 complies with n1 �→ o1. Clearly, in this case, n1 cannot be
mapped to o1. Hence, EC-Trans adds the negative rule n1 �� o1 to NR. Note
that adding rules to NR may create new opportunities to add more rules and,
hence, the loop of Line 2 is repeated while NR changes. It can be shown that
the final result does not depend on the order of iterating through ec-constraints
and objects in Lines 3 and 4. Let NR denote the set of negative rules that is
obtained from the empty one by applying EC-Trans when starting with C′.

Lemma 3. Mmax
|C′ (T, D) = Mmax

|NR(T, D).

Negative Constraints. Negative constraints are transformed into negative
rules by applying the operation Neg-Trans of Figure 3 that repeatedly adds
negative constraints to Neg ′′ (which is initially equal to Neg ′) and finally com-
putes the union of Neg ′′ and NR. Constraints are added to Neg ′′ as follows.
Consider two neighbors n and n̂ of T and an object o of D, such that n �→ o is
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Operation Pos-Trans

1: for all positive constraints n � o ∈ Pos do
2: C ← C ∪ {∗ � n}
3: for all o′ ∈ O(D), such that n �→ o′ is legal and o′ �= o do
4: Neg ← Neg ∪{n �� o′}

Operation EC-Trans

1: NR ← ∅
2: while NR changes do
3: for all ec-constraints n1 � n2 ∈ C′ do
4: for all objects o1 ∈ O(D), such that n1 �→ o1 is legal do
5: O = {o2 ∈ O(D) | n2 �→ o2 complies with n1 �→ o1}
6: if O = ∅ then
7: NR ← NR ∪{n1 �� o1}

Operation Neg-Trans

1: Neg ′′ ← Neg ′

2: while Neg ′′ changes do
3: for all n ∈ N (T ) and o ∈ O(D), such that n �→ o is legal do
4: for all neighbors n̂ of n do
5: O′ ← {o′ ∈ O(D) | n̂ �→ o′ complies with n �→ o}
6: Ô ← {ô ∈ O′ | n̂ �� ô ∈ Neg ′′}
7: if O′ �= ∅ and Ô = O′ then
8: Neg ′′ ← Neg ′′ ∪{n �� o}
9: NR′ ← NR ∪Neg ′′

Operation Transform

1: apply Pos-Trans
2: apply EC-Trans
3: apply Neg-Trans
4: return NR′

Fig. 3. Transformations of constraints

legal (w.r.t. the set NR that was generated by the previous transformation). If
there is at least one object ô, such that n̂ �→ ô complies with n �→ o and, moreover,
for all such objects ô, the constraint n̂ �� ô is in Neg ′′, then add n �� o to Neg ′′.
Again, it can be shown that the final result does not depend on the order of
iterating over nodes and objects. The result of Neg-Trans is NR′, namely, the
union of NR and Neg ′′.
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Algorithm TopMaxMatch(Q, D,NR)

1: let Q = 〈T, C, p+, p−〉
2: for all n ∈ N (T ) and o ∈ O(D) do
3: r[n, o] ← −∞, f [n, o] ← −∞, m[n, o] ← ∅
4: for all n ∈ N (T ) in bottom-up order do
5: for all o ∈ O(D), such that n �→ o is legal do
6: m[n, o] ← {n �→ o}
7: r[n, o] ← p+(n, o)
8: for all edges e = (n, n̂) ∈ E(T ) do
9: Ô = {o′ ∈ O(D) | n̂ �→ o′ complies with n �→ o}

10: if Ô = ∅ then
11: N ← N (Tn̂)
12: r[n, o] ← r[n, o] −∑n′∈N p−(n′)
13: else
14: ô = argmax o′{r[n̂, o′] + p+(e, o, o′) | o′ ∈ O}
15: m[n, o] ← m[n, o] ∪ m[n̂, ô]
16: r[n, o] ← r[n, o] + r[n̂, ô] + p+(e, o, ô)
17: for all n ∈ N (T ) do
18: N ← N (T ) \ N (Tn)
19: for all o ∈ O(D) do
20: f [n, o] ← r[n, o] −∑n′∈N p−(n′)
21: let Top be the set of all p-matches m[n, o] with the maximal f [n, o]
22: return a p-match m[n, o] ∈ Top, such that n has a minimal depth in T

Fig. 4. Finding the top-ranked p-match of Mmax
|NR(T, D)

Lemma 4. [Mmax
|NR(T, D)]|Neg′ = Mmax

|NR′(T, D).

The Complete Transformation. To conclude, the operation Transform
of Figure 3 describes the complete transformation. Recall that the input con-
sists of a query Q = 〈T, C, p+, p−〉, a database D, and sets Pos and Neg of
positive and negative constraints, respectively. Pos-Trans is applied first, fol-
lowed by EC-Trans and, finally, Neg-Trans. Correctness of Transform, i.e.,
[Mmax

|C (T, D)]|Pos ∪Neg = Mmax
|NR′(T, D), follows from Lemmas 2, 3 and 4.

5.3 Finding Top-Ranked P-Matches Under Negative Rules

We now describe the algorithm TopMaxMatch of Figure 4 for finding the
top-ranked p-match of Mmax

|NR(T, D). The input is a query Q = 〈T, C, p+, p−〉, a
database D and a set NR of negative rules. The algorithm finds the top-ranked
p-match M of Mmax

|NR(T, D) according to the ranking defined by p+ and p−.
In the algorithm, Tn denotes the subtree of T that is rooted at node n, i.e.,

the subtree that consists of n and all of its descendants. The algorithm uses
three arrays r, f and m that are indexed by a node n ∈ N (T ) and an object o ∈
O(D). When the execution terminates, m[n, o] contains a top-ranked p-match
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of Mmax
|NR(Tn, D) that maps n to o; however, if n �→ o is illegal, then m[n, o] = ∅.

The rank of the p-match m[n, o] is w.r.t. Tn (i.e., the penalties for the nodes of
N (T ) \ N (Tn) are not taken into account) and it is stored in r[n, o]. The real
rank of m[n, o] (i.e., w.r.t. T ) is eventually stored in f [n, o]. Next, we describe
the algorithm in detail.

In Lines 1–3, we initialize the arrays r and f to −∞, and m to ∅. In Lines 4–16,
we construct the arrays r and m. Lines 6–16 are executed for each node n and
object o, such that n �→ o is legal. The nodes n of T are traversed in a bottom-up
order. When the iteration terminates, m[n, o] and r[n, o] hold their final values.
Line 6 sets m[n, o] to the p-match that maps n to o and the prize for this match
is assigned to r[n, o] in Line 7. If n is a leaf in T , then m[n, o] and r[n, o] already
hold their final values. Otherwise, Lines 9–16 are executed for each child n̂ of n
in T . Consider such a child n̂ and let e be the edge (n, n̂). In Line 9, we define
the set Ô of all objects o′ of D, such that n̂ �→ o′ complies with n �→ o. If Ô
is empty, then we cannot add n̂ to the domain of m[n, o] and, in Lines 11–12,
we subtract from r[n, o] the penalties for all the descendants of n̂, including n̂
itself. If Ô is not empty, then we choose from Ô an object ô, such that the value
r[n̂, ô] + p+(e, o, ô) is maximal. Then, in Lines 15–16, we add all the mappings
defined for m[n̂, ô] to m[n, o] and add to r[n, o] the value r[n̂, ô] + p+(e, o, ô).

In Lines 17–20, we construct the array f . For each n and o, the value of
f [n, o] is obtained from r[n, o] by simply subtracting the penalties for the nodes
of T that are neither n nor descendants of n. Finally, in Lines 21–22, a top-
ranked p-match of Mmax

|NR(T, D) is returned. Line 21 constructs the set Top of
all the p-matches m[n, o], such that the value of f [n, o] is the largest in f . Not
all p-matches of Top are necessarily maximal. Hence, Line 22 returns a p-match
m[n, o] in Top, such that n is closest to the root of T , since this is a maximal
p-match of Mmax

|NR(T, D).

Lemma 5. Upon termination of TopMaxMatch(Q, D,NR), the following
hold for each n ∈ N (T ) and o ∈ O(D), such that n �→ o is legal.

1. m[n, o] is a top-ranked p-match of Mmax
|NR(Tn, D) that maps n to o;

2. r[n, o] stores the rank of m[n, o] w.r.t. Tn; and
3. f [n, o] stores the rank of m[n, o] w.r.t. T .

Corollary 1. TopMaxMatch(Q, D,NR) returns, in polynomial time, a top-
ranked p-match of Mmax

|NR(T, D), or ∅ if no such p-match exists.

We conclude Section 5 with the following theorem that shows the correctness
and efficiency of the algorithms we presented.

Theorem 2. Consider a query Q = 〈T, C, p+, p−〉 and a database D. Suppose
that Pos and Neg are sets of positive and negative constraints, respectively. Let
NR′ be obtained by applying Transform. TopMaxMatch(Q, D,NR′) returns
a top-ranked p-match of [Mmax

|C (T, D)]|Pos ∪Neg , or ∅ if no such p-match exists.
Furthermore, both Transform and TopMaxMatch have a polynomial run-
ning time.



342 B. Kimelfeld and Y. Sagiv

6 Conclusion

We have investigated how to combine incompleteness and ranking in tree queries.
Our results apply to the semistructured data model (including XML with ID
references) and can be translated into the relational models. Our semantics for
answers to queries deploys the notion of partial, yet maximal matches. This ap-
proach extends earlier work [7, 9] by allowing the root to be matched with any
data object (rather than just a specified root object). Furthermore, answers may
assign the null value to the root of the query. Our edge-completeness constraints
over query answers extend the existence constraints of [7]. The user can rank
answers according to the degree of incompleteness (by penalizing nodes that are
assigned the null value) and combine it with known ranking paradigms com-
monly in use, e.g., relevance of objects to query terms [2] and proximity among
objects [4, 10, 12] (by rewarding nodes and edges associated with nonnull values).

To characterize the efficiency of an evaluation algorithm, one has to measure
the delay between successive answers when presenting them in ranked order. We
developed an evaluation algorithm that enumerates answers in ranked order with
polynomial delay under query-and-data complexity. Our algorithm employs an
adaptation of Lawler’s technique [13] that reduces ranked evaluation to the prob-
lem of finding the top-ranked answer under positive and negative constraints (in
addition to the edge-completeness constraints that define the set of all answers).
For solving the latter problem, all the constraints are transformed into negative
rules by means of a reasoning process. Finally, a bottom-up algorithm computes
the top-ranked p-match that satisfies the negative rules. It is important to ob-
serve that the transformation of the constraints to negative rules does not use
the ranking function. Therefore, we can use any ranking function for which the
top-ranked p-match under negative rules can be found efficiently.

This work can be extended in several directions. The first is allowing pro-
jection in queries. The naive approach of applying the projection as a post-
processing step can lead to an exponential delay, since it may generate redundant
answers. After applying a projection, there are two kinds of redundant answers:
repeated answers and subsumed answers. Our algorithms can be extended to han-
dle the first kind of redundancy. An open problem is whether our result holds if
subsumption among the projected answers is not allowed.

The second extension is generalizing the ranking function. For example, we
can adapt our algorithm to ranking functions that have some properties of mono-
tonicity. More specifically, we can allow the “branch-monotonic” functions of [12].
As another example, we can allow negative prizes and penalties. More formally,
we can show that one can enumerate all the maximal answers in ranked order,
even under negative prizes and penalties. However, in this case there is an ap-
parent contradiction between the notions of ranking and maximal answers, since
one p-match can properly subsume another p-match that has a higher rank. In
future work, we intend to explore suitable semantics that allow negative prizes
and penalties without overwhelming the user with all the partial matches.

Finally, we can show that our result holds even if edge-completeness con-
straints are used differently from the definition in the paper when determining
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the set of all answers. Specifically, instead of defining answers as the p-matches
that are maximal w.r.t. the ec-constraints, they can be defined as the globally
maximal p-matches that satisfy the ec-constraints. Our algorithm can be modi-
fied to handle the new definition.
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Abstract. XML query languages need to provide some mechanism to
inspect and manipulate nodes at all levels of an input tree. In this paper
we investigate the expressive power provided in this regard by structural
recursion. We show that the combination of vertical recursion down a
tree combined with horizontal recursion across a list of trees gives rise to
a robust class of transformations: it captures the class of all primitive re-
cursive queries. Since queries are expected to be computable in at most
polynomial time for all practical purposes, we next identify a restric-
tion of structural recursion that captures the polynomial time queries.
Although this restriction is semantical in nature, and therefore undecid-
able, we provide an effective syntax. We also give corresponding results
for list-based complex objects.

1 Introduction

Over the past few years, the ordered, node-labeled tree data model of XML has
emerged as the standard format for representing and exchanging data on the
web. Often, there is no a priori bound on the width and depth of such trees.
As such, an XML query language needs to provide some mechanism to inspect
and manipulate nodes at all levels. XQuery, the standard XML query language
currently under development by the World Wide Web Consortium [4,14], uses
recursion for this purpose. For example, to compute the table of contents of
books in which sections can be arbitrarily nested, one would write:

function toc(t) {
for s in t/section return <section>{ s/title, toc(s) }</section>

};

<toc> toc(book)</toc>

Here, toc is a recursive function returning for each section child s of its input
tree t a new section node containing the title and table of contents of s.
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XQuery allows arbitrary recursive function definitions, resulting in a Turing
complete language. Turing completeness is an undesirable property for a query
language however, as it makes optimization difficult and allows non-terminating
queries. Therefore, it is desirable to look for suitable restrictions of arbitrary re-
cursion in XQuery. Non-termination can be prevented by closely tying recursion
to the structure of the data being operated upon, i.e., by restricting to structural
recursion. For example, a structural recursive function computing on a tree t can
only recursively call itself on the children of t. The function toc defined above
is an example of such a structural recursion. Similarly, a structural recursive
function computing on a list l can only recursively call itself on the tail of l. A
typical example of such a structural recursion is the list reversal function rev :

function rev(l) { if empty(l) then l else rev(tl(l)), hd(l) };
Here hd returns the head of a nonempty list, tl returns the tail of a nonempty
list, and the comma operator is concatenation of lists.

In this paper, we study the properties of structural recursion as a candidate
replacement of arbitrary recursion in XQuery. In particular, we study the com-
bination of vertical structural recursion down trees and horizontal structural
recursion across lists of trees (as trees and lists of trees both naturally occur in
the XQuery data model [4,14].

Structural recursion is an important primitive in database theory. It has been
used to query (nested) collections based on sets, or-sets, pomsets, bags, and
lists [8,17,21,24]; unordered trees and graphs [7]; and sequences and text docu-
ments [5]. Unrestricted structural recursion leads to highly expressive query lan-
guages. For example, Buneman et al. have shown [8] that structural recursion on
nested relations is equivalent to the powerset algebra of Abiteboul and Beeri [1],
which by a result of Hull and Su, captures exactly the class of elementary nested
relational queries [20] (i.e., the queries with hyper-exponential time data com-
plexity). Furthermore, Immerman et al. [21] and Suciu and Wong [27] have shown
that, in the presence of object invention, the class of functions f : N×· · ·×N → N
representable with structural recursion on sets coincides with the class of prim-
itive recursive functions [6]. The resulting language is hence strictly more pow-
erful than the elementary queries. This result was later extended to structural
recursion on (nested) bags by Libkin and Wong [24].

Since tree construction is a form of object invention, it should come as no
surprise that a similar result also hold for structural recursion in XQuery. We
actually obtain a slightly stronger result than that of Immerman et al.: not only
does the class of functions f : N × · · · × N → N representable in our language
coincide with the class of primitive recursive functions, but the class of express-
ible queries coincides with the class of queries that have primitive recursive time
data complexity.

From a complexity point of view, structural recursion is hence too powerful a
primitive, as queries are expected to be computable in at most polynomial time
for all practical purposes. A restriction of structural recursion to polynomial
time is therefore desirable. Nevertheless, this restriction should still enable all
polynomial time queries.
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The first such restriction was given by Immerman et al. for structural recursion
on sets, by disallowing all forms of nesting [21]. The resulting language captures
exactly the polynomial time flat relational queries. Their restriction does not
transfer to nested data models or data models with duplicates such as bags
or lists, however. As such, it is not directly applicable to structural recursion in
XQuery. A different restriction technique, known as bounded recursion dates back
to Cobham [11], and was applied to structural recursion on flat lists by Grumbach
and Milo [17]. Bounded recursion is best explained by means of an example.
Consider the unbounded function that computes a list of size exponential in the
size of l:

function explist(l) {if empty(l) then l else explist(tl(l)),explist(tl(l))};

Since explist generates exponential output, it certainly cannot be evaluated in
polynomial time. Bounded recursion prevents the expression of explist by requir-
ing each recursive function definition to halt computation whenever the result
becomes larger than some explicitly given size bound b. That is, with bounded
recursion, explist is required to have the following form:

function explist ′(l, b) {
if empty(l) then l else

let r = explist ′(tl(l), b),explist ′(tl(l), b) in
if sizeof (r) ≤ sizeof (b) then r else explist ′(tl(l), b)

};

In particular, the size of explist ′(l, b) is always bounded by the size of b. Since the
value for b will ultimately be computed by an expression that does not involve
recursion, the size of recursively computed outputs is always polynomial, and
this guarantees that all expressible queries can be evaluated in polynomial time
(see [11,17] for details). This way of bounding recursion has also been applied
to query languages over nested relations and bags based on inflationary fixpoint
operators [12,25,26].

Although bounded recursion is useful for capturing polynomial time, it is un-
satisfactory from a practical point of view, as the programmer is required to
give explicit complexity bounds upon each recursive function invocation. More
intrinsic restrictions of structural recursion on the bitstrings by means of predica-
tive recursion were proposed by Bellantoni and Cook [3] and Leivant [23]. Their
restrictions were later generalized to arbitrary recursive functions operating on
ranked trees generated by a free term algebra by Caseiro [9]. Her techniques were
later explained by means of a type system based on linear and modal logic in the
context of a higher-order functional programming language by Hofmann [18,19].

In this paper, we apply Caseiro’s observations and ideas to structural re-
cursion operating on lists and unranked trees to obtain an intrinsic restriction
that captures exactly the class of polynomial time queries. In particular, we
prevent the definition of explist above by disallowing all forms of doubling like
explist(tl(l)),explist(tl(l)). Although this restriction is semantical in nature, and
therefore undecidable, we provide an effective syntax for it.
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For the formal development of our results, we find it convenient to not study
structural recursion directly in XQuery itself, but in the Nested Tree Calculus
NT C. The NT C can be viewed as the combination of non-recursive for-let-
where-return XQuery XQ and a complex object calculus for nested lists COC.
These languages blend naturally together, as it has repeatedly been observed in
the literature that there is a close correspondence between XQ and calculi for
complex objects [15,22,29]. In fact, we show NT C to be a conservative extension
of both XQ and COC, even in the presence of (restricted) structural recursion.
As a consequence, results about (restricted) structural recursion in NT C transfer
immediately to the respective sublanguages. As an important corollary we obtain
that our polynomial time restriction of structural recursion also allows to capture
the polynomial time queries on nested lists. Hence, suitably restricted structural
recursion provides an elegant alternative to the rather awkward list-trav iteration
construct of Colby et al. [13], which also captures polynomial time on nested lists.

Organization. This paper is further organized as follows. We start by introducing
our data model and the notion of a query in Section 2. Next, we define the Nested
Tree Calculus NT C and structural recursion in Section 3. The expressive power
of structural recursion in NT C is in studied in Section 4, where we also show
how to restrict it to polynomial time. Finally, we show NT C to be a conservative
extension of both XQ and COC in Section 5.

2 Preliminaries

Our data model is a combination of the tree-based data model of XQuery and
the list-based complex object data model [8]. That is, we consider the types
given by the following grammar:

σ, τ ::= atom | tree | σ × τ | [τ ].

Semantically, a type denotes a set of values. The values of the base type atom
are atoms like the integers, the strings, and so on. The elements of the base type
tree are finite trees. Here, a tree is a pair 〈a〉 v with a an atom and v a finite list
of trees. Values of the product type σ × τ are pairs (v, w) with v and w values
of type σ and τ , respectively. Finally, values of the list type [τ ] are finite lists
of values of type τ . Note that our types are not meant to describe the structure
of trees (as e.g., XML Schema types [28] do). They are used solely to define our
data model and to structure NT C expressions.

According to the XQuery data model, an XQuery value is either an atomic
data value; an ordered tree; a list of atoms; or a list of trees [4,14]. Arbitrary
nested combinations of atoms, pairs, lists, and trees are not allowed. Conversely,
the list-based complex object data model typically does not include trees. We
therefore formally define an XQuery type (xq-type for short) to be either atom;
tree; [atom]; or [tree], while a complex object type (co-type for short) is a type in
which tree does not occur.
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Notational convention. In what follows, we will range over atoms by letters from
the beginning of the alphabet. Also, we will denote the empty list by [ ], non-
empty lists by for example [a, b, c], and the concatenation of two lists l1 and l2 by
l1 ++ l2. Following [8], we write v � l for [v] ++ l. We feel free to omit parentheses
in types and write τ1×· · ·× τn for (. . . ((τ1× τ2)× τ3) · · ·× τn). Finally, we write
v : τ to indicate that v is a value of type τ .

Queries. Queries on values are defined by extending the classical definition of
Chandra and Harel [10] for relations. That is, a query is a function q : σ → τ that
maps values in σ to values in τ , for some types σ and τ . If σ = σ′×· · ·×σ′′ where
σ′, . . . , σ′′, τ are xq-types, then q is an xquery. Similarly, if σ and τ are co-types,
then q is a complex object query. Queries must be computable and generic (i.e.,
they must treat all but a finite set of atoms in uninterpreted way [2]). We will use
the domain Turing machine of Hull and Su [20] as our model of computation.
Domain Turing machines (DTMs for short) are augmented Turing machines
that are specifically designed to express generic computations; in particular,
they can work directly with an infinite alphabet on their tape. In contrast to
normal Turing machines, there is hence no need to (rather clumsily) encode
atoms as strings over finite alphabets. Nevertheless, DTMs can be simulated by
ordinary Turing machines while respecting the complexity classes considered in
this paper [20].

A query q : σ → τ is said to run in polynomial (resp. primitive recursive [6])
time if there exists a DTM M that, starting from the standard encoding of
a value v : σ, produces the standard encoding of q(v) in at most polynomially
many (resp. primitive recursive many) steps in terms of the size of the input.
Note that the query itself is fixed (i.e., we consider data complexity, not combined
complexity). Here, the standard encoding str(v) of a value v on a DTM tape
is as follows. The type constructor symbols (, ), [, and ] are part of the tape
alphabet, as are all of the atoms. Then a is encoded by itself; 〈a〉 v is encoded by
the string (str(a) str(v)); (v, w) is encoded by (str(v) . . . str(w)); and [v, . . . , w]
is encoded by [str(v) . . . str(w)]. We write s (v) for the length of str(v).

3 Query Languages

In this section, we define the Nested Tree Calculus NT C, a first-order calcu-
lus that extends both non-recursive for-let-where-return XQuery and a complex
object calculus for nested lists. We will show in Section 5 that NT C is a conser-
vative extension of these languages, even in the presence of structural recursion.
As a consequence, in order to prove our expressiveness results claimed in the
Introduction, it suffices to prove them for NT C; they immediately transfer to
the respective sublanguages.

3.1 Nested Tree Calculus

To avoid confusion, we note that NT C is a first-order language; structural re-
cursion operators will be added in Section 3.2. The expressions of NT C are
explicitly typed, and are formed according to the typing rules of Fig. 1. There
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xτ : τ a : atom

e1 : σ e2 : σ e3 : τ e4 : τ

if e1 = e2 then e3 else e4 : τ

e : σ e′ : τ

(e, e′) : σ × τ

e : σ × τ e′ : τ ′

case e of {(xσ, yτ ) → e′} : τ ′ [ ] : [τ ]

e : τ

[e] : [τ ]

e1 : [τ ] e2 : [τ ]

e1 ++ e2 : [τ ]
e : [σ] e′

1 : τ e′
2 : τ

case e of {[ ] → e′
1; xσ � y[σ] → e′

2} : τ

e : [σ] e′ : [τ ]
for xσ

in e return e′ : [τ ]
e1 : atom e2 : [tree]

〈e1〉 e2 : tree

e : tree e′ : σ

case e of {〈xatom〉 y[tree] → e′} : σ
e : τ

λxσ. e : σ → τ

f : σ → τ e : σ

fe : τ

Fig. 1. Expressions of NT C

are two sorts of expressions: value expressions and function expressions. Value
expressions like a : atom intuitively evaluate to values and are typed by a nor-
mal type, while function expressions like λxσ. e intuitively evaluate to queries
and are typed by a function type σ → τ . Note that variables are also explicitly
typed; we write xτ to denote that x is a variable of type τ . To ease notation, we
will often omit the explicit type annotations in superscript when they are clear
from the context. We use an ML-like notation for value inspection. For example,
case e of {(x, y) → e′} should be understood to be the expression that first eval-
uates e to a pair (v, w) and then evaluates e′ with x bound to v and y bound to
w. This non-standard syntax for inspection of pairs, lists, and trees will allow us
to easily define our polynomial time restriction in Section 4. The set FV (e) of
free variables of an expression e is defined as usual, with lambda abstraction and
the case expressions acting as binders. For example, FV (λx.e) = FV (e) − {x}
and FV (case e of {[ ] → e1; x � y → e2}) = FV (e)∪FV (e1)∪ (FV (e2)−{x, y}).
We will refer to expressions without free variables such as λx.(x, x) as closed
expressions.

Semantics. Intuitively, a value expression e : τ evaluates to a value in τ when
given values for its free variables, while a function expression f : σ → τ evaluates
to a query mapping values in σ to values in τ . Formally, a value expression e : τ
denotes a value �e�κ under context κ, while a function expression f : σ → τ
denotes a query �f�κ under context κ. Here, a context κ is a function from
variables to values respecting types (i.e., κ(x) : τ for all xτ ). We denote by x : v, κ
the context that equals κ on all variables except x, which it maps to v. The
denotation of all expressions is inductively defined in Table 1. It is easy to see
that the denotation of an expression depends only on its free variables: if κ and
κ′ agree on FV (e) then �e�κ = �e�κ′ . As such, the input context to an expression
can always be finitely represented. Moreover, the denotation of closed expressions
e without free variables is independent of the context. We simply write �e� in
that case.

Syntactic sugar. We will abbreviate λx. case x of {(x1, x2) → e} by λ(x1, x2). e.
Furthermore, we abbreviate case e of {(x, y) → x} and case e of {(x, y) → y}
by π1(e) and π2(e), respectively. Similarly, we abbreviate case e of {〈x〉 y → x}



350 E.L. Robertson et al.

Table 1. Semantics of NT C

�x�κ = κ(x)
�a�κ = a

�if e1 = e2 then e3 else e4�κ =

{
�e3�κ if �e1�κ = �e2�κ

�e4�κ otherwise
�(e, e′)�κ =

(
�e�κ, �e′�κ

)
�case e of {(x, y) → e′}�κ = �e′�x : v,y : w,κ where �e�κ = (v, w)
�[ ]�κ = [ ]
�[e]�κ = [�e�κ]
�e++ e′�κ = �e�κ ++�e′�κ

�case e of {[ ] → e′
1; x � y → e′

2}�κ =

{
�e′

1�κ when �e�κ = [ ]
�e′

2�x : v,y : w,κ when �e�κ = v � w

�for x in e return e′�κ = �e′�x : v,κ ++ · · · ++�e′�x : w,κ

where �e�κ = [v, . . . , w]
�〈e〉 e′�κ = 〈�e�κ〉 �e′�κ

�case e of {〈x〉 y → e′}�κ = �e′�x : a,y : v,κ where �e�κ = 〈a〉 v
�λxσ.e�κ = f where f : �σ� → �τ� : v �→ �e�x : v,κ

�f e�κ = �f�κ

(
�e�κ

)

by name(e) and case e of {〈x〉 y → y} by children(e). Also, we abbreviate the
iteration for x in children(e) return

(
if name(x) = a then [ x ] else [ ]

)
by e/a.

Finally, we simulate general tuple construction by nested pairs. For example,
we write (e1, e2, e3) for ((e1, e2), e3). General tuple inspection is defined simi-
larly. For example, the expression case x of {(x1, x2, x3) → e} is a shorthand for
case x of {(y, x3) → case y of {(x1, x2) → e}}.

Example 1. Let friends be a variable of type [atom× atom] whose value is a set
of friends, as a list of pairs of atoms. The following closed function expression
generates a list of trees, each tree grouping the friends of a single person.

λfriends . for x in friends return [
〈π1(x)〉 for y in friends return if π1(x) = π2(y) then [ 〈π1(y)〉 [ ] ] else [ ]

] ��

3.2 Structural Recursion Operators

To NT C we add structural recursion on lists (srl) and structural recursion on
trees (srt):

e : τ f : σ × τ → τ

srl(e, f) : [σ] → τ

f : atom×[τ ] → τ

srt(f) : tree → τ

Here, �srl(e, f)�κ is the unique function that maps the empty list to �e�κ and
non-empty lists u � v to �f�κ(u, �srl(e, f)�κ(v)). Similarly, �srt(f)�κ is the unique
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function h defined by h(〈a〉 [t1, . . . , tn]) = �f�κ

(
a, [h(t1), . . . , h(tn)]

)
. We denote

by NT C(V ) the language obtained by adding operators in V ⊆ {srl , srt} to
NT C.

Definition 1. Let V ⊆ {srl , srt} and let σ, τ be types. A query q : σ → τ is
expressible in NT C(V ) if there exists a closed function expression f : σ → τ in
NT C(V ) such that q = �f�.

Example 2. We can compute the transitive closure of a graph in NT C(srl) as
follows. Let a directed graph G be represented by a pair (V, E) with V a list
containing the nodes in G (represented by atoms) and E a list containing the
edges in G (represented by pairs of atoms). Transitive closure is then expressed
in NT C(srl) by λ(V, E).

(
V, srl(E, f)(V )

)
with f the function expression

λ(y, closure). closure ++
for x in V return

for z in V return
if (x, y) ∈ closure and (y, z) ∈ closure then [(x, z)] else [ ]

Here, (x, y) ∈ closure checks whether the edge (x, y) occurs in closure. It is an
abbreviation of srl(false, g)(closure) = true with g the expression:

λ(edge , res). if edge = (x, y) then true else res .

Example 3. To express toc from the Introduction by means of srt we face a
problem: in a computation of srt(f) on a tree t the function expression f must
compute the output based solely on the label of t and the recursive result on the
children of t. To express toc, it is clear that f also needs to inspect the children of
t themselves. This problem is solved by letting f return a pair of trees where the
first component contains the actual table of contents (a list of trees) and the sec-
ond component is t itself. Then toc is expressed in NT C(srt) by λt. π1(srt(f)(t))
where f : atom×[[tree]× tree] → ([tree]× tree) is λ(lab, res). (e1, e2). Here, e1 is:

for x in res return
case x of {(stoc, s) →

if name(s) = section then [ 〈section〉 (s/title++ stoc) ] else [ ] }

and e2 is 〈lab〉 for x in res return [π2(x )]. ��

4 Expressive Power

4.1 Primitive Recursion

In this section we investigate the class of queries expressible in NT C(srl , srt).
As a first result we have:

Theorem 1. A query is expressible in NT C(srl , srt) if, and only if, it is com-
putable in primitive recursive time.
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This result is slightly stronger than that of Immerman et al. [21]; Suciu and
Wong [27]; and Libkin and Wong [24], who have shown that, in the presence
of object invention, the class of functions f : N × · · · × N → N representable
with structural recursion on (nested) sets and bags, coincides with the class of
primitive recursive functions on natural numbers [6]. Indeed, if we fix a repre-
sentation of natural numbers as values, then the theorem above implies that the
class of functions f : N × · · · × N → N representable in NT C(srl , srt) coincides
with the class of primitive recursive functions, as it is known that the primitive
recursive functions are exactly those functions on the natural numbers that can
be computed in primitive recursive time. Note, however, that their results do not
necessarily imply that the class of expressible queries coincides with the class of
primitive recursive time queries.

Theorem 1 shows that the combination of structural recursion on lists and
trees taken together gives rise to a robust class of queries. Unfortunately, the
expressiveness drops dramatically when we consider structural recursion on lists
or trees separately. Indeed, let lastlab : tree → atom be the query that maps its
input tree t to the label of the last node visited when traversing t in pre-order.
This query is clearly computable in linear time. Nevertheless:

Theorem 2. The query lastlab is inexpressible in bothNT C(srl) and NT C(srt).
Hence, structural recursion on lists or trees alone is not strong enough to express
all linear time queries.

Intuitively, this is because srl only provides “horizontal” recursion along lists,
while srt only provides “vertical” recursion down trees. As such, NT C(srl) can
only manipulate inputs up to bounded depth, while NT C(srt) can only manip-
ulate inputs up to bounded width.

4.2 Taming Structural Recursion

From a complexity point of view, it follows from Theorem 1 that NT C(srl , srt)
is too powerful a query language. In this section we investigate intrinsic restric-
tions on structural recursion that capture exactly the polynomial time queries.
We start with a semantical restriction, from which we next derive a suitable
syntactical restriction.

Let us refer to the function expressions g in srl(e, g) or srt(g) as step ex-
pressions. It is clear that, in order for the function expressed by a function
expression f to be computable in polynomial time, f should never create in-
termediate results of more than polynomial size. This condition is trivially sat-
isfied if f does not use structural recursion. To see how structural recursion
can create results of exponential size or more, consider the function expression
explist := srl([a], λ(x, y). y ++ y). It is clear that, if v is a list of length k, then
�explist�(v) returns a list of length 2k. As Caseiro [9] was the first to note, the
problem here is that the step expression λ(x, y). y ++ y doubles the size of the
result at each recursive invocation. A similar problem arises with structural tree
recursion. Indeed, consider exptree := srt(λ(x, y). 〈x〉 y ++ y). It is clear that, if v
is a linear tree (i.e., a tree in which each node has at most one child) of depth k,
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then �exptree�(v) returns a tree of size 2k. Again, the problem is that the step
expression λ(x, y). 〈x〉 y ++ y of exptree doubles its result at each recursive invo-
cation. This leads us to the following definitions.

Definition 2 (Tamed expressions). A function expression f : σ × σ′ → τ is
non-multiplying (in its second argument) if there exists a polynomial P such that
for all contexts κ; all v : σ; and all w : σ′, the size of �f�κ(v, w) is bounded by

P

⎛⎝s (v) +
∑

x∈FV (f)

s (κ(x))

⎞⎠+ s (w) .

An expression e ∈ NT C(srl , srt) is tamed if every step expression occurring in
it is non-multiplying.

Clearly, explist and exptree are not tamed. The following proposition shows
that being tamed is a strong enough restriction to ensure polynomial time
computability.

Proposition 1. Every tamed function expression in NT C(srl , srt) expresses a
polynomial time query.

Proof (Crux). The proof proceeds by induction on tamed expressions. We only
illustrate the reasoning involved in showing that tamed srl and srt expressions
can be computed in polynomial time, as these are the hard cases.

First, consider a closed function expression f of the form srl(e, f ′) with e
and f ′ also closed. Assume by induction that �f ′

� is computable in polyno-
mial time T ′. Since �f ′

� is non-multiplying, there exists a polynomial P such
that s (�f ′

�(v, w)) ≤ P (s (v)) + s (w) for all v and w of the correct type. We
assume without loss of generality that T ′ and P are monotone increasing. To
compute �f�(v) for a given list v = [w1, . . . , wm] of size n we first compute
w = �e�. Since e is closed, this can be done in constant time. Next, we compute
�f ′

�(w1, �f
′
�(w2, . . . �f

′
�(wm, w) . . . )). In order to do so, we need to evaluate �f ′

�

at most m ≤ n times. Every wi has size at most n and the size of w is some
constant c. Because �f ′

� is non-multiplying, �f ′
�(wm, w) then has size at most

P (n) + c; �f ′
�(wm−1, �f

′
�(wm, w)) has size at most P (n) + P (n) + c; and so on.

The maximum size of an input to f ′ is hence bounded by n×P (n)+c. The total
time needed to compute �f�(v) is then bounded by O(n × T ′(n × P (n) + c)),
which is clearly a polynomial in n.

Next, consider a closed function expression f of the form srt(f ′) with f ′ also
closed. Assume that �f ′

�(v, w) can be computed in polynomial time T ′. Since
�f ′

� is non-multiplying, there exists a polynomial P such that s (�f ′
�(v, w)) ≤

P (s (v)) + s (w). Again, we assume without loss of generality that T ′ and P are
monotone increasing. Using the fact that �f ′

� is non-multiplying, it is straight-
forward to prove by induction on a tree t that s (�f�(t)) ≤ s (t) × (P (1) + 2).
To compute �f�(t) for a given input tree t = 〈a〉 [t1, . . . , tm] of size n we must
compute �f ′

�(a, [�f�(t1), . . . , �f�(tm)]). Hence, we first need to compute �f�(ti)
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for every i. This involves calling �f ′
� again multiple times. Note, however, that

the total number of times that �f ′
� gets called is bounded by n. Furthermore, at

each such call, the size of the input to �f ′
� is bounded by n×(P (1)+2). The total

time needed to compute �f�(t) is hence bounded by O(n× T ′(n× (P (1) + 2))),
which is clearly a polynomial in n. ��

The converse is also true: every polynomial time query can be expressed by a
tamed function expression, as we will show below. Note that “non-multiplying”
and “tamed” are semantical notions. Using a standard reduction from the sat-
isfiability problem of the relational algebra, it is straightforward to show that
checking whether an expression satisfies one of these semantical properties is un-
decidable. We can, however, restrict the syntax of expressions in NT C(srl , srt)
in such a way that all expressions are tamed, as we shown next.

To motivate our syntactical restriction, consider again the problematic step
expression λ(x, y). y ++ y from explist . Since this step expression is multiplying
(and explist is hence not tamed), we want our syntactical restriction to exclude
it. The first solution that comes to mind is to require that y occurs at most once
in the body e of a step expression λ(x, y).e. This solution is defective in multiple
ways. On the one hand it is too restrictive. Indeed, harmless, non-multiplying
step expressions like λ(x, y). if e1 = e2 then x � y else y with y occurring in e1
or e2 are excluded. Clearly, there is a difference between testing a variable and
actually using it to construct the output. On the other hand, the solution is
not restrictive enough. Indeed, the step expression, λ(x, y). for x in [a, b] return y
would be accepted, although it is equivalent to the problematic λ(x, y). y ++ y
above. For these reasons, a more fine-grained restriction is in order.

Definition 3 (Testing and outputting). An expression e tests a variable x
if every free occurrence of x as a subexpression in e is in e1 or e2 of a conditional
test if e1 = e2 then e3 else e4. An expression e outputs x if x is free in e and e
does not test x.

Example 4. The expression if x = y then (y, z) else (z, z) tests x and outputs y
and z. ��

Next, we define linearity. Here, linearity should be understood in the sense of
Caseiro [9] and Hofmann [18]: if e is linear in a variable x, then e uses x to
compute its output at most once.

Definition 4 (Linearity). A value expression in NT C(srl , srt) is linear in a
variable x if either

– it is an expression of the form y, a, or [ ];
– it is a conditional test if e1 = e2 then e3 else e4 with e3 and e4 linear in x;
– it is [e] or 〈e′〉 e with e linear in x;
– it is (e, e′) or e ++ e′ with e and e′ linear in x and at most one of e and e′

outputting x;
– it is a case expression of the form case e′ of {(y, z) → e′2}, case e′ of {[ ] →

e′1; y � z → e′2}, or case e′ of {〈y〉 z → e′2} with (1) e′, e′1, and e′2 linear in x;
and (2) if e′ outputs x, then e′2 tests x and e′2 is linear in y and z;
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– it is for y in e1 return e2 with e1 and e2 testing x;
– it is for y in e1 return y with e1 linear in x; or
– it is for y in e1 return children(y) with e1 linear in x.

We clarify this definition with some examples.

Example 5. The expression y ++ y is not linear in y. The expression from Exam-
ple 4 is linear in x and y, but not in z. The expression for y in x return (if y =
z then [y] else [ ]) is linear in z, but not in x. The expression case x of {(y, z) →
(z, y)} is linear in x. The expression e1 from Example 3 is not linear in the
variable res because the for-loop does not have the required form. Finally, the
expression e from Example 2 is linear in x. ��

Definition 5 (Safety). An expression in NT C(srl , srt) is safe if every step
expression occurring in it is of the form λ(x, y). e with e linear in y.

From Example 5 above, it follows that the function expression computing the
transitive closure of a graph given in Example 2 is safe, whereas the function
expression computing the table of contents of a book given in Example 3 is not.

Lemma 1. If e ∈ NT C(srl , srt) is a value expression linear in x then there
exists a polynomial P : N → N such that for all environments κ:

s (�e�κ) ≤ P

⎛⎝ ∑
y∈FV (e)−{x}

s (κ(y))

⎞⎠+ s (κ(x)) .

It immediately follows that safe expressions are tamed; they are hence com-
putable in polynomial time by Proposition 1. Note, however, that some function
expressions, like the one expressing toc from the Introduction in Example 3 de-
note polynomial time queries, but are not safe. This hence raises the question
how powerful safe expressions are. Fortunately,

Proposition 2. Every polynomial time query is expressible by a safe, closed
function expression in NT C(srl , srt).

In particular, toc from Example 3 can hence be expressed in a safe way. From
Lemma 1 and Propositions 1 and 2 it immediately follows that safe expressions
provide an effective syntax for the polynomial time queries.

Theorem 3. A query is expressible in safe NT C(srl , srt) if, and only if, it is
computable in polynomial time.

5 Natural Sublanguages

Note that the results of Section 4 do not necessarily imply anything about the
expressiveness of structural recursion in XQuery or about the expressiveness of
structural recursion on list-based complex objects. Indeed, the expressions of
NT C(srl , srt) can create and manipulate arbitrary values (including e.g., lists



356 E.L. Robertson et al.

of lists and list of pairs) during their computation, while XQuery only manip-
ulate XQuery values (i.e., values in some xq-type). Conversely, the expressions
of NT C(srl , srt) can create and manipulate trees, while trees are not present in
complex object data models. Nevertheless, the results for NT C(srl , srt) trans-
fer cleanly to both structural recursion in XQuery and structural recursion on
list-based complex objects, as we show in this section.

Let us define structural recursive XQuery to be the natural sublanguage of
NT C(srl , srt) in which we restrict expressions to only manipulate XQuery val-
ues. Since we still want to be able to define and call multiple-argument functions
however, we do allow to create and manipulate tuples of XQuery values, but
only in function abstraction and application.

Definition 6 (Structural recursive XQuery). If V ⊆ {srl , srt} then XQ(V )
is the set of expressions e ∈ NT C(V ) in which every subexpression e′ of e has
type either e′ : τ or e′ : σ× · · ·×σ′ → τ with σ, . . . , σ′, τ xq-types, except when e′

is a variable xσ×···×σ′
in a function abstraction λx. case x of {(y, . . . , y′) → e′′}

or e′ is a product (e1, . . . , en) in a function application f e′.

The function expression from Example 1 is not in XQ(srl , srt) as the subex-
pression friends has type [atom× atom], which is not an xq-type. The expression
λxtree × tree. case x of {(y, z) → 〈name y〉 children z} which we would normally
abbreviate by λ(ytree, ztree). 〈name(y)〉 children(z) does belong to XQ(srl , srt),
however. Unfortunately, the function expression λ(lab, res). (e1, e2) from Exam-
ple 3 that is used to simulate toc from the Introduction is not in XQ(srl , srt).
Indeed, the subexpression (e1, e2) creates a pair without directly giving it as
argument to a function. Nevertheless, toc is expressible in XQ(srt), as Proposi-
tion 3 below shows.

The structural recursive complex object calculus is the natural sublanguage
of NT C(srl , srt) in which we restrict expressions to only manipulate complex
objects. Such expressions hence cannot create or manipulate trees. In particular,
they cannot recur on trees.

Definition 7 (Complex object calculus). If V ⊆ {srl}, then COC(V ) is the
subset of expressions e in NT C(V ) in which every subexpression e′ of e has type
either e′ : τ or e′ : σ → τ with σ and τ complex object types.

The Nested Tree Calculus is a conservative extension of both XQuery and the
complex object calculus, as the following proposition shows.

Proposition 3. Let V ⊆ {srl , srt}.

1. An xquery is expressible in NT C(V ) if, and only if, it is expressible in
XQ(V ).

2. An xquery is expressible by a safe expression in NT C(V ) if, and only if, it
is expressible by a safe expression in XQ(V ).

3. A complex object query is expressible in NT C(srl , srt) if, and only if, it is
expressible in COC(srl).
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4. A complex object query is expressible by a safe expression in NT C(srl , srt)
if, and only if, it is expressible by a safe expression in COC(srl).

It follows that our results about the expressiveness of (safe) structural recursion
in NT C as stated in Theorems 1,2, and 3 transfer to XQ and COC.

In particular, a complex object query is hence expressible in COC(srl) if, and
only if, it is primitive recursive. We note that this result may seem in contrast to
that of Grumbach and Milo [17], who consider a language that includes structural
recursion on pomsets (a datatype that generalizes sets, bags, and lists), which is
claimed to capture the elementary queries on pomsets. It seems counter-intuitive
that a language that generalizes COC(srl) has lower complexity. There is an
error in their upper-bound proof, however; also non-elementary queries can be
expressed [16].

We also note that the polynomial time queries on list-based complex objects
have already been captured by means of the list-trav iteration construct of Colby
et al. [13]. This iteration construct is rather awkward, however, and we think
that safe structural recursion provides an elegant alternative.

Another such alternative in the restricted case of list of atomic values was
given by Bonner and Mecca, in their work on Sequence Datalog [5]. Sequence
Datalog is a query language that extends Datalog with functions on lists of
atomic values. Using suitable syntactic restrictions, they give a query language
sound and complete for the flat relational queries. In these relations, tuple com-
ponents may either contain atomic values or lists of atomic values.
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Abstract. Close relationships between XML navigation and temporal
logics have been discovered recently, in particular between logics LTL
and CTL� and XPath navigation, and between the μ-calculus and nav-
igation based on regular expressions. This opened up the possibility of
bringing model-checking techniques into the field of XML, as documents
are naturally represented as labeled transition systems. Most known re-
sults of this kind, however, are limited to Boolean or unary queries, which
are not always sufficient for complex querying tasks.

Here we present a technique for combining temporal logics to capture
n-ary XML queries expressible in two yardstick languages: FO and MSO.
We show that by adding simple terms to the language, and combining
a temporal logic for words together with a temporal logic for unary tree
queries, one obtains logics that select arbitrary tuples of elements, and
can thus be used as building blocks in complex query languages. We
present general results on the expressiveness of such temporal logics,
study their model-checking properties, and relate them to some common
XML querying tasks.

1 Introduction

It has been observed many times that the basic settings of the fields of database
querying and model checking are very similar: in both cases one needs to evaluate
a logical formula on a finite relational structure. Both fields have invested heavily
in developing logical formalisms and efficient algorithms for query evaluation and
model checking, but despite this, there are very few direct connections between
them, although there is certainly interest in bringing them closer together (see,
e.g., an invited talk at the last ICDT [36]).

Our goal is to explore one possible connection between database querying
and temporal-logic model-checking: we concentrate on the recently discovered
connections between XML querying/navigation, and temporal and modal logics
[1,3,6,25,15,27]. Since XML documents are modeled as labeled unranked trees
with a sibling ordering [19,28], they can naturally be viewed as labeled transition
systems. Furthermore, many common XML tasks involve navigation via paths in
a document, reminiscent of temporal properties of paths in transition systems.

In terms of expressiveness, the yardstick logics for XML querying are FO
(first-order) and MSO (monadic second-order). But from the point of view of
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efficiency of query evaluation, they are not the best, as they cannot guarantee
fast (linear-time) query-evaluation – which is often the goal for query evaluation
on trees [20] – without a very high (nonelementary) price in terms of the size of
the query [14]. However, many temporal logics overcome this problem [20,25,3],
which makes them suitable for XML querying.

The connection between XML navigation and temporal logics was best demon-
strated in the work of Marx [25] and his followers [7,1,2,15]. In particular, [25]
gave an expressive completeness result for XPath: adding a temporal until oper-
ator (found in logics such as LTL, CTL) to the core of XPath gives it precisely
the power of FO, one of the yardstick database query languages. FO sentences
over both binary and unranked trees are also known [18,3] to have the power of
a commonly used temporal logic CTL�, and MSO has the power of the modal
μ-calculus over both binary [30] and unranked trees [3].

The main limitation of these results is that they only apply to Boolean (i.e.,
yes/no) queries, or unary queries, that select a set of nodes from a document
(and the result of [25] also extends to queries with two free variables). While
for problems such as validation, or for some information extraction tasks [16]
this is sufficient, there are many cases where more expressiveness is needed than
Boolean or unary queries provide. For example, the core of XQuery consists of
expressions that essentially select arbitrary tuples of nodes, based on properties
of paths leading to them, and then output them rearranged as a different tree.
But while it is known that the usual MSO/automata connection extends to the
case of n-ary queries [31], logical formalisms for n-ary queries and their model-
checking properties have not been adequately explored.

In this paper, we show how standard temporal logics can define n-ary queries
over XML documents, thus opening a possibility of using efficient model-checking
algorithms [9] in XML querying. We begin with an easy observation that lan-
guages capturing binary FO (or MSO) queries can be extended with a simple
binary term to capture arbitrary n-ary queries. While some languages for bi-
nary FO and MSO are known [25,15], there is an abundance of nice formalisms
for unary and Boolean queries, and those logics tend to have very good model-
checking properties. Thus, as our main contribution, we present a technique for
combining temporal logics to obtain languages for n-ary XML queries. To char-
acterize n-ary L queries, where L could be FO or MSO (and the result applies
to several other logics lying between FO and MSO), one needs:

Ingredients: – a temporal logic L0 that captures Boolean L over words (e.g.,
LTL for FO, or μ-calculus for MSO);

– a temporal logic L1 that captures unary L queries over XML trees (quite
a few are known [25,32,24,3]: for example, CTL� with the past for FO,
or the full μ-calculus for MSO);

– some binary operations on trees, such as the largest common ancestor
for two nodes.

Combination mechanism: This comes in the form of XPath’s node tests: for
each formula ψ of L1, we have a node test [ψ] that becomes an atomic
proposition of L0 and simply checks if ψ is true in a given node.
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Let us add a few early comments on binary operations (exact sets of those
will be defined later in Section 3). Consider the standard document order for
XML documents: s ≤d s′ if either s′ is a descendant of s, or s occurs ahead of
s′ as one looks at the string representation of a document:

s2

s � s′

s s′

s1

Fig. 1. Document ordering and binary terms

Then a path from s to s′ witnessing s ≤d s′ naturally defines two points, s1
and s2, where it changes direction. Note that s1 is the successor of s � s′ in the
direction of s, and s2 is the successor of s� s′ in the direction of s′, where s� s′

is the meet (largest common ancestor) of s and s′. This naturally suggests two
terms: one of them is the meet � of two nodes, and the other is the successor of
one node in the direction of its descendant. This is the set of terms we use here.

In this paper we look at combined logics that capture n-ary FO and MSO
queries. We give their precise definition, prove expressive completeness for n-ary
queries, study their model-checking properties, and relate them to XPath queries
and XML tree patterns.

2 Notation

Unranked trees as transition systems. A tree domain D is a finite prefix-closed
subset of N∗ (strings of natural numbers) such that s · i ∈ D and j < i imply
s · j ∈ D. That is, if a node s has n children, they are s · 0, . . . , s · (n− 1). Nodes
of trees are labeled by letters from a finite alphabet Σ. A Σ-tree is viewed as a
transition system

T = (D,≺ch,≺sb, (Pa)a∈Σ),

where D is a tree domain, ≺ch is the child relation (s ≺ch s · i for all s, s · i ∈ D),
≺sb is the next-sibling relation (s · i ≺sb s · (i+1) for all s · (i+1) ∈ D), and Pa’s
are labeling predicates (s ∈ Pa iff s is labeled a). We shall write ≺∗

ch and ≺∗
sb

for the transitive-reflexive closures of ≺ch and ≺sb. The root of T is the empty
string denoted by ε.

We also use the document ordering s ≤d s′ which holds iff s appears before s′

if the document is written as a string; i.e., either s ≺∗
ch s′, or there exist distinct

s0, s1, s2 such that s0 ≺ch s1 ≺∗
ch s, s0 ≺ch s2 ≺∗

ch s′, and s1 ≺∗
sb s2 (see Fig. 1).

We shall also view Σ-words as transition systems; the domain of a word w of
length n is {0, . . . , n − 1}, with the successor relation i ≺ i + 1 on it, together
with the labeling relations Pa’s. We assume, as is common when one deals with
temporal logics over words, that each position i can be labeled by more than
one symbol from Σ.
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FO and MSO over trees. First-order logic (FO) is the closure of atomic formulae
under Boolean connectives and first-order quantification ∀x,∃x. MSO in addition
allows quantification over sets ∀X, ∃X and new atomic formulae X(x) (or x ∈
X). When we deal with FO which cannot define the transitive closure of a
relation, we use x ≺∗

ch y and x ≺∗
sb y, as well as Pa(x), as atomic formulae for

trees, and the ordering < as well as Pa(x)’s for words. For MSO, one can use
either ≺∗

ch and ≺∗
sb, or ≺ch and ≺sb, since transitive closure is MSO-definable.

We shall only deal with MSO formulae with free first-order variables.
If ϕ(x1, . . . , xn) is an FO or MSO formula with n free variables, it defines

an n-ary query on a tree T which produces the set {ā ∈ Dn | T |= ϕ(ā)}.
We let FOn (resp., MSOn) stand for the class of n-ary queries definable in
FO (resp., MSO). Queries definable by sentences are Boolean queries (they
produce yes/no answers) and queries definable in FO1 and MSO1 are unary
queries.

Temporal logics. We shall use standard temporal logics such as LTL, CTL�, and
the μ-calculus Lμ, cf. [9]. LTL is interpreted over Σ-words and its syntax is:

ϕ, ϕ′ := a, a ∈ Σ | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′.

(As usual, X stands for ’next’ and U for ’until’.) If we have a word w with n
positions 0, . . . , n − 1 labeled by symbols from Σ, the semantics of (w, i) |= ϕ
(that is, ϕ is satisfied in the ith position) is defined by:

– (w, i) |= a iff i labeled with a;
– (w, i) |= ϕ ∨ ϕ′ iff (w, i) |= ϕ or (w, i) |= ϕ′; (w, i) |= ¬ϕ iff (w, i) �|= ϕ;
– (w, i) |= Xϕ iff (w, i + 1) |= ϕ;
– (w, i) |= ϕUϕ′ iff there exists k ≥ i such that (w, k) |= ϕ′ and (w, j) |= ϕ for

every i ≤ j < k.

Each LTL formula ϕ defines a Boolean query over words, that is, the set of
words w such that (w, 0) |= ϕ. A theorem by Kamp says that this set of queries
is precisely the set of Boolean FO queries over words, i.e. LTL = FO0.

For other logics, we need their versions that can refer to the past. CTL�
past,

a version of CTL� with the past operators [21], is given below specifically for
unranked trees. The grammars for state formulae α (satisfied by a node and thus
defining unary queries) and path formulae β (satisfied by a path) are:

α, α′ := a (a ∈ Σ) | ¬α | α ∨ α′ | Eβ
β, β′ := α | ¬β | β ∨ β′ | Xchβ | X−

chβ | Xsbβ | X−
sbβ | β Uβ′ | β Sβ′

Here X− is the ’previous’ and S is the ’since’ operator. A path π is a sequence
s1s2 . . . of nodes such that for every j, either sj ≺ch sj+1 or sj ≺sb sj+1. As usual
with logics with the past, we require the paths to be maximal: that is, s1 = ε,
and all paths end in a leaf that is also the youngest child of its parent. We define
the semantics of path formulae (T, π, ) |= β with respect to a position  in a
path (where  is an integer). The truth of state formulae is defined with respect
to a node of a tree. The rules are as follows (omitting Boolean connectives):
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– (T, s) |= a for a ∈ Σ iff s is labeled a.
– (T, s) |= Eβ iff there exists a path π = s1s2 . . . and  ≥ 1 such that s = s�

and (T, π, ) |= β;
– (T, π, ) |= α iff (T, s�) |= α;
– (T, π, ) |= Xchβ (or X−

chβ) iff (T, π,  + 1) |= β and s� ≺ch s�+1 (or if
(T, π, − 1) |= β and s�−1 ≺ch s�); the rules for Xsb are analogous.

– (T, π, ) |= βUβ′ iff there exists k ≥  such that (T, π, k) |= β′ and (T, π, j) |=
β whenever  ≤ j < k.

– (T, π, ) |= βSβ′ iff there exists k ≤  such that (T, π, k) |= β′ and (T, π, j) |=
β whenever k < j ≤ .

The version of the μ-calculus we consider here is the full μ-calculus Lfull
μ [35]

that also allows one to refer to the past. Its formulae are defined as

ϕ := � | ⊥ | a | X | ¬ϕ | ϕ ∨ ϕ | �(≺)ϕ | μX.ϕ(X),

where a ∈ Σ, ≺ refers to either ≺ch or ≺sb, or their inverses: parent (≺−
ch),

and previous sibling (≺−
sb); X ranges over a collection V of variables, and in

μX.ϕ(X), the variable X occurs positively in ϕ(X). The semantics, with respect
to a valuation v that associates a set of nodes with each variable, is standard: �
is true, ⊥ is false, �(≺)ϕ is true in s if ϕ is true in some s′ such that s ≺ s′, X is
true in s iff s ∈ v(X), and μX.ϕ(X) defines the least fixed point of the operator
S �→ {s | (T, v[S/X ], s) |= ϕ}, where v[S/X ] refers to a valuation that extends v
by assigning S to X . Queries (unary or Boolean) are defined by formulae without
free variables.

Lμ over words is defined by using one modality for the successor relation.
Over words, Lμ formulae evaluated in the initial position have the power of
MSO sentences: Lμ = MSO0. For unary queries over unranked trees, we have:

Fact 1. ([3,25,32]) Over unranked trees, CTL�
past = FO1 and Lfull

μ = MSO1.

3 Capturing n-Ary Queries

From binary to n-ary queries. As mentioned in the introduction, there is
a simple technique for extending a logic capturing FO2 or MSO2 to a logic
capturing FOn or MSOn. It is already implicit in [33], and we briefly outline it.

Let Q2 be a collection of binary queries given by formulae α(x, y) with two free
variables. We then define Qn to be the collection of n-ary queries ψ(x1, . . . , xn)
which are Boolean combinations of α(t, t′), with α ∈ Q2 and t, t′ being terms
given by the grammar t, t′ := xi, i ∈ [1, n] | t � t′. The meaning of t � t′ is the
largest common ancestor of t and t′.

Each ψ(x1, . . . , xn) in Qn naturally defines a query that returns a set of n-
tuples of nodes in a tree. Using the composition technique, and in particular the
composition lemma from [33], one can easily show

Proposition 1. If Q2 captures FO2 (or MSO2), then Qn captures FOn (or
MSOn, respectively) over unranked trees.
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For example, if Q2 is the set of binary conditional XPath queries [25], then Qn

captures FOn over unranked trees.
However, characterizations of binary FO or MSO over XML trees are not

nearly as common as characterizations of Boolean and unary queries (with the
notable exceptions of conditional XPath in [25], which captures FO2, and cater-
pillars expressions extended with unary MSO tests in [5], which capture MSO2).
Moreover, for Boolean and unary queries much has been invested into efficient
query-evaluation and model-checking [9,24,20]. Thus, our goal is to find a way to
get a language for n-ary queries out of languages for Boolean and unary queries.

From Boolean and unary queries to n-ary queries. We now show how to
characterize n-ary FO and MSO queries by combining temporal logics. In what
follows, we assume that:

– L0 is a temporal logic that, for an arbitrary finite alphabet, captures either
Boolean FO or Boolean MSO queries over words over that alphabet;

– L1 is a logic that, for an arbitrary finite alphabet Σ, captures either unary
FO or unary MSO queries over Σ-labeled unranked trees.

We then define a combined logic In(L0,L1) that will capture FOn or MSOn. For
now, we use a fixed set of binary relations (≺∗

ch) and (≺∗
sb) and a fixed grammar

generating terms, but we shall present alternatives at the end of the section.

Variables. Fix n variables x1, . . . , xn. Given a tree T , a valuation v in T is a
mapping that assigns to each xi an element si of the domain of T .

Terms. These are given by the grammar:

(T) t, t′ := xi, i ∈ [1, n] | root | t � t′ | succ(t, t′)

Each valuation v on the variables extends to a valuation on terms: v(root) = ε,
v(t�t′) is the longest common prefix of v(t) and v(t′), and v(succ(t, t′)) is defined
as the child of v(t) in the direction of v(t′). More precisely, if v(t) ≺∗

ch v(t′), and
s is such that v(t) ≺ch s and s ≺∗

ch v(t′), then s = v(succ(t, t′)). Otherwise we
set v(succ(t, t′)) = v(t).

Node tests. We define an alphabet Δ that consists of symbols [ψ] for each formula
ψ of L1 (the notation comes from XPath’s node tests, because this is precisely
the role of L1 formulae). Notice that Δ is infinite but in all formulae we shall
only use finitely many symbols [ψ] and thus we can restrict ourselves to a finite
sub-alphabet used in each particular formula.

Interval formulae. An interval formula is a formula of the form χ(t, t′) where χ
is an L0 formula over a finite subset of Δ, and t, t′ are two terms.

The semantics is as follows. Let v be a valuation on xi’s. The interval between
s = v(t) and s′ = v(t′) is defined as:

– if s ≺∗
ch s′, then the interval is the sequence s = s0, s1, . . . , sm = s′ such that

si ≺ch si+1 for each 0 ≤ i < m (and the interval between s′ and s is simply
listed “backwards”: s′ = sm, . . . , s0 = s);
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– if s ≺∗
sb s′, then it is the sequence s = s0, s1, . . . , sm = s′ such that si ≺sb

si+1 for each 0 ≤ i < m (listed backwards for the interval between s′ and s);
– otherwise the interval is just {s}.

Let [ψ1], . . . , [ψr] be all the Δ-symbols mentioned in χ. Then the interval between
s and s′ naturally defines a Δ-word in which si is labeled by all [ψp]’s such that
(T, si) |= ψp. Then (T, v) |= χ(t, t′) iff the interval between v(t) and v(t′), viewed
as a Δ-word, satisfies χ.

In(L0,L1) formulae. are finally defined as Boolean combinations of the following
formulae:

t ≺∗
ch t′, t ≺∗

sb t′, χ(t, t′),

where t, t′ are terms, and χ(t, t′) ranges over interval formulae. Given a valuation
v, the semantics of χ(t, t′) has already been defined, and (T, v) |= t ≺∗

ch t′ (or
t ≺∗

sb t′) iff v(t) ≺∗
ch v(t′) (or v(t) ≺∗

sb v(t′), respectively). For s̄ = (s1, . . . , sn)
and a formula ϕ we shall write (T, s̄) |= ϕ if (T, v) |= ϕ under the valuation
v(xi) = si, i ≤ n.

Each In(L0,L1) formula ϕ then defines an n-ary query which maps a tree T
with domain D to {s̄ ∈ Dn | (T, s̄) |= ϕ}.

Theorem 1. If L0 captures Boolean FO (respectively, Boolean MSO) queries
over words, and L1 captures unary FO (respectively, unary MSO) queries over
unranked trees, then the queries definable by In(L0,L1) are precisely the n-ary
FO (respectively, n-ary MSO) queries over unranked trees.

The proof of Theorem 1 is based on the composition method, cf. [18,29,33]. We
start with the (already mentioned) composition lemma from [33], which was used
there to obtain n-ary languages that involved regular or star-free expressions
over formulae of FO or MSO in one or two variables, and modify it to eliminate
regular expressions and formulae referring to two variables by using temporal
logics over words and trees.

Other binary relations and terms. Our choice of terms and binary relations
≺∗

ch and ≺∗
sb is not the only possible one. In general, if we have a grammar τ

defining a set of terms and a collection ρ of binary relations, we can define a
logic In[τ, ρ](L0,L1) in exactly the same way as In(L0,L1) except:

1. τ -terms are used in place of the terms defined by the grammar (T), and
2. in Boolean combinations only relations from ρ between terms are used.

Now define a new grammar T′ for terms:

(T′) t, t′ := xi, i ∈ [1, n] | root | gen succ(t, t′),

where gen succ(s, s′) is the generalized successor of s in the direction of s′. Its
meaning is as follows: look at the path from s to s′ which is either a child/parent
path (if s ≺∗

ch s′ or s′ ≺∗
ch s), or next/previous-sibling path (if s ≺∗

sb s′ or
s′ ≺∗

sb s), or the path shown in the Fig. 1 (that witnesses either s ≤d s′ or
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s′ ≤d s). In the first two cases, gen succ(s, s′) is the successor of s on that path;
in the third case, it is the first node where the direction of path changes between
child/parent and next/previous sibling. For example, in Fig. 1, gen succ(s, s′) =
s1 and gen succ(s′, s) = s2.

Theorem 2. If L0 captures Boolean FO (respectively, Boolean MSO) queries
over words, and L1 captures unary FO (respectively, unary MSO) queries over
unranked trees, then the queries definable by In[T′,≤d](L0,L1) are precisely the
n-ary FO (respectively, n-ary MSO) queries over unranked trees.

That is, with the new set of terms based on just one binary operation, one can
capture all n-ary queries by using only the document ordering.

4 Model-Checking for Combined Logics

We now deal with the complexity of the model-checking problem for In(L0,L1),
that is, the complexity of checking, for an In(L0,L1) formula ϕ, a tree T and
an n-tuple s̄ of its nodes, whether (T, s̄) |= ϕ. (The results will hold for the
alternative system of terms and the document order ≤d as well.)

We first offer a general result that makes some mild assumptions on logics L0
and L1. We then consider specific cases of logics L0 and L1 so that In(L0,L1)
captures FOn or MSOn and provide better complexity bounds.

Let MCL : N × N → N be the complexity of model-checking for a logic L;
i.e., given a structure M and an L-formula γ, verifying M |= γ can be done in
O(MCL(‖M‖, ‖γ‖)), where ‖·‖ is the size of encoding of structures (formulae).

We make three very mild assumptions on model-checking algorithms for L0
and L1. First, we assume that formulae are given by their parse-trees; second,
that labeling nodes by additional symbols not used in formulae does not change
their truth values; and third, that MCL(·, ·) is a nondecreasing function in both
arguments such that MCL(n, m1)+MCL(n, m2) ≤MCL(n, m1+m2). All logics
considered here – FO, MSO, LTL, CTL�, Lμ, etc. – easily satisfy these properties.

Proposition 2. If logics L0 and L1 satisfy the three properties described above,
then the complexity of model-checking for the combined logic In(L0,L1) is
O
(
‖T ‖ ·MCL1(‖T ‖, ‖ϕ‖) +MCL0(‖T ‖, ‖ϕ‖)

)
.

These bounds are produced by a naive model-checking algorithm. An In(L0,L1)
formula is a Boolean combination of term comparisons and interval formulae
χ(t, t′). To evaluate χ(t, t′) in (T, s̄), we define a valuation v(xi) = si, i ≤ n, and
do the following:

1. Compute v(t) and v(t′) and the interval between them.
2. For each symbol [ψ] for ψ ∈ L1 mentioned in ϕ, and each s in the interval

between v(t) and v(t′), mark s with [ψ] if (T, s) |= ψ (by using the model-
checking algorithm for L1).

3. With all elements in the interval marked, use the model-checking algorithm
for L0 to check if χ holds.



Combining Temporal Logics for Querying XML Documents 367

The bound easily follows from this and our assumptions on L0 and L1.
Even if we assume that L0 is a logic with very good model-checking complexity

(say, O(‖T ‖ · ‖ϕ‖)), the bound of Proposition 2 still says that model-checking is
quadratic in ‖T ‖, while in XML query processing, generally acceptable complex-
ity is of the form O(f(‖ϕ‖)·‖T ‖) for reasonable f [20,24], and ideally O(‖T ‖·‖ϕ‖)
(see, e.g., [16,25]).

However, the bound can be lowered if we make some assumptions (that will
hold in cases of interest) not only on model-checking properties of L1, but also
on the complexity of computing the set {s | (T, s) |= ψ} for L1 formulae ψ
(that is, on the complexity of unary query evaluation). Assume that there is a
function f : N → N satisfying f(m) + f(k) ≤ f(m + k) (e.g., f(m) = c · mp

or f(m) = 2m) and a number  > 0 such that unary query evaluation in L1 is
done in time f(‖ψ‖) · ‖T ‖�. In this case, if an In(L0,L1) formula ϕ mentions
[ψ1], . . . , [ψr], we can in time

∑
i f(‖ψi‖) · ‖T ‖� ≤ f(‖ϕ‖) · ‖T ‖� label all nodes

in which ψi holds with [ψi], 1 ≤ i ≤ r, and thus check ϕ in time O(f(‖ϕ‖) ·
‖T ‖� + MCL0(‖ϕ‖, ‖T ‖)). We thus obtain the following:

Theorem 3. If unary query evaluation in L1 is done in time f(‖ψ‖) ·‖T ‖�, and
the complexity of model-checking for an L0 formula α on a word w is g(‖α‖) ·
‖w‖p, then the complexity of model-checking of In(L0,L1) is

O
(
max{f(‖ϕ‖), g(‖ϕ‖)} · ‖T ‖max{�,p}).

In particular, if both f and g are linear functions and  = p = 1, we get an
O(‖ϕ‖ · ‖T ‖) model-checking algorithm for In(L0,L1).

We now use known results on model-checking over words and trees to obtain
good model-checking algorithms for combined logics over unranked trees.

MSOn queries. To get a logic In(L0,L1) that captures MSOn we need a logic
for unary MSO on trees, and a logic for MSO sentences on words. The former is
provided by Lfull

μ , the full μ-calculus [3]. Over trees (in general, acyclic transition
systems), Lμ is known to admit O(‖ϕ‖2 · ‖t‖) model-checking complexity [26],
but this result does not extend to Lfull

μ since introduction of the past modali-
ties effectively transforms trees into cyclic transition systems. However, it can
be shown by coding query automata [29] that a small fragment of Lfull

μ suffices
to capture MSO1 over trees. We let (Lfull

μ )+ be the fragment of Lfull
μ that con-

tains no negation (and thus is alternation-free) but is allowed to use additional
labels “root”, “leaf”, “first-sibling”, and “last-sibling” [16] with their intuitive
meanings.

Lemma 1. Over unranked trees, (Lfull
μ )+ = MSO1.

Unary query evaluation in alternation-free μ-calculus L+
μ can be done in linear-

time for arbitrary transition systems [10], and hence it is linear-time for (Lfull
μ )+

over trees. For words, alternation-free μ-calculus L0
μ captures MSO0 (by coding

automata), and again from [10], the complexity of model-checking is linear in
both the formula and the word. Combining this with Theorem 3 we get:



368 M. Arenas, P. Barceló, and L. Libkin

Corollary 1. The logic In(L0
μ, (Lfull

μ )+) captures MSOn over unranked trees,
and the complexity of In(L0

μ, (Lfull
μ )+) model-checking is O(‖T ‖ · ‖ϕ‖).

FOn queries. We need logics for Boolean FO queries on words and unary FO on
trees. The former is, by Kamp’s theorem, LTL, which has linear-time complexity
over words.

Among logics used in verification, CTL� with the past is known to capture
unary FO over trees (see Fact 1). However, even though it can be embedded in
Lfull

μ , the complexity of CTL� does not match the linear complexity we had for
(Lfull

μ )+, being in general 2O(‖ϕ‖) · ‖T ‖ (see [12]; also, [4] shows that translation
into Lfull

μ will exhibit exponential blowup).
In fact, we can show that it is highly unlikely that we can get linear time

evaluation for CTL�
past over trees. In general, CTL� is known to be PSPACE-

complete [34]. Here we show that over trees, the complexity of model-checking is
lower, but still intractable, being in the second level of the polynomial hierarchy.

Theorem 4. The model-checking problem for CTL�
past over unranked trees is

Δp
2-complete.

Proof sketch. The usual algorithm for CTL� model checking combines the state
labeling technique for CTL model checking with LTL model checking. Its com-
plexity mainly depends on the complexity of the LTL part. In particular, it runs
in polynomial time if we have an oracle for verifying whether a formula Eϕ holds
in a state s, where ϕ is an LTL formula. For unranked trees, it can be proved
that the latter problem is NP-complete and, thus, the model-checking problem
for CTL�

past is in Δp
2. For hardness reduction, we use (as [23] for CTL+) the

problem of verifying whether the largest satisfying assignment (interpreted as a
binary number) of a propositional formula is even. �

Nonetheless, there is a temporal logic for trees that has the desired linear com-
plexity. The logic, which we call TLtree (for tree temporal logic), was first defined
in [32] for the case of trees without a sibling order≺sb, and further used in XPath
investigations [25]. Its syntax is given by:

α, α′ := � | ⊥ | a (a ∈ Σ) | α∨α′ | ¬α | X∗α | X−
∗ α | αU∗α

′ | αS∗α
′,

where ∗ is either ‘ch’ (child) or ‘sb’ (next sibling). We define the semantics with
respect to a tree and a node in a tree:

– (T, s) |= �; (T, s) �|= ⊥;
– (T, s) |= a iff s is labeled a;
– (T, s) |= Xchα if (T, s · i) |= α for some i;
– (T, s) |= X−

chα if (T, s′) |= α where s′ is the parent of s (s′ ≺ch s);
– (T, s) |= αUchα′ if there is a node s′ such that s ≺∗

ch s′, (T, s′) |= α′, and for
all s′′ �= s′ satisfying s ≺∗

ch s′′ ≺∗
ch s′ we have (T, s′′) |= α.

The semantics of Sch is defined by reversing the order in the semantics of Uch,
and the semantics of Xsb,X−

sb,Usb, and Ssb is the same by replacing the child
relation with the next sibling relation.
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Whenever we deal with TLtree, we assume (for the convenience of transla-
tions) that the weak until or unless operator [9] ϕWψ ≡ ¬(¬ψU¬(ϕ ∨ ψ)) is
available for each of the until operators. This changes neither expressiveness nor
the complexity of model-checking [9].

TLtree naturally defines unary queries on trees, and the results in [32] can be
extended to show that TLtree = FO1 (see, for instance, [25]). Furthermore, we
can show:

Lemma 2. Unary query evaluation in TLtree can be done in time O(‖T ‖ ·‖ϕ‖).

We thus have a logic for FOn with linear model-checking:

Corollary 2. The logic In(LTL, TLtree) captures FOn over unranked trees, and
the complexity of In(LTL, TLtree) model-checking is O(‖T ‖ · ‖ϕ‖).

5 Combined Temporal Logics and XML Querying

In this section we present two concrete translations from XML query languages
into combined temporal logics. We start with XPath (or, more precisely, CX-
Path, or conditional XPath [25]). As it captures FO2, one immediately obtains
from Corollary 2 that it can be translated into I2(LTL, TLtree). We present a
translation which shows how the main features of combined temporal logics cor-
respond naturally to navigation through XML documents. We then give an ex-
ample of translating tree patterns – a common mechanism for expressing queries
for selecting tuples of nodes in XML documents [8,22] – into In(LTL, TLtree).

From Conditional XPath to I2(LTL, TLtree). Conditional XPath (CXPath) [25]
is an extension of the logical core of XPath 1.0 that captures FO2 queries over
XML documents. The language contains basic expressions step, path expressions
path, and node tests test, given by the grammar below:

step := child | parent | right | left,
path := step | ?test | (step/?test)+ | path/path | path ∪ path,
test := a, a ∈ Σ | 〈path〉 | ¬test | test∨ test.

Given a tree T , the semantics of a step or a path expression e is the set [[e]]T
of pairs of nodes, and for a test expression e, [[e]]T is a set of nodes of T . The
semantics is defined in Figure 2. Note that ’/’ is the concatenation of paths, and
the 〈path〉 test corresponds to Eβ of CTL�. We use the notation ≺+ for the
transitive closure, that is, ≺ ◦ ≺∗.

Translating FO2 into CXPath is necessarily non-elementary (which easily fol-
lows from the fact that translation from FO to LTL over words is necessarily
nonelementary [11]). For the combined logic, we can show:

Theorem 5. For every CXPath path formula ϕ there exists an equivalent
I2(LTL, TLtree) formula ϕ◦. Moreover, ϕ◦ can be constructed in single-
exponential time.
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[[child]]T = {(s, s′) | s ≺ch s′} [[a]]T = {s | s is labeled a}
[[parent]]T = {(s, s′) | s′ ≺ch s} [[test ∨ test′]]T = [[test]]T ∪ [[test′]]T
[[right]]T = {(s, s′) | s ≺sb s′} [[¬test]]T = D − [[test]]T
[[left]]T = {(s, s′) | s′ ≺sb s} [[〈path〉]]T = {s | ∃s′ : (s, s′) ∈ [[path]]T }

[[?test]]T = {(s, s) | s ∈ [[test]]T }
[[path/path′]]T = [[path]]T ◦ [[path′]]T [[path ∪ path′]]T = [[path]]T ∪ [[path′]]T

[[(child/?test)+]]T = {(s, s′) | s ≺+
ch s′, and ∀s′′ :

(
s ≺+

ch s′′ ≺∗
ch s′ → s′′ ∈ [[test]]T

)}
Fig. 2. The semantics of CXPath

Below we sketch the translation and explain the reason for the exponential
blowup (intuitively, it arises from putting CXPath expressions in a certain nor-
mal form [25] that fits in nicely with I2(LTL, TLtree)).

We start with path expressions. CXPath, as well as XPath 1.0, allows expres-
sions containing any combination of the four axes child, parent, right and
left, but [25] gave a normal form for paths: namely, every CXPath expression
is equivalent to a union of simple paths defined by:

simple-path := ?test | dpath | upath | lpath | rpath |
upath/rpath | rpath/dpath | upath/rpath/dpath |
upath/lpath | lpath/dpath | upath/lpath/dpath,

where dpath (down-path) is a concatenation of paths child, ?test and
(child/?test)+ that mentions child or (child/?test)+ at least once; and
upath, rpath and lpath (up-, right-, and left-paths) are defined in the same
way but replacing child by parent, right and left, respectively. Thus, it suf-
fices to provide translations for simple path expressions. As an example we show
translations of dpath and upath/rpath/dpath, as the remaining translations
are very similar. For a downpath π, we define an interval formula π◦(x1, x2)
such that for every Σ-tree T and a pair of nodes s1, s2 in it, (s1, s2) ∈ [[π]]T iff
(T, s1, s2) |= x1 ≺∗

ch x2 ∧ (π◦)(x1, x2):

(child)◦ := X¬X�
(?test)◦ := [test◦] ∧ ¬X�

((child/?test)+)◦ := X¬(�U¬[test◦])
(child/dpath)◦ := X dpath◦

(?test/dpath)◦ := [test◦] ∧ dpath◦

((child/?test)+/dpath)◦ := X ([test◦]U (X−dpath◦)),

where test◦ is the translation of test expressions into TLtree formulae.
As another example, consider a simple path upath/rpath/dpath. Assume

that a node s′ is reachable from a node s by following this path, as in Fig. 1,
where s1 = succ(s � s′, s) and s2 = succ(s � s′, s′). Then upath/rpath/dpath is
expressed by an I2(LTL, TLtree) formula ϕ(x1, x2):

(upath◦)(x1, succ(x1 � x2, x1)) ∧ succ(x1 � x2, x1) ≺∗
sb succ(x1 � x2, x2) ∧

(rpath◦)(succ(x1 � x2, x1), succ(x1 � x2, x2)) ∧ (dpath◦)(succ(x1 � x2, x2), x2).
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Finally we must deal with node tests which will be translated into TLtree. Had
we used CTL�

past, the translation would have have been immediate as 〈path〉 is
simply E(path◦). But TLtree is more restrictive, and thus our first step is to give
an equivalent grammar for CXPath node tests:

test := a, a ∈ Σ | 〈union〉 | ¬test | test ∨ test
union := concat | union ∪ union

concat := step | ?test | (step/?test)+ |
step/concat | ?test/concat | (step/?test)+/concat

Here the semantics is existential: test is true in s if for some s′ it is the case
that (s, s′) is in the semantics of the corresponding path expression. With the
new grammar, the translation (given below for the ’child’ axis) is quite straight-
forward:

a◦ := a 〈union〉◦ := union◦

(¬test)◦ := ¬test◦ (test1 ∨ test2)◦ := test◦
1 ∨ test◦

2

(union1 ∪ union2)◦ := union◦
1 ∨ union◦

2 child◦ := Xch �
(?test)◦ := test◦ ((child/?test)+)◦ := Xch test

◦

(child/concat)◦ := Xch concat
◦ (?test/concat)◦ := test◦ ∧ concat◦

((child/?test)+/concat)◦ := Xch ¬(¬concat◦ Wch ¬test◦)

To conclude, we note that the translation of paths into the normal form is
exponential [25] and the same is true for the translation for tests; for formulae
in normal form, translations into both TLtree and I2(LTL, TLtree) are linear,
which proves the theorem.

From tree-patterns to In(LTL, TLtree). Tree-pattern queries are a popular way
of navigating in XML documents and retrieving n-ary tuples of nodes [8,22]. Fix
an alphabet Σ and n variables x1, . . ., xn. Tree-pattern queries use a restricted
language for paths (where a ranges over Σ):

step := self | child | child+

path := step | step/?a | step/xi | step/?a/xi, i ≤ n

Variables retrieve nodes from documents: for example, self/xi retrieves the node
where the formula is evaluated, and child+/?a/xi retrieves all the descendants
of a node that are labeled a. Tree-pattern formulae are defined as follows:

ϕ := path | path[ϕ, . . . , ϕ],

with the additional requirement that each variable xi is mentioned at most once.
In a tree-pattern formula, square brackets are used to indicate that a list of paths
have a common starting point.

An n-ary tree-pattern formula ϕ is definable in FO and thus in
In(LTL, TLtree). In fact, one can prove a stronger result:

Proposition 3. For every tree-pattern formula ϕ one can construct in linear-
time an equivalent In(LTL, TLtree) formula ϕ◦.
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6 Conclusions

Connections between XML querying and temporal logics were discovered re-
cently but familiar logics such as CTL� or the μ-calculus were only suitable for
Boolean or unary queries over XML documents. Here we have shown how to
combine temporal logics to obtain query languages for selecting arbitrary tuples
of nodes from XML trees, that capture the power of FO and MSO querying. The
observation that composing monadic queries is sufficient to capture n-ary MSO
was also made recently in [13].

One of the main goals of this work is to bring techniques developed in the
model-checking community into the field of XML querying, where complexity
of query evaluation for languages such as XPath and XQuery is a very recent
and active topic of research [17,20]. We have shown that some of the combined
logics achieve the best possible complexity of model-checking: linear in both
the formula and the document. Two natural extensions of this work are: (1) an
experimental evaluation of the combined temporal logics proposed here using
existing model-checkers, and (2) further extension of the logics by allowing them
to reshape tuples of nodes, thus making them closer to languages such as XQuery.
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Abstract. A common approach to XML updates is to extend XQuery with up-
date operations. This approach results in very expressive languages which are
convenient for users but are difficult to reason about. Deciding whether two ex-
pressions can commute has numerous applications from view maintenance to
rewriting-based optimizations. Unfortunately, commutativity is undecidable in
most recent XML update languages. In this paper, we propose a conservative
analysis for an expressive XML update language that can be used to determine
whether two expressions commute. The approach relies on a form of path analy-
sis that computes upper bounds for the nodes that are accessed or modified in a
given update expression. Our main result is a commutativity theorem that can be
used to identify commuting expressions.

1 Introduction

Most of the proposed XML updates languages [1,2,3,4,5] extend a full-fledged query
language such as XQuery [6] with update primitives. To simplify specification and rea-
soning, some of the first proposals [1,2,4] have opted for a so-called snapshot seman-
tics, which delays update application until the end of the query. However, this leads to
counter-intuitive results for some queries, and limits the expressiveness in a way that is
not always acceptable for applications. For that reason, more recent proposals [5,7] give
the ability to apply updates in the course of query evaluation. Such languages typically
rely on a semantics with a strict evaluation order. For example, consider the following
query, which first inserts a set of elements, then accesses those elements using a path
expression.

for $x in $doc/country return insert {<new/>} into {$x},
count($doc/country/new)

Such an example cannot be written in a language based on a snapshot semantics, as
the count would always return zero. However, it can be written in the XQuery! [5] or
the XQueryP [7] proposals, which both rely on an explicit left-to-right evaluation order.
Still, such a semantics severely restricts the optimizer’s ability for rewritings, unless the
optimizer is able to decide that some pairs of expressions commute.
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c© Springer-Verlag Berlin Heidelberg 2007
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Deciding commutativity, or more generally whether an update and a query interfere,
has numerous applications, including optimizations based on algebraic rewritings, de-
tecting when an update needs to be propagated through a view (usually specified as a
query), deciding whether sub-expressions of a given query can be executed in parallel,
etc. Unfortunately, commutativity is undecidable for XQuery extended with updates.
In this paper, we propose a conservative approach to detect whether two query/update
expressions interfere, i.e., whether they can be safely commuted or not. Our technique
relies on an extension of the path analysis proposed in [8] that infers upper bounds for
the nodes accessed and modified by a given expression. Such upper bounds are specified
as simple path expressions for which disjointness is decidable [9,10].

Our commutativity analysis serves a similar purpose to independence checking in
the relational context [11,12]. To the best of our knowledge, our work is the first to
study such issues in the XML context, where languages are typically much more ex-
pressive. A simpler form of static analysis is proposed in [4,13], suggesting that sim-
ilar techniques can be used to optimize languages with a snapshot semantics. Finally,
commutativity of tree operations is used in transactional models [14,15], but relies on
run-time information while our purpose is static detection.

Problem and examples. In the rest of the paper, we focus on a simple XQuery exten-
sion with insertion and deletion operations. The syntax and semantics of that language
is essentially that of [5], with updates applied immediately. This language is power-
ful enough to exhibit the main problems related to commutativity analysis, yet simple
enough to allow a complete formal treatment within the space available for this paper.
Here are some sample queries and updates in that language.

Q1 count($doc/country/new)

Q2 $doc/country[population > 20]

Q3 for $x in $doc//country
return ($x//name)

Q4 for $x in $doc/country
return $x/new/../very new

U1 delete {$doc/wines/california}

U2 for $x in $doc/country return
insert {<new/>} into {$x}

U3 for $x in
$doc/country[population < 24]

return
delete {$x/city}

Some of those examples obviously commute, for instance U1 deletes nodes that are
unrelated to the nodes accessed by Q1 or Q2. This can be inferred easily by looking at
the paths in the query used to access the corresponding nodes. On the contrary, U2 does
not commute with Q1 since the query accesses nodes being inserted. Deciding whether
the set of nodes accessed or modified are disjoint quickly becomes hard for any non-
trivial update language. For instance, deciding whether U3 and Q2 interfere requires
some analysis of the predicates, which can be arbitrarily complex in XQuery.

Approach. We rely on a form of abstract interpretation that approximates the set of
nodes processed by a given expression. The analysis must satisfy the following proper-
ties. Firstly, since we are looking to check disjointness, we must infer an upper bound
for the corresponding nodes. Secondly, the analysis must be precise enough to be useful
in practical applications. Finally, the result of the analysis must make disjointness de-
cidable. In the context of XML updates, paths are a natural choice for the approximation
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of the nodes being accessed or updated, and they satisfy the precision and decidability
requirements.

Contributions. The path analysis itself is a relatively intuitive extension of [8] to handle
update operations. However, coming up with a sound analysis turns out to be a hard
problem for a number of reasons. First of all, we use paths to denote sets of accessed
nodes, but the forthcoming updates will change the nodes denoted by the paths that are
being accumulated. We need a way to associate a meaning to a path that is stable in the
face of a changing data model instance. To address that issue, we introduce a store-based
formalization of the XML data model and a notion of store history that allows us to talk
about the effect of each single update and to solve the stability issue. Another challenge
is to find a precise definition of which nodes are actually used or updated by a query. For
instance, one may argue that U3 only modifies nodes reached by the path country/city.
However, one would then miss the fact that U3 interferes with Q3 because the city nodes
may have a country or a name descendant, which is made unreachable by the deletion.
In our analysis, this is kept into account by actually inserting into the updated paths of
U3 all the descendants of the deleted expression country/city, as detailed in the table
below.

U3 accessed paths: Q3 accessed paths:
$doc/country $doc//country
$doc/country/population $doc//country//name
$doc/country/city

updated paths: updated paths:
$doc/country/city/descendant-or-self::*

In Q4, if the returned expression $x/new/../very new were just associated to the path
country/new/../very new, the interference with U2 would not be observed, since the
path country/new/descendant-or-self ::*::∗ updated by U2 refers to a disjoint set of
nodes. Hence, the analysis must also consider the nodes traversed by the evaluation of
$x/new/../very new, which correspond to the path country|country/new|country/new/..,
whose second component intersects with country/new/descendant-or-self::*. The main
contributions of the paper are as follows:

– We propose a form of static analysis that infers paths to the nodes that are accessed
and modified by an expression in that language;

– We present a formal definition of when such an analysis is sound, based on a no-
tion of store history equivalence; this formal definition provides a guide for the
definition of the inference rules;

– We show the soundness of the proposed path analysis;
– We prove a commutativity theorem, that provides a sufficient condition for the com-

mutativity of two expressions, based on the given path analysis.

Organization. The rest of the paper is organized as follows. Section 2 presents the XML
data model and the notion of store history. Section 3 reviews the update language syntax
and semantics. Section 4 presents the path analysis and the main soundness theorem.
Section 5 presents the commutativity theorem. Section 6 reviews related work, and
Section 7 concludes the paper. For space reasons, proofs for the analysis soundness and
for the commutativity theorem are provided separately in the extended version of this
paper [16].
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2 A Store for Updates

We define here the notions of store and store history, which are used to represent the
effect of XML updating expressions. Our store is a simplification of the XQuery Data
Model [17] to the parts that are most relevant to our path analysis. In this formalization
we ignore sibling order, since it has little impact on the approach and on the analysis
precision.

2.1 The Store

We assume the existence of disjoint infinite sets of node ids, N , the node kinds, K =
{element,text}, names, Q , and possible textual content, T . A node location is used
to identify where a document or an XML fragment originates from; it is either a URI or
a unique code-location identifier: loc ::= uri | code-loc.

A uri typically corresponds to the URI associated to a document and a code-loc is
used to identify document fragments generated during query evaluation by an element
constructor. Now we are ready to define our basic notion of store.

Definition 1 (Store). A store σ is a quadruple (N,E,R,F) where N ⊂ N contains the
set of nodes in the document, E ⊂ N ×N contains the set of edges, R : N → loc is a
partial function mapping some nodes to their location, and the node description F =
(kindF ,nameF ,contentF) is a triple of partial functions where kindF : N → K
maps each node to its kind, nameF : N → Q maps nodes to their name (if any), and
contentF : N → T maps nodes to their text content (if any).

We use Nσ, Eσ, Rσ, Fσ to denote the N,E,R,F component of σ. When (m,n) ∈ E, we
say that m is a parent of n and n is a child of m. A “root” is a node that has no parent.

Finally a store must be “well-formed”: (1) all nodes mapped by R must be root
nodes, (2) every non-root node must be the child node of exactly one parent node, (3) the
transitive closure E+ of E must be irreflexive (4) element nodes must have a name and
no content; and (5) text nodes must have no name and no children but do have content.

In what follows, every store operation preserves store well-formedness.

2.2 Accessing and Updating the Store

We assume the standard definitions for the usual accessors (parent, children, descen-
dants, ancestors, name, text-content. . . ), and focus on operations that modify the store
(insert,delete, and node creation).1 We define a notion of atomic update record, which
captures the dynamic information necessary for each update, notably allowing the up-
date to be re-executed on a store, using the apply operation defined below.

Definition 2 (Atomic update records). Atomic update records are terms with the fol-
lowing syntax:

create(n̄,F) | R-insert(n, loc) | insert(E) | delete(n̄)

1 Note that replace is trivial to add to the framework.
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Definition 3 (Atomic update application). The operation apply(σ,u) returns a new
store as detailed below, but fails when the listed preconditions do not hold. ⊥ denotes
undefined.

– apply(σ,create(n̄,F′)) adds n̄ to N and extends F with F′.
Preconditions: n̄ disjoint from N. (n̄,(),(),F′) is a well-formed store.

– apply(σ,R-insert(n, loc)) extends R with n → loc.
Preconditions: n is a root node and R(nc) =⊥.

– apply(σ,insert(E′)) extends E with E′.
Preconditions: for each (np,nc) ∈ E′, nc has no parent in E∪E′ \ {(np,nc)}, and
R(nc) =⊥. The transitive closure of E∪E′ is irreflexive.

– apply(σ,delete(n̄)) deletes each edge (np,nc) ∈ E where nc ∈ n̄.
Preconditions: n̄ ⊆ N.

Definition 4 (Composite updates). A composite update, Δ, is an ordered sequence of
atomic updates: Δ ≡ (u1, . . . ,un). apply(σ,Δ) denotes the result of applying u1. . . un on
store σ, in this order.

We use created(Δ) to denote the set of nodes created by Δ. A composite update Δ
respects creation time iff, for any Δ1,Δ2 = Δ, no node in created(Δ2) appears in Δ1.
Hereafter we will always assume that we only work with such Δ’s.

Finally, the notion of updated(Δ1) gives a sufficient condition for non-interference
(S#T means that S and T are disjoint).

Definition 5 (Update target). The update target of each update operation is defined as

updated(create(n̄,F)) =def {}
updated(R-insert(n, loc)) =def {}
updated(insert(E)) =def {nc | (np,nc) ∈ E}
updated(delete(n̄)) =def n̄

Property 1. If Δ1,Δ2 and Δ2,Δ1 both respect creation time, then

updated(Δ1)#updated(Δ2) ⇒ apply(σ,(Δ1,Δ2)) = apply(σ,(Δ2,Δ1))

Intuitively, provided that creation time is respected, the only two operations that do not
commute are insert(np,nc) and delete(nc). Any other two operations either do not
interfere at all or they fail in whichever order are applied, as happens for any conflicting
R-insert-R-insert, R-insert-insert, or insert-insert pair.

2.3 Store History

Finally, we introduce a notion of store history, as a pair (σ,(u1, . . . ,un)). In our seman-
tics each expression, instead of modifying its input store, extends the input history with
new updates. With this tool we will be able, for example, to discuss commutativity of
two expressions Expr1,Expr2 by analysing the histories (σ,(Δ1,Δ2)) and (σ,(Δ′2,Δ

′
1))

produced by their evaluations in different orders, and by proving that, under some con-
ditions, Δ1 = Δ′1 and Δ2 = Δ′2.
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Definition 6 (Store history). A store history η = (ση,Δη) is a pair formed by a store
and a composite update.

A store history (σ,Δ) can be mapped to a plain store either by apply(σ,Δ) or by ap-
plying no-delete(Δ) only, which is the Δ without any deletion. The second mapping
(mrg((σ,Δ))) will be crucial to capture the degree of approximation that store dynam-
icity imposes over our static analysis.

apply((σ,Δ)) =def apply(σ,Δ)
mrg((σ,Δ)) =def apply(σ,no-delete(Δ))

By abuse of notation we shall (1) implicitly interpret σ as (σ,()); (2) extend accessors
to store histories using the convention that, for any function defined on stores, f (η) =def

f (apply(η)); (3) when η = (σ,Δ) then write η,Δ′ =def (σ,(Δ,Δ′)). We define history
difference η\η′ as follows: (σ,(Δ,Δ′))\ (σ,Δ) =def Δ′.

Definition 7 (Well-formed History). A history η is well-formed (wf(η)), if mrg(η) and
apply(η) are both defined.

3 Update Language

The language we consider is a cut-down version of XQuery! [5] characterized by the
fact that the evaluation order is fixed and each update operation is applied immediately.
It is not difficult to extend our analysis to languages with snapshot semantics, but the
machinery becomes heavier, while we are trying here to present the simplest incarnation
of our approach. The language has the following syntax; we will use the usual abbrevia-
tions for the parent (p/..), child (p/name), and descendant (p//name) axes. We assume
that code-loc (See Section 2) is generated beforehand by the compiler.

Expr ::= $x | Expr/axis::ntest | Expr,Expr | Expr = Expr
| let $x := Expr return Expr | for $x in Expr return Expr
| if (Expr) then Expr else Expr | delete {Expr}
| insert {Expr1} into {Expr} | elementcode-loc{Expr}{Expr}

axis ::= child | descendant | parent | ancestor

ntest ::= text() | node() | name | ∗

The main semantic judgement “dEnv  η0;Expr ⇒ η1; n̄” specifies that the evaluation
of an expression Expr, with respect to a store history η0 and to a dynamic environ-
ment dEnv that associates a value to each variable free in Expr, produces a value n̄ and
extends η0 to η1 = η0,Δ. A value is just a node sequence n̄; textual content may be
accessed by a function f , but we otherwise ignore atomic values, since they are ignored
by path analysis. In an implementation, we would not manipulate the history η0 but the
store apply(η0), since the value of every expression only depends on that. However,
store histories allow us to isolate the store effect of each single expression, both in our
definition of soundness and in our proof of commutativity.

As an example, we present here the rule for insert expressions; the complete seman-
tics can be found in [16]. Let n̄d be the descendants-or-self of the nodes in n̄. Insert-into
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uses prepare-deep-copy to identify a fresh node mi ∈ m̄d for each node in n̄d , while
Ecopy and Fcopy reproduce for Eapply(η2) and Fapply(η2) for m̄d , and m̄ is the subset of
m̄d that corresponds to n̄. Hence, create(m̄d ,Fcopy),insert(Ecopy) copy n̄ and their
descendants, while insert({n}× m̄) links the copies of n̄ to n. Notice how the rule
only depends on apply(η2), not on the internal structure of η2.

dEnv  η0;Expr1 ⇒ η1; n̄
dEnv  η1;Expr2 ⇒ η2;n

(m̄,m̄d ,Ecopy,Fcopy) = prepare-deep-copy(apply(η2), n̄)
η3 = η2, create(m̄d ,Fcopy),insert(Ecopy),insert({n}× m̄)

dEnv  η0;insert {Expr1} into {Expr2} ⇒ η3;()

It is easy to prove that, whenever dEnv η0;Expr ⇒ η1; n̄ holds and η0 is well-formed,
then η1 is well-formed as well.

4 Path Analysis

4.1 Paths and Prefixes

We now define the notion of paths that is used in our static analysis. Observe that the
paths used by the analysis are not the same as the paths in the target language. For
example, they are rooted in a different way, and the steps need not coincide: if we
added order to the store, we could add a following-sibling axis to the language, but
approximate it with parent::∗/child:: in the analysis.

Definition 8 (Static paths). Static paths, or simply paths, are defined as follows.

p ::= () | loc | p0|p1 | p/axis::ntest

where axis denotes any of the axes in the grammar.

Note that paths are always rooted at a given location. In addition, the particular fragment
chosen here is such that important operations, notably intersection, can be checked
using known algorithms [9,10].

Definition 9 (Path Semantics). For a path p and store σ, [[p]]σ denotes the set of nodes
selected from the store by the path with the standard semantics [18] except that order
is ignored, and Rσ is used to interpret the locations loc. The following concepts are
derived from the standard semantics:

Inclusion. A path p1 is included in p2, denoted p1 ⊆ p2, iff ∀σ : [[p1]]σ ⊆ [[p2]]σ.

Disjointness. Two paths p1,p2 are disjoint, denoted p1#p2, iff ∀σ : [[p1]]σ∩ [[p2]]σ = /0.

Prefixes. For each path a we define pref(a) as follows.

a loc p/axis::ntest p|q
pref(a) {loc} {p/axis::ntest}∪pref(p) {p|q}∪pref(p)∪pref(q)
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Prefix Closure. For a path a we write prefclosed(a) iff ∀p : p ∈ pref(a) ⇒ p ⊆ a.

The prefixes of a path are all its initial subpaths, and a path is prefix-closed when it
includes all of its prefixes. For example, the paths /a//b |/a |/a//b/c and /∗ |/a/b are
both prefix-closed (the latter because /a ⊆ /∗).

4.2 The Meaning of the Analysis

Definition 10 (Path analysis). Given an expression Expr and a path environment pEnv
which is a mapping from variables to paths, our path-analysis judgment

pEnv  Expr ⇒ r; 〈a,u〉

associates three paths to the expression: r is an upper approximation of the nodes that
are returned by the evaluation of Expr, a of those that are accessed, and u of those that
are updated.

The r path is not actually needed to check commutativity, but is used to infer u and a
for those expression that update, or access, their argument.

There are many reasonable ways to interpret which nodes are “returned” and “ac-
cessed” by an expression. For example, a path $x//a only returns the $x descendants
with an a name but, in a naive implementation, may access every descendant of $x. De-
ciding what is “updated” is even trickier. This definition should be as natural as possible,
should allow for an easy computation of a static approximation and, above all, should
satisfy the following property: if what is accessed by Expr1 is disjoint from what is
accessed or updated by Expr2, and vice-versa, then the two expressions commute.

In the following paragraphs we present our interpretation, which will guide the defi-
nition of the inference rules and is one of the basic technical contributions of this work.

The meaning of r seems the easiest to describe: an analysis is sound if pEnv  
Expr ⇒ r; 〈a,u〉 and dEnv  η0;Expr ⇒ η1; n̄ imply that n̄ ⊆ [[r]]apply(η1). Unfortu-
nately, this is simplistic. Consider the following example:

let $x := doc(’u1’)/a return (delete($x), $x/b)

Our rules bind a path u1/a to $x, and finally deduce a returned path u1/a/b for the
expression above. However, after delete($x), the value of $x/b is not in [[p]]apply(η) any-
more; the best we can say it is that it is still in [[p]]mrg(η). This is just an instance of
a general “stability” problem: we infer something about a specific store history, but
we need the same property to hold for the store in some future. We solve this prob-
lem by accepting that our analysis only satisfies n̄ ⊆ [[r]]mrg(η1), which is weaker than
n̄ ⊆ [[r]]apply(η1) but is stable; we also generalize the notion to environments.

Definition 11 (Approximation). A path p approximates a value n̄ in the store history
η, denoted p ⊇η n̄, iff n̄ ⊆ [[p]]mrg(η).

A path environment pEnv approximates a dynamic environment dEnv in a store his-
tory η, denoted pEnv ⊇η dEnv, iff

($x �→ n̄) ∈ dEnv ⇒ ∃b. ($x �→ b) ∈ pEnv and b ⊇η n̄
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Thanks to this “merge” interpretation, a path denotes all nodes that are reached by that
path, or were reached by the path in some past version of the current history. This
approximation has little impact, because the merge interpretation of a history is still a
well-formed store, where every node has just one parent and one name, hence the usual
algorithms can be applied to decide path disjointness.

The approach would break if we had, for example, the possibility of moving a node
from one parent to another. Formally, mrg(η) may now contain nodes with two parents.
In practice, one could not deduce, for example, that (a/d)#(b/c/d), because $x/a/d
and $x/b/c/d, if evaluated at different times, may actually return the same node, be-
cause its parent was moved from $x/a to $x/b/c in the meanwhile. Similarly, if nodes
could be renamed, then node names would become useless in the process of checking
path disjointness.

The commutativity theorem in Section 5 is based on the following idea: assume that
Expr1 transforms η0 into (η0,Δ) and only modifies nodes reachable through a path u,
while Expr2 only depends on nodes reachable through a, such that u#a. Because Expr1
only modifies nodes in u, the histories η0 and (η0,Δ) are “the same” with respect to a,
hence we may evaluate Expr2 either before or after Expr1.

This is formalized by defining a notion of history equivalence wrt a path η ∼p η′,
and by proving that the inferred a and u and the evaluation relation are related by the
following soundness properties.

Parallel evolution from a-equivalent stores, first version:
η′0 ∼a η0 and dEnv  η0;Expr ⇒ (η0,Δ); n̄
imply dEnv  η′0;Expr ⇒ (η′0,Δ); n̄, i.e. the same n̄ and Δ are produced.

Immutability out of u, first version:
∀c : c#u and dEnv  η0;Expr ⇒ (η0,Δ); n̄
imply η0 ∼c (η0,Δ).

To define the right notion of path equivalence, consider the Comma rule

pEnv  Expr1 ⇒ r1; 〈a1,u1〉
pEnv  Expr2 ⇒ r2; 〈a2,u2〉

pEnv  Expr1,Expr2 ⇒ r1|r2; 〈a1|a2,u1|u2〉
(COMMA)

The rule says that if η′0 ∼a1|a2
η0 then the evaluation of Expr1,Expr2 gives the same re-

sult in both η0 and η′0. Our equivalence over p will be defined as “∀p′ ∈ pref(p).P(p′)”,
so that η′0 ∼a1|a2

η0 implies η′0 ∼a1 η0 and η′0 ∼a2 η0. Hence, by induction, if we start
the evaluation of Expr1,Expr2 from η0 ∼a1|a2

η′0, then Expr2 will be evaluated against
(η0,Δ) and (η′0,Δ), but we have still to prove that η0 ∼a2 η′0 implies (η0,Δ)∼a2 (η′0,Δ).
This is another instance of the “stability” problem. In this case, the simplest solution is
the adoption of the following notion of path equivalence: two histories η1 and η2 are
equivalent modulo a path p, denoted η1 ∼p η2, iff:

∀p′ ∈ pref(p). ∀Δ. [[p′]]apply(η1,Δ) = [[p′]]apply(η2,Δ)
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The quantification on Δ makes this notion “stable” with respect to store evolution, which
is extremely useful for our proofs, but the equality above actually implies that:

∀Δ. (wf (η1,Δ) ⇒ wf (η2,Δ)) ∧ (∀Δ. wf (η2,Δ) ⇒ wf (η1,Δ))

This is too strong, because, whenever two stores differ in one node, the Δ that creates
the node can only be added to the store that is missing it. Similarly, it they differ in one
edge, the Δ that inserts the edge can only be added to the store that is missing it. Hence,
only identical stores can be extended with exactly the same set of Δ’s.

So, we have to weaken the requirement. We first restrict the quantification to updates
that only create nodes that are fresh in both stores. Moreover, we do not require that
wf (η1,Δ) ⇒ wf (η2,Δ), but only that, for every n of interest, a subset Δ′ of Δ exists
which can be used to extend η1 and η2 so to have n in both. The resulting notion of
equivalence is preserved by every update in the language whose path does not intersect
pref(p); this notion is strong enough for our purposes (Δ′ ⊆i Δ means the Δ′ creates and
deletes the same edges as Δ, but the inserted edges are a subset).

Definition 12 (Store equivalence modulo a path). Two stores σ1 and σ2 are equiva-
lent modulo a path p, denoted σ1 ∼p σ2, iff:

∀p′ ∈ pref(p). ∀Δ. created(Δ)#(Nσ1 ∪Nσ2) ∧ n ∈ [[p′]]apply(σ1,Δ)

⇒ ∃Δ′ ⊆i Δ. n ∈ [[p′]]apply(σ1,Δ′) ∧ n ∈ [[p′]]apply(σ2,Δ′)

∀p′ ∈ pref(p). ∀Δ. created(Δ)#(Nσ1 ∪Nσ2) ∧ n ∈ [[p′]]apply(σ2,Δ)

⇒ ∃Δ′ ⊆i Δ. n ∈ [[p′]]apply(σ1,Δ′) ∧ n ∈ [[p′]]apply(σ2,Δ′)

Definition 13 (Store history equivalence modulo a path)

η1 ∼p η2 ⇔def apply(η1)∼p apply(η2)

Since [[p]]apply(η1,Δ) is monotone wrt ⊆i, the above definition implies that:

η1 ∼p η2 ⇒ (∀Δ. wf (η1,Δ) ∧ wf (η2,Δ) ⇒ [[p]]apply(η1,Δ) = [[p]]apply(η2,Δ))

We are now ready for the formal definition of soundness.

Definition 14 (Soundness). The static analysis pEnv  Expr ⇒ r; 〈a,u〉 is sound for
the semantic evaluation dEnv  η0;Expr ⇒ η1; n̄ iff for any well-formed η0, η1, dEnv,
pEnv, Expr, n̄, r, a, u, such that:

pEnv  Expr ⇒ r; 〈a,u〉
dEnv  η0;Expr ⇒ (η0,Δ); n̄
pEnv ⊇η0 dEnv

the following properties hold.

– Approximation by r: r is an approximation of the result: r ⊇η1 n̄

– Parallel evolution from a-equivalent stores: For any store history η′0, if η′0 ∼a η0

and Nη′0
#created(Δ), then dEnv  η′0;Expr ⇒ (η′0,Δ); n̄
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– Immutability out of u: (1) u ⊇η1 updated(Δ)
(2) ∀prefclosed(c) : c#u ⇒ η0 ∼c (η0,Δ).

In the Parallel evolution property, the condition Nη′0
#created(Δ) is needed because,

if η′0 did already contain some of the nodes that are added by Δ, then it would be
impossible to extend η′0 with Δ. This condition is not restrictive, and is needed because
we identify nodes in different stores by the fact that they have the same identity. We
could relate different store using a node morphism, rather that node identity, but that
would make the proofs much heavier.

Immutability has two halves. The first, u ⊇η1 updated(Δ), confines the set of edges
that are updated to those that are in u, and is important to prove that two updates com-
mute if u1#u2. The second half specifies that, for every c#u, the store after the update is
c-equivalent to the store before. Together with Parallel evolution, it essentially says that
after Expr is evaluated, the value returned by any expression Expr1 that only accesses
c is the same value returned by Expr1 before Expr was evaluated, and is important to
prove that an update and a query commute if a1#u2. The path c must be prefix-closed
for this property to hold. For example, according to our rules, delete(/a/b) updates a
path u = /a/b/descendant-ir-sel f ::∗. It is disjoint from c = /a/b/.., but still the value
of /a/b/.. changes after delete(/a/b). This apparent unsoundness arises because c is
not prefix-closed. If we consider the prefix-closure a = /a|/a/b|/a/b/.. of /a/b/.., we
notice that a is not disjoint from u.

4.3 Path Analysis Rules

We present the rules in two groups: selection and update rules.

Selection rules. These rules regard the querying fragment of our language. We extend
the rules from [8] for the proper handling of updated paths.

The (Comma) rule has been presented above.
The (Var) rule specifies that variable access does not access the store. One may won-

der whether r should not be regarded as “accessed” by the evaluation of $x. The doubt
is easily solved by referring to the definition of soundness: the value of $x is the same in
two stores η0 and η′0 independently of any equivalence among them, hence the accessed
path should be empty. This rule also implicitly specifies that variable access commutes
with any other expression. For example, $x,delete($x) is equivalent to delete($x),$x.

($x �→ r) ∈ pEnv

pEnv  $x ⇒ r; 〈(),()〉
(VAR)

The (Step) rule specifies that a step accesses the prefix closure of r. Technically,
the rule would still be sound if we only put r|(r/axis::ntest) in the accessed set. How-
ever, the commutativity theorem relies on the fact that, for any expression, its inferred
accessed path is prefix-closed, for the reasons discussed at the end of the previous sec-
tion, and the addition of the prefix closure of r does not seem to seriously affect the
analysis precision.

pEnv  Expr ⇒ r; 〈a,u〉
pEnv  Expr/axis::ntest ⇒ r/axis::ntest; 〈pref(r/axis::ntest)|a,u〉

(STEP)
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Iteration binds the variable and analyses the body once. Observe that the analysis
ignores the order and multiplicity of nodes.

pEnv  Expr1 ⇒ r1; 〈a1,u1〉
(pEnv + $x �→ r1)  Expr2 ⇒ r2; 〈a2,u2〉

pEnv  for $x in Expr1 return Expr2
⇒ r2; 〈a1|a2,u1|u2〉

(FOR)

Element construction returns the unique constructor location, but there is no need to
regard that location as accessed.

pEnv  Expr1 ⇒ r1; 〈a1,u1〉
pEnv  Expr2 ⇒ r2; 〈a2,u2〉

pEnv  elementcode-loc{Expr1}{Expr2}
⇒ code-loc; 〈a1|a2,u1|u2〉

(ELT)

Local bindings just returns the result of evaluating the body, but the accesses and
side effects of both subexpressions are both considered.

pEnv  Expr1 ⇒ r1; 〈a1,u1〉
(pEnv + $x �→ r1)  Expr2 ⇒ r2; 〈a2,u2〉

pEnv  let $x := Expr1 return Expr2 ⇒ r2; 〈a1|a2,u1|u2〉
(LET)

The conditional approximates the paths by merging the results of both branches.

pEnv  Expr ⇒ r0; 〈a1,u1〉
pEnv  Expr1 ⇒ r1; 〈a2,u2〉
pEnv  Expr2 ⇒ r2; 〈a3,u3〉

pEnv  if (Expr) then Expr1 else Expr2
⇒ r1|r2; 〈a1|a2|a3,u1|u2|u3〉

(IF)

Update rules. The second set of rules deals with update expressions.
The first rule is the one for delete. The “updated path” u is extended with all the

descendants of r because u approximates those paths whose semantics may change after
the expression is evaluated, and the semantics of each path in r/descendant-or-self ::∗
is affected by the deletion. Assume, for example, that ($x �→ loc) ∈ pEnv, ($x �→ n) ∈
dEnv, and n is the root of a tree of the form 〈a〉〈b〉〈c/〉〈b/〉〈a/〉.

The evaluation of delete {$x/b} would change the semantics of $x//c, although
this path does not explicitly traverse loc/b. This is correctly dealt with, since the pres-
ence of loc/b/descendant-or-self :: ∗ in u means: every path that is not disjoint from
loc/b/descendant-or-self :: ∗ may be affected by this operation, and, by Definition 9,
loc//c is not disjoint from loc/b/descendant-or-self ::∗.

Observe that delete {$x/b} also affects expressions that do not end below $x/b,
such as “$x/b/..”. This is not a problem either, since the accessed path a computed for
the expression $x/b/.. is actually loc|(loc/b)|(loc/b/..), and the second component is
not disjoint from loc/b/descendant-or-self ::∗.
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pEnv  Expr ⇒ r; 〈a,u〉
pEnv  delete {Expr} ⇒ (); 〈a,u|(r/descendant-or-self ::∗)〉

(DELETE)

Similarly, insert {Expr1} into {Expr2} may modify every path that ends with
descendants of Expr2. Moreover, it depends on all the descendants of Expr1, since it
copies all of them.

pEnv  Expr1 ⇒ r1; 〈a1,u1〉
pEnv  Expr2 ⇒ r2; 〈a2,u2〉

pEnv  insert {Expr1} into {Expr2}
⇒ (); 〈a1|a2|(r1/descendant-or-self ::∗),u1|u2|(r2//∗)〉

(INSERTCHILD)

4.4 Soundness Theorem

Theorem 1 (Soundness of the analysis). The static analysis rules presented in Sec-
tion 4.3 are sound.

Soundness is proved by induction, showing that the soundness properties are preserved
by each rule. A detailed presentation of the soundness proof for the most important
rules can be found in [16].

5 Commutativity Theorem

Our analysis is meant as a tool to prove for specific expressions whether they can be
evaluated on a given store in any order or, put differently, whether they commute.

Definition 15 (Commutativity). We shall use [[Expr]]dEnv
η as a shorthand for the pair

(apply(η′),bag-of(n̄)) such that dEnv  η;Expr ⇒ η′; n̄, and where bag-of(n̄) forgets
the order of the nodes in n̄.

Two expressions Expr1 and Expr2 commute in pEnv, written Expr1
pEnv←→ Expr2, iff,

for all η and dEnv such that pEnv ⊇η dEnv, the following equality holds:

[[Expr1,Expr2]]
dEnv
η = [[Expr2,Expr1]]

dEnv
η

Hence, Expr1
pEnv←→ Expr2 means that the order of evaluation of Expr1 and Expr2 only

affects the order of the result. We explicitly do not require that the order of the individual
nodes updated by the expressions is preserved.

Theorem 2 (Commutativity). Consider two expressions and their analyses in pEnv:

pEnv  Expr1 ⇒ r1; 〈a1,u1〉
pEnv  Expr2 ⇒ r2; 〈a2,u2〉

If the updates and accesses obtained by the analysis are independent then the expres-
sions commute, in any environment that respects pEnv:

u1#a2,a1#u2,u1#u2 ⇒ Expr1
pEnv←→ Expr2
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Commutativity is our main result. The proof can be found in [16]. It follows the pat-
tern sketched in Section 4, after Definition 11. The proof is far easier than the proof
of soundness, and is essentially independent on the actual definition of the equivalence
relation. It only relies on soundness plus the following five properties, where only Sta-
bility is non-trivial.

p ⊇η0 n̄ ⇒ p ⊇η0,Δ n̄ (Stability)

for each p, ∼p is an equivalence relation (Equivalence)

p#(q0|q1) ⇔ p#q0 ∧ p#q1 (|#)

η0 ∼(q0|q1) η1 ⇒ η0 ∼q0 η1 (|∼)

q0 ⊆ q0|q1 (|⊆)

6 Related Work

Numerous update languages have been proposed in the last few years [1,2,3,4,5]. Some
of the most recent proposals [5,7] are very expressive, as they provide the ability to
observe the effect of updates during query evaluation. Although [7] limits the locations
where updates occur, this has little impact on our static analysis which also works for a
language where updates can occur anywhere in the query such as [5]. Very little work
has been done so far on optimization or static analysis for such XML update languages,
a significant exception being the work by Benedikt et al [4,13]. However, they focus on
analysis techniques for a language based on snapshot semantics, while we consider a
much more expressive language. A notion of path analysis was proposed in [8], which
we extend here by considering side effects.

Independence between updates and queries has been studied in the relational con-
text [11,12]. The problem becomes more difficult in the XML context because of the
expressivity of existing XML query languages. In the relational case, the focus has been
on trying to identify fragments of datalog for which the problem is decidable, usually
by reducing the problem to deciding reachability. Instead, we propose a conservative
approach using a technique based on paths analysis which works for arbitrary XML
updates and queries. Finally, commutativity properties for tree operations are important
in the context of transactions for tree models [14,15], but these papers rely on dynamic
knowledge while we are interested in static commutativity properties, hence the techni-
cal tools involved are quite different.

7 Conclusion

In this paper, we have proposed a conservative approach to detect whether two ex-
pressions commute in an expressive XML update language with strict evaluation order
and immediate update application. The approach relies on a form of path analysis which
computes an upper bound for the nodes accessed or updated in an expression. As there is
a growing need to extend XML languages with imperative features [7,5,19], we believe
the kind of analysis we propose here will be essential for the long-term development of
those languages. We are currently exploring the use of our commutativity analysis for
the purpose of algebraic optimization of XML update languages.
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Carles Farré1, Werner Nutt2, Ernest Teniente1, and Toni Urṕı1
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Abstract. We study containment of conjunctive queries that are evalu-
ated over databases that may contain tuples with null values. We assume
the semantics of SQL for single block queries with a SELECT DISTINCT
clause. This problem (“null containment” for short) is different from
containment over databases without null values and sometimes more
difficult.

We show that null-containment for boolean conjunctive queries is NP-
complete while it is ΠP

2 -complete for queries with distinguished variables.
However, if no relation symbol is allowed to appear more than twice,
then null-containment is polynomial, as it is for databases without nulls.
If we add a unary test predicate IS NULL, as it is available in SQL, then
containment becomes ΠP

2 -hard for boolean queries, while it remains in
ΠP

2 for arbitrary queries.

1 Introduction

Containment of queries is a key topic in database theory. The main motivation,
which was already at the origin of containment studies, is query optimization. In
their seminal paper, Chandra and Merlin developed a containment-based tech-
nique to minimize the number of joins in a query while retaining equivalence [3].
Other problems for which containment is relevant include transaction manage-
ment [11], query rewriting [10], and verification of integrity constraints [6].

The study of query containment started off with conjunctive queries. Since
then, the work has been extended to a wealth of query types, such as conjunctive
queries with comparisons [8,18], queries with union and difference [15], datalog
queries [16], conjunctive queries with negated atoms [11,17], aggregate queries [5],
queries over semistructured data [1,2], and XPath queries [12].

Containment has been studied under several semantics. In most cases, authors
assume that queries are evaluated under set semantics, that is, a query returns
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each answer item only once. Chaudhuri and Vardi considered containment under
bag semantics, which allows tuples to occur more than once in an answer and is
the semantics implemented in SQL database systems [4]. Another line of research
considers the effect of integrity constraints such as functional dependencies or
foreign key constraints on containment, which restrict the class of databases to
consider [13].

All this work did not take into account null values, which are the means by
which incomplete information is represented in SQL databases. In the presence
of null values, SQL queries are evaluated in a way that makes the existing theory
of containment inapplicable. The semantics of single block SELECT-FROM-WHERE
queries is as follows [7]:

– a query returns values for those combinations of tuples for which the WHERE
clause evaluates to true;

– an equality or a comparison involving null has the logical value unknown;
– a conjunction of conditions has the logical value true only if all conjuncts

evaluate to true.

Example 1. As an example, consider the two queries Q, Q′, which use a relation
with the schema residence(loc, person):

Q: SELECT DISTINCT r1.loc
FROM residence r1, residence r2
WHERE r1.loc = r2.loc

Q′: SELECT DISTINCT r.loc
FROM residence r

According to the SQL semantics, the second query returns the projection of
residence onto the attribute loc, which may include the value null. The first
query, however, returns only loc-values of residence that pass the test “r1.loc
= r2.loc”. In other words, Q returns the non-null values in the projection of
residence onto loc. As a consequence, Q and Q′ are equivalent over databases
that do not contain nulls. However, in the presence of nulls, Q is contained in Q′,
but not the other way round. ��

In the present paper we study null containment of conjunctive queries, that
is, containment under set semantics over databases that contain null values,
where conditions involving nulls are evaluated as in SQL. Such queries can be
equivalently expressed in SQL as single block queries with the keyword DISTINCT
in the SELECT clause. Note that this is also the semantics of nested subqueries
in EXISTS or IN clauses and of subqueries that are combined by the boolean
operators UNION, INTERSECTION, or MINUS.

In Section 2, we fix our notation. Section 3 presents a general criterion for
checking null-containment. In Section 4, we introduce J-homomorphisms, and
show that the existence of a J-homomorphism is sufficient for null-containment
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while for boolean queries it is also necessary. We prove in Section 5 that null-
containment is ΠP

2 -complete in general, while we show in Section 6 that it is
polynomial for queries with at most two occurrences of each predicate. Finally, in
Section 7, we model SQL’s built-in predicate IS NULL and show that in the pres-
ence of such null tests, null-containment becomes ΠP

2 -hard for boolean queries
while it remains in ΠP

2 in the general case.

2 Preliminaries

A term (like s, t) is either a constant (like c, d) or a variable (like u, v,. . . , z).
A predicate symbol (like p, q, r) has an arity, which may be 0. An atom has
the form p(s1, . . . , sn), where p is a predicate symbol with arity n. Denoting
tuples of terms as s̄ (and tuples of constants and variables as c̄, d̄, and ū, v̄,
etc.) we sometimes write atoms as p(s̄). An atom is ground if it does not contain
variables. If a = p(s1, . . . , sn) is an atom and j ∈ [1, n], then a[j] denotes the
term occurring at position j in a, that is, a[j] = sj .

A condition B is a list of atoms, written as B = a1, . . . , an, where n ≥ 0.
We sometimes view a condition as a set of atoms. In particular, if B′ and B are
conditions, we write B′ ⊆ B to express that each atom of B′ occurs among the
atoms of B.

A conjunctive query is a rule of the form q(x̄) ← B, where x̄ is a tuple of
distinct variables. We often identify the query and the head predicate q, defined
by the query. A conjunctive query is boolean if the head predicate has the arity 0.
Distinguished and nondistinguished variables of q are defined as usual.

A database D is a finite set of ground atoms. The carrier of D is the set of
constants occurring in the atoms of D. An assignment over D, say δ, for the
query q(x̄) ← B is a mapping from the set of variables of q to the carrier of D.
For a constant c we define δc := c. Assignments are extended in the obvious way
to complex syntactic objects such as tuples, atoms, conditions, etc. An atom a is
satisfied by δ over D if δa ∈ D and a condition B is satisfied by δ if δB ⊆ D. We
say that B is satisfied over D if it is satisfied by some δ over D. For a boolean
query q() ← B, we say that q is satisfied over D if the body B is satisfied
over D.

A tuple of constants d̄ is an answer over D to the query q(x̄) ← B if there
exists an assignment δ such that (1) δ satisfies B, and (2) δx̄ = d̄. The set of all
answers to q over D is denoted as qD. Let q, q′ be queries with the same arity.
Then q is contained in q′, written q ⊆ q′, if qD ⊆ q′D for all databases D.

A substitution is a mapping from a set of variables to a set of terms. Sub-
stitutions can be naturally extended to atoms and conditions. Let B, B′ be
conditions. A substitution γ for the variables of B′ is a condition homomor-
phism from B′ to B if γB′ ⊆ B. Suppose that q, q′ are defined as q(x̄) ← B,
q′(x̄) ← B′, respectively. Then γ is a query homomorphism from q′ to q if γ
is a condition homomorphism from B′ to B and γx̄ = x̄. The Homomorphism
Theorem for conjunctive queries says that q is contained in q′ if and only if there
exists a query homomorphism from q′ to q [3].
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3 Null-Containment

We adapt the framework of Section 2 to capture query evaluation over databases
with nulls. We introduce a new constant ⊥ to model the value null in SQL. The
value ⊥ may occur in databases, but not in queries.

Let B be a condition and y be a variable occurring in B. We say that y
is a join variable of B if y has at least two occurrences in B and a singleton
variable otherwise. An assignment δ satisfies B over D if (1) δB ⊆ D and (2) δ
respects join variables, that is δy �= ⊥ for every join variable y of B. Note that
this definition captures SQL’s semantics of equalities involving null. A variable
occurring at two positions in B corresponds in SQL notation to an equality
between two (not necessarily distinct) attributes, which is only satisfied if the
values of the attributes are identical and not null.

The set of answers to a query q over a database with nulls is defined as before
and is denoted in the same way as qD. We say that q is null-contained in q′ and
write q ⊆⊥ q′ if qD ⊆ q′D for all databases D, where D may contain the value ⊥.

Example 2. The two rule-based queries

q(x) ← residence(x, y), residence(x, w)
q′(x) ← residence(x, y)

are translations of the SQL queries Q, Q′ in Example 1. We see that the equality
in the WHERE clause of Q is reflected by the join variable x in q. ��
Clearly, null-containment implies containment. However, as seen in Example 1,
the converse is not true. This raises the question in which way we can check
null-containment and how difficult it is to decide this problem.

In the non-null case, a standard approach to checking whether q′ contains q is
to turn q into the canonical database Dq, obtained from q by “freezing” the vari-
ables into constants (see for instance [17]). For instance, the canonical database
for the query q in Example 2 is Dq = {residence(x, y), residence(x, w)} where
for the sake of simplicity we have identified the variables of q with their frozen
versions. We will do so also in the rest of the paper as long as no misunderstand-
ing can arise. Clearly, q returns the tuple consisting of the frozen distinguished
variables over Dq. The test criterion says that q is contained in q′ if also q′ re-
turns this tuple over Dq. Note that for boolean queries this tuple is the empty
tuple ().

Example 2 shows that this test cannot be used to decide null-containment
because x ∈ qDq′ , although q is not null-contained in q′. Fortunately, we can
modify the test so that it can be applied to the case of databases with nulls. A
null version of Dq is a database D obtained from Dq by replacing some frozen
variables of q with ⊥. By some slight abuse of notation we represent null versions
of Dq as instantiations θDq, where θ is a substitution that replaces some frozen
non-join variables of q with ⊥ and is the identity otherwise.

Theorem 1 (General Criterion). Let q(x̄), q′(x̄) be conjunctive queries. Then
q is null-contained in q′ if and only if for every null version θDq of Dq, we have
that q′ returns the tuple θx̄ over θDq.
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Proof. The proof of the theorem is straightforward. Clearly, if q is null-contained
in q′, then q′ returns θx̄ over θDq because q returns θx̄ over θDq.

Conversely, suppose D is an arbitrary database with nulls and q returns an
answer d̄ over D. Let B, B′ be the bodies of q, q′, respectively. Then there is an
assignment δ from the variables of B to the carrier of D such that δ respects join
variables, δB ⊆ D, and δx̄ = d̄. We define a substitution θ such that θy = ⊥ if
δy = ⊥ and θ is the identity otherwise. Thus, also θ respects join variables.

Due to our hypothesis, there is an assignment η for the variables of B′ such
that η respects join variables, ηB′ ⊆ θDq, and ηx̄ = x̄. We can view η also as
a substitution if we identify variables and their frozen versions. Let δ′ := δη.
Then it follows that δ′ respects join variables because η does so and because
δ maps no variable in θB to ⊥. Moreover, δ′B′ = δηB′ ⊆ δB ⊆ D, and finally
δ′x̄ = δηx̄ = δx̄ = d̄. This shows that δ′ satisfies q′ over D and δ′x̄ = d̄. ��

Corollary 1 (Upper Complexity Bound). Null-containment of conjunctive
queries is in ΠP

2 .

Proof. According to Theorem 1, we can check that q is not null-contained in q′

by exhibiting a null-version θDq of Dq where q′ does not retrieve θx̄. Deciding
whether q′ retrieves a specific tuple over a database with nulls is in NP. Thus,
the complement of null-containment is in ΣP

2 . ��

Example 3. As a continuation of Example 2, consider the null-version D′
0 :=

{residence(⊥,⊥)} of Dq′ . According to our definition of query answers, we
have that qD

′
0 = ∅, hence q′ is not null-contained in q.

4 Homomorphisms That Respect Join Variables

The general criterion of Theorem 1 is prohibitively complex. Therefore, we look
for a simpler test, which may not completely characterize null-containment, but
may serve as a sufficient criterion.

We say that a homomorphism γ from condition B′ to B respects join variables
if γ maps no join variable of B′ to a singleton variable of B, that is, γ maps join
variables to join variables or constants. A query homomorphism from q′ to q is
a J-homomorphism if it respects the join variables of the body of q′.

Proposition 1 (Sufficiency). Let q, q′ be conjunctive queries. If there exists
a J-homomorphism from q′ to q, then q is null-contained in q′.

The proof resembles the one that existence of a homomorphism is a sufficient
condition for containment.

Proposition 2 (NP-Completeness). Existence of J-homomorphisms is NP-
complete. This holds already for boolean conjunctive queries.

The proof reduces containment to the existence of a J-homomorphism.
For the discussion of boolean queries we introduce some extra notation. For a

query q, the substitution that maps every singleton variable of q to ⊥ is denoted
as θ⊥. The corresponding null version θ⊥Dq is denoted as D⊥

q .
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Theorem 2 (Characterization for Boolean Queries). Let q, q′ be boolean
conjunctive queries. Then q is null-contained in q′ if and only if there exists a
J-homomorphism from q′ to q.

Proof. We know by Proposition 1 that existence of a J-homomorphism is a
sufficient condition. It remains to show the necessity.

Suppose that q, q′ have the form q() ← B, q′() ← B′, respectively and that
q ⊆⊥ q′. By Theorem 1, there exists an assignment η for the variables of q′ that
satisfies q′ over D⊥

q . We will use η to construct a J-homomorphism γ from q′

to q.
We identify the substitution θ⊥ with the mapping that maps every atom a ∈ B

to the atom θ⊥a ∈ D⊥
q . Similarly, we identify η with the mapping that maps

every atom a′ ∈ B′ to ηa′ ∈ D⊥
q . The homomorphism γ will be defined in such

a way that η = θ⊥γ.
We first define γ as a mapping from the atoms of B′ to the atoms of B and

then show that γ is induced by a substitution. We choose γ as an arbitrary
mapping that maps an atom a′ ∈ B′ to an atom a ∈ B such that ηa′ = θ⊥a. In
other words, γ has the property that γa′ ∈ θ⊥

−1(η(a′)) for every atom a′ ∈ B′.
It follows from the definition that the relation symbols of a′ and γ(a′) are

identical. Moreover, if a′[i] = c for some constant c, then η(a′)[i] = c and also
a[i] = c for every a ∈ θ⊥

−1(η(a′)), hence γ(a′)[i] = c.
Now, consider two distinct atoms a′, b′ ∈ B′ such that a′[i] = b′[j] = y for

some variable y. It follows that η(a′)[i] = η(b′)[j] = ηy. Since y is a join variable,
we have ηy = s for some term s �= ⊥. Let a := γa′ and b := γb′. If s is a constant
c, then a[i] = b[j] = c by the definition of θ⊥. If s = z for a (frozen) variable z,
then z is a join variable of B and the definition of θ⊥ implies that a[i] = b[j] = z.

Thus, a′[i] = b′[j] implies that γ(a′)[i] = γ(b′)[j] for all atoms a′, b′ ∈ B′ and
all positions i, j. Hence, γ is induced by a homomorphism, which we call γ, too.
Also, since θ⊥γ = η and η respects join variables, it follows that γ respects join
variables. ��

Combining Proposition 2 and Theorem 2, we can precisely characterize the com-
plexity of null-containment for boolean queries.

Corollary 2 (Complexity for Boolean Queries). For boolean conjunctive
queries null-containment is NP-complete.

A closer inspection of the proof of Theorem 2 reveals that for boolean queries
the general containment test of Theorem 1 can be simplified to one that uses
only a single test database.

Proposition 3. Let q(), q′() be boolean conjunctive queries. Then q is null-
contained in q′ if and only if q′ is satisfied by D⊥

q .

5 Complexity of Null-Containment

The next example shows that the existence of a J-homomorphism is not a nec-
essary condition for null-containment of general conjunctive queries.
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Example 4. We consider the following two queries:

q(x) ← p(x, y1, z1), p(x2, y2, z2), p(x3, y3, x3),
r(y1, z1), r(y1, z2), r(y2, x3)

q′(x) ← p(x, v1, w1), p(u, v2, w2), p(u, v3, w3),
r(v1, w2).

To simplify our discussion we denote the atoms of q as a1, a2, a3, b1, b2, b3
and the atoms of q′ as a′

1, a′
2, a′

3, b′, respectively. Thus, the two queries can be
written as

q(x) ← a1, a2, a3, b1, b2, b3

q′(x) ← a′
1, a′

2, a′
3, b′.

One easily checks that there exist exactly two query homomorphisms from q′

to q. To see this, note that there is no choice in mapping a′
1, since x has to be

mapped to x. Then, there are two choices to map b′, namely either to b1 or to
b2. Depending on this choice, there is only one possibility to map a′

2 and a′
3. In

conclusion, the two mappings map the atoms of q′ to the atoms of q as follows:

γ1 = {a′
1 �→ a1, a′

2 �→ a1, a′
3 �→ a1, b′ �→ b1}

γ2 = {a′
1 �→ a1, a′

2 �→ a2, a′
3 �→ a2, b′ �→ b2}.

None of the two mappings preserves the join variable u, since γ1u = x, and
γ2u = x2. There exists, however, a third substitution that is a homomorphism
from the body of q′ to the body of q, but which fails to be a query homomor-
phism, since it maps the distinguished variable x to x2. This is the mapping

γ3 = {a′
1 �→ a2, a′

2 �→ a3, a′
3 �→ a3, b′ �→ b3}.

Note that q′ has three join variables, namely u, v1, and w2, and that all three
substitutions map v1 and w2 to join variables of q. Moreover, γ3 also maps u to
the join variable x3.

We will see in the following that q is null-contained in q′. Let D be a database
and d an answer retrieved by q over D. Then there is an assignment δ such that
δx = d and δ satisfies the body of q. We distinguish between three cases and
show that in each case also q′ retrieves d:

1. If δx �= ⊥, then δγ1 satisfies the body of q′ and δγ1x = d.
2. If δx = ⊥ and δx2 �= ⊥, then δγ2 satisfies the body of q′ and δγ2x = d.
3. If δx = ⊥ and δx2 = ⊥, then δγ3 satisfies the body of q′ and δγ3x = δx2 =

⊥ = δx = d.

Note that in the third case the reason why q′ retrieves ⊥ is that δ binds the
non-distinguished variable x2 to ⊥ instead of binding x to ⊥. ��
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The queries of Example 4 will be a crucial ingredient for a reduction that proves
ΠP

2 -hardness of null-containment for conjunctive queries.
We reduce the problem of deciding the validity of quantified boolean formulas

with a prefix of the form ∀∗∃∗ to the null-containment problem. We note that
the former problem is already ΠP

2 -complete if the matrix is a conjunction of
3-clauses. Let

Φ = ∀y1 . . .∀yl∃z1 . . .∃zmφ1 ∧ . . . ∧ φn (1)

be such a formula, where each φk is a 3-clause containing variables among the
yi and zj .

We denote the values “true” and “false” as t and f and we identify the truth
values with constants that are interpreted as “true” and “false”, respectively.

The validity of Φ can be rephrased as the satisfiability of a set of formulas
derived from Φ. Let α : {y1, . . . , yl} → {t, f} be a truth value assignment. If ψ
is a propositional formula, we denote with ψα the formula obtained from ψ by
replacing each variable yi with the constant αyi. Let us denote the matrix of Φ as
φ := φ1∧ . . .∧φn. Then Φ is valid if and only if for every α : {y1, . . . , yl} → {t, f}
the formula φα is satisfiable.

We construct two conjunctive queries q, q′ such that q is null-contained in q′

if and only if Φ is valid. The two queries have the form

q(x1, . . . , xl) ← G1, . . . , Gl, C1, . . . , Cn (2)
q′(x1, . . . , xl) ← G′

1, . . . , G
′
l, C

′
1, . . . , C

′
n, (3)

with conditions Gk, G′
k, Cj , C′

j . Intuitively, the pair of conditions Cj , C′
j encodes

which bindings of the variables in the clause φj actually satisfy φj while the pair
Gk, G′

k together with the distinguished variable xi generates bindings of yi to t
and f.

We first define the Ck and C′
k. Let u1, u2, u3 be the variables occurring in φk.

We introduce a new ternary relation symbol clk and define

C′
k := clk(u1, u2, u3). (4)

Out of the eight possible truth value assignments for the three variables, there
are seven, say β1, . . . , β7, that satisfy the clause φk. We define

Ck := clk(β1u1, β1u2, β1u3), . . . , clk(β7u1, β7u2, β7u3). (5)

For instance, if
φk = ¬y2 ∨ y3 ∨ ¬z1,

then only the assignment {y2 �→ t, y3 �→ f, z1 �→ t} does not satisfy φk. Hence,

C′
k = clk(y2, y3, z1)

Ck = clk(f, f, f), clk(f, f, t), clk(f, t, f), clk(f, t, t),
clk(t, f, f), clk(t, t, f), clk(t, t, t).

Consider a substitution θ for the variables yi, zj, where i ∈ [1, l] and j ∈ [1, m],
such that θ maps every variable either to t or to f. Obviously, such a substitution
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can be viewed as a truth value assignment for the variables and vice versa.
Moreover, by construction we have for each k ∈ [1, n] that θC′

k ⊆ Ck if and only
if the corresponding assignment satisfies φk.

Next, consider a fixed index i ∈ [1, l]. We define the Gi and G′
i by modifying

the bodies of the queries in Example 4. More specifically, the body of q will
give rise to Gi and the body of q′ to G′

i. To this end, we introduce a ternary
relation pi and a binary relation ri and turn every atom for p and r into one
for pi and ri, respectively. We do so by renaming the output variable x as xi,
instantiating y1 and y2 by t and f, respectively. and renaming v1 as yi. All other
variables are renamed by adding the number i to their subscript. Thus, Gi and
G′

i look as follows

Gi = pi( xi , t , zi1), pi(xi2, f , zi2), pi(xi3, yi3, xi3),

ri( t , zi1), ri( t , zi2), ri( f , xi3)

G′
i = pi( xi , yi , wi1), pi(ui, vi2, wi2), pi(ui, vi3, wi3),

ri(yi, wi2),

where we have highlighted the terms that have been introduced as replacements
of x, y1, y2 and v1. It follows from the discussion of Example 4, that any homo-
morphism from G′

i to Gi either maps yi to t or to f and that the homomorphisms
mapping yi to t are exactly the ones that map xi to xi.

Lemma 1. Let Φ be a quantified boolean formula as in Equation (1) and q, q′

be a pair of conjunctive queries encoding Φ as in Equations (2) and (3). Then

Φ is valid ⇐⇒ q ⊆⊥ q′.

Theorem 3 (Complexity of Null-Containment). Null-containment of con-
junctive queries is ΠP

2 -complete.

6 Binary Queries

A conjunctive query that for every predicate contains at most two atoms with
that predicate in its body is called binary. Sagiv and Saraiya have shown that
containment of binary queries is polynomial [14]. We prove that this extends to
null-containment.

We show first that for the class of binary queries the existence of a J-homo-
morphism is also a necessary condition for null-containment. This holds already
if only the containee is binary.

Theorem 4. Let q, q′ be conjunctive queries such that q ⊆⊥ q′. If q is binary,
then there exists a J-homomorphism from q′ to q.

Proof. If q, q′ are boolean queries, then the claim follows from Proposition 2.
Suppose, therefore, that the queries have the form q′(x̄) ← B′, q(x̄) ← B, where
the tuple x̄ is nonempty.
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Since q ⊆⊥ q′, it follows that q ⊆ q′. Hence, there exists a homomorphism
from q′ to q. Let γ1, . . . , γn be all the homomorphisms from q′ to q. We want to
show that one of the γi preserves join variables.

The proof is by contradiction. We assume that each γi maps some join variable
of B′ to a singleton variable in B. We say a null version θDq of Dq is a witness for
this fact if for every i ∈ [1, n] there is a join variable y of B′ such that θγiy = ⊥,
that is, if every γi maps some join variable of B′ to a singleton variable of B
that is mapped to ⊥ by θ. There is at least one witness, namely the null version
θ⊥Dq defined by the substitution θ⊥ that maps every singleton variable of B
to ⊥.

We introduce a partial order on null versions of Dq by defining θ1Dq ' θ2Dq

if θ1z = ⊥ implies θ2z = ⊥ for all variables z occurring in B. Let D0 := θ0Dq be
a witness that is minimal with respect to “'”. Note that, due to the minimality
of D0, for every variable z with θ0z = ⊥, there is a homomorphism γi such that
γiy = z for some join variable y of B′. If there were a z without this property,
then we could redefine θ0z := z while still retaining a witness, contrary to the
minimality of D0.

Clearly, q retrieves θ0x̄ over D0. Since q ⊆⊥ q′, there exists an assignment η
for the variables in B′ such that (1) η satisfies B′ over D0 and (2) ηx̄ = θ0x̄.
Moreover, since D0 is a witness, we also have that (3) η �= θ0γi for all i ∈ [1, n].

The assignment η has the property that ηB′ ⊆ D0 and η maps some singleton
variables of B′ to ⊥. The database D0 has been obtained from Dq by applying
θ0, which maps some frozen singleton variables in Dq to ⊥. Thus, each ⊥ in D0
replaces a singleton variable in Dq. As a consequence, there is a substitution ρ
such that ρB′ ⊆ B and η can be factorized as η = θ0ρ.

Thus, ρ satisfies B′ over Dq. However, ρ cannot map x̄ to x̄ because then
it would be a query homomorphism. Note that, in general, ρ is not uniquely
determined. In summary, the following facts hold for ρ: (1) ρ satisfies B′ over
Dq, (2) θ0ρ satisfies B′ over D0, (3) θ0ρx̄ = θ0x̄, and (4) ρx̄ �= x̄.

The above implies that ρx �= x for some x in x̄. For this x we have that
θ0x = ⊥, since otherwise θ0ρx = θ0x could not hold. Thus, θ0x̄ has at least one
occurrence of ⊥. Moreover, ρx is a variable, say v, since otherwise θ0ρx = θ0x =
⊥ could not hold. In summary, there are two singleton variables x, v occurring
in B such that (1) x occurs in x̄, (2) ρx = v, and (3) θ0x = θ0v = ⊥.

From ηx = θ0ρx = ⊥ we conclude that x is also a singleton variable in B′.
Hence, there is a unique atom a′ in B′ containing x. Given that x is a distin-
guished variable, there is a unique atom a1 in B such that a1 = γia

′ for all
i ∈ [1, n], and given that v �= x, there is a unique atom a2 in B such that
a2 = ρa′.

Suppose that a′ has the predicate p and that x occurs in a′ at position j, that
is, a′[j] = x. Then a1 and a2 have the predicate p, too. Moreover, a1[j] = x and
a2[j] = v, which implies that (θ0a1)[j] = (θ0a2)[j] = ⊥ in D0.

Since D0 is a minimal witness, B′ contains a join variable, say y, such that
γiy = x for some i ∈ [1, n]. The variable x being a singleton, we conclude that
in B′ there is an atom b′ such that b′[j] = y, and b′ has the predicate p, too.
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Given that q is binary, there are only two atoms in D0 to which b′ can be
mapped by the assignment η, namely θ0a1 and θ0a2. However, both atoms con-
tain the value ⊥ at position j, which contradicts the requirement that ηy �= ⊥,
since y is a join variable. ��

Next, we introduce a simple transformation of queries that will allow us to reduce
the existence check for J-homomorphisms to the one for simple homomorphisms.
For every relational query q(x̄) we define a query q̂(x̄), the J-transform of q, as
follows:

– for every predicate p occurring in the body of q we introduce a new predicate
p̂ of the same arity;

– for every atom a = p(c̄, ȳ, z̄) in the body of q, where c̄ are the constants in
a, ȳ are the join variables in a, and z̄ are the singleton variables in a, we
construct the atom â := p̂(c̄, ȳ, w̄), where w̄ are fresh variables;

– if q has the body B, then q̂ has the body B, B̂, where B̂ contains for every
a ∈ B the corresponding â.

Example 5. Consider the two queries

q(x) ← r(x, z1)
q′(x) ← r(x, z1), r(x, z2).

The corresponding J-transforms are

q̂(x) ← r(x, z1), r̂(w, w1)
q̂′(x) ← r(x, z2), r(x, z3), r̂(x, w2), r̂(x, w3).

Note that x is a singleton variable in q and therefore the variable w has been
introduced as a duplicate of x in q̂. ��

Lemma 2 (J-Transform). Let q, q′ be two relational conjunctive queries. There
is a J-homomorphism from q′ to q if and only if there is a query homomorphism
from q̂′ to q̂.

Theorem 5 (Polynomiality for Binary Queries). For binary queries, null-
containment can be decided in polynomial time.

Proof. By Lemma 2, null-containment of conjunctive queries can be reduced to
the containment of their J-transforms. Clearly, the J-transform of a binary query
is again binary. As shown in [14], containment can be checked in polynomial time
for binary queries. ��

7 Null Tests

Our SQL-like semantics of conjunctive queries allows us to enforce that a vari-
able y be bound only to non-null values. To see this, suppose that p(y, z̄) is an
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atom in a condition B. Let B′ be obtained from B by adding an atom p(y, w̄),
where w̄ is a tuple of fresh variables. If D is a database, then an assignment δ
satisfies B′ over D if and only if δ satisfies B over D and δy �= ⊥.

Also SQL allows one, by writing “att IS NULL”, to test whether the value
of an attribute att is null. We model this facility to test for null by introducing
a unary built-in predicate isNull, which can appear in conditions, but not in
databases. Atoms with a predicate other than isNull are relational. A condition
B is safe if for every atom isNull(y) in B we have that (1) y occurs also in a
relational atom of B and (2) y is a singleton variable of B. We only consider
queries with safe bodies. An assignment δ satisfies isNull(y) if δy = ⊥.

Null-containment of conjunctive queries with isNull can be decided using null
versions of canonical databases as in Theorem 1. The difference is that (1) a
canonical database Dq contains only the frozen relational atoms of q and (2) null
versions θDq can only be obtained from substitutions θ such that θy = ⊥ when-
ever isNull(y) occurs in the body of q.

A substitution γ is a homomorphism or J-homomorphism between queries
with null tests if γ is a homomorphism or J-homomorphism, respectively, when
isNull is treated like a relational predicate. We say that γ is a relational ho-
momorphism if γ is a homomorphism when we ignore all isNull atoms. It is
straightforward to check that the existence of a J-homomorphism continues to
be a sufficient condition for null-containment.

However, as the following example shows, the existence of a J-homomorphism
is no longer a necessary condition for null-containment of boolean queries with
null tests. The intuitive reason is that adding null tests allows us to express
alternatively that a variable must be bound to null or that it must be bound
to a non-null value. This is a form of negation, which forces us to make case
analyses when checking containment.

The reader will verify that examples and proofs in this section can be amended
in a straightforward way to yield results for other extensions of conjunctive
queries that allow one to express the negation of specific atoms. Two examples
for such extensions are negation of atoms and comparisons. While it is well-
known that containment is ΠP

2 -hard in the presence of comparisons [18], to the
best of our knowledge this has not yet been proven for negated atoms.

Example 6. Consider the queries

q() ← p(c, v1), p(c, v2), p(v1, v2), p(v2, v3),
r(v1, z1), isNull(z1),
r(v2, z2),
r(v3, z3), r(z4, z3)

q′() ← p(c, u1), p(u1, u2),
r(u1, w1), isNull(w1),
r(u2, w2), r(w3, w2).
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Note that graphically, the first three p-atoms of q form a triangle, while the fourth
p-atom extends the triangle at the variable v2. Each variable vi is connected
to a variable zi by the predicate r. The p-atoms in q′ form a path of length 2.
Analogously to the situation in q, each variable uj is connected by the predicate r
to a variable wj . The conditions on w1, w2 in q′ require that u1 be connected
by r to a null value and u2 to a non-null value. The conditions on z1, z2, z3 in q
require that v1 be connected to a null value, v3 to a non-null value, and v2 to a
value that may be null, but need not.

Clearly, there is no J-homomorphism from q′ to q. Such a substitution would
have to contain the mappings [u1/v1, w1/z1, u2/v2]. This partial substitution
cannot be extended to a J-homomorphism because w2 is a join variable, which
cannot be mapped to the singleton variable z2.

Nonetheless, q ⊆⊥ q′, which can be seen by considering the two substitutions

γ1 = [u1/v1, w1/z1, u2/v2, w2/z2, w3/v2]
γ2 = [u1/v2, w1/z2, u2/v3, w2/z3, w3/v3].

Clearly, γ1 and γ2 are relational homomorphisms. Let D be a database and δ
be an assignment that satisfies q over D. Then one checks that δγ1 satisfies q′ if
δz2 �= ⊥ and δγ2 satisfies q′ if δz2 = ⊥. ��

The ΠP
2 -hardness proof in this section is based on a similar idea as the one in

Section 5. We translate a quantified boolean formula as in Equation 1 into two
boolean queries

q() ← H1, . . . , Hl, C1, . . . , Cn (6)
q′() ← H ′

1, . . . , H
′
l , C

′
1, . . . , C

′
n, (7)

where the Ck and C′
k are defined as in Equations (5) and (4), respectively.

The conditions Hi, H ′
i play the role of generators of assignments for the vari-

ables yi and are defined as modifications of the bodies of the queries in Exam-
ple 6, obtained by parameterising predicates and variables with the index i, and
substituting variables v2, v3 in q by t and f, respectively, and by substituting u2
with yi. Thus, Hi and H ′

i look as follows:

Hi = pi(c, vi1), pi(c, t ), pi(vi1, t ), pi( t , f ),

ri(vi1, zi1), isNull(zi1), ri( t , zi2), ri( f , zi3), ri(zi4, zi3)

H ′
i = pi(c, ui1), pi(ui1, yi ),

ri(ui1, wi1), isNull(wi1), ri( yi , wi2), ri(wi3, wi2).

Lemma 3. Let Φ be a quantified boolean formula as in Equation (1) and q, q′

be a pair of boolean queries encoding Φ as in Equations (6) and (7) Then

Φ is valid ⇐⇒ q ⊆⊥ q′.

Corollary 3. The null-containment problem for boolean conjunctive queries with
null tests is ΠP

2 -complete.
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Corollary 4. The containment problem for boolean conjunctive queries with
negated atoms is ΠP

2 -hard.

Proof. We modify Example 6 by first dropping all r-atoms and all null tests.
Then we add in q and in q′ the atoms p′(u1) and ¬p′(u2). For the new queries,
one shows q ⊆ q′ by a similar argument as above.

Based on the modified example, we encode a quantified boolean formula as in
Equation (1) into a containment problem for conjunctive queries with negated
atoms. The reduction and the proof of the corresponding lemma are analogous
to the ones for queries with null tests. ��

8 Conclusion

Query containment has been studied extensively for a variety of query types and
semantics. However, the fact that real databases contain null values has been
widely ignored by this work. We feel that it is important to understand the effect
of null values on containment if one wants to apply containment based techniques
in realistic scenarios. Moreover, containment plays a key role in information
integration, where it is increasingly likely to encounter data sets with null values
after merging heterogeneous data sources.

In the present paper, we have concentrated on relational conjunctive queries
because it is in this basic setting that the most crucial differences to the clas-
sical non-null results become apparent. A characterization of null-containment
in terms of homomorphisms, analogous to the classical case, is only possible for
boolean queries, while for queries with distinguished variables null-containment
is strictly more complex than containment. A similar characterization, using ho-
momorphisms, exists for queries with at most two atoms per predicate, while an
example shows that it no longer holds for queries with three atoms per pred-
icate. Adding an SQL style IS NULL test creates a limited form of negation,
which resembles the one introduced by comparisons like y > 1 and y ≤ 1, or by
the negation of relational atoms. These additional constructs raise complexity
to ΠP

2 -completeness, which was already known for comparisons [18].
Containment of conjunctive queries over databases with null values can be

reduced to containment of conjunctive queries with disequations over regular
databases. The fact that a join variable x cannot be bound to ⊥ can be ex-
pressed by adding to the query body a disequation x �= ⊥. Since it is known that
containment of conjunctive queries with disequations is ΠP

2 -complete, this yields
an alternative proof for Corollary 1 in the present paper. The ΠP

2 lower bound
for null-containment in Theorem 3 yields also the new result that containment
of conjunctive queries with disequations is already ΠP

2 -hard if all disequations
are of the form x �= c with a single constant c, which complements the lower
bounds in [9,18].

Acknowledgment

We would like to thank an anonymous referee for pointing out the relationship
of our work and the one on queries with disequalities.



Containment of Conjunctive Queries over Databases with Null Values 403

References

1. D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Containment of
conjunctive regular path queries with inverse. In Proc. 7th KR, pages 176–185,
2000.

2. D. Calvanese, G. D. Giacomo, and M. Y. Vardi. Decidable containment of recursive
queries. In Proc. 9th ICDT, pages 1–18, 2003.

3. A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in
relational databases. In Proc. 9th STOC, 1977.

4. S. Chaudhuri and M. Vardi. Optimization of real conjunctive queries. In Proc.
12th PODS, 1993.

5. S. Cohen, W. Nutt, and Y. Sagiv. Containment of aggregate queries. In Proc. 9th
ICDT, 2003.

6. M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Verifying integrity constraints
on web-sites. In Proc. 16th IJCAI, pages 614–619, 1999.

7. H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Complete
Book. Pearson Education International, 2002.

8. A. Klug. On conjunctive queries containing inequalities. J. ACM, 35(1):146–160,
1988.

9. P. Kolaitis, D. Martin, and M. Thakur. On the complexity of the containment
problem for conjunctive queries with built-in predicates. In Proc. 17th PODS,
pages 197–204, 1998.

10. A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using
views. In Proc. 14th PODS, pages 95–104, 1995.

11. A. Levy and Y. Sagiv. Queries independent of updates. In Proc. 19th VLDB, pages
171–181, 1993.

12. G. Miklau and D. Suciu. Containment and equivalence for an XPath fragment. In
Proc. 21st PODS, pages 65–76, 2002.

13. L. Popa and V. Tannen. An equational chase for path-conjunctive queries, con-
straints, and views. In Proc. 7th ICDT, pages 39–57, 1999.

14. Y. Sagiv and Y. Saraiya. Minimizing restricted-fanout queries. Discrete Applied
Mathematics, 40:245–264, 1992.

15. Y. Sagiv and M. Yannakakis. Equivalence among relational expressions with the
union and difference operators. J. ACM, 27(4):633–655, 1981.

16. O. Shmueli. Equivalence of datalog programs is undecidable. Theoretical Computer
Science, 15(3):231–242, 1993.

17. J. Ullman. Information integration using logical views. In Proc. 6th ICDT, pages
19–40, 1997.

18. R. van der Meyden. The complexity of querying indefinite data about linearly
ordered domains. J. Computer and System Sciences, 54(1):113–135, 1997.



Some Algorithmic Improvements for the Containment
Problem of Conjunctive Queries with Negation

Michel Leclère and Marie-Laure Mugnier

LIRMM, Université de Montpellier,
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Abstract. Query containment is a fundamental problem of databases. Given two
queries q1 and q2, it asks whether the set of answers to q1 is included in the set
of answers to q2 for any database. In this paper, we investigate this problem for
conjunctive queries with negated subgoals. We use graph homomorphism as the
core notion, which leads us to extend the results presented in [Ull97] and [WL03].
First, we exhibit sufficient (but not necessary) conditions for query containment
based on special subgraphs of q2, which generalize that proposed in [WL03]. As a
corollary, we obtain a case where the time complexity of the problem decreases.
From a practical viewpoint, these properties can be exploited in algorithms, as
shown in the paper. Second, we propose an algorithm based on the exploration of
a space of graphs, which improves existing algorithms.

1 Introduction

In this paper, we investigate the problem of deciding on query containment for con-
junctive queries with negated subgoals (but without inequalities). Query containment
checking is one of the fundamental problems of databases. A query q1 is said to be con-
tained in a query q2 (notation q1 � q2) if for any database instance the set of answers to
q1 is included in the set of answers to q2. Algorithms based on query containment can
be used to solve various problems, such as query evaluation and optimization [CM77]
[ASU79], rewriting queries using views [Hal01], detecting independance of queries
from database updates [LS93], etc. However, the problem is undecidable for general
queries expressed as Datalog programs.

Positive conjunctive queries are a class of frequently used queries which have been
investigated since the early days of databases [CM77, Ull89]. Their expressive power
is equivalent to the select-join-project queries of relational algebra. Checking contain-
ment of positive conjunctive queries is an NP-complete problem. It can be solved by
testing the existence of a query homomorphism from q2 to q1, which maps q2 to q1 by
substituting its variables by terms (constants or variables) in q2.

Example 1. Let q1 =ans(x, y) ← r(x, y), r(y, x), p(x, x), s(y) and q2 =ans(u, v) ←
r(u, v), r(v, w), p(u, w) be two conjunctive queries. There is one query homomorphism
from q2 to q1, which is h = {u → x, v → y, w → x}. Check that h(q2) has the same
head as q1 and its body is a part of q1’s body. This proves that q1 � q2.

This problem can also be recast as a query evaluation problem by considering the
canonical database associated with a query. Roughly, this database Dq is obtained from
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a query q by “freezing” its variables, that is considering them as new elements of the
schema domain. Then query containment can be reformulated as evaluating q2 on Dq1

and checking that the set of answers contains the head of q1 [CM77].
When conjunctive queries are extended to negated subgoals, query containment be-

comes Π2
P -complete (Π2

P is the class (co-NP )NP ). To our best knowledge, only two
proposals about algorithms deciding on query containment for this class of queries can
be found in the literature. We outline the main points of these proposals here, and
will go into further detail later. In [Ull97], Ullman gives the scheme of an algorithm
(adapted from a uniform equivalence checking method for Datalog programs [LS93]).
This scheme involves generating an exponential number (in the size of q1) of databases
representative of q1 and evaluating q2 on these databases. This set of databases can be
seen as a generalization of the canonical database of the positive case. A database that
does not yield the head of q1 as an answer to q2 is a counter-example to the containment.

Example 2. Let q1 = ans() ← r(x, y), s(y, z), p(t), p(z),¬r(z, t) and q2 = ans() ←
r(u, v), p(w),¬r(v, w). As ans() has no argument, these queries represent boolean
queries. It holds that q1 � q2, as will be shown later. In a first step, Ullman’s scheme
builds the 15 partitions on {x, y, z, t}, which can be seen as all ways of mapping the
variables in q1 to database values. Each partition yields a database by substituting in q1
the same value to each set of variables and taking the positive part of the query obtained.
For instance, the partition {{x, y}, {z, t}} yields the database {r(0, 0), s(0, 1), p(1)}. If
a database does not make the body of q1 true, as the database obtained from the partition
{{x, z}, {y, t}}, it is eliminated. In a second step, for each database D, all its extensions
obtained by adding tuples using the values and the relation symbols in D, and that still
make the body of q1 true, are considered and it is checked that they yield the substi-
tuted head of q1 as an answer to q2. For instance, for D = {r(0, 0), s(0, 1), p(1)}, all
extensions with tuples r(0, 1), r(1, 0), s(0, 0), s(1, 0), s(1, 1) and p(0) are considered.

In the general case, if v is the number of variables in q1, a number of databases
exponential in v are generated in the first step, then, for each generated database Di,

2((
∑

r∈R n
arity(r)
i )−t) representative databases have to be checked, where R is the set of

relation symbols appearing in q1, ni is the number of terms in Di and t is the number
of tuples in q1.

In [WL03], Wei and Lausen exhibit a necessary but not sufficient condition for con-
tainment of safe queries (which are queries in which all variables appear in positive
subgoals): if q1 is contained in q2 then there must be a query homomorphism (say h)
from the positive part of q2 (say q+

2 ) to the positive part of q1 (say q+
1 ), that does not

“contradict” the negative subgoals of q2 (i.e. for all negative subgoals ¬p(u) in q2, q1
does not contain the positive subgoal p(h(u)) ). This property is central to the proposed
algorithm. It yields a heuristic for the generation of representative databases, with the
aim of concluding sooner from partial representative databases. To check that q1 � q2,
the algorithm tries to find a query homomorphism (without contradiction) h from q+

2 to
q+
1 , such that for each negative literal ¬p(u) in q2, either ¬p(h(u)) is in q1 or the query

q′1 built from q1 by adding p(h(u)) is such that q′1 � q2.
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Let us outline this algorithm in example 2. There are 2 homomorphisms from q+
2 =

ans() ← r(u, v), p(w) to q+
1 : h1 = {u → x, v → y, w → z} and h2 = {u → x, v →

y, w → t}. Both homomorphisms do not contradict any negative subgoal in q2. Let
us consider h1 and the negative literal ¬r(v, w) in q2. The idea is that any database
answering q1 that does not contain r(y, z) also answers q2, thus databases containing
r(y, z) have to be checked. r(y, z) is added to q1, yielding q′1. There are four query
homomorphisms from q+

2 to q′
+
1 . If it can be concluded that q′1 � q2, then q1 � q2.

Otherwise, the homomorphism h2 has to be considered.

Example 3. (ex. 1.2 in [WL03]) Let q1 = ans(x, y) ← r(x, y), r(y, z),¬r(x, z) and
q2 = ans(u, w) ← r(u, v), r(v, w),¬s(w, w). There is one query homomorphism,
h = {u → x, v → y, w → z}, from q+

2 = ans(u, w) ← r(u, v), r(v, w) to q+
1 . h

does not contradict the negative subgoal of q2. Then, q′1 is generated from q1 by adding
s(z, z). Again h is the sole homomorphism from q+

2 to q′
+
1 but it contradicts ¬s(w, w).

Thus, q′1 �� q2 and as there is no other homomorphism from q+
2 to q+

1 it is concluded
that q1 �� q2.

Contribution. In this paper, we consider homomorphism as a core notion, where a ho-
momorphism is not restricted to the positive parts of queries as in previous proposals,
but extended to whole queries. For this, we propose to view the queries as labeled
graphs, called polarized graphs. More specifically, a query is represented as a bipar-
tite graph, with two kinds of nodes: relation nodes and terms nodes1. Each term of the
query becomes a term node, labeled by � if it is a variable (it can be seen as a “blank
node”) otherwise by the constant itself. A positive (resp. negative) literal with relation
symbol r becomes a relation node labeled by +r (resp.−r) and it is linked to the nodes
assigned to its terms. The numbers on edges correspond to the position of each term in
the literal. See Figure 1, which displays the queries in example 2.

Basically, a homomorphism from an algebraic structure to another maps the elements
of the first structure to elements of the second structure while preserving the relations
between elements. A homomorphism h from a graph G2 to a graph G1 is a mapping
from the nodes of G2 to the nodes of G1, which preserves edges, that is if xy is an edge
of G2 then h(x)h(y) is an edge of G1. Since our graphs are labeled, there are additional
conditions on labels: a relation node is mapped to a node with the same label; a term
node can be mapped to any term node if it is labeled by a �, otherwise it is mapped to a
node with the same constant. Numbers on edges are preserved.

Graph homomorphism yields another perspective on queries, as it naturally considers
positive and negative occurrences of relations in the same way; moreover, it is defined
on subgraphs that do not necessarily correspond to a query, which is convenient for
our study. However, let us point out that all definitions and results in this paper can be
expressed using the classical vocabulary on queries. In what follows, the term homo-
morphism can be understood as “query homomorphism extended to negative subgoals”
or “graph homomorphism”.

A first property, extending the central property in [WL03], is that the existence of a
homomorphism from q2 to q1 is a sufficient condition for containment.

1 Queries have often been considered as hypergraphs. The graphs we consider can be seen as
the incidence bipartite graphs of these hypergraphs.
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Fig. 1. Queries as graphs

Example 4. Let q1 = ans(y, z) ← r(x, z), r(y, z),¬r(x, y) and q2 = ans(u, v) ←
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The existence of a homomorphism is not a necessary condition, as can be seen in ex-
ample 2 (pictured in Figure 1): q1 � q2 but there is no homomorphism from q2 to q1.
However, q1 can be equivalently rewritten as the union of two queries: one obtained by
adding ¬r(y, z), the other by adding r(y, z). These queries are shown in Figure 2. As
there is a homomorphism from q2 to both queries, we conclude that q1 � q2.

More generally, instead of considering representative databases, we rewrite q1 into
more and more specific queries. We are lead to consider a space of graphs (or queries)
partially ordered by inclusion, with greatest element q1 and least elements the “com-
plete” graphs, obtained from q1 by adding as many literals as possible. A brute-force
algorithm generates all complete graphs and check that there is a homomorphism from
q2 to each of them.

Roughly, Ullman’s scheme can be seen as generating all complete graphs from q1.
We should point out, however, that the first step in computing all partitions on q1 terms is
not necessary, i.e. the discrete partition is sufficient. The set of representative databases
generated from the discrete partition is the set of complete graphs. Although it is not
claimed in [Ull97], Ullman’s algorithm is in fact able to process queries with inequali-
ties (see section 2.4).

This framework being settled, we focus on two points. First, we search for cases
where the problem is simpler. We study special subgraphs of q2 that necessarily map to
q1 (theorem 2 and 3); q+

2 is a specific case. As a corollary, when the whole q2 satisfies
one of these conditions, the containment problem becomes equivalent to homomor-
phism checking, thus its time complexity falls into NP (property 8). From a practical
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viewpoint, these properties can be exploited in algorithms, including Wei and Lausen’s
algorithm. They can be used in a preprocessing phase (to limit the number of repre-
sentative databases or to conclude before entering the generation phase) or to guide the
construction of representative databases. Second, we propose an algorithm based on
exploration of the graph space. This algorithm is simple to describe and implement. Its
correctness is directly given by the exhibited properties (theorem 4) and its complexity
is analyzed (property 10). We compare this algorithm to Wei and Lausen’s algorithm,
which can be seen as exploring the same space of graphs but in a radically different
way. In particular, our algorithm requires a space polynomial in the size of the initial
queries (provided that the maximal arity of a relation is bounded by a constant), which
is not the case for Wei and Lausen’s algorithm.

The paper is organized as follows. The next section introduces the graph framework
and reformulates the query containment problem in terms of graph homomorphism. It
ends with a brute-force algorithm, whose complexity is compared to that of Ullman’s
scheme. Section 3 is devoted to necessary or sufficient conditions for containment. Sec-
tion 4 presents our algorithm based on space exploration and compares it to Wei and
Lausen’s algorithm.

2 Preliminary Considerations

We first recall basic definitions and results on databases. Then we introduce the graph
framework, which leads us to recast CQC as a conjunction of homomorphism tests. We
end with a brute-force algorithm, that we compare with Ullman’s scheme.

2.1 Basic Database Notions

A database schema S = (R, dom) includes a finite set of relations R and a countably
infinite set of constants dom. Each relation has an arity (not equal to zero) defining the
number of its arguments. A database instance D (or simply a database) over S maps
each k-ary relation ri of R to a finite subset of domk (denoted D(ri)). A conjunctive
query (with negation) is of form:

q = ans(u) ← r1(u1), ... rn(un),¬s1(v1), ... ¬sm(vm) n ≥ 0, m ≥ 0, n + m ≥ 1

where r1 ... rn, s1 ... sm are relations, ans is a special relation not belonging to R, u
and u1 ... un, v1 ... vm are tuples of terms (variables or constants of dom), and each
variable of u occurs at least once in the body of the rule. Without loss of generality, we
assume that the same literal does not appear twice in the body of the rule. A positive
query is a query without negative literals (m = 0, thus n ≥ 1). A query is safe if
each variable occurring in a negative literal also occurs in a positive one. A query is
inconsistent if it contains two opposite literals (i.e. ∃ i, j 1 ≤ i ≤ n, 1 ≤ j ≤ m such
that ri(ui) = sj(vj)), otherwise it is consistent.

Given a query q = ans(u) ← r1(u1), ... rn(un), ¬s1(v1), ... ¬sm(vm) and a
database D on S, q(D) denotes the set of answers to q in D; q(D) is the set of tuples
μ(u) where μ is a substitution of the variables in q by constants in dom such that for
any i in {1, ..., n}, μ(ui) ∈ D(ri) and for any j in {1, ..., m}, μ(vj) �∈ D(sj). We also
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call μ a substitution from q to D. When the arity of ans is 0, q(D) is the set {()} if there
is such a substitution μ, otherwise it is ∅. If q(D) is not empty, D is said to answer the
query.

A query q1 is said to be contained in a query q2, noted q1 � q2, if for any database D,
q1(D) ⊆ q2(D). The conjunctive query containment problem (CQC) takes as input two
conjunctive queries q1 and q2 and asks whether q1 � q2. When q1 and q2 are positive,
it can be reformulated as a query homomorphism problem, where a homomorphism is
defined as follows: a query homomorphism from q = ans(u) ← r1(u1), ... rn(un) to
q′ = ans(u′) ← r′1(u

′
1), ... r′n′ (u′

n′) is a substitution θ of the variables in q by terms
(variables or constants) in q′ such that θ(u) = u′ (thus u and u′ have the same size) and
for any i in {1, ..., n}, there is j in {1, ..., n′} such that θ(ri(ui)) = r′j(u

′
j). The query

homomorphism theorem proves that, given two positive queries q1 and q2, q1 � q2 iff
there is a query homomorphism from q2 to q1.

2.2 CQC and Homomorphism

As explained in the introduction, it is convenient to see a query as a bipartite labeled
graph, that we call a polarized graph (PG)2. The mappings between graph and database
notions used in this paper are immediate. To represent heads of queries, we use spe-
cial relations ansi for each possible arity i, possibly 0 (which corresponds to boolean
queries). Then the head of a query (say ans(t1...tk)) is mapped to a positive relation
node with label ansk and with i-th neighbor the node assigned to ti. We usually omit
ans0 in drawings (f.i. Figure 1: there is an implicit isolated relation node labeled ans0
in each graph). It is easily checked that a graph homomorphism from a graph repre-
senting a query to another is equivalent to a query homomorphism extended to negative
subgoals from the first query to the second (the above definition of a query homomor-
phism can be used without change if we consider that ri and r′j represent possibly
negated relation). That is why we use the same term homomorphism for both notions.
If there is a homomorphism from q2 to q1, we say that q2 can be mapped to q1. We will
keep the term literal and its notation p(u) or ¬p(u), where u is a sequence of terms, to
denote a subgraph induced by a relation node and its neighbors.

For positive conjunctive queries q1 and q2, q1 � q2 iff there is a homomorphism from
q2 to q1. For conjunctive queries with negation, one part of this property still holds:

Property 1. Given conjunctive queries q1 and q2, if there is a homomorphism from q2
to q1 then q1 � q2.

For the other direction, we assume that q1 and q2 are consistent. This assumption will
be made in the sequel of the paper. Even if q1 and q2 are consistent, we might have
q1 � q2 and no homomorphism from q2 to q1, as illustrated by Figures 1 and 2.

Definition 1. A consistent query (or a PG) q is complete w.r.t. a set of relations R, if
for each relation r in R with arity k, for each k-tuple of terms u in q, not necessarily
distinct, q contains r(u) or ¬r(u).

2 For space limitation reasons, we do not provide here precise definitions concerning PGs. These
graphs are a simplification of graphs used in a knowledge representation context, see [Ker01,
ML06].
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A complete query is obtained from a query q by repeatedly adding positive and negative
literals (on terms already present in q), as long as it does not yield a redundancy or an
inconsistency. CQC can be expressed as the conjunction of homomorphism checking
problems: one for each complete query generated from q1.

Property 2. Given two conjunctive queries q1 and q2 (with q1 being consistent), q1 � q2
iff for each complete query qc

1 generated from q1, there is a homomorphism from q2
to qc

1.

Note that q2 can be considered as a connected graph: indeed, if q2 is not connected, a
homomorphism from q2 to q1 is given by a set of homomorphisms from each connected
component of q2 to q1, and reciprocally.

2.3 A Brute Force Algorithm for CQC

Property 2 yields a brute force algorithm (cf. algorithm 1) for CQC.

Algorithm 1. Brute force CQC Check
Data: consistent queries q1 and q2

Result: true if q1 � q2, false otherwise
begin

Let B be the set of complete queries obtained from q1 w.r.t. R;
forall qc

1 ∈ B do
if there is no homomorphism from q2 to qc

1 then
// qc

1 is a counter-example
return false;

return true;
end

Property 3. The time complexity of Algorithm 1 is in O(2(n1)k×|R| × hom(q2, q
c
1)),

where n1 is the number of terms in q1, k is the maximum arity of a relation, R is the
set of considered relations and hom(q2, q

c
1) is the complexity of checking the existence

of a homomorphism from q2 to qc
1.

Its space complexity is in O(max(size(q2), size(q1), (n1)k × |R|)).

Homomorphism checking is NP-complete (but polynomial as soon as q2 has a tree-
like structure). A brute force algorithm solving this problem for q2 and qc

1 has a time
complexity in O(min(nv2

1 , rr2
1 )), where n1 is the number of term nodes in qc

1, v2 is the
number of variable nodes in q2, r1 and r2 are the number of literals in qc

1 and q2 resp.
For comparison with other algorithms, it should be noted that the space complexity of
Algorithm 1 is not exponential in the size of q1 or q2 but only in the maximum arity of a
relation inR. Indeed, as completions can be generated one by one, the space complexity
corresponds to the size of one qc

1.
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2.4 Relationships with Ullman’s Scheme

Ullman’s scheme involves the two following steps:

1. Consider all partitions of the variables in q1. Build a canonical database from each
partition as follows: first assign a distinct constant to each set of the partition, then
substitute in q1 each variable by the constant assigned to its set; let q′1 be the substi-
tuted query; the canonical database is composed of the positive literals of q′1 body.
We obtain D1 ... Dk canonical databases if k is the number of partitions. Eliminate
the Di which do not make the body of q1 true, (i.e. the body of q′1 is inconsistent).

2. For each remaining Di, test whether for each database D′i obtained from Di by
adding tuples on the same symbol set as Di, and without contradicting negative
subgoals of q1, it holds that q2(D′

i) includes the head of q′1. If all Di satisfy the test,
then q1 � q2, otherwise not.

This scheme can be reformulated as follows in our framework:

1. Build all consistent queries Di obtainable from q1 by merging some variables.
2. The test is satisfied iff q2 can be mapped to all complete queries obtainable from

these Di.

From property 2, it is clear that step 1 is useless. Indeed, there is a homomorphism
from q1 to each Di, 1 ≤ i ≤ k, q1 being identical to the Di obtained with the discrete
partition, say D1. For a given D′

i there is a D′
1 with a homomorphism from D′

1 to
D′

i induced by the partition on the variables in q1 yielding Di. It is thus sufficient to
test all D′

1, i.e. all complete queries obtainable from q1. This observation leads to an
important reduction in the number of tested databases/queries: if v is the number of
variables in q1, step 1 builds a number of databases Di exponential in v (from which
only consistent ones are kept) and each remaining Di leads in turn to an exponential
test (see Algorithm 1).

Step 1 would be necessary if the queries would contain inequalities as in [LS93].
However in [Ull97] and further papers dealing with queries without inequalities, it
seems that the uselessness of step 1 had not be noticed.

3 Necessary/Sufficient Conditions for Containment

This section studies conditions that are necessary or sufficient for containment. These
properties can be used as filtering properties leading to conclude before entering the
generation phase. They can also be used to reduce the number of graphs generated
either because they eliminate relations that are not needed in the completion or because
they guide the incremental generation of complete graphs (see the next section). Besides
their practical algorithmic interest, they also yield particular cases where the theoretical
complexity of CQC decreases.

3.1 Immediate Properties on Labels

Let us begin by considering the node labels. An immediate observation is that if a
constant or a relation label (that is a relation with a given polarity) in q2 does not appear
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in q1, then q1 �� q2. A second observation is that relations that do not appear in both q1
and q2 are not needed in the completion of q1. The next property takes the polarity of
their occurrences into account.

Property 4. If r is a relation that does not have both positive and negative occurrences
in q2, then r is not needed in the completion of q1 (i.e. q1 � q2 iff q2 can be mapped to
each completion of q1 built without considering r).

Proof. (⇐) If q2 can be mapped to each complete query without considering r then
q1 � q2. Indeed, let qc

1 be any complete query built from q1. Let q
c−{r}
1 be obtained

from qc
1 by removing all literals, occurrences of r, that do not belong to q1. There is a

natural homomorphism, say h1 from q
c−{r}
1 to qc

1. By hypothesis there is a homomor-

phism, say h, from q2 to q
c−{r}
1 . The composition of these homomorphisms h1 ◦ h is a

homomorphism from q2 to qc
1.

(⇒) Let q1 � q2. Assume that q
c−{r}
1 is a completion (without considering r) of q1

such that there is no homomorphism from q2 to q
c−{r}
1 . We show that this assumption

leads to contradict q1 � q2. If all the occurrences of r in q2 are positive (resp. negative),
let qc−

1 (resp. qc+
1 ) be the complete query obtained from q

c−{r}
1 by adding solely neg-

ative (resp. positive) literals with relation r. Since q1 � q2 there is a homomorphism
from q2 to qc−

1 (resp. qc+
1 ). This homomorphism necessarily maps all occurrences of

r in q2 into q1; more generally, no literal of q2 can be mapped to the added negative
(resp. positive) occurrences of r. h is thus a homomorphism from q2 to q

c−{r}
1 , which

contradicts the hypothesis. ��
As a corollary to the previous properties, we obtain:

Theorem 1. q1 � q2 iff q2 can be mapped to each completion of q1 w.r.t. relations
occurring in both positive and negative forms in q1 and q2.

Let us consider the queries in example 3: as ¬s does not appear in q1, it can be imme-
diately concluded that q1 �� q2. Would ¬s(w, w) not exist in q2, as r does not appear
positively and negatively both in q1 and q2, no relation can be used for completion, thus
there is also immediate failure.

3.2 Special Subgraphs

As we have seen, a homomorphism from q2 to q1 is a sufficient but not necessary
condition for containment. The objective here is to identify parts - or subgraphs - of
q2 (i.e. conjunctions of literals appearing in q2) for which there must be a homomor-
phism to q1. Moreover, such a homomorphism from a subgraph of q2 to q1 has to be
potentially extensible to a homomorphism from the entire q2 to a completion of q1.
We call it a compatible homomorphism. See Figure 3: there are three homomorphisms
from q−2 to q1: h1 = {x → t, y → u, z → w}, h2 = {x → t, y → w, z → v},
h3 = {x → u, y → w, z → v}. To check the compatibility, we have to consider s(y, x)
and r(x, z). h1 is not compatible because it leads to map r(x, z) to ¬r(t, w).

Definition 2 (compatible homomorphism). Given two queries q2 and q1, and q′2 any
subgraph of q2 defining a well-formed PG (i.e. q′2 is any conjunction of literals appear-
ing in q2), a homomorphism h from q′2 to q1 is said to be compatible (w.r.t. q2) if for
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q2 = ans() ← s(y, x) ∧ r(x, z) ∧ ¬r(x, y) ∧ ¬r(y, z)
q1 = ans() ← s(u, t) ∧ r(t, v) ∧ s(w, u) ∧ ¬r(u, w) ∧ ¬r(t, u) ∧ ¬r(w, v) ∧ ¬r(t,w)

Fig. 3. Pure subgraphs of q2 (q1 � q2)

each literal of q2 that does not appear in q′2 but has all its terms in q′2, say t1...tk,
there is no literal with the same relation and the opposite polarity on h(t1)...h(tk)
in q1.

Given a query q, the positive subgraph of q, denoted by q+ is the subgraph obtained
from q by selecting only the positive literals of q. The negative subgraph q− of q is the
dual notion, that is the subgraph obtained from q by selecting only the negative literals
of q. See q+

2 and q−2 in Figure 3. The next property is the same as theorem 1 in [WL03]
reformulated and proven in the graph framework, except that we extend the definition
of q+ to non-safe queries. Note that, when q is a safe query, q+ contains all term nodes
of q.

Property 5. [WL03] If there is no compatible homomorphism from q+
2 to q1 (or equiv-

alently to q+
1 ), then q1 �� q2.

Proof. Let qc−
1 be the negative completion of q1. If q1 � q2 then there is a homomorphism

h from q2 to qc−
1 , which necessarily maps q+

2 to q+
1 . Let li = ¬r(t1...tk) be any negative

literal of q2. Since h is a homomorphism, qc−
1 contains a literal ¬r(h(t1)...h(tk)). As q1

is consistent, it cannot contain a literal r(h(t1)...h(tk)). We conclude that h with domain
restricted to q+

2 is a compatible homomorphism to q1. ��
A similar property is obtained by considering q−2 instead of q+

2 .

Property 6. If there is no compatible homomorphism from q−2 to q1 (or equivalently to
q−1 ), then q1 �� q2.

Proof. Consider qc+
1 the positive completion of q1 instead of qc−

1 . ��

Both q+
2 and q−2 notions can be generalized in the following way.



414 M. Leclère and M.-L. Mugnier

Definition 3 (qmax
2 pure subgraph). A pure subgraph of q2 is a subgraph that does

not contain opposite occurrences of the same relation. We note qmax
2 a pure subgraph

of q2 that is maximal for inclusion.

Observe that a qmax
2 is obtained from q2 by selecting, for each relation appearing in q2,

either all its positive occurrences or all its negative occurrences. See Figure 3: q2 has
two pure subgraphs maximal for inclusion; q+

2 and qM
2 . q+

2 (resp. q−2 ) is the particular
case where positive (resp. negative) occurrences are chosen for all relations; but it is
not necessarily maximal for inclusion as a relation may appear only negatively (res.
positively). The ansi relation is a particular case of such relation.

Theorem 2. If there is a qmax
2 that cannot be mapped by a compatible homomorphism

to q1, then q1 �� q2.

Proof. Consider q−max
1 as the completion of q1 built as follows: for each relation r,

if r occurs positively (resp. negatively) in qmax
2 then complete q1 with negative (resp.

positive) occurrences of r. If qmax
2 cannot be mapped to q1 by a compatible homomor-

phism, then it cannot be mapped by a compatible homomorphism to q−max
1 (since by

construction no literal of qmax
2 can be mapped to an added literal). Since q2 cannot be

mapped to q−max
1 , q−max

1 is a counter-example to the property q1 � q2. ��
This theorem can be slightly extended by taking into account the occurrences of terms
in the literals.

Definition 4. Two literals are said to be dependant if (1) they have an opposite polarity,
(2) they have the same relation and (3) their atoms are unifiable after a renaming of
their common variables. Otherwise they are said to be independant.

Two atoms are not unifiable after a renaming of their common variables if their uni-
fication would lead to unify different constants. For instance, let a and b be distinct
constants; r(x, a) and ¬r(y, b) are independant literals; p(x, x, a) and ¬p(b, y, y) are
independant literals as well, whereas r(x, a) and ¬r(b, y) are dependant literals.

Definition 5. An independant subgraph of a query q2 is a subgraph of q2 composed of
pairwise independant literals.

More generally, let us say that two literals are “exchangeable” if they can have the same
list of images for their arguments by homomorphisms to (necessarily distinct) comple-
tions of q1. F.i. given the distinct constants a and b, the literals r(x, a) and ¬r(b, y)
are dependant but, if q1 contains r(a, b), they are not exchangeable. Independant sub-
graphs, and a fortiori pure subgraphs, are only particular cases of subgraphs without
exchangeable literals; the general notion of “exchangeability” remains to be studied.
Exchangeable literals are responsible for the problem complexity, as shown by the next
property.

Property 7. If q1 � q2, then there is a compatible homomorphism from every subgraph
of q2 composed of pairwise non-exchangeable literals to q1.
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Sketch of proof. Consider such a subgraph q′ of q2. Let qc+
1 be the completion of q1

with solely positive literals. If there is no homomorphism from q′ to q1, then for each
homomorphism from q′ to qc+

1 , there is at least one added literal, say p(u), such that a
literal p(v) in q′ is mapped to p(u). Let us replace all such p(u) by¬p(u). Let qc′

1 be the
graph obtained. Let h be a homomorphism from q′ to qc′

1 (there is such a homomorphism
since q1 � q2). h maps a literal ¬p(w) in q′ to a literal ¬p(u), otherwise there would be
a homomorphism from q′ to q1. By construction, there is a literal p(v) mapped to p(u)
by a homomorphism from q′ to qc+

1 , thus p(v) and ¬p(w) are exchangeable literals. ��
The following extension to the theorem 2 is a corollary of property 7.

Theorem 3. [Extension to the theorem 2] If there is an independant subgraph of q2
that cannot be mapped by a compatible homomorphism to q1, then q1 �� q2.

We thus obtain a case for which CQC has the same complexity as homomorphism
checking:

Property 8. If q2 is an independant subgraph, then q1 � q2 iff there is a homomorphism
from q2 to q1.

3.3 Filtering Implementation

Let us end this section with an implementation of some filtering properties (algorithm
2 that will be used next section).

Algorithm 2. Filtering
Data: consistent queries q1 and q2

Result: true, false or undetermined; if true then q1 � q2; if false then q1 �� q2

begin
Test 1 if there is a label (r) or (¬r) or a constant occurring in q2 but not in q1 then

return false

Test 2 if there is a homomorphism from q2 to q1 then
return true

Test 3 Let qMax
2 be an independant subgraph of q2 with maximum cardinality;

if there is no compatible homomorphism from qMax
2 to q1 then

return false
return undetermined;

end

Roughly, Test 1 is in O(rlog2(r)) where r is the maximum number of relations in
q1 or q2. Test 2 and Test 3 perform a homomorphism check. For Test 3, choosing a
subgraph with maximum size is an obvious choice but there may be other criteria f.i.
based on the structure of the obtained subgraph. Alternatively, one can choose to check
several or all independant subgraphs instead of one.
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4 Space Exploration Algorithm

The space of queries “leading” from q1 to its completions is structured in a sup-semi-
lattice by graph inclusion (given two queries q1 and q2 in this space, q1 ≤ q2 if q2 is a
subgraph of q1). The question “is there a homomorphism from q2 to each qc

1 (comple-
tion of q1)” can be reformulated as follows “is there a covering set, that is a subset of
incomparable queries of this space {q1, ..., qk} such that (1) there is a homomorphism
from q2 to each qi ; (2) for each qc

1 there is a qi with qc
1 ≤ qi.

The brute-force algorithm (Algorithm 1) takes the set of all completions of q1 as cov-
ering set. The next algorithm (Algorithm 3 and recursive search Algorithm 4) searches
the space in a top-down way starting from q1 and tries to build a covering set with par-
tial completions of q1. Case-based reasoning is applied at each step: for a given relation
r with arity k and a tuple (t1...tk) such that neither r(t1...tk) nor ¬r(t1...tk) is present
in the current partial completion, two queries are generated according to each case. The
algorithm is justified by the following property:

Theorem 4. q1 � q2 if and only if:
1. There is a homomorphism h from q2 to q1 or
2. q′ � q2 and q′′ � q2 where q′ (resp. q′′) is obtained from q1 by adding the positive
literal r(t1...tk) (resp. the negative literal ¬r(t1...tk)) where r is a relation of arity k
occurring in q2 (both in positive and negative forms) and t1...tk are terms of q1 such
that neither the literal r(t1...tk) nor the literal ¬r(t1...tk) is already present in q1.

Proof (sketch). (⇒) By recurrence on the number of literals to add to q1 to obtain a
complete query. (⇐) Condition 1 corresponds to property 1. For condition 2, see that
{q′, q′′} is a covering set. ��
Subalgorithm 4 is supposed to have direct access to data available in the main algo-
rithm 3. The choice of r and t1...tk, in Algorithm 4, can be guided by a compatible
homomorphism from an independant graph.

Algorithm 3. Check by space exploration
Data: Consistent queries q1 and q2

Result: true if q1 � q2, false otherwise
begin

Result ← Filtering(); // See Algorithm 2
if (Result �= undetermined) then

return Result
Let R+− be the set of relation names occurring in both negative and positive forms in
q2;
return RecCheck(q1); // See Algorithm 4

end

The following property ensures that Algorithm 4 does not generate the same query
several times, which is a crucial point for complexity. Otherwise the algorithm could be
worse than the brute-force algorithm in the worse-case.
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Algorithm 4. RecCheck(q)

Data: Consistent query q Access: q2, R+−

Result: true if q � q2, false otherwise
begin

if there is a homomorphism from q2 to q then
return true

if q is complete w.r.t. R+− then
return false

/* Test 3 of filtering can be reused in each call */
(r, t1...tk) ← ChooseLiteralsToAdd(q);
/* r is a relation of R+− and t1...tk are terms of q */
Let q′ be obtained from q by adding the literal r(t1...tk);
Let q′′ be obtained from q by adding the literal ¬r(t1...tk);
return (RecCheck(q′) AND RecCheck(q′′))

end

Property 9. The subspace explored by Algorithm 4 is a (binary) tree.

Indeed, at each recursive call, {q′, q′′} is a covering set inducing a bipartition of the
covered space: each query in this space is below exactly one of these two queries.

Property 10. Algorithm 3 has the same time and space complexity as Algorithm 1.

Proof. Property 9 ensures that the number of queries generated is at most twice the
number of completions of q1 (in the worse case, the complete queries are the leaves of
the generated tree of queries). Checking whether a query is complete can be done in
constant time if the number of literals in the query is incrementally maintained. Thus
time complexity is the same as Algorithm 1. For space complexity, see that the tree is
explored in a depth-first way. ��
Wei and Lausen’s algorithm is based on the following theorem (theorem 2 of their
paper reformulated in graph terms; moreover, in (1) “compatible” has been added, as
well as step (2.1) to prevent inconsistent queries to be built3). This theorem considers
safe queries (otherwise h could be undefined on some variables in q2).

Theorem 5. [WL03] With q1 and q2 being safe queries, q1 � q2 if and only if:
1. There is a compatible homomorphism h from q+

2 to q+
1 , such that:

2. for each negative literal li = ¬r(t1...tk) in q2, (2.1) either h can be extended to
include li or (2.2) q′i � q2 holds, where q′i is obtained from q1 by adding the positive
literal r(h(t1) ... h(tk)).

Note that if each negative literal li can be included in h then h is a homomorphism
from q2 in q1. An important point is that this theorem induces a radically different way
of searching the space than that of Algorithm 3. Indeed, whereas Algorithm 3 develops
a tree, condition (2) leads to build a covering set that does not partition the space. An
algorithm applying this property directly is thus likely to explore the same subspaces
several times.

3 Indeed, the theorem does not apply to inconsistent queries. If q1 is inconsistent, it is by
definition included in any q2, but there might be no homomorphism from q+

2 to q+
1 .
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The algorithm proposed by Wei and Lausen (in the appendix of their paper) sketchily
proceeds as follows. First, all homomorphisms from q+

2 to q+
1 are generated. Then for

each compatible homomorphism, say h, and for each negative literal that cannot be
mapped by extending h, a new query to test is generated from q1 by adding a positive
literal according to the previous theorem. This algorithm can be seen as developing a
and/or tree: a homomorphism h leads to success if all queries q′i directly generated from
it lead to containment; a query q′i leads to containment if there is a homomorphism from
q′+i leading to success. The and/or tree is traversed in a breadth-first manner.

This algorithm has a space complexity exponential in the size of the initial queries, at
least because all homomorphisms from q+

2 to q+
1 are first generated and the and/or tree

is traversed in a breadth-first manner. Concerning time complexity, the key question is
whether the same query can be generated several times. The notion of “new” mapping is
mentioned in the algorithm (when the homomorphisms from q+

2 to q+
1 are enumerated,

only new mappings are retained) but without detail about how a “new” mapping is
recognized. A priori one has to store all already generated mappings to recognize a new
one. If so, the space complexity would be exponential in the size of q2 even with the
assumption that homomorphisms are generated one by one and the tree is traversed in a
depth-first way. To summarize, the algorithm we propose in this paper (see Algorithms
3 and 4) has the following qualities compared to Wei and Lausen’s algorithm:

– it is not restricted to safe queries;
– the space exploration is based on special subgraphs, which generalize the q+

2 notion
(and could be used instead of it in condition 1 of Wei and Lausen’s theorem);

– it is polynomial in space (if the arity of relations is bound by a constant);
– it is simple to describe and implement.

Acknowledgments. We specially thank a referee for his/her valuable comments.
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