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Preface

This book is a follow-up of LNCS volume 2929 with the same title, and presents
the major results of COST action 274 (2002-2005), TARSKI: Theory and Ap-
plications of Relational Structures as Knowledge Instruments.

Relational structures abound in the daily environment: relational databases,
data-mining, scaling procedures, preference relations, etc. Reasoning about, and
with, relations has a long-standing European tradition, which may be divided
into three broad areas:

1. Algebraic Logic: algebras of relations, relational semantics, and algebras and
logics derived from information systems.

2. Computational Aspects of Automated Relational Reasoning: decidability and
complexity of algorithms, network satisfaction.

3. Applications: social choice, Al, linguistics, psychology, economics, etc.

The main objective of the first TARSKI book (LNCS 2929) was to advance
the understanding of relational structures and the use of relational methods in
applicable object domains. There were the following sub-objectives:

1. To study the semantical and syntactical aspects of relational structures arising
from ‘real world’ situations

2. To investigate automated inference for relational systems, and, where possible
or feasible, develop deductive systems which can be implemented into industrial
applications, such as diagnostic systems

3. To develop non-invasive scaling methods for predicting relational data

4. To make software for dealing with relational systems commonly available

We are confident that the present book will further the understanding of inter-
disciplinary issues involving relational reasoning. This book consists of papers
which give a clear and self-contained overview of the results obtained by the
TARSKI action, typically obtained by different persons from different work ar-
eas. The study and possible integration of different approaches to the same
problem, which may have arisen at different locations, will be of practical value
to the developers of information systems.

The first three papers concern applications. In the first paper a fair procedure
for coalition formation is given. The software tool MacBeth for multi-criteria
decision making is used to determine the utilities of the different alternatives to
parties and the RELVIEW tool is used to compute the stable governments and to
visualize the results. If there is no stable government, graph-theoretical results
are used to find a government as stable as possible and if there are several stable
governments negotiations or consensus reaching may be used to choose one.

In computer science, scenarios with interacting agents are often developed
using modal logic. The second paper shows how to interpret modal logic of
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knowledge in relation algebra. This allows the use of the RELVIEW tool for the
purpose of investigating finite models and for visualizing certain properties. This
approach is illustrated with the well-known ‘muddy children’ puzzle using modal
logic of knowledge.

The authors of the third paper use a regional health care perspective on
maintenance and analysis of data, information and knowledge. Examples are
drawn from cardiac diseases. Analysis and development are viewed from the by-
pass surgery point of view. Association rules are used for analysis, and they show
how these rules take logical forms so as to prepare for development of guidelines.

Computational aspects are treated in the next four papers. The fourth paper gives
a generalization of the Hoede—Bakker index, which is a measure for the power
of players in a network, taking into account the mutual influences between the
players.

The fifth paper gives a relational presentation of nonclassical logics, providing
a general scheme for automatic translation. The translation process is supported
by a flexible Prolog tool.

The sixth paper provides a translation of the multimodal logic of qualitative
order-of-magnitude reasoning into relational logics and presents a sound and
complete proof system for the relational version of the language.

Logics of binary relations are presented in the seventh paper, together with
the proof systems in the style of dual tableaux. Applications of these logics to
reasoning in nonclassical logics are mentioned.

The remaining papers may be classified in the field of algebraic logic.

Papers 8 till 11 deal with different aspects of fuzzy preference relations. Fuzzy
information relations and operators are studied in paper 8, where an algebraic
approach is given based on residuated lattices. The authors of paper 9 give an
overview of results on the aggregation of fuzzy relations and the related property
of dominance of aggregation operators. The authors of the next paper, paper 10,
address the added value that is provided by using distance-based fuzzy relations
in flexible query answering. The last paper in this group gives a state-of-the-art
overview of general representation results for fuzzy weak orders.

The next four papers deal with lattices. Relational representation theorems
for lattices endowed with various negation operations are presented in a uniform
framework in paper 12. The next paper gives relational representation theorems
for classes of algebras which may be viewed as weak relation algebras, where
a Boolean part is replaced by a not necessarily distributive lattice. Paper 14
treats aspects of lattice and generalized pre-lattice effect algebras. And the last
paper in this group presents a decision procedure for the quantifier-free satisfia-
bility problem of the language BLmf of bounded lattices with monotone unary
functions.

Paper 16 addresses the relation of dominance on the class of continuous
t-norms with a particular focus on continuous ordinal sum t-norms. Geomet-
rical insight is provided into dominance relationships involving prototypical
Archimedean t-norms, the Lukasiewicz t-norm and the product t-norm.
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The last paper in this volume addresses the problem of extending aggregation
operators typically defined on [0,1] to the symmetric interval [-1,1], where the
‘0’ value plays a particular role (neutral value).
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Abstract. This paper concerns an interdisciplinary approach to coali-
tion formation. We apply the MacBeth software, relational algebra, the
RELVIEW tool, graph theory, bargaining theory, social choice theory,
and consensus reaching to a model of coalition formation. A feasible
government is a pair consisting of a coalition of parties and a policy
supported by this coalition. A feasible government is stable if it is not
dominated by any other feasible government. Each party evaluates each
government with respect to certain criteria. MacBeth helps to quantify
the importance of the criteria and the attractiveness and repulsiveness
of governments to parties with respect to the given criteria. Feasibility,
dominance, and stability are formulated in relation-algebraic terms. The
RELVIEW tool is used to compute the dominance relation and the set
of all stable governments. In case there is no stable government, i.e., in
case the dominance relation is cyclic, we apply graph-theoretical tech-
niques for breaking the cycles. If the solution is not unique, we select

* Co-operation for this paper was supported by European COST Action 274 “Theory
and Applications of Relational Structures as Knowledge Instruments” (TARSKI).
We thank Gunther Schmidt for his most valuable contributions to this paper.
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the final government by applying bargaining or appropriate social choice
rules. We describe how a coalition may form a government by reaching
consensus about a policy.

Keywords: stable government, MacBeth, relational algebra, RELVIEW,
graph theory, bargaining, social choice rule, consensus.

1 Introduction

This paper presents an overview of the results on coalition formation obtained
from cooperation within the European COST Action 274: TARSKI (Theory and
Applications of Relational Structures as Knowledge Instruments). The authors
were connected to two different Work Areas of the COST Action, namely Work
Area WA2 (Mechanization and Relational Reasoning) and Work Area WA3 (Re-
lational Scaling and Preferences). This cooperation, which was not foreseen but
gradually evolved over the years, resulted in an interdisciplinary approach to
coalition formation. The MacBeth technique, relational algebra, the RELVIEW
tool, graph theory, bargaining theory, social choice theory, and consensus reach-
ing were applied to the basic model of coalition formation described in Rusi-
nowska et al. [44].

Coalition formation is one of the more interesting and at the same time more
popular topics, and consequently a lot of work has already been done in this
field. There are several ways to distinguish different coalition formation theories:
one may talk, for instance, about power-oriented versus policy-oriented theo-
ries, one-dimensional versus multi-dimensional models, or actor-oriented versus
non-actor oriented theories. The power-oriented theories, where the motivation
for political parties to join a coalition is based only on their personal gains, are
the earliest theories of coalition formation. One may mention here the theory
of minimal winning coalitions (von Neuman and Morgenstern [55]), the mini-
mum size theory (Riker [40]), and the bargaining proposition (Leiserson [35]). In
policy-oriented theories, the process of coalition formation is determined by both
policy and power motivations. Some of the most important early policy-oriented
theories were the minimal range theory (Leiserson [34]), conflict of interest the-
ory (Axelrod [2]), and the policy distance theory (de Swaan [21]). Actor-oriented
theories, like the dominant player theory (Peleg [38], [39]) and the center player
theory (van Deemen [53]), select an actor that has a more powerful position in
the process of coalition formation. Also a lot of work has been done on spatial
coalition formation theories, especially with respect to multi-dimensional policy-
oriented theories. A main assumption in such models is that policy positions of
parties are very important in the coalition formation process. One must mention
here the political heart solution (Schofield [48], [49], [50]), the protocoalition for-
mation (Grofman [29]), the winset theory (Laver and Shepsle [32], [33]), and the
competitive solution (McKelvey, Ordeshook and Winer [36]). Many authors also
considered institutional theories of coalition formation. One of the first theorists
who acknowledged the important role of institutions was Shepsle [52], followed,
in particular, by Austen-Smith and Banks [1], Laver and Schofield [31], and
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Baron [6]. For an overview of coalition formation models we also like to refer to
van Deemen [54], de Vries [24], Kahan and Rapoport [30].

The point of departure in this paper is a multi-dimensional model of coalition
formation (see Rusinowska et al. [44]) in which the notion of stable government
is central. In the model, the approach we use to represent party preferences
allows us to include both rent-seeking and idealistic (policy-seeking) motivations.
Moreover, a policy space does not have to be a Euclidean space, as is assumed
frequently in coalition formation models, but may be any kind of space. The
policy space is assumed to be multi-dimensional, which allows us to consider
many political issues at the same time.

A government is defined as a pair consisting of a coalition and a policy sup-
ported by that coalition. It has a value (utility) to each party with respect to
every given issue. In order to determine these values in practice, we propose to
use the MacBeth approach; see also Roubens et al. [41]. MacBeth, which stands
for Measuring Attractiveness by a Categorical Based Evaluation Technique, is an
interactive approach to quantify the attractiveness of each alternative, such that
the measurement scale constructed is an interval scale. For an overview and some
applications of the software, we refer to the web site (www.m-macbeth.com),
Bana e Costa and Vansnick [3]; Bana e Costa et al. [5]. The notion of absolute
judgement has also been used in Saaty’s Analytical Hierarchy Process (AHP);
see Saaty [45], [46]. In the MacBeth technique, the absolute judgements concern
differences of attractiveness, while in Saaty’s method they concern ratios of pri-
ority, or of importance. One of the advantages of using the MacBeth approach
is related to ensuring consistency. In case of any inconsistency of the initial eval-
uations, the MacBeth software indicates to the user what is the cause of the
inconsistency and how to reach consistency. For a critical analysis of the AHP,
see Bana e Costa and Vansnick [4].

Another application to the coalition formation model we propose here con-
cerns Relational Algebra and the RELVIEW tool which helps us to calculate
stable governments; see also Berghammer et al. [11]. The RELVIEW system,
which has been developed at Kiel University, is a computer system for the vi-
sualization and manipulation of relations and for relational prototyping and
programming. The tool is written in the C programming language, uses reduced
ordered binary decision diagrams for implementing relations, and makes full use
of the X-windows graphical user interface. For details and applications see, for
instance, Berghammer et al. [14], Behnke et al. [7], Berghammer et al. [10], and
Berghammer et al. [13].

In this paper, we also present an application of Graph Theory to the model
of coalition formation in question; see Berghammer et al. [12]. We present a
graph-theoretical procedure for choosing a government in case there is no stable
government. If, on the other hand, more than one stable government exists, we
may apply Social Choice Theory to choose one government. For an overview and
comparison of social choice rules see, for instance, Brams and Fishburn [16], and
de Swart et al. [23]. Another natural application is based on Bargaining Theory.
We use a strategic approach to bargaining; see Rubinstein [42], Fishburn and
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Rubinstein [27], Osborne and Rubinstein [37]. We formulate several bargaining
games in which parties bargain over the choice of one stable government, and
next we look for refinements of Nash equilibria called subgame perfect equilibria
(Selten [51]) of these games; see also Rusinowska and de Swart [43].

We describe a procedure for a coalition to choose a policy in order to pro-
pose a government, based on consensus reaching, by combining some ideas from
Carlsson et al. [18] and Rusinowska et al. [44]. It has been first proposed in Ek-
lund et al. [25], where the authors consider consensus reaching in a committee,
and next in Eklund et al. [26], where a more complicated model, i.e., consensus
reaching in coalition formation, is presented.

The paper is structured as follows. Section 2 introduces the model of coalition
formation. In Section 4, the basic notions of relational algebra are presented. In
Sections 3 and 5, we present applications of the MacBeth and RELVIEW tools,
respectively, to the model in question. Section 6 concerns applications of Social
Choice Theory and Bargaining Theory to the model, in order to choose a stable
government in the case there exists more than one. Next, an application of Graph
Theory to the model of coalition formation is proposed in Section 7, in order to
choose a ‘rather stable’ government in the case that there exists no stable one.
Section 8 describes how a coalition may reach consensus about a policy in order
to propose a government. In Section 9, we present our conclusions.

2 The Model of Coalition Formation

In this section we recapitulate a model of coalition formation, first introduced in
Rusinowska et al. [44], and further refined, in particular, in Eklund et al. [26].

2.1 Description of the Model

Let N = {1,...,n} be the set of political parties in a parliament, and let w;
denote the number of seats received by party ¢ € N. Moreover, let W denote the
set of all winning coalitions. The model concerns the creation of a government
by a winning coalition. It is assumed that there are some independent policy
issues on which a government has to decide. Let P denote the set of all policies.

A government is defined as a pair g = (5, p), where S is a winning coalition
and p is a policy. Hence, the set G of all governments is defined as

G:={(S,p)| SeW A pe P} (1)

Each party has preferences concerning all policies and all (winning) coalitions.
A coalition is called feasible if it is acceptable to all its members. A policy is
feasible for a given coalition if it is acceptable to all members of that coalition.
A government (S,p) is feasible if both, S and p, are acceptable to each party
belonging to S. By G* we denote the set of all feasible governments, and by G
the set of all feasible governments containing party i, i.e., for each i € N,

Gr={(S,p) G |ie S} (2)
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A decision maker is a party involved in at least one feasible government, i.e., the
set DM of all decision makers is equal to

DM :={ie N |G #0}. (3)
Moreover, let the subset W* of W be defined as
W*:={SeW |IpeP:(Sp) G} (4)

A feasible government is evaluated by each decision maker with respect to the
given policy issues and with respect to the issue concerning the coalition. Let
C* be the finite set of criteria. The criteria do not have to be equally important
to a party, and consequently, each decision maker evaluates the importance of
the criteria. Formally, for each i € DM, we assume a function «; : C* — [0, 1],
such that the following property holds:

Vie DM : Y ai(c) = 1. (5)

ceC*

The number «;(c) is i’s evaluation of criterion c. Moreover, each decision maker
evaluates each feasible government with respect to all the criteria. Hence, for
each i € DM, we assume u; : C* x G* — R where the real number u;(c, g) is
called the value of government g € G* to party i € DM with respect to criterion
c € C*. Moreover, for each i € DM, we define U; : G* — R such that

(Ui(9))gea+ = (ai(c))cec - (uilc, 9))ccc gear, (6)

where (a;(¢))cec+ is the 1 x |C*| matrix representing the evaluation (comparison)
of the criteria by party ¢, (ui(c, 9))cecr.gea+ is the |C*| x |G*| matrix containing
party i’s evaluation of all governments in G* with respect to each criterion in
C*, and (Ui(g))gec+ is the 1 x |G*| matrix containing party i’s evaluation of
each government in G*.

In order to determine in practice the values of ;(¢) and u;(c, g) for all parties
i € DM, criteria ¢ € C* and governments g € G*, we can use the MacBeth
technique. We do so in Section 3.

The central notion of the model introduced in Rusinowska et al. [44] is the
notion of stability. A feasible government h = (S,p) € G* dominates a feasible
government g € G* (denoted as h > g) if the property

(VieS:Uh) > Ug)) A @i S :Ui(h) > Ui(g)) (7)

holds. A feasible government is said to be stable if it is dominated by no feasible
government. By

SG*:={geG" | -3TheG :h>g} (8)
we denote the set of all (feasible) stable governments. In Rusinowska et al. [44],
necessary and sufficient conditions for the existence and the uniqueness of a
stable government are investigated. Moreover, the authors introduce some al-
ternative definitions of ‘stability’, and establish the relations between the new
notions of ‘stability’ and the chosen one. In the present paper, we decide for the
definition of a stable government given by (8), which we find the most natural
definition of stability.
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2.2 A Running Example

Let us consider a very small parliament consisting of only three parties. We
assume each coalition consisting of at least two parties is winning and there are
only two policy issues and four policies, i.e., we have

N = {A,B,C}, W = {AB,AC,BC, ABO}, P= {p17p27p37p4}-

As a consequence, we have 16 governments. Assume that the grand coalition
is not feasible, but all two-party coalitions are feasible. Further, assume both
policies p; and ps are acceptable to all three parties, policy ps is not acceptable
to party C', while policy p4 is not acceptable to party B. Hence, policies p; and
po are feasible for coalitions AB, AC, and BC, policy ps is feasible for coalition
AB, and py is feasible for coalition AC'.

Consequently, there are eight feasible governments, i.e.,

G* ={91, 92,93, 94, 95, 96, 97. Y3 }»

which are given as

g1 = (Aval)v g2 = (Acvpl)u g3 = (Bcvpl)u g4 = (Ava2)7
95 = (ACap2)7 g6 = (BCap2)7 gr = (AB7p3)7 gs = (ACap4)

and therefore obtain the governments containing the parties as

Gjl = {91792794795797798}7
B = {91793794796797};
GZ* = {92793795796,98}&

Moreover, we have
DM =N, W*={AB,AC,BC}, C*=1{1,2,3},

where the criteria 1 and 2 refer to the first and the second policy issue, while
criterion 3 concerns the (attractiveness of the) ‘coalition’. In order to determine
a;(c) and u;(c, g) for each ¢ € DM, ¢ € C*, and g € G*, we will use the MacBeth
technique in the next section.

3 Applying MacBeth to Coalition Formation

When applying the coalition formation model described in Section 2 in practice,
the question arises how to determine the a;(c) and the w;(c, g) for i € DM.
The answer to this question will be given in this section, where we propose
to use the MacBeth software to determine these values. In Subsection 3.1, we
show how the utilities of governments to parties may be calculated using the
MacBeth technique (see also [41]), while in Subsection 3.2 the application is
illustrated by an example. It is assumed here that each party judges only a finite
number of governments differently, even if there is an infinite number of possible
governments.
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3.1 Computing the Utilities by MacBeth

Given a party ¢ € DM and a criterion ¢ € C*, in order to determine the values
u;(c, g) for each feasible government g € G*, we will use the MacBeth approach.
For each criterion ¢ € C*, each party ranks in a non-increasing order all feasible
governments taking into account the attractiveness of these governments with
respect to the given criterion. In particular, for each criterion ¢ € C*, each party
1 € DM specifies two particular references:

o neutral{ (‘a for party i neutral government with respect to criterion ¢’) de-
fined as a for i neither satisfying nor unsatisfying government wrt. ¢,

e goodS (‘a for party i good government with respect to criterion ¢’) defined as
a for i undoubtedly satisfying government wrt. c.

These references may be fictitious. We need to add that neutral{ and good§ are
only related to the component of the government concerning the given criterion
¢, which is either the policy on issue ¢ or the coalition forming the government.
For each ¢ € C* the remaining ‘components’ do not matter. Define for all ¢ € C*
and ©+ € DM the set

G = G U {neutralf, goodS}.

For each c € C*, each party ¢ € DM judges verbally the difference of attractive-
ness between each two governments g, h € G, where g is at least as attractive
to ¢ as h. When judging, a party chooses one of the following categories:

Dy : no difference of attractiveness,

Dy : wvery weak difference of attractiveness,
Dy : weak difference of attractiveness,

D3 : moderate difference of attractiveness,
Dy : strong difference of attractiveness,

D5 : wvery strong difference of attractiveness,
D¢ : extreme difference of attractiveness.

(Formally, the categories are relations.) A party may also choose the union of
several successive categories among these above or a positive difference of attrac-
tiveness in case the party is not sure about the difference of attractiveness.

Given a party ¢ € DM and a criterion ¢ € C*, a non-negative number w;(c, g)
is associated to each g € GY¢. If there is no hesitation about the difference of
attractiveness, the following rules are satisfied; see Bana e Costa and Vansnick
[3], Bana e Costa et al. [5]. First, for all g, h € G

u;(c, g) > u;(c,h) <= g more attractive to ¢ wrt. ¢ than h. 9)

Second, for all k, k" € {1,2,3,4,5,6} with k > k'+1 and all g,¢’, h, 2’ € G$ with
(9,9") € Dy and (h,h') € Dy

uic, 9) — ui(e, g') > ui(e, h) = uile, 1) (10)

The numerical scale, called the MacBeth basic scale, is obtained by linear pro-
gramming, and it exists if and only if it is possible to satisfy rules (9) and (10).
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In that case the matrix of judgements is called consistent. If it is impossible to
satisfy rules (9) and (10), a message appears on the screen (‘inconsistent judge-
ments’), inviting the party to revise the judgements, and the MacBeth tool gives
suggestions how to obtain a consistent matrix of judgements.

The basic MacBeth scale, which is still a pre-cardinal scale, is presented both
in a numerical way and in a graphical way (‘thermometer’). In order to obtain
a cardinal scale, and the final utilities u;(c, g) for party i of the governments g
with respect to the given criterion ¢, the party uses the thermometer. When a
party selects with the mouse a government, an interval appears around this gov-
ernment. By moving the mouse, the position of the selected government within
this interval is modified, by which the party obtains a new positioning of the
governments such that both conditions (9) and (10) are satisfied. We obtain the
cardinal scale and the (final, agreed) utilities of the governments with respect
to the given criterion, when the party agrees that the scale adequately repre-
sents the relative difference of attractiveness with respect to the given criterion
between any two governments.

Using the MacBeth software, we can also calculate the coefficients or weights
(i (€))cec of criterion ¢ for party i. Let us assume that C* = {1,2,...,m}. For
each party i € N, we consider the following reference profiles:

neutral;] = (neutrall, neutral?, ... neutral™
1 1 1

Crit.}] = (good!, neutral?, . .., neutral™

1 K3 1 1
Crit.2] = (neutral}, good?, ..., neutral™

1 (] K3 (]
Crit."] = (neutrall, neutral?, ..., good™

K3 1 1 K3

For each ¢ € C*, the difference in attractiveness between [Crit.¢] and [neutral;]
corresponds to the added value of the ‘swing’ from neutral{ to good§. A party
ranks the reference profiles in decreasing order of attractiveness and, using cate-
gories Dy to Dg, judges the difference of attractiveness between each two refer-
ence profiles, where the first one is more attractive than the second one. After
the adjustment of the MacBeth scale proposed by the software, an interval scale
is obtained, which measures the overall attractiveness of the reference profiles,
and leads to obtaining the coefficients (a;(c))cec.

3.2 Example (Continued)

In order to determine for our running example (introduced in Subsection 2.2) the
utilities to each party of all governments with respect to each criterion, and the
coeflicients concerning the importance of the criteria for each party, we will use
the MacBeth approach. First, each party expresses its preferences. Note that
since g1, g2, and g3 have the same policy p;, they must be equally attractive
to each party with respect to the first and the second policy issue. The same
holds for governments g4, g5, and gg which have the same policy ps. Moreover,
governments formed by the same coalition are equally attractive to each party
with respect to the third issue, the one concerning the coalition.
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In the following three tables we show for each party A, B, and C of our
example the non-increasing order of all eight feasible governments g¢i,...,gs
with respect to the first, the second, and the third (coalition) criterion. By the
symbol ~; we denote the equivalence relation for party i € DM.

Table 1. Non-increasing order of all governments wrt. issue 1

party order
A goody gi~ag2~ags ga~ags~age gs gt =neutraly
B goody gi~pgs~BYgs G1~BYg2~pYgs gr ¢gs=mneutraly
C g7 goodé =gs g1~c g2~c gs ga~c gs ~c 96 neutral(lj

Table 2. Non-increasing order of all governments wrt. issue 2

party order
A goody gi~agr~ags ga~Aags~age gr Ys = neutraly
B good% g1 ~Bg2~BYgs gi~BYgs~pYgs gr ¢gs=neutraly
C  good% =gs gr gi~cga~cgs gi~c gs~cge neutral?

Table 3. Non-increasing order of all governments wrt. issue 3

party order
A goodd = g1 ~agi~agr g2~Aags~ags g3 ~a ge = neutrald
B good} = g1 ~B gs~Bgr 93~BYgs Yg2~Bgs~B gs = neutral}
C  good} = gs ~c gs ~c gs g3 ~c gs g1 ~c ga ~c gr = neutral},

Each party ¢ € DM also has to judge the difference of attractiveness between
each two reference profiles. Here we obtain the following values:

[neutral;] = (neutral}, neutral?, neutral})

[Crit.}] = (good}, neutral?, neutral?)
[Crit.?] = (neutral}, good?, neutral?)
[Crit.3] = (neutral}, neutral?, goods)

Let us assume that Table 4 shows the decreasing orders of these reference profiles
for all parties. Then we obtain:

Table 4. Decreasing order of the reference profiles

party order of the profiles
A [Crity] [Crit.2] [Crit.3] [neutral 4]
B [Crit.3)] [Crit.%] [Crit.}] [neutral g]

C  [Crit})] [Crit.¢] [Crit.2)] [neutralc]
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First, we consider party A which has to judge the difference of attractiveness for
all the governments with respect to each issue. The following Tables 5, 6 and 7
show the matrices of judgements for this party.

Table 5. Judgements of the attractiveness for party A and issue 1

good)y g1 g4 gs  neutrall

good'y no very weak weak strong extreme

g1 no weak strong extreme

g4 no strong extreme

gs no extreme
neutral’y no

Table 6. Judgements of the attractiveness for party A and issue 2

good, ¢ g4 g7 neutral®
good?, no weak moderate strong very strong
g1 no moderate strong very strong
ga no strong very strong
agr no very strong
neutral? no

Table 7. Judgements of the attractiveness for party A and issue 3

good®, g  meutrald

good3, no weak extreme
g2 no extreme
neutral®, no

Based on the above tables, next, the MacBeth tool proposes the basic scale
for party A — using the thermometer — discusses the scale, and after that the
final values (utilities) are calculated. The following Table 8 shows the results
ua(c,g) for ¢ ranging over the three issues and g ranging over all eight feasible
governments ¢i, . .., gs of our example:

Table 8. Values of the governments wrt. each issue for party A

g = 9 g2 g3 94 g5 ge gr gs
ua(l,g)= 93.0 93.0 93.0 823 823 823 0.0 53.5
ua(2,9)= 93.0 93.0 93.0 78.6 786 78.6 57.0 0.0
ua(3,9) = 100.0 75.0 0.0 100.0 75.0 0.0 100.0 75.0

In a similar way, the values for parties B and C' may be calculated. Tables 9 and
10 present the values for these parties.
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Table 9. Values of the governments wrt. each issue for party B

g= 9 g2 g3 94 g5 ge gr gs
(1,g)= 80.0 80.0 80.0 95.0 95.0 95.0 55.0 0.0
up(2,9)= 96.5 96.5 96.5 93.0 93.0 93.0 53.5 0.0
(3,9)= 100.0 0.0 57.0 100.0 0.0 57.0 100.0 0.0

Table 10. Values of the governments wrt. each issue for party C'

g= 9 92 g3 g4 gs e gr gs
uc(l,9) = 90.0 90.0 90.0 60.0 60.0 60.0 110.0 100.0
uc(2,9) = 64.2 642 64.2 53.5 53.5 53.5 92.8 100.0
uc(3,9)= 0.0 100.0 96.5 0.0 100.0 96.5 0.0 100.0

Moreover, using the MacBeth technique, we can calculate the coefficients «;(c)
for all decision makers ¢ € DM (in the case of the example, hence, for all parties
A, B, and C) and all three issues ¢ € C*. These numbers are summarized in the
following Table 11.

Table 11. The scaling constants

1€ DM ai(l) ai(2) ai(3)
A 0.6 0.3 0.1
B 0.1 0.3 0.6
C 0.3 0.1 0.6

Finally, based on all the values, the utilities of all governments are calculated by
means of formula (6). The results are presented in Table 12. This table will be
the base for obtaining the input of the RELVIEW tool in order to compute the
stable governments, as described in the next section.

Table 12. The utilities of all feasible governments

geaG* Ualg) Us(g) Uc(g)

g1=(AB,p1) 937 970 334
g2 = (AC,p1) 912 370 934
g3 = (BC,p1) 837 712 913
g1 = (AB,py) 827 974 234
gs = (AC,p2) 80.5 374 834
gs = (BC,py) 730 716 813
gr=(AB,p3) 271 816 423
( )

39.6 0.0 100.0
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4 Relational Algebraic Preliminaries

In this section we recall the basics of relational algebra and some further rela-
tional constructions, which are used in this paper later on. For more details on
relations and relational algebra, see Schmidt et al. [47] or Brink et al. [17] for
example.

4.1 Relational Algebra

If X and Y are sets, then a subset R of the Cartesian product X x Y is called a
(binary) relation with domain X and range Y. We denote the set (in this context
also called type) of all relations with domain X and range Y by [X < Y] and
write R : X <Y instead of R € [X <> Y]. If X and Y are finite sets of size m and
n respectively, then we may consider a relation R : X <Y as a Boolean matrix
with m rows and n columns. In particular, we write R, , instead of (z,y) € R.
The Boolean matrix interpretation of relations is used as one of the graphical
representations of relations within the RELVIEW tool.

The basic operations on relations are R' (transposition), R (complement),
RUS (union), RN S (intersection), R;S (composition), R* (reflexive-transitive
closure), and the special relations O (empty relation), L (universal relation), and
| (identity relation). If R is included in S we write R C S, and equality of R and
S is denoted as R = S.

A wector v is a relation v with v = v;L. For v being of type [X < Y] this
condition means: Whatever set Z and universal relation L : Y < Z we choose,
an element x € X is either in relationship (v;L)s . to no element z € Z or to all
elements z € Z. As for a vector, therefore, the range is irrelevant, we consider in
the following mostly vectors v : X «» 1 with a specific singleton set 1 := {1} as
range and omit in such cases the second subscript, i.e., write v, instead of vy | .

Analogously to linear algebra we use in the following lower-case letters to
denote vectors. A vector v : X <> 1 can be considered as a Boolean matrix with
exactly one column, i.e., as a Boolean column vector, and describes (or is a
description of) the subset {z € X | v;} of X.

As a second way to model sets we will use the relation-level equivalents of the
set-theoretic symbol “€”, i.e., membership-relations € : X < 2%, These specific
relations are defined by e,y if and only if x € Y, for all z € X and YV € 2¥.
A Boolean matrix representation of the e relation requires exponential space.
However, in Berghammer et al. [10] an implementation of ¢ using reduced ordered
binary decision diagrams is presented, the number of vertices of which is linear
in the size of X.

4.2 Relational Products and Sums

Given a Cartesian product X X Y of two sets X and Y, there are two projection
functions which decompose a pair u = (u1, us2) into its first component u; and its
second component us. For a relation-algebraic approach it is useful to consider
instead of these functions the corresponding projection relations w: X XY «— X
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and p: X xY <Y such that forallu € X xY,z € X, and y € Y we have m, , if
and only if u; = = and p,,, if and only if us = y. Projection relations enable us to
describe the well-known pairing operation of functional programming relation-
algebraically as follows. For relations R : Z+«+ X and S : Z <Y we define their
pairing (frequently also called fork or tupling) [R,S]: Z < X xY by

[R,S]:=R;n" NS;p". (11)

Using (11), for all z € Z and u € X x Y a simple reflection shows that [R, S], .,
if and only if R, ., and S, .,. As a consequence, the exchange relation

E:=p7]=pn Nmp' (12)

of type [X XY < X xY] exchanges the components of a pair. This means that for
all u,v € X x Y the relationship E,, , holds if and only if u; = vy and uy = v;.

Analogously to the Cartesian product, the disjoint union (or direct sum) X +
Y = (X x {1}) U (Y x {2}) of two sets X and Y leads to the two injection
relations 1 : X <~ X+Y and K : Y < X+Y such that forallu e X +Y, z € X,
and y € Y we have 1, if and only if u = (z,1) and &, if and only if u = (y, 2).
In this case the counter-part of pairing is the sum R+ S : X4+Y < Z of two
relations R: X < Z and S : Y < Z, defined by

R+ S:=1";RUK";S. (13)

From specification (13) we obtain for all u € X +Y and z € Z that (R+5),,.
if and only if there exists € X such that v = (x,1) and R, , or there exists
y € Y such that v = (y,2) and S, ..

The representation of a relation R : X <Y by a vector vec(R) : XxY <1
means that for all # € X and y € Y the properties R, , and vec(R) ), 1, or
vec(R) s,y for short, are equivalent. To obtain a relation-algebraic specification
of vec(R), i.e., an expression which does not use element relationships, but only
the constants and operations of relational algebra, we assume z € X and y € Y
and calculate as follows.

aNBRay m: XxY < X projection

Ryy <= Ja:mgy
)

= (T R) (2,94
<= 3b: (T R) ()6 N Play) b p: XxXY <Y projection
< Jb: (M RNP) 2y AL L: Y1

An immediate consequence of the last expression of this calculation and the
equality of relations is the relation-algebraic specification

vec(R) = (m; RN p); L (14)

of the vector vec(R) : X xY « 1; see also Schmidt et al. [47].
Later we also will consider a list R, R®) ..., R0 of relations R : X <Y

and compute from these a new relation as follows. Let N := {1,...,n}. If we

identify this set with the disjoint union of n copies of 1, then

T

)

C:= vec(R(l))T + ...+ vec(R™ (15)
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defines a relation of type [N < X xY] such that, using Boolean matrix terminol-
ogy, for all i € N the i*" row of C' equals the transpose of the vector vec(R").
Hence, from the above considerations we obtain for alli € N,z € X, andy € Y
the equivalence of Cj (, .y and R‘Sf’)y.

5 Applying RELVIEW to Coalition Formation

In this section we recapitulate the application of the RELVIEW tool to the model
of a stable government (see Berghammer et al. [11]). The main purpose of the
RELVIEW tool is the evaluation of relation-algebraic expressions. These are con-
structed from the relations of its workspace using pre-defined operations and
tests, user-defined relational functions, and user-defined relational programs. A
relational program is much like a function procedure in the programming lan-
guages Pascal or Modula 2, except that it only uses relations as data type. It
starts with a head line containing the program name and the formal parameters.
Then the declaration of the local relational domains, functions, and variables
follows. Domain declarations can be used to introduce projection relations and
pairings of relations in the case of Cartesian products, and injection relations and
sums of relations in the case of disjoint unions, respectively. The third part of a
program is the body, a while-program over relations. As a program computes a
value, finally, its last part consists of a return-clause, which is a relation-algebraic
expression whose value after the execution of the body is the result. RELVIEW
makes the results visible in the form of graphs or matrices.

5.1 Computing the Dominance Relation by RELVIEW

In the following we step-wisely develop relation-algebraic specifications of the
notions presented in Section 2, such as feasible governments, the dominance re-
lationship, and stable governments. As we will demonstrate, these can be trans-
lated immediately into the programming language of the RELVIEW tool and,
hence, the tool can be applied to deal with concrete examples.

In order to develop a relation-algebraic specification of feasible governments,
we need two ‘acceptability’ relations A and B. We assume A : DM < P such
that for all i € DM and p € P

A;,, <= party i accepts policy p,
and B : DM < W such that for all i € DM and S € W
B; s <= party ¢ accepts coalition S.
Next we consider the following three relations:

e A relation isFea(A) : W« P such that a coalition S € W and a policy
p € P are in relationship isFea(A)g,, if and only if p is feasible for S. A
formal predicate logic definition of this is

isFea(A)sp <= Vi:i €S — A;p. (16)
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e A vector feaC(B) : W« 1 which describes the set of all feasible coalitions.
For all S € W the predicate logic definition is

feaC(B)s <= Vi:i€S — B;g. (17)

o A relation feaG(A, B) : W« P which coincides with the set G* of feasible
governments. Here we have for all coalitions S € W and policies p € P the
predicate logic description

feaG(A, B)g,p <= feaC(B)g A isFea(A)sp . (18)

Our goal is to obtain from the predicate logic definitions (16), (17), and (18)
of the relations isFea(A), feaC(B), and feaG (A, B) equivalent relation-algebraic
specifications. In Berghammer et al. [11] it is shown that

isFea(A) =¢eT; A, (19)
feaC(B) = (N B)';L, (20)
feaG(A,B) =T AN (N B);LL, (21)

where € : DM «— W is the membership-relation between decision makers and
winning coalitions. Note that W C 2PM . Using matrix terminology, the relation
¢ is obtained from the ordinary membership-relation of type [DM « 2PM] by
removing from the latter all columns not corresponding to a set of W.

Next, we develop a relation-algebraic specification of the dominance relation-
ship between feasible governments. To this end, we suppose a relational descrip-
tion of government membership to be given, that is, a relation M : DM < G*
such that for all i € DM and g € G* the equivalence

M; 4 <= party i is a member of government g

holds. Moreover, for each party i € DM, we introduce a utility (or comparison)
relation R : G* < G* such that for all g,h € G*

RY), < Ui(g) = Ui(h).

Based on these relations, we introduce a global utility (or comparison) relation
C: DM «— G*xG* as follows. For all : € DM and g, h € G* we define

Ci,(g,h) < R!(;)h

An immediate consequence of (15) is the equation

C= vec(R(l))T +...+ vec(R("))T.
Next, we consider the dominance relationship, and we get for all g, h € G*

g-h < (Vi : Mi)g — Ci,(g,h)) A (Hi : Mi)g A Ci,(h,g))~ (22)
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Since Cj (g <= (C;E)i(g,n), Where B : G*xG* < G*xG* is the exchange
relation [p, ], we have the following description of dominance:

g-h < (Vi: M; 4 — Ci,(g,h}) AFi: M; g A (C;E)i,<g,h>)- (23)

In Berghammer et al. [11], the following fact is proved: Let 7 : G*xG* — G*
and p : G*xG* < G* be the projection relations and F : G* xG* < G*xG* the
exchange relation. If we define

dominance(M,C) = (m; MT N CT); LN (m MTNE; C’T); L, (24)

then we have for all u = (g, h) € G* x G* that dominance(M, C),, if and only if
g = h, ie., g dominates h.

The relation-algebraic specification dominance(M,C) of the vector describing
the dominance relationship between feasible governments immediately leads to
the following RELVIEW-program.

dominance (M, C)
DECL Prod = PROD(M~*M,M~*M) ;
pi, rho, E
BEG pi = p-1(Prod);
rho = p-2(Prod);
E = [rho,pi]
RETURN -dom(pi*M~ & -C~) & dom(pi*M~ & Ex-C~)
END.

In this program the first declaration introduces Prod as a name for the direct
product G* x G*. Using the relational product domain Prod, the two projection
relations and the exchange relation are then computed by the three assignments
of the body and stored as pi, rho, and E, respectively. The return-clause of the
program consists of a direct translation of (24) into RELVIEW-notation, where
=, =, &, and * denote transposition, complement, intersection, and composition,
and, furthermore, the pre-defined operation dom computes for a relation R :
X <Y the vector R;L: X < 1.

Finally, we consider stability of feasible governments. Due to the original
definition of stability and the above result concerning dominance we have for all
g € G* the equivalence

stable(M,C)y <= —3h: dominance(M,C)p gy- (25)

In Berghammer et al. [11], it is shown how to transform this specification into
the relation-algebraic specification

stable(M,C) = pT; dominance(M, C). (26)

Also a translation of the relation-algebraic specification of stable(M,C) into
RELVIEW-code is straightforward.
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5.2 Example (Continued)

The above RELVIEW-program dominance expects two relations as inputs. In the
following, we show for our running example how these can be obtained from the
hitherto results, and also how then the dominance relation can be computed and
visualized with the aid of the RELVIEW tool.

The first input M of the RELVIEW-program dominance is a description of
government membership in the form of a relation of type [DM < G*] that
column-wisely enumerates the governments. In the case of our running example,
it immediately is obtained from the list of governments of Subsection 2.2. Its
RELVIEW-representation as 3 x 8 Boolean matrix is shown in Figure 1, where
we additionally have labeled the rows and columns of the matrix with the parties
and governments, respectively, for explanatory purposes.

A
B
C

Fig. 1. Relational description of government membership

The second input is the global utility relation of type [DM < G*xG*]. It
is constructed from the three utility relations R4, R(B) R(©) . G* - G* of
the parties A, B, and C, respectively. The latter three relations are obtained
immediately from Table 12 and the labeled 8 x8 Boolean matrices representations
look in RELVIEW as given in the following Figure 2.

EEEE Ly EEEE Ly EEEE L L)
R CRON--RORSN.-RO) R CRON--RORSN.-RO) pnoumOLUMO
<<mC<m<C< <<m<<mC< <<m<<<mC<

AB,pl AB,pl AB,pl

AC,pl AC,pl AC,pl

BC,pl BC,pl BC,pl

AB,p2 AB,p2 AB,p2

AC,p2 AC,p2 AC,p2

BC,p2 BC,p2 BC,p2

AB,p3 AB,p3 AB,p3

AC,p4 AC,p4 AC,p4

Fig. 2. The parties’ Utility Relations

We renounce the RELVIEW-picture for the global utility relation, since the
explanatory power of this 3 x 64 Boolean matrix is rather small. The same holds
for the vector description (24) of the dominance relation. Instead we show in
the following Figure 3 the dominance relation of the example as a labeled 8 x 8
Boolean matrix. For obtaining this matrix we used that the relation

R:=7";(pNw;lL)
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describes a vector v : X xY « 1 as relation of type [X < Y], i.e., v, and
R, , are equivalent for all x € X and y € Y (where m and p are the projection
relations of the direct product X x Y'). See Schmidt et al. [47] for details.

Fig. 3. The Dominance Relation

A representation of this relation as directed graph is shown in the following
Figure 4. For drawing this graph, the RELVIEW tool used the specific layout
algorithm of Gansner et al. [28].

AB.pd

Fig. 4. Graphical Representation of the Dominance Relation

In this dominance graph we additionally have marked the immediate neighbour-
hood relationships as boldface arcs to make things more clear. From Figure 4
we immediately obtain g1 = (AB,p1) as the only stable government of our ex-
ample, since, by definition, a government is stable if and only if it is a source of
the dominance graph.
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6 Applying Social Choice Theory and Bargaining Theory

We will now address the question of how to proceed in cases where multiple
stable governments exist. In such cases, social choice rules or bargaining theory
may be applied.

6.1 Selection of Governments Via Social Choice Rules

The input for an application of social choice theory consists of: (at least two)
selected governments (from which we have to choose one), parties forming these
governments, and preferences of the parties over the governments. Moreover,
for each government each party either accepts (approves of) or does not accept
(disapproves of) it. We consider the following rules; see Subsection 7.2 for an
illustration.

e Plurality Rule: Under this rule only the first preference of a party is con-
sidered. A government g is collectively preferred to a government h if the
number of parties that prefer g most is greater than the number of parties
that prefer h most. The government chosen under the plurality rule is the
government which is put first by most parties.

e Majority Rule: This rule is based on the majority principle. A government
g is collectively preferred to h if g defeats h, i.e., the number of parties
that prefer g to h is greater than the number of parties that prefer h to g.
If there is a government that defeats every other government in a pairwise
comparison, this government is chosen, and it is called a Condorcet winner;
see also Condorcet [19].

e Borda Rule: Here weights are given to all the positions of the governments
in the individual preferences. For n governments, every party gives n points
to its most preferred government, n — 1 points to its second preference, etc.,
and 1 point to its least preferred government. A decision is made based on
the total score of every government in a given party profile; see also [20] for
more details.

e Approval Voting Rule: Under Approval Voting (Brams and Fishburn [15]),
each party divides the governments into two classes: the governments it ap-
proves of and the ones it disapproves of. Each time a government is approved
of by a party is good for one point. The government chosen is the one that
receives most points.

6.2 Selection of Governments Via Bargaining

Apart from the application of social choice rules, we may propose an alternative
method for choosing a government. If there is more than one stable government,
bargaining theory may be applied in order to choose one government. In Rusi-
nowska and de Swart [43] (see also Berghammer et al. [12]), the authors define
several bargaining games in which parties belonging to stable governments (as-
suming that there are at least two stable ones) bargain over the choice of one
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stable government. Subgame perfect equilibria of the games are investigated.
Also a procedure for choosing the order of parties for a given game is proposed.

We define three kinds of bargaining games, denoted here as Games I, II, and
III, in which parties involved in at least one stable government bargain over
the choice of one government. The order of the parties in which they bargain is
according to the number of seats in the parliament. The common assumptions
for the bargaining games are as follows.

e A party, when submitting an offer, may propose only one government.

e The same offers are not repeated: a party cannot propose a government
which has already been proposed before.

e It is assumed that choosing no government is the worst outcome for each

party.

The differences between the three bargaining games are specified by the following
four rules.

e In Game I, a party, when submitting an offer, may propose only a government
the party belongs to. Each party involved in a proposed government either
accepts of rejects the proposal. The acceptance of the offer by all parties
involved causes the government to be formed. Rejection leads to proposing
a government by the rejecting party.

e In Game II, a party does not have to belong to the government it proposes,
and all parties have to react to each offer.

e In Game III, only the strongest party may submit an offer, and the other
parties forming the proposed government have to react.

Our bargaining games differ from each other with respect to the bargaining
procedures. We consider games in which a party prefers to form a government it
likes most with a delay, rather than to form immediately (with no delay) a less
preferred government. We refer to Subsection 7.2 for an illustration.

7 Applying Graph Theory to Coalition Formation

In this section we consider the case that there exists no stable government. Using
graph-theoretical terminology this means that the computed dominance graph
has no source. As we will show in the following, a combination of social choice
rules, bargaining, and techniques from graph theory can be applied to select a
government that can be considered as ‘rather stable’.

7.1 Graph-Theoretical Procedure for Choosing a Government

First, we use strongly connected components (SCCs). A SCC of a directed graph
is defined as a maximal set of vertices such that each pair of vertices is mutually
reachable. In particular, we are interested in SCCs without arcs leading from
outside into them. These SCCs are said to be initial. We also apply the concept
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of a minimum feedback vertex set, where a feedback vertexr set (FVS) is a set
of vertices that contains at least one vertex from every cycle of the graph. For
computing the initial strongly connected components and minimum feedback
vertex sets one may use the RELVIEW tool again, see Berghammer and Fronk
[8], [9], and Berghammer et al. [12] for details.

We propose the following procedure for choosing a government in case there
is no stable government (see also Berghammer et al. [12]):

(1) Compute the set J of all initial SCCs of the dominance graph.
(2) For each SCC C from J do:
(a) Compute the set F of all minimum FVSs of the subgraph gener-
ated by the vertices of C.
(b) Select from all sets of § with a maximal number of ingoing arcs
one with a minimal number of outgoing arcs. We denote this one
by F.
(¢) Break all cycles of C by removing the vertices of F from the
dominance graph.
(d) Select an un-dominated government from the remaining graph.
If there is more than one candidate, use social choice rules or
bargaining in order to choose one.
(3) If there is more than one set in J, select the final stable government
from the results of the second step by applying social choice rules or
bargaining again.

An outgoing arc of the dominance graph denotes that a government dominates
another one and an ingoing arc denotes that a government is dominated by
another one. Hence, the governments of an initial SCC can be seen as a cluster
which is not dominated from outside. The application of the second step to such
a set of ‘candidates’ corresponds to a removal of those candidates which are ‘least
attractive’, because they are most frequently dominated and they dominate other
governments least frequently.

According to the procedure just mentioned, if the application of steps (1) and
(2) does not give a unique solution, we select the final government from among
the ‘graph-theoretical’ results by applying again social choice rules or bargaining
games.

7.2 Example (Continued)

The computation of the dominance graph of Figure 4 is based upon the values
of columns 2 to 4 of Table 12. By changing our running example a little bit (viz.
by rounding each value to the next natural number being a multiple of 5) the
situation changes drastically. We obtain the dominance graph of Figure 5, that
does not possess a source. In this RELVIEW-picture the subgraph induced by
the only initial SCC (corresponding to the set {g1, g2, g3, 94, g5 } of governments)
is emphasized by black vertices and boldface arcs.
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Fig. 5. Dominance relation and initial SCC after rounding

We have applied the procedure of Subsection 7.1 to obtain a government that
can be considered as an approximation of a stable one. The next figure shows
the two minimum FVSs of the initial SCC as presented on the RELVIEW screen:

AB,pl
AC,pl
BC,pl
AB,p2
AC,p2
BC,p2
AB.,p3
AC,p4

Fig. 6. Minimum feedback vertex sets of the initial SCC

Each of the initial components possesses 3 ingoing arcs and the number of their
outgoing arcs is also 3. If we select the minimum FVS represented by the first
column of the matrix of Figure 6 in step (b) of our procedurs, then step (c¢) yields
vertex 1 as source. A selection of the second column yields the same result. This
shows that the stable government g; of the original example is rather ‘robust’
with respect to modifying the parties’ utilities to a certain extent.

To demonstrate an application of the concepts of Section 6, we have changed
our example again and used a still coarser scale for the utilities. It divides the
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values of Table 12 into four categories, viz. small (0 to 25), medium (26 to 50),
large (51 to 75), and very large (76 to 100). Such a quatrigrade scale leads to
the dominance graph depicted in Figure 7; in this RELVIEW-drawing again the
only initial SCC is emphasized.

J
= AR

Fig. 7. Dominance relation and initial SCC after a coarser rounding

If we apply the procedure of Subsection 7.1 to this graph, we obtain vertices 2
and 5 as the only minimum FVS and their removal converts vertices 1 and 4 to
sources. Hence, besides government g; now also government g, is a candidate
for being selected as rather stable.

Let us apply the Plurality rule for the final selection. From the utility relations
R RMB) and R of Figure 2 we obtain for the three parties A, B, and C
the following preferences:

A : g1 before g4, B : g4 before g1, C : g1 before g4.

Hence, government g; is put first by two parties whereas government g4 is put
first by one party only. This means that again g; is selected.

Alternatively, we can apply the bargaining games to this example. Since both
governments g; and g4 are formed by coalition AB, only parties A and B are
involved in bargaining. Consequently, both Games I and II are the same. In
Game I/II, with the order of parties (A4, B), there is only one subgame perfect
equilibrium, and it leads to the choice of government g, already in the first
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period of the game. Game I/II with the order of parties (B, A) has also one
subgame perfect equilibrium, but it leads to the choice of government g; in the
first period of the game. Let us note that being the first proposer in bargaining
may be disadvantageous: when party A is the first proposer, the subgame perfect
equilibrium gives g4 which is worse for party A than government g;. The same
holds for party B being the first proposer: the subgame perfect equilibrium leads
to government g; which is less attractive for party B than government g4. When
applying Game II1, if party A is stronger than B (i.e., for instance, A has more
seats in parliament than B), we get the same result as in Games I and II with
the order (A4, B). If party B is stronger than A, Game III gives the same result
as in Games I and II with the order (B, A).

8 Consensus Reaching

In this section, we describe a procedure for a winning coalition to reach consensus
on a policy in order to form a feasible government.

8.1 Consensus Reaching Within a Coalition

In what follows, we assume a kind of mediator, called the chairman, who does
not belong to any party and is indifferent between all the parties. First of all,
this chairman chooses the parties that should adjust their preferences if needed,
and gives suggestions to the parties how they should change their preferences.
Moreover, in case of any non-uniqueness, the chairman chooses one solution.
Also, if a coalition seems to be unable to reach consensus, the chairman decides
when to stop the process of consensus reaching within that coalition. If the
attempts to reach consensus within a coalition fail, this means that the given
coalition does not propose any government.

We propose the following procedure for consensus reaching within a winning
coalition S; see also Eklund et al. [26]. Let G% denote the set of all feasible gov-
ernments with S € W* as coalition. Each party i € S evaluates each government
from G% with respect to all the criteria. The notations here are similar to the
ones presented in Subsection 2.1, except that we add the lower index S, since
now the parties of coalition S only consider the governments formed by S. For
each i € S, we assume u; 5 : C* x G — [0,1] such that

Yee C*: Z u;5(c,g) = 1. (27)
geGs

The real number wu; g(c, g) is called the value of government g € G% to party
i € S with respect to criterion ¢ € C*. Moreover, for each i € S, we define
Uis : G5 — [0, 1] such that

(Ui,s(9))gecy = (ai(c))cec - (ui,s(c, 9))cec gecy: (28)

where (a;(¢))cec+ is the 1 x |C*| matrix representing the evaluation (comparison)
of the criteria by party i, (ui s(c, 9))cec+ gecy is the |C*|x|G%| matrix containing
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party i’s evaluation (comparison) of all governments in G with respect to each
criterion in C*, and (U; s(g))gecy is the 1 x |G§| matrix containing party i’s
evaluation of each government in G%%. Because of property (5) (with the set DM
replaced by S) and (27) we have that

> Uis(g) =1. (29)

geGY

Reaching consensus within a coalition means that the preferences of the parties
from this coalition, as well as their evaluation of the importance of all criteria
from C*, should be relatively ‘close’ to each other. We specify this in detail.
We define an assessment or ‘distance’ function dg : S x § — [0,1] satisfying
the conditions dg(i,7) = 0 and dg(i,j) = ds(j,) for all i,j5 € S. In Eklund et
al. [26], the authors consider the specific assessment function

ds(i ) = |Gl§ S (Uislg) - Uys(9))?

geGY

but one may apply other assessment functions as well. Moreover, the consensus
degree between decision makers i and j in coalition S is given by

The higher the consensus (degree), the smaller the ‘distance’ between pairs of
decision makers, i.e., between ¢ and j. In particular, if dg(4,7) = 0, then we say
that 7 and j are in complete consensus in coalition S. If dg(i,7) = 1, then we say
that ¢ and j are in complete disagreement in coalition S. Moreover, we define

dg = max{ds(i,j) | i,j € S}, (31)
and a generalized consensus degree for coalition S as
b5 =1—ds, (32)

which concerns the consensus reached by all the decision makers from S.

A certain consensus degree 0 < § < 1 is required in the model. We say that
coalition S reaches consensus if 6§ > 6. If 6% < 6, then the chairman will ask
at least one party to adjust its preferences. Any change of preferences leads to
a new generalized consensus degree for the coalition.

Now, let D denote the set of all parties from S with most different prefer-
ences, that is, we have

Dy ={ieS|3jes [dsiij) = dil}. (33)

The chairman decides which party from D¥ will be advised to change its eval-
uation(s) regarding some government(s) and/or the importance of the criteria.
The party i? € DY asked to adjust its preferences is a party such that

.D .o
= d s . 34
is argg%%c;es s(i,4) (34)
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If this party does not agree to adjust its evaluations according to the chairman’s
advice, the chairman may propose another change to the same party or a change
to another party. Of course, this procedure of consensus reaching may consist of
several steps.

Assuming that w; is the weight of decision maker i € S, we define the weighted
value Ug(g) of government g € G% as

Zw -Ui.s(g (35)
€S
where w:
w; = Lo (36)
ZjES wj

Finally, if the generalized (final) consensus degree is not smaller than 6, the
consensus government g§ formed by coalition S is chosen such that

t = U 37
g5 = arg max s(9)s (37)

Of course, there may be more than one such government g§. As noticed in Eklund
et al. [26], any government g§ chosen by consensus reaching within coalition S
is stable in G%.

8.2 Example (Continued)

Consider coalition AB which has to choose from three policies p1, p2, p3; pa
is not acceptable to B. So AB has to choose from governments {g1, g4, g7};
see Subsection 2.2. Suppose the weights of the three criteria for A are ay =
(1/3,1/3,1/3) and for B, ap = (1/2, 1/4, 1/4) respectively. Also suppose that
the matrices ua and up of the utilities for A, respectively B, of the different
governments with respect to the three criteria look as follows:

1/2 1/4 1/4 1/4 1/2 1/4
ua=\1/4 1/2 1/4 | andup= | 1/4 1/2 1/4
1/4 1/4 1/2 1/4 1/4 1/2

Then Ug = ap -ua = (1/3,1/3,1/3) and Ugp = ap -up = (4/16, 7/16, 5/16).
Hence,

1.1 1 1 7 1 ) 1
d* — 4 A7 B — \/ _ 2 _ 2 _ 2] — 2
ie = dap(AB) =\l = 24 G = PG = oV
Supposing that the required (generalized) consensus degree is |7, the (general-
ized) consensus degree 6% 5 for coalition AB, being 1 — 418 V14, is too small. So,

the chairman comes into play and suppose that after discussion he is able to
convince party B to adjust its utilities as follows:

1/4 1/2 1/4
wy=|{1/2 1/4 1/4
1/4 1/4 1/2
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Then Uy = ap - vz = (5/16, 6/16, 5/16) and consequently

1.1 ) 1 6 1 ) 1
* — g A.B :\/ _ 2 _ 2 _ 2] — 2.
Thp = dan(A,B) =[G — 1)+ (= 102+ (5 — )= oV

Hence, the generalized consensus degree ¢% 5 becomes 1 — 418 V2, which is larger
than the required consensus degree of %Z So, coalition AB reaches consensus.
Assuming that each party has equal weight, we compute the utilities Uag(g) for
coalition AB of each government g € {g1, g4, g7} and we find that Uap(g1) =
;UA(ng— éUB(gl) = %(1/3+5/16) =31/96,Uap(g4) = 5(1/34—6/16) =34/96
and Uagp(g7) = 5(1/3+5/16) = 31/96. Consequently, coalition AB will propose
government g4. Of course, it may happen that there is more than one government
with a maximal utility for a given coalition, in which case the coalition may
propose all these governments with maximal utility.

9 Conclusions

We used the MacBeth software in order to determine the utilities of policies
to parties. Based on these utilities one can determine the feasible governments.
Next we used the RELVIEW tool in order to calculate the stable governments. If
there is more than one stable government we showed how social choice rules or
bargaining may result in a particular choice. In case there is no stable government
we used techniques from graph theory in order to choose a government which is
as close as possible to being stable. We also indicated a procedure for a coalition
to reach consensus about a policy, in order to propose a government.

Due to the MacBeth and RELVIEW software, our model of coalition formation
seems to be applicable in practice. It could be helpful in the real world in order to
form a stable government after elections in a rational way. It would be interesting
to test the model in practice and to compare the outcome of the model with the
actual outcome.
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Abstract. In computer science, scenarios with interacting agents are of-
ten developed using modal logic. We show how to interpret modal logic
of knowledge in relation algebra. This allows the use of the RELVIEW
tool for the purpose of investigating finite models and for visualizing cer-
tain properties. Our approach is illustrated with the well-known ‘muddy
children’ puzzle using modal logic of knowledge. We also sketch how to
treat other non-classical logics in this way. In particular, we explore our
approach for computational tree logic and illustrate it with the ‘mutual
exclusion’ example.

1 Introduction

For some time now researchers in computer science have been interested in rea-
soning about knowledge in multi-agent systems. Here a group of interacting
agents is given and it is assumed that each agent takes into account not only
facts that are true about the world, but also the knowledge of other agents. Ap-
plications of this scenario can be found in many domains of computer science,
for instance in distributed computing, cryptography, and robotics.

The idea of using modal logic for reasoning about knowledge goes back to
J. Hintikka and has been worked out in great detail, e.g. in the textbooks
[9,12,19]. The standard semantics of modal logic is based on the agents’ ac-
cessibility relations on a global set of possible worlds. In this paper we adopt
an algebraic perspective. Relation algebra, and more generally Boolean algebras
with operators, provide natural settings for studying modal logics and other
kinds of non-classical logics, cf. [2,6,13,23] for example. A sufficient framework
for interpreting modal logic of knowledge is dynamic algebra [16,24]. However
in this paper we interpret modal logics in the more expressive setting of het-
erogeneous relation algebras with transitive closure (see [22,25,26]) and their

* The authors thank Harrie de Swart and the anonymous referees for their comments.
The work was supported by EU COST Action 274 (Tarski).

H. de Swart et al. (Eds.): TARSKI II, LNAI 4342, pp. 31-49, 2006.
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representation as Boolean matrices [25]. Representing sets (respectively, predi-
cates on sets) by specific relations, viz. vectors, relation-algebraic specifications
can be evaluated by calculations on Boolean matrices and vectors, and properties
of relations can be verified in this way. Hence, the relation-algebraic manipula-
tion and visualization system RELVIEW [1,20,4] can be applied for the purpose
of model checking and similar tasks. It turns out that this can be achieved
with very little effort and that the approach can be transferred to other impor-
tant non-classical logics, which are embeddable into the programming language
of RELVIEW, such as temporal logic which we consider in this paper but also
Peirce logic and description logic.

The case study in this paper explores a novel application of the RELVIEW tool
for which it was not originally designed. The application may be of interest to re-
searchers working in the area of modal logics, since to our knowledge, there seem
to be very few tools available for solving and visualizing computational problems
of finite models in modal logic. One of the uses of RELVIEW we explore is its
use as a finite model checker. However we do not claim any superiority of the
system over existing implemented model checking systems such as McMAS [18]
and VERICS [14,15]). Sophisticated model checking tools which have been devel-
oped for computational tree logic, linear temporal logic, and the process algebra
CSP include SPIN, SMv, KRONOS, UPPALL, and FDR2. Because of the global ap-
proach that RELVIEW takes, it cannot compete directly with systems based on
local evaluations. Nevertheless, the underlying technology of RELVIEW is based
on reduced, ordered BDDs which are fast [17,3,20]. Furthermore, the tool has a
convenient graphical user interface and provides useful capabilities for manipu-
lating and displaying relations and graphs. Particularly attractive in the context
of modal logic is the presence of the operator trans for computing transitive
closures in the tool’s programming language. This is useful for performing finite
model reasoning tasks for a modal logic with the common knowledge operator
and also for dynamic logic. Such logics cannot be handled directly for example
by first-order logic theorem provers since the transitive closure operator and the
common knowledge operator are not first-order definable.

The remainder of the paper is organized as follows. Some basic notions of
modal logic and modal logic of knowledge are recalled in Sections 2 and 3.
Section 4 describes how to interpret modal logic of knowledge in relation algebra
and how then the RELVIEW tool can be used for solving computational problems
on finite models. The application of the approach to the well-known ‘muddy
children’ puzzle is presented in Section 5. This example also demonstrates how
RELVIEW can be used for visualizing models, and solutions of tasks. Our method
can be extended to all non-classical logics, embeddable into the programming
language of RELVIEW. Section 6 features the approach for computational tree
logic and the ‘mutual exclusion’ example in more detail. In Section 7 some further
applications of relation algebra and RELVIEW in the context of modal logic are
considered. Finally, Section 8 concludes with some further remarks about the
approach and the use of RELVIEW.
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2 Modal Logic

The language of (propositional) modal logic with multiple modalities is defined
over countably many propositional variables pi,p2,ps, ..., and finitely many
modalities Q1,...,0n, one for each agent 1,...,n. A propositional atom is a
propositional variable or the constant T (the symbol for ‘true’) and a modal for-
mula is either a propositional atom or a formula of the form —¢, ¢ A ¢, and ;.
We define the constant L (the symbol for ‘false’) and the other propositional
connectives V, —, and < as usual, e.g. ¢ — ¥ := —¢ V 9. Furthermore, the dual
operator of ¢; is defined by ;¢ := ;0.

The standard semantics of modal logic is given by the well-known Kripke
semantics (or possible world semantics). A frame (or relational structure) for
a modal logic is a pair F = (W, {Ry,..., R,}), where W is a non-empty set of
worlds and each R; is a binary relation over W. W is the set of possible worlds (or
states) in which the truth of formulae is evaluated. The R; are the accessibility
relations which determine the formulae deemed possible by an agent 7 in a given
world (1 <i < n). A model is a pair M = (F,.) of a frame F and a valuation
function ¢ from the set of propositional variables to 2", where «(p;) is interpreted
to be the set of worlds in which p; is true. The truth of a modal formula in a
world z of a model M is defined as follows (where the notation R;(x,y) means
that the elements = and y are related via the relation R;).

M,xE=T
M,x =Ep; <= z€u(p)
Mz =—¢ = Muald
MaxEONY <= M,oE¢and M,z =9
M,z 0i¢p <= JyeW:Ri(x,y) and M,y = ¢

If M,z | ¢ we also say that x satisfies ¢. A modal formula is valid in a model M
iff the formula is true in every world of M. It is valid in a frame F iff it is valid
in all models based on the frame, i.e. in all models (F,¢).

For the purposes of this paper it suffices to consider modal logic from a seman-
tic perspective. (The reader interested in the axiomatizations of the considered
logics should refer to standard textbooks, e.g. [5,7,10,11].) A modal logic L is
said to be sound (respectively complete) with respect to a class of frames iff for
any modal formula ¢, any frame in the class validates ¢ if (respectively iff) ¢
is a theorem in L. A modal logic is said to be complete iff it is complete with
respect to some class of frames.!

The basic multi-modal logic K(,,) is complete with respect to the class of all
frames. The table in Figure 1 lists the relation-algebraic correspondence prop-
erties satisfied by classes of frames for extensions of the basic logic K{,,). This
means, if L denotes an extension of the basic logic K(,,) with a subset of the
common axioms listed in the table then L is a logic (sound and) complete with

! Note in modal logic the notion of completeness is used differently than in other
logical disciplines.
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Axiom Correspondence property
T Lip—p reflexivity I1CR;
4 Oip — O:;0ip transitivity Ri:Ri CR;
B O:idip —p symmetry R;i CR;T
D Oip — Oip seriality LC R;;L
alt1  Qip — Lip functionality R R; CI
5 O:0sp — Oip Euclideanness  R;"; R; C R;

Fig. 1. Modal axioms and their frame correspondence properties

respect to the class of all frames which satisfy each of the corresponding prop-
erties. In the table, | denotes the identity relation and L denotes the universal
relation. Furthermore, R; R denotes the composition of R with itself and R the
transpose (converse) of R. Other relation-algebraic constructions used in this
paper are the empty relation O, the Boolean constructs R U S (union), RN S

(intersection), R (complement), and the transitive closure R* = J, -, R¥ of
R. Here we assume powers are defined inductively by R° := | and R**! := R; R*
for £ > 0.

3 Modal Logic of Knowledge

Modal logic lends itself to formalize informational aspects of agent-based sce-
narios. Consider the language defined in Section 2 in which [J;¢, from now on
written K;¢, is interpreted as ‘the agent ¢ knows that property ¢ is the case’.
For this reading it is usual to assume that the following axioms of the table in
Figure 1 are valid: T' (axiom of true knowledge), 4 (agents are positively intro-
spective) and 5 (agents are negatively introspective). The accessibility relations
R; associated with the knowledge operators K; are therefore equivalence rela-
tions on the set of worlds W (because each R; is reflexive and transitive and
Rl = R;1 C R]; R; C R; shows symmetry).

In order to handle the common knowledge of a group of agents two additional
modal operators, Fg and Cg, are required. Let G denote a finite set of agents.
Then the modal formula Eg¢ is read to mean that ‘each of the agents in G
knows that ¢ is the case’, and the modal formula Cg¢ is read to mean that ‘it
is common knowledge among the group G of agents that ¢ is the case’. Their
semantics is defined by the following equivalences, where Eg¢ is an abbreviation
of the modal formula E¢ ... Eg¢ with k occurrences of the operator Eq.

M,z = Egp = VieG: Mzl K¢
M,z = Cqp = VYk>1:Muz} EL

If G ={i1,...,im}, then we have the following equivalence.

M7m):EG¢ <~ MVm):Kil(b/\"‘/\Kinz(b
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Thus, the formula Fg¢ is true in a world of a model iff everyone in the group
knows that ¢ is true. Furthermore, the formula Cg¢ is true iff everyone in the
group knows that ¢ is true and everyone in the group knows that everyone in
the group knows that ¢ is true, and so on. The following three properties are
not difficult to show for any model M and any world z of M. We assume that
R is the union of the accessibility relations R; for all i € G, i.e. R:=J;c R

M,JI)ZCG(b <~ M,QJ'ZEg(d)/\E(;CG{ﬁ)
M,z = EL¢ < VYyeW:RF(z,y) implies M,y = ¢
M,z ECqgp <= VyeW:R"(z,y) implies M,y = ¢

Distributed knowledge is another concept central to modal logics of knowl-
edge. Here a group of agents can deduce a formula by pooling their knowledge
together. Since this distributed knowledge is not used in the ‘muddy children’
puzzle of Section 5, we omit the technical details and refer to the textbooks
cited in Section 2. Relation algebra does however allow us to model distributed
knowledge by using the same techniques which we apply in the next section to
model the modal logic of common knowledge.

4 Relational Model Checking

The term ‘model checking’ refers to automatic model-based verification ap-
proaches; see e.g., [21,8]. In the case of modal logic it involves solving tasks
of the following kind. Suppose that M = (F, ) is a given finite model, where the
frame is F = (W, {Ru,...,Ry,}), and ¢ is a given modal formula.

(1) Determine whether ¢ is true in a given world of M (satisfiability in a
given world of a model).

(2) Determine whether there is a world of M in which ¢ is true (satisfiability
in a model).

(3) Determine whether ¢ is true in all worlds of M (global satisfiabil-
ity /validity in a model).

(4) Determine the set of all worlds of M in which ¢ is true.

In this paper, we use relation algebra and the RELVIEW tool to compute the set
of all worlds of M in which ¢ is true (i.e. to solve task (4)). This immediately
leads to solutions of tasks (1)—(3), too.

Our solution is based on the representation of sets of worlds by so-called
vectors over W. Such vectors are relations with W as the domain and a singleton
set, {o} say, as the range. Since this specific range is irrelevant, in the following
we omit for a vector v the second argument and write v(z) instead of v(z,e). A
vector v over W can be viewed as a Boolean column vector and represents the
set {x € W | v(z)} of worlds.

Suppose we wish to describe an arbitrary modal formula ¢ via the vector of
worlds in which it is true, that is, we want to compute the vector v4 representing
the set {x € W | M,z | ¢}. We start by defining for the constant T the
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vector vt as the universal vector L over W (the universal relation with domain
W and range {e}). Then for each propositional variable p in ¢ we define a
vector v,, representing the set ¢(p). Using Boolean vector terminology, the latter
means that we set the z-component of v, to 1 if z € «(p) and we set it to 0 if
x ¢ u(p). Due to the first two cases of the definition of truth in Section 2, the
vector v represents the set {x € W | M,z |= T} and the vector v, represents
the set {x € W | M,z = p} for every propositional variable p in ¢. Based on
these facts, we then obtain the vector v4 which we are looking for by recursively
applying the following properties.

Vo = Vg Vgap = Vg MV, Vo = Fis vy

The proofs of these equations for arbitrary ¢ and p use the remaining three cases
of the definition of truth in Section 2 and the definition of relational complement,
intersection, and composition. E.g., v¢,¢ = R;; vy holds since for all z € W

(Risvy)(xz) <= Ty e W:Ri(x,y) and vy (y)
<— JyeW:Ri(zr,y) and M,y E ¢
= M,z Q.

It is obvious from the above equations, how to get the vectors for the con-
stant | and the other propositional connectives V, — and «. A little reflection
yields the vectors for the dual operators K; (or ;). With the help of the prop-
erties of Section 3 we, finally, obtain the vector-representation for the remaining
modal operators Eg and Cg, too.

We present only the results for the dual operators K; and the common knowl-
edge operators F¢g, and Cg. Here we have:

Vi = Ris vy Vigy = (| Ro)i vo vegs = (| Ri)*s vy
ie@ ie@
A proof of the first equation is
VI = Va0 = Vo~ = Risvay = Rij vy
The second equation follows from the calculation
VB = VAo = [ VVEw =[] Risve = [J Risve = (I Ri)s vu -
ieG ied ied ied

A simple induction shows that vgr, = (U;cq Ri)¥; vy for all & > 1. This
property is used in the following proof of the third equation.

vogs = [ vers = [} (U B)F5ve = (U B)¥ve = (I Ri)F5 v
E>1 k>1 icG k>1 icQ i€G

All the constructs of relation algebra we have used up to now are available in
the programming language of the RELVIEW tool. More specifically, we have the
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RELVIEW-operators - for complementation (prefix operator), ~ for transposition
(postfix operator), |, &, and * for union, intersection, and composition (infix
operators), and trans for transitive closure (a pre-defined relational function).
Furthermore, the tool allows for the definition of relational functions by the
user. For instance, the box operators [J; can be modelled by the following binary
RELVIEW-function box.

box(S,v) = -(S * -v)

Here S denotes a RELVIEW-relation (a Boolean matrix) and v a RELVIEW-
vector. Consider the modal formula ¢ defined as follows.

Kip N K{—K>Kp

In words, the formula ¢ says that agent 1 knows p and, furthermore, that agent 1
knows that agent 2 does not know agent 1 knows p. The vector-representation vg
of the set of worlds in which ¢ is true is computed by RELVIEW as the result of
the evaluation of the expression

box(R1,p) & box(R1,-box(R2,box(R1,p))).

Here it is assumed that the accessibility relations Ry, Ry of M and the vector v,
are stored in the tool’s workspace under the names R1, R2, and p.

5 Example: The Muddy Children Puzzle

By way of the well-known ‘muddy children’ puzzle we now illustrate the support
provided by the RELVIEW tool for solving certain problems on finite models of
modal logic. Our description of the puzzle follows [9].

A group of n children play together. A number of them happen to get mud on
their foreheads. Each child can see another child’s forehead but it cannot see its
own forehead. Since no child will tell another child whether it has mud on the
forehead, the puzzle is the following. Can a child know that it has mud on its own
forehead? Obviously, without any extra information the answer is no. But now
the father comes onto the scene. He says for all to hear, that ‘at least one of you
has mud on your forehead’. He then asks the children over and over again: ‘Do
you know whether you have mud on your forehead?’” with the instruction that
the children have to answer the question simultaneously. Suppose the number
of children with mud on their foreheads is k. Then in the first £k — 1 rounds, the
father asks the question all children will answer ‘no’. However, in the kth round
exactly the children with muddy foreheads will answer ‘yes’; the remaining will
answer ‘no’.

This puzzle can be modelled and solved within the modal logic of knowledge
defined in Section 3. The common knowledge operator Cg is particularly crucial
for the solution.

As a concrete example of the ‘muddy children’ puzzle, in the following we
elaborate an instance of the problem with three children. The possible states
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SO —=O —= O — — SO —=O —= O — — SO —=O —= O — —
SO0 —= O — — — SO0 —= O — — — SO0 —= O — — —
O = OO = — O — O = OO = — O — O = OO = — O —
000 000 000
100 100 100
001 001 001
010 010 010
101 101 101
110 110 110
011 011 011
111 111 111
Ry Ra R3

Fig. 2. The accessibility relations in the case of three children

(worlds) of the model are given by triples of 0’s and 1’s, where (s1, s2, $3) is the
state in which child 7 has mud on its forehead iff s; = 1 and is clean iff s; = 0
(1 < < 3). The model, hence, consists of 8 states representing all combinations
of associating 0 or 1 with the three children. Let us now consider what each
child knows in a given state. For instance, in the state (1,0, 1) child 1 sees the
foreheads of child 2 and child 3 but not its own, it therefore knows that child 2
does not have a muddy forehead but child 3 does. Initially the child does not
know if its own head is muddy. Hence, (0,0,1) and (1,0, 1) are the only possible
successor states of the state (1,0, 1) with respect to the accessibility relation R;.
Similar considerations apply to the other children and states.

The three pictures in Figure 2 show the accessibility relations Ry, R, and
R3. This is how RELVIEW displays the relations as Boolean matrices (with
labeled rows and columns). A black square in the matrix R; means that the
corresponding states are related via this relation and a white square means that
they are not related. E.g., the above considerations on the knowledge of child 1
in the state (1,0, 1) correspond to the two black squares in the fifth row of R;.

Suppose that the relation R is the union of the three accessibility relations
Ri, Ry, and R3. In Figure 3 it is shown how the RELVIEW tool displays the
irreflexive part RN | of R as a labelled graph. This graph is the disjoint union of
three subgraphs. These correspond to the possibilities of child 1 (boldface arcs),
child 2 (dotted arcs), and child 3 (remaining arcs), but neglecting all self-loops.
(We have omitted the self-loops in order to avoid cluttering in the graph.)

Now, we assume the propositional variable p;, 1 < i < 3, denotes that ‘child ¢
has mud on its forehead’. Then RELVIEW depicts the vector v,, representing
the set ¢(p;) as a Boolean column vector as in Figure 4, where we have again
used the tool’s labeling mechanism to enhance understandability.

The three accessibility relations and these three vectors (Figures 2 and 4) pro-
vide a complete specification of the model M which we use as input to RELVIEW.
We assume that these are stored in the tool’s workspace under the names R1, R2,
R3 and p1, p2, p3. Furthermore, we use the relational function box of Section 3.

In order to determine satisfiability of a formula ¢ in a state or set of states
all that is required is to let RELVIEW evaluate the expression corresponding
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000

Fig. 3. Graphical representation of the accessibility relations

to ¢, since this returns the set of worlds/states in which the formula is true as
a vector. As first examples consider the following two statements.

M,z = -Ki(p1V p2) M,z = Ki(p2 V K3p1)

The formula on the left says that child 1 does not know whether it or child 2 is
muddy and the formula on the right says that child 1 knows that child 2 is muddy
or that child 3 knows that child 1 is muddy. The RELVIEW-expressions represent-
ing the modal formulae =K (p1 V p2) and K;(p2 V K3p1) are -box(R1,pl | p2)
respectively box(R1,p2 | box(R3,p1)). Evaluating these two expressions with
the tool yields the vectors in Figure 5.

The labelling of the rows is as in Figure 4. Hence, the interpretation of the
vectors is that =K (p1 V p2) is true in the states (0,0,0), (1,0,0), (0,0,1) and
(1,0,1) and Kq(p2 V Kspi1) is true in all states except (0,0,0), (1,0,0), (0,0,1)
and (1,0,1). As a consequence, the statement

M,z = Ki(p1 V p2) < Ki(p2 V Kap1)

000 000 000
100 100 100
001 001 001
010 010 010
101 101 101
110 110 110
011 011 011
111 111 111

pl p2 p3

Fig. 4. The vectors for ‘child ¢ has mud on its forehead’
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t1 = -box(R1,pllp2) t2 = box(R1,p2lbox(R3,p1))  (t1[t2)&(-t1|-t2)

Fig. 5. Satisﬁability of t1 = =K1 (pl V pz), to = Ky (p2 V Kgpl) and —t1 < to

is true for all states x of the model M, which menas that its formula is valid
in M. This can be easily determined with the aid of RELVIEW by evaluating
the expression (t1]t2) & (-t1|-t2) (i.e. 7t1 < t2) where t1 and t2 denote
-Ki(p1 V p2) and Ki(p2 V Kspi1), respectively. This produces the universal
vector which confirms that the equivalence is valid. In words, the equivalence
says that child 1 knows that itself or child 2 is muddy iff it knows that either
child 2 is muddy or that child 3 knows that child 1 is muddy.

The next example involves the common knowledge operator C. Consider the
following statement.

M,z |= Cpy 2,3 (p2 — Kip2)

Because vogy = (Ujeq Ri)T5 vy (see Section 4) and the definition of impli-
cation in terms of negation and disjunction, the RELVIEW-expression for the
formula Cyy 9 33 (p2 — Kip2) is

box(trans(R1 | R2 | R3),-p2 | box(R1,p2)).

The RELVIEW result for this expression is the universal vector, which means
that the formula C{y 5 33(p2 — Kip2) holds in all the worlds of the model M
under consideration. Indeed, as is easy to verify, in this model it is common
knowledge of all children that, if child 2 is muddy then child 1 knows this.

The above illustrates that RELVIEW has two modes for displaying relations:
graph representations and matrix representations. Graph representations are par-
ticularly well suited for visualization. RELVIEW allows for the edges and nodes of
graphs to be distinctively marked. For example, different edge styles can be used
as in Figure 3 to specify designated (sub)relations and the nodes can be labelled.
Matrix representations are in general less well-suited for visualization, but provide
efficient representations of graphs and are easy to process by relation-algebraic
(matrix) operations. In addition, certain properties have natural illustrations in
matrices. E.g., it is easy to recognize at one glance from the matrices represent-
ing R, Ro and R3 that all three relations are reflexive and symmetric (because
each matrix includes the diagonal, the identity relation, and is a mirror image in
the diagonal). Also validity of a formula in the model is immediately recognizable
when the evaluation returns a vector with all squares marked.
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6 Treatment of Other Non-classical Logics

Until now, we have shown how to interpret modal logic of knowledge in relation
algebra and how then the RELVIEW tool can be used for investigating finite
models of this logic, for visualizing them and for computing solutions to certain
computational tasks. This method can be extended to all non-classical logics,
embeddable into the programming language of RELVIEW. Prominent examples
are logics such as linear-time logic LTL, Hennessy-Milner logic HML, the modal
p-calculus, and the computational tree logic CTL. These are used in computer
science for describing properties of computer systems, and model checking for
these logics can then serve as a verification method.

In all the logics we have just mentioned some modalities are specified via
fixed point constructions. This is no problem for RELVIEW. Far from it! Its
programming language allows to formulation of while-loops. These can be used
immediately to compute extremal fixed points of monotone functions f on finite
lattices as limit of the finite ascending chain 0 < f(0) < f(f(0)) < ... in the
case of the least fixed point (0 is the least element of the lattice) and of the finite
descending chain 1 > f(1) > f(f(1)) > ... in the case of the greatest fixed point
(1 is the greatest element of the lattice), respectively.

In the following, we consider computational tree logic CTL in more detail. For-
mulae of this logic are constructed using the propositional atoms and connectives
of modal logic as introduced in Section 2 and the specific operators AX, EX, AU,
EU, AF, EF, AG, and EG. The meaning of the operators AX (respectively FX)
is the same as the meaning of the O-modality (respectively the ¢-modality) in
classical modal logic. Hence, if we use again v as vector representation of the
set {M,x = ¢} we obtain the relation-algebraic specifications

vax(g) = R ve VEX (¢) = 15 Vg,

where R is the transition relation of the model M. A formula of the form
AU(¢,v) holds in a state x if for all computation paths xi1,x2,xs,... begin-
ning with (= z1) we have that ¢ holds in some future state z; and ¢ holds
for all states z;, j < i. Furthermore, a formula EU(¢,%) holds in a state x
if there exists a computation path x1,x2,x3,... beginning with (= x1) such
that 7 holds in some future state z; and ¢ holds in all states =, j < 7. Formally
these properties can be described by least fixed point constructions (cf. [21]).
These yield the following vector representations, where again R is the transition
relation of the model M.

VAU (gp) = by Where f(w) =vy U(veN Ry w NR;L)
VEU(g,4) = Mg Where g(w) = vy U (vp N R;w)

The remaining four operators can be reduced to AU and EU. We have AF(p) :=
AU(T, @), EF(p) := EU(T, ), AG(p) := ~EF(~¢), and EG(p) := ~AF (-p)
(see e.g., [21]). From these definitions we obtain the corresponding vector repre-
sentations as follows:

VAF(p) = VAU(T,p) VAG(p) = VEF(-¢)
VEF(p) = VEU(T,p) VEG(p) = VAF(-y)
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AX(R,p) = -(R * -p).

AU(R,p,q)
DECL w, v
BEG w = 0(p);
v=ql (p&-(R * -w) &R * L(p));
WHILE -eq(w,v) DO

W=V,
v=q |l (p& -(R * -v) &R * L(p)) OD
RETURN w

END.
AF(R,p) = AUR,L(p),p).

Fig. 6. Programs to compute AX, AU, AF

A RELVIEW-implementation of CTL essentially consists of RELVIEW-prog-
rams for the operators of this logic. The code in Figure 6 shows the programs
for the three operators AX, AU, and AF as they arise from the above vector
representations. Guided by this code the reader should have no difficulties to
obtain the RELVIEW-programs for the remaining five CTL-operators EX, EU,
EF, AG, and EG from the corresponding vector representations.

We have experimented with a RELVIEW-implementation of CTL using stan-
dard examples from the literature. One of them is the ‘mutual exclusion’ of two
processes P; and P». In the textbook [12] this example is modelled by a tran-
sition system in two ways and in each case some important properties (such as
safety and liveness) are verified using CTL. The remainder of this section treats
the first attempt of [12] with the aid of RELVIEW.

We assume six propositional variables. For ¢ € {1,2} the variable n; denotes
that the process P; is in a non-critical section, the variable t; denotes that P;
tries to enter a critical section, and the variable ¢; denotes that P; is in a critical
section. Based on these variables, a protocol for managing the admission to a
critical section is given by a transition relation R on a set of states and a valu-
ation of the propositional variables. A RELVIEW-description of the protocol is
presented in the Figures 7 and 8. Figure 7 shows the transition relation R on the
protocol’s states as a Boolean matrix R and the valuation of the propositional

— NN <t N D o0

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5
6 6 6 6 6 6 6
7 7 7 7 7 7 7
8 8 8 8 8 8 8
R nl n2 t1 t2 cl c2

Fig. 7. Relational model of a mutual exclusion protocol
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//\\

L[ n2 nI_cE

el 2 tl c2

Fig. 8. Graphical representation of a mutual exclusion protocol

variables as six Boolean vectors n1, n2, t1, t2, c1, and c2. The graph repre-
sentation of the model is shown in Figure 8. In this picture a node corresponds
to a state and the labels of a node indicate which propositional variables are
defined to be true in the corresponding state. E.g., the first node corresponds
to the initial state where both processes are in a non-critical section and the
second node corresponds to the state where P; tries to enter a critical section
and P, remains in a non-critical section. Usually, the initial state of a transition
system is indicated as a node with an incoming arrow without a source. Since in
RELVIEW such ‘partial arrows’ are not possible, we have drawn the initial node
as a black circle.

Having the RELVIEW-description of the protocol at hand, we have used the
tool to verify fundamental properties of the protocol. For example, safety, live-
ness, and that a process can always request to enter a critical section are de-
scribed by the following three CTL-formulae.

safety: AG(=(c1 A ¢2))
liveness: AG(t1 — AF (1))
non-blocking: AG(n; — EX (t1))

If we evaluate the three corresponding RELVIEW-expressions AG(R,-(c1 & c2)),
AG(R,-t1 | AF(R,c1)), and AG(R,-nl1 | EX(R,t1)), we obtain in the first case
and the third case the 8 x 1 universal vector and in the second case the 8 x 1 empty
vector. This means that the properties of safety and non-blocking are satisfied in
every state but liveness is satisfied in no state. This conclusion is in agreement
with the results of [12].

7 Further Uses of RelView

Suppose ¢ is a propositional variable in a modal formula ¢ and suppose the
valuations ¢(p) of all propositional variables p in ¢ with the exception of ¢ are
defined in M. A problem which we might be interested in is the following;:
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(5) Compute a valuation ¢(q) to ¢ so that ¢ is satisfiable in a world of M.
Task (5) may be generalized to an optimization problem as follows:

(6) Compute a valuation ¢(q) for ¢ so that ¢ is satisfiable in a maximal
number of worlds of M.

A solution to the first problem is possible by applying the ‘is-member-of” relation
between W and the powerset 2. The ‘is-member-of’ relation e relates a world
x and a set of worlds X iff x € X. It is available in RELVIEW via a pre-defined
relational function called epsi. Problem (6), the generalization, can also be
solved with RELVIEW. The solution uses besides the ‘is-member-of’ relation also
the ‘size-comparison’ relation on 2", and the vector-representation of greatest
elements with respect to a quasi-order. The ‘size-comparison’ relation relates two
sets X and Y iff | X| < |Y| and can be computed via a call of the pre-defined
function cardrel.

In an array-like implementation of relations the memory consumption of the
‘is-member-of’ relation and the ‘size-comparison’ relation is exponential in the
size of the base set. However, BDDs allow a very efficient implementation of these
two relations. In [17] for the ‘is-member-of’ relation a BDD-implementation is
developed that uses O(n) BDD-nodes and [20] presents for the ‘size-comparison’
relation a BDD-implementation with O(n?) BDD-nodes. In both cases n is the
number of elements of the base set, i.e., the cardinality of the set of worlds W
in our case.

To give an impression of how to solve problem (5) by means of RELVIEW, we
consider the formula —K;(p; V p2) of Section 5 and replace the propositional
variable ps by the (uninterpreted) propositional variable . We assume again that
the relation R; is as shown in Figure 2 and that the propositional variable pq
denotes ‘child 1 has mud on its forehead’, i.e., the vector representation v,, of
t(p1) is as shown in Figure 4. Then RELVIEW computes exactly 240 possible
valuations ¢(q) for ¢ such that the modal formula

-Ki(p1 V q)

becomes true in a world of the model M with relation R and valuation func-
tion ¢. The key to obtaining this result is the relation ) between the set of
worlds W and the powerset 2"V, defined by

Q = Ry;vpsLUE.

This definition implies that for all + € W and X € 2" we have that Q(z, X)
iff X = i(q) implies M,z &= —=K1(p1 V q). In matrix terminology this means: If
t(q) is represented by column c¢ of e, then {z € W | M,z = -Ki(p1 V ¢)} is
represented by the same column of Q. Hence, the vector QT; L (defined over 2'V)
represents the 240 solutions of problem (5) with inputs =K (p1 V ¢), R1, and
t(p1). A column-wise description of these solutions is €;inj(QT; L)T7 where the
relational function inj computes the injective mapping generated by a vector.
(If the vector v over X represents the subset Y of X, then inj(v) is the relation
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Fig. 9. Valuations not leading to satisfiability of =K1 (p1 V q)

between Y and X such that inj(v)(z,y) iff x = y.) This standard technique
for representing sets of subsets is explained in, e.g. [3,4]. In our example it
yields a 8 x 240 RELVIEW-matrix, which is too large to be presented here.
Therefore, we show in Figure 9 a much smaller RELVIEW-matrix that column-
wisely represents the non-solutions, i.e., the 16 valuations ¢(¢q) for ¢ which do
not lead to satisfiability. For example, from the last column of this picture we
see that no world of M satisfies the formula =K (p; V ¢) if ¢ defines the variable
q to be true in all worlds of M.

We have also used RELVIEW to solve problem (6) for the same three inputs
-Ki(p1 V q), R1, and ¢(p1). The system computes that exactly 16 of the 240
solutions of problem (5) maximize the number of worlds which satisfy the for-
mula, there is only one such maximal set of worlds, and its cardinality is 4. The
16 solutions of problem (6) are column-wisely described by the 8 x 16 matrix of
Figure 10. E.g., the last column of this matrix states that —Kj(p1 V ¢) is true in
a maximal number of worlds if ¢ is true in (1,0, 0), (1,0, 1), (1,1,0), and (1, 1, 1).
The only 4 worlds which satisfy —=K1(p1 V ¢), if ¢t(q) is one of the 16 solutions
of problem (6), are (1,0,0), (1,0,1), (1,1,0), and (1,1, 1). This property follows
from the RELVIEW-vector of Figure 10.

Like the solutions (respectively non-solutions) of problem (5) for the inputs
-K1(p1 V q), R1, and ¢(p1), also the solutions of problem (6) can be specified
by simple relation-algebraic expressions. Crucial to the solution is the vector

v:= ge(C,syq(e,Q); L)

over the powerset 2" that represents the set of all maximal subsets X of W such
that M,z = =K1 (p1 V ¢) holds for all € X. In this definition the relations Q

O = NN <t n\C
— NNt VIO 00O~ ——

000 000
100 100
001 001
010 010
101 101
110 110
011 011
111 111

Fig. 10. Maximum satisfiability of =K1 (p1 V ¢q)
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and ¢ are as above, C' denotes the ‘size-comparison’ relation on 2%, and the
relational functions

ge(R,w) =wN RT;w syg(R,S)= RT; S N RT;S

compute the vector of the greatest elements of the vector w with respect to the
quasi-order R and the symmetric quotient of R and S, respectively. In the present
case the column-wise description e; inj(v)T of the maximal subsets consists of
only one column and coincides with the vector of Figure 10. From it we obtain
the vector representation of the set of 16 valuations leading to the only maximal
subset? {(1,0,0), (1,0,1), (1,1,0), (1,1,1)} via the vector syq(Q, ¢; inj(v)") over
2W _and the 8 x 16 matrix of Figure 10, finally, is exactly the column-wise
description of this set of valuations.

So far we have used RELVIEW only for computing sets of worlds or for solving
related tasks. But the application domain of the system is larger. For example,
the tool can also be used for the following important task:

(7) Determine whether a relation R in a given finite frame possesses certain
properties.

The kinds of properties RELVIEW can express and handle are rather general. In
particular, these are all properties which can be written as Boolean combina-
tions of inclusions between relation-algebraic expressions. This includes all the
correspondence properties of Section 2 (reflexivity of a relation R, transitivity or
R, etc), and also properties such as irreflexivity (I C R) and acyclicity (RT C 1)
as well as Boolean combinations of these. For example, R is an equivalence re-
lation iff it satisfies the conjunction of the first three correspondence properties
of Section 2. In the syntax of the RELVIEW tool a corresponding evaluation test
looks as follows:

incl(I(R),R) & incl(R*R,R) & incl(R,R7).

Let us consider a last application. For a given finite frame F with set of
worlds W and a closure system® C C 2W>*W of relations (like the Euclidean or
the transitive relations), the RELVIEW tool very often allows us to solve the
following task:

(8) Compute the corresponding closure operator cl : 2W*W — 9WxW ' dqe.
fined by cl(R) =({SeC| R C S}.

The condition which is to be fulfilled is that the conjunction of S € C and
R C S is equivalent to f(S) C S, with f being a monotone function on the
set 2W>XW of all relations over W. In this case cl(R) coincides with the least
fixed point py of the function f, due to Tarski’s fixed point theorem [27]. The

2 In words, this vector marks exactly the 16 columns of Q each of which represent a
set of worlds with the maximal cardinality 4.
3 A subset C of a powerset 2~ is a closure system on X if (Y € C for all Y C C.
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euclid(R)
DECL S, fS
BEG S = 0(R);
fS = R;
WHILE -eq(S,fS) DO
S = fS;
fS =R | £S° * £S OD
RETURN S
END.

Fig. 11. Program to compute the Euclidean closure of a relation R

frame F is finite. Hence f is even U-continuous and we get the representation
iy = U;so f1(0), where the chain O C f(0O) C f?(0) C ... eventually becomes
stationary. To give an example, the Euclidean closure of a relation R is computed
by the RELVIEW-program euclid of Figure 11, because obviously a relation S
is Euclidean (i.e.,ST; S C S) and contains R iff RUST; S C S.

Finally, it is worth mentioning that RELVIEW has some file input/output
interfaces. Especially ASCII formatted files can be used to exchange data with
other systems.

8 Concluding Remarks

Based on the interpretation of non-classical logics in relation algebra, in this
paper we have shown how the RELVIEW tool can be used for investigating
finite models of such logics and for visualizing them and solutions of certain
computational tasks. Modal logic of knowledge and computational tree logic
have been treated in detail and illustrated with two well-known examples, viz.
the ‘muddy children’ puzzle and a ‘mutual exclusion’ protocol.

Fig. 12. Visualization of the meaning of the A F-operator
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We believe that the attraction of RELVIEW in respect to the applications we
have discussed in this paper lies in its flexibility, the concise form of its programs,
and the various possibilities for manipulation, testing, and visualization. Because
of these properties it is an excellent tool for prototyping, experimenting, and
for university teaching. It can be programmed to handle different logics and
perform typical tasks on them while avoiding unnecessary overhead. We found
it very attractive to use RELVIEW also for producing good examples. Concerning
teaching, its visualization possibilities can be used to demonstrate the meaning
of logical operators and formulae for example.

To illustrate this point, consider the picture in Figure 12. It explains the mean-
ing of the AF-operator of the logic CTL. The squares denote the states where
a certain property, p say, holds and the black vertices (including the squares)
denote the states x such that for all computation paths x1, 2, ... beginning in
x somewhere along the path p holds. Visualization is of particular importance
when combined with the evaluation of RELVIEW-expressions in a stepwise fash-
ion. All this can help students, and even be key to their fully understanding of
an advanced concept.
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Abstract. Guideline development, implementation, utility and adher-
ence require intelligence and multimedia to interact in decision support
environments. However, efforts to combine all these aspects and to con-
nect solutions into a effective, efficient and productive environment are
rare. In this paper we use a regional health care perspective on main-
tenance and analysis of data, information and knowledge. Examples are
drawn from cardiac diseases. Analysis and development is viewed from
by-pass surgery point of view. Association rules are used for analysis,
and we show how these rules take logical forms so as to prepare for
development of guidelines.

1 Introduction

Clinical guidelines and evidence medicine are rather general concepts and there-
fore we provide some explanations so as to provide a language for our discussions.
We will discuss (clinical) guidelines in the meaning of involving their develop-
ment, implementation, utility and adherence. A clinical guideline is ”systemat-
ically developed statements to assist practitioner and patient decisions about
appropriate health care for specific clinical circumstances” [13]. By consensus
among a large enough group of domain-experts, such guidelines can be said to
represent, if not the only correct advice but at least given available research
results, good enough advice [25].

Development typically involves definitions of measurement scopes, clinical tri-
als with data collections, followed by data analysis using statistical tools. Data
analysis results are converted to text based rules which constitute the so called
guidelines. Indeed, representing clinical knowledge in a computer is difficult in
practice since many clinical practice guidelines are still published simply as tra-
ditional text documents. Clearly, logic is very much missing at this stage.

The whole guideline development process is what traditionally is called an ev-
idence based [6,7] approach. In essence, evidence based medicine proposes a shift
from experience based care to acquiring knowledge through systematic reviews of
the appropriate literature. Note that from a medical point of view, development
does not include preparations for the next phase, namely the implementation of
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© Springer-Verlag Berlin Heidelberg 2006
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the text based guidelines into electronically readable forms. Further, the med-
ical community is rather conservative concerning statistical tools, and there is no
understanding of statistical tools that leads naturally into discussions on logical
structures.

This is one of the major obstacles when aiming at computerized guidelines.
As logic is missing, semantics is not available, ambiguities exist, and tools for
program specifications are hard to invent. In fact, the problem is not only that
logic is missing, but even more complicated as we need to decide on the most ap-
propriate logic for that particular guidelines implementation task. The existence
of a general-purpose logic covering representability of most guidelines seems very
unlikely, even if related diagnosis and treatment problems can be expected to
share some common logic features.

Selecting and establishing the underlying logic of guidelines reveals how sta-
tistics does not comply with logical inference, with logic on the other hand not
providing language constructs that can handle statistical information. In such
a situation, heuristics easily enters the scene, and a required synergy and even
convergence of statistical and logical methods remains unseen. Alternatively, sta-
tistics and logic can be bound more tightly together. The goal is then to provide
kind of an all-in-one computation that fulfills requirements for evidence-based
statistics and reasoning, at the same time providing results represented more
strictly within a corresponding logical machinery.

It is now more evident that the gap between development and implementation
is where logic comes to the rescue. Clinical guidelines often provide the basis for
logic in decision support systems. Such a logic can also be inferred more directly
from patient data [3].

Use and utility of a particular system needs to conform with national and even
regional requirements and needs. Further, where health care is at least partly
public, it involves political decisions and considerations. Add to that attitudes
among professionals, and we get installation procedures that can be rather com-
plicated and very much dependent on organizational structures. Having these
situations and processes in mind, it is obvious that plans for end-usage together
guideline adherence studies should exist even before implementations can start.

No system is complete without its thorough evaluation. Once implemented,
guidelines adherence must be investigated. To increase the adherence to clinical
guidelines and thus evidence-based care, computer-based decision support tools
are recognized to be important [36].

This paper is organized as follows. In Section 2 some comparisons are made
to other guideline implementations. Section 3 provide background and motiva-
tion, in particular from a regional health care perspective, and presents briefly
the Coronary Artery Bypass Grafting (CABG) medical framework. Section 4
presents the GUHA method with capability to produce rules that can be em-
bedded into various computational schemas. GUHA rules are also presented as
logical entities. In Section 5 we will see how association rules formally match
with quantifiers in a certain extension of predicate calculus. Section 6 concludes
the paper.
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2 Related Work

Concerning implementation we should note that we cannot exclusively concen-
trate on rules of the guidelines but we need also consider system interfaces to
other relevant sources of information used in the overall diagnosis and/or treat-
ment process. In the case of hypertension treatment, the analysis step should
be seen developed as manifested by the international guideline (JNC-VI [34])
for hypertension treatment. However, implementation of treatment suggestions
cannot be isolated from the overall hypertension treatment context and other de-
cisions required from that more general viewpoint. Pharmacological information
with corresponding databases are typically required to be interconnected with
the systems for treatment suggestions. It should here be immediately observed
how pharmacological information and e.g. interaction analysis and identification
in itself requires a deeper understanding of logical structures different from those
of the treatment suggestions. Indeed, we are implementing a hybrid of logical
systems in the overall support system for hypertension treatment as connected
to pharmacological information systems. This system builds on a previous sys-
tem [26,27]. In our developments on hypertension treatment, guideline adherence
was also investigated, and has affected further developments of the system.

In [23], on diagnosis of cognitive disorder, dementia and dementia types, we
go beyond the hypertension treatment approach and encode the DSM-IV guide-
lines [33], together with regional adaptations, in a probabilistic argumentation
framework [24] as well as using a neural propositional logic [12,10].

3 Regional Experiences with Patient Data for Quality
Assurance

The information management approach in this paper rests upon experiences
within the County Council of Vésterbotten in Northern Sweden. The population
is small but the geographical area is large. There is one university hospital in the
region, together with 13 regional hospitals. The region is unique in Sweden in
that there is only one patient record system, which is used both within primary
care as well throughout the hospitals. The potential for information flow between
clinics is huge, even if not yet fully exploited. Further, the region maintains the
responsibility for several national quality registers, where interactions with the
patient record is highly prioritized. Various quality assurance programmes are
on the agenda, and utility of data mining has been identified as having huge
potentials.

In addition to quality registers, several clinics maintain their own research
databases, such as for cardiac surgery, where data mining deployment often
is more straightforward, but then usually at the expense of non-compliance,
with respect to terminologies, with the electronic record structure. Screening is
another field where careful maintenance of patient data over several years and
decades provide valuable insight concerning trends within the population.
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Computing facilities and software development capabilities within regions are
important. The former usually builds upon traditions within biostatistics and
the fact that curricula in medical and nursing education always involve at least
some basic statistics. Computer science and the art of software development, on
the other hand, is rarely, if ever, included in such curricula. Further, involving
IT competence for the technical staff of hospitals comes with some lag of time.

The example for GUHA data analysis in this paper is coronary artery by-
pass grafting (CABG)!. In Visterbotten, there are about 5-6 cardiac surgeries
every day, most of which are coronary bypass operations. Several medical studies
show relations between pre- and postoperative CABG data, see for example
[28]. The research database in Umea also involves intraoperative data. Outcome
predictions are certainly needed, if possible, from preoperative data, but outcome
predictions while operating is additionally useful.

Preoperative data includes information on diseases, heart conditions and func-
tion classes (typical follow-up parameter), number of injured vessels, character,
if any, of angina pectoris, and so on. Important intraoperative information is e.g.
time while aorta is closed and patient is in heart/lung machine, number of anas-
tomoses, aorta quality and suitability for reoperation. Postoperative attributes
include death within 30 days after operation, hours in intensive care, respirator
time and postsurgical conditions of various kind.

4 GUHA

GUHA is an original Czech method of data mining. Its aim is to offer all in-
teresting facts following from the analyzed data to the given problem. GUHA
is realized by GUHA procedures. It is a computer program, the input of which
consists of the analyzed data and of a simple definition of set of relevant (i.e.
potentially interesting) patterns. GUHA procedure automatically generates each
particular pattern and tests if it is true in the analysed data. The output of the
procedure consists of all prime patterns. The pattern is prime if it is true in the
analysed data and if it does not immediately follow from the other more simple
output patterns [14].

The most important GUHA procedure is the procedure ASSOC [14] that
mines for association rules. The association rules the procedure ASSOC mines
for are more general than the classical association rules defined in [2]. This proce-
dure deals among other things with association rules corresponding to statistical
hypothesis tests. There are several implementations of the procedure ASSOC,
see e.g. [15,16]. The latest one is the procedure 4ft-Miner. It has various new
important features and it mines also for conditional association rules [32].

There is academic software system LISp-Miner [32] that includes five new
GUHA procedures in addition to the procedure 4ft-Miner. They mine for large
variety of patterns. There are both simple patterns verified in one contingency

! Data has not been made public, but interested readers may contact one of the authors
for enquiries concerning this particular data set.
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table of two Boolean attributes and complex patterns corresponding to differ-
ences of two sets what concerns relation of two attributes. Such complex pattern
is verified using a pair of contingency tables. Implementation of all GUHA pro-
cedures of the LISp-Miner system is based on representation of analyzed data
by strings of bits [29,32].

There are important theoretical results related to the GUHA method. Obser-
vational calculi are defined and studied in [14] as a language in which statements
concerning observed data are formulated. Logical calculi formulae of which cor-
respond to generalized association rules are special case of observational calculi.
Various theoretical results concerning observational calculi and namely associ-
ation rules were achieved in [14]. Some new results concerning logic of associa-
tion rules are e.g. in [30,31]. Theoretical results concerning association rules can
play an important role when embedding association rules into various intelligent
systems.

We show several examples of association rules concerning CABG data. These
association rules were mined by the procedure 4ft-Miner.

The association rules is an expression of the form ¢ =~ i, where antecedent
o and succedent 1 are conjunctions of literals. Literal is a Boolean attribute
(automatically) derived from the analyzed data. Boolean attributes such as
AnginaPectoris(STABLE) and Age(70;80) are examples of literals.

The symbol ~ is called 4ft-quantifier. It defines a relation of antecedent ¢ and
succedent 1. This relation can be true or false in a given data matrix M. The
association rule ¢ = 1 is verified in the given data matrix M using the four-fold
table 4ft(p,1, M) of ¢ and 1 in M, see Table 1.

Table 1. 4ft table 4ft(p,, M) of ¢ and 9 in M

Moy
%) a b
—p d

The table should be given the interpretation that a is the number of objects
satisfying both ¢ and 1, b is the number of objects satisfying ¢ but not ¥, a+b
is the number of objects satisfying ¢, and so on.

A condition concerning all 4ft tables is associated to each 4ft quantifier ~.
The association rule ¢ & 1 is true in the analyzed data matrix M if and only
if the condition associated to the 4ft quantifier ~ is satisfied for the four-fold
table 4 ft(p,10, M) of ¢ and ¥ in M. If this condition is not satisfied then the
association rule ¢ = 1) is false in the analyzed data matrix M. There are various
4ft-quantifiers, see e.g. [14] and [32].

The 4ft-quantifier =) pase of founded implication [14] is defined for 0 < p <1
and Base > 0 by the condition

>pAa> Base .
a+b_p -
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The association rule ¢ = ). gase ¥ is interpreted as ”100p % of objects satisfying
 also satisfy ¢” or "¢ implies ¥ on the level of 100p %”.

The 4ft-quantifier N;: Base Of above average dependence is defined for 0 < p
and Base > 0 by the condition

a+c
ath > (1 +p)a+b+c+d/\a23ase.
This means that among the objects satisfying ¢ is at least 100p per cent more
objects satisfying ¢ than among all objects and that there are at least Base
objects satisfying both ¢ and .

Analysis of CABG was done using the system LISp-Miner [32,35], and involved
predictions, on one hand, from preoperative to postoperative conditions, on the
other hand, from preoperative and intraoperative to postoperative conditions.
Can we make useful and reliable preoperative-to-postoperative predictions with-
out intraoperative information? Which are the most significant intraoperative
variables used in addition to preoperative variables when predicting postopera-
tive conditions? We have chosen to illuminate the possibilities of the 4ft-Miner
procedure by looking at death after 30 days (no/yes) as an example of postop-
erative condition. The number of postoperative deaths in the data set is rather
small, 44 cases which is less than 2% of the total number of records (2975 cases).

Tables 2, 3 and 4 present typical examples from analysis within GUHA and
using LISp-Miner. In Table 2 we have an example of a rule that provides 100%
survival 30 days after operation.

Table 2. Reop(no) A FunctClass(IITA) AN LV — Funct(good) =1.0,436 Died30d(no)

CABG Died30d(no) Died30d(yes)
Reop(no) A FunctClass(ITTA) A LV — Funct(good) 436 0
—(Reop(no) A FunctClass(IIIA) AN LV — Funct(good)) 2495 44

This is the strongest (founded) implication of the form
preopi A ... A preop, =p.Base Died30d(no).
There are several other strong implications, also of the form
Age A preopi A ... A preop, =p.Base Died30d(no).

In the situation for non-survival after 30 days, the association rule for the
above average relation turns out to be more suitable. The four-fold table for the
strongest rule is shown in Table 3. The rule should be understood as patients
satisfying LV — Funct(bad) A M ainSten(no) are with 537% more likely to satisfy
Died30d(yes) as compared to all observed cases. There are 13 patients satisfying
both LV — Funct(bad) A MainSten(no) as well as Died30d(yes).

The weakest above average relation is

AngPect(unstable) ~T g9 Died30d(yes).
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Table 3. LV — Funct(bad) A MainSten(no) ~7 57,15 Died30d(yes)

CABG Died30d(yes) Died30d(no)
LV — Funct(bad) A MainSten(no) 13 125
=(LV — Funct(bad) N MainSten(no)) 31 2806

Combinations with age, especially for patients in their later 60’s and early 70’s,
show association rules where patients having LV — Funct(bad) is worse than
having FunctClass(IV).

Finally, involving intraoperative information, Table 4 shows an example asso-
ciation rule with ClampTime.

Table 4. ClampTime(45;90) A MainSten(no) ~ .1, Died30d(yes)

CABG Died30d(yes) Died30d(no)
ClampTime(45;90) A MainSten(no) 10 67
—(ClampTime(45;90) A M ainSten(no)) 34 2931

5 GUHA Logic

In the association rule ¢ & 1, the symbol & corresponds to a quantifier. We will
now make this more precise.

The extended predicate language of GUHA [14] consists of predicates and
variables. Further there are operators 0,1, -, A,V,—, <. The extension is in
inclusion of (a finite or infinite sequence of) quantifiers g1, .... Formulae are
defined in the usual way. Further, (¢z)(¢1,...,¢,) is a formula whenever ¢ is
a quantifier, = is a variable, and ¢, ..., ¢, are formulae. The association rule
= 1 would thus correspond to a quantification (g~x)(¢, ).

Before discussing semantics, observe that models M in our presentation can
be viewed as matrices where columns correspond to properties and rows to ob-
servations.

The semantics of the operators is again as usual. In order to introduce the
semantics of quantifiers, let us review the situation concerning (Va)P(x), i.e.
intuitively involving a one-column matrix in the case of P being atomic. Inter-
pretations are relations on M, or equivalently, mappings f from M to {0,1}. If
P is interpreted in M by f we have ||(Vz)P(x)||a;s = 1 if and only if fis 1 on M.
The function Asfy, given by Asfy(M, f) =1 if and only if f is 1 on M, defines
the semantics of V.

The quantifier of implication = ([5]) is defined by Asf_ (M, f,g) = 1 if and
only if g(o) = 1 whenever f(0) = 1. Our examples in Section 4, such as the
founded implication =, pase and the above average dependence N;') Base» Call
now be included into the list of possible quantifiers.
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The deduction rule
prY
(10/ ~ ,(/)/
means that ¢’ & 1’ is true in M whenever ¢ = 1) is true in M.
Quantifiers can be more or less implicational, and thus also more or less
associational. Further, the soundness of certain deduction rules is connected to
quantifiers being implicational. See [14,30,31] for more detail.

6 Conclusions

Traditionally, in evidence based medicine, logic is very sparsely seen as a compu-
tational discipline, even less understood as being a language for representation
of rules within clinical guidelines. Evidence and belief is anchored in statistical
computations, and consensus guidelines are documented as pieces of pure text.
Arrival at guidelines is thus based on using statistical tools, where specification
and implementation of rules in guidelines require languages of logic.

Knowledge representation using formal methods is very shallow, with guide-
line performance and adherence impossible to measure and evaluate.

GUHA provides a method for knowledge elicitation where rules are repre-
sented in a formal logic. GUHA data analysis on coronary artery by-pass grafting
is shown to open up possibilities for computer supported production of guide-
lines. In particular for CABG, the GUHA approach turns out to be very suitable
and providing useful insight related to concrete domain knowledge.

The logical understanding of association rules being quantifiers, and in the
sense of being more or less implicational, makes guideline implementations fea-
sible even if less trivial as compared to using a logic in a more clear clausal form.
In the case of by-pass surgery, broader analysis with respect to prediction ac-
curacy and guideline implementation is future work. Further, extensions of this
paper in these directions also need to include end-user evaluations together with
support for ensuring guideline adherence.

Regional and coherent approaches to information analysis, together with
knowledge representation based on interaction between statistics and logic, pro-
vide impact on all levels of information management ranging from patient re-
cords, through a well-founded understanding of organization and workflow, all
the way to guidelines based on computed evidence and implemented for the
purpose of recommended or even enforced adherence.
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Abstract. In this paper, we generalize the Hoede-Bakker index, which
is a measure for the power of agents in a network, taking into account the
mutual influences of the agents. We adopt sets of axioms different from
the one adopted in the original definition. In particular, we remove an
original assumption according to which changing all inclinations of the
players leads to the opposite group decision. Several examples showing
the usefulness of this generalization are constructed. In particular, we
may apply the generalized Hoede-Bakker index to a game with a vetoer.
Next, the relation between the generalized Hoede-Bakker index and the
Penrose measure is analysed. Moreover, we introduce several modifica-
tions of the Hoede-Bakker index which lead to the Coleman indices, the
Rae index, and the Konig-Brauninger index. In order to show the rela-
tion between the generalized or the modified Hoede-Bakker index and
the other power indices, we use the probabilistic approach.

Keywords: Hoede-Bakker index, inclination vector, the Penrose mea-
sure, the Coleman indices, the Rae index, the Koénig-Brauninger index.

1 Introduction

In order to measure voting strength of actors in a voting situation, a number
of power indices have been proposed in the course of more than fifty years (for
instance, Penrose [38], Shapley and Shubik [45], see also Shapley [44], Banzhaf
[1], Rae [39], Coleman [5], [6], Deegan and Packel [7], Johnston [26], Dubey and
Shapley [8], Holler [17], Holler and Packel [18], Konig-Brauninger [25]). For an
extensive analysis of most of the power indices see, first of all, Felsenthal and
Machover [10], but also, for instance, Lucas [32], Owen [37], and Straffin [49]. Also
to be found in the literature are some values for games with a priori unions (Owen
[35], [36]). Basically, there are two approaches to analyze power indices, that is,
the axiomatic approach and the probabilistic one. Laruelle and Valenciano [29]

H. de Swart et al. (Eds.): TARSKI II, LNAI 4342, pp. 60-88, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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present a probabilistic model in which they re-examine the concepts of ‘success’
and ‘decisiveness’, and in which they also consider some conditional variants.

Apart from the theoretical analysis, one may find in the literature applications
of power indices. So far, applications of power indices can be found especially
in the field of decision-making in the European Union (see, for instance, Felsen-
thal and Machover [10], [11], [12], Hosli [19], [20], [21], [22], [23], [24], Laruelle
[27], Laruelle and Widgren [30], Leech [31], Nurmi and Meskanen [33], Sutter
[50], Widgren [52]). However, the power index approach can be applied equally
well to national legislatures and parliaments (see, for instance, Sosnowska [46],
[47], Rusinowska [40], Van Deemen and Rusinowska [51], Rusinowska and Van
Deemen [42]).

Hoede and Bakker [15] introduced the concept of decisional power, which is
still not widely known, although it surely deserves broader attention. This index
takes the inclinations of the players into account, as well as the social structure in
which players may influence each other. The essential point of the Hoede-Bakker
index is the distinction between the inclination (to say ‘yes’ or ‘no’) and the final
decision (apparent in a vote). Preliminary research on the Hoede-Bakker index
has been initiated in Stokman and Willer [48], where an application of the Hoede-
Bakker index to coalition formation has been presented, and in Rusinowska and
De Swart [41]. In the latter paper, the authors investigate some properties of the
Hoede-Bakker index. They check, in particular, whether the Hoede-Bakker index
displays some voting power paradoxes and whether it satisfies some postulates for
power indices. The paradoxes re-defined and checked for the Hoede-Bakker index
were the redistribution paradox (Fischer and Schotter [14], see also Schotter
[43]), the paradox of new members (Brams [2], Brams and Affuso [3]), and the
paradox of large size (Brams [2]). The postulates re-defined for the Hoede-Bakker
index were, in particular, the monotonicity postulate, the donation postulate,
and the bloc postulate. An extensive theoretical analysis of these and some other
postulates for power indices and voting power paradoxes is given, for instance,
in Felsenthal and Machover [9], [10], Felsenthal, Machover and Zwicker [13], and
in Laruelle [28].

The aim of this paper is to introduce and analyze a generalization and some
modifications of the Hoede-Bakker index. The structure of this paper is as fol-
lows. In Section 2, using the probabilistic approach, we recapitulate the def-
initions of the Rae index, the Penrose measure (often called the absolute or
non-normalized Banzhaf index), the Coleman indices, and the K6nig-Brauninger
index. Section 3 concerns the original Hoede-Bakker index. We start with reca-
pitulating the axioms and the definition of this index as adopted by Hoede and
Bakker [15]. Next, in order to show the usefulness of generalizing the original
Hoede-Bakker index, we present an example with a vetoer. In Section 4, the gen-
eralization of the Hoede-Bakker index is presented, and the relation between this
generalized Hoede-Bakker index and the Penrose measure is established. Section
5 concerns some modifications of the Hoede-Bakker index. We show the relations
between the modifications defined and the Coleman indices, the Rae index, and
the Konig-Brauninger index. In Section 6, several examples are constructed in
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which the removed axiom of Hoede and Bakker is violated. Finally, Section 7
contains conclusions.

2 Power Indices — Probabilistic Approach

In this Section, using the probabilistic approach, we recapitulate the definitions
of several power indices. We present very briefly some main concepts described
in Laruelle and Valenciano [29]. For a probabilistic approach to power indices
and an extensive analysis, see also Felsenthal and Machover [10].

Once a proposal is submitted, voters cast votes, voting either ‘yes’ (abstention
included) or ‘no’. A vote configuration is a possible result of voting. Hence, for n
voters, there are 2™ possible vote configurations. The vote configuration S refers
to the result of voting where all voters in S vote ‘yes’, and all voters in N \ §
vote ‘no’, where N = {1,2,...,n}. The vote configurations leading to the passage
of a proposal are called winning configurations. Let W be the set of winning
configurations representing an N-voting rule. A voting rule is assumed to satisfy
the following conditions: (i) N € W; (ii) ¢ ¢ W; (iii) If S € W, then T' € W for
any T containing S; (iv) If S € W, then N\ S ¢ W.

A probability distribution over all possible vote configurations is incorporated
into the model. A probability distribution may be represented by a map p : 2%V —
[0, 1], associating with each vote configuration S its probability p(S) to occur.
That is, p(S) is the probability that all voters in S vote ‘yes’, and all voters in
N\ S vote ‘no’. Laruelle and Valenciano [29] introduced the following definitions
and formulae derived from the definitions:

Definition 2.1. Let (W, p) be an N-voting situation, where W is the voting rule
to be used and p is the probability distribution over vote configurations, and let
k€ N. Then:

21 (W, p) := Prob(k is successful) = Z p(S) + Z p(S) (1)

S:keSew S:k¢S¢w
@ (W, p) := Prob(k is decisive) = p(S) + Z p(S) (2)

S:keSew S:k¢S¢gw

S\{k}t¢gw Su{k}ew
Ap(W, p) := Prob(k is lucky) = Z p(S) + Z p(S) (3)

S:kes S:kgs

S\{k}ew Su{k}¢w
2 (W, p) = @x(W, p) + Ax(W, p) (4)
a(W, p) := Prob(acceptance) = Z p(S) (5)

S:Sew

vk (p) := Prob(k votes ‘yes’) = Z p(S) (6)

S:keS
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Q?CC(I/V, p) := Prob(k is successful | the proposal is accepted) =
_ D skesew P(S)

= 7
(W, p) g
Q,?ej(I/V, p) := Prob(k is successful | the proposal is rejected) =
_ 2s:kgsgw P(S) (8)
1—a(W,p)
) S
Q25 (W,p) == Prob(k is successful | k votes ‘yes’) = Zsiwesew PS) 9)
Y (p)
) S
2, (W, p) := Prob(k is successful | k votes ‘no’) = Zs'késew p(S) (10)
1 —(p)
e (W, p) := Prob(k is decisive | the proposal is accepted) =
d>s:kesew P(S)
S\{k} ¢ W
= 11
(W, p) -
@kRej(VV, p) := Prob(k is decisive | the proposal is rejected) =
Zs:kesgwp(s)
Su{k}tew
= 12
1—a(W,p) (2
>s:kesew pP(S)
@ (W, p) := Prob(k is decisive | k votes ‘yes’) = S\ ik} ¢ W (13)
Ve(p)
Ys:kegsew p(S)
@, (W, p) := Prob(k is decisive | k votes ‘no’) = SUik ew (14)
1 —(p)

Laruelle and Valenciano [29] showed (see also Felsenthal and Machover [10]) that
for a given probability distribution p, the three measures (W, p), 1 (W, p), and
&~ (W, p), coincide for every voting rule W if and only if the vote of every voter
is independent from the vote of the other voters.

Let us assume now that all vote configurations are equally probable, that is:

VS C N [p*(S) = 1. (15)

21’1
Some power indices can be seen as (unconditional or conditional) probabilities
in the sense of Definition 2.1 for the probability distribution p* assumed in (15).
One may derive the following equalities (Laruelle and Valenciano [29]), for voting
rule W and k € N:

— Rae indezx (Rae [39], see also Dubey and Shapley [8])

1 1
Rae,(W) = Q(W,p*) = Y on T > on (16)
S:keSew S:k¢S¢w
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— Penrose measure (also called the absolute Banzhaf indez, or the non-norma-
lized Banzhaf index) (Penrose [38], Banzhaf [1], see also Owen [34])

PBL(W) = number of winning configurations in which k is decisive
F ~ total number of voting configurations containing k

(17)
PB(W) = &/ (W,p") = &/ (W, p") = & (W, p") =

D VD D (18)

S:keSeWw
S\{k} ¢ W

— Coleman’s ‘power of a collectivity to act’ (Coleman [5], [6])

A(W) = number of winning con figurations (19)

~ total number of voting configurations

1

AW =aWp) = 3

S:Sew

(20)

— Coleman’s index ‘to prevent action’ (Coleman [5], [6])

number of winning con figurations in which k is decisive

Coli, (W) =
ol (W) total number of winning configurations
(21)
ZS ckeSeWw 21n
Colf (W) = dfee(W,p) = ZMHEN (22)

S:SeWw 2n

— Coleman’s index ‘to initiate action’ (Coleman [5], [6])

number of losing configurations in which k is decisive

Colp (W) =
ol (W) total number of losing configurations
(23)
DS k¢gSew 21n
Colf(W) = oI (w,p) = LI (24)

1
1- ZS:SEW 2m
— Konig-Brduninger inclusiveness index (Konig and Brauninger [25])

number of winning con figurations containing k
KB(W) = f g config > oM T (25)
total number of winning con figurations

ce * Z : 1n
K By,(W) = (W, p") = T3PEeW 2 (26)

S:SeWw 2n
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3 The Hoede-Bakker Index

Hoede and Bakker [15] introduced the concept of decisional power, the so called
Hoede-Bakker index. In this section, we recapitulate the definition of this index.
We consider the situation in which n > 1 players make a decision about a
certain point at issue (for instance, to accept or to reject a bill, a candidate,
etc). Let N denote the set of all players (actors, voters). Hence, N = {1,...,n}.
With respect to the point at issue, each player has an inclination either to say
‘yes’ (denoted by 1) or ‘no’ (denoted by —1)!. For n players, we have therefore
2™ possible inclination vectors, that is, n-vectors consisting of ones and minus
ones. Let i denote an inclination vector, and let I be the set of all n-vectors.
Due to the influences of other players in the network, each inclination vector
i € I is transformed into a decision wvector, denoted by b. Formally, such a
transformation may be represented by an operator B : I — B(I), that is,
b = Bi, where B(I) denotes the set of all decision vectors. The decision vector
b is an n-vector consisting of ones and minus ones and indicating the decisions
made by all players. Due to influences of the other actors, the final decision of
an actor may be different from his original inclination. Furthermore, the group
decision gd : B(I) — {+1,—1} is introduced. It is a function defined on the
decision vectors b, having the value +1 if the group decision is ‘yes’, and the
value —1 if the group decision is ‘no’.

Hoede and Bakker [15] adopted the following two axioms which have to be
satisfied by B and gd:

AXIOM (A-0):
Vi € I [gd(Bi®) = —gd(Bi))], (27)

where ¢ = (i§, ...,1%) is the complement of inclination vector ¢ = (i1, ..., i), that
is, for each k € {1,...,n}

e JH1 if dp=-1
Z’v_{—1 if k=417 (28)
AXIOM (A-1):
VieIVi'ell[i<i = gd(Bi)< gd(Bi)], (29)

where 7 < 4 is defined in the following way:

i<i < {keN|ixr=+1}C{ke N |i,=+1}. (30)
Moreover, by i < i’ we mean: 1 < ¢’ and i # 7.
! In the original paper by Hoede and Bakker [15], the inclination ‘no’ is denoted by

0. In order to simplify some notations introduced later on, we use the symbol —1
instead of 0.
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Definition 3.1. Given B and gd, the decisional power index (the Hoede-Bakker
index) of a player k € N is given by

1
HB(k) =, , - > gd(Bi). (31)
{i: ig=+1}
Definition 3.1 assumes axiom (A-0) to be satisfied. According to this axiom,
changing all inclinations leads to the opposite group decision. Hence, in Defi-
nition 3.1 the given player k is assumed to have an inclination ‘yes’, and then
the group decisions for the 2"~! inclination vectors with inclination ‘yes’ of the
given player are considered. Since (A-0) is adopted, Hoede and Bakker do not
consider all the remaining 2"~! inclination vectors with an inclination ‘no’ of
the given player.
We find axiom (A-0) too restrictive, since one may describe situations for
which this axiom is not satisfied. Let us consider the following example:

Example 3.1. Suppose that there are 3 players, A, B, and C, and player A
happens to be a vetoer. We may think of a weighted voting game with the
following weights of the players: w(A) = 2, w(B) = w(C) = 1, and the quota
q = 3. Hence, the sets of winning coalitions and minimal winning coalitions are
equal to {AB, AC, ABC} and {AB, ACY}, respectively. Player A, belonging to
each minimal winning coalition, is a vetoer. Table 3.1 shows the group decision
for this example, assuming Bi = i, and the group decision is ‘yes’ iff player A
with at least one of the other players says ‘yes’.

Table 3.1. Group decision for Example 3.1

inclination ¢ gd(B7) inclination i gd(Bi)
(1,1,1) 41 (=1,-1,-1) -1
1,1,-1)  +1  (=1,-1,1) -1

(1,-1,1) 41  (=1,1,-1) -1

(-1,1,1) -1 (1,-1,-1) =1

9 )

Note that axiom (A-0) is NOT satisfied in this example, since gd(B(—1,1,1)) =
gd(B(1,—-1,—1)) = —1. This example suggests that, when calculating the Hoede-
Bakker index, both inclination vectors (—1,1,1) and (1, —1, —1) should be taken
into consideration. Nevertheless, let us still use Definition 3.1, ignoring the vio-
lation of axiom (A-0). We find then HB(A) = }, and HB(B) = HB(C) = 0.
The Hoede-Bakker indices of players B and C are both equal to 0, although none
of these players is a dummy in this game.

4 (Generalization of the Hoede-Bakker Index

Inspired by Example 3.1, we introduce a generalization of the Hoede-Bakker
index, as recapitulated in Definition 3.1. We consider the same situation as
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described in Section 3, but we adopt a different set of axioms. Note that neither
in the axioms adopted nor in the original definition of the Hoede-Bakker index,
the operators B and gd are considered separately. When calculating the Hoede-
Bakker index, only the relation between an inclination vector ¢ and the group
decision gd(Bi) is taken into account. One may argue that the operators B and
gd should be separated. We impose the following conditions on the operator B:

AXIOM (B-1):

VielVi'ell[i<i = Bi<Bi]? (32)

AXIOM (B-2):
B(+1,...,+1) = (+1,...,+1) (33)

AXIOM (B-3):
B(—1,..,—1) = (=1,...— 1), (34)

and the following conditions on the operator gd:

AXIOM (G-1):

VieIVi'eI[Bi<Bi' = gd(Bi) < gd(Bi')] (35)

AXIOM (G-2):
gd(+1, ..., +1) = +1 (36)

AXIOM (G-3):
gd(—1,..,—1) = —1. (37)

One may still adopt a different set of axioms, keeping the operators B and gd
together, as in the original paper by Hoede and Bakker. We resign from axiom
(A-0), keep axiom (A-1) and replace (A-0) by the two weaker axioms (A-2) and
(A-3):

AXIOM (A-1):

VielVi'ell[i<i = gd(Bi) < gd(Bi')] (38)

AXIOM (A-2):
gd(B(+1,...,+1)) = +1 (39)

AXIOM (A-3):
gd(B(—1,...,—1)) = —1. (40)

Axiom (A-1) says that a group decision ‘yes’ cannot be changed into ‘no’ if the
set of players with inclination ‘yes’ is enlarged. Axiom (A-2) means that if all
players have the inclination ‘yes’, then the group decision is also ‘yes’. According
to axiom (A-3), if all actors have the inclination ‘no’, then the group decision
will be ‘no’. Note that

2 For the definition of i < i’ see equation (30).
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Fact 4.1. The set of axioms (B-1), (B-2), (B-3), (G-1), (G-2), (G-3) implies
the set of axioms (A-1), (A-2), (A-3).

Proof. Axioms (B-j) and (G-j) imply (A-j), for j =1,2,3. O

Note, however, that Example 3.1 shows that there is no implication between the
set of axioms (B-1), (B-2), (B-3), (G-1), (G-2), (G-3) and the set (A-0), (A-1).
Of course, the two axioms (A-0) and (A-1) imply the three axioms (A-1), (A-2),
and (A-3).

Definition 4.1. Let I be the set of all inclination vectors. We introduce a bi-
jection f from I to the power set of N (that is, a 1-1 map from I onto the set
of all coalitions), f: 1 — 2N, such that

Viel[f(i)y={ke N |ir=+1}] (41)

In particular, f(i1,...,0n) = N iff i, = +1 for each k =1,2,...,n, and
f(i1yeyin) =0 iff iy, = —1 for each k = 1,2, ...,n. Moreover, given B and gd:

— a coalition f(i), where i € I, is said to be winning if gd(Bi) = +1,

— a coalition f(i) is said to be losing if gd(Bi) = —1,

— a coalition f(i) is said to be minimal winning if gd(Bi) = +1 and for each
i <i, gd(Bi') = —1,

— player k € N is a dummy if there is NO minimal winning coalition f(i) such
that ix, = +1,

— player k € N is a vetoer if for each minimal winning coalition f(i),
i = +1.

Remark 4.1. In the model recapitulated in Section 2 (Laruelle and Valenciano
[29]), four conditions (i)-(iv) have been imposed on a voting rule. In fact, axioms
(A-1), (A-2), and (A-3) imposed on B and gd in our model, correspond to their
conditions (iii), (i), and (ii), respectively. A condition corresponding to their
condition (iv) would look like

Vi el [gd(Bi)=+1 = gd(Bi¢) = —1],

where ¢ is the complement of the inclination vector i defined by equation (28).
We do not impose this condition in our model, what means that we allow the
possibility that gd(Bi) = gd(Bi¢) = 41 for some i € I. In other words, we do
not like to exclude from our considerations games which are not proper (that is,
games in which a coalition and its complement may be both winning). Neverthe-
less, even without this extra axiom corresponding to condition (iv), we can apply
the probabilistic model as presented by Laruelle and Valenciano [29] to our model
with the generalized Hoede-Bakker index, since all results recapitulated in Sec-
tion 2 hold without condition (iv)3. Having only these three axioms (A-1), (A-2),

3 We like to thank the authors Laruelle and Valenciano for confirming this fact.
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and (A-3) adopted, we may consider situations such that gd(Bi) = gd(Bi¢) for
some i € I, meaning that either gd(Bi) = gd(Bi¢) = +1 (as mentioned before)
or gd(Bi) = gd(Bi¢) = —1 (as in Table 3.1).

Assuming all axioms (B-1), (B-2), (B-3), (G-1), (G-2), and (G-3) to be satisfied,
we introduce the following definition:

Definition 4.2. Given B and gd, the generalized Hoede-Bakker index of a
player k € N is given by

GHB() = (Y gaB) - Y gdiy = BT HEE)

VA o 2

{i: ip=+1} {i: ip=—1}

(42)
where HBT and HB™ are defined for each k € N in the following way:
1 .
HB* (k) = ont” > gd(Bi)= HB(k) (43)
{i: ig=+1}
_ 1 )

HB™(k)=—,,_, - > gd(Bi). (44)

{i: ip=—1}

Remark 4.2. Note that HB™ is simply the ‘old’ Hoede-Bakker index HB as
defined by Hoede and Bakker [15] and recapitulated here in Definition 3.1. With-
out axiom (A-0), HB™" does NOT have to be equal to GH B. But, of course, if
axiom (A-0) is satisfied, then GHB(k) = HB* (k) = HB™ (k) for each k € N. In
Example 3.1, GHB(A) = §(2+4) = 3 and GHB(B) = GHB(C) = §(042) = |,
while we found earlier that HB(A) =} and HB(B) = HB(C) = 0.

Fact 4.2. We have:

(a) for each k € N, HB*(k) <1
(b) for each k€ N, HB~(k) <1
(c) for each k€ N, 0 < GHB(k) <1.

Proof. (a) Let us consider an arbitrary player k¥ € N. Since gd(Bi) < 1, and

for a given player k there are 2" ! inclination vectors 4 such that i, = +1, from

(43) we get HBV(k) < 1.

(b) By analogy, since gd(Bi) > —1, and for a given player k there are 27!

inclination vectors 7 such that i, = —1, (44) gives HB~ (k) < 1.

(c) Since HBT (k) <1 and HB™ (k) < 1, by virtue of (42) we get immediately

that GHB(k) < 1 for each k € N. Let us consider an arbitrary player k € N.

Note that for each inclination vector i = (i1, ...,4,) such that i, = +1, there is

i’ = (i}, ...,4,) such that
g Jiy o for j#Ek
zj—{_l for j=k" (45)
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By virtue of (38), that is, axiom (A-1), since i’ < i, gd(Bi') < gd(Bi). Hence,
gd(Bi)—gd(Bi’) > 0. Note that the result of subtracting the two sums in (42) is,
in fact, equal to the sum of 2"~! non-negative expressions gd(Bi) — gd(Bi') > 0
with the property (45). Hence, GHB(k) > 0.

Note that we do not prove that HB* (k) > 0 and HB~ (k) > 0 for each k € N.
In fact, one of these values may be negative what will be shown in examples in
Section 6. Of course, since GHB(k) > 0 for each k € N, it is impossible that
both HB™ (k) and HB~ (k) will be negative for the same player k.

Given B and gd, we introduce the following notations for each player k € N:

Lt =|{iel|iy=+1 A gd(Bi) = +1}| (46)
LF* - number of inclination vectors with inclination ‘yes’ of player k that lead
to the group decision ‘yes’

L= ={iel|iy=41 A gd(Bi)=—1}| (47)

I ,j' ~ - number of inclination vectors with inclination ‘yes’ of player k that lead
to the group decision ‘no’

DT ={iel|iy=—1 A gd(Bi)=+1}| (48)

I * - number of inclination vectors with inclination ‘no’ of player k that lead
to the group decision ‘yes’

I =|{iel|ip=—1 A gd(Bi)=—1}] (49)

I,7 - number of inclination vectors with inclination ‘no’ of player k& that lead
to the group decision ‘no’

Next, we introduce the following definition:

Definition 4.3. Given B and gd, we introduce for each player k € N:

FAREESY
GHB* (k) = on-1 (50)
_ I, I
GHB (k)= "* 2%1’“ (51)
One may easily prove the following fact:
Fact 4.3. Given B and gd, for each k € N:
GHB(k) = GHB" (k) = GHB™ (k) (52)
I++__I+7
HBY(k)="* 2%1’“ (53)
I I "
HB (k)= "* k (54)

2n71
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Proof. Let us consider an arbitrary player kK € N. Note that

> gd(Bi) =Lt - I~ (55)
{i: ip=—+1}

> gdBi)=I" -1 (56)
{ir iy=—1}

Hence, by virtue of (43) and (44), we get (53) and (54), respectively. Note that
VEeN [I[FT+ I =1, +I; T =2""1. (57)

Hence, [/ T — I, " = I, = — I,'~ for each k € N, and therefore, by virtue of (50)
and (51), GHB* (k) = GHB™ (k) for each k € N. Moreover,

TR A e (L U A P PR A

HB(k) = 'F k k koot otk k k N

G ( ) on 2 ( gn—1 + gn—1 )
GHB™(k)+GHB™ (k
( ); %) _ arpt) = cHB(8). O
Remember that in Example 3.1 the Hoede-Bakker indices of players B and C'
are both equal to 0, although none of these players is a dummy in the game in
question. However, for the generalized Hoede-Bakker index we have the following:

Fact 4.4. Player k € N is a dummy if and only if GHB(k) = 0.

Proof. Let us consider an arbitrary player k € N. There are 2"~ ! inclination
vectors 4 such that i, = +1, and 277! inclination vectors i such that 3, = —1.
Moreover, note that for each ¢ such that iy, = +1, there is ¢’ such that i}, = —1
and z; = i; for each j # k. This means that i’ < ¢, and hence, by virtue of axiom
(A-1), [T > 1.7,

(<) Suppose that player k € N is not a dummy. Hence, there is a coalition
f(2) such that iy, = +1, gd(Bi) = +1, and gd(Bi") = —1 for each i < i. Hence,
in particular, gd(Bi’) = —1 for i’ such that i) = —1 and i; = i; for each j # k.
But this means that I, " > I,_ ", and therefore, by virtue of (50) and (52),
GHB(k) > 0.

(=) Suppose now that GHB(k) > 0. By virtue of (50) and (52), this means
that I;7" > I, . Hence, there is i such that i, = +1, gd(Bi) = +1, and

gd(Bi') = —1 for ¢ such that i} = —1 and 4; = i; for each j # k. But
this means that player k£ does affect the outcome, and therefore he is not a
dummy. O

In this paper, we assume all inclination vectors to be equally probable, that is,
similarly as defined in (15):

1

viel )=,

J (58)
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We will not mention assumption (58) explicitly when presenting our results.
Nevertheless, condition (58) is assumed throughout this paper. In fact, since
there is a bijection between coalitions and inclination vectors (see Definition
4.1), conditions (15) and (58) are expressing the same assumption.

Remark 4.3. As was mentioned before, if all vote configurations are assumed
to be equally probable (condition (15)), then some power indices can be seen as
(unconditional or conditional) probabilities. An inclination vector i in our model
corresponds uniquely with a vote configuration f(i) = {k € N | i = +1}, and an
inclination vector ¢ such that gd(Bi) = +1 corresponds with a winning coalition
f (7). All the inclination vectors in our model are assumed to be equally probable
(condition (58)). A decision of an actor may depend on the inclinations of the
others (and it frequently does), but the inclinations of the players are assumed
to be independent of each other. With the interpretation of vote configurations
and winning coalitions just mentioned, we get the following proposition:

Proposition 4.1. Let (W, p), &} (W,p), &; (W,p), and p* be as defined by
equations (2), (13), (14), and (15), respectively. Then

Vk € N [B] (W,p*) = GHB* (k)] (59)
vk € N [®; (W,p") = GHB™ (k)] (60)
Vk € N [&u(W,p*) = GHB(K)]. (61)

Proof. The notion of a winning coalition for our model has been introduced
in Definition 4.1. Re-writing some notions introduced in Definition 2.1 for our
model, we get for each k € N:

wit) = Y piey = VLA (62)

S:kesS
€1 |ip=+1 A gd(Bi) = +1 Lt
> (s ETE B E AT
S:keSew
el |ip=—1 A gd(Bi)=+1}| I;*
I R T
S:keSeWw
S\{k} ew
Hence,
g+
Y. =", (65)
S:keSew
S\{k} ¢ W
and therefore, applying (62) and (65) to (13), and comparing it with (50), we
get &) (W, p*) = GHB™* (k).
By virtue of (62),
1
L—w(p™) = . (66)
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Moreover, we have

i€l |ig=—-1 A gd(Bi)=-1 I~
S:k¢S¢EW
. i€l |ixg=+1 A gd(Bi)=-1 L
S:k¢S¢w
SU{kl ¢ W
Hence,
I~ -1}
SoorE) = (69)
S:k¢S¢W
Su{k}tew
and therefore, applying (66) and (69) to (14), and comparing it with (51), we

have @, (W,p*) = GHB™ (k).
Finally, by virtue of (2), (50)-(52), (65), and (69), we have

LIt 4+ -7 GHB'(k)+GHB (k)

(W, p") = on ) =GHB(k). O

Conclusion 4.1. The generalized Hoede-Bakker index coincides with the Pen-
rose measure, that is,

Vk € N [GHB(k) = PBi(W)]. (70)
Proof. This immediately results from (18) and (61), since for each k € N,
GHB(k) = &(W,p*) = PBi(W). O

In Rusinowska and De Swart [41], it was shown that if there is no influence be-
tween players, and the number of players is odd, then the original Hoede-Bakker
index (with axiom (A-0) imposed) coincides with the absolute Banzhaf index.
The result given in Conclusion 4.1 is more general than the result presented in
Rusinowska and De Swart [41].

Example 4.1. Let us calculate all the notions introduced for our Example 3.1.
In this case, all axioms (B-1), (B-2), (B-3), (G-1), (G-2) and (G-3) are satisfied.
Iit=3, I~ =1 I,t=0, I,7=4

Itt=1tt=2 I =1}"=2 Izt =I;t=1 1I; =1, =3.

Hence, we have

)

HB(A)=HB*(A)=1%, HB(B)=HB*(B)=HB*(C)=HB(C)=0
HB=(A)=1, HB (B)=HB (C) =}

GHB(A) = GHB*(A) =GHB~(4) =3

GHB(B) =GHB*(B)=GHB™(B) =}

GHB(C) = GHB*(C) =GHB™(C) = }.

Note that GHB(B) > 0 (and GHB(C) > 0), which confirms our observation
that there are situations in which player B (player C, respectively) is decisive.
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5 Modifications of the Hoede-Bakker Index

In this Section, we define some modifications of the generalized Hoede-Bakker
index as introduced in Section 4. As before, we impose the axioms (B-1), (B-2),
(B-3), (G-1), (G-2), and (G-3). Let I}, I,/ =, I,; ", and I, ~, for each k € N,
be as defined by equations (46)-(49), respectively. Moreover, given B and gd, we
introduce two additional symbols:

It =|{iel|gd(Bi)=+1} (71)
I - number of inclination vectors leading to the group decision ‘yes’

I~ = [{i € I | gd(Bi) = —1}] (72)
I~ - number of inclination vectors leading to the group decision ‘no’

Next, we introduce several modifications of the generalized Hoede-Bakker index.

5.1 Modifications Leading to the Coleman Indices

Let us introduce the following definition:

Definition 5.1. Given B and gd:

I++ _Ier
for each k € N, MyGHB(k) = * I+ k (73)

I,- =L
for each k € N, MyGHB(k) = F - F (74)
It |{iel| gd(Bi)=+1}|

Ms;GHB =
3 on on

(75)

Remark 5.1. Note that by virtue of (39), that is, axiom (A-2), It > 1, and by
virtue of (40), that is, axiom (A-3), I~ > 1. Hence, M1GHB and M>GHB are
well defined: the denominators given in (73) and (74) are never equal to 0.

Fact 5.1. We have:

Vk e N [1> MiGHB(K) > 0] (76)
Vk € N [1 > MyGHB(k) > 0] (77)
> MyGHB > . (78)

2n
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Proof. Since I > 1, and I < 2", we get immediately 1 > M3GHB > !

2n
Note that
Vke N [IT =L+ 1,7, (79)
and hence, M1GHB(k) < 1 for each k € N. Moreover,
VkeN [~ =1, +I7], (80)

and therefore, MoGHB(k) < 1 for each k € N.

Let us consider an arbitrary player £ € N. We take an arbitrary inclination
vector i = (i1, ...,i,) € I, T. This means that i, = —1 and gd(Bi) = +1. On the
other hand, note that for each i = (i1, ...,i,) € I, © there is i’ = (i}, ...,4],) such
that L

s iy for j#EKk

Zj_{—H for j=k~ (81)
Hence, i < ¢’, and by virtue of (A-1), gd(Bi) < gd(Bi'). Since gd(Bi) = +1, we
get gd(Bi') = +1. Hence, I/ " — I, * > 0, and therefore M;GHB(k) > 0 for
each k € N. Moreover, by virtue of (57),

VkeN [t —I;" =1, — I}, (82)

and hence I, ~ — I,/~ > 0, which gives MoGHB(k) > 0 for each k € N. O

Fact 5.2. We have:
(a) Player k € N is a dummy if and only if MiGHB(k) = 0.
(b) Player k € N is a dummy if and only if MoGHB(k) = 0.

Proof. By virtue of (50), (52) and (73), for each k € N, GHB(k) = 0 if and
only if MiGHB(k) = 0. By analogy, from (51), (52) and (74), for each k € N,
GHB(k) = 0 if and only if MoGHB(k) = 0. Hence, by virtue of Fact 4.4, we
get Fact 5.2. (]

Proposition 5.1. Let ®1¢(W, p), @kRej(VV,p), a(W,p), and p* be as defined by
equations (11), (12), (5) and (15), respectively. Then

Vk € N [@°(W,p*) = MiGHB(k)] (83)
Vk € N [@7(W,p*) = MoGHB(k)] (84)
a(W,p*) = M3GHB. (85)

Proof. Let us apply again the probabilistic model recapitulated in Section 2
to our situation, interpreting a coalition as an inclination vector and a winning
coalition as an inclination vector i with gd(Bi) = +1. Then

i€l |gd(Bi)=+1}| _I*

aWp) = Y p'(S) " -

S:Sew

(86)

and since IT + I~ = 2", we have
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-
o

Comparing (75) and (86), we get immediately o(W, p*) = M3GH B.
Applying (65) and (86) to (11), and comparing it with (73), we get for each
ke N

1—a(W,p*) = (87)

I++ _ Ier
PpeWopt)="* L F =MGHB(K). (88)
And finally, applying (69) and (87) to (12), and comparing it with (74), we get
for each k € N

I~ -1}

W) =

= M>GHB(k). (89)
O

Conclusion 5.1. The modified Hoede-Bakker indices MyGHB, MoGHB, and
M3GHB coincide with the Coleman indices, that is, Coleman’s index ‘to pre-
vent action’, Coleman’s index ‘to initiate action’, and Coleman’s ‘power of a
collectivity to act’, respectively. We have

Vk € N [M\GHB(k) = Colf (W)] (90)

Vk € N [MaGHB(E) = Coll(W)] (91)

MsGHB = A(W). (92)

Proof. From (83) and (22) we have MyGHB(k) = &<¢(W,p*) = Coll' (W)

for each k € N. By virtue of (84) and (24), MoGHB(k) = &7 (W,p*) =
Coll (W) for each k € N. And finally, from (85) and (20), M3GHB = o(W,p*) =

A(W). O

Example 5.1. Let us calculate the new modifications introduced for Example
3.1. As before, we use the calculations done in Example 4.1. Moreover, we have

(see Table 3.1) I'™ = 3 and I~ = 5. Hence,
MiGHB(A) =1, MGHB(B)=MGHB(C) =1
M,GHB(A) =%, M;GHB(B) = MoGHB(C) = }
M3;GHB =

5.2 Modification Leading to the Rae Index

Next, we introduce a modification of the generalized Hoede-Bakker index which
appears to lead to the Rae index.

Definition 5.2. Given B and gd, for each player k € N:

I el i =+1 A gd(Bi)=+1
M4GHB+(/€) _ 22_1 _ I{i | i +2n_1 gd(Bi) = +1}| (93)
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MiGHB (k) 2]5*1 _ Hielli,= —21711\1 gd(Bi) = —1}| (94)

MGHB(k) = M,GHB™T (k) 42— MsGHB™ (k) _ H{iel| z;;n: gd(Bi)}|. (95)
Fact 5.3. We have for each k € N:

1> M,GHB" (k) > 271171 (96)

1> M,GHB™ (k) > in_l (97)

1> MyGHB(k) > 2:71. (98)

Proof From axiom (A-2), I,/ * > 1 for each k € N. Hence, we have MyGHB™ (k)
> 271 .. By v1rtue of axiom (A-3), I, ~ > 1 for each k € N, and therefore
MyGHB™ (k) > ,,!,. Hence, also M4GHB(k) > .11 . Moreover, I/ T < 2n71,
and I, ~ < 2"~! for each k € N. Hence, MyGHB™ (k) < 1, M4GHB (k) < 1
and therefore also MyGHB(k) <1 for each k € N. D

Proposition 5.2. Let 2, (W, p), Q,j(VV,p), 2, (W, p), and p* be as defined by
equations (1), (9), (10), and (15), respectively. Then

k€ N [0f (W,p*) = MyGHB* (k)] (99)
Yk € N [ (W,p*) = MyGHB~ (k)] (100)
Vk € N [2:(W,p*) = MyGHB(k)]. (101)

Proof. From (9), (62), (63), and (93),

ARl

Q25 (W,p*) = Qn | = MyGHB™ (k). (102)

Applying (66) and (67) to (10), and comparing it with (94), we have

I
Q. (W,p*) = 27@_1 = MyGHB™ (k). (103)

Finally, using (1), (63), (67), and (95), we get

It I.=  MGHB*(k)+ M,GHB (k
2 (W,p*) = ;n + Sn = U; * ()=M4GHB(k).
(104)

O
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Conclusion 5.2. The modified Hoede-Bakker index MyGH B coincides with the
Rae indez, that is,

Vk € N [MyGHB(k) = Raey(W))] (105)

Proof. By virtue of (16) and (101), we have for each k € N, MyGHB(k) =
2i,(W, p*) = Raer,(W). O

Example 5.2. We will calculate the new notions introduced for Example 3.1.

Using the calculations from Example 4.1, we get
M,GHB*(A) = i, M,GHB*(B) = My\GHB™(C)
MyGHB~(A)=1, M,GHB(B)= M;GHB~(C

)
M,GHB(A) =%, MGHB(B)=MGHB(C) =}

_1
=2
_ 3
4
5.3 Modification Leading to the Konig-Brauninger Index

Finally, we like to introduce two new modifications of the generalized Hoede-
Bakker index. One of them happens to coincide with the Koénig-Brauninger
index.

Definition 5.3. Given B and gd, for each k € N:
LT i eI |y = gd(Bi) = +1}|

MsGHB(k) = [ = [{i € I| gd(Bi) = +1}| .
Iy i€l |iy=gd(Bi)=-1}|
McGHB(k) = ;— -~ {iel|gd(Bi)=-1}| o

Remark 5.2. Note that by virtue of axioms (A-2) and (A-3), I > 1, and
I~ > 1, respectively. Hence, M5sGH B(k) and MgGH B(k) are well defined, since
the denominators I+ and I~ are never equal to 0.

Fact 5.4. We have for each k € N:

1

1> MsGHB(R) >, (108)
1

1> MGHB(R) > .. (109)

Proof. By virtue of axioms (A-2) and (A-3), IT < 2™, I~ < 2™, and for each
ke N, I,jJr >1,and I, ~ > 1. Hence, we get
I AR A I.-  I;7 1

= > = > .
MsGHB(k) I+ on 2 on M¢GHB(k) - 7 on Zom (110)
By virtue of (79), I* > I for each k € N, and therefore, M;GHB(k) < 1
for each k € N. By analogy, from (80), I~ > I~ for each k € N, and hence,
M¢GHB(k) <1 for each k € N. O
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Proposition 5.3. Let 2{1¢(W,p), Qlljej(VV,p), and p* be as defined by equa-
tions (7), (8), and (15), respectively. Then

Vk € N [2{<(W,p*) = MsGHB(k)] (111)
VEk € N [QF9(W,p*) = MsGHB(k)). (112)

Proof. Applying the probabilistic model from Section 2 to our model, we get
the following results. By virtue of (7), (63), (86), and (106), we have for each
ke N,

++

Qfee(W,p*) = % = MsGHB(k). (113)

k
I+
By analogy, from (8), (67), (87), and (107), we get for each k € N,

QI (W, p*) = I;_ = MgGHB(E). (114)

]

Conclusion 5.3. The modified Hoede-Bakker index MsGH B coincides with the
Konig-Brauninger index, that is,

Vk € N [MsGHB(k) = KBy (W)]. (115)

Proof. This follows immediately from (26) and (111), since for each k¥ € N
MsGHB(k) = Q{¢(W, p*) = KBy(W). O

Example 5.3. Let us calculate the new modifications introduced for Example
3.1. We find

M;GHB(A) =1, MsGHB(B) = M;GHB(C) =2
_ 3

MsGHB(A) =%, MsGHB(B) = M¢GHB(C) =

5
We finish this section with the following fact:
Fact 5.5. Given B and gd, if arioms (A-0) and (A-1) are satisfied, then:

Vk € N [HB" (k)= HB (k) = GHB" (k) = GHB™ (k) = GHB(k) =

= MGHB(k) = M>GHB(F)] (116)
M;GHB = ; (117)

Vk € N [MyGHB" (k) = MyGHB™ (k) = MyGHB(k) =

= M;GHB(k) = M¢GHB(E)]. (118)
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Proof. If axiom (A-0) is additionally satisfied, then we have

It=1 =2""1 (119)
Vke N [T =1, 7] (120)
Vke N [IF- =11]. (121)
From (50)-(54), and (120)-(121), we get for each k € N, HB* (k) = HB™ (k) =
GHB* (k) = GHB™ (k) = GHB(k).
From (50)-(52), (73)-(74), and (119)-(121), we have for each k € N,

MiGHB(k) = MoGHB(k) = GHB(k).
By virtue of (75) and (119), MsGHB =

Finally, from (93)-(95), (106), (107), and (119)-(121), we get for each k € N,
MiGHB* (k) = MyGHB~ (k) = MyGHB(k) = MsGHB(k) = MeGHB(k).

6 Examples

The examples presented in this Section have been constructed in order to show
some advantages of skipping axiom (A-0) as adopted by Hoede and Bakker [15].
In these examples, axiom (A-0) is not satisfied, and hence, we cannot apply the
(original) Hoede-Bakker index. Having introduced the generalized version of the
Hoede-Bakker index, we may calculate all the measures introduced in this paper.

In Hoede and Bakker [15], it was assumed that the ability to influence does
not depend on the inclination. This means that if a player follows another actor
who influences him, then this influenced player will always decide according to
the inclination of his ‘boss’, no matter what the inclinations are. We find such
a requirement too restrictive, since one may face situations in which the ability
to influence does depend on the inclinations. Hence, in this paper, we do NOT
adopt this assumption.

Example 6.1. Let us analyze the situation in which a married couple considers
a proposal to have a holiday this month. Unfortunately, there are three players
involved in this game: husband (player 1), wife (player 2), and wife’s boss denoted
as player 3. Hence, N = {1, 2,3}. In fact, player 1 is fully influenced by player 2
(in particular, when considering this proposal), and he always does what his wife
asks for. In the matter of going on holiday, player 2 is ‘partially’ influenced by
her boss: if player 3 feels like ‘yes’ (that is, I like you to have a holiday), she will
follow her own inclination, but if the boss has the inclination ‘no’ (I do not want
you to have a holiday now), she will decide according to his wish and continue
working. The couple will go on holiday only if all three actors involved will decide
‘yves’. As was already mentioned, we face a kind of ‘partial’ influence here. Figure
6.1 illustrates this situation. There are two different arrows in Figure 6.1. The
‘normal’ arrow going from node 2 to node 1 means that player 1 always follows
the inclination of player 2. The dashed line going from node 3 to node 2 denotes
that player 2 follows the inclination ‘no’ of player 3, and otherwise, if actor 3
has the inclination ‘yes’, actor 2 will decide according to her own inclination.
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/
2/ ”1

Fig. 6.1. Graph for Example 6.1

Table 6.1 presents the group decision for this situation.

Table 6.1. Group decision for Example 6.1

inclination ¢ Bi gd(Bi) inclination i

Bi  gd(Bi)

1,1,1)  (1,1,1) 41 (=1,-1,=1) (=1,—1,—1) -1

(lvla_l) (L_la_l) -1 (_L_lal

)
(1,-1,1) (-1,-1,1) -1 (=1,1,-1)
(_lel) (1a171) +1 (17_17_1)

(-1,-1,1) -1
(1,-1,-1) -1
(-1,-1,—1) -1
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First of all, one may note that axiom (A-0) is indeed not satisfied here, but all
axioms (B-1), (B-2), (B-3), (G-1), (G-2) and (G-3) are satisfied. There are two
winning coalition, that is, f(—1,1,1) = {2,3} which is the only one minimal
winning coalition, and of course the grand coalition f(1,1,1) = {1,2,3} = N
Player 1 is a dummy, and players 2 and 3 are the vetoers in this game. Let us cal-
culate the generalized Hoede-Bakker index and all its modifications introduced.

We have
It=2 I =6
Ift=1, If~=3 I;T=1 I~ =3

IJt=Ift=2 I} =I"=2 ILt=I;7=0,

Hence, the final results of our calculations are as follows:

HB*(1)=—L <0, HB*(2)=HB"(3)=0
As one can see, HB™' may be negative.
HB=(1)=1, HB (2)=HB (3)=1

27

GHB(1)=GHB*(1)=GHB (1) =0
GHB(2) = GHB*(2) = GHB~ (2) ;
GHB(3) = GHB*(3) = “(3)=,
M,GHB(1) =0, MlGHB( )= MGHB(3) =

1
M;GHB(1) =0, M;GHB(2) = M,GHB(3) =

M3GHB =

I, =137 =4
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MyGHB*(1) =}, M;GHB"(2)=MsGHB"(3)=
MyGHB=(1)=2%, M;GHB~(2) = MyGHB~(3) =1
MyGHB(1) =}, M;GHB(2)=M,GHB(3) =73
M;GHB(1) =}, Ms;GHB(2) = MsGHB(3) =1
M¢GHB(1) = 3, MgGHB(2) = MsGHB(3) = 2.

When using the original definition of the Hoede-Bakker index (with axiom (A-
0) adopted), the problem was faced that for some networks with an even number
of players a draw might appear. One of the advantages of the generalized Hoede-
Bakker index is that it can be calculated without any problem for an arbitrary
number of players, in particular, if there is an even number of actors.

Example 6.2. Let us analyze the network presented in Figure 6.2.

1 24 3.

Fig. 6.2. Graph for Example 6.2

There are four players in this network. Players 1 and 2 influence player 4, and
player 3 is independent. We apply the standard procedure to this network (see
Rusinowska and De Swart [41]), according to which the players decide as follows:
— Players 1, 2, and 3 follow their own inclinations.
— If players 1 and 2 have different inclinations, then player 4 decides according
to his own inclination, otherwise he follows the inclination of players 1 and
2.
— The group decision is ‘yes’ if and only if at least three players decide to say

¢ ?

yes’.

The group decision for this example is shown in Table 6.2.

Table 6.2. Group decision for Example 6.2

inclination % Bi gd(Bi) inclination i Bi gd(Bi)
1,1,1,1)  (1,1,1,1) 41 (=1,—=1,—1,-1) (=1, -1,—1,—-1) -1
1,1,1,-1) (1,1,1,1) +1 (=1,-1,-1,1) (=1,-1,-1,-1) -1
(1,1,-1,1) (1,1,-1,1) +1 (=1,-1,1,-1) (=1,-1,1,—-1) -1
(1,-1,1,1) (1,-1,1,1) +1 (-1,1,-1,-1) (-1,1,-1,-1) -1
(-1,1,1,1) (-1,1,1,1) —+1 (1,-1,-1,-1) (1,-1,-1,-1) -1
(1,1,-1,-1) (1,1,-1,1) +1 (-1,-1,1,1) (-1,-1,1,-1) -1
(1,-1,1,-1)(1,-1,1,-1) -1 (-1,1,-1,1) (-1,1,-1,1) -1
(1,-1,-1,1)(1,-1,-1,1) -1 (-1,1,1,-1) (-1,1,1,-1) —1
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In this case, all axioms (B-1), (B-2), (B-3), (G-1), (G-2) and (G-3) are also
satisfied, but again axiom (A-0) is not. There are six winning coalitions here, that
is, N, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, and {1,2}. The last three coalitions
are minimal. There is no vetoer and no dummy. By virtue of Table 6.2 we have

It=6, I~ =10
IIT=0L"=5 I~ =L"=3 ILT=IL"1T=1,
t=0*t=4, Ij7=I/"=4, LT=I7T=2

9

We get the following final results:

==L =17
I;- =1I;” =6.

HBT(1)=HB"(2)=), HB"(3)=HB"(4)=0
HB=(1)=HB~(2)=3, HB (3)=HB (4)=
GHB(1)= GHB*(1) = GHB~(1) = }
GHB(2)=GHB"(2) =GHB™(2) = |
GHB(3) =GHB"(3)=GHB~(3) =}
GHB(4) = GHB*(4)=GHB~(4) =}
MiGHB(1) = MiGHB(2) = 2, M GHB(3)= Mi\GHB(4) =}
M>,GHB(1) = MbGHB(2) = 2, M,GHB(3) = MoGHB(4) =}
M3;GHB =3
MyGHB*(1) = MyGHB*(2) =3, MjGHB*(3) = MyGHB*(4) =1
MyGHB~(1) = MyGHB~(2) =%, M4GHB~(3)= MyGHB~(4) =3
MyGHB(1) = MuGHB(2) = 3, M,GHB(3) = MyGHB(4) = }
Ms;GHB(1) = MsGHB(2) =5, M;GHB(3) = MsGHB(4) = 2

1) =

MGHB( .

M¢GHB(2) = [, MgGHB(3) = MgGHB(4) = 3.

Example 6.3. Let us analyze the network presented in Figure 6.3.

Fig. 6.3. Graph for Example 6.3

We may say that this is an example of ‘a positive and opposite influence’. The
network analyzed consists of five players. Players 1 and 2 always decide according
to their own inclinations. Player 2 is fully independent: he neither influences nor
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is influenced. Player 1 influences players 3, 4, and 5. In the matter of his influence
on players 3 and 4, we face a kind of ‘partial’ (‘positive’) influence. We mean
by this that if player 1 has the inclination ‘yes’, then players 3 and 4 follow his
inclination, but if his inclination is ‘no’, actors 3 and 4 decide according to their
own inclinations. Such a partial influence is denoted on Figure 6.3 by the two
dashed vectors going from node 1 to nodes 3 and 4. In the matter of the influence
on player 5, we find a kind of ‘opposite’ influence, because player 5 will always
make a decision opposite to the inclination of player 1: if player 1’s inclination is
‘yes’, player 5 will decide for ‘no’, and if player 1 has the inclination ‘no’, player 5
will say ‘yes’. In order to stress this ‘opposite’ influence, we marked additionally
the vector going from node 1 to node 5 in Figure 6.3. The group decision is made

Table 6.3. Group decision for Example 6.3

gd(Bi) gd(Bi)
inclination ¢ Bi inclination ¢ Bi
(1,1,1,1,1)  (1,1,1,1,-1) +1(-1,-1,-1,-1,-1)(=1,-1,-1,-1,1) =1
(1,1,1,1,-1) (1,1,1,1,-1) +1 (-1,-1,-1,-1,1) (-1,-1,-1,—-1,1) -1
(1,1,1,-1,1) (1,1,1,1,-1) +1 (-1,-1,-1,1,-1) (-1,-1,-1,1,1) —1
(1,1,-1,1,1) (1,1,1,1,-1) +1 (-1,-1,1,-1,-1) (-1,-1,1,—-1,1) —1
(1,-1,1,1,1) (1,-1,1,1,—-1)+1 (-1,1,-1,-1,-1) (-1,1,-1,-1,1) —1
(-1,1,1,1,1) (-1,1,1,1,1) +1 (1,-1,-1,-1,-1) (1,-1,1,1,—-1) —+1
(1,1,1,-1,-1) (1,1,1,1,-1) +1 (-1,—-1,-1,1,1) (-1,-1,-1,1,1) -1
(1,1,-1,1,-1) (1,1,1,1,-1) +1 (-1,-1,1,-1,1) (-1,-1,1,—-1,1) —1
(1,-1,1,1,-1) (1,-1,1,1,-1) +1  (-1,1,—-1,-1,1) (-1,1,-1,-1,1) -1
(-1,1,1,1,-1) (-1,1,1,1,1) +1 (1,-1,-1,-1,1) (1,-1,1,1,-1) +1
(1,1,-1,-1,1) (1,1,1,1,-1) +1 (-1,-1,1,1,-1) (-1,-1,1,1,1) +1
(1,-1,1,-1,1) (1,-1,1,1,-1) +1  (-1,1,-1,1,-1) (-1,1,-1,1,1) +1
(-1,1,1,-1,1) (-1,1,1,-1,1) +1  (1,—-1,-1,1,-1) (1,-1,1,1,—-1) +1
(1,-1,-1,1,1) (1,-1,1,1,-1) +1  (-1,1,1,-1,-1) (-1,1,1,-1,1) +1
(-1,1,-1,1,1) (-1,1,-1,1,1) +1  (1,-1,1,-1,-1) (1,-1,1,1,-1) +1
(-1,-1,1,1,1) (-1,-1,1,1,1) +1  (1,1,-1,-1,-1) (1,1,1,1,-1)  +1

according to the majority’s decision: gd is equal to +1 if and only if at least
three players will decide for ‘yes’. Table 6.3 presents the group decision for this
example.

Player 5 is a dummy in this example. There is no vetoer. In this case, none of
the axioms (B-1), (B-2), (B-3) is satisfied, but all axioms (A-1), (A-2) and (A-3)
are satisfied. By virtue of Table 6.3, we get the following results:

I"Y=24 1 =38

Ift=16, I/=-=0, I;t=8 I,- =8
Lt=IT=1T=14, LI-=I"=1I"=2
LT=Lt=I1,T=10, L, =1;"=1I, =6
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Fr=12, IF-=4, It=12, I, =4

HB*(1)=1, HB*(2)= HB*( )=HB*(4)=13, HB"(5) =,
HB~(1)=0, HB™(2)=HB (3)=HB (4)=-;, HB (5)=-,
Note than H B~ is negative for all players but player 1.

GHB(1)=GHB"(1) =GHB~ (1) =

GHB(k) = GHB" (k) = GHB™ (k) =  for k =2,3,4

GHB(5) = GHB*(5) = GHB~(5) =0

MiGHB(1) =}, MGHB(k)=} for k=2,3,4, MGHB(5)=0
M>GHB(1) =1, MyGHB(k)=} for k=2,3,4, MGHB(5)=0
M;GHB =3

MGHB*(1)=1, M;GHB"(k)=7fork=2,3,4, MGHB"(5)=
MyGHB~(1) =}, MGHB™ (k) =3 for k=234, MGHB(5)=
MyGHB(1) =%, My;GHB(k) =} for k=2,3,4, M;GHB(5) = ;
Ms;GHB(1) = 3, Ms;GHB(k)= |, for k=2,3,4, M;GHB(5) =
MgGHB(1) =1, M¢GHB(k)=73 for k=2,3,4, McGHB(5)=

2

7 Conclusions

The Hoede-Bakker index was introduced more than twenty years ago, but, in
our opinion, up till now, it did not get the attention it deserves, because it takes
the mutual influences of the players in a social network into account. By resign-
ing from the requirement, imposed in the original definition, that changing all
inclinations of the players leads to an opposite group decision, the applicability
of the index is extended considerably. We present several examples showing the
usefulness of such a generalization. In particular, the generalized Hoede-Bakker
index may be applied to a game with a vetoer.

Moreover, we allow the ability of influencing other players to depend on the
inclination. It may happen, for instance, that a player will follow the positive
inclination of another player, but not his negative inclination. It may also happen
that a player will decide according to the inclination ‘no’ of the influencing player,
but is not sensitive to the inclination ‘yes’ of that player. In such situations we
cannot apply the original Hoede-Bakker index, since one of the axioms adopted
by Hoede and Bakker [15], that is, the axiom mentioned above, is not satisfied.
With the new and weaker set of axioms and the generalized definition of the
Hoede-Bakker index, it is possible to analyze such situations.

Although it has a completely different motivation in terms of a social network
with mutual influences among the agents, the generalized Hoede-Bakker index
happens to coincide with the Penrose measure. This means that the generalized
Hoede-Bakker index of a player is the probability that the given player is decisive,
assuming that all inclination vectors are equally probable. This probability is
equal to the two conditional probabilities: the probability that a player is decisive
if he votes ‘yes’, and the probability that a player is decisive if he votes ‘no’.
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In this paper, also several modifications of the generalized Hoede-Bakker in-
dex are introduced. Given a group decision function, we may calculate all the
inclination vectors leading to a positive group decision. This modification gives
the probability of the acceptance of a proposal, and hence, it coincides with
Coleman’s ‘power of a collectivity to act’. Two other modifications, being the
conditional probability that a player is decisive if the proposal is accepted, and
the probability that a player is decisive if the proposal is rejected, lead to Cole-
man’s index ‘to prevent action’ and to Coleman ’s index ‘to initiate action’,
respectively. In another modification, we calculate the probability that a player
is successful. This modification leads to the Rae index. Of course, we may also
calculate the four conditional probabilities that a player is successful if he votes
‘yes’, if he votes ‘no’, if the proposal is accepted, or if the proposal is rejected.
The third one, that is, the conditional probability that a player is successful if
the proposal is accepted, gives the Konig-Bréauninger index.
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Abstract. This paper contributes to the vast literature on relational
renderings of non-classical logics providing a general schema for auto-
matic translation. The translation process is supported by a flexible Pro-
log tool. Many specific translations are already implemented, typically
leading from an unquantified logic into the calculus of binary relations.
Thanks to the uniformity of the translation pattern, additional source
languages (and, though less commonly, new target languages) can be
installed very easily into this Prolog-based translator. The system also
integrates an elementary graphical proof assistant based on Rasiowa-
Sikorski dual-tableau rules.

Keywords: Relational systems, translation methods, modal logic.

Introduction

Common approaches to the automation of modal inferences often exploit ad hoc,
direct inference methods (cf., e.g., [23, 33]). An alternative approach, discussed
in the ongoing and aimed at developing a uniform relational platform for modal
reasoning, is intended to benefit from relational renderings of non-classical logics
(cf. [27] among others).

The envisaged framework covers a full-fledged inferential apparatus, where the
inferential activity is viewed as consisting of two phases. First, a translation phase
carries a (propositional) modal formalization ¢ of a problem into its relational
counterpart. Then, within the relational context, a deductive method is exploited
to seek a proof of the translated formula ¢ (cf. Fig. 1).

There are several kinds of proof systems for relational reasoning, such as
tableaux [17], Gentzen-style systems [34, 22], systems a la Rasiowa-Sikorski
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logic
relational
form PROOF
TRANSLATOR
sentence —— — PROCEDURE

(and axioms)

Fig. 1. General scheme of the inferential framework

[25, 30, 14], display calculus [16], and of course equational proof systems based
on relation algebras [11, 12]. The system we have in mind should be seen as pro-
viding a convenient input for any of those proof systems. Specifically, the input
for a tableaux-based system, a Gentzen system, or a Rasiowa-Sikorski system
will be an expression of the form x ¢() y, where x and y stand for individual vari-
ables and t(p) for a relational term translating the given formula ¢, obtainable
e.g. by means of a system which we have implemented in Prolog along the lines
that will be expounded below. On the other hand, our input for an equational
proof system will be an equation ¢(¢) = 1, where 1 denotes the top element of
a relation algebra.

This paper focuses on the translation phase: we describe a prototypical,
Prolog-based implementation of a tool, named translt, which uniformly carries
out translations from various modal logics to the relational formalism [35]. As
an aside, we give some details about possible approaches towards the inter-
action/integration between the translator and a deductive engine. The develop-
ment of an efficient relational deductive system (actually, in the Rasiowa-Sikorski
style) is the theme of [8].

We verified that this approach offers indeed a high degree of uniformity: tran-
slt is able to treat varied modal logics, all by the very same machinery. Moreover,
extensions to further families of logics can easily be obtained by routine appli-
cation of their declarative Prolog specifications.

Moreover, the adoption of an approach based on declarative programming al-
lows us to develop the system in an incremental way and ensures high modularity
and extensibility of the application. As a matter of fact, in the same easy routine
fashion in which source languages can be added, the system can also be extended
to encompass other target languages, so as to “drive” different (relational) proof
systems. We exemplify this adaptability by extending translt in order to use
it as a front-end for two deductive frameworks for relation algebras which are
rather different in nature (Section 4). One of the two consists in a minimal im-
plementation of a proof-assistant (with some form of automated capabilities)
based on Rasiowa-Sikorski rewriting rules [29]. Actually, this proof-assistant has
been easily integrated in translt by means of a common graphical user interface.
As a second approach to relational reasoning, we show how translt can be used
as a front-end for a first-order theorem-prover which is exploited as relational
inference engine very much in the spirit of [11, 12].
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The paper is organized as follows. In Section 1 we describe source and target
languages. For most of the modal logics, we provide the corresponding translation
rules. Section 2 illustrates the architecture of translt and the successive phases
of the translation process, while an outline of the input/output formats is given
in Section 3. Finally, Sections 4 and 5 describe the interface to the built-in proof-
assistant and speculate on improvements to the overall inferential framework one
can envisage.

1 Source and Target Languages

The main target language which our translation supports is the algebra of binary
relations. For this target, given a formula ¢ the system produces a relational term
t(v) belonging to an algebraic language encompassing the usual constructs of
Boolean algebra plus further operators specific to the realm of relations. To be
more specific, following the work of Alfred Tarski [35], let us recall the basic
notions on such formalism. The intended universe of discourse is a collection R
of binary relations over a non-null domain Y. We assume that the top relation
UR, and the diagonal relation consisting of all pairs (u,u) with u in U, belong
to this universe, which is also closed under the intersection (N), union (U),
complement () relative to |J R, composition (;), and conversion () operations.
Within such a system, two primitive constants 1 and I designate the top and
the diagonal relation, while the operations are interpreted as one expects (here,
for any relational expression R we are indicating by R the relation over U
designated by R), for instance:

e P~ designates the relation consisting of all pairs (v, u) with (u,v) in PJ;

e P; () designates the relation consisting of all pairs (u, w) such that there is at
least one v for which (u,v) and (v, w) belong to P and to Q<, respectively;

e PN( designates the relation consisting of all pairs (u,v) which simultane-
ously belong to P¥ and to Q°;

and similarly for the other constructs.
Designations for further constants, operations over relations, or equations of
a special kind, can be introduced through definitions, e.g.:

0 =pe 1; D:Def 17

P_Q —Def PmQ7 P+Q —Def (QUP)_(QOP)a
PCQ 0. P—Q=0.

Another target language currently supported is the binary first-order predicate
calculus with three variables, namely L3 [35]. For this target, the translation is
obtained by first performing the translation into the algebra of relations, and
then exploiting first-order characterizations of the relational operators. Clearly,
in order to limit the overall number of first-order variables to three, in doing the
latter transformation we must rely on a suitable variable-recycling mechanism.
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It should be noted that a first-order sentence is logically equivalent to a sen-
tence of L3 if and only if it is expressible in the algebra of relations. This is
because L3 is equipollent to the arithmetic of binary relations [35, Chap. 3]. On
the other hand, this is no more the case if we consider sentences of the full first-
order predicate calculus. Actually, it is known (cf. [35, 21]) that the collection
of all first-order sentences expressible with three variables (and hence having a
relational rendering) is undecidable. As a consequence, the translation from first-
order predicate calculus into the algebra of relations is not always doable and it
can only be achieved (in favorable cases) by means of conservative techniques.
Therefore, our Prolog-based translator may fail in translating a sentence. Any-
way, the translation process terminates in every case, and a diagnostic message
is issued when the translation is not carried through. Notice that the translation
process could be improved by resorting to conservative refinements such as those
proposed in [2].

Similar enhancements can be applied in order to build more target languages
into the tool. One could easily achieve this goal by describing such languages in
terms of suitable rewriting rules. As an example we mention another currently
available translation for modal formulas (see below, for a description of the
source languages), having a set-theoretical language as target. This approach is
described in [4, 1, 31], where it is shown that even a very weak set theory can offer
adequate means for expressing the semantics of modal systems of propositional
logic. In this context, a modal formula is translated into a formula of a very weak
set theory. Then, in order to perform (semi-)automated modal inference, the
result of the translation could be fed into a deduction system for theory-based
reasoning [13] or, alternatively, into a Rasiowa-Sikorski proof system for set-
theory, as described in [31]. Another possibility could consist in performing one
further translation step, from the set theoretical framework into the relational
calculus, as suggested in [9], to then exploit any deductive system for relational
reasoning.

Let us now briefly highlight most of the source languages currently accepted by
the translator. We characterize the languages of the logics which employ binary
accessibility relations in terms of their Kripke-style models. Our translator does
not, as yet (although we plan extensions of this kind), deal with the languages of
relevant logics or the logics with binary modalities—requiring ternary relations
in their models. The translation functions for many of these languages are known,
see [26] for a translation of languages of relevant logics.

The main idea of the translation is to assign relational terms to formulas
of non-classical logics so that validity is preserved. These terms must represent
right ideal relations, a binary relation R on the domain U being called right ideal
when it meets the condition R;1=R. In other words, a right ideal relation is of
the form X x U for some X C U. Intuitively speaking, if a formula is replaced
by a right ideal relation, then its domain represents the set of states where the
formula is true, and its range represents the universe of all states. For atomic
formulas the property of being right ideal can be enforced by postulating that
a propositional variable, say p, is translated into a relational term P;1, where
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P is a relation variable uniquely associated with p. It follows that, given a lan-
guage, a relational translation of its formulas can be defined provided that, first,
the propositional operations of the language can be mapped into the relational
operations which preserve the property of being right ideal and, second, the
translation will preserve validity. It is known that Boolean operations preserve
the property of being right ideal and the composition of any relation with a right
ideal relation results in a right ideal relation. So if a logic is based on a classi-
cal logic whose propositional connectives are Boolean, or if a logic has a lattice
as a basis, then the only problem is to appropriately translate the remaining
intensional propositional operations of the logic. Since their semantics depends
on the accessibility relation(s) which usually are not right ideal, the translation
should use these relations only as first arguments of the composition operator,
making use of the property stated above. If this can be done with preservation
of validity, then the translation process is successful.

In the following we present definitions of the translation functions of languages
for several families of logics whose accessibility relations are binary. In all the
listed cases the validity-preserving theorems are known and can be found in the
cited references.

Mono-Modal Logics. This is the basic translation of (propositional) modal
formulas into relational terms originated in [25]. The source language involves
usual propositional connectives together with necessity and possibility operators
(here ¢ and x stand for propositional sentences):

o t(p;) =pe Pi; 1, where P; is a relational variable uniquely corresponding
to the propositional variable p;;

o L(=7)) =pe H(Y);

o {(Y & x) =per t(¥) NE(X);

e (O 1Y) =p. R;t(y), where R is a constant relation designating the
accessibility relation between possible worlds;

and similarly for the other customary propositional connectives (see also [25],
for a very detailed treatment).

Lattice-Based Modal Logics. Lattice-based modal logics have the opera-
tions of disjunction and conjunction and, moreover, each of them includes a
modal operator which can be either a possibility or necessity or sufficiency or
dual sufficiency operator. Since negation is not available in these logics, both
in the possibility—necessity and in the sufficiency—dual-sufficiency pair neither
operator is expressible in terms of the other. We can also consider mixed lan-
guages with any subset of these operators. The target relational language for all
of these lattice-based logics includes the following specific accessibility relations:
binary relations <; and <2, which are assumed to be reflexive and transitive
and to satisfy the condition <; N <2= I. Such relations are needed in order to
provide semantics for the operation of disjunction which, in the case of lattice-
based logics, does not necessarily distribute over conjunction. All of these logics
have been deeply investigated in [32, 7, 20]. The translation of disjunction and
conjunction is:
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° t(¢ \ X) “per $1; K25 (W/)) U t(X));
o LY &x) =pe UY)NEX).

Considering a source language with a possibility operator <, the target lan-
guage includes two relations R and S¢ subject to the following conditions:

gT’RQ7<T ERQ, R() ES<>7<IJ7
<2;90; <2 E So So C <95 Ro .

The translation of a formula involving the modal operator is

tH(OX) =per <1:805<23t(x) -

Also in the case of a language involving the necessity operator O, the target
language includes two relations Rn and Sp subject to:

<13 Ro;< E Ro, Ro C <4380,
<G8 <5 E So, So E Ro; <5 .

The translation of a formula involving the modal operator is

t(0x) =per Rojt(x) -

Formulas involving the sufficiency operator [ are translated into relational
expressions by introducing two relations Ry and Sy subject to the following

conditions:
<1;Ru:n;<2;Rn:u7 Ru:u; <1;Su:u7

g;;su:n;grgsma SD]ERu:ﬁgIJ-

Within such a framework, the translation of a formula involving the sufficiency
operator is

tHMx) =pee R <25t(X) -

Finally, the translation of formulas involving the dual sufficiency operator €,
has as its target a relational language with two relations, R and S, subject to
the following conditions:

<T§R©§<5/ ER@’ R@Es@gzv,
<239 <1 E S, Se C <25 R .

Then, the translation of a formula involving € is
tHOX) =per <1395 t(X) -

Logics of Knowledge and Information. These modal logics come from [5]:

* Logic with knowledge operator K, subject to the following translation rule:

t(Kp) =pe Rit(@) UR;t(e).
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* Logic of non-deterministic information (NIL) [5, Sect. 7.2]. A multi-modal
logic with three modalities, determined by the relations of informational
inclusions (< and >) and similarity (o) subject to the following conditions:

e < is reflexive and transitive and such that < = >,
e o is reflexive and symmetric,
e >2;0;< Lo
* Information logic (IL) [5, Sect. 7.3]. A modal logic with three modal operators
corresponding to the relations of indiscernibility (=), forward inclusion (<),
and similarity (o) subject to the following conditions:

is an equivalence relation,
is reflexive and transitive,
is reflexive and symmetric,
“oCo and <N = =

e o o o
VARl

Intuitionistic Logic. The translation of intuitionistic logic is based on the
following rules:

HY = X) =per <5 (E(¥) N E(X)) (Y & X) =per t(¥) N E(x)
L) =per Y 5 WV x) Zper (1) Ut(x) ,

where < is a reflexive and transitive relation.

Multi-modal Logic. These logics correspond to multi-modal frames consisting
of a relational system (W, Rel) where Rel is a family of accessibility relations
(enjoying closure properties with respect to relational constructs). Modalities
are then of the form [R] and (R), where R is any relational term of Rel (cf. [27]).

The translation of modal operators is the same as in the case of mono-modal
logic. The differences between operators are articulated in terms of the properties
of the corresponding accessibility relations.

Temporal Logics. By taking the relational formalization of temporal logics
given in [28], we extended the translator in order to deal with temporal formulas.
The basic modal operators (referring to states in the future or in the past) are:

Gy interpreted as “always, in the future, ¢ will be true”;

Fy interpreted as “sometimes, in the future, ¢ will be true ”;

Hy interpreted as “p was always true in the past”;

Py interpreted as “p was true in some past time”;

Uy interpreted as “at some moment x will be true and from now till then
o will be true”;

e Sy interpreted as “there was a moment when x was true and such that ¢
has ever since been true”;

e Xy interpreted as “@ will be true in the next moment in time”.
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In this context, relational representations of temporal formulas are expressed by
considering an accessibility relation R that (together with its converse R™) links
time instants. The relational translations of the modalities G, F, H, and P are as
follows:

t(Gp) =pes R; () , t(Hp) =po: R=5t(0)
t(F) =pet Rit(9) , t(Pp) =per R75t(0)
t(wUx; =per 1(0) Ut(x t(© 8 X) =pet t(@) St(x) ,

)UL(X) ,

t(Xp) =ps t((p &) Ugp)
where, in the translations of the modal operators U and S we use the same sym-
bols to denote two newly introduced relational constructs. These new constructs
cannot be defined in terms of the primitive relational constructs (page 91). The
intended interpretation of U is as follows: PUQ designates the binary relation
consisting of all pairs (u,v) such that there exists ¢ such that (u,t) belongs to
the accessibility relation R®, (t,v) belongs to Q<, and for all w, if (u,w) € R®
and (w,t) € R® then (w,v) € PS. (The interpretation of $ is analogous, with
respect of R™.)

Other Modal Logics. Other modal logics currently accepted by the translator
involve: logics with specification operators [18, 24], logics with Humberstone
operators [19], logics with sufficiency operators [15, 6].

Following the semantics developed by Hoare and Jifeng [18], the operators
of the weakest prespecification (\) and the weakest postspecification (/) are
modeled with residuals of the relational composition which are definable with
composition, converse and complement:

Q\R =pR; Q— and R/P =p.P~;R.

Consequently, P; QCER if and only if PEQ\R if and only if QCR/P.

The Humberstone operators are the modal operators of possibility and neces-
sity determined by the complement of an accessibility relation. It follows that
their translation can easily be derived from the translation of the mono-modal
operators.

The sufficiency () and dual sufficiency () operators receive the following
relational translation:

HD @) =pes R; t(g),
t(©p) =pu Rit(0),

where R is a relational constant representing an accessibility relation of the
models of a logic under considerations.

It follows that our translation tool is able to translate the formulas of any of
the information logics presented in [5], as they involve, together with Boolean
or lattice operators, intensional operators that are either modal or sufficiency or
knowledge operators.
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logic target language
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parse = and = translate e
simplify form

Fig. 2. The translator architecture

2 The Translation Process

The translator takes as input a formula of a specific source language (see Sec-
tion 1). As shown in Fig. 2, the first of these transformations yields an internal
representation of the formula, while the last step generates its final rendering.
Then, a sequence of rewritings and simplifications is performed. Finally, the
desired translation is produced.

More specifically, here is the sequence of the salient phases which usually
form the translation (some of them being skipped in specific cases, for instance
double-negation removal in intuitionistic logic):

Lexical and syntactical analyses. This phase accepts a formula only if it
is syntactically correct and its constructs belong to the specific language
at hand. The syntax-directed translation implemented through this stage is
described by an attributed definite clause grammar. Hence, any extension to
further logics can be achieved by simply adding a suitable set of grammar
rules which characterize the (new) well-formed formulas. The outcome of this
stage is an intermediate representation of the abstract syntax tree (AST) of
the input formula.

Generation of an internal representation. By means of arewriting process
which acts in a bottom-up recursive fashion, the outcome of the preceding
phase is turned into an internal representation of the AST (in form of a Prolog
term), independent of the source language.

Abstract propositional evaluation. The internal representation of the given
formula is analyzed in order to extract its propositional schema. The schema
so obtained is then (possibly) simplified through replacements of some of its
sub-formulas by tautologically equivalent ones.

Reduction to primitive constructs. In this phase the formula is rewritten in
terms of a small repertoire of constructs and connectives, to be regarded as
being “primitive”. For instance, biimplication « is rewritten as a conjunction
of two implications, and so on. Notice that some of these rewritings must be
inhibited at times, insofar as unsound with respect to the specific logic at
hand. The aim of this transformation is to make the next phase easier.

Propositional simplifications. Through this phase the internal representa-
tion of the formula is simplified by applying a number of propositional
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rewrite(Rules,From,To) :- transl(Rules,From,M), % rewrite until
(From==M, To=M ; rewrite(Rules,M,To)). % fix-point

transl(_,T,T) :- var(T).

transl(R,T,S) :- T =.. [FlArggl, translArgg(R,Argg,Brgg),
M =.. [FIBrggl, translO(R,M,S).

translArgg(_,[1,[]).

translArgg(R, [H|B], [SHISB]) :- transl(R,H,SH),

translArgg(R,B,SB).
translO(R,T,S) :- Goal =.. [R,T,S], (Goal ; S=T).
rewritel(R,T,S) :- once(transl(R,T,S)). % rewrite once

Fig. 3. A simple and powerful post-order rewriting procedure

simplifications to it, mainly aimed at reducing the size of the formula (for
instance, elimination of tautological sub-formulas and of double negations).

Relational translation. This is the main step of the translation process: the
internal representation of the given formula is translated into the calculus of
binary relations. The kind of rewriting rules employed may depend on the
source language of the input formula (see Section 1). The outcome of this
phase is a relational term.

Relational simplifications. The overall translation process ends with a se-
ries of relational simplifications applied to the relational term produced by
the preceding step. The simplest among these rewritings take care of the
idempotency, absorption or involution properties of (some of) the relational
constructs. The process can easily be extended to perform more complex
simplifications.

It should be noticed that most of the above steps are all uniformly per-
formed by exploiting the same simple meta-rewriter. Fig. 3 displays the basic
Prolog specification of this post-order rewriting procedure. The main predicate is
rewrite/3. Intuitively speaking, it accepts as its first parameter (Rules) a Pro-
log predicate describing one of the possible translation steps. Then it recursively
processes the term From in order to produce its translation To.

Further phases could be added, for instance in order to apply semantical
transformations to the relational term, possibly with respect to a set of ax-
iomatic assumptions characterizing a particular class of relational structures as
constituting the target framework.

Example 1. As an example we provide here the textual output produced by the
various steps of the translation into the calculus of relations of the multi-modal
formula:

[RUQI<Q>p—q.

Here is a tracing of the translation process (where p1, p2, and R3 are internal
names corresponding to the external names p, ¢, and @, respectively):
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7- enu2tg(A,polyModal) .
|: [R+Q1<Q>p -> q.
...i(an(pp(1,-3),u0,-3)),2)...
from intermediate to internal representation:
NEC(P0SS(p1,R3) ,u(R,R3))imp p2...
in primitive connectives:
NEC(NEC(p1 imp f,R3)imp f,u(R,R3))imp p2...
after propositional simplification:
NEC(NEC(p1 imp f,R3)imp f,u(R,R3))imp p2...
after translation to calculus of relatioms:
u(c(c(ku(R,R3),culc(c(k(R3,c(ulc(k(p1,U0)),2))))),2))))) ,k(p2,1))...
after relational simplifications:
u(k(p2,0) ,k(u(R,R3),c(k(k(R3,p1),U))))...

A = (u(k(p2,’0’) ,k(u(’R’,’R3’) ,c(k(k("R3’,p1),’U’))))="U")

The Prolog term produced is the representation of the relational equality
;1U(RUQ):; Q:p;1=1.

Proving that the initial modal formula is a theorem amounts to deriving this
equation within the calculus of relations.

3 Input and Output Formats

When rawly used, our Prolog-based translation tool system reads a pure-text
input typed in by the user (cf. Example 1). The output is then written, again
in pure-text format, to the standard output stream (usually, the screen). This
kind of interaction is, however, quite unsatisfactory, because the ASCII char-
acter set is rather poor. In order to overcome this disadvantage and ease the
input/output of complex formulas and expressions, a user-friendly interface has
been developed. Such a graphical interface allows the user to type in formulas
using graphical IMTEX-generated symbols. In doing this, we exploited the useful
integration facilities offered by SICStus Prolog [37] with respect to other pro-
gramming languages, in particular to the Tc1/Tk toolkit [36]. Hence, the input of
formulas is achieved through dialogues that are generated at run-time depend-
ing on the specific language chosen by the user. For instance, Fig. 4 displays the
input dialogue generated for multi-modal formulas.

The system also provides the possibility of processing a text file, as well as
to generate a text file as output. Through this feature it is possible to produce
input files for different deduction tools (see Section 4).

Let us briefly illustrate the use of the graphical interface with a simple ex-
ample. Consider the multi-modal formula [RU Q] < @ > p — ¢. This formula
can be input to the translator easily, as shown in Fig. 4. The relational equation
obtained can also be displayed graphically, as in Fig. 5.
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[RUQIKQ>P—4q

= 1
rosee | [ IR
maews 0|1/ 71|D)
Free retationsl £| Ql El él
saw OJUIA[ T =[S F 7N/
Modalities Ll _]l il zl
Truth constants Ll Ll
P 4| 7|5

Logical connectives %l %l Al jl 2' fl il ﬁl
weewe  0/1]2/3/4/5|6]7]8]9]

Please type-in a propositional sentence

Fig. 4. Input dialogue for multi-modal formulas

S Transit - output window

Fig. 5. Output of a translation process

4 Driving a Deductive Tool

As mentioned at the outset, the main purpose of translt is to provide an exten-
sible front-end for (relational) deductive systems.

To exemplify how well this goal is approached, in what follows we report on
two extensions of translt, designed in order to use it as a front-end for two deduc-
tive frameworks for relation algebras which are rather different in nature. One
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Fig. 6. Assisted development of a proof tree

of the two consists in a minimal implementation of a proof-assistant (showing
some degree of autonomy) based on Rasiowa-Sikorski rewriting rules [29]. Such
proof-assistant is accessible through translt’s graphical interface. Once the user
has obtained a relational rendering of a theorem, (s)he can proceed to try build-
ing a proof-tree of the relational translation. Fig. 6 shows a simple example of
a derivation tree. The user interacts with the system by simply choosing a node
of the tree in order to apply one of the rewriting rules. The system takes care of
verifying applicability of rules, performing the extension of the tree, and check-
ing whether, as a consequence of rule applications, any branch becomes closed.
Some form of (semi-)automated reasoning capabilities are also implemented: it
is possible to ask the system to try, autonomously, to close all branches of a
(sub-)tree.

Another viable approach to relational reasoning consists in using transit as a
front-end for a first-order theorem-prover: Otter, in our choice. This is achieved
by extending the translation process: a new set of rewriting rules is used to
implement automated generation of an input file to be fed into Otter. Once the
input file is available, Otter can be used as described in [11, 12] to search for a



102 A. Formisano, E.G. Omodeo, and E. Ortowska

proof of the theorem within the relational framework. Obviously, the very same
approach can be used with other theorem provers.

Currently, translt can be downloaded from the site http://www.di.univaq.
it/TARSKI/transIt/ and easily installed. It is developed under Linux, but we
also provide a porting for Windows XP.

5 Improving the System

The modular approach we adopted both in developing the translator and in
extending the collection of source and target languages, plainly permits steady
improvements to and extensions of the system. At the moment, most of the
phases of the translation process are carried out by means of syntactical rewrit-
ings. Nevertheless, the translation process could benefit from improvements to
its ability to exploit semantic properties of connectives and constructs. As a
matter of fact, in the current implementation this ability lies exclusively in the
abstract propositional evaluation phase (see page 97).

Another amelioration, in the same frame of mind, is the exploitation, in the
derivation process (both for the assisted and for the autonomous functioning
mode), of specific rewriting rules depending on the particular logic of the theorem
being proved.

As mentioned, the system can deal with different target languages (see page 92).
As a further example, we mention here a particularly interesting future develop-
ment: extend the collection of target languages, so as to permit the translation
into languages of ternary relations needed for handling relevant logics and other
substructural logics whose translations are presented in [26].

Further challenging themes for long-term activities regard exploring the pos-
sibilities offered by

e the integration with/within existing tools for translation and deduction. In
particular, a fruitful synergy could develop from the integration/interaction
with the “Anamorpho system”, an environment for describing relational
specifications which is based on definitional extension mechanisms (see [3]).

e the integration with visual-oriented tools for manipulation of relational for-
mulas (based, for instance, on graphical representation of relational expres-
sions and on graph-rewriting techniques [10]).
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Abstract. This work concentrates on the automated deduction of logics
of order-of-magnitude reasoning. Specifically, a translation of the mul-
timodal logic of qualitative order-of-magnitude reasoning into relational
logics is provided; then, a sound and complete Rasiowa-Sikorski proof
system is presented for the relational version of the language.

1 Introduction

Qualitative order-of-magnitude reasoning has received considerable attention in
the recent years; however, the analogous development of a logical approach has
received little attention. Various multimodal approaches have been promulgated,
for example, for qualitative spatial and temporal reasoning but, as far as we
know, the only logic approaches to order-of-magnitude reasoning (OMR) are
[1,2,3].

These first approaches to the logics of qualitative order-of-magnitude reason-
ing are based on a system with two landmarks, which is both simple enough
to keep under control the complexity of the system and rich enough so as to
permit the representation of a subset of the usual language of qualitative order-
of-magnitude reasoning. The intuitive representation of our underlying frames is
given below, in which two landmarks —a and +a are considered

OBS ™ INF OBS™*

- +0O

In the picture, —a and +« represent, respectively, the greatest negative ob-
servable and the least positive observable, partitioning the real line in classes of
positive observable OBs™, negative observable OBS™ and non-observable (also
called infinitesimal) numbers INF. This choice makes sense, in particular, when
considering physical metric spaces in which we always have a smallest unit which
can be measured; however, it is not possible to identify a least or greatest non-
observable number.

* The first two authors are partially supported by projects TIC2003-9001-C02-01 and
TIN2006-15455-C03-01.

H. de Swart et al. (Eds.): TARSKI II, LNAI 4342, pp. 105-124, 2006.
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In order to introduce a few intuitive explanations about the practical use of
the OMR-relations of comparability and negligibility, firstly, assume one aims
at specifying the behaviour of a device to automatically control the speed of a
car; assume the system has, ideally, to maintain the speed close to some speed
limit v. For practical purposes, any value in an interval [v — ¢,v + €] for small &
is admissible. The extreme points of this interval can then be considered as the
milestones o~ and aT; on the other hand, the sets OBs™, INF, and OBs™ can
be interpreted as SLow, OK and HIGH speed.

Regarding negligibility, the representation capabilities of a pocket calculator
provides an illustrative example of this type of relation. In such a device, it is
not possible to represent any number whose absolute value is less than 10799,
Therefore, it makes sense to consider —a = —107% and +a = +107%9 since
any number between —107%9 and 1079 cannot be observed/represented.! On
the other hand, a number x can be said to be negligible with respect to y pro-
vided that the difference y — x cannot be distinguished from y. Numerically, and
assuming an 8+2 (digits and mantissa) display, this amounts to state that z is
negligible wrt y iff ¥ — 2 > 108. Furthermore, this example above suggests a
real-life model in which, for instance -1000 is negligible with respect to -1. Sim-
ply, interpret the numbers above as exponents, since 107199 can be considered
negligible with respect to 1071,

In this paper the paradigm ‘formulas are relations’ formulated in [11] is applied
to the modal logic for order-of-magnitude reasoning of [3]. A relational formali-
sation of logics is based on an observation that a standard relational structure (a
Boolean algebra with a monoid) constitutes a common core of a great variety of
nonclassical logics. Exhibiting this common core on all the three levels of syntax,
semantics and deduction, enables us to create a general framework for represen-
tation, investigation and implementation of nonclassical logics. Relational formal-
ization of nonclassical logics is performed on the following methodological levels:

Syntax: With the formal language of a logic L there is associated a language
of relational terms.

Semantics and model theory: With logic L there is associated a class of re-
lational models for L and in these models the formulas from L are interpreted
as relations.

Proof theory: With logic L there is associated a relational logic Re(L) for L
such that its proof system provides a deduction method for L.

In relational representation of logical systems we articulate explicitly infor-
mation about both their syntax and semantics. Generally speaking, formulas
are represented as terms over some appropriate algebras of relations. Each of
the propositional connectives becomes a relational operation and in this way
an original syntactic form of formulas is coded. Semantic information about a
formula which normally is included in a satisfiability condition for that formula,
consists of the two basic parts: first, we say which states satisfy the subformulas

L Of course, there are much more numbers which cannot be represented, but this is
irrelevant for this example.
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of the given formula, and second, how those states are related to each other via
an accessibility relation. Those two ingredients of semantic information are of
course interrelated and unseparable. In relational representation of formulas the
terms representing accessibility relations are included explicitly in the respective
relational terms corresponding to the formulas. They become the arguments of
the relational operations in a term in the same way as the other of its subterms,
obtained from subformulas of the given formula. In this way semantic informa-
tion is provided explicitly on the same level as syntactic information. Thus the
relational term corresponding to a formula encodes both syntactic and semantic
information about the formula.

In the paper we develop a relational logic Re(OM) based on algebras of rela-
tions generated by some relations specific to the frames of OM-logics. We define
a translantion from the language of O M-logics to the language of Re(OM ). Next,
we construct a deduction system for Re(OM) in the Rasiowa-Sikorski style [14].
The Rasiowa-Sikorskisystems are dual to the Tableaux systems, as shown in [15,8].
The system includes the rules of the classical relational logics and the rules specific
to the relations from the frames of OM-logics. We present the basic steps of the
proof of completeness theorem for this system The modular structure of the sys-
tem enables us to use the existing implementation of relational proof systems [5]
and to include to it the specific rules of Re(OM) logic.

The structure of the paper is the following: The syntax and semantics of
the language OM is given in Section 2, then a relational language for order-
of-magnitude reasoning, Re(OM), is presented in Section 3. Next, in Section 4
a translation function is given, which transforms a multimodal formula in OM
into a relational formula in Re(OM). Then, Section 5 introduces the relational
proof system for the logic Re(OM ), together with proofs of some axioms of the
proof system MQY of [3]. The next two sections are devoted to the soundness
and completeness of the relational proof system. Finally, some conclusions are
presented, together with prospects of future work.

2 The Modal Language OM

In our syntax we consider three types of modal connectives, each one associated
to certain order relation: O and O to deal with an ordering <, the connectives
B and W to deal with a second ordering [ and the connectives ] and [ to deal
with a third order relation < (the specific conditions required on comparability
and negligibility relations, C and <, will be stated later).

The intuitive meanings of each modal connective is as follows:

@A means A is true for all numbers which are greater than the current one.

WA is read A is true for all numbers which are greater than and comparable
with the current one.?

OA means A is true for all numbers which are less than the current one.

2 Note that the use of “comparable” has to be understood as the comparability relation
in OMR, hence it is related to the ordering C introduced in Definition 1.
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WA means A is true for all numbers which are less than and comparable with
the current one.

B A means A is true for all numbers with respect to which the current one is
negligible.

[l A means A is true for all numbers which are negligible with respect to the
current one.

The intuitive description of the meaning of the negligibility-related modalities
deserves some explanatory comments. Depending on the particular context in
which we are using the concept of negligibility, several possible definitions can
arise. We have chosen to use an intrinsically directional notion of negligibility,
in that negligible numbers are always to the left. There are other approaches in
which the negligibility relation is bi-directional, so a point = can be negligible
wrt points smaller than z and also wrt points greater than z, for instance, in
[4,17] it is the absolute value of an element that is considered before considering
the negligibility relation, whereas in [1] yet another definition of bidirectional
neglibility is presented.

The syntax of our initial language for qualitative reasoning with comparability
and negligibility is introduced below:
The alphabet of the language OM is defined by using;:

— A stock of atoms or propositional variables, V.

— The classical connectives —, A, \/ and = and the constants T and L.
— The unary modal connectives D D I I & and &@.

— The constants ot and a~.

— The auxiliary symbols: (, ).

Formulas are generated from VU {a*,a™, T, L} by the construction rules of
classical propositional logic adding the following rule: If A is a formula, then so
— — — «— — «—
are JA, OJA, A, BA A and [ A.
The mirror image of Ais the result of replacing in A each occurrence of ﬁ,
— = = = — = =
O, B & & a" a, by D D I, W00, o, respectively. We
shall use t the symbolb <> <> 0 0 @ and ©® as abbreviations respectively of
—|D—| —|D—| —|.—| —|.—| —|H—| and —|.—|

Observe that due to the presence of constants o~ and a™ in the language,
the logic OM belongs to the family of logics with nominals. The use of nominals
in modal logic originated in the papers [12,13,7]. Since then the use of nominals
in modal languages is a usual practice, which increases their expressibility as it
was already shown in [13]. More recently, hybrid logics make also an extensive
use of nominals.

The intended meaning of our language is based on a multi-modal approach,
therefore the semantics is given by using the concept of frame. Intuitively, the
carrier of our frames can be seen as the real line, although in our approach we
will only require it to be a linearly ordered set.

l

Definition 1. A multimodal qualitative frame for OM (or, simply, a frame)
is a tuple X = (S, 4+, —a, <, <), where
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1. (S,<) is a linearly ordered set.
2. +a and —« are designated points in S (called frame constants) which allow
to form the sets OBs™, INF, and OBS™ that are defined as follows:

OBs” ={z eS|z < —a};
INF={z €S| —a<z<+a};
OBsT ={z €S| +a <z}

3. The negligibility relation < is a restriction of <, i.e. < C <, and satisfies:
(i) If x <y < z, then x < z
(i)) If t <y <z, thenx < z
(i1i) If x <y, then either x ¢ INF or y ¢ INF

The comparability relation x C y is used an abbreviation of “x < y and x,y € EQ,
where EQ € {INF, OBST,OBS™ } ”.

It is worth noticing that as a consequence of items (i) and (ii) we have the
transitivity of <; on the other hand, item (iii) states that two non-observable
elements cannot be compared by the negligibility relation.

Definition 2. Let X' be a multimodal qualitative frame, a multimodal qualita-
tive model on X' is an ordered pair M = (X, h), where h is a meaning function
(or, interpretation) h: V — 25

Any interpretation can be uniquely extended to the set of all formulas in OM
(also denoted by h) by means of the usual conditions for the classical boolean
connectives and the constants T and L, and the following conditions for the
modal operators and frame constants:

h(ﬁA) ={zx €S|y € h(A) for all y such that z < y}
h(iA) ={zx €S|y € h(A) for all y such that = C y}
h(A) ={z e S|yeh(A) for all y such that z < y}
h(ﬁA) ={z e S|yeh(A) for all y such that y < x}
h(iA) ={x €S |yeh(A) for all y such that y C z}
h(A) ={x €S |yeh(A) for all y such that y < z}

h(a™) = {+a}

ha™) ={-a}

The concepts of truth and validity are defined in a straightforward manner.

3 The Relational Language Re(OM)

Syntax of Re(OM)
The alphabet of the language Re(OM) consists of the disjoint sets listed below:

— A (nonempty) set OV = {x,y, z,...} of object variables.
— A set OC = {a~,a™} of object constants.
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— A (nonempty) set RV = {P,@Q, R,...} of binary relation variables.
— A set RC = {1,1',87,RT < [, <} of relation constants.
— A set OP = {—,U,N,;, !} of relational operation symbols.

The relational constants 1 and 1’ are intended to represent the universal rela-
tion and the identity relation, respectively. We use here the traditional notation
for these constants originated in [16], and commonly used in the field of relation
algebras.

Definition 3

— The set of relation terms RT is the smallest set of expressions that includes
all the relational variables and relational constants and is closed with respect
to the operation symbols from OP.

— The set FR of formulas, consists of expressions of the form xRy where x,y
denote individual (or object) variables or constants and R is a relational
term built from the relational variables and the relational operators.

The defined relations >, < and > will be used hereafter in order to simplify some
relational formulas. The definition of these relations is given as follows:

> =< ! <:=<ul >=<"tut

Semantics of Re(OM)
A model for Re(OM) is a pair M = (W, m) where W = W' U {—a, +a} for a
nonempty set W’ and m is a meaning function such that:

1. Assigns elements of W to object constants as follows:
(a) m(a™) = -«
(b) m(a™) =+«
2. Assigns binary relations on W to relation constants as follows:
For relation constants we should have:
(a) m(1) = W x W
(b) m(1') = {(w,w) | we W}

(¢) m(N") = {—a} x W

(d) m(X+) = {+a} x W

(e) m(<) is a strict linear relation in W satisfying that (—o, +a) € m(<).

Notice that the linearity of m(<) allows to divide W into the classes

OBs~, OBs™ and INF, defined as in the previous section.

(f) m(C) = m(<)N ((OBs™ x OBs™) U (INF x INF) U (OBs™ x OBs"))
Notice that, as a consequence of this requirement, m(C) turns out to
inherit irreflexivity, left and right linearity and transitivity from m(<).

(g) m(=) is a restriction of m(<), i.e. m(<) C m(<), which satisfies the
following frame conditions:

e

Va,Vy if (x,y) € m(<) and (y, z) € m(<), then (z,2) € m(=<) (fe-i)

Va,Vy if (x,y) € m(<) and (y, z) € m(<), then (z,2) € m(=<) (fe-ii)
Vz,Vy if x € INF and (z,y) € m(<), then (+a,y) € m(<U1") (fe-iii)
Vz,Vy if x € INF and (y,z) € m(<), then (y,—a) € m(< Ul") (fe-iv)
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Notice that these conditions mimic the requirements (3.i)—(3.iii) in the
definition of frame for OM. The required conditions ensure that m(<)
is irreflexive and transitive.
3. Assigns binary relations on W to relation variables.
4. Assigns operations on binary relations to the relational operation symbols
in OP.
5. Extends homomorphically to the set of terms in the usual manner:
(a) m(RUS) =m(R)Um(S) (union of relations)

(b) m(RNS)=m(R) Nm(S) (intersection of relations)
(¢c) m(R;S) =m(R);m(S) (composition of relations)
(d) m(—R) =—m(R) (opposite relation)

(e) m(R™Y) =m(R)~! (inverse relation)

We list below a set of frame conditions which are entailed by the requirements
on the function m and will be used later:

VaVy, (z,y) € m(X™) if and only if (x, —a) € m(1") (fc-1)

VaVy, (z,y) € m(RT) if and only if (z,+a) € m(1") (fc-2)

Vz, if (z,—a) € m(1’) then (z,+a) € m(<) (fc-3)

Va,Vy if (z,—a) € m(1") then (z,y) ¢ m(C) (fc-4)

Vz,Vy if (y, +a) € m(1’) then (z,y) ¢ m(C) (fc-5)

VaVy, if © € INF and (z,y) € m(C), then (—a,y) € m(<) (fc-6)

VaVy, if © € INF and (z,y) € m(C), then (y, +a) € m(<) (fc-7)

VaVy, if (z,—a) € m(<) and (x,y) € m(C), then (y, —a) € m(< U1’") (fc-8)

VaVy, if (z,y) € m(<) and (y, —a) € m(< U1’), then (z,y) € m(C) (fc-9)
VaVy, if (z,y) € m(<) and (+a,z) € m(< U1"), then (z,y) € m(C) (fc-10)
VaVy, if (x,y) € m(<) and « € INF and y € INF, then (z,y) € m(C) (fc-11)
Va,Vy if (z,y) € m(C), then (z,y) € m(<) (fe-12)

Furthermore, it can be proved that the fulfillment of all the frame conditions,
plus the requirements of < being strict and linear entail the properties from 2.c
to 2.f in the definition of model. This fact will be used later during the proof of
completeness.

Finally, the notions of satisfiability and validity in the relational logic are
introduced as follows:

Definition 4

— A valuation in a model M = (W, m) is a function v: QVUOQC — W such that
v(c) = m(c) for all constant symbols.> We say that v satisfies a relational
formula xRy if (v(x),v(y)) € m(R).

— A relational formula xRy is true in M if every valuation in M satisfies
xRy. Moreover, if xRy is true in every model, we say that xRy is valid in
the relational logic.

3 Notice the use of OS to denote the union of OV and OC.



112 A. Burrieza, M. Ojeda-Aciego, and E. Orlowska

4 Translation from OM to Re(OM)

A translation function ¢ from the language of OM to the language of Re(OM)
is introduced in this section.

The translation function ¢: IT — RV from the set of propositional variables to
the set of relational variables is defined for propositional connectives as follows:

t(p) == P;1 t(—A) = —t(A)
t(AV B) :=t(A)Ut(B) t(AAB) :=t(A)Nt(B)
H{A — B) = —t(A) Ut(B)
For the modal connectives, the translation is based on the general schema,
which translates a modality based on a relation R as follows:

t(R)A) := R;t(A)  H([R]A) := —(R; —t(4))

Specifically, in our case we have the following for the future connectives (for
the past connectives the translation is similar):

— (S A) =<i1(A) — (WA = (st
~ H(04) = ~(<i -1(4)) ~ 1(84) ==:1(4)
~ H(#4) =Ci1(4) ~ HEA) = (< -H(4)

Finally, the a-constants are translated, as expected, into the N-relational con-
stants:
t(a”)=N" t(a™) =R*

Proposition 1. In relational logic Re(OM) we can verify both validity and en-
tailment of logic OM , namely

1. A formula A of logic OM is valid iff a formula xt(A)y of the corresponding
logic Re(OM) is valid, where x,y are any object variables such that x # y,

2. Ar,.. An E A in OM iff z (1;—(t(A1) N - NH(AR)); 1UE(A)) y is valid
in Re(OM).

Notice that this proposition states that a deduction system of the relational logic
can serve as a theorem prover for the logic OM.

5 Relational Proof Systems for Modal Re(OM)

Relational proofs have the form of finitely branching trees whose nodes are finite
sets of formulas. Given a relational formula x Ay, where A may be a compound
relational expression, we successively apply decomposition or specific rules. In
this way we form a tree whose root consists of xAy and each node (except the
root) is obtained by an application of a rule to its predecessor node. We stop
applying rules to formulas in a node after obtaining an axiomatic set, or when
none of the rules is applicable to the formulas in this node. Such a tree is referred
to as a proof tree for the formula xAy. A branch of a proof tree is said to be
closed whenever it contains a node with an axiomatic set of formulas. A tree is
closed iff all of its branches are closed.
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5.1 Rules for the Calculus of Binary Relations with Equality

In the present section we, first, recall the deduction rules for the classical rela-
tional logic [10], that is the logic whose formulas Ay are built from the terms
A generated by relation variables and constants 1 and 1’ with the standard rela-
tional operations of union, intersection, complement, composition and converse.
Second, we define the specific rules that characterise the specific relations of
Re(OM). The rules apply to finite sets of relational formulas. As usual, we omit
the set brackets when presenting the rules. The rules that refer to relational
operations are decomposition rules. They enable us to decompose a formula in a
set into some simpler formulas. As a result of decomposition we usually obtain
finitely many new sets of formulas. The rules that encode properties of relational
or object constants are referred to as specific rules. They enable us to modify a
set to which they are applied, they have a status of structural rules. The role of
axioms is played by what is called axiomatic sets.

A rule is said to be correct in Re(OM) whenever the following holds: the
upper set of formulas in the rule is valid iff all the lower sets are valid, where the
validity of a finite set of formulas is understood as a validity of the (metalevel)
disjunction of its elements. It follows that the branching in a rule is interpreted
as conjunction.

As usual, we present the rules in a form of schemes. A scheme of the form
A/B, where A and B are finite sets of formulas represents a family of rules
I'UA/I' U B for any finite set I" of formulas, and similarly for the branching
rules.

In order to introduce here the standard rules for the calculus of binary re-
lations, note that the comma is interpreted disjunctively, whereas the vertical
bar is interpreted conjunctively and that a variable is declared new in a rule
whenever we require that it does not appear in any formula above the line in
the rule.

Firstly, we consider the rules for U:

z(RUS)y z—(RUS)y

xRy, xSy (L) x—Ry | z—Sy (=V)
Rules for N

(RN Sy z—(RNS)y

() (=n)

xRy | xSy x—Ry, x—Sy

Rules for double complement and inverse relation

TRy
yRx

r—R™ 1y
y—Rx

x——Ry

ory. ) () C

Now, we state the rules for the composition

z(R; S)y

ble (-
zRz,x(R; S)y | 25y, x(R; S)y z any variable (;)
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r—(R; S)y

o Rz, 2~ Sy z new variable (—;)
Finally, the rules for equality are introduced, where z is any variable

xRy
xRz, xRy | yl'z, xRy

TRy

(1'-1) ,
x1'z, xRy | 2Ry, xRy

(1'-2)

5.2 Specific Rules for Re(OM)

Here we introduce the rules for handling the specific object constants and relation
symbols <, and < of the language Re(OM).

The rules below interpret adequately the behaviour of the relation constants
N~ and N*:

NS NS

Y (c1a) TRV (c1p)
zl'a™,zR"y z—1'a”,z—R"y

Nt _nt

Y (c2a) TR (e2b)

xl'a™, 2Rty z—1at, -ty

The following rule expresses that o~ precedes a™

x <at

c3
o™,z < at (c3)

The remaining rules are stated below. The numbering of the rules reflects
their relationship with the corresponding frame conditions:

r—C r—C
Y (ca) Y (o)
zl'a™ z—Cy yl'a™, z—Cy
r<a ,a” <z - Cy (c6) r<a ,at <z - Cy (e7)
r<a ot <z, 2-Cy,y<a” r<a,at <z,2— Cy,a” <y
- <ga-C
o <uz,T y (c8)
a <z, x—Cy,a <y
r— <y,a < r— <y, r<al
Y Y (e9) hEs (c10)
r— <y,a” <y,x— CY r— <y,x<at,r—Cy
$§OZ77OZ+§(E,y§O{77OZ+§y,1’Ey (C]_]_) 1'—Ey 12
r<a ot <zy<a,at<yzCyz<y r—Cy, r—<y (c12)

We include below the rules for irreflexivity and linearity properties of the
relation constant <.
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(Iref) (Lin)

r<x y—<z | x—<y | xz—1'y

The transitivity for the three relation constants is stated by the rule below,
where R € {<,C, <}

xRy
Tr
xRy, xRz, | xRy, 2Ry zany var - (Tran)

The following cut-like rule will be needed later in the proof of completeness

(cut- C)
zCyle—Cuy

Finally, the following rules for < reflect the frame conditions for negligibility:

Tz y any var (n-i)
=<y, r=<z|ly<zx<z

r =<z

any var (n-ii
m<y7x<z|y<z,ac—<zy Y (n-ii)

at <y
(n-iii)
a~ <mat<ylr<at,at<yl|lz <y at <y
< o
y=o _ (n-iv)

a-<my<a |lz<at,y<a |Jy<zy<a

Axiomatic Sets

An axiomatic set is any finite set of formulas which includes a subset of either
of the following forms for a relational term R and x,y are any object variables.
We have to introduce schemas of axiomatic sets for the universal relation, the
identity relation and linearity, together with others which allow us to adequately
interpret the constant relation symbols N, together with the symbols +a.

The axiomatic sets of Re(OM) state valid formulas of the system, the follow-
ing postulate the behaviour of the universal relation 1 and the equality relation
1’, the tertium non datur, and the conditions related to the constant symbols
o~ and a™ are expressed by

{zly} {z1'z} {z—Ry, zRy} {a” <at}

where x,y € OS and R € RT.
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5.3 Proving Some Axioms of MQN

In this section we show the relational proof system at work, and prove some
of the axioms of the system M QY of qualitative order-of-magnitude reasoning
presented in [3].

Ezample 1. Axiom (c4): a= — mA
The translated version of the axiom in the relational language is

N7 U—(C;—(4;1))

We consider (—R~U—(C; —(4; 1)))y, apply the rule (U), and then, the following
tree is generated:

r—=R7y,z—(C; 4 1)y
(c1b)
x—N"y,z—1a, z—(C;—H4;1))y )

(=)

x—Nyxz—1la ,2—Cz z——(A41)y

x—N"yx—1a ,2—C 2z, 2(4; 1)y

(;) any w
IzAw | T, wly

where ' =x —N"y,z —1'a”,2— C z.
The right branch closes because of wly, whereas rule (c4) applies to the left
branch against z —1’a™, obtaining

z—1'a” , zl'a™ ,2—C z,zAw
which closes.

— —
Ezample 2. Axiom (cl): Qa~ Va~ VvV $a~

(>R )y, aR7y, 2(<GR7)y

p < am N a(> (<R )y | a R ety (i ga(<it )y )

where variable z has been instantiated to o~ in the application of the rule.
Note that the right branch closes, since it contains an axiomatic set for R™. On

the other hand, the left branch continues as follows, where we use I" to denote

the pair of formulas z(>; X7y, x(<; N7y

r<a ,eNTy, (> Ry, z(<; Ry
(:)=/a”]

r<a, X"y, x>a , ['|z<a ,z2X7y, a N7y, I

the left branch closes after applying (cla) and linearity, whereas the right branch
closes because of the axiomatic set for X.
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6 Soundness of the Relational Proof System

Recall that a rule is said to be correct if the validity of the upper set entails the
validity of the lower set and vice versa.

The frame conditions stated in Section 3 are used here in order to prove sound-
ness of the relational proof system: we will show the equivalence between the
correctness of the specific rules of Re(OM) and the validity of the corresponding
frame conditions. As a result, since all the frame conditions hold in every model
of Re(OM), we get that the specific rules of Re(OM) are all correct.

Proposition 2

1. For k € {1,2}, rules (cka) and (ckb) are correct for a deduction system of
Re(OM) iff in every model of Re(OM) condition (fc-k) is satisfied.

2. For k € {3,...,12}, rule (ck) is correct for a deduction system of Re(OM)
iff in every model of Re(OM) condition (fc-k) is satisfied.

3. For j € {i,ii,iii,iv}, rule (nj) is correct for a deduction system of Re(OM)
iff in every model of Re(OM) condition (fc-j) is satisfied.

Proof. 1. Let us prove the case of (fc-2), since the other is similar:

Assume that the rules are correct and, and let us prove the two implications
which form the frame condition. We proceed by contradiction and consider that
the frame condition

VaVy, (z,y) € m(XT) if and only if (x, +a) € m(1) (fc-2)

does not hold.

Reasoning by cases, on the one hand, suppose that for some objects a,b we
have (a, +a) € m(1’) and (a,b) ¢ m(XRT). Consider the following instance of rule
(c2a), in which we add the context I' = z—1’a’™ to both the upper and lower
sets:

Ry, z—1'a™
Xty xl’a™, 2—1at

The lower set is valid, so since the rule is correct, the upper set must be valid,
that is, the formula VaVy(zX*y V 2—1'a™) is valid in first order logic. But the
valuation v such that v(z) = a and v(y) = b is a counterexample.

On the other hand, suppose conversely that for some objects a,b we have
(a,b) € m(RXT) and (a,+a) ¢ m(1’). Consider the following instance of rule
(¢2b), in which we add the context I' = z1’a™ to both the upper and lower sets:

zl'a™, xRty
zl’at z—1"at, 2—Nty

The lower set is valid, so since the rule is correct, the upper set must be valid,
that is, the formula VaVy(z1’a™ vV x—XTy) is valid in first order logic. But the
valuation v such that v(z) = a and v(y) = b is a counterexample.

Reciprocally, assume the validity of the frame condition (fc-1T7) and let us
prove that both rules (c17a) and (c1™b) are correct. Clearly, validity of the
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upper set of the rules implies validity of the lower set. Now, assuming validity of
the lower set, validity of the upper set follows easily from the frame condition.

2. For k = 3.

Assume that the rule is correct and suppose that (fe-3) does not hold, i.e.,
for some object a we have (a,—a) € 1’ and (a,+a) ¢<. Consider the following
instance of rule (c3)

r<at,z—1a”

zl'a”,z <at,z—1'a”

Clearly, the lower set is valid, so since the rule is correct, the upper set must be
valid. This means that the formula Vz(z < a™ V z—1'a™) is valid in first order
logic. But the valuation v such that v(x) = a does not satisfy that formula, a
contradiction.

Reciprocally, assume (fc-3). Validity of the upper set of the rule implies va-
lidity of the lower set. Assuming validity of the lower set, validity of the upper
set follows from the frame condition.

The proof for the rest of the cases is similar, we just introduce the context to
be used when considering the instance for the corresponding rule.

For k = 4, assume I' = 2(—1")a".

For k = 5, assume " = y(—1")a™.

For k = 6, assume I' = a~ < y.

For k=7, assume I' =y < at.

For k =8, assume I' =y < a~.

For £ =9,10,11, assume I' =z C y.

For k =12, assume I' =z < y.

3. For j = 0, the context I' = x—= y proves that the rule (n-0) is correct if
and only if < is a restriction of <.

For j = ¢, take the context x—< y,y—< z.

For j = @i, consider ' = x—< y,y—< 2

For j = dii, assume I' =z < a”,at <z,2—< 9.

For j =iv, assume ' =z < a™,a’ < z,y—< . g

The rest of the rules are the standard ones for defining properties related of
order relations and the equality. As a result, we have the following proposition:

Proposition 3

1. All the rules of the deduction system for Re(OM) are correct.
2. All the axiomatic sets are valid.

The soundness theorem follows from the correcteness of the rules and from va-
lidity of the axiomatic sets of the system.

Proposition 4 (Soundness). If there is a closed proof tree for a formula zAy,
then xAy is valid.
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7 Completeness of the Relational Proof System

A completeness proof for dual tableaux systems involves a notion of a complete
proof tree. Intuitively, a proof tree is complete if all the rules that can be applied
to its nodes have been applied. A non-closed branch b of a proof tree is complete
whenever it satisfies some appropriate completion conditions. The conditions say
that given a rule applicable to a node of b, there is a node on b which contains
a set of formulas resulting from an application of that rule.

Completion Conditions. A non-closed branch b of a proof tree is said to be
complete whenever for all z,y € OS it satisfies the completion conditions on
Table 1.

It is known that any proof tree can be extended to a complete proof tree. A
complete and non-closed branch is said to be open.

Let b be an open branch of a proof tree. We define a branch structure M® =
(Wb, mb):

wb=0vuoc
m®(R) = {(x,y) € W® x W’ | zRy ¢ b} for R € RVURC
mP(at) =o', mP(a™) =a~

and m® extends homomorphically to all the relation terms.

Let v’: OV — W?® < OC be an identity valuation, i.e., v’(x) = z for every
object variable x.

Throughout the rest of the paper we shall often write R® for m®(R).

Note that, as in the case of first order logic with equality, the relation 1’° can
only be proved to be an equivalence relation.

Lemma 1. The relation 1'° is an equivalence relation.

Proof. 1'* is reflexive: We have x1’z ¢ b (otherwise b would be closed) which
means, by definition of m®, that (z,z) € 1”°.

1’* is symmetric: In order to reach a contradiction, consider z,y € W? such
that (x,y) € 1’° but (y,z) ¢ 1’°, then by definition of m® we have both z1'y ¢ b
and yl’z € b. Now from the completion condition (cpl 1’-1), we have either
yl’y € b or 1’y € b. Since b is open, we obtain x1’y € b, a contradiction.

1" is transitive: Consider z,y,z € W? such that (z,y) € 1, (y,2) € 1"
and (z,z) ¢ 1", which means, by definition of m®, that z1'y ¢ b, y1'z ¢ b and
x1’z € b. Given z1'z € b, from the completion condition (cpl Tran) we have
either 1’y € b or y1’z € b and we reach a contradiction in both cases. a

In order to obtain the expected behaviour of 1% as the equality relation, we
consider a quotient model [M®];» = ([W?]0,n) where:

— [W?)1 is the set of equivalence classes of W wrt 17°.
- n(R) = {([$]1/b7 [’y]llb) | (x,y) S Rb} fOI' R S RT.
— Valuation v in [M®];s is such that u(z) = [z]ys.
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Table 1. Completion conditions

(epl U) If z(RU S)y € b, then both xRy € b and Sy € b

(epl —U) If z — (RUS)y € b, then either z — Ry €borxz — Sy € b

(cpl N) If (RN S)y € b, then either xRy € b or xSy € b

(epl —N) If z — (RN S)y € b, then both z — Ry € band z — Sy € b

(cpl ——) If z ——Ry € b, then zRy € b

(cpl 7') If xR 'y € b, then yRx € b

(cpl = V) Ifz —R 'y cb theny— Rz €b

(cpl ;) If z(R;S)y € b, then for every z € OS, either xRz € b or zSy € b

(cpl —;) If x — (R;S) € b, then for some z € OS both x — Rz € band z — Sy € b

(epl 1'-1) If zRy € b, then for every z € OS either xRz € bor yl'2 € b

(cpl 1'-2) If xRy € b, then for every z € OS either 1’2 € b or zRy € b

(cpl cla) If 2R7y € b then z1'a™ € b

(cpl clb) If x—N"y € b, then z—1'a™ € b

(cpl c2a) If 2Ry € b then z1’at €b

(cpl ¢2b) If z—RTy € b, then z—1'a™ € b

(cpl ¢3) Ifz <a' €bthenzl’'a™ €b

(cpl 4) If z—C y € bthen zl’'a™ €b

(cpl ¢5) If z—C y € b then yl'a™ €b

(cpl b)) Ifz <a~ €ba” <zxcbandx—-Cycb theny <a” €b

(eplc?) Ifz <a €bat <zcbandz—Cyecb thena® <ycbh

(cpl 8) If o~ <zx€bandax—Cy€bdb, thena” <yeb

(cpl 9) Ifbothz—<y€ebanda” <y€b, thenz—Cy€Eb

(cpl c10) If bothz—<y€band z < at €b, thenz—Cyeb

(cplcll) If r <a” €ba"<zeby<a €bat<ycbandzC y € b then
r<yeb,

(eplcl2) fz—Cy€b thenz—<yebd

(cpl cut-C) EitheraCyc€borz—Cy€E Db

(epl n-0) Tx<y€b, thenx <y e€b

(cpl n-i) If z < z € b, then for every y € OS either x <y Ebory <z €b

(cpl n-ii) If x < z € b, then for every y € OS either x <y €bory <z €b

(cpl m-iif) Ifat <y €b, thena” <z€borz<a €borz<yeb

(cpl n-iv) Ify<a~ €b, thena <z €borx<a €bory<zcb

(cpl Iref) z<z€b

(cpl Tran) If zRy € b, then for every z € OS, either xRz € bor zRy € b (where
Re {<,C,<}).

(cpl Lin) Eitherx—<y€borz—1yc€bory—<z€b

Now, we have the following proposition:
Proposition 5

1. For every formula xAy, [M®)1n,u = zAy iff M° v° = xAy.
2. [M*)y» is a model of Re(OM).
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Proof.

1. This condition is easily verified using the corresponding definitions.

2. We only give the proofs for some conditions on the model; the proofs of the
remaining conditions are similar.

() (1) = [W¥]yn x [W¥],
Since b is open, zly ¢ b for all 2,y € OS. So, by definition of m®, we get
(z,y) € mb(1); note that this means that M?® v® = 21y. Now, by the item 1
above, we have [M®],»,u = xly. Hence ([x]10, [y]10) € n(1).

(©) n(7) = {la~ 1w} % [W¥]y
We have that

([0, [y]10) € n(RT) if and only if [M]1e,u = 2Ry
if and only if M?, v = 2Ry (by item 1 above)
if and only if (z,y) € m®(R™)
if and only if «R"y ¢ b.

On the other hand, we have

[@]1n # [a" |1 if and only if ([z]ye, [@7]1n) ¢ n(1)
if and only if [M®°)yn,u £ 21'a” (by item 1 above)
if and only if M? v b z1'a”
if and only if x1'a”™ € b.

If either n(R™) C {[a"]in} x [WP]1n or n(R7) D {[a"]1n} x [WP]1nwould
not hold, then completion conditions (cpl cla) and (cpl c1b) would generate
a contradiction.

In the proofs of the remaining conditions we shall abuse the notation and the
symbols of quotient classes will not be written, and moreover, we shall write A°
instead of n(A), and W? instead of [W?]ys.

fe-3 Let us show that Vo € WP, if (z,a7) € 1% then (z,at) €<®.
Assume that (z,a~) € 1° and suppose that (z,at) ¢<’. By definition of
m® we get x1'a” ¢ b and x < ot € b. From the completion condition (cpl
c2) we get x1’a” € b. Hence (z,a7) ¢ 1%, a contradiction.

fe-6 Va,y € WP if 2 € INF® and (r,y) € CP then (a™,y) €<’.
Assume that (o, z) €<?, (z,a) €<’ (that is, z € INF®) and (z,y) €.
Suppose also that (a~,y) ¢<®. By definition of m®, we get a= < = ¢ b,
r<at ébrCyé¢band a <y € b Now we havey < a~ ¢ b
(otherwise b should be closed). From the completion condition (clp ¢6) we
obtain z < a” ¢ borat <x ¢borx— Cy ¢ b From the completion
condition (cpl cut-C) we get  C y ¢ b and, by definition of m?, we have
that (z,a7) €<b or (a™,2) €<’ or (z,9) ¢C°. In any case we easily reach
a contradiction.
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fe-i Yo,y € WP, if both (z,y) €<’ and (y,2) €<’ then (z,2) €<".
Assume that (z,y) €<’ and (y,2) €<’. Thenz <y ¢ bandy < z ¢ b.
If it were (x,2) ¢=<’ also, then # < z € b. By the completion condition
(clp n-7) we obtain either z < y ¢ bor y < z ¢ b. In both cases we get a
contradiction.
fe-iii Va,y € WP, if z € INF® and (z,y) €<’ then (a™T,y) e<’.

Assume that (a=,z) €<’ (z,aT) €<’ and (z,y) €<’ and also (at,y)
¢<’. Then, by definition of m®, we obtain a~ < z ¢ b,x < at ¢ b,z <
y ¢ band ot <y €b. Given a <y € b, by the completion condition (cpl
n-ii7) we have that = <z € bor z < at € bor x < y € b, which lead us
a contradiction in any case. a

The following proposition has a standard proof by induction on the structure of
term A.

Proposition 6. For every open branch b of a proof tree and for every formula
xAy the following holds: M® v’ |= x Ay implies xAy ¢ b.

Now the completeness theorem follows.

Theorem 1 (Completeness). If a formula is valid, then there is a closed proof
tree for it.

Proof. Assume that a formula zAy is valid. Suppose all the proof trees for x Ay
are not closed. Take any of those trees. We may assume that it is complete.
Let b be one of its open branches (which exists by the Konig’s lemma). Since
xAy € b, by the previous proposition we know that v® does not satisfy zAy in
M?P. Therefore also the valuation u in the quotient model [M?]; does not satisfy
x Ay, a contradiction. O

8 Conclusions

A relational deduction system for the logic OM of order of magnitude reasoning
has been presented. OM is a propositional logic with modal operators determined
by three accessibility relations related to each other and their converses. We
defined a translation from the language of OM to a target relational language
such that both accessibility relations from the frames of OM and the formulas
of OM became the relational terms. All the frame conditions on the accessibility
relations were postulated as the axioms in the target language.

Two groups of deduction rules have been defined: those that characterize the
relational operators of the target language which corresponded to the propo-
sitional operators of OM, and those that reflect the axioms imposed on the
accesibility relations.

We proved completeness of our proof system adjusting a standard method to
the specific features of OM. The key steps of the proof include a development of
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the completion conditions associated with every rule which enable us to express
the notion of a complete proof tree (or equivalently a saturated proof tree) and a
development of a branch structure determined by a branch of a proof tree which
must then be proved to be a model of the target relational language.

An implementation of translation procedures from the languages of nonclas-

sical logics to relational languages is presented in [6]. Another recent implemen-
tation of the core rules of relational proof systems is described in [5]; further
work is planned on relational proof systems for variants of OM logic and on
implementation of the specific rules for OM within the latter system.
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Abstract. Logics of binary relations corresponding, among others, to
the class RRA of representable relation algebras and the class FRA of
full relation algebras are presented together with the proof systems in
the style of dual tableaux. Next, the logics are extended with relational
constants interpreted as point relations. Applications of these logics to
reasoning in non-classical logics are recalled. An example is given of a
dual tableau proof of an equation which is RRA-valid, while not RA-valid.

1 Introduction

We present a survey of relational logics which provide a general framework for
specification and reasoning (verification of validity, model checking and entail-
ment) in non-classical logics. They also provide a common background for a
broad class of relational structures used in computer science. We present the
logics step by step, starting with a logic of binary relations with basic relational
operations of relation algebras (RL-logic), then expanding the language with the
constant 1 (RL(1)-logic), next with the constant 1’ (RL(1")-logic), then with the
constants 1 and 1’ put together (RL(1,1’)-logic), and finally adding relational
constants interpreted as point relations (RL,(C)-logic and RLg4¢(C)-logic). The
logics are based on various classes of models which differ in the interpretation of
relational constants, for example, 1 may be interpreted as a universal relation or
as an equivalence relation, 1’ may be interpreted as an equivalence relation or
an identity. We present completeness theorems with respect to all those classes
of models. We also show which classes of models of RL(1,1")-language enable us
to simulate the RRA-validity and FRA-validity. Logic RL(1,1’) with the class of
models corresponding to full relation algebras plays the role of a generic logic
within which many non-classical logics can be expressed. Its applications to
modal logics originated in [15]. Then, after few more examples of logics treated
in a relational framework (see e.g., [16], [17]), a paradigm ’formulas are relations’
has been formulated in [18]. Since then relational proof systems have been devel-
oped for several theories, see e.g., [3], [4], [8], [11], [12], [13], [19], [20], [21], [10]
and [9]. Any particular relational proof system consists of the deduction system
for RL(1,1’) augmented with the specific rules which reflect properties of accessi-
bility relations from the models of a non-classical logic in question. An important
feature of RL(1,1)-logic is that it is expressive enough for performing the major
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logical tasks, namely verification of validity, entailment, model checking and sat-
isfiability, as it is shown in Sections 10, 11, 12, and 13. A correspondence theory
for relational proof systems is considered in [14]. A general method of defining
deduction rules reflecting various constraints imposed on relations in the models
of RL(1,1’)-logic is presented in that paper.

Recent implementations of the proof system for RL(1,1')-logic are described
in [2] and [6]. The first one is available at http://logic.stfx.ca/reldt. In [5]
an implementation of translation procedures from the languages of non-classical
logics to relational languages is presented. The system can be downloaded from
http://www.di.univaq.it/TARSKI/transIt/. For the algebraic background of the
relational logics see [24], [25] and [23].

2 A General Scheme of Relational Logics

Each relational logic L is determined by its language and its class of models. In
this paper we consider logics of binary relations. There are two kinds of expres-
sions of relational languages: terms and formulas. Terms represent relations and
formulas express the facts that a pair of objects stands in a relation.

The vocabulary Y of L-language consists of the symbols from the following
pairwise disjoint sets:

— a countable infinite set of object variables OV ;

— a countable (possibly empty) set of object constants QC; ;

— a countable (possibly empty) set of relational variables RV ;

— a countable (possibly empty) set of relational constants RC;

— a set of relational operation symbols OP, = {—,U,N,;,” 1}, where —, U, N
are Boolean operations, ; is a relative product, and ~! is the operation of
converse;

— a set of parentheses {(,)}.

The set RAL = RV URC, is called the set of atomic relational terms. The set
OS, = 0OV, UQOC, is called the set of objects symbols. The set RT of relational
terms is the smallest (wrt inclusion) set of expressions that includes all atomic
relational terms and is closed with respect to all relational operation symbols.
L-formulas are of the form xRy, where x,y € OS, and R € RT. An L-formula
xRy is said to be atomic whenever R € RA| .

With an L-language a class of L-models is associated. An L-model is a structure
M = (U,m), where U is a non-empty set and m is a meaning function which
assigns:

— elements of U to object constants, that is m(c) € U, for every ¢ € OCy;
— binary relations on U to atomic relational terms, that is m(R) C U x U, for
every R € RA|;

and extends to compound relational terms as follows:

— some condition about m(—R) is assumed (see Sections 4 and 5 for the ex-
amples of the definitions of the complement operations);
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— m(RUS) =m(R)Um(S);

— m(RNS) =m(R) Nm(S);

= m(R™') = (m(R))"'= {(z,y) e U x U : (y,x) € m(R)};

— méfs%j)i) m(R);m(S) = {(z,y) € U x U : Iz((z,2) € m(R) A (z,y) €

— some additional conditions about m may be assumed (see Sections 5 and 6).

Let M = (U,m) be an L-model. An L-valuation in M is any function
v: OS. — U such that v(c) = m(c), for every ¢ € OC,. Let M be an L-
model, let v be an L-valuation in M and let xRy be an L-formula. Satisfiability
of xRy by v in M is defined as follows:

— If 1 € RC, then M, v = xRy iff (v(z),v(y)) € m(R).
- If(l E)R(CL,then M, v = xRy iff (v(z),v(y)) € m(1) or (v(z),v(y)) € m(1)N
m(R).

Note that in the latter case, satisfiability is defined in a non-standard way. This is
because we want to relativize satisfiability to the interpretation of the relational
constant 1. In the general case, this interpretation need not be the universal
relation. In the case it is, clearly the two definitions are equivalent.

An L-formula xRy is true in M whenever it is satisfied in M by all L-valuations.
An L-formula xRy is L-valid whenever it is true in all L-models.

Fact 1
Let L and L’ be relational logics such that every L-model is an L'-model. Then
for any relational formula xRy, if xRy is L'-valid, then it is L-valid.

3 A General Scheme of Relational Proof Systems

Relational proof systems in the style of dual tableaux are founded on the Ra-
siowa-Sikorski system for the first order logic [22]. They are powerful tools for
performing the major reasoning tasks: verification of validity, verification of en-
tailment, model checking, and verification of satisfiability. Every relational proof
system is determined by its axiomatic sets of formulas and rules which most of-
ten apply to finite sets of relational formulas. Some relational proof systems with
infinitary rules are known in the literature, but in the present paper we confine
ourselves to finitary rules only. The axiomatic sets take the place of axioms. The
rules are intended to reflect properties of relational operations and constants.
There are two groups of rules: decomposition rules and specific rules. Given a
formula, the decomposition rules of the system enable us to transform it into
simpler formulas, or the specific rules enable us to replace a formula by some
other formulas. The rules have the following general form:

o

) s
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where @1, ..., ®,, are finite non-empty sets of formulas, n > 1, and @ is a finite
(possibly empty) set of formulas. A rule of the form (x) is said to be applicable to
a set X of formulas whenever @ C X . As a result of an application of a rule of the
form () to a set X, we obtain the sets (X \®)UP;, i =1,...,n. A set to which
a rule has been applied is called the premise of the rule, and the sets obtained
by an application of the rule are called its conclusions. As usual, any concrete
rule will always be presented in a short form, that is we will indicate only the
formulas which are essential for a transformation to be performed by the rule
and also we will omit set brackets. Given a formula, successive applications of
the rules result in a tree whose nodes consist of finite sets of formulas. Each node
includes all the formulas of its predecessor node, possibly except for those which
have been transformed. A node of the tree does not have successors whenever
its set of formulas includes an axiomatic subset or none of the rules is applicable
to it. We say that a variable in a rule is new whenever it appears in a conclusion
of the rule and does not appear in its pre