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Abstract. The present paper gives a state-of-the-art overview of gen-
eral representation results for fuzzy weak orders. We do not assume that
the underlying domain of alternatives is finite. Instead, we concentrate
on results that hold in the most general case that the underlying domain
is possibly infinite. This paper presents three fundamental representa-
tion results: (i) score function-based representations, (ii) inclusion-based
representations, (iii) representations by decomposition into crisp linear
orders and fuzzy equivalence relations.

1 Introduction

Weak orders are among the most fundamental concepts in preference modeling.
A binary relation � on a given non-empty domain X is called a weak order if it
has the following three properties for all x, y, z ∈ X :

x � x (reflexivity)
if x � y and y � z then x � z (transitivity)
x � y or y � x (completeness)

Obviously the only difference between weak orders and linear orders is that weak
orders need not be antisymmetric, i.e., a weak order � is a linear order if and
only if the additional property

if x � y and y � x then x = y (antisymmetry)

holds for all x, y ∈ X . It is easy to see that the ranking of linearly ordered prop-
erties of objects constitutes a weak order, e.g., ranking cars by their maximum
speed, ranking persons by their height or weight, ranking products by their price,
and so forth. This basic fact is not only a fundamental construction principle,
but a fundamental representation of weak orders.
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Theorem 1. A binary relation � on a non-empty domain X is a weak order
if and only if there exists a linearly ordered non-empty set Y and a mapping
f : X → Y such that � can be represented in the following way for all x, y ∈ X:

x � y if and only if f(x) ≤ f(y) (1)

The proof that a relation defined as in Eq. (1) is a weak order is straightforward.
To prove the existence of a set Y and a mapping f such that representation (1)
holds for a given weak order �, one has to follow the following steps: (a) define
an equivalence relation ∼ as the symmetric kernel of �, (b) define Y as the factor
set X/∼, (c) define f as the projection f(x) = 〈x〉∼, (d) prove that the projection
of � onto X/∼ is a linear order on X/∼, (e) prove that representation (1) holds.
From this perspective, we can view weak orders as linear orders of equivalence
classes. In the context of Theorem 1, the equivalence classes contain exactly
those elements that share the same property, i.e., those elements for which f
yields the same value.

Note that there is an alternative construction of Y and f . Let us define the
foreset of an element x ∈ X , denoted C(x), as the set of elements smaller than
or equivalent to x, i.e., C(x) = {y ∈ X | y � x}. Then define Y as the set of all
foresets, i.e., Y = {C(x) | x ∈ X}. It is straightforward to prove that x � y if
and only C(x) ⊆ C(y), and it follows directly from the completeness of � that
Y is linearly ordered with respect to ordinary set inclusion. Thus, we can also
conclude that weak orders on X can be represented by embedding into linearly
ordered subsets of the partially ordered set (P(X), ⊆).

In the case that X is at most countable, Theorem 1 can be strengthened in
the following way: it is always possible to choose Y = [0, 1], i.e., for each weak
order, we can find a mapping f : X → [0, 1] such that representation (1) holds.
In other words, weak orders on countable domains can always be embedded into
the linear order on the unit interval. This is a classic result that goes back to
Cantor [7, 17, 21].

Weak orders are not only simple and fundamental concepts (as the above ex-
amples illustrate), they are the basis for representing other fundamental concepts
in preference modeling and order theory: it is known that preorders, i.e., reflex-
ive and transitive binary relations, are uniquely characterized as intersections of
weak orders.

In analogy to the crisp case, fuzzy weak orders are fundamental concepts in
fuzzy preference modeling [8, 11, 12, 19]. Given a non-empty set of alternatives
X , a fuzzy relation R : X2 → [0, 1] is a fuzzy weak order if it has the following
three properties for all x, y, z ∈ X , where T denotes a left-continuous t-norm:

R(x, x) = 1 (reflexivity)
T (R(x, y), R(y, z)) ≤ R(x, z) (T -transitivity)
R(x, y) = 1 or R(y, x) = 1 (strong completeness)

The goal of this paper is to provide an overview of representation results for
fuzzy weak orders. We concentrate on those results that hold for all possible
domains X . Results holding only for finite and/or countable domains will not
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be considered. Consequently, this paper is organized as follows. After providing
some preliminaries in Section 2, we discuss score function-based representations
in depth in Section 3 that will be complemented by inclusion-based represen-
tations in Section 4. Section 5 is devoted to decomposing fuzzy weak orders
into crisp linear orders and fuzzy equivalence relations—in direct analogy to the
factor set representation discussed above.

Note that this paper is a state-of-the-art review that mainly integrates results
from previously published papers on similarity-based fuzzy orders [3, 4, 5]. This
paper consistently views the results from the perspective of fuzzy weak orders.

2 Preliminaries

In this paper, we solely use values from the unit interval to express degrees of
order/preference. This is not a serious restriction from a practical point of view,
and it is also the standard setting widely used in fuzzy preference modeling.
Correspondingly, we use left-continuous triangular norms as standard models
for fuzzy conjunctions [16].

Definition 1. An associative, commutative, and non-decreasing binary opera-
tion on the unit interval (i.e. a [0, 1]2 → [0, 1] mapping) which has 1 as neutral ele-
ment is called triangular norm, short t-norm. A t-norm T is called left-continuous
if the equality

T (sup
i∈I

xi, y) = sup
i∈I

T (xi, y)

holds for all families (xi)i∈I ∈ [0, 1]I and all y ∈ [0, 1].

The three basic t-norms are denoted as TM(x, y) = min(x, y), TP(x, y) = x · y,
and TL(x, y) = max(x + y − 1, 0). Further assume that

T
→

(x, y) = sup{u ∈ [0, 1] | T (x, u) ≤ y}

denotes the unique residual implication of T . For the sake of completeness, let us
list the following fundamental properties (valid for all x, y, z ∈ [0, 1]) [13,15,16]:

(I1) x ≤ y if and only if T
→

(x, y) = 1
(I2) T (x, y) ≤ z if and only if x ≤ T

→
(y, z)

(I3) T (T
→

(x, y), T
→

(y, z)) ≤ T
→

(x, z)
(I4) T

→
(1, y) = y

(I5) T (x, T
→

(x, y)) ≤ y
(I6) y ≤ T

→
(x, T (x, y))

Furthermore, T
→

is non-increasing and left-continuous in the first argument and
non-decreasing and right-continuous in the second argument.

If T is a continuous t-norm, then the following holds for all x, y, z ∈ [0, 1]:

(I7) if z ≥ x then T
→

(x, y) = T
→

(T
→

(z, x), T
→

(z, y))
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The biimplication of T is defined as T
↔

(x, y) = T (T
→

(x, y), T
→

(y, x)) and fulfills
the following assertions for all x, y, z ∈ [0, 1], see [13, 15]:

(B1) T
↔

(x, y) = 1 if and only if x = y
(B2) T

↔
(x, y) = T

↔
(y, x)

(B3) T
↔

(x, y) = min(T
→

(x, y), T
→

(y, x))
(B4) T (T

↔
(x, y), T

↔
(y, z)) ≤ T

↔
(x, z)

(B5) T
↔

(x, y) = T
→

(max(x, y), min(x, y))

In this paper, uppercase letters will be used synonymously for fuzzy sets/re-
lations and their corresponding membership functions. The fuzzy power set of
X will be denoted with F(X) = {A | A : X → [0, 1]}.

A binary fuzzy relation R : X2 → [0, 1] is called

– reflexive if R(x, x) = 1 for all x ∈ X ,
– symmetric if R(x, y) = R(y, x) for all x, y ∈ X ,
– T -transitive if T (R(x, y), R(y, z)) ≤ R(x, z) for all x, y, z ∈ X ,
– strongly complete if max(R(x, y), R(y, x)) = 1 for all x, y ∈ X .

Fuzzy relations that are reflexive and T -transitive are called fuzzy preorders
with respect to T , short T -preorders. Symmetric T -preorders are called fuzzy
equivalence relations with respect to T , short T -equivalences. As mentioned in
Section 1 already, strongly complete T -preorders are called fuzzy weak orders
with respect to T , short weak T -orders. Given a T -equivalence E : X2 → [0, 1],
a binary fuzzy relation L : X2 → [0, 1] is called a fuzzy order with respect to T
and E, short T -E-order, if it is T -transitive and additionally has the following
two properties:

– E-reflexivity: E(x, y) ≤ L(x, y) for all x, y ∈ X
– T -E-antisymmetry: T (L(x, y), L(y, x)) ≤ E(x, y) for all x, y ∈ X

Given a binary fuzzy relation R : X2 → [0, 1] and an x ∈ X , analogously
to the crisp case (cf. Section 1), the foreset of x is defined as the fuzzy set
C(x) ∈ F(X) that expresses the degree to which a given value y ∈ X is smaller
than or equivalent to x, i.e., C(x)(y) = R(y, x) [2].

3 Score Function-Based Representations

The starting point of this section is Theorem 1. It is natural to first ask the
question whether there is a straightforward generalization of this theorem to the
case of fuzzy weak orders.

Theorem 2. A binary fuzzy relation R : X2 → [0, 1] is a weak T -order if and
only if there exist a non-empty domain Y , a T -equivalence E : Y 2 → [0, 1], a
strongly complete T -E-order L : Y 2 → [0, 1], and a mapping f : X → Y such
that the following equality holds for all x, y ∈ X:

R(x, y) = L(f(x), f(y)) (2)
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Theorem 2 can be viewed from two different angles. On the one hand, it is a nice
straightforward generalization of Theorem 1 and demonstrates the smooth inter-
play between fuzzy weak orders and strongly complete fuzzy orders (analogously
to the crisp case). On the other hand, fuzzy weak orders and strongly complete
fuzzy orders are basically the same concepts. From this point of view, Theorem 2
does not provide us with a new construction method or any new insight. More
insight would potentially be obtained if we could restrict the choice of Y or E to
certain standard cases that could be utilized for constructions in an easier way.

One interesting question is, for instance, whether Y , L, and f can be chosen
such that Theorem 2 holds for E being the crisp equality (i.e., with L being a
so-called T -order [4, 12, 13, 14], which, in the case that T = TM, is nothing else
but a fuzzy partial order in the sense of Zadeh [18, 19, 26]). The answer is quick
and negative: as demonstrated in [4, Subsection 2.3], strongly complete fuzzy
orders with respect to some t-norm T and the crisp equality can only be crisp
orders. Thus, it is never possible to embed a non-crisp weak order into a strongly
complete T -order, so it is impossible to strengthen Theorem 2 by fixing E as the
crisp equality.

So the question remains whether there is any standard choice Y, E, L, f into
which we can embed all, or at least a subclass of, weak T -orders. As shown by
Ovchinnikov, it is possible to embed a weak T -order into a continuous weak
T -order on the real numbers R, but it is necessary to restrict to strict t-norms
and finite domains X [20]. Since this is outside the scope of this paper, we turn
our attention to a different investigation. The standard crisp case consists of the
unit interval [0, 1] equipped with its natural linear order. Given a left-continuous
t-norm T , the canonical fuzzification of the natural linear order on [0, 1] consists
in the residual implication T

→
[4, 13, 15]. The following proposition, therefore,

provides us with a construction that can be considered a straightforward coun-
terpart of (1).

Proposition 1. Given a function f : X → [0, 1], the relation defined by

R(x, y) = T
→(

f(x), f(y)
)

(3)

is a weak T -order.

The function f in Proposition 1 can also be understood as a fuzzy set on X . In
this section, we rather leave this aspect aside and adopt the classical interpreta-
tion as a score function.

Note that the simple construction of Proposition 1 is not a unique character-
ization, i.e., there are weak T -orders that cannot be represented by means of a
single score function. In order to demonstrate that, let us consider a set X with
at least three elements. We choose an arbitrary linear order of the elements of X
(which always exists due to basic results from order theory [22, 23]) and define
R as the crisp linear order itself:

R(x, y) =
{

1 if x ≤ y
0 otherwise
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Clearly, R is a fuzzy weak order with respect to every t-norm T . Now assume that
there exists a score function f : X → [0, 1] such that representation (3) holds. Let
us choose an arbitrary chain of three distinct elements x < y < z. Then it clearly
follows that R(z, x) = T

→
(f(z), f(x)) = 0 and R(z, y) = T

→
(f(z), f(y)) = 0. Since

the monotonicity of T
→

and (I4) imply T
→

(x, y) ≥ T
→

(1, y) = y, it trivially follows
that T

→
(x, y) = 0 can hold only if y = 0. Thus, we obtain that f(x) = f(y) = 0.

This entails
R(y, x) = T

→
(f(y), f(x)) = T

→
(0, 0) = 1,

which is a contradiction. Hence, we obtain that the most basic fuzzy weak
orders—crisp linear orders—are never representable as in Proposition 1, no mat-
ter which t-norm we choose. It is, therefore, justified to introduce the repre-
sentability according to Proposition 1 as a distinct notion.

Definition 2. Consider a weak T -order R : X2 → [0, 1]. R is called repre-
sentable if there exists a function f : X → [0, 1], called generating (score) func-
tion, such that Eq. (3) holds.

Example 1. Let us consider X = [0, 5] and the following two score functions
f1, f2 : X → [0, 1]:

f1(x) = min
(
1, max(0, x − 2)

)

f2(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ∈ [0, 1[
0.4 · (x − 1) if x ∈ ]1, 2[
0.7 + 0.3 · (x − 2) if x ∈ [2, 3[
1 if x ∈ [3, 5]

Figure 1 depicts six fuzzy weak orders defined according to Proposition 1:

R1(x, y) = T
→

M(f1(x), f1(y)) R2(x, y) = T
→

M(f2(x), f2(y))
R3(x, y) = T

→

P(f1(x), f1(y)) R4(x, y) = T
→

P(f2(x), f2(y))
R5(x, y) = T

→

L(f1(x), f1(y)) R6(x, y) = T
→

L(f2(x), f2(y))

The fuzzy relations plotted in Figure 1 have one common feature: the lower
right edge always corresponds to the generating score function. More specifically,
all fuzzy weak orders in the left column fulfill R(5, y) = f1(y), while R(5, y) =
f2(y) holds for the fuzzy weak orders in the right column. Note that this is
true independent of the t-norm chosen (at least for the three basic t-noVrms).
The question arises whether this is a coincidence or whether there is a principle
behind. The following theorem tells us that the latter is the case, but even more
than that, we obtain a unique characterization of representable fuzzy weak orders
(at least for continuous t-norms).

Theorem 3. Assume that T is continuous. Then a weak T -order R is repre-
sentable if and only if the following function is a generating function of R:

f̄(x) = inf
z∈X

R(z, x)
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Fig. 1. Fuzzy weak orders constructed from the two score functions f1 and f2 by means
of Proposition 1 using the three basic t-norms

Theorem 3 provides us with an easy-to-use tool for checking whether a fuzzy
weak order is representable—we only have to check whether one specific function
is a generating score function. Note, however, that the generating function need
not be unique, i.e., it may happen that a fuzzy weak order R is generated by some
score function f that does not coincide with f̄ defined as in Theorem 3. Let us
shortly consider this issue and ask ourselves under which condition f̄ coincides
with some generating score function f . So assume that R is representable as
R(x, y) = T

→
(f(x), f(y)), then we obtain the following:
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f̄(x) = inf
z∈X

R(z, x) = inf
z∈X

T
→

(f(z), f(x)) = T
→(

sup
z∈X

f(z), f(x)
)

Then supz∈X f(z) = 1 is a sufficient criterion for f and f̄ to coincide:

f̄(x) = T
→(

sup
z∈X

f(z), f(x)
)

= T
→

(1, f(x))
(I4)
= f(x)

It should be clear now that by far not all fuzzy weak orders are repre-
sentable by single score functions—for all left-continuous t-norms, there exist
non-representable fuzzy weak orders. What has not been answered so far is the
question whether fuzzy weak orders can be represented by more than one score
function. The following well-known theorem provides us with a starting point to
this investigation.

Theorem 4. [24] Consider a binary fuzzy relation R : X2 → [0, 1]. Then the
following two statements are equivalent:

(i) R is a T -preorder.
(ii) There exists a non-empty family of X → [0, 1] score functions (fi)i∈I such

that the following representation holds:

R(x, y) = inf
i∈I

T
→

(fi(x), fi(y)) (4)

Theorem 4 is essential for two main reasons: (1) it shows that every T -preorder is
an intersection of representable weak T -orders, (2) as weak T -orders are a special
kind of T -preorders, we know for sure that, for each weak T -order R, there exists
a family of score functions such that R can be represented as in Eq. (4). Be
aware, however, that this is only a representation of theoretical nature. We do
not know yet how to choose a family of score functions (fi)i∈I such that fuzzy
relation defined as in Eq. (4) is guaranteed to fulfill strong completeness. The
following theorem provides us with a unique characterization of weak T -orders.

Theorem 5. Consider a binary fuzzy relation R : X2 → [0, 1]. Then the follow-
ing two statements are equivalent:

(i) R is a weak T -order.
(ii) There exists a crisp weak order � and a non-empty family of X → [0, 1]

score functions (fi)i∈I that are non-decreasing with respect to � such that
representation (4) holds.

If we want to use Theorem 5 to construct fuzzy weak orders on the real numbers
(or a subset of them), one can start from the natural linear order of real numbers,
since this order is a crisp weak order, of course. The question arises whether
each fuzzy weak order can be represented by a family of score functions that are
monotonic with respect to a linear order. The following theorem gives a positive
answer and characterizes weak T -orders as intersections of representable weak
T -orders that are generated by score functions that are monotonic at the same
time with respect to the same crisp linear order.
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Theorem 6. Consider a binary fuzzy relation R : X2 → [0, 1]. Then the follow-
ing two statements are equivalent:

(i) R is a weak T -order.
(ii) There exists a linear order 
 and a non-empty family of X → [0, 1] score

functions (fi)i∈I that are non-decreasing with respect to 
 such that repre-
sentation (4) holds.

Example 2. We consider X = [0, 5] again and a family of five functions that are
defined as follows:

g1(x) = min(1, x)

g2(x) = min
(
1, max(0, x − 1)

)

g3(x) = min
(
1, max(0, x − 2)

)

g4(x) = min
(
1, max(0, x − 3)

)

g5(x) = min
(
1, max(0, x − 4)

)

It is immediate that all five functions are non-decreasing with respect to the
natural order of real numbers. Figure 2 depicts six fuzzy weak orders defined in
accordance with Theorem 6:

R7(x, y) = min
i∈{1,3,5}

T
→

M(gi(x), gi(y)) R8(x, y) = min
i∈{1,...,5}

T
→

M(gi(x), gi(y))

R9(x, y) = min
i∈{1,3,5}

T
→

P(gi(x), gi(y)) R10(x, y) = min
i∈{1,...,5}

T
→

P(gi(x), gi(y))

R11(x, y) = min
i∈{1,3,5}

T
→

L(gi(x), gi(y)) R12(x, y) = min
i∈{1,...,5}

T
→

L(gi(x), gi(y))

Example 2 uses the natural linear order of real numbers and rather simple
monotonic score functions. The next example constructs some more complicated
weak TL-orders on the basis of a non-trivial order on the real numbers.

Example 3. Let us consider the following transformation function:

ϕ(x) =

{
4 − x if x ∈ [1, 3]
x otherwise

It is immediate that ϕ is a bijective R → R mapping that equals the identity
in ] − ∞, 1[ ∪ ]3, ∞[ and flips the values in [1, 3]. It is clear, therefore, that the
binary relation

x 
 y if and only if ϕ(x) ≤ ϕ(y)

is a linear order on the real numbers. Taking the score functions g1, . . . , g5
from Example 2, we can define another family of score functions h1, . . . , h5 as
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Fig. 2. Six fuzzy weak orders constructed by means of Theorem 6 using the three basic
t-norms

hi(x) = gi(ϕ(x)) (for all x ∈ [0, 5]). It is easy to see that all functions hi are
non-decreasing with respect to 
. Thus, we can use them to define fuzzy weak
orders. Figure 3 shows three weak TL-orders defined as follows:

R13(x, y) = T
→

L(h3(x), h3(y))
R14(x, y) = min

i∈{1,3,5}
T
→

L(hi(x), hi(y))

R15(x, y) = min
i∈{1,...,5}

T
→

L(hi(x), hi(y))
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Fig. 3. Three weak TL-orders with a non-trivial underlying crisp linear order

4 Inclusion-Based Representations

As mentioned in Section 1, Theorem 1 can also be proved by embedding the
given weak order into the partially ordered set (P(X), ⊆). Technically, this is
done by mapping the elements x ∈ X to their foresets C(x). The question arises
whether an analogous technique works for fuzzy weak orders as well. This section
is devoted to this topic.

Consider the fuzzy power set F(X). Then the well-known crisp inclusion of
fuzzy sets

A ⊆ B if and only if A(x) ≤ B(x) for all x ∈ X

is a crisp partial order on F(X) [25]. Given a left-continuous t-norm T , we can
define the following two binary fuzzy relations on F(X) [1, 4, 13]:

INCLT (A, B) = inf
x∈X

T
→

(A(x), B(x))

SIMT (A, B) = inf
x∈X

T
↔

(A(x), B(x))

It was proved in [4] that SIMT is a T -equivalence on F(X) and that INCLT is a
T -SIMT -order on F(X). Moreover, it is easy to see from elementary properties
of residual (bi)implications that INCLT (A, B) = 1 if and only if A ⊆ B and that
SIMT (A, B) = 1 if and only if A = B.

The following theorem provides us with a unique characterization of fuzzy
weak orders that is based on an embedding of the given fuzzy weak order into
the fuzzy power set.

Theorem 7. Consider a binary fuzzy relation R : X2 → [0, 1]. Then the follow-
ing two statements are equivalent:

(i) R is a weak T -order.
(ii) There exists a non-empty family of fuzzy sets S ⊆ F(X) that are linearly

ordered with respect to the inclusion relation ⊆ and a mapping ϕ : X → S
such that the following representation holds for all x, y ∈ X:

R(x, y) = INCLT (ϕ(x), ϕ(y)) (5)
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We can formulate an equivalent result that appears a bit more appealing than
Theorem 7.

Corollary 1. Consider a binary fuzzy relation R : X2 → [0, 1]. Then the fol-
lowing two statements are equivalent:

(i) R is a weak T -order.
(ii) There exists a mapping ϕ : X → F(X) fulfilling ϕ(x) ⊆ ϕ(y) or ϕ(y) ⊆ ϕ(x)

for all x, y ∈ X such that representation (5) holds.

If we omit the linearity conditions in Theorem 7 and Corollary 1, a unique
representation of T -preorders is obtained: a fuzzy relation R is a T -preorder if
and only if there exists a mapping ϕ : X → F(X) such that Eq. (5) holds [5].
In this sense, the T -preorder INCLT on F(X) “contains” all T -preorders that
can be defined on X . Weak T -orders are then the sub-class that is obtained by
restricting to linearly ordered subsets of F(X).

The proof of Theorem 7 (and Corollary 1) is based on mapping each x ∈ X to
its foreset. However, there is no restriction to only use foresets in (5), as long as
the range of the embedding mapping ϕ(X) is linearly ordered. Thus, Theorem 7
and Corollary 1 give rise to potentially interesting constructions. For infinite do-
mains, however, INCLT (A, B) is mostly difficult to compute, as an infimum over
an infinite set has to be determined. Only under very restrictive assumptions,
for instance, that all membership functions of the fuzzy sets ϕ(x) are piecewise
linear or differentiable, practically feasible constructions are imaginable. One can
overall conclude that Theorem 7 and Corollary 1 provide us with nice theoreti-
cal insight, but they do not have much practical value. That is why we do not
provide an example in this section.

5 Decompositions into Crisp Linear Orders and
T -Equivalences

The standard proof of Theorem 1 is based on the factorization with respect to the
symmetric kernel of a given weak order (cf. Section 1). One can state, in other
words, that a crisp weak order can always be decomposed into a crisp linear
order and an equivalence relation. This section follows this idea and presents
corresponding results for fuzzy weak orders. Before coming to the main result,
let us shortly introduce an important prerequisite.

Definition 3. Let 
 be a crisp order on X and let E : X2 → [0, 1] be a
fuzzy equivalence relation (regardless of the underlying t-norm T ). E is called
compatible with 
 if and only if the following inequality holds for all ascending
three-element chains x 
 y 
 z in X :

E(x, z) ≤ min(E(x, y), E(y, z))

Compatibility of a crisp order and a fuzzy equivalence relation can be under-
stood as follows: the two outer elements of an ascending three-element chain are
at most as similar as any two elements of this chain.
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Theorem 8. Consider a binary fuzzy relation R : X2 → [0, 1]. Then the follow-
ing two statements are equivalent:

(i) R is a weak T -order.
(ii) There exists a crisp linear order 
 and a T -equivalence E that is compatible

with 
 such that R can be represented as follows:

R(x, y) =

{
1 if x 
 y

E(x, y) otherwise
(6)

Representation (6) simply says the following: weak T -orders are characterized
as unions of crisp linear orders and compatible T -equivalences. In other words,
we can say that weak T -orders are a fuzzification of crisp linear orders, and the
fuzzy component can solely be attributed to a T -equivalence.

To utilize Theorem 8 for constructing weak T -orders, we have to know more
about how to construct T -equivalences that are compatible with a given crisp
linear order. Let us start with a well-known result on T -equivalences.

Theorem 9. [24] Consider a binary fuzzy relation E : X2 → [0, 1]. Then the
following two statements are equivalent:

(i) E is a T -equivalence.
(ii) There exists a non-empty family of X → [0, 1] functions (fi)i∈I such that

the following representation holds:

E(x, y) = inf
i∈I

T
↔

(fi(x), fi(y)) (7)

The following theorem finally provides a unique characterization of T -equiva-
lences that are compatible with a given crisp linear order.

Theorem 10. Consider a crisp linear order 
 on X and a binary fuzzy relation
E : X2 → [0, 1]. Then the following two statements are equivalent:

(i) E is a T -equivalence that is compatible with 
.
(ii) There exists a non-empty family of X → [0, 1] functions (fi)i∈I that are

non-decreasing with respect to 
 such that representation (7) holds.

Note that Theorem 10 remains valid if we replace “non-decreasing” in (ii) by
“non-increasing”.

Example 4. It is easy to see that E1(x, y) = exp(−|x−y|) is a TP-equivalence on
the real numbers X = R that is compatible with the natural order ≤ and that
E2(x, y) = max(1 − |x − y|, 0) is a TL-equivalence on the real numbers X = R

that is also compatible with ≤ [6, 9, 10]. Hence, Theorem 8 entails that

R16(x, y) =

{
1 if x ≤ y

exp(−|x − y|) otherwise

= min(1, exp(y − x))
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is a weak TP-order and

R17(x, y) =

{
1 if x ≤ y

max(1 − |x − y|, 0) otherwise

= min(1, max(1 − x + y, 0))

is a weak TL-order. Figure 4 shows these two fuzzy weak orders (where the plots
are restricted to [0, 5]2).
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Fig. 4. Two fuzzy weak orders constructed from the absolute distance of real numbers

6 Concluding Remarks

In this contribution, we have highlighted various representations of fuzzy weak
orders. Score function-based representations and the decomposition of fuzzy
weak orders into crisp linear orders and fuzzy equivalence relations also provided
us with practically feasible construction methods. Unlike most of the existing lit-
erature, we have not assumed that the underlying domain is finite.
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