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Abstract. This contribution provides a comprehensive overview on the
theoretical framework of aggregating fuzzy relations under the premise
of preserving underlying transitivity conditions. As such it discusses the
related property of dominance of aggregation operators. After a thorough
introduction of all necessary and basic properties of aggregation opera-
tors, in particular dominance, the close relationship between aggregating
fuzzy relations and dominance is shown. Further, principles of building
dominating aggregation operators as well as classes of aggregation oper-
ators dominating one of the basic t-norms are addressed. In the paper
by Bodenhofer, Küng and Saminger, also in this volume, the interested
reader finds an elaborated (real world) example, i.e., an application of
the herein contained theoretical framework.

1 Introduction

Flexible (fuzzy) querying systems are designed not just to give results that match
a query exactly, but to give a list of possible answers ranked by their closeness to
the query—which is particularly beneficial if no record in the database matches
the query in an exact way (see [11, 12, 28, 29] for overviews and [7, 8, 9, 10] for
particular related examples). The closeness of a single value of a record to the
respective value in the query is usually measured by a fuzzy equivalence relation,
that is, a reflexive, symmetric, and T -transitive fuzzy relation. Recently, a gen-
eralization has been proposed [7,8,9] which also allows flexible interpretation of
ordinal queries (such as “at least” and “at most”) by using fuzzy orderings [5].
In any case, if a query consists of at least two expressions that are to be inter-
preted vaguely, it is necessary to combine the degrees of matching with respect
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to the different fields in order to obtain an overall degree of matching — a typical
example of an aggregation task. More precisely, assume that we have a query
(q1, . . . , qn), where each qi ∈ Xi is a value referring to the i-th field of the query.
Given a data record (x1, . . . , xn) such that xi ∈ Xi for all i = 1, . . . , n, the overall
degree of matching is computed as

R̃
(
(q1, . . . , qn), (x1, . . . , xn)

)
= A

(
R1(q1, x1), . . . , Rn(qn, xn)

)
,

where every Ri is a T -transitive binary fuzzy relation on Xi which measures the
degree to which the value xi matches the query value qi.

It is natural to require that R̃ is fuzzy relation on the Cartesian product of all
Xi and, therefore, that the range of the operation A should be the unit interval,
i.e., A : [0, 1]n → [0, 1]. Furthermore, it is desirable that if a data record matches
one of the criteria of the query better than a second one, then the overall degree of
matching for the first should be higher or at least the same as the overall degree
of matching for second one. Clearly, if some data record matches all criteria,
i.e., all Ri(xi, qi) = 1, then the overall degree of matching should also be 1. On
the other hand, if a data record fulfills none of the criteria to any level, i.e., all
Ri(xi, qi) = 0, then the overall degree should vanish to 0. Aggregation operators
are exactly such functions which guarantee all these properties [13, 14, 15, 21].

In addition, it would be desirable that, if all relations Ri on Xi are T -
transitive, also R̃ is still T -transitive in order to have a clear interpretation of
the aggregated fuzzy relation R̃. It is, therefore, necessary to investigate which
aggregation operators are particularly able to guarantee that R̃ maintains T -
transitivity.

This contribution provides an overview on results on the aggregation of fuzzy
relations and the related property of dominance of aggregation operators which
have been achieved by collaboration among different research groups within the
EU COST Action TARSKI. The present part focusses on the theoretical back-
ground, as such provides a comprehensive overview of the theory of aggregation
operators dominating triangular norms as well as depends on results already
published in [27,30,32]. In addition, in [10], the interested reader finds an elabo-
rated (real world) example, i.e., an application of the herein contained theoretical
framework. Next, we provide a thorough introduction of all necessary and basic
properties of aggregation operators, in particular dominance. Then we turn to
the close relationship between the aggregation of fuzzy relations and dominance.
In Section IV, we discuss principles of building dominating aggregation opera-
tors and focus in Section V on the class of aggregation operators dominating one
of the basic t-norms.

2 Basic Definitions and Preliminaries

In order to be self-contained and to provide a compact overview we provide
basic definitions and results about aggregation operators and dominance. For
more details on aggregation operators as well as t-norms we refer the interested
reader to [2, 14, 21].
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2.1 Aggregation Operators

Definition 1. [14] An aggregation operator is a function A :
⋃

n∈N
[0, 1]n →

[0, 1] which fulfills the following properties:
(AO1) A(x1, . . . , xn) ≤ A(y1, . . . , yn) whenever xi ≤ yi for all i ∈ {1, . . . , n},
(AO2) A(x) = x for all x ∈ [0, 1],
(AO3) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Each aggregation operator A can be represented by a family (A(n))n∈N of n-ary
operations, i.e., functions A(n) : [0, 1]n → [0, 1] given by

A(n)(x1, . . . , xn) = A(x1, . . . , xn)

being non-decreasing and fulfilling A(n)(0, . . . , 0) = 0 and A(n)(1, . . . , 1) = 1.
Such operations A(n) are referred to as n-ary aggregation operators. Note also
that in such a case A(1) = id[0,1]. Usually, the aggregation operator A and
the corresponding family (A(n))n∈N of n-ary operations are identified with each
other.

Unless explicitly mentioned otherwise, we will restrict to aggregation opera-
tors acting on the unit interval (according to Definition 1). With only simple and
obvious modifications, aggregation operators can be defined to act on any closed
interval I = [a, b] ⊆ [−∞, ∞]. Consequently, we will speak of an aggregation
operator acting on I.

Particularly, such operators can be constructed by rescaling the input and
output data, and as such creating isomorphic aggregation operators.

Consider an aggregation operator A :
⋃

n∈N
[a, b]n → [a, b] on [a, b] and a

monotone bijection ϕ : [c, d] → [a, b]. The operator Aϕ :
⋃

n∈N
[c, d]n → [c, d]

defined by
Aϕ(x1, . . . , xn) = ϕ−1(A(ϕ(x1), . . . , ϕ(xn))

)

is an aggregation operator on [c, d], which is isomorphic to A.
A particularly important transformation is duality induced by ϕd : [0, 1] →

[0, 1], ϕd(x) = 1 − x. Applying this transformation to an aggregation operator
A on the unit interval leads to the so-called dual aggregation operator Ad.

Couples of dual aggregation operators are, e.g., the minimum and the max-
imum. The arithmetic mean is dual to itself. Such aggregation operators, i.e.,
A = Ad, are called self-dual (compare also [38] where these operators are called
symmetric sums).

Let us now briefly summarize further properties of aggregation operators.

Definition 2. Consider some aggregation operator A :
⋃

n∈N

[0, 1]n → [0, 1].

(i) A is called symmetric, if for all n ∈ N and for all x1, . . . , xn ∈ [0, 1]:

A(x1, . . . , xn) = A(xα(1), . . . , xα(n))

for all permutations α = (α(1), . . . , α(n)) of {1, . . . , n}.
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(ii) A is called associative if for all n, m ∈ N and for all x1, . . . , xn, y1, . . . , ym ∈
[0, 1]:

A(x1, . . . , xn, y1, . . . , ym) = A(A(x1, . . . , xn),A(y1, . . . , ym)).

(iii) An element e ∈ [0, 1] is called a neutral element of A if for all n ∈ N and
for all x1, . . . , xn ∈ [0, 1]:

A(x1, . . . , xn) = A(x1, . . . , xi−1, xi+1, . . . , xn)

whenever xi = e for some i ∈ {1, . . . , n}.
(iv) A is subadditive on [0, 1], if the following inequality holds for all xi, yi ∈

[0, 1] with xi + yi ∈ [0, 1]:

A(x1 + y1, . . . , xn + yn) ≤ A(x1, . . . , xn) + A(y1, . . . , yn).

Observe that, for a given aggregation operator A, the operators A(n) and A(m)
need not be related in general, if n �= m. However, if A is an associative aggre-
gation operator, all n-ary operators A(n), n ≥ 3, can be identified with recursive
extensions of the binary operator A(2). Therefore, in case of associative aggre-
gation operators, the distinction between A(2) and A itself is often omitted.

Example 1. A typical example of a symmetric, but non-associative aggregation
operator without neutral element is the arithmetic mean M :

⋃
n∈N

[a, b]n →
[a, b] defined for any interval [a, b] ⊆ [−∞, ∞] by

M(x1, . . . , xn) =
1
n

n∑

i=1

xi.

If for some practical purposes some of the properties of the arithmetic mean do
not fit the demands of the aggregation process the arithmetic mean is usually
modified with respect to the violated property but by preserving as many as
possible other properties of the original aggregation operator. Three different
approaches can be mentioned — introduction of weights, ordering of the inputs
and transformation of the aggregation operator.

We briefly summarize the formal definitions of weighted means, (weighted)
quasi-arithmetic means and OWA operators (see also, e.g., [14,40]). Recall that
for a fixed n ∈ N, weighting vectors −→w = (w1, . . . , wn) are characterized by
fulfilling −→w ∈ [0, 1]n and

∑n
i=1 wi = 1.

Definition 3. For a continuous strictly monotone function f : [a, b] → [−∞, ∞],
the quasi-arithmetic mean Mf :

⋃
n∈N

[a, b]n → [a, b] is given by

Mf (x1, . . . , xn) = f−1( 1
n

n∑

i=1

f(xi)).

Consider for arbitrary n ∈ N, a weighting vector −→w . Then the weighted mean
W : [a, b]n → [a, b] is given by

W(x1, . . . , xn) =
n∑

i=1

wixi
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and the weighted quasi-arithmetic mean Wf :
⋃

n∈N
[a, b]n → [a, b] by

Wf (x1, . . . , xn) = f−1(
n∑

i=1

wif(xi)).

with f : [a, b] → [−∞, ∞] again some continuous strictly monotone function. An
OWA operator W′ :

⋃
n∈N

[a, b]n → [a, b] is characterized by

W′(x1, . . . , xn) =
n∑

i=1

wix
′
i

where x′
i denotes the i-th order statistics from the sample (x1, . . . , xn) and wi

the corresponding weights.

2.2 Triangular Norms

Triangular norms can be interpreted as a particular class of aggregation operators
which were originally introduced in the context of probabilistic metric spaces [25,
35, 36]. We just briefly state the formal definitions and introduce the four basic
t-norms. For further details and properties about t-norms we refer to [22,23,24]
or to the monographs [2, 21].

Definition 4. A triangular norm (t-norm for short) is a binary operation T
on the unit interval which is commutative, associative, non-decreasing in each
component, and has 1 as a neutral element.

Example 2. The following are the four basic t-norms:

Minimum: TM(x, y) = min(x, y),
Product: TP(x, y) = x · y,

�Lukasiewicz t-norm: TL(x, y) = max(x + y − 1, 0),

Drastic product: TD(x, y) =

{
0 if (x, y) ∈ [0, 1[2 ,

min(x, y) otherwise.

Several construction principles are known for t-norms. Here we just mention
the concept of ordinal sums which allow to define t-norms by a particular be-
haviour on subdomains and, moreover, gave rise for a construction principle for
aggregation operators.

Definition 5. Let (Ti)i∈I be a family of t-norms and let (]ai, ei[)i∈I be a family
of non-empty, pairwise disjoint open subintervals of [0, 1]. Then the following
function T : [0, 1]2 → [0, 1] is a t-norm [21]:

T (x, y) =

{
T ∗

i (x, y) = ai + (ei − ai) · T ( x−ai

ei−ai
, y−ai

ei−ai
), if (x, y) ∈ [ai, ei]

2
,

min(x, y), otherwise.

The t-norm T is called the ordinal sum of the summands 〈ai, ei, Ti〉, i ∈ I, and
we shall write T = (〈ai, ei, Ti〉)i∈I .
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Corresponding to t-norms, aggregation operators can also be constructed from
several aggregation operators acting on non-overlapping domains. We will use the
lower ordinal sum of aggregation operators [14,26]. Observe that this ordinal sum
was originally proposed only for finitely many summands, however, we generalize
this concept to an arbitrary (countable) number of summands.

Definition 6. Consider a family of aggregation operators
(
Ai :

⋃

n∈N

[ai, ei]
n → [ai, ei]

)
i∈{1,...,k}

acting on non-overlapping domains [ai, ei] with i ∈ {1, . . . , k} and

0 ≤ a1 < e1 ≤ a2 < e2 ≤ . . . ≤ ek ≤ 1.

The aggregation operator A(w) defined by [14]

A(w)(x1, . . . , xn) =

⎧
⎪⎨

⎪⎩

0, if u < a1,

Ai

(
min(x1, ei), . . . , min(xn, ei)

)
, if ai ≤ u < ai+1,

1, if u = 1.

with u = min(x1, . . . , xn) is called the lower ordinal sum (of aggregation opera-
tors Ai) and it is the weakest aggregation operator (with respect to the standard
ordering of n-ary functions) that coincides with Ai at inputs from [ai, ei].

If (Ai)i∈I is a family of aggregation operators on [0, 1] and (]ai, ei[)i∈I a (count-
able) family of non-empty, pairwise disjoint open subintervals of [0, 1], then the
lower ordinal sum of this family A(w) = (〈ai, ei,Ai〉)i∈I can be constructed in
the following way:

A(w)(x1, . . . , xn) =

⎧
⎪⎨

⎪⎩

supi∈I{A∗
i

(
min(x1, ei), . . . , min(xn, ei)

)
| ai ≤ u},

if u < 1,

1, otherwise,

with sup ∅ = 0 and u = min(x1, . . . , xn). A∗
i denotes the aggregation operator

Ai, scaled for acting on [ai, ei] by

A∗
i (x1, . . . , xn) = ai + (ei − ai) · Ai

(
x1−ai

ei−ai
, . . . , xn−ai

ei−ai

)
.

2.3 Transitivity and Preservation of Transitivity

We have already mentioned that binary fuzzy relations Ri on the subspaces Xi

can be used for the comparison of two objects on the subspaces’ level. For details
on fuzzy relations, especially fuzzy equivalence relations we recommend [3, 16,
17, 19, 42] and for fuzzy orderings [4, 5, 6, 20, 42]. We only recall the definition of
T -transitivity, since we are interested in its preservation during the aggregation
process.
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Definition 7. Consider a binary fuzzy relation R on some universe X and an
arbitrary t-norm T . R is called T -transitive if and only if, for all x, y, z ∈ X the
following property holds

T
(
R(x, y), R(y, z)

)
≤ R(x, z).

Definition 8. An aggregation operator A preserves T -transitivity if, for all n ∈
N and for all binary T -transitive fuzzy relations Ri on Xi with i ∈ {1, . . . , n},
the aggregated relation R̃ = A(R1, . . . , Rn) on the Cartesian product of all Xi,
i.e.,

R̃(A, B) = R̃((a1, . . . , an), (b1, . . . , bn)) = A
(
R1(a1, b1), . . . , Rn(an, bn)

)
,

is also T -transitive, that means, for all A, B, C ∈
n∏

i=1
Xi,

T
(
R̃(A, B), R̃(B, C)

)
≤ R̃(A, C).

Without loss of generality, we will restrict our considerations to fuzzy relations
on the same universe Xi = X .

2.4 Dominance — Basic Notions and Properties

Similar to t-norms, the concept of dominance has been introduced in the frame-
work of probabilistic metric spaces [37,39] when constructing the Cartesian prod-
ucts of such spaces. In the framework of t-norms, dominance is also needed when
constructing T -equivalence relations and fuzzy orderings [4, 6, 16, 17] on some
Cartesian product.

Definition 9. Consider two t-norms T1 and T2. We say that T1 dominates T2
if for all x, y, u, v ∈ [0, 1] the following inequality holds

T2(T1(x, y), T1(u, v)) ≤ T1(T2(x, u), T2(y, v)).

It can be easily verified (see also, e.g., [21]) that for any t-norm T , it holds that
T itself and TM dominate T . Furthermore, for any two t-norms T1, T2, T1 � T2
implies T1 ≥ T2 and, therefore, we know that TD � T if and only if T = TD and
T � TM if and only if T = TM, since TD is the weakest and TM the strongest
t-norm.

We have already mentioned before that t-norms can be interpreted as partic-
ular aggregation operators. Therefore, we extend the concept of dominance to
the framework of aggregation operators [32].

Definition 10. Consider an n-ary aggregation operator A(n) and an m-ary ag-
gregation operator B(m). We say that A(n) dominates B(m), A(n) � B(m), if,
for all xi,j ∈ [0, 1] with i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, the following property
holds

B(m)
(
A(n)(x1,1, . . . , x1,n), . . . ,A(n)(xm,1, . . . , xm,n)

)

≤ A(n)
(
B(m)(x1,1, . . . , xm,1), . . . ,B(m)(x1,n, . . . , xm,n)

)
. (1)
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Note that if either n or m or both are equal to 1, because of the boundary
condition (AO2), A(n) � B(m) is trivially fulfilled for any two aggregation
operators A,B.

Definition 11. Let A and B be aggregation operators. We say that A domi-
nates B, A � B, if A(n) dominates B(m) for all n, m ∈ N.

Note that, if two aggregation operators A and B are both acting on some closed
interval I = [a, b] ⊆ [−∞, ∞], then the property of dominance can be easily
adapted by requiring that (1) must hold for all arguments xi,j ∈ I and for all
n, m ∈ N. Further note that the concept of dominance relates to the fact that
aggregation operators are operators on posets. Therefore, dominance can and
has been introduced for arbitrary operations on posets (see, e.g., [37]).

Due to the monotonicity of aggregation operators, the minimum TM domi-
nates not only all t-norms, but also any aggregation operator A,

A(min(x1, y1), . . . , min(xn, yn)) ≤ min(A(x1, . . . , xn),A(y1, . . . , yn)).

however, as will be shown later, not all aggregation operators dominate TD. Sim-
ilarly, not all aggregation operators dominate the weakest aggregation operator

Aw(x1, . . . , xn) =

{
1, if x1 = . . . = xn = 1,

0. otherwise.

Further on, we will denote the class of all aggregation operators A which
dominate an aggregation operator B by

DB = {A | A � B}.

Since t-norms are special kinds of associative aggregation operators, the follow-
ing proposition will be helpful for considering the dominance of an aggregation
operator over a t-norm T .

Proposition 1. [32] Let A,B be two aggregation operators. Then the following
holds:

(i) If B is associative and A(n) � B(2) for all n ∈ N, then A � B.
(ii) If A is associative and A(2) � B(m) for all m ∈ N, then A � B.

Consequently, if two aggregation operators A and B are both associative, as it
would be in the case of two t-norms, it is sufficient to show that A(2) � B(2)
for proving that A � B.

In case of a common neutral element, the property of dominance induces the
order of the involved aggregation operators.

Lemma 1. [30] Consider two aggregation operators A, B with a common neu-
tral element e ∈ [0, 1]. If A dominates B, i.e., A � B, then A ≥ B.
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As a consequence, it is clear that dominance is a reflexive and antisymmetric
relation on the set of all t-norms, but it is not transitive as could be shown
in [34] (for a counter example see also [33]). Note that transitivity of dominance
in the framework of aggregation operators does not hold in general, since, e.g.,
Aw � TM and TM � M but Aw does not dominate M (see also [30]).

Further note, that the property of selfdominance of an aggregation operator,
i.e., A � A, is nothing else than the property of bisymmetry in the sense of
Aczél [1], i.e., for all n, m ∈ N and all xi,j ∈ [0, 1] with i ∈ {1, . . . , m} and
j ∈ {1, . . . , n}

A(m)
(
A(n)(x1,1, . . . , x1,n), . . . ,A(n)(xm,1, . . . , xm,n)

)

= A(n)
(
A(m)(x1,1, . . . , xm,1), . . . ,A(m)(x1,n, . . . , xm,n)

)
.

Another interesting aspect is the invariance of dominance with respect to
transformations.
Proposition 2. [32] Consider two aggregation operators A and B on [a, b].

(i) A � B if and only if Aϕ � Bϕ for all strictly increasing bijections
ϕ : [c, d] → [a, b] .

(ii) A � B if and only if Bϕ � Aϕ for all strictly decreasing bijections
ϕ : [c, d] → [a, b] .

3 T -Transitivity and Dominance

Standard aggregation of fuzzy equivalence relations and fuzzy orderings preserv-
ing the T -transitivity has been done either by means of T itself or TM, but
in fact, any t-norm T̃ dominating T can be applied, i.e., if R1, R2 are two T -
transitive binary relations on a universe X and T̃ � T , then also T̃ (R1, R2) is
T -transitive [4, 6, 16].

As already mentioned above, in several applications, other types of aggrega-
tion processes preserving T -transitivity are required [8, 10] Especially the intro-
duction of different weights (degrees of importance) for input fuzzy equivalences
and orderings cannot be properly done by aggregation with t-norms, because
of the commutativity. Therefore, we investigated aggregation operators preserv-
ing the T -transitivity of the aggregated fuzzy relations. The following theorem
generalizes the result known for triangular norms [16].

Theorem 1. [32] Let |X | ≥ 3 and let T be an arbitrary t-norm. An aggregation
operator A preserves the T -transitivity of fuzzy relations on X if and only if
A ∈ DT .

4 Construction of Dominating Aggregation Operators

Since we have shown the close relationship between the preservation of T -
transitivity and the dominance of the involved aggregation operator A over
T , we are interested in the characterization of DT for some t-norm T . Particu-
larly, we are interested in the introduction of weights, respectively determining
operations by its behaviour on subdomains.
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4.1 Generated and Weighted T-Norms

Before turning to aggregation operators dominating a continuous, Archimedean
t-norm T , recall that they are characterized by having a continuous additive
generator, i.e., a continuous, strictly decreasing function t : [0, 1] → [0, ∞] which
fulfils t(1) = 0, and for all x, y ∈ [0, 1] :

T (x, y) = t−1( min(t(0), t(x) + t(y))
)
.

Then we also have that T (x1, . . . , xn) = t−1
(
min(t(0),

∑n
i=1 t(xi))

)
.

Theorem 2. [32] Consider some continuous, Archimedean t-norm T with an
additive generator t : [0, 1] → [0, c], with t(0) = c and c ∈ ]0, ∞]. Furthermore,
let A :

⋃
n∈N

[0, 1]n → [0, 1] be an aggregation operator. Then A ∈ DT if and
only if the aggregation operator H :

⋃
n∈N

[0, c]n → [0, c] defined by

H(z1, . . . , zn) = t(A(t−1(z1), . . . , t−1(zn))) (2)

for all n ∈ N and all zi ∈ [0, c] with i ∈ {1, . . . , n} is subadditive on [0, c].

One of the main purposes for investigating aggregation operators dominating
t-norms was the request for introducing weights into the aggregation process.
Hence, considering continuous Archimedean t-norms, we have to find subadditive
aggregation operators, which provide this possibility.

Example 3. Consider some some weights w1, . . . , wn ∈ [0, ∞], n ≥ 2, and some
c ∈ ]0, ∞], then H(n) : [0, c]n → [0, c] given by

H(n)(x1, . . . , xn) = min(c,
n∑

i=1

wixi)

is an n-ary, subadditive aggregation operator on [0, c], fulfilling H(n)(c, . . . , c) =
c, whenever c ≤ c ·

∑n
i=1 pi. This means, with convention 0 · ∞ = 0, if c = ∞,

the sum must fulfill
∑n

i=1 wi > 0 and if c < ∞, then also
∑n

i=1 wi ≥ 1.

If we combine such an aggregation operator with an additive generator of a con-
tinuous Archimedean t-norm by applying the construction method as proposed
in Theorem 2 we can introduce weights into the aggregation process without
losing T -transitivity.

Corollary 1. Consider a continuous Archimedean t-norm T with additive gen-
erator t, t(0) = c, and a weighting vector −→w = (w1, . . . , wn), n ≥ 2, with weights
wi ∈ [0, ∞] fulfilling c ≤ c ·

∑n
i=1 wi. Further, let A(n) : [0, 1]n → [0, 1] be an

n-ary aggregation operator defined by Eq. (2) from the aggregation operator H(n)
introduced in Example 3. Then the n-ary aggregation operator can be rewritten
by

A(n)(x1, . . . , xn) = t−1( min(t(0),
n∑

i=1

wi · t(xi))
)

(3)

and it dominates the t-norm T , i.e., A(n) � T.
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Remark 1. Note that the n-ary aggregation operator defined by Equation (3)
is also called weighted t-norm T−→w ( [15, 21]). Further, for any strict t-norm T ,
it holds, that not only T−→w � T , but also T � T−→w . In case of some nilpotent
t-norm T it is clear, that T−→w � T , but T � T−→w only if all weights wi /∈ ]0, 1[.
In case that

∑n
i=1 wi = 1 we can apply Corollary 1 independently of t(0). Thus

for a continuous Archimedean t-norm T with additive generator t, any weighted
quasi-arithmetic mean Wt dominates T . Especially, any weighted arithmetic
mean W dominates TL and any weighted geometric mean dominates TP.

Example 4. The strongest subadditive aggregation operator acting on [0, c] is
given by H :

⋃
n∈N

[0, c]n → [0, c] with

H(u1, . . . , un) =

{
0, if u1 = . . . = un = 0,

c, otherwise.

Then, for any additive generator t : [0, 1] → [0, ∞] with t(0) = c, we have

t(A(x1, . . . , xn)) = H
(
t(x1), . . . , t(xn)

)
,

for all xi ∈ [0, 1] with i ∈ {1, . . . , n} and some n ∈ N, if and only if

A(x1, . . . , xn) =

{
1, if x1 = . . . = xn = 1,

0, otherwise,

i.e., A = Aw is the weakest aggregation. Observe that Aw dominates all t-norms,
but not all aggregation operators, e.g., Aw does not dominate the arithmetic
mean.

4.2 Ordinal Sums

Proposition 3. [32] Let (Ti)i∈I be a family of t-norms, (Ai)i∈I a family of
aggregation operators, and (]ai, ei[)i∈I a family of non-empty, pairwise disjoint
open subintervals of [0, 1]. If for all i ∈ I : Ai ∈ DTi , then the lower ordinal
sum A(w) = (〈ai, ei,Ai〉)i∈I dominates the ordinal sum T = (〈ai, ei, Ti〉)i∈I ,
i.e., A(w) ∈ DT .

Note that not all dominating aggregation operators are lower ordinal sums of
dominating aggregation operators, e.g., the aggregation operator Aw introduced
in Example 4 dominates all t-norms T , but is not a lower ordinal sum con-
structed by means of some index set I (in fact it is the empty lower ordi-
nal sum). On the other hand, in case of summand t-norms the lower ordinal
sum Aw = (〈ai, ei, Ti〉)i∈I coincides with the standard ordinal sum of t-norms
T = (〈ai, ei, Ti〉)i∈I . Moreover, as shown in [31], the condition of Proposition 3
is not only sufficient but also necessary.
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The following example also shows that weighted t-norms as proposed by Calvo
and Mesiar [15] dominate the original t-norm but are no lower ordinal sums as
proposed here. As a consequence we can conclude that

(
〈ai, ei, DTi〉

)
i∈I

⊂ DT ,
whenever T = (〈ai, ei, Ti)i∈I .

Let (]ai, ei[)i∈I be a family of non-empty, pairwise disjoint open subintervals
of [0, 1] and let ti : [ai, ei] → [0, ∞] be continuous, strictly decreasing mappings
fulfilling ti(ei) = 0. Then (and only then) the following function T : [0, 1]2 →
[0, 1] is a continuous t-norm [15]:

T (x, y) =

{
t−1
i

(
min(ti(0), ti(x) + ti(y)

)
, if (x, y) ∈ [ai, ei] ,

min(x, x), otherwise.

The corresponding weighted t-norm T−→w in the sense of Calvo and Mesiar [15] is
defined by

T−→w (x1, . . . , xn) =

{
t−1
i (min(ti(ai),

∑n
i=1 wi · ti(min(xi, ei)))), if u ∈ [ai, ei[ ,

min(xi | wi > 0), otherwise,

with u = min(xi | wi > 0) and some weighting vector −→w = (w1, . . . , wn) �=
(0, . . . , 0) such that, if ai = 0 for some i ∈ I and the corresponding ti(ai) is
finite, then

∑n
i=1 wi ≥ 1.

Example 5. Consider the t-norm T = (〈0, 1
2 , TP〉), i.e.,

T (x, y) =

{
2xy, if (x, y) ∈

[
0, 1

2

]2
,

min(x, y), otherwise.

We know that the geometric mean G(x, y) =
√

x · y = TP( 1
2 , 1

2 ) dominates TP.
Therefore we can construct

– the lower ordinal sum A(w) = (〈0, 1
2 , G〉) with

A(w)(x, y) =

{
1, if(x, y) = (1, 1),√

min(x, 1
2 ) · min(y, 1

2 ), otherwise

– and the weighted t-norm T−→w = T( 1
2 , 1

2 ) by

T( 1
2 , 1

2 )(x, y) =

{
min(x, y), if (x, y) ∈

] 1
2 , 1

]2
,√

min(x, 1
2 ) · min(y, 1

2 ), otherwise.

Both aggregation operators — A(w) as well as T−→w — dominate the t-norm T
and they coincide in any values except for arguments (x, y) ∈

]1
2 , 1

]2 \ {(1, 1)}.
Observe that this example also demonstrates that not all aggregation opera-
tors dominating an ordinal sum t-norm T are necessarily lower ordinal sums of
dominating aggregation operators as given in Proposition 3.
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5 Dominance of Basic T-Norms

Finally we will discuss the classes of aggregation operators dominating one of
the basic t-norms as introduced in Example 2.

5.1 Dominance of the Minimum

As already observed, TM dominates any t-norm T and any aggregation operator
A, but no t-norm T , except TM itself, dominates TM. The class of all aggregation
operators dominating TM is described in the following proposition.

Proposition 4. [32] For any n ∈ N, the class of all n-ary aggregation operators
A(n) dominating the strongest t-norm TM is given by

D(n)
min = {minF | F = (f1, . . . , fn),

fi : [0, 1] → [0, 1], non-decreasing, with
fi(1) = 1 for all i ∈ {1, . . . , n},

fi(0) = 0 for at least one i ∈ {1, . . . , n}},

where minF(x1, . . . , xn) = min(f1(x1), . . . , fn(xn)).

Evidently, A(n) ∈ D(n)
min is symmetric if and only if

A(n)(x1, . . . , xn) = f
(
min(x1, . . . , xn)

)

for some non-decreasing function f : [0, 1] → [0, 1] with f(0) = 0 and f(1) = 1.

Example 6. As already observed in Example 4, the weakest aggregation operator
Aw dominates all t-norms T . Since this aggregation operator is symmetric, it
can be described by Aw(x1, . . . , xn) = f

(
min(x1, . . . , xn)

)
with f : [0, 1] → [0, 1]

given by

f(x) =

{
1, if x = 1,

0, otherwise.

Remark 2. Any aggregation operator A dominating TM is also dominated by
TM, i.e., for arbitrary n, m ∈ N and for all xi,j ∈ [0, 1] with i ∈ {1, . . . , n} and
j ∈ {1, . . . , m} the following equality holds

A
(
min(x1,1, . . . , x1,n), . . . , min(xm,1, . . . , xm,n)

)

= min
(
A(x1,1, . . . , xm,1), . . . ,A(x1,n, . . . , xm,n)

)
.

5.2 Dominance of the Drastic Product

Oppositely to the case of TM, the weakest t-norm TD : [0, 1]2 → [0, 1] is domi-
nated by any t-norm T . This can also be seen from the characterization of all
aggregation operators dominating TD as given in the next proposition.
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Proposition 5. [32] Consider an arbitrary n ∈ N and an n-ary aggregation
operator A(n) : [0, 1]n → [0, 1]. Then A(n) � TD if and only if there exists a
non-empty subset I = {k1, . . . , km} ⊆ {1, . . . , n}, k1 < . . . < km, and a non-
decreasing mapping B : [0, 1]m → [0, 1] satisfying the following conditions

(i) B(0, . . . , 0) = 0,
(ii) B(u1, . . . , um) = 1 if and only if u1 = . . . = um = 1,

such that A(x1, . . . , xn) = B(xk1 , . . . , xkm).

Observe that the mapping B in the above proposition is an m-ary aggregation
operator whenever m ≥ 2. However, if m = 1, i.e., I = {k}, then B : [0, 1] → [0, 1]
is a non-decreasing mapping with strict maximum B(1) = 1 and B(0) = 0 as well
as A(x1, . . . , xn) = B(xk) and is therefore a distortion of the k-th projection.

Concerning t-norms, for any t-norm T , we have T (x1, . . . , xn) = 1 if and only
if xi = 1 for all i ∈ {1, . . . , n} and thus I = {1, . . . , n}. Therefore B = T and
T ∈ DTD .

5.3 Dominance of the �Lukasiewicz T-Norm

Summarizing the results from Section 4.1 we can characterize aggregation oper-
ators dominating the �Lukasiewicz t-norm TL by means of the subadditivity of
the corresponding dual operator.

Theorem 3. [27] An aggregation operator A :
⋃

n∈N
[0, 1]n → [0, 1] dominates

TL if and only if its dual aggregation operator Ad :
⋃

n∈N
[0, 1]n → [0, 1] is sub-

additive.

Note that as a consequence of Proposition 2 an aggregation operator is domi-
nated by TL if and only if its dual aggregation operator Ad is superadditive.

As already mentioned in Remark 1, any weighted arithmetic mean W domi-
nates TL. Moreover, due to Corollary 1, for any constant c ∈ [1, ∞[ we have also
that B :

⋃
n∈N

[0, 1]n → [0, 1], defined by

B(x1, . . . , xn) = max(0, c · W(x1, . . . , xn) + 1 − x)

dominates TL.
Based on Theorem 3 several other aggregation operators dominating TL can

be introduced. For example, the function H :
⋃

n∈N
[0, ∞]n → [0, ∞] given by

H(x1, . . . , xn) = (
n∑

i=1

xλ
i )

1
λ

is subadditive for any λ ≥ 1. Therefore, also the Yager t-conorm SY
λ = min(H, 1)

is subadditive such that the Yager t-norm TY
λ dominates TL for all λ ∈ [1, ∞[.

Similarly any root-power operator [18] Aλ :
⋃

n∈N
[0, 1]n → [0, 1] given by

Aλ(x1, . . . , xn) = ( 1
n

n∑

i=1

xλ
i )

1
λ
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is subadditive for any λ ≥ 1. As a consequence its dual aggregation operator
Ad

λ :
⋃

n∈N
[0, 1]n → [0, 1]

Ad
λ(x1, . . . , xn) = 1 − ( 1

n

n∑

i=1

(1 − xi)λ)
1
λ

dominates TL.
For the aggregation of fuzzy relations, the introduction of weights in the ag-

gregation process has been of importance. Therefore, the dominance of OWA
operators over TL is an interesting problem.

Proposition 6. [27] Consider an n-ary OWA operator W′
(n), n ∈ N, with

weights w1, . . . , wn. Then W′
(n) dominates TL if and only if w1 ≥ w2 ≥ . . . ≥ wn.

If we consider an OWA operator W′ :
⋃

n∈N
[0, 1]n → [0, 1], it is clear that

W′ � TL if and only if W′
(n) � TL for all n ∈ N.

It has been proposed in [41] to derive the weights for an OWA operator from
some quantifier function q : [0, 1] → [0, 1], which is a monotone real function
such that {0, 1} ⊆ Ran q. As a consequence, q can either be non-decreasing with
q(0) = 0 and q(1) = 1 or can be non-increasing with q(0) = 1 and q(1) = 0.

Since we are looking for aggregation operators dominating TL, the corre-
sponding weights for each n-ary operator must be non-increasing. Therefore
we are looking for additional properties for the quantifier function, such that
the non-increasingness of the weights is guaranteed. It will turn out, that non-
increasingness of the weights is closely related to the concavity, resp. the con-
vexity of the involved quantifier.

Definition 12. A function f on some convex domain A is convex, if the follow-
ing inequality

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

holds for all λ ∈ [0, 1] and x, y ∈ A. The function is said to be concave, if the
inequality

f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y)

holds for all λ ∈ [0, 1] and x, y ∈ A.

First, we will restrict our considerations to non-decreasing quantifiers. Some
examples for such functions are shown in Fig. 1. The weights derived from such
a quantifier can be computed by

win = q( i
n ) − q( i−1

n ).

Lemma 2. If q : [0, 1] → [0, 1] is a non-decreasing quantifier for some OWA
operator and the generated weights fulfill w1,n ≥ . . . ≥ wn,n for all n ∈ N and
i ∈ {1, . . . , n}, then q is continuous on ]0, 1].
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Fig. 1. Some examples of non-decreasing quantifier functions

Proposition 7. [27] Consider some OWA operator with non-decreasing quan-
tifier q : [0, 1] → [0, 1] and generated weights w1,n, . . . , wn,n for all n ∈ N. Then
these weights fulfill w1,n ≥ . . . ≥ wn,n for all n ∈ N if and only if q is concave
on ]0, 1], i.e., ∀x, y ∈ [0, 1], ∀λ ∈ [0, 1]

q(λx + (1 − λ)y) ≥ λq(x) + (1 − λ)q(y).

Example 7. A typical example of an OWA operator W′ dominating TL is gener-
ated by the quantifier function q(x) = 2x − x2. Observe that for any n ∈ N the
corresponding weights are given by

win = 2(n−i)+1
n2 , i ∈ {1, . . . , n}.

If a quantifier function is non-increasing then the weights can be computed
by

win = q( i−1
n ) − q( i

n ).

For a few examples of non-increasing quantifiers see Fig. 2. The following prop-
erties can be shown analogously to the case of non-decreas-ing quantifiers.
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Fig. 2. Some examples of non-increasing quantifier functions

Corollary 2. If q : [0, 1] → [0, 1] is a non-increasing quantifier for some OWA
operator and the generated weights fulfill w1n ≥ . . . ≥ wnn for all n ∈ N and
i ∈ {1, . . . , n}, then q is continuous on ]0, 1].

Corollary 3. Consider some OWA operator with non-increasing quantifier q :
[0, 1] → [0, 1]. Then the generated weights fulfill w1n ≥ . . . ≥ wnn for all n ∈ N

if and only if q is convex on ]0, 1], i.e., ∀x, y ∈ [0, 1], ∀λ ∈ [0, 1]

q(λx + (1 − λ)y) ≤ λq(x) + (1 − λ)q(y).

Remark 3. Any nilpotent t-norm T is isomorphic to the �Lukasiewicz t-norm TL,
i.e., T=(TL)ϕ with ϕ : [0, 1] → [0, 1] a strictly increasing bijection. According
to Proposition 2, we know that if TL is dominated by an OWA operator W′

then an isomorphic t-norm T = (TL)ϕ is dominated by the aggregation operator
W′

ϕ. In fact W′
ϕ is nothing else than an ordered weighted quasi-arithmetic mean

(OWQA) with respect to the strictly increasing bijection ϕ : [0, 1] → [0, 1] with
corresponding weights w1n ≥ w2n ≥ . . . ≥ wnn for all n ∈ N, i.e.,

W′
ϕ(x1, . . . , xn) = ϕ−1(W′(ϕ(x1), . . . , ϕ(xn)))

= ϕ−1( 1
n

n∑

i=1

winϕ(xi)′) = ϕ−1( 1
n

n∑

i=1

winϕ(x′
i)).

5.4 Dominance of the Product

Concerning dominance over the product TP, Theorem 2 transforms as follows.

Theorem 4. [27] An aggregation operator A :
⋃

n∈N
[0, 1]n → [0, 1] dominates

TP if and only if the function fn : [0, ∞]n → [0, ∞] given by

fn(x1, . . . , xn) = − log(A(e−x1 , . . . , e−xn))

is subadditive for each n ∈ N.
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Again an aggregation operator A is dominated by TP if and only if each fn as
given by Theorem 4 is superadditive.

As already mentioned any weighted geometric mean dominates TP. Moreover,
for any n ≥ 2 and any −→w = (w1, . . . , wn) with

∑n
i=1 wi > 0 and wi ∈ [0, ∞], the

function H : [0, ∞]n → [0, ∞] defined by

H(x1, . . . , xn) =
n∑

i=1

wi · xi

is an n-ary, subadditive aggregation operator acting on [0, ∞]. Therefore, any
n-ary aggregation operator

A−→w (x1, . . . , xn) =
n∏

i=1

xwi

i

dominates the product TP.
However, observing that for all λ ≥ 1, the function

Hλ : [0, ∞]2 → [0, ∞] ,Hλ(x, y) = (xλ + yλ)
1
λ ,

is also a binary, subadditive aggregation operator acting on [0, ∞], also any
member of the Aczél-Alsina family of t-norms (TAA

λ )λ∈[1,∞], is contained in
DTP because of Theorem 2.

Similar as in the case of the �Lukasiewicz t-norm TL, we can show the next
result.

Proposition 8. [27] For a fixed n ∈ N and some weighting vector −→w =
(w1, . . . , wn), let A : [0, 1]n → [0, 1] be an ordered weighted geometric mean,
i.e., A(x1, . . . , xn) =

∏n
i=1(x

′
i)

wi where x′
i is again the i-th order statistic of

(x1, . . . , xn). Then A � TP if and only if w1 ≥ w2 ≥ . . . ≥ wn.

Due to the isomorphism of any strict t-norm to the product TP, similar consid-
erations are valid for any strict t-norm.

5.5 Final Remarks Related to Continuous Archimedean T-Norms

In Section 5.3 we have shown how the dominance of TL by an OWA operator
W′ restricts the possible choices for weights. When considering some similar
constraints reflecting W′ � T for some other continuous Archimedean t-norm
T , we cannot exploit the isomorphism of TL and nilpotent t-norms (then also
W′ should be isomorphically transformed). Thus as a separate problem let us
consider a continuous Archimedean t-norm T with additive generator t and an
OWA operator W′ :

⋃
n∈N

[0, 1]n → [0, 1] which is supposed to dominate T , i.e.,
for all n ∈ N and for all xi, yi ∈ [0, 1], i ∈ {1, . . . , n}

W′(T (x1, y1), . . . , T (xn, yn)) ≥ T (W′(x1, . . . , xn),W′(y1, . . . , yn)).
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If we concentrate on the binary case and choose x1 = 0, y1 = 1, x2 = 1, y2 > 0
then we see that necessarily

W′(0, y2) = w2y2 ≥ T (w2, w1y2 + w2)

= t−1(min(t(0), t(w2) + t(w1y2 + w2))),

i.e., for all y2 ∈ [0, 1[

t(w2y2) ≤ t(w2) + t(w1y2 + w2).

Evidently if t(0) = +∞ then we get that w2 = 0 because of the continuity of
t. Similarly we can show in the general case with n ∈ N that wi = 0 for i > 1.
It follows that for any strict t-norm T only one OWA dominates T , namely the
minimum.

In the case of nilpotent t-norms, equation (5.5) gives a necessary condition
for W′ � T .

For y2 → 0+ we get that for normed additive generators 1 ≤ 2t(w2), i.e.,
w2 ≤ t−1(1

2 ) holds. This fact can be exploited in determination of OWA operators
dominating a specific t-norm. For example, it can be conjectured that an OWA
operator with weights (w1, . . . , wn) dominates

– Yager’s t-norm T Y
p [21] with parameter p ∈ ]0, ∞[ and normed additive

generator tp(x) = (1 − x)p if and only if

wi ≥ 1
21/p−1wi+1, i = 1, . . . , n − 1,

– Schweizer-Sklar’s t-norm T SS
λ [21] with parameter λ ∈ ]0, ∞[ and normed

additive generator tλ(x) = 1 − xλ if and only if

wi ≥ (21/λ − 1)wi+1.

Observe that the arithmetic mean M � T Y
p if and only if p ≤ 1 and M � T SS

λ

if and only if λ ≥ 1. Recall that TL = T Y
1 = T SS

1 .

6 Conclusion

We have discussed the aggregation of fuzzy relations and the preservation of
their transitivity. In particular, the aggregation operator A preserves the T -
transitivity of fuzzy relations if and only if it dominates the corresponding t-norm
T (A ∈ DT ). Several methods for constructing aggregation operators within a
certain class DT have been mentioned with a particular emphasis on the intro-
duction of weights. Further, a characterization of DT for the four basic t-norms
has been provided.
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