
An Environment for Specifying Properties of
Dyadic Relations and Reasoning About Them

II: Relational Presentation of
Non-classical Logics�

Andrea Formisano1, Eugenio G. Omodeo2, and Ewa Or�lowska3

1 Dipartimento di Informatica, Università di L’Aquila, Italy
formisano@di.univaq.it

2 Dipartimento di Matematica e Informatica, Università di Trieste, Italy
eomodeo@units.it

3 National Institute of Telecommunications, Warsaw, Poland
orlowska@itl.waw.pl

Abstract. This paper contributes to the vast literature on relational
renderings of non-classical logics providing a general schema for auto-
matic translation. The translation process is supported by a flexible Pro-
log tool. Many specific translations are already implemented, typically
leading from an unquantified logic into the calculus of binary relations.
Thanks to the uniformity of the translation pattern, additional source
languages (and, though less commonly, new target languages) can be
installed very easily into this Prolog-based translator. The system also
integrates an elementary graphical proof assistant based on Rasiowa-
Sikorski dual-tableau rules.

Keywords: Relational systems, translation methods, modal logic.

Introduction

Common approaches to the automation of modal inferences often exploit ad hoc,
direct inference methods (cf., e.g., [23, 33]). An alternative approach, discussed
in the ongoing and aimed at developing a uniform relational platform for modal
reasoning, is intended to benefit from relational renderings of non-classical logics
(cf. [27] among others).

The envisaged framework covers a full-fledged inferential apparatus, where the
inferential activity is viewed as consisting of two phases. First, a translation phase
carries a (propositional) modal formalization ϕ of a problem into its relational
counterpart. Then, within the relational context, a deductive method is exploited
to seek a proof of the translated formula ϕ (cf. Fig. 1).

There are several kinds of proof systems for relational reasoning, such as
tableaux [17], Gentzen-style systems [34, 22], systems à la Rasiowa-Sikorski
� Research partially funded by INTAS project Algebraic and deduction methods in

non-classical logic and their applications to Computer Science, and by the Euro-
pean Concerted Research Action COST 274, TARSKI: Theory and Applications of
Relational Structures as Knowledge Instruments.

H. de Swart et al. (Eds.): TARSKI II, LNAI 4342, pp. 89–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



90 A. Formisano, E.G. Omodeo, and E. Or�lowska

sentence −→

logic
↓

translator

relational
form
=⇒

(and axioms)

proof

procedure

Fig. 1. General scheme of the inferential framework

[25, 30, 14], display calculus [16], and of course equational proof systems based
on relation algebras [11, 12]. The system we have in mind should be seen as pro-
viding a convenient input for any of those proof systems. Specifically, the input
for a tableaux-based system, a Gentzen system, or a Rasiowa-Sikorski system
will be an expression of the form x t(ϕ) y, where x and y stand for individual vari-
ables and t(ϕ) for a relational term translating the given formula ϕ, obtainable
e.g. by means of a system which we have implemented in Prolog along the lines
that will be expounded below. On the other hand, our input for an equational
proof system will be an equation t(ϕ) = 1, where 1 denotes the top element of
a relation algebra.

This paper focuses on the translation phase: we describe a prototypical,
Prolog-based implementation of a tool, named transIt, which uniformly carries
out translations from various modal logics to the relational formalism [35]. As
an aside, we give some details about possible approaches towards the inter-
action/integration between the translator and a deductive engine. The develop-
ment of an efficient relational deductive system (actually, in the Rasiowa-Sikorski
style) is the theme of [8].

We verified that this approach offers indeed a high degree of uniformity: tran-
sIt is able to treat varied modal logics, all by the very same machinery. Moreover,
extensions to further families of logics can easily be obtained by routine appli-
cation of their declarative Prolog specifications.

Moreover, the adoption of an approach based on declarative programming al-
lows us to develop the system in an incremental way and ensures high modularity
and extensibility of the application. As a matter of fact, in the same easy routine
fashion in which source languages can be added, the system can also be extended
to encompass other target languages, so as to “drive” different (relational) proof
systems. We exemplify this adaptability by extending transIt in order to use
it as a front-end for two deductive frameworks for relation algebras which are
rather different in nature (Section 4). One of the two consists in a minimal im-
plementation of a proof-assistant (with some form of automated capabilities)
based on Rasiowa-Sikorski rewriting rules [29]. Actually, this proof-assistant has
been easily integrated in transIt by means of a common graphical user interface.
As a second approach to relational reasoning, we show how transIt can be used
as a front-end for a first-order theorem-prover which is exploited as relational
inference engine very much in the spirit of [11, 12].



An Environment for Specifying Properties of Dyadic Relations 91

The paper is organized as follows. In Section 1 we describe source and target
languages. For most of the modal logics, we provide the corresponding translation
rules. Section 2 illustrates the architecture of transIt and the successive phases
of the translation process, while an outline of the input/output formats is given
in Section 3. Finally, Sections 4 and 5 describe the interface to the built-in proof-
assistant and speculate on improvements to the overall inferential framework one
can envisage.

1 Source and Target Languages

The main target language which our translation supports is the algebra of binary
relations. For this target, given a formula ϕ the system produces a relational term
t(ϕ) belonging to an algebraic language encompassing the usual constructs of
Boolean algebra plus further operators specific to the realm of relations. To be
more specific, following the work of Alfred Tarski [35], let us recall the basic
notions on such formalism. The intended universe of discourse is a collection �
of binary relations over a non-null domain U . We assume that the top relation⋃

�, and the diagonal relation consisting of all pairs 〈u, u〉 with u in U , belong
to this universe, which is also closed under the intersection (∩), union (∪),
complement ( ) relative to

⋃
�, composition (;), and conversion ( �) operations.

Within such a system, two primitive constants 1 and I designate the top and
the diagonal relation, while the operations are interpreted as one expects (here,
for any relational expression R we are indicating by R� the relation over U
designated by R), for instance:

• P� designates the relation consisting of all pairs 〈v, u〉 with 〈u, v〉 in P�;
• P ; Q designates the relation consisting of all pairs 〈u, w〉 such that there is at

least one v for which 〈u, v〉 and 〈v, w〉 belong to P� and to Q�, respectively;
• P∩Q designates the relation consisting of all pairs 〈u, v〉 which simultane-

ously belong to P� and to Q�;

and similarly for the other constructs.
Designations for further constants, operations over relations, or equations of

a special kind, can be introduced through definitions, e.g.:

0 =Def 1, D =Def I,

P−Q =Def P∩Q, P+Q =Def (Q∪P )−(Q∩P ),
P�Q ↔Def P−Q=0.

Another target language currently supported is the binary first-order predicate
calculus with three variables, namely L3 [35]. For this target, the translation is
obtained by first performing the translation into the algebra of relations, and
then exploiting first-order characterizations of the relational operators. Clearly,
in order to limit the overall number of first-order variables to three, in doing the
latter transformation we must rely on a suitable variable-recycling mechanism.



92 A. Formisano, E.G. Omodeo, and E. Or�lowska

It should be noted that a first-order sentence is logically equivalent to a sen-
tence of L3 if and only if it is expressible in the algebra of relations. This is
because L3 is equipollent to the arithmetic of binary relations [35, Chap. 3]. On
the other hand, this is no more the case if we consider sentences of the full first-
order predicate calculus. Actually, it is known (cf. [35, 21]) that the collection
of all first-order sentences expressible with three variables (and hence having a
relational rendering) is undecidable. As a consequence, the translation from first-
order predicate calculus into the algebra of relations is not always doable and it
can only be achieved (in favorable cases) by means of conservative techniques.
Therefore, our Prolog-based translator may fail in translating a sentence. Any-
way, the translation process terminates in every case, and a diagnostic message
is issued when the translation is not carried through. Notice that the translation
process could be improved by resorting to conservative refinements such as those
proposed in [2].

Similar enhancements can be applied in order to build more target languages
into the tool. One could easily achieve this goal by describing such languages in
terms of suitable rewriting rules. As an example we mention another currently
available translation for modal formulas (see below, for a description of the
source languages), having a set-theoretical language as target. This approach is
described in [4, 1, 31], where it is shown that even a very weak set theory can offer
adequate means for expressing the semantics of modal systems of propositional
logic. In this context, a modal formula is translated into a formula of a very weak
set theory. Then, in order to perform (semi-)automated modal inference, the
result of the translation could be fed into a deduction system for theory-based
reasoning [13] or, alternatively, into a Rasiowa-Sikorski proof system for set-
theory, as described in [31]. Another possibility could consist in performing one
further translation step, from the set theoretical framework into the relational
calculus, as suggested in [9], to then exploit any deductive system for relational
reasoning.

Let us now briefly highlight most of the source languages currently accepted by
the translator. We characterize the languages of the logics which employ binary
accessibility relations in terms of their Kripke-style models. Our translator does
not, as yet (although we plan extensions of this kind), deal with the languages of
relevant logics or the logics with binary modalities—requiring ternary relations
in their models. The translation functions for many of these languages are known,
see [26] for a translation of languages of relevant logics.

The main idea of the translation is to assign relational terms to formulas
of non-classical logics so that validity is preserved. These terms must represent
right ideal relations, a binary relation R on the domain U being called right ideal
when it meets the condition R;1=R. In other words, a right ideal relation is of
the form X × U for some X ⊆ U . Intuitively speaking, if a formula is replaced
by a right ideal relation, then its domain represents the set of states where the
formula is true, and its range represents the universe of all states. For atomic
formulas the property of being right ideal can be enforced by postulating that
a propositional variable, say p, is translated into a relational term P ;1, where



An Environment for Specifying Properties of Dyadic Relations 93

P is a relation variable uniquely associated with p. It follows that, given a lan-
guage, a relational translation of its formulas can be defined provided that, first,
the propositional operations of the language can be mapped into the relational
operations which preserve the property of being right ideal and, second, the
translation will preserve validity. It is known that Boolean operations preserve
the property of being right ideal and the composition of any relation with a right
ideal relation results in a right ideal relation. So if a logic is based on a classi-
cal logic whose propositional connectives are Boolean, or if a logic has a lattice
as a basis, then the only problem is to appropriately translate the remaining
intensional propositional operations of the logic. Since their semantics depends
on the accessibility relation(s) which usually are not right ideal, the translation
should use these relations only as first arguments of the composition operator,
making use of the property stated above. If this can be done with preservation
of validity, then the translation process is successful.

In the following we present definitions of the translation functions of languages
for several families of logics whose accessibility relations are binary. In all the
listed cases the validity-preserving theorems are known and can be found in the
cited references.

Mono-Modal Logics. This is the basic translation of (propositional) modal
formulas into relational terms originated in [25]. The source language involves
usual propositional connectives together with necessity and possibility operators
(here ψ and χ stand for propositional sentences):

• t(pi) =Def Pi ; 1, where Pi is a relational variable uniquely corresponding
to the propositional variable pi;

• t(¬ψ) =Def t(ψ);
• t(ψ & χ) =Def t(ψ) ∩ t(χ);
• t(� ψ) = Def R ; t(ψ), where R is a constant relation designating the

accessibility relation between possible worlds;

and similarly for the other customary propositional connectives (see also [25],
for a very detailed treatment).

Lattice-Based Modal Logics. Lattice-based modal logics have the opera-
tions of disjunction and conjunction and, moreover, each of them includes a
modal operator which can be either a possibility or necessity or sufficiency or
dual sufficiency operator. Since negation is not available in these logics, both
in the possibility–necessity and in the sufficiency–dual-sufficiency pair neither
operator is expressible in terms of the other. We can also consider mixed lan-
guages with any subset of these operators. The target relational language for all
of these lattice-based logics includes the following specific accessibility relations:
binary relations �1 and �2, which are assumed to be reflexive and transitive
and to satisfy the condition �1 ∩ �2= I. Such relations are needed in order to
provide semantics for the operation of disjunction which, in the case of lattice-
based logics, does not necessarily distribute over conjunction. All of these logics
have been deeply investigated in [32, 7, 20]. The translation of disjunction and
conjunction is:



94 A. Formisano, E.G. Omodeo, and E. Or�lowska

• t(ψ ∨ χ) =Def �1; �2; (t(ψ) ∪ t(χ));
• t(ψ & χ) =Def t(ψ) ∩ t(χ).

Considering a source language with a possibility operator �, the target lan-
guage includes two relations R� and S� subject to the following conditions:

��
1 ; R�; ��

1 � R� , R� � S�; ��
1 ,

�2; S�; �2 � S� , S� � �2; R� .

The translation of a formula involving the modal operator is

t(�χ) =Def �1; S�; �2; t(χ) .

Also in the case of a language involving the necessity operator �, the target
language includes two relations R� and S� subject to:

�1; R�; �1 � R� , R� � �1; S� ,

��
2 ; S�; ��

2 � S� , S� � R�; ��
2 .

The translation of a formula involving the modal operator is

t(�χ) =Def R�; t(χ) .

Formulas involving the sufficiency operator �� are translated into relational
expressions by introducing two relations R�� and S�� subject to the following
conditions:

�1; R��; �2 � R�� , R�� � �1; S�� ,

��
2 ; S��; ��

1 � S�� , S�� � R��; ��
1 .

Within such a framework, the translation of a formula involving the sufficiency
operator is

t(��χ) =Def R��; �2; t(χ) .

Finally, the translation of formulas involving the dual sufficiency operator ��,
has as its target a relational language with two relations, R�� and S��, subject to
the following conditions:

��
1 ; R��; ��

2 � R�� , R�� � S��; ��
2 ,

�2; S��; �1 � S�� , S�� � �2; R�� .

Then, the translation of a formula involving �� is

t(��χ) =Def �1; S��; t(χ) .

Logics of Knowledge and Information. These modal logics come from [5]:

� Logic with knowledge operator K, subject to the following translation rule:

t(Kϕ) =Def R; t(ϕ)∪ R; t(ϕ).



An Environment for Specifying Properties of Dyadic Relations 95

� Logic of non-deterministic information (NIL) [5, Sect. 7.2]. A multi-modal
logic with three modalities, determined by the relations of informational
inclusions (� and �) and similarity (σ) subject to the following conditions:

• � is reflexive and transitive and such that � = ��,
• σ is reflexive and symmetric,
• �; σ; � �σ.

� Information logic (IL) [5, Sect. 7.3]. A modal logic with three modal operators
corresponding to the relations of indiscernibility (≡), forward inclusion (�),
and similarity (σ) subject to the following conditions:

• ≡ is an equivalence relation,
• � is reflexive and transitive,
• σ is reflexive and symmetric,
• ��; σ �σ and � ∩ �� = ≡.

Intuitionistic Logic. The translation of intuitionistic logic is based on the
following rules:

t(ψ → χ) =Def �; (t(ψ) ∩ t(χ)) , t(ψ & χ) =Def t(ψ) ∩ t(χ) ,

t(¬ψ) =Def �; t(ψ) , t(ψ ∨ χ) =Def t(ψ) ∪ t(χ) ,

where � is a reflexive and transitive relation.

Multi-modal Logic. These logics correspond to multi-modal frames consisting
of a relational system (W,Rel) where Rel is a family of accessibility relations
(enjoying closure properties with respect to relational constructs). Modalities
are then of the form [R] and 〈R〉, where R is any relational term of Rel (cf. [27]).

The translation of modal operators is the same as in the case of mono-modal
logic. The differences between operators are articulated in terms of the properties
of the corresponding accessibility relations.

Temporal Logics. By taking the relational formalization of temporal logics
given in [28], we extended the translator in order to deal with temporal formulas.
The basic modal operators (referring to states in the future or in the past) are:

• Gϕ interpreted as “always, in the future, ϕ will be true”;
• Fϕ interpreted as “sometimes, in the future, ϕ will be true ”;
• Hϕ interpreted as “ϕ was always true in the past”;
• Pϕ interpreted as “ϕ was true in some past time”;
• ϕ Uχ interpreted as “at some moment χ will be true and from now till then

ϕ will be true”;
• ϕ Sχ interpreted as “there was a moment when χ was true and such that ϕ

has ever since been true”;
• Xϕ interpreted as “ϕ will be true in the next moment in time”.



96 A. Formisano, E.G. Omodeo, and E. Or�lowska

In this context, relational representations of temporal formulas are expressed by
considering an accessibility relation R that (together with its converse R�) links
time instants. The relational translations of the modalities G, F, H, and P are as
follows:

t(Gϕ) =Def R; t(ϕ) , t(Hϕ) =Def R�; t(ϕ) ,
t(Fϕ) =Def R; t(ϕ) , t(Pϕ) =Def R�; t(ϕ) ,

t(ϕ Uχ) =Def t(ϕ) U t(χ) , t(ϕ Sχ) =Def t(ϕ) S t(χ) ,
t(Xϕ) =Def t((ϕ & ¬ϕ) Uϕ) ,

where, in the translations of the modal operators U and S we use the same sym-
bols to denote two newly introduced relational constructs. These new constructs
cannot be defined in terms of the primitive relational constructs (page 91). The
intended interpretation of U is as follows: PUQ designates the binary relation
consisting of all pairs 〈u, v〉 such that there exists t such that 〈u, t〉 belongs to
the accessibility relation R�, 〈t, v〉 belongs to Q�, and for all w, if 〈u, w〉 ∈ R�

and 〈w, t〉 ∈ R� then 〈w, v〉 ∈ P�. (The interpretation of S is analogous, with
respect of R�.)

Other Modal Logics. Other modal logics currently accepted by the translator
involve: logics with specification operators [18, 24], logics with Humberstone
operators [19], logics with sufficiency operators [15, 6].

Following the semantics developed by Hoare and Jifeng [18], the operators
of the weakest prespecification (\) and the weakest postspecification (/) are
modeled with residuals of the relational composition which are definable with
composition, converse and complement:

Q\R =DefR; Q� and R/P =DefP�; R.

Consequently, P ; Q�R if and only if P�Q\R if and only if Q�R/P .
The Humberstone operators are the modal operators of possibility and neces-

sity determined by the complement of an accessibility relation. It follows that
their translation can easily be derived from the translation of the mono-modal
operators.

The sufficiency (��) and dual sufficiency (��) operators receive the following
relational translation:

t(��ϕ) =Def R; t(ϕ),
t(��ϕ) =Def R; t(ϕ),

where R is a relational constant representing an accessibility relation of the
models of a logic under considerations.

It follows that our translation tool is able to translate the formulas of any of
the information logics presented in [5], as they involve, together with Boolean
or lattice operators, intensional operators that are either modal or sufficiency or
knowledge operators.



An Environment for Specifying Properties of Dyadic Relations 97

sentence
−→

logic
↓

parse ⇒
rewrite

and
simplify

⇒

target language
↓

translate
output
−→
form

Fig. 2. The translator architecture

2 The Translation Process

The translator takes as input a formula of a specific source language (see Sec-
tion 1). As shown in Fig. 2, the first of these transformations yields an internal
representation of the formula, while the last step generates its final rendering.
Then, a sequence of rewritings and simplifications is performed. Finally, the
desired translation is produced.

More specifically, here is the sequence of the salient phases which usually
form the translation (some of them being skipped in specific cases, for instance
double-negation removal in intuitionistic logic):

Lexical and syntactical analyses. This phase accepts a formula only if it
is syntactically correct and its constructs belong to the specific language
at hand. The syntax-directed translation implemented through this stage is
described by an attributed definite clause grammar. Hence, any extension to
further logics can be achieved by simply adding a suitable set of grammar
rules which characterize the (new) well-formed formulas. The outcome of this
stage is an intermediate representation of the abstract syntax tree (AST) of
the input formula.

Generation of an internal representation. Bymeans of a rewriting process
which acts in a bottom-up recursive fashion, the outcome of the preceding
phase is turned into an internal representation of the AST (in form of a Prolog
term), independent of the source language.

Abstract propositional evaluation. The internal representation of the given
formula is analyzed in order to extract its propositional schema. The schema
so obtained is then (possibly) simplified through replacements of some of its
sub-formulas by tautologically equivalent ones.

Reduction to primitive constructs. In this phase the formula is rewritten in
terms of a small repertoire of constructs and connectives, to be regarded as
being “primitive”. For instance, biimplication ↔ is rewritten as a conjunction
of two implications, and so on. Notice that some of these rewritings must be
inhibited at times, insofar as unsound with respect to the specific logic at
hand. The aim of this transformation is to make the next phase easier.

Propositional simplifications. Through this phase the internal representa-
tion of the formula is simplified by applying a number of propositional



98 A. Formisano, E.G. Omodeo, and E. Or�lowska

rewrite(Rules,From,To) :- transl(Rules,From,M), % rewrite until
(From==M, To=M ; rewrite(Rules,M,To)). % fix-point

transl(_,T,T) :- var(T).
transl(R,T,S) :- T =.. [F|Argg], translArgg(R,Argg,Brgg),

M =.. [F|Brgg], transl0(R,M,S).
translArgg(_,[],[]).
translArgg(R,[H|B],[SH|SB]) :- transl(R,H,SH),

translArgg(R,B,SB).
transl0(R,T,S) :- Goal =.. [R,T,S], (Goal ; S=T).

rewrite1(R,T,S) :- once(transl(R,T,S)). % rewrite once

Fig. 3. A simple and powerful post-order rewriting procedure

simplifications to it, mainly aimed at reducing the size of the formula (for
instance, elimination of tautological sub-formulas and of double negations).

Relational translation. This is the main step of the translation process: the
internal representation of the given formula is translated into the calculus of
binary relations. The kind of rewriting rules employed may depend on the
source language of the input formula (see Section 1). The outcome of this
phase is a relational term.

Relational simplifications. The overall translation process ends with a se-
ries of relational simplifications applied to the relational term produced by
the preceding step. The simplest among these rewritings take care of the
idempotency, absorption or involution properties of (some of) the relational
constructs. The process can easily be extended to perform more complex
simplifications.

It should be noticed that most of the above steps are all uniformly per-
formed by exploiting the same simple meta-rewriter. Fig. 3 displays the basic
Prolog specification of this post-order rewriting procedure. The main predicate is
rewrite/3. Intuitively speaking, it accepts as its first parameter (Rules) a Pro-
log predicate describing one of the possible translation steps. Then it recursively
processes the term From in order to produce its translation To.

Further phases could be added, for instance in order to apply semantical
transformations to the relational term, possibly with respect to a set of ax-
iomatic assumptions characterizing a particular class of relational structures as
constituting the target framework.

Example 1. As an example we provide here the textual output produced by the
various steps of the translation into the calculus of relations of the multi-modal
formula:

[R ∪ Q] < Q > p → q.

Here is a tracing of the translation process (where p1, p2, and R3 are internal
names corresponding to the external names p, q, and Q, respectively):



An Environment for Specifying Properties of Dyadic Relations 99

?- enu2tg(A,polyModal).
|: [R+Q]<Q>p -> q.
...i(nn(pp(1,-3),u(0,-3)),2)...
from intermediate to internal representation:

NEC(POSS(p1,R3),u(R,R3))imp p2...
in primitive connectives:

NEC(NEC(p1 imp f,R3)imp f,u(R,R3))imp p2...
after propositional simplification:

NEC(NEC(p1 imp f,R3)imp f,u(R,R3))imp p2...
after translation to calculus of relations:

u(c(c(k(u(R,R3),c(u(c(c(k(R3,c(u(c(k(p1,U)),Z))))),Z))))),k(p2,U))...
after relational simplifications:

u(k(p2,U),k(u(R,R3),c(k(k(R3,p1),U))))...

A = (u(k(p2,’U’),k(u(’R’,’R3’),c(k(k(’R3’,p1),’U’))))=’U’)

The Prolog term produced is the representation of the relational equality

q ; 1 ∪ (R ∪ Q) ; Q ; p ; 1 = 1.

Proving that the initial modal formula is a theorem amounts to deriving this
equation within the calculus of relations.

3 Input and Output Formats

When rawly used, our Prolog-based translation tool system reads a pure-text
input typed in by the user (cf. Example 1). The output is then written, again
in pure-text format, to the standard output stream (usually, the screen). This
kind of interaction is, however, quite unsatisfactory, because the ASCII char-
acter set is rather poor. In order to overcome this disadvantage and ease the
input/output of complex formulas and expressions, a user-friendly interface has
been developed. Such a graphical interface allows the user to type in formulas
using graphical LATEX-generated symbols. In doing this, we exploited the useful
integration facilities offered by SICStus Prolog [37] with respect to other pro-
gramming languages, in particular to the Tcl/Tk toolkit [36]. Hence, the input of
formulas is achieved through dialogues that are generated at run-time depend-
ing on the specific language chosen by the user. For instance, Fig. 4 displays the
input dialogue generated for multi-modal formulas.

The system also provides the possibility of processing a text file, as well as
to generate a text file as output. Through this feature it is possible to produce
input files for different deduction tools (see Section 4).

Let us briefly illustrate the use of the graphical interface with a simple ex-
ample. Consider the multi-modal formula [R ∪ Q] < Q > p → q. This formula
can be input to the translator easily, as shown in Fig. 4. The relational equation
obtained can also be displayed graphically, as in Fig. 5.



100 A. Formisano, E.G. Omodeo, and E. Or�lowska

Fig. 4. Input dialogue for multi-modal formulas

Fig. 5. Output of a translation process

4 Driving a Deductive Tool

As mentioned at the outset, the main purpose of transIt is to provide an exten-
sible front-end for (relational) deductive systems.

To exemplify how well this goal is approached, in what follows we report on
two extensions of transIt, designed in order to use it as a front-end for two deduc-
tive frameworks for relation algebras which are rather different in nature. One



An Environment for Specifying Properties of Dyadic Relations 101

Fig. 6. Assisted development of a proof tree

of the two consists in a minimal implementation of a proof-assistant (showing
some degree of autonomy) based on Rasiowa-Sikorski rewriting rules [29]. Such
proof-assistant is accessible through transIt ’s graphical interface. Once the user
has obtained a relational rendering of a theorem, (s)he can proceed to try build-
ing a proof-tree of the relational translation. Fig. 6 shows a simple example of
a derivation tree. The user interacts with the system by simply choosing a node
of the tree in order to apply one of the rewriting rules. The system takes care of
verifying applicability of rules, performing the extension of the tree, and check-
ing whether, as a consequence of rule applications, any branch becomes closed.
Some form of (semi-)automated reasoning capabilities are also implemented: it
is possible to ask the system to try, autonomously, to close all branches of a
(sub-)tree.

Another viable approach to relational reasoning consists in using transIt as a
front-end for a first-order theorem-prover: Otter, in our choice. This is achieved
by extending the translation process: a new set of rewriting rules is used to
implement automated generation of an input file to be fed into Otter. Once the
input file is available, Otter can be used as described in [11, 12] to search for a



102 A. Formisano, E.G. Omodeo, and E. Or�lowska

proof of the theorem within the relational framework. Obviously, the very same
approach can be used with other theorem provers.

Currently, transIt can be downloaded from the site http://www.di.univaq.
it/TARSKI/transIt/ and easily installed. It is developed under Linux, but we
also provide a porting for Windows XP.

5 Improving the System

The modular approach we adopted both in developing the translator and in
extending the collection of source and target languages, plainly permits steady
improvements to and extensions of the system. At the moment, most of the
phases of the translation process are carried out by means of syntactical rewrit-
ings. Nevertheless, the translation process could benefit from improvements to
its ability to exploit semantic properties of connectives and constructs. As a
matter of fact, in the current implementation this ability lies exclusively in the
abstract propositional evaluation phase (see page 97).

Another amelioration, in the same frame of mind, is the exploitation, in the
derivation process (both for the assisted and for the autonomous functioning
mode), of specific rewriting rules depending on the particular logic of the theorem
being proved.

As mentioned, the system can deal with different target languages (see page 92).
As a further example, we mention here a particularly interesting future develop-
ment: extend the collection of target languages, so as to permit the translation
into languages of ternary relations needed for handling relevant logics and other
substructural logics whose translations are presented in [26].

Further challenging themes for long-term activities regard exploring the pos-
sibilities offered by

• the integration with/within existing tools for translation and deduction. In
particular, a fruitful synergy could develop from the integration/interaction
with the “Anamorpho system”, an environment for describing relational
specifications which is based on definitional extension mechanisms (see [3]).

• the integration with visual-oriented tools for manipulation of relational for-
mulas (based, for instance, on graphical representation of relational expres-
sions and on graph-rewriting techniques [10]).

Acknowledgments

Thanks are due to Marianna Nicolosi Asmundo and to Hui Wang for fruitful
discussions on the topics of this paper.

References

[1] J. F. A. K. van Benthem, G. D’Agostino, A. Montanari, and A. Policriti. Modal
deduction in second-order logic and set theory-I, Journal of Logic and Computa-
tion, 7(2):251–265, 1997.

http://www.di.univaq.it/TARSKI/transIt/
http://www.di.univaq.it/TARSKI/transIt/


An Environment for Specifying Properties of Dyadic Relations 103

[2] D. Cantone, A. Formisano, E. G. Omodeo, C. G. Zarba. Compiling dyadic first-
order specifications into map algebra. Theoretical Computer Science, 293(2):447–
475, Elsevier, 2003.

[3] P. Caianiello, S. Costantini, E. G. Omodeo. An Environment for Specifying Prop-
erties of Dyadic Relations and Reasoning about Them. I: Language Extension
Mechanisms. In H. de Swart, E. Or�lowska, G. Schmidt, and M. Roubens eds., The-
ory and Applications of Relational Structures as Knowledge Instruments, LNCS
2929, pp.87–106, Springer, 2004.

[4] G. D’Agostino, A. Montanari, and A. Policriti. A set-theoretic translation method
for polymodal logics, Journal of Automated Reasoning, 3(15):317–337, Kluwer,
1995.

[5] S. Demri, E. Or�lowska. Incomplete Information: Structure, Inference, Complexity.
EATCS Monographs in Theoretical Computer Science, Springer, 2002.

[6] I. Düntsch and E. Or�lowska. Beyond modalities: sufficiency and mixed algebras.
In E. Or�lowska and A. Szalas eds., Relational Methods in Computer Science Ap-
plications. pp.277–299. Physica-Verlag, Heidelberg, 2000.

[7] I. Düntsch, E. Or�lowska, A. M. Radzikowska, and D. Vakarelov. Relational Rep-
resentation Theorems for Some Lattice-Based Structures. Journal on Relational
Methods in Computer Science, 1:132–160, 2004.

[8] A. Formisano and M. Nicolosi Asmundo. An efficient relational deductive system
for propositional non-classical logics. Journal of Applied Non-Classical Logics,
to appear. (A draft version is available as report 8/06 of the Dipartimento di
Informatica, Università di L’Aquila, 2006.)

[9] A. Formisano, E. Omodeo, E. Or�lowska, and A. Policriti. Uniform relational
frameworks for modal inferences. In I. Düntsch and M. Winter eds., Proceedings
of the 8th International Conference on Relational Methods in Computer Science
(RelMiCS 8), 2005.

[10] A. Formisano, E. Omodeo, M. Simeoni, A graphical approach to relational rea-
soning. Electronic Notes in Theoretical Computer Science, 44(3), Elsevier, 2001.

[11] A. Formisano, E. G. Omodeo, M. Temperini. Instructing Equational Set-
Reasoning with Otter. In R. Goré, A. Leitsch, and T. Nipkow eds., Automated
Reasoning, Proceedings of IJCAR 2001. LNCS 2083, pp.152–167, Springer, 2001.

[12] A. Formisano, E. G. Omodeo, M. Temperini. Layered map reasoning: An exper-
imental approach put to trial on sets. Electronic Notes in Theoretical Computer
Science, 48, Elsevier, 2001.

[13] A. Formisano and A. Policriti. T -Resolution: Refinements and Model Elimination.
Journal of Automated Reasoning, 22(4):433–483, Kluwer, 1999.

[14] M. Frias and E. Or�lowska. Equational reasoning in nonclassical logics. Journal of
Applied Non-Classical Logics, 8(1-2):27–66, 1998.

[15] V. Goranko. Modal definability in enriched languages. Notre Dame Journal of
Formal Logic, 31:81–105, 1990.

[16] R. Goré. Cut-free display calculi for relation algebras. In D. van Dalen and
M. Bezem eds., CSL96: Selected Papers of the Annual Conference of the As-
sociation for Computer Science Logic, LNCS 1258, pp.198–210. Springer, 1996.

[17] M. C. B. Hennessy. A proof system for the first order relational calculus. Journal
of Computer and System Sciences, 20:96–110, 1980.

[18] C. A. R. Hoare and H. Jifeng. The weakest prespecification. Part I Fundamenta
Informaticae, IX:51–84; Part II ibidem IX:217-252, 1986.

[19] I. L. Humberstone. Inaccessible worlds. Notre Dame Journal of Formal Logic,
24:346–352, 1983.



104 A. Formisano, E.G. Omodeo, and E. Or�lowska

[20] J. Järvinen and E. Or�lowska. Relational correspondences for lattices with op-
erators. In I. Düntsch and M. Winter eds., Proceedings of the 8th International
Conference on Relational Methods in Computer Science (RelMiCS 8), pp.111–118,
2005.

[21] M. K. Kwatinetz. Problems of expressibility in finite languages. PhD thesis, Uni-
versity of California, Berkeley, 1981.

[22] R. Maddux. A sequent calculus for relation algebras. Annals of Pure and Applied
Logic, 25:73–101, 1983.

[23] H. J. Ohlbach, A. Nonnengart, M. de Rijke, and D. Gabbay. Encoding Two-
Valued Nonclassical Logics in Classical Logic, In Handbook of Automated Reason-
ing, vol. II, pp.1403–1486, Elsevier, 2001.

[24] E. Or�lowska. Proof system for weakest prespecification. Information Processing
Letters, 27:309–313, 1988.

[25] E. Or�lowska. Relational interpretation of modal logics, In H. Andreka, D. Monk,
and I. Nemeti eds., Algebraic Logic. Colloquia Mathematica Societatis Janos
Bolyai, vol. 54, pp.443–471, North Holland, 1988.

[26] E. Or�lowska. Relational proof systems for relevant logics, Journal of Symbolic
Logic, 57, pp.167–186. 1992.

[27] E. Or�lowska. Relational semantics for nonclassical logics: formulas are relations,
Philosophical Logic in Poland (J. Wolenski, ed.), pp.167–186. Kluwer, 1994.

[28] E. Or�lowska. Temporal logics in a relational framework. Time and Logic—A com-
putational Approach. pp.249–227. University College London Press, 1995.

[29] E. Or�lowska. Relational proof systems for modal logics, In H. Wansing ed., Proof
theory of modal logic, Applied logic series, vol.2, pp.55–78. Kluwer, 1996.

[30] E. Or�lowska. Relational formalization of nonclassical logics. In C. Brink, W. Kahl,
and G. Schmidt eds., Relational Methods in Computer Science, pp.90-105.
Springer, 1997.

[31] E. G. Omodeo, E. Or�lowska, and A. Policriti. Rasiowa-Sikorski style relational
elementary set theory. In R. Berghammer and B. Moeller eds., Proceedings 7th In-
ternational Conference on Relational Methods in Computer Science (RelMiCS 7),
LNCS 3051, pp. 215-226, Springer, 2003.

[32] E. Or�lowska and D. Vakarelov. Lattice-based modal algebras and modal logics. In
P. Hajek, L. M. Valdés-Villanueva, D. Westerstahl eds., Logic, Methodology and
Philosophy of Science. Proceedings of the 12th International Congress, pp.147–
170. KCL Puplications, 2005.

[33] R. Schmidt and U. Hustadt. Mechanized reasoning and model generation for ex-
tended modal logics. In H. de Swart, E. Or�lowska, G. Schmidt, and M. Roubens,
eds., Theory and Applications of Relational Structures as Knowledge Instruments,
LNCS 2929, pp.38–67, Springer, 2004.

[34] W. Schoenfeld. Upper bounds for a proof search in a sequent calculus for relational
equations. Zeitschrift fuer Mathematische Logic und Grundlagen der Mathematik
28:239–246, 1982.

[35] A. Tarski and S. Givant. A formalization of Set Theory without variables, Collo-
quium Publications, vol. 41, American Mathematical Society, 1987.

[36] Web resources for the Tcl/Tk toolkit: http://tcl.sourceforge.net.
[37] Web reference for SICStus Prolog: http://www.sics.se/sicstus.

http://tcl.sourceforge.net
http://www.sics.se/sicstus

	Source and Target Languages
	The Translation Process
	Input and Output Formats
	Driving a Deductive Tool
	Improving the System


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




