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Abstract. Logics of binary relations corresponding, among others, to
the class RRA of representable relation algebras and the class FRA of
full relation algebras are presented together with the proof systems in
the style of dual tableaux. Next, the logics are extended with relational
constants interpreted as point relations. Applications of these logics to
reasoning in non-classical logics are recalled. An example is given of a
dual tableau proof of an equation which is RRA-valid, while not RA-valid.

1 Introduction

We present a survey of relational logics which provide a general framework for
specification and reasoning (verification of validity, model checking and entail-
ment) in non-classical logics. They also provide a common background for a
broad class of relational structures used in computer science. We present the
logics step by step, starting with a logic of binary relations with basic relational
operations of relation algebras (RL-logic), then expanding the language with the
constant 1 (RL(1)-logic), next with the constant 1′ (RL(1′)-logic), then with the
constants 1 and 1′ put together (RL(1, 1′)-logic), and finally adding relational
constants interpreted as point relations (RLax(C)-logic and RLdf (C)-logic). The
logics are based on various classes of models which differ in the interpretation of
relational constants, for example, 1 may be interpreted as a universal relation or
as an equivalence relation, 1′ may be interpreted as an equivalence relation or
an identity. We present completeness theorems with respect to all those classes
of models. We also show which classes of models of RL(1, 1′)-language enable us
to simulate the RRA-validity and FRA-validity. Logic RL(1, 1′) with the class of
models corresponding to full relation algebras plays the role of a generic logic
within which many non-classical logics can be expressed. Its applications to
modal logics originated in [15]. Then, after few more examples of logics treated
in a relational framework (see e.g., [16], [17]), a paradigm ’formulas are relations’
has been formulated in [18]. Since then relational proof systems have been devel-
oped for several theories, see e.g., [3], [4], [8], [11], [12], [13], [19], [20], [21], [10]
and [9]. Any particular relational proof system consists of the deduction system
for RL(1, 1′) augmented with the specific rules which reflect properties of accessi-
bility relations from the models of a non-classical logic in question. An important
feature of RL(1, 1′)-logic is that it is expressive enough for performing the major
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logical tasks, namely verification of validity, entailment, model checking and sat-
isfiability, as it is shown in Sections 10, 11, 12, and 13. A correspondence theory
for relational proof systems is considered in [14]. A general method of defining
deduction rules reflecting various constraints imposed on relations in the models
of RL(1, 1′)-logic is presented in that paper.

Recent implementations of the proof system for RL(1, 1′)-logic are described
in [2] and [6]. The first one is available at http://logic.stfx.ca/reldt. In [5]
an implementation of translation procedures from the languages of non-classical
logics to relational languages is presented. The system can be downloaded from
http://www.di.univaq.it/TARSKI/transIt/. For the algebraic background of the
relational logics see [24], [25] and [23].

2 A General Scheme of Relational Logics

Each relational logic L is determined by its language and its class of models. In
this paper we consider logics of binary relations. There are two kinds of expres-
sions of relational languages: terms and formulas. Terms represent relations and
formulas express the facts that a pair of objects stands in a relation.

The vocabulary VL of L-language consists of the symbols from the following
pairwise disjoint sets:

– a countable infinite set of object variables OVL;
– a countable (possibly empty) set of object constants OCL;
– a countable (possibly empty) set of relational variables RVL;
– a countable (possibly empty) set of relational constants RCL;
– a set of relational operation symbols OPL = {−, ∪, ∩, ; ,−1 }, where −, ∪, ∩

are Boolean operations, ; is a relative product, and −1 is the operation of
converse;

– a set of parentheses {(, )}.

The set RAL = RVL ∪ RCL is called the set of atomic relational terms. The set
OSL = OVL ∪ OCL is called the set of objects symbols. The set RTL of relational
terms is the smallest (wrt inclusion) set of expressions that includes all atomic
relational terms and is closed with respect to all relational operation symbols.
L-formulas are of the form xRy, where x, y ∈ OSL and R ∈ RTL. An L-formula
xRy is said to be atomic whenever R ∈ RAL.

With an L-language a class of L-models is associated. An L-model is a structure
M = (U, m), where U is a non-empty set and m is a meaning function which
assigns:

– elements of U to object constants, that is m(c) ∈ U , for every c ∈ OCL;
– binary relations on U to atomic relational terms, that is m(R) ⊆ U × U , for

every R ∈ RAL;

and extends to compound relational terms as follows:

– some condition about m(−R) is assumed (see Sections 4 and 5 for the ex-
amples of the definitions of the complement operations);
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– m(R ∪ S) = m(R) ∪ m(S);
– m(R ∩ S) = m(R) ∩ m(S);
– m(R−1) = (m(R))−1= {(x, y) ∈ U × U : (y, x) ∈ m(R)};
– m(R; S) = m(R); m(S) = {(x, y) ∈ U × U : ∃z((x, z) ∈ m(R) ∧ (z, y) ∈

m(S))} ;
– some additional conditions about m may be assumed (see Sections 5 and 6).

Let M = (U, m) be an L-model. An L-valuation in M is any function
v : OSL → U such that v(c) = m(c), for every c ∈ OCL. Let M be an L-
model, let v be an L-valuation in M and let xRy be an L-formula. Satisfiability
of xRy by v in M is defined as follows:

– If 1 	∈ RCL, then M, v |= xRy iff (v(x), v(y)) ∈ m(R).
– If 1 ∈ RCL, then M, v |= xRy iff (v(x), v(y)) 	∈ m(1) or (v(x), v(y)) ∈ m(1)∩

m(R).

Note that in the latter case, satisfiability is defined in a non-standard way. This is
because we want to relativize satisfiability to the interpretation of the relational
constant 1. In the general case, this interpretation need not be the universal
relation. In the case it is, clearly the two definitions are equivalent.

An L-formula xRy is true in M whenever it is satisfied in M by all L-valuations.
An L-formula xRy is L-valid whenever it is true in all L-models.

Fact 1
Let L and L′ be relational logics such that every L-model is an L′-model. Then
for any relational formula xRy, if xRy is L′-valid, then it is L-valid.

3 A General Scheme of Relational Proof Systems

Relational proof systems in the style of dual tableaux are founded on the Ra-
siowa-Sikorski system for the first order logic [22]. They are powerful tools for
performing the major reasoning tasks: verification of validity, verification of en-
tailment, model checking, and verification of satisfiability. Every relational proof
system is determined by its axiomatic sets of formulas and rules which most of-
ten apply to finite sets of relational formulas. Some relational proof systems with
infinitary rules are known in the literature, but in the present paper we confine
ourselves to finitary rules only. The axiomatic sets take the place of axioms. The
rules are intended to reflect properties of relational operations and constants.
There are two groups of rules: decomposition rules and specific rules. Given a
formula, the decomposition rules of the system enable us to transform it into
simpler formulas, or the specific rules enable us to replace a formula by some
other formulas. The rules have the following general form:

(∗)
Φ

Φ1 | . . . | Φn
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where Φ1, . . . , Φn are finite non-empty sets of formulas, n ≥ 1, and Φ is a finite
(possibly empty) set of formulas. A rule of the form (∗) is said to be applicable to
a set X of formulas whenever Φ ⊆ X . As a result of an application of a rule of the
form (∗) to a set X , we obtain the sets (X \ Φ)∪Φi, i = 1, . . . , n. A set to which
a rule has been applied is called the premise of the rule, and the sets obtained
by an application of the rule are called its conclusions. As usual, any concrete
rule will always be presented in a short form, that is we will indicate only the
formulas which are essential for a transformation to be performed by the rule
and also we will omit set brackets. Given a formula, successive applications of
the rules result in a tree whose nodes consist of finite sets of formulas. Each node
includes all the formulas of its predecessor node, possibly except for those which
have been transformed. A node of the tree does not have successors whenever
its set of formulas includes an axiomatic subset or none of the rules is applicable
to it. We say that a variable in a rule is new whenever it appears in a conclusion
of the rule and does not appear in its premise.

Let L be a relational logic. A relational proof system for L (L-system for short)
contains a set DRL of L-decomposition rules and a set SRL of L-specific rules,
where in each particular logic L the terms and the object symbols range over the
corresponding sets of L.

The set of decomposition rules DRL includes the set DR0 of rules of the
following forms:

Let x, y, ∈ OSL and R, S ∈ RTL.

(∪)
x(R ∪ S)y
xRy,xSy

(−∪)
x−(R ∪ S)y

x−Ry | x−Sy

(∩)
x(R ∩ S)y
xRy | xSy

(−∩)
x−(R ∩ S)y
x−Ry,x−Sy

(−−)
x−−Ry

xRy

(−1)
xR−1y

yRx
(−−1)

x−R−1y

y−Rx

(; )
x(R;S)y

xRz, x(R;S)y | zSy, x(R;S)y
z ∈ OSL

(−; )
x−(R;S)y

x−Rz, z−Sy
z ∈ OVL and z is new

The set of specific rules includes the rules that reflect the properties of con-
stants assumed in an L-language in question.

In all the systems considered in this paper the sets containing a subset
{xRy, x−Ry}, for x, y ∈ OSL, R ∈ RTL, are assumed to be L-axiomatic sets.
A finite set of formulas {ϕ1, . . . , ϕn} is said to be an L-set whenever for every
L-model M and for every L-valuation v in M there exists i ∈ {1, . . . , n} such
that ϕi is satisfied by v in M. Let Φ be a non-empty set of L-formulas. A

rule
Φ

Φ1| . . . |Φn
is L-correct whenever it holds: Φ is an L-set if and only if Φi is
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an L-set, for every i ∈ {1, . . . , n}. In the case when Φ is empty, L-correctness
can be expressed as follows: a rule

Φ1| . . . |Φn
is L-correct whenever there ex-

ists i ∈ {1, . . . , n} such that Φi is not an L-set. It follows that the rules are
semantically invertible. It is a characteristic feature of all Rasiowa-Sikorski style
deduction systems (see [22] and [9]). A transfer of validity from the bottom sets
of a rule to the upper set is needed for soundness of the system. The other di-
rection is used in a proof of completeness. Observe that the classical tableau
system for first-order logic has in fact the analogous property of preserving and
reflecting unsatisfiability. Although this fact is not provable directly from the
definition of tableau rules, it can be proved under the additional assumptions on
repetition of some formulas in the process of application of the rules. In tableau
system this assumption is hidden, it is shifted to a strategy of building the proof
trees. In our systems the required repetitions are explicitly indicated in the rules.

Let xRy be an L-formula. An L-proof tree for xRy is a tree with the following
properties:

– the formula xRy is at the root of this tree;
– each node except the root is obtained by an application of an L-rule to its

predecessor node;
– a node does not have successors whenever it is an L-axiomatic set.

A branch of an L-proof tree is said to be L-closed whenever it contains a node
with an L-axiomatic set of formulas. A tree is L-closed iff all of its branches are
L-closed.

Due to the forms of decomposition rules of DR0 we obtain the following:

Fact 2
Let L-system consists of decomposition rules from DR0. If a node of an L-proof
tree does not contain an L-axiomatic subset and contains an L-formula xRy or
x−Ry, for atomic R, then all of its successors contain this formula as well.

An L-formula xRy is L-provable whenever there is a closed L-proof tree for it.

Fact 3
For every relational logic L, if we show that:

1. All L-rules are L-correct.
2. All L-axiomatic sets are L-sets.

then we obtain the soundness theorem for L-logic: if an L-formula xRy is L-
provable, then it is L-valid.

As usual in proof theory a concept of completeness of a non-closed proof tree is
needed. Intuitively, completeness of a non-closed tree means that all the rules
that can be applied have been applied. By abusing the notation, for any branch
b and a formula xRy, we write xRy ∈ b, if xRy belongs to a set of formulas of a
node of branch b.
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A non-closed branch b of an L-proof tree is said to be L-complete whenever
it satisfies L-completion conditions. L-completion conditions determined by the
rules of DR0 are the following:
For all x, y ∈ OSL and for all R, S ∈ RTL:

Cpl(∪) (resp. Cpl(−∩)) If x(R ∪ S)y ∈ b (resp. x−(R ∩ S)y ∈ b), then both
xRy ∈ b (resp. x−Ry ∈ b) and xSy ∈ b (resp. x−Sy ∈ b).
Cpl(∩) (resp. Cpl(−∪)) If x(R ∩ S)y ∈ b (resp. x−(R ∪ S)y ∈ b), then either
xRy ∈ b (resp. x−Ry ∈ b) or xSy ∈ b (resp. x−Sy ∈ b).
Cpl(−) If x(−−R)y ∈ b, then xRy ∈ b.
Cpl(−1) If xR−1y ∈ b, then yRx ∈ b.
Cpl(−−1) If x−R−1y ∈ b, then y−Rx ∈ b.
Cpl(; ) If x(R; S)y ∈ b, then for every z ∈ OSL, either xRz ∈ b or zSy ∈ b.
Cpl(−; ) If x−(R; S)y ∈ b, then for some z ∈ OVL, both x−Rz ∈ b and z−Sy ∈ b.

An L-proof tree is said to be L-complete iff all of its non-closed branches are
L-complete. An L-complete non-closed branch is said to be L-open.

By Fact 2 and since the set containing a subset {xRy, x−Ry} is L-axiomatic,
in every L-system containing only decomposition rules of DR0 the following
holds:

Fact 4
Let L-system be a system with decomposition rules of DR0 as the only rules and
let b be an L-open branch of an L-proof tree. Then there is no atomic L-formula
xRy such that xRy ∈ b and x−Ry ∈ b.

Due to Facts 2 and 4 it is easy to prove the following proposition:

Proposition 1
Let L-system be a system with decomposition rules of DR0 as the only rules and
let b be a branch of an L-proof tree. If there are x, y ∈ OSL and R ∈ RTL such
that xRy ∈ b and x−Ry ∈ b, then b is closed.

Sometimes if the logic L is clear from the context we will omit the index L.

4 Basic Relational Logic RL

The logic presented in this section is a common core of all the logics relevant
for binary relations. The vocabulary of the language of RL-logic is defined as in
Section 2 where:

– RCRL = ∅.

An RL-model is a structure M = (U, m), where U is a non-empty set and
m: RVRL ∪ OCRL → P(U × U) ∪ U is a meaning function such that m extends
to all compound relational terms as defined in Section 2 with the condition:
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m(−R) = (U × U) \ m(R)

where on the right hand side ‘\’ denotes the set difference.
The decomposition rules DRRL of the RL-system are the rules of DR0 pre-

sented in Section 3 adjusted to the RL-language. There are no specific rules in
this system. RL-axiomatic set is any set containing {xRy, x−Ry}, as defined in
Section 3, where x, y ∈ OSRL and R is a relational term of RTRL.

For each rule (#) ∈ DRRL its correctness follows directly from semantics of
relational terms built with the operator #.

Proposition 2

1. All RL-rules are RL-correct.
2. All RL-axiomatic sets are RL-sets.

Due to the above proposition and Fact 3 we obtain:

Theorem 1 (Soundness of RL)
Let xRy be an RL-formula. If xRy is RL-provable, then it is RL-valid.

A non-closed branch b of a proof tree is said to be RL-complete whenever it
satisfies RL-completion conditions of Section 3 determined by the rules from
DRRL.

Let b be an RL-open branch of an RL-proof tree. We define a branch structure
Mb = (U b, mb) as follows:

– U b = OSRL;
– mb(c) = c, for every c ∈ OCRL
– mb(R) = {(x, y) ∈ U b × U b : xRy 	∈ b}, for every relational variable R;
– mb extends homomorphically to all compound relational terms as in the

RL-models.

Fact 5
For every RL-open branch b, Mb is an RL-model.

Any structure Mb is referred to as an RL-branch model. Let vb: OSRL → U b be
an RL-valuation in Mb such that vb(x) = x for every x ∈ OSRL.

Proposition 3
For every open branch b of an RL-proof tree, and for every RL-formula xRy:

(∗) if Mb, vb |= xRy, then xRy 	∈ b.

Proof. The proof is by induction on the complexity of formulas.

Let xRy be an atomic RL-formula. Assume Mb, vb |= xRy, that is (x, y) ∈
mb(R). By the definition of a branch model xRy 	∈ b. Let R ∈ RV and Mb, vb |=
x−Ry, that is (x, y) 	∈ mb(R). Therefore xRy ∈ b. By Fact 4, x−Ry 	∈ b.

By way of example we prove (∗) for R = S; T and R = −(S; T ).
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Let Mb, vb |= xRy, for R = S; T . Then (x, y) ∈ mb(S; T ), that is there exists
z ∈ OSRL such that xSz 	∈ b and zTy 	∈ b. Suppose x(S; T )y ∈ b. By the
completion condition Cpl(; ), for every z ∈ OSRL either xSz ∈ b or zTy ∈ b, a
contradiction.

Let Mb, vb |= xRy, for R = −(S; T ). Then (x, y) 	∈ mb(S; T ), that is for every
z ∈ OSRL either xSz ∈ b or zTy ∈ b. Suppose x−(S; T )y ∈ b. By the completion
condition Cpl(−; ), for some z ∈ OVRL both x−Sz ∈ b and z−Ty ∈ b. By
Proposition 1, b is closed, a contradiction. �

The above proposition enables us to prove the following completeness theorem:

Theorem 2 (Completeness of RL)
Let xRy be an RL-formula. If xRy is RL-valid, then xRy is RL-provable.

Proof. Assume xRy is RL-valid. Suppose there is no any closed RL-proof tree
for xRy. Consider a non-closed RL-proof tree for xRy. We may assume that this
tree is complete. Let b be an open branch of the complete RL-proof tree for xRy.
Since xRy ∈ b, by Proposition 3 in the branch model Mb valuation vb does not
satisfy xRy. Hence xRy is not RL-valid, a contradiction. �

5 Relational Logics with the Constant 1

In this section we present a relational logic RL(1) obtained from RL by expand-
ing its language with a relational constant 1. There are two classes of models
associated with the logic RL(1): in the first one the relational constant 1 is inter-
preted as an equivalence relation on a non-empty set U , while in the second 1 is
interpreted as a universal relation. The vocabulary of the language of RL(1)-logic
is defined as in Section 2 with

– RCRL(1) = {1}.

An RLN(1)-model is a structure M = (U, m), where U is a non-empty set and
m: RARL(1) ∪ OCRL(1) → P(U × U) ∪ U is a meaning function such that:

– m(1) is an equivalence relation on U ;
– m extends to all compound relational terms as defined in Section 2 with the

following additional condition: m(−R) = m(1) ∩ (U × U \ m(R)).

An RLN(1)-model is said to be RL(1)-model whenever 1 is interpreted as an
universal relation, that is m(1) = U × U . It follows that if M = (U, m) is
RLN(1)-model or RL(1)-model, then truth of a formula xRy in M is equivalent
to m(1) ⊆ m(R).

Due to the definitions of RLN(1)-models and RL(1)-models we obtain the
following:
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Fact 6
For every RL(1)-formula xRy, if xRy is RLN(1)-valid, then it is RL(1)-valid.

RL(1)-decomposition rules are precisely the rules of DRRL, that is DRRL(1) =
DRRL. Moreover, the relational proof system for RL(1)-logic (RL(1)-system for
short) contains RL(1)-axiomatic sets defined below. A set is an RL(1)-axiomatic
whenever it includes any of the subsets (Ax1) or (Ax2), where:

(Ax1) {x1y}, where x, y ∈ OSRL(1);
(Ax2) {xRy, x−Ry}, where x, y ∈ OSRL(1) and R ∈ RTRL(1).

As in the case of RL-logic, it is easy to prove the following:

Proposition 4

1. All RL(1)-rules are RLN(1)-correct.
2. All RL(1)-axiomatic sets are RLN(1)-sets.

Due to the above proposition and Fact 3 we have the following:

Proposition 5
Let xRy be an RL(1)-formula. If xRy is RL(1)-provable, then it is RLN(1)-valid.

Due to Fact 6 the following holds:

Corollary 1
Let xRy be an RL(1)-formula. If xRy is RL(1)-provable, then it is RL(1)-valid.

RL(1)-completion conditions are the same as the completion conditions defined
in Section 3 determined by the rules from DRRL(1) and adapted to the RL(1)-
language.

Let b be an open branch of an RL(1)-proof tree. A branch structure Mb =
(U b, mb) is defined as for RL-logic, taking the object symbols of RL(1) as the
elements of U b, defining mb for atomic RL(1)-terms and for object constants as
in RL-branch model and defining mb for all RL(1)-terms as in RL(1)-models.

Proposition 6
For every RL(1)-open branch b, a branch structure Mb is an RL(1)-model.

Proof. For all x, y ∈ OSRL(1) x1y 	∈ b, since otherwise b would be closed. So
mb(1) = U b × U b. Therefore by the definition, Mb is an RL(1)-model. �

Let vb: OSRL(1) → U b be an RL(1)-valuation in Mb such that vb(x) = x for
every x ∈ OSRL(1).

Proposition 7
For every open branch b of an RL(1)-proof tree, and for every RL(1)-formula
xRy:

(∗) if Mb, vb |= xRy, then xRy 	∈ b.
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Since mb(1) is the universal relation, the proof is similar to the proof of Propo-
sition 3. Due to Proposition 7 we obtain the following:

Proposition 8
Let xRy be an RL(1)-formula. If xRy is RL(1)-valid, then xRy is RL(1)-provable.

Finally, due to Corollary 1 and Propositions 5 and 8 we obtain the following
theorem:

Theorem 3 (Soundness and Completeness of RL(1))
Let xRy be an RL(1)-formula. The the following conditions are equivalent:

– xRy is RL(1)-provable;
– xRy is RL(1)-valid;
– xRy is RLN(1)-valid.

The above theorem confirms the known fact that the classes of equations provable
in algebras of relations with 1 being the universal relation and with 1 being an
equivalence relation are the same. It will be discussed in more details in Section
14.

6 Relational Logics with Constant 1′

A logic considered in this section is obtained from RL-logic by expanding its
language with a constant 1′. The vocabulary of the language of RL(1′)-logic is
defined as in Section 2 with

– RCRL(1′) = {1′}.

An RL(1′)-model is a structure M = (U, m), where U is a non-empty set and
m: RARL(1′) ∪ OCRL(1′) → P(U × U) ∪ U is a meaning function such that the
following conditions are satisfied:

– m(1′) is an equivalence relation on U ;
– m(1′); m(R) = m(R); m(1′) = m(R) for every R ∈ RARL(1′) (extensionality);
– m extends to all compound relational terms as in the RL-models.

By an easy induction the following can be proved :

Proposition 9
Let M = (U, m) be an RL(1′)-model. Then for every relational term R of RL(1′)-
language, the following extensionality property holds:

m(1′); m(R) = m(R); m(1′) = m(R).

Proof
By way of example we show that the extensionality property holds for R = −S
and R = (S; T ).



Relational Logics and Their Applications 135

Proof of m(−S) = m(1′); m(−S)

Assume (x, y) ∈ m(−S). Since m(1′) is reflexive, (x, x) ∈ m(1′) and (x, y) ∈
m(−S). Hence there exists z ∈ U such that (x, z) ∈ m(1′) and (z, y) ∈ m(−S).
Therefore (x, y) ∈ m(1′); m(−S).

Assume (x, y) ∈ m(1′); m(−S), that is there exists z ∈ U such that (x, z) ∈ m(1′)
and (z, y) 	∈ m(S). By the induction hypothesis, for all u ∈ U ((z, u) 	∈ m(1′) or
(u, y) 	∈ m(S)). Let u := x. It follows that (z, x) 	∈ m(1′) or (x, y) 	∈ m(S). Since
m(1′) is symmetric, it must be (x, y) 	∈ m(S). Therefore (x, y) ∈ m(−S).

Proof of m(S; T ) = m(1′); m(S; T )

Since m(1′) is reflexive, m(S; T ) ⊆ m(1′); m(S; T ).

Assume (x, y) ∈ m(1′); m(S; T ), that is there exist z, u ∈ U such that (x, z) ∈
m(1′), (z, u) ∈ m(S) and (u, y) ∈ m(T ). By the induction hypothesis we get
(x, u) ∈ m(S). Therefore (x, y) ∈ m(S; T ). �

Proposition 10
Let M = (U, m) be a structure such that U is a non-empty set and m: RARL(1′) ∪
OCRL(1′) → P(U × U) ∪ U is a meaning function satisfying the following condi-
tions:

– m(1′) is reflexive;
– m extends to all compound relational terms as in the RL-models;
– m(1′); m(R) = m(R); m(1′) = m(R) for every R ∈ RTRL(1′).

Then M is an RL(1′)-model.

Proof
It suffices to show that m(1′) is symmetric and transitive. Let R = (1′)−1. Then
m(1′)−1; m(1′) = m(1′)−1 = m(1′); m(1′)−1, thus (m(1′); m(1′)−1); m(1′) =
m(1′)−1. It implies that: (*) (y, x) ∈ m(1′) iff there exist z, u ∈ U such that
(x, z) ∈ m(1′), (u, z) ∈ m(1′) and (u, y) ∈ m(1′). Assume (x, y) ∈ m(1′), for
some x, y ∈ U . Then z := y and u := x satisfy the right side of condition (*),
so (y, x) ∈ m(1′). Therefore m(1′) is symmetric. Assume (x, y) ∈ m(1′) and
(y, z) ∈ m(1′). Since m(1′); m(1′) ⊆ m(1′), (x, z) ∈ m(1′). Therefore m(1′) is
transitive, hence it is an equivalence relation on U . �

It follows that the equivalent set of conditions on the RL(1′)-models could be
reflexivity of m(1′) and the extensionality property for all the relational terms.

An RL(1′)-model M = (U, m) is said to be standard whenever m(1′) is the
identity on U , that is m(1′) = {(x, x) : x ∈ U}. Any standard RL(1′)-model will
be referred to as RL∗(1′)-model. A formula xRy is said to be RL∗(1′)-valid iff it
is true in all standard RL(1′)-models.
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Fact 7
If xRy is RL(1′)-valid, then it is RL∗(1′)-valid.

The decomposition rules of the RL(1′)-system are the rules obtained from the
rules in DR0 presented in Section 3 by adjusting them to the RL(1′)-language.
The specific rules of RL(1′)-system have the following forms:

Let x, y ∈ OSRL(1′) and R ∈ RARL(1′).

(1′1)
xRy

xRz, xRy | y1′z, xRy
z ∈ OSRL(1′)

(1′2)
xRy

x1′z, xRy | zRy, xRy
z ∈ OSRL(1′)

A finite set of formulas is RL(1′)-axiomatic whenever it includes (Ax1) or (Ax2),
where:

(Ax1) {x1′x}, where x ∈ OSRL(1′)
(Ax2) {xRy, x−Ry}, where x, y ∈ OSRL(1′) and R ∈ RTRL(1′)

It is easy to see that the properties of Facts 2, 4 and Proposition 1 are satisfied
in RL(1′), that is in the RL(1′)-system the following holds:

Proposition 11
Let b be a branch of an RL(1′)-proof tree. If xRy ∈ b and x−Ry ∈ b, for some
relational term R and for some x, y ∈ OSRL(1′), then b is closed.

Proposition 12

1. All RL(1′)-rules are RL(1′)-correct.
2. All RL(1′)-axiomatic sets are RL(1′)-sets.

Proof
Since m(1′) is reflexive, {x1′x} is an RL(1′)-set. To prove 1. it suffices to show
correctness of the specific rules, correctness of the decomposition rules follows
from the definitions of the relational operations. Let us prove that the rule
(1′1)RL(1′) is correct, for any atomic relational term R. It is easy to see that
if {xRy} is an RL(1′)-set, then {xRy, xRz} and {y1′z, xRy} are RL(1′)-sets.
Assume {xRy, xRz} and {y1′z, xRy} are RL(1′)-sets, that is, by symmetry of
m(1′), for every RL(1′)-model M and for every RL(1′)-valuation v:

M, v |= xRz or M, v |= xRy and M, v |= z1′y or M, v |= xRy

Let M be an RL(1′)-model and v be an RL(1′)-valuation in M. Suppose
M, v |= xRz and M, v |= z1′y. Then (v(x), v(z)) ∈ m(R) and (v(z), v(y)) ∈
m(1′). Since m(R); m(1′) ⊆ m(R), (v(x), v(y)) ∈ m(R). Hence M, v |= xRy.
In the remaining cases the proofs are obvious. The proof for the rule (1′2) is
similar. �

Due to the above proposition and Fact 3 we obtain the following:

Proposition 13
Let xRy be an RL(1′)-formula. If xRy is RL(1′)-provable, then it is RL(1′)-valid.
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Corollary 2
Let xRy be an RL(1′)-formula. If xRy is RL(1′)-provable, then it is RL∗(1′)-valid.

A non-closed branch b of an RL(1′)-proof tree is said to be RL(1′)-complete when-
ever it satisfies RL(1′)-completion conditions which consist of the completion
conditions determined by decomposition rules of DRRL(1′) and the following:

For every R ∈ RARL(1′) and for all x, y ∈ OSRL(1′):

Cpl(1′1) If xRy ∈ b, then for every z ∈ OSRL(1′), either xRz ∈ b or y1′z ∈ b.
Cpl(1′2) If xRy ∈ b, then for every z ∈ OSRL(1′), either x1′z ∈ b or zRy ∈ b.

Let b be an open branch of an RL(1′)-proof tree. We define a branch structure
Mb = (U b, mb) similarly as for RL-logic adapted to the RL(1′)-language. In
particular, mb(1′) = {(x, y) ∈ U b × U b : x1′y 	∈ b}.

Proposition 14
For every RL(1′)-open branch b, a branch structure Mb is an RL(1′)-model.

Proof
We need to prove that (1) mb(1′) is an equivalence relation on U b and (2)
mb(1′); mb(R) = mb(R); mb(1′) = mb(R) for every R ∈ RARL(1′).

Proof of (1)
For every x ∈ U b, x1′x 	∈ b, since otherwise b would be closed. Therefore
(x, x) ∈ mb(1′), hence mb(1′) is reflexive. Assume (x, y) ∈ mb(1′), that is
x1′y 	∈ b. Suppose (y, x) 	∈ mb(1′). Then y1′x ∈ b. By the completion condi-
tion Cpl(1′1), either y1′y ∈ b or x1′y ∈ b, a contradiction. Therefore mb(1′) is
symmetric. To prove transitivity, assume (x, y) ∈ mb(1′) and (y, z) ∈ mb(1′),
that is x1′y 	∈ b and y1′z 	∈ b. Suppose (x, z) 	∈ mb(1′). Then x1′z ∈ b. By the
completion condition Cpl(1′1), either x1′y ∈ b or z1′y ∈ b. In the first case we
get a contradiction, so z1′y ∈ b. By the completion condition Cpl(1′1) applied to
z1′y, either z1′z ∈ b or y1′z ∈ b, a contradiction. Therefore mb(1′) is transitive.

Proof of (2)
Since mb(1′) is reflexive, mb(R) ⊆ mb(1′); mb(R) and mb(R) ⊆ mb(R); mb(1′).

Now assume (x, y) ∈ mb(1′); mb(R), that is there exists z ∈ U b such that x1′z 	∈ b
and zRy 	∈ b. Suppose (x, y) 	∈ mb(R). Then xRy ∈ b. By the completion
condition Cpl((1′2), for every z ∈ U b, either x1′z ∈ b or zRy ∈ b, a contradiction.

Assume (x, y) ∈ mb(R); mb(1′), that is, by symmetry of mb(1′), there exists
z ∈ U b such that xRz 	∈ b and y1′z 	∈ b. Suppose (x, y) 	∈ mb(R). Then xRy ∈ b.
By the completion condition Cpl(1′1), for every z ∈ U b, either xRz ∈ b or
y1′z ∈ b, a contradiction. �
Any structure Mb is referred to as an RL(1′)-branch model. Let vb: OSRL(1′) → U b

be an RL(1′)-valuation in Mb such that vb(x) = x for every x ∈ OSRL(1′).

Proposition 15
For every open branch b of an RL(1′)-proof tree, and for every RL(1′)-formula xRy:

(∗) if Mb, vb |= xRy, then xRy 	∈ b.

The proof is similar to the proof of Proposition 3.
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Since mb(1′) is an equivalence relation on U b, given an RL(1′)-branch model
Mb, we may define the quotient model Mb

q = (U b
q , mb

q) as follows:

– U b
q = {‖x‖ : x ∈ U b}, where ‖x‖ is the equivalence class of mb(1′) generated

by x;
– mq

b(c) = ‖c‖, for every c ∈ OCRL(1′);
– mb

q(R) = {(‖x‖, ‖y‖)) ∈ U b
q × U b

q : (x, y) ∈ mb(R)}, for every R ∈ RARL(1′);
– mb

q extends for all compound relational terms as in the RL(1′)-models.

Since a branch model satisfies the extensionality property, the definition of
mb

q(R) is correct, that is the following condition is satisfied:

if (x, y) ∈ mb(R) and (x, z), (y, t) ∈ mb(1′), then (z, t) ∈ mb(R).

Let vb
q be an RL(1′)-valuation in Mb

q such that vb
q(x) = ‖x‖, for every x ∈

OSRL(1′).

Proposition 16

1. The model Mb
q is a standard RL(1′)-model,

2. For every RL(1′)-formula xRy:

(*) Mb, vb |= xRy iff Mb
q, v

b
q |= xRy

Proof

1. We have to show that mb
q(1

′) is the identity on U b
q . Indeed, we have:

(‖x‖, ‖y‖) ∈ mb
q(1

′) iff (x, y) ∈ mb(1′) iff ‖x‖ = ‖y‖

2. The proof is by an easy induction on the complexity of formulas. �

Proposition 17
Let xRy be an RL(1′)-formula. If xRy is RL∗(1′)-valid, then xRy is RL(1′)-
provable.

Proof
Assume xRy is RL∗(1′)-valid. Suppose there is no closed RL(1′)-proof tree for
xRy. Consider a non-closed RL(1′)-proof tree for xRy. We may assume that
this tree is complete. Let b be an open branch of the complete RL(1′)-proof tree
for xRy. Since xRy ∈ b, so by Proposition 15, the branch model Mb does not
satisfy xRy. By Proposition 16 condition 2. also the quotient model Mb

q does not
satisfy xRy. Since Mb

q is a standard RL(1′)-model, so xRy is not RL(1′)-valid, a
contradiction. �
From Fact 7 and Propositions 13, and 17 we obtain:

Theorem 4 (Soundness and Completeness of RL(1′))
Let xRy be an RL(1′)-formula. Then the following conditions are equivalent:

– xRy is RL(1′)-provable;
– xRy is RL(1′)-valid;
– xRy is RL∗(1′)-valid.
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7 Relational Logics with Constants 1′ and 1

The vocabulary of the language of RL(1, 1′) is such that:

– RCRL(1,1′) = {1′, 1}.

An RL(1, 1′)-model is a structure M = (U, m), where U is a non-empty set
and m: RARL(1,1′) ∪ OCRL(1,1′) → P(U × U) ∪ U is a meaning function such that
M is an RL(1′)-model and M is an RL(1)-model.

An RLN(1, 1′)-model is a structure M = (U, m), where U is a non-empty set
and m: RARL(1,1′) ∪ OCRL(1,1′) → P(U × U) ∪ U is a meaning function such that

– M is an RLN(1)-model;
– m(1′) is an equivalence relation on U ;
– m(1′); m(R) = m(R); m(1′) = m(R) for every atomic R.

An RL(1, 1′)-model (resp. RLN(1, 1′)-model) M = (U, m) is said to be standard
whenever m(1′) is the identity on U . Standard RL(1, 1′)-models (resp. RLN(1, 1′)-
models) are referred to as RL∗(1, 1′)-models (resp. RLN∗(1, 1′)-models).

RL(1, 1′)-system consists of RL(1′)-rules, RL(1′)-axiomatic sets, and RL(1)-ax-
iomatic sets adjusted to the language of RL(1, 1′)-logic.

Note that in order to prove completeness we construct, as usual, the branch
model. mb(1) is the universal relation in a branch model. It follows that com-
pleteness and soundness can be proved in a similar way as in RL(1′)-logic and
then by using Theorems 3 and 4 we obtain the following:

Theorem 5 (Soundness and Completeness of RL(1, 1′))
For any RL(1, 1′)-formula xRy the following conditions are equivalent:

– xRy is RL(1, 1′)-provable;
– xRy is RL(1, 1′)-valid;
– xRy is RL∗(1, 1′)-valid;
– xRy is RLN(1, 1′)-valid;
– xRy is RLN∗(1, 1′)-valid.

The class of RLN(1, 1′)-models is closely related to the class RRA of representable
relation algebras, while the class of RL(1, 1′)-models corresponds to the class FRA
of full relation algebras, as it will be proved in Section 14.

8 Relational Logics with Point Relations Introduced with
Axioms

In the present section and in the subsequent Section 9 we consider the logics
intended for providing a means of relational reasoning in the theories which refer
to objects of their domains. There are two relational formalisms for coping with
individual objects. A logic RLax(C) presented in this section is a purely relational
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formalism where objects are introduced through point relations which, in turn
are presented axiomatically with a well known set of axioms. The axioms say that
a binary relation is a point relation whenever it is non-empty, right ideal relation
with one-element domain. A binary relation R on a set U is right ideal whenever
R; 1 = R, where 1 = U × U . In other words such an R is of the form X × U , for
some X ⊆ U . We may think of right ideal relations as representing sets, they
are sometimes referred to as vectors (see [23]). Therefore if the domain of a right
ideal relation is a singleton set, the relation may be seen as a representation
of an individual object. A logic RLdf (C) presented in Section 9 includes object
constants in its language interpreted as singletons, and moreover, with each
object constant c there is associated a relation Rc such that its meaning in every
model is defined as a right ideal relation with the domain consisting of the single
element being a meaning of c.

The language of the logics considered in this section includes, apart from
the relational constants 1 and 1′, a family of relational constants interpreted as
point relations determined axiomatically by the conditions 1, 2, and 3 below.
The vocabulary of the language of RLax(C)-logic is such that:

– RCRLax(C) = {1′, 1} ∪ C, where C = {Ri : i ∈ I} for some fixed set I.

An RLax(C)-model is a structure M = (U, m), where U is a non-empty set
and m: RARLax(C) ∪ OCRLax(C) → P(U × U)∪U is a meaning function such that
M is an RL(1, 1′)-model and the following hold:

– for every Ri ∈ C

1. m(Ri) 	= ∅;
2. m(Ri) = m(Ri); m(1);
3. m(Ri); m(Ri)−1 ⊆ m(1′);

– m extends to all compound relational terms as in RL-logic.

An RLax(C)-model M = (U, m) is said to be standard (RL∗
ax(C)-model for short)

whenever m(1′) is the identity on U .
The above conditions 1., 2., and 3. say that relations Ri are point relations.

Condition 2. guarantees that Ri is a right ideal relation, and condition 3. says
that in the standard models the domains of relations Ri are singleton sets.

RLax(C)-system consists of decomposition rules and specific rules of RL(1′)-
system adjusted to the RLax(C)-language and additional specific rules of the
following forms that characterize relational constants Ri:

Let x, y ∈ OSRLax(C) and Ri ∈ C.

(C1)
z−Rit

z, t ∈ OVRLax(C) are new

(C2)
xRiy

xRiy, xRiz
z ∈ OSRLax(C)

(C3)
x1′y

xRiz, x1′y | yRiz, x1′y
z ∈ OSRLax(C)
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RLax(C)-axiomatic sets are those of RL(1, 1′) adapted to the RLax(C)-language.
As in the previous cases, the conditions of Facts 2, 4, and Proposition 1 are satis-
fied in RLax(C), that is the RLax(C)-system satisfies the property of Proposition
11. Therefore the following can be proved easily:

Proposition 18

1. All RLax(C)-rules are RLax(C)-correct.
2. All RLax(C)-axiomatic sets are RLax(C)-sets.

It is easy to see that correctness of the rules (C1), (C2), and (C3) follows directly
from the semantic conditions 1., 2., and 3., respectively.

Due to the above proposition and Fact 3 we obtain:

Proposition 19
Let xRy be an RLax(C)-formula. If xRy is RLax(C)-provable, then it is RLax(C)-
valid.

Corollary 3
Let xRy be an RLax(C)-formula. If xRy is RLax(C)-provable, then it is RL∗

ax(C)-
valid.

To prove completeness of RLax(C)-system it suffices to define the branch struc-
ture so that it will be an RLax(C)-model and the usual property will hold: if a
formula is satisfied in a branch model determined by an open branch b, then it
does not belong to b.

A non-closed branch b of an RLax(C)-proof tree is said to be RLax(C)-complete
whenever it satisfies RLax(C)-completion conditions which consist of the comple-
tion conditions determined by the decomposition rules of DRRLax(C), the specific
rules for 1′, and additionally the following:

For every Ri ∈ C and for all x, y ∈ OSRLax(C):

Cpl(C1) There exist z, t ∈ OVRLax(C) such that z−Rit ∈ b.
Cpl(C2) If xRiy ∈ b, then for every z ∈ OSRLax(C) xRiz ∈ b.
Cpl(C3) If x1′y ∈ b, then for every z ∈ OSRLax(C) either xRiz ∈ b or yRiz ∈ b.

Let b be an open branch of an RLax(C)-proof tree. We define a branch structure
Mb = (U b, mb) with U b = OSRLax(C) similarly as in RL-logic by adjusting it to
the RLax(C)-language.

Proposition 20
For every open branch b, the branch structure Mb is an RLax(C)-model.

Proof
It suffices to prove that for every Ri ∈ C, (1) mb(Ri) 	= ∅, (2) mb(Ri) =
mb(Ri); mb(1), and (3) mb(Ri); mb(Ri)−1 ⊆ mb(1′).
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Proof of (1)
By the completion condition Cpl(C1) there exist z, t ∈ U b such that z−Rit ∈ b.
Hence zRit 	∈ b, since otherwise b would be closed. Therefore there exist z, t ∈ U b

such that (z, t) ∈ mb(Ri).

Proof of (2)
Since mb(1) = U b ×U b, so mb(Ri) ⊆ mb(Ri); mb(1). Assume there exists z ∈ U b

such that (x, z) ∈ mb(Ri) and (z, y) ∈ mb(1), that is xRiz 	∈ b and z1y 	∈ b.
Suppose (x, y) 	∈ mb(Ri). Then xRiy ∈ b. By the completion condition Cpl(C2)
for every z ∈ U b, xRiz ∈ b, a contradiction.

The proof of (3) is similar. �

Note that mb(R) is defined for all atomic relational terms R. Therefore due to
the above proposition, the proof of completeness is similar to that of RL(1′)-logic.

Proposition 21
Let xRy be an RLax(C)-formula. If xRy is RL∗

ax(C)-valid, then it is RLax(C)-
provable.

Corollary 4
Let xRy be an RLax(C)-formula. If xRy is RLax(C)-valid, then it is RLax(C)-
provable.

Due to Fact 1 and Propositions 19, and 21 we obtain the following:

Theorem 6 (Soundness and Completeness of RLax(C))
Let xRy be an RLax(C)-formula. Then the following conditions are equivalent:

– xRy is RLax(C)-provable;
– xRy is RLax(C)-valid;
– xRy is RL∗

ax(C)-valid.

9 Relational Logics with Point Relations Introduced with
Definitions

The vocabulary of the language of RLdf (C)-logic is such that:

– OC
0
RLdf (C) ⊆ OCRLdf (C), where OC

0
RLdf (C) = {ci : i ∈ I} for a fixed set I;

– RCRLdf (C) = {1′, 1} ∪ C, where C = {Ri : i ∈ I}.

An RLdf (C)-model is a structure M = (U, m), where U is a non-empty set and
m: RARLdf (C) ∪ OCRLdf (C) → P(U × U) ∪ U is a meaning function such that M
is an RL(1, 1′)-model and the following holds:

– m(Ri) = {(x, y) ∈ U × U : (x, m(ci)) ∈ m(1′)}, for every Ri ∈ C;
– m extends to all compound relational terms as in RL-models.
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An RLdf (C)-model M = (U, m) is said to be standard (RL∗
df (C)-model for short)

whenever m(1′) is the identity on U . In the standard models relations Ri are
right ideal relations with singleton domains.

RLdf (C)-system consists of decomposition rules DRRLdf (C) obtained from
DRL by adjusting them to the RLdf (C)-language, the specific rules for 1′ of
RL(1′)-system adapted to RLdf (C)-language, and the specific rules that charac-
terize relational constants Ri:

Let x, y ∈ OSRLdf (C), ci ∈ OC
0
RLdf (C) and Ri ∈ C.

(CD1)
xRiy

xRiy, x1′ci

(CD2)
x−Riy

x−Riy, x−1′ci

RLdf (C)-axiomatic sets are those of RL(1, 1′) adjusted to the RLdf (C)-language.
As in the previous cases, the RLdf (C)-system satisfies the property of Proposi-
tion 11. Therefore the following holds:

Proposition 22

1. All RLdf (C)-rules are RLdf (C)-correct.
2. All RLdf (C)-axiomatic sets are RLdf (C)-sets.

Proof
It suffices to show correctness of the new specific rules. It is easy to see that
correctness of the rule (CD1) follows from the property: if (x, m(ci)) ∈ m(1′),
then for every y ∈ U , (x, y) ∈ m(Ri). The correctness of the rule (CD2) follows
from the property: if (x, m(ci)) 	∈ m(1′), then for every y ∈ U , (x, y) 	∈ m(Ri).

�

Due to the above proposition and Fact 3 we obtain the following:

Proposition 23
Let xRy be an RLdf (C)-formula. If xRy is RLdf (C)-provable, then it is RLdf (C)-
valid.

Corollary 5
Let xRy be an RLdf (C)-formula. If xRy is RLdf (C)-provable, then it is RL∗

df (C)-
valid.

To prove completeness of RLdf (C)-system we define as usual the branch structure
satisfying the appropriate conditions.

A non-closed branch b of an RLdf (C)-proof tree is said to be RLdf (C)-complete
whenever it satisfies RLdf (C)-completion conditions which consist of the com-
pletion conditions determined by the decomposition rules, the completion con-
ditions determined by the specific rules for 1′, and additionally the following
completion conditions determined by the specific rules for relational constants
Ri:
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For every Ri ∈ C and for all x, y ∈ OSRLdf (C):

Cpl(CD1) If xRiy ∈ b, then x1′ci ∈ b.
Cpl(CD2) If x−Riy ∈ b, then x−1′ci ∈ b.

Let b be an open branch of an RLdf (C)-proof tree. We define a branch structure
Mb = (U b, mb) as follows:

– U b = OSRLdf (C);
– mb(c) = c, for every c ∈ OCRLdf (C);
– mb(R) = {(x, y) ∈ U b × U b : xRy 	∈ b}, for every R ∈ RVRLdf (C) ∪ {1, 1′};
– mb(Ri) = {x ∈ U b : (x, ci) ∈ mb(1′)} × U b, for every Ri ∈ C;
– m extends to all compound relational terms as in RLdf (C)-models.

Fact 8
For every open branch b, Mb defined above is an RLdf (C)-model.

Proposition 24
Let b be an open branch of an RLdf (C)-proof tree and xRy be an RLdf (C)-
formula. Then

(∗) if Mb, vb |= xRy, then xRy 	∈ b.

Proof
It suffices to prove that (∗) holds for R being Ri or −Ri, where Ri ∈ C.

Let R = Ri for some Ri ∈ C. Assume (x, y) ∈ mb(Ri), that is (x, ci) ∈ mb(1′).
Then x1′ci 	∈ b. Suppose xRiy ∈ b. By the completion condition determined by
the rule (CD1), x1′ci ∈ b, a contradiction.

Let R = −Ri for some Ri ∈ C. Assume (x, y) ∈ mb(−Ri), that is (x, ci) 	∈
mb(1′). Then x1′ci ∈ b. Suppose x−Riy ∈ b. By the completion condition
Cpl(CD2), x−1′ci ∈ b, hence b is closed a contradiction. �

Due to the above proposition, the proof of completeness is similar to that of
RL(1′)-logic.

Proposition 25
Let xRy be an RLdf (C)-formula. If xRy is RL∗

df (C)-valid, then it is RLdf (C)-
provable.

Corollary 6
Let xRy be an RLdf (C)-formula. If xRy is RLdf (C)-valid, then it is RLdf (C)-
provable.

Due to Fact 1 and propositions 23, and 25 we obtain the following:

Theorem 7 (Soundness and Completeness of RLdf (C))
Let xRy be an RLdf (C)-formula. Then the following conditions are equivalent:

– xRy is RLdf (C)-provable;
– xRy is RLdf (C)-valid;
– xRy is RL∗

df (C)-valid.
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10 Applications to Verification of Validity in Non-classical
Logics

The logic RL(1, 1′) serves as a basis for the relational formalisms for non-classical
logics whose Kripke-style semantics is determined by frames with binary acces-
sibility relations. Let L be a modal logic with classical modal operators of possi-
bility (〈R〉) and necessity ([R]). The relational logic appropriate for expressing
L-formulas is RLL(1, 1′) obtained from RL(1, 1′) by expanding its language with
a relational constant R representing the accessibility relation from the models
of L-language and by assuming all the properties of R from these models in the
RLL(1, 1′)-models. For example, if a relation R in a modal frame of a logic L is
assumed to satisfy some conditions, e.g., reflexivity (logic T), symmetry (logic
B), transitivity (logic S4) etc., then in the models of the corresponding logic
RLL(1, 1′) we add the respective conditions as the axioms of its models. The
translation of a modal formula into a relational term starts with an assignment
of relational variables to the propositional variables of the formula. Let τ ′ be
such an assignment. Then the translation τ of the modal formulas is defined
inductively as follows:
– τ (p) := τ ′(p); 1 for propositional variable p;
– τ (¬α) := −τ (α);
– τ (α ∨ β) := τ (α) ∪ τ (β);
– τ (α ∧ β) := τ (α) ∩ τ (β);
– τ (〈R〉α) := R; τ (α);
– τ ([R]α) := −(R; −τ (α)).

The translation is defined so that it preserves validity of formulas.

Proposition 26
For every L-formula ϕ and for every L-model M there exists RL∗

L(1, 1′)-model
M′ such that

M |= ϕ iff M′ |= xτ(ϕ)y

where x and y are object variables such that x 	= y.

Proof
Let ϕ be an L-formula and let M = (U, m) be an L-model. We define the
corresponding RL∗

L(1, 1′)-model M′ = (U ′, m′) as follows:

– U ′ = U ;
– m′(1) = U ′ × U ′;
– m′(1′) is an identity on U ′;
– m′(τ ′(p)) = {(x, y) ∈ U ′ × U ′ : x ∈ m(p)}, for any propositional variable p;
– m′(R) = m(R);
– m′ extends to all compound relational terms as in RL(1, 1′)-models.

Given a valuation v: OSRLL(1,1′) → U we show by induction on the complexity of
ϕ that the following property holds:

M, v(x) |= ϕ iff M′, v |= xτ(ϕ)y.
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From that, we can conclude that ϕ is true in M iff xτ(ϕ)y is true in M′. By
way of example we prove the required condition for the formulas of the form:
ψ1 ∨ ψ2 and 〈R〉ψ.

– If ϕ = ψ1 ∨ ψ2 then M, v(x) |= ψ1 ∨ ψ2 iff M, v(x) |= ψ1 or M, v(x) |=
ψ2, iff, by inductive hypothesis, M′, v |= xτ(ψ1)y or M′, v |= xτ(ψ2)y, iff
M′, v |= x(τ(ψ1) ∪ τ(ψ2))y iff M′, v |= xτ(ψ1 ∪ ψ2)y.

– If ϕ = 〈R〉ψ then M, v(x) |= 〈R〉ψ iff there exists s ∈ U such that (v(x), s) ∈
m(R) and M, s |= ψ iff, by inductive hypothesis, there exists s ∈ U ′ such that
(v(x), s) ∈ m′(R) and (s, v(y)) ∈ m′(τ(ψ)), iff (v(x), v(y)) ∈ m′(R; τ(ψ)) iff
M′, v(x) |= xτ(〈R〉ψ)y. �

Proposition 27
For every L-formula ϕ and for every RL∗

L(1, 1′)-model M′ there exists L-model
M such that

M |= ϕ iff M′ |= xτ(ϕ)y

where x and y are object variables such that x 	= y.

Proof
Let ϕ be an L-formula and let M′ = (U ′, m′) be an RL∗

L(1, 1′)-model. We define
the corresponding L-model M = (U, m) as follows:

– U = U ′;
– for every propositional variable p, s ∈ m(p) iff (s, s′) ∈ m′(τ ′(p)) for some

s′ ∈ U ′;
– m(R) = m′(R).

The rest of the proof is similar to the proof of Proposition 26. �

From Theorem 5 and Propositions 26, and 27 we obtain the following:

Theorem 8
For every formula ϕ of a logic L, ϕ is valid in L iff xt(ϕ)y is valid in RLL(1, 1′),
where x and y are object variables such that x 	= y.

Once a translation from a non-classical logic L into an appropriate relational
logic RLL(1, 1′) is defined, we develop a dual tableau proof system for RLL(1, 1′)
which by the above theorem is a validity checker for L. The core of such a system
is the RL(1, 1′)-system. For each particular logic L the rules and/or axiomatic
sets must be added reflecting the properties of the constant R. Defining these
rules we follow the general principles presented in [14].

For example, a relational formalism for the modal logic K is the logic RLK(1, 1′)
obtained from RL(1, 1′) by assuming that the set of relational constants in-
cludes additionally a relational constant, say R, representing the accessibility
relation from the frames of K. Since in the K-models there is no any specific
assumption about R, RLK(1, 1′)-proof system can be obtained from that of
RL(1, 1′) by adjusting it to the RLK(1, 1′)-language, in particular by postulat-
ing RCRLK(1,1′) = {1′, 1, R}.
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x−[−(R; −(P ; 1)) ∩ −(R;−(Q; 1))] ∪ −(R; −(P ; 1 ∩ Q; 1))y

�
(∪)

x−[−(R; −(P ; 1)) ∩ −(R;−(Q; 1))]y, x−(R; −(P ; 1 ∩ Q; 1))y

�(−∩)

x−−(R; −(P ; 1))y, x−−(R; −(Q; 1))y, x−(R;−(P ; 1 ∩ Q; 1))y

�
(−−) × 2

x(R;−(P ; 1))y, x(R; −(Q; 1))y, x−(R; −(P ; 1 ∩ Q; 1))y

�
(−; ) with a new variable z and (−−)

x(R;−(P ; 1))y, x(R; −(Q; 1))y, x−Rz, z(P ; 1 ∩ Q; 1))y
������

������(; ) with a variable z

xRz, x−Rz, . . .
closed

z−(P ; 1)y, x(R;−(Q; 1))y, x−Rz, z(P ; 1 ∩ Q; 1))y, . . .
������

������(; ) with a variable z

xRz, x−Rz, . . .
closed

z−(P ; 1)y, z−(Q; 1)y, z(P ; 1 ∩ Q; 1))y, . . .
������

������
(∩)

z−(P ; 1)y, z(P ; 1)y, . . .
closed

z−(Q; 1)y, z(TQ; 1)y, . . .
closed

Fig. 1.

Let us consider the following formula ϕ of modal logic K:

¬([R]p ∧ [R]q) ∨ [R](p ∧ q)

Let τ ′(p) = P and let τ ′(q) = Q. The translation τ(ϕ) of the above formula
into a relational term of RLK(1, 1′) is:

−[−(R; −(P ; 1)) ∩ −(R; −(Q; 1))] ∪ −(R; −(P ; 1 ∩ Q; 1))

We show that the formula ϕ is K-valid, that is xτ(ϕ)y is RLK(1, 1′)-valid.
In each node of the proof tree we underline a formula which determines an
applicable rule. Figure 1 presents a closed RLK(1, 1′)-proof tree for the formula
xτ(ϕ)y.

The method of relational formalization of non-classical logics is applicable to
a great variety of logics, see e.g., [1], [10], [11], [15], [16] and [7].



148 J. Golińska-Pilarek and E. Or�lowska

11 Applications to Verification of Entailment in
Non-classical Logics

The logic RL(1, 1′) can be also used to verify the entailment of formulas of non-
classical logics, provided that they can be translated into a relational logic. The
method is based on the following fact. Let R1, . . . , Rn, R be binary relations on
a set U and let 1 = U × U . It is known that R1 = 1, . . . , Rn = 1 imply R = 1 iff
(1; −(R1∩. . .∩Rn); 1)∪R = 1. It follows that for every RL(1, 1′)-model M, M |=
xR1y, . . . , M |= xRny imply M |= xRy iff M |= x(1; −(R1 ∩ . . . ∩Rn); 1)∪R)y
which means that entailment in RL(1, 1′) can be expressed in its language.

For example, in K-logic the formulas [R]p and [R](p → q) imply [R]q. That is
in RLK(1, 1′)-logic, relations −(R; −(P ; 1)) and −(R; −(−(P ; 1)∪ (Q; 1))) imply
−(R; −(Q; 1)). To prove this we need to show that the formula

x[(1; −(−(R; −(P ; 1)) ∩ −(R; −(−(P ; 1) ∪ (Q; 1)))); 1) ∪ −(R; −(Q; 1))]y

is RLK(1, 1′)-provable. Figure 2 presents a closed RLK(1, 1′)-proof tree for this
formula.

x[(1; −(−(R;−(P ; 1)) ∩ −(R;−(−(P ; 1) ∪ (Q; 1)))); 1) ∪ −(R;−(Q; 1))]y

�(∪)

x(1;−(−(R;−(P ; 1)) ∩ −(R; −(−(P ; 1) ∪ (Q; 1)))); 1)y, x−(R; −(Q; 1))y
���

�

(; ) twice
���

x1x, . . .
closed

y1y, . . .
closed

x − [−(R; −(P ; 1)) ∩ −[R; −(−(P ; 1) ∪ (Q; 1))]]y, x−(R; −(Q; 1))y, . . .

�
(−∩) and (−−)

x(R;−(P ; 1))y, x(R;−(−(P ; 1) ∪ (Q; 1)))y, x−(R; −(Q; 1))y, . . .

�(−; ) and (−−)

x(R;−(P ; 1))y, x(R;−(−(P ; 1) ∪ (Q; 1)))y, x−Rz, z(Q; 1)y, . . .
����

����(; )
xRz, x−Rz, . . .
closed

x(R;−(P ; 1))y, z−(−(P ; 1) ∪ (Q; 1))y, x−Rz, z(Q; 1)y, . . .
����

����(; )
xRz, x−Rz, . . .
closed

z−(P ; 1)y, z−(−(P ; 1) ∪ (Q; 1))y, z(Q; 1)y, . . .
����

����(−∪) and (−−)

z−(P ; 1)y, z(P ; 1)y, . . .
closed

z−(Q; 1)y, z(Q; 1)y, . . .
closed

Fig. 2.
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12 Applications to Model Checking in Non-classical
Logics

The logic RL(1, 1′) is used in the formalisms of relational logics whose model
checking problem is in question. Let M = (U, m) be a fixed RL∗(1, 1′)-model
and let ϕ = xRy be an RL(1, 1′)-formula, where R is a relational term and
x, y are any object symbols. In order to obtain the relational formalism for the
problem ‘M |= ϕ?’, we consider an instance RLM,ϕ of the logic RL(1, 1′). Its
language provides a code of model M and formula ϕ, and in its models the
syntactic elements of ϕ are interpreted as in the model M. The vocabulary of
the logic RLM,ϕ consists of the following pairwise disjoint sets:

– OVRLM,ϕ
a countable infinite set of object variables;

– OCRLM,ϕ
= OC

0
RLM,ϕ

∪ OC
1
RLM,ϕ

, where OC
0
RLM,ϕ

= {ca : a ∈ U} and
OC

1
RLM,ϕ

= {c ∈ OCRL(1,1′) : c occurs in ϕ};
– RCRLM,ϕ

= {S : S is an atomic subterm of R} ∪ {1, 1′};
– OPRLM,ϕ

= {−, ∪, ∩, ; ,−1 };
– a set of parentheses {(, )}.

Note that the language of RLM,ϕ does not contain relational variables.

An RLM,ϕ-model is a pair N = (W, n) where

– W = U ;
– n(c) = m(c), for every c ∈ OC

1
RLM,ϕ

;
– n(ca) = a, for any ca ∈ OC

0
RLM,ϕ

;
– n(S) = m(S), for any atomic subterm S of R;
– n(1), n(1′) are defined as in RL∗(1, 1′)-models;
– n extends to compound terms as in RL∗(1, 1′)-models.

Observe that the above definition implies: for every atomic subterm S of R,
N , v |= xSy iff there exist a, b ∈ U such that (a, b) ∈ m(S) and v(x) = a and
v(y) = b. Moreover, it is easy to prove that n(R) = m(R). Note also that the
class of RLM,ϕ-models has exactly one element up to isomorphism. Therefore,
RLM,ϕ-validity is equivalent to the truth in a single RLM,ϕ-model N , that is the
following holds:

Proposition 28
The following statements are equivalent:

– M |= xRy

– xRy is RLM,ϕ-valid

The relational proof system for RLM,ϕ consists of the rules and axiomatic sets
of RL(1, 1′)-system adapted to the language of RLM,ϕ, and additionally:
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– for every atomic subterm S of R and for any x, y ∈ OSRLM,ϕ
we add the

rules of the following form:

(−S)
x−Sy

x−1′ca, y−1′cb, ca−Scb, x−Sy
ca, cb ∈ OC

0
RLM,ϕ

are new

(1′)
x−1′ca

ca is new

(a 	= b)
ca1′cb

for all a 	= b

where ca ∈ OC
0
RLM,ϕ

is new whenever it appears in a conclusion of the rule
and does not appear in its premise;

– for every c ∈ OC
1
RLM,ϕ

and for every a ∈ U such that m(c) 	= a we add the
rules of the following form:

(ca)
c1′ca

– a set of formulas is assumed to be an axiomatic set whenever it includes
either of the following subsets:

• {c1′ca}, for every c ∈ OC
1
RLM,ϕ

and for every a ∈ U such that m(c) = a;
• {caScb}, for every atomic subterm S of R and for all a, b ∈ U such that

(a, b) ∈ m(S);
• {ca−Scb}, for every atomic subterm S of R and for all a, b ∈ U such

that (a, b) 	∈ m(S).

The correctness of all new rules and the validity of all new axiomatic sets follow
directly from the definition of RLM,ϕ-semantics. For example, the correctness of
the rule (−S) follows from the following property of n(S): (v(x), v(y)) ∈ n(S) iff
for all a, b ∈ U , either (n(ca), n(cb)) 	∈ n(S) or v(x) 	= ca or v(y) 	= cb. Note that
for every x ∈ OSRLM,ϕ

and for every valuation v in N , there exists ca ∈ OC
0
RLM,ϕ

such that the model N satisfies v(x) = n(ca), hence the rule (1′) is correct. The
correctness of the rule (a 	= b) follows form the following property of N -models:
for all a, b ∈ U , if a 	= b, then n(ca) 	= n(cb).

The completion conditions are those of RL(1, 1′)-system adapted to the lan-
guage of RLM,R and additionally for every atomic subterm S of R we add the
following conditions:

Cpl(−S) If x−Sy ∈ b, then for some ca, cb ∈ OC
0
RLM,ϕ

all of the following
conditions are satisfied: x−1′ca ∈ b, y−1′cb ∈ b and ca−Scb ∈ b.
Cpl(1′) For every x ∈ OVRLM,ϕ

there exists ca ∈ OC
0
RLM,ϕ

such that x−1′ca ∈ b.
Cpl(a 	= b) For all a, b ∈ U such that a 	= b, ca1′cb ∈ b.
Cpl(ca) For every c ∈ OC

1
RLM,ϕ

and for every a ∈ U such that n(c) 	= a,
c1′ca ∈ b.

A branch model is a structure N b = (W b, nb) satisfying the following conditions:

– W b = OSRLM,ϕ
;

– nb(c) = c, for every c ∈ OCRLM,ϕ
;
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– nb(S) = {(x, y) ∈ W b × W b : xSy 	∈ b}, for S ∈ {1, 1′};
– nb(S) = {(x, y) ∈ W b × W b : there exists a, b ∈ U such that γ(a, b, x, y)},

where γ(a, b, x, y) is [(a, b) ∈ m(S) ∧ (x, ca) ∈ nb(1′) ∧ (y, cb) ∈ nb(1′)];
– nb extends to all compound terms as in RL(1, 1′)-models.

As in RL(1, 1′)-logic it is easy to prove that nb(1′) and nb(1) are an equivalence
relation and a universal relation, respectively.

Let vb: OSRLM,ϕ
→ W b be a valuation in N b such that vb(x) = x for every

x ∈ OSRLM,ϕ
. Then the following holds:

Proposition 29
For every open branch b of an RLM,ϕ-proof tree, and for every RLM,ϕ-formula
xRy:

(∗) if N b, vb |= xRy, then xRy 	∈ b.

Proof
The proof is similar to the proof of analogous proposition for RL(1, 1′)-logic.
That is we need to show that (∗) holds for every atomic subterm S of R and its
complement.

Let ϕ = xSy for some atomic subterm S of R. Assume N b, vb |= xSy. By the
definition of nb(S) there exist a, b ∈ U such that (a, b) ∈ m(S), x1′ca 	∈ b and
y1′cb 	∈ b. Since (a, b) ∈ m(S), caSccb 	∈ b, otherwise b would be closed. Therefore
the following holds: caScb 	∈ b, x1′ca 	∈ b and y1′cb 	∈ b. Suppose xSy ∈ b. By the
completion conditions for the rules (1′1) and (1′2), for all ca, cb ∈ OC

0
RLM,ϕ

, at
least one the following holds: x1′ca ∈ b or y1′cb ∈ b or caSccb ∈ b, a contradiction.

Let ϕ = x−Sy, for some atomic subterm S of R. Assume N b, vb |= x−Sy.
Then for all a, b ∈ U , (a, b) 	∈ m(S) or x1′ca ∈ b or y1′cb ∈ b. Since (a, b) 	∈ m(S),
ca−Sccb 	∈ b, otherwise b would be closed. Therefore for all a, b ∈ U , the following
holds: if ca−Scb ∈ b, then x1′ca ∈ b or y1′cb ∈ b. Suppose x−Sy ∈ b. By the
completion condition for the rule (−S), for some ca, cb ∈ OC

0
RLM,ϕ

, the following
holds: x−1′ca ∈ b and y−1′cb ∈ b and ca−Sccb ∈ b, a contradiction. �

Since nb(1′) is an equivalence relation on W b, we may define the quotient model
N b

q = (W b
q , nb

q) as follows:

– W b
q = {‖x‖ : x ∈ W b}, where ‖x‖ is the equivalence class of nb(1′) generated

by x;
– nb

q(c) = ‖nb(c)‖, for every c ∈ OCRLM,ϕ
;

– nb
q(S) = {(‖x‖, ‖y‖) ∈ W b

q × W b
q : (x, y) ∈ nb(S)}, for every atomic S;

– nb
q extends as in RL(1, 1′)-models.

Proposition 30
The quotient model N b

q = (W b
q , nb

q) satisfies the following conditions:

1. card(W b
q ) = card(W );

2. c ∈ ‖ca‖ iff n(c) = a
3. nb

q(S) = {(‖ca‖, ‖cb‖ ∈ W b
q × W b

q : (n(ca), n(cb)) ∈ n(S)}.
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Proof

Proof of 1. For all a, b ∈ U , if a 	= b, then ca1′cb ∈ b. Therefore for all a, b ∈ U
such that a 	= b, (ca, cb) 	∈ nb(1′), hence card(W b

q ) ≥ card(W ). By the completion
condition for (1′), for every x ∈ W b there is ca ∈ W b such that x−1′ca ∈ b.
Therefore for every element x of W b, x ∈ ‖ca‖ for some a ∈ U . Hence card(W b

q ) ≤
card(W ).

Proof of 2. For c ∈ OC
0
RLM,ϕ

the proof is obvious. Let c ∈ OC
1
RLM,ϕ

. If n(c) = a,
then c1′ca 	∈ b, since otherwise b would be closed. Therefore c ∈ ‖ca‖. If n(c) 	= a,
then by the completion condition for (ca), c1′ca ∈ b, hence c 	∈ ‖ca‖.

Proof of 3. This follows directly from the definition of nb(S). �

The above proposition implies that the function f : W b
q → W defined as

f(‖ca‖) = a is an isomorphism between N b
q and N . Therefore N b

q and N satisfy
exactly the same formulas. Now the completeness RLM,ϕ can be proved similarly
as in RL(1, 1′)-logic.

Theorem 9 (Soundness and completeness of RLM,ϕ)
For every RLM,R-formula xRy the following conditions are equivalent:

– xRy is RLM,ϕ-provable.
– xRy is RLM,ϕ-valid.

Due to the above theorem and Proposition 28 we obtain the following:

Theorem 10
The following statements are equivalent:

– M |= xRy,
– xRy is RLM,ϕ-provable.

The method presented above can be also used in the case of non-classical logics
for which the problem of model checking is in question. By way of example
consider the modal logic K. Let M = (U, m) be a K-model such that U = {a, b},
m(p) = {a} and the accessibility relation is defined as m(R) = {(a, a), (b, a)}.
Let ϕ be the formula of the form 〈R〉p. Let us consider the problem: ‘is ϕ true
in M?’ The translation of the formula ϕ is τ(ϕ) = (R; (P ; 1)), where τ ′(p) = P .
Using the construction from the proof of Proposition 26 it is easy to prove that
there exist an RLK(1, 1′)-model M′ such that the following holds:

M |= ϕ iff M′ |= xτ(ϕ)y.

The RLK(1, 1′)-model M′ = (U ′, m′) is defined as follows:

– U ′ = m′(1) = {a, b};
– m′(P ) = {(a, a), (a, b)};
– m′(R) = {(a, a), (b, a)};
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– m′(1′) = {(a, a), (b, b)};
– m′ extends to all compound terms as in RL(1, 1′)-models.

Therefore the model checking problem ‘is ϕ true in M?’ is equivalent to the
problem ‘is a formula xτ(ϕ)y true in M′?’. For the latter we apply the method
already presented above. The vocabulary of RLM′,xτ(ϕ)y-language adequate for
testing whether M′ |= xτ(ϕ)y consists of the following sets of symbols:

– OVRLM′,xτ(ϕ)y
a countable infinite set of object variables;

– OCRLM′,xτ(ϕ)y
= {ca, cb};

– RCRLM′,xτ(ϕ)y
= {R, P, 1, 1′};

– OPRLM′,xτ(ϕ)y
= {−, ∪, ∩, ; ,−1 };

– a set of parentheses {(, )}.

An RLM′,xτ(ϕ)y-model is the structure N = (W, n) defined as RLK(1, 1′)-models
with the following additional condition n(ca) = a, n(cb) = b.

The additional rules of RLM′,xτ(ϕ)y-system are: (−R), (−P ), (a 	= b) and (1′).
Additional RLM′,xτ(ϕ)y-axiomatic sets are those which include one of the follow-
ing sets: {caRca}, {cbRca}, {cb−Rcb}, {ca−Rcb}, {caPca}, {caPcb}, {cb−Pcb}
or {cb−Pca}

By Theorem 10, truth of ϕ in M is equivalent to RLM′,xτ(ϕ)y-provability of
ϕ. Figure 3 presents a closed RLM′,xτ(ϕ)y-proof tree for xτ(ϕ)y.

x(R; (P ; 1))y

�(1′) twice

xR; (P ; 1)y, x−1′ca, y−1′cb
����� (; ) twice

�����
�����

x−1′ca, xRca, . . .
����

����(1′2)
x−1′ca, x1′ca, . . .

closed
caRca, . . .

closed

y−1′cb, caPy, . . .
����

����(1′1)
caPcb, . . .
closed

y−1′cb, y1′cb, . . .
closed

y1y, . . .
closed

Fig. 3.

13 Applications to Verification of Satisfaction in
Non-classical Logics

The logic RLdf (C) is used in the formalisms of relational logics whose problem
of verification of satisfaction in a model is in question. Let M = (U, m) be a
fixed RL∗(1, 1′)-model, let a, b be elements of U and let ϕ = xRy be an RL(1, 1′)-
formula, where R is a relational term and x, y are any object symbols. In order
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to obtain the relational formalism for the problem ‘(a, b) ∈ m(R)?’, we consider
an instance RLM,ϕ,a,b of the logic RLdf (C). The language, the models, and the
system of RLM,ϕ,a,b-logic are constructed in a similar way as in the model check-
ing problem. The vocabulary of the logic RLM,ϕ,a,b is defined as in RLM,ϕ-logic
with additional set of relational constants:

C = {Rc : c ∈ OC
0
RLM,ϕ,a,b

}.

An RLM,ϕ,a,b-models are defined as RLM,ϕ-models with the following addi-
tional condition:

n(Rc) = {n(c)} × W , for every c ∈ OC
0
RLM,ϕ,a,b

.

As in the case of RLM,ϕ-models, the class of RLM,ϕ,a,b-models has exactly
one element up to isomorphism. Therefore, RLM,ϕ,a,b-validity is equivalent to
the truth in a single RLM,ϕ,a,b-model N .

Proposition 31
The following statements are equivalent:

– (a, b) ∈ m(R);
– x[−(Rca ; R

−1
cb ) ∪ R]y is RLM,ϕ,a,b-valid.

Proof
Note that RLM,ϕ,a,b-validity of x[−(Rca ; R−1

cb )∪R]y is equivalent to the following
property: for every x, y ∈ W , if (x, y) ∈ n(Rca ; R−1

cb ), then (x, y) ∈ n(R).

(→) Let (a, b) ∈ m(R). Assume x, y ∈ W and (x, y) ∈ n(Rca ; R−1
cb ). Then by the

semantics of Rca and Rcb , x = a and y = b. Since n(R) = m(R), (x, y) ∈ n(R).

(←) Assume (a, b) 	∈ m(R). We need to show that there exist x, y ∈ W such
that (x, y) ∈ n(Rca ; R−1

cb ) but (x, y) 	∈ n(R). Let x = a and y = b. Then (x, y) ∈
n(Rca ; R−1

ca ). Since n(R) = m(R), (x, y) 	∈ n(R). �

RLM,ϕ,a,b-proof system consists of the rules and axiomatic sets of the systems of
RLM,ϕ-logic and RLdf (C)-logic adjusted to RLM,ϕ,a,b-language. The complete-
ness of RLM,ϕ,a,b-system can be proved in a similar way as in in the case of
RLM,ϕ-system.

Theorem 11 (Soundness and completeness of RLM,ϕ,a,b)
For every RLM,ϕ,a,b-formula ϕ the following conditions are equivalent:

– ϕ is RLM,ϕ,a,b-provable.
– ϕ is RLM,ϕ,a,b-valid.

Due to the above theorem and Proposition 31 we obtain the following:

Theorem 12
The following statements are equivalent:

– (a, b) ∈ m(R);
– x[−(Rca ; R−1

cb ) ∪ R]y is RLM,ϕ,a,b-provable.
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x[−(Rcb ; R
−1
ca ) ∪ (R; (P ; 1))]y

�(∪)

x − (Rcb ; R
−1
ca )y, x(R; (P ; 1))y

�(−; ) and (−1)
x−Rcbz, y−Rcaz, x(R; (P ; 1))y

�
(CD2) twice

x−1′cb, y−1′ca, x(R; (P ; 1))y, . . .
����� (; ) twice

�����
�����

x−1′cb, xRca, . . .
����

����(1′2)
x−1′cb, x1′cb, . . .

closed
cbRca, . . .

closed

y−1′ca, caPy, . . .
����

����(1′1)
caPca, . . .
closed

y−1′ca, y1′ca, . . .
closed

y1y, . . .
closed

Fig. 4.

As an example of an application of the method presented above, consider the
modal logic K. Let M = (U, m) be a K-model such that U = {a, b}, m(p) = {a}
and the accessibility relation is defined as m(R) = {(b, a)}. Let ϕ be the formula
of the form 〈R〉p. Let us consider the problem: ‘is ϕ satisfied in M by a state b?’
The translation of the formula ϕ is τ(ϕ) = (R; (P ; 1)), where τ ′(p) = P . From
the proof of Proposition 26 it follows that there exist an RLK(1, 1′)-model M′

and a valuation vb such that the following holds:

(�) M, b |= ϕ iff M′, vb |= xτ(ϕ)y.

The RLK(1, 1′)-model M′ = (U ′, m′) is defined as follows:

– U ′ = m′(1) = {a, b};
– m′(P ) = {(a, a), (a, b)};
– m′(R) = {(b, a)};
– m′(1′) = {(a, a), (b, b)};
– m′ extends to all compound terms as in RL(1, 1′)-models.

Let vb be a valuation such that vb(x) = b and vb(y) = a. Then M′ and vb satisfy
the condition (�).

Therefore the satisfiability problem ‘is ϕ satisfied in M by a state b?’ is equiv-
alent to the problem ‘is a formula xτ(ϕ)y satisfied in M′ by vb?’. By Theorem
12 this is equivalent to RLM′,xτ(ϕ)y,b,a-provability of x[−(Rcb ; R−1

ca ) ∪ τ(ϕ)]y.
RLM′,xτ(ϕ)y,b,a-proof system contains the rules and axiomatic sets of RLdf (C)-

proof system adjusted to RLM′,xτ(ϕ)y,b,a-language and additionally it contains:
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– the rules (−R), (−P ), (1′) and (a 	= b) of RLM′,xτ(ϕ)y-system adjusted to
RLM′,xτ(ϕ)y,b,a-language;

– axiomatic sets that include either of the following subsets: {cbRca}, {caPca},
{caPcb}, {ca−Rca}, {cb−Rcb}, {ca−Rcb}, {cb−Pcb}, and {cb−Pca}.

Figure 4 presents a closed RLM′,xτ(ϕ)y,b,a-proof tree for x[−(Rcb ; R−1
ca ) ∪ τ(ϕ)]y.

We recall that the rule (CD2) used in that proof is presented in Section 9.

14 RRA Algebras, FRA Algebras and Relational Logics

RRA is a class of algebras isomorphic to an algebra (P(1), −, ∪, ∩,−1 , ; , 1, 1′),
where 1 is an equivalence relation, 1′ is an identity on the field of 1, −, ∪ and
∩ are Boolean operations, −1 and ; are converse and composition of binary
relations, respectively. FRA is a class of algebras isomorphic to an algebra (P(U×
U), −, ∪, ∩,−1 , ; , U × U, 1′), where U is a non-empty set, 1′ is an identity on U
and −, ∪, ∩,−1 , ; are as above.

The theorem below states the connection between RRA-validity and
RLN∗(1, 1′)-validity:

Theorem 13
Let R ∈ RTRL(1,1′) and x, y ∈ OVRL(1,1′). Then xRy is RLN∗(1, 1′)-valid iff R = 1
is RRA-valid.

Proof

Proof of (→) Assume xRy is RLN∗(1, 1′)-valid, that is for every RLN(1, 1′)-
model M = (U, m), m(1) ⊆ m(R). Suppose R = 1 is not RRA-valid. Then there
exist RRA-algebra A and an assignment a in A such that 1A 	⊆ RA(a), where 1A

is an equivalence relation. Consider a model MA = (field of 1A, mA) such that:

– mA(P ) = PA(a) for every relational variable P ;
– mA(1) = 1A;
– mA(1′) = 1′ A;
– mA extends homomorphically to all compound terms as in the definition of

an RL-model.

Since A is an RRA algebra, so 1′ A is an equivalence relation on the field of
1A. Therefore MA is an RLN(1, 1′)-model. Since xRy is RLN(1, 1′)-valid, hence
mA(1) ⊆ mA(R), that is 1A ⊆ RA(a), a contradiction.

Proof of (←) Assume R = 1 is RRA-valid. Suppose xRy is not RLN∗(1, 1′)-
valid. Then there exists an RLN∗(1, 1′)-model M = (U, m) such that m(1) 	⊆
m(R). Consider an algebra AM = (P(m(1)), ∪, ∩, −, ; ,−1 , m(1′), m(1)). It is
easy to see that A is an RRA-algebra. Let a be an assignment in AM such that
PAM(a) = m(P ) ∩ m(1) for every relational variable P . Since R = 1 is true
in AM, so RAM(a) = 1AM = m(1). Therefore m(R) ∩ m(1) = m(1), hence
m(1) ⊆ m(R), a contradiction. �
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Due to the above theorem and Theorem 5 we obtain the following:

Theorem 14
Let xRy be an RL(1, 1′)-formula. Then xRy is RL(1, 1′)-provable iff R = 1 is
RRA-valid.

A non-trivial example of RLN(1, 1′)-valid equation is presented in the Appendix.
Similarly we can prove the following theorem which states the connection

between FRA-validity and RL(1, 1′)-validity.

Theorem 15
Let R ∈ RTRL(1,1′) and x, y ∈ OVRL(1,1′). Then xRy is RL∗(1, 1′)-valid iff R = 1
is FRA-valid.

Due to Theorem 5 the above theorems imply the following well known result:

Theorem 16
The set of equations valid in RRA and the set of equations valid in FRA are equal.

15 Conclusion and Future Work

We presented a survey of relational logics, in particular, we discussed the logics
which are the counterparts to the classes RRA and FRA and the logics which en-
able us reasoning both about relations and about individual elements of a domain
on which the relations are defined. We extensively discussed the applications of
those logics to the major logical tasks: verification of validity, verification of
entailment, model checking and verification of satisfaction in a model. We ex-
plained how we can perform these tasks for non-classical logics after translating
them into the appropriate relational logics.

An important open problem is to modify the proof systems presented in the
paper for the relational logics RLL, where L is a modal logic, so that they become
decision procedures. Another interesting problem is to establish bounds on the
number of variables needed in the proofs of formulas of the relational logics
presented in the paper.
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Appendix

We present a construction of a closed RL(1, 1′) proof tree of an equation which
is not valid in RA, while it is valid in RRA. It has the following form:

τ = 1

where τ := (1; ρ; 1) and ρ := (A ∪ B ∪ C ∪ D ∪ E) for:

– A = −(1; R; 1);
– B = [R ∩ −[(N ; N) ∩ (R; N)]];
– C = (N ; N ∪ R; R) ∩ N ;
– D = [(R ∪ R−1 ∪ 1′) ∩ N ];
– E = −(R ∪ R−1 ∪ 1′ ∪ N).

To prove validity of τ = 1 we need to prove validity of the formula uτw, for
u, w ∈ OVRL(1,1′), u 	= w.

It is easy to show that in RL(1, 1′)-proof tree for uτw, if a formula uτw occurs
in a node of this tree, then it is possible to build a subtree of RL(1, 1′)-proof tree
with this formula at the root which ends with exactly one non-axiomatic node
containing at least one of the following formulas: zAv, zBv, zCv, zDv and zEv,
for any variables z, v. Therefore, in such cases instead of building long subtrees
we will use the following abbreviations which have a form of the rules:

uτw

�
(Axy)

x−Ry, uτw, . . .

�(Rxyz)

x−Ry, x−Nz, z−Ny, x−(R; N)y, uτw, . . .

�(−; ) with a new variable v

x−Ry, x−Rv, x−Nz, z−Ny, v−Ny, uτw, . . .

�
(RN1′vzx)1

x−Ry, x−Rv, x−Nz, z−Ny, v−Ny, z1′v, uτw, . . .
�����

	
		


�
���

�����
(Ezv) and (−∪) × 3

Π v−Rz, x−Rv,x−Nz, . . .

�
(RRNxvz)

closed

z−1′v, z1′v
closed

z−Nv, v−Ny, z−Ny, . . .

�
(NNNzvy)

closed

where the subtree Π is presented in Figure 6

Fig. 5. RL(1, 1′)-proof tree for uτw
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z−Rv,x−Rv, x−Ry, z−Ny, v−Ny, x−Nz, uτw, . . .

�
(Rzvs)

z−Rv,x−Ry,x−Ns, s−Nv, z−Ny, v−Ny, x−Nz, uτw, . . .

�
(RN1′ysx)1

z−Rv,x−Ry,x−Ns, s−Nv, z−Ny, v−Ny, x−Nz, s1′y, uτw, . . .
���� 	

	

�

��
����(Esy) and (−∪) × 3

x−Ry, y−Rs, x−Ns, . . .

�
(RRNxys)

closed

Π∗ s−1′y, s1′y, . . .
closed

s−Ny, s−Nv, v−Ny, . . .

�
(NNNsvy)

closed

where Π∗ is presented in Figure 7

Fig. 6. The subtree Π

(Azv)
uτw

zAv, uτw
(Bzv)

uτw

zBv, uτw
(Czv)

uτw

zCv, uτw

(Dzv)
uτw

zDv, uτw
(Ezv)

uτw

zEv, uτw

Similarly, we can admit the following derived rules:

(1′∗)
x1′y

y1′x
(Rxyz)

x−Ry,uτw

x−Ry,x−Nz, z−Ny, x−(R;N)y, uτw

where z is a new variable,

(RN1′xyz)1
z−Rx, z−Ny, uτw

z−Rx, z−Ny, x1′y, uτw
,

z−Rx, z−Ny, uτw

z−Rx, z−Ny, y1′x, uτw

(RN1′xyz)2
x−Rz, y−Nz, uτw

x−Rz, y−Nz, x1′y, uτw
,

x−Rz, y−Nz, uτw

x−Rz, y−Nz, y1′x, uτw

(RRNxyz)
x−Ry, y−Rz, x−Nz, uτw

closed

(NNNxyz)
x−Ny, y−Nz, x−Nz, uτw

closed

By way of example, in Figures 8 and 9 we show how to obtain the derived rules
(Rxyz) and (RN1′xyz)1, respectively. Similarly we may obtain the remaining
derived rules. It is easy to check that the derived rule (Cxy) is needed to get
(RRNxyz) and (NNNxyz), while (Dxy) is needed in the proofs of (RN1′xyz)1
and (RN1′xyz)2.

Figure 5 presents a closed RL(1, 1′)-proof tree for uτw.
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s−Ry, z−Rv, s−Nv, z−Ny, v−Ny, x−Nz, uτw, . . .

�
(RN1′zsv)2

s−Ry, z−Rv, s−Nv, s1′z, z−Ny, v−Ny, x−Nz, uτw, . . .
���� 	

	

�

��
����(Esz) and (−∪) × 3

s−Rz, z−Rv,
s−Nv . . .

�
(RRNszv)

closed

z−Rs, s−Ry
z−Ny . . .

�
(RRNzsy)

closed

s−1′z, s1′z, . . .
closed

x−Ns, s−Nz,
x−Nz, . . .

�
(NNNxsz)

closed

Fig. 7. The subtree Π∗

x−Ry, uτw

�
(Bxy)

x−Ry,x(R ∩ −((N ; N) ∩ (R; N)))y, uτw, . . .
�

������(∩)

x−Ry,xRy, . . .
closed

x−Ry, x−((N ; N) ∩ (R;N)), uτw, . . .

�
(−∩) and (−; ) with a new z

x−Ry, x−Nz, z−Ny, x−(R; N)y, uτw, . . .

Fig. 8. A derivation of the rule (Rxyz)

z−Rx, z−Ny, uτw

�
(Dzy)

z−Rx, z−Ny, z(N ∩ (R ∪ R−1 ∪ 1′)y, uτw, . . .
����

����(∩)
z−Ny, zNy, . . .

closed
z−Rx, z−Ny, z(R ∪ R−1 ∪ 1′)y, uτw, . . .

�
(∪)

z−Rx, z−Ny, zRy, uτw, . . .
����

����(1′1)
zRx, z−Rx, . . .

closed
z−Rx, z−Ny, y1′x, uτw, . . .

Fig. 9. A derivation of the rule (RN1′xyz)1
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