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Abstract. Relational representation theorems are presented in a unified
framework for general (including non-distributive) lattices endowed with
various negation operations.

1 Introduction

We present relational representation theorems in a unified framework for the
lattice based algebras of logics with various negation operations, for both general
(including non-distributive) lattices and for distributive lattices.

The negation operations include sufficiency or negative necessity as negation,
Heyting negation, pseudo-complement, De Morgan negation and ortho-negation.
Part of the results are carried out within the framework of Urquhart’s repre-
sentation theorem for lattices [17] and Allwein–Dunn developments on Kripke
semantics for linear logic [1] which we jointly call Urquhart–Allwein–Dunn –
framework, generalized to a duality between the algebras and abstract frames
(relational systems). In order to have it in the same unified framework, we also
include representations of distributive lattices with relative pseudo-complement,
with relative pseudo-complement and minimal negation (of Johansson), with De
Morgan negation, and Boolean algebras with sufficiency (negative necessity) op-
erator. The distributive lattice cases contain known results, but we include them
to present all results together in the unified framework.

Our framework, based on a generalization of the Urquhart–Allwein–Dunn
representation, requires the following steps:

Step 1. A class of algebras is given. Its signature is that of lattices extended
by a unary operation corresponding to negation.

Step 2. We define a class of relational structures (frames) that provide a
Kripke-style semantics for the logic whose algebraic semantics is determined by
the class of algebras in question.
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Step 3. For any algebra W of the given class we define its canonical frame.
The universe X(W ) of this frame consists of all pairs (x1, x2) such that x1 is
a filter and x2 is an ideal of the lattice reduct of W and (x1, x2) is a maximal
disjoint pair. Relations are defined on X(W ) which correspond in an appropriate
way to the operations of the algebra.

Step 4. For any frame X we define its complex algebra. The universe of the
complex algebra is a family L(X) of special subsets of X referred to as �-stable
sets.

Step 5. We prove a representation theorem saying that every algebra W is
embeddable into the complex algebra of its canonical frame, i.e., L(X(W )). The
universe of the representation algebra consists of subrelations of X(W ).

Below we list several well known examples of classical representations giving,
in particular, the algebras, frames, complex algebras and canonical frames.

The class of Boolean algebras has the class of sets as its class of frames which
can be seen as relational systems with the empty family of relations. A canonical
frame is the set of ultrafilters of a given algebra. A complex algebra is the
powerset algebra of the set of ultrafilters. The Stone representation theorem
says that a given Boolean algebra is embeddable into this powerset algebra.

The class of distributive lattices has the class of partial orders as its class of
frames. A canonical frame is the set of prime filters of a given distributive lattice
with set inclusion. A complex algebra of a frame is a family of ≤-increasing
subsets with the set union and intersection. The representation theorem says
that a given distributive lattice is embeddable into the complex algebra of the
canonical frame.

The class of ortholattices has the class of orthogonality spaces (sets with
orthogonality relations, i.e., irreflexive and symmetric relations ⊥, first defined
by Foulis and Randall) as its class of frames. A canonical frame is the set of
proper filters of a given ortholattice with the set inclusion and ortho-negation
defined by orthogonality relation ⊥: for two proper filters x and y, x ⊥ y iff
there is an element a such that −a ∈ x and a ∈ y. A complex algebra of a frame
is a family of regular subsets of this frame defined as follows: first a ⊥ Y iff
for all b ∈ Y , a ⊥ b and Y ∗ = {a : a ⊥ Y }; now Y is ⊥-regular iff Y = Y ∗∗.
The representation theorem of Goldblatt [9] says that a given ortholattice is
embeddable into the lattice of regular subsets of the orthogonality space.

The framework described above serves, on the one hand, as a tool for investi-
gation of classes of lattices with negation operations and, on the other hand, as
a means for developing Kripke-style semantics for the logics whose algebraic se-
mantics is given. Then representation theorems play an essential role in proving
completeness of the logics with respect to a Kripke-style semantics determined
by a class of frames associated with a given class of algebras. In this paper we
deal mainly with the algebraic aspects of lattices with negation. The framework
presented above has been used in [13] and [7] in the context of lattice-based
modal logics. It has been applied to lattice-based relation algebras in [6] and
to double residuated lattices in [11] and [12]. In our relational representations
we will provide definitions of abstract relational systems or frames such that



Relational Representation Theorems for Lattices with Negations: A Survey 247

particular properties of the relations in frames correspond to particular types of
negations.

2 Negations

We follow J.M. Dunn’s analysis of negations, also known as “Dunn’s Kite of
Negations”. Dunn’s study of negation in non-classical logics as a negative modal
operator is an application of his gaggle theory, cf. [5], which is a generalization of
the Jonsson-Tarski Theorem. In gaggle theory, negation ¬ is treated as a Galois
connective on an underlying poset or bounded lattice. This treatment requires
the Galois condition:

(Gal) a ≤ ¬b ⇔ b ≤ ¬a

Further analysis of negation on a bounded lattice leads to the following condi-
tions for ¬ (we always assume that 0 is the least element and 1 the greatest):

(Suff1) ¬(a ∨ b) = ¬a ∧ ¬b (Sufficiency 1)
(Suff2) ¬0 = 1 (Sufficiency 2)
(WCon) a ≤ b ⇒ ¬b ≤ ¬a (Weak Contrapositive, Preminimal)
(Weak¬¬) a ≤ ¬¬a (Weak Double Negation)
(Abs) a ∧ ¬a = 0 (Absurdity, Intuitionistic)
(DeM) ¬¬a ≤ a (De Morgan, Strong Double Negation)

Lemma 2.1. In any bounded lattice with an operation ¬ the following implica-
tions hold:

(a) (Suff1) ⇒ (WCon)
(b) (Gal) ⇒ (Suff2)
(c) (Gal) ⇔ (Suff1) and (Weak¬¬)
(d) (Gal) ⇔ (WCon) and (Weak¬¬)

Proof. We show only the implication (Gal) ⇒ (Suff1) of (c). By (Weak¬¬),
a ≤ a ∨ b ≤ ¬¬(a ∨ b), hence by (Gal), ¬(a ∨ b) ≤ ¬a. Similarly, ¬(a ∨ b) ≤ ¬b,
so we have ¬(a ∨ b) ≤ ¬a ∧ ¬b. By (Gal), a ≤ ¬(¬a ∧ ¬b) and b ≤ ¬(¬a ∧ ¬b),
so a ∨ b ≤ ¬(¬a ∧ ¬b) hence ¬a ∧ ¬b ≤ ¬(a ∨ b).

As noted in (b), one may derive ¬0 = 1 from (Gal) or its equivalents. If one
has, in addition, either (Abs) or (DeM) then one may also derive ¬1 = 0. Also
note that from (WCon) one may derive ¬a ∨ ¬b ≤ ¬(a ∧ b). Lastly, by (c), note
that the class of bounded lattices with negation satisfying the Galois condition
(Gal) is a variety (i.e., an equational class) with equational axioms (Suff1) and
(Weak¬¬).

We shall consider five types of negation on bounded (non-distributive) lat-
tices. In each case, the negation satisfies (Suff1) and (Suff2); in the first and
weakest case we consider just these two axioms. The next case is Heyting nega-
tion in which the negation satisfies (WCon), (Weak¬¬) (or, equivalently, just
(Gal)) and (Abs); such algebras are also called ‘weakly pseudo-complemented
lattices’. Thereafter, we consider ‘pseudo-complemented lattices’ which satisfy,
in addition, the following pseudo-complement quasi-identity:
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(Pcq) a ∧ b = 0 ⇒ a ≤ ¬b.

Its converse is derivable from the identity (Abs). In the case of De Morgan
negation the identities (Gal) and (DeM) are assumed giving the class of ‘De
Morgan lattices’. Finally, ortho-negation is considered which satisfies (Gal) and
both (Abs) and (DeM); these algebras are known as ‘ortholattices’.

In the distributive lattice case, we consider ‘relatively pseudo-complemented
lattices’, that is, where the ‘residuum’ (or relative pseudo-complement) of ∧
exists, denoted →. One may induce a negation by choosing any element ∂ in the
lattice and defining ¬x = x → ∂. The negation induced in this way is a minimal
negation in the sense of Johansson and Rasiowa. This negation satisfies (Gal)
(hence also (WCon) and (Weak¬¬)) but not necessarily (Abs) (unless the chosen
element ∂ is the least element, in which case we have Heyting algebras). It does
not necessarily satisfy (DeM) either, so we also consider distributive lattices in
which (DeM) is added, namely, ‘De Morgan algebras’. Adding both (Abs) and
(DeM) to (Gal) results in the class of Boolean algebras. At the end we consider
Boolean algebras with sufficiency (or negative necessity) operator.

Part I Non-distributive Lattices

3 Preliminaries

We give here the necessary background on the relational representation of non-
distributive lattices in the style of Urquhart [17] (see also [6] and [13]). The
representations of non-distributive lattices with negations is built on top of this
framework.

Let X be a non-empty set and let �1 and �2 be two quasi-orders on X . The
structure 〈X, �1, �2〉 is called a doubly ordered set if it satisfies:

(∀x, y)((x �1 y and x �2 y) ⇒ x = y). (1)

For a doubly ordered set X = 〈X, �1, �2〉, A ⊆ X is �1–increasing (resp.,
�2–increasing) if, for all x, y ∈ X , x ∈ A and x �1 y (resp., x �2 y) imply
y ∈ A. We define two mappings �, r : 2X → 2X by

�(A) = {x ∈ X : ∀y(x �1 y ⇒ y /∈ A)} (2)
r(A) = {x ∈ X : ∀y(x �2 y ⇒ y /∈ A)}. (3)

Then A ⊆ X is called �–stable (resp., r–stable) if �(r(A)) = A (resp., r(�(A)) =
A). The set of all �-stable subsets of X will be denoted by L(X).

Lemma 3.1. [6],[13] If 〈X, �1, �2〉 is a doubly ordered set then, for all A ⊆ X,

(a) �(A) is �1–increasing and r(A) is �2–increasing,
(b) if A is �1–increasing, then A ⊆ �(r(A)),
(c) if A is �2–increasing, then A ⊆ r(�(A)).
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Lemma 3.2. [17] Let 〈X, �1, �2〉 be a doubly ordered set. Then the mappings
� and r form a Galois connection between the lattices of �1–increasing and �2–
increasing subsets of X. In particular, for every �1–increasing set A and �2–
increasing set B,

A ⊆ �(B) iff B ⊆ r(A).

Let X = 〈X, �1, �2〉 be a doubly ordered set. Define two binary operations ∧C

and ∨C on 2X and two constants 0C and 1C as follows: for all A, B ⊆ X ,

A ∧C B = A ∩ B (4)
A ∨C B = �(r(A) ∩ r(B)) (5)

0C = ∅ (6)
1C = X. (7)

Observe that the definition of ∨C in terms of ∧C resembles a De Morgan law
with two different negations. In [17], L(X) = 〈L(X), ∧C , ∨C , 0C , 1C〉 is shown
to be a bounded lattice; it is called the complex algebra of X.

Let W = 〈W, ∧, ∨, 0, 1〉 be a bounded lattice. By a filter-ideal pair of W
we mean a pair (x1, x2) such that x1 is a filter of W , x2 is an ideal of W
and x1 ∩ x2 = ∅. The family of all filter-ideal pairs of W will be denoted by
FIP (W ). Define the following three quasi-ordering relations: for any (x1, x2),
(y1, y2) ∈ FIP (W ),

(x1, x2) �1 (y1, y2) iff x1 ⊆ y1

(x1, x2) �2 (y1, y2) iff x2 ⊆ y2

(x1, x2) � (y1, y2) iff (x1, x2) �1 (y1, y2) and (x1, x2) �2 (y1, y2).

We say that (x1, x2) ∈ FIP (W ) is maximal if it is maximal with respect to �.
We denote by X(W ) the set of all maximal filter-ideal pairs of W . Note that
X(W ) is a binary relation on 2W . In the sequel, if we write x ∈ X(W ), we
shall assume that x = (x1, x2) where x1 denotes the filter and x2 denotes the
ideal. The same convention holds for y, z, etc. It was shown in [17] that for any
x ∈ FIP (W ) there exists y ∈ X(W ) such that x � y; in this case, we say that
x has been extended to y.

If W = 〈W, ∧, ∨, 0, 1〉 is a bounded lattice then the canonical frame of W
is defined as the relational structure X(W ) = 〈X(W ), �1, �2〉.

Consider the complex algebra L(X(W )) of the canonical frame of a bounded
lattice W . Note that L(X(W )) is an algebra of subrelations of X(W ). Define
a mapping h : W → 2X(W ) by

h(a) = {x ∈ X(W ) : a ∈ x1}.

Then h is a map from W to L(X(W )) and, moreover, we have the following
result.

Proposition 3.1. [17] For every bounded lattice W , h is a lattice embedding of
W into L(X(W )).
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The following theorem is a weak version of Urquhart’s result.

Theorem 3.1 (Representation theorem for lattices). Every bounded lat-
tice is embeddable into the complex algebra of its canonical frame.

4 Lattices with Sufficiency (Negative Necessity) Operator

By a lattice with a sufficiency operator we mean an algebra W = 〈W, ∧, ∨, ¬, 0, 1〉
which is a bounded lattice with a unary operation ¬, called a sufficiency operator,
satisfying:

(Suff1) ¬(a ∨ b) = ¬a ∧ ¬b
(Suff2) ¬0 = 1.

Such operators are also called ‘negative necessity’. (Note that such operators
are antitone.) The name is due to its modal interpretation (cf. Or�lowska, E.,
Vakarelov, D. [13]). The operator [R]¬, which is the composition of the classical
necessity operator [R] with the classical negation, is a sufficiency operator. Recall
that, given a Kripke frame 〈X, R〉, where R is a binary relation on X and A ⊆ X ,
the classical necessity is defined by

[R]A = {x ∈ X : ∀y(xRy ⇒ y ∈ A)}.

Let LS denote the variety of all lattices with a sufficiency operator. The
following definitions and results are based on the treatment of sufficiency in [13].

Let RLS denote the class of all sufficiency frames, i.e., relational structures of
the type X = 〈X, �1, �2, R, S〉, where 〈X, �1, �2〉 is a doubly ordered set (i.e.,
�1 and �2 are quasi-orders satisfying (1)) and R and S are binary relations on
X such that the following hold:

(Mono R) (x′ �1 x and xRy and y �2 y′) ⇒ x′Ry′

(Mono S) (x �2 x′ and xSy and y′ �1 y) ⇒ x′Sy′

(SC RS) xRy ⇒ (∃x′ ∈ X)(x �1 x′ and x′Sy)
(SC SR) xSy ⇒ (∃y′ ∈ X)(y �1 y′ and xRy′).

The conditions (Mono R) and (Mono S) are called sufficiency monotonicity
conditions, and (SC RS) and (SC SR) are called sufficiency stability conditions.

Unary operators [R] and 〈S〉 are defined on 2X as follows. For all A ⊆ X ,

[R]A = {x ∈ X : ∀y(xRy ⇒ y ∈ A)},
〈S〉A = {x ∈ X : ∃y(xSy and y ∈ A)}.

For each W ∈ LS we define the canonical frame of W as the relational
structure X(W ) = 〈X(W ), �1, �2, R

c, Sc〉, where X(W ) is the set of all maxi-
mal disjoint filter-ideal pairs of W and, for all x = (x1, x2), y = (y1, y2) ∈ X(W ),

x �1 y iff x1 ⊆ y1

x �2 y iff x2 ⊆ y2

xRcy iff ∀a(¬a ∈ x1 ⇒ a ∈ y2)
xScy iff ∀a(a ∈ y1 ⇒ ¬a ∈ x2).
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Lemma 4.1. [13] If W ∈ LS then X(W ) ∈ RLS.

Let X = 〈X, �1, �2, R, S〉 ∈ RLS . Then 〈X, �1, �2〉 is a doubly ordered set
hence we may consider its complex algebra 〈L(X), ∧C , ∨C , 0C , 1C〉, where L(X)
is the set of �-stable sets (see definitions (2) and (3)) and the operations are
defined as in (4–7). We extend this definition to define the complex algebra of
X as L(X) = 〈L(X), ∧C , ∨C , ¬C , 0C , 1C〉 where, for all A ⊆ X ,

¬CA = [R]r(A).

Lemma 4.2. [13] If X ∈ RLS then L(X) ∈ LS.

Let W = 〈W, ∧, ∨, ¬, 0, 1〉 ∈ LS. By the above lemmas, we have L(X(W )) ∈ LS
as well. Recall that the function h : W → L(X(W )) defined by

h(a) = {x ∈ X(W ) : a ∈ x1}

is an embedding of the lattice part of W into L(X(W )). Moreover, h also
preserves negation, hence we have the following result.

Theorem 4.1. [13] Each W ∈ LS is embeddable into L(X(W )).

5 Lattices with Heyting Negation

A weakly pseudo-complemented lattice is an algebra W = 〈W, ∧, ∨, ¬, 0, 1〉 which
is a bounded lattice with a unary operation ¬ satisfying:

(WCon) a ≤ b ⇒ ¬b ≤ ¬a
(Weak¬¬) a ≤ ¬¬a
(Abs) a ∧ ¬a = 0

We denote by W the variety of all weakly pseudo-complemented lattices. By
Lemma 2.1, W also satisfies (Gal), (Suff1) and (Suff2), as well as ¬1 = 0 and
¬a ∨ ¬b ≤ ¬(a ∧ b).

We shall need the following lemma. We use (X ] to denote the downward
closure of a subset X of a lattice and [X) for the upward closure. Also, for any
subset X of a a weakly pseudo-complemented lattice, we define

¬X = {¬b : b ∈ X}.

Lemma 5.1. Let F be a proper filter of W ∈ W. Then the following hold.

(a) (¬F ] is an ideal.
(b) F ∩ (¬F ] = ∅.
(c) For all a ∈ W , ¬a ∈ F iff a ∈ (¬F ].

Proof. (a) Note that (¬F ] is downward closed. Suppose that a, b ∈ (¬F ]. Then
a ≤ ¬c and b ≤ ¬d for some c, d ∈ F . Since F is a filter, c∧d ∈ F so ¬(c∧d) ∈ ¬F .
Since a ∨ b ≤ ¬c ∨ ¬d ≤ ¬(c ∧ d), we have a ∨ b ∈ (¬F ]. Thus, (¬F ] is an ideal.

(b) Suppose there is some a ∈ F ∩ (¬F ]. Then a ≤ ¬b for some b ∈ F , so
b ≤ ¬a. Thus, ¬a ∈ F hence 0 = a ∧ ¬a ∈ F , which is a contradiction.

(c) If ¬a ∈ F then ¬¬a ∈ (¬F ] hence a ∈ (¬F ] since a ≤ ¬¬a. If a ∈ (¬F ]
then a ≤ ¬b for some b ∈ F , so b ≤ ¬a hence ¬a ∈ F .



252 W. Dzik, E. Or�lowska, and C. van Alten

We will denote by RW the class of all relational structures of type X = 〈X, �1,
�2, C〉, where 〈X, �1, �2〉 is a doubly ordered set and C is a binary relation on
X such that the following hold:

(FC1) (∀x, y, z)((xCy and z �1 x) ⇒ zCy)
(FC2) (∀x, y, z)((xCy and y �2 z) ⇒ xCz)
(FC3) (∀x)(∃y)(xCy and x �1 y)
(FC4) (∀x, y)(xCy ⇒ ∃z(yCz and x �1 z))
(FC5) (∀s, t, y)[(yCs and s �2 t) ⇒ ∃z(y �1 z and ∀u(z �2 u ⇒ tCu))].

For each W ∈ W we define the canonical frame of W as the relational
structure X(W ) = 〈X(W ), �1, �2, C〉, where X(W ) is the set of all maximal
disjoint filter-ideal pairs of W and, for all x = (x1, x2), y = (y1, y2) ∈ X(W ),

x �1 y iff x1 ⊆ y1

x �2 y iff x2 ⊆ y2

xCy iff ∀a(¬a ∈ x1 ⇒ a ∈ y2).

Lemma 5.2. If W ∈ W then X(W ) ∈ RW .

Proof. We know that 〈X(W ), �1, �2〉 is a doubly ordered set. Properties (FC1)
and (FC2) are straightforward to prove. For (FC3), suppose x ∈ X(W ). By
Lemma 5.1, 〈x1, (¬x1]〉 is a disjoint filter-ideal pair, so we can extend it to a
maximal one, say y. If ¬a ∈ x1 then a ∈ (¬x1] (by Lemma 5.1(c)) hence a ∈ y2.
Thus, xCy. Also, x1 ⊆ y1, i.e., x �1 y, so we have found the required y.

For (FC4), suppose x, y ∈ X(W ) and xCy. By Lemma 5.1(a), (¬y1] is an
ideal. If a ∈ x1 ∩ (¬y1] then a ∈ x1 implies ¬¬a ∈ x1, which implies ¬a ∈ y2.
But a ∈ (¬y1] implies ¬a ∈ y1 (by Lemma 5.1(c)), which contradicts the fact
that y1 ∩ y2 = ∅. Thus, x1 ∩ (¬y1] = ∅. Thus, we can extend 〈x1, (¬y1]〉 to a
maximal disjoint filter-ideal pair, say z. If ¬a ∈ y1 then a ∈ (¬y1] hence a ∈ z2,
so yCz. Also, x �1 z, so we have proved (FC4).

For (FC5), suppose that s, t, y ∈ X(W ) such that yCs and s �2 t. First, we
show that y1 ∩ (¬t1] = ∅. Suppose a ∈ y1 ∩ (¬t1]. Then, ¬¬a ∈ y1 hence ¬a ∈ s2.
Since s �2 t we have ¬a ∈ t2. Also, a ≤ ¬b for some b ∈ t1, so ¬a ≥ ¬¬b ≥ b
hence ¬a ∈ t1. This contradicts the fact that t1 and t2 are disjoint.

We therefore have that 〈y1, (¬t1]〉 is a disjoint filter-ideal pair, so we may
extend it to a maximal one, say z. Then, y1 ⊆ z1, i.e., y �1 z. Suppose z �2 w
and ¬a ∈ t1. Then ¬¬a ∈ ¬t1 so a ∈ (¬t1] ⊆ z2 ⊆ w2 hence a ∈ w2. Thus, we
have proved (FC5).

Let X = 〈X, �1, �2, C〉 ∈ RW . Since 〈X, �1, �2〉 is a doubly ordered set we
may consider its complex algebra 〈L(X), ∧C , ∨C , 0C , 1C〉, where L(X) is the set
of �-stable sets with operations defined as in (4–7). Extending this definition
we define the complex algebra of X as L(X) = 〈L(X), ∧C , ∨C , ¬C , 0C , 1C〉,
where, for A ∈ L(X),

¬CA = {x ∈ X : ∀y(xCy ⇒ y /∈ A)}.
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Lemma 5.3. If A is �-stable then so is ¬CA.

Proof. We have ¬CA = {x : ∀y(xCy ⇒ y /∈ A)} and

�r(¬CA) = {x : ∀s(x �1 s ⇒ ∃t(s �2 t and ∀u(tCu ⇒ u /∈ A)))}.

Let x ∈ ¬CA and suppose that x �1 s for some s. We claim that t = s satisfies
the required properties. Clearly, s �2 s. If sCu, then xCu since x �1 s, by (FC1)
hence u /∈ A. Thus, x ∈ �r(¬CA) so ¬CA ⊆ �r(¬CA).

For the reverse inclusion, note that, since A is �-stable, we have

¬CA = ¬C�r(A) = {x : ∀y(xCy ⇒ ∃z(y �1 z and ∀u(z �2 u ⇒ u /∈ A)))}.

Let x ∈ �r(¬CA) and suppose that xCy for some y. By (FC4), there exists s
such that

x �1 s and yCs.

Then, since x ∈ �r(¬CA) and x �1 s, there exists t such that

s �2 t and ∀u(tCu ⇒ u /∈ A).

Since yCs and s �2 t, by (FC5) there exists z such that

y �1 z and ∀u(z �2 u ⇒ tCu).

Thus, ∀u(z �2 u ⇒ u /∈ A), so we have found the required z, so x ∈ ¬C�r(A) =
¬CA.

Lemma 5.4. If X ∈ RW then L(X) ∈ W.

Proof. To see that (WCon) holds, suppose A, B are �-stable sets and A ⊆ B.
Let x ∈ ¬CB. Then, for all y, xCy implies y /∈ B hence also y /∈ A, so x ∈ ¬CA.

To see that (Weak¬¬) holds, note that

¬C¬CA = {x : ∀y(xCy ⇒ ∃z(yCz and z ∈ A))}.

Let x ∈ A and suppose that xCy for some y. By (FC4), there exists z such that
yCz and x �1 z. Since A is �1–increasing and x ∈ A, we have z ∈ A. Thus, the
required z exists, showing that x ∈ ¬C¬CA.

To see that (Abs) holds, let A be an �-stable set and suppose there exists
x ∈ A ∩ ¬CA. By (FC3), there exists a y such that xCy and x �1 y. Since
x ∈ ¬CA and xCy we have y /∈ A. But x ∈ A and A is �-stable, hence �1–
increasing, so x �1 y implies y ∈ A, a contradiction.

The above lemmas show that if W ∈ W then so is L(X(W )). Recall that the
function h : W → L(X(W )) defined by

h(a) = {x ∈ X(W ) : a ∈ x1}

is an embedding of the lattice part of W into L(X(W )). We show that h also
preserves negation.
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Theorem 5.1. [8] Each W ∈ W is embeddable into L(X(W )).

Proof. We need only show that h(¬a) = ¬Ch(a) for all a ∈ W , where

h(¬a) = {x : ¬a ∈ x1}

and
¬Ch(a) = {x : ∀y(xCy ⇒ a /∈ y1)}.

First, let x ∈ h(¬a) and suppose that xCy for some y. Then ¬a ∈ x1 so a ∈ y2
hence a /∈ y1, as required.

Next, let x ∈ ¬Ch(a) and suppose that ¬a /∈ x1. Then a /∈ (¬x1] (by
Lemma 5.1(c)) so 〈[a), (¬x1]〉 forms a disjoint filter-ideal pair which we can
extend to a maximal one, say y. If ¬c ∈ x1 then c ∈ (¬x1] so xCy hence a /∈ y1,
a contradiction since [a) ⊆ y1.

6 Pseudo-complemented Lattices

A pseudo-complemented lattice is an algebra W = 〈W, ∧, ∨, ¬, 0, 1〉 which is a
bounded lattice with a unary operation ¬ satisfying:

a ∧ b = 0 ⇔ a ≤ ¬b.

The class of all pseudo-complemented lattices is denoted P . Note that (Gal) is
derivable by

a ≤ ¬b ⇔ a ∧ b = 0 ⇔ b ∧ a = 0 ⇔ b ≤ ¬a.

Thus, (Suff1), (Suff2), (WCon) and (Weak¬¬) are derivable and, from a ≤ ¬¬a,
we get a ∧ ¬a = 0, so (Abs) is derivable hence also ¬1 = 0. The class W of
weakly pseudo-complemented lattices is easily seen to satisfy the quasi-identity

a ≤ ¬b ⇒ a ∧ b = 0,

hence P is a subclass of W defined by the quasi-identity

(Pcq) a ∧ b = 0 ⇒ a ≤ ¬b.

As an example that shows that P is a proper subclass of W consider the lattice
with 6 elements 1, 0, a, b, c, d, where 1 is the top, 0 is the bottom and a, b, c, d
are incomparable. Let ¬a = b, ¬b = a, ¬c = d and ¬d = c. This example is in
W but not in P since a ∧ c = 0 but a �≤ ¬c.

We will denote by RP the class of all relational structures of type X = 〈X, �1,
�2, C〉, where 〈X, �1, �2〉 is a doubly ordered set and C is a binary relation on
X such that (FC1–FC5) hold as well as

(FC6) (∀x, y)(xCy ⇒ ∃z(x �1 z and y �1 z)).
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That is, RP is the subclass of RW defined by (FC6).
If W ∈ P then W ∈ W as well hence its canonical frame is the relational

structure X(W ) = 〈X(W ), �1, �2, C〉, where X(W ) is the set of all maximal
disjoint filter-ideal pairs of W and, for all x, y ∈ X(W ),

x �1 y iff x1 ⊆ y1

x �2 y iff x2 ⊆ y2

xCy iff ∀a(¬a ∈ x1 ⇒ a ∈ y2).

Lemma 6.1. If W ∈ P then X(W ) ∈ RP .

Proof. We need only show that (FC6) holds. So, let x, y ∈ X(W ) such that
xCy. Consider the filter generated by x1 ∪ y1, denoted Fi(x1 ∪ y1). We claim
that 0 /∈ Fi(x1 ∪ y1). If we suppose otherwise, then there exist a1, . . . , an ∈ x1
and b1, . . . , bm ∈ y1 such that

(
∧n

i=1 ai) ∧ (
∧m

j=1 bj) = 0.

If we set a =
∧n

i=1 ai and b =
∧m

j=1 bj , then a ∈ x1 and b ∈ y1 such that a∧b = 0.
But this implies that a ≤ ¬b, by (Pcq), hence ¬b ∈ x1. Finally, since xCy and
¬b ∈ x1, we have b ∈ y2. Thus, b ∈ y1 ∩ y2, a contradiction.

This shows that 0 /∈ Fi(x1 ∪ y1) so 〈Fi(x1 ∪ y1), {0}〉 is a disjoint filter-ideal
pair. This can be extended to a maximal disjoint filter-ideal pair, say z. Then
x �1 z and y �1 z, as required.

Let X = 〈X, �1, �2, C〉 ∈ RP (so X satisfies (FC1–FC6)). Then X is also in
RW hence we may consider its complex algebra L = 〈L(X), ∧C , ∨C , ¬C , 0C , 1C〉,
where L(X) is the set of �-stable sets, the lattice operations are defined as in
(4–7) and, for A ∈ L(X),

¬CA = {x ∈ X : ∀y(xCy ⇒ y /∈ A)}.

Lemma 6.2. If X ∈ RP then L(X) ∈ P.

Proof. We need only show that L(X) satisfies the quasi-identity (Pcq), i.e., for
A, B ∈ L(X),

A ∩ B = ∅ ⇒ A ⊆ ¬CB = {x ∈ X : ∀y(xCy ⇒ y /∈ B)}.

Suppose that A ∩ B = ∅ and let x ∈ A. Let y ∈ X such that xCy. By (FC6),
there exists z ∈ X such that x �1 z and y �1 z. Since x ∈ A and A is �1–
increasing, we have z ∈ A as well. If y ∈ B then, since B is �1–increasing, it
would follow that z ∈ B and hence that z ∈ A∩B, contradicting our assumption
that A ∩ B = ∅. Thus, y /∈ B hence x ∈ ¬CB, as required.

Thus, we have shown that if W ∈ P then so is L(X(W )). Moreover, from the
previous section we know that h is an embedding of W into L(X(W )), hence
we have the following result.

Theorem 6.1. [8] Each W ∈ P is embeddable into L(X(W )).
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7 Lattices with De Morgan Negation

By a De Morgan lattice we mean an algebra W = 〈W, ∧, ∨, ¬, 0, 1〉 which is a
bounded lattice with a unary operation ¬ satisfying:

(Gal) a ≤ ¬b ⇒ b ≤ ¬a
(DeM) ¬¬a ≤ a

Let M denote the variety of all De Morgan lattices. Recall that from (Gal)
and (DeM) one may derive (Suff1), (Suff2), (WCon), (Weak¬¬) and ¬1 = 0.
The following are also derivable in M:

¬¬a = a
¬(a ∧ b) = ¬a ∨ ¬b
¬a = ¬b ⇒ a = b.

We will denote by RM the class of all relational structures of type X = 〈X, �1,
�2, N〉, where 〈X, �1, �2〉 is a doubly ordered set, N : X → X is a function
and, for all x, y ∈ X ,

(M1) N(N(x)) = x,
(M2) x �1 y ⇒ N(x) �2 N(y),
(M3) x �2 y ⇒ N(x) �1 N(y).

The representation in this section essentially comes from [1], where the func-
tion N is called a ‘generalized Routley-Meyer star operator’. We give full details
here and in the next section show how the method may be extended to ortho-
lattices.

For each W ∈ M, define the canonical frame of W as the relational struc-
ture X(W ) = 〈X(W ), �1, �2, N〉, where X(W ) is the set of all maximal disjoint
filter-ideal pairs of W and, for x, y ∈ X(W ),

x �1 y iff x1 ⊆ y1,
x �2 y iff x2 ⊆ y2,
N(x) = (¬x2, ¬x1), where ¬A = {¬a : a ∈ A} for any A ⊆ W .

Lemma 7.1. If W ∈ M then X(W ) ∈ RM .

Proof. We have already observed that 〈X(W ), �1, �2〉 is a doubly ordered set.
Condition (M1) follows from (DeM) and conditions (M2) and (M3) are immedi-
ate. Thus, we need only show that N is a function from X(W ) to X(W ). That
is, if x ∈ X(W ), we must show that N(x) is a maximal disjoint filter-ideal pair.
(This is also done by Allwein and Dunn.) Let a1, a2 ∈ x2 hence ¬a1, ¬a2 ∈ ¬x2.
Then ¬a1 ∧ ¬a2 = ¬(a1 ∨ a2) and a1 ∨ a2 ∈ x2, hence ¬x2 is closed under ∧.
If ¬a1 ≤ b then ¬b ≤ ¬¬a1 = a1, so ¬b ∈ x2. Then b = ¬¬b ∈ ¬x2, so ¬x2 is
upward closed. Thus, ¬x2 is a filter. Similarly, ¬x1 is an ideal. Also, ¬x1 and ¬x2
can be shown disjoint using the implication: ¬b = ¬c ⇒ b = c and the fact that
x1 and x2 are disjoint. To show maximality, suppose y ∈ X(W ) and ¬x1 ⊆ y1
and ¬x2 ⊆ y2. Then ¬¬x1 ⊆ ¬y1, i.e., x1 ⊆ ¬y1 and also x2 ⊆ ¬y2. Since
(¬y2, ¬y1) is a disjoint filter-ideal pair, the maximality of x implies x1 = ¬y2
and x2 = ¬y1. Thus, ¬x1 = y2 and ¬x2 = y1 so N(x) is maximal.
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If X = 〈X, �1, �2, N〉 ∈ RM , then 〈X, �1, �2〉 is a doubly ordered set, so we
may consider its complex algebra 〈L(X), ∧C , ∨C , 0C , 1C〉, where L(X) is the set
of �-stable sets and the operations are as in (4–7). We extend this definition
to define the complex algebra of X as L(X) = 〈L(X), ∧C , ∨C , ¬C , 0C , 1C〉
where, for A ∈ L(X),

¬CA = {x ∈ X : N(x) ∈ r(A)}.

Lemma 7.2. If X ∈ RM then L(X) ∈ M.

Proof. We need to show that ¬CA is �-stable, i.e., �r(¬CA) = ¬CA, and that
L(X) satisfies (Gal) and (DeM). Since � and r form a Galois connection, by
Lemma 3.2, we have ¬CA ⊆ �r(¬CA) iff r(¬CA) ⊆ r(¬CA). For the converse,
suppose that for every y, if x �1 y then y /∈ r(¬CA) and assume, to the contrary,
that x /∈ ¬CA. Then N(x) /∈ r(A) and there is z such that N(x) �2 z and
z ∈ A. It follows by (M3) and (M1) that x �1 N(z) and hence, by the above
assumption, N(z) /∈ r(¬CA). Thus, there is t such that N(z) �2 t and t ∈ ¬CA.
By application of N and (M3) and (M1), we have that z �1 N(t) and N(t) ∈
r(A), in particular N(t) /∈ A. But z ∈ A and A is �1–increasing, as A = �r(A),
hence N(t) ∈ A, a contradiction.

To prove (Gal), suppose that A ⊆ ¬CB. Then, for every x, if x ∈ A then
N(x) ∈ r(B). Suppose that x ∈ B and, to the contrary, that x /∈ ¬CA, i.e.,
N(x) /∈ r(A), in which case N(x) �2 y and y ∈ A, for some y. By (M3) and (M1),
x �1 N(y) hence N(y) ∈ B since B = �r(B) is �1–increasing. But also y ∈ ¬CB,
by the assumption, and N(y) ∈ r(B), a contradiction since B ∩ r(B) = ∅.

To prove (DeM), let x ∈ ¬C¬CA, hence N(x) ∈ r(¬CA). We show that
x ∈ �(r(A)) which equals A since A is �-closed. Let x ≤1 w. Then N(x) ≤2
N(w), by (M2), hence N(w) ∈ r(¬CA) since r(¬CA) is ≤2–increasing. Thus,
N(w) /∈ ¬CA, i.e., w = N(N(w)) /∈ r(A). Thus, x ∈ �(r(A)) = A.

The above lemmas imply that if W ∈ M, then L(X(W )) ∈ M as well. Recall
that the function h : W → L(X(W )) defined by

h(a) = {x ∈ X(W ) : a ∈ x1}

is an embedding of the lattice part of W into L(X(W )). As in the case of
Heyting negation, we shall show that h also preserves De Morgan negation.

Theorem 7.1. [8] Each W ∈ M is embeddable into L(X(W )).

Proof. We need only show that h(¬a) = ¬Ch(a) for all a ∈ W , where

h(¬a) = {x ∈ X(W ) : ¬a ∈ x1}

and

¬Ch(a) = {x ∈ X(W ) : N(x) ∈ r(h(a))}
= {x ∈ X(W ) : (∀y ∈ X(W ))(¬x1 ⊆ y2 ⇒ a /∈ y1)}.
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First, let x ∈ h(¬a). Then ¬a ∈ x1, hence a = ¬¬a ∈ ¬x1. Suppose that
¬x1 ⊆ y2. Then a /∈ y1, since y1 and y2 are disjoint.

Next, let x ∈ ¬Ch(a). Suppose, to the contrary, that ¬a /∈ x1. Then a /∈ (¬x1]
and so 〈[a), (¬x1]〉 is a disjoint filter-ideal pair, which can be extended to a
maximal one, say y. Thus, (¬x1] ⊆ y1, so a /∈ y1, but [a) ⊆ y1, a contradiction.

8 Lattices with Ortho-negation (Ortholattices)

An ortholattice is an algebra W = 〈W, ∧, ∨, ¬, 0, 1〉 which is a bounded lattice
with a unary operation ¬ which satisfies (Gal), (DeM) and (Abs). That is, the
negation in an ortholattice is both De Morgan and Intuitionistic. Let O denote
the variety of all ortholattices. Since O is a subclass of both W and M, it satisfies
all the identities satisfied by either class. We extend the relational representation
for De Morgan lattices to ortholattices.

We will denote by RO the class of all relational structures of type X = 〈X, �1,
�2, N〉, where 〈X, �1, �2〉 is a doubly ordered set and N : X → X is a function
such that, for all x, y ∈ X ,

(M1) N(N(x)) = x
(M2) x �1 y ⇒ N(x) �2 N(y)
(M3) x �2 y ⇒ N(x) �1 N(y)
(O) (∀x)(∃y)(x �1 y and N(x) �2 y)

That is, RO is the subclass of RM defined by (O). If W ∈ O, then W ∈ M hence
its canonical frame is the relational structure X(W ) = 〈X(W ), �1, �2, N〉,
where X(W ) is the set of all maximal disjoint filter-ideal pairs of W and, for x,
y ∈ X(W ),

x �1 y iff x1 ⊆ y1
x �2 y iff x2 ⊆ y2
N(x) = (¬x2, ¬x1), where ¬A = {¬a : a ∈ A} for A ⊆ W .

Lemma 8.1. If W ∈ O then X(W ) ∈ R(O).

Proof. We need only show that X(W ) satisfies (O). Let x ∈ X(W ). Observe
that x1 and ¬x1 are disjoint, for if a ∈ x1 ∩ (¬x1) then a ∈ x1 and a ∈ ¬x1, so
¬a ∈ ¬¬x1 = x1, hence a ∧ ¬a ∈ x1. But, by (Abs), a ∧ ¬a = 0, so x1 = W , a
contradiction. Thus, we may extend (x1, ¬x1) to a maximal disjoint filter-ideal
pair y. Then x1 ⊆ y1 and ¬x1 ⊆ y2, so we have found a y that satisfies the
required conditions of (O).

If X = 〈X, �1, �2, N〉 ∈ RO, then X ∈ RM so it has a canonical algebra
L(X) = 〈L(X), ∧C , ∨C , ¬C , 0C , 1C〉 defined as in the De Morgan negation case.

Lemma 8.2. If X ∈ RO then L(X) ∈ O.

Proof. We need only show that L(X) satisfies A ∧C (¬CA) = 0C . Suppose, to
the contrary, that there exists A ∈ L(X) such that A ∩ (¬CA) �= ∅, and let



Relational Representation Theorems for Lattices with Negations: A Survey 259

x ∈ A ∩ (¬CA). By (O), there exists y such that x �1 y and N(x) �2 y. Since
A is �1–increasing, y ∈ A. Since x ∈ ¬CA, N(x) ∈ r(A). But then N(x) �2 y
implies y /∈ A, a contradiction.

Thus, the above lemmas imply that if W ∈ O, then L(X(W )) ∈ O as well.
Since the map h is an embedding of De Morgan lattices, we have the following
result.

Theorem 8.1. [8] Each W ∈ O is embeddable into L(X(W )).

Part II Distributive Lattices

9 Relatively Pseudo-complemented Lattices

A relatively pseudo-complemented lattice is an algebra W = 〈W, ∧, ∨, →〉 where
〈W, ∧, ∨〉 is a lattice and → is a binary operation on W satisfying:

a ∧ c ≤ b ⇔ c ≤ a → b.

The operation → is the ‘residuum’ of ∧. For properties of relatively pseudo-
complemented lattices, see [15] or [2]). It is known that every relatively pseudo-
complemented lattice is distributive and has a constant 1 definable by 1 = a → a,
which is the greatest element of the lattice. We include 1 in the language so that
W = 〈W, ∧, ∨, →, 1〉. It is known that all relatively pseudo-complemented lat-
tices form a variety and we denote this variety by RP . RP satisfies the following:

a → b = 1 ⇔ a ≤ b
1 → b = b, a → 1 = 1
a → b = 1 and a = 1 ⇒ b = 1
a → (b → c) = b → (a → c)
a ∧ (a → b) = a ∧ b
b ≤ a → b
a ≤ b ⇒ c → a ≤ c → b.

In the case of distributive lattices such as RP the relational representation is
built on the set of prime ideals of the lattice rather than the maximal disjoint
filter-ideal pairs used in the non-distributive cases. The underlying relational
structures are of the type 〈X, ≤〉, where X is a set and ≤ a quasi-order on X .
The class of all such relational structures is denoted by RRP .

For each W ∈ RP we define the canonical frame of W as the relational
structure X(W ) = 〈X(W ), ≤C〉, where X(W ) is the set of all prime filters of
W and ≤C= ⊆.

Lemma 9.1. If W ∈ RP then X(W ) ∈ RRP .

For each 〈X, ≤〉 ∈ RP , we define the operation [≤] : 2X → 2X by

[≤]A = {x ∈ X : ∀y(x ≤ y ⇒ y ∈ A)}.
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Observe that [≤]A is the largest upward closed subset of A. Note also that
[≤] is monotonic and, for any A ⊆ X , [≤]A = A iff A is upward closed, and
[≤][≤]A = [≤]A.

If X = 〈X, ≤〉 ∈ RRP we define the complex algebra of X as L(X) =
〈L(X), ∧C , ∨C , →C , 1C〉 where L(X) = {A ⊆ X : [≤]A = A} and, for all
A, B ∈ L(X),

A ∧C B = A ∩ B,
A ∨C B = A ∪ B,
A →C B = [≤](−A ∪ B), where −A is the set complement of A in X ,
1C = X .

Lemma 9.2. If X ∈ RRP then L(X) ∈ RP.

Proof. It is clear that L(X) is closed under ∧C and ∨C and that these operations
describe a distributive lattice with greatest element 1C . We need only show that
→C is the residuum of ∩, i.e., for all A, B, C ∈ L(X),

A ∩ C ⊆ B iff C ⊆ A →C B = [≤](−A ∪ B).

Assume that A ∩ C ⊆ B and let x ∈ C. Take any y ∈ X such that x ≤ y. Then
y ∈ C since C is a filter. If y ∈ A then y ∈ A ∩ C hence y ∈ B so y ∈ −A ∪ B.
If y /∈ A then, trivially, y ∈ −A ∪ B. Conversely, assume C ⊆ [≤](−A ∪ B)
and let x ∈ A ∩ C. Then x ∈ C hence x ∈ [≤](−A ∪ B). Since x ≤ x, we have
x ∈ −A ∪ B, but x ∈ A, so we must have x ∈ B, as required.

The above lemmas show that if W ∈ RP , then so is L(X(W )). To show that
W embeds into L(X(W )) we define the map f : W → L(X(W )) by

f(a) = {F ∈ X(W ) : a ∈ F}.

For the proof of next theorem we need the following observations. Let F be a
(lattice) filter of a relatively pseudo-complemented lattice W . Then the following
hold for all a, b ∈ W :

a ∈ F and a → b ∈ F ⇒ b ∈ F ;
if b /∈ F , then there is a prime filter F ′ such that F ⊆ F ′ and b /∈ F ′.

Theorem 9.1. Each W ∈ RP is embeddable into L(X(W )).

Proof. That the map f is a lattice embedding follows by standard arguments of
M.H. Stone [16] (see also [2]). We need only show the preservation of relative
pseudo-complement by f , i.e., that f(a → b) = f(a) →C f(b) = [≤C ](−f(a) ∪
f(b)). Let F ∈ f(a → b), i.e., a → b ∈ F . It follows that a /∈ F or b ∈ F , hence
F /∈ f(a) or F ∈ f(b), i.e., F ∈ −f(a) ∪ f(b), so f(a → b) ⊆ −f(a) ∪ f(b).
Since for every a ∈ W , f(a) = [≤C ]f(a) we have, by monotonicity of [≤C ], that
f(a → b) = [≤C ]f(a → b) ⊆ [≤C ](−f(a) ∪ f(b)). For the converse inclusion,
suppose F ∈ [≤C ](−f(a) ∪ f(b)). Then, for all G,

F ⊆ G ⇒ a /∈ G or b ∈ G. (8)
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In particular, a /∈ F or b ∈ F . If b ∈ F then, since b ≤ a → b, we have
a → b ∈ F . If b /∈ F , then a /∈ F . We show that also in this case a → b ∈ F .
Suppose, to the contrary, that a → b /∈ F . Set H = {c : a → c ∈ F}. Since
a → (c ∧ d) = (a → c) ∧ (a → d), it follows that H is closed under meets. Since
c ≤ d implies a → c ≤ a → d, H is upward closed. Thus, H is a filter of W .
Moreover, F ⊆ H , a ∈ H and b /∈ H . Thus, we may extend H to a prime filter
H ′ such that b /∈ H ′, but F ⊆ H ′ and a ∈ H ′, contradicting (8).

10 Relatively Pseudo-complemented Lattices with
Minimal Negation

Now we consider relatively pseudo-complemented lattices with minimal nega-
tion, also called minimal negation of Johansson [10], (cf. Dunn and Hardegree
[5]) or contrapositional negation, (cf. Rasiowa [14]). This is a relatively pseudo-
complemented lattice enriched with an operation corresponding to minimal nega-
tion, (i.e., minimal negation of Johansson, or contrapositional negation).

By a relatively pseudo-complemented lattice with minimal negation we mean an
algebra W = 〈W, ∧, ∨, →, ¬, ∂, 1〉, where 〈W, ∧, ∨, →, 1〉 is a relatively pseudo-
complemented lattice, ∂ ∈ W (not necessarily the smallest element) and ¬ is a
unary operator satisfying:

(RPM1) a → ¬b ≤ b → ¬a,
(RPM2) ¬1 = ∂.

Let RPM denote the variety of all relatively pseudo-complemented lattices with
minimal negation. Note that (RPM1) is equivalent to a → ¬b = b → ¬a and
corresponds to the condition for quasi-minimal, or Galois, negation (Gal): a ≤
¬b ⇒ b ≤ ¬a.

Lemma 10.1

(a) If W ∈ RPM, then ¬a = a → ∂ for all a ∈ W .
(b) Let W ∈ RP and let ∂ be any element of W . If we define a unary operation

¬ by ¬a = a → ∂ for all a ∈ W , then ¬ is a minimal negation.

Proof. (a) For all a ∈ W we have ¬a = 1 → ¬a = a → ¬1 = a → ∂. (b) For
(RPM1), for all a, b ∈ W we have a → ¬b = a → (b → ∂) = b → (a → ∂) = b →
¬a. For (RPM2), we have ¬1 = 1 → ∂ = ∂.

We will denote by RRPM the class of all relational structures of type X = 〈X,
≤, D〉, where ≤ is a quasi-order on X and D ⊆ X .

For each W ∈ RPM we define the canonical frame of W as X(W ) =
〈X(W ), ≤C , DC〉, where X(W ) is the set of all prime filters of W , ≤C= ⊆ and

DC = {F ∈ X(W ) : ∂ ∈ F}.



262 W. Dzik, E. Or�lowska, and C. van Alten

Lemma 10.2. If W ∈ RPM then X(W ) ∈ RRPM .

If X = 〈X, ≤, D〉 ∈ RRPM , then 〈X, ≤〉 ∈ RRP hence it has a complex algebra
〈L(X), ∧C , ∨C , →C , 1C〉 as defined in the previous section. The complex alge-
bra of X, denoted L(X), is the extension of this algebra by the constant ∂C

and the operation ¬C defined by

∂C = [≤]D,

¬CA = A →C ∂C for A ∈ L(X).

Lemma 10.3. If X ∈ RRPM then L(X) ∈ RPM.

Proof. Since [≤][≤]D = [≤]D, we have ∂C ∈ L(X) and hence L(X) is also closed
under ¬C . Since L(X) is a relatively pseudo-complemented lattice, (RPM1)
follows from properties of →. (RPM2) follows from ¬C1 = [≤](−X ∪ [≤]D) =
[≤][≤]D = [≤]D = ∂C .

Thus, if W ∈ RPM so is L(X(W )).

Theorem 10.1. Each W ∈ RPM is embeddable into L(X(W )).

Proof. From the previous section we know that the function f : W → L(X(W ))
defined by

f(a) = {F ∈ X(W ) : a ∈ F}
is an embedding on the reduct 〈W, ∧, ∨, →, 1〉. We have f(∂) = {F ∈ X(W ) :
∂ ∈ F} = DC and f(∂) is an upward closed subset of X(W ) so f(∂) = [≤]DC =
∂C . Since → is preserved it follows that ¬ is too.

11 Distributive Lattices with De Morgan Negation

Now we consider distributive lattices with negation operation corresponding to
De Morgan negation (i.e., satisfying (Gal) and (DeM)). We will see the difference
in techniques of representation between the previous non-distributive case and
the distributive case. The representation theorem below is a modification of the
result of Bia�lynicki-Birula and Rasiowa [3] to the unified framework.

By a De Morgan algebra (also called a distributive lattice with involution) we
mean a De Morgan lattice 〈W, ∧, ∨, ¬, 0, 1〉 whose lattice reduct is distributive.
Let DM denote the variety of all De Morgan algebras. Thus, DM satisfies (Gal)
and (DeM), as well as (Suff1), (Suff2), (WCon), (Weak¬¬), ¬1 = 0 and

¬¬a = a
¬(a ∧ b) = ¬a ∨ ¬b
¬a = ¬b ⇒ a = b.

For W ∈ DM and A ⊆ W , let ¬A = {¬a : a ∈ A}. Then the following hold:

(A1) ¬A = {a : ¬a ∈ A}
(A2) ¬(W − A) = W − (¬A)
(A3) ¬¬A = A
(A4) A is a prime filter iff ¬A is a prime ideal.
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We will denote by RDM the class of all relational structures of type X =
〈X, ≤, N〉, where ≤ is a quasi-order on X , N : X → X is a function and, for all
x, y ∈ X ,

(DM1) x ≤ y ⇒ N(y) ≤ N(x),
(DM2) N(N(x)) = x.

Compare these with (M1–M3). If we let N(A) = {N(x) : x ∈ A}, for A ⊆ X ,
then the following hold:

(A5) N(A) = {x : N(x) ∈ A}
(A6) N(X − A) = X − N(A)
(A7) N(A ∪ B) = N(A) ∪ N(B)
(A8) NN(A) = A.

The only non-trivial property is (A6), but this follows since: x ∈ N(X − A) iff
N(x) ∈ X − A iff N(x) �∈ A iff x /∈ N(A).

For each W ∈ DM we define the canonical frame of W as the relational
structure X(W ) = 〈X(W ), ≤C , NC〉, where X(W ) is the set of all prime filters
of W , ≤C= ⊆ and, for F ∈ X(W ),

NC(F ) = W − (¬F ).

Lemma 11.1. If W ∈ DM then X(W ) ∈ RDM .

Proof. We first show that N is a function from X(W ) to X(W ). Let F ∈ X(W ),
so F is a prime filter. It is routine to check that NC(F ) is a filter. For primeness,
suppose that a ∨ b ∈ NC(F ) = W − (¬F ). Then a ∨ b /∈ ¬F so ¬(a ∨ b) =
¬a ∧ ¬b /∈ F . Thus, either ¬a /∈ F or ¬b /∈ F , so a /∈ ¬F or b /∈ ¬F , hence
a ∈ W − (¬F ) or b ∈ W − (¬F ).

For (DM1), suppose F, G ∈ X(W ) and F ⊆ G. Now, by (A2), (A1) and
definitions we have a ∈ NC(G) iff a ∈ W − (¬G) iff a /∈ ¬G iff ¬a /∈ G hence,
by the assumption, ¬a /∈ F iff a /∈ ¬F iff a ∈ W − (¬F ) iff a ∈ NC(F ).

For (DM2), by (A6) and (A7) we have NC(NC(F )) = W − (¬NC(F )) =
W − (¬(W − (¬F ))) = W − (W − ¬¬F ) = ¬¬F = F .

If X = 〈X, ≤〉 ∈ RDM we define the complex algebra of X as L(X) =
〈L(X), ∧C , ∨C , ¬C , 0C , 1C〉 where L(X) = {A ⊆ X : [≤]A = A} and, for all
A, B ∈ L(X),

A ∧C B = A ∩ B,
A ∨C B = A ∪ B,
¬CA = X − N(A),
1C = X ,
0C = ∅.

Recall that, for A ⊆ X ,

[≤]A = {x ∈ X : ∀y(x ≤ y ⇒ y ∈ A)}.
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Lemma 11.2. If X ∈ RDM then L(X) ∈ DM.

Proof. We show that if A ∈ L(X), then ¬CA ∈ L(X), that is ¬CA = [≤]¬CA.
Let x ∈ ¬CA, so N(x) /∈ A. Suppose that x /∈ [≤]¬CA. Then there is y such
that x ≤ y and y /∈ ¬CA, thus N(y) ∈ A = [≤]A, that is ∀z(N(y) ≤ z ⇒ z ∈ A).
Since x ≤ y, we have N(y) ≤ N(x), and taking z = N(x) we get N(x) ∈ A, a
contradiction. For the converse, let x ∈ [≤]¬CA. Then ∀y(x ≤ y ⇒ N(y) /∈ A);
suppose that x /∈ ¬CA, hence N(x) ∈ A. Taking y = x we get a contradiction.

Now we show that ¬C¬CA = A. Using (A6) and (A8) we have X−N(¬CA) =
X −N(X −N(A)) = X − (X −NN(A)) = NN(A) = A. This proves (DeM) and
(Weak¬¬) hence (Gal) follows by Lemma 2.1. Next we show (Suff1), i.e., that
¬C(A∪B) = ¬CA∩¬CB. By (A7) we have x ∈ X −N(A∪B) iff x /∈ N(A∪B)
iff N(x) /∈ A and N(x) /∈ B iff x ∈ ¬CA ∩ ¬CB.

The above lemmas imply that if W ∈ DM, then L(X(W )) ∈ DM as well.
Recall that the function f : W → L(X(W )) defined by

f(a) = {F ∈ X(W ) : a ∈ F}

is an embedding of the lattice parts of W and L(X(W )). We show that it
preserves negation as well.

Theorem 11.1. Each W ∈ DM is embeddable into L(X(W )).

Proof. We need only show the preservation of negation. We have, by definition,

¬Cf(a) = X(W ) − (NC(f(a))
= X(W ) − {NC(F ) : F ∈ f(a)}
= X(W ) − {W − (¬F ) : a ∈ F}

and
f(¬a) = {G : ¬a ∈ G}.

Note that a ∈ F iff ¬a ∈ ¬F iff ¬a /∈ W − (¬F ). Thus, {W − (¬F ) : a ∈ F}
consists of all G ∈ X(W ) for which ¬a /∈ G. Therefore X(W ) − {W − (¬F ) :
a ∈ F} consists of all G ∈ X(W ) such that ¬a ∈ G, i.e., ¬Cf(a) = f(¬a).

12 Boolean Algebras with Sufficiency Operator

By a Boolean algebra with sufficiency (or negative necessity) operator we mean
an algebra W = 〈W ′, ¬〉, where W ′ = 〈W, ∧, ∨, −, 0, 1〉 is a Boolean algebra,
and ¬ a unary operation satisfying:

(Suff1) ¬(a ∨ b) = ¬a ∧ ¬b
(Suff2) ¬0 = 1.
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Let SUA denote the variety of all Boolean algebras with sufficiency operator.
We extend the relational representation to Boolean algebras with sufficiency
operator.

A frame is a relational structure of type X = 〈X, R〉, where R ⊆ X × X . Let
R be a class of all frames.

For each W ∈ SUA we define the canonical frame of W as the relational
structure X(W ) = 〈X(W ), RC〉, where X(W ) is the set of all prime filters of
W and, for F, G ∈ X(W ),

FRCG iff ¬G ∩ F �= ∅

where ¬A = {a ∈ W : ¬a ∈ A} for each A ⊆ X .
Given a frame X = 〈X, R〉, we define the complex algebra of X as L(X) =

〈P(X), ¬C〉, where P(X) is the powerset Boolean algebra of X and, for A ∈
P(X),

¬CA = {x ∈ X : A ⊆ R(x)} = {x ∈ X : ∀y(y ∈ A ⇒ xRy)}.

Lemma 12.1. If W ∈ SUA, then X(W ) ∈ R. If X ∈ R then L(X) ∈ SUA.

Theorem 12.1. Each W ∈ SUA is embeddable into L(X(W )).

Proof. The embedding is defined in a standard way:

f(a) = {G ∈ X(W ) : a ∈ G}.
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