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Abstract. We discuss fuzzy generalisations of information relations ta-
king two classes of residuated lattices as basic algebraic structures. More
precisely, we consider commutative and integral residuated lattices and
extended residuated lattices defined by enriching the signature of residu-
ated lattices by an antitone involution corresponding to the De Morgan
negation. We show that some inadequacies in representation occur when
residuated lattices are taken as a basis. These inadequacies, in turn,
are avoided when an extended residuated lattice constitutes the basic
structure. We also define several fuzzy information operators and show
characterizations of some binary fuzzy relations using these operators.
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1 Introduction

In real–life problems we usually deal with incomplete information. Generally
speaking, there are two reasons for incompleteness of information. Firstly, we
often have only partial data about a domain under considerations. Secondly,
the acquired information, if available, is often imprecise (e.g. when expressed by
means of linguistic terms like “quite good” or “rather tall”). Formal methods for
representing and analyzing incomplete information have been extensively deve-
loped within the theory of rough sets ([26]). In these approaches an information
relation is any relation defined on a set of objects of an information system and
determined by the properties of these objects. Since properties of an object can
be represented by a set of values of its attributes (properties), any information
relation is formally a binary relation between two subsets of a domain in dis-
course. Examples of some information relations (in information systems) and
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their theories can be found, for example, in [6], [10], [25], and [26]. A compre-
hensive exposition of logical and algebraic theories of information relations and
their applications can be found in [7].

When imprecise information is admitted, it is clear that it cannot be ade-
quately represented by means of standard methods based on classical two–valued
structures. A natural solution seems to be fuzzy generalisations of the respective
methods. Multi–valued generalisations of information relations based on residu-
ated lattices were developed in [27].

In the present paper we continue our studies of fuzzy information relations
and information operators. In [30], [31], and [33] we discussed fuzzy generalisa-
tions of information relations taking the unit interval [0, 1] and traditional fuzzy
logical connectives as the basis. In this framework the relationships between ob-
jects are real numbers from [0, 1], so they are always comparable. In real–life
problems, however, such relationships need not have this property. For instance,
a child is usually similar to both parents, but it is often hard to say to which of
his/her parents the child is more (or less) similar. Therefore, some lattice–based
approaches seems to be more adequate.

We present some fuzzy generalisations of information relations and informa-
tion operators taking two classes of residuated lattices ([4],[8],[15],[16],[22],[42])
as basic algebraic structures. Our approach is motivated by the role these alge-
bras play in fuzzy set theory ([18],[19],[20],[23],[43]) and by the rough set–style
data analysis ([26]). In a residuated lattice a product operator and its residuum
are abstract counterparts of a triangular norm ([41]) and a fuzzy residual impli-
cation ([23]), respectively. However, traditional residuated lattices do not provide
sufficiently general counterparts of other fuzzy logical connectives, in particular
triangular conorms, fuzzy negations, and fuzzy S–implications. Consequently,
in generalisations of information relations some inadequacies occur. From this
reason, double residuated lattices were introduced ([28],[29]) and some fuzzy in-
formation relations and operators were investigated. In the signature of these
algebras there are two independent operations corresponding to a triangular
norm and a triangular conorm. Yet these structures do not give us the algebraic
counterpart of the De Morgan negation. Therefore, while some inadequacies
are avoided, other drawbacks in representation still remain. To cope with these
problems, we propose yet another class of residuated lattices, called extended
residuated lattices ([12]), which are an extension of residuated lattices by an
antitone involution. This operation, together with the operations of residuated
lattices, allows us to define algebraic counterparts of the main classes of fuzzy
logical connectives. Basing on these algebras, we extend the results obtained in
[36] and discuss another generalisation of information relations. We show how
these representations allow us to avoid inadequacies occurring when residuated
lattices are taken as a basis.

It is well–known that binary relations determine modal–like operators which,
in turn, are the abstract counterparts of the information operators derived from
information systems ([7]). Generally speaking, an information operator is any
mapping defined on binary relations on a non–empty universe and subsets of
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this universe. A general theory of the classical abstract information operators
was developed in [7], [10], and [11]. A fuzzy generalisation of some information
operators, based on the interval [0, 1], were presented in [32], [33], and [38].
In [34], [35], [36], and [37] fuzzy approximation operators based on residuated
lattices were discussed.

In this paper we propose a generalisation of information operators determined
by information relations based on extended residuated lattices. This approach
might be a basis for developing multi–valued logics and algebras. On the other
hand, this is a generalisation of approximation operators, which are the main
tools in rough set–style data analysis. We show that properties of main classes
of fuzzy information relations can be expressed by means of these operators.

The paper is organized as follows. In Section 2 we provide some algebraic
foundations to our discussion. In particular, the notions of residuated lattices
and extended residuated lattices will be presented. Also, the notion of fuzzy
sets and fuzzy relations will be recalled. In Section 3 we define several fuzzy
information relations taking a commutative and integral residuated lattice as a
basic structure. Main properties of these relations will be presented. We will point
out some drawbacks of this representation and propose another generalisation of
some information relations, where extended residuated lattices are taken as basic
structures. Next, in Section 4, we discuss some fuzzy information operators. It
will be shown that these operators are useful for characterisations of fuzzy binary
relations. Some concluding remarks will complete the paper.

2 Algebraic Foundations

2.1 Residuated Lattices

A monoid is a system (M, ◦, ε), where M is a non–empty set, ◦ is an associative
operation in M , and ε ∈M is such that ε ◦ a = a ◦ ε = a for every a ∈M . A
monoid (M, ◦, ε) is called commutative iff ◦ is commutative.

Typical examples of monoid operations are triangular norms (t–norms) and
triangular conorms (t–conorms). Recall ([41]) that a triangular norm t (resp. a
triangular conorm s) is a [0, 1]2 − [0, 1] mapping, non-decreasing in both argu-
ments, associative, commutative, and satisfying for every a ∈ [0, 1] the boundary
condition t(a, 1)= a (resp. s(0, a) = a). The well–known t–norms and t–conorms,
tZ and sZ (the Zadeh’s t–norm and the t–conorm), tP and sP (the algebraic
product and the bounded sum), and tL and sL (the �Lukasiewicz t–norm and the
�Lukasiewicz t–conorm), are given in Table 1.

Table 1. Well–known t–norms and t–conorms

tZ(a, b)= min(a, b) sZ(a, b) = max(a, b)
tP (a, b)= a·b sP (a, b)= a+b−a · b

tL(a, b)= max(0, a+b−1) sL(a, b) = min(1, a+b)
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Let (L, � ) be a poset and let ◦ be a binary operation in L. Define two binary
operations in L, →r, →l, satisfying the residuation conditions for all a, b, c ∈L,

a ◦ b � c iff a � b →l c (1)
a ◦ b � c iff b �a →r c (2)

The operations (1) and (2) are called the left residuum of ◦ and the right
residuum of ◦, respectively. It can be easily shown that if the respective residua
exist, then

a →l b = sup{c ∈L : c ◦ a � b}
a →r b = sup{c ∈L : a ◦ c � b}.

Clearly, if ◦ is commutative, then →l=→r.
Residua of left–continuous1 t–norms are called fuzzy residual implications

([23]). Three well–known residual implications, →Z , →P , and →L, determined
by tZ , tP and tL, respectively, are given in Table 2.

Table 2. Well–known residual implications

Gödel implication iZ(a, b) = 1 iff a � b and iZ(a, b) = b otherwise
Gaines implication iP (a, b) = 1 iff a � b and iP (a, b) = b

a otherwise
�Lukasiewicz implication iL(a, b) = min(1, 1−a+b)

Definition 1. A residuated lattice is an algebra (L, ∧, ∨, ⊗, →l, →r, 0, 1, 1′)
such that

(i) (L, ∧, ∨, 0, 1) is a bounded lattice with the least element 0 and the greatest
element 1,

(ii) (L, ⊗, 1′) is a monoid, and
(iii) →l and →r are the left and the right residuum of ⊗, respectively.
The operation ⊗ of a residuated lattice L is called its product. �

We say that a residuated lattice (L, ∧, ∨, ⊗, →l, →r, 0, 1, 1′) is
– integral iff 1′= 1,
– commutative iff ⊗ is commutative,
– complete iff the underlying lattice (L, ∧, ∨, 0, 1) is complete.

Remark 1. Some researchers (in particular, fuzzy logicians) assume that residu-
ated lattices are commutative by definition (e.g. [3],[19]). Others, however, con-
sider these structures in a more general framework and assume that the product
operation of residuated lattices need not be commutative (see, for example, [4]
and [22]). �

Throughout this paper we consider only integral and commutative residuated
lattices, which will be referred to as R–lattices and written simply (L, ∧, ∨, ⊗,
→, 0, 1).
1 A t–norm is called left–continuous iff it has left–continuous partial mappings.
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Given an R–lattice (L, ∧, ∨, ⊗, →, 0, 1), we define the following precomplement
operation for every a ∈L:

¬a = a → 0. (3)

Note that this operation is a generalisation of the pseudo–complement in a lattice
([39]). If ∧=⊗, then → is the relative pseudo–complement, ¬ is the pseudo–
complement and (L, ∧, ∨, →, ¬, 0, 1) is a Heyting algebra.

Example 1. Let t be a left–continuous t–norm and let it be the fuzzy residual
implication based on t. Put L = [0, 1]. Then the algebra (L, min, max, t, it, 0, 1)
is an R–lattice. �

The following lemma will be useful later.

Lemma 1. Let (L, ∧, ∨, ⊗, →, 0, 1) be an R–lattice such that its product ⊗ satis-
fies the following condition: for all a, b ∈L,

a �=0 & b �=0 =⇒ a ⊗ b �=0. (4)

Then for every a ∈L, ¬a = 0 iff a �=0 and ¬a = 1 iff a =0.

Proof. Analogous to the proof presented in [5].

Following the terminology from fuzzy set theory, we say that the product ⊗
satisfying (4) has no zero divisors. Notice that among t–norms given in Table 1,
the Zadeh’s t–norm tZ and the algebraic product tP have this property, while
the �Lukasiewicz t–norm tL does not. The family of all R–lattices, which product
satisfy (4), will be denoted by RL+.

For the recent results on residuated lattices we refer to [2], [4], [21], and [22].
Given an R–lattice (L, ∧, ∨, ⊗, →, 0, 1), its product ⊗ is an algebraic counter-

part of a left–continuous t–norm, the residuum → of ⊗ corresponds to a fuzzy
residual implication determined by ⊗, and the precomplement ¬ corresponds to
a fuzzy negation.2 However, in general ¬ is not involutive. Moreover, the sig-
nature of R–lattices do not give algebraic counterparts of t–conorms. From this
reason double residuated lattices were proposed (see [28],[29]).
First, let us recall the following notions. Given a poset (L, � ), and a binary
operation ◦ in L, the following binary operations in L, ←l and ←r, respectively
called the dual left residuum of ◦ and the dual right residuum of ◦, are defined
as follows: for all a, b ∈L,

c � a ◦ b iff c ←l b � a (5)
c � a ◦ b iff c ←r a � b. (6)

If the respective dual residua of ◦ exist, then

a ←l b = inf{c ∈L : a � c ◦ b}
a ←r b = inf{c ∈L : a � b ◦ c}.

2 A fuzzy negation ([23]) is a non–increasing mapping n : [0, 1] → [0, 1] satisfying
n(0) = 1 and n(1) = 0.
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Dual residua of a lattice join were studied by Rauszer ([40]) in the context of
Heyting–Brouwer logic. In [1] dual residua of a monoid operator are discussed.
The dual residua of the most famous t–conorms are presented in Table 3.

Table 3. The dual residua of well–known t–conorms

a ←Z b = 0 iff b � a and a ←Z b = b otherwise
a ←P b = 0 iff b� a and a ←P b = b−a

1−a
otherwise

a ←L b = max(0, b−a)

Definition 2. ([28],[29]) A double residuated lattice is an algebra (L, ∧, ∨, ⊗,
⊕, →l, →r, ←l, ←r, 0, 1, 0′, 1′) such that (L, ∧, ∨, ⊗, →l, →r, 0, 1, 1′) is a residu-
ated lattice, (L, ⊕, 0′) is a monoid, and ←l and ←r are respectively the dual left
and the dual right residuum of ⊕. �

A double residuated lattice is called commutative (resp. integral) iff ⊗ and ⊕
are commutative (resp. 1′=1 and 0′=0). Commutative and integral double
residuated lattices will be written (L.∧, ∨, ⊗, ⊕, →, ←, 0, 1).

Given a commutative and integral double residuated lattice, define the dual
precomplement operation as

�– a = 1 ← a for every a ∈L. (7)

This operation is a generalisation of a dual pseudo–complement ([39]). The dual
pseudo–complement is one of the operations in double Stone algebras. However,
it is a primitive operation there, residuation operations are not in the signature
of Stone algebras.

Let L = (L, ∧, ∨, 0, 1) be a bounded lattice with its ordering �. We write
L−1 to denote the lattice obtained from L by reversing its ordering, i.e. the
lattice with the ordering �−1 = � . Then the join ∨−1 (resp. the meet ∧−1)
of L−1 is the meet ∧ (resp. the join ∨) of L and the greatest (resp. the least)
element of L−1 is the least (resp. the greatest) element of L. In other words,
L−1 = (L, ∨, ∧, 1, 0).

Proposition 1. [29] Let (L, ∧, ∨, ⊗, ⊕, →l, →r, ←l, ←r, 0, 1, 0′, 1′) be a double
residuated lattice. Then the algebras (L, ∧, ∨, ⊗, →l, →r, 0, 1, 1′) and (L, ∨, ∧, ⊕,
←l, ←r, 1, 0, 0′) are residuated lattices.

In view of the above proposition it is easily observed that in double residuated
lattices the analogon of Lemma 1 holds. Namely, if ⊕ satisfies the condition

a �=1 & b �=1 =⇒ a ⊕ b �=1 for all a, b ∈L,

then �– a = 1 iff a �=1 and �– a = 0 iff a = 1. This means that �– can be reduced
to the binary case.

Observe that the signature of a commutative and integral double residuated
lattice (L, ∧, ∨, ⊗, ⊕, →, ←, 0, 1) gives two independent algebraic counterparts of
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a t–norm (⊗) and a t–conorm (⊕). Also, the residuum → of ⊗ corresponds to
a residual implication (determined by ⊗). However, we do not have algebraic
counterpart of the second main class of fuzzy implications called S–implications.
Recall ([23]) that an S–implication, determined by a t–conorm s and a fuzzy
negation n, is defined by: is,n(a, b) = s(n(a), b) for all a, b ∈ [0, 1] (the most
famous S–implications, based respectively on sZ and n, sP and n, and sL and
n, where n is the standard fuzzy negation n(a)= 1−a for a ∈ [0, 1], are given in
Table 4). Moreover, neither the precomplement ¬ nor the dual precomplement
�– are sufficiently general counterparts of fuzzy negations, since (under some
conditions) can be reduced to the binary case. Therefore, in general case we
cannot obtain the counterpart of the De Morgan negation. Having this on mind,
the extended residuated lattices were defined ([12],[34],[36]).

Table 4. Well–known S–implications

Kleene–Dienes implication isZ ,n(a, b) = max(1−a, n)
Reichenbach implication isP ,n(a, b) = 1−a+a · b

�Lukasiewicz implication isL,n(a, b) = min(1, 1−a+b)

Definition 3. By an extended residuated lattice we mean a system (L, ∧, ∨,
⊗, →l, →r, ∼, 0, 1, 1′) such that

(i) (L, ∧, ∨, ⊗, →l, →r, 0, 1, 1′) is a residuated lattice
(ii) ∼ is an antitone involution satisfying ∼0 =1 and ∼1 =0. �

Analogously, an extended residuated lattice is integral (resp. commutative) iff
the underlying residuated lattice is integral (resp. commutative). Any integral
and commutative extended residuated lattice will be referred to as an ER–lattice
and written (L, ∧, ∨, ⊗, →, ∼, 0, 1).

Let (L, ∧, ∨, ⊗, →, ∼, 0, 1) be an ER–lattice. Let us define the following oper-
ations in L: for all a, b ∈L,

a ⊕ b = ∼(∼a ⊗ ∼b) (8)
a ⇒ b = ∼a ⊕ b (9)
a ← b = ∼(∼a → ∼b) (10)
a ⇐ b = ∼(∼a ⇒ ∼b). (11)

Remark 2. Assume that ∼ and → are respectively the classical negation and
implication. From the definition (10) it follows that a ← b = ∼(b → a), so a ← b
is a generalisation of the classical conjunction b ∧ ∼a. The operation (11) has
the similar interpretation. �

By straightforward verification one can easily check the following
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Proposition 2. Let (L, ∧, ∨, ⊗, →, ∼, 0, 1) be an ER–lattice. Then

(i) (L, ⊕, 0) is a commutative monoid
(ii) ← is the dual residuum of ⊕
(iii) (L, ∧, ∨, ⊗, →, 0, 1) and (L, ∨, ∧, ⊕, ←, 1, 0) are R–lattices
(iv) (L, ∧, ∨, ⊗, ⊕, →, ←, 0, 1) is a commutative and integral double residuated

lattice.

Given an ER-lattice (L, ∧, ∨, ⊗, →, ∼, 0, 1), its product ⊗ and its sum ⊕ are al-
gebraic counterparts of a triangular norm and a triangular conorm. Also, → and
⇒ correspond to a fuzzy residual implication and an S–implication, respectively.
Finally, ∼ corresponds to the De Morgan negation. Therefore, ER–lattices allow
us to get algebraic counterparts of all main classes of fuzzy logical connectives.
Main properties of ER–lattices are given in the following two lemmas.

Lemma 2. For every ER–lattice (L, ∧, ∨, ⊗, →, ∼, 0, 1) and for all a, b, c ∈L,
the following properties hold:

(i) a � b implies
a ⊗ c � b ⊗ c
b → c � a → c
c → a � c → b
b ⇒ c � a ⇒ c
c ⇒ a � c ⇒ b
¬b �¬a

(ii) a ⊗ b � a

(iii) a ⊗ b � a ∧ b

(iv) a ⊗ 0 = 0
(v) a � b iff a → b = 1
(vi) 1 → a = 1 ⇒ a = a

(vii) a ⊗ (a → b)� b

(viii) a ⊗ (b → c)� b → (a ⊗ c)
(ix) (a → b) ⊗ (b → c)� (a → c)
(x) (a ⇒ c)� (a ⇒ b) ⊕ (b ⇒ c)
(xi) (a → b)� (c → a) → (c → b)
(xii) (a → b)� (a ⊗ c) → (b ⊗ c)
(xiii) b � a → (a ⊗ b)
(xiv) a → (b → c) = (a ⊗ b) → c

(xv) a ⇒ (b ⇒ c) = (a ⊗ b) ⇒ c

(xvi) a → ¬b = ¬(a ⊗ b)
(xvii) a ⇒ ∼b = ∼(a ⊗ b)
(xviii) a → b �¬b → ¬a

(xix) a ⇒ b = ∼b ⇒ ∼a

(xx) a ⊗ ¬b � ¬(a → b)
(xxi) a �¬¬a

(i’) a � b implies
a ⊕ c � b ⊕ c
b ← c � a → c
c ← a � c → b
b ⇐ c � a ⇒ c
c ⇐ a � c ⇒ b
�– b � �– a

(ii’) a � a ⊕ b

(iii’) a ∨ b � a ⊕ b

(iv’) a ⊕ 1 = 1
(v’) b ← a = 0 iff a � b

(vi’) 0 ← a = 0 ⇐ a = a

(vii’) b � a ⊕ (a ← b)
(viii’) b ← (a ⊕ c)� a ⊕ (b ← c)
(ix’) (a ← c)� (a ← b) ⊕ (b ← c)
(x’) (a ⇐ b) ⊗ (b ⇐ c)� (a ⇐ c)
(xi’) (c ← a) ← (c ← b)� (a ← b)
(xii’) (a ⊕ c) ← (b ⊕ c)� (a ← b)
(xiii’) a ← (a ⊕ b)� b

(xiv’) a ← (b ← c) = (a ⊕ b) ← c

(xv’) a ⇐ (b ⇐ c) = (a ⊕ b) ⇐ c

(xvi’) a ← �– b = �– (a ⊕ b)
(xvii’) a ⇐ ∼b =∼ (a ⊕ b)
(xviii’) �– b ← �– a � a ← b

(xix’) a ⇐ b = ∼b ⇐ ∼a

(xx’) a ⊗ ∼b = ∼(a ⇒ b)
(xxi’) �– �– a � a.
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Proof. Note that the properties in the right column can be easily obtained
from the properties in the left column by the definitions (7)–(11). Moreover, all
properties, where the operations ⊗, →, and ¬ occur, are well–known properties
of residuated lattices (see, e.g., [19],[22],[42]). Then it remains to show (x), (xv),
(xvii), and (xix). By way of example we show (x) and (xv).
(x) By (ii’), for all a, b, c ∈L, ∼a⊕b �∼a and ∼b⊕c � c. Then, by the definition
(9) and the property (i’), (a⇒b) ⊕ (b⇒c)� (∼a ⊕ c) = (a ⇒ c).
(xv) For all a, b, c ∈L, it holds:

a ⇒ (b⇒c)
= ∼a ⊕ (∼b ⊕ c) by the definition (9)
= (∼a ⊕ ∼b) ⊕ c by associativity of ⊕
= ∼(a ⊗ b) ⊕ c by the definition (8)
= (a ⊗ b) ⇒ c.

Lemma 3. For every ER–lattice (L, ∧, ∨, ⊗, →, ∼, 0, 1), for every a ∈L, and
for all families (bi)i∈I and (ci)i∈I of elements of L, if the respective infima and
suprema exist, then the following properties hold:

(i) a ⊗ supi∈I ci = supi∈I(a ⊗ ci)
(ii) a→ inf i∈I ci = infi∈I(a→ci)
(iii) a⇒(inf i∈I ci)= infi∈I(a⇒ci)
(iv) (supi∈I ci)→a = infi∈I(ci →a)
(v) (supi∈I ci)⇒a = infi∈I(ci ⇒a)
(vi) supi∈I ci �¬ inf i∈I ¬ci

(vii) (inf i∈I bi) ⊗ (infi∈I ci)
� infi∈I(bi⊗ci)

(viii) infi∈I ¬ci = ¬ supi∈I ci

(ix) supi∈I ¬bi �¬(inf i∈I bi).

(i’) a ⊕ (infi∈I ci)= infi∈I(a ⊕ ci)
(ii’) a←(supi∈I ci)= supi∈I(a←ci)
(iii’) a⇐(supi∈I ci)= supi∈I(a⇐ci)
(iv’) (infi∈I ci)←a = supi∈I(ci ←a)
(v’) (infi∈I ci)⇐a = supi∈I(ci ⇐a)
(vi’) supi∈I ci =∼ infi∈I ∼ci

(vii’) supi∈I(bi ⊕ ci)
� (supi∈I bi) ⊕ (supi∈I ci).

Proof. As in Lemma 2, the properties in the right column are easily obtained
from the respective properties in the left column using the definitions (7)–(11).
Notice that all properties except from (iii) and (v) are known properties of
residuated lattices.
(iii) By the definition of ⇒ and (i’), we easily get a⇒(inf i∈I ci)= ∼a ⊕ infi∈I ci

= inf i∈I(∼a ⊕ ci)= infi∈I(a ⇒ ci).
(v) can be proved in the analogous way.

Example 2. Let L = [0, 1] and let (L, min, max, t, it, 0, 1) be the R–lattice as in
Example 1. Also, let n be the standard fuzzy negation n(a) = 1−a for every
a ∈ [0, 1]. Then (L, min, max, t, it, n, 0, 1) is an ER–lattice. �

Remark 3. Note that properties (xviii) and (xix) of Lemma 2 correspond to the
contraposition law. In general, however, we do not have analogous links between
a→b and ∼a→∼b. For example, consider the ER–lattice as in Example 2 and let
→ and ∼ be the Gödel implication (see Table 2) and the standard fuzzy negation.
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Then for a =0.8 and b =0.4 we have: a → b =0.4 and ∼b → ∼a =0.2. Hence
a → b > ∼b → ∼a. Taking c =0.1, we easily get: b→ c = 0.1 and ∼c → ∼b =0.6,
so b→c < ∼c→ ∼b. �

2.2 L–fuzzy Sets and L–fuzzy Relations

Fuzzy sets. Let L be a residuated lattice (in particular, R–lattice or ER–lattice)
and let X be a non–empty domain. By an L–fuzzy set in X we mean any mapping
F : X → L. For every x∈X , F (x) is the degree of membership of x to F . Two
specific L–fuzzy sets in X , ∅ and X , are respectively defined by: ∅(x) = 0 and
X(x) = 1 for every x∈X . The family of all L–fuzzy sets in X will be denoted
by FL(X).

Recall the basic operations on L–fuzzy sets. First, let L be an R–lattice. For
all A, B ∈FL(X) and for every x∈ X ,

(A �L B)(x) = A(x) ∨ B(x)
(A �L B)(x) = A(x) ∧ B(x)
(A ∩L B)(x) = A(x) ⊗ B(x)

(¬LA)(x) = ¬A(x).

If L is an ER–lattice, we additionally define:

(A ∪L B)(x) = A(x) ⊕ B(x)
(∼LA)(x) = ∼A(x)
(�–

L
A)(x) = �–A(x).

For A∈FL(X), we will write A � ∅ iff A(x) �= 0 for every x∈X . Also, for two
L–fuzzy sets A, B ∈ FL(X), we will write A ⊆L B iff A(x)� B(x) for every
x∈X (Zadeh’s inclusion). If L is complete, then for any indexed family (Ai)i∈I

of L–fuzzy sets in X ,
⋃

i∈I Ai and
⋂

i∈I Ai are L–fuzzy sets in X defined as: for
every x∈ X , (

⋃
i∈I Ai)(x) = supi∈I Ai(x) and (

⋂
i∈I Ai)(x) = infi∈I Ai(x).

Fuzzy relations. An L–fuzzy relation on X is a mapping R : X ×X → L. The
family of all L–fuzzy relations on X will be denoted by RL(X).

An L–fuzzy relation R ∈RL(X) is called

• reflexive iff R(x, x) = 1 for every x∈X
• irreflexive iff R(x, x) = 0 for every x∈ X
• symmetric iff R(x, y) = R(y, x) for all x, y ∈X
• ⊗–transitive iff R(x, y) ⊗ R(y, z)�R(x, z) for all x, y, z ∈ X
• ⊕–cotransitive iff R(x, y) ⊕ R(y, z)�R(x, z) for all x, y, z ∈X
• ⊗–quasi ordering iff it is reflexive and ⊗–transitive
• ⊗–equivalence iff it is reflexive, symmetric, and ⊗–transitive
• crisp iff R(x, y)∈{0, 1} for all x, y ∈X .

Note that if R is crisp and ⊕ =∨, then cotransitivity of R means that the
complement of R is transitive. Hence, ⊕–cotransitivity is a fuzzy generalisation
of this property.
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3 Fuzzy Information Relations

In this section we define several fuzzy information relations measuring degrees
of relationship between two fuzzy sets. We take two classes of residuated lattices
as an algebraic basis: complete R–lattices and complete ER–lattices.

Let L be a complete R–lattice or an ER–lattice and let X �= ∅. By an L–fuzzy
information relation we mean any L–fuzzy relation on FL(X).

3.1 Fuzzy Information Relations Based on R–Lattices

Let us define several L–information relations.

Definition 4. Let (L, ∧, ∨, ⊗, →, 0, 1) be a complete R–lattice and let X �= ∅.
Define the following L–fuzzy information relations: for all A, B ∈FL(X),

(i) L–fuzzy inclusion:
incL(A, B) = infx∈X(A(x) → B(x))

(ii) L–fuzzy noninclusion:
nincL(A, B) = supx∈X(A(x) ⊗ ¬B(x))

(iii) L–fuzzy compatibility:
comL(A, B) = supx∈X(A(x) ⊗ B(x))

(iv) L–fuzzy orthogonality:
ortL(A, B) = incL(A, ¬LB)

(v) L–fuzzy exhaustiveness:
exhL(A, B) = infx∈X(A(x) ∨ B(x))

(vi) L–fuzzy nonexhaustiveness:
nexhL(A, B) = comL(¬LA, ¬LB)

(vii) L–fuzzy indiscernibility:
indL(A, B) = incL(A, B) ⊗ incL(B, A)

(viii) L–fuzzy diversity:
divL(A, B) = nincL(A, B) ∨ nincL(¬LA, B). �

For two L–fuzzy sets A, B ∈FL(X), incL(A, B) (resp. nincL(A, B)) is the degree,
to which A is included (resp. not included) in B. Note that the formula for
nincL is the straightforward generalisation of the classical equivalence: A �⊆ B ⇔
(∃x∈ X) (x∈A & x �∈B). Next, comL(A, B) (resp. ortL(A, B)) represents the
degree, to which A and B overlap (resp. are disjoint). The formulation for ortL
results from the generalisation of the classical equivalence: A∩B = ∅ ⇔ A⊆−B,
where −B =X\B. Furthermore, exhL(A, B) (resp. nexhL(A, B)) is the degree,
to which A and B cover (resp. do not cover) the whole domain X . Note that in
the classical case, A ∪ B �= X ⇔ (−A ∩ −B �= ∅). This equivalence underlies the
formulation for nexhL. Finally, indL(A, B) (resp. divL(A, B)) is the degree, to
which A is equal to B (resp. A differs from B). The formulation for divL is again a
generalisation of the classical equivalence: A �=B ⇔ (A∩−B �= ∅)∨(−A∩B �= ∅).

The following proposition provides main properties of these relations.
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Proposition 3. Let (L, ∧.∨, ⊗, → 0, 1) be a complete R–lattice. Then

(i) incL is an L–quasi ordering

(ii.1) nincL is irreflexive
(ii.2) if L ∈RL+, then for any A∈ FL(X) and for any B ∈FL(X) satisfying

B � ∅, nincL(A, B) = 0
(iii) comL and exhL are symmetric

(iv.1) ortL is symmetric
(iv.2) if L ∈RL+, then ortL is crisp
(v.1) nexhL is symmetric;
(v.2) if L ∈RL+, then for all A, B ∈FL(X) such that A(x) �= 0 or B(x) �= 0

for any x∈X, nexhL(A, B) = 0

(vi) indL is an L–fuzzy equivalence
(vii.1) divL is irreflexive and symmetric
(vii.2) if L ∈RL+, then for all A, B ∈FL(X) such that A�∅ and B�∅, it

holds divL(A, B) = 0.

Proof.

(i) See [3].
(ii.1) For every A∈FL(X), we have: nincL(A, A) = supx∈X(A(x) ⊗ ¬A(x)) =
supx∈X(A(x) → (A(x) → 0)) = 0 by Lemma 2(vii).
(ii.2) Assume that L ∈RL+ (i.e. ⊗ has no zero divisors) and take an arbitrary
A∈FL(X) and B ∈FL(X) such that B�∅, i.e. B(x) �= 0 for every x∈ X . Then
by Lemma 1, ¬LB = ∅, so we have: nincL(A, B) = supx∈X(A(x) ⊗ ¬B(x)) =
supx∈X(A(x) ⊗ 0) = 0 by Lemma 2(iv).
(iii) Symmetry of comL (resp. exhL) directly follows from commutativity of ⊗
(resp. ∨).
(iv.1) By Lemma 2(xvi), for all a, b ∈L, a → ¬b = ¬(a ⊗ b) = ¬(b ⊗ a) =
b → ¬a. Then for every A, B ∈FL(X), ortL(A, B) = infx∈X(A(x) → ¬B(x)) =
infx∈X(B(x) → ¬A(x)) = ortL(B, A).
(iv.2) Assume that L ∈RL+. Let A, B ∈FL(X) and take an arbitrary x∈ X . If
B(x) �= 0, then by Lemma 1, ¬B(x)= 0, so A(x) → ¬B(x)= ¬A(x)∈ {0, 1}. If
B(x)= 0, then A(x) → ¬B(x)= A(x) → 1 =1 by Lemma 2(v). Then ortL(A, B)
= infx∈X(A(x) → ¬B(x))∈ {0, 1}.
(v.1) Follows directly from symmetry of comL.
(v.2) Assume that L ∈RL+ and consider A, B ∈FL(X) such that for every
x∈X , A(x) �= 0 or B(x) �= 0. By Lemma 1, it implies that for every x∈X ,
¬A(x)= 0 or ¬B(x)= 0, so using Lemma 2(iv), ¬A(x) ⊗ ¬B(x)= 0 for every
x∈X . Hence nexhL(A, B)= 0.
(vi) Reflexivity and ⊗–transitivity of indL follows directly from (i), symmetry
of indL results from commutativity of ⊗.
(vii.1) Let A∈ FL(X). For every x∈X , A(x)⊗¬A(x)= A(x)⊗(A(x) → 0)=0 by
Lemma 2(vii), so comL(A, ¬LA)= 0. By symmetry of comL, comL(¬LA, A)= 0.
Hence divL(A, A)= 0. Symmetry of divL follows from symmetry of comL.
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(vii.2) Assume that L ∈RL+ and consider A, B ∈FL(X) such that A(x) �= 0
and B(x) �= 0 for every x∈X . By Lemma 1, ¬A(x)= ¬B(x)= 0 for every x∈X .
Then we have A(x) ⊗ ¬B(x)= ¬A(x) ⊗ B(x)= 0 for every x∈X , which implies
supx∈X(A(x) ⊗ ¬B(x))= supx∈X(¬A(x) ⊗ B(x))= 0, so divL(A, B)= 0.

In the crisp case the relation of set inclusion (resp. compatibility, exhaustive-
ness, indiscernibility) is complementary to noninclusion (resp. orthogonality,
nonexhaustiveness, diversity). While generalising these relations on the basis
of R–lattices only the weaker form of complementarity holds, as the following
proposition states.

Proposition 4. For every complete R–lattice (L, ∧, ∨, ⊗, →, 0, 1),

(i) nincL ⊆L ¬LincL

(ii) ortL = ¬LcomL and comL ⊆L ¬LortL
(iii) exhL ⊆L ¬LnexhL

(iv) divL ⊆L ¬LindL.

Proof.

(i) For every A, B ∈FL(X),

¬incL(A, B)
= ¬(infx∈X(A(x) → B(x)))
� supx∈X ¬(A(x) → B(x)) by Lemma 3(ix)
� supx∈X ¬(¬B(x) → ¬A(x)) by Lemma 2(xviii)
= supx∈X ¬¬(¬B(x) ⊗ A(x)) by Lemma 2(xvi)
� supx∈X(¬B(x) ⊗ A(x)) by Lemma 2(xxi)
= nincL(A, B).

(ii) For every A, B ∈FL(X),

¬comL(A, B)
= ¬ supx∈X(A(x) ⊗ B(x))
= infx∈X ¬(A(x) ⊗ B(x)) by Lemma 3(viii)
= infx∈X(A(x) → ¬B(x)) by Lemma 2(xvi)
= ortL(A, B).

Since ortL(A, B)= ¬comL(A, B), from Lemma 2(xxi) we immediately obtain
¬ortL(A, B) = ¬¬comL(A, B)� comL(A, B).

(iii) For all A, B ∈ FL(X),

¬nexhL(A, B)
= ¬ supx∈X(¬A(x) ⊗ ¬B(x))
= infx∈X ¬(¬A(x) ⊗ ¬B(x)) by Lemma 3(viii)
� infx∈X ¬(¬A(x) ∧ ¬B(x)) by Lemma 2(iii)
� infx∈X(¬¬A(x) ∨ ¬¬B(x)) by Lemma 3(ix)
� infx∈X(A(x) ∨ B(x)) by Lemma 2(xxi).
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(iv) For every A, B ∈FL(X),
¬indL(A, B)

= ¬((infx∈X(A(x) → B(x))) ⊗ (infx∈X(B(x) → A(x))))
� ¬(infx∈X(A(x) → B(x)) ∧ (infx∈X(B(x) → A(x)))) by Lemma 2(iii)
� ¬(infx∈X(A(x) → B(x))) ∨ ¬(infx∈X(B(x) → A(x))) by Lemma 3(ix)
� supx∈X ¬(A(x) → B(x)) ∨ supx∈X ¬(B(x) → A(x)) by Lemma 3(ix)
� supx∈X(A(x) ⊗ ¬B(x)) ∨ supx∈X(B(x) ⊗ ¬A(x)) by Lemma 2(xx)
= nincL(A, B) ∨ nincL(B, A)
= divL(A, B).

Proposition 3 shows that most properties of the L–fuzzy information relations
discussed here coincide with their properties in the crisp case. Unfortunately,
some properties are counterintuitive. First, fuzzy orthogonality should not reduce
to the binary case. Moreover, the properties (iv.2), (v.2), and (vii.2) also do not
coincide with what is expected, as the following example shows.

Example 3. Let (L, min, max, t, it, 0, 1) be the R–lattice as in Example 1, where
L= [0, 1] and t is a left–continuous t–norm without zero divisors (e.g., tZ or tP ).
Consider an L–fuzzy set A in X �= ∅ given by: A(x) = 0.001 for every x∈ X . The
intuition dictates that X is not included in A to a very high degree. However,
by Proposition 3(ii.2), nincL(X, A) = 0, which means that in fact X is totally
included in A. Also, it is clear that ∅ and A do not cover the universe X to a
high degree, but nexhL(A, ∅) = 0. Finally, A and X are totally different, yet
divL(A, X) = 0. �

In order to overcome these inadequacies, we take another class of residuated
lattices, namely ER–lattices.

3.2 Fuzzy Information Relations Based on ER–Lattices

In this part we discuss another fuzzy generalisation of some information rela-
tions taking any complete ER–lattice (L, ∧, ∨, ⊗, →, ∼, 0, 1) as a basic algebraic
structure.

Definition 5. For a complete ER–lattice (L, ∧, ∨, ⊗, →, ∼, 0, 1), define the fol-
lowing L–fuzzy information relations: for all A, B ∈FL(X),

(i) L–fuzzy noninclusion:
NincL(A, B) = supx∈X(B(x) ← A(x))

(ii) L–fuzzy orthogonality:
OrtL(A, B) = infx∈X(A(x) ⇒ ∼B(x))

(iii) L–fuzzy exhaustiveness:
ExhL(A, B) = infx∈X(A(x) ⊕ B(x))

(iv) L–fuzzy nonexhaustiveness:
NexhL(A, B) = comL(∼LA, ∼LB)

(v) L–fuzzy diversity:
DivL(A, B) = NincL(A, B) ⊗ NincL(B, A). �
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The definition of NincL, ExhL, and DivL were presented in [29], where L was
any complete double residuated lattice.

In view of Remark 2, B(x) ← A(x) is a generalisation of the classical impli-
cation A(x) ∧ ¬B(x), so NincL(A, B) is the fuzzy counterpart of the classical
formula (∃x∈X) (x∈ A & x �∈B) and indeed represents the degree, to which A
is not included in B. In the definition of OrtL, ExhL, NexhL, and DivL we
substitute the operations →, ¬, and ∨ by ⇒, ∼, and ⊕, respectively.

Proposition 5. For every complete ER–lattice (L, ∧, ∨, ⊗, →, ∼, 0, 1),
(i) NincL is irreflexive and ⊕–cotransitive.
(ii) OrtL, ExhL, and NexhL are symmetric
(iii) DivL is irreflexive and symmetric.

Proof.

(i) Irreflexivity of NincL results from Lemma 2(v’). To show that it is also
⊕–cotransitive, let us take A, B, C ∈FL(X). Then
NincL(A, B) ⊕ NincL(B, C)

= supx∈X(B(x) ← A(x)) ⊕ supx∈X(C(x) ← B(x))
� supx∈X((B(x) ← A(x)) ⊕ (C(x) ← B(x))) by Lemma 3(vii’)
= supx∈X((C(x) ← B(x)) ⊕ (B(x) ← A(x))) by commutativity of ⊕
� supx∈X(C(x) ← A(x)) by Lemma 2(ix’)
= NincL(A, C).

(ii) Symmetry of OrtL follows from Lemma 2(xvii) and commutativity of ⊗,
symmetry of ExhL immediately follows from commutativity of ⊕, and symmetry
of NexhL results from symmetry of comL.
(iii) Irreflexivity of DivL follows from irreflexivity of NincL, while symmetry of
DivL results from commutativity of ⊕.

Example 4. Put L = [0, 1] and consider the lattice (L, min, max, t, it, n, 0, 1) as
in Example 2 (recall that t is a left–continuous t–norm, it is the residual im-
plication determined by t, and n is the standard fuzzy negation). Let X �= ∅
be an arbitrary domain and let A∈FL(X) be defined as in Example 3, i.e.
A(x)= 0.001 for every x∈X . By simple calculations we get NincL(X, A) = 1
for ← ∈{←Z , ←P }. Of course, this result coincides with our intuition.

Let B ∈FL(X) be such that B(x)= 0.999 for every x∈X . Then OrtL(A, B) =
t(n(0.001), n(0.999))= t(0.999, 0.001) �∈{0, 1} for any t without zero divisors.
Hence OrtL does not reduce to a crisp relation. Moreover, for any t-norm t,
NexhL(A, ∅)= 0.999. Clearly, this is again the expected result: A and ∅ do
not cover the universe X up to the very high degree. Finally, NincL(A, X)= 0
for the dual residuum of any (right–continuous) t–conorm s. Also, note that
NincL(X, A)= (0.001←1)=1 for ← ∈{←Z , ←P }. Then DivL(X, A)= 0⊕1 =1.
So, as expected, A differs from X to the very high degree. �

In view of the above example, it is now clear that the inadequacies in repre-
sentation, which occur when R–lattices of the class RL+ were taken as basic
structures, are avoided.
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Note also:

Proposition 6. For every complete ER–lattice (L, ∧, ∨, ⊗, →, ∼, 0, 1),
(i) NincL(A, B)= ∼incL(∼LB, ∼LA) and DivL(A, B)= ∼indL(∼LA, ∼LB)

for every A, B ∈FL(X),
(ii) OrtL =∼LcomL and ExhL = ∼LNexhL.

Proof.
(i) For every A, B ∈FL(X),

NincL(A, B)
= supx∈X(B(x) ← A(x))
= supx∈X ∼(∼B(x) → ∼A(x)) by (10)
= ∼ infx∈X(∼B(x) → ∼A(x)) by Lemma 3(vi’)
= ∼incL(∼LB, ∼LA).

Similarly, using (10), Lemma 3(vi’), and (8), we get for every A, B ∈FL(X),
DivL(A, B)

= NincL(A, B) ⊕ NincL(B, A)
= supx∈X(B(x) ← A(x)) ⊕ supx∈X(A(x) ← B(x))
= supx∈X ∼(∼B(x) → ∼A(x)) ⊕ supx∈X ∼(∼A(x) → ∼B(x))
= ∼ infx∈X(∼B(x) → ∼A(x)) ⊕ ∼ infx∈X(∼A(x) → ∼B(x))
= ∼(infx∈X(∼B(x) → ∼A(x)) ⊗ infx∈X(∼A(x) → ∼B(x)))
= ∼indL(∼LA, ∼LB).

The proof of (ii) is similar.

Note that the properties stated in the above proposition coincide with the respec-
tive properties of these relations in the crisp case. Clearly, for every crisp subsets
A, B ⊆ X , A= B ⇔ −A= − B. Yet in general indL(A, B) �= indL(∼LA, ∼LB).
Similarly, incL(A, B) �= incL(∼LB, ∼LA). It follows from the fact that in an ar-
bitrary ER–lattice L, we do not have any relationship between a → b and
∼b → ∼a, as observed in Remark 2.

4 Fuzzy Information Operators

Let (L, ∧, ∨, ⊗, →, ∼, 0, 1) be a complete ER–lattice. By an L–fuzzy information
operator we mean any mapping ΩL : RL(X) × FL(X) → FL(X). Below we
define several L–information operators.

Definition 6. For every complete ER–lattice (L, ∧, ∨, ⊗, →, ∼, 0, 1), for every
R ∈ RL(X), for every A∈FL(X), and for every x∈X,
(O.1) [R]→A(x) = infy∈X(R(x, y) → A(y))
(O.2) [R]⇒A(x) = infy∈X(R(x, y) ⇒ A(y))
(O.3) [R]←A(x) = supy∈X(R(x, y) ← A(y))
(O.4) [R]⇐A(x) = supy∈X(R(x, y) ⇐ A(y))
(O.5) 〈R〉⊗A(x) = supy∈X(R(x, y) ⊗ A(y))
(O.6) 〈R〉⊕A(x) = infy∈X(R(x, y) ⊕ A(y)). �
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It is worth noting that [ ]→ (resp. [ ]⇒) and 〈 〉⊗ correspond to fuzzy modali-
ties ([13],[14],[17]), i.e. [R]→ and [R]⇒ are fuzzy generalisations of the necessity
operator, while 〈 〉⊗ is the counterpart of the possibility operator. Also, these
operators are fuzzy approximation operators well–known in the theory of fuzzy
rough sets (see, e.g., [32], [34]), as well as fuzzy morphological operators which
are basic tools in mathematical morphology ([24]).

Let R ∈ RL(X). For any x∈X we write xR to denote the L–fuzzy set in X
defined as: (xR)(y)= R(x, y) for every y ∈X . Note that for every A∈ FL(X)
and for every x∈X ,

[R]→A(x) = incL(xR, A) [R]←A(x) = NincL(xR, A)
〈R〉⊗A(x) = comL(xR, A) 〈R〉⊕A(x) = ExhL(xR, A).

Definition 7. Let Ω1, Ω2 : RL(X)×FL(X) → FL(X) be two L–fuzzy informa-
tion operators, let ◦ be a unary operation in L, and let ◦L : FL(X) → FL(X) be
such that (◦LA)(x) = ◦A(x) for every x∈X. We say that Ω1 and Ω2 are

• ◦L-dual iff Ω1(R, A)= ◦L Ω2(R, ◦LA) for every R ∈RL(X) and for every
A∈FL(X)

• weakly ◦L–dual iff Ω1(R, A) ⊆L ◦LΩ2(R, ◦LA) for every R ∈RL(X) and
for every A∈FL(X)

• ◦L–codual iff Ω1(R, A) = ◦LΩ2(◦LR, ◦LA) for every R ∈RL(X) and for
every A∈FL(X). �

Basic properties of the operators (O.1)–(O.6) are given in the following
proposition.

Proposition 7. For every complete ER–lattice L and for every R ∈FL(X),

(i) [R]→X = [R]⇒X = 〈R〉⊕X = X, [R]←∅ = [R]⇐∅ = 〈R〉⊗∅ = ∅
(ii) for every A, B ∈FL(X) and for every Ω ∈{[ ]→, [ ]⇒, [ ]←, [ ]⇐, 〈 〉⊗, 〈 〉⊕},

A ⊆L B implies Ω(A) ⊆L Ω(B)
(iii) for every A∈ FL(X),

[R]→A ⊆L ¬〈R〉⊗¬A [R]⇒A = ∼〈R〉⊗∼A
〈R〉⊗A ⊆L ¬[R]→¬A 〈R〉⊗A = ∼[R]→∼A
�– [R]← �–A ⊆L 〈R〉⊕A 〈R〉⊕A = ∼[R]⇐∼A
�– 〈R〉⊕ �–A ⊆L [R]←A [R]⇐A = ∼〈R〉⊕∼A

(iv) for every A∈ FL(X),
[R]→A = ∼[∼R]←∼A [R]⇒A = ∼[∼R]⇐∼A
[R]←A = ∼[∼R]→∼A [R]⇐A = ∼[∼R]⇒∼A

(v) for every indexed family (Ai)i∈I of L–fuzzy sets in X,

[R]→(
⋂

i∈I Ai) =
⋂

i∈I [R]→Ai [R]⇒(
⋂

i∈I Ai) =
⋂

i∈I [R]⇒Ai

[R]→(
⋃

i∈I Ai) L⊇
⋃

i∈I [R]→Ai [R]⇒(
⋃

i∈I Ai) L⊇
⋃

i∈I [R]⇒Ai

[R]←(
⋂

i∈I Ai) ⊆L

⋂
i∈I [R]←Ai [R]⇐(

⋂
i∈I Ai) ⊆L

⋂
i∈I [R]⇐Ai

[R]←(
⋃

i∈I Ai) =
⋃

i∈I [R]←Ai [R]⇐(
⋃

i∈I Ai) =
⋃

i∈I [R]⇐Ai

〈R〉⊗(
⋂

i∈I Ai) ⊆L

⋂
i∈I〈R〉⊗Ai 〈R〉⊕(

⋂
i∈I Ai) =

⋂
i∈I〈R〉⊕Ai

〈R〉⊗(
⋃

i∈I Ai) =
⋃

i∈I〈R〉⊗Ai 〈R〉⊕(
⋃

i∈I Ai) L⊇
⋃

i∈I〈R〉⊕Ai.
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Proof. Straightforward verification.

The property (ii) of the above proposition states the monotonicity of L–fuzzy
information operators w.r.t. Zadeh’s inclusion. Also, (iii) states the ∼ –duality
and weak ¬ –duality between these operators, and (iv) establishes ∼ –coduality
between L–fuzzy information operators.

Corollary 1. For every complete ER–lattice L,
(i) [ ]⇒ and 〈 〉⊗, as well as [ ]⇐ and 〈 〉⊕, are ∼–dual,
(ii) [ ]→ and 〈 〉⊗ are weakly ¬–dual
(iii) [ ]→ and [ ]←, as well as [ ]⇒ and [ ]⇐, are ∼–codual.

It is well-known that traditional information operators are useful for characteri-
zing particular classes of (binary) relations. This is also the case for fuzzy infor-
mation operators. The following theorem presents complete characterizations of
some basic classes of fuzzy relations.

Theorem 1. For every complete ER–lattice (L, ∧, ∨, ⊗, →, ∼, 0, 1), for every
R ∈ RL(X), and for every A∈FL(X) the following statements hold:

(i) R is reflexive iff [R]→A ⊆L A

iff [R]⇒A ⊆L A

iff A ⊆L 〈R〉⊗A

(ii) R is irreflexive iff A ⊆L [R]←A

iff A ⊆L [R]⇐A

iff 〈R〉⊕A ⊆L A

(iii) R is symmetric iff 〈R〉⊗[R]→A ⊆L A

iff [R]←〈R〉⊕A ⊆L A

iff A ⊆L [R]→〈R〉⊗A

iff A ⊆L 〈R〉⊕[R]←A

(iv) R is ⊗–transitive iff [R]→A ⊆L [R]→[R]→A

iff [R]⇒A ⊆L [R]⇒[R]⇒A

iff 〈R〉⊗〈R〉⊗A ⊆L 〈R〉⊗A

(v) R is ⊕–cotransitive iff [R]←[R]←A ⊆L [R]←A

iff [R]⇐[R]⇐A ⊆L [R]⇐A

iff 〈R〉⊕A ⊆L 〈R〉⊕〈R〉⊕A.

Proof. By way of example we prove (ii) and (iv).
(ii) First, consider the inclusion A ⊆L [R]←A.
(⊆) Assume that R is irreflexive. Then for every A∈ FL(X) and for every x∈X ,

[R]←A(x) = supy∈X(R(x, y) ← A(y))� R(x, x)←A(x) = 0←A(x) = A(x).
by Lemma 2(vi’).
(⊇) Assume that R is not irreflexive. Then R(x0, x0) �=0 for some x0 ∈X . Put
A = x0R. Then we have:
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[R]←A(x0) = supy∈X(R(x0, y)←R(x0, y)) = 0
by Lemma 2(v’). Hence A(x0) → [R]←A(x0) = R(x0, x0) → 0 �=1 by Lemma
2(v), so A �⊆L [R]←A.

Consider the second equivalence.
(⊆) For every A∈FL(X) and for every x∈X ,

[R]⇐A(x) = supy∈X(R(x, y)⇐A(y))
� R(x, x)⇐A(x) = 0⇐A(x) = A(x).

by Lemma 2(vi’).
(⊇) As before, assume that R is not irreflexive, i.e. R(x0, x0) �=0 for some x0 ∈X .
For A= {x0} we have:

[R]⇐A(x0)
= supy∈X(R(x0, y)⇐A(y))
= supy∈X ∼(∼R(x0, y)⇒∼A(y)) by (11)
= ∼ infy∈X(∼R(x0, y)⇒∼A(y)) by Lemma 3(vi’)
= ∼ infy∈X(R(x0, y) ⊕ ∼A(y)) by (9)
= ∼R(x0, x0).

Since R(x0, x0) �=0, we have ∼R(x0, x0) �=1, so [R]⇐A(x0) �= 1. But A(x0)= 1.
Therefore, A �⊆L [R]⇐A.

Now, consider the third equivalence.
(⊆) For any A∈ FL(X) and for any x∈X ,

〈R〉⊕A(x) = infy∈X(R(x, y) ⊕ A(y))� R(x, x) ⊕ A(x) = 0 ⊕ A(x) = A(x).

(⊇) Assume that R is not irreflexive, i.e. R(x0, x0) �= 0 for some x0 ∈X . For
A=X\{x0} we have:

〈R〉⊕A(x0) = infy∈X(R(x0, y) ⊕ A(y)) = R(x0, x0) ⊕ 0 = R(x0, x0).
Since A(x0)=0, we get 〈R〉⊕A(x0) �� A(x0), which implies 〈R〉⊕A �⊆L A.

(iv) We show the first equivalence.
(⊆) For every A∈FL(X) and for every x∈X ,

[R]→[R]→A(x)
= infy∈X(R(x, y)→(infz∈X(R(y, z)→A(z))))
= infz∈X infy∈X(R(x, y)→(R(y, z)→A(z))) by Lemma 3(ii)
= infz∈X infy∈X(R(x, y) ⊗ R(y, z)→A(z)) by Lemma 2(xiv)
� infz∈X infy∈X(R(x, z)→A(z)) by assumption, Lemma 2(i)
= infz∈X(R(x, z)→A(z))
= [R]→A(x).

(⊇) Assume now that R is not ⊗–transitive, i.e. R(x0, y0)⊗R(y0, z0) ��R(x0, z0)
for some x0, y0, z0 ∈X . By Lemma 2(v), this means that

(iv.1) (R(x0, y0) ⊗ R(y0, z0))→R(x0, z0) �= 1.

Consider A = x0R. Using again Lemma 2(v) we get

(iv.2) [R]→A(x0) = infy∈X(R(x0, y)→R(x0, y)) = 1.
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Next,

[R]→[R]→A(x0)
= infy∈X(R(x0, y)→(infz∈X(R(y, z)→R(x0, z)))
= infz∈X infy∈X(R(x0, y)→(R(y, z)→R(x0, z))) by Lemma 3(ii)
= infz∈X infy∈X((R(x0, y) ⊗ R(y, z))→R(x0, z)) by Lemma 2(xiv)
� (R(x0, y0) ⊗ R(y0, z0))→R(x0, z0)
�=1 by (iv.1).

Therefore, we obtain

[R]→A(x0)→ [R]→[R]→A(x0)
= 1→ [R]→[R]→A(x0) by (iv.2)
= [R]→[R]→A(x0) by Lemma 2(vi)
�=1.

Then, by Lemma 2(v), [R]→A(x0) �� [R]→[R]→A(x0), so [R]→A �⊆L [R]→[R]→A.

Now, we show the second equivalence.
(⊆) For every A∈FL(X) and for every x∈X ,

[R]⇒[R]⇒A(x)
= infy∈X(R(x, y)⇒(infz∈X(R(y, z)⇒A(z))))
= infz∈X infy∈Z(R(x, y)⇒(R(y, z)⇒A(z))) by Lemma 3(iii)
= infz∈X infy∈X(R(x, y) ⊗ R(y, z)⇒A(z)) by Lemma 2(xv)
� infz∈X infy∈X(R(x, z)⇒A(z)) by assumption, Lemma 2(i)
= [R]⇒A(x).

(⊇) Assume that R is not ⊗–transitive, i.e. there exist x0, y0, z0 ∈X such that
R(x0, y0) ⊗ R(y0, z0) �� R(x0, z0). Then ∼R(x0, z0) �� ∼(R(x0, y0) ⊗ R(y0, z0)),
which by Lemma 2(v) gives

(iv.3) ∼R(x0, z0)→∼(R(x0, y0) ⊗ R(y0, z0)) �=1.

Take A = X\{z0}. Since for every a ∈L, a⊕1 = 1, we easily get for every y ∈X ,

(iv.4) [R]⇒A(y) = infz∈X(∼R(y, z) ⊕ A(z)) = ∼R(y, z0).

Furthermore,

[R]⇒[R]⇒A(x0)
= infy∈X(R(x0, y)⇒ [R]⇒A(y))
= infy∈X(R(x0, y)⇒∼R(y, z0)) by (iv.4)
= infy∈X(∼R(x0, y) ⊕ ∼R(y, z0)) by (9)
= infy∈X ∼(R(x0, y)) ⊗ R(y, z0)) by (8)
= ∼ supy∈X(R(x0, y)) ⊗ R(y, z0)) by Lemma 3(vi’).

Then we get

[R]⇒A(x0) → [R]⇒[R]⇒A(x0)
= ∼R(x0, z0) → ∼ supy∈X(R(x0, y) ⊗ R(y, z0)) by (iv.4)
�∼R(x0, z0)→∼(R(x0, y0) ⊗ R(y0, z0)) by Lemma 2(i)
�=1 by (iv.3).
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By Lemma 2(v), this implies [R]⇒A(x0) �� [R]⇒[R]⇒A(x0). Therefore, we get
[R]⇒A �⊆L [R]⇒[R]⇒A.

In the similar way the third equivalence can be proved.

5 Conclusions

In this paper we have presented fuzzy generalisations of several information rela-
tions and operators. Two classes of residuated lattices have been taken as basic
algebraic structures: traditional residuated lattices (commutative and integral)
and so–called extended residuated lattices (ER–lattices). It has been shown that
ER–lattices allow us to define abstract counterparts of the main classes of fuzzy
logical connectives. We have indicated that some inadequacies in representation
occur when residuated lattices constitute the basic structures and that these
drawbacks can be avoided on the basis of ER–lattices. Some fuzzy information
operators have been presented. We have shown that these operators are useful
for characterizations of main classes of fuzzy relations.
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