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Abstract. We present classes of algebras which may be viewed as weak
relation algebras, where a Boolean part is replaced by a not necessarily
distributive lattice. For each of the classes considered in the paper we
prove a relational representation theorem.

1 Introduction

In the first paper on lattice-based relation algebras [8] we presented a class of
lattices with the operators, referred to as LCP algebras, which was the abstract
counterpart to the class of relation algebras with the specific operations of rela-
tive product and converse. In the present paper we expand the LCP class with
new operators which model residua of relative product, relative sum, dual con-
verse, and dual residua of relative sum. In the classical relation algebras based
on Boolean algebras these operators are definable with the standard relational
operations and the complement. In lattice-based algebras they should be speci-
fied axiomatically since there is no way to define them without a complement.
We construct this extension in two steps. In Section 5 we introduce the class of
LCPR algebras which extend the class LCP with the residua of product, and
in Section 6 we present the class of LCPRS algebras which are obtained from
LCPR algebras by adding sum, dual converse, and dual residua of sum. For
each of these classes we prove a relational representation theorem in the style of
Urquhart-Allwein-Dunn (see [1], [19]). Sections 2, 3, and 4 present an overview
of Urquhart’s representation theory for lattices and a survey of LCP algebras.
The contributions of the paper fit, on the one hand, into the study of lattices
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with additional operators presented in a number of papers, for example in [10],
[15], [17], [18], and on the other hand, into a relational approach to modeling
algebraic and logical structures. A study of lattices with operators evolved from
the concept of Boolean algebras with operators originated in [13]. It is continued,
among others, in the context of modeling incomplete information in [3], [5], [7],
and [14].

2 Doubly Ordered Sets

In this section we recall the notions introduced in [8] and some of their properties.

Definition 1. Let X be a non–empty set and let �1 and �2 be two quasi or-
derings in X. A structure (X, �1, �2) is called a doubly ordered set iff for all
x, y ∈X, if x�1 y and x�2 y then x= y. ��

Definition 2. Let (X, �1, �2) be a doubly ordered set. We say that A⊆ X is
�1–increasing (resp. �2–increasing) whenever for all x, y ∈ X, if x∈ A and
x �1 y (resp. x�2 y), then y ∈A. ��

For a doubly ordered set (X, �1, �2), we define two mappings l, r : 2X → 2X

by: for every A⊆X ,

l(A)= {x∈X : (∀y ∈X) x�1 y ⇒ y 	∈A} (1)
r(A)= {x∈X : (∀y ∈X) x�2 y ⇒ y 	∈A}. (2)

Observe that mappings l and r can be expressed in terms of modal operators as
follows: l(A)= [�1](−A) and r(A)= [�2](−A), where − is the Boolean comple-
ment and [�i], i =1, 2, are the necessity operators determined by relations �i.
Consequently, r and l are intuitionistic–like negations.

Definition 3. Given a doubly ordered set (X, �1, �2), a subset A⊆ X is called
l–stable (resp. r–stable) iff l(r(A))= A (resp. r(l(A))= A). ��

The family of all l-stable (resp. r–stable) subsets of X will be denoted by L(X)
(resp. R(X)).

Recall the following notion from e.g. [4]:

Definition 4. Let (X, �1) and (Y, �2) be partially ordered sets and let f and
g be mappings f : X → Y , g : Y → X. We say that f and g are a Galois
connection iff for all x, y ∈X

x�1 g(y) iff y �2 f(x). ��

Lemma 1. [17] For any doubly ordered set (X, �1, �2) and for any A⊆ X,

(i) l(A) is �1–increasing and r(A) is �2–increasing
(ii) if A is �1–increasing, then r(A)∈ R(X)
(iii) if A is �2–increasing, then l(A)∈L(X)
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(iv) if A∈L(X), then r(A)∈ R(X)
(v) if A∈R(X), then l(A)∈L(X)
(vi) if A, B ∈L(X), then r(A) ∩ r(B)∈ R(X).

It is well–known that the following facts hold.

Lemma 2. The family of �i–increasing sets, i =1, 2, forms a distributive lat-
tice, where join and meet are union and intersection of sets.

Lemma 3. [19] For every doubly ordered set (X, �1, �2), the mappings l and r
form a Galois connection between the lattice of �1–increasing subsets of X and
the lattice of �2–increasing subsets of X.

In other words, Lemma 3 implies that for any A∈L(X) and for any B ∈R(X),
A⊆ l(B) iff B ⊆ r(A).

Lemma 4. [8] For every doubly ordered set (X, �1, �2) and for every A⊆X,

(i) l(r(A))∈ L(X) and r(l(A))∈ R(X)
(ii) if A is �1–increasing, then A⊆ l(r(A))
(iii) if A is �2–increasing, then A⊆ r(l(A)).

Lemma 4 immediately implies:

Corollary 1. For every doubly ordered set (X, �1, �2) and for every A⊆X,

(i) if A∈L(X), then A⊆ l(r(A))
(ii) if A∈R(X), then A⊆ r(l(A)).

Let (X, �1, �2) be a doubly ordered set. Define two binary operations in 2X : for
all A, B ⊆ X ,

A � B = A ∩ B (3)
A � B = l(r(A) ∩ r(B)). (4)

Observe that � is defined from � resembling a De Morgan law with two different
negations.

Moreover, put

0 = ∅. (5)
1 = X (6)

In [19] it was shown that for a doubly ordered set (X, �1, �2), the system
((X), �, �,0,1) is a lattice. This lattice is called the complex algebra of X .
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3 Urquhart’s Representation of Lattices

In this paper we are interested in studying relationships between relational struc-
tures (frames) providing Kripke–style semantics of logics, and algebras based on
lattices. Therefore, we do not assume any topological structure in the frames. As
a result, we have a weaker form of the representation theorems than the original
Urquhart result, which requires compactness.

Let (W, ∧, ∨, 0, 1) be a non–trivial bounded lattice.

Definition 5. A filter-ideal pair of a bounded lattice (W, ∧, ∨, 0, 1) is a pair
x= (x1, x2) such that x1 is a filter of W , x2 is an ideal of W and x1 ∩x2 = ∅. ��

The family of all filter–ideal pairs of a lattice W will be denoted by FIP (W ).
Let us define the following two quasi ordering relations on FIP (W ): for any
(x1, x2), (y1, y2)∈FIP (W ),

(x1, x2) �1 (y1, y2) ⇐⇒ x1 ⊆ y1 (7)
(x1, x2) �2 (y1, y2) ⇐⇒ x2 ⊆ y2. (8)

Next, define

(x1, x2)� (y1, y2) ⇐⇒ (x1, x2)�1 (y1, y2) & (x1, x2)�2 (y1, y2).

We say that (x1, x2)∈ FIP (W ) is maximal iff it is maximal with respect to
� . We will write X(W ) to denote the family of all maximal filter–ideal pairs of
the lattice W .

Observe that X(W ) is a binary relation on 2W .

Proposition 1. [19] Let (W, ∧, ∨, 0, 1) be a bounded lattice. Then for every
(x1, x2)∈ FIP (W ) there exists (y1, y2)∈X(W ) such that (x1, y1)� (y1, y2).

For any (x1, x2)∈FIP (W ), the maximal filter–ideal pair (y1, y2) such that
(x1, x2)� (y1, y2) will be referred to as an extension of (x1, x2).

Definition 6. Let (W, ∧, ∨, 0, 1) be a bounded lattice. The canonical frame of
W is the structure (X(W ), �1, �2). ��

Lemma 5. For every bounded lattice W , its canonical frame (X(W ), � 1, � 2)
is a doubly ordered set.

Consider the complex algebra (L(X(W )), �, �,0,1) of the canonical frame of
a lattice (W, ∧, ∨, 0, 1). Observe that L(X(W )) is an algebra of subrelations of
X(W ).

Let us define the mapping h : W → 2X(W ) as follows: for every a ∈W ,

h(a) = {x∈X(W ) : a ∈x1}. (9)
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Theorem 1. [19] For every lattice (W, ∧, ∨, 0, 1) the following assertions hold:

(i) For every a ∈W , r(h(a))= {x∈X(W ) : a ∈x2}
(ii) h(a) is l–stable for every a ∈W

(iii) h is a lattice embedding.

The following theorem is a weak version of the Urquhart result.

Theorem 2 (Representation theorem for lattices). Every bounded lattice
is isomorphic to a subalgebra of the complex algebra of its canonical frame.

4 LCP Algebras and Frames

In this section we recall the class LCP of lattices with the operations of product
and converse introduced in [8]. We add one more axiom, (CP0), to the axioms
of LCP postulated in [8] and we explain its role.

Definition 7. An LCP algebra is a system (W, ∧, ∨,� , ⊗, 0, 1, 1′) such that
(W, ∧, ∨, 0, 1) is a non–trivial bounded lattice, � is a unary operation in W
and ⊗ is a binary operation in W satisfying the following conditions for all
a, b, c ∈W ,

(CP.0) 0 ⊗ a = a ⊗ 0 = 0
(CP.1) a�� = a
(CP.2) (a ∨ b)� = a� ∨ b�

(CP.3) a ⊗ 1′ = 1′ ⊗ a = a
(CP.4) a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c
(CP.5) a ⊗ (b ∨ c) = (a ⊗ b) ∨ (a ⊗ c)
(CP.6) (a ∨ b) ⊗ c = (a ⊗ c) ∨ (b ⊗ c)
(CP.7) (a ⊗ b)� = b� ⊗ a�. ��

It is worth noting that axiom (CP.0) does not follow from the remaining axioms.
Consider, for example, a bounded lattice (W, ∧, ∨, 0, 1) and define the additional
operations ⊗ and � as follows: for all a, b ∈W ,

a� = a

a ⊗ b = a ∨ b

1′ = 0.

One can easily check that axioms (CP.1)–(CP.7) hold, but (CP.0) does not.
Consequently, Lemma 24 of [8] needs repair. For its proof we refer to [1]. The
crucial argument is on page 529 of [1] in the paragraph following equation (3).
In line 4 of this paragraph they obtain the disjoint pair ([t), U), which, as they
claim, can be extended to the maximal filter–ideal pair. This, however, is only
possible if t 	=0.

Note also that axiom (CP.0) follows from the relation algebra axioms and
implies that 0 	=1′ in every LCP algebra with at least two elements. To see that,
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suppose that (CP.0) holds and 0 = 1′. Then 1 = 1′ ⊗ 1 = 0 ⊗ 1 = 0, which
contradicts our hypothesis that W has at least two elements.

For any A⊆ W , let us denote

A� = {a� ∈W : a ∈A}. (10)

Lemma 6. [8] For any LCP algebra (W, ∧, ∨,� , ⊗, 0, 1, 1′) and for all subsets
A, B ⊆W ,

(i) A⊆ B iff A� ⊆ B�

(ii) A�� = A.

Some other properties of LCP algebras can be found in [8].

Definition 8. An LCP frame is a relational system (X, �1, �2, C, R, S, Q, I)
such that (X, �1, �2) is a doubly ordered set, C is a mapping C : X → X, R, S,
and Q are ternary relations on X and I ⊆ X is an unary relation on X satisfying
the following conditions for all x, y ∈X:
Monotonicity conditions:

(MCP.1) x�1 y implies C(x)�1 C(y)
(MCP.2) x�2 y implies C(x)�2 C(y)
(MCP.3) R(x, y, z) & x′�1 x & y′�1 y & z �1 z′ =⇒ R(x′, y′, z′)
(MCP.4) S(x, y, z) & x�2 x′ & y′�1 y & z′�2 z =⇒ S(x′, y′, z′)
(MCP.5) Q(x, y, z) & x′�1 x & y �2 y′ & z′�2 z =⇒ Q(x′, y′, z′)
(MCP.6) I(x) & x�1 x′ =⇒ I(x′)

Stability conditions:
(SCP.1) C(C(x))= x
(SCP.2) R(x, y, z) =⇒ ∃x′′ ∈X (x�1 x′′ & S(x′′, y, z))
(SCP.3) R(x, y, z) =⇒ ∃y′′ ∈ X (y �1 y′′ & Q(x, y′′, z))
(SCP.4) S(x, y, z) =⇒ ∃z′′ ∈X (z �2 z′′ & R(x, y, z′′))
(SCP.5) Q(x, y, z) =⇒ ∃z′′ ∈X (z �2 z′′ & R(x, y, z′′))
(SCP.6) ∃u ∈X(R(x, y, u)&Q(x′, u, z))=⇒∃w ∈X(R(x′, x, w)&S(w, y, z))
(SCP.7) ∃u ∈X(R(x, y, u)&S(u, z, z′))=⇒∃w ∈X(R(y, z, w)&Q(x, w, z′))
(SCP.8) I(x) & (R(x, y, z) or R(y, x, z)) =⇒ y �1 z
(SCP.9) ∃u ∈X(I(u) & S(u, x, x))
(SCP.10) ∃u ∈X(I(u) & Q(x, u, x))
(SCP.11) Q(x, y, z) ⇐⇒ S(C(y), C(x), C(z)). ��

In [1] there was no general concept of LCP frames. The results of [1] concern
canonical frames and complex algebras of the canonical frames. In our approach
canonical frames are examples of a general frame.

For an LCP frame (X, �1, �2, C, R, S, Q, I) let us define the following map-
pings � : 2X → 2X and ⊗S , ⊗Q , � : 2X × 2X → 2X by: for all A, B ⊆X ,

A� = {C(x) : x∈A} (11)
A⊗Q B = {z ∈X : ∀x, y ∈X(Q(x, y, z) & x∈ A =⇒ y ∈ r(B)} (12)
A⊗S B = {z ∈X : ∀x, y ∈X(S(x, y, z) & y ∈B =⇒ x∈ r(A)} (13)
A� B = l(A⊗Q B). (14)
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Moreover, put

1′ = l(r(I)). (15)

The family L(X) of all l–stable subsets of X is closed under the operations (11)
and (14).

Lemma 7. [8] Let (X, �1, �2, C, R, S, Q, I) be an LCP frame. Then for all
A, B ⊆X,

(i) if A is l–stable, then so is A�

(ii) if A and B are l–stable, then so is A� B

(iii) 1′ is l–stable
(iv) if A and B are l–stable, then A⊗S B = A⊗Q B.

Definition 9. The complex algebra of an LCP frame (X, �1, �2, C, R, S, Q, I)
is a system (L(X), �, �, �, �,0,1,1′) with the operations defined by (3)–(4), (11),
(14) and the constants defined by (5), (6) and (15). ��

Theorem 3. The complex algebra of an LCP frame is an LCP algebra.

Proof. In [8] it was shown that any complex algebra of an LCP frame satisfies
the axioms (CP.1)–(CP.7). Then it suffices to show that (CP.0) also holds, i.e.
0� A=A� 0= 0 for every A∈L(X).

First, note that l(L(X))=∅ and r(0)=L(X). Next, since for every A⊆X and
for every x, y, z ∈X it holds Q(x, y, z) & x∈∅ =⇒ y ∈ r(A), whence 0⊗Q A=
L(X). Therefore, 0� A= l(0⊗Q A)= 0. Moreover, from the definition of ⊗Q it
is easily observed that A⊗Q 0= L(X). Consequently, A�0= l(A⊗Q 0)= 0.

Let (W, ∧, ∨, �, �, 0, 1, 1′) be an LCP algebra. We will write FIP (X) (resp.
X(W )) to denote the family of all filter–ideal pairs (resp. maximal filter–ideal
pairs) of the lattice reduct of W . Note that since W is non–trivial, X(W ) is not
empty.

Let us define a mapping C� : FIP (X) → FIP (X) by: for x∈ FIP (X),

C�(x) = (x1
�, x2

�). (16)

Moreover, let us define the following three ternary relations on X(W ) by: for all
x, y, z ∈X(W ),

R�(x, y, z) ⇐⇒ (∀a, b ∈W ) a ∈x1 & b ∈ y1 =⇒ a ⊗ b ∈ z1 (17)
S�(x, y, z) ⇐⇒ (∀a, b ∈W ) a ⊗ b ∈ z2 & b ∈ y1 =⇒ a ∈x2 (18)
Q�(x, y, z) ⇐⇒ (∀a, b ∈W ) a ⊗ b ∈ z2 & a ∈x1 =⇒ b ∈ y2 (19)

Also, let

I� = {x∈X(W ) : 1′ ∈x1}. (20)

We extend the operation ⊗ for subsets of X in the following way: for all A, B ⊆ W ,

A ⊗ B = {a ⊗ b : a ∈A, b ∈B}.
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Then it is straightforward to see that for all x, y, z ∈X(W ),

R�(x, y, z) ⇐⇒ x1 ⊗ y1 ⊆ z1 (21)
S�(x, y, z) ⇐⇒ −x2 ⊗ y1 ⊆ −z2 (22)
Q�(x, y, z) ⇐⇒ x1 ⊗ −y2 ⊆ −z2. (23)

In [8] we showed that for x∈X(W ), C�(x)∈ X(W ).

Definition 10. Let an LCP algebra (W, ∧, ∨, �, ⊗, 0, 1, 1′) be given. The system
(X(W ), �1, �2, C

�, R�, S�, Q�, I�) is called the canonical frame of W . ��

The following auxiliary lemma will be useful.

Lemma 8. [8] Let (W, ∧, ∨, ⊗,� , 0, 1, 1′) be an LCP algebra and let Δ and ∇
be a filter and an ideal of W , respectively. Then the set

V = {a ∈W : ({a} ⊗ Δ) ∩ ∇ 	= ∅}

is an ideal of W .

In the following theorem we show that canonical frames satisfy the postulates
assumed for the LCP frames. We only give a few exemplary proofs which were
not given in [8].

Theorem 4. The canonical frame of an LCP algebra is an LCP frame.

Proof. Let an LCP algebra (W, ∧, ∨,� , ⊗, 0, 1, 1′) be given and let (X(W ), �1,
�2, C�, R�, S�, Q�, I�) be its canonical frame. Proceeding as in [1] one can prove
that (MCP.3)–(MCP.5) and (SCP.2)–(SCP.7) hold in the canonical frame.

We show now that (MCP.1) is satisfied. Let x, y ∈X(W ) be such that x�1y.
This means that (i) x1 ⊆ y1. Also, C�(x)= (x�

1 , x�
2 ). By Lemma 6, (i) is equiv-

alent with x�
1 ⊆ y�

1 , so C�(x)�1C
�(y). In the analogous way we can show that

(MCP.2) holds.
Next we prove that (MCP.6) is satisfied. Let x, x′ ∈X(W ) and assume that

I�(x) and x�1x
′ hold. From (20) we immediately get 1′ ∈x1 ⊆ x′1, so I�(x′)

holds.

Furthermore, we show that (SCP.1) holds. For every x=(x1, x2)∈X(W ), we
have: C�(C�(x))= C�(x�

1 , x�
2 )= (x��

1 , x��
2 )= (x1, x2)=x by Lemma 6(ii).

Consider now the condition (SCP.8). Assume that for any x, y, z ∈X(W ),
I�(x) holds, i.e. (ii) 1′ ∈ x1, and R�(x, y, z) or R�(y, x, z). Let R�(x, y, z) holds.
Hence, by (ii), we get (∀b ∈W ) b ∈ y1 ⇒ 1′⊗b ∈ z1. Since 1′⊗b = b, we get y1 ⊆ z1,
that is y �1z. If R�(y, x, z) holds, then again by (ii) we get (∀a ∈ W ) a ∈ y1 ⇒
a ⊗ 1′ ∈ z1, so since a ⊗ 1′= a, we obtain again y1 ⊆ z1, i.e. y �1z.

We show now that (SCP.9) holds. Let y ∈X(W ) and consider the set
V = {a ∈W : ({a} ⊗ y1) ∩ y2 	= ∅}. By Lemma 8, V is an ideal of W . Let [1′) be
the filter generated by 1′. We show that [1′) ∩ V = ∅. Suppose that there exists
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a ∈W such that (iii) a ∈ [1′) and (iv) a ∈V . From (iii) it follows that (v) 1′� a.
Also, (iv) implies that there exists b ∈W such that (vi) b ∈ y1 and (vii) a⊗b ∈ y2.
Since ⊗ is isotone in both arguments, (v) implies 1′ ⊗ b �a ⊗ b. But 1′ ⊗ b = b,
so we have b � a ⊗ b, which in view of (vii) and the fact that y2 is an ideal gives
b ∈ y2 – a contradiction with (vi).

Then ([1′), V ) is a filter–ideal pair. Let u =(u1, u2) be its extension to the
maximal pair. Therefore, [1′)⊆ u1 and V ⊆u2. Since 1′ ∈ [1′), we get 1′ ∈u1,
so I�(u) holds. We show now that S�(u, y, y) holds. Let a, b ∈W be such that
a ⊗ b ∈ y2 and b ∈ y1. Then a ∈V , so a ∈u2. Whence S�(u, y, y) holds.

In the similar way one can check that (SCP.10) holds.
Finally we show that (SCP.11) holds. Using the axiom (CP.7) and the defi-

nition (10), we have for all x, y, z ∈X(W ),

S�(C�(y), C�(x), C�(z)) iff (∀a, b ∈W ) a ⊗ b ∈ z�
2 & b ∈x�

1 =⇒ a ∈ y�
2

iff (∀a, b ∈W ) (a ⊗ b)� ∈ z2 & b� ∈ x1 =⇒ a� ∈ y2

iff (∀a, b ∈W ) b� ⊗ a� ∈ z2 & b� ∈x1 =⇒ a� ∈ y2

iff (∀c, d∈ W ) c ⊗ d ∈ z2 & c ∈x1 =⇒ d ∈ y2

iff Q�(x, y, z).

This completes the proof.

We conclude this section by stating the representability of LCP algebras.

Theorem 5. Every LCP algebra is isomorphic to a subalgebra of the complex
algebra of its canonical frame.

Proof. See [8].

In the axiomatization of relation algebras, apart from the axioms for Boolean
algebras, the only axiom which contains complementation is

a ⊗ −(a� ⊗ −b)� b.

This axiom is equivalent to the De Morgan equivalences

(a ⊗ b) ∧ c = 0 ⇐⇒ (a� ⊗ c) ∧ b = 0 ⇐⇒ (c ⊗ b�) ∧ a = 0 (24)

and could be added to the LCP axioms. However, we showed in [8] that adding
(24) does not add anything new. An alternative is the modular inequality

(a ⊗ b) ∧ c � a ⊗ (b ∧ (a� ⊗ c)). (25)

(25) is true for relation algebras and is also an axiom for rough relation algebras
([5]), i.e., relation algebras based on regular double Stone algebras. One consequ-
ence of (25) is that for every a < 1′ we have a ⊗ 1 < 1 (here a < b means a � b
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Fig. 1. An LCP–algebra where (25) fails

Table 1. Composition Table

⊗ a b s t

a a 1 a t ∨ 1′ ∨ a

b 1 b 1 b

s a s ∨ 1′ ∨ b s s ∨ t ∨ 1′

t 1 b s ∨ t ∨ 1′ t

and a 	= b). The following example from [9] shows that not every LCP–algebra
satisfies (25).

Example 1. Consider the algebra L of Fig.1. By (CP.2) and (CP.5) it is enough
to define how composition and converse act on the join irreducible elements.
These are 1′, a, b, s, t, and we set a�= b, s�= t. Composition for the non–identity
irreducible elements is given in Table 1. Now consider

(t ⊗ a) ∧ b = b since t ⊗ a = 1
	� t ⊗ s from the composition table
= t ⊗ [(s ∨ t ∨ 1′) ∧ a] from the lattice ordering
= t ⊗ [(s ⊗ b) ∧ a]
= t ⊗ [(t� ⊗ b) ∧ a].

So we may want the following inequality as an additional axiom of LCP algebras:

(CP.8) (a ⊗ b) ∧ c � a ⊗ (b ∧ (a� ⊗ c)).

To obtain a representation theorem for LCP algebras with (CP.8) is still an
open problem.

The next example illustrates the constructions employed in the proof of the
representation theorem.

Example 2. Consider analgebra (W, ∧, ∨, �, ⊗, 0, 1, 1′)withW = {a, b, c, , 0, 1},
∧ and ∨ as on Fig.2, a� = a for every a ∈W , ⊗ in given in Table 2, and 1′ = c.
The maximal filter–ideal pairs of W are

x = ([a), (b]), y = ([b), (c]), z = ([c), (a]).
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Fig. 2. The pentagon

Table 2. The product ⊗

⊗ a b c 1
a 1 a a 1
b a b b 1
c a b c 1
1 1 1 1 1

Let us find R, Q, and S. We can simplify the calculations by observing that
A ⊗ B = B ⊗ A for any A, B ⊆W , since ⊗ is symmetric on W .
R(x, y, z) iff x1 ⊗ y1 ⊆ z1:

R(x, x, v) x1 ⊗ x1 = {1}, and {1} ⊆ v1 for all v ∈ FIP (W ).
R(x, y, v) x1 ⊗ y1 = {a, 1}, and {a, 1} ⊆ v1 only for v = x.
R(x, z, v) x1 ⊗ z1 = {a, 1}, and {a, 1} ⊆ v1 only for v = x.
R(y, y, v) y1 ⊗ y1 = {b, 1}, and {b, 1} ⊆ v1 for v ∈{y, z}.
R(y, z, v) y1 ⊗ z1 = {b, 1}, and {b, 1} ⊆ v1 for v ∈{y, z}.
R(z, z, v) z1 ⊗ z1 = {c, 1}, and {c, 1} ⊆ v1 for v = z.

S(x, y, z) iff (−x2 ⊗ y1) ∩ z2 = ∅:

S(x, x, v) −x2 ⊗ x1 = {1}, and {1} ∩ v2 = ∅ for all v ∈FIP (W ).
S(x, y, v) −x2 ⊗ y1 = {a, 1}, and {a, 1} ∩ v2 = ∅ for v ∈{x, y}.
S(x, z, v) −x2 ⊗ z1 = {a, 1}, and {a, 1} ∩ v2 = ∅ for v ∈{x, y}.
S(y, x, v) −y2 ⊗ x1 = {a, 1}, and {a, 1} ∩ v2 = ∅ for v ∈{x, y}.

S(y, y, v) −y2 ⊗ y1 = {a, b, 1}, and {a, 1} ∩ v2 = ∅ for v ∈{y, z}.
S(y, z, v) −y2 ⊗ z1 = {a, b, 1}, and {a, 1} ∩ v2 = ∅ for v ∈{y, z}.
S(z, x, v) −z2 ⊗ x1 = {a, 1}, and {a, 1} ∩ v2 = ∅ for v ∈ {x, y}.
S(z, y, v) −z2 ⊗ y1 = {b, 1}, and {b, 1} ∩ v2 = ∅ for v ∈{y, z}.
S(z, z, v) −z2 ⊗ z1 = {b, c, 1}, and {b, c, 1} ∩ v2 = ∅ only for v = z.
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Q(x, y, z) iff (x1 ⊗ −y2) ∩ z2 = ∅:
Q(x, x, v) x1 ⊗ −x2 = {a, 1} and {a, 1} ∩ v2 = ∅ for v ∈{x, y}.
Q(x, y, v) x1 ⊗ −y2 = {a, 1} and {a, 1} ∩ v2 = ∅ for v ∈{x, y}.
Q(x, z, v) x1 ⊗ −z2 = {a, 1} and {a, 1} ∩ m2 = ∅ for v ∈{x, y}.
Q(y, x, v) y1 ⊗ −x2 = {a, 1} and {a, 1} ∩ v2 = ∅ for v ∈{x, y}.
Q(y, y, v) y1 ⊗ −y2 = {a, b, 1} and {a, b, 1} ∩ v2 = ∅ for v ∈{y, z}.
Q(y, z, v) y1 ⊗ −z2 = {b, 1} and {a, b, 1} ∩ v2 = ∅ for v ∈{y, z}.
Q(z, x, v) z1 ⊗ −x2 = {a, 1} and {a, 1} ∩ v2 = ∅ for m ∈{x, y}.
Q(z, y, v) z1 ⊗ −y2 = {a, b, 1} and {a, b, 1} ∩ v2 = ∅ for v ∈{y, z}.
Q(z, z, v) z1 ⊗ −z2 = {b, c, 1} and {b, c, 1} ∩ v2 = ∅ only for v = z.

The embedding h is given by
h(0) = ∅ h(a) = {x} h(c) = {z}.
h(1) = {x, y, z} h(b) = {y, z}

We conclude this section with the observation that the diamond lattice of
Figure 3 cannot be made into an LCP algebra. We omit the proof which is
straightforward, if somewhat tedious.

0

1

a cb

Fig. 3. The diamond lattice

5 LCPR Algebras and Frames

In this section we extend LCP algebras by adding the residuation operations.
In classical relation algebras residuations are definable with composition (;),
converse (�) and complement(−) as x/y = −(y�; −x) and y\x = −(−x; y�).

Definition 11. By an LCPR algebra we mean a system (W, ∧, ∨, �, ⊗, →, ←,
0, 1, 1′) such that (W, ∧, ∨, �, ⊗, 0, 1, 1′) is an LCP algebra and → and ← are
binary operations in W satisfying the following conditions for all a, b, c ∈W ,

(CPR.1) a ⊗ b � c iff b � a → c
(CPR.2) a ⊗ b � c iff a � c ← b.

The operations ← and → are called the left and the right residuum of ⊗, respec-
tively. ��
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Note that an LCPR algebra is an extension of a residuated lattice by the converse
� operation.

The following lemma provides some basic properties of LCPR algebras.

Lemma 9. Let (W, ∧, ∨, �, ⊗, →, ←, 0, 1, 1′) be an LCPR algebra. Then for any
a, b, c ∈W and for every indexed family (bi)i∈I of elements of W ,

(i) if a � b, then
c ⊗ a � c ⊗ b and a ⊗ c � b ⊗ c

b → c � a → c and c → a � c → b

a ← c � b ← c and c ← b � c ← a

(ii) a � b iff a� � b�

(iii) (a ∧ b)� = a� ∧ b�

(iv) a ⊗ (a → b)� b (iv’) (b ← a) ⊗ a � b

(v) (a → b) ⊗ (b → c)� a → c (v’) (a ← b) ⊗ (b ← c)� ← c

(vi) b � a → (a ⊗ b) (vi’) a � (a ⊗ b) ← b

(vii) (a → b)� = b� ← a� (vii’) (a ← b)� = b� → a�

(viii) if supi bi exists, then
a ⊗ supi bi = supi(a ⊗ bi)
supi bi ⊗ a = supi(bi ⊗ a)

(ix) if infi bi exists, then (ix’) if infi bi exists, then
a → infi bi = infi(a → bi) infi bi ← a = infi(bi ← a)

(x) if supi bi exists, then (x’) if supi bi exists, then
supi bi → a = infi(bi → a) a ← supi bi = infi(a ← bi).

Proof. By way of example we prove (vii)

Let c ∈W such that c � (a → b)�. Then we have:
c � (a → b)� iff c� � (a → b) by (ii), (CP.1)

iff a ⊗ c� � b by (CPR.1)
iff (a ⊗ c�)� � b� by (ii)
iff c ⊗ a� � b� by (CP.1), (CP.7)
iff c � b� ← a� by (CPR.2).

For the recent development of residuated lattices we refer, for example, to [2],
[11], [12], and [16].

LCPR frames are the same as LCP frames defined in Section 3 (Definition 8).
Let an LCPR frame (X, �1, �2, C, R, S, Q, I) be given. We define the following

two mappings −� , �− : 2X × 2X → 2X as follows: for all A, B ⊆ X ,

A−� B = {x∈X : (∀y, z ∈X)(R(y, x, z) & y ∈A =⇒ z ∈B)} (26)
B �− A = {x∈X : (∀y, z ∈X)(R(x, y, z) & y ∈A =⇒ z ∈B)}. (27)
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Lemma 10. For any A, B ⊆ X,

(i) A−� B and A �−B are �1–increasing
(ii) if A and B are l–stable, then so are A−� B and A �− B.

Proof.

(i) Assume that for some A, B ⊆ X , A−� B is not �1–increasing. Then there
are x, y ∈X such that (i.1) x∈A−� B (i.2) x �1 y, and (i.3) y 	∈A−� B.
From (i.3), by the definition (26), there exist u, w ∈X such that (i.4) R(u, y, w)
(i.5) u ∈A and (i.6) w 	∈B. Next, by (i.2), (i.4) and the monotonicity condition
(MCP.3), we get R(u, x, w), which together with (i.5) and (i.6) gives x 	∈A−� B
– a contradiction with (i.1).

Proceeding in the similar way one can show that A �− B is �1–increasing.
(ii) Let A, B ⊆ X . We show first that A �−B is l–stable.
By (i), A �− B is �1–increasing, so from Lemma 4(ii), A �−B ⊆ l(r(A �−B)).
Then it suffices to show that l(r(A �−B))⊆ A �− B.
Let x∈X be such that (ii.1) x 	∈A �−B. We will show (ii.2) x 	∈ l(r(A �− B)).
From (ii.1), by the definition (27) it follows that there exist y, z ∈ X such that
(ii.3) R(x, y, z) (ii.4) y ∈ B (ii.5) z 	∈ A. Since B is l–stable, (ii.5) means that
z 	∈ l(r(A)), so there exists z′ ∈X such that (ii.6) z �1 z′ and (ii.7) z′ ∈ r(A).
From (ii.3), (ii.6) and the monotonicity condition (MCP.3), R(x, y, z′), which
by the stability condition (SCP.1) implies that there is x′ ∈X such that (ii.8)
x�1 x′ and (ii.9) S(x′, y, z′). We show now that (ii.10) x′ ∈ r(A �−B). This, by
(ii.8), gives (ii.2).

Consider an arbitrary x′′ ∈ X satisfying (ii.11) x′�2 x′′. By (MCP.4), (ii.9)
and (ii.11) lead to S(x′′, y, z′), which by (SCP.3) gives that there exists z′′ ∈X
such that (ii.12) z′�2 z′′ and (ii.13) R(x′′, y, z′′). From Lemma 1(ii), r(B) is
�2–increasing, so by (ii.7) and (ii.12) we get z′′ ∈ r(A), whence (ii.14) z′′ 	∈A.
In view of the definition (27), (ii.4), (ii.13) and (ii.14) imply (ii.15) x′′ 	∈A �− B.
Therefore, we have shown that for any x′′ ∈X satisfying (ii.11), the condition
(ii.15) holds, hence (ii.10) was proved.

Using the relation Q in place of S, in the analogous way we can show that
A−� B is l–stable. ��

Definition 12. The complex algebra of an LCPR frame (X, �1, �2, C, R, S,
Q, I) is a structure (L(X), �, �, �, �, −� , �− ,0,1,1′) with the operations de-
fined by (3), (4), (11), (14), (26), (27) and the constants (5), (6), and (15). ��

We show that the complex algebra of an LCPR frame is an LCPR algebra. It is
sufficient to show the following lemma.

Lemma 11. For any LCPR frame (X, �1, �2, C, R, S, Q, I) and for all l–stable
subsets A, B, C ⊆ X,

(i) A � B ⊆ C iff B ⊆ A−� C

(ii) A � B ⊆ C iff A ⊆ C �− B.
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Proof.

(i) (⇐) Assume that (i.1) A� B ⊆C and (i.2) B 	⊆A−� C. From (i.2), there
exists x∈ X such that (i.3) x∈ B and (i.4) x 	∈A−� C. By the definition (26),
(i.4) means that for some y, z ∈X it holds (i.5) R(y, x, z), (i.6) y ∈A and (i.7)
z 	∈C. Next, from (i.1) and (i.7) we get (i.8) x 	∈A� B. By the definition (14),
A�B = l(A⊗Q B), but from Lemma 7(iv), A⊗Q B = A⊗S B. Then we get (i.8)
implies that there exist z′ ∈X such that (i.9) z �1 z′ and (i.10) z′ ∈A⊗S B. Fur-
thermore, from (i.5) and (i.9), by (M.3) we get R(y, x, z′), which by (S.1) implies
that there is y′ ∈X such that (i.11) y �1 y′ and (i.12) S(y′, x, z′). Also, (i.3),
(i.10) and (i.12) imply y′ ∈ r(A), which together with (i.11) gives y 	∈ l(r(A)).
Since A is l–stable, this means y 	∈A – a contradiction with (i.6).

(⇒) Assume that (i.13) A�B 	⊆ C. We will show that (i.14) B 	⊆A−� C.
From (i.13), there is x∈X such that (i.15) x∈A� B and (i.16) x 	∈C.

Since C is l–stable, (i.16) gives x 	∈ l(r(C)), so there exists x′ ∈X such that
(i.17) x�1 x′ and (i.18) x′ ∈ r(C). Next, from (i.15), (i.17), and Lemma 7(iv),
x′ 	∈ A⊗S B, which means that there are y, z ∈X such that (i.19) S(y, z, x′),
(i.20) z ∈B and (i.21) y 	∈ r(A). From (i.21), there is y′ ∈ X such that (i.22)
y �2 y′ and (i.23) y′ ∈ A. By (M.4), (i.19) and (i.22) imply S(y′, z, x′). Hence,
applying (S.3) we get that for some x′′ ∈X such that (i.24) x′�2 x′′ it holds
(i.25) R(y′, z, x′′). Furthermore, by (i.18) and (i.24) it follows that x′′ 	∈C, which
together with (i.23) and (i.25) gives z′ 	∈A−� C. Whence, in view of (i.20) we
finally obtain (i.14).
In the analogous way (ii) can be proved. ��

Therefore, we have

Theorem 6. The complex algebra of an LCPR frame is an LCPR algebra. ��

Since LCPR frames are just LCP frames, the above theorem implies the following

Corollary 2. Any LCP algebra can be isomorphically embedded into an LCPR
algebra. ��

Let (W, ∧, ∨, ⊗, →, ←, 0, 1) be an LCPR algebra. For any two subsets A, B ⊆ W ,
let us define:

A ← B = {a ← b : a ∈A & b ∈B}
A → B = {a → b : a ∈A & b ∈B}.

Lemma 12. Let (W, ∧, ∨, ⊗, →, ←, 0, 1) be an LCPR algebra and let Δ and Δ′

be filters of W and let ∇ be an ideal of W . Define the following subsets of W :

U = {a ∈W : Δ ∩ (∇ ← {a} 	= ∅}
U ′ = {a ∈W : Δ ∩ ({a} → ∇) 	= ∅}
V = {a ∈W : Δ ∩ ({a} ← Δ′) 	= ∅}
V ′ = {a ∈W : Δ ∩ (Δ′ → {a}) 	=∅}.

Then U and U ′ are ideals of W and V and V ′ are filters of W .
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Proof. By way of example we show that U is an ideal of W . Let a, b ∈W be
such that (i) a ∈U and (ii) b �a. By the definition of U , (i) implies that there
exists c ∈∇ such that (iii) c ← a ∈Δ. By Lemma 9(i) we get from (ii) that
c ← a � c ← b. Hence, by (iii), we get (iv) c ← b ∈Δ, since Δ is a filter.
Therefore, for some c ∈∇ (iv) holds, which implies b ∈U .

Assume that (v) a, b ∈U . It suffices to show that a ∨ b ∈U . From (v), there
are c, d∈∇ such that (vi) c ← a ∈Δ and (vii) d ← b ∈Δ. Since c � c ∨ d and
d � c ∨ d, by Lemma 9(i) we get c ← a � (c ∨ d) ← a and d ← b � (c ∨ d) ← b.
Hence, by (vi) and (vii) it follows that (c ∨ d) ← a ∈Δ and (c ∨ d) ← b ∈Δ, so
((c ∨ d) ← a) ∧ ((c ∨ d) ← b)∈Δ. By Lemma 9(x’), ((c ∨ d) ← a) ∧ ((c ∨ d) ←
b) = (c ∨ d) ← (a ∨ b). Then (c ∨ d) ← (a ∨ b)∈Δ. Since c, d∈∇, c ∨ d ∈∇. So
we get that for some e = c ∨ d ∈∇, e ← (a ∨ b)∈Δ, which gives a ∨ b ∈U .

The canonical frame of an LCPR algebra is the same as the canonical frame of an
LCP algebra (Definition 10), i.e., it is a system (X(W ), �1, �2, C

�, R�, S�, Q�, I�).
Given the canonical frame of an LCPR algebra, define the following auxiliary
ternary relations on X(W ): for all x, y, z ∈X(W ),

R�
←(x, y, z) iff (∀a, b ∈W ) b ← a ∈x1 & a ∈ y1 =⇒ b ∈ z1 (28)

R�
→(x, y, z) iff (∀a, b ∈W ) a ∈x1 & a → b ∈ y1 =⇒ b ∈ z1. (29)

Note that

Lemma 13. R� = R�
← = R�

→

Proof. We show that R� = R�←. The proof of R� =R�→ is analogous.
(⊆) Assume on the contrary that for some x, y, z ∈X(W ), (i) R�(x, y, z) and
there exist a, b ∈W such that (ii) b ← a ∈x1 (iiii) a ∈ y1 (iv) b 	∈ z1. From (i),
(ii) and (iii) it follows that (b ← a) ⊗ a ∈ z1. By Lemma 9(iv’), (b ← a) ⊗ a � b.
Since z1 is a filter, this implies b ∈ z1 – a contradiction with (iv).

(⊇) Similarly, assume that for some x, y, z ∈X(W ), (v) R�←(x, y, z) and there
exist a, b ∈W such that (vi) a ∈x1, (vii) b ∈ y1 and (viii) a ⊗ b 	∈ z1. By Lemma
9(vi’), a � (a ⊗ b) ← b, so from (vi), (a ⊗ b) ← b ∈x1, since x1 is a filter. By (v)
this gives a ⊗ b ∈ z1 – a contradiction with (viii).

Theorem 7 (Representation theorem for LCPR algebras). Any LCPR
algebra is isomorphic to a subalgebra of the complex algebra of its canonical
frame.

Proof. In view of Theorem 5 it suffices to show that

(i) h(a ← b) = h(a) �− h(b)
(ii) h(a → b) = h(a)−� h(b).

(i) (⊆) Let x∈h(a ← b). By the definition (9) of the mapping h, this means
that (i.1) a ← b ∈x1. Assume that x 	∈h(a) �− h(b). Then there are y, z ∈X(W )
such that (i.2) R�(x, y, z), (i.3) y ∈ h(b) and (i.4) z 	∈h(a). From (i.3) we get
(i.5) b ∈ y1. By Lemma 13, R� =R�←, so from (i.1), (i.2), (i.5) and the definition
of R�

←, it follows a ∈ z1, i.e. z ∈ h(a), which contradicts (i.4).
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(⊇) Assume that (i.6) x 	∈ h(b ← a). We will show that x 	∈h(b) �− h(a).
From (i.6) we have (i.7) b ← a 	∈x1. Define

U = {c ∈W : x1 ∩ ((b] ← {c}) 	= ∅},

where (b] stands for the ideal generated by b. By Lemma 12, U is an ideal.
Suppose that a ∈U . Then there exists b′ ∈W such that (i.8) b′� b and (i.9)
b′ ← a ∈x1. By Lemma 9(iii’) and (i.8) we get (i.10) b′ ← a � b ← a. Since x1 is
a filter, (i.9) and (i.10) imply b ← a ∈x1, which contradicts (i.7). Hence a 	∈U .
Let [a) be the filter generated by a. Then [a) ∩ U = ∅, so ([b), U) is a filter–ideal
pair. Let (y1, y2) be its extension to the maximal filter–ideal pair. Then [a)⊆ y1
and U ⊆ y2. Since a ∈ y1, we have (i.11) y ∈ h(a).
Now, consider a set:

V = {c ∈W : x1 ∩ ({c} ← y1) 	= ∅}.

By Lemma 12, V is a filter of W . Suppose that b ∈V . Then there is c′ ∈ W such
that (i.12) c′ ∈ y1 and (i.13) b ← c′ ∈x1. By the definition of U , (i.13) implies
c′ ∈U ⊆ y2 – a contradiction with (i.12). Hence b 	∈V . Then (V, (b]) is a filter–
ideal pair. Let (z1, z2) be its extension to the maximal filter–ideal pair. Then
(i.14) V ⊆ z1 and (b] ⊆ z2. Since b ∈ z2, we get b 	∈ z1, so (i.15) z 	∈h(b).

Finally, consider c, d∈W such that c ← d ∈x1 and d ∈ y1. Then c ∈V , so
c ∈ z1 by (i.14). By the definition (28), R�

←(x, y, z) holds, and so (i.16) R�(x, y, z)
by Lemma 13. Therefore, we have shown that for some y, z ∈X(W ), (i.11), (i.15)
and (i.16) hold, which means by (27) that x 	∈h(b) �− h(a).

The proof of (ii) is similar

6 LCPRS Algebras and Frames

In the classical relation algebras relative sum is definable with composition and
complement, namely we have x ⊕ y = −(−x; −y). In the lattice-based relation
algebras sum must be added as a new independent operator. This is the purpose
of the present section.

Definition 13. An LCPRS algebra is a system (W, ∧, ∨, �, �, ⊗, ⊕, →, ←
, ⇒, ⇐, 0, 1, 0′, 1′) such that (W, ∧, ∨, �, ⊗, →, ←, 0, 1, 1′) is an LCPR algebra,
� is an unary operations in W (dual converse), ⊕ is a binary operations in W
(sum), and ⇒, ⇐ are binary operations in W (dual right and dual left residua
of ⊕) satisfying for all a, b, c ∈W ,

(CPRS.0) 1 ⊕ a = a ⊕ 1 = 1
(CPRS.1) a�� = a
(CPRS.2) (a ∧ b)� = a� ∧ b�

(CPRS.3) a ⊕ 0′ = 0′ ⊕ a = a
(CPRS.4) a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c
(CPRS.5) a ⊕ (b ∧ c) = (a ⊕ b) ∧ (a ⊕ c)
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(CPRS.6) (a ∧ b) ⊕ c = (a ⊕ c) ∧ (b ⊕ c)
(CPRS.7) (a ⊕ b)� = b� ⊕ a�

(CPRS.8) a ⊕ b � c iff b � a ⇒ c
(CPRS.9) a ⊕ b � c iff a � c ⇐ b

(CPRS.10) 0′ ∧ 1′ = 0
(CPRS.11) 0′ ∨ 1′ = 1. ��

Let L = (W, ∧, ∨, 0, 1) be a bounded lattice. By the opposite lattice we mean a
lattice Lop = (W, ∨, ∧, 1, 0), where the meet (resp. the join) of Lop is the join
(resp. the meet) of L and the greatest (resp. the least) element of Lop is the
least (resp. the greatest) element of L. Observe that the algebra obtained from
LCPRS algebra by deleting axioms (CPRS.10) and (CPRS.11) can be viewed
as a join of an LCPR algebra based on the lattice L and an LCPR algebra based
on Lop. In other words, we have:

Proposition 2. Let (W, ∧, ∨, �, �, ⊗, ⊕, →, ←, ⇒, ⇐, 0, 1, 0′, 1′) be an LCPRS
algebra. Then (W, ∨, ∧, �, ⊕, ⇒, ⇐, 1, 0, 0′) is an LCPR algebra.

Proof. Straightforward from Definitions 11 and 13.

Remark 1. If follows that properties of operations �, ⊕, ⇒, and ⇐ can be
easily obtained from the analogous properties of the operations �, ⊗, →, ←,
respectively. ��

Remark 2. Note that axioms (CPRS.10) and (CPRS.11) provide a connection
between the LCPR part of an LCPRS algebra L and the LCPR part of L based
on its opposite part. ��

Definition 14. An LCPRS frame is a system (X, �1, �2, C, Γ , R, S, Q, Θ, Υ ,
Ω, I, J) such that (X, �1, �2, C, R, S, Q, I) is an LCPR frame, Γ is a mapping
Γ : X → X, Θ, Υ , Ω are ternary relations on X and J ⊆X is a unary relation
on X such that the following conditions are satisfied for all x, x′, y, y′, z, z′ ∈X,

Monotonicity conditions:

(MCPRS.1) x�1 x′ =⇒ Γ (x)�1 Γ (x′)
(MCPRS.2) x�2 x′ =⇒ Γ (x)�2 Γ (x′)
(MCPRS.3) Θ(x, y, z) & x′�2 x & y′�2 y & z �2 z′ =⇒ Θ(x′, y′, z′)
(MCPRS.4) Υ (x, y, z) & x�1 x′ & y′�2 y & z′�1 z =⇒ Υ (x′, y′, z′)
(MCPRS.5) Ω(x, y, z) & x′�2 x & y �1 y′ & z′�1 z =⇒ Ω(x′, y′, z′)
(MCPRS.6) J(x) & x�2 x′ =⇒ J(x′)

Stability conditions:

(SCPRS.1) Γ (Γ (x)) = x
(SCPRS.2) Θ(x, y, z) =⇒ ∃x′′ ∈X (x�2 x′′ & Υ (x′′, y, z))
(SCPRS.3) Θ(x, y, z) =⇒ ∃y′′ ∈ X (y �2 y′′ & Ω(x, y′′, z))
(SCPRS.4) Υ (x, y, z) =⇒ ∃z′′ ∈ X (z �1 z′′ & Θ(x, y, z′′))
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(SCPRS.5) Ω(x, y, z) =⇒ ∃z′′ ∈X (z �1 z′′ & Θ(x, y, z′′))
(SCPRS.6) ∃u ∈X(Θ(x, y, u)& Υ (u, z, y))=⇒∃w ∈X(Θ(y, z′, w)& Ω(x, w, y))
(SCPRS.7) ∃u ∈X(Θ(x, y, u) & Ω(z, u, z′)) =⇒

∃w ∈X(Θ(z, x, w) & Υ (w, y, z′))
(SCPRS.8) J(x) & (Θ(x, y, z) or Θ(y, x, z)) =⇒ y �2 z
(SCPRS.9) ∃u ∈X(J(u) & Υ (u, x, x))
(SCPRS.10) ∃u ∈X(J(u) & Ω(x, u, x))
(SCPRS.11) Ω(x, y, z) = Υ (Γ (y), Γ (x), Γ (z))
(SCPRS.12) lr(I) ∩ l(J) = ∅
(SCPRS.13) r(I) ∩ rl(J) = ∅. ��

Let (X, �1, �2) be a doubly ordered set. By the opposite doubly ordered set we
mean a structure (X, �op

1 , �op
2 ), where �op

1 =�2 and �op
2 =�1. Observe that the

frame obtained from the LCPRS frame by deleting axioms (SCPRS.12) and
(SCPRS.13) can be viewed as a join of the LCPR frame based on a doubly
ordered set (X, �1, �2) with the LCPR frame based on the opposite doubly
ordered set (X, �op

1 , �op
2 ). Therefore, we have:

Proposition 3. Let (X, �1, �2, C, Γ , R, S, Q, Θ, Υ , Ω, I, J) be an LCPRS
frame. Then (X, �2, �1, Γ , Θ, Υ , Ω, J) is an LCPR frame.

Proof. Straightforward from the definition of LCPR frame and Definition 14.

Remark 3. From the above proposition it follows easily that the properties of the
relations Γ , Θ, Υ , Ω, and J can be obtained from the properties of the relations
C, R, S, Q, and I, respectively, by interchanging the roles of the orderings �1
and �2. ��

Remark 4. Note that axioms (SCPRS.12) and (SCPRS.13) provide a connec-
tion between the LCPR part of an LCPRS frame and its opposite part. ��

Given an LCPRS frame (X, � 1, � 2, C, Γ , R, S, Q, Θ, Υ , Ω, I, J), let us define
the following mappings � : 2X → 2X and ⊕Ω , ⊕Υ , � , =�, �= : 2X ×2X → 2X

by: for all A, B ⊆X ,

A� = {Γ (x)∈ X : x∈A} (30)
A⊕Ω B = {z ∈X : ∀x, y ∈ X (Ω(x, y, z) & x∈ r(A) =⇒ y ∈B} (31)
A⊕Υ B = {z ∈Z : ∀x, y ∈X (Υ (x, y, z) & y ∈ r(B) =⇒ x∈ A} (32)
A � B = A⊕Ω B. (33)

A=� B = {x∈X : (∀y, z ∈X)(Θ(y, x, z) & y ∈ A =⇒ z ∈B)} (34)
B �=A = {x∈X : (∀y, z ∈X)(Θ(x, y, z) & y ∈ A =⇒ z ∈B)}. (35)

Moreover, put

0′ = l(J). (36)
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Definition 15. Let (X, �1, �2, C, Γ, R, S, Q, Θ, Υ , Ω, I, J) be an LCPRS frame.
The complex algebra of X is a structure (L(X), �, �, �, �, �, � , −� , �− ,
=�, �=,0,1,0′,1′) such that L(X) is the family of all l–stable subsets of X, the
operations �, �, �, �, �, � , −� , �− , =�, �= are respectively defined by (4),
(3), (11), (30), (14), (33), (26), (27), (34), (35), and the constants 0, 1, 0′,
and 1′ are given by (5), (6), (15) and (36), respectively. ��

We will show now that complex algebras of LCPRS frames are LCPRS algebras.

Theorem 8. The complex algebra of an LCPRS frame is an LCPRS algebra.

Proof. Since J is �2–increasing by (MCPRS.6), L(J) is l–stable. From Theorem
6, Proposition 3, and Remark 3 it follows that we only need to show that the
connecting axioms (CPRS.10) and (CPRS.11) hold, i.e.,

(i) 0′ � 1′ = 0
(ii) 0′ � 1′ =1.

(i) 0′ � 1′ = lr(I) ∩ l(J) = ∅ by (SCPRS.12).
(ii) By the definitions (15), (36), and (4), 0′ � 1′ = l(rlr(I) ∩ rl(J)). Also, by
Lemma 4(ii), I ⊆ lr(I), so rlr(I)⊆ r(I). Next, rlr(I) ∩ rl(J) ⊆ r(I) ∩ rl(J) = ∅
by (SCPRS.13). Hence we have: rlr(I)∩ rl(J) = ∅, so l(rlr(I)∩ rl(J)) = l(∅) =
X(W )

Let (W, ∧, ∨, �, �, ⊗, ⊕, →, ←, ⇒, ⇐, 0, 1, 0′, 1′) be an LCPRS algebra. As be-
fore, by FIP (X) and (resp. X(W )) we denote the family of all filter–ideals pairs
(resp. maximal filter–ideal pairs) of W .

Lemma 14. Let (W, ∧, ∨, �, �, ⊗, ⊕, →, ←, ⇒, ⇐, 0, 1, 0′, 1′) be an LCPRS al-
gebra. Then for every a ∈W , l({x∈X(W ) : a ∈x2}) = {x∈X(W ) : a ∈x1}.

Proof. (⊆) Let a 	∈x1. It follows that x1 ∩ (a] = ∅, so (x1, (a]) is a filter–ideal
pair. Let y be its extension to the maximal filter–ideal pair. Hence x1 ⊆ y1 and
a ∈ y2. It follows that x 	∈ l({x∈X(W ) : a ∈x2}).
(⊇) Let a ∈x1. Take y ∈X(W ) such that x1 ⊆ y1. Then a ∈ y1, whence a 	∈ y2.

Define a mapping Γ � : FIP (W ) → FIP (W ) by: for every x∈FIP (W ),

Γ �(x) = (x1
�, x2

�). (37)

Furthermore, let us define the following ternary relations on X(W ): for all
x, y, z ∈X(W ),

Θ�(x, y, z) ⇐⇒ (∀a, b ∈W ) a ∈x2 & b ∈ y2 =⇒ a ⊕ b ∈ z2 (38)
Ω�(x, y, z) ⇐⇒ (∀a, b ∈W ) a ∈x2 & a ⊕ b ∈ z1 =⇒ b ∈ y1 (39)
Υ �(x, y, z) ⇐⇒ (∀a, b ∈W ) b ∈ y2 & a ⊕ b ∈ z1 =⇒ a ∈x1. (40)

Also, put

J� = {x∈X(W ) : 0′ ∈x2} (41)
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Definition 16. Let (W, ∧, ∨, �, �, ⊗, ⊕, →, ←, ⇒, ⇐, 0, 1, 0′, 1′) be an LCPRS
algebra. The canonical frame of W is a structure (X(W ), � 1, � 2, C

�, Γ �, R�,
Q�, S�, Θ�, Ω�, Υ �, I�, J�) such that (X(W ), � 1, � 2, C

�, R�, Q�, S�, I�) is the
canonical frame of the LCPR part (W, ∧, ∨, �, ⊗, →, ←, 0, 1, 1′) of W and Γ �,
Θ�, Ω�, Υ �, and J� are defined by (37)–(41). ��

Theorem 9. The canonical frame of an LCPRS algebra is an LCPRS frame.

Proof. We have to show that the conditions (SCPRS.12) and (SCPRS.13) hold
in the canonical frame of an LCPRS algebra. The remaining conditions follow
from Theorem 6, Proposition 3, and Remark 1.
We show that lr(I�) ∩ l(J�) = ∅. Note that

lr(I�) ∩ l(J�)
= lr({x∈ X(W ) : 1′ ∈x1}) ∩ l({x∈X(W ) : 0′ ∈ x2})
= l({x∈X(W ) : 1′ ∈ x2}) ∩ l({x∈X(W ) : 0′ ∈x2}) by Theorem 1(i)
= {x∈X(W ) : 1′ ∈x1} ∩ {x∈X(W ) : 0′ ∈x1} by Lemma 14
= {x∈X(W ) : 1′ ∈x1 & 0′ ∈x1}
⊆ {x∈X(W ) : 1′ ∧ 0′ ∈x1}

However, by (CPRS.10), 1′ ∧ 0′ = 0. Since x1 is a proper filter, 0 	∈x1, so we
have {x∈X(W ) : 1′ ∧ 0′ ∈x1} = ∅, and consequently lr(I�) ∩ l(J�) = ∅.
Now we prove that r(I) ∩ rl(J)= ∅. Observe:

r(I) ∩ rl(J)
= r({x∈ X(W ) : 1′ ∈x1}) ∩ rl({x∈X(W ) : 0′ ∈x2})
= r({x∈ X(W ) : 1′ ∈x1}) ∩ r({x∈ X(W ) : 0′ ∈x1}) by Lemma 14
= {x∈X(W ) : 1′ ∈x2} ∩ {x∈X(W ) : 0′ ∈ x2} Theorem 1(i)
= {x∈X(W ) : 1′ ∈x2 & 0′ ∈x2}
⊆ {x∈X(W ) : 1′ ∨ 0′ ∈x2}.

Since 1′∨0′ = 1 	∈x2, it follows that {x∈X(W ) : 1′∨0′ ∈x2} = ∅. In conclusion,
r(I) ∩ rl(J)= ∅.

We conclude this section by the following representation theorem.

Theorem 10 (Representation theorem for LCPRS algebras)
Any LCPRS algebra is isomorphic to a subalgebra of the complex algebra of its
canonical frame.

Proof Taking into account Propositions 2, 3, and Remarks 1, 3 the proof is
analogous to the proof of Theorem 7.

7 Conclusion

In this paper we have studied not necessarily distributive lattices with operators
that are the abstract counterparts to the converse and composition of binary
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relations. On the algebraic side, we have presented relational representation the-
orems for these classes of algebras. These theorems are obtained by a suitable
extensions of Urquhart’s representation theorem for lattices [19]; here, we have
stressed the relational aspect of representability and have omitted the topologi-
cal aspect.

On the logical side, with every class of algebras studied in the paper we have
associated an appropriate class of frames. These frames constitute a basis of a
Kripke-style semantics for the logics whose algebraic semantics is determined
by the classes of algebras presented in the paper. The representation theorems
would enable us to prove completeness of the logics. For a detailed elaboration
of the respective relational logics one can follow the developments in [1] and [17].
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