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Preface

This book is a follow-up of LNCS volume 2929 with the same title, and presents
the major results of COST action 274 (2002-2005), TARSKI: Theory and Ap-
plications of Relational Structures as Knowledge Instruments.

Relational structures abound in the daily environment: relational databases,
data-mining, scaling procedures, preference relations, etc. Reasoning about, and
with, relations has a long-standing European tradition, which may be divided
into three broad areas:

1. Algebraic Logic: algebras of relations, relational semantics, and algebras and
logics derived from information systems.
2. Computational Aspects of Automated Relational Reasoning: decidability and
complexity of algorithms, network satisfaction.
3. Applications: social choice, AI, linguistics, psychology, economics, etc.

The main objective of the first TARSKI book (LNCS 2929) was to advance
the understanding of relational structures and the use of relational methods in
applicable object domains. There were the following sub-objectives:

1. To study the semantical and syntactical aspects of relational structures arising
from ‘real world’ situations
2. To investigate automated inference for relational systems, and, where possible
or feasible, develop deductive systems which can be implemented into industrial
applications, such as diagnostic systems
3. To develop non-invasive scaling methods for predicting relational data
4. To make software for dealing with relational systems commonly available

We are confident that the present book will further the understanding of inter-
disciplinary issues involving relational reasoning. This book consists of papers
which give a clear and self-contained overview of the results obtained by the
TARSKI action, typically obtained by different persons from different work ar-
eas. The study and possible integration of different approaches to the same
problem, which may have arisen at different locations, will be of practical value
to the developers of information systems.

The first three papers concern applications. In the first paper a fair procedure
for coalition formation is given. The software tool MacBeth for multi-criteria
decision making is used to determine the utilities of the different alternatives to
parties and the RelView tool is used to compute the stable governments and to
visualize the results. If there is no stable government, graph-theoretical results
are used to find a government as stable as possible and if there are several stable
governments negotiations or consensus reaching may be used to choose one.

In computer science, scenarios with interacting agents are often developed
using modal logic. The second paper shows how to interpret modal logic of
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knowledge in relation algebra. This allows the use of the RelView tool for the
purpose of investigating finite models and for visualizing certain properties. This
approach is illustrated with the well-known ‘muddy children’ puzzle using modal
logic of knowledge.

The authors of the third paper use a regional health care perspective on
maintenance and analysis of data, information and knowledge. Examples are
drawn from cardiac diseases. Analysis and development are viewed from the by-
pass surgery point of view. Association rules are used for analysis, and they show
how these rules take logical forms so as to prepare for development of guidelines.

Computational aspects are treated in the next four papers. The fourth paper gives
a generalization of the Hoede–Bakker index, which is a measure for the power
of players in a network, taking into account the mutual influences between the
players.

The fifth paper gives a relational presentation of nonclassical logics, providing
a general scheme for automatic translation. The translation process is supported
by a flexible Prolog tool.

The sixth paper provides a translation of the multimodal logic of qualitative
order-of-magnitude reasoning into relational logics and presents a sound and
complete proof system for the relational version of the language.

Logics of binary relations are presented in the seventh paper, together with
the proof systems in the style of dual tableaux. Applications of these logics to
reasoning in nonclassical logics are mentioned.

The remaining papers may be classified in the field of algebraic logic.
Papers 8 till 11 deal with different aspects of fuzzy preference relations. Fuzzy

information relations and operators are studied in paper 8, where an algebraic
approach is given based on residuated lattices. The authors of paper 9 give an
overview of results on the aggregation of fuzzy relations and the related property
of dominance of aggregation operators. The authors of the next paper, paper 10,
address the added value that is provided by using distance-based fuzzy relations
in flexible query answering. The last paper in this group gives a state-of-the-art
overview of general representation results for fuzzy weak orders.

The next four papers deal with lattices. Relational representation theorems
for lattices endowed with various negation operations are presented in a uniform
framework in paper 12. The next paper gives relational representation theorems
for classes of algebras which may be viewed as weak relation algebras, where
a Boolean part is replaced by a not necessarily distributive lattice. Paper 14
treats aspects of lattice and generalized pre-lattice effect algebras. And the last
paper in this group presents a decision procedure for the quantifier-free satisfia-
bility problem of the language BLmf of bounded lattices with monotone unary
functions.

Paper 16 addresses the relation of dominance on the class of continuous
t-norms with a particular focus on continuous ordinal sum t-norms. Geomet-
rical insight is provided into dominance relationships involving prototypical
Archimedean t-norms, the �Lukasiewicz t-norm and the product t-norm.
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The last paper in this volume addresses the problem of extending aggregation
operators typically defined on [0,1] to the symmetric interval [-1,1], where the
‘0’ value plays a particular role (neutral value).
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B-4000 Liège, Belgium
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Abstract. This paper concerns an interdisciplinary approach to coali-
tion formation. We apply the MacBeth software, relational algebra, the
RelView tool, graph theory, bargaining theory, social choice theory,
and consensus reaching to a model of coalition formation. A feasible
government is a pair consisting of a coalition of parties and a policy
supported by this coalition. A feasible government is stable if it is not
dominated by any other feasible government. Each party evaluates each
government with respect to certain criteria. MacBeth helps to quantify
the importance of the criteria and the attractiveness and repulsiveness
of governments to parties with respect to the given criteria. Feasibility,
dominance, and stability are formulated in relation-algebraic terms. The
RelView tool is used to compute the dominance relation and the set
of all stable governments. In case there is no stable government, i.e., in
case the dominance relation is cyclic, we apply graph-theoretical tech-
niques for breaking the cycles. If the solution is not unique, we select

� Co-operation for this paper was supported by European COST Action 274 “Theory
and Applications of Relational Structures as Knowledge Instruments” (TARSKI).
We thank Gunther Schmidt for his most valuable contributions to this paper.
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the final government by applying bargaining or appropriate social choice
rules. We describe how a coalition may form a government by reaching
consensus about a policy.

Keywords: stable government, MacBeth, relational algebra, RelView,
graph theory, bargaining, social choice rule, consensus.

1 Introduction

This paper presents an overview of the results on coalition formation obtained
from cooperation within the European COST Action 274: TARSKI (Theory and
Applications of Relational Structures as Knowledge Instruments). The authors
were connected to two different Work Areas of the COST Action, namely Work
Area WA2 (Mechanization and Relational Reasoning) and Work Area WA3 (Re-
lational Scaling and Preferences). This cooperation, which was not foreseen but
gradually evolved over the years, resulted in an interdisciplinary approach to
coalition formation. The MacBeth technique, relational algebra, the RelView
tool, graph theory, bargaining theory, social choice theory, and consensus reach-
ing were applied to the basic model of coalition formation described in Rusi-
nowska et al. [44].

Coalition formation is one of the more interesting and at the same time more
popular topics, and consequently a lot of work has already been done in this
field. There are several ways to distinguish different coalition formation theories:
one may talk, for instance, about power-oriented versus policy-oriented theo-
ries, one-dimensional versus multi-dimensional models, or actor-oriented versus
non-actor oriented theories. The power-oriented theories, where the motivation
for political parties to join a coalition is based only on their personal gains, are
the earliest theories of coalition formation. One may mention here the theory
of minimal winning coalitions (von Neuman and Morgenstern [55]), the mini-
mum size theory (Riker [40]), and the bargaining proposition (Leiserson [35]). In
policy-oriented theories, the process of coalition formation is determined by both
policy and power motivations. Some of the most important early policy-oriented
theories were the minimal range theory (Leiserson [34]), conflict of interest the-
ory (Axelrod [2]), and the policy distance theory (de Swaan [21]). Actor-oriented
theories, like the dominant player theory (Peleg [38], [39]) and the center player
theory (van Deemen [53]), select an actor that has a more powerful position in
the process of coalition formation. Also a lot of work has been done on spatial
coalition formation theories, especially with respect to multi-dimensional policy-
oriented theories. A main assumption in such models is that policy positions of
parties are very important in the coalition formation process. One must mention
here the political heart solution (Schofield [48], [49], [50]), the protocoalition for-
mation (Grofman [29]), the winset theory (Laver and Shepsle [32], [33]), and the
competitive solution (McKelvey, Ordeshook and Winer [36]). Many authors also
considered institutional theories of coalition formation. One of the first theorists
who acknowledged the important role of institutions was Shepsle [52], followed,
in particular, by Austen-Smith and Banks [1], Laver and Schofield [31], and
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Baron [6]. For an overview of coalition formation models we also like to refer to
van Deemen [54], de Vries [24], Kahan and Rapoport [30].

The point of departure in this paper is a multi-dimensional model of coalition
formation (see Rusinowska et al. [44]) in which the notion of stable government
is central. In the model, the approach we use to represent party preferences
allows us to include both rent-seeking and idealistic (policy-seeking) motivations.
Moreover, a policy space does not have to be a Euclidean space, as is assumed
frequently in coalition formation models, but may be any kind of space. The
policy space is assumed to be multi-dimensional, which allows us to consider
many political issues at the same time.

A government is defined as a pair consisting of a coalition and a policy sup-
ported by that coalition. It has a value (utility) to each party with respect to
every given issue. In order to determine these values in practice, we propose to
use the MacBeth approach; see also Roubens et al. [41]. MacBeth, which stands
for Measuring Attractiveness by a Categorical Based Evaluation Technique, is an
interactive approach to quantify the attractiveness of each alternative, such that
the measurement scale constructed is an interval scale. For an overview and some
applications of the software, we refer to the web site (www.m-macbeth.com),
Bana e Costa and Vansnick [3]; Bana e Costa et al. [5]. The notion of absolute
judgement has also been used in Saaty’s Analytical Hierarchy Process (AHP);
see Saaty [45], [46]. In the MacBeth technique, the absolute judgements concern
differences of attractiveness, while in Saaty’s method they concern ratios of pri-
ority, or of importance. One of the advantages of using the MacBeth approach
is related to ensuring consistency. In case of any inconsistency of the initial eval-
uations, the MacBeth software indicates to the user what is the cause of the
inconsistency and how to reach consistency. For a critical analysis of the AHP,
see Bana e Costa and Vansnick [4].

Another application to the coalition formation model we propose here con-
cerns Relational Algebra and the RelView tool which helps us to calculate
stable governments; see also Berghammer et al. [11]. The RelView system,
which has been developed at Kiel University, is a computer system for the vi-
sualization and manipulation of relations and for relational prototyping and
programming. The tool is written in the C programming language, uses reduced
ordered binary decision diagrams for implementing relations, and makes full use
of the X-windows graphical user interface. For details and applications see, for
instance, Berghammer et al. [14], Behnke et al. [7], Berghammer et al. [10], and
Berghammer et al. [13].

In this paper, we also present an application of Graph Theory to the model
of coalition formation in question; see Berghammer et al. [12]. We present a
graph-theoretical procedure for choosing a government in case there is no stable
government. If, on the other hand, more than one stable government exists, we
may apply Social Choice Theory to choose one government. For an overview and
comparison of social choice rules see, for instance, Brams and Fishburn [16], and
de Swart et al. [23]. Another natural application is based on Bargaining Theory.
We use a strategic approach to bargaining; see Rubinstein [42], Fishburn and
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Rubinstein [27], Osborne and Rubinstein [37]. We formulate several bargaining
games in which parties bargain over the choice of one stable government, and
next we look for refinements of Nash equilibria called subgame perfect equilibria
(Selten [51]) of these games; see also Rusinowska and de Swart [43].

We describe a procedure for a coalition to choose a policy in order to pro-
pose a government, based on consensus reaching, by combining some ideas from
Carlsson et al. [18] and Rusinowska et al. [44]. It has been first proposed in Ek-
lund et al. [25], where the authors consider consensus reaching in a committee,
and next in Eklund et al. [26], where a more complicated model, i.e., consensus
reaching in coalition formation, is presented.

The paper is structured as follows. Section 2 introduces the model of coalition
formation. In Section 4, the basic notions of relational algebra are presented. In
Sections 3 and 5, we present applications of the MacBeth and RelView tools,
respectively, to the model in question. Section 6 concerns applications of Social
Choice Theory and Bargaining Theory to the model, in order to choose a stable
government in the case there exists more than one. Next, an application of Graph
Theory to the model of coalition formation is proposed in Section 7, in order to
choose a ‘rather stable’ government in the case that there exists no stable one.
Section 8 describes how a coalition may reach consensus about a policy in order
to propose a government. In Section 9, we present our conclusions.

2 The Model of Coalition Formation

In this section we recapitulate a model of coalition formation, first introduced in
Rusinowska et al. [44], and further refined, in particular, in Eklund et al. [26].

2.1 Description of the Model

Let N = {1, . . . , n} be the set of political parties in a parliament, and let wi

denote the number of seats received by party i ∈ N . Moreover, let W denote the
set of all winning coalitions. The model concerns the creation of a government
by a winning coalition. It is assumed that there are some independent policy
issues on which a government has to decide. Let P denote the set of all policies.

A government is defined as a pair g = (S, p), where S is a winning coalition
and p is a policy. Hence, the set G of all governments is defined as

G := {(S, p) | S ∈W ∧ p ∈ P}. (1)

Each party has preferences concerning all policies and all (winning) coalitions.
A coalition is called feasible if it is acceptable to all its members. A policy is
feasible for a given coalition if it is acceptable to all members of that coalition.
A government (S, p) is feasible if both, S and p, are acceptable to each party
belonging to S. By G∗ we denote the set of all feasible governments, and by G∗

i

the set of all feasible governments containing party i, i.e., for each i ∈ N ,

G∗
i := {(S, p) ∈ G∗ | i ∈ S}. (2)
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A decision maker is a party involved in at least one feasible government, i.e., the
set DM of all decision makers is equal to

DM := {i ∈ N | G∗
i �= ∅}. (3)

Moreover, let the subset W ∗ of W be defined as

W ∗ := {S ∈W | ∃ p ∈ P : (S, p) ∈ G∗}. (4)

A feasible government is evaluated by each decision maker with respect to the
given policy issues and with respect to the issue concerning the coalition. Let
C∗ be the finite set of criteria. The criteria do not have to be equally important
to a party, and consequently, each decision maker evaluates the importance of
the criteria. Formally, for each i ∈ DM , we assume a function αi : C∗ → [0, 1],
such that the following property holds:

∀ i ∈ DM :
∑

c∈C∗
αi(c) = 1. (5)

The number αi(c) is i’s evaluation of criterion c. Moreover, each decision maker
evaluates each feasible government with respect to all the criteria. Hence, for
each i ∈ DM , we assume ui : C∗ × G∗ → R where the real number ui(c, g) is
called the value of government g ∈ G∗ to party i ∈ DM with respect to criterion
c ∈ C∗. Moreover, for each i ∈ DM , we define Ui : G∗ → R such that

(Ui(g))g∈G∗ = (αi(c))c∈C∗ · (ui(c, g))c∈C∗,g∈G∗ , (6)

where (αi(c))c∈C∗ is the 1×|C∗| matrix representing the evaluation (comparison)
of the criteria by party i, (ui(c, g))c∈C∗,g∈G∗ is the |C∗|× |G∗| matrix containing
party i’s evaluation of all governments in G∗ with respect to each criterion in
C∗, and (Ui(g))g∈G∗ is the 1 × |G∗| matrix containing party i’s evaluation of
each government in G∗.

In order to determine in practice the values of αi(c) and ui(c, g) for all parties
i ∈ DM , criteria c ∈ C∗ and governments g ∈ G∗, we can use the MacBeth
technique. We do so in Section 3.

The central notion of the model introduced in Rusinowska et al. [44] is the
notion of stability. A feasible government h = (S, p) ∈ G∗ dominates a feasible
government g ∈ G∗ (denoted as h 	 g) if the property

(∀ i ∈ S : Ui(h) ≥ Ui(g)) ∧ (∃ i ∈ S : Ui(h) > Ui(g)) (7)

holds. A feasible government is said to be stable if it is dominated by no feasible
government. By

SG∗ := {g ∈ G∗ | ¬ ∃h ∈ G∗ : h 	 g} (8)

we denote the set of all (feasible) stable governments. In Rusinowska et al. [44],
necessary and sufficient conditions for the existence and the uniqueness of a
stable government are investigated. Moreover, the authors introduce some al-
ternative definitions of ‘stability’, and establish the relations between the new
notions of ‘stability’ and the chosen one. In the present paper, we decide for the
definition of a stable government given by (8), which we find the most natural
definition of stability.
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2.2 A Running Example

Let us consider a very small parliament consisting of only three parties. We
assume each coalition consisting of at least two parties is winning and there are
only two policy issues and four policies, i.e., we have

N = {A,B,C}, W = {AB,AC,BC,ABC}, P = {p1, p2, p3, p4}.
As a consequence, we have 16 governments. Assume that the grand coalition
is not feasible, but all two-party coalitions are feasible. Further, assume both
policies p1 and p2 are acceptable to all three parties, policy p3 is not acceptable
to party C, while policy p4 is not acceptable to party B. Hence, policies p1 and
p2 are feasible for coalitions AB, AC, and BC, policy p3 is feasible for coalition
AB, and p4 is feasible for coalition AC.

Consequently, there are eight feasible governments, i.e.,

G∗ = {g1, g2, g3, g4, g5, g6, g7, g8},
which are given as

g1 = (AB, p1), g2 = (AC, p1), g3 = (BC, p1), g4 = (AB, p2),

g5 = (AC, p2), g6 = (BC, p2), g7 = (AB, p3), g8 = (AC, p4)

and therefore obtain the governments containing the parties as

G∗
A = {g1, g2, g4, g5, g7, g8},

G∗
B = {g1, g3, g4, g6, g7},

G∗
C = {g2, g3, g5, g6, g8}.

Moreover, we have

DM = N, W ∗ = {AB,AC,BC}, C∗ = {1, 2, 3},
where the criteria 1 and 2 refer to the first and the second policy issue, while
criterion 3 concerns the (attractiveness of the) ‘coalition’. In order to determine
αi(c) and ui(c, g) for each i ∈ DM , c ∈ C∗, and g ∈ G∗, we will use the MacBeth
technique in the next section.

3 Applying MacBeth to Coalition Formation

When applying the coalition formation model described in Section 2 in practice,
the question arises how to determine the αi(c) and the ui(c, g) for i ∈ DM .
The answer to this question will be given in this section, where we propose
to use the MacBeth software to determine these values. In Subsection 3.1, we
show how the utilities of governments to parties may be calculated using the
MacBeth technique (see also [41]), while in Subsection 3.2 the application is
illustrated by an example. It is assumed here that each party judges only a finite
number of governments differently, even if there is an infinite number of possible
governments.
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3.1 Computing the Utilities by MacBeth

Given a party i ∈ DM and a criterion c ∈ C∗, in order to determine the values
ui(c, g) for each feasible government g ∈ G∗, we will use the MacBeth approach.
For each criterion c ∈ C∗, each party ranks in a non-increasing order all feasible
governments taking into account the attractiveness of these governments with
respect to the given criterion. In particular, for each criterion c ∈ C∗, each party
i ∈ DM specifies two particular references:

• neutralci (‘a for party i neutral government with respect to criterion c’) de-
fined as a for i neither satisfying nor unsatisfying government wrt. c,

• goodc
i (‘a for party i good government with respect to criterion c’) defined as

a for i undoubtedly satisfying government wrt. c.

These references may be fictitious. We need to add that neutralci and goodc
i are

only related to the component of the government concerning the given criterion
c, which is either the policy on issue c or the coalition forming the government.
For each c ∈ C∗ the remaining ‘components’ do not matter. Define for all c ∈ C∗

and i ∈ DM the set
Gc

i = G∗ ∪ {neutralci , goodc
i}.

For each c ∈ C∗, each party i ∈ DM judges verbally the difference of attractive-
ness between each two governments g, h ∈ Gc

i , where g is at least as attractive
to i as h. When judging, a party chooses one of the following categories:

D0 : no difference of attractiveness,
D1 : very weak difference of attractiveness,
D2 : weak difference of attractiveness,
D3 : moderate difference of attractiveness,
D4 : strong difference of attractiveness,
D5 : very strong difference of attractiveness,
D6 : extreme difference of attractiveness.

(Formally, the categories are relations.) A party may also choose the union of
several successive categories among these above or a positive difference of attrac-
tiveness in case the party is not sure about the difference of attractiveness.

Given a party i ∈ DM and a criterion c ∈ C∗, a non-negative number ui(c, g)
is associated to each g ∈ Gc

i . If there is no hesitation about the difference of
attractiveness, the following rules are satisfied; see Bana e Costa and Vansnick
[3], Bana e Costa et al. [5]. First, for all g, h ∈ Gc

i

ui(c, g) > ui(c, h) ⇐⇒ g more attractive to i wrt. c than h. (9)

Second, for all k, k′ ∈ {1, 2, 3, 4, 5, 6} with k ≥ k′+1 and all g, g′, h, h′ ∈ Gc
i with

(g, g′) ∈ Dk and (h, h′) ∈ Dk′

ui(c, g)− ui(c, g′) > ui(c, h)− ui(c, h′). (10)

The numerical scale, called the MacBeth basic scale, is obtained by linear pro-
gramming, and it exists if and only if it is possible to satisfy rules (9) and (10).
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In that case the matrix of judgements is called consistent. If it is impossible to
satisfy rules (9) and (10), a message appears on the screen (‘inconsistent judge-
ments’), inviting the party to revise the judgements, and the MacBeth tool gives
suggestions how to obtain a consistent matrix of judgements.

The basic MacBeth scale, which is still a pre-cardinal scale, is presented both
in a numerical way and in a graphical way (‘thermometer’). In order to obtain
a cardinal scale, and the final utilities ui(c, g) for party i of the governments g
with respect to the given criterion c, the party uses the thermometer. When a
party selects with the mouse a government, an interval appears around this gov-
ernment. By moving the mouse, the position of the selected government within
this interval is modified, by which the party obtains a new positioning of the
governments such that both conditions (9) and (10) are satisfied. We obtain the
cardinal scale and the (final, agreed) utilities of the governments with respect
to the given criterion, when the party agrees that the scale adequately repre-
sents the relative difference of attractiveness with respect to the given criterion
between any two governments.

Using the MacBeth software, we can also calculate the coefficients or weights
(αi(c))c∈C∗ of criterion c for party i. Let us assume that C∗ = {1, 2, . . . ,m}. For
each party i ∈ N , we consider the following reference profiles:

[neutrali] = (neutral1i , neutral
2
i , . . . , neutral

m
i )

[Crit.1i ] = (good1
i , neutral

2
i , . . . , neutral

m
i )

[Crit.2i ] = (neutral1i , good
2
i , . . . , neutral

m
i )

...
[Crit.mi ] = (neutral1i , neutral

2
i , . . . , good

m
i )

For each c ∈ C∗, the difference in attractiveness between [Crit.ci ] and [neutrali]
corresponds to the added value of the ‘swing’ from neutralci to goodc

i . A party
ranks the reference profiles in decreasing order of attractiveness and, using cate-
gories D0 to D6, judges the difference of attractiveness between each two refer-
ence profiles, where the first one is more attractive than the second one. After
the adjustment of the MacBeth scale proposed by the software, an interval scale
is obtained, which measures the overall attractiveness of the reference profiles,
and leads to obtaining the coefficients (αi(c))c∈C∗ .

3.2 Example (Continued)

In order to determine for our running example (introduced in Subsection 2.2) the
utilities to each party of all governments with respect to each criterion, and the
coefficients concerning the importance of the criteria for each party, we will use
the MacBeth approach. First, each party expresses its preferences. Note that
since g1, g2, and g3 have the same policy p1, they must be equally attractive
to each party with respect to the first and the second policy issue. The same
holds for governments g4, g5, and g6 which have the same policy p2. Moreover,
governments formed by the same coalition are equally attractive to each party
with respect to the third issue, the one concerning the coalition.
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In the following three tables we show for each party A, B, and C of our
example the non-increasing order of all eight feasible governments g1, . . . , g8
with respect to the first, the second, and the third (coalition) criterion. By the
symbol ∼i we denote the equivalence relation for party i ∈ DM .

Table 1. Non-increasing order of all governments wrt. issue 1

party order
A good1

A g1 ∼A g2 ∼A g3 g4 ∼A g5 ∼A g6 g8 g7 = neutral1A
B good1

B g4 ∼B g5 ∼B g6 g1 ∼B g2 ∼B g3 g7 g8 = neutral1B
C g7 good1

C = g8 g1 ∼C g2 ∼C g3 g4 ∼C g5 ∼C g6 neutral1C

Table 2. Non-increasing order of all governments wrt. issue 2

party order
A good2

A g1 ∼A g2 ∼A g3 g4 ∼A g5 ∼A g6 g7 g8 = neutral2A
B good2

B g1 ∼B g2 ∼B g3 g4 ∼B g5 ∼B g6 g7 g8 = neutral2B
C good2

C = g8 g7 g1 ∼C g2 ∼C g3 g4 ∼C g5 ∼C g6 neutral2C

Table 3. Non-increasing order of all governments wrt. issue 3

party order
A good3

A = g1 ∼A g4 ∼A g7 g2 ∼A g5 ∼A g8 g3 ∼A g6 = neutral3A
B good3

B = g1 ∼B g4 ∼B g7 g3 ∼B g6 g2 ∼B g5 ∼B g8 = neutral3B
C good3

C = g2 ∼C g5 ∼C g8 g3 ∼C g6 g1 ∼C g4 ∼C g7 = neutral3C

Each party i ∈ DM also has to judge the difference of attractiveness between
each two reference profiles. Here we obtain the following values:

[neutrali] = (neutral1i , neutral
2
i , neutral

3
i )

[Crit.1i ] = (good1
i , neutral

2
i , neutral

3
i )

[Crit.2i ] = (neutral1i , good
2
i , neutral

3
i )

[Crit.3i ] = (neutral1i , neutral
2
i , good

3
i )

Let us assume that Table 4 shows the decreasing orders of these reference profiles
for all parties. Then we obtain:

Table 4. Decreasing order of the reference profiles

party order of the profiles
A [Crit.1A] [Crit.2A] [Crit.3A] [neutralA]
B [Crit.3B ] [Crit.2B ] [Crit.1B ] [neutralB]
C [Crit.3C ] [Crit.1C ] [Crit.2C ] [neutralC ]
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First, we consider party A which has to judge the difference of attractiveness for
all the governments with respect to each issue. The following Tables 5, 6 and 7
show the matrices of judgements for this party.

Table 5. Judgements of the attractiveness for party A and issue 1

good1
A g1 g4 g8 neutral1A

good1
A no very weak weak strong extreme

g1 no weak strong extreme
g4 no strong extreme
g8 no extreme

neutral1A no

Table 6. Judgements of the attractiveness for party A and issue 2

good2
A g1 g4 g7 neutral2A

good2
A no weak moderate strong very strong

g1 no moderate strong very strong
g4 no strong very strong
g7 no very strong

neutral2A no

Table 7. Judgements of the attractiveness for party A and issue 3

good3
A g2 neutral3A

good3
A no weak extreme

g2 no extreme
neutral3A no

Based on the above tables, next, the MacBeth tool proposes the basic scale
for party A – using the thermometer – discusses the scale, and after that the
final values (utilities) are calculated. The following Table 8 shows the results
uA(c, g) for c ranging over the three issues and g ranging over all eight feasible
governments g1, . . . , g8 of our example:

Table 8. Values of the governments wrt. each issue for party A

g = g1 g2 g3 g4 g5 g6 g7 g8

uA(1, g) = 93.0 93.0 93.0 82.3 82.3 82.3 0.0 53.5
uA(2, g) = 93.0 93.0 93.0 78.6 78.6 78.6 57.0 0.0
uA(3, g) = 100.0 75.0 0.0 100.0 75.0 0.0 100.0 75.0

In a similar way, the values for parties B and C may be calculated. Tables 9 and
10 present the values for these parties.
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Table 9. Values of the governments wrt. each issue for party B

g = g1 g2 g3 g4 g5 g6 g7 g8

uB(1, g) = 80.0 80.0 80.0 95.0 95.0 95.0 55.0 0.0
uB(2, g) = 96.5 96.5 96.5 93.0 93.0 93.0 53.5 0.0
uB(3, g) = 100.0 0.0 57.0 100.0 0.0 57.0 100.0 0.0

Table 10. Values of the governments wrt. each issue for party C

g = g1 g2 g3 g4 g5 g6 g7 g8

uC(1, g) = 90.0 90.0 90.0 60.0 60.0 60.0 110.0 100.0
uC(2, g) = 64.2 64.2 64.2 53.5 53.5 53.5 92.8 100.0
uC(3, g) = 0.0 100.0 96.5 0.0 100.0 96.5 0.0 100.0

Moreover, using the MacBeth technique, we can calculate the coefficients αi(c)
for all decision makers i ∈ DM (in the case of the example, hence, for all parties
A, B, and C) and all three issues c ∈ C∗. These numbers are summarized in the
following Table 11.

Table 11. The scaling constants

i ∈ DM αi(1) αi(2) αi(3)

A 0.6 0.3 0.1
B 0.1 0.3 0.6
C 0.3 0.1 0.6

Finally, based on all the values, the utilities of all governments are calculated by
means of formula (6). The results are presented in Table 12. This table will be
the base for obtaining the input of the RelView tool in order to compute the
stable governments, as described in the next section.

Table 12. The utilities of all feasible governments

g ∈ G∗ UA(g) UB(g) UC(g)

g1 = (AB, p1) 93.7 97.0 33.4
g2 = (AC, p1) 91.2 37.0 93.4
g3 = (BC, p1) 83.7 71.2 91.3
g4 = (AB, p2) 82.7 97.4 23.4
g5 = (AC, p2) 80.5 37.4 83.4
g6 = (BC, p2) 73.0 71.6 81.3
g7 = (AB, p3) 27.1 81.6 42.3
g8 = (AC, p4) 39.6 0.0 100.0
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4 Relational Algebraic Preliminaries

In this section we recall the basics of relational algebra and some further rela-
tional constructions, which are used in this paper later on. For more details on
relations and relational algebra, see Schmidt et al. [47] or Brink et al. [17] for
example.

4.1 Relational Algebra

If X and Y are sets, then a subset R of the Cartesian product X ×Y is called a
(binary) relation with domain X and range Y . We denote the set (in this context
also called type) of all relations with domain X and range Y by [X↔Y ] and
write R : X↔Y instead of R ∈ [X↔Y ]. If X and Y are finite sets of size m and
n respectively, then we may consider a relation R : X↔Y as a Boolean matrix
with m rows and n columns. In particular, we write Rx,y instead of 〈x, y〉 ∈ R.
The Boolean matrix interpretation of relations is used as one of the graphical
representations of relations within the RelView tool.

The basic operations on relations are RT (transposition), R (complement),
R ∪ S (union), R ∩ S (intersection), R;S (composition), R∗ (reflexive-transitive
closure), and the special relations O (empty relation), L (universal relation), and
I (identity relation). If R is included in S we write R ⊆ S, and equality of R and
S is denoted as R = S.

A vector v is a relation v with v = v; L. For v being of type [X↔Y ] this
condition means: Whatever set Z and universal relation L : Y ↔Z we choose,
an element x ∈ X is either in relationship (v; L)x,z to no element z ∈ Z or to all
elements z ∈ Z. As for a vector, therefore, the range is irrelevant, we consider in
the following mostly vectors v : X↔1 with a specific singleton set 1 := {⊥} as
range and omit in such cases the second subscript, i.e., write vx instead of vx,⊥.

Analogously to linear algebra we use in the following lower-case letters to
denote vectors. A vector v : X↔1 can be considered as a Boolean matrix with
exactly one column, i.e., as a Boolean column vector, and describes (or is a
description of) the subset {x ∈ X | vx} of X .

As a second way to model sets we will use the relation-level equivalents of the
set-theoretic symbol “∈”, i.e., membership-relations ε : X↔ 2X . These specific
relations are defined by εx,Y if and only if x ∈ Y , for all x ∈ X and Y ∈ 2X .
A Boolean matrix representation of the ε relation requires exponential space.
However, in Berghammer et al. [10] an implementation of ε using reduced ordered
binary decision diagrams is presented, the number of vertices of which is linear
in the size of X .

4.2 Relational Products and Sums

Given a Cartesian product X×Y of two sets X and Y , there are two projection
functions which decompose a pair u = 〈u1, u2〉 into its first component u1 and its
second component u2. For a relation-algebraic approach it is useful to consider
instead of these functions the corresponding projection relations π : X×Y ↔X
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and ρ : X×Y ↔Y such that for all u ∈ X×Y , x ∈ X , and y ∈ Y we have πu,x if
and only if u1 = x and ρu,y if and only if u2 = y. Projection relations enable us to
describe the well-known pairing operation of functional programming relation-
algebraically as follows. For relations R : Z↔X and S : Z↔Y we define their
pairing (frequently also called fork or tupling) [R,S] : Z↔X×Y by

[R,S] := R;πT ∩ S; ρT. (11)

Using (11), for all z ∈ Z and u ∈ X × Y a simple reflection shows that [R,S]z,u

if and only if Rz,u1 and Sz,u2 . As a consequence, the exchange relation

E := [ρ, π] = ρ;πT ∩ π; ρT (12)

of type [X×Y ↔X×Y ] exchanges the components of a pair. This means that for
all u, v ∈ X × Y the relationship Eu,v holds if and only if u1 = v2 and u2 = v1.

Analogously to the Cartesian product, the disjoint union (or direct sum) X+
Y := (X × {1}) ∪ (Y × {2}) of two sets X and Y leads to the two injection
relations ı : X↔X+Y and κ : Y ↔X+Y such that for all u ∈ X + Y , x ∈ X ,
and y ∈ Y we have ıx,u if and only if u = 〈x, 1〉 and κy,u if and only if u = 〈y, 2〉.
In this case the counter-part of pairing is the sum R + S : X+Y ↔Z of two
relations R : X↔Z and S : Y ↔Z, defined by

R + S := ıT;R ∪ κT;S. (13)

From specification (13) we obtain for all u ∈ X + Y and z ∈ Z that (R + S)u,z

if and only if there exists x ∈ X such that u = 〈x, 1〉 and Rx,z or there exists
y ∈ Y such that u = 〈y, 2〉 and Sy,z.

The representation of a relation R : X↔Y by a vector vec(R) : X×Y ↔1
means that for all x ∈ X and y ∈ Y the properties Rx,y and vec(R)〈x,y〉,⊥, or
vec(R)〈x,y〉 for short, are equivalent. To obtain a relation-algebraic specification
of vec(R), i.e., an expression which does not use element relationships, but only
the constants and operations of relational algebra, we assume x ∈ X and y ∈ Y
and calculate as follows.

Rx,y ⇐⇒ ∃ a : π〈x,y〉,a ∧Ra,y π : X×Y ↔X projection
⇐⇒ (π;R)〈x,y〉,y
⇐⇒ ∃ b : (π;R)〈x,y〉,b ∧ ρ〈x,y〉,b ρ : X×Y ↔Y projection
⇐⇒ ∃ b : (π;R ∩ ρ)〈x,y〉,b ∧ Lb L : Y ↔1
⇐⇒ ((π;R ∩ ρ); L)〈x,y〉.

An immediate consequence of the last expression of this calculation and the
equality of relations is the relation-algebraic specification

vec(R) = (π;R ∩ ρ); L (14)

of the vector vec(R) : X×Y ↔1; see also Schmidt et al. [47].
Later we also will consider a list R(1), R(2), . . . , R(n) of relations R(i) : X↔Y

and compute from these a new relation as follows. Let N := {1, . . . , n}. If we
identify this set with the disjoint union of n copies of 1, then

C := vec(R(1))
T

+ . . .+ vec(R(n))
T

(15)
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defines a relation of type [N↔X×Y ] such that, using Boolean matrix terminol-
ogy, for all i ∈ N the ith row of C equals the transpose of the vector vec(R(i)).
Hence, from the above considerations we obtain for all i ∈ N, x ∈ X , and y ∈ Y

the equivalence of Ci,〈x,y〉 and R
(i)
x,y.

5 Applying RelView to Coalition Formation

In this section we recapitulate the application of the RelView tool to the model
of a stable government (see Berghammer et al. [11]). The main purpose of the
RelView tool is the evaluation of relation-algebraic expressions. These are con-
structed from the relations of its workspace using pre-defined operations and
tests, user-defined relational functions, and user-defined relational programs. A
relational program is much like a function procedure in the programming lan-
guages Pascal or Modula 2, except that it only uses relations as data type. It
starts with a head line containing the program name and the formal parameters.
Then the declaration of the local relational domains, functions, and variables
follows. Domain declarations can be used to introduce projection relations and
pairings of relations in the case of Cartesian products, and injection relations and
sums of relations in the case of disjoint unions, respectively. The third part of a
program is the body, a while-program over relations. As a program computes a
value, finally, its last part consists of a return-clause, which is a relation-algebraic
expression whose value after the execution of the body is the result. RelView
makes the results visible in the form of graphs or matrices.

5.1 Computing the Dominance Relation by RelView

In the following we step-wisely develop relation-algebraic specifications of the
notions presented in Section 2, such as feasible governments, the dominance re-
lationship, and stable governments. As we will demonstrate, these can be trans-
lated immediately into the programming language of the RelView tool and,
hence, the tool can be applied to deal with concrete examples.

In order to develop a relation-algebraic specification of feasible governments,
we need two ‘acceptability’ relations A and B. We assume A : DM ↔P such
that for all i ∈ DM and p ∈ P

Ai,p ⇐⇒ party i accepts policy p,

and B : DM ↔W such that for all i ∈ DM and S ∈W

Bi,S ⇐⇒ party i accepts coalition S.

Next we consider the following three relations:

• A relation isFea(A) : W ↔P such that a coalition S ∈ W and a policy
p ∈ P are in relationship isFea(A)S,p if and only if p is feasible for S. A
formal predicate logic definition of this is

isFea(A)S,p ⇐⇒ ∀ i : i ∈ S → Ai,p. (16)
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• A vector feaC (B) : W ↔1 which describes the set of all feasible coalitions.
For all S ∈W the predicate logic definition is

feaC (B)S ⇐⇒ ∀ i : i ∈ S → Bi,S . (17)

• A relation feaG(A,B) : W ↔P which coincides with the set G∗ of feasible
governments. Here we have for all coalitions S ∈ W and policies p ∈ P the
predicate logic description

feaG(A,B)S,p ⇐⇒ feaC (B)S ∧ isFea(A)S,p . (18)

Our goal is to obtain from the predicate logic definitions (16), (17), and (18)
of the relations isFea(A), feaC (B), and feaG(A,B) equivalent relation-algebraic
specifications. In Berghammer et al. [11] it is shown that

isFea(A) = εT;A , (19)

feaC (B) = (ε ∩B)
T
; L , (20)

feaG(A,B) = εT;A ∩ (ε ∩B)
T
; L; L , (21)

where ε : DM ↔W is the membership-relation between decision makers and
winning coalitions. Note that W ⊆ 2DM . Using matrix terminology, the relation
ε is obtained from the ordinary membership-relation of type [DM ↔ 2DM ] by
removing from the latter all columns not corresponding to a set of W .

Next, we develop a relation-algebraic specification of the dominance relation-
ship between feasible governments. To this end, we suppose a relational descrip-
tion of government membership to be given, that is, a relation M : DM ↔G∗

such that for all i ∈ DM and g ∈ G∗ the equivalence

Mi,g ⇐⇒ party i is a member of government g

holds. Moreover, for each party i ∈ DM , we introduce a utility (or comparison)
relation R(i) : G∗↔G∗ such that for all g, h ∈ G∗

R
(i)
g,h ⇐⇒ Ui(g) ≥ Ui(h).

Based on these relations, we introduce a global utility (or comparison) relation
C : DM ↔G∗×G∗ as follows. For all i ∈ DM and g, h ∈ G∗ we define

Ci,〈g,h〉 ⇐⇒ R
(i)
g,h.

An immediate consequence of (15) is the equation

C = vec(R(1))
T

+ . . .+ vec(R(n))
T
.

Next, we consider the dominance relationship, and we get for all g, h ∈ G∗

g 	 h ⇐⇒ (∀ i : Mi,g → Ci,〈g,h〉) ∧ (∃ i : Mi,g ∧Ci,〈h,g〉). (22)
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Since Ci,〈h,g〉 ⇐⇒ (C;E)i,〈g,h〉, where E : G∗×G∗↔G∗×G∗ is the exchange
relation [ρ, π], we have the following description of dominance:

g 	 h ⇐⇒ (∀ i : Mi,g → Ci,〈g,h〉) ∧ (∃ i : Mi,g ∧ (C;E)i,〈g,h〉). (23)

In Berghammer et al. [11], the following fact is proved: Let π : G∗×G∗↔G∗

and ρ : G∗×G∗↔G∗ be the projection relations and E : G∗×G∗↔G∗×G∗ the
exchange relation. If we define

dominance(M,C) = (π;MT ∩C
T
); L ∩ (π;MT ∩ E;C

T
); L , (24)

then we have for all u = 〈g, h〉 ∈ G∗ ×G∗ that dominance(M,C)u if and only if
g 	 h, i.e., g dominates h.

The relation-algebraic specification dominance(M,C) of the vector describing
the dominance relationship between feasible governments immediately leads to
the following RelView-program.

dominance(M,C)
DECL Prod = PROD(M^*M,M^*M);

pi, rho, E
BEG pi = p-1(Prod);

rho = p-2(Prod);
E = [rho,pi]
RETURN -dom(pi*M^ & -C^) & dom(pi*M^ & E*-C^)

END.

In this program the first declaration introduces Prod as a name for the direct
product G∗×G∗. Using the relational product domain Prod, the two projection
relations and the exchange relation are then computed by the three assignments
of the body and stored as pi, rho, and E, respectively. The return-clause of the
program consists of a direct translation of (24) into RelView-notation, where
^, -, &, and * denote transposition, complement, intersection, and composition,
and, furthermore, the pre-defined operation dom computes for a relation R :
X↔Y the vector R; L : X↔1.

Finally, we consider stability of feasible governments. Due to the original
definition of stability and the above result concerning dominance we have for all
g ∈ G∗ the equivalence

stable(M,C)g ⇐⇒ ¬∃h : dominance(M,C)〈h,g〉. (25)

In Berghammer et al. [11], it is shown how to transform this specification into
the relation-algebraic specification

stable(M,C) = ρT; dominance(M,C). (26)

Also a translation of the relation-algebraic specification of stable(M,C) into
RelView-code is straightforward.
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5.2 Example (Continued)

The above RelView-program dominance expects two relations as inputs. In the
following, we show for our running example how these can be obtained from the
hitherto results, and also how then the dominance relation can be computed and
visualized with the aid of the RelView tool.

The first input M of the RelView-program dominance is a description of
government membership in the form of a relation of type [DM ↔G∗] that
column-wisely enumerates the governments. In the case of our running example,
it immediately is obtained from the list of governments of Subsection 2.2. Its
RelView-representation as 3 × 8 Boolean matrix is shown in Figure 1, where
we additionally have labeled the rows and columns of the matrix with the parties
and governments, respectively, for explanatory purposes.

Fig. 1. Relational description of government membership

The second input is the global utility relation of type [DM ↔G∗×G∗]. It
is constructed from the three utility relations R(A), R(B), R(C) : G∗↔G∗ of
the parties A, B, and C, respectively. The latter three relations are obtained
immediately from Table 12 and the labeled 8×8 Boolean matrices representations
look in RelView as given in the following Figure 2.

Fig. 2. The parties’ Utility Relations

We renounce the RelView-picture for the global utility relation, since the
explanatory power of this 3×64 Boolean matrix is rather small. The same holds
for the vector description (24) of the dominance relation. Instead we show in
the following Figure 3 the dominance relation of the example as a labeled 8× 8
Boolean matrix. For obtaining this matrix we used that the relation

R := πT; (ρ ∩ v; L)
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describes a vector v : X×Y ↔1 as relation of type [X↔Y ], i.e., v〈x,y〉 and
Rx,y are equivalent for all x ∈ X and y ∈ Y (where π and ρ are the projection
relations of the direct product X × Y ). See Schmidt et al. [47] for details.

Fig. 3. The Dominance Relation

A representation of this relation as directed graph is shown in the following
Figure 4. For drawing this graph, the RelView tool used the specific layout
algorithm of Gansner et al. [28].

Fig. 4. Graphical Representation of the Dominance Relation

In this dominance graph we additionally have marked the immediate neighbour-
hood relationships as boldface arcs to make things more clear. From Figure 4
we immediately obtain g1 = (AB, p1) as the only stable government of our ex-
ample, since, by definition, a government is stable if and only if it is a source of
the dominance graph.
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6 Applying Social Choice Theory and Bargaining Theory

We will now address the question of how to proceed in cases where multiple
stable governments exist. In such cases, social choice rules or bargaining theory
may be applied.

6.1 Selection of Governments Via Social Choice Rules

The input for an application of social choice theory consists of: (at least two)
selected governments (from which we have to choose one), parties forming these
governments, and preferences of the parties over the governments. Moreover,
for each government each party either accepts (approves of) or does not accept
(disapproves of) it. We consider the following rules; see Subsection 7.2 for an
illustration.

• Plurality Rule: Under this rule only the first preference of a party is con-
sidered. A government g is collectively preferred to a government h if the
number of parties that prefer g most is greater than the number of parties
that prefer h most. The government chosen under the plurality rule is the
government which is put first by most parties.

• Majority Rule: This rule is based on the majority principle. A government
g is collectively preferred to h if g defeats h, i.e., the number of parties
that prefer g to h is greater than the number of parties that prefer h to g.
If there is a government that defeats every other government in a pairwise
comparison, this government is chosen, and it is called a Condorcet winner;
see also Condorcet [19].

• Borda Rule: Here weights are given to all the positions of the governments
in the individual preferences. For n governments, every party gives n points
to its most preferred government, n− 1 points to its second preference, etc.,
and 1 point to its least preferred government. A decision is made based on
the total score of every government in a given party profile; see also [20] for
more details.

• Approval Voting Rule: Under Approval Voting (Brams and Fishburn [15]),
each party divides the governments into two classes: the governments it ap-
proves of and the ones it disapproves of. Each time a government is approved
of by a party is good for one point. The government chosen is the one that
receives most points.

6.2 Selection of Governments Via Bargaining

Apart from the application of social choice rules, we may propose an alternative
method for choosing a government. If there is more than one stable government,
bargaining theory may be applied in order to choose one government. In Rusi-
nowska and de Swart [43] (see also Berghammer et al. [12]), the authors define
several bargaining games in which parties belonging to stable governments (as-
suming that there are at least two stable ones) bargain over the choice of one
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stable government. Subgame perfect equilibria of the games are investigated.
Also a procedure for choosing the order of parties for a given game is proposed.

We define three kinds of bargaining games, denoted here as Games I, II, and
III, in which parties involved in at least one stable government bargain over
the choice of one government. The order of the parties in which they bargain is
according to the number of seats in the parliament. The common assumptions
for the bargaining games are as follows.

• A party, when submitting an offer, may propose only one government.
• The same offers are not repeated: a party cannot propose a government

which has already been proposed before.
• It is assumed that choosing no government is the worst outcome for each

party.

The differences between the three bargaining games are specified by the following
four rules.

• In Game I, a party, when submitting an offer, may propose only a government
the party belongs to. Each party involved in a proposed government either
accepts of rejects the proposal. The acceptance of the offer by all parties
involved causes the government to be formed. Rejection leads to proposing
a government by the rejecting party.

• In Game II, a party does not have to belong to the government it proposes,
and all parties have to react to each offer.

• In Game III, only the strongest party may submit an offer, and the other
parties forming the proposed government have to react.

Our bargaining games differ from each other with respect to the bargaining
procedures. We consider games in which a party prefers to form a government it
likes most with a delay, rather than to form immediately (with no delay) a less
preferred government. We refer to Subsection 7.2 for an illustration.

7 Applying Graph Theory to Coalition Formation

In this section we consider the case that there exists no stable government. Using
graph-theoretical terminology this means that the computed dominance graph
has no source. As we will show in the following, a combination of social choice
rules, bargaining, and techniques from graph theory can be applied to select a
government that can be considered as ‘rather stable’.

7.1 Graph-Theoretical Procedure for Choosing a Government

First, we use strongly connected components (SCCs). A SCC of a directed graph
is defined as a maximal set of vertices such that each pair of vertices is mutually
reachable. In particular, we are interested in SCCs without arcs leading from
outside into them. These SCCs are said to be initial. We also apply the concept
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of a minimum feedback vertex set, where a feedback vertex set (FVS) is a set
of vertices that contains at least one vertex from every cycle of the graph. For
computing the initial strongly connected components and minimum feedback
vertex sets one may use the RelView tool again, see Berghammer and Fronk
[8], [9], and Berghammer et al. [12] for details.

We propose the following procedure for choosing a government in case there
is no stable government (see also Berghammer et al. [12]):

(1) Compute the set I of all initial SCCs of the dominance graph.
(2) For each SCC C from I do:

(a) Compute the set F of all minimum FVSs of the subgraph gener-
ated by the vertices of C.

(b) Select from all sets of F with a maximal number of ingoing arcs
one with a minimal number of outgoing arcs. We denote this one
by F .

(c) Break all cycles of C by removing the vertices of F from the
dominance graph.

(d) Select an un-dominated government from the remaining graph.
If there is more than one candidate, use social choice rules or
bargaining in order to choose one.

(3) If there is more than one set in I, select the final stable government
from the results of the second step by applying social choice rules or
bargaining again.

An outgoing arc of the dominance graph denotes that a government dominates
another one and an ingoing arc denotes that a government is dominated by
another one. Hence, the governments of an initial SCC can be seen as a cluster
which is not dominated from outside. The application of the second step to such
a set of ‘candidates’ corresponds to a removal of those candidates which are ‘least
attractive’, because they are most frequently dominated and they dominate other
governments least frequently.

According to the procedure just mentioned, if the application of steps (1) and
(2) does not give a unique solution, we select the final government from among
the ‘graph-theoretical’ results by applying again social choice rules or bargaining
games.

7.2 Example (Continued)

The computation of the dominance graph of Figure 4 is based upon the values
of columns 2 to 4 of Table 12. By changing our running example a little bit (viz.
by rounding each value to the next natural number being a multiple of 5) the
situation changes drastically. We obtain the dominance graph of Figure 5, that
does not possess a source. In this RelView-picture the subgraph induced by
the only initial SCC (corresponding to the set {g1, g2, g3, g4, g5} of governments)
is emphasized by black vertices and boldface arcs.
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Fig. 5. Dominance relation and initial SCC after rounding

We have applied the procedure of Subsection 7.1 to obtain a government that
can be considered as an approximation of a stable one. The next figure shows
the two minimum FVSs of the initial SCC as presented on the RelView screen:

Fig. 6. Minimum feedback vertex sets of the initial SCC

Each of the initial components possesses 3 ingoing arcs and the number of their
outgoing arcs is also 3. If we select the minimum FVS represented by the first
column of the matrix of Figure 6 in step (b) of our procedurs, then step (c) yields
vertex 1 as source. A selection of the second column yields the same result. This
shows that the stable government g1 of the original example is rather ‘robust’
with respect to modifying the parties’ utilities to a certain extent.

To demonstrate an application of the concepts of Section 6, we have changed
our example again and used a still coarser scale for the utilities. It divides the
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values of Table 12 into four categories, viz. small (0 to 25), medium (26 to 50),
large (51 to 75), and very large (76 to 100). Such a quatrigrade scale leads to
the dominance graph depicted in Figure 7; in this RelView-drawing again the
only initial SCC is emphasized.

Fig. 7. Dominance relation and initial SCC after a coarser rounding

If we apply the procedure of Subsection 7.1 to this graph, we obtain vertices 2
and 5 as the only minimum FVS and their removal converts vertices 1 and 4 to
sources. Hence, besides government g1 now also government g4 is a candidate
for being selected as rather stable.

Let us apply the Plurality rule for the final selection. From the utility relations
R(A), R(B), and R(C) of Figure 2 we obtain for the three parties A, B, and C
the following preferences:

A : g1 before g4, B : g4 before g1, C : g1 before g4.

Hence, government g1 is put first by two parties whereas government g4 is put
first by one party only. This means that again g1 is selected.

Alternatively, we can apply the bargaining games to this example. Since both
governments g1 and g4 are formed by coalition AB, only parties A and B are
involved in bargaining. Consequently, both Games I and II are the same. In
Game I/II, with the order of parties (A,B), there is only one subgame perfect
equilibrium, and it leads to the choice of government g4 already in the first
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period of the game. Game I/II with the order of parties (B,A) has also one
subgame perfect equilibrium, but it leads to the choice of government g1 in the
first period of the game. Let us note that being the first proposer in bargaining
may be disadvantageous: when party A is the first proposer, the subgame perfect
equilibrium gives g4 which is worse for party A than government g1. The same
holds for party B being the first proposer: the subgame perfect equilibrium leads
to government g1 which is less attractive for party B than government g4. When
applying Game III, if party A is stronger than B (i.e., for instance, A has more
seats in parliament than B), we get the same result as in Games I and II with
the order (A,B). If party B is stronger than A, Game III gives the same result
as in Games I and II with the order (B,A).

8 Consensus Reaching

In this section, we describe a procedure for a winning coalition to reach consensus
on a policy in order to form a feasible government.

8.1 Consensus Reaching Within a Coalition

In what follows, we assume a kind of mediator, called the chairman, who does
not belong to any party and is indifferent between all the parties. First of all,
this chairman chooses the parties that should adjust their preferences if needed,
and gives suggestions to the parties how they should change their preferences.
Moreover, in case of any non-uniqueness, the chairman chooses one solution.
Also, if a coalition seems to be unable to reach consensus, the chairman decides
when to stop the process of consensus reaching within that coalition. If the
attempts to reach consensus within a coalition fail, this means that the given
coalition does not propose any government.

We propose the following procedure for consensus reaching within a winning
coalition S; see also Eklund et al. [26]. Let G∗

S denote the set of all feasible gov-
ernments with S ∈W ∗ as coalition. Each party i ∈ S evaluates each government
from G∗

S with respect to all the criteria. The notations here are similar to the
ones presented in Subsection 2.1, except that we add the lower index S, since
now the parties of coalition S only consider the governments formed by S. For
each i ∈ S, we assume ui,S : C∗ ×G∗

S → [0, 1] such that

∀ c ∈ C∗ :
∑

g∈G∗
S

ui,S(c, g) = 1. (27)

The real number ui,S(c, g) is called the value of government g ∈ G∗
S to party

i ∈ S with respect to criterion c ∈ C∗. Moreover, for each i ∈ S, we define
Ui,S : G∗

S → [0, 1] such that

(Ui,S(g))g∈G∗
S

= (αi(c))c∈C∗ · (ui,S(c, g))c∈C∗,g∈G∗
S
, (28)

where (αi(c))c∈C∗ is the 1×|C∗| matrix representing the evaluation (comparison)
of the criteria by party i, (ui,S(c, g))c∈C∗,g∈G∗

S
is the |C∗|×|G∗

S |matrix containing
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party i’s evaluation (comparison) of all governments in G∗
S with respect to each

criterion in C∗, and (Ui,S(g))g∈G∗
S

is the 1 × |G∗
S | matrix containing party i’s

evaluation of each government in G∗
S . Because of property (5) (with the set DM

replaced by S) and (27) we have that∑
g∈G∗

S

Ui,S(g) = 1. (29)

Reaching consensus within a coalition means that the preferences of the parties
from this coalition, as well as their evaluation of the importance of all criteria
from C∗, should be relatively ‘close’ to each other. We specify this in detail.
We define an assessment or ‘distance’ function dS : S × S → [0, 1] satisfying
the conditions dS(i, i) = 0 and dS(i, j) = dS(j, i) for all i, j ∈ S. In Eklund et
al. [26], the authors consider the specific assessment function

dS(i, j) =

√√√√ 1
|G∗

S |
∑

g∈G∗
S

(Ui,S(g)− Uj,S(g))2

but one may apply other assessment functions as well. Moreover, the consensus
degree between decision makers i and j in coalition S is given by

δS(i, j) = 1− dS(i, j). (30)

The higher the consensus (degree), the smaller the ‘distance’ between pairs of
decision makers, i.e., between i and j. In particular, if dS(i, j) = 0, then we say
that i and j are in complete consensus in coalition S. If dS(i, j) = 1, then we say
that i and j are in complete disagreement in coalition S. Moreover, we define

d∗S = max{dS(i, j) | i, j ∈ S}, (31)

and a generalized consensus degree for coalition S as

δ∗S = 1− d∗S , (32)

which concerns the consensus reached by all the decision makers from S.
A certain consensus degree 0 < δ̃ < 1 is required in the model. We say that

coalition S reaches consensus if δ∗S ≥ δ̃. If δ∗S < δ̃, then the chairman will ask
at least one party to adjust its preferences. Any change of preferences leads to
a new generalized consensus degree for the coalition.

Now, let D∗
S denote the set of all parties from S with most different prefer-

ences, that is, we have

D∗
S = {i ∈ S | ∃j ∈ S [dS(i, j) = d∗S ]}. (33)

The chairman decides which party from D∗
S will be advised to change its eval-

uation(s) regarding some government(s) and/or the importance of the criteria.
The party iDS ∈ D∗

S asked to adjust its preferences is a party such that

iDS = arg max
i∈D∗

S

∑
j∈S

dS(i, j). (34)
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If this party does not agree to adjust its evaluations according to the chairman’s
advice, the chairman may propose another change to the same party or a change
to another party. Of course, this procedure of consensus reaching may consist of
several steps.

Assuming that wi is the weight of decision maker i ∈ S, we define the weighted
value US(g) of government g ∈ G∗

S as

US(g) =
∑
i∈S

w′
i · Ui,S(g), (35)

where
w′

i =
wi∑

j∈S wj
. (36)

Finally, if the generalized (final) consensus degree is not smaller than δ̃, the
consensus government g∗S formed by coalition S is chosen such that

g∗S = arg max
g∈G∗

S

US(g), (37)

Of course, there may be more than one such government g∗S . As noticed in Eklund
et al. [26], any government g∗S chosen by consensus reaching within coalition S
is stable in G∗

S .

8.2 Example (Continued)

Consider coalition AB which has to choose from three policies p1, p2, p3; p4
is not acceptable to B. So AB has to choose from governments {g1, g4, g7};
see Subsection 2.2. Suppose the weights of the three criteria for A are αA =
(1/3, 1/3, 1/3) and for B, αB = (1/2, 1/4, 1/4) respectively. Also suppose that
the matrices uA and uB of the utilities for A, respectively B, of the different
governments with respect to the three criteria look as follows:

uA =

⎛⎝ 1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2

⎞⎠ and uB =

⎛⎝ 1/4 1/2 1/4
1/4 1/2 1/4
1/4 1/4 1/2

⎞⎠
Then UA = αA · uA = (1/3, 1/3, 1/3) and UB = αB · uB = (4/16, 7/16, 5/16).
Hence,

d∗AB = d′AB(A,B) =

√
1
3
[(

1
3
− 1

4
)2 + (

1
3
− 7

16
)2 + (

1
3
− 5

16
)2] =

1
48

√
2.

Supposing that the required (generalized) consensus degree is 15
16 , the (general-

ized) consensus degree δ∗AB for coalition AB, being 1− 1
48

√
14, is too small. So,

the chairman comes into play and suppose that after discussion he is able to
convince party B to adjust its utilities as follows:

u′B =

⎛⎝ 1/4 1/2 1/4
1/2 1/4 1/4
1/4 1/4 1/2

⎞⎠
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Then U ′
B = αB · u′B = (5/16, 6/16, 5/16) and consequently

d∗AB = d′AB(A,B) =

√
1
3
[(

1
3
− 5

16
)2 + (

1
3
− 6

16
)2 + (

1
3
− 5

16
)2] =

1
48

√
2.

Hence, the generalized consensus degree δ∗AB becomes 1− 1
48

√
2, which is larger

than the required consensus degree of 15
16 . So, coalition AB reaches consensus.

Assuming that each party has equal weight, we compute the utilities UAB(g) for
coalition AB of each government g ∈ {g1, g4, g7} and we find that UAB(g1) =
1
2UA(g1)+ 1

2UB(g1) = 1
2 (1/3+5/16) = 31/96, UAB(g4) = 1

2 (1/3+6/16) = 34/96
and UAB(g7) = 1

2 (1/3+5/16) = 31/96. Consequently, coalition AB will propose
government g4. Of course, it may happen that there is more than one government
with a maximal utility for a given coalition, in which case the coalition may
propose all these governments with maximal utility.

9 Conclusions

We used the MacBeth software in order to determine the utilities of policies
to parties. Based on these utilities one can determine the feasible governments.
Next we used the RelView tool in order to calculate the stable governments. If
there is more than one stable government we showed how social choice rules or
bargaining may result in a particular choice. In case there is no stable government
we used techniques from graph theory in order to choose a government which is
as close as possible to being stable. We also indicated a procedure for a coalition
to reach consensus about a policy, in order to propose a government.

Due to the MacBeth and RelView software, our model of coalition formation
seems to be applicable in practice. It could be helpful in the real world in order to
form a stable government after elections in a rational way. It would be interesting
to test the model in practice and to compare the outcome of the model with the
actual outcome.
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Abstract. In computer science, scenarios with interacting agents are of-
ten developed using modal logic. We show how to interpret modal logic
of knowledge in relation algebra. This allows the use of the RelView
tool for the purpose of investigating finite models and for visualizing cer-
tain properties. Our approach is illustrated with the well-known ‘muddy
children’ puzzle using modal logic of knowledge. We also sketch how to
treat other non-classical logics in this way. In particular, we explore our
approach for computational tree logic and illustrate it with the ‘mutual
exclusion’ example.

1 Introduction

For some time now researchers in computer science have been interested in rea-
soning about knowledge in multi-agent systems. Here a group of interacting
agents is given and it is assumed that each agent takes into account not only
facts that are true about the world, but also the knowledge of other agents. Ap-
plications of this scenario can be found in many domains of computer science,
for instance in distributed computing, cryptography, and robotics.

The idea of using modal logic for reasoning about knowledge goes back to
J. Hintikka and has been worked out in great detail, e.g. in the textbooks
[9,12,19]. The standard semantics of modal logic is based on the agents’ ac-
cessibility relations on a global set of possible worlds. In this paper we adopt
an algebraic perspective. Relation algebra, and more generally Boolean algebras
with operators, provide natural settings for studying modal logics and other
kinds of non-classical logics, cf. [2,6,13,23] for example. A sufficient framework
for interpreting modal logic of knowledge is dynamic algebra [16,24]. However
in this paper we interpret modal logics in the more expressive setting of het-
erogeneous relation algebras with transitive closure (see [22,25,26]) and their
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representation as Boolean matrices [25]. Representing sets (respectively, predi-
cates on sets) by specific relations, viz. vectors, relation-algebraic specifications
can be evaluated by calculations on Boolean matrices and vectors, and properties
of relations can be verified in this way. Hence, the relation-algebraic manipula-
tion and visualization system RelView [1,20,4] can be applied for the purpose
of model checking and similar tasks. It turns out that this can be achieved
with very little effort and that the approach can be transferred to other impor-
tant non-classical logics, which are embeddable into the programming language
of RelView, such as temporal logic which we consider in this paper but also
Peirce logic and description logic.

The case study in this paper explores a novel application of the RelView tool
for which it was not originally designed. The application may be of interest to re-
searchers working in the area of modal logics, since to our knowledge, there seem
to be very few tools available for solving and visualizing computational problems
of finite models in modal logic. One of the uses of RelView we explore is its
use as a finite model checker. However we do not claim any superiority of the
system over existing implemented model checking systems such as Mcmas [18]
and Verics [14,15]). Sophisticated model checking tools which have been devel-
oped for computational tree logic, linear temporal logic, and the process algebra
CSP include Spin, Smv, Kronos, Uppall, and Fdr2. Because of the global ap-
proach that RelView takes, it cannot compete directly with systems based on
local evaluations. Nevertheless, the underlying technology of RelView is based
on reduced, ordered BDDs which are fast [17,3,20]. Furthermore, the tool has a
convenient graphical user interface and provides useful capabilities for manipu-
lating and displaying relations and graphs. Particularly attractive in the context
of modal logic is the presence of the operator trans for computing transitive
closures in the tool’s programming language. This is useful for performing finite
model reasoning tasks for a modal logic with the common knowledge operator
and also for dynamic logic. Such logics cannot be handled directly for example
by first-order logic theorem provers since the transitive closure operator and the
common knowledge operator are not first-order definable.

The remainder of the paper is organized as follows. Some basic notions of
modal logic and modal logic of knowledge are recalled in Sections 2 and 3.
Section 4 describes how to interpret modal logic of knowledge in relation algebra
and how then the RelView tool can be used for solving computational problems
on finite models. The application of the approach to the well-known ‘muddy
children’ puzzle is presented in Section 5. This example also demonstrates how
RelView can be used for visualizing models, and solutions of tasks. Our method
can be extended to all non-classical logics, embeddable into the programming
language of RelView. Section 6 features the approach for computational tree
logic and the ‘mutual exclusion’ example in more detail. In Section 7 some further
applications of relation algebra and RelView in the context of modal logic are
considered. Finally, Section 8 concludes with some further remarks about the
approach and the use of RelView.
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2 Modal Logic

The language of (propositional) modal logic with multiple modalities is defined
over countably many propositional variables p1, p2, p3, . . ., and finitely many
modalities ♦1, . . . ,♦n, one for each agent 1, . . . , n. A propositional atom is a
propositional variable or the constant � (the symbol for ‘true’) and a modal for-
mula is either a propositional atom or a formula of the form ¬φ, φ ∧ ψ, and ♦iφ.
We define the constant ⊥ (the symbol for ‘false’) and the other propositional
connectives ∨,→, and ↔ as usual, e.g. φ→ ψ := ¬φ ∨ ψ. Furthermore, the dual
operator of ♦i is defined by �iφ := ¬♦i¬φ.

The standard semantics of modal logic is given by the well-known Kripke
semantics (or possible world semantics). A frame (or relational structure) for
a modal logic is a pair F = (W, {R1, . . . , Rn}), where W is a non-empty set of
worlds and each Ri is a binary relation overW . W is the set of possible worlds (or
states) in which the truth of formulae is evaluated. The Ri are the accessibility
relations which determine the formulae deemed possible by an agent i in a given
world (1 ≤ i ≤ n). A model is a pair M = (F , ι) of a frame F and a valuation
function ι from the set of propositional variables to 2W , where ι(pi) is interpreted
to be the set of worlds in which pi is true. The truth of a modal formula in a
world x of a model M is defined as follows (where the notation Ri(x, y) means
that the elements x and y are related via the relation Ri).

M,x |= �
M,x |= pi :⇐⇒ x ∈ ι(pi)
M,x |= ¬φ :⇐⇒ M,x �|= φ

M, x |= φ ∧ ψ :⇐⇒ M,x |= φ and M,x |= ψ
M, x |= ♦iφ :⇐⇒ ∃ y ∈ W : Ri(x, y) and M, y |= φ

If M,x |= φ we also say that x satisfies φ. A modal formula is valid in a model M
iff the formula is true in every world of M . It is valid in a frame F iff it is valid
in all models based on the frame, i.e. in all models (F , ι).

For the purposes of this paper it suffices to consider modal logic from a seman-
tic perspective. (The reader interested in the axiomatizations of the considered
logics should refer to standard textbooks, e.g. [5,7,10,11].) A modal logic L is
said to be sound (respectively complete) with respect to a class of frames iff for
any modal formula φ, any frame in the class validates φ if (respectively iff) φ
is a theorem in L. A modal logic is said to be complete iff it is complete with
respect to some class of frames.1

The basic multi-modal logic K(m) is complete with respect to the class of all
frames. The table in Figure 1 lists the relation-algebraic correspondence prop-
erties satisfied by classes of frames for extensions of the basic logic K(m). This
means, if L denotes an extension of the basic logic K(m) with a subset of the
common axioms listed in the table then L is a logic (sound and) complete with

1 Note in modal logic the notion of completeness is used differently than in other
logical disciplines.
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Axiom Correspondence property
T �ip → p reflexivity I ⊆ Ri

4 �ip → �i�ip transitivity Ri; Ri ⊆ Ri

B ♦i�ip → p symmetry Ri ⊆ Ri
T

D �ip → ♦ip seriality L ⊆ Ri; L
alt1 ♦ip → �ip functionality Ri

T; Ri ⊆ I
5 ♦i�ip → �ip Euclideanness Ri

T; Ri ⊆ Ri

Fig. 1. Modal axioms and their frame correspondence properties

respect to the class of all frames which satisfy each of the corresponding prop-
erties. In the table, I denotes the identity relation and L denotes the universal
relation. Furthermore, R;R denotes the composition of R with itself and RT the
transpose (converse) of R. Other relation-algebraic constructions used in this
paper are the empty relation O, the Boolean constructs R ∪ S (union), R ∩ S
(intersection), R (complement), and the transitive closure R+ :=

⋃
k≥1 R

k of
R. Here we assume powers are defined inductively by R0 := I and Rk+1 := R;Rk

for k ≥ 0.

3 Modal Logic of Knowledge

Modal logic lends itself to formalize informational aspects of agent-based sce-
narios. Consider the language defined in Section 2 in which �iφ, from now on
written Kiφ, is interpreted as ‘the agent i knows that property φ is the case’.
For this reading it is usual to assume that the following axioms of the table in
Figure 1 are valid: T (axiom of true knowledge), 4 (agents are positively intro-
spective) and 5 (agents are negatively introspective). The accessibility relations
Ri associated with the knowledge operators Ki are therefore equivalence rela-
tions on the set of worlds W (because each Ri is reflexive and transitive and
RT

i = RT
i ; I ⊆ RT

i ;Ri ⊆ Ri shows symmetry).
In order to handle the common knowledge of a group of agents two additional

modal operators, EG and CG, are required. Let G denote a finite set of agents.
Then the modal formula EGφ is read to mean that ‘each of the agents in G
knows that φ is the case’, and the modal formula CGφ is read to mean that ‘it
is common knowledge among the group G of agents that φ is the case’. Their
semantics is defined by the following equivalences, where Ek

Gφ is an abbreviation
of the modal formula EG . . . EGφ with k occurrences of the operator EG.

M,x |= EGφ :⇐⇒ ∀ i ∈ G : M,x |= Kiφ
M, x |= CGφ :⇐⇒ ∀ k ≥ 1 : M,x |= Ek

Gφ

If G = {i1, . . . , im}, then we have the following equivalence.

M,x |= EGφ ⇐⇒ M,x |= Ki1φ ∧ . . . ∧ Kimφ
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Thus, the formula EGφ is true in a world of a model iff everyone in the group
knows that φ is true. Furthermore, the formula CGφ is true iff everyone in the
group knows that φ is true and everyone in the group knows that everyone in
the group knows that φ is true, and so on. The following three properties are
not difficult to show for any model M and any world x of M . We assume that
R is the union of the accessibility relations Ri for all i ∈ G, i.e. R :=

⋃
i∈G Ri.

M,x |= CGφ ⇐⇒ M,x |= EG(φ ∧ EGCGφ)
M,x |= Ek

Gφ ⇐⇒ ∀ y ∈W : Rk(x, y) implies M, y |= φ
M, x |= CGφ ⇐⇒ ∀ y ∈W : R+(x, y) implies M, y |= φ

Distributed knowledge is another concept central to modal logics of knowl-
edge. Here a group of agents can deduce a formula by pooling their knowledge
together. Since this distributed knowledge is not used in the ‘muddy children’
puzzle of Section 5, we omit the technical details and refer to the textbooks
cited in Section 2. Relation algebra does however allow us to model distributed
knowledge by using the same techniques which we apply in the next section to
model the modal logic of common knowledge.

4 Relational Model Checking

The term ‘model checking’ refers to automatic model-based verification ap-
proaches; see e.g., [21,8]. In the case of modal logic it involves solving tasks
of the following kind. Suppose that M = (F , ι) is a given finite model, where the
frame is F = (W, {R1, . . . , Rn}), and φ is a given modal formula.

Determine whether φ is true in a given world of M (satisfiability in a
given world of a model).

(1)

Determine whether there is a world of M in which φ is true (satisfiability
in a model).

(2)

Determine whether φ is true in all worlds of M (global satisfiabil-
ity/validity in a model).

(3)

Determine the set of all worlds of M in which φ is true.(4)

In this paper, we use relation algebra and the RelView tool to compute the set
of all worlds of M in which φ is true (i.e. to solve task (4)). This immediately
leads to solutions of tasks (1)–(3), too.

Our solution is based on the representation of sets of worlds by so-called
vectors over W . Such vectors are relations with W as the domain and a singleton
set, {•} say, as the range. Since this specific range is irrelevant, in the following
we omit for a vector v the second argument and write v(x) instead of v(x, •). A
vector v over W can be viewed as a Boolean column vector and represents the
set {x ∈ W | v(x)} of worlds.

Suppose we wish to describe an arbitrary modal formula φ via the vector of
worlds in which it is true, that is, we want to compute the vector vφ representing
the set {x ∈ W | M,x |= φ}. We start by defining for the constant � the
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vector v
 as the universal vector L over W (the universal relation with domain
W and range {•}). Then for each propositional variable p in φ we define a
vector vp representing the set ι(p). Using Boolean vector terminology, the latter
means that we set the x-component of vp to 1 if x ∈ ι(p) and we set it to 0 if
x /∈ ι(p). Due to the first two cases of the definition of truth in Section 2, the
vector v
 represents the set {x ∈ W | M,x |= �} and the vector vp represents
the set {x ∈ W | M,x |= p} for every propositional variable p in φ. Based on
these facts, we then obtain the vector vφ which we are looking for by recursively
applying the following properties.

v¬ψ = vψ vψ∧ρ = vψ ∩ vρ v♦iψ = Ri; vψ

The proofs of these equations for arbitrary ψ and ρ use the remaining three cases
of the definition of truth in Section 2 and the definition of relational complement,
intersection, and composition. E.g., v♦iψ = Ri; vψ holds since for all x ∈ W

(Ri; vψ)(x) ⇐⇒ ∃ y ∈ W : Ri(x, y) and vψ(y)
⇐⇒ ∃ y ∈ W : Ri(x, y) and M, y |= ψ
⇐⇒ M,x |= ♦iψ.

It is obvious from the above equations, how to get the vectors for the con-
stant ⊥ and the other propositional connectives ∨, → and ↔. A little reflection
yields the vectors for the dual operators Ki (or �i). With the help of the prop-
erties of Section 3 we, finally, obtain the vector-representation for the remaining
modal operators EG and CG, too.

We present only the results for the dual operators Ki and the common knowl-
edge operators EG, and CG. Here we have:

vKiψ = Ri; vψ vEGψ = (
⋃
i∈G

Ri); vψ vCGψ = (
⋃
i∈G

Ri)+; vψ

A proof of the first equation is

vKiψ = v¬♦i¬ψ = v♦i¬ψ = Ri; v¬ψ = Ri; vψ .

The second equation follows from the calculation

vEGψ = v
i∈G Kiψ =

⋂
i∈G

vKiψ =
⋂
i∈G

Ri; vψ =
⋃
i∈G

Ri; vψ = (
⋃
i∈G

Ri); vψ .

A simple induction shows that vEk
Gψ = (

⋃
i∈G Ri)k; vψ for all k ≥ 1. This

property is used in the following proof of the third equation.

vCGψ =
⋂
k≥1

vEk
Gψ =

⋂
k≥1

(
⋃
i∈G

Ri)k; vψ =
⋃
k≥1

(
⋃
i∈G

Ri)k; vψ = (
⋃
i∈G

Ri)+; vψ

All the constructs of relation algebra we have used up to now are available in
the programming language of the RelView tool. More specifically, we have the
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RelView-operators - for complementation (prefix operator), ^ for transposition
(postfix operator), |, &, and * for union, intersection, and composition (infix
operators), and trans for transitive closure (a pre-defined relational function).
Furthermore, the tool allows for the definition of relational functions by the
user. For instance, the box operators �i can be modelled by the following binary
RelView-function box.

box(S,v) = -(S * -v)

Here S denotes a RelView-relation (a Boolean matrix) and v a RelView-
vector. Consider the modal formula φ defined as follows.

K1p ∧ K1¬K2K1p

In words, the formula φ says that agent 1 knows p and, furthermore, that agent 1
knows that agent 2 does not know agent 1 knows p. The vector-representation vφ

of the set of worlds in which φ is true is computed by RelView as the result of
the evaluation of the expression

box(R1,p) & box(R1,-box(R2,box(R1,p))).

Here it is assumed that the accessibility relations R1, R2 of M and the vector vp

are stored in the tool’s workspace under the names R1, R2, and p.

5 Example: The Muddy Children Puzzle

By way of the well-known ‘muddy children’ puzzle we now illustrate the support
provided by the RelView tool for solving certain problems on finite models of
modal logic. Our description of the puzzle follows [9].

A group of n children play together. A number of them happen to get mud on
their foreheads. Each child can see another child’s forehead but it cannot see its
own forehead. Since no child will tell another child whether it has mud on the
forehead, the puzzle is the following. Can a child know that it has mud on its own
forehead? Obviously, without any extra information the answer is no. But now
the father comes onto the scene. He says for all to hear, that ‘at least one of you
has mud on your forehead’. He then asks the children over and over again: ‘Do
you know whether you have mud on your forehead?’ with the instruction that
the children have to answer the question simultaneously. Suppose the number
of children with mud on their foreheads is k. Then in the first k− 1 rounds, the
father asks the question all children will answer ‘no’. However, in the kth round
exactly the children with muddy foreheads will answer ‘yes’; the remaining will
answer ‘no’.

This puzzle can be modelled and solved within the modal logic of knowledge
defined in Section 3. The common knowledge operator CG is particularly crucial
for the solution.

As a concrete example of the ‘muddy children’ puzzle, in the following we
elaborate an instance of the problem with three children. The possible states
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Fig. 2. The accessibility relations in the case of three children

(worlds) of the model are given by triples of 0’s and 1’s, where (s1, s2, s3) is the
state in which child i has mud on its forehead iff si = 1 and is clean iff si = 0
(1 ≤ i ≤ 3). The model, hence, consists of 8 states representing all combinations
of associating 0 or 1 with the three children. Let us now consider what each
child knows in a given state. For instance, in the state (1, 0, 1) child 1 sees the
foreheads of child 2 and child 3 but not its own, it therefore knows that child 2
does not have a muddy forehead but child 3 does. Initially the child does not
know if its own head is muddy. Hence, (0, 0, 1) and (1, 0, 1) are the only possible
successor states of the state (1, 0, 1) with respect to the accessibility relation R1.
Similar considerations apply to the other children and states.

The three pictures in Figure 2 show the accessibility relations R1, R2, and
R3. This is how RelView displays the relations as Boolean matrices (with
labeled rows and columns). A black square in the matrix Ri means that the
corresponding states are related via this relation and a white square means that
they are not related. E.g., the above considerations on the knowledge of child 1
in the state (1, 0, 1) correspond to the two black squares in the fifth row of R1.

Suppose that the relation R is the union of the three accessibility relations
R1, R2, and R3. In Figure 3 it is shown how the RelView tool displays the
irreflexive part R∩ I of R as a labelled graph. This graph is the disjoint union of
three subgraphs. These correspond to the possibilities of child 1 (boldface arcs),
child 2 (dotted arcs), and child 3 (remaining arcs), but neglecting all self-loops.
(We have omitted the self-loops in order to avoid cluttering in the graph.)

Now, we assume the propositional variable pi, 1 ≤ i ≤ 3, denotes that ‘child i
has mud on its forehead’. Then RelView depicts the vector vpi representing
the set ι(pi) as a Boolean column vector as in Figure 4, where we have again
used the tool’s labeling mechanism to enhance understandability.

The three accessibility relations and these three vectors (Figures 2 and 4) pro-
vide a complete specification of the model M which we use as input to RelView.
We assume that these are stored in the tool’s workspace under the names R1, R2,
R3 and p1, p2, p3. Furthermore, we use the relational function box of Section 3.

In order to determine satisfiability of a formula φ in a state or set of states
all that is required is to let RelView evaluate the expression corresponding
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Fig. 3. Graphical representation of the accessibility relations

to φ, since this returns the set of worlds/states in which the formula is true as
a vector. As first examples consider the following two statements.

M,x |= ¬K1(p1 ∨ p2) M,x |= K1(p2 ∨ K3p1)

The formula on the left says that child 1 does not know whether it or child 2 is
muddy and the formula on the right says that child 1 knows that child 2 is muddy
or that child 3 knows that child 1 is muddy. The RelView-expressions represent-
ing the modal formulae ¬K1(p1 ∨ p2) and K1(p2 ∨ K3p1) are -box(R1,p1| p2)
respectively box(R1,p2| box(R3,p1)). Evaluating these two expressions with
the tool yields the vectors in Figure 5.

The labelling of the rows is as in Figure 4. Hence, the interpretation of the
vectors is that ¬K1(p1 ∨ p2) is true in the states (0, 0, 0), (1, 0, 0), (0, 0, 1) and
(1, 0, 1) and K1(p2 ∨ K3p1) is true in all states except (0, 0, 0), (1, 0, 0), (0, 0, 1)
and (1, 0, 1). As a consequence, the statement

M,x |= K1(p1 ∨ p2) ↔ K1(p2 ∨ K3p1)

0 0 0
1 0 0
0 0 1
0 1 0
1 0 1
1 1 0
0 1 1
1 1 1

0 0 0
1 0 0
0 0 1
0 1 0
1 0 1
1 1 0
0 1 1
1 1 1

0 0 0
1 0 0
0 0 1
0 1 0
1 0 1
1 1 0
0 1 1
1 1 1

p1 p2 p3

Fig. 4. The vectors for ‘child i has mud on its forehead’
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t1 = -box(R1,p1|p2) t2 = box(R1,p2|box(R3,p1)) (t1|t2)&(-t1|-t2)

Fig. 5. Satisfiability of t1 = ¬K1(p1 ∨ p2), t2 = K1(p2 ∨ K3p1) and ¬t1 ↔ t2

is true for all states x of the model M , which menas that its formula is valid
in M . This can be easily determined with the aid of RelView by evaluating
the expression (t1 | t2) & (-t1 | -t2) (i.e. ¬t1 ↔ t2) where t1 and t2 denote
¬K1(p1 ∨ p2) and K1(p2 ∨ K3p1), respectively. This produces the universal
vector which confirms that the equivalence is valid. In words, the equivalence
says that child 1 knows that itself or child 2 is muddy iff it knows that either
child 2 is muddy or that child 3 knows that child 1 is muddy.

The next example involves the common knowledge operator CG. Consider the
following statement.

M,x |= C{1,2,3}(p2 → K1p2)

Because vCGψ = (
⋃

i∈G Ri)+; vψ (see Section 4) and the definition of impli-
cation in terms of negation and disjunction, the RelView-expression for the
formula C{1,2,3}(p2 → K1p2) is

box(trans(R1| R2 | R3),-p2| box(R1,p2)).

The RelView result for this expression is the universal vector, which means
that the formula C{1,2,3}(p2 → K1p2) holds in all the worlds of the model M
under consideration. Indeed, as is easy to verify, in this model it is common
knowledge of all children that, if child 2 is muddy then child 1 knows this.

The above illustrates that RelView has two modes for displaying relations:
graph representations and matrix representations. Graph representations are par-
ticularly well suited for visualization. RelView allows for the edges and nodes of
graphs to be distinctively marked. For example, different edge styles can be used
as in Figure 3 to specify designated (sub)relations and the nodes can be labelled.
Matrix representations are in general less well-suited for visualization, but provide
efficient representations of graphs and are easy to process by relation-algebraic
(matrix) operations. In addition, certain properties have natural illustrations in
matrices. E.g., it is easy to recognize at one glance from the matrices represent-
ing R1, R2 and R3 that all three relations are reflexive and symmetric (because
each matrix includes the diagonal, the identity relation, and is a mirror image in
the diagonal). Also validity of a formula in the model is immediately recognizable
when the evaluation returns a vector with all squares marked.
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6 Treatment of Other Non-classical Logics

Until now, we have shown how to interpret modal logic of knowledge in relation
algebra and how then the RelView tool can be used for investigating finite
models of this logic, for visualizing them and for computing solutions to certain
computational tasks. This method can be extended to all non-classical logics,
embeddable into the programming language of RelView. Prominent examples
are logics such as linear-time logic LTL, Hennessy-Milner logic HML, the modal
μ-calculus, and the computational tree logic CTL. These are used in computer
science for describing properties of computer systems, and model checking for
these logics can then serve as a verification method.

In all the logics we have just mentioned some modalities are specified via
fixed point constructions. This is no problem for RelView. Far from it! Its
programming language allows to formulation of while-loops. These can be used
immediately to compute extremal fixed points of monotone functions f on finite
lattices as limit of the finite ascending chain 0 ≤ f(0) ≤ f(f(0)) ≤ . . . in the
case of the least fixed point (0 is the least element of the lattice) and of the finite
descending chain 1 ≥ f(1) ≥ f(f(1)) ≥ . . . in the case of the greatest fixed point
(1 is the greatest element of the lattice), respectively.

In the following, we consider computational tree logic CTL in more detail. For-
mulae of this logic are constructed using the propositional atoms and connectives
of modal logic as introduced in Section 2 and the specific operators AX, EX, AU,
EU, AF, EF, AG, and EG. The meaning of the operators AX (respectively EX )
is the same as the meaning of the �-modality (respectively the ♦-modality) in
classical modal logic. Hence, if we use again vφ as vector representation of the
set {M,x |= φ} we obtain the relation-algebraic specifications

vAX (φ) = R; vφ vEX (φ) = R; vφ,

where R is the transition relation of the model M . A formula of the form
AU (φ, ψ) holds in a state x if for all computation paths x1, x2, x3, . . . begin-
ning with x(= x1) we have that ψ holds in some future state xi and φ holds
for all states xj , j < i. Furthermore, a formula EU (φ, ψ) holds in a state x
if there exists a computation path x1, x2, x3, . . . beginning with x(= x1) such
that ψ holds in some future state xi and φ holds in all states xj , j < i. Formally
these properties can be described by least fixed point constructions (cf. [21]).
These yield the following vector representations, where again R is the transition
relation of the model M .

vAU (φ,ψ) = μf where f(w) = vψ ∪ (vφ ∩ R; w ∩R; L)
vEU (φ,ψ) = μg where g(w) = vψ ∪ (vφ ∩R;w)

The remaining four operators can be reduced to AU and EU . We have AF (ϕ) :=
AU (�, ϕ), EF (ϕ) := EU (�, ϕ), AG(ϕ) := ¬EF (¬ϕ), and EG(ϕ) := ¬AF (¬ϕ)
(see e.g., [21]). From these definitions we obtain the corresponding vector repre-
sentations as follows:

vAF(ϕ) = vAU (
,ϕ)
vEF(ϕ) = vEU (
,ϕ)

vAG(ϕ) = vEF(¬ϕ)
vEG(ϕ) = vAF (¬ϕ)



42 R. Berghammer and R.A. Schmidt

AX(R,p) = -(R * -p).

AU(R,p,q)
DECL w, v
BEG w = O(p);

v = q | (p & -(R * -w) & R * L(p));
WHILE -eq(w,v) DO

w = v;
v = q | (p & -(R * -v) & R * L(p)) OD

RETURN w
END.

AF(R,p) = AU(R,L(p),p).

Fig. 6. Programs to compute AX, AU, AF

A RelView-implementation of CTL essentially consists of RelView-prog-
rams for the operators of this logic. The code in Figure 6 shows the programs
for the three operators AX, AU, and AF as they arise from the above vector
representations. Guided by this code the reader should have no difficulties to
obtain the RelView-programs for the remaining five CTL-operators EX, EU,
EF, AG, and EG from the corresponding vector representations.

We have experimented with a RelView-implementation of CTL using stan-
dard examples from the literature. One of them is the ‘mutual exclusion’ of two
processes P1 and P2. In the textbook [12] this example is modelled by a tran-
sition system in two ways and in each case some important properties (such as
safety and liveness) are verified using CTL. The remainder of this section treats
the first attempt of [12] with the aid of RelView.

We assume six propositional variables. For i ∈ {1, 2} the variable ni denotes
that the process Pi is in a non-critical section, the variable ti denotes that Pi

tries to enter a critical section, and the variable ci denotes that Pi is in a critical
section. Based on these variables, a protocol for managing the admission to a
critical section is given by a transition relation R on a set of states and a valu-
ation of the propositional variables. A RelView-description of the protocol is
presented in the Figures 7 and 8. Figure 7 shows the transition relation R on the
protocol’s states as a Boolean matrix R and the valuation of the propositional

R n1 n2 t1 t2 c1 c2

Fig. 7. Relational model of a mutual exclusion protocol
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Fig. 8. Graphical representation of a mutual exclusion protocol

variables as six Boolean vectors n1, n2, t1, t2, c1, and c2. The graph repre-
sentation of the model is shown in Figure 8. In this picture a node corresponds
to a state and the labels of a node indicate which propositional variables are
defined to be true in the corresponding state. E.g., the first node corresponds
to the initial state where both processes are in a non-critical section and the
second node corresponds to the state where P1 tries to enter a critical section
and P2 remains in a non-critical section. Usually, the initial state of a transition
system is indicated as a node with an incoming arrow without a source. Since in
RelView such ‘partial arrows’ are not possible, we have drawn the initial node
as a black circle.

Having the RelView-description of the protocol at hand, we have used the
tool to verify fundamental properties of the protocol. For example, safety, live-
ness, and that a process can always request to enter a critical section are de-
scribed by the following three CTL-formulae.

safety: AG(¬(c1 ∧ c2))
liveness: AG(t1 → AF (c1))
non-blocking: AG(n1 → EX (t1))

If we evaluate the three corresponding RelView-expressions AG(R,-(c1 & c2)),
AG(R,-t1 | AF(R,c1)), and AG(R,-n1 | EX(R,t1)), we obtain in the first case
and the third case the 8×1 universal vector and in the second case the 8×1 empty
vector. This means that the properties of safety and non-blocking are satisfied in
every state but liveness is satisfied in no state. This conclusion is in agreement
with the results of [12].

7 Further Uses of RelView

Suppose q is a propositional variable in a modal formula φ and suppose the
valuations ι(p) of all propositional variables p in φ with the exception of q are
defined in M . A problem which we might be interested in is the following:
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Compute a valuation ι(q) to q so that φ is satisfiable in a world of M .(5)

Task (5) may be generalized to an optimization problem as follows:

Compute a valuation ι(q) for q so that φ is satisfiable in a maximal
number of worlds of M .

(6)

A solution to the first problem is possible by applying the ‘is-member-of’ relation
between W and the powerset 2W . The ‘is-member-of’ relation ε relates a world
x and a set of worlds X iff x ∈ X . It is available in RelView via a pre-defined
relational function called epsi. Problem (6), the generalization, can also be
solved with RelView. The solution uses besides the ‘is-member-of’ relation also
the ‘size-comparison’ relation on 2W , and the vector-representation of greatest
elements with respect to a quasi-order. The ‘size-comparison’ relation relates two
sets X and Y iff |X | ≤ |Y | and can be computed via a call of the pre-defined
function cardrel.

In an array-like implementation of relations the memory consumption of the
‘is-member-of’ relation and the ‘size-comparison’ relation is exponential in the
size of the base set. However, BDDs allow a very efficient implementation of these
two relations. In [17] for the ‘is-member-of’ relation a BDD-implementation is
developed that uses O(n) BDD-nodes and [20] presents for the ‘size-comparison’
relation a BDD-implementation with O(n2) BDD-nodes. In both cases n is the
number of elements of the base set, i.e., the cardinality of the set of worlds W
in our case.

To give an impression of how to solve problem (5) by means of RelView, we
consider the formula ¬K1(p1 ∨ p2) of Section 5 and replace the propositional
variable p2 by the (uninterpreted) propositional variable q. We assume again that
the relation R1 is as shown in Figure 2 and that the propositional variable p1
denotes ‘child 1 has mud on its forehead’, i.e., the vector representation vp1 of
ι(p1) is as shown in Figure 4. Then RelView computes exactly 240 possible
valuations ι(q) for q such that the modal formula

¬K1(p1 ∨ q)

becomes true in a world of the model M with relation R1 and valuation func-
tion ι. The key to obtaining this result is the relation Q between the set of
worlds W and the powerset 2W , defined by

Q := R1; vp1 ; L ∪ ε .

This definition implies that for all x ∈ W and X ∈ 2W we have that Q(x,X)
iff X = ι(q) implies M,x |= ¬K1(p1 ∨ q). In matrix terminology this means: If
ι(q) is represented by column c of ε, then {x ∈ W | M,x |= ¬K1(p1 ∨ q)} is
represented by the same column of Q. Hence, the vector QT; L (defined over 2W )
represents the 240 solutions of problem (5) with inputs ¬K1(p1 ∨ q), R1, and
ι(p1). A column-wise description of these solutions is ε; inj (QT; L)T

, where the
relational function inj computes the injective mapping generated by a vector.
(If the vector v over X represents the subset Y of X , then inj(v) is the relation
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Fig. 9. Valuations not leading to satisfiability of ¬K1(p1 ∨ q)

between Y and X such that inj(v)(x, y) iff x = y.) This standard technique
for representing sets of subsets is explained in, e.g. [3,4]. In our example it
yields a 8 × 240 RelView-matrix, which is too large to be presented here.
Therefore, we show in Figure 9 a much smaller RelView-matrix that column-
wisely represents the non-solutions, i.e., the 16 valuations ι(q) for q which do
not lead to satisfiability. For example, from the last column of this picture we
see that no world of M satisfies the formula ¬K1(p1 ∨ q) if ι defines the variable
q to be true in all worlds of M .

We have also used RelView to solve problem (6) for the same three inputs
¬K1(p1 ∨ q), R1, and ι(p1). The system computes that exactly 16 of the 240
solutions of problem (5) maximize the number of worlds which satisfy the for-
mula, there is only one such maximal set of worlds, and its cardinality is 4. The
16 solutions of problem (6) are column-wisely described by the 8× 16 matrix of
Figure 10. E.g., the last column of this matrix states that ¬K1(p1 ∨ q) is true in
a maximal number of worlds if q is true in 〈1, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 0〉, and 〈1, 1, 1〉.
The only 4 worlds which satisfy ¬K1(p1 ∨ q), if ι(q) is one of the 16 solutions
of problem (6), are 〈1, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 0〉, and 〈1, 1, 1〉. This property follows
from the RelView-vector of Figure 10.

Like the solutions (respectively non-solutions) of problem (5) for the inputs
¬K1(p1 ∨ q), R1, and ι(p1), also the solutions of problem (6) can be specified
by simple relation-algebraic expressions. Crucial to the solution is the vector

v := ge(C, syq(ε,Q); L)

over the powerset 2W that represents the set of all maximal subsets X of W such
that M,x |= ¬K1(p1 ∨ q) holds for all x ∈ X . In this definition the relations Q

Fig. 10. Maximum satisfiability of ¬K1(p1 ∨ q)
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and ε are as above, C denotes the ‘size-comparison’ relation on 2W , and the
relational functions

ge(R,w) = w ∩ R
T
;w syq(R,S) = RT; S ∩ R

T
;S

compute the vector of the greatest elements of the vector w with respect to the
quasi-orderR and the symmetric quotient of R and S, respectively. In the present
case the column-wise description ε; inj(v)T of the maximal subsets consists of
only one column and coincides with the vector of Figure 10. From it we obtain
the vector representation of the set of 16 valuations leading to the only maximal
subset2 {〈1, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉} via the vector syq(Q, ε; inj(v)T) over
2W , and the 8 × 16 matrix of Figure 10, finally, is exactly the column-wise
description of this set of valuations.

So far we have used RelView only for computing sets of worlds or for solving
related tasks. But the application domain of the system is larger. For example,
the tool can also be used for the following important task:

Determine whether a relation R in a given finite frame possesses certain
properties.

(7)

The kinds of properties RelView can express and handle are rather general. In
particular, these are all properties which can be written as Boolean combina-
tions of inclusions between relation-algebraic expressions. This includes all the
correspondence properties of Section 2 (reflexivity of a relation R, transitivity or
R, etc), and also properties such as irreflexivity ( I ⊆ R) and acyclicity (R+ ⊆ I )
as well as Boolean combinations of these. For example, R is an equivalence re-
lation iff it satisfies the conjunction of the first three correspondence properties
of Section 2. In the syntax of the RelView tool a corresponding evaluation test
looks as follows:

incl(I(R),R) & incl(R*R,R) & incl(R,R^).

Let us consider a last application. For a given finite frame F with set of
worlds W and a closure system3 C ⊆ 2W×W of relations (like the Euclidean or
the transitive relations), the RelView tool very often allows us to solve the
following task:

Compute the corresponding closure operator cl : 2W×W → 2W×W , de-
fined by cl(R) =

⋂{S ∈ C | R ⊆ S}.
(8)

The condition which is to be fulfilled is that the conjunction of S ∈ C and
R ⊆ S is equivalent to f(S) ⊆ S, with f being a monotone function on the
set 2W×W of all relations over W . In this case cl(R) coincides with the least
fixed point μf of the function f , due to Tarski’s fixed point theorem [27]. The

2 In words, this vector marks exactly the 16 columns of Q each of which represent a
set of worlds with the maximal cardinality 4.

3 A subset C of a powerset 2X is a closure system on X if Y ∈ C for all Y ⊆ C.
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euclid(R)
DECL S, fS
BEG S = O(R);

fS = R;
WHILE -eq(S,fS) DO
S = fS;
fS = R | fS^ * fS OD

RETURN S
END.

Fig. 11. Program to compute the Euclidean closure of a relation R

frame F is finite. Hence f is even ∪-continuous and we get the representation
μf =

⋃
i≥0 f

i(O), where the chain O ⊆ f(O) ⊆ f2(O) ⊆ . . . eventually becomes
stationary. To give an example, the Euclidean closure of a relationR is computed
by the RelView-program euclid of Figure 11, because obviously a relation S
is Euclidean (i.e.,ST;S ⊆ S) and contains R iff R ∪ ST;S ⊆ S.

Finally, it is worth mentioning that RelView has some file input/output
interfaces. Especially ASCII formatted files can be used to exchange data with
other systems.

8 Concluding Remarks

Based on the interpretation of non-classical logics in relation algebra, in this
paper we have shown how the RelView tool can be used for investigating
finite models of such logics and for visualizing them and solutions of certain
computational tasks. Modal logic of knowledge and computational tree logic
have been treated in detail and illustrated with two well-known examples, viz.
the ‘muddy children’ puzzle and a ‘mutual exclusion’ protocol.

Fig. 12. Visualization of the meaning of the AF-operator
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We believe that the attraction of RelView in respect to the applications we
have discussed in this paper lies in its flexibility, the concise form of its programs,
and the various possibilities for manipulation, testing, and visualization. Because
of these properties it is an excellent tool for prototyping, experimenting, and
for university teaching. It can be programmed to handle different logics and
perform typical tasks on them while avoiding unnecessary overhead. We found
it very attractive to use RelView also for producing good examples. Concerning
teaching, its visualization possibilities can be used to demonstrate the meaning
of logical operators and formulae for example.

To illustrate this point, consider the picture in Figure 12. It explains the mean-
ing of the AF-operator of the logic CTL. The squares denote the states where
a certain property, p say, holds and the black vertices (including the squares)
denote the states x such that for all computation paths x1, x2, . . . beginning in
x somewhere along the path p holds. Visualization is of particular importance
when combined with the evaluation of RelView-expressions in a stepwise fash-
ion. All this can help students, and even be key to their fully understanding of
an advanced concept.
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Abstract. Guideline development, implementation, utility and adher-
ence require intelligence and multimedia to interact in decision support
environments. However, efforts to combine all these aspects and to con-
nect solutions into a effective, efficient and productive environment are
rare. In this paper we use a regional health care perspective on main-
tenance and analysis of data, information and knowledge. Examples are
drawn from cardiac diseases. Analysis and development is viewed from
by-pass surgery point of view. Association rules are used for analysis,
and we show how these rules take logical forms so as to prepare for
development of guidelines.

1 Introduction

Clinical guidelines and evidence medicine are rather general concepts and there-
fore we provide some explanations so as to provide a language for our discussions.
We will discuss (clinical) guidelines in the meaning of involving their develop-
ment, implementation, utility and adherence. A clinical guideline is ”systemat-
ically developed statements to assist practitioner and patient decisions about
appropriate health care for specific clinical circumstances” [13]. By consensus
among a large enough group of domain-experts, such guidelines can be said to
represent, if not the only correct advice but at least given available research
results, good enough advice [25].

Development typically involves definitions of measurement scopes, clinical tri-
als with data collections, followed by data analysis using statistical tools. Data
analysis results are converted to text based rules which constitute the so called
guidelines. Indeed, representing clinical knowledge in a computer is difficult in
practice since many clinical practice guidelines are still published simply as tra-
ditional text documents. Clearly, logic is very much missing at this stage.

The whole guideline development process is what traditionally is called an ev-
idence based [6,7] approach. In essence, evidence based medicine proposes a shift
from experience based care to acquiring knowledge through systematic reviews of
the appropriate literature. Note that from a medical point of view, development
does not include preparations for the next phase, namely the implementation of
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the text based guidelines into electronically readable forms. Further, the med-
ical community is rather conservative concerning statistical tools, and there is no
understanding of statistical tools that leads naturally into discussions on logical
structures.

This is one of the major obstacles when aiming at computerized guidelines.
As logic is missing, semantics is not available, ambiguities exist, and tools for
program specifications are hard to invent. In fact, the problem is not only that
logic is missing, but even more complicated as we need to decide on the most ap-
propriate logic for that particular guidelines implementation task. The existence
of a general-purpose logic covering representability of most guidelines seems very
unlikely, even if related diagnosis and treatment problems can be expected to
share some common logic features.

Selecting and establishing the underlying logic of guidelines reveals how sta-
tistics does not comply with logical inference, with logic on the other hand not
providing language constructs that can handle statistical information. In such
a situation, heuristics easily enters the scene, and a required synergy and even
convergence of statistical and logical methods remains unseen. Alternatively, sta-
tistics and logic can be bound more tightly together. The goal is then to provide
kind of an all-in-one computation that fulfills requirements for evidence-based
statistics and reasoning, at the same time providing results represented more
strictly within a corresponding logical machinery.

It is now more evident that the gap between development and implementation
is where logic comes to the rescue. Clinical guidelines often provide the basis for
logic in decision support systems. Such a logic can also be inferred more directly
from patient data [3].

Use and utility of a particular system needs to conform with national and even
regional requirements and needs. Further, where health care is at least partly
public, it involves political decisions and considerations. Add to that attitudes
among professionals, and we get installation procedures that can be rather com-
plicated and very much dependent on organizational structures. Having these
situations and processes in mind, it is obvious that plans for end-usage together
guideline adherence studies should exist even before implementations can start.

No system is complete without its thorough evaluation. Once implemented,
guidelines adherence must be investigated. To increase the adherence to clinical
guidelines and thus evidence-based care, computer-based decision support tools
are recognized to be important [36].

This paper is organized as follows. In Section 2 some comparisons are made
to other guideline implementations. Section 3 provide background and motiva-
tion, in particular from a regional health care perspective, and presents briefly
the Coronary Artery Bypass Grafting (CABG) medical framework. Section 4
presents the GUHA method with capability to produce rules that can be em-
bedded into various computational schemas. GUHA rules are also presented as
logical entities. In Section 5 we will see how association rules formally match
with quantifiers in a certain extension of predicate calculus. Section 6 concludes
the paper.
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2 Related Work

Concerning implementation we should note that we cannot exclusively concen-
trate on rules of the guidelines but we need also consider system interfaces to
other relevant sources of information used in the overall diagnosis and/or treat-
ment process. In the case of hypertension treatment, the analysis step should
be seen developed as manifested by the international guideline (JNC-VI [34])
for hypertension treatment. However, implementation of treatment suggestions
cannot be isolated from the overall hypertension treatment context and other de-
cisions required from that more general viewpoint. Pharmacological information
with corresponding databases are typically required to be interconnected with
the systems for treatment suggestions. It should here be immediately observed
how pharmacological information and e.g. interaction analysis and identification
in itself requires a deeper understanding of logical structures different from those
of the treatment suggestions. Indeed, we are implementing a hybrid of logical
systems in the overall support system for hypertension treatment as connected
to pharmacological information systems. This system builds on a previous sys-
tem [26,27]. In our developments on hypertension treatment, guideline adherence
was also investigated, and has affected further developments of the system.

In [23], on diagnosis of cognitive disorder, dementia and dementia types, we
go beyond the hypertension treatment approach and encode the DSM-IV guide-
lines [33], together with regional adaptations, in a probabilistic argumentation
framework [24] as well as using a neural propositional logic [12,10].

3 Regional Experiences with Patient Data for Quality
Assurance

The information management approach in this paper rests upon experiences
within the County Council of Västerbotten in Northern Sweden. The population
is small but the geographical area is large. There is one university hospital in the
region, together with 13 regional hospitals. The region is unique in Sweden in
that there is only one patient record system, which is used both within primary
care as well throughout the hospitals. The potential for information flow between
clinics is huge, even if not yet fully exploited. Further, the region maintains the
responsibility for several national quality registers, where interactions with the
patient record is highly prioritized. Various quality assurance programmes are
on the agenda, and utility of data mining has been identified as having huge
potentials.

In addition to quality registers, several clinics maintain their own research
databases, such as for cardiac surgery, where data mining deployment often
is more straightforward, but then usually at the expense of non-compliance,
with respect to terminologies, with the electronic record structure. Screening is
another field where careful maintenance of patient data over several years and
decades provide valuable insight concerning trends within the population.
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Computing facilities and software development capabilities within regions are
important. The former usually builds upon traditions within biostatistics and
the fact that curricula in medical and nursing education always involve at least
some basic statistics. Computer science and the art of software development, on
the other hand, is rarely, if ever, included in such curricula. Further, involving
IT competence for the technical staff of hospitals comes with some lag of time.

The example for GUHA data analysis in this paper is coronary artery by-
pass grafting (CABG)1. In Västerbotten, there are about 5-6 cardiac surgeries
every day, most of which are coronary bypass operations. Several medical studies
show relations between pre- and postoperative CABG data, see for example
[28]. The research database in Ume̊a also involves intraoperative data. Outcome
predictions are certainly needed, if possible, from preoperative data, but outcome
predictions while operating is additionally useful.

Preoperative data includes information on diseases, heart conditions and func-
tion classes (typical follow-up parameter), number of injured vessels, character,
if any, of angina pectoris, and so on. Important intraoperative information is e.g.
time while aorta is closed and patient is in heart/lung machine, number of anas-
tomoses, aorta quality and suitability for reoperation. Postoperative attributes
include death within 30 days after operation, hours in intensive care, respirator
time and postsurgical conditions of various kind.

4 GUHA

GUHA is an original Czech method of data mining. Its aim is to offer all in-
teresting facts following from the analyzed data to the given problem. GUHA
is realized by GUHA procedures. It is a computer program, the input of which
consists of the analyzed data and of a simple definition of set of relevant (i.e.
potentially interesting) patterns. GUHA procedure automatically generates each
particular pattern and tests if it is true in the analysed data. The output of the
procedure consists of all prime patterns. The pattern is prime if it is true in the
analysed data and if it does not immediately follow from the other more simple
output patterns [14].

The most important GUHA procedure is the procedure ASSOC [14] that
mines for association rules. The association rules the procedure ASSOC mines
for are more general than the classical association rules defined in [2]. This proce-
dure deals among other things with association rules corresponding to statistical
hypothesis tests. There are several implementations of the procedure ASSOC,
see e.g. [15,16]. The latest one is the procedure 4ft-Miner. It has various new
important features and it mines also for conditional association rules [32].

There is academic software system LISp-Miner [32] that includes five new
GUHA procedures in addition to the procedure 4ft-Miner. They mine for large
variety of patterns. There are both simple patterns verified in one contingency

1 Data has not been made public, but interested readers may contact one of the authors
for enquiries concerning this particular data set.
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table of two Boolean attributes and complex patterns corresponding to differ-
ences of two sets what concerns relation of two attributes. Such complex pattern
is verified using a pair of contingency tables. Implementation of all GUHA pro-
cedures of the LISp-Miner system is based on representation of analyzed data
by strings of bits [29,32].

There are important theoretical results related to the GUHA method. Obser-
vational calculi are defined and studied in [14] as a language in which statements
concerning observed data are formulated. Logical calculi formulae of which cor-
respond to generalized association rules are special case of observational calculi.
Various theoretical results concerning observational calculi and namely associ-
ation rules were achieved in [14]. Some new results concerning logic of associa-
tion rules are e.g. in [30,31]. Theoretical results concerning association rules can
play an important role when embedding association rules into various intelligent
systems.

We show several examples of association rules concerning CABG data. These
association rules were mined by the procedure 4ft-Miner.

The association rules is an expression of the form ϕ ≈ ψ, where antecedent
ϕ and succedent ψ are conjunctions of literals. Literal is a Boolean attribute
(automatically) derived from the analyzed data. Boolean attributes such as
AnginaPectoris(STABLE) and Age〈70; 80) are examples of literals.

The symbol ≈ is called 4ft-quantifier. It defines a relation of antecedent ϕ and
succedent ψ. This relation can be true or false in a given data matrix M. The
association rule ϕ ≈ ψ is verified in the given data matrix M using the four-fold
table 4ft(ϕ,ψ, M) of ϕ and ψ in M, see Table 1.

Table 1. 4ft table 4ft(ϕ,ψ, M) of ϕ and ψ in M

M ψ ¬ψ

ϕ a b

¬ϕ c d

The table should be given the interpretation that a is the number of objects
satisfying both ϕ and ψ, b is the number of objects satisfying ϕ but not ψ, a+ b
is the number of objects satisfying ϕ, and so on.

A condition concerning all 4ft tables is associated to each 4ft quantifier ≈.
The association rule ϕ ≈ ψ is true in the analyzed data matrix M if and only
if the condition associated to the 4ft quantifier ≈ is satisfied for the four-fold
table 4ft(ϕ,ψ, M) of ϕ and ψ in M. If this condition is not satisfied then the
association rule ϕ ≈ ψ is false in the analyzed data matrix M. There are various
4ft-quantifiers, see e.g. [14] and [32].

The 4ft-quantifier ⇒p,Base of founded implication [14] is defined for 0 < p ≤ 1
and Base > 0 by the condition

a

a+ b
≥ p ∧ a ≥ Base .
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The association rule ϕ⇒p;Base ψ is interpreted as ”100p % of objects satisfying
ϕ also satisfy ψ” or ”ϕ implies ψ on the level of 100p %”.

The 4ft-quantifier ∼+
p,Base of above average dependence is defined for 0 < p

and Base > 0 by the condition

a

a+ b
≥ (1 + p)

a+ c

a+ b+ c+ d
∧ a ≥ Base .

This means that among the objects satisfying ϕ is at least 100p per cent more
objects satisfying ψ than among all objects and that there are at least Base
objects satisfying both ϕ and ψ.

Analysis of CABG was done using the system LISp-Miner [32,35], and involved
predictions, on one hand, from preoperative to postoperative conditions, on the
other hand, from preoperative and intraoperative to postoperative conditions.
Can we make useful and reliable preoperative-to-postoperative predictions with-
out intraoperative information? Which are the most significant intraoperative
variables used in addition to preoperative variables when predicting postopera-
tive conditions? We have chosen to illuminate the possibilities of the 4ft-Miner
procedure by looking at death after 30 days (no/yes) as an example of postop-
erative condition. The number of postoperative deaths in the data set is rather
small, 44 cases which is less than 2% of the total number of records (2975 cases).

Tables 2, 3 and 4 present typical examples from analysis within GUHA and
using LISp-Miner. In Table 2 we have an example of a rule that provides 100%
survival 30 days after operation.

Table 2. Reop(no) ∧ FunctClass(IIIA) ∧ LV − Funct(good) ⇒1.0;436 Died30d(no)

CABG Died30d(no) Died30d(yes)
Reop(no) ∧ FunctClass(IIIA) ∧ LV − Funct(good) 436 0

¬(Reop(no) ∧ FunctClass(IIIA) ∧ LV − Funct(good)) 2495 44

This is the strongest (founded) implication of the form

preop1 ∧ . . . ∧ preopn ⇒p;Base Died30d(no).

There are several other strong implications, also of the form

Age ∧ preop1 ∧ . . . ∧ preopn ⇒p;Base Died30d(no).

In the situation for non-survival after 30 days, the association rule for the
above average relation turns out to be more suitable. The four-fold table for the
strongest rule is shown in Table 3. The rule should be understood as patients
satisfying LV −Funct(bad)∧MainSten(no) are with 537% more likely to satisfy
Died30d(yes) as compared to all observed cases. There are 13 patients satisfying
both LV − Funct(bad) ∧MainSten(no) as well as Died30d(yes).

The weakest above average relation is

AngPect(unstable) ∼+
1.18;19 Died30d(yes).
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Table 3. LV − Funct(bad) ∧ MainSten(no) ∼+
5.37;13 Died30d(yes)

CABG Died30d(yes) Died30d(no)
LV − Funct(bad) ∧ MainSten(no) 13 125

¬(LV − Funct(bad) ∧ MainSten(no)) 31 2806

Combinations with age, especially for patients in their later 60’s and early 70’s,
show association rules where patients having LV − Funct(bad) is worse than
having FunctClass(IV ).

Finally, involving intraoperative information, Table 4 shows an example asso-
ciation rule with ClampT ime.

Table 4. ClampT ime(45; 90〉 ∧ MainSten(no) ∼+
4.0;10 Died30d(yes)

CABG Died30d(yes) Died30d(no)
ClampT ime(45; 90〉 ∧ MainSten(no) 10 67

¬(ClampT ime(45; 90〉 ∧ MainSten(no)) 34 2931

5 GUHA Logic

In the association rule ϕ ≈ ψ, the symbol ≈ corresponds to a quantifier. We will
now make this more precise.

The extended predicate language of GUHA [14] consists of predicates and
variables. Further there are operators 0, 1,¬,∧,∨,→,↔. The extension is in
inclusion of (a finite or infinite sequence of) quantifiers q1, . . .. Formulae are
defined in the usual way. Further, (qx)(φ1, . . . , φn) is a formula whenever q is
a quantifier, x is a variable, and φ1, . . . , φn are formulae. The association rule
ϕ ≈ ψ would thus correspond to a quantification (q≈x)(ϕ, ψ).

Before discussing semantics, observe that models M in our presentation can
be viewed as matrices where columns correspond to properties and rows to ob-
servations.

The semantics of the operators is again as usual. In order to introduce the
semantics of quantifiers, let us review the situation concerning (∀x)P (x), i.e.
intuitively involving a one-column matrix in the case of P being atomic. Inter-
pretations are relations on M , or equivalently, mappings f from M to {0, 1}. If
P is interpreted in M by f we have ‖(∀x)P (x)‖M = 1 if and only if f is 1 on M .
The function Asf∀, given by Asf∀(M, f) = 1 if and only if f is 1 on M , defines
the semantics of ∀.

The quantifier of implication ⇒ ([5]) is defined by Asf⇒(M, f, g) = 1 if and
only if g(o) = 1 whenever f(o) = 1. Our examples in Section 4, such as the
founded implication ⇒p,Base and the above average dependence ∼+

p,Base, can
now be included into the list of possible quantifiers.
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The deduction rule
ϕ ≈ ψ

ϕ′ ≈ ψ′

means that ϕ′ ≈ ψ′ is true in M whenever ϕ ≈ ψ is true in M .
Quantifiers can be more or less implicational, and thus also more or less

associational. Further, the soundness of certain deduction rules is connected to
quantifiers being implicational. See [14,30,31] for more detail.

6 Conclusions

Traditionally, in evidence based medicine, logic is very sparsely seen as a compu-
tational discipline, even less understood as being a language for representation
of rules within clinical guidelines. Evidence and belief is anchored in statistical
computations, and consensus guidelines are documented as pieces of pure text.
Arrival at guidelines is thus based on using statistical tools, where specification
and implementation of rules in guidelines require languages of logic.

Knowledge representation using formal methods is very shallow, with guide-
line performance and adherence impossible to measure and evaluate.

GUHA provides a method for knowledge elicitation where rules are repre-
sented in a formal logic. GUHA data analysis on coronary artery by-pass grafting
is shown to open up possibilities for computer supported production of guide-
lines. In particular for CABG, the GUHA approach turns out to be very suitable
and providing useful insight related to concrete domain knowledge.

The logical understanding of association rules being quantifiers, and in the
sense of being more or less implicational, makes guideline implementations fea-
sible even if less trivial as compared to using a logic in a more clear clausal form.
In the case of by-pass surgery, broader analysis with respect to prediction ac-
curacy and guideline implementation is future work. Further, extensions of this
paper in these directions also need to include end-user evaluations together with
support for ensuring guideline adherence.

Regional and coherent approaches to information analysis, together with
knowledge representation based on interaction between statistics and logic, pro-
vide impact on all levels of information management ranging from patient re-
cords, through a well-founded understanding of organization and workflow, all
the way to guidelines based on computed evidence and implemented for the
purpose of recommended or even enforced adherence.
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We are grateful to Hjärtcentrum at the University Hospital of Northern Sweden
for making the data set on by-pass surgery available to us. Further, valuable
comments and suggestions for improvements of this paper has been provided by
anonymous referees. This is gratefully acknowledged.



58 P. Eklund et al.

References

1. S. Achour, M. Dojat, C. Rieux, P. Bierling, E. Lepage, A UMLS-Based Knowledge
Acquisition Tool for Rule-Based Clinical Decision Support Systems Construction,
J. Amer. Med. Inform. Assoc., 8 No 4 (2001), 351-360.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo, Fast discovery of
association rules, In: Fayyad UM, et al (eds). Advances in Knowledge Discovery
and Data Mining. AAAI Press, Menlo Park California.

3. T. Anagnostou, M. Remzi, M. Lykourinas, B. Djavan, Artificial neural networks
for decision-making in urologic oncology, European Urology 43 (2003), 596-603.

4. J. Bury, J. Fox, A. Seyfang, The ProForma guideline specification language:
Progress and prospects, In: First European Workshop on Computer-based Support
for Clinical Guidelines and Protocols, 2000, 1-14.

5. A. Church, Introduction to mathematical logic, Volume I., Princeton, 1956.
6. A. Cohen, P. Stavri, W. Hersh, A categorization and analysis of the criticisms of

Evidence-Based Medicine International Journal of Medical Informatics 73 (2004),
35-43.

7. F. Davidoff, B. Haynes, D. Sackett, R. Smith, Evidence based medicine, British
Medical Journal 310 (1995), 1085-1086.

8. J. S. Einbinder, K. W. Scully, R. D. Pates, J. R. Schubart, R. E. Reynolds, Case
study: a data warehouse for an academic medical center, J. Healthcare Information
Management, 15 No 2 (2001), 165-175.

9. P. Eklund, Network Size Versus Preprocessing, in: Fuzzy Sets, Neural Networks
and Soft Computing, ed. R. Yager, L. Zadeh, Van Nostrand Reinhold, New York,
1994, 250-264.

10. P. Eklund, F. Klawonn, Neural Fuzzy Logic Programming, IEEE Trans. Neural
Networks, 3 No 5 (1992), 815-818.

11. P. Eklund, J. Karlsson, J. Rauch, M. Simunek, Computational Coronary Artery
Bypass Grafting, Proc. 6th Int. Conf. on Computational intelligence and Multime-
dia Applications (Iccima’05), Volume 00 (August 16 - 18, 2005). ICCIMA. IEEE
Computer Society, Washington, DC, 138-144.

12. P. Eklund, H. Lindgren, Towards Dementia Diagnosis Logic, In. Proc. 11th Int.
Conf. Information Processing and Management of Uncertainty in Knowledge-based
Systems (IPMU 2006), Paris, France, 2-7 July 2006.

13. M. Field, K. Lohr, Clinical practice guidelines: directions for a new program, Chapt.
Attributes of good practice guidelines, National Academy Press, 1990, 53-77.
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Abstract. In this paper, we generalize the Hoede-Bakker index, which
is a measure for the power of agents in a network, taking into account the
mutual influences of the agents. We adopt sets of axioms different from
the one adopted in the original definition. In particular, we remove an
original assumption according to which changing all inclinations of the
players leads to the opposite group decision. Several examples showing
the usefulness of this generalization are constructed. In particular, we
may apply the generalized Hoede-Bakker index to a game with a vetoer.
Next, the relation between the generalized Hoede-Bakker index and the
Penrose measure is analysed. Moreover, we introduce several modifica-
tions of the Hoede-Bakker index which lead to the Coleman indices, the
Rae index, and the König-Bräuninger index. In order to show the rela-
tion between the generalized or the modified Hoede-Bakker index and
the other power indices, we use the probabilistic approach.

Keywords: Hoede-Bakker index, inclination vector, the Penrose mea-
sure, the Coleman indices, the Rae index, the König-Bräuninger index.

1 Introduction

In order to measure voting strength of actors in a voting situation, a number
of power indices have been proposed in the course of more than fifty years (for
instance, Penrose [38], Shapley and Shubik [45], see also Shapley [44], Banzhaf
[1], Rae [39], Coleman [5], [6], Deegan and Packel [7], Johnston [26], Dubey and
Shapley [8], Holler [17], Holler and Packel [18], König-Bräuninger [25]). For an
extensive analysis of most of the power indices see, first of all, Felsenthal and
Machover [10], but also, for instance, Lucas [32], Owen [37], and Straffin [49]. Also
to be found in the literature are some values for games with a priori unions (Owen
[35], [36]). Basically, there are two approaches to analyze power indices, that is,
the axiomatic approach and the probabilistic one. Laruelle and Valenciano [29]

H. de Swart et al. (Eds.): TARSKI II, LNAI 4342, pp. 60–88, 2006.
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present a probabilistic model in which they re-examine the concepts of ‘success’
and ‘decisiveness’, and in which they also consider some conditional variants.

Apart from the theoretical analysis, one may find in the literature applications
of power indices. So far, applications of power indices can be found especially
in the field of decision-making in the European Union (see, for instance, Felsen-
thal and Machover [10], [11], [12], Hosli [19], [20], [21], [22], [23], [24], Laruelle
[27], Laruelle and Widgren [30], Leech [31], Nurmi and Meskanen [33], Sutter
[50], Widgren [52]). However, the power index approach can be applied equally
well to national legislatures and parliaments (see, for instance, Sosnowska [46],
[47], Rusinowska [40], Van Deemen and Rusinowska [51], Rusinowska and Van
Deemen [42]).

Hoede and Bakker [15] introduced the concept of decisional power, which is
still not widely known, although it surely deserves broader attention. This index
takes the inclinations of the players into account, as well as the social structure in
which players may influence each other. The essential point of the Hoede-Bakker
index is the distinction between the inclination (to say ‘yes’ or ‘no’) and the final
decision (apparent in a vote). Preliminary research on the Hoede-Bakker index
has been initiated in Stokman and Willer [48], where an application of the Hoede-
Bakker index to coalition formation has been presented, and in Rusinowska and
De Swart [41]. In the latter paper, the authors investigate some properties of the
Hoede-Bakker index. They check, in particular, whether the Hoede-Bakker index
displays some voting power paradoxes and whether it satisfies some postulates for
power indices. The paradoxes re-defined and checked for the Hoede-Bakker index
were the redistribution paradox (Fischer and Schotter [14], see also Schotter
[43]), the paradox of new members (Brams [2], Brams and Affuso [3]), and the
paradox of large size (Brams [2]). The postulates re-defined for the Hoede-Bakker
index were, in particular, the monotonicity postulate, the donation postulate,
and the bloc postulate. An extensive theoretical analysis of these and some other
postulates for power indices and voting power paradoxes is given, for instance,
in Felsenthal and Machover [9], [10], Felsenthal, Machover and Zwicker [13], and
in Laruelle [28].

The aim of this paper is to introduce and analyze a generalization and some
modifications of the Hoede-Bakker index. The structure of this paper is as fol-
lows. In Section 2, using the probabilistic approach, we recapitulate the def-
initions of the Rae index, the Penrose measure (often called the absolute or
non-normalized Banzhaf index), the Coleman indices, and the König-Bräuninger
index. Section 3 concerns the original Hoede-Bakker index. We start with reca-
pitulating the axioms and the definition of this index as adopted by Hoede and
Bakker [15]. Next, in order to show the usefulness of generalizing the original
Hoede-Bakker index, we present an example with a vetoer. In Section 4, the gen-
eralization of the Hoede-Bakker index is presented, and the relation between this
generalized Hoede-Bakker index and the Penrose measure is established. Section
5 concerns some modifications of the Hoede-Bakker index. We show the relations
between the modifications defined and the Coleman indices, the Rae index, and
the König-Bräuninger index. In Section 6, several examples are constructed in
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which the removed axiom of Hoede and Bakker is violated. Finally, Section 7
contains conclusions.

2 Power Indices – Probabilistic Approach

In this Section, using the probabilistic approach, we recapitulate the definitions
of several power indices. We present very briefly some main concepts described
in Laruelle and Valenciano [29]. For a probabilistic approach to power indices
and an extensive analysis, see also Felsenthal and Machover [10].

Once a proposal is submitted, voters cast votes, voting either ‘yes’ (abstention
included) or ‘no’. A vote configuration is a possible result of voting. Hence, for n
voters, there are 2n possible vote configurations. The vote configuration S refers
to the result of voting where all voters in S vote ‘yes’, and all voters in N \ S
vote ‘no’, where N = {1, 2, ..., n}. The vote configurations leading to the passage
of a proposal are called winning configurations. Let W be the set of winning
configurations representing an N -voting rule. A voting rule is assumed to satisfy
the following conditions: (i) N ∈ W ; (ii) ∅ /∈ W ; (iii) If S ∈ W , then T ∈ W for
any T containing S; (iv) If S ∈ W , then N \ S /∈ W .

A probability distribution over all possible vote configurations is incorporated
into the model. A probability distribution may be represented by a map p : 2N →
[0, 1], associating with each vote configuration S its probability p(S) to occur.
That is, p(S) is the probability that all voters in S vote ‘yes’, and all voters in
N \S vote ‘no’. Laruelle and Valenciano [29] introduced the following definitions
and formulae derived from the definitions:

Definition 2.1. Let (W, p) be an N -voting situation, where W is the voting rule
to be used and p is the probability distribution over vote configurations, and let
k ∈ N . Then:

Ωk(W, p) := Prob(k is successful) =
∑

S:k∈S∈W

p(S) +
∑

S:k/∈S /∈W

p(S) (1)

Φk(W, p) := Prob(k is decisive) =
∑

S : k ∈ S ∈ W
S \ {k} /∈ W

p(S) +
∑

S : k /∈ S /∈ W
S ∪ {k} ∈ W

p(S) (2)

Λk(W, p) := Prob(k is lucky) =
∑

S : k ∈ S
S \ {k} ∈ W

p(S) +
∑

S : k /∈ S
S ∪ {k} /∈ W

p(S) (3)

Ωk(W, p) = Φk(W, p) + Λk(W, p) (4)

α(W, p) := Prob(acceptance) =
∑

S:S∈W

p(S) (5)

γk(p) := Prob(k votes ‘yes′) =
∑

S:k∈S

p(S) (6)
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ΩAcc
k (W, p) := Prob(k is successful | the proposal is accepted) =

=
∑

S:k∈S∈W p(S)
α(W, p)

(7)

ΩRej
k (W, p) := Prob(k is successful | the proposal is rejected) =

=
∑

S:k/∈S /∈W p(S)
1− α(W, p)

(8)

Ω+
k (W, p) := Prob(k is successful | k votes ‘yes′) =

∑
S:k∈S∈W p(S)

γk(p)
(9)

Ω−
k (W, p) := Prob(k is successful | k votes ‘no′) =

∑
S:k/∈S /∈W p(S)
1− γk(p)

(10)

ΦAcc
k (W, p) := Prob(k is decisive | the proposal is accepted) =

=

∑
S : k ∈ S ∈ W
S \ {k} /∈ W

p(S)

α(W, p)
(11)

ΦRej
k (W, p) := Prob(k is decisive | the proposal is rejected) =

=

∑
S : k /∈ S /∈ W
S ∪ {k} ∈ W

p(S)

1− α(W, p)
(12)

Φ+
k (W, p) := Prob(k is decisive | k votes ‘yes′) =

∑
S : k ∈ S ∈ W
S \ {k} /∈ W

p(S)

γk(p)
(13)

Φ−
k (W, p) := Prob(k is decisive | k votes ‘no′) =

∑
S : k /∈ S /∈ W
S ∪ {k} ∈ W

p(S)

1− γk(p)
(14)

Laruelle and Valenciano [29] showed (see also Felsenthal and Machover [10]) that
for a given probability distribution p, the three measures Φ(W, p), Φ+(W, p), and
Φ−(W, p), coincide for every voting rule W , if and only if the vote of every voter
is independent from the vote of the other voters.

Let us assume now that all vote configurations are equally probable, that is:

∀S ⊆ N [p∗(S) :=
1
2n

]. (15)

Some power indices can be seen as (unconditional or conditional) probabilities
in the sense of Definition 2.1 for the probability distribution p∗ assumed in (15).
One may derive the following equalities (Laruelle and Valenciano [29]), for voting
rule W and k ∈ N :

– Rae index (Rae [39], see also Dubey and Shapley [8])

Raek(W ) = Ωk(W, p∗) =
∑

S:k∈S∈W

1
2n

+
∑

S:k/∈S /∈W

1
2n

(16)
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– Penrose measure (also called the absolute Banzhaf index, or the non-norma-
lized Banzhaf index) (Penrose [38], Banzhaf [1], see also Owen [34])

PBk(W ) =
number of winning configurations in which k is decisive

total number of voting configurations containing k
(17)

PBk(W ) = Φ+
k (W, p∗) = Φ−

k (W, p∗) = Φk(W, p∗) =

=
∑

S : k ∈ S ∈ W
S \ {k} /∈ W

1
2n

+
∑

S : k /∈ S /∈ W
S ∪ {k} ∈ W

1
2n

(18)

– Coleman’s ‘power of a collectivity to act’ (Coleman [5], [6])

A(W ) =
number of winning configurations

total number of voting configurations
(19)

A(W ) = α(W, p∗) =
∑

S:S∈W

1
2n

(20)

– Coleman’s index ‘to prevent action’ (Coleman [5], [6])

ColPk (W ) =
number of winning configurations in which k is decisive

total number of winning configurations
(21)

ColPk (W ) = ΦAcc
k (W, p∗) =

∑
S : k ∈ S ∈ W
S \ {k} /∈ W

1
2n∑

S:S∈W
1
2n

(22)

– Coleman’s index ‘to initiate action’ (Coleman [5], [6])

ColIk(W ) =
number of losing configurations in which k is decisive

total number of losing configurations
(23)

ColIk(W ) = ΦRej
k (W, p∗) =

∑
S : k /∈ S /∈ W
S ∪ {k} ∈ W

1
2n

1−∑S:S∈W
1
2n

(24)

– König-Bräuninger inclusiveness index (König and Bräuninger [25])

KBk(W ) =
number of winning configurations containing k

total number of winning configurations
(25)

KBk(W ) = ΩAcc
k (W, p∗) =

∑
S:k∈S∈W

1
2n∑

S:S∈W
1
2n

(26)
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3 The Hoede-Bakker Index

Hoede and Bakker [15] introduced the concept of decisional power, the so called
Hoede-Bakker index. In this section, we recapitulate the definition of this index.
We consider the situation in which n ≥ 1 players make a decision about a
certain point at issue (for instance, to accept or to reject a bill, a candidate,
etc). Let N denote the set of all players (actors, voters). Hence, N = {1, ..., n}.
With respect to the point at issue, each player has an inclination either to say
‘yes’ (denoted by 1) or ‘no’ (denoted by −1)1. For n players, we have therefore
2n possible inclination vectors, that is, n-vectors consisting of ones and minus
ones. Let i denote an inclination vector, and let I be the set of all n-vectors.
Due to the influences of other players in the network, each inclination vector
i ∈ I is transformed into a decision vector, denoted by b. Formally, such a
transformation may be represented by an operator B : I → B(I), that is,
b = Bi, where B(I) denotes the set of all decision vectors. The decision vector
b is an n-vector consisting of ones and minus ones and indicating the decisions
made by all players. Due to influences of the other actors, the final decision of
an actor may be different from his original inclination. Furthermore, the group
decision gd : B(I) → {+1,−1} is introduced. It is a function defined on the
decision vectors b, having the value +1 if the group decision is ‘yes’, and the
value −1 if the group decision is ‘no’.

Hoede and Bakker [15] adopted the following two axioms which have to be
satisfied by B and gd:

AXIOM (A-0):
∀i ∈ I [gd(Bic) = −gd(Bi)], (27)

where ic = (ic1, ..., i
c
n) is the complement of inclination vector i = (i1, ..., in), that

is, for each k ∈ {1, ..., n}

ick =
{

+1 if ik = −1
−1 if ik = +1 . (28)

AXIOM (A-1):

∀i ∈ I ∀i′ ∈ I [i ≤ i′ ⇒ gd(Bi) ≤ gd(Bi′)], (29)

where i ≤ i′ is defined in the following way:

i ≤ i′ ⇐⇒ {k ∈ N | ik = +1} ⊆ {k ∈ N | i′k = +1}. (30)

Moreover, by i < i′ we mean: i ≤ i′ and i �= i′.

1 In the original paper by Hoede and Bakker [15], the inclination ‘no’ is denoted by
0. In order to simplify some notations introduced later on, we use the symbol −1
instead of 0.
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Definition 3.1. Given B and gd, the decisional power index (the Hoede-Bakker
index) of a player k ∈ N is given by

HB(k) =
1

2n−1 ·
∑

{i: ik=+1}
gd(Bi). (31)

Definition 3.1 assumes axiom (A-0) to be satisfied. According to this axiom,
changing all inclinations leads to the opposite group decision. Hence, in Defi-
nition 3.1 the given player k is assumed to have an inclination ‘yes’, and then
the group decisions for the 2n−1 inclination vectors with inclination ‘yes’ of the
given player are considered. Since (A-0) is adopted, Hoede and Bakker do not
consider all the remaining 2n−1 inclination vectors with an inclination ‘no’ of
the given player.

We find axiom (A-0) too restrictive, since one may describe situations for
which this axiom is not satisfied. Let us consider the following example:

Example 3.1. Suppose that there are 3 players, A, B, and C, and player A
happens to be a vetoer. We may think of a weighted voting game with the
following weights of the players: w(A) = 2, w(B) = w(C) = 1, and the quota
q = 3. Hence, the sets of winning coalitions and minimal winning coalitions are
equal to {AB,AC,ABC} and {AB,AC}, respectively. Player A, belonging to
each minimal winning coalition, is a vetoer. Table 3.1 shows the group decision
for this example, assuming Bi = i, and the group decision is ‘yes’ iff player A
with at least one of the other players says ‘yes’.

Table 3.1. Group decision for Example 3.1

inclination i gd(Bi) inclination i gd(Bi)
(1, 1, 1) +1 (−1,−1,−1) −1

(1, 1,−1) +1 (−1,−1, 1) −1
(1,−1, 1) +1 (−1, 1,−1) −1
(−1, 1, 1) −1 (1,−1,−1) −1

Note that axiom (A-0) is NOT satisfied in this example, since gd(B(−1, 1, 1)) =
gd(B(1,−1,−1)) = −1. This example suggests that, when calculating the Hoede-
Bakker index, both inclination vectors (−1, 1, 1) and (1,−1,−1) should be taken
into consideration. Nevertheless, let us still use Definition 3.1, ignoring the vio-
lation of axiom (A-0). We find then HB(A) = 1

2 , and HB(B) = HB(C) = 0.
The Hoede-Bakker indices of players B and C are both equal to 0, although none
of these players is a dummy in this game.

4 Generalization of the Hoede-Bakker Index

Inspired by Example 3.1, we introduce a generalization of the Hoede-Bakker
index, as recapitulated in Definition 3.1. We consider the same situation as



Generalizing and Modifying the Hoede-Bakker Index 67

described in Section 3, but we adopt a different set of axioms. Note that neither
in the axioms adopted nor in the original definition of the Hoede-Bakker index,
the operators B and gd are considered separately. When calculating the Hoede-
Bakker index, only the relation between an inclination vector i and the group
decision gd(Bi) is taken into account. One may argue that the operators B and
gd should be separated. We impose the following conditions on the operator B:

AXIOM (B-1):
∀i ∈ I ∀i′ ∈ I [i ≤ i′ ⇒ Bi ≤ Bi′]2 (32)

AXIOM (B-2):
B(+1, ...,+1) = (+1, ...,+1) (33)

AXIOM (B-3):
B(−1, ...,−1) = (−1, ...− 1), (34)

and the following conditions on the operator gd:

AXIOM (G-1):

∀i ∈ I ∀i′ ∈ I [Bi ≤ Bi′ ⇒ gd(Bi) ≤ gd(Bi′)] (35)

AXIOM (G-2):
gd(+1, ...,+1) = +1 (36)

AXIOM (G-3):
gd(−1, ..,−1) = −1. (37)

One may still adopt a different set of axioms, keeping the operators B and gd
together, as in the original paper by Hoede and Bakker. We resign from axiom
(A-0), keep axiom (A-1) and replace (A-0) by the two weaker axioms (A-2) and
(A-3):

AXIOM (A-1):

∀i ∈ I ∀i′ ∈ I [i ≤ i′ ⇒ gd(Bi) ≤ gd(Bi′)] (38)

AXIOM (A-2):
gd(B(+1, ...,+1)) = +1 (39)

AXIOM (A-3):
gd(B(−1, ...,−1)) = −1. (40)

Axiom (A-1) says that a group decision ‘yes’ cannot be changed into ‘no’ if the
set of players with inclination ‘yes’ is enlarged. Axiom (A-2) means that if all
players have the inclination ‘yes’, then the group decision is also ‘yes’. According
to axiom (A-3), if all actors have the inclination ‘no’, then the group decision
will be ‘no’. Note that
2 For the definition of i ≤ i′ see equation (30).
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Fact 4.1. The set of axioms (B-1), (B-2), (B-3), (G-1), (G-2), (G-3) implies
the set of axioms (A-1), (A-2), (A-3).

Proof. Axioms (B-j) and (G-j) imply (A-j), for j = 1, 2, 3. �

Note, however, that Example 3.1 shows that there is no implication between the
set of axioms (B-1), (B-2), (B-3), (G-1), (G-2), (G-3) and the set (A-0), (A-1).
Of course, the two axioms (A-0) and (A-1) imply the three axioms (A-1), (A-2),
and (A-3).

Definition 4.1. Let I be the set of all inclination vectors. We introduce a bi-
jection f from I to the power set of N (that is, a 1-1 map from I onto the set
of all coalitions), f : I → 2N , such that

∀i ∈ I [f(i) = {k ∈ N | ik = +1}]. (41)

In particular, f(i1, ..., in) = N iff ik = +1 for each k = 1, 2, ..., n, and
f(i1, ..., in) = ∅ iff ik = −1 for each k = 1, 2, ..., n. Moreover, given B and gd:

– a coalition f(i), where i ∈ I, is said to be winning if gd(Bi) = +1,
– a coalition f(i) is said to be losing if gd(Bi) = −1,
– a coalition f(i) is said to be minimal winning if gd(Bi) = +1 and for each
i′ < i, gd(Bi′) = −1,

– player k ∈ N is a dummy if there is NO minimal winning coalition f(i) such
that ik = +1,

– player k ∈ N is a vetoer if for each minimal winning coalition f(i),
ik = +1.

Remark 4.1. In the model recapitulated in Section 2 (Laruelle and Valenciano
[29]), four conditions (i)-(iv) have been imposed on a voting rule. In fact, axioms
(A-1), (A-2), and (A-3) imposed on B and gd in our model, correspond to their
conditions (iii), (i), and (ii), respectively. A condition corresponding to their
condition (iv) would look like

∀i ∈ I [gd(Bi) = +1 ⇒ gd(Bic) = −1],

where ic is the complement of the inclination vector i defined by equation (28).
We do not impose this condition in our model, what means that we allow the
possibility that gd(Bi) = gd(Bic) = +1 for some i ∈ I. In other words, we do
not like to exclude from our considerations games which are not proper (that is,
games in which a coalition and its complement may be both winning). Neverthe-
less, even without this extra axiom corresponding to condition (iv), we can apply
the probabilistic model as presented by Laruelle and Valenciano [29] to our model
with the generalized Hoede-Bakker index, since all results recapitulated in Sec-
tion 2 hold without condition (iv)3. Having only these three axioms (A-1), (A-2),

3 We like to thank the authors Laruelle and Valenciano for confirming this fact.
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and (A-3) adopted, we may consider situations such that gd(Bi) = gd(Bic) for
some i ∈ I, meaning that either gd(Bi) = gd(Bic) = +1 (as mentioned before)
or gd(Bi) = gd(Bic) = −1 (as in Table 3.1).

Assuming all axioms (B-1), (B-2), (B-3), (G-1), (G-2), and (G-3) to be satisfied,
we introduce the following definition:

Definition 4.2. Given B and gd, the generalized Hoede-Bakker index of a
player k ∈ N is given by

GHB(k) =
1
2n

· (
∑

{i: ik=+1}
gd(Bi)−

∑
{i: ik=−1}

gd(Bi)) =
HB+(k) +HB−(k)

2
,

(42)
where HB+ and HB− are defined for each k ∈ N in the following way:

HB+(k) =
1

2n−1 ·
∑

{i: ik=+1}
gd(Bi) = HB(k) (43)

HB−(k) = − 1
2n−1 ·

∑
{i: ik=−1}

gd(Bi). (44)

Remark 4.2. Note that HB+ is simply the ‘old’ Hoede-Bakker index HB as
defined by Hoede and Bakker [15] and recapitulated here in Definition 3.1. With-
out axiom (A-0), HB+ does NOT have to be equal to GHB. But, of course, if
axiom (A-0) is satisfied, then GHB(k) = HB+(k) = HB−(k) for each k ∈ N . In
Example 3.1,GHB(A) = 1

8 (2+4) = 3
4 and GHB(B) = GHB(C) = 1

8 (0+2) = 1
4 ,

while we found earlier that HB(A) = 1
2 and HB(B) = HB(C) = 0.

Fact 4.2. We have:

(a) for each k ∈ N , HB+(k) ≤ 1
(b) for each k ∈ N , HB−(k) ≤ 1
(c) for each k ∈ N , 0 ≤ GHB(k) ≤ 1.

Proof. (a) Let us consider an arbitrary player k ∈ N . Since gd(Bi) ≤ 1, and
for a given player k there are 2n−1 inclination vectors i such that ik = +1, from
(43) we get HB+(k) ≤ 1.
(b) By analogy, since gd(Bi) ≥ −1, and for a given player k there are 2n−1

inclination vectors i such that ik = −1, (44) gives HB−(k) ≤ 1.
(c) Since HB+(k) ≤ 1 and HB−(k) ≤ 1, by virtue of (42) we get immediately
that GHB(k) ≤ 1 for each k ∈ N . Let us consider an arbitrary player k ∈ N .
Note that for each inclination vector i = (i1, ..., in) such that ik = +1, there is
i′ = (i′1, ..., i

′
n) such that

i′j =
{

ij for j �= k
−1 for j = k

. (45)
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By virtue of (38), that is, axiom (A-1), since i′ ≤ i, gd(Bi′) ≤ gd(Bi). Hence,
gd(Bi)−gd(Bi′) ≥ 0. Note that the result of subtracting the two sums in (42) is,
in fact, equal to the sum of 2n−1 non-negative expressions gd(Bi)− gd(Bi′) ≥ 0
with the property (45). Hence, GHB(k) ≥ 0. �

Note that we do not prove that HB+(k) ≥ 0 and HB−(k) ≥ 0 for each k ∈ N .
In fact, one of these values may be negative what will be shown in examples in
Section 6. Of course, since GHB(k) ≥ 0 for each k ∈ N , it is impossible that
both HB+(k) and HB−(k) will be negative for the same player k.

Given B and gd, we introduce the following notations for each player k ∈ N :

I++
k = |{i ∈ I | ik = +1 ∧ gd(Bi) = +1}| (46)

I++
k - number of inclination vectors with inclination ‘yes’ of player k that lead

to the group decision ‘yes’

I+−
k = |{i ∈ I | ik = +1 ∧ gd(Bi) = −1}| (47)

I+−
k - number of inclination vectors with inclination ‘yes’ of player k that lead

to the group decision ‘no’

I−+
k = |{i ∈ I | ik = −1 ∧ gd(Bi) = +1}| (48)

I−+
k - number of inclination vectors with inclination ‘no’ of player k that lead

to the group decision ‘yes’

I−−
k = |{i ∈ I | ik = −1 ∧ gd(Bi) = −1}| (49)

I−−
k - number of inclination vectors with inclination ‘no’ of player k that lead

to the group decision ‘no’

Next, we introduce the following definition:

Definition 4.3. Given B and gd, we introduce for each player k ∈ N :

GHB+(k) =
I++
k − I−+

k

2n−1 (50)

GHB−(k) =
I−−
k − I+−

k

2n−1 . (51)

One may easily prove the following fact:

Fact 4.3. Given B and gd, for each k ∈ N :

GHB(k) = GHB+(k) = GHB−(k) (52)

HB+(k) =
I++
k − I+−

k

2n−1 (53)

HB−(k) =
I−−
k − I−+

k

2n−1 (54)
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Proof. Let us consider an arbitrary player k ∈ N . Note that∑
{i: ik=+1}

gd(Bi) = I++
k − I+−

k (55)

∑
{i: ik=−1}

gd(Bi) = I−+
k − I−−

k . (56)

Hence, by virtue of (43) and (44), we get (53) and (54), respectively. Note that

∀k ∈ N [I++
k + I+−

k = I−−
k + I−+

k = 2n−1]. (57)

Hence, I++
k − I−+

k = I−−
k − I+−

k for each k ∈ N , and therefore, by virtue of (50)
and (51), GHB+(k) = GHB−(k) for each k ∈ N . Moreover,

GHB(k) =
I++
k − I+−

k + I−−
k − I−+

k

2n
=

1
2
· (I

++
k − I−+

k

2n−1 +
I−−
k − I+−

k

2n−1 ) =

GHB+(k) +GHB−(k)
2

= GHB+(k) = GHB−(k). �

Remember that in Example 3.1 the Hoede-Bakker indices of players B and C
are both equal to 0, although none of these players is a dummy in the game in
question. However, for the generalized Hoede-Bakker index we have the following:

Fact 4.4. Player k ∈ N is a dummy if and only if GHB(k) = 0.

Proof. Let us consider an arbitrary player k ∈ N . There are 2n−1 inclination
vectors i such that ik = +1, and 2n−1 inclination vectors i such that ik = −1.
Moreover, note that for each i such that ik = +1, there is i′ such that i′k = −1
and i′j = ij for each j �= k. This means that i′ < i, and hence, by virtue of axiom
(A-1), I++

k ≥ I−+
k .

(⇐) Suppose that player k ∈ N is not a dummy. Hence, there is a coalition
f(i) such that ik = +1, gd(Bi) = +1, and gd(Bi′′) = −1 for each i′′ < i. Hence,
in particular, gd(Bi′) = −1 for i′ such that i′k = −1 and i′j = ij for each j �= k.
But this means that I++

k > I−+
k , and therefore, by virtue of (50) and (52),

GHB(k) > 0.
(⇒) Suppose now that GHB(k) > 0. By virtue of (50) and (52), this means

that I++
k > I−+

k . Hence, there is i such that ik = +1, gd(Bi) = +1, and
gd(Bi′) = −1 for i′ such that i′k = −1 and i′j = ij for each j �= k. But
this means that player k does affect the outcome, and therefore he is not a
dummy. �

In this paper, we assume all inclination vectors to be equally probable, that is,
similarly as defined in (15):

∀i ∈ I [p∗(i) :=
1
2n

]. (58)
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We will not mention assumption (58) explicitly when presenting our results.
Nevertheless, condition (58) is assumed throughout this paper. In fact, since
there is a bijection between coalitions and inclination vectors (see Definition
4.1), conditions (15) and (58) are expressing the same assumption.

Remark 4.3. As was mentioned before, if all vote configurations are assumed
to be equally probable (condition (15)), then some power indices can be seen as
(unconditional or conditional) probabilities. An inclination vector i in our model
corresponds uniquely with a vote configuration f(i) = {k ∈ N | ik = +1}, and an
inclination vector i such that gd(Bi) = +1 corresponds with a winning coalition
f(i). All the inclination vectors in our model are assumed to be equally probable
(condition (58)). A decision of an actor may depend on the inclinations of the
others (and it frequently does), but the inclinations of the players are assumed
to be independent of each other. With the interpretation of vote configurations
and winning coalitions just mentioned, we get the following proposition:

Proposition 4.1. Let Φk(W, p), Φ+
k (W, p), Φ−

k (W, p), and p∗ be as defined by
equations (2), (13), (14), and (15), respectively. Then

∀k ∈ N [Φ+
k (W, p∗) = GHB+(k)] (59)

∀k ∈ N [Φ−
k (W, p∗) = GHB−(k)] (60)

∀k ∈ N [Φk(W, p∗) = GHB(k)]. (61)

Proof. The notion of a winning coalition for our model has been introduced
in Definition 4.1. Re-writing some notions introduced in Definition 2.1 for our
model, we get for each k ∈ N :

γk(p∗) =
∑

S:k∈S

p∗(S) =
|{i ∈ I | ik = +1}|

2n
=

1
2

(62)

∑
S:k∈S∈W

p∗(S) =
|{i ∈ I | ik = +1 ∧ gd(Bi) = +1}|

2n
=

I++
k

2n
(63)

∑
S : k ∈ S ∈ W
S \ {k} ∈ W

p∗(S) =
|{i ∈ I | ik = −1 ∧ gd(Bi) = +1}|

2n
=

I−+
k

2n
. (64)

Hence, ∑
S : k ∈ S ∈ W
S \ {k} /∈ W

p∗(S) =
I++
k − I−+

k

2n
, (65)

and therefore, applying (62) and (65) to (13), and comparing it with (50), we
get Φ+

k (W, p∗) = GHB+(k).
By virtue of (62),

1− γk(p∗) =
1
2
. (66)
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Moreover, we have∑
S:k/∈S /∈W

p∗(S) =
|{i ∈ I | ik = −1 ∧ gd(Bi) = −1}|

2n
=

I−−
k

2n
(67)

∑
S : k /∈ S /∈ W
S ∪ {k} /∈ W

p∗(S) =
|{i ∈ I | ik = +1 ∧ gd(Bi) = −1}|

2n
=

I+−
k

2n
. (68)

Hence, ∑
S : k /∈ S /∈ W
S ∪ {k} ∈ W

p∗(S) =
I−−
k − I+−

k

2n
, (69)

and therefore, applying (66) and (69) to (14), and comparing it with (51), we
have Φ−

k (W, p∗) = GHB−(k).
Finally, by virtue of (2), (50)-(52), (65), and (69), we have

Φk(W, p∗) =
I++

k − I−+
k + I−−

k − I+−
k

2n
=

GHB+(k) + GHB−(k)
2

= GHB(k). �

Conclusion 4.1. The generalized Hoede-Bakker index coincides with the Pen-
rose measure, that is,

∀k ∈ N [GHB(k) = PBk(W )]. (70)

Proof. This immediately results from (18) and (61), since for each k ∈ N ,
GHB(k) = Φk(W, p∗) = PBk(W ). �

In Rusinowska and De Swart [41], it was shown that if there is no influence be-
tween players, and the number of players is odd, then the original Hoede-Bakker
index (with axiom (A-0) imposed) coincides with the absolute Banzhaf index.
The result given in Conclusion 4.1 is more general than the result presented in
Rusinowska and De Swart [41].

Example 4.1. Let us calculate all the notions introduced for our Example 3.1.
In this case, all axioms (B-1), (B-2), (B-3), (G-1), (G-2) and (G-3) are satisfied.
I++
A = 3, I+−

A = 1, I−+
A = 0, I−−

A = 4
I++
B = I++

C = 2, I+−
B = I+−

C = 2, I−+
B = I−+

C = 1, I−−
B = I−−

C = 3.
Hence, we have
HB(A) = HB+(A) = 1

2 , HB(B) = HB+(B) = HB+(C) = HB(C) = 0
HB−(A) = 1, HB−(B) = HB−(C) = 1

2

GHB(A) = GHB+(A) = GHB−(A) = 3
4

GHB(B) = GHB+(B) = GHB−(B) = 1
4

GHB(C) = GHB+(C) = GHB−(C) = 1
4 .

Note that GHB(B) > 0 (and GHB(C) > 0), which confirms our observation
that there are situations in which player B (player C, respectively) is decisive.
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5 Modifications of the Hoede-Bakker Index

In this Section, we define some modifications of the generalized Hoede-Bakker
index as introduced in Section 4. As before, we impose the axioms (B-1), (B-2),
(B-3), (G-1), (G-2), and (G-3). Let I++

k , I+−
k , I−+

k , and I−−
k , for each k ∈ N ,

be as defined by equations (46)-(49), respectively. Moreover, given B and gd, we
introduce two additional symbols:

I+ = |{i ∈ I | gd(Bi) = +1}| (71)

I+ - number of inclination vectors leading to the group decision ‘yes’

I− = |{i ∈ I | gd(Bi) = −1}| (72)

I− - number of inclination vectors leading to the group decision ‘no’

Next, we introduce several modifications of the generalized Hoede-Bakker index.

5.1 Modifications Leading to the Coleman Indices

Let us introduce the following definition:

Definition 5.1. Given B and gd:

for each k ∈ N, M1GHB(k) =
I++
k − I−+

k

I+ (73)

for each k ∈ N, M2GHB(k) =
I−−
k − I+−

k

I−
(74)

M3GHB =
I+

2n
=
|{i ∈ I | gd(Bi) = +1}|

2n
(75)

Remark 5.1. Note that by virtue of (39), that is, axiom (A-2), I+ ≥ 1, and by
virtue of (40), that is, axiom (A-3), I− ≥ 1. Hence, M1GHB and M2GHB are
well defined: the denominators given in (73) and (74) are never equal to 0.

Fact 5.1. We have:

∀k ∈ N [1 ≥M1GHB(k) ≥ 0] (76)

∀k ∈ N [1 ≥M2GHB(k) ≥ 0] (77)

1 > M3GHB ≥ 1
2n

. (78)
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Proof. Since I+ ≥ 1, and I+ < 2n, we get immediately 1 > M3GHB ≥ 1
2n .

Note that
∀k ∈ N [I+ = I++

k + I−+
k ], (79)

and hence, M1GHB(k) ≤ 1 for each k ∈ N . Moreover,

∀k ∈ N [I− = I−−
k + I+−

k ], (80)

and therefore, M2GHB(k) ≤ 1 for each k ∈ N .
Let us consider an arbitrary player k ∈ N . We take an arbitrary inclination

vector i = (i1, ..., in) ∈ I−+
k . This means that ik = −1 and gd(Bi) = +1. On the

other hand, note that for each i = (i1, ..., in) ∈ I−+
k there is i′ = (i′1, ..., i

′
n) such

that

i′j =
{

ij for j �= k
+1 for j = k

. (81)

Hence, i ≤ i′, and by virtue of (A-1), gd(Bi) ≤ gd(Bi′). Since gd(Bi) = +1, we
get gd(Bi′) = +1. Hence, I++

k − I−+
k ≥ 0, and therefore M1GHB(k) ≥ 0 for

each k ∈ N . Moreover, by virtue of (57),

∀k ∈ N [I++
k − I−+

k = I−−
k − I+−

k ], (82)

and hence I−−
k − I+−

k ≥ 0, which gives M2GHB(k) ≥ 0 for each k ∈ N . �

Fact 5.2. We have:
(a) Player k ∈ N is a dummy if and only if M1GHB(k) = 0.
(b) Player k ∈ N is a dummy if and only if M2GHB(k) = 0.

Proof. By virtue of (50), (52) and (73), for each k ∈ N , GHB(k) = 0 if and
only if M1GHB(k) = 0. By analogy, from (51), (52) and (74), for each k ∈ N ,
GHB(k) = 0 if and only if M2GHB(k) = 0. Hence, by virtue of Fact 4.4, we
get Fact 5.2. �

Proposition 5.1. Let ΦAcc
k (W, p), ΦRej

k (W, p), α(W, p), and p∗ be as defined by
equations (11), (12), (5) and (15), respectively. Then

∀k ∈ N [ΦAcc
k (W, p∗) = M1GHB(k)] (83)

∀k ∈ N [ΦRej
k (W, p∗) = M2GHB(k)] (84)

α(W, p∗) = M3GHB. (85)

Proof. Let us apply again the probabilistic model recapitulated in Section 2
to our situation, interpreting a coalition as an inclination vector and a winning
coalition as an inclination vector i with gd(Bi) = +1. Then

α(W, p∗) =
∑

S:S∈W

p∗(S) =
|{i ∈ I | gd(Bi) = +1}|

2n
=

I+

2n
, (86)

and since I+ + I− = 2n, we have
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1− α(W, p∗) =
I−

2n
. (87)

Comparing (75) and (86), we get immediately α(W, p∗) = M3GHB.
Applying (65) and (86) to (11), and comparing it with (73), we get for each
k ∈ N

ΦAcc
k (W, p∗) =

I++
k − I−+

k

I+ = M1GHB(k). (88)

And finally, applying (69) and (87) to (12), and comparing it with (74), we get
for each k ∈ N

ΦRej
k (W, p∗) =

I−−
k − I+−

k

I−
= M2GHB(k). (89)

�

Conclusion 5.1. The modified Hoede-Bakker indices M1GHB, M2GHB, and
M3GHB coincide with the Coleman indices, that is, Coleman’s index ‘to pre-
vent action’, Coleman’s index ‘to initiate action’, and Coleman’s ‘power of a
collectivity to act’, respectively. We have

∀k ∈ N [M1GHB(k) = ColPk (W )] (90)

∀k ∈ N [M2GHB(k) = ColIk(W )] (91)

M3GHB = A(W ). (92)

Proof. From (83) and (22) we have M1GHB(k) = ΦAcc
k (W, p∗) = ColPk (W )

for each k ∈ N . By virtue of (84) and (24), M2GHB(k) = ΦRej
k (W, p∗) =

ColIk(W ) for each k ∈ N . And finally, from (85) and (20), M3GHB = α(W, p∗) =
A(W ). �

Example 5.1. Let us calculate the new modifications introduced for Example
3.1. As before, we use the calculations done in Example 4.1. Moreover, we have
(see Table 3.1) I+ = 3 and I− = 5. Hence,
M1GHB(A) = 1, M1GHB(B) = M1GHB(C) = 1

3

M2GHB(A) = 3
5 , M2GHB(B) = M2GHB(C) = 1

5

M3GHB = 3
8 .

5.2 Modification Leading to the Rae Index

Next, we introduce a modification of the generalized Hoede-Bakker index which
appears to lead to the Rae index.

Definition 5.2. Given B and gd, for each player k ∈ N :

M4GHB+(k) =
I++
k

2n−1 =
|{i ∈ I | ik = +1 ∧ gd(Bi) = +1}|

2n−1 (93)
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M4GHB−(k) =
I−−
k

2n−1 =
|{i ∈ I | ik = −1 ∧ gd(Bi) = −1}|

2n−1 (94)

M4GHB(k) =
M4GHB+(k) + M4GHB−(k)

2
=
|{i ∈ I | ik = gd(Bi)}|

2n
. (95)

Fact 5.3. We have for each k ∈ N :

1 ≥M4GHB+(k) ≥ 1
2n−1 (96)

1 ≥M4GHB−(k) ≥ 1
2n−1 (97)

1 ≥M4GHB(k) ≥ 1
2n−1 . (98)

Proof. From axiom (A-2), I++
k ≥ 1 for each k ∈ N . Hence, we haveM4GHB+(k)

≥ 1
2n−1 . By virtue of axiom (A-3), I−−

k ≥ 1 for each k ∈ N , and therefore
M4GHB−(k) ≥ 1

2n−1 . Hence, also M4GHB(k) ≥ 1
2n−1 . Moreover, I++

k ≤ 2n−1,
and I−−

k ≤ 2n−1 for each k ∈ N . Hence, M4GHB+(k) ≤ 1, M4GHB−(k) ≤ 1,
and therefore also M4GHB(k) ≤ 1 for each k ∈ N . �

Proposition 5.2. Let Ωk(W, p), Ω+
k (W, p), Ω−

k (W, p), and p∗ be as defined by
equations (1), (9), (10), and (15), respectively. Then

∀k ∈ N [Ω+
k (W, p∗) = M4GHB+(k)] (99)

∀k ∈ N [Ω−
k (W, p∗) = M4GHB−(k)] (100)

∀k ∈ N [Ωk(W, p∗) = M4GHB(k)]. (101)

Proof. From (9), (62), (63), and (93),

Ω+
k (W, p∗) =

I++
k

2n−1 = M4GHB+(k). (102)

Applying (66) and (67) to (10), and comparing it with (94), we have

Ω−
k (W, p∗) =

I−−
k

2n−1 = M4GHB−(k). (103)

Finally, using (1), (63), (67), and (95), we get

Ωk(W, p∗) =
I++
k

2n
+
I−−
k

2n
=

M4GHB+(k) +M4GHB−(k)
2

= M4GHB(k).

(104)
�
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Conclusion 5.2. The modified Hoede-Bakker index M4GHB coincides with the
Rae index, that is,

∀k ∈ N [M4GHB(k) = Raek(W )] (105)

Proof. By virtue of (16) and (101), we have for each k ∈ N , M4GHB(k) =
Ωk(W, p∗) = Raek(W ). �

Example 5.2. We will calculate the new notions introduced for Example 3.1.
Using the calculations from Example 4.1, we get
M4GHB+(A) = 3

4 , M4GHB+(B) = M4GHB+(C) = 1
2

M4GHB−(A) = 1, M4GHB−(B) = M4GHB−(C) = 3
4

M4GHB(A) = 7
8 , M4GHB(B) = M4GHB(C) = 5

8 .

5.3 Modification Leading to the König-Bräuninger Index

Finally, we like to introduce two new modifications of the generalized Hoede-
Bakker index. One of them happens to coincide with the König-Bräuninger
index.

Definition 5.3. Given B and gd, for each k ∈ N :

M5GHB(k) =
I++
k

I+ =
|{i ∈ I | ik = gd(Bi) = +1}|
|{i ∈ I | gd(Bi) = +1}| (106)

M6GHB(k) =
I−−
k

I−
=
|{i ∈ I | ik = gd(Bi) = −1}|
|{i ∈ I | gd(Bi) = −1}| (107)

Remark 5.2. Note that by virtue of axioms (A-2) and (A-3), I+ ≥ 1, and
I− ≥ 1, respectively. Hence, M5GHB(k) and M6GHB(k) are well defined, since
the denominators I+ and I− are never equal to 0.

Fact 5.4. We have for each k ∈ N :

1 ≥M5GHB(k) >
1
2n

(108)

1 ≥M6GHB(k) >
1
2n

. (109)

Proof. By virtue of axioms (A-2) and (A-3), I+ < 2n, I− < 2n, and for each
k ∈ N , I++

k ≥ 1, and I−−
k ≥ 1. Hence, we get

M5GHB(k) =
I++
k

I+ >
I++
k

2n
≥ 1

2n
, M6GHB(k) =

I−−
k

I−
>

I−−
k

2n
≥ 1

2n
. (110)

By virtue of (79), I+ ≥ I++
k for each k ∈ N , and therefore, M5GHB(k) ≤ 1

for each k ∈ N . By analogy, from (80), I− ≥ I−−
k for each k ∈ N , and hence,

M6GHB(k) ≤ 1 for each k ∈ N . �
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Proposition 5.3. Let ΩAcc
k (W, p), ΩRej

k (W, p), and p∗ be as defined by equa-
tions (7), (8), and (15), respectively. Then

∀k ∈ N [ΩAcc
k (W, p∗) = M5GHB(k)] (111)

∀k ∈ N [ΩRej
k (W, p∗) = M6GHB(k)]. (112)

Proof. Applying the probabilistic model from Section 2 to our model, we get
the following results. By virtue of (7), (63), (86), and (106), we have for each
k ∈ N ,

ΩAcc
k (W, p∗) =

I++
k

I+ = M5GHB(k). (113)

By analogy, from (8), (67), (87), and (107), we get for each k ∈ N ,

ΩRej
k (W, p∗) =

I−−
k

I−
= M6GHB(k). (114)

�

Conclusion 5.3. The modified Hoede-Bakker index M5GHB coincides with the
König-Bräuninger index, that is,

∀k ∈ N [M5GHB(k) = KBk(W )]. (115)

Proof. This follows immediately from (26) and (111), since for each k ∈ N
M5GHB(k) = ΩAcc

k (W, p∗) = KBk(W ). �

Example 5.3. Let us calculate the new modifications introduced for Example
3.1. We find
M5GHB(A) = 1, M5GHB(B) = M5GHB(C) = 2

3

M6GHB(A) = 4
5 , M6GHB(B) = M6GHB(C) = 3

5 .

We finish this section with the following fact:

Fact 5.5. Given B and gd, if axioms (A-0) and (A-1) are satisfied, then:

∀k ∈ N [HB+(k) = HB−(k) = GHB+(k) = GHB−(k) = GHB(k) =

= M1GHB(k) = M2GHB(k)] (116)

M3GHB =
1
2

(117)

∀k ∈ N [M4GHB+(k) = M4GHB−(k) = M4GHB(k) =

= M5GHB(k) = M6GHB(k)]. (118)
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Proof. If axiom (A-0) is additionally satisfied, then we have

I+ = I− = 2n−1 (119)

∀k ∈ N [I++
k = I−−

k ] (120)

∀k ∈ N [I+−
k = I−+

k ]. (121)

From (50)-(54), and (120)-(121), we get for each k ∈ N , HB+(k) = HB−(k) =
GHB+(k) = GHB−(k) = GHB(k).
From (50)-(52), (73)-(74), and (119)-(121), we have for each k ∈ N ,
M1GHB(k) = M2GHB(k) = GHB(k).
By virtue of (75) and (119), M3GHB = 1

2 .
Finally, from (93)-(95), (106), (107), and (119)-(121), we get for each k ∈ N ,
M4GHB+(k) = M4GHB−(k) = M4GHB(k) = M5GHB(k) = M6GHB(k). �

6 Examples

The examples presented in this Section have been constructed in order to show
some advantages of skipping axiom (A-0) as adopted by Hoede and Bakker [15].
In these examples, axiom (A-0) is not satisfied, and hence, we cannot apply the
(original) Hoede-Bakker index. Having introduced the generalized version of the
Hoede-Bakker index, we may calculate all the measures introduced in this paper.

In Hoede and Bakker [15], it was assumed that the ability to influence does
not depend on the inclination. This means that if a player follows another actor
who influences him, then this influenced player will always decide according to
the inclination of his ‘boss’, no matter what the inclinations are. We find such
a requirement too restrictive, since one may face situations in which the ability
to influence does depend on the inclinations. Hence, in this paper, we do NOT
adopt this assumption.

Example 6.1. Let us analyze the situation in which a married couple considers
a proposal to have a holiday this month. Unfortunately, there are three players
involved in this game: husband (player 1), wife (player 2), and wife’s boss denoted
as player 3. Hence, N = {1, 2, 3}. In fact, player 1 is fully influenced by player 2
(in particular, when considering this proposal), and he always does what his wife
asks for. In the matter of going on holiday, player 2 is ‘partially’ influenced by
her boss: if player 3 feels like ‘yes’ (that is, I like you to have a holiday), she will
follow her own inclination, but if the boss has the inclination ‘no’ (I do not want
you to have a holiday now), she will decide according to his wish and continue
working. The couple will go on holiday only if all three actors involved will decide
‘yes’. As was already mentioned, we face a kind of ‘partial’ influence here. Figure
6.1 illustrates this situation. There are two different arrows in Figure 6.1. The
‘normal’ arrow going from node 2 to node 1 means that player 1 always follows
the inclination of player 2. The dashed line going from node 3 to node 2 denotes
that player 2 follows the inclination ‘no’ of player 3, and otherwise, if actor 3
has the inclination ‘yes’, actor 2 will decide according to her own inclination.
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Fig. 6.1. Graph for Example 6.1

Table 6.1 presents the group decision for this situation.

Table 6.1. Group decision for Example 6.1

inclination i Bi gd(Bi) inclination i Bi gd(Bi)
(1, 1, 1) (1, 1, 1) +1 (−1,−1,−1) (−1,−1,−1) −1

(1, 1,−1) (1,−1,−1) −1 (−1,−1, 1) (−1,−1, 1) −1
(1,−1, 1) (−1,−1, 1) −1 (−1, 1,−1) (1,−1,−1) −1
(−1, 1, 1) (1, 1, 1) +1 (1,−1,−1) (−1,−1,−1) −1

First of all, one may note that axiom (A-0) is indeed not satisfied here, but all
axioms (B-1), (B-2), (B-3), (G-1), (G-2) and (G-3) are satisfied. There are two
winning coalition, that is, f(−1, 1, 1) = {2, 3} which is the only one minimal
winning coalition, and of course the grand coalition f(1, 1, 1) = {1, 2, 3} = N .
Player 1 is a dummy, and players 2 and 3 are the vetoers in this game. Let us cal-
culate the generalized Hoede-Bakker index and all its modifications introduced.
We have

I+ = 2, I− = 6
I++
1 = 1, I+−

1 = 3, I−+
1 = 1, I−−

1 = 3
I++
2 = I++

3 = 2, I+−
2 = I+−

3 = 2, I−+
2 = I−+

3 = 0, I−−
2 = I−−

3 = 4

Hence, the final results of our calculations are as follows:

HB+(1) = − 1
2 < 0, HB+(2) = HB+(3) = 0

As one can see, HB+ may be negative.
HB−(1) = 1

2 , HB−(2) = HB−(3) = 1
GHB(1) = GHB+(1) = GHB−(1) = 0
GHB(2) = GHB+(2) = GHB−(2) = 1

2

GHB(3) = GHB+(3) = GHB−(3) = 1
2

M1GHB(1) = 0, M1GHB(2) = M1GHB(3) = 1
M2GHB(1) = 0, M2GHB(2) = M2GHB(3) = 1

3

M3GHB = 1
4
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M4GHB+(1) = 1
4 , M4GHB+(2) = M4GHB+(3) = 1

2

M4GHB−(1) = 3
4 , M4GHB−(2) = M4GHB−(3) = 1

M4GHB(1) = 1
2 , M4GHB(2) = M4GHB(3) = 3

4

M5GHB(1) = 1
2 , M5GHB(2) = M5GHB(3) = 1

M6GHB(1) = 1
2 , M6GHB(2) = M6GHB(3) = 2

3 .

When using the original definition of the Hoede-Bakker index (with axiom (A-
0) adopted), the problem was faced that for some networks with an even number
of players a draw might appear. One of the advantages of the generalized Hoede-
Bakker index is that it can be calculated without any problem for an arbitrary
number of players, in particular, if there is an even number of actors.

Example 6.2. Let us analyze the network presented in Figure 6.2.

� 1

� 4

�2 �3
�

�
�

�
�

���

Fig. 6.2. Graph for Example 6.2

There are four players in this network. Players 1 and 2 influence player 4, and
player 3 is independent. We apply the standard procedure to this network (see
Rusinowska and De Swart [41]), according to which the players decide as follows:
– Players 1, 2, and 3 follow their own inclinations.
– If players 1 and 2 have different inclinations, then player 4 decides according

to his own inclination, otherwise he follows the inclination of players 1 and
2.

– The group decision is ‘yes’ if and only if at least three players decide to say
‘yes’.

The group decision for this example is shown in Table 6.2.

Table 6.2. Group decision for Example 6.2

inclination i Bi gd(Bi) inclination i Bi gd(Bi)
(1, 1, 1, 1) (1, 1, 1, 1) +1 (−1,−1,−1,−1) (−1,−1,−1,−1) −1

(1, 1, 1,−1) (1, 1, 1, 1) +1 (−1,−1,−1, 1) (−1,−1,−1,−1) −1
(1, 1,−1, 1) (1, 1,−1, 1) +1 (−1,−1, 1,−1) (−1,−1, 1,−1) −1
(1,−1, 1, 1) (1,−1, 1, 1) +1 (−1, 1,−1,−1) (−1, 1,−1,−1) −1
(−1, 1, 1, 1) (−1, 1, 1, 1) +1 (1,−1,−1,−1) (1,−1,−1,−1) −1

(1, 1,−1,−1) (1, 1,−1, 1) +1 (−1,−1, 1, 1) (−1,−1, 1,−1) −1
(1,−1, 1,−1) (1,−1, 1,−1) −1 (−1, 1,−1, 1) (−1, 1,−1, 1) −1
(1,−1,−1, 1) (1,−1,−1, 1) −1 (−1, 1, 1,−1) (−1, 1, 1,−1) −1
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In this case, all axioms (B-1), (B-2), (B-3), (G-1), (G-2) and (G-3) are also
satisfied, but again axiom (A-0) is not. There are six winning coalitions here, that
is, N , {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, and {1, 2}. The last three coalitions
are minimal. There is no vetoer and no dummy. By virtue of Table 6.2 we have

I+ = 6, I− = 10

I++
1 = I++

2 = 5, I+−
1 = I+−

2 = 3, I−+
1 = I−+

2 = 1, I−−
1 = I−−

2 = 7

I++
3 = I++

4 = 4, I+−
3 = I+−

4 = 4, I−+
3 = I−+

4 = 2, I−−
3 = I−−

4 = 6.

We get the following final results:

HB+(1) = HB+(2) = 1
4 , HB+(3) = HB+(4) = 0

HB−(1) = HB−(2) = 3
4 , HB−(3) = HB−(4) = 1

2

GHB(1) = GHB+(1) = GHB−(1) = 1
2

GHB(2) = GHB+(2) = GHB−(2) = 1
2

GHB(3) = GHB+(3) = GHB−(3) = 1
4

GHB(4) = GHB+(4) = GHB−(4) = 1
4

M1GHB(1) = M1GHB(2) = 2
3 , M1GHB(3) = M1GHB(4) = 1

3

M2GHB(1) = M2GHB(2) = 2
5 , M2GHB(3) = M2GHB(4) = 1

5

M3GHB = 3
8

M4GHB+(1) = M4GHB+(2) = 5
8 , M4GHB+(3) = M4GHB+(4) = 1

2

M4GHB−(1) = M4GHB−(2) = 7
8 , M4GHB−(3) = M4GHB−(4) = 3

4

M4GHB(1) = M4GHB(2) = 3
4 , M4GHB(3) = M4GHB(4) = 5

8

M5GHB(1) = M5GHB(2) = 5
6 , M5GHB(3) = M5GHB(4) = 2

3

M6GHB(1) = M6GHB(2) = 7
10 , M6GHB(3) = M6GHB(4) = 3

5 .

Example 6.3. Let us analyze the network presented in Figure 6.3.

� 1

�

3
�

4

�2

�

5

��
��

��
��

� �

�
�

�
���

Fig. 6.3. Graph for Example 6.3

We may say that this is an example of ‘a positive and opposite influence’. The
network analyzed consists of five players. Players 1 and 2 always decide according
to their own inclinations. Player 2 is fully independent: he neither influences nor
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is influenced. Player 1 influences players 3, 4, and 5. In the matter of his influence
on players 3 and 4, we face a kind of ‘partial’ (‘positive’) influence. We mean
by this that if player 1 has the inclination ‘yes’, then players 3 and 4 follow his
inclination, but if his inclination is ‘no’, actors 3 and 4 decide according to their
own inclinations. Such a partial influence is denoted on Figure 6.3 by the two
dashed vectors going from node 1 to nodes 3 and 4. In the matter of the influence
on player 5, we find a kind of ‘opposite’ influence, because player 5 will always
make a decision opposite to the inclination of player 1: if player 1’s inclination is
‘yes’, player 5 will decide for ‘no’, and if player 1 has the inclination ‘no’, player 5
will say ‘yes’. In order to stress this ‘opposite’ influence, we marked additionally
the vector going from node 1 to node 5 in Figure 6.3. The group decision is made

Table 6.3. Group decision for Example 6.3

gd(Bi) gd(Bi)
inclination i Bi inclination i Bi
(1, 1, 1, 1, 1) (1, 1, 1, 1,−1) +1 (−1,−1,−1,−1,−1) (−1,−1,−1,−1, 1)−1

(1, 1, 1, 1,−1) (1, 1, 1, 1,−1) +1 (−1,−1,−1,−1, 1) (−1,−1,−1,−1, 1)−1
(1, 1, 1,−1, 1) (1, 1, 1, 1,−1) +1 (−1,−1,−1, 1,−1) (−1,−1,−1, 1, 1) −1
(1, 1,−1, 1, 1) (1, 1, 1, 1,−1) +1 (−1,−1, 1,−1,−1) (−1,−1, 1,−1, 1) −1
(1,−1, 1, 1, 1) (1,−1, 1, 1,−1) +1 (−1, 1,−1,−1,−1) (−1, 1,−1,−1, 1) −1
(−1, 1, 1, 1, 1) (−1, 1, 1, 1, 1) +1 (1,−1,−1,−1,−1) (1,−1, 1, 1,−1) +1

(1, 1, 1,−1,−1) (1, 1, 1, 1,−1) +1 (−1,−1,−1, 1, 1) (−1,−1,−1, 1, 1) −1
(1, 1,−1, 1,−1) (1, 1, 1, 1,−1) +1 (−1,−1, 1,−1, 1) (−1,−1, 1,−1, 1) −1
(1,−1, 1, 1,−1) (1,−1, 1, 1,−1) +1 (−1, 1,−1,−1, 1) (−1, 1,−1,−1, 1) −1
(−1, 1, 1, 1,−1) (−1, 1, 1, 1, 1) +1 (1,−1,−1,−1, 1) (1,−1, 1, 1,−1) +1
(1, 1,−1,−1, 1) (1, 1, 1, 1,−1) +1 (−1,−1, 1, 1,−1) (−1,−1, 1, 1, 1) +1
(1,−1, 1,−1, 1) (1,−1, 1, 1,−1) +1 (−1, 1,−1, 1,−1) (−1, 1,−1, 1, 1) +1
(−1, 1, 1,−1, 1) (−1, 1, 1,−1, 1) +1 (1,−1,−1, 1,−1) (1,−1, 1, 1,−1) +1
(1,−1,−1, 1, 1) (1,−1, 1, 1,−1) +1 (−1, 1, 1,−1,−1) (−1, 1, 1,−1, 1) +1
(−1, 1,−1, 1, 1) (−1, 1,−1, 1, 1) +1 (1,−1, 1,−1,−1) (1,−1, 1, 1,−1) +1
(−1,−1, 1, 1, 1) (−1,−1, 1, 1, 1) +1 (1, 1,−1,−1,−1) (1, 1, 1, 1,−1) +1

according to the majority’s decision: gd is equal to +1 if and only if at least
three players will decide for ‘yes’. Table 6.3 presents the group decision for this
example.

Player 5 is a dummy in this example. There is no vetoer. In this case, none of
the axioms (B-1), (B-2), (B-3) is satisfied, but all axioms (A-1), (A-2) and (A-3)
are satisfied. By virtue of Table 6.3, we get the following results:

I+ = 24, I− = 8
I++
1 = 16, I+−

1 = 0, I−+
1 = 8, I−−

1 = 8
I++
2 = I++

3 = I++
4 = 14, I+−

2 = I+−
3 = I+−

4 = 2
I−+
2 = I−+

3 = I−+
4 = 10, I−−

2 = I−−
3 = I−−

4 = 6
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I++
5 = 12, I+−

5 = 4, I−+
5 = 12, I−−

5 = 4

HB+(1) = 1, HB+(2) = HB+(3) = HB+(4) = 3
4 , HB+(5) = 1

2

HB−(1) = 0, HB−(2) = HB−(3) = HB−(4) = − 1
4 , HB−(5) = − 1

2

Note than HB− is negative for all players but player 1.

GHB(1) = GHB+(1) = GHB−(1) = 1
2

GHB(k) = GHB+(k) = GHB−(k) = 1
4 for k = 2, 3, 4

GHB(5) = GHB+(5) = GHB−(5) = 0
M1GHB(1) = 1

3 , M1GHB(k) = 1
6 for k = 2, 3, 4, M1GHB(5) = 0

M2GHB(1) = 1, M2GHB(k) = 1
2 for k = 2, 3, 4, M2GHB(5) = 0

M3GHB = 3
4

M4GHB+(1) = 1, M4GHB+(k) = 7
8 for k = 2, 3, 4, M4GHB+(5) = 3

4

M4GHB−(1) = 1
2 , M4GHB−(k) = 3

8 for k = 2, 3, 4, M4GHB−(5) = 1
4

M4GHB(1) = 3
4 , M4GHB(k) = 5

8 for k = 2, 3, 4, M4GHB(5) = 1
2

M5GHB(1) = 2
3 , M5GHB(k) = 7

12 for k = 2, 3, 4, M5GHB(5) = 1
2

M6GHB(1) = 1, M6GHB(k) = 3
4 for k = 2, 3, 4, M6GHB(5) = 1

2 .

7 Conclusions

The Hoede-Bakker index was introduced more than twenty years ago, but, in
our opinion, up till now, it did not get the attention it deserves, because it takes
the mutual influences of the players in a social network into account. By resign-
ing from the requirement, imposed in the original definition, that changing all
inclinations of the players leads to an opposite group decision, the applicability
of the index is extended considerably. We present several examples showing the
usefulness of such a generalization. In particular, the generalized Hoede-Bakker
index may be applied to a game with a vetoer.

Moreover, we allow the ability of influencing other players to depend on the
inclination. It may happen, for instance, that a player will follow the positive
inclination of another player, but not his negative inclination. It may also happen
that a player will decide according to the inclination ‘no’ of the influencing player,
but is not sensitive to the inclination ‘yes’ of that player. In such situations we
cannot apply the original Hoede-Bakker index, since one of the axioms adopted
by Hoede and Bakker [15], that is, the axiom mentioned above, is not satisfied.
With the new and weaker set of axioms and the generalized definition of the
Hoede-Bakker index, it is possible to analyze such situations.

Although it has a completely different motivation in terms of a social network
with mutual influences among the agents, the generalized Hoede-Bakker index
happens to coincide with the Penrose measure. This means that the generalized
Hoede-Bakker index of a player is the probability that the given player is decisive,
assuming that all inclination vectors are equally probable. This probability is
equal to the two conditional probabilities: the probability that a player is decisive
if he votes ‘yes’, and the probability that a player is decisive if he votes ‘no’.
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In this paper, also several modifications of the generalized Hoede-Bakker in-
dex are introduced. Given a group decision function, we may calculate all the
inclination vectors leading to a positive group decision. This modification gives
the probability of the acceptance of a proposal, and hence, it coincides with
Coleman’s ‘power of a collectivity to act’. Two other modifications, being the
conditional probability that a player is decisive if the proposal is accepted, and
the probability that a player is decisive if the proposal is rejected, lead to Cole-
man’s index ‘to prevent action’ and to Coleman ’s index ‘to initiate action’,
respectively. In another modification, we calculate the probability that a player
is successful. This modification leads to the Rae index. Of course, we may also
calculate the four conditional probabilities that a player is successful if he votes
‘yes’, if he votes ‘no’, if the proposal is accepted, or if the proposal is rejected.
The third one, that is, the conditional probability that a player is successful if
the proposal is accepted, gives the König-Bräuninger index.
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Abstract. This paper contributes to the vast literature on relational
renderings of non-classical logics providing a general schema for auto-
matic translation. The translation process is supported by a flexible Pro-
log tool. Many specific translations are already implemented, typically
leading from an unquantified logic into the calculus of binary relations.
Thanks to the uniformity of the translation pattern, additional source
languages (and, though less commonly, new target languages) can be
installed very easily into this Prolog-based translator. The system also
integrates an elementary graphical proof assistant based on Rasiowa-
Sikorski dual-tableau rules.
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Introduction

Common approaches to the automation of modal inferences often exploit ad hoc,
direct inference methods (cf., e.g., [23, 33]). An alternative approach, discussed
in the ongoing and aimed at developing a uniform relational platform for modal
reasoning, is intended to benefit from relational renderings of non-classical logics
(cf. [27] among others).

The envisaged framework covers a full-fledged inferential apparatus, where the
inferential activity is viewed as consisting of two phases. First, a translation phase
carries a (propositional) modal formalization ϕ of a problem into its relational
counterpart. Then, within the relational context, a deductive method is exploited
to seek a proof of the translated formula ϕ (cf. Fig. 1).

There are several kinds of proof systems for relational reasoning, such as
tableaux [17], Gentzen-style systems [34, 22], systems à la Rasiowa-Sikorski
� Research partially funded by INTAS project Algebraic and deduction methods in

non-classical logic and their applications to Computer Science, and by the Euro-
pean Concerted Research Action COST 274, TARSKI: Theory and Applications of
Relational Structures as Knowledge Instruments.

H. de Swart et al. (Eds.): TARSKI II, LNAI 4342, pp. 89–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



90 A. Formisano, E.G. Omodeo, and E. Or�lowska

sentence −→

logic
↓

translator

relational
form
=⇒

(and axioms)

proof
procedure

Fig. 1. General scheme of the inferential framework

[25, 30, 14], display calculus [16], and of course equational proof systems based
on relation algebras [11, 12]. The system we have in mind should be seen as pro-
viding a convenient input for any of those proof systems. Specifically, the input
for a tableaux-based system, a Gentzen system, or a Rasiowa-Sikorski system
will be an expression of the form x t(ϕ) y, where x and y stand for individual vari-
ables and t(ϕ) for a relational term translating the given formula ϕ, obtainable
e.g. by means of a system which we have implemented in Prolog along the lines
that will be expounded below. On the other hand, our input for an equational
proof system will be an equation t(ϕ) = 1, where 1 denotes the top element of
a relation algebra.

This paper focuses on the translation phase: we describe a prototypical,
Prolog-based implementation of a tool, named transIt, which uniformly carries
out translations from various modal logics to the relational formalism [35]. As
an aside, we give some details about possible approaches towards the inter-
action/integration between the translator and a deductive engine. The develop-
ment of an efficient relational deductive system (actually, in the Rasiowa-Sikorski
style) is the theme of [8].

We verified that this approach offers indeed a high degree of uniformity: tran-
sIt is able to treat varied modal logics, all by the very same machinery. Moreover,
extensions to further families of logics can easily be obtained by routine appli-
cation of their declarative Prolog specifications.

Moreover, the adoption of an approach based on declarative programming al-
lows us to develop the system in an incremental way and ensures high modularity
and extensibility of the application. As a matter of fact, in the same easy routine
fashion in which source languages can be added, the system can also be extended
to encompass other target languages, so as to “drive” different (relational) proof
systems. We exemplify this adaptability by extending transIt in order to use
it as a front-end for two deductive frameworks for relation algebras which are
rather different in nature (Section 4). One of the two consists in a minimal im-
plementation of a proof-assistant (with some form of automated capabilities)
based on Rasiowa-Sikorski rewriting rules [29]. Actually, this proof-assistant has
been easily integrated in transIt by means of a common graphical user interface.
As a second approach to relational reasoning, we show how transIt can be used
as a front-end for a first-order theorem-prover which is exploited as relational
inference engine very much in the spirit of [11, 12].
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The paper is organized as follows. In Section 1 we describe source and target
languages. For most of the modal logics, we provide the corresponding translation
rules. Section 2 illustrates the architecture of transIt and the successive phases
of the translation process, while an outline of the input/output formats is given
in Section 3. Finally, Sections 4 and 5 describe the interface to the built-in proof-
assistant and speculate on improvements to the overall inferential framework one
can envisage.

1 Source and Target Languages

The main target language which our translation supports is the algebra of binary
relations. For this target, given a formula ϕ the system produces a relational term
t(ϕ) belonging to an algebraic language encompassing the usual constructs of
Boolean algebra plus further operators specific to the realm of relations. To be
more specific, following the work of Alfred Tarski [35], let us recall the basic
notions on such formalism. The intended universe of discourse is a collection �
of binary relations over a non-null domain U . We assume that the top relation⋃�, and the diagonal relation consisting of all pairs 〈u, u〉 with u in U , belong
to this universe, which is also closed under the intersection (∩), union (∪),
complement ( ) relative to

⋃�, composition (;), and conversion ( �) operations.
Within such a system, two primitive constants 1 and I designate the top and
the diagonal relation, while the operations are interpreted as one expects (here,
for any relational expression R we are indicating by R� the relation over U
designated by R), for instance:

• P� designates the relation consisting of all pairs 〈v, u〉 with 〈u, v〉 in P�;
• P ;Q designates the relation consisting of all pairs 〈u,w〉 such that there is at

least one v for which 〈u, v〉 and 〈v, w〉 belong to P� and to Q�, respectively;
• P∩Q designates the relation consisting of all pairs 〈u, v〉 which simultane-

ously belong to P� and to Q�;

and similarly for the other constructs.
Designations for further constants, operations over relations, or equations of

a special kind, can be introduced through definitions, e.g.:

0 =Def 1, D =Def I,

P−Q =Def P∩Q, P+Q =Def (Q∪P )−(Q∩P ),
P�Q ↔Def P−Q=0.

Another target language currently supported is the binary first-order predicate
calculus with three variables, namely L3 [35]. For this target, the translation is
obtained by first performing the translation into the algebra of relations, and
then exploiting first-order characterizations of the relational operators. Clearly,
in order to limit the overall number of first-order variables to three, in doing the
latter transformation we must rely on a suitable variable-recycling mechanism.
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It should be noted that a first-order sentence is logically equivalent to a sen-
tence of L3 if and only if it is expressible in the algebra of relations. This is
because L3 is equipollent to the arithmetic of binary relations [35, Chap. 3]. On
the other hand, this is no more the case if we consider sentences of the full first-
order predicate calculus. Actually, it is known (cf. [35, 21]) that the collection
of all first-order sentences expressible with three variables (and hence having a
relational rendering) is undecidable. As a consequence, the translation from first-
order predicate calculus into the algebra of relations is not always doable and it
can only be achieved (in favorable cases) by means of conservative techniques.
Therefore, our Prolog-based translator may fail in translating a sentence. Any-
way, the translation process terminates in every case, and a diagnostic message
is issued when the translation is not carried through. Notice that the translation
process could be improved by resorting to conservative refinements such as those
proposed in [2].

Similar enhancements can be applied in order to build more target languages
into the tool. One could easily achieve this goal by describing such languages in
terms of suitable rewriting rules. As an example we mention another currently
available translation for modal formulas (see below, for a description of the
source languages), having a set-theoretical language as target. This approach is
described in [4, 1, 31], where it is shown that even a very weak set theory can offer
adequate means for expressing the semantics of modal systems of propositional
logic. In this context, a modal formula is translated into a formula of a very weak
set theory. Then, in order to perform (semi-)automated modal inference, the
result of the translation could be fed into a deduction system for theory-based
reasoning [13] or, alternatively, into a Rasiowa-Sikorski proof system for set-
theory, as described in [31]. Another possibility could consist in performing one
further translation step, from the set theoretical framework into the relational
calculus, as suggested in [9], to then exploit any deductive system for relational
reasoning.

Let us now briefly highlight most of the source languages currently accepted by
the translator. We characterize the languages of the logics which employ binary
accessibility relations in terms of their Kripke-style models. Our translator does
not, as yet (although we plan extensions of this kind), deal with the languages of
relevant logics or the logics with binary modalities—requiring ternary relations
in their models. The translation functions for many of these languages are known,
see [26] for a translation of languages of relevant logics.

The main idea of the translation is to assign relational terms to formulas
of non-classical logics so that validity is preserved. These terms must represent
right ideal relations, a binary relation R on the domain U being called right ideal
when it meets the condition R;1=R. In other words, a right ideal relation is of
the form X × U for some X ⊆ U . Intuitively speaking, if a formula is replaced
by a right ideal relation, then its domain represents the set of states where the
formula is true, and its range represents the universe of all states. For atomic
formulas the property of being right ideal can be enforced by postulating that
a propositional variable, say p, is translated into a relational term P ;1, where
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P is a relation variable uniquely associated with p. It follows that, given a lan-
guage, a relational translation of its formulas can be defined provided that, first,
the propositional operations of the language can be mapped into the relational
operations which preserve the property of being right ideal and, second, the
translation will preserve validity. It is known that Boolean operations preserve
the property of being right ideal and the composition of any relation with a right
ideal relation results in a right ideal relation. So if a logic is based on a classi-
cal logic whose propositional connectives are Boolean, or if a logic has a lattice
as a basis, then the only problem is to appropriately translate the remaining
intensional propositional operations of the logic. Since their semantics depends
on the accessibility relation(s) which usually are not right ideal, the translation
should use these relations only as first arguments of the composition operator,
making use of the property stated above. If this can be done with preservation
of validity, then the translation process is successful.

In the following we present definitions of the translation functions of languages
for several families of logics whose accessibility relations are binary. In all the
listed cases the validity-preserving theorems are known and can be found in the
cited references.

Mono-Modal Logics. This is the basic translation of (propositional) modal
formulas into relational terms originated in [25]. The source language involves
usual propositional connectives together with necessity and possibility operators
(here ψ and χ stand for propositional sentences):

• t(pi) =Def Pi ; 1, where Pi is a relational variable uniquely corresponding
to the propositional variable pi;

• t(¬ψ) =Def t(ψ);
• t(ψ & χ) =Def t(ψ) ∩ t(χ);
• t(� ψ) = Def R ; t(ψ), where R is a constant relation designating the

accessibility relation between possible worlds;

and similarly for the other customary propositional connectives (see also [25],
for a very detailed treatment).

Lattice-Based Modal Logics. Lattice-based modal logics have the opera-
tions of disjunction and conjunction and, moreover, each of them includes a
modal operator which can be either a possibility or necessity or sufficiency or
dual sufficiency operator. Since negation is not available in these logics, both
in the possibility–necessity and in the sufficiency–dual-sufficiency pair neither
operator is expressible in terms of the other. We can also consider mixed lan-
guages with any subset of these operators. The target relational language for all
of these lattice-based logics includes the following specific accessibility relations:
binary relations �1 and �2, which are assumed to be reflexive and transitive
and to satisfy the condition �1 ∩ �2= I. Such relations are needed in order to
provide semantics for the operation of disjunction which, in the case of lattice-
based logics, does not necessarily distribute over conjunction. All of these logics
have been deeply investigated in [32, 7, 20]. The translation of disjunction and
conjunction is:
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• t(ψ ∨ χ) =Def �1; �2; (t(ψ) ∪ t(χ));
• t(ψ & χ) =Def t(ψ) ∩ t(χ).

Considering a source language with a possibility operator �, the target lan-
guage includes two relations R� and S� subject to the following conditions:

��
1 ;R�; ��

1 � R� , R� � S�; ��
1 ,

�2;S�; �2 � S� , S� � �2;R� .

The translation of a formula involving the modal operator is

t(�χ) =Def �1;S�; �2; t(χ) .

Also in the case of a language involving the necessity operator �, the target
language includes two relations R� and S� subject to:

�1;R�; �1 � R� , R� � �1;S� ,

��
2 ;S�; ��

2 � S� , S� � R�; ��
2 .

The translation of a formula involving the modal operator is

t(�χ) =Def R�; t(χ) .

Formulas involving the sufficiency operator �� are translated into relational
expressions by introducing two relations R�� and S�� subject to the following
conditions:

�1;R��; �2 � R�� , R�� � �1;S�� ,

��
2 ;S��; ��

1 � S�� , S�� � R��; ��
1 .

Within such a framework, the translation of a formula involving the sufficiency
operator is

t(��χ) =Def R��; �2; t(χ) .

Finally, the translation of formulas involving the dual sufficiency operator ��,
has as its target a relational language with two relations, R�� and S��, subject to
the following conditions:

��
1 ;R��; ��

2 � R�� , R�� � S��; ��
2 ,

�2;S��; �1 � S�� , S�� � �2;R�� .

Then, the translation of a formula involving �� is

t(��χ) =Def �1;S��; t(χ) .

Logics of Knowledge and Information. These modal logics come from [5]:

� Logic with knowledge operator K, subject to the following translation rule:

t(Kϕ) =Def R; t(ϕ)∪ R; t(ϕ).
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� Logic of non-deterministic information (NIL) [5, Sect. 7.2]. A multi-modal
logic with three modalities, determined by the relations of informational
inclusions (� and �) and similarity (σ) subject to the following conditions:

• � is reflexive and transitive and such that � = ��,
• σ is reflexive and symmetric,
• �;σ; � �σ.

� Information logic (IL) [5, Sect. 7.3]. A modal logic with three modal operators
corresponding to the relations of indiscernibility (≡), forward inclusion (�),
and similarity (σ) subject to the following conditions:

• ≡ is an equivalence relation,
• � is reflexive and transitive,
• σ is reflexive and symmetric,
• ��;σ�σ and � ∩ �� = ≡.

Intuitionistic Logic. The translation of intuitionistic logic is based on the
following rules:

t(ψ→ χ) =Def �; (t(ψ) ∩ t(χ)) , t(ψ & χ) =Def t(ψ) ∩ t(χ) ,

t(¬ψ) =Def �; t(ψ) , t(ψ ∨ χ) =Def t(ψ) ∪ t(χ) ,

where � is a reflexive and transitive relation.

Multi-modal Logic. These logics correspond to multi-modal frames consisting
of a relational system (W,Rel) where Rel is a family of accessibility relations
(enjoying closure properties with respect to relational constructs). Modalities
are then of the form [R] and 〈R〉, where R is any relational term of Rel (cf. [27]).

The translation of modal operators is the same as in the case of mono-modal
logic. The differences between operators are articulated in terms of the properties
of the corresponding accessibility relations.

Temporal Logics. By taking the relational formalization of temporal logics
given in [28], we extended the translator in order to deal with temporal formulas.
The basic modal operators (referring to states in the future or in the past) are:

• Gϕ interpreted as “always, in the future, ϕ will be true”;
• Fϕ interpreted as “sometimes, in the future, ϕ will be true ”;
• Hϕ interpreted as “ϕ was always true in the past”;
• Pϕ interpreted as “ϕ was true in some past time”;
• ϕ Uχ interpreted as “at some moment χ will be true and from now till then
ϕ will be true”;

• ϕ Sχ interpreted as “there was a moment when χ was true and such that ϕ
has ever since been true”;

• Xϕ interpreted as “ϕ will be true in the next moment in time”.
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In this context, relational representations of temporal formulas are expressed by
considering an accessibility relation R that (together with its converse R�) links
time instants. The relational translations of the modalities G, F, H, and P are as
follows:

t(Gϕ) =Def R; t(ϕ) , t(Hϕ) =Def R�; t(ϕ) ,
t(Fϕ) =Def R; t(ϕ) , t(Pϕ) =Def R�; t(ϕ) ,

t(ϕ Uχ) =Def t(ϕ) U t(χ) , t(ϕ Sχ) =Def t(ϕ) S t(χ) ,
t(Xϕ) =Def t((ϕ & ¬ϕ) Uϕ) ,

where, in the translations of the modal operators U and S we use the same sym-
bols to denote two newly introduced relational constructs. These new constructs
cannot be defined in terms of the primitive relational constructs (page 91). The
intended interpretation of U is as follows: PUQ designates the binary relation
consisting of all pairs 〈u, v〉 such that there exists t such that 〈u, t〉 belongs to
the accessibility relation R�, 〈t, v〉 belongs to Q�, and for all w, if 〈u,w〉 ∈ R�

and 〈w, t〉 ∈ R� then 〈w, v〉 ∈ P�. (The interpretation of S is analogous, with
respect of R�.)

Other Modal Logics. Other modal logics currently accepted by the translator
involve: logics with specification operators [18, 24], logics with Humberstone
operators [19], logics with sufficiency operators [15, 6].

Following the semantics developed by Hoare and Jifeng [18], the operators
of the weakest prespecification (\) and the weakest postspecification (/) are
modeled with residuals of the relational composition which are definable with
composition, converse and complement:

Q\R =DefR;Q� and R/P =DefP�;R.

Consequently, P ;Q�R if and only if P�Q\R if and only if Q�R/P .
The Humberstone operators are the modal operators of possibility and neces-

sity determined by the complement of an accessibility relation. It follows that
their translation can easily be derived from the translation of the mono-modal
operators.

The sufficiency (��) and dual sufficiency (��) operators receive the following
relational translation:

t(��ϕ) =Def R; t(ϕ),
t(��ϕ) =Def R; t(ϕ),

where R is a relational constant representing an accessibility relation of the
models of a logic under considerations.

It follows that our translation tool is able to translate the formulas of any of
the information logics presented in [5], as they involve, together with Boolean
or lattice operators, intensional operators that are either modal or sufficiency or
knowledge operators.
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sentence−→

logic
↓

parse ⇒ rewrite
and

simplify
⇒

target language
↓

translate
output−→
form

Fig. 2. The translator architecture

2 The Translation Process

The translator takes as input a formula of a specific source language (see Sec-
tion 1). As shown in Fig. 2, the first of these transformations yields an internal
representation of the formula, while the last step generates its final rendering.
Then, a sequence of rewritings and simplifications is performed. Finally, the
desired translation is produced.

More specifically, here is the sequence of the salient phases which usually
form the translation (some of them being skipped in specific cases, for instance
double-negation removal in intuitionistic logic):

Lexical and syntactical analyses. This phase accepts a formula only if it
is syntactically correct and its constructs belong to the specific language
at hand. The syntax-directed translation implemented through this stage is
described by an attributed definite clause grammar. Hence, any extension to
further logics can be achieved by simply adding a suitable set of grammar
rules which characterize the (new) well-formed formulas. The outcome of this
stage is an intermediate representation of the abstract syntax tree (AST) of
the input formula.

Generation of an internal representation. Bymeans of a rewriting process
which acts in a bottom-up recursive fashion, the outcome of the preceding
phase is turned into an internal representation of the AST (in form of a Prolog
term), independent of the source language.

Abstract propositional evaluation. The internal representation of the given
formula is analyzed in order to extract its propositional schema. The schema
so obtained is then (possibly) simplified through replacements of some of its
sub-formulas by tautologically equivalent ones.

Reduction to primitive constructs. In this phase the formula is rewritten in
terms of a small repertoire of constructs and connectives, to be regarded as
being “primitive”. For instance, biimplication↔ is rewritten as a conjunction
of two implications, and so on. Notice that some of these rewritings must be
inhibited at times, insofar as unsound with respect to the specific logic at
hand. The aim of this transformation is to make the next phase easier.

Propositional simplifications. Through this phase the internal representa-
tion of the formula is simplified by applying a number of propositional
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rewrite(Rules,From,To) :- transl(Rules,From,M), % rewrite until
(From==M, To=M ; rewrite(Rules,M,To)). % fix-point

transl(_,T,T) :- var(T).
transl(R,T,S) :- T =.. [F|Argg], translArgg(R,Argg,Brgg),

M =.. [F|Brgg], transl0(R,M,S).
translArgg(_,[],[]).
translArgg(R,[H|B],[SH|SB]) :- transl(R,H,SH),

translArgg(R,B,SB).
transl0(R,T,S) :- Goal =.. [R,T,S], (Goal ; S=T).

rewrite1(R,T,S) :- once(transl(R,T,S)). % rewrite once

Fig. 3. A simple and powerful post-order rewriting procedure

simplifications to it, mainly aimed at reducing the size of the formula (for
instance, elimination of tautological sub-formulas and of double negations).

Relational translation. This is the main step of the translation process: the
internal representation of the given formula is translated into the calculus of
binary relations. The kind of rewriting rules employed may depend on the
source language of the input formula (see Section 1). The outcome of this
phase is a relational term.

Relational simplifications. The overall translation process ends with a se-
ries of relational simplifications applied to the relational term produced by
the preceding step. The simplest among these rewritings take care of the
idempotency, absorption or involution properties of (some of) the relational
constructs. The process can easily be extended to perform more complex
simplifications.

It should be noticed that most of the above steps are all uniformly per-
formed by exploiting the same simple meta-rewriter. Fig. 3 displays the basic
Prolog specification of this post-order rewriting procedure. The main predicate is
rewrite/3. Intuitively speaking, it accepts as its first parameter (Rules) a Pro-
log predicate describing one of the possible translation steps. Then it recursively
processes the term From in order to produce its translation To.

Further phases could be added, for instance in order to apply semantical
transformations to the relational term, possibly with respect to a set of ax-
iomatic assumptions characterizing a particular class of relational structures as
constituting the target framework.

Example 1. As an example we provide here the textual output produced by the
various steps of the translation into the calculus of relations of the multi-modal
formula:

[R ∪Q] < Q > p→ q.

Here is a tracing of the translation process (where p1, p2, and R3 are internal
names corresponding to the external names p, q, and Q, respectively):
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?- enu2tg(A,polyModal).
|: [R+Q]<Q>p -> q.
...i(nn(pp(1,-3),u(0,-3)),2)...
from intermediate to internal representation:

NEC(POSS(p1,R3),u(R,R3))imp p2...
in primitive connectives:

NEC(NEC(p1 imp f,R3)imp f,u(R,R3))imp p2...
after propositional simplification:

NEC(NEC(p1 imp f,R3)imp f,u(R,R3))imp p2...
after translation to calculus of relations:

u(c(c(k(u(R,R3),c(u(c(c(k(R3,c(u(c(k(p1,U)),Z))))),Z))))),k(p2,U))...
after relational simplifications:

u(k(p2,U),k(u(R,R3),c(k(k(R3,p1),U))))...

A = (u(k(p2,’U’),k(u(’R’,’R3’),c(k(k(’R3’,p1),’U’))))=’U’)

The Prolog term produced is the representation of the relational equality

q ; 1 ∪ (R ∪Q) ; Q ; p ; 1 = 1.

Proving that the initial modal formula is a theorem amounts to deriving this
equation within the calculus of relations.

3 Input and Output Formats

When rawly used, our Prolog-based translation tool system reads a pure-text
input typed in by the user (cf. Example 1). The output is then written, again
in pure-text format, to the standard output stream (usually, the screen). This
kind of interaction is, however, quite unsatisfactory, because the ASCII char-
acter set is rather poor. In order to overcome this disadvantage and ease the
input/output of complex formulas and expressions, a user-friendly interface has
been developed. Such a graphical interface allows the user to type in formulas
using graphical LATEX-generated symbols. In doing this, we exploited the useful
integration facilities offered by SICStus Prolog [37] with respect to other pro-
gramming languages, in particular to the Tcl/Tk toolkit [36]. Hence, the input of
formulas is achieved through dialogues that are generated at run-time depend-
ing on the specific language chosen by the user. For instance, Fig. 4 displays the
input dialogue generated for multi-modal formulas.

The system also provides the possibility of processing a text file, as well as
to generate a text file as output. Through this feature it is possible to produce
input files for different deduction tools (see Section 4).

Let us briefly illustrate the use of the graphical interface with a simple ex-
ample. Consider the multi-modal formula [R ∪ Q] < Q > p → q. This formula
can be input to the translator easily, as shown in Fig. 4. The relational equation
obtained can also be displayed graphically, as in Fig. 5.
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Fig. 4. Input dialogue for multi-modal formulas

Fig. 5. Output of a translation process

4 Driving a Deductive Tool

As mentioned at the outset, the main purpose of transIt is to provide an exten-
sible front-end for (relational) deductive systems.

To exemplify how well this goal is approached, in what follows we report on
two extensions of transIt, designed in order to use it as a front-end for two deduc-
tive frameworks for relation algebras which are rather different in nature. One
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Fig. 6. Assisted development of a proof tree

of the two consists in a minimal implementation of a proof-assistant (showing
some degree of autonomy) based on Rasiowa-Sikorski rewriting rules [29]. Such
proof-assistant is accessible through transIt ’s graphical interface. Once the user
has obtained a relational rendering of a theorem, (s)he can proceed to try build-
ing a proof-tree of the relational translation. Fig. 6 shows a simple example of
a derivation tree. The user interacts with the system by simply choosing a node
of the tree in order to apply one of the rewriting rules. The system takes care of
verifying applicability of rules, performing the extension of the tree, and check-
ing whether, as a consequence of rule applications, any branch becomes closed.
Some form of (semi-)automated reasoning capabilities are also implemented: it
is possible to ask the system to try, autonomously, to close all branches of a
(sub-)tree.

Another viable approach to relational reasoning consists in using transIt as a
front-end for a first-order theorem-prover: Otter, in our choice. This is achieved
by extending the translation process: a new set of rewriting rules is used to
implement automated generation of an input file to be fed into Otter. Once the
input file is available, Otter can be used as described in [11, 12] to search for a
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proof of the theorem within the relational framework. Obviously, the very same
approach can be used with other theorem provers.

Currently, transIt can be downloaded from the site http://www.di.univaq.
it/TARSKI/transIt/ and easily installed. It is developed under Linux, but we
also provide a porting for Windows XP.

5 Improving the System

The modular approach we adopted both in developing the translator and in
extending the collection of source and target languages, plainly permits steady
improvements to and extensions of the system. At the moment, most of the
phases of the translation process are carried out by means of syntactical rewrit-
ings. Nevertheless, the translation process could benefit from improvements to
its ability to exploit semantic properties of connectives and constructs. As a
matter of fact, in the current implementation this ability lies exclusively in the
abstract propositional evaluation phase (see page 97).

Another amelioration, in the same frame of mind, is the exploitation, in the
derivation process (both for the assisted and for the autonomous functioning
mode), of specific rewriting rules depending on the particular logic of the theorem
being proved.

As mentioned, the system can deal with different target languages (see page 92).
As a further example, we mention here a particularly interesting future develop-
ment: extend the collection of target languages, so as to permit the translation
into languages of ternary relations needed for handling relevant logics and other
substructural logics whose translations are presented in [26].

Further challenging themes for long-term activities regard exploring the pos-
sibilities offered by

• the integration with/within existing tools for translation and deduction. In
particular, a fruitful synergy could develop from the integration/interaction
with the “Anamorpho system”, an environment for describing relational
specifications which is based on definitional extension mechanisms (see [3]).

• the integration with visual-oriented tools for manipulation of relational for-
mulas (based, for instance, on graphical representation of relational expres-
sions and on graph-rewriting techniques [10]).
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Abstract. This work concentrates on the automated deduction of logics
of order-of-magnitude reasoning. Specifically, a translation of the mul-
timodal logic of qualitative order-of-magnitude reasoning into relational
logics is provided; then, a sound and complete Rasiowa-Sikorski proof
system is presented for the relational version of the language.

1 Introduction

Qualitative order-of-magnitude reasoning has received considerable attention in
the recent years; however, the analogous development of a logical approach has
received little attention. Various multimodal approaches have been promulgated,
for example, for qualitative spatial and temporal reasoning but, as far as we
know, the only logic approaches to order-of-magnitude reasoning (OMR) are
[1, 2, 3].

These first approaches to the logics of qualitative order-of-magnitude reason-
ing are based on a system with two landmarks, which is both simple enough
to keep under control the complexity of the system and rich enough so as to
permit the representation of a subset of the usual language of qualitative order-
of-magnitude reasoning. The intuitive representation of our underlying frames is
given below, in which two landmarks −α and +α are considered

In the picture, −α and +α represent, respectively, the greatest negative ob-
servable and the least positive observable, partitioning the real line in classes of
positive observable Obs+, negative observable Obs− and non-observable (also
called infinitesimal) numbers Inf. This choice makes sense, in particular, when
considering physical metric spaces in which we always have a smallest unit which
can be measured; however, it is not possible to identify a least or greatest non-
observable number.
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In order to introduce a few intuitive explanations about the practical use of
the OMR-relations of comparability and negligibility, firstly, assume one aims
at specifying the behaviour of a device to automatically control the speed of a
car; assume the system has, ideally, to maintain the speed close to some speed
limit v. For practical purposes, any value in an interval [v − ε, v + ε] for small ε
is admissible. The extreme points of this interval can then be considered as the
milestones α− and α+; on the other hand, the sets Obs−, Inf, and Obs+ can
be interpreted as Slow, Ok and High speed.

Regarding negligibility, the representation capabilities of a pocket calculator
provides an illustrative example of this type of relation. In such a device, it is
not possible to represent any number whose absolute value is less than 10−99.
Therefore, it makes sense to consider −α = −10−99 and +α = +10−99 since
any number between −10−99 and 10−99 cannot be observed/represented.1 On
the other hand, a number x can be said to be negligible with respect to y pro-
vided that the difference y−x cannot be distinguished from y. Numerically, and
assuming an 8+2 (digits and mantissa) display, this amounts to state that x is
negligible wrt y iff y − x > 108. Furthermore, this example above suggests a
real-life model in which, for instance -1000 is negligible with respect to -1. Sim-
ply, interpret the numbers above as exponents, since 10−1000 can be considered
negligible with respect to 10−1.

In this paper the paradigm ‘formulas are relations’ formulated in [11] is applied
to the modal logic for order-of-magnitude reasoning of [3]. A relational formali-
sation of logics is based on an observation that a standard relational structure (a
Boolean algebra with a monoid) constitutes a common core of a great variety of
nonclassical logics. Exhibiting this common core on all the three levels of syntax,
semantics and deduction, enables us to create a general framework for represen-
tation, investigation and implementation of nonclassical logics. Relational formal-
ization of nonclassical logics is performed on the following methodological levels:

Syntax: With the formal language of a logic L there is associated a language
of relational terms.

Semantics and model theory: With logic L there is associated a class of re-
lational models for L and in these models the formulas from L are interpreted
as relations.

Proof theory: With logic L there is associated a relational logic Re(L) for L
such that its proof system provides a deduction method for L.

In relational representation of logical systems we articulate explicitly infor-
mation about both their syntax and semantics. Generally speaking, formulas
are represented as terms over some appropriate algebras of relations. Each of
the propositional connectives becomes a relational operation and in this way
an original syntactic form of formulas is coded. Semantic information about a
formula which normally is included in a satisfiability condition for that formula,
consists of the two basic parts: first, we say which states satisfy the subformulas

1 Of course, there are much more numbers which cannot be represented, but this is
irrelevant for this example.
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of the given formula, and second, how those states are related to each other via
an accessibility relation. Those two ingredients of semantic information are of
course interrelated and unseparable. In relational representation of formulas the
terms representing accessibility relations are included explicitly in the respective
relational terms corresponding to the formulas. They become the arguments of
the relational operations in a term in the same way as the other of its subterms,
obtained from subformulas of the given formula. In this way semantic informa-
tion is provided explicitly on the same level as syntactic information. Thus the
relational term corresponding to a formula encodes both syntactic and semantic
information about the formula.

In the paper we develop a relational logic Re(OM) based on algebras of rela-
tions generated by some relations specific to the frames of OM -logics. We define
a translantion from the language of OM -logics to the language of Re(OM). Next,
we construct a deduction system for Re(OM) in the Rasiowa-Sikorski style [14].
The Rasiowa-Sikorski systems are dual to the Tableaux systems, as shown in [15,8].
The system includes the rules of the classical relational logics and the rules specific
to the relations from the frames of OM -logics. We present the basic steps of the
proof of completeness theorem for this system The modular structure of the sys-
tem enables us to use the existing implementation of relational proof systems [5]
and to include to it the specific rules of Re(OM) logic.

The structure of the paper is the following: The syntax and semantics of
the language OM is given in Section 2, then a relational language for order-
of-magnitude reasoning, Re(OM), is presented in Section 3. Next, in Section 4
a translation function is given, which transforms a multimodal formula in OM
into a relational formula in Re(OM). Then, Section 5 introduces the relational
proof system for the logic Re(OM), together with proofs of some axioms of the
proof system MQN of [3]. The next two sections are devoted to the soundness
and completeness of the relational proof system. Finally, some conclusions are
presented, together with prospects of future work.

2 The Modal Language OM

In our syntax we consider three types of modal connectives, each one associated
to certain order relation:

−→� and
←−� to deal with an ordering <, the connectives−→� and

←−� to deal with a second ordering � and the connectives
−→�n and

←−�n to deal
with a third order relation ≺ (the specific conditions required on comparability
and negligibility relations, � and ≺, will be stated later).

The intuitive meanings of each modal connective is as follows:
−→�A means A is true for all numbers which are greater than the current one.−→�A is read A is true for all numbers which are greater than and comparable

with the current one.2←−�A means A is true for all numbers which are less than the current one.
2 Note that the use of “comparable” has to be understood as the comparability relation

in OMR, hence it is related to the ordering � introduced in Definition 1.
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←−�A means A is true for all numbers which are less than and comparable with
the current one.−→�n A means A is true for all numbers with respect to which the current one is
negligible.←−�n A means A is true for all numbers which are negligible with respect to the
current one.

The intuitive description of the meaning of the negligibility-related modalities
deserves some explanatory comments. Depending on the particular context in
which we are using the concept of negligibility, several possible definitions can
arise. We have chosen to use an intrinsically directional notion of negligibility,
in that negligible numbers are always to the left. There are other approaches in
which the negligibility relation is bi-directional, so a point x can be negligible
wrt points smaller than x and also wrt points greater than x, for instance, in
[4,17] it is the absolute value of an element that is considered before considering
the negligibility relation, whereas in [1] yet another definition of bidirectional
neglibility is presented.

The syntax of our initial language for qualitative reasoning with comparability
and negligibility is introduced below:

The alphabet of the language OM is defined by using:

– A stock of atoms or propositional variables, V .
– The classical connectives ¬,∧,∨ and → and the constants � and ⊥.
– The unary modal connectives

−→� ,
←−� ,

−→� ,
←−� ,

−→�n and
←−�n .

– The constants α+ and α−.
– The auxiliary symbols: (, ).

Formulas are generated from V ∪ {α+, α−,�,⊥} by the construction rules of
classical propositional logic adding the following rule: If A is a formula, then so
are

−→�A,
←−�A,

−→�A,
←−�A,

−→�n A and
←−�n A.

The mirror image of A is the result of replacing in A each occurrence of
−→� ,←−� ,

−→� ,
←−� ,

−→�n ,
←−�n , α+, α− by

←−� ,
−→� ,

←−� ,
−→� ,

←−�n ,
−→�n , α−, α+, respectively. We

shall use the symbols
−→♦ ,

←−♦ ,
−→� ,

←−� ,
−→♦n and

←−♦n as abbreviations respectively of
¬−→�¬, ¬←−�¬, ¬−→�¬, ¬←−�¬, ¬−→�n ¬ and ¬←−�n ¬.

Observe that due to the presence of constants α− and α+ in the language,
the logic OM belongs to the family of logics with nominals. The use of nominals
in modal logic originated in the papers [12,13,7]. Since then the use of nominals
in modal languages is a usual practice, which increases their expressibility as it
was already shown in [13]. More recently, hybrid logics make also an extensive
use of nominals.

The intended meaning of our language is based on a multi-modal approach,
therefore the semantics is given by using the concept of frame. Intuitively, the
carrier of our frames can be seen as the real line, although in our approach we
will only require it to be a linearly ordered set.

Definition 1. A multimodal qualitative frame for OM (or, simply, a frame)
is a tuple Σ = (S,+α,−α,<,≺), where
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1. (S, <) is a linearly ordered set.
2. +α and −α are designated points in S (called frame constants) which allow

to form the sets Obs+, Inf, and Obs− that are defined as follows:

Obs− = {x ∈ S | x ≤ −α};
Inf = {x ∈ S | −α < x < +α};

Obs+ = {x ∈ S | +α ≤ x}
3. The negligibility relation ≺ is a restriction of <, i.e. ≺⊆<, and satisfies:

(i) If x ≺ y < z, then x ≺ z
(ii) If x < y ≺ z, then x ≺ z
(iii) If x ≺ y, then either x /∈ Inf or y /∈ Inf

The comparability relation x � y is used an abbreviation of “x < y and x, y ∈ Eq,
where Eq ∈ {Inf,Obs+,Obs−}”.
It is worth noticing that as a consequence of items (i) and (ii) we have the
transitivity of ≺; on the other hand, item (iii) states that two non-observable
elements cannot be compared by the negligibility relation.

Definition 2. Let Σ be a multimodal qualitative frame, a multimodal qualita-
tive model on Σ is an ordered pair M = (Σ, h), where h is a meaning function
(or, interpretation) h : V −→ 2S.

Any interpretation can be uniquely extended to the set of all formulas in OM
(also denoted by h) by means of the usual conditions for the classical boolean
connectives and the constants � and ⊥, and the following conditions for the
modal operators and frame constants:

h(
−→�A) = {x ∈ S | y ∈ h(A) for all y such that x < y}

h(
−→�A) = {x ∈ S | y ∈ h(A) for all y such that x � y}

h(
−→�n A) = {x ∈ S | y ∈ h(A) for all y such that x ≺ y}

h(
←−�A) = {x ∈ S | y ∈ h(A) for all y such that y < x}

h(
←−�A) = {x ∈ S | y ∈ h(A) for all y such that y � x}

h(
←−�n A) = {x ∈ S | y ∈ h(A) for all y such that y ≺ x}
h(α+) = {+α}
h(α−) = {−α}

The concepts of truth and validity are defined in a straightforward manner.

3 The Relational Language Re(OM)

Syntax of Re(OM)
The alphabet of the language Re(OM) consists of the disjoint sets listed below:

– A (nonempty) set OV = {x, y, z, . . .} of object variables.
– A set OC = {α−, α+} of object constants.
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– A (nonempty) set RV = {P,Q,R, . . . } of binary relation variables.
– A set RC = {1, 1′,ℵ−,ℵ+, <,�,≺} of relation constants.
– A set OP = {−,∪,∩, ; ,−1} of relational operation symbols.

The relational constants 1 and 1′ are intended to represent the universal rela-
tion and the identity relation, respectively. We use here the traditional notation
for these constants originated in [16], and commonly used in the field of relation
algebras.

Definition 3

– The set of relation terms RT is the smallest set of expressions that includes
all the relational variables and relational constants and is closed with respect
to the operation symbols from OP.

– The set FR of formulas, consists of expressions of the form xRy where x, y
denote individual (or object) variables or constants and R is a relational
term built from the relational variables and the relational operators.

The defined relations >,≤ and ≥ will be used hereafter in order to simplify some
relational formulas. The definition of these relations is given as follows:

> := <−1 ≤ := < ∪ 1′ ≥ := <−1 ∪ 1′

Semantics of Re(OM)
A model for Re(OM) is a pair M = (W,m) where W = W ′ ∪ {−α,+α} for a
nonempty set W ′, and m is a meaning function such that:

1. Assigns elements of W to object constants as follows:
(a) m(α−) = −α
(b) m(α+) = +α

2. Assigns binary relations on W to relation constants as follows:
For relation constants we should have:
(a) m(1) = W ×W
(b) m(1′) = {(w,w) | w ∈ W}
(c) m(ℵ−) = {−α} ×W
(d) m(ℵ+) = {+α} ×W
(e) m(<) is a strict linear relation in W satisfying that (−α,+α) ∈ m(<).

Notice that the linearity of m(<) allows to divide W into the classes
Obs−, Obs+ and Inf, defined as in the previous section.

(f) m(�) = m(<) ∩ ((Obs− ×Obs−) ∪ (Inf× Inf) ∪ (Obs+ ×Obs+)
)

Notice that, as a consequence of this requirement, m(�) turns out to
inherit irreflexivity, left and right linearity and transitivity from m(<).

(g) m(≺) is a restriction of m(<), i.e. m(≺) ⊆ m(<), which satisfies the
following frame conditions:

∀x,∀y if (x, y) ∈ m(≺) and (y, z) ∈ m(<), then (x, z) ∈ m(≺) (fc-i)
∀x,∀y if (x, y) ∈ m(<) and (y, z) ∈ m(≺), then (x, z) ∈ m(≺) (fc-ii)
∀x,∀y if x ∈ Inf and (x, y) ∈ m(≺), then (+α, y) ∈ m(< ∪ 1′) (fc-iii)
∀x,∀y if x ∈ Inf and (y, x) ∈ m(≺), then (y,−α) ∈ m(< ∪ 1′) (fc-iv)
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Notice that these conditions mimic the requirements (3.i)–(3.iii) in the
definition of frame for OM . The required conditions ensure that m(≺)
is irreflexive and transitive.

3. Assigns binary relations on W to relation variables.
4. Assigns operations on binary relations to the relational operation symbols

in OP.
5. Extends homomorphically to the set of terms in the usual manner:

(a) m(R ∪ S) = m(R) ∪m(S) (union of relations)
(b) m(R ∩ S) = m(R) ∩m(S) (intersection of relations)
(c) m(R;S) = m(R);m(S) (composition of relations)
(d) m(−R) = −m(R) (opposite relation)
(e) m(R−1) = m(R)−1 (inverse relation)

We list below a set of frame conditions which are entailed by the requirements
on the function m and will be used later:

∀x∀y, (x, y) ∈ m(ℵ−) if and only if (x,−α) ∈ m(1′) (fc-1)

∀x∀y, (x, y) ∈ m(ℵ+) if and only if (x,+α) ∈ m(1′) (fc-2)
∀x, if (x,−α) ∈ m(1′) then (x,+α) ∈ m(<) (fc-3)
∀x,∀y if (x,−α) ∈ m(1′) then (x, y) /∈ m(�) (fc-4)
∀x,∀y if (y,+α) ∈ m(1′) then (x, y) /∈ m(�) (fc-5)

∀x∀y, if x ∈ Inf and (x, y) ∈ m(�), then (−α, y) ∈ m(<) (fc-6)
∀x∀y, if x ∈ Inf and (x, y) ∈ m(�), then (y,+α) ∈ m(<) (fc-7)

∀x∀y, if (x,−α) ∈ m(<) and (x, y) ∈ m(�), then (y,−α) ∈ m(< ∪ 1′) (fc-8)
∀x∀y, if (x, y) ∈ m(<) and (y,−α) ∈ m(< ∪ 1′), then (x, y) ∈ m(�) (fc-9)
∀x∀y, if (x, y) ∈ m(<) and (+α, x) ∈ m(< ∪ 1′), then (x, y) ∈ m(�) (fc-10)
∀x∀y, if (x, y) ∈ m(<) and x ∈ Inf and y ∈ Inf, then (x, y) ∈ m(�) (fc-11)

∀x,∀y if (x, y) ∈ m(�), then (x, y) ∈ m(<) (fc-12)

Furthermore, it can be proved that the fulfillment of all the frame conditions,
plus the requirements of < being strict and linear entail the properties from 2.c
to 2.f in the definition of model. This fact will be used later during the proof of
completeness.

Finally, the notions of satisfiability and validity in the relational logic are
introduced as follows:

Definition 4

– A valuation in a model M = (W,m) is a function v : OV∪OC →W such that
v(c) = m(c) for all constant symbols.3 We say that v satisfies a relational
formula xRy if (v(x), v(y)) ∈ m(R).

– A relational formula xRy is true in M if every valuation in M satisfies
xRy. Moreover, if xRy is true in every model, we say that xRy is valid in
the relational logic.

3 Notice the use of OS to denote the union of OV and OC.
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4 Translation from OM to Re(OM)

A translation function t from the language of OM to the language of Re(OM)
is introduced in this section.

The translation function t : Π → RV from the set of propositional variables to
the set of relational variables is defined for propositional connectives as follows:

t(p) := P ; 1 t(¬A) := −t(A)
t(A ∨B) := t(A) ∪ t(B) t(A ∧B) := t(A) ∩ t(B)
t(A→ B) := −t(A) ∪ t(B)

For the modal connectives, the translation is based on the general schema,
which translates a modality based on a relation R as follows:

t(〈R〉A) := R; t(A) t([R]A) := −(R;−t(A))

Specifically, in our case we have the following for the future connectives (for
the past connectives the translation is similar):

– t(
−→♦A) :=<; t(A)

– t(
−→�A) := −(<;−t(A))

– t(
−→�A) :=�; t(A)

– t(
−→�A) := −(�;−t(A))

– t(
−→♦n A) :=≺; t(A)

– t(
−→�n A) := −(≺;−t(A))

Finally, the α-constants are translated, as expected, into the ℵ-relational con-
stants:

t(α−) = ℵ− t(α+) = ℵ+

Proposition 1. In relational logic Re(OM) we can verify both validity and en-
tailment of logic OM , namely

1. A formula A of logic OM is valid iff a formula x t(A) y of the corresponding
logic Re(OM) is valid, where x, y are any object variables such that x �= y,

2. A1, . . . , An |= A in OM iff x
(
1;−(t(A1) ∩ · · · ∩ t(An)); 1 ∪ t(A)

)
y is valid

in Re(OM).

Notice that this proposition states that a deduction system of the relational logic
can serve as a theorem prover for the logic OM .

5 Relational Proof Systems for Modal Re(OM)

Relational proofs have the form of finitely branching trees whose nodes are finite
sets of formulas. Given a relational formula xAy, where A may be a compound
relational expression, we successively apply decomposition or specific rules. In
this way we form a tree whose root consists of xAy and each node (except the
root) is obtained by an application of a rule to its predecessor node. We stop
applying rules to formulas in a node after obtaining an axiomatic set, or when
none of the rules is applicable to the formulas in this node. Such a tree is referred
to as a proof tree for the formula xAy. A branch of a proof tree is said to be
closed whenever it contains a node with an axiomatic set of formulas. A tree is
closed iff all of its branches are closed.
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5.1 Rules for the Calculus of Binary Relations with Equality

In the present section we, first, recall the deduction rules for the classical rela-
tional logic [10], that is the logic whose formulas xAy are built from the terms
A generated by relation variables and constants 1 and 1′ with the standard rela-
tional operations of union, intersection, complement, composition and converse.
Second, we define the specific rules that characterise the specific relations of
Re(OM). The rules apply to finite sets of relational formulas. As usual, we omit
the set brackets when presenting the rules. The rules that refer to relational
operations are decomposition rules. They enable us to decompose a formula in a
set into some simpler formulas. As a result of decomposition we usually obtain
finitely many new sets of formulas. The rules that encode properties of relational
or object constants are referred to as specific rules. They enable us to modify a
set to which they are applied, they have a status of structural rules. The role of
axioms is played by what is called axiomatic sets.

A rule is said to be correct in Re(OM) whenever the following holds: the
upper set of formulas in the rule is valid iff all the lower sets are valid, where the
validity of a finite set of formulas is understood as a validity of the (metalevel)
disjunction of its elements. It follows that the branching in a rule is interpreted
as conjunction.

As usual, we present the rules in a form of schemes. A scheme of the form
A/B, where A and B are finite sets of formulas represents a family of rules
Γ ∪ A/Γ ∪ B for any finite set Γ of formulas, and similarly for the branching
rules.

In order to introduce here the standard rules for the calculus of binary re-
lations, note that the comma is interpreted disjunctively, whereas the vertical
bar is interpreted conjunctively and that a variable is declared new in a rule
whenever we require that it does not appear in any formula above the line in
the rule.

Firstly, we consider the rules for ∪:

x(R ∪ S)y
xRy, xSy

(∪)
x−(R ∪ S)y
x−Ry | x−Sy (−∪)

Rules for ∩
x(R ∩ S)y
xRy | xSy (∩)

x−(R ∩ S)y
x−Ry, x−Sy (−∩)

Rules for double complement and inverse relation

x−−Ry
xRy

(−−)
xR−1y

yRx
(−1)

x−R−1y

y−Rx (−−1)

Now, we state the rules for the composition

x(R;S)y
xRz, x(R;S)y | zSy, x(R;S)y

z any variable (; )
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x−(R;S)y
x−Rz, z−Sy z new variable (−; )

Finally, the rules for equality are introduced, where z is any variable

xRy

xRz, xRy | y1′z, xRy (1′-1)
xRy

x1′z, xRy | zRy, xRy (1′-2)

5.2 Specific Rules for Re(OM)

Here we introduce the rules for handling the specific object constants and relation
symbols <,� and ≺ of the language Re(OM).

The rules below interpret adequately the behaviour of the relation constants
ℵ− and ℵ+:

xℵ−y
x1′α−, xℵ−y

(c1a)
x−ℵ−y

x−1′α−, x−ℵ−y
(c1b)

xℵ+y

x1′α+, xℵ+y
(c2a)

x−ℵ+y

x−1′α+, x−ℵ+y
(c2b)

The following rule expresses that α− precedes α+

x < α+

x1′α−, x < α+ (c3)

The remaining rules are stated below. The numbering of the rules reflects
their relationship with the corresponding frame conditions:

x−�y
x1′α−, x−�y

(c4)
x−�y

y1′α+, x−�y
(c5)

x ≤ α−, α+ ≤ x, x− �y
x ≤ α−, α+ ≤ x, x− �y, y ≤ α− (c6)

x ≤ α−, α+ ≤ x, x− �y
x ≤ α−, α+ ≤ x, x− �y, α+ ≤ y

(c7)

α− ≤ x, x− � y

α− ≤ x, x− � y, α− < y
(c8)

x− < y, α− < y

x− < y, α− < y, x− �y
(c9)

x− < y, x < α+

x− < y, x < α+, x− �y
(c10)

x ≤ α−, α+ ≤ x, y ≤ α−, α+ ≤ y, x � y

x ≤ α−, α+ ≤ x, y ≤ α−, α+ ≤ y, x � y, x < y
(c11) x−�y

x−�y, x−<y (c12)

We include below the rules for irreflexivity and linearity properties of the
relation constant <.
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x < x (Iref) y−<x | x−<y | x−1′y
(Lin)

The transitivity for the three relation constants is stated by the rule below,
where R ∈ {<,�,≺}

xRy

xRy, xRz, | xRy, zRy z any var (Tran)

The following cut-like rule will be needed later in the proof of completeness

x � y | x−� y
(cut- �)

Finally, the following rules for ≺ reflect the frame conditions for negligibility:

x < y
x ≺ y, x < y (n-0)

x ≺ z
x ≺ y, x ≺ z | y < z, x ≺ z

y any var (n-i)

x ≺ z
x < y, x ≺ z | y ≺ z, x ≺ z

y any var (n-ii)

α+ ≤ y

α− < x, α+ ≤ y | x < α+, α+ ≤ y | x ≺ y, α+ ≤ y
(n-iii)

y ≤ α−

α− < x, y ≤ α− | x < α+, y ≤ α− | y ≺ x, y ≤ α− (n-iv)

Axiomatic Sets

An axiomatic set is any finite set of formulas which includes a subset of either
of the following forms for a relational term R and x, y are any object variables.

We have to introduce schemas of axiomatic sets for the universal relation, the
identity relation and linearity, together with others which allow us to adequately
interpret the constant relation symbols ℵ, together with the symbols ±α.

The axiomatic sets of Re(OM) state valid formulas of the system, the follow-
ing postulate the behaviour of the universal relation 1 and the equality relation
1′, the tertium non datur, and the conditions related to the constant symbols
α− and α+ are expressed by

{x1y} {x1′x} {x−Ry, xRy} {α− < α+}

where x, y ∈ OS and R ∈ RT.
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5.3 Proving Some Axioms of MQN

In this section we show the relational proof system at work, and prove some
of the axioms of the system MQN of qualitative order-of-magnitude reasoning
presented in [3].

Example 1. Axiom (c4): α− → −→�A
The translated version of the axiom in the relational language is

−ℵ− ∪−(�;−(A; 1))

We consider x(−ℵ−∪−(�;−(A; 1)))y, apply the rule (∪), and then, the following
tree is generated:

x−ℵ−y , x− (�;−(A; 1))y

x−ℵ−y, x−1′α−, x− (�;−(A; 1))y

x−ℵ−y, x−1′α−, x− � z, z −−(A; 1)y

x−ℵ−y, x−1′α−, x− � z, z(A; 1)y

Γ, zAw | Γ, w1y
(; ) any w

(−−)

(−; ) z new

(c1b)

where Γ = x−ℵ−y, x−1′α−, x− � z.
The right branch closes because of w1y, whereas rule (c4) applies to the left

branch against x−1′α−, obtaining

x−1′α− , x1′α− , x−� z, zAw

which closes.

Example 2. Axiom (c1):
←−♦α− ∨ α− ∨ −→♦α−

x(>;ℵ−)y , xℵ−y, x(<;ℵ−)y

x < α−, xℵ−y, x(>;ℵ−)y, x(<;ℵ−)y | α−ℵ−y, xℵ−y, x(>;ℵ−)y, x(<;ℵ−)y
(; )

where variable z has been instantiated to α− in the application of the rule.
Note that the right branch closes, since it contains an axiomatic set for ℵ−. On

the other hand, the left branch continues as follows, where we use Γ to denote
the pair of formulas x(>;ℵ−)y, x(<;ℵ−)y

x < α−, xℵ−y, x(>;ℵ−)y, x(<;ℵ−)y

x < α−, xℵ−y , x > α−, Γ | x < α−, xℵ−y, α−ℵ−y , Γ
(; )[z/α−]

the left branch closes after applying (c1a) and linearity, whereas the right branch
closes because of the axiomatic set for ℵ.
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6 Soundness of the Relational Proof System

Recall that a rule is said to be correct if the validity of the upper set entails the
validity of the lower set and vice versa.

The frame conditions stated in Section 3 are used here in order to prove sound-
ness of the relational proof system: we will show the equivalence between the
correctness of the specific rules of Re(OM) and the validity of the corresponding
frame conditions. As a result, since all the frame conditions hold in every model
of Re(OM), we get that the specific rules of Re(OM) are all correct.

Proposition 2

1. For k ∈ {1, 2}, rules (ck a) and (ck b) are correct for a deduction system of
Re(OM) iff in every model of Re(OM) condition (fc-k) is satisfied.

2. For k ∈ {3, . . . , 12}, rule (c k) is correct for a deduction system of Re(OM)
iff in every model of Re(OM) condition (fc-k) is satisfied.

3. For j ∈ {i, ii, iii, iv}, rule (n j) is correct for a deduction system of Re(OM)
iff in every model of Re(OM) condition (fc-j) is satisfied.

Proof. 1. Let us prove the case of (fc-2), since the other is similar:
Assume that the rules are correct and, and let us prove the two implications

which form the frame condition. We proceed by contradiction and consider that
the frame condition

∀x∀y, (x, y) ∈ m(ℵ+) if and only if (x,+α) ∈ m(1′) (fc-2)

does not hold.
Reasoning by cases, on the one hand, suppose that for some objects a, b we

have (a,+α) ∈ m(1′) and (a, b) /∈ m(ℵ+). Consider the following instance of rule
(c2a), in which we add the context Γ = x−1′α+ to both the upper and lower
sets:

xℵ+y, x−1′α+

xℵ+y, x1′α+, x−1′α+

The lower set is valid, so since the rule is correct, the upper set must be valid,
that is, the formula ∀x∀y(xℵ+y ∨ x−1′α+) is valid in first order logic. But the
valuation v such that v(x) = a and v(y) = b is a counterexample.

On the other hand, suppose conversely that for some objects a, b we have
(a, b) ∈ m(ℵ+) and (a,+α) /∈ m(1′). Consider the following instance of rule
(c2b), in which we add the context Γ = x1′α+ to both the upper and lower sets:

x1′α+, x−ℵ+y

x1′α+, x−1′α+, x−ℵ+y

The lower set is valid, so since the rule is correct, the upper set must be valid,
that is, the formula ∀x∀y(x1′α+ ∨ x−ℵ+y) is valid in first order logic. But the
valuation v such that v(x) = a and v(y) = b is a counterexample.

Reciprocally, assume the validity of the frame condition (fc-1+) and let us
prove that both rules (c1+a) and (c1+b) are correct. Clearly, validity of the
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upper set of the rules implies validity of the lower set. Now, assuming validity of
the lower set, validity of the upper set follows easily from the frame condition.

2. For k = 3.
Assume that the rule is correct and suppose that (fc-3) does not hold, i.e.,

for some object a we have (a,−α) ∈ 1′ and (a,+α) /∈<. Consider the following
instance of rule (c3)

x < α+, x−1′α−

x1′α−, x < α+, x−1′α−

Clearly, the lower set is valid, so since the rule is correct, the upper set must be
valid. This means that the formula ∀x(x < α+ ∨ x−1′α−) is valid in first order
logic. But the valuation v such that v(x) = a does not satisfy that formula, a
contradiction.

Reciprocally, assume (fc-3). Validity of the upper set of the rule implies va-
lidity of the lower set. Assuming validity of the lower set, validity of the upper
set follows from the frame condition.

The proof for the rest of the cases is similar, we just introduce the context to
be used when considering the instance for the corresponding rule.

For k = 4, assume Γ = x(−1′)α−.
For k = 5, assume Γ = y(−1′)α+.
For k = 6, assume Γ = α− < y.
For k = 7, assume Γ = y < α+.
For k = 8, assume Γ = y ≤ α−.
For k = 9, 10, 11, assume Γ = x � y.
For k = 12, assume Γ = x < y.

3. For j = 0, the context Γ = x−≺ y proves that the rule (n-0) is correct if
and only if ≺ is a restriction of <.

For j = i, take the context x−≺ y, y−< z.
For j = ii, consider Γ = x−< y, y−≺ z
For j = iii, assume Γ = x ≤ α−, α+ < x, x−≺ y.
For j = iv, assume Γ = x ≤ α−, α+ < x, y−≺ x. !"

The rest of the rules are the standard ones for defining properties related of
order relations and the equality. As a result, we have the following proposition:

Proposition 3

1. All the rules of the deduction system for Re(OM) are correct.
2. All the axiomatic sets are valid.

The soundness theorem follows from the correcteness of the rules and from va-
lidity of the axiomatic sets of the system.

Proposition 4 (Soundness). If there is a closed proof tree for a formula xAy,
then xAy is valid.
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7 Completeness of the Relational Proof System

A completeness proof for dual tableaux systems involves a notion of a complete
proof tree. Intuitively, a proof tree is complete if all the rules that can be applied
to its nodes have been applied. A non-closed branch b of a proof tree is complete
whenever it satisfies some appropriate completion conditions. The conditions say
that given a rule applicable to a node of b, there is a node on b which contains
a set of formulas resulting from an application of that rule.

Completion Conditions. A non-closed branch b of a proof tree is said to be
complete whenever for all x, y ∈ OS it satisfies the completion conditions on
Table 1.

It is known that any proof tree can be extended to a complete proof tree. A
complete and non-closed branch is said to be open.

Let b be an open branch of a proof tree. We define a branch structure M b =
(W b,mb):

W b = OV ∪OC

mb(R) = {(x, y) ∈W b ×W b | xRy /∈ b} for R ∈ RV ∪ RC

mb(α+) = α+, mb(α−) = α−

and mb extends homomorphically to all the relation terms.
Let vb : OV → W b � OC be an identity valuation, i.e., vb(x) = x for every

object variable x.
Throughout the rest of the paper we shall often write Rb for mb(R).

Note that, as in the case of first order logic with equality, the relation 1′b can
only be proved to be an equivalence relation.

Lemma 1. The relation 1′b is an equivalence relation.

Proof. 1′b is reflexive: We have x1′x /∈ b (otherwise b would be closed) which
means, by definition of mb, that (x, x) ∈ 1′b.

1′b is symmetric: In order to reach a contradiction, consider x, y ∈ W b such
that (x, y) ∈ 1′b but (y, x) /∈ 1′b, then by definition of mb we have both x1′y /∈ b
and y1′x ∈ b. Now from the completion condition (cpl 1′-1), we have either
y1′y ∈ b or x1′y ∈ b. Since b is open, we obtain x1′y ∈ b, a contradiction.

1′b is transitive: Consider x, y, z ∈ W b such that (x, y) ∈ 1′b, (y, z) ∈ 1′b

and (x, z) /∈ 1′b, which means, by definition of mb, that x1′y /∈ b, y1′z /∈ b and
x1′z ∈ b. Given x1′z ∈ b, from the completion condition (cpl Tran) we have
either x1′y ∈ b or y1′z ∈ b and we reach a contradiction in both cases. !"
In order to obtain the expected behaviour of 1′b as the equality relation, we
consider a quotient model [M b]1′b =

(
[W b]1′b , n

)
where:

– [W b]1′b is the set of equivalence classes of W b wrt 1′b.
– n(R) =

{
([x]1′b , [y]1′b) | (x, y) ∈ Rb

}
for R ∈ RT.

– Valuation u in [M b]1′b is such that u(x) = [x]1′b .
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Table 1. Completion conditions

(cpl ∪) If x(R ∪ S)y ∈ b, then both xRy ∈ b and xSy ∈ b
(cpl −∪) If x − (R ∪ S)y ∈ b, then either x − Ry ∈ b or x − Sy ∈ b
(cpl ∩) If x(R ∩ S)y ∈ b, then either xRy ∈ b or xSy ∈ b
(cpl −∩) If x − (R ∩ S)y ∈ b, then both x − Ry ∈ b and x − Sy ∈ b
(cpl −−) If x −−Ry ∈ b, then xRy ∈ b
(cpl −1) If xR−1y ∈ b, then yRx ∈ b
(cpl −−1) If x − R−1y ∈ b, then y − Rx ∈ b
(cpl ;) If x(R;S)y ∈ b, then for every z ∈ OS, either xRz ∈ b or zSy ∈ b
(cpl −;) If x − (R; S) ∈ b, then for some z ∈ OS both x − Rz ∈ b and z − Sy ∈ b
(cpl 1′-1) If xRy ∈ b, then for every z ∈ OS either xRz ∈ b or y1′z ∈ b
(cpl 1′-2) If xRy ∈ b, then for every z ∈ OS either x1′z ∈ b or zRy ∈ b
(cpl c1a) If xℵ−y ∈ b then x1′α− ∈ b
(cpl c1b) If x−ℵ−y ∈ b, then x−1′α− ∈ b
(cpl c2a) If xℵ+y ∈ b then x1′α+ ∈ b
(cpl c2b) If x−ℵ+y ∈ b, then x−1′α+ ∈ b
(cpl c3) If x < α+ ∈ b then x1′α− ∈ b
(cpl c4) If x −� y ∈ b then x1′α− ∈ b
(cpl c5) If x −� y ∈ b then y1′α+ ∈ b
(cpl c6) If x ≤ α− ∈ b, α+ ≤ x ∈ b and x −� y ∈ b, then y ≤ α− ∈ b
(cpl c7) If x ≤ α− ∈ b, α+ ≤ x ∈ b and x −� y ∈ b, then α+ ≤ y ∈ b
(cpl c8) If α− ≤ x ∈ b and x −� y ∈ b, then α− < y ∈ b
(cpl c9) If both x −< y ∈ b and α− < y ∈ b, then x −� y ∈ b
(cpl c10) If both x −< y ∈ b and x < α+ ∈ b, then x −� y ∈ b
(cpl c11) If x ≤ α− ∈ b, α+ ≤ x ∈ b, y ≤ α− ∈ b, α+ ≤ y ∈ b and x � y ∈ b then

x < y ∈ b,
(cpl c12) If x −� y ∈ b, then x −< y ∈ b
(cpl cut-�) Either x � y ∈ b or x −� y ∈ b
(cpl n-0) If x < y ∈ b, then x ≺ y ∈ b
(cpl n-i) If x ≺ z ∈ b, then for every y ∈ OS either x ≺ y ∈ b or y < z ∈ b
(cpl n-ii) If x ≺ z ∈ b, then for every y ∈ OS either x < y ∈ b or y ≺ z ∈ b
(cpl n-iii) If α+ ≤ y ∈ b, then α− < x ∈ b or x < α+ ∈ b or x ≺ y ∈ b
(cpl n-iv) If y ≤ α− ∈ b, then α− < x ∈ b or x < α+ ∈ b or y ≺ x ∈ b
(cpl Iref) x < x ∈ b
(cpl Tran) If xRy ∈ b, then for every z ∈ OS, either xRz ∈ b or zRy ∈ b (where

R ∈ {<, �, ≺}).
(cpl Lin) Either x −< y ∈ b or x − 1′y ∈ b or y −< x ∈ b

Now, we have the following proposition:

Proposition 5

1. For every formula xAy, [M b]1′b , u |= xAy iff M b, vb |= xAy.
2. [M b]1′b is a model of Re(OM).
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Proof.
1. This condition is easily verified using the corresponding definitions.
2. We only give the proofs for some conditions on the model; the proofs of the
remaining conditions are similar.

(a) n(1) = [W b]1′b × [W b]1′b

Since b is open, x1y /∈ b for all x, y ∈ OS. So, by definition of mb, we get
(x, y) ∈ mb(1); note that this means that M b, vb |= x1y. Now, by the item 1
above, we have [M b]1′b , u |= x1y. Hence ([x]1′b , [y]1′b) ∈ n(1).

(c) n(ℵ−) = {[α−]1′b} × [W b]1′b

We have that

([x]1′b , [y]1′b) ∈ n(ℵ−) if and only if [M b]1′b , u |= xℵ−y
if and only if M b, vb |= xℵ−y (by item 1 above)
if and only if (x, y) ∈ mb(ℵ−)
if and only if xℵ−y /∈ b.

On the other hand, we have

[x]1′b �= [α−]1′b if and only if ([x]1′b , [α−]1′b) /∈ n(1)
if and only if [M b]1′b , u �|= x1′α− (by item 1 above)
if and only if M b, vb �|= x1′α−

if and only if x1′α− ∈ b.

If either n(ℵ−) ⊂ {[α−]1′b} × [W b]1′b or n(ℵ−) ⊃ {[α−]1′b} × [W b]1′bwould
not hold, then completion conditions (cpl c1a) and (cpl c1b) would generate
a contradiction.

In the proofs of the remaining conditions we shall abuse the notation and the
symbols of quotient classes will not be written, and moreover, we shall write Ab

instead of n(A), and W b instead of [W b]1′b .

fc-3 Let us show that ∀x ∈W b, if (x, α−) ∈ 1′b then (x, α+) ∈<b.
Assume that (x, α−) ∈ 1′b and suppose that (x, α+) /∈<b. By definition of
mb we get x1′α− /∈ b and x < α+ ∈ b. From the completion condition (cpl
c2) we get x1′α− ∈ b. Hence (x, α−) /∈ 1′b, a contradiction.

fc-6 ∀x, y ∈ W b if x ∈ Infb and (x, y) ∈ �b, then (α−, y) ∈<b.
Assume that (α−, x) ∈<b, (x, α+) ∈<b (that is, x ∈ Infb) and (x, y) ∈�b.
Suppose also that (α−, y) /∈<b. By definition of mb, we get α− < x /∈ b,
x < α+ /∈ b, x � y /∈ b and α− < y ∈ b. Now we have y ≤ α− /∈ b
(otherwise b should be closed). From the completion condition (clp c6) we
obtain x ≤ α− /∈ b or α+ ≤ x /∈ b or x− � y /∈ b. From the completion
condition (cpl cut-�) we get x � y /∈ b and, by definition of mb, we have
that (x, α−) ∈≤b or (α+, x) ∈≤b or (x, y) /∈�b. In any case we easily reach
a contradiction.
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fc-i ∀x, y ∈ W b, if both (x, y) ∈≺b and (y, z) ∈<b, then (x, z) ∈≺b.
Assume that (x, y) ∈≺b and (y, z) ∈<b. Then x ≺ y /∈ b and y < z /∈ b.
If it were (x, z) /∈≺b also, then x ≺ z ∈ b. By the completion condition
(clp n-i) we obtain either x ≺ y /∈ b or y < z /∈ b. In both cases we get a
contradiction.

fc-iii ∀x, y ∈ W b, if x ∈ Infb and (x, y) ∈≺b, then (α+, y) ∈≤b.
Assume that (α−, x) ∈<b, (x, α+) ∈<b and (x, y) ∈≺b and also (α+, y)
/∈≤b. Then, by definition of mb, we obtain α− < x /∈ b, x < α+ /∈ b, x ≺
y /∈ b and α+ ≤ y ∈ b. Given α+ ≤ y ∈ b, by the completion condition (cpl
n-iii) we have that α− < x ∈ b or x < α+ ∈ b or x ≺ y ∈ b, which lead us
a contradiction in any case. !"

The following proposition has a standard proof by induction on the structure of
term A.

Proposition 6. For every open branch b of a proof tree and for every formula
xAy the following holds: M b, vb |= xAy implies xAy /∈ b.

Now the completeness theorem follows.

Theorem 1 (Completeness). If a formula is valid, then there is a closed proof
tree for it.

Proof. Assume that a formula xAy is valid. Suppose all the proof trees for xAy
are not closed. Take any of those trees. We may assume that it is complete.
Let b be one of its open branches (which exists by the König’s lemma). Since
xAy ∈ b, by the previous proposition we know that vb does not satisfy xAy in
M b. Therefore also the valuation u in the quotient model [M b]1′b does not satisfy
xAy, a contradiction. !"

8 Conclusions

A relational deduction system for the logic OM of order of magnitude reasoning
has been presented. OM is a propositional logic with modal operators determined
by three accessibility relations related to each other and their converses. We
defined a translation from the language of OM to a target relational language
such that both accessibility relations from the frames of OM and the formulas
of OM became the relational terms. All the frame conditions on the accessibility
relations were postulated as the axioms in the target language.

Two groups of deduction rules have been defined: those that characterize the
relational operators of the target language which corresponded to the propo-
sitional operators of OM, and those that reflect the axioms imposed on the
accesibility relations.

We proved completeness of our proof system adjusting a standard method to
the specific features of OM. The key steps of the proof include a development of
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the completion conditions associated with every rule which enable us to express
the notion of a complete proof tree (or equivalently a saturated proof tree) and a
development of a branch structure determined by a branch of a proof tree which
must then be proved to be a model of the target relational language.

An implementation of translation procedures from the languages of nonclas-
sical logics to relational languages is presented in [6]. Another recent implemen-
tation of the core rules of relational proof systems is described in [5]; further
work is planned on relational proof systems for variants of OM logic and on
implementation of the specific rules for OM within the latter system.
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Abstract. Logics of binary relations corresponding, among others, to
the class RRA of representable relation algebras and the class FRA of
full relation algebras are presented together with the proof systems in
the style of dual tableaux. Next, the logics are extended with relational
constants interpreted as point relations. Applications of these logics to
reasoning in non-classical logics are recalled. An example is given of a
dual tableau proof of an equation which is RRA-valid, while not RA-valid.

1 Introduction

We present a survey of relational logics which provide a general framework for
specification and reasoning (verification of validity, model checking and entail-
ment) in non-classical logics. They also provide a common background for a
broad class of relational structures used in computer science. We present the
logics step by step, starting with a logic of binary relations with basic relational
operations of relation algebras (RL-logic), then expanding the language with the
constant 1 (RL(1)-logic), next with the constant 1′ (RL(1′)-logic), then with the
constants 1 and 1′ put together (RL(1, 1′)-logic), and finally adding relational
constants interpreted as point relations (RLax(C)-logic and RLdf (C)-logic). The
logics are based on various classes of models which differ in the interpretation of
relational constants, for example, 1 may be interpreted as a universal relation or
as an equivalence relation, 1′ may be interpreted as an equivalence relation or
an identity. We present completeness theorems with respect to all those classes
of models. We also show which classes of models of RL(1, 1′)-language enable us
to simulate the RRA-validity and FRA-validity. Logic RL(1, 1′) with the class of
models corresponding to full relation algebras plays the role of a generic logic
within which many non-classical logics can be expressed. Its applications to
modal logics originated in [15]. Then, after few more examples of logics treated
in a relational framework (see e.g., [16], [17]), a paradigm ’formulas are relations’
has been formulated in [18]. Since then relational proof systems have been devel-
oped for several theories, see e.g., [3], [4], [8], [11], [12], [13], [19], [20], [21], [10]
and [9]. Any particular relational proof system consists of the deduction system
for RL(1, 1′) augmented with the specific rules which reflect properties of accessi-
bility relations from the models of a non-classical logic in question. An important
feature of RL(1, 1′)-logic is that it is expressive enough for performing the major
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logical tasks, namely verification of validity, entailment, model checking and sat-
isfiability, as it is shown in Sections 10, 11, 12, and 13. A correspondence theory
for relational proof systems is considered in [14]. A general method of defining
deduction rules reflecting various constraints imposed on relations in the models
of RL(1, 1′)-logic is presented in that paper.

Recent implementations of the proof system for RL(1, 1′)-logic are described
in [2] and [6]. The first one is available at http://logic.stfx.ca/reldt. In [5]
an implementation of translation procedures from the languages of non-classical
logics to relational languages is presented. The system can be downloaded from
http://www.di.univaq.it/TARSKI/transIt/. For the algebraic background of the
relational logics see [24], [25] and [23].

2 A General Scheme of Relational Logics

Each relational logic L is determined by its language and its class of models. In
this paper we consider logics of binary relations. There are two kinds of expres-
sions of relational languages: terms and formulas. Terms represent relations and
formulas express the facts that a pair of objects stands in a relation.

The vocabulary VL of L-language consists of the symbols from the following
pairwise disjoint sets:

– a countable infinite set of object variables OVL;
– a countable (possibly empty) set of object constants OCL;
– a countable (possibly empty) set of relational variables RVL;
– a countable (possibly empty) set of relational constants RCL;
– a set of relational operation symbols OPL = {−,∪,∩, ; ,−1 }, where −, ∪, ∩

are Boolean operations, ; is a relative product, and −1 is the operation of
converse;

– a set of parentheses {(, )}.
The set RAL = RVL ∪ RCL is called the set of atomic relational terms. The set
OSL = OVL ∪OCL is called the set of objects symbols. The set RTL of relational
terms is the smallest (wrt inclusion) set of expressions that includes all atomic
relational terms and is closed with respect to all relational operation symbols.
L-formulas are of the form xRy, where x, y ∈ OSL and R ∈ RTL. An L-formula
xRy is said to be atomic whenever R ∈ RAL.

With an L-language a class of L-models is associated. An L-model is a structure
M = (U,m), where U is a non-empty set and m is a meaning function which
assigns:

– elements of U to object constants, that is m(c) ∈ U , for every c ∈ OCL;
– binary relations on U to atomic relational terms, that is m(R) ⊆ U ×U , for

every R ∈ RAL;

and extends to compound relational terms as follows:

– some condition about m(−R) is assumed (see Sections 4 and 5 for the ex-
amples of the definitions of the complement operations);
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– m(R ∪ S) = m(R) ∪m(S);
– m(R ∩ S) = m(R) ∩m(S);
– m(R−1) = (m(R))−1= {(x, y) ∈ U × U : (y, x) ∈ m(R)};
– m(R;S) = m(R);m(S) = {(x, y) ∈ U × U : ∃z((x, z) ∈ m(R) ∧ (z, y) ∈
m(S))} ;

– some additional conditions about m may be assumed (see Sections 5 and 6).

Let M = (U,m) be an L-model. An L-valuation in M is any function
v : OSL → U such that v(c) = m(c), for every c ∈ OCL. Let M be an L-
model, let v be an L-valuation in M and let xRy be an L-formula. Satisfiability
of xRy by v in M is defined as follows:

– If 1 �∈ RCL, then M, v |= xRy iff (v(x), v(y)) ∈ m(R).
– If 1 ∈ RCL, thenM, v |= xRy iff (v(x), v(y)) �∈ m(1) or (v(x), v(y)) ∈ m(1)∩
m(R).

Note that in the latter case, satisfiability is defined in a non-standard way. This is
because we want to relativize satisfiability to the interpretation of the relational
constant 1. In the general case, this interpretation need not be the universal
relation. In the case it is, clearly the two definitions are equivalent.

An L-formula xRy is true in M whenever it is satisfied in M by all L-valuations.
An L-formula xRy is L-valid whenever it is true in all L-models.

Fact 1
Let L and L′ be relational logics such that every L-model is an L′-model. Then
for any relational formula xRy, if xRy is L′-valid, then it is L-valid.

3 A General Scheme of Relational Proof Systems

Relational proof systems in the style of dual tableaux are founded on the Ra-
siowa-Sikorski system for the first order logic [22]. They are powerful tools for
performing the major reasoning tasks: verification of validity, verification of en-
tailment, model checking, and verification of satisfiability. Every relational proof
system is determined by its axiomatic sets of formulas and rules which most of-
ten apply to finite sets of relational formulas. Some relational proof systems with
infinitary rules are known in the literature, but in the present paper we confine
ourselves to finitary rules only. The axiomatic sets take the place of axioms. The
rules are intended to reflect properties of relational operations and constants.
There are two groups of rules: decomposition rules and specific rules. Given a
formula, the decomposition rules of the system enable us to transform it into
simpler formulas, or the specific rules enable us to replace a formula by some
other formulas. The rules have the following general form:

(∗) Φ

Φ1 | . . . |Φn
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where Φ1, . . . , Φn are finite non-empty sets of formulas, n ≥ 1, and Φ is a finite
(possibly empty) set of formulas. A rule of the form (∗) is said to be applicable to
a set X of formulas whenever Φ ⊆ X . As a result of an application of a rule of the
form (∗) to a set X , we obtain the sets (X \Φ)∪Φi, i = 1, . . . , n. A set to which
a rule has been applied is called the premise of the rule, and the sets obtained
by an application of the rule are called its conclusions. As usual, any concrete
rule will always be presented in a short form, that is we will indicate only the
formulas which are essential for a transformation to be performed by the rule
and also we will omit set brackets. Given a formula, successive applications of
the rules result in a tree whose nodes consist of finite sets of formulas. Each node
includes all the formulas of its predecessor node, possibly except for those which
have been transformed. A node of the tree does not have successors whenever
its set of formulas includes an axiomatic subset or none of the rules is applicable
to it. We say that a variable in a rule is new whenever it appears in a conclusion
of the rule and does not appear in its premise.

Let L be a relational logic. A relational proof system for L (L-system for short)
contains a set DRL of L-decomposition rules and a set SRL of L-specific rules,
where in each particular logic L the terms and the object symbols range over the
corresponding sets of L.

The set of decomposition rules DRL includes the set DR0 of rules of the
following forms:

Let x, y,∈ OSL and R,S ∈ RTL.

(∪)
x(R ∪ S)y
xRy,xSy

(−∪)
x−(R ∪ S)y

x−Ry | x−Sy

(∩)
x(R ∩ S)y
xRy | xSy

(−∩)
x−(R ∩ S)y
x−Ry,x−Sy

(−−)
x−−Ry

xRy

(−1)
xR−1y

yRx
(−−1)

x−R−1y

y−Rx

(; )
x(R;S)y

xRz, x(R;S)y | zSy, x(R;S)y
z ∈ OSL

(−; )
x−(R;S)y

x−Rz, z−Sy
z ∈ OVL and z is new

The set of specific rules includes the rules that reflect the properties of con-
stants assumed in an L-language in question.

In all the systems considered in this paper the sets containing a subset
{xRy, x−Ry}, for x, y ∈ OSL, R ∈ RTL, are assumed to be L-axiomatic sets.
A finite set of formulas {ϕ1, . . . , ϕn} is said to be an L-set whenever for every
L-model M and for every L-valuation v in M there exists i ∈ {1, . . . , n} such
that ϕi is satisfied by v in M. Let Φ be a non-empty set of L-formulas. A

rule
Φ

Φ1| . . . |Φn
is L-correct whenever it holds: Φ is an L-set if and only if Φi is
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an L-set, for every i ∈ {1, . . . , n}. In the case when Φ is empty, L-correctness
can be expressed as follows: a rule

Φ1| . . . |Φn
is L-correct whenever there ex-

ists i ∈ {1, . . . , n} such that Φi is not an L-set. It follows that the rules are
semantically invertible. It is a characteristic feature of all Rasiowa-Sikorski style
deduction systems (see [22] and [9]). A transfer of validity from the bottom sets
of a rule to the upper set is needed for soundness of the system. The other di-
rection is used in a proof of completeness. Observe that the classical tableau
system for first-order logic has in fact the analogous property of preserving and
reflecting unsatisfiability. Although this fact is not provable directly from the
definition of tableau rules, it can be proved under the additional assumptions on
repetition of some formulas in the process of application of the rules. In tableau
system this assumption is hidden, it is shifted to a strategy of building the proof
trees. In our systems the required repetitions are explicitly indicated in the rules.

Let xRy be an L-formula. An L-proof tree for xRy is a tree with the following
properties:

– the formula xRy is at the root of this tree;
– each node except the root is obtained by an application of an L-rule to its

predecessor node;
– a node does not have successors whenever it is an L-axiomatic set.

A branch of an L-proof tree is said to be L-closed whenever it contains a node
with an L-axiomatic set of formulas. A tree is L-closed iff all of its branches are
L-closed.

Due to the forms of decomposition rules of DR0 we obtain the following:

Fact 2
Let L-system consists of decomposition rules from DR0. If a node of an L-proof
tree does not contain an L-axiomatic subset and contains an L-formula xRy or
x−Ry, for atomic R, then all of its successors contain this formula as well.

An L-formula xRy is L-provable whenever there is a closed L-proof tree for it.

Fact 3
For every relational logic L, if we show that:

1. All L-rules are L-correct.
2. All L-axiomatic sets are L-sets.

then we obtain the soundness theorem for L-logic: if an L-formula xRy is L-
provable, then it is L-valid.

As usual in proof theory a concept of completeness of a non-closed proof tree is
needed. Intuitively, completeness of a non-closed tree means that all the rules
that can be applied have been applied. By abusing the notation, for any branch
b and a formula xRy, we write xRy ∈ b, if xRy belongs to a set of formulas of a
node of branch b.
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A non-closed branch b of an L-proof tree is said to be L-complete whenever
it satisfies L-completion conditions. L-completion conditions determined by the
rules of DR0 are the following:
For all x, y ∈ OSL and for all R,S ∈ RTL:

Cpl(∪) (resp. Cpl(−∩)) If x(R ∪ S)y ∈ b (resp. x−(R ∩ S)y ∈ b), then both
xRy ∈ b (resp. x−Ry ∈ b) and xSy ∈ b (resp. x−Sy ∈ b).
Cpl(∩) (resp. Cpl(−∪)) If x(R ∩ S)y ∈ b (resp. x−(R ∪ S)y ∈ b), then either
xRy ∈ b (resp. x−Ry ∈ b) or xSy ∈ b (resp. x−Sy ∈ b).
Cpl(−) If x(−−R)y ∈ b, then xRy ∈ b.
Cpl(−1) If xR−1y ∈ b, then yRx ∈ b.
Cpl(−−1) If x−R−1y ∈ b, then y−Rx ∈ b.
Cpl(; ) If x(R;S)y ∈ b, then for every z ∈ OSL, either xRz ∈ b or zSy ∈ b.
Cpl(−; ) If x−(R;S)y ∈ b, then for some z ∈ OVL, both x−Rz ∈ b and z−Sy ∈ b.

An L-proof tree is said to be L-complete iff all of its non-closed branches are
L-complete. An L-complete non-closed branch is said to be L-open.

By Fact 2 and since the set containing a subset {xRy, x−Ry} is L-axiomatic,
in every L-system containing only decomposition rules of DR0 the following
holds:

Fact 4
Let L-system be a system with decomposition rules of DR0 as the only rules and
let b be an L-open branch of an L-proof tree. Then there is no atomic L-formula
xRy such that xRy ∈ b and x−Ry ∈ b.

Due to Facts 2 and 4 it is easy to prove the following proposition:

Proposition 1
Let L-system be a system with decomposition rules of DR0 as the only rules and
let b be a branch of an L-proof tree. If there are x, y ∈ OSL and R ∈ RTL such
that xRy ∈ b and x−Ry ∈ b, then b is closed.

Sometimes if the logic L is clear from the context we will omit the index L.

4 Basic Relational Logic RL

The logic presented in this section is a common core of all the logics relevant
for binary relations. The vocabulary of the language of RL-logic is defined as in
Section 2 where:

– RCRL = ∅.
An RL-model is a structure M = (U,m), where U is a non-empty set and

m: RVRL ∪ OCRL → P(U × U) ∪ U is a meaning function such that m extends
to all compound relational terms as defined in Section 2 with the condition:
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m(−R) = (U × U) \m(R)

where on the right hand side ‘\’ denotes the set difference.
The decomposition rules DRRL of the RL-system are the rules of DR0 pre-

sented in Section 3 adjusted to the RL-language. There are no specific rules in
this system. RL-axiomatic set is any set containing {xRy, x−Ry}, as defined in
Section 3, where x, y ∈ OSRL and R is a relational term of RTRL.

For each rule (#) ∈ DRRL its correctness follows directly from semantics of
relational terms built with the operator #.

Proposition 2

1. All RL-rules are RL-correct.
2. All RL-axiomatic sets are RL-sets.

Due to the above proposition and Fact 3 we obtain:

Theorem 1 (Soundness of RL)
Let xRy be an RL-formula. If xRy is RL-provable, then it is RL-valid.

A non-closed branch b of a proof tree is said to be RL-complete whenever it
satisfies RL-completion conditions of Section 3 determined by the rules from
DRRL.

Let b be an RL-open branch of an RL-proof tree. We define a branch structure
Mb = (U b,mb) as follows:

– U b = OSRL;
– mb(c) = c, for every c ∈ OCRL
– mb(R) = {(x, y) ∈ U b × U b : xRy �∈ b}, for every relational variable R;
– mb extends homomorphically to all compound relational terms as in the

RL-models.

Fact 5
For every RL-open branch b, Mb is an RL-model.

Any structure Mb is referred to as an RL-branch model. Let vb: OSRL → U b be
an RL-valuation in Mb such that vb(x) = x for every x ∈ OSRL.

Proposition 3
For every open branch b of an RL-proof tree, and for every RL-formula xRy:

(∗) if Mb, vb |= xRy, then xRy �∈ b.

Proof. The proof is by induction on the complexity of formulas.

Let xRy be an atomic RL-formula. Assume Mb, vb |= xRy, that is (x, y) ∈
mb(R). By the definition of a branch model xRy �∈ b. Let R ∈ RV and Mb, vb |=
x−Ry, that is (x, y) �∈ mb(R). Therefore xRy ∈ b. By Fact 4, x−Ry �∈ b.

By way of example we prove (∗) for R = S;T and R = −(S;T ).
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Let Mb, vb |= xRy, for R = S;T . Then (x, y) ∈ mb(S;T ), that is there exists
z ∈ OSRL such that xSz �∈ b and zTy �∈ b. Suppose x(S;T )y ∈ b. By the
completion condition Cpl(; ), for every z ∈ OSRL either xSz ∈ b or zTy ∈ b, a
contradiction.

Let Mb, vb |= xRy, for R = −(S;T ). Then (x, y) �∈ mb(S;T ), that is for every
z ∈ OSRL either xSz ∈ b or zTy ∈ b. Suppose x−(S;T )y ∈ b. By the completion
condition Cpl(−; ), for some z ∈ OVRL both x−Sz ∈ b and z−Ty ∈ b. By
Proposition 1, b is closed, a contradiction. !"
The above proposition enables us to prove the following completeness theorem:

Theorem 2 (Completeness of RL)
Let xRy be an RL-formula. If xRy is RL-valid, then xRy is RL-provable.

Proof. Assume xRy is RL-valid. Suppose there is no any closed RL-proof tree
for xRy. Consider a non-closed RL-proof tree for xRy. We may assume that this
tree is complete. Let b be an open branch of the complete RL-proof tree for xRy.
Since xRy ∈ b, by Proposition 3 in the branch model Mb valuation vb does not
satisfy xRy. Hence xRy is not RL-valid, a contradiction. !"

5 Relational Logics with the Constant 1

In this section we present a relational logic RL(1) obtained from RL by expand-
ing its language with a relational constant 1. There are two classes of models
associated with the logic RL(1): in the first one the relational constant 1 is inter-
preted as an equivalence relation on a non-empty set U , while in the second 1 is
interpreted as a universal relation. The vocabulary of the language of RL(1)-logic
is defined as in Section 2 with

– RCRL(1) = {1}.

An RLN(1)-model is a structure M = (U,m), where U is a non-empty set and
m: RARL(1) ∪OCRL(1) → P(U × U) ∪ U is a meaning function such that:

– m(1) is an equivalence relation on U ;
– m extends to all compound relational terms as defined in Section 2 with the

following additional condition: m(−R) = m(1) ∩ (U × U \m(R)).

An RLN(1)-model is said to be RL(1)-model whenever 1 is interpreted as an
universal relation, that is m(1) = U × U . It follows that if M = (U,m) is
RLN(1)-model or RL(1)-model, then truth of a formula xRy in M is equivalent
to m(1) ⊆ m(R).

Due to the definitions of RLN(1)-models and RL(1)-models we obtain the
following:
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Fact 6
For every RL(1)-formula xRy, if xRy is RLN(1)-valid, then it is RL(1)-valid.

RL(1)-decomposition rules are precisely the rules of DRRL, that is DRRL(1) =
DRRL. Moreover, the relational proof system for RL(1)-logic (RL(1)-system for
short) contains RL(1)-axiomatic sets defined below. A set is an RL(1)-axiomatic
whenever it includes any of the subsets (Ax1) or (Ax2), where:

(Ax1) {x1y}, where x, y ∈ OSRL(1);
(Ax2) {xRy, x−Ry}, where x, y ∈ OSRL(1) and R ∈ RTRL(1).

As in the case of RL-logic, it is easy to prove the following:

Proposition 4

1. All RL(1)-rules are RLN(1)-correct.
2. All RL(1)-axiomatic sets are RLN(1)-sets.

Due to the above proposition and Fact 3 we have the following:

Proposition 5
Let xRy be an RL(1)-formula. If xRy is RL(1)-provable, then it is RLN(1)-valid.

Due to Fact 6 the following holds:

Corollary 1
Let xRy be an RL(1)-formula. If xRy is RL(1)-provable, then it is RL(1)-valid.

RL(1)-completion conditions are the same as the completion conditions defined
in Section 3 determined by the rules from DRRL(1) and adapted to the RL(1)-
language.

Let b be an open branch of an RL(1)-proof tree. A branch structure Mb =
(U b,mb) is defined as for RL-logic, taking the object symbols of RL(1) as the
elements of U b, defining mb for atomic RL(1)-terms and for object constants as
in RL-branch model and defining mb for all RL(1)-terms as in RL(1)-models.

Proposition 6
For every RL(1)-open branch b, a branch structure Mb is an RL(1)-model.

Proof. For all x, y ∈ OSRL(1) x1y �∈ b, since otherwise b would be closed. So
mb(1) = U b × U b. Therefore by the definition, Mb is an RL(1)-model. !"
Let vb: OSRL(1) → U b be an RL(1)-valuation in Mb such that vb(x) = x for
every x ∈ OSRL(1).

Proposition 7
For every open branch b of an RL(1)-proof tree, and for every RL(1)-formula
xRy:

(∗) if Mb, vb |= xRy, then xRy �∈ b.



134 J. Golińska-Pilarek and E. Or�lowska

Since mb(1) is the universal relation, the proof is similar to the proof of Propo-
sition 3. Due to Proposition 7 we obtain the following:

Proposition 8
Let xRy be an RL(1)-formula. If xRy is RL(1)-valid, then xRy is RL(1)-provable.

Finally, due to Corollary 1 and Propositions 5 and 8 we obtain the following
theorem:

Theorem 3 (Soundness and Completeness of RL(1))
Let xRy be an RL(1)-formula. The the following conditions are equivalent:

– xRy is RL(1)-provable;
– xRy is RL(1)-valid;
– xRy is RLN(1)-valid.

The above theorem confirms the known fact that the classes of equations provable
in algebras of relations with 1 being the universal relation and with 1 being an
equivalence relation are the same. It will be discussed in more details in Section
14.

6 Relational Logics with Constant 1′

A logic considered in this section is obtained from RL-logic by expanding its
language with a constant 1′. The vocabulary of the language of RL(1′)-logic is
defined as in Section 2 with

– RCRL(1′) = {1′}.
An RL(1′)-model is a structure M = (U,m), where U is a non-empty set and

m: RARL(1′) ∪ OCRL(1′) → P(U × U) ∪ U is a meaning function such that the
following conditions are satisfied:

– m(1′) is an equivalence relation on U ;
– m(1′);m(R) = m(R);m(1′) = m(R) for every R ∈ RARL(1′) (extensionality);
– m extends to all compound relational terms as in the RL-models.

By an easy induction the following can be proved :

Proposition 9
Let M = (U,m) be an RL(1′)-model. Then for every relational term R of RL(1′)-
language, the following extensionality property holds:

m(1′);m(R) = m(R);m(1′) = m(R).

Proof
By way of example we show that the extensionality property holds for R = −S
and R = (S;T ).



Relational Logics and Their Applications 135

Proof of m(−S) = m(1′);m(−S)

Assume (x, y) ∈ m(−S). Since m(1′) is reflexive, (x, x) ∈ m(1′) and (x, y) ∈
m(−S). Hence there exists z ∈ U such that (x, z) ∈ m(1′) and (z, y) ∈ m(−S).
Therefore (x, y) ∈ m(1′);m(−S).

Assume (x, y) ∈ m(1′);m(−S), that is there exists z ∈ U such that (x, z) ∈ m(1′)
and (z, y) �∈ m(S). By the induction hypothesis, for all u ∈ U ((z, u) �∈ m(1′) or
(u, y) �∈ m(S)). Let u := x. It follows that (z, x) �∈ m(1′) or (x, y) �∈ m(S). Since
m(1′) is symmetric, it must be (x, y) �∈ m(S). Therefore (x, y) ∈ m(−S).

Proof of m(S;T ) = m(1′);m(S;T )

Since m(1′) is reflexive, m(S;T ) ⊆ m(1′);m(S;T ).

Assume (x, y) ∈ m(1′);m(S;T ), that is there exist z, u ∈ U such that (x, z) ∈
m(1′), (z, u) ∈ m(S) and (u, y) ∈ m(T ). By the induction hypothesis we get
(x, u) ∈ m(S). Therefore (x, y) ∈ m(S;T ). !"

Proposition 10
Let M = (U,m) be a structure such that U is a non-empty set and m: RARL(1′)∪
OCRL(1′) → P(U × U) ∪ U is a meaning function satisfying the following condi-
tions:

– m(1′) is reflexive;
– m extends to all compound relational terms as in the RL-models;
– m(1′);m(R) = m(R);m(1′) = m(R) for every R ∈ RTRL(1′).

Then M is an RL(1′)-model.

Proof
It suffices to show that m(1′) is symmetric and transitive. Let R = (1′)−1. Then
m(1′)−1;m(1′) = m(1′)−1 = m(1′);m(1′)−1, thus (m(1′);m(1′)−1); m(1′) =
m(1′)−1. It implies that: (*) (y, x) ∈ m(1′) iff there exist z, u ∈ U such that
(x, z) ∈ m(1′), (u, z) ∈ m(1′) and (u, y) ∈ m(1′). Assume (x, y) ∈ m(1′), for
some x, y ∈ U . Then z := y and u := x satisfy the right side of condition (*),
so (y, x) ∈ m(1′). Therefore m(1′) is symmetric. Assume (x, y) ∈ m(1′) and
(y, z) ∈ m(1′). Since m(1′);m(1′) ⊆ m(1′), (x, z) ∈ m(1′). Therefore m(1′) is
transitive, hence it is an equivalence relation on U . !"
It follows that the equivalent set of conditions on the RL(1′)-models could be
reflexivity of m(1′) and the extensionality property for all the relational terms.

An RL(1′)-model M = (U,m) is said to be standard whenever m(1′) is the
identity on U , that is m(1′) = {(x, x) : x ∈ U}. Any standard RL(1′)-model will
be referred to as RL∗(1′)-model. A formula xRy is said to be RL∗(1′)-valid iff it
is true in all standard RL(1′)-models.
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Fact 7
If xRy is RL(1′)-valid, then it is RL∗(1′)-valid.

The decomposition rules of the RL(1′)-system are the rules obtained from the
rules in DR0 presented in Section 3 by adjusting them to the RL(1′)-language.
The specific rules of RL(1′)-system have the following forms:

Let x, y ∈ OSRL(1′) and R ∈ RARL(1′).

(1′1)
xRy

xRz, xRy | y1′z, xRy
z ∈ OSRL(1′)

(1′2)
xRy

x1′z, xRy | zRy, xRy
z ∈ OSRL(1′)

A finite set of formulas is RL(1′)-axiomatic whenever it includes (Ax1) or (Ax2),
where:

(Ax1) {x1′x}, where x ∈ OSRL(1′)
(Ax2) {xRy, x−Ry}, where x, y ∈ OSRL(1′) and R ∈ RTRL(1′)

It is easy to see that the properties of Facts 2, 4 and Proposition 1 are satisfied
in RL(1′), that is in the RL(1′)-system the following holds:

Proposition 11
Let b be a branch of an RL(1′)-proof tree. If xRy ∈ b and x−Ry ∈ b, for some
relational term R and for some x, y ∈ OSRL(1′), then b is closed.

Proposition 12

1. All RL(1′)-rules are RL(1′)-correct.
2. All RL(1′)-axiomatic sets are RL(1′)-sets.

Proof
Since m(1′) is reflexive, {x1′x} is an RL(1′)-set. To prove 1. it suffices to show
correctness of the specific rules, correctness of the decomposition rules follows
from the definitions of the relational operations. Let us prove that the rule
(1′1)RL(1′) is correct, for any atomic relational term R. It is easy to see that
if {xRy} is an RL(1′)-set, then {xRy, xRz} and {y1′z, xRy} are RL(1′)-sets.
Assume {xRy, xRz} and {y1′z, xRy} are RL(1′)-sets, that is, by symmetry of
m(1′), for every RL(1′)-model M and for every RL(1′)-valuation v:

M, v |= xRz or M, v |= xRy and M, v |= z1′y or M, v |= xRy

Let M be an RL(1′)-model and v be an RL(1′)-valuation in M. Suppose
M, v |= xRz and M, v |= z1′y. Then (v(x), v(z)) ∈ m(R) and (v(z), v(y)) ∈
m(1′). Since m(R);m(1′) ⊆ m(R), (v(x), v(y)) ∈ m(R). Hence M, v |= xRy.
In the remaining cases the proofs are obvious. The proof for the rule (1′2) is
similar. !"
Due to the above proposition and Fact 3 we obtain the following:

Proposition 13
Let xRy be an RL(1′)-formula. If xRy is RL(1′)-provable, then it is RL(1′)-valid.
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Corollary 2
Let xRy be an RL(1′)-formula. If xRy is RL(1′)-provable, then it is RL∗(1′)-valid.

A non-closed branch b of an RL(1′)-proof tree is said to be RL(1′)-complete when-
ever it satisfies RL(1′)-completion conditions which consist of the completion
conditions determined by decomposition rules of DRRL(1′) and the following:

For every R ∈ RARL(1′) and for all x, y ∈ OSRL(1′):

Cpl(1′1) If xRy ∈ b, then for every z ∈ OSRL(1′), either xRz ∈ b or y1′z ∈ b.
Cpl(1′2) If xRy ∈ b, then for every z ∈ OSRL(1′), either x1′z ∈ b or zRy ∈ b.

Let b be an open branch of an RL(1′)-proof tree. We define a branch structure
Mb = (U b,mb) similarly as for RL-logic adapted to the RL(1′)-language. In
particular, mb(1′) = {(x, y) ∈ U b × U b : x1′y �∈ b}.
Proposition 14
For every RL(1′)-open branch b, a branch structure Mb is an RL(1′)-model.

Proof
We need to prove that (1) mb(1′) is an equivalence relation on U b and (2)
mb(1′);mb(R) = mb(R);mb(1′) = mb(R) for every R ∈ RARL(1′).

Proof of (1)
For every x ∈ U b, x1′x �∈ b, since otherwise b would be closed. Therefore
(x, x) ∈ mb(1′), hence mb(1′) is reflexive. Assume (x, y) ∈ mb(1′), that is
x1′y �∈ b. Suppose (y, x) �∈ mb(1′). Then y1′x ∈ b. By the completion condi-
tion Cpl(1′1), either y1′y ∈ b or x1′y ∈ b, a contradiction. Therefore mb(1′) is
symmetric. To prove transitivity, assume (x, y) ∈ mb(1′) and (y, z) ∈ mb(1′),
that is x1′y �∈ b and y1′z �∈ b. Suppose (x, z) �∈ mb(1′). Then x1′z ∈ b. By the
completion condition Cpl(1′1), either x1′y ∈ b or z1′y ∈ b. In the first case we
get a contradiction, so z1′y ∈ b. By the completion condition Cpl(1′1) applied to
z1′y, either z1′z ∈ b or y1′z ∈ b, a contradiction. Therefore mb(1′) is transitive.

Proof of (2)
Since mb(1′) is reflexive, mb(R) ⊆ mb(1′);mb(R) and mb(R) ⊆ mb(R);mb(1′).

Now assume (x, y) ∈ mb(1′);mb(R), that is there exists z ∈ U b such that x1′z �∈ b
and zRy �∈ b. Suppose (x, y) �∈ mb(R). Then xRy ∈ b. By the completion
condition Cpl((1′2), for every z ∈ U b, either x1′z ∈ b or zRy ∈ b, a contradiction.

Assume (x, y) ∈ mb(R);mb(1′), that is, by symmetry of mb(1′), there exists
z ∈ U b such that xRz �∈ b and y1′z �∈ b. Suppose (x, y) �∈ mb(R). Then xRy ∈ b.
By the completion condition Cpl(1′1), for every z ∈ U b, either xRz ∈ b or
y1′z ∈ b, a contradiction. !"
Any structureMb is referred to as an RL(1′)-branch model. Let vb: OSRL(1′) → U b

be an RL(1′)-valuation in Mb such that vb(x) = x for every x ∈ OSRL(1′).

Proposition 15
For every open branch b of an RL(1′)-proof tree, and for every RL(1′)-formula xRy:

(∗) if Mb, vb |= xRy, then xRy �∈ b.

The proof is similar to the proof of Proposition 3.
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Since mb(1′) is an equivalence relation on U b, given an RL(1′)-branch model
Mb, we may define the quotient model Mb

q = (U b
q ,m

b
q) as follows:

– U b
q = {‖x‖ : x ∈ U b}, where ‖x‖ is the equivalence class of mb(1′) generated

by x;
– mq

b(c) = ‖c‖, for every c ∈ OCRL(1′);
– mb

q(R) = {(‖x‖, ‖y‖)) ∈ U b
q × U b

q : (x, y) ∈ mb(R)}, for every R ∈ RARL(1′);
– mb

q extends for all compound relational terms as in the RL(1′)-models.

Since a branch model satisfies the extensionality property, the definition of
mb

q(R) is correct, that is the following condition is satisfied:

if (x, y) ∈ mb(R) and (x, z), (y, t) ∈ mb(1′), then (z, t) ∈ mb(R).

Let vb
q be an RL(1′)-valuation in Mb

q such that vb
q(x) = ‖x‖, for every x ∈

OSRL(1′).

Proposition 16

1. The model Mb
q is a standard RL(1′)-model,

2. For every RL(1′)-formula xRy:

(*) Mb, vb |= xRy iff Mb
q, v

b
q |= xRy

Proof

1. We have to show that mb
q(1

′) is the identity on U b
q . Indeed, we have:

(‖x‖, ‖y‖) ∈ mb
q(1

′) iff (x, y) ∈ mb(1′) iff ‖x‖ = ‖y‖
2. The proof is by an easy induction on the complexity of formulas. !"

Proposition 17
Let xRy be an RL(1′)-formula. If xRy is RL∗(1′)-valid, then xRy is RL(1′)-
provable.

Proof
Assume xRy is RL∗(1′)-valid. Suppose there is no closed RL(1′)-proof tree for
xRy. Consider a non-closed RL(1′)-proof tree for xRy. We may assume that
this tree is complete. Let b be an open branch of the complete RL(1′)-proof tree
for xRy. Since xRy ∈ b, so by Proposition 15, the branch model Mb does not
satisfy xRy. By Proposition 16 condition 2. also the quotient model Mb

q does not
satisfy xRy. Since Mb

q is a standard RL(1′)-model, so xRy is not RL(1′)-valid, a
contradiction. !"
From Fact 7 and Propositions 13, and 17 we obtain:

Theorem 4 (Soundness and Completeness of RL(1′))
Let xRy be an RL(1′)-formula. Then the following conditions are equivalent:

– xRy is RL(1′)-provable;
– xRy is RL(1′)-valid;
– xRy is RL∗(1′)-valid.
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7 Relational Logics with Constants 1′ and 1

The vocabulary of the language of RL(1, 1′) is such that:

– RCRL(1,1′) = {1′, 1}.

An RL(1, 1′)-model is a structure M = (U,m), where U is a non-empty set
and m: RARL(1,1′) ∪OCRL(1,1′) → P(U ×U)∪U is a meaning function such that
M is an RL(1′)-model and M is an RL(1)-model.

An RLN(1, 1′)-model is a structure M = (U,m), where U is a non-empty set
and m: RARL(1,1′) ∪OCRL(1,1′) → P(U ×U)∪U is a meaning function such that

– M is an RLN(1)-model;
– m(1′) is an equivalence relation on U ;
– m(1′);m(R) = m(R);m(1′) = m(R) for every atomic R.

An RL(1, 1′)-model (resp. RLN(1, 1′)-model) M = (U,m) is said to be standard
whenever m(1′) is the identity on U . Standard RL(1, 1′)-models (resp. RLN(1, 1′)-
models) are referred to as RL∗(1, 1′)-models (resp. RLN∗(1, 1′)-models).

RL(1, 1′)-system consists of RL(1′)-rules, RL(1′)-axiomatic sets, and RL(1)-ax-
iomatic sets adjusted to the language of RL(1, 1′)-logic.

Note that in order to prove completeness we construct, as usual, the branch
model. mb(1) is the universal relation in a branch model. It follows that com-
pleteness and soundness can be proved in a similar way as in RL(1′)-logic and
then by using Theorems 3 and 4 we obtain the following:

Theorem 5 (Soundness and Completeness of RL(1, 1′))
For any RL(1, 1′)-formula xRy the following conditions are equivalent:

– xRy is RL(1, 1′)-provable;
– xRy is RL(1, 1′)-valid;
– xRy is RL∗(1, 1′)-valid;
– xRy is RLN(1, 1′)-valid;
– xRy is RLN∗(1, 1′)-valid.

The class of RLN(1, 1′)-models is closely related to the class RRA of representable
relation algebras, while the class of RL(1, 1′)-models corresponds to the class FRA
of full relation algebras, as it will be proved in Section 14.

8 Relational Logics with Point Relations Introduced with
Axioms

In the present section and in the subsequent Section 9 we consider the logics
intended for providing a means of relational reasoning in the theories which refer
to objects of their domains. There are two relational formalisms for coping with
individual objects. A logic RLax(C) presented in this section is a purely relational
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formalism where objects are introduced through point relations which, in turn
are presented axiomatically with a well known set of axioms. The axioms say that
a binary relation is a point relation whenever it is non-empty, right ideal relation
with one-element domain. A binary relation R on a set U is right ideal whenever
R; 1 = R, where 1 = U ×U . In other words such an R is of the form X ×U , for
some X ⊆ U . We may think of right ideal relations as representing sets, they
are sometimes referred to as vectors (see [23]). Therefore if the domain of a right
ideal relation is a singleton set, the relation may be seen as a representation
of an individual object. A logic RLdf (C) presented in Section 9 includes object
constants in its language interpreted as singletons, and moreover, with each
object constant c there is associated a relation Rc such that its meaning in every
model is defined as a right ideal relation with the domain consisting of the single
element being a meaning of c.

The language of the logics considered in this section includes, apart from
the relational constants 1 and 1′, a family of relational constants interpreted as
point relations determined axiomatically by the conditions 1, 2, and 3 below.
The vocabulary of the language of RLax(C)-logic is such that:

– RCRLax(C) = {1′, 1} ∪ C, where C = {Ri : i ∈ I} for some fixed set I.

An RLax(C)-model is a structure M = (U,m), where U is a non-empty set
and m: RARLax(C) ∪OCRLax(C) → P(U ×U)∪U is a meaning function such that
M is an RL(1, 1′)-model and the following hold:

– for every Ri ∈ C

1. m(Ri) �= ∅;
2. m(Ri) = m(Ri);m(1);
3. m(Ri);m(Ri)−1 ⊆ m(1′);

– m extends to all compound relational terms as in RL-logic.

An RLax(C)-model M = (U,m) is said to be standard (RL∗
ax(C)-model for short)

whenever m(1′) is the identity on U .
The above conditions 1., 2., and 3. say that relations Ri are point relations.

Condition 2. guarantees that Ri is a right ideal relation, and condition 3. says
that in the standard models the domains of relations Ri are singleton sets.

RLax(C)-system consists of decomposition rules and specific rules of RL(1′)-
system adjusted to the RLax(C)-language and additional specific rules of the
following forms that characterize relational constants Ri:

Let x, y ∈ OSRLax(C) and Ri ∈ C.

(C1)
z−Rit

z, t ∈ OVRLax(C) are new

(C2)
xRiy

xRiy, xRiz
z ∈ OSRLax(C)

(C3)
x1′y

xRiz, x1′y | yRiz, x1′y
z ∈ OSRLax(C)
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RLax(C)-axiomatic sets are those of RL(1, 1′) adapted to the RLax(C)-language.
As in the previous cases, the conditions of Facts 2, 4, and Proposition 1 are satis-
fied in RLax(C), that is the RLax(C)-system satisfies the property of Proposition
11. Therefore the following can be proved easily:

Proposition 18

1. All RLax(C)-rules are RLax(C)-correct.
2. All RLax(C)-axiomatic sets are RLax(C)-sets.

It is easy to see that correctness of the rules (C1), (C2), and (C3) follows directly
from the semantic conditions 1., 2., and 3., respectively.

Due to the above proposition and Fact 3 we obtain:

Proposition 19
Let xRy be an RLax(C)-formula. If xRy is RLax(C)-provable, then it is RLax(C)-
valid.

Corollary 3
Let xRy be an RLax(C)-formula. If xRy is RLax(C)-provable, then it is RL∗

ax(C)-
valid.

To prove completeness of RLax(C)-system it suffices to define the branch struc-
ture so that it will be an RLax(C)-model and the usual property will hold: if a
formula is satisfied in a branch model determined by an open branch b, then it
does not belong to b.

A non-closed branch b of an RLax(C)-proof tree is said to be RLax(C)-complete
whenever it satisfies RLax(C)-completion conditions which consist of the comple-
tion conditions determined by the decomposition rules of DRRLax(C), the specific
rules for 1′, and additionally the following:

For every Ri ∈ C and for all x, y ∈ OSRLax(C):

Cpl(C1) There exist z, t ∈ OVRLax(C) such that z−Rit ∈ b.
Cpl(C2) If xRiy ∈ b, then for every z ∈ OSRLax(C) xRiz ∈ b.
Cpl(C3) If x1′y ∈ b, then for every z ∈ OSRLax(C) either xRiz ∈ b or yRiz ∈ b.

Let b be an open branch of an RLax(C)-proof tree. We define a branch structure
Mb = (U b,mb) with U b = OSRLax(C) similarly as in RL-logic by adjusting it to
the RLax(C)-language.

Proposition 20
For every open branch b, the branch structure Mb is an RLax(C)-model.

Proof
It suffices to prove that for every Ri ∈ C, (1) mb(Ri) �= ∅, (2) mb(Ri) =
mb(Ri);mb(1), and (3) mb(Ri);mb(Ri)−1 ⊆ mb(1′).



142 J. Golińska-Pilarek and E. Or�lowska

Proof of (1)
By the completion condition Cpl(C1) there exist z, t ∈ U b such that z−Rit ∈ b.
Hence zRit �∈ b, since otherwise b would be closed. Therefore there exist z, t ∈ U b

such that (z, t) ∈ mb(Ri).

Proof of (2)
Since mb(1) = U b×U b, so mb(Ri) ⊆ mb(Ri);mb(1). Assume there exists z ∈ U b

such that (x, z) ∈ mb(Ri) and (z, y) ∈ mb(1), that is xRiz �∈ b and z1y �∈ b.
Suppose (x, y) �∈ mb(Ri). Then xRiy ∈ b. By the completion condition Cpl(C2)
for every z ∈ U b, xRiz ∈ b, a contradiction.

The proof of (3) is similar. !"
Note that mb(R) is defined for all atomic relational terms R. Therefore due to
the above proposition, the proof of completeness is similar to that of RL(1′)-logic.

Proposition 21
Let xRy be an RLax(C)-formula. If xRy is RL∗

ax(C)-valid, then it is RLax(C)-
provable.

Corollary 4
Let xRy be an RLax(C)-formula. If xRy is RLax(C)-valid, then it is RLax(C)-
provable.

Due to Fact 1 and Propositions 19, and 21 we obtain the following:

Theorem 6 (Soundness and Completeness of RLax(C))
Let xRy be an RLax(C)-formula. Then the following conditions are equivalent:

– xRy is RLax(C)-provable;
– xRy is RLax(C)-valid;
– xRy is RL∗

ax(C)-valid.

9 Relational Logics with Point Relations Introduced with
Definitions

The vocabulary of the language of RLdf (C)-logic is such that:

– OC0
RLdf (C) ⊆ OCRLdf (C), where OC0

RLdf (C) = {ci : i ∈ I} for a fixed set I;
– RCRLdf (C) = {1′, 1} ∪ C, where C = {Ri : i ∈ I}.

An RLdf (C)-model is a structure M = (U,m), where U is a non-empty set and
m: RARLdf (C) ∪OCRLdf (C) → P(U ×U) ∪ U is a meaning function such that M
is an RL(1, 1′)-model and the following holds:

– m(Ri) = {(x, y) ∈ U × U : (x,m(ci)) ∈ m(1′)}, for every Ri ∈ C;
– m extends to all compound relational terms as in RL-models.



Relational Logics and Their Applications 143

An RLdf (C)-model M = (U,m) is said to be standard (RL∗
df (C)-model for short)

whenever m(1′) is the identity on U . In the standard models relations Ri are
right ideal relations with singleton domains.

RLdf (C)-system consists of decomposition rules DRRLdf (C) obtained from
DRL by adjusting them to the RLdf (C)-language, the specific rules for 1′ of
RL(1′)-system adapted to RLdf (C)-language, and the specific rules that charac-
terize relational constants Ri:

Let x, y ∈ OSRLdf (C), ci ∈ OC0
RLdf (C) and Ri ∈ C.

(CD1)
xRiy

xRiy, x1′ci

(CD2)
x−Riy

x−Riy, x−1′ci

RLdf (C)-axiomatic sets are those of RL(1, 1′) adjusted to the RLdf (C)-language.
As in the previous cases, the RLdf (C)-system satisfies the property of Proposi-
tion 11. Therefore the following holds:

Proposition 22

1. All RLdf (C)-rules are RLdf (C)-correct.
2. All RLdf (C)-axiomatic sets are RLdf (C)-sets.

Proof
It suffices to show correctness of the new specific rules. It is easy to see that
correctness of the rule (CD1) follows from the property: if (x,m(ci)) ∈ m(1′),
then for every y ∈ U , (x, y) ∈ m(Ri). The correctness of the rule (CD2) follows
from the property: if (x,m(ci)) �∈ m(1′), then for every y ∈ U , (x, y) �∈ m(Ri).

!"
Due to the above proposition and Fact 3 we obtain the following:

Proposition 23
Let xRy be an RLdf (C)-formula. If xRy is RLdf (C)-provable, then it is RLdf (C)-
valid.

Corollary 5
Let xRy be an RLdf (C)-formula. If xRy is RLdf (C)-provable, then it is RL∗

df (C)-
valid.

To prove completeness of RLdf (C)-system we define as usual the branch structure
satisfying the appropriate conditions.

A non-closed branch b of an RLdf (C)-proof tree is said to be RLdf (C)-complete
whenever it satisfies RLdf (C)-completion conditions which consist of the com-
pletion conditions determined by the decomposition rules, the completion con-
ditions determined by the specific rules for 1′, and additionally the following
completion conditions determined by the specific rules for relational constants
Ri:
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For every Ri ∈ C and for all x, y ∈ OSRLdf (C):

Cpl(CD1) If xRiy ∈ b, then x1′ci ∈ b.
Cpl(CD2) If x−Riy ∈ b, then x−1′ci ∈ b.

Let b be an open branch of an RLdf (C)-proof tree. We define a branch structure
Mb = (U b,mb) as follows:

– U b = OSRLdf (C);
– mb(c) = c, for every c ∈ OCRLdf (C);
– mb(R) = {(x, y) ∈ U b × U b : xRy �∈ b}, for every R ∈ RVRLdf (C) ∪ {1, 1′};
– mb(Ri) = {x ∈ U b : (x, ci) ∈ mb(1′)} × U b, for every Ri ∈ C;
– m extends to all compound relational terms as in RLdf (C)-models.

Fact 8
For every open branch b, Mb defined above is an RLdf (C)-model.

Proposition 24
Let b be an open branch of an RLdf (C)-proof tree and xRy be an RLdf (C)-
formula. Then

(∗) if Mb, vb |= xRy, then xRy �∈ b.

Proof
It suffices to prove that (∗) holds for R being Ri or −Ri, where Ri ∈ C.

Let R = Ri for some Ri ∈ C. Assume (x, y) ∈ mb(Ri), that is (x, ci) ∈ mb(1′).
Then x1′ci �∈ b. Suppose xRiy ∈ b. By the completion condition determined by
the rule (CD1), x1′ci ∈ b, a contradiction.

Let R = −Ri for some Ri ∈ C. Assume (x, y) ∈ mb(−Ri), that is (x, ci) �∈
mb(1′). Then x1′ci ∈ b. Suppose x−Riy ∈ b. By the completion condition
Cpl(CD2), x−1′ci ∈ b, hence b is closed a contradiction. !"
Due to the above proposition, the proof of completeness is similar to that of
RL(1′)-logic.

Proposition 25
Let xRy be an RLdf (C)-formula. If xRy is RL∗

df (C)-valid, then it is RLdf (C)-
provable.

Corollary 6
Let xRy be an RLdf (C)-formula. If xRy is RLdf (C)-valid, then it is RLdf (C)-
provable.

Due to Fact 1 and propositions 23, and 25 we obtain the following:

Theorem 7 (Soundness and Completeness of RLdf (C))
Let xRy be an RLdf (C)-formula. Then the following conditions are equivalent:

– xRy is RLdf (C)-provable;
– xRy is RLdf (C)-valid;
– xRy is RL∗

df (C)-valid.
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10 Applications to Verification of Validity in Non-classical
Logics

The logic RL(1, 1′) serves as a basis for the relational formalisms for non-classical
logics whose Kripke-style semantics is determined by frames with binary acces-
sibility relations. Let L be a modal logic with classical modal operators of possi-
bility (〈R〉) and necessity ([R]). The relational logic appropriate for expressing
L-formulas is RLL(1, 1′) obtained from RL(1, 1′) by expanding its language with
a relational constant R representing the accessibility relation from the models
of L-language and by assuming all the properties of R from these models in the
RLL(1, 1′)-models. For example, if a relation R in a modal frame of a logic L is
assumed to satisfy some conditions, e.g., reflexivity (logic T), symmetry (logic
B), transitivity (logic S4) etc., then in the models of the corresponding logic
RLL(1, 1′) we add the respective conditions as the axioms of its models. The
translation of a modal formula into a relational term starts with an assignment
of relational variables to the propositional variables of the formula. Let τ ′ be
such an assignment. Then the translation τ of the modal formulas is defined
inductively as follows:
– τ (p) := τ ′(p); 1 for propositional variable p;
– τ (¬α) := −τ (α);
– τ (α ∨ β) := τ (α) ∪ τ (β);
– τ (α ∧ β) := τ (α) ∩ τ (β);
– τ (〈R〉α) := R; τ (α);
– τ ([R]α) := −(R; −τ (α)).

The translation is defined so that it preserves validity of formulas.

Proposition 26
For every L-formula ϕ and for every L-model M there exists RL∗

L(1, 1′)-model
M′ such that

M |= ϕ iff M′ |= xτ(ϕ)y

where x and y are object variables such that x �= y.

Proof
Let ϕ be an L-formula and let M = (U,m) be an L-model. We define the
corresponding RL∗

L(1, 1′)-model M′ = (U ′,m′) as follows:

– U ′ = U ;
– m′(1) = U ′ × U ′;
– m′(1′) is an identity on U ′;
– m′(τ ′(p)) = {(x, y) ∈ U ′ × U ′ : x ∈ m(p)}, for any propositional variable p;
– m′(R) = m(R);
– m′ extends to all compound relational terms as in RL(1, 1′)-models.

Given a valuation v: OSRLL(1,1′) → U we show by induction on the complexity of
ϕ that the following property holds:

M, v(x) |= ϕ iff M′, v |= xτ(ϕ)y.
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From that, we can conclude that ϕ is true in M iff xτ(ϕ)y is true in M′. By
way of example we prove the required condition for the formulas of the form:
ψ1 ∨ ψ2 and 〈R〉ψ.

– If ϕ = ψ1 ∨ ψ2 then M, v(x) |= ψ1 ∨ ψ2 iff M, v(x) |= ψ1 or M, v(x) |=
ψ2, iff, by inductive hypothesis, M′, v |= xτ(ψ1)y or M′, v |= xτ(ψ2)y, iff
M′, v |= x(τ(ψ1) ∪ τ(ψ2))y iff M′, v |= xτ(ψ1 ∪ ψ2)y.

– If ϕ = 〈R〉ψ then M, v(x) |= 〈R〉ψ iff there exists s ∈ U such that (v(x), s) ∈
m(R) andM, s |= ψ iff, by inductive hypothesis, there exists s ∈ U ′ such that
(v(x), s) ∈ m′(R) and (s, v(y)) ∈ m′(τ(ψ)), iff (v(x), v(y)) ∈ m′(R; τ(ψ)) iff
M′, v(x) |= xτ(〈R〉ψ)y. !"

Proposition 27
For every L-formula ϕ and for every RL∗

L(1, 1′)-model M′ there exists L-model
M such that

M |= ϕ iff M′ |= xτ(ϕ)y

where x and y are object variables such that x �= y.

Proof
Let ϕ be an L-formula and let M′ = (U ′,m′) be an RL∗

L(1, 1
′)-model. We define

the corresponding L-model M = (U,m) as follows:

– U = U ′;
– for every propositional variable p, s ∈ m(p) iff (s, s′) ∈ m′(τ ′(p)) for some
s′ ∈ U ′;

– m(R) = m′(R).

The rest of the proof is similar to the proof of Proposition 26. !"
From Theorem 5 and Propositions 26, and 27 we obtain the following:

Theorem 8
For every formula ϕ of a logic L, ϕ is valid in L iff xt(ϕ)y is valid in RLL(1, 1′),
where x and y are object variables such that x �= y.

Once a translation from a non-classical logic L into an appropriate relational
logic RLL(1, 1′) is defined, we develop a dual tableau proof system for RLL(1, 1′)
which by the above theorem is a validity checker for L. The core of such a system
is the RL(1, 1′)-system. For each particular logic L the rules and/or axiomatic
sets must be added reflecting the properties of the constant R. Defining these
rules we follow the general principles presented in [14].

For example, a relational formalism for the modal logic K is the logic RLK(1, 1′)
obtained from RL(1, 1′) by assuming that the set of relational constants in-
cludes additionally a relational constant, say R, representing the accessibility
relation from the frames of K. Since in the K-models there is no any specific
assumption about R, RLK(1, 1′)-proof system can be obtained from that of
RL(1, 1′) by adjusting it to the RLK(1, 1′)-language, in particular by postulat-
ing RCRLK(1,1′) = {1′, 1, R}.
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x−[−(R; −(P ; 1)) ∩ −(R;−(Q; 1))] ∪ −(R; −(P ; 1 ∩ Q; 1))y

�
(∪)

x−[−(R; −(P ; 1)) ∩ −(R;−(Q; 1))]y, x−(R; −(P ; 1 ∩ Q; 1))y

�(−∩)

x−−(R; −(P ; 1))y, x−−(R; −(Q; 1))y, x−(R;−(P ; 1 ∩ Q; 1))y

�
(−−) × 2

x(R;−(P ; 1))y, x(R; −(Q; 1))y, x−(R; −(P ; 1 ∩ Q; 1))y

�
(−; ) with a new variable z and (−−)

x(R;−(P ; 1))y, x(R; −(Q; 1))y, x−Rz, z(P ; 1 ∩ Q; 1))y
�����	






�(; ) with a variable z

xRz, x−Rz, . . .
closed

z−(P ; 1)y, x(R;−(Q; 1))y, x−Rz, z(P ; 1 ∩ Q; 1))y, . . .
�����	






�(; ) with a variable z

xRz, x−Rz, . . .
closed

z−(P ; 1)y, z−(Q; 1)y, z(P ; 1 ∩ Q; 1))y, . . .
�����	






�
(∩)

z−(P ; 1)y, z(P ; 1)y, . . .
closed

z−(Q; 1)y, z(TQ; 1)y, . . .
closed

Fig. 1.

Let us consider the following formula ϕ of modal logic K:

¬([R]p ∧ [R]q) ∨ [R](p ∧ q)

Let τ ′(p) = P and let τ ′(q) = Q. The translation τ(ϕ) of the above formula
into a relational term of RLK(1, 1′) is:

−[−(R;−(P ; 1)) ∩−(R;−(Q; 1))] ∪ −(R;−(P ; 1 ∩Q; 1))

We show that the formula ϕ is K-valid, that is xτ(ϕ)y is RLK(1, 1′)-valid.
In each node of the proof tree we underline a formula which determines an
applicable rule. Figure 1 presents a closed RLK(1, 1′)-proof tree for the formula
xτ(ϕ)y.

The method of relational formalization of non-classical logics is applicable to
a great variety of logics, see e.g., [1], [10], [11], [15], [16] and [7].
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11 Applications to Verification of Entailment in
Non-classical Logics

The logic RL(1, 1′) can be also used to verify the entailment of formulas of non-
classical logics, provided that they can be translated into a relational logic. The
method is based on the following fact. Let R1, . . . , Rn, R be binary relations on
a set U and let 1 = U ×U . It is known that R1 = 1, . . . , Rn = 1 imply R = 1 iff
(1;−(R1∩. . .∩Rn); 1)∪R = 1. It follows that for every RL(1, 1′)-model M, M |=
xR1y, . . . , M |= xRny imply M |= xRy iff M |= x(1;−(R1 ∩ . . .∩Rn); 1)∪R)y
which means that entailment in RL(1, 1′) can be expressed in its language.

For example, in K-logic the formulas [R]p and [R](p → q) imply [R]q. That is
in RLK(1, 1′)-logic, relations −(R;−(P ; 1)) and −(R;−(−(P ; 1)∪ (Q; 1))) imply
−(R;−(Q; 1)). To prove this we need to show that the formula

x[(1;−(−(R;−(P ; 1)) ∩ −(R;−(−(P ; 1) ∪ (Q; 1)))); 1) ∪ −(R;−(Q; 1))]y

is RLK(1, 1′)-provable. Figure 2 presents a closed RLK(1, 1′)-proof tree for this
formula.

x[(1; −(−(R;−(P ; 1)) ∩ −(R;−(−(P ; 1) ∪ (Q; 1)))); 1) ∪ −(R;−(Q; 1))]y

�(∪)

x(1;−(−(R;−(P ; 1)) ∩ −(R; −(−(P ; 1) ∪ (Q; 1)))); 1)y, x−(R; −(Q; 1))y
��	

�

(; ) twice


�

x1x, . . .
closed

y1y, . . .
closed

x − [−(R; −(P ; 1)) ∩ −[R; −(−(P ; 1) ∪ (Q; 1))]]y, x−(R; −(Q; 1))y, . . .

�
(−∩) and (−−)

x(R;−(P ; 1))y, x(R;−(−(P ; 1) ∪ (Q; 1)))y, x−(R; −(Q; 1))y, . . .

�(−; ) and (−−)

x(R;−(P ; 1))y, x(R;−(−(P ; 1) ∪ (Q; 1)))y, x−Rz, z(Q; 1)y, . . .
���	




�(; )
xRz, x−Rz, . . .
closed

x(R;−(P ; 1))y, z−(−(P ; 1) ∪ (Q; 1))y, x−Rz, z(Q; 1)y, . . .
���	




�(; )
xRz, x−Rz, . . .
closed

z−(P ; 1)y, z−(−(P ; 1) ∪ (Q; 1))y, z(Q; 1)y, . . .
���	




�(−∪) and (−−)

z−(P ; 1)y, z(P ; 1)y, . . .
closed

z−(Q; 1)y, z(Q; 1)y, . . .
closed

Fig. 2.
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12 Applications to Model Checking in Non-classical
Logics

The logic RL(1, 1′) is used in the formalisms of relational logics whose model
checking problem is in question. Let M = (U,m) be a fixed RL∗(1, 1′)-model
and let ϕ = xRy be an RL(1, 1′)-formula, where R is a relational term and
x, y are any object symbols. In order to obtain the relational formalism for the
problem ‘M |= ϕ?’, we consider an instance RLM,ϕ of the logic RL(1, 1′). Its
language provides a code of model M and formula ϕ, and in its models the
syntactic elements of ϕ are interpreted as in the model M. The vocabulary of
the logic RLM,ϕ consists of the following pairwise disjoint sets:

– OVRLM,ϕ
a countable infinite set of object variables;

– OCRLM,ϕ
= OC0

RLM,ϕ
∪ OC1

RLM,ϕ
, where OC0

RLM,ϕ
= {ca : a ∈ U} and

OC1
RLM,ϕ

= {c ∈ OCRL(1,1′) : c occurs in ϕ};
– RCRLM,ϕ

= {S : S is an atomic subterm of R} ∪ {1, 1′};
– OPRLM,ϕ

= {−,∪,∩, ; ,−1 };
– a set of parentheses {(, )}.

Note that the language of RLM,ϕ does not contain relational variables.

An RLM,ϕ-model is a pair N = (W,n) where

– W = U ;
– n(c) = m(c), for every c ∈ OC1

RLM,ϕ
;

– n(ca) = a, for any ca ∈ OC0
RLM,ϕ

;
– n(S) = m(S), for any atomic subterm S of R;
– n(1), n(1′) are defined as in RL∗(1, 1′)-models;
– n extends to compound terms as in RL∗(1, 1′)-models.

Observe that the above definition implies: for every atomic subterm S of R,
N , v |= xSy iff there exist a, b ∈ U such that (a, b) ∈ m(S) and v(x) = a and
v(y) = b. Moreover, it is easy to prove that n(R) = m(R). Note also that the
class of RLM,ϕ-models has exactly one element up to isomorphism. Therefore,
RLM,ϕ-validity is equivalent to the truth in a single RLM,ϕ-model N , that is the
following holds:

Proposition 28
The following statements are equivalent:

– M |= xRy

– xRy is RLM,ϕ-valid

The relational proof system for RLM,ϕ consists of the rules and axiomatic sets
of RL(1, 1′)-system adapted to the language of RLM,ϕ, and additionally:
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– for every atomic subterm S of R and for any x, y ∈ OSRLM,ϕ
we add the

rules of the following form:

(−S)
x−Sy

x−1′ca, y−1′cb, ca−Scb, x−Sy
ca, cb ∈ OC0

RLM,ϕ
are new

(1′)
x−1′ca

ca is new

(a �= b)
ca1′cb

for all a �= b

where ca ∈ OC0
RLM,ϕ

is new whenever it appears in a conclusion of the rule
and does not appear in its premise;

– for every c ∈ OC1
RLM,ϕ

and for every a ∈ U such that m(c) �= a we add the
rules of the following form:

(ca)
c1′ca

– a set of formulas is assumed to be an axiomatic set whenever it includes
either of the following subsets:
• {c1′ca}, for every c ∈ OC1

RLM,ϕ
and for every a ∈ U such that m(c) = a;

• {caScb}, for every atomic subterm S of R and for all a, b ∈ U such that
(a, b) ∈ m(S);

• {ca−Scb}, for every atomic subterm S of R and for all a, b ∈ U such
that (a, b) �∈ m(S).

The correctness of all new rules and the validity of all new axiomatic sets follow
directly from the definition of RLM,ϕ-semantics. For example, the correctness of
the rule (−S) follows from the following property of n(S): (v(x), v(y)) ∈ n(S) iff
for all a, b ∈ U , either (n(ca), n(cb)) �∈ n(S) or v(x) �= ca or v(y) �= cb. Note that
for every x ∈ OSRLM,ϕ

and for every valuation v in N , there exists ca ∈ OC0
RLM,ϕ

such that the model N satisfies v(x) = n(ca), hence the rule (1′) is correct. The
correctness of the rule (a �= b) follows form the following property of N -models:
for all a, b ∈ U , if a �= b, then n(ca) �= n(cb).

The completion conditions are those of RL(1, 1′)-system adapted to the lan-
guage of RLM,R and additionally for every atomic subterm S of R we add the
following conditions:

Cpl(−S) If x−Sy ∈ b, then for some ca, cb ∈ OC0
RLM,ϕ

all of the following
conditions are satisfied: x−1′ca ∈ b, y−1′cb ∈ b and ca−Scb ∈ b.
Cpl(1′) For every x ∈ OVRLM,ϕ

there exists ca ∈ OC0
RLM,ϕ

such that x−1′ca ∈ b.
Cpl(a �= b) For all a, b ∈ U such that a �= b, ca1′cb ∈ b.
Cpl(ca) For every c ∈ OC1

RLM,ϕ
and for every a ∈ U such that n(c) �= a,

c1′ca ∈ b.

A branch model is a structure N b = (W b, nb) satisfying the following conditions:

– W b = OSRLM,ϕ
;

– nb(c) = c, for every c ∈ OCRLM,ϕ
;
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– nb(S) = {(x, y) ∈ W b ×W b : xSy �∈ b}, for S ∈ {1, 1′};
– nb(S) = {(x, y) ∈ W b ×W b : there exists a, b ∈ U such that γ(a, b, x, y)},

where γ(a, b, x, y) is [(a, b) ∈ m(S) ∧ (x, ca) ∈ nb(1′) ∧ (y, cb) ∈ nb(1′)];
– nb extends to all compound terms as in RL(1, 1′)-models.

As in RL(1, 1′)-logic it is easy to prove that nb(1′) and nb(1) are an equivalence
relation and a universal relation, respectively.

Let vb: OSRLM,ϕ
→ W b be a valuation in N b such that vb(x) = x for every

x ∈ OSRLM,ϕ
. Then the following holds:

Proposition 29
For every open branch b of an RLM,ϕ-proof tree, and for every RLM,ϕ-formula
xRy:

(∗) if N b, vb |= xRy, then xRy �∈ b.

Proof
The proof is similar to the proof of analogous proposition for RL(1, 1′)-logic.
That is we need to show that (∗) holds for every atomic subterm S of R and its
complement.

Let ϕ = xSy for some atomic subterm S of R. Assume N b, vb |= xSy. By the
definition of nb(S) there exist a, b ∈ U such that (a, b) ∈ m(S), x1′ca �∈ b and
y1′cb �∈ b. Since (a, b) ∈ m(S), caSccb �∈ b, otherwise b would be closed. Therefore
the following holds: caScb �∈ b, x1′ca �∈ b and y1′cb �∈ b. Suppose xSy ∈ b. By the
completion conditions for the rules (1′1) and (1′2), for all ca, cb ∈ OC0

RLM,ϕ
, at

least one the following holds: x1′ca ∈ b or y1′cb ∈ b or caSccb ∈ b, a contradiction.
Let ϕ = x−Sy, for some atomic subterm S of R. Assume N b, vb |= x−Sy.

Then for all a, b ∈ U , (a, b) �∈ m(S) or x1′ca ∈ b or y1′cb ∈ b. Since (a, b) �∈ m(S),
ca−Sccb �∈ b, otherwise b would be closed. Therefore for all a, b ∈ U , the following
holds: if ca−Scb ∈ b, then x1′ca ∈ b or y1′cb ∈ b. Suppose x−Sy ∈ b. By the
completion condition for the rule (−S), for some ca, cb ∈ OC0

RLM,ϕ
, the following

holds: x−1′ca ∈ b and y−1′cb ∈ b and ca−Sccb ∈ b, a contradiction. !"
Since nb(1′) is an equivalence relation on W b, we may define the quotient model
N b

q = (W b
q , n

b
q) as follows:

– W b
q = {‖x‖ : x ∈W b}, where ‖x‖ is the equivalence class of nb(1′) generated

by x;
– nb

q(c) = ‖nb(c)‖, for every c ∈ OCRLM,ϕ
;

– nb
q(S) = {(‖x‖, ‖y‖) ∈W b

q ×W b
q : (x, y) ∈ nb(S)}, for every atomic S;

– nb
q extends as in RL(1, 1′)-models.

Proposition 30
The quotient model N b

q = (W b
q , n

b
q) satisfies the following conditions:

1. card(W b
q ) = card(W );

2. c ∈ ‖ca‖ iff n(c) = a
3. nb

q(S) = {(‖ca‖, ‖cb‖ ∈ W b
q ×W b

q : (n(ca), n(cb)) ∈ n(S)}.
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Proof

Proof of 1. For all a, b ∈ U , if a �= b, then ca1′cb ∈ b. Therefore for all a, b ∈ U
such that a �= b, (ca, cb) �∈ nb(1′), hence card(W b

q ) ≥ card(W ). By the completion
condition for (1′), for every x ∈ W b there is ca ∈ W b such that x−1′ca ∈ b.
Therefore for every element x ofW b, x ∈ ‖ca‖ for some a ∈ U . Hence card(W b

q ) ≤
card(W ).

Proof of 2. For c ∈ OC0
RLM,ϕ

the proof is obvious. Let c ∈ OC1
RLM,ϕ

. If n(c) = a,
then c1′ca �∈ b, since otherwise b would be closed. Therefore c ∈ ‖ca‖. If n(c) �= a,
then by the completion condition for (ca), c1′ca ∈ b, hence c �∈ ‖ca‖.
Proof of 3. This follows directly from the definition of nb(S). !"

The above proposition implies that the function f :W b
q → W defined as

f(‖ca‖) = a is an isomorphism between N b
q and N . Therefore N b

q and N satisfy
exactly the same formulas. Now the completeness RLM,ϕ can be proved similarly
as in RL(1, 1′)-logic.

Theorem 9 (Soundness and completeness of RLM,ϕ)
For every RLM,R-formula xRy the following conditions are equivalent:

– xRy is RLM,ϕ-provable.
– xRy is RLM,ϕ-valid.

Due to the above theorem and Proposition 28 we obtain the following:

Theorem 10
The following statements are equivalent:

– M |= xRy,
– xRy is RLM,ϕ-provable.

The method presented above can be also used in the case of non-classical logics
for which the problem of model checking is in question. By way of example
consider the modal logic K. Let M = (U,m) be a K-model such that U = {a, b},
m(p) = {a} and the accessibility relation is defined as m(R) = {(a, a), (b, a)}.
Let ϕ be the formula of the form 〈R〉p. Let us consider the problem: ‘is ϕ true
in M?’ The translation of the formula ϕ is τ(ϕ) = (R; (P ; 1)), where τ ′(p) = P .
Using the construction from the proof of Proposition 26 it is easy to prove that
there exist an RLK(1, 1′)-model M′ such that the following holds:

M |= ϕ iff M′ |= xτ(ϕ)y.

The RLK(1, 1′)-model M′ = (U ′,m′) is defined as follows:

– U ′ = m′(1) = {a, b};
– m′(P ) = {(a, a), (a, b)};
– m′(R) = {(a, a), (b, a)};
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– m′(1′) = {(a, a), (b, b)};
– m′ extends to all compound terms as in RL(1, 1′)-models.

Therefore the model checking problem ‘is ϕ true in M?’ is equivalent to the
problem ‘is a formula xτ(ϕ)y true in M′?’. For the latter we apply the method
already presented above. The vocabulary of RLM′,xτ(ϕ)y-language adequate for
testing whether M′ |= xτ(ϕ)y consists of the following sets of symbols:

– OVRLM′,xτ(ϕ)y
a countable infinite set of object variables;

– OCRLM′,xτ(ϕ)y
= {ca, cb};

– RCRLM′,xτ(ϕ)y
= {R,P, 1, 1′};

– OPRLM′,xτ(ϕ)y
= {−,∪,∩, ; ,−1 };

– a set of parentheses {(, )}.

An RLM′,xτ(ϕ)y-model is the structure N = (W,n) defined as RLK(1, 1′)-models
with the following additional condition n(ca) = a, n(cb) = b.

The additional rules of RLM′,xτ(ϕ)y-system are: (−R), (−P ), (a �= b) and (1′).
Additional RLM′,xτ(ϕ)y-axiomatic sets are those which include one of the follow-
ing sets: {caRca}, {cbRca}, {cb−Rcb}, {ca−Rcb}, {caPca}, {caPcb}, {cb−Pcb}
or {cb−Pca}

By Theorem 10, truth of ϕ in M is equivalent to RLM′,xτ(ϕ)y-provability of
ϕ. Figure 3 presents a closed RLM′,xτ(ϕ)y-proof tree for xτ(ϕ)y.

x(R; (P ; 1))y

�(1′) twice

xR; (P ; 1)y, x−1′ca, y−1′cb
����	 (; ) twice

����




�

x−1′ca, xRca, . . .
���	




�(1′2)
x−1′ca, x1′ca, . . .

closed
caRca, . . .

closed

y−1′cb, caPy, . . .
���	




�(1′1)
caPcb, . . .
closed

y−1′cb, y1′cb, . . .
closed

y1y, . . .
closed

Fig. 3.

13 Applications to Verification of Satisfaction in
Non-classical Logics

The logic RLdf (C) is used in the formalisms of relational logics whose problem
of verification of satisfaction in a model is in question. Let M = (U,m) be a
fixed RL∗(1, 1′)-model, let a, b be elements of U and let ϕ = xRy be an RL(1, 1′)-
formula, where R is a relational term and x, y are any object symbols. In order
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to obtain the relational formalism for the problem ‘(a, b) ∈ m(R)?’, we consider
an instance RLM,ϕ,a,b of the logic RLdf (C). The language, the models, and the
system of RLM,ϕ,a,b-logic are constructed in a similar way as in the model check-
ing problem. The vocabulary of the logic RLM,ϕ,a,b is defined as in RLM,ϕ-logic
with additional set of relational constants:

C = {Rc : c ∈ OC0
RLM,ϕ,a,b

}.
An RLM,ϕ,a,b-models are defined as RLM,ϕ-models with the following addi-

tional condition:

n(Rc) = {n(c)} ×W , for every c ∈ OC0
RLM,ϕ,a,b

.

As in the case of RLM,ϕ-models, the class of RLM,ϕ,a,b-models has exactly
one element up to isomorphism. Therefore, RLM,ϕ,a,b-validity is equivalent to
the truth in a single RLM,ϕ,a,b-model N .

Proposition 31
The following statements are equivalent:

– (a, b) ∈ m(R);
– x[−(Rca ;R

−1
cb ) ∪R]y is RLM,ϕ,a,b-valid.

Proof
Note that RLM,ϕ,a,b-validity of x[−(Rca ;R−1

cb )∪R]y is equivalent to the following
property: for every x, y ∈W , if (x, y) ∈ n(Rca ;R−1

cb ), then (x, y) ∈ n(R).

(→) Let (a, b) ∈ m(R). Assume x, y ∈W and (x, y) ∈ n(Rca ;R−1
cb ). Then by the

semantics of Rca and Rcb , x = a and y = b. Since n(R) = m(R), (x, y) ∈ n(R).

(←) Assume (a, b) �∈ m(R). We need to show that there exist x, y ∈ W such
that (x, y) ∈ n(Rca ;R−1

cb ) but (x, y) �∈ n(R). Let x = a and y = b. Then (x, y) ∈
n(Rca ;R−1

ca ). Since n(R) = m(R), (x, y) �∈ n(R). !"

RLM,ϕ,a,b-proof system consists of the rules and axiomatic sets of the systems of
RLM,ϕ-logic and RLdf (C)-logic adjusted to RLM,ϕ,a,b-language. The complete-
ness of RLM,ϕ,a,b-system can be proved in a similar way as in in the case of
RLM,ϕ-system.

Theorem 11 (Soundness and completeness of RLM,ϕ,a,b)
For every RLM,ϕ,a,b-formula ϕ the following conditions are equivalent:

– ϕ is RLM,ϕ,a,b-provable.
– ϕ is RLM,ϕ,a,b-valid.

Due to the above theorem and Proposition 31 we obtain the following:

Theorem 12
The following statements are equivalent:

– (a, b) ∈ m(R);
– x[−(Rca ;R−1

cb ) ∪R]y is RLM,ϕ,a,b-provable.
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x[−(Rcb ; R
−1
ca ) ∪ (R; (P ; 1))]y

�(∪)

x − (Rcb ; R
−1
ca )y, x(R; (P ; 1))y

�(−; ) and (−1)
x−Rcbz, y−Rcaz, x(R; (P ; 1))y

�
(CD2) twice

x−1′cb, y−1′ca, x(R; (P ; 1))y, . . .
����	 (; ) twice

����




�

x−1′cb, xRca, . . .
���	




�(1′2)
x−1′cb, x1′cb, . . .

closed
cbRca, . . .

closed

y−1′ca, caPy, . . .
���	




�(1′1)
caPca, . . .
closed

y−1′ca, y1′ca, . . .
closed

y1y, . . .
closed

Fig. 4.

As an example of an application of the method presented above, consider the
modal logic K. Let M = (U,m) be a K-model such that U = {a, b}, m(p) = {a}
and the accessibility relation is defined as m(R) = {(b, a)}. Let ϕ be the formula
of the form 〈R〉p. Let us consider the problem: ‘is ϕ satisfied in M by a state b?’
The translation of the formula ϕ is τ(ϕ) = (R; (P ; 1)), where τ ′(p) = P . From
the proof of Proposition 26 it follows that there exist an RLK(1, 1′)-model M′

and a valuation vb such that the following holds:

(�) M, b |= ϕ iff M′, vb |= xτ(ϕ)y.

The RLK(1, 1′)-model M′ = (U ′,m′) is defined as follows:

– U ′ = m′(1) = {a, b};
– m′(P ) = {(a, a), (a, b)};
– m′(R) = {(b, a)};
– m′(1′) = {(a, a), (b, b)};
– m′ extends to all compound terms as in RL(1, 1′)-models.

Let vb be a valuation such that vb(x) = b and vb(y) = a. Then M′ and vb satisfy
the condition (�).

Therefore the satisfiability problem ‘is ϕ satisfied in M by a state b?’ is equiv-
alent to the problem ‘is a formula xτ(ϕ)y satisfied in M′ by vb?’. By Theorem
12 this is equivalent to RLM′,xτ(ϕ)y,b,a-provability of x[−(Rcb ;R−1

ca ) ∪ τ(ϕ)]y.
RLM′,xτ(ϕ)y,b,a-proof system contains the rules and axiomatic sets of RLdf (C)-

proof system adjusted to RLM′,xτ(ϕ)y,b,a-language and additionally it contains:
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– the rules (−R), (−P ), (1′) and (a �= b) of RLM′,xτ(ϕ)y-system adjusted to
RLM′,xτ(ϕ)y,b,a-language;

– axiomatic sets that include either of the following subsets: {cbRca}, {caPca},
{caPcb}, {ca−Rca}, {cb−Rcb}, {ca−Rcb}, {cb−Pcb}, and {cb−Pca}.

Figure 4 presents a closed RLM′,xτ(ϕ)y,b,a-proof tree for x[−(Rcb ;R−1
ca ) ∪ τ(ϕ)]y.

We recall that the rule (CD2) used in that proof is presented in Section 9.

14 RRA Algebras, FRA Algebras and Relational Logics

RRA is a class of algebras isomorphic to an algebra (P(1),−,∪,∩,−1 , ; , 1, 1′),
where 1 is an equivalence relation, 1′ is an identity on the field of 1, −,∪ and
∩ are Boolean operations, −1 and ; are converse and composition of binary
relations, respectively. FRA is a class of algebras isomorphic to an algebra (P(U×
U),−,∪,∩,−1 , ; , U × U, 1′), where U is a non-empty set, 1′ is an identity on U
and −,∪,∩,−1 , ; are as above.

The theorem below states the connection between RRA-validity and
RLN∗(1, 1′)-validity:

Theorem 13
Let R ∈ RTRL(1,1′) and x, y ∈ OVRL(1,1′). Then xRy is RLN∗(1, 1′)-valid iff R = 1
is RRA-valid.

Proof

Proof of (→) Assume xRy is RLN∗(1, 1′)-valid, that is for every RLN(1, 1′)-
model M = (U,m), m(1) ⊆ m(R). Suppose R = 1 is not RRA-valid. Then there
exist RRA-algebra A and an assignment a in A such that 1A �⊆ RA(a), where 1A

is an equivalence relation. Consider a model MA = (field of 1A,mA) such that:

– mA(P ) = PA(a) for every relational variable P ;
– mA(1) = 1A;
– mA(1′) = 1′ A;
– mA extends homomorphically to all compound terms as in the definition of

an RL-model.

Since A is an RRA algebra, so 1′ A is an equivalence relation on the field of
1A. Therefore MA is an RLN(1, 1′)-model. Since xRy is RLN(1, 1′)-valid, hence
mA(1) ⊆ mA(R), that is 1A ⊆ RA(a), a contradiction.

Proof of (←) Assume R = 1 is RRA-valid. Suppose xRy is not RLN∗(1, 1′)-
valid. Then there exists an RLN∗(1, 1′)-model M = (U,m) such that m(1) �⊆
m(R). Consider an algebra AM = (P(m(1)),∪,∩,−, ; ,−1 ,m(1′),m(1)). It is
easy to see that A is an RRA-algebra. Let a be an assignment in AM such that
PAM(a) = m(P ) ∩ m(1) for every relational variable P . Since R = 1 is true
in AM, so RAM(a) = 1AM = m(1). Therefore m(R) ∩ m(1) = m(1), hence
m(1) ⊆ m(R), a contradiction. !"
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Due to the above theorem and Theorem 5 we obtain the following:

Theorem 14
Let xRy be an RL(1, 1′)-formula. Then xRy is RL(1, 1′)-provable iff R = 1 is
RRA-valid.

A non-trivial example of RLN(1, 1′)-valid equation is presented in the Appendix.
Similarly we can prove the following theorem which states the connection

between FRA-validity and RL(1, 1′)-validity.

Theorem 15
Let R ∈ RTRL(1,1′) and x, y ∈ OVRL(1,1′). Then xRy is RL∗(1, 1′)-valid iff R = 1
is FRA-valid.

Due to Theorem 5 the above theorems imply the following well known result:

Theorem 16
The set of equations valid in RRA and the set of equations valid in FRA are equal.

15 Conclusion and Future Work

We presented a survey of relational logics, in particular, we discussed the logics
which are the counterparts to the classes RRA and FRA and the logics which en-
able us reasoning both about relations and about individual elements of a domain
on which the relations are defined. We extensively discussed the applications of
those logics to the major logical tasks: verification of validity, verification of
entailment, model checking and verification of satisfaction in a model. We ex-
plained how we can perform these tasks for non-classical logics after translating
them into the appropriate relational logics.

An important open problem is to modify the proof systems presented in the
paper for the relational logics RLL, where L is a modal logic, so that they become
decision procedures. Another interesting problem is to establish bounds on the
number of variables needed in the proofs of formulas of the relational logics
presented in the paper.
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Appendix

We present a construction of a closed RL(1, 1′) proof tree of an equation which
is not valid in RA, while it is valid in RRA. It has the following form:

τ = 1

where τ := (1; ρ; 1) and ρ := (A ∪B ∪ C ∪D ∪E) for:

– A = −(1;R; 1);
– B = [R ∩ −[(N ;N) ∩ (R;N)]];
– C = (N ;N ∪R;R) ∩N ;
– D = [(R ∪R−1 ∪ 1′) ∩N ];
– E = −(R ∪R−1 ∪ 1′ ∪N).

To prove validity of τ = 1 we need to prove validity of the formula uτw, for
u,w ∈ OVRL(1,1′), u �= w.

It is easy to show that in RL(1, 1′)-proof tree for uτw, if a formula uτw occurs
in a node of this tree, then it is possible to build a subtree of RL(1, 1′)-proof tree
with this formula at the root which ends with exactly one non-axiomatic node
containing at least one of the following formulas: zAv, zBv, zCv, zDv and zEv,
for any variables z, v. Therefore, in such cases instead of building long subtrees
we will use the following abbreviations which have a form of the rules:

uτw

�
(Axy)

x−Ry, uτw, . . .

�(Rxyz)

x−Ry, x−Nz, z−Ny, x−(R; N)y, uτw, . . .

�(−; ) with a new variable v

x−Ry, x−Rv, x−Nz, z−Ny, v−Ny, uτw, . . .

�
(RN1′vzx)1

x−Ry, x−Rv, x−Nz, z−Ny, v−Ny, z1′v, uτw, . . .
����	

�
���

�
���





�
(Ezv) and (−∪) × 3

Π v−Rz,x−Rv,x−Nz, . . .

�
(RRNxvz)

closed

z−1′v, z1′v
closed

z−Nv, v−Ny, z−Ny, . . .

�
(NNNzvy)

closed

where the subtree Π is presented in Figure 6

Fig. 5. RL(1, 1′)-proof tree for uτw
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z−Rv,x−Rv, x−Ry, z−Ny, v−Ny, x−Nz, uτw, . . .

�
(Rzvs)

z−Rv,x−Ry,x−Ns, s−Nv, z−Ny, v−Ny, x−Nz, uτw, . . .

�
(RN1′ysx)1

z−Rv,x−Ry,x−Ns, s−Nv, z−Ny, v−Ny, x−Nz, s1′y, uτw, . . .
���	 �

��
�

��



�(Esy) and (−∪) × 3

x−Ry, y−Rs,x−Ns, . . .

�
(RRNxys)

closed

Π∗ s−1′y, s1′y, . . .
closed

s−Ny, s−Nv, v−Ny, . . .

�
(NNNsvy)

closed

where Π∗ is presented in Figure 7

Fig. 6. The subtree Π

(Azv)
uτw

zAv, uτw
(Bzv)

uτw

zBv, uτw
(Czv)

uτw

zCv, uτw

(Dzv)
uτw

zDv, uτw
(Ezv)

uτw

zEv, uτw

Similarly, we can admit the following derived rules:

(1′∗)
x1′y
y1′x

(Rxyz)
x−Ry,uτw

x−Ry,x−Nz, z−Ny, x−(R;N)y, uτw

where z is a new variable,

(RN1′xyz)1
z−Rx, z−Ny, uτw

z−Rx, z−Ny, x1′y, uτw
,

z−Rx, z−Ny, uτw

z−Rx, z−Ny, y1′x, uτw

(RN1′xyz)2
x−Rz, y−Nz, uτw

x−Rz, y−Nz, x1′y, uτw
,

x−Rz, y−Nz, uτw

x−Rz, y−Nz, y1′x, uτw

(RRNxyz)
x−Ry, y−Rz, x−Nz, uτw

closed

(NNNxyz)
x−Ny, y−Nz, x−Nz, uτw

closed

By way of example, in Figures 8 and 9 we show how to obtain the derived rules
(Rxyz) and (RN1′xyz)1, respectively. Similarly we may obtain the remaining
derived rules. It is easy to check that the derived rule (Cxy) is needed to get
(RRNxyz) and (NNNxyz), while (Dxy) is needed in the proofs of (RN1′xyz)1
and (RN1′xyz)2.

Figure 5 presents a closed RL(1, 1′)-proof tree for uτw.
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s−Ry, z−Rv, s−Nv, z−Ny, v−Ny, x−Nz, uτw, . . .

�
(RN1′zsv)2

s−Ry, z−Rv, s−Nv, s1′z, z−Ny, v−Ny, x−Nz, uτw, . . .
���	 �

��
�

��



�(Esz) and (−∪) × 3

s−Rz, z−Rv,
s−Nv . . .

�
(RRNszv)

closed

z−Rs, s−Ry
z−Ny . . .

�
(RRNzsy)

closed

s−1′z, s1′z, . . .
closed

x−Ns, s−Nz,
x−Nz, . . .

�
(NNNxsz)

closed

Fig. 7. The subtree Π∗

x−Ry, uτw

�
(Bxy)

x−Ry,x(R ∩ −((N ; N) ∩ (R; N)))y, uτw, . . .
������

�����(∩)

x−Ry,xRy, . . .
closed

x−Ry, x−((N ; N) ∩ (R;N)), uτw, . . .

�
(−∩) and (−; ) with a new z

x−Ry, x−Nz, z−Ny, x−(R; N)y, uτw, . . .

Fig. 8. A derivation of the rule (Rxyz)

z−Rx, z−Ny, uτw

�
(Dzy)

z−Rx, z−Ny, z(N ∩ (R ∪ R−1 ∪ 1′)y, uτw, . . .
���	




�(∩)
z−Ny, zNy, . . .

closed
z−Rx, z−Ny, z(R ∪ R−1 ∪ 1′)y, uτw, . . .

�
(∪)

z−Rx, z−Ny, zRy, uτw, . . .
���	




�(1′1)
zRx, z−Rx, . . .

closed
z−Rx, z−Ny, y1′x, uτw, . . .

Fig. 9. A derivation of the rule (RN1′xyz)1



Fuzzy Information Relations and Operators:
An Algebraic Approach Based on Residuated

Lattices�

Anna Maria Radzikowska1 and Etienne E. Kerre2

1 Faculty of Mathematics and Information Science, Warsaw University of Technology
Plac Politechniki 1, 00–661 Warsaw, Poland

annrad@mini.pw.edu.pl
2 Department of Applied Mathematics and Computer Science, Ghent University

Krijgslaan 281 (S9), B-9000 Gent, Belgium
Etienne.Kerre@Ugent.be

Abstract. We discuss fuzzy generalisations of information relations ta-
king two classes of residuated lattices as basic algebraic structures. More
precisely, we consider commutative and integral residuated lattices and
extended residuated lattices defined by enriching the signature of residu-
ated lattices by an antitone involution corresponding to the De Morgan
negation. We show that some inadequacies in representation occur when
residuated lattices are taken as a basis. These inadequacies, in turn,
are avoided when an extended residuated lattice constitutes the basic
structure. We also define several fuzzy information operators and show
characterizations of some binary fuzzy relations using these operators.

Keywords: Information relations, Information operators, Residuated
lattices, Fuzzy sets, Fuzzy logical connectives.

1 Introduction

In real–life problems we usually deal with incomplete information. Generally
speaking, there are two reasons for incompleteness of information. Firstly, we
often have only partial data about a domain under considerations. Secondly,
the acquired information, if available, is often imprecise (e.g. when expressed by
means of linguistic terms like “quite good” or “rather tall”). Formal methods for
representing and analyzing incomplete information have been extensively deve-
loped within the theory of rough sets ([26]). In these approaches an information
relation is any relation defined on a set of objects of an information system and
determined by the properties of these objects. Since properties of an object can
be represented by a set of values of its attributes (properties), any information
relation is formally a binary relation between two subsets of a domain in dis-
course. Examples of some information relations (in information systems) and
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their theories can be found, for example, in [6], [10], [25], and [26]. A compre-
hensive exposition of logical and algebraic theories of information relations and
their applications can be found in [7].

When imprecise information is admitted, it is clear that it cannot be ade-
quately represented by means of standard methods based on classical two–valued
structures. A natural solution seems to be fuzzy generalisations of the respective
methods. Multi–valued generalisations of information relations based on residu-
ated lattices were developed in [27].

In the present paper we continue our studies of fuzzy information relations
and information operators. In [30], [31], and [33] we discussed fuzzy generalisa-
tions of information relations taking the unit interval [0, 1] and traditional fuzzy
logical connectives as the basis. In this framework the relationships between ob-
jects are real numbers from [0, 1], so they are always comparable. In real–life
problems, however, such relationships need not have this property. For instance,
a child is usually similar to both parents, but it is often hard to say to which of
his/her parents the child is more (or less) similar. Therefore, some lattice–based
approaches seems to be more adequate.

We present some fuzzy generalisations of information relations and informa-
tion operators taking two classes of residuated lattices ([4],[8],[15],[16],[22],[42])
as basic algebraic structures. Our approach is motivated by the role these alge-
bras play in fuzzy set theory ([18],[19],[20],[23],[43]) and by the rough set–style
data analysis ([26]). In a residuated lattice a product operator and its residuum
are abstract counterparts of a triangular norm ([41]) and a fuzzy residual impli-
cation ([23]), respectively. However, traditional residuated lattices do not provide
sufficiently general counterparts of other fuzzy logical connectives, in particular
triangular conorms, fuzzy negations, and fuzzy S–implications. Consequently,
in generalisations of information relations some inadequacies occur. From this
reason, double residuated lattices were introduced ([28],[29]) and some fuzzy in-
formation relations and operators were investigated. In the signature of these
algebras there are two independent operations corresponding to a triangular
norm and a triangular conorm. Yet these structures do not give us the algebraic
counterpart of the De Morgan negation. Therefore, while some inadequacies
are avoided, other drawbacks in representation still remain. To cope with these
problems, we propose yet another class of residuated lattices, called extended
residuated lattices ([12]), which are an extension of residuated lattices by an
antitone involution. This operation, together with the operations of residuated
lattices, allows us to define algebraic counterparts of the main classes of fuzzy
logical connectives. Basing on these algebras, we extend the results obtained in
[36] and discuss another generalisation of information relations. We show how
these representations allow us to avoid inadequacies occurring when residuated
lattices are taken as a basis.

It is well–known that binary relations determine modal–like operators which,
in turn, are the abstract counterparts of the information operators derived from
information systems ([7]). Generally speaking, an information operator is any
mapping defined on binary relations on a non–empty universe and subsets of
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this universe. A general theory of the classical abstract information operators
was developed in [7], [10], and [11]. A fuzzy generalisation of some information
operators, based on the interval [0, 1], were presented in [32], [33], and [38].
In [34], [35], [36], and [37] fuzzy approximation operators based on residuated
lattices were discussed.

In this paper we propose a generalisation of information operators determined
by information relations based on extended residuated lattices. This approach
might be a basis for developing multi–valued logics and algebras. On the other
hand, this is a generalisation of approximation operators, which are the main
tools in rough set–style data analysis. We show that properties of main classes
of fuzzy information relations can be expressed by means of these operators.

The paper is organized as follows. In Section 2 we provide some algebraic
foundations to our discussion. In particular, the notions of residuated lattices
and extended residuated lattices will be presented. Also, the notion of fuzzy
sets and fuzzy relations will be recalled. In Section 3 we define several fuzzy
information relations taking a commutative and integral residuated lattice as a
basic structure. Main properties of these relations will be presented. We will point
out some drawbacks of this representation and propose another generalisation of
some information relations, where extended residuated lattices are taken as basic
structures. Next, in Section 4, we discuss some fuzzy information operators. It
will be shown that these operators are useful for characterisations of fuzzy binary
relations. Some concluding remarks will complete the paper.

2 Algebraic Foundations

2.1 Residuated Lattices

A monoid is a system (M, ◦, ε), where M is a non–empty set, ◦ is an associative
operation in M , and ε∈M is such that ε ◦ a = a ◦ ε = a for every a∈M . A
monoid (M, ◦, ε) is called commutative iff ◦ is commutative.

Typical examples of monoid operations are triangular norms (t–norms) and
triangular conorms (t–conorms). Recall ([41]) that a triangular norm t (resp. a
triangular conorm s) is a [0, 1]2 − [0, 1] mapping, non-decreasing in both argu-
ments, associative, commutative, and satisfying for every a∈ [0, 1] the boundary
condition t(a, 1)= a (resp. s(0, a) = a). The well–known t–norms and t–conorms,
tZ and sZ (the Zadeh’s t–norm and the t–conorm), tP and sP (the algebraic
product and the bounded sum), and tL and sL (the �Lukasiewicz t–norm and the
�Lukasiewicz t–conorm), are given in Table 1.

Table 1. Well–known t–norms and t–conorms

tZ(a, b)= min(a, b) sZ(a, b) = max(a, b)
tP (a, b)= a·b sP (a, b)= a+b−a · b

tL(a, b)= max(0, a+b−1) sL(a, b) = min(1, a+b)
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Let (L, � ) be a poset and let ◦ be a binary operation in L. Define two binary
operations in L, →r, →l, satisfying the residuation conditions for all a, b, c∈L,

a ◦ b� c iff a� b→l c (1)
a ◦ b� c iff b�a→r c (2)

The operations (1) and (2) are called the left residuum of ◦ and the right
residuum of ◦, respectively. It can be easily shown that if the respective residua
exist, then

a→l b = sup{c∈L : c ◦ a� b}
a→r b = sup{c∈L : a ◦ c� b}.

Clearly, if ◦ is commutative, then →l=→r.
Residua of left–continuous1 t–norms are called fuzzy residual implications

([23]). Three well–known residual implications, →Z , →P , and →L, determined
by tZ , tP and tL, respectively, are given in Table 2.

Table 2. Well–known residual implications

Gödel implication iZ(a, b) = 1 iff a � b and iZ(a, b) = b otherwise
Gaines implication iP (a, b) = 1 iff a � b and iP (a, b) = b

a otherwise
�Lukasiewicz implication iL(a, b) = min(1, 1−a+b)

Definition 1. A residuated lattice is an algebra (L,∧,∨,⊗,→l,→r, 0, 1, 1′)
such that

(i) (L,∧,∨, 0, 1) is a bounded lattice with the least element 0 and the greatest
element 1,

(ii) (L,⊗, 1′) is a monoid, and
(iii) →l and →r are the left and the right residuum of ⊗, respectively.
The operation ⊗ of a residuated lattice L is called its product. �

We say that a residuated lattice (L,∧,∨,⊗,→l,→r, 0, 1, 1′) is
– integral iff 1′ = 1,
– commutative iff ⊗ is commutative,
– complete iff the underlying lattice (L,∧,∨, 0, 1) is complete.

Remark 1. Some researchers (in particular, fuzzy logicians) assume that residu-
ated lattices are commutative by definition (e.g. [3],[19]). Others, however, con-
sider these structures in a more general framework and assume that the product
operation of residuated lattices need not be commutative (see, for example, [4]
and [22]). �

Throughout this paper we consider only integral and commutative residuated
lattices, which will be referred to as R–lattices and written simply (L,∧,∨,⊗,
→, 0, 1).
1 A t–norm is called left–continuous iff it has left–continuous partial mappings.
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Given an R–lattice (L,∧,∨,⊗,→, 0, 1), we define the following precomplement
operation for every a∈L:

¬a = a→ 0. (3)

Note that this operation is a generalisation of the pseudo–complement in a lattice
([39]). If ∧=⊗, then → is the relative pseudo–complement, ¬ is the pseudo–
complement and (L,∧,∨,→,¬, 0, 1) is a Heyting algebra.

Example 1. Let t be a left–continuous t–norm and let it be the fuzzy residual
implication based on t. Put L = [0, 1]. Then the algebra (L,min,max, t, it, 0, 1)
is an R–lattice. �

The following lemma will be useful later.

Lemma 1. Let (L,∧,∨,⊗,→, 0, 1) be an R–lattice such that its product ⊗ satis-
fies the following condition: for all a, b∈L,

a �=0 & b �=0 =⇒ a⊗ b �=0. (4)

Then for every a∈L, ¬a= 0 iff a �=0 and ¬a = 1 iff a=0.

Proof. Analogous to the proof presented in [5].

Following the terminology from fuzzy set theory, we say that the product ⊗
satisfying (4) has no zero divisors. Notice that among t–norms given in Table 1,
the Zadeh’s t–norm tZ and the algebraic product tP have this property, while
the �Lukasiewicz t–norm tL does not. The family of all R–lattices, which product
satisfy (4), will be denoted by RL+.

For the recent results on residuated lattices we refer to [2], [4], [21], and [22].
Given an R–lattice (L,∧,∨,⊗,→, 0, 1), its product ⊗ is an algebraic counter-

part of a left–continuous t–norm, the residuum → of ⊗ corresponds to a fuzzy
residual implication determined by ⊗, and the precomplement ¬ corresponds to
a fuzzy negation.2 However, in general ¬ is not involutive. Moreover, the sig-
nature of R–lattices do not give algebraic counterparts of t–conorms. From this
reason double residuated lattices were proposed (see [28],[29]).
First, let us recall the following notions. Given a poset (L, � ), and a binary
operation ◦ in L, the following binary operations in L, ←l and ←r, respectively
called the dual left residuum of ◦ and the dual right residuum of ◦, are defined
as follows: for all a, b∈L,

c� a ◦ b iff c←l b� a (5)
c� a ◦ b iff c←r a� b. (6)

If the respective dual residua of ◦ exist, then

a←l b = inf{c∈L : a� c ◦ b}
a←r b = inf{c∈L : a� b ◦ c}.

2 A fuzzy negation ([23]) is a non–increasing mapping n : [0, 1] → [0, 1] satisfying
n(0) = 1 and n(1) = 0.
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Dual residua of a lattice join were studied by Rauszer ([40]) in the context of
Heyting–Brouwer logic. In [1] dual residua of a monoid operator are discussed.
The dual residua of the most famous t–conorms are presented in Table 3.

Table 3. The dual residua of well–known t–conorms

a ←Z b = 0 iff b � a and a ←Z b = b otherwise
a ←P b = 0 iff b� a and a ←P b = b−a

1−a
otherwise

a ←L b = max(0, b−a)

Definition 2. ([28],[29]) A double residuated lattice is an algebra (L,∧,∨,⊗,
⊕,→l, →r,←l,←r, 0, 1, 0′, 1′) such that (L,∧,∨,⊗,→l,→r, 0, 1, 1′) is a residu-
ated lattice, (L,⊕, 0′) is a monoid, and ←l and ←r are respectively the dual left
and the dual right residuum of ⊕. �

A double residuated lattice is called commutative (resp. integral) iff ⊗ and ⊕
are commutative (resp. 1′ =1 and 0′ =0). Commutative and integral double
residuated lattices will be written (L.∧,∨,⊗,⊕,→,←, 0, 1).

Given a commutative and integral double residuated lattice, define the dual
precomplement operation as

�– a = 1 ← a for every a∈L. (7)

This operation is a generalisation of a dual pseudo–complement ([39]). The dual
pseudo–complement is one of the operations in double Stone algebras. However,
it is a primitive operation there, residuation operations are not in the signature
of Stone algebras.

Let L = (L,∧,∨, 0, 1) be a bounded lattice with its ordering �. We write
L−1 to denote the lattice obtained from L by reversing its ordering, i.e. the
lattice with the ordering � −1 = � . Then the join ∨−1 (resp. the meet ∧−1)
of L−1 is the meet ∧ (resp. the join ∨) of L and the greatest (resp. the least)
element of L−1 is the least (resp. the greatest) element of L. In other words,
L−1 = (L,∨,∧, 1, 0).

Proposition 1. [29] Let (L,∧,∨,⊗,⊕,→l,→r,←l,←r, 0, 1, 0′, 1′) be a double
residuated lattice. Then the algebras (L,∧,∨,⊗,→l,→r, 0, 1, 1′) and (L,∨,∧,⊕,
←l,←r, 1, 0, 0′) are residuated lattices.

In view of the above proposition it is easily observed that in double residuated
lattices the analogon of Lemma 1 holds. Namely, if ⊕ satisfies the condition

a �=1 & b �=1 =⇒ a⊕ b �=1 for all a, b∈L,
then �– a = 1 iff a �=1 and �– a = 0 iff a= 1. This means that �– can be reduced
to the binary case.

Observe that the signature of a commutative and integral double residuated
lattice (L,∧,∨,⊗,⊕,→,←, 0, 1) gives two independent algebraic counterparts of
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a t–norm (⊗) and a t–conorm (⊕). Also, the residuum → of ⊗ corresponds to
a residual implication (determined by ⊗). However, we do not have algebraic
counterpart of the second main class of fuzzy implications called S–implications.
Recall ([23]) that an S–implication, determined by a t–conorm s and a fuzzy
negation n, is defined by: is,n(a, b) = s(n(a), b) for all a, b∈ [0, 1] (the most
famous S–implications, based respectively on sZ and n, sP and n, and sL and
n, where n is the standard fuzzy negation n(a)= 1−a for a∈ [0, 1], are given in
Table 4). Moreover, neither the precomplement ¬ nor the dual precomplement
�– are sufficiently general counterparts of fuzzy negations, since (under some
conditions) can be reduced to the binary case. Therefore, in general case we
cannot obtain the counterpart of the De Morgan negation. Having this on mind,
the extended residuated lattices were defined ([12],[34],[36]).

Table 4. Well–known S–implications

Kleene–Dienes implication isZ ,n(a, b) = max(1−a, n)
Reichenbach implication isP ,n(a, b) = 1−a+a · b

�Lukasiewicz implication isL,n(a, b) = min(1, 1−a+b)

Definition 3. By an extended residuated lattice we mean a system (L,∧,∨,
⊗,→l,→r,∼, 0, 1, 1′) such that

(i) (L,∧,∨,⊗,→l,→r, 0, 1, 1′) is a residuated lattice
(ii) ∼ is an antitone involution satisfying ∼0 =1 and ∼1 =0. �

Analogously, an extended residuated lattice is integral (resp. commutative) iff
the underlying residuated lattice is integral (resp. commutative). Any integral
and commutative extended residuated lattice will be referred to as an ER–lattice
and written (L,∧,∨,⊗,→,∼, 0, 1).

Let (L,∧,∨,⊗,→,∼, 0, 1) be an ER–lattice. Let us define the following oper-
ations in L: for all a, b∈L,

a⊕ b = ∼(∼a⊗∼b) (8)
a⇒ b = ∼a⊕ b (9)
a← b = ∼(∼a→ ∼b) (10)
a⇐ b = ∼(∼a⇒ ∼b). (11)

Remark 2. Assume that ∼ and → are respectively the classical negation and
implication. From the definition (10) it follows that a← b = ∼(b→ a), so a← b
is a generalisation of the classical conjunction b ∧ ∼a. The operation (11) has
the similar interpretation. �

By straightforward verification one can easily check the following
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Proposition 2. Let (L,∧,∨,⊗,→,∼, 0, 1) be an ER–lattice. Then

(i) (L,⊕, 0) is a commutative monoid
(ii) ← is the dual residuum of ⊕
(iii) (L,∧,∨,⊗,→, 0, 1) and (L,∨,∧,⊕,←, 1, 0) are R–lattices
(iv) (L,∧,∨,⊗,⊕,→,←, 0, 1) is a commutative and integral double residuated

lattice.

Given an ER-lattice (L,∧,∨,⊗,→,∼, 0, 1), its product ⊗ and its sum ⊕ are al-
gebraic counterparts of a triangular norm and a triangular conorm. Also, → and
⇒ correspond to a fuzzy residual implication and an S–implication, respectively.
Finally, ∼ corresponds to the De Morgan negation. Therefore, ER–lattices allow
us to get algebraic counterparts of all main classes of fuzzy logical connectives.
Main properties of ER–lattices are given in the following two lemmas.

Lemma 2. For every ER–lattice (L,∧,∨,⊗,→,∼, 0, 1) and for all a, b, c∈L,
the following properties hold:

(i) a� b implies
a⊗ c� b ⊗ c
b→ c� a→ c
c→ a� c→ b
b⇒ c� a⇒ c
c⇒ a� c⇒ b
¬b�¬a

(ii) a⊗ b� a

(iii) a⊗ b� a ∧ b

(iv) a⊗ 0 = 0
(v) a� b iff a→ b = 1
(vi) 1 → a = 1 ⇒ a = a

(vii) a⊗ (a→ b)� b

(viii) a⊗ (b→ c)� b→ (a⊗ c)
(ix) (a→ b)⊗ (b→ c)� (a→ c)
(x) (a⇒ c)� (a⇒ b)⊕ (b⇒ c)
(xi) (a→ b)� (c→ a) → (c→ b)
(xii) (a→ b)� (a⊗ c) → (b ⊗ c)
(xiii) b� a→ (a⊗ b)
(xiv) a→ (b→ c) = (a⊗ b) → c

(xv) a⇒ (b⇒ c) = (a⊗ b) ⇒ c

(xvi) a→ ¬b = ¬(a⊗ b)
(xvii) a⇒ ∼b = ∼(a⊗ b)
(xviii) a→ b�¬b→ ¬a
(xix) a⇒ b = ∼b⇒ ∼a
(xx) a⊗ ¬b�¬(a→ b)
(xxi) a�¬¬a

(i’) a� b implies
a⊕ c� b ⊕ c
b← c� a→ c
c← a� c→ b
b⇐ c� a⇒ c
c⇐ a� c⇒ b
�– b� �– a

(ii’) a� a⊕ b

(iii’) a ∨ b� a⊕ b

(iv’) a⊕ 1 = 1
(v’) b← a = 0 iff a� b

(vi’) 0 ← a = 0 ⇐ a = a

(vii’) b� a⊕ (a← b)
(viii’) b← (a⊕ c)� a⊕ (b← c)
(ix’) (a← c)� (a← b)⊕ (b← c)
(x’) (a⇐ b)⊗ (b⇐ c)� (a⇐ c)
(xi’) (c← a) ← (c← b)� (a← b)
(xii’) (a⊕ c) ← (b⊕ c)� (a← b)
(xiii’) a← (a⊕ b)� b

(xiv’) a← (b← c) = (a⊕ b) ← c

(xv’) a⇐ (b⇐ c) = (a⊕ b) ⇐ c

(xvi’) a← �– b = �– (a⊕ b)
(xvii’) a⇐ ∼b =∼ (a⊕ b)
(xviii’) �– b← �– a� a← b

(xix’) a⇐ b = ∼b⇐ ∼a
(xx’) a⊗∼b = ∼(a⇒ b)
(xxi’) �– �– a� a.
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Proof. Note that the properties in the right column can be easily obtained
from the properties in the left column by the definitions (7)–(11). Moreover, all
properties, where the operations ⊗, →, and ¬ occur, are well–known properties
of residuated lattices (see, e.g., [19],[22],[42]). Then it remains to show (x), (xv),
(xvii), and (xix). By way of example we show (x) and (xv).
(x) By (ii’), for all a, b, c∈L, ∼a⊕b�∼a and ∼b⊕c� c. Then, by the definition
(9) and the property (i’), (a⇒b)⊕ (b⇒c)� (∼a⊕ c) = (a⇒ c).
(xv) For all a, b, c∈L, it holds:

a⇒ (b⇒c)
= ∼a⊕ (∼b⊕ c) by the definition (9)
= (∼a⊕∼b)⊕ c by associativity of ⊕
= ∼(a⊗ b)⊕ c by the definition (8)
= (a⊗ b) ⇒ c.

Lemma 3. For every ER–lattice (L,∧,∨,⊗,→,∼, 0, 1), for every a∈L, and
for all families (bi)i∈I and (ci)i∈I of elements of L, if the respective infima and
suprema exist, then the following properties hold:

(i) a⊗ supi∈I ci = supi∈I(a⊗ ci)
(ii) a→ inf i∈I ci = infi∈I(a→ci)
(iii) a⇒(inf i∈I ci)= infi∈I(a⇒ci)
(iv) (supi∈I ci)→a= infi∈I(ci→a)
(v) (supi∈I ci)⇒a= infi∈I(ci⇒a)
(vi) supi∈I ci �¬ inf i∈I ¬ci

(vii) (inf i∈I bi)⊗ (infi∈I ci)
� infi∈I(bi⊗ci)

(viii) infi∈I ¬ci =¬ supi∈I ci

(ix) supi∈I ¬bi �¬(inf i∈I bi).

(i’) a⊕ (infi∈I ci)= infi∈I(a⊕ ci)
(ii’) a←(supi∈I ci)= supi∈I(a←ci)
(iii’) a⇐(supi∈I ci)= supi∈I(a⇐ci)
(iv’) (infi∈I ci)←a= supi∈I(ci←a)
(v’) (infi∈I ci)⇐a= supi∈I(ci⇐a)
(vi’) supi∈I ci =∼ infi∈I ∼ci

(vii’) supi∈I(bi ⊕ ci)
� (supi∈I bi)⊕ (supi∈I ci).

Proof. As in Lemma 2, the properties in the right column are easily obtained
from the respective properties in the left column using the definitions (7)–(11).
Notice that all properties except from (iii) and (v) are known properties of
residuated lattices.
(iii) By the definition of ⇒ and (i’), we easily get a⇒(inf i∈I ci)=∼a⊕ infi∈I ci

= inf i∈I(∼a⊕ ci)= infi∈I(a⇒ ci).
(v) can be proved in the analogous way.

Example 2. Let L = [0, 1] and let (L,min,max, t, it, 0, 1) be the R–lattice as in
Example 1. Also, let n be the standard fuzzy negation n(a) = 1−a for every
a∈ [0, 1]. Then (L,min,max, t, it, n, 0, 1) is an ER–lattice. �

Remark 3. Note that properties (xviii) and (xix) of Lemma 2 correspond to the
contraposition law. In general, however, we do not have analogous links between
a→b and ∼a→∼b. For example, consider the ER–lattice as in Example 2 and let
→ and∼ be the Gödel implication (see Table 2) and the standard fuzzy negation.
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Then for a=0.8 and b=0.4 we have: a → b=0.4 and ∼b → ∼a=0.2. Hence
a→ b > ∼b→∼a. Taking c=0.1, we easily get: b→ c= 0.1 and ∼c→∼b=0.6,
so b→c < ∼c→ ∼b. �

2.2 L–fuzzy Sets and L–fuzzy Relations

Fuzzy sets. Let L be a residuated lattice (in particular, R–lattice or ER–lattice)
and letX be a non–empty domain. By an L–fuzzy set in X we mean any mapping
F : X → L. For every x∈X , F (x) is the degree of membership of x to F . Two
specific L–fuzzy sets in X , ∅ and X , are respectively defined by: ∅(x) = 0 and
X(x) = 1 for every x∈X . The family of all L–fuzzy sets in X will be denoted
by FL(X).

Recall the basic operations on L–fuzzy sets. First, let L be an R–lattice. For
all A,B ∈FL(X) and for every x∈X ,

(A "L B)(x) = A(x) ∨B(x)
(A !L B)(x) = A(x) ∧B(x)
(A ∩L B)(x) = A(x) ⊗B(x)

(¬LA)(x) = ¬A(x).

If L is an ER–lattice, we additionally define:

(A ∪L B)(x) = A(x) ⊕B(x)
(∼LA)(x) = ∼A(x)
(�–

L
A)(x) = �–A(x).

For A∈FL(X), we will write A ) ∅ iff A(x) �= 0 for every x∈X . Also, for two
L–fuzzy sets A,B ∈FL(X), we will write A ⊆L B iff A(x)�B(x) for every
x∈X (Zadeh’s inclusion). If L is complete, then for any indexed family (Ai)i∈I

of L–fuzzy sets in X ,
⋃

i∈I Ai and
⋂

i∈I Ai are L–fuzzy sets in X defined as: for
every x∈X , (

⋃
i∈I Ai)(x) = supi∈I Ai(x) and (

⋂
i∈I Ai)(x) = infi∈I Ai(x).

Fuzzy relations. An L–fuzzy relation on X is a mapping R : X×X → L. The
family of all L–fuzzy relations on X will be denoted by RL(X).

An L–fuzzy relation R∈RL(X) is called

• reflexive iff R(x, x) = 1 for every x∈X
• irreflexive iff R(x, x) = 0 for every x∈X
• symmetric iff R(x, y) = R(y, x) for all x, y ∈X
• ⊗–transitive iff R(x, y)⊗R(y, z)�R(x, z) for all x, y, z ∈X
• ⊕–cotransitive iff R(x, y)⊕ R(y, z)�R(x, z) for all x, y, z ∈X
• ⊗–quasi ordering iff it is reflexive and ⊗–transitive
• ⊗–equivalence iff it is reflexive, symmetric, and ⊗–transitive
• crisp iff R(x, y)∈{0, 1} for all x, y ∈X .

Note that if R is crisp and ⊕=∨, then cotransitivity of R means that the
complement of R is transitive. Hence, ⊕–cotransitivity is a fuzzy generalisation
of this property.
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3 Fuzzy Information Relations

In this section we define several fuzzy information relations measuring degrees
of relationship between two fuzzy sets. We take two classes of residuated lattices
as an algebraic basis: complete R–lattices and complete ER–lattices.

Let L be a complete R–lattice or an ER–lattice and let X �= ∅. By an L–fuzzy
information relation we mean any L–fuzzy relation on FL(X).

3.1 Fuzzy Information Relations Based on R–Lattices

Let us define several L–information relations.

Definition 4. Let (L,∧,∨,⊗,→, 0, 1) be a complete R–lattice and let X �= ∅.
Define the following L–fuzzy information relations: for all A,B ∈FL(X),

(i) L–fuzzy inclusion:
incL(A,B) = infx∈X(A(x) → B(x))

(ii) L–fuzzy noninclusion:
nincL(A,B) = supx∈X(A(x) ⊗ ¬B(x))

(iii) L–fuzzy compatibility:
comL(A,B) = supx∈X(A(x) ⊗B(x))

(iv) L–fuzzy orthogonality:
ortL(A,B) = incL(A,¬LB)

(v) L–fuzzy exhaustiveness:
exhL(A,B) = infx∈X(A(x) ∨B(x))

(vi) L–fuzzy nonexhaustiveness:
nexhL(A,B) = comL(¬LA,¬LB)

(vii) L–fuzzy indiscernibility:
indL(A,B) = incL(A,B) ⊗ incL(B,A)

(viii) L–fuzzy diversity:
divL(A,B) = nincL(A,B) ∨ nincL(¬LA,B). �

For two L–fuzzy setsA,B ∈FL(X), incL(A,B) (resp. nincL(A,B)) is the degree,
to which A is included (resp. not included) in B. Note that the formula for
nincL is the straightforward generalisation of the classical equivalence: A �⊆ B ⇔
(∃x∈X) (x∈A & x �∈B). Next, comL(A,B) (resp. ortL(A,B)) represents the
degree, to which A and B overlap (resp. are disjoint). The formulation for ortL
results from the generalisation of the classical equivalence: A∩B = ∅ ⇔ A⊆−B,
where −B=X\B. Furthermore, exhL(A,B) (resp. nexhL(A,B)) is the degree,
to which A and B cover (resp. do not cover) the whole domain X . Note that in
the classical case, A ∪B �=X ⇔ (−A ∩ −B �= ∅). This equivalence underlies the
formulation for nexhL. Finally, indL(A,B) (resp. divL(A,B)) is the degree, to
which A is equal to B (resp. A differs from B). The formulation for divL is again a
generalisation of the classical equivalence: A �=B ⇔ (A∩−B �= ∅)∨(−A∩B �= ∅).

The following proposition provides main properties of these relations.
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Proposition 3. Let (L,∧.∨,⊗,→ 0, 1) be a complete R–lattice. Then

(i) incL is an L–quasi ordering

(ii.1) nincL is irreflexive
(ii.2) if L∈RL+, then for any A∈FL(X) and for any B ∈FL(X) satisfying

B ) ∅, nincL(A,B) = 0
(iii) comL and exhL are symmetric

(iv.1) ortL is symmetric
(iv.2) if L∈RL+, then ortL is crisp
(v.1) nexhL is symmetric;
(v.2) if L∈RL+, then for all A,B ∈FL(X) such that A(x) �= 0 or B(x) �= 0

for any x∈X, nexhL(A,B) = 0

(vi) indL is an L–fuzzy equivalence
(vii.1) divL is irreflexive and symmetric
(vii.2) if L∈RL+, then for all A,B ∈FL(X) such that A)∅ and B)∅, it

holds divL(A,B) = 0.

Proof.

(i) See [3].
(ii.1) For every A∈FL(X), we have: nincL(A,A) = supx∈X(A(x) ⊗ ¬A(x)) =
supx∈X(A(x) → (A(x) → 0)) = 0 by Lemma 2(vii).
(ii.2) Assume that L∈RL+ (i.e. ⊗ has no zero divisors) and take an arbitrary
A∈FL(X) and B ∈FL(X) such that B)∅, i.e. B(x) �= 0 for every x∈X . Then
by Lemma 1, ¬LB = ∅, so we have: nincL(A,B) = supx∈X(A(x) ⊗ ¬B(x)) =
supx∈X(A(x) ⊗ 0) = 0 by Lemma 2(iv).
(iii) Symmetry of comL (resp. exhL) directly follows from commutativity of ⊗
(resp. ∨).
(iv.1) By Lemma 2(xvi), for all a, b∈L, a → ¬b = ¬(a ⊗ b) = ¬(b ⊗ a) =
b→ ¬a. Then for every A,B ∈FL(X), ortL(A,B) = infx∈X(A(x) → ¬B(x)) =
infx∈X(B(x) → ¬A(x)) = ortL(B,A).
(iv.2) Assume that L∈RL+. Let A,B ∈FL(X) and take an arbitrary x∈X . If
B(x) �= 0, then by Lemma 1, ¬B(x)= 0, so A(x) → ¬B(x)=¬A(x)∈ {0, 1}. If
B(x)= 0, then A(x) → ¬B(x)=A(x) → 1 =1 by Lemma 2(v). Then ortL(A,B)
= infx∈X(A(x) → ¬B(x))∈ {0, 1}.
(v.1) Follows directly from symmetry of comL.
(v.2) Assume that L∈RL+ and consider A,B ∈FL(X) such that for every
x∈X , A(x) �= 0 or B(x) �= 0. By Lemma 1, it implies that for every x∈X ,
¬A(x)= 0 or ¬B(x)= 0, so using Lemma 2(iv), ¬A(x) ⊗ ¬B(x)= 0 for every
x∈X . Hence nexhL(A,B)= 0.
(vi) Reflexivity and ⊗–transitivity of indL follows directly from (i), symmetry
of indL results from commutativity of ⊗.
(vii.1) Let A∈FL(X). For every x∈X , A(x)⊗¬A(x)=A(x)⊗(A(x) → 0)=0 by
Lemma 2(vii), so comL(A,¬LA)= 0. By symmetry of comL, comL(¬LA,A)= 0.
Hence divL(A,A)= 0. Symmetry of divL follows from symmetry of comL.
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(vii.2) Assume that L∈RL+ and consider A,B ∈FL(X) such that A(x) �= 0
and B(x) �= 0 for every x∈X . By Lemma 1, ¬A(x)=¬B(x)= 0 for every x∈X .
Then we have A(x)⊗¬B(x)=¬A(x)⊗B(x)= 0 for every x∈X , which implies
supx∈X(A(x) ⊗ ¬B(x))= supx∈X(¬A(x) ⊗B(x))= 0, so divL(A,B)= 0.

In the crisp case the relation of set inclusion (resp. compatibility, exhaustive-
ness, indiscernibility) is complementary to noninclusion (resp. orthogonality,
nonexhaustiveness, diversity). While generalising these relations on the basis
of R–lattices only the weaker form of complementarity holds, as the following
proposition states.

Proposition 4. For every complete R–lattice (L,∧,∨,⊗,→, 0, 1),

(i) nincL ⊆L ¬LincL

(ii) ortL = ¬LcomL and comL ⊆L ¬LortL
(iii) exhL ⊆L ¬LnexhL

(iv) divL ⊆L ¬LindL.

Proof.

(i) For every A,B ∈FL(X),

¬incL(A,B)
= ¬(infx∈X(A(x) → B(x)))
� supx∈X ¬(A(x) → B(x)) by Lemma 3(ix)
� supx∈X ¬(¬B(x) → ¬A(x)) by Lemma 2(xviii)
= supx∈X ¬¬(¬B(x) ⊗A(x)) by Lemma 2(xvi)
� supx∈X(¬B(x) ⊗A(x)) by Lemma 2(xxi)
= nincL(A,B).

(ii) For every A,B ∈FL(X),

¬comL(A,B)
= ¬ supx∈X(A(x) ⊗B(x))
= infx∈X ¬(A(x) ⊗B(x)) by Lemma 3(viii)
= infx∈X(A(x) → ¬B(x)) by Lemma 2(xvi)
= ortL(A,B).

Since ortL(A,B)=¬comL(A,B), from Lemma 2(xxi) we immediately obtain
¬ortL(A,B) = ¬¬comL(A,B)� comL(A,B).

(iii) For all A,B ∈FL(X),

¬nexhL(A,B)
= ¬ supx∈X(¬A(x) ⊗ ¬B(x))
= infx∈X ¬(¬A(x) ⊗ ¬B(x)) by Lemma 3(viii)
� infx∈X ¬(¬A(x) ∧ ¬B(x)) by Lemma 2(iii)
� infx∈X(¬¬A(x) ∨ ¬¬B(x)) by Lemma 3(ix)
� infx∈X(A(x) ∨B(x)) by Lemma 2(xxi).
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(iv) For every A,B ∈FL(X),
¬indL(A,B)

= ¬((infx∈X(A(x) → B(x))) ⊗ (infx∈X(B(x) → A(x))))
�¬(infx∈X(A(x) → B(x)) ∧ (infx∈X(B(x) → A(x)))) by Lemma 2(iii)
�¬(infx∈X(A(x) → B(x))) ∨ ¬(infx∈X(B(x) → A(x))) by Lemma 3(ix)
� supx∈X ¬(A(x) → B(x)) ∨ supx∈X ¬(B(x) → A(x)) by Lemma 3(ix)
� supx∈X(A(x) ⊗ ¬B(x)) ∨ supx∈X(B(x) ⊗ ¬A(x)) by Lemma 2(xx)
= nincL(A,B) ∨ nincL(B,A)
= divL(A,B).

Proposition 3 shows that most properties of the L–fuzzy information relations
discussed here coincide with their properties in the crisp case. Unfortunately,
some properties are counterintuitive. First, fuzzy orthogonality should not reduce
to the binary case. Moreover, the properties (iv.2), (v.2), and (vii.2) also do not
coincide with what is expected, as the following example shows.

Example 3. Let (L,min,max, t, it, 0, 1) be the R–lattice as in Example 1, where
L= [0, 1] and t is a left–continuous t–norm without zero divisors (e.g., tZ or tP ).
Consider an L–fuzzy set A in X �= ∅ given by: A(x) = 0.001 for every x∈X . The
intuition dictates that X is not included in A to a very high degree. However,
by Proposition 3(ii.2), nincL(X,A) = 0, which means that in fact X is totally
included in A. Also, it is clear that ∅ and A do not cover the universe X to a
high degree, but nexhL(A, ∅) = 0. Finally, A and X are totally different, yet
divL(A,X) = 0. �

In order to overcome these inadequacies, we take another class of residuated
lattices, namely ER–lattices.

3.2 Fuzzy Information Relations Based on ER–Lattices

In this part we discuss another fuzzy generalisation of some information rela-
tions taking any complete ER–lattice (L,∧,∨,⊗,→,∼, 0, 1) as a basic algebraic
structure.

Definition 5. For a complete ER–lattice (L,∧,∨,⊗,→,∼, 0, 1), define the fol-
lowing L–fuzzy information relations: for all A,B ∈FL(X),

(i) L–fuzzy noninclusion:
NincL(A,B) = supx∈X(B(x) ← A(x))

(ii) L–fuzzy orthogonality:
OrtL(A,B) = infx∈X(A(x) ⇒ ∼B(x))

(iii) L–fuzzy exhaustiveness:
ExhL(A,B) = infx∈X(A(x) ⊕B(x))

(iv) L–fuzzy nonexhaustiveness:
NexhL(A,B) = comL(∼LA,∼LB)

(v) L–fuzzy diversity:
DivL(A,B) = NincL(A,B)⊗NincL(B,A). �
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The definition of NincL, ExhL, and DivL were presented in [29], where L was
any complete double residuated lattice.

In view of Remark 2, B(x) ← A(x) is a generalisation of the classical impli-
cation A(x) ∧ ¬B(x), so NincL(A,B) is the fuzzy counterpart of the classical
formula (∃x∈X) (x∈A & x �∈B) and indeed represents the degree, to which A
is not included in B. In the definition of OrtL, ExhL, NexhL, and DivL we
substitute the operations →, ¬, and ∨ by ⇒, ∼, and ⊕, respectively.

Proposition 5. For every complete ER–lattice (L,∧,∨,⊗,→,∼, 0, 1),
(i) NincL is irreflexive and ⊕–cotransitive.
(ii) OrtL, ExhL, and NexhL are symmetric
(iii) DivL is irreflexive and symmetric.

Proof.

(i) Irreflexivity of NincL results from Lemma 2(v’). To show that it is also
⊕–cotransitive, let us take A,B,C ∈FL(X). Then
NincL(A,B) ⊕NincL(B,C)

= supx∈X(B(x) ← A(x)) ⊕ supx∈X(C(x) ← B(x))
� supx∈X((B(x) ← A(x)) ⊕ (C(x) ← B(x))) by Lemma 3(vii’)
= supx∈X((C(x) ← B(x)) ⊕ (B(x) ← A(x))) by commutativity of ⊕
� supx∈X(C(x) ← A(x)) by Lemma 2(ix’)
= NincL(A,C).

(ii) Symmetry of OrtL follows from Lemma 2(xvii) and commutativity of ⊗,
symmetry of ExhL immediately follows from commutativity of ⊕, and symmetry
of NexhL results from symmetry of comL.
(iii) Irreflexivity of DivL follows from irreflexivity of NincL, while symmetry of
DivL results from commutativity of ⊕.

Example 4. Put L = [0, 1] and consider the lattice (L,min,max, t, it, n, 0, 1) as
in Example 2 (recall that t is a left–continuous t–norm, it is the residual im-
plication determined by t, and n is the standard fuzzy negation). Let X �= ∅
be an arbitrary domain and let A∈FL(X) be defined as in Example 3, i.e.
A(x)= 0.001 for every x∈X . By simple calculations we get NincL(X,A) = 1
for ← ∈{←Z ,←P }. Of course, this result coincides with our intuition.

Let B ∈FL(X) be such thatB(x)= 0.999 for every x∈X . Then OrtL(A,B) =
t(n(0.001), n(0.999))= t(0.999, 0.001) �∈{0, 1} for any t without zero divisors.
Hence OrtL does not reduce to a crisp relation. Moreover, for any t-norm t,
NexhL(A, ∅)= 0.999. Clearly, this is again the expected result: A and ∅ do
not cover the universe X up to the very high degree. Finally, NincL(A,X)= 0
for the dual residuum of any (right–continuous) t–conorm s. Also, note that
NincL(X,A)= (0.001←1)=1 for← ∈{←Z ,←P }. Then DivL(X,A)= 0⊕1 =1.
So, as expected, A differs from X to the very high degree. �

In view of the above example, it is now clear that the inadequacies in repre-
sentation, which occur when R–lattices of the class RL+ were taken as basic
structures, are avoided.
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Note also:

Proposition 6. For every complete ER–lattice (L,∧,∨,⊗,→,∼, 0, 1),
(i) NincL(A,B)=∼incL(∼LB,∼LA) and DivL(A,B)=∼indL(∼LA,∼LB)

for every A,B ∈FL(X),
(ii) OrtL =∼LcomL and ExhL =∼LNexhL.

Proof.
(i) For every A,B ∈FL(X),

NincL(A,B)
= supx∈X(B(x) ← A(x))
= supx∈X ∼(∼B(x) → ∼A(x)) by (10)
= ∼ infx∈X(∼B(x) → ∼A(x)) by Lemma 3(vi’)
= ∼incL(∼LB,∼LA).

Similarly, using (10), Lemma 3(vi’), and (8), we get for every A,B ∈FL(X),
DivL(A,B)

= NincL(A,B)⊕NincL(B,A)
= supx∈X(B(x) ← A(x)) ⊕ supx∈X(A(x) ← B(x))
= supx∈X ∼(∼B(x) → ∼A(x)) ⊕ supx∈X ∼(∼A(x) → ∼B(x))
= ∼ infx∈X(∼B(x) → ∼A(x)) ⊕∼ infx∈X(∼A(x) → ∼B(x))
= ∼(infx∈X(∼B(x) → ∼A(x)) ⊗ infx∈X(∼A(x) → ∼B(x)))
= ∼indL(∼LA,∼LB).

The proof of (ii) is similar.

Note that the properties stated in the above proposition coincide with the respec-
tive properties of these relations in the crisp case. Clearly, for every crisp subsets
A,B ⊆ X , A=B ⇔ −A= − B. Yet in general indL(A,B) �= indL(∼LA,∼LB).
Similarly, incL(A,B) �= incL(∼LB,∼LA). It follows from the fact that in an ar-
bitrary ER–lattice L, we do not have any relationship between a → b and
∼b→ ∼a, as observed in Remark 2.

4 Fuzzy Information Operators

Let (L,∧,∨,⊗,→,∼, 0, 1) be a complete ER–lattice. By an L–fuzzy information
operator we mean any mapping ΩL : RL(X) × FL(X) → FL(X). Below we
define several L–information operators.

Definition 6. For every complete ER–lattice (L,∧,∨,⊗,→,∼, 0, 1), for every
R∈RL(X), for every A∈FL(X), and for every x∈X,
(O.1) [R]→A(x) = infy∈X(R(x, y) → A(y))
(O.2) [R]⇒A(x) = infy∈X(R(x, y) ⇒ A(y))
(O.3) [R]←A(x) = supy∈X(R(x, y) ← A(y))
(O.4) [R]⇐A(x) = supy∈X(R(x, y) ⇐ A(y))
(O.5) 〈R〉⊗A(x) = supy∈X(R(x, y)⊗A(y))
(O.6) 〈R〉⊕A(x) = infy∈X(R(x, y)⊕A(y)). �



178 A.M. Radzikowska and E.E. Kerre

It is worth noting that [ ]→ (resp. [ ]⇒) and 〈 〉⊗ correspond to fuzzy modali-
ties ([13],[14],[17]), i.e. [R]→ and [R]⇒ are fuzzy generalisations of the necessity
operator, while 〈 〉⊗ is the counterpart of the possibility operator. Also, these
operators are fuzzy approximation operators well–known in the theory of fuzzy
rough sets (see, e.g., [32], [34]), as well as fuzzy morphological operators which
are basic tools in mathematical morphology ([24]).

Let R∈RL(X). For any x∈X we write xR to denote the L–fuzzy set in X
defined as: (xR)(y)=R(x, y) for every y ∈X . Note that for every A∈FL(X)
and for every x∈X ,

[R]→A(x) = incL(xR,A) [R]←A(x) = NincL(xR,A)
〈R〉⊗A(x) = comL(xR,A) 〈R〉⊕A(x) = ExhL(xR,A).

Definition 7. Let Ω1, Ω2 : RL(X)×FL(X) → FL(X) be two L–fuzzy informa-
tion operators, let ◦ be a unary operation in L, and let ◦L : FL(X) → FL(X) be
such that (◦LA)(x) = ◦A(x) for every x∈X. We say that Ω1 and Ω2 are

• ◦L-dual iff Ω1(R,A)= ◦L Ω2(R, ◦LA) for every R∈RL(X) and for every
A∈FL(X)
• weakly ◦L–dual iff Ω1(R,A) ⊆L ◦LΩ2(R, ◦LA) for every R∈RL(X) and
for every A∈FL(X)
• ◦L–codual iff Ω1(R,A) = ◦LΩ2(◦LR, ◦LA) for every R∈RL(X) and for
every A∈FL(X). �

Basic properties of the operators (O.1)–(O.6) are given in the following
proposition.

Proposition 7. For every complete ER–lattice L and for every R∈FL(X),

(i) [R]→X = [R]⇒X = 〈R〉⊕X = X, [R]←∅ = [R]⇐∅ = 〈R〉⊗∅ = ∅
(ii) for every A,B ∈FL(X) and for every Ω ∈{[ ]→, [ ]⇒, [ ]←, [ ]⇐, 〈 〉⊗, 〈 〉⊕},

A ⊆L B implies Ω(A) ⊆L Ω(B)
(iii) for every A∈FL(X),

[R]→A ⊆L ¬〈R〉⊗¬A [R]⇒A = ∼〈R〉⊗∼A
〈R〉⊗A ⊆L ¬[R]→¬A 〈R〉⊗A = ∼[R]→∼A
�– [R]← �–A ⊆L 〈R〉⊕A 〈R〉⊕A = ∼[R]⇐∼A
�– 〈R〉⊕ �–A ⊆L [R]←A [R]⇐A = ∼〈R〉⊕∼A

(iv) for every A∈FL(X),
[R]→A = ∼[∼R]←∼A [R]⇒A = ∼[∼R]⇐∼A
[R]←A = ∼[∼R]→∼A [R]⇐A = ∼[∼R]⇒∼A

(v) for every indexed family (Ai)i∈I of L–fuzzy sets in X,

[R]→(
⋂

i∈I Ai) =
⋂

i∈I [R]→Ai [R]⇒(
⋂

i∈I Ai) =
⋂

i∈I [R]⇒Ai

[R]→(
⋃

i∈I Ai) L⊇
⋃

i∈I [R]→Ai [R]⇒(
⋃

i∈I Ai) L⊇
⋃

i∈I [R]⇒Ai

[R]←(
⋂

i∈I Ai) ⊆L

⋂
i∈I [R]←Ai [R]⇐(

⋂
i∈I Ai) ⊆L

⋂
i∈I [R]⇐Ai

[R]←(
⋃

i∈I Ai) =
⋃

i∈I [R]←Ai [R]⇐(
⋃

i∈I Ai) =
⋃

i∈I [R]⇐Ai

〈R〉⊗(
⋂

i∈I Ai) ⊆L

⋂
i∈I〈R〉⊗Ai 〈R〉⊕(

⋂
i∈I Ai) =

⋂
i∈I〈R〉⊕Ai

〈R〉⊗(
⋃

i∈I Ai) =
⋃

i∈I〈R〉⊗Ai 〈R〉⊕(
⋃

i∈I Ai) L⊇
⋃

i∈I〈R〉⊕Ai.
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Proof. Straightforward verification.

The property (ii) of the above proposition states the monotonicity of L–fuzzy
information operators w.r.t. Zadeh’s inclusion. Also, (iii) states the ∼ –duality
and weak ¬ –duality between these operators, and (iv) establishes ∼ –coduality
between L–fuzzy information operators.

Corollary 1. For every complete ER–lattice L,
(i) [ ]⇒ and 〈 〉⊗, as well as [ ]⇐ and 〈 〉⊕, are ∼–dual,
(ii) [ ]→ and 〈 〉⊗ are weakly ¬–dual
(iii) [ ]→ and [ ]←, as well as [ ]⇒ and [ ]⇐, are ∼–codual.

It is well-known that traditional information operators are useful for characteri-
zing particular classes of (binary) relations. This is also the case for fuzzy infor-
mation operators. The following theorem presents complete characterizations of
some basic classes of fuzzy relations.

Theorem 1. For every complete ER–lattice (L,∧,∨,⊗,→,∼, 0, 1), for every
R∈RL(X), and for every A∈FL(X) the following statements hold:

(i) R is reflexive iff [R]→A ⊆L A

iff [R]⇒A ⊆L A

iff A ⊆L 〈R〉⊗A
(ii) R is irreflexive iff A ⊆L [R]←A

iff A ⊆L [R]⇐A

iff 〈R〉⊕A ⊆L A

(iii) R is symmetric iff 〈R〉⊗[R]→A ⊆L A

iff [R]←〈R〉⊕A ⊆L A

iff A ⊆L [R]→〈R〉⊗A
iff A ⊆L 〈R〉⊕[R]←A

(iv) R is ⊗–transitive iff [R]→A ⊆L [R]→[R]→A

iff [R]⇒A ⊆L [R]⇒[R]⇒A

iff 〈R〉⊗〈R〉⊗A ⊆L 〈R〉⊗A
(v) R is ⊕–cotransitive iff [R]←[R]←A ⊆L [R]←A

iff [R]⇐[R]⇐A ⊆L [R]⇐A

iff 〈R〉⊕A ⊆L 〈R〉⊕〈R〉⊕A.

Proof. By way of example we prove (ii) and (iv).
(ii) First, consider the inclusion A ⊆L [R]←A.
(⊆) Assume that R is irreflexive. Then for every A∈FL(X) and for every x∈X ,

[R]←A(x) = supy∈X(R(x, y) ← A(y))�R(x, x)←A(x) = 0←A(x) = A(x).
by Lemma 2(vi’).
(⊇) Assume that R is not irreflexive. Then R(x0, x0) �=0 for some x0 ∈X . Put
A = x0R. Then we have:
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[R]←A(x0) = supy∈X(R(x0, y)←R(x0, y)) = 0
by Lemma 2(v’). Hence A(x0) → [R]←A(x0) = R(x0, x0) → 0 �=1 by Lemma
2(v), so A �⊆L [R]←A.

Consider the second equivalence.
(⊆) For every A∈FL(X) and for every x∈X ,

[R]⇐A(x) = supy∈X(R(x, y)⇐A(y))
� R(x, x)⇐A(x) = 0⇐A(x) = A(x).

by Lemma 2(vi’).
(⊇) As before, assume that R is not irreflexive, i.e. R(x0, x0) �=0 for some x0 ∈X .
For A= {x0} we have:

[R]⇐A(x0)
= supy∈X(R(x0, y)⇐A(y))
= supy∈X ∼(∼R(x0, y)⇒∼A(y)) by (11)
= ∼ infy∈X(∼R(x0, y)⇒∼A(y)) by Lemma 3(vi’)
= ∼ infy∈X(R(x0, y)⊕∼A(y)) by (9)
= ∼R(x0, x0).

Since R(x0, x0) �=0, we have ∼R(x0, x0) �=1, so [R]⇐A(x0) �= 1. But A(x0)= 1.
Therefore, A �⊆L [R]⇐A.

Now, consider the third equivalence.
(⊆) For any A∈FL(X) and for any x∈X ,

〈R〉⊕A(x) = infy∈X(R(x, y)⊕A(y))�R(x, x)⊕A(x) = 0⊕A(x) = A(x).

(⊇) Assume that R is not irreflexive, i.e. R(x0, x0) �= 0 for some x0 ∈X . For
A=X\{x0} we have:

〈R〉⊕A(x0) = infy∈X(R(x0, y)⊕A(y)) = R(x0, x0)⊕ 0 = R(x0, x0).
Since A(x0)=0, we get 〈R〉⊕A(x0) �� A(x0), which implies 〈R〉⊕A �⊆L A.

(iv) We show the first equivalence.
(⊆) For every A∈FL(X) and for every x∈X ,

[R]→[R]→A(x)
= infy∈X(R(x, y)→(infz∈X(R(y, z)→A(z))))
= infz∈X infy∈X(R(x, y)→(R(y, z)→A(z))) by Lemma 3(ii)
= infz∈X infy∈X(R(x, y)⊗R(y, z)→A(z)) by Lemma 2(xiv)
� infz∈X infy∈X(R(x, z)→A(z)) by assumption, Lemma 2(i)
= infz∈X(R(x, z)→A(z))
= [R]→A(x).

(⊇) Assume now that R is not ⊗–transitive, i.e. R(x0, y0)⊗R(y0, z0) ��R(x0, z0)
for some x0, y0, z0 ∈X . By Lemma 2(v), this means that

(iv.1) (R(x0, y0)⊗R(y0, z0))→R(x0, z0) �= 1.

Consider A = x0R. Using again Lemma 2(v) we get

(iv.2) [R]→A(x0) = infy∈X(R(x0, y)→R(x0, y)) = 1.
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Next,

[R]→[R]→A(x0)
= infy∈X(R(x0, y)→(infz∈X(R(y, z)→R(x0, z)))
= infz∈X infy∈X(R(x0, y)→(R(y, z)→R(x0, z))) by Lemma 3(ii)
= infz∈X infy∈X((R(x0, y)⊗R(y, z))→R(x0, z)) by Lemma 2(xiv)
� (R(x0, y0)⊗R(y0, z0))→R(x0, z0)
�=1 by (iv.1).

Therefore, we obtain

[R]→A(x0)→ [R]→[R]→A(x0)
= 1→ [R]→[R]→A(x0) by (iv.2)
= [R]→[R]→A(x0) by Lemma 2(vi)
�=1.

Then, by Lemma 2(v), [R]→A(x0) �� [R]→[R]→A(x0), so [R]→A �⊆L [R]→[R]→A.

Now, we show the second equivalence.
(⊆) For every A∈FL(X) and for every x∈X ,

[R]⇒[R]⇒A(x)
= infy∈X(R(x, y)⇒(infz∈X(R(y, z)⇒A(z))))
= infz∈X infy∈Z(R(x, y)⇒(R(y, z)⇒A(z))) by Lemma 3(iii)
= infz∈X infy∈X(R(x, y)⊗R(y, z)⇒A(z)) by Lemma 2(xv)
� infz∈X infy∈X(R(x, z)⇒A(z)) by assumption, Lemma 2(i)
= [R]⇒A(x).

(⊇) Assume that R is not ⊗–transitive, i.e. there exist x0, y0, z0 ∈X such that
R(x0, y0) ⊗ R(y0, z0) �� R(x0, z0). Then ∼R(x0, z0) �� ∼(R(x0, y0) ⊗ R(y0, z0)),
which by Lemma 2(v) gives

(iv.3) ∼R(x0, z0)→∼(R(x0, y0)⊗R(y0, z0)) �=1.

Take A = X\{z0}. Since for every a∈L, a⊕1 = 1, we easily get for every y∈X ,

(iv.4) [R]⇒A(y) = infz∈X(∼R(y, z)⊕A(z)) = ∼R(y, z0).

Furthermore,

[R]⇒[R]⇒A(x0)
= infy∈X(R(x0, y)⇒ [R]⇒A(y))
= infy∈X(R(x0, y)⇒∼R(y, z0)) by (iv.4)
= infy∈X(∼R(x0, y)⊕∼R(y, z0)) by (9)
= infy∈X ∼(R(x0, y))⊗R(y, z0)) by (8)
= ∼ supy∈X(R(x0, y))⊗R(y, z0)) by Lemma 3(vi’).

Then we get

[R]⇒A(x0) → [R]⇒[R]⇒A(x0)
= ∼R(x0, z0) → ∼ supy∈X(R(x0, y)⊗R(y, z0)) by (iv.4)
�∼R(x0, z0)→∼(R(x0, y0)⊗R(y0, z0)) by Lemma 2(i)
�=1 by (iv.3).
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By Lemma 2(v), this implies [R]⇒A(x0) �� [R]⇒[R]⇒A(x0). Therefore, we get
[R]⇒A �⊆L [R]⇒[R]⇒A.

In the similar way the third equivalence can be proved.

5 Conclusions

In this paper we have presented fuzzy generalisations of several information rela-
tions and operators. Two classes of residuated lattices have been taken as basic
algebraic structures: traditional residuated lattices (commutative and integral)
and so–called extended residuated lattices (ER–lattices). It has been shown that
ER–lattices allow us to define abstract counterparts of the main classes of fuzzy
logical connectives. We have indicated that some inadequacies in representation
occur when residuated lattices constitute the basic structures and that these
drawbacks can be avoided on the basis of ER–lattices. Some fuzzy information
operators have been presented. We have shown that these operators are useful
for characterizations of main classes of fuzzy relations.
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Abstract. This contribution provides a comprehensive overview on the
theoretical framework of aggregating fuzzy relations under the premise
of preserving underlying transitivity conditions. As such it discusses the
related property of dominance of aggregation operators. After a thorough
introduction of all necessary and basic properties of aggregation opera-
tors, in particular dominance, the close relationship between aggregating
fuzzy relations and dominance is shown. Further, principles of building
dominating aggregation operators as well as classes of aggregation oper-
ators dominating one of the basic t-norms are addressed. In the paper
by Bodenhofer, Küng and Saminger, also in this volume, the interested
reader finds an elaborated (real world) example, i.e., an application of
the herein contained theoretical framework.

1 Introduction

Flexible (fuzzy) querying systems are designed not just to give results that match
a query exactly, but to give a list of possible answers ranked by their closeness to
the query—which is particularly beneficial if no record in the database matches
the query in an exact way (see [11, 12, 28, 29] for overviews and [7, 8, 9, 10] for
particular related examples). The closeness of a single value of a record to the
respective value in the query is usually measured by a fuzzy equivalence relation,
that is, a reflexive, symmetric, and T -transitive fuzzy relation. Recently, a gen-
eralization has been proposed [7,8,9] which also allows flexible interpretation of
ordinal queries (such as “at least” and “at most”) by using fuzzy orderings [5].
In any case, if a query consists of at least two expressions that are to be inter-
preted vaguely, it is necessary to combine the degrees of matching with respect
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to the different fields in order to obtain an overall degree of matching — a typical
example of an aggregation task. More precisely, assume that we have a query
(q1, . . . , qn), where each qi ∈ Xi is a value referring to the i-th field of the query.
Given a data record (x1, . . . , xn) such that xi ∈ Xi for all i = 1, . . . , n, the overall
degree of matching is computed as

R̃
(
(q1, . . . , qn), (x1, . . . , xn)

)
= A

(
R1(q1, x1), . . . , Rn(qn, xn)

)
,

where every Ri is a T -transitive binary fuzzy relation on Xi which measures the
degree to which the value xi matches the query value qi.

It is natural to require that R̃ is fuzzy relation on the Cartesian product of all
Xi and, therefore, that the range of the operation A should be the unit interval,
i.e., A : [0, 1]n → [0, 1]. Furthermore, it is desirable that if a data record matches
one of the criteria of the query better than a second one, then the overall degree of
matching for the first should be higher or at least the same as the overall degree
of matching for second one. Clearly, if some data record matches all criteria,
i.e., all Ri(xi, qi) = 1, then the overall degree of matching should also be 1. On
the other hand, if a data record fulfills none of the criteria to any level, i.e., all
Ri(xi, qi) = 0, then the overall degree should vanish to 0. Aggregation operators
are exactly such functions which guarantee all these properties [13, 14, 15, 21].

In addition, it would be desirable that, if all relations Ri on Xi are T -
transitive, also R̃ is still T -transitive in order to have a clear interpretation of
the aggregated fuzzy relation R̃. It is, therefore, necessary to investigate which
aggregation operators are particularly able to guarantee that R̃ maintains T -
transitivity.

This contribution provides an overview on results on the aggregation of fuzzy
relations and the related property of dominance of aggregation operators which
have been achieved by collaboration among different research groups within the
EU COST Action TARSKI. The present part focusses on the theoretical back-
ground, as such provides a comprehensive overview of the theory of aggregation
operators dominating triangular norms as well as depends on results already
published in [27,30,32]. In addition, in [10], the interested reader finds an elabo-
rated (real world) example, i.e., an application of the herein contained theoretical
framework. Next, we provide a thorough introduction of all necessary and basic
properties of aggregation operators, in particular dominance. Then we turn to
the close relationship between the aggregation of fuzzy relations and dominance.
In Section IV, we discuss principles of building dominating aggregation opera-
tors and focus in Section V on the class of aggregation operators dominating one
of the basic t-norms.

2 Basic Definitions and Preliminaries

In order to be self-contained and to provide a compact overview we provide
basic definitions and results about aggregation operators and dominance. For
more details on aggregation operators as well as t-norms we refer the interested
reader to [2, 14, 21].
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2.1 Aggregation Operators

Definition 1. [14] An aggregation operator is a function A :
⋃

n∈N
[0, 1]n →

[0, 1] which fulfills the following properties:
(AO1) A(x1, . . . , xn) ≤ A(y1, . . . , yn) whenever xi ≤ yi for all i ∈ {1, . . . , n},
(AO2) A(x) = x for all x ∈ [0, 1],
(AO3) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Each aggregation operator A can be represented by a family (A(n))n∈N of n-ary
operations, i.e., functions A(n) : [0, 1]n → [0, 1] given by

A(n)(x1, . . . , xn) = A(x1, . . . , xn)

being non-decreasing and fulfilling A(n)(0, . . . , 0) = 0 and A(n)(1, . . . , 1) = 1.
Such operations A(n) are referred to as n-ary aggregation operators. Note also
that in such a case A(1) = id[0,1]. Usually, the aggregation operator A and
the corresponding family (A(n))n∈N of n-ary operations are identified with each
other.

Unless explicitly mentioned otherwise, we will restrict to aggregation opera-
tors acting on the unit interval (according to Definition 1). With only simple and
obvious modifications, aggregation operators can be defined to act on any closed
interval I = [a, b] ⊆ [−∞,∞]. Consequently, we will speak of an aggregation
operator acting on I.

Particularly, such operators can be constructed by rescaling the input and
output data, and as such creating isomorphic aggregation operators.

Consider an aggregation operator A :
⋃

n∈N
[a, b]n → [a, b] on [a, b] and a

monotone bijection ϕ : [c, d] → [a, b]. The operator Aϕ :
⋃

n∈N
[c, d]n → [c, d]

defined by
Aϕ(x1, . . . , xn) = ϕ−1(A(ϕ(x1), . . . , ϕ(xn))

)
is an aggregation operator on [c, d], which is isomorphic to A.

A particularly important transformation is duality induced by ϕd : [0, 1] →
[0, 1], ϕd(x) = 1 − x. Applying this transformation to an aggregation operator
A on the unit interval leads to the so-called dual aggregation operator Ad.

Couples of dual aggregation operators are, e.g., the minimum and the max-
imum. The arithmetic mean is dual to itself. Such aggregation operators, i.e.,
A = Ad, are called self-dual (compare also [38] where these operators are called
symmetric sums).

Let us now briefly summarize further properties of aggregation operators.

Definition 2. Consider some aggregation operator A :
⋃

n∈N

[0, 1]n → [0, 1].

(i) A is called symmetric, if for all n ∈ N and for all x1, . . . , xn ∈ [0, 1]:

A(x1, . . . , xn) = A(xα(1), . . . , xα(n))

for all permutations α = (α(1), . . . , α(n)) of {1, . . . , n}.
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(ii) A is called associative if for all n,m ∈ N and for all x1, . . . , xn, y1, . . . , ym ∈
[0, 1]:

A(x1, . . . , xn, y1, . . . , ym) = A(A(x1, . . . , xn),A(y1, . . . , ym)).

(iii) An element e ∈ [0, 1] is called a neutral element of A if for all n ∈ N and
for all x1, . . . , xn ∈ [0, 1]:

A(x1, . . . , xn) = A(x1, . . . , xi−1, xi+1, . . . , xn)

whenever xi = e for some i ∈ {1, . . . , n}.
(iv) A is subadditive on [0, 1], if the following inequality holds for all xi, yi ∈

[0, 1] with xi + yi ∈ [0, 1]:

A(x1 + y1, . . . , xn + yn) ≤ A(x1, . . . , xn) + A(y1, . . . , yn).

Observe that, for a given aggregation operator A, the operators A(n) and A(m)
need not be related in general, if n �= m. However, if A is an associative aggre-
gation operator, all n-ary operators A(n), n ≥ 3, can be identified with recursive
extensions of the binary operator A(2). Therefore, in case of associative aggre-
gation operators, the distinction between A(2) and A itself is often omitted.

Example 1. A typical example of a symmetric, but non-associative aggregation
operator without neutral element is the arithmetic mean M :

⋃
n∈N

[a, b]n →
[a, b] defined for any interval [a, b] ⊆ [−∞,∞] by

M(x1, . . . , xn) =
1
n

n∑
i=1

xi.

If for some practical purposes some of the properties of the arithmetic mean do
not fit the demands of the aggregation process the arithmetic mean is usually
modified with respect to the violated property but by preserving as many as
possible other properties of the original aggregation operator. Three different
approaches can be mentioned — introduction of weights, ordering of the inputs
and transformation of the aggregation operator.

We briefly summarize the formal definitions of weighted means, (weighted)
quasi-arithmetic means and OWA operators (see also, e.g., [14,40]). Recall that
for a fixed n ∈ N, weighting vectors −→w = (w1, . . . , wn) are characterized by
fulfilling −→w ∈ [0, 1]n and

∑n
i=1 wi = 1.

Definition 3. For a continuous strictly monotone function f : [a, b] → [−∞,∞],
the quasi-arithmetic mean Mf :

⋃
n∈N

[a, b]n → [a, b] is given by

Mf (x1, . . . , xn) = f−1( 1
n

n∑
i=1

f(xi)).

Consider for arbitrary n ∈ N, a weighting vector −→w . Then the weighted mean
W : [a, b]n → [a, b] is given by

W(x1, . . . , xn) =
n∑

i=1

wixi
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and the weighted quasi-arithmetic mean Wf :
⋃

n∈N
[a, b]n → [a, b] by

Wf (x1, . . . , xn) = f−1(
n∑

i=1

wif(xi)).

with f : [a, b] → [−∞,∞] again some continuous strictly monotone function. An
OWA operator W′ :

⋃
n∈N

[a, b]n → [a, b] is characterized by

W′(x1, . . . , xn) =
n∑

i=1

wix
′
i

where x′i denotes the i-th order statistics from the sample (x1, . . . , xn) and wi

the corresponding weights.

2.2 Triangular Norms

Triangular norms can be interpreted as a particular class of aggregation operators
which were originally introduced in the context of probabilistic metric spaces [25,
35, 36]. We just briefly state the formal definitions and introduce the four basic
t-norms. For further details and properties about t-norms we refer to [22,23,24]
or to the monographs [2, 21].

Definition 4. A triangular norm (t-norm for short) is a binary operation T
on the unit interval which is commutative, associative, non-decreasing in each
component, and has 1 as a neutral element.

Example 2. The following are the four basic t-norms:

Minimum: TM(x, y) = min(x, y),
Product: TP(x, y) = x · y,
�Lukasiewicz t-norm: TL(x, y) = max(x+ y − 1, 0),

Drastic product: TD(x, y) =

{
0 if (x, y) ∈ [0, 1[2 ,
min(x, y) otherwise.

Several construction principles are known for t-norms. Here we just mention
the concept of ordinal sums which allow to define t-norms by a particular be-
haviour on subdomains and, moreover, gave rise for a construction principle for
aggregation operators.

Definition 5. Let (Ti)i∈I be a family of t-norms and let (]ai, ei[)i∈I be a family
of non-empty, pairwise disjoint open subintervals of [0, 1]. Then the following
function T : [0, 1]2 → [0, 1] is a t-norm [21]:

T (x, y) =

{
T ∗

i (x, y) = ai + (ei − ai) · T ( x−ai

ei−ai
, y−ai

ei−ai
), if (x, y) ∈ [ai, ei]

2
,

min(x, y), otherwise.

The t-norm T is called the ordinal sum of the summands 〈ai, ei, Ti〉, i ∈ I, and
we shall write T = (〈ai, ei, Ti〉)i∈I .
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Corresponding to t-norms, aggregation operators can also be constructed from
several aggregation operators acting on non-overlapping domains. We will use the
lower ordinal sum of aggregation operators [14,26]. Observe that this ordinal sum
was originally proposed only for finitely many summands, however, we generalize
this concept to an arbitrary (countable) number of summands.

Definition 6. Consider a family of aggregation operators(
Ai :

⋃
n∈N

[ai, ei]
n → [ai, ei]

)
i∈{1,...,k}

acting on non-overlapping domains [ai, ei] with i ∈ {1, . . . , k} and

0 ≤ a1 < e1 ≤ a2 < e2 ≤ . . . ≤ ek ≤ 1.

The aggregation operator A(w) defined by [14]

A(w)(x1, . . . , xn) =

⎧⎪⎨⎪⎩
0, if u < a1,

Ai

(
min(x1, ei), . . . ,min(xn, ei)

)
, if ai ≤ u < ai+1,

1, if u = 1.

with u = min(x1, . . . , xn) is called the lower ordinal sum (of aggregation opera-
tors Ai) and it is the weakest aggregation operator (with respect to the standard
ordering of n-ary functions) that coincides with Ai at inputs from [ai, ei].

If (Ai)i∈I is a family of aggregation operators on [0, 1] and (]ai, ei[)i∈I a (count-
able) family of non-empty, pairwise disjoint open subintervals of [0, 1], then the
lower ordinal sum of this family A(w) = (〈ai, ei,Ai〉)i∈I can be constructed in
the following way:

A(w)(x1, . . . , xn) =

⎧⎪⎨⎪⎩
supi∈I{A∗

i

(
min(x1, ei), . . . ,min(xn, ei)

) | ai ≤ u},
if u < 1,

1, otherwise,

with sup ∅ = 0 and u = min(x1, . . . , xn). A∗
i denotes the aggregation operator

Ai, scaled for acting on [ai, ei] by

A∗
i (x1, . . . , xn) = ai + (ei − ai) ·Ai

(
x1−ai

ei−ai
, . . . , xn−ai

ei−ai

)
.

2.3 Transitivity and Preservation of Transitivity

We have already mentioned that binary fuzzy relations Ri on the subspaces Xi

can be used for the comparison of two objects on the subspaces’ level. For details
on fuzzy relations, especially fuzzy equivalence relations we recommend [3, 16,
17, 19, 42] and for fuzzy orderings [4, 5, 6, 20, 42]. We only recall the definition of
T -transitivity, since we are interested in its preservation during the aggregation
process.
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Definition 7. Consider a binary fuzzy relation R on some universe X and an
arbitrary t-norm T . R is called T -transitive if and only if, for all x, y, z ∈ X the
following property holds

T
(
R(x, y), R(y, z)

) ≤ R(x, z).

Definition 8. An aggregation operator A preserves T -transitivity if, for all n ∈
N and for all binary T -transitive fuzzy relations Ri on Xi with i ∈ {1, . . . , n},
the aggregated relation R̃ = A(R1, . . . , Rn) on the Cartesian product of all Xi,
i.e.,

R̃(A,B) = R̃((a1, . . . , an), (b1, . . . , bn)) = A
(
R1(a1, b1), . . . , Rn(an, bn)

)
,

is also T -transitive, that means, for all A,B,C ∈
n∏

i=1
Xi,

T
(
R̃(A,B), R̃(B,C)

) ≤ R̃(A,C).

Without loss of generality, we will restrict our considerations to fuzzy relations
on the same universe Xi = X .

2.4 Dominance — Basic Notions and Properties

Similar to t-norms, the concept of dominance has been introduced in the frame-
work of probabilistic metric spaces [37,39] when constructing the Cartesian prod-
ucts of such spaces. In the framework of t-norms, dominance is also needed when
constructing T -equivalence relations and fuzzy orderings [4, 6, 16, 17] on some
Cartesian product.

Definition 9. Consider two t-norms T1 and T2. We say that T1 dominates T2
if for all x, y, u, v ∈ [0, 1] the following inequality holds

T2(T1(x, y), T1(u, v)) ≤ T1(T2(x, u), T2(y, v)).

It can be easily verified (see also, e.g., [21]) that for any t-norm T , it holds that
T itself and TM dominate T . Furthermore, for any two t-norms T1, T2, T1 ) T2
implies T1 ≥ T2 and, therefore, we know that TD ) T if and only if T = TD and
T ) TM if and only if T = TM, since TD is the weakest and TM the strongest
t-norm.

We have already mentioned before that t-norms can be interpreted as partic-
ular aggregation operators. Therefore, we extend the concept of dominance to
the framework of aggregation operators [32].

Definition 10. Consider an n-ary aggregation operator A(n) and an m-ary ag-
gregation operator B(m). We say that A(n) dominates B(m), A(n) ) B(m), if,
for all xi,j ∈ [0, 1] with i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, the following property
holds

B(m)
(
A(n)(x1,1, . . . , x1,n), . . . ,A(n)(xm,1, . . . , xm,n)

)
≤ A(n)

(
B(m)(x1,1, . . . , xm,1), . . . ,B(m)(x1,n, . . . , xm,n)

)
. (1)
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Note that if either n or m or both are equal to 1, because of the boundary
condition (AO2), A(n) ) B(m) is trivially fulfilled for any two aggregation
operators A,B.

Definition 11. Let A and B be aggregation operators. We say that A domi-
nates B, A ) B, if A(n) dominates B(m) for all n,m ∈ N.

Note that, if two aggregation operators A and B are both acting on some closed
interval I = [a, b] ⊆ [−∞,∞], then the property of dominance can be easily
adapted by requiring that (1) must hold for all arguments xi,j ∈ I and for all
n,m ∈ N. Further note that the concept of dominance relates to the fact that
aggregation operators are operators on posets. Therefore, dominance can and
has been introduced for arbitrary operations on posets (see, e.g., [37]).

Due to the monotonicity of aggregation operators, the minimum TM domi-
nates not only all t-norms, but also any aggregation operator A,

A(min(x1, y1), . . . ,min(xn, yn)) ≤ min(A(x1, . . . , xn),A(y1, . . . , yn)).

however, as will be shown later, not all aggregation operators dominate TD. Sim-
ilarly, not all aggregation operators dominate the weakest aggregation operator

Aw(x1, . . . , xn) =

{
1, if x1 = . . . = xn = 1,
0. otherwise.

Further on, we will denote the class of all aggregation operators A which
dominate an aggregation operator B by

DB = {A | A ) B}.

Since t-norms are special kinds of associative aggregation operators, the follow-
ing proposition will be helpful for considering the dominance of an aggregation
operator over a t-norm T .

Proposition 1. [32] Let A,B be two aggregation operators. Then the following
holds:

(i) If B is associative and A(n) ) B(2) for all n ∈ N, then A ) B.
(ii) If A is associative and A(2) ) B(m) for all m ∈ N, then A ) B.

Consequently, if two aggregation operators A and B are both associative, as it
would be in the case of two t-norms, it is sufficient to show that A(2) ) B(2)
for proving that A ) B.

In case of a common neutral element, the property of dominance induces the
order of the involved aggregation operators.

Lemma 1. [30] Consider two aggregation operators A, B with a common neu-
tral element e ∈ [0, 1]. If A dominates B, i.e., A ) B, then A ≥ B.
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As a consequence, it is clear that dominance is a reflexive and antisymmetric
relation on the set of all t-norms, but it is not transitive as could be shown
in [34] (for a counter example see also [33]). Note that transitivity of dominance
in the framework of aggregation operators does not hold in general, since, e.g.,
Aw ) TM and TM ) M but Aw does not dominate M (see also [30]).

Further note, that the property of selfdominance of an aggregation operator,
i.e., A ) A, is nothing else than the property of bisymmetry in the sense of
Aczél [1], i.e., for all n,m ∈ N and all xi,j ∈ [0, 1] with i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n}

A(m)
(
A(n)(x1,1, . . . , x1,n), . . . ,A(n)(xm,1, . . . , xm,n)

)
= A(n)

(
A(m)(x1,1, . . . , xm,1), . . . ,A(m)(x1,n, . . . , xm,n)

)
.

Another interesting aspect is the invariance of dominance with respect to
transformations.
Proposition 2. [32] Consider two aggregation operators A and B on [a, b].

(i) A ) B if and only if Aϕ ) Bϕ for all strictly increasing bijections
ϕ : [c, d] → [a, b] .

(ii) A ) B if and only if Bϕ ) Aϕ for all strictly decreasing bijections
ϕ : [c, d] → [a, b] .

3 T -Transitivity and Dominance

Standard aggregation of fuzzy equivalence relations and fuzzy orderings preserv-
ing the T -transitivity has been done either by means of T itself or TM, but
in fact, any t-norm T̃ dominating T can be applied, i.e., if R1, R2 are two T -
transitive binary relations on a universe X and T̃ ) T , then also T̃ (R1, R2) is
T -transitive [4, 6, 16].

As already mentioned above, in several applications, other types of aggrega-
tion processes preserving T -transitivity are required [8, 10] Especially the intro-
duction of different weights (degrees of importance) for input fuzzy equivalences
and orderings cannot be properly done by aggregation with t-norms, because
of the commutativity. Therefore, we investigated aggregation operators preserv-
ing the T -transitivity of the aggregated fuzzy relations. The following theorem
generalizes the result known for triangular norms [16].

Theorem 1. [32] Let |X | ≥ 3 and let T be an arbitrary t-norm. An aggregation
operator A preserves the T -transitivity of fuzzy relations on X if and only if
A ∈ DT .

4 Construction of Dominating Aggregation Operators

Since we have shown the close relationship between the preservation of T -
transitivity and the dominance of the involved aggregation operator A over
T , we are interested in the characterization of DT for some t-norm T . Particu-
larly, we are interested in the introduction of weights, respectively determining
operations by its behaviour on subdomains.
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4.1 Generated and Weighted T-Norms

Before turning to aggregation operators dominating a continuous, Archimedean
t-norm T , recall that they are characterized by having a continuous additive
generator, i.e., a continuous, strictly decreasing function t : [0, 1] → [0,∞] which
fulfils t(1) = 0, and for all x, y ∈ [0, 1] :

T (x, y) = t−1(min(t(0), t(x) + t(y))
)
.

Then we also have that T (x1, . . . , xn) = t−1
(
min(t(0),

∑n
i=1 t(xi))

)
.

Theorem 2. [32] Consider some continuous, Archimedean t-norm T with an
additive generator t : [0, 1] → [0, c], with t(0) = c and c ∈ ]0,∞]. Furthermore,
let A :

⋃
n∈N

[0, 1]n → [0, 1] be an aggregation operator. Then A ∈ DT if and
only if the aggregation operator H :

⋃
n∈N

[0, c]n → [0, c] defined by

H(z1, . . . , zn) = t(A(t−1(z1), . . . , t−1(zn))) (2)

for all n ∈ N and all zi ∈ [0, c] with i ∈ {1, . . . , n} is subadditive on [0, c].

One of the main purposes for investigating aggregation operators dominating
t-norms was the request for introducing weights into the aggregation process.
Hence, considering continuous Archimedean t-norms, we have to find subadditive
aggregation operators, which provide this possibility.

Example 3. Consider some some weights w1, . . . , wn ∈ [0,∞], n ≥ 2, and some
c ∈ ]0,∞], then H(n) : [0, c]n → [0, c] given by

H(n)(x1, . . . , xn) = min(c,
n∑

i=1

wixi)

is an n-ary, subadditive aggregation operator on [0, c], fulfilling H(n)(c, . . . , c) =
c, whenever c ≤ c ·∑n

i=1 pi. This means, with convention 0 · ∞ = 0, if c = ∞,
the sum must fulfill

∑n
i=1 wi > 0 and if c <∞, then also

∑n
i=1 wi ≥ 1.

If we combine such an aggregation operator with an additive generator of a con-
tinuous Archimedean t-norm by applying the construction method as proposed
in Theorem 2 we can introduce weights into the aggregation process without
losing T -transitivity.

Corollary 1. Consider a continuous Archimedean t-norm T with additive gen-
erator t, t(0) = c, and a weighting vector −→w = (w1, . . . , wn), n ≥ 2, with weights
wi ∈ [0,∞] fulfilling c ≤ c ·∑n

i=1 wi. Further, let A(n) : [0, 1]n → [0, 1] be an
n-ary aggregation operator defined by Eq. (2) from the aggregation operator H(n)
introduced in Example 3. Then the n-ary aggregation operator can be rewritten
by

A(n)(x1, . . . , xn) = t−1(min(t(0),
n∑

i=1

wi · t(xi))
)

(3)

and it dominates the t-norm T , i.e., A(n) ) T.
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Remark 1. Note that the n-ary aggregation operator defined by Equation (3)
is also called weighted t-norm T−→w ( [15, 21]). Further, for any strict t-norm T ,
it holds, that not only T−→w ) T , but also T ) T−→w . In case of some nilpotent
t-norm T it is clear, that T−→w ) T , but T ) T−→w only if all weights wi /∈ ]0, 1[.
In case that

∑n
i=1 wi = 1 we can apply Corollary 1 independently of t(0). Thus

for a continuous Archimedean t-norm T with additive generator t, any weighted
quasi-arithmetic mean Wt dominates T . Especially, any weighted arithmetic
mean W dominates TL and any weighted geometric mean dominates TP.

Example 4. The strongest subadditive aggregation operator acting on [0, c] is
given by H :

⋃
n∈N

[0, c]n → [0, c] with

H(u1, . . . , un) =

{
0, if u1 = . . . = un = 0,
c, otherwise.

Then, for any additive generator t : [0, 1] → [0,∞] with t(0) = c, we have

t(A(x1, . . . , xn)) = H
(
t(x1), . . . , t(xn)

)
,

for all xi ∈ [0, 1] with i ∈ {1, . . . , n} and some n ∈ N, if and only if

A(x1, . . . , xn) =

{
1, if x1 = . . . = xn = 1,
0, otherwise,

i.e., A = Aw is the weakest aggregation. Observe that Aw dominates all t-norms,
but not all aggregation operators, e.g., Aw does not dominate the arithmetic
mean.

4.2 Ordinal Sums

Proposition 3. [32] Let (Ti)i∈I be a family of t-norms, (Ai)i∈I a family of
aggregation operators, and (]ai, ei[)i∈I a family of non-empty, pairwise disjoint
open subintervals of [0, 1]. If for all i ∈ I : Ai ∈ DTi , then the lower ordinal
sum A(w) = (〈ai, ei,Ai〉)i∈I dominates the ordinal sum T = (〈ai, ei, Ti〉)i∈I ,
i.e., A(w) ∈ DT .

Note that not all dominating aggregation operators are lower ordinal sums of
dominating aggregation operators, e.g., the aggregation operator Aw introduced
in Example 4 dominates all t-norms T , but is not a lower ordinal sum con-
structed by means of some index set I (in fact it is the empty lower ordi-
nal sum). On the other hand, in case of summand t-norms the lower ordinal
sum Aw = (〈ai, ei, Ti〉)i∈I coincides with the standard ordinal sum of t-norms
T = (〈ai, ei, Ti〉)i∈I . Moreover, as shown in [31], the condition of Proposition 3
is not only sufficient but also necessary.
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The following example also shows that weighted t-norms as proposed by Calvo
and Mesiar [15] dominate the original t-norm but are no lower ordinal sums as
proposed here. As a consequence we can conclude that

(〈ai, ei,DTi〉
)
i∈I

⊂ DT ,
whenever T = (〈ai, ei, Ti)i∈I .

Let (]ai, ei[)i∈I be a family of non-empty, pairwise disjoint open subintervals
of [0, 1] and let ti : [ai, ei] → [0,∞] be continuous, strictly decreasing mappings
fulfilling ti(ei) = 0. Then (and only then) the following function T : [0, 1]2 →
[0, 1] is a continuous t-norm [15]:

T (x, y) =

{
t−1
i

(
min(ti(0), ti(x) + ti(y)

)
, if (x, y) ∈ [ai, ei] ,

min(x, x), otherwise.

The corresponding weighted t-norm T−→w in the sense of Calvo and Mesiar [15] is
defined by

T−→w (x1, . . . , xn) =

{
t−1
i (min(ti(ai),

∑n
i=1 wi · ti(min(xi, ei)))), if u ∈ [ai, ei[ ,

min(xi | wi > 0), otherwise,

with u = min(xi | wi > 0) and some weighting vector −→w = (w1, . . . , wn) �=
(0, . . . , 0) such that, if ai = 0 for some i ∈ I and the corresponding ti(ai) is
finite, then

∑n
i=1 wi ≥ 1.

Example 5. Consider the t-norm T = (〈0, 1
2 , TP〉), i.e.,

T (x, y) =

{
2xy, if (x, y) ∈ [0, 1

2

]2
,

min(x, y), otherwise.

We know that the geometric mean G(x, y) =
√
x · y = TP( 1

2 , 1
2 ) dominates TP.

Therefore we can construct

– the lower ordinal sum A(w) = (〈0, 1
2 , G〉) with

A(w)(x, y) =

{
1, if(x, y) = (1, 1),√

min(x, 1
2 ) ·min(y, 1

2 ), otherwise

– and the weighted t-norm T−→w = T( 1
2 , 1

2 ) by

T( 1
2 , 1

2 )(x, y) =

{
min(x, y), if (x, y) ∈ ] 12 , 1]2 ,√

min(x, 1
2 ) ·min(y, 1

2 ), otherwise.

Both aggregation operators — A(w) as well as T−→w — dominate the t-norm T
and they coincide in any values except for arguments (x, y) ∈ ]12 , 1]2 \ {(1, 1)}.
Observe that this example also demonstrates that not all aggregation opera-
tors dominating an ordinal sum t-norm T are necessarily lower ordinal sums of
dominating aggregation operators as given in Proposition 3.
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5 Dominance of Basic T-Norms

Finally we will discuss the classes of aggregation operators dominating one of
the basic t-norms as introduced in Example 2.

5.1 Dominance of the Minimum

As already observed, TM dominates any t-norm T and any aggregation operator
A, but no t-norm T , except TM itself, dominates TM. The class of all aggregation
operators dominating TM is described in the following proposition.

Proposition 4. [32] For any n ∈ N, the class of all n-ary aggregation operators
A(n) dominating the strongest t-norm TM is given by

D(n)
min = {minF | F = (f1, . . . , fn),

fi : [0, 1] → [0, 1], non-decreasing, with
fi(1) = 1 for all i ∈ {1, . . . , n},
fi(0) = 0 for at least one i ∈ {1, . . . , n}},

where minF(x1, . . . , xn) = min(f1(x1), . . . , fn(xn)).

Evidently, A(n) ∈ D(n)
min is symmetric if and only if

A(n)(x1, . . . , xn) = f
(
min(x1, . . . , xn)

)
for some non-decreasing function f : [0, 1] → [0, 1] with f(0) = 0 and f(1) = 1.

Example 6. As already observed in Example 4, the weakest aggregation operator
Aw dominates all t-norms T . Since this aggregation operator is symmetric, it
can be described by Aw(x1, . . . , xn) = f

(
min(x1, . . . , xn)

)
with f : [0, 1] → [0, 1]

given by

f(x) =

{
1, if x = 1,
0, otherwise.

Remark 2. Any aggregation operator A dominating TM is also dominated by
TM, i.e., for arbitrary n,m ∈ N and for all xi,j ∈ [0, 1] with i ∈ {1, . . . , n} and
j ∈ {1, . . . ,m} the following equality holds

A
(
min(x1,1, . . . , x1,n), . . . ,min(xm,1, . . . , xm,n)

)
= min

(
A(x1,1, . . . , xm,1), . . . ,A(x1,n, . . . , xm,n)

)
.

5.2 Dominance of the Drastic Product

Oppositely to the case of TM, the weakest t-norm TD : [0, 1]2 → [0, 1] is domi-
nated by any t-norm T . This can also be seen from the characterization of all
aggregation operators dominating TD as given in the next proposition.
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Proposition 5. [32] Consider an arbitrary n ∈ N and an n-ary aggregation
operator A(n) : [0, 1]n → [0, 1]. Then A(n) ) TD if and only if there exists a
non-empty subset I = {k1, . . . , km} ⊆ {1, . . . , n}, k1 < . . . < km, and a non-
decreasing mapping B : [0, 1]m → [0, 1] satisfying the following conditions

(i) B(0, . . . , 0) = 0,
(ii) B(u1, . . . , um) = 1 if and only if u1 = . . . = um = 1,

such that A(x1, . . . , xn) = B(xk1 , . . . , xkm).

Observe that the mapping B in the above proposition is an m-ary aggregation
operator wheneverm ≥ 2. However, if m = 1, i.e., I = {k}, then B : [0, 1] → [0, 1]
is a non-decreasing mapping with strict maximum B(1) = 1 and B(0) = 0 as well
as A(x1, . . . , xn) = B(xk) and is therefore a distortion of the k-th projection.

Concerning t-norms, for any t-norm T , we have T (x1, . . . , xn) = 1 if and only
if xi = 1 for all i ∈ {1, . . . , n} and thus I = {1, . . . , n}. Therefore B = T and
T ∈ DTD .

5.3 Dominance of the �Lukasiewicz T-Norm

Summarizing the results from Section 4.1 we can characterize aggregation oper-
ators dominating the �Lukasiewicz t-norm TL by means of the subadditivity of
the corresponding dual operator.

Theorem 3. [27] An aggregation operator A :
⋃

n∈N
[0, 1]n → [0, 1] dominates

TL if and only if its dual aggregation operator Ad :
⋃

n∈N
[0, 1]n → [0, 1] is sub-

additive.

Note that as a consequence of Proposition 2 an aggregation operator is domi-
nated by TL if and only if its dual aggregation operator Ad is superadditive.

As already mentioned in Remark 1, any weighted arithmetic mean W domi-
nates TL. Moreover, due to Corollary 1, for any constant c ∈ [1,∞[ we have also
that B :

⋃
n∈N

[0, 1]n → [0, 1], defined by

B(x1, . . . , xn) = max(0, c ·W(x1, . . . , xn) + 1− x)

dominates TL.
Based on Theorem 3 several other aggregation operators dominating TL can

be introduced. For example, the function H :
⋃

n∈N
[0,∞]n → [0,∞] given by

H(x1, . . . , xn) = (
n∑

i=1

xλ
i )

1
λ

is subadditive for any λ ≥ 1. Therefore, also the Yager t-conorm SY
λ = min(H, 1)

is subadditive such that the Yager t-norm TY
λ dominates TL for all λ ∈ [1,∞[.

Similarly any root-power operator [18] Aλ :
⋃

n∈N
[0, 1]n → [0, 1] given by

Aλ(x1, . . . , xn) = ( 1
n

n∑
i=1

xλ
i )

1
λ
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is subadditive for any λ ≥ 1. As a consequence its dual aggregation operator
Ad

λ :
⋃

n∈N
[0, 1]n → [0, 1]

Ad
λ(x1, . . . , xn) = 1− ( 1

n

n∑
i=1

(1− xi)λ)
1
λ

dominates TL.
For the aggregation of fuzzy relations, the introduction of weights in the ag-

gregation process has been of importance. Therefore, the dominance of OWA
operators over TL is an interesting problem.

Proposition 6. [27] Consider an n-ary OWA operator W′
(n), n ∈ N, with

weights w1, . . . , wn. Then W′
(n) dominates TL if and only if w1 ≥ w2 ≥ . . . ≥ wn.

If we consider an OWA operator W′ :
⋃

n∈N
[0, 1]n → [0, 1], it is clear that

W′ ) TL if and only if W′
(n) ) TL for all n ∈ N.

It has been proposed in [41] to derive the weights for an OWA operator from
some quantifier function q : [0, 1] → [0, 1], which is a monotone real function
such that {0, 1} ⊆ Ran q. As a consequence, q can either be non-decreasing with
q(0) = 0 and q(1) = 1 or can be non-increasing with q(0) = 1 and q(1) = 0.

Since we are looking for aggregation operators dominating TL, the corre-
sponding weights for each n-ary operator must be non-increasing. Therefore
we are looking for additional properties for the quantifier function, such that
the non-increasingness of the weights is guaranteed. It will turn out, that non-
increasingness of the weights is closely related to the concavity, resp. the con-
vexity of the involved quantifier.

Definition 12. A function f on some convex domain A is convex, if the follow-
ing inequality

f(λx+ (1 − λ)y) ≤ λf(x) + (1− λ)f(y)

holds for all λ ∈ [0, 1] and x, y ∈ A. The function is said to be concave, if the
inequality

f(λx+ (1 − λ)y) ≥ λf(x) + (1− λ)f(y)

holds for all λ ∈ [0, 1] and x, y ∈ A.

First, we will restrict our considerations to non-decreasing quantifiers. Some
examples for such functions are shown in Fig. 1. The weights derived from such
a quantifier can be computed by

win = q( i
n )− q( i−1

n ).

Lemma 2. If q : [0, 1] → [0, 1] is a non-decreasing quantifier for some OWA
operator and the generated weights fulfill w1,n ≥ . . . ≥ wn,n for all n ∈ N and
i ∈ {1, . . . , n}, then q is continuous on ]0, 1].
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Fig. 1. Some examples of non-decreasing quantifier functions

Proposition 7. [27] Consider some OWA operator with non-decreasing quan-
tifier q : [0, 1] → [0, 1] and generated weights w1,n, . . . , wn,n for all n ∈ N. Then
these weights fulfill w1,n ≥ . . . ≥ wn,n for all n ∈ N if and only if q is concave
on ]0, 1], i.e., ∀x, y ∈ [0, 1], ∀λ ∈ [0, 1]

q(λx + (1− λ)y) ≥ λq(x) + (1 − λ)q(y).

Example 7. A typical example of an OWA operator W′ dominating TL is gener-
ated by the quantifier function q(x) = 2x− x2. Observe that for any n ∈ N the
corresponding weights are given by

win = 2(n−i)+1
n2 , i ∈ {1, . . . , n}.

If a quantifier function is non-increasing then the weights can be computed
by

win = q( i−1
n )− q( i

n ).

For a few examples of non-increasing quantifiers see Fig. 2. The following prop-
erties can be shown analogously to the case of non-decreas-ing quantifiers.
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Fig. 2. Some examples of non-increasing quantifier functions

Corollary 2. If q : [0, 1] → [0, 1] is a non-increasing quantifier for some OWA
operator and the generated weights fulfill w1n ≥ . . . ≥ wnn for all n ∈ N and
i ∈ {1, . . . , n}, then q is continuous on ]0, 1].

Corollary 3. Consider some OWA operator with non-increasing quantifier q :
[0, 1] → [0, 1]. Then the generated weights fulfill w1n ≥ . . . ≥ wnn for all n ∈ N
if and only if q is convex on ]0, 1], i.e., ∀x, y ∈ [0, 1], ∀λ ∈ [0, 1]

q(λx + (1− λ)y) ≤ λq(x) + (1 − λ)q(y).

Remark 3. Any nilpotent t-norm T is isomorphic to the �Lukasiewicz t-norm TL,
i.e., T=(TL)ϕ with ϕ : [0, 1] → [0, 1] a strictly increasing bijection. According
to Proposition 2, we know that if TL is dominated by an OWA operator W′

then an isomorphic t-norm T = (TL)ϕ is dominated by the aggregation operator
W′

ϕ. In fact W′
ϕ is nothing else than an ordered weighted quasi-arithmetic mean

(OWQA) with respect to the strictly increasing bijection ϕ : [0, 1] → [0, 1] with
corresponding weights w1n ≥ w2n ≥ . . . ≥ wnn for all n ∈ N, i.e.,

W′
ϕ(x1, . . . , xn) = ϕ−1(W′(ϕ(x1), . . . , ϕ(xn)))

= ϕ−1( 1
n

n∑
i=1

winϕ(xi)′) = ϕ−1( 1
n

n∑
i=1

winϕ(x′i)).

5.4 Dominance of the Product

Concerning dominance over the product TP, Theorem 2 transforms as follows.

Theorem 4. [27] An aggregation operator A :
⋃

n∈N
[0, 1]n → [0, 1] dominates

TP if and only if the function fn : [0,∞]n → [0,∞] given by

fn(x1, . . . , xn) = − log(A(e−x1 , . . . , e−xn))

is subadditive for each n ∈ N.
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Again an aggregation operator A is dominated by TP if and only if each fn as
given by Theorem 4 is superadditive.

As already mentioned any weighted geometric mean dominates TP. Moreover,
for any n ≥ 2 and any −→w = (w1, . . . , wn) with

∑n
i=1 wi > 0 and wi ∈ [0,∞], the

function H : [0,∞]n → [0,∞] defined by

H(x1, . . . , xn) =
n∑

i=1

wi · xi

is an n-ary, subadditive aggregation operator acting on [0,∞]. Therefore, any
n-ary aggregation operator

A−→w (x1, . . . , xn) =
n∏

i=1

xwi

i

dominates the product TP.
However, observing that for all λ ≥ 1, the function

Hλ : [0,∞]2 → [0,∞] ,Hλ(x, y) = (xλ + yλ)
1
λ ,

is also a binary, subadditive aggregation operator acting on [0,∞], also any
member of the Aczél-Alsina family of t-norms (TAA

λ )λ∈[1,∞], is contained in
DTP because of Theorem 2.

Similar as in the case of the �Lukasiewicz t-norm TL, we can show the next
result.

Proposition 8. [27] For a fixed n ∈ N and some weighting vector −→w =
(w1, . . . , wn), let A : [0, 1]n → [0, 1] be an ordered weighted geometric mean,
i.e., A(x1, . . . , xn) =

∏n
i=1(x

′
i)

wi where x′i is again the i-th order statistic of
(x1, . . . , xn). Then A ) TP if and only if w1 ≥ w2 ≥ . . . ≥ wn.

Due to the isomorphism of any strict t-norm to the product TP, similar consid-
erations are valid for any strict t-norm.

5.5 Final Remarks Related to Continuous Archimedean T-Norms

In Section 5.3 we have shown how the dominance of TL by an OWA operator
W′ restricts the possible choices for weights. When considering some similar
constraints reflecting W′ ) T for some other continuous Archimedean t-norm
T , we cannot exploit the isomorphism of TL and nilpotent t-norms (then also
W′ should be isomorphically transformed). Thus as a separate problem let us
consider a continuous Archimedean t-norm T with additive generator t and an
OWA operator W′ :

⋃
n∈N

[0, 1]n → [0, 1] which is supposed to dominate T , i.e.,
for all n ∈ N and for all xi, yi ∈ [0, 1], i ∈ {1, . . . , n}

W′(T (x1, y1), . . . , T (xn, yn)) ≥ T (W′(x1, . . . , xn),W′(y1, . . . , yn)).
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If we concentrate on the binary case and choose x1 = 0, y1 = 1, x2 = 1, y2 > 0
then we see that necessarily

W′(0, y2) = w2y2 ≥ T (w2, w1y2 + w2)

= t−1(min(t(0), t(w2) + t(w1y2 + w2))),

i.e., for all y2 ∈ [0, 1[

t(w2y2) ≤ t(w2) + t(w1y2 + w2).

Evidently if t(0) = +∞ then we get that w2 = 0 because of the continuity of
t. Similarly we can show in the general case with n ∈ N that wi = 0 for i > 1.
It follows that for any strict t-norm T only one OWA dominates T , namely the
minimum.

In the case of nilpotent t-norms, equation (5.5) gives a necessary condition
for W′ ) T .

For y2 → 0+ we get that for normed additive generators 1 ≤ 2t(w2), i.e.,
w2 ≤ t−1(1

2 ) holds. This fact can be exploited in determination of OWA operators
dominating a specific t-norm. For example, it can be conjectured that an OWA
operator with weights (w1, . . . , wn) dominates

– Yager’s t-norm T Y
p [21] with parameter p ∈ ]0,∞[ and normed additive

generator tp(x) = (1− x)p if and only if

wi ≥ 1
21/p−1wi+1, i = 1, . . . , n− 1,

– Schweizer-Sklar’s t-norm T SS
λ [21] with parameter λ ∈ ]0,∞[ and normed

additive generator tλ(x) = 1− xλ if and only if

wi ≥ (21/λ − 1)wi+1.

Observe that the arithmetic mean M ) T Y
p if and only if p ≤ 1 and M ) T SS

λ

if and only if λ ≥ 1. Recall that TL = T Y
1 = T SS

1 .

6 Conclusion

We have discussed the aggregation of fuzzy relations and the preservation of
their transitivity. In particular, the aggregation operator A preserves the T -
transitivity of fuzzy relations if and only if it dominates the corresponding t-norm
T (A ∈ DT ). Several methods for constructing aggregation operators within a
certain class DT have been mentioned with a particular emphasis on the intro-
duction of weights. Further, a characterization of DT for the four basic t-norms
has been provided.
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Abstract. This paper addresses the added value that is provided by
using distance-based fuzzy relations in flexible query answering. To use
distances and/or concepts of gradual similarity in that domain is not
new. Within the last ten years, however, results in the theory of fuzzy
relations have emerged that permit a smooth and pragmatic, yet ex-
pressive and effective, integration of ordinal concepts too. So this paper
primarily highlights the benefits of integrating fuzzy orderings in flexible
query answering systems, where the smooth interplay of fuzzy equiva-
lence relations and fuzzy orderings allows to use simple distances as a
common basis for defining both types of relations. As one case study, we
discuss a pragmatic variant of a flexible query answering system—the
so-called Vague Query System (VQS). The integration of fuzzy order-
ings into that system is provided in full detail along with the necessary
methodological background and demonstrative examples.

1 Introduction

From a naive viewpoint, databases are nothing else but means to store and
retrieve data in an appropriately structured way. Conventional database systems
available on the market offer powerful mechanisms to retrieve data according to
complex criteria. A large majority of systems supports the Structured Query
Language (SQL) that has become a widely accepted standard.

No matter how complex a query might be, SQL is based on logical expressions
that a given record either fulfills or not. The use of classical binary logic for data
retrieval poses severe limitations. Firstly, real-world data, in particular, numeric
data, are often perturbed by noise or measurement errors. This may result in
unstable behavior in the sense that minimal variations of the data can change the
result of a query dramatically. Secondly, no structural information is available
about how close a rejected record was to the fulfillment of the query. This loss
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of information is particularly harmful if the user would still be interested in
potentially close records if the query gives an empty result. Thirdly, constructs
that are closer to natural language, like vague and qualitative expressions, would
mean a strong enrichment of a query interface in terms of usability and flexibility.
SQL, however, does not support such kinds of elements.

These fundamental needs have created an own discipline at the interface be-
tween database and fuzzy logic research. On the one hand, researchers in fuzzy
logic have soon been interested in the question how to cope with imprecise
and/or qualitative data and relations in database systems. The concepts de-
veloped in this direction are nowadays often subsumed under the term “fuzzy
databases” [4,9,28,32]. A second branch of research, on the other hand, has been
concerned with the problem how query interfaces to conventional databases with
crisp data can be extended such that a flexible interpretation of queries is pos-
sible [6, 7, 8, 16, 19, 21, 22, 26, 29, 37, 38]—in particular, with the motivation to
suggest alternatives that are close to matching the criteria in case that a query
gives an empty result. This area is often referred to as “flexible querying”. As
recent overviews demonstrate [4, 5, 34], significant progress has been made in
both directions.

Fuzzy relations have a long tradition in flexible querying. In particular, fuzzy
equivalence relations1 have often been used for modeling the similarity between
two records in a gradual way [7, 8, 10, 11]—particularly with the motivation to
have a degree of closeness to which a record matches a query. Fuzzy order-
ings [17,30,44], on the other hand, have not contributed to applications in flexible
querying so far. As elaborated in detail in [1], the limited applicability of fuzzy
orderings is not a coincidence, but a systematic consequence of not relating fuzzy
orderings to a proper concept of fuzzy similarity (see also [18]). This paper ad-
dresses the question how a generalized notion of fuzzy orderings that overcomes
these limitations [1, 18] can be integrated fruitfully in flexible query answering
systems. We will see that the strong connection between fuzzy equivalence rela-
tions and fuzzy orderings allows to use simple distances as a common basis for
defining both types of relations. Distances or gradual similarity are common in
flexible query answering, but this paper demonstrates that the formulation in
the frame of distance-based fuzzy relations and the integration of fuzzy orderings
provide higher expressiveness and interpretability while maintaining simplicity.

This paper does not only give theoretical and methodological background.
Instead it is built around an existing system from practice—the so-called Vague
Query System (VQS) [26,27] which is a pragmatic approach to handling queries
with crisp data in a flexible way by incorporating a certain tolerance for impre-
cision. Consequently, this paper is organized as follows. In Section 2, we high-
light VQS as the basis for further investigations. Section 3 gives the necessary
background from the theory of fuzzy relations that is necessary to re-formulate
VQS in the frame of fuzzy relations and to integrate ordering-based queries.

1 Other names for this fundamental class of fuzzy relations are—some of them assum-
ing a specific t-norm—fuzzy equality [23, 25], indistinguishability operators [39, 40],
similarity relations [44], likeness relation [14], and proximity relation [15].
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VQLExpression := “SELECT FROM” DataSource “WHERE” Conditions
“INTO” destinationTableName;

DataSource := ([ownerName“.”]rootTableName) |
([ownerName“.”]rootViewName) |

“(”sqlSelectStatement“)”;
Conditions := columnName “IS” ValueExpression

{“AND” columnName “IS” ValueExpression};
ValueExpression := (“`”alphaNumericValue“´” | numericValue)

[“WEIGHTED BY” numericValue];

Fig. 1. The syntax of VQL

Section 4 addresses the fundamental issue of aggregating multiple queries. Then
Section 5 summarizes all findings and puts them in context with VQS again;
a first demonstrative example is presented. Section 6 discusses the choice of an
important degree of freedom—the underlying t-norm. Finally, Section 7 pro-
vides a non-trivial real-world example. Note that this paper is a state-of-the-art
summary that integrates two previously published papers [2, 3].

2 The Vague Query System (VQS)

VQS is an add-on to conventional relational databases which acts as a proxy
between the user and the database [26, 27]. Since VQS communicates with the
underlying database only on the basis of standard SQL, no adaptations to the
database system or the data model have to be made, which allows easy integra-
tion into existing applications.

Flexible interpretation of queries requires semantic information about the at-
tributes. In case of numeric attributes, considering Euclidean distances is most
often sufficient. For non-numeric attributes, most other systems [19,29] use sim-
ilarity tables, which often implies serious limitations in terms of storage and
computational effort. VQS avoids these problems by using a so-called NCR ta-
ble (numeric coordinate representation), i.e. an assignment of (possibly multi-
dimensional) numeric values to all possible instances of a non-numeric attribute
(e.g. assignment of RGB color values to natural language names of colors or as-
signment of GPS coordinates to city names). This approach is only applicable in
case that the number of possible instances of an attribute is finite and under the
assumption that a meaningful numeric representation is available. In practice,
these requirements can most often be met (e.g. in tourist information systems,
where this approach has been applied already [31]).

Figure 1 shows the syntax of the Vague Query Language (VQL) used by VQS
(in [27], an extension to vague joins has been proposed. As joins are not in the
main focus of this paper, we restrict to the simpler variant from [26]).

The question arises how VQS implements the “IS” operator (which should
be understood in the sense of “is similar to”). Provided that there is one single
“IS” condition in the query, VQS retrieves all records from the data source and
ranks them according to the distance from the query value. In case that the
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Table 1. Hotel data set (artificial toy data set)

# Location EUR/night ∗
1 Salzburg Center (S) 120.00 5
2 Salzburg Center (S) 85.00 4
3 Salzburg Liefering (SL) 70.00 4
4 Anif (A) 80.00 4
5 Mattsee (M) 60.00 4
6 Salzburg Aigen (SA) 70.00 3
7 Salzburg Aigen (SA) 77.00 4
8 Linz (L) 70.00 4
9 Salzburg Maxglan (SM) 60.00 3

column contains numeric values, the distance between two values x, y can easily
be computed as the absolute value of the difference |x− y| (Euclidean norm for
the one-dimensional real space R). If the column under consideration is non-
numeric, the distance is computed as the distance of the associated values in the
corresponding NCR table. VQS works with normalized distances, i.e. any raw
distance value is divided by the maximum of possible distances of values in the
column under consideration. Every condition, therefore, is assigned a distance
value normalized to the unit interval [0, 1]. This value then corresponds to the
closeness of the record to the query. In case that two or more “IS” conditions
are combined with “AND”, a weighted average of the distances in the different
columns is used to rank the results (equal weights are used by default, which
can be overridden using the optional “WEIGHTED BY” expression).

Example 1. We consider a toy data set describing hotels. For each hotel, the
location, the price per night, and the category (in no. of stars) is stored in a
table. The data set is shown in Table 1. Consider the following query:

SELECT FROM HotelTable
WHERE Location IS ‘Salzburg Center’
AND Price IS 70
AND Category IS 4

INTO ResultSet

Assume that the distances between locations are given as in Table 2 (as the result
of computing a distance measure for corresponding values in an NCR table).

To compute the result set for this query, all distances are first normalized,
which means that the distance of any two locations is divided by 147.8, each
discrepancy in the price is divided by 60, and each discrepancy in the category
is divided by 2 (as stressed above, distances are divided by the maximal possible
distance in the data set). Using equal weights, i.e. the overall degree of matching
is computed by means of the arithmetic mean, we obtain the result set shown in
Table 2 sorted by the closeness to the query (d1, d2, and d3 denote the normalized
distances with respect to location, price, and category, respectively; d is the
aggregated distance).
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Table 2. Distance matrix for locations in the hotel data set

[km] S SL A M SA L SM
S 0.0 4.4 9.0 21.3 4.2 133.2 3.8
SL 4.4 0.0 17.3 22.1 7.0 133.8 3.8
A 9.0 17.3 0.0 29.9 8.6 147.8 13.7
M 21.3 22.1 29.9 0.0 23.4 138.6 25.1
SA 4.2 7.0 8.6 23.4 0.0 135.1 5.0
L 133.2 133.8 147.8 138.6 135.1 0.0 137.4

SM 3.8 3.8 13.7 25.1 5.0 137.4 0.0

Table 3. VQS result set

# Location d1 d2 d3 d
3 Salzburg Liefering 0.0298 0.0000 0.0000 0.0099
7 Salzburg Aigen 0.0284 0.1167 0.0000 0.0484
4 Anif 0.0609 0.1667 0.0000 0.0759
2 Salzburg Center 0.0000 0.2500 0.0000 0.0833
5 Mattsee 0.1441 0.1667 0.0000 0.1036
6 Salzburg Aigen 0.0284 0.0000 0.5000 0.1761
9 Salzburg Maxglan 0.0257 0.1667 0.5000 0.2308
8 Linz 0.9012 0.0000 0.0000 0.3004
1 Salzburg Center 0.0000 0.8333 0.5000 0.4444

Example 1 clearly demonstrates two severe shortcomings of VQS:

1. VQS is restricted to “IS” queries that are interpreted with a certain tolerance
for imprecision. For the location column, this is not a serious restriction. For
the price column, however, this is a painful limitation, as the user is not
necessarily interested in a price that is as close to EUR 70 as possible, but
more likely in a price that exceeds EUR 70 as little as possible. This once
more underlines the need for integrating ordinal information into VQS.

2. The normalization of distances is done for all columns independently solely
on the basis of the largest distance between two values in the column. The
result is that the normalization is biased to the actual data in the column
and, consequently, that two distance values for different columns may be
difficultly comparable. In the above example, prices differ within a range of
EUR 20, while the maximal distance of locations is 147.8 km. This means
that a considerable distance of 7.39 km corresponds to an almost negligible
difference in price of EUR 1. This undesired bias can only be compensated
by adjusting the weights by trial and error—an effort that the user is most
probably not willing to spend.

The main focus, of course, is to tackle the first problem. However, it will turn
out that, by reformulating VQS in the framework of fuzzy relations, also the
second shortcoming can be overcome.

In order to enrich VQS with ordinal constructs, we first define the language.
The following sections are then devoted to a detailed step-by-step description of
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VQLExpression := “SELECT FROM” DataSource “WHERE” Conditions
“INTO” destinationTableName;

DataSource := ([ownerName“.”]rootTableName) |
([ownerName“.”]rootViewName) |

“(”sqlSelectStatement“)”;
Conditions := Condition {“AND” Condition};
Condition := NonNumericCond ParameterExpression |

NumericCond ParameterExpression;
NonNumericCond := columnName “IS” alphaNumericValue;
NumericCond := columnName “IS” numericValue |

columnName “IS AT LEAST” numericValue |
columnName “IS AT MOST” numericValue |

columnName “IS WITHIN
(” numericValue “,” numericValue “)”;

ParameterExpression := [“TOLERATE UP TO” numericValue]
[“WEIGHTED BY” numericValue];

Fig. 2. The syntax of oVQL

the corresponding semantics. Figure 2 shows the syntax of the Ordering-Enriched
Vague Query Language (oVQL). It is obvious that oVQL differs from VQL in the
respect that there is an explicit distinction between numeric and non-numeric
attributes. For non-numeric ones, only the “IS” condition is defined like in VQL.
For numeric ones, three new types of conditions

“IS AT LEAST”, “IS AT MOST”, and “IS WITHIN”2

are added. An ordering might also be defined for a non-numeric attribute. How-
ever, we leave this aspect aside for this paper, as the main motivation for ordinal
structures are numeric attributes (for which an ordering is most often given in
a straightforward way). Another major difference is the “TOLERATE UP TO”
expression. Its role will become clearer later. For the moment, let us just mention
that it corresponds to an upper bound of tolerance the user can set to specify
his/her radius of interest around a query value.

3 Conditions Based on Fuzzy Relations

We first approach the question how the semantics of the single conditions “IS”,
“IS AT LEAST”, “IS AT MOST”, and “IS WITHIN” are modeled. For the
“IS” condition, the original VQS already provides a reasonable definition using
distances. From an intuitive point of view, a query like, e.g.,

Price IS AT MOST 70

should be perfectly fulfilled by a price x if x ≤ 70. If x > 70, some flexible
interpretation taking the distance between x and 70 into account should take
2 Specifically meaning “is within the range of . . . ”.
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place. This ad-hoc approach is not only intuitive, but has a sound theoretical
foundation in the general framework of fuzzy orderings [1,18]. The present section
provides the necessary basics to demonstrate this fact.

Given a non-empty domain X , a mapping R : X2 → [0, 1] that assigns a
degree of relationship R(x, y) ∈ [0, 1] to each pair (x, y) ∈ X2 is called (binary)
fuzzy relation on X . Two types of fuzzy relations will be central objects in
this paper—fuzzy equivalence relations and fuzzy orderings. We use triangular
norms (t-norms) as generalized models of conjunction [24]. A triangular norm is
a binary operation on the unit interval (i.e. a [0, 1]2 → [0, 1] mapping) which is
associative, commutative, non-decreasing, and has 1 as neutral element.

Definition 1. A binary fuzzy relation E : X2 → [0, 1] is called fuzzy equivalence
relation with respect to a t-norm T , for brevity T -equivalence, if and only if the
following three axioms are fulfilled for all x, y, z ∈ X :

(i) Reflexivity: E(x, x) = 1
(ii) Symmetry: E(x, y) = E(y, x)
(iii) T -transitivity: T

(
E(x, y), E(y, z)

) ≤ E(x, z)

Definition 2. A fuzzy relation L : X2 → [0, 1] is called fuzzy ordering with
respect to a t-norm T and a T -equivalence E, for brevity T -E-ordering, if and
only if it is T -transitive and fulfills the following two axioms for all x, y ∈ X :

(i) E-Reflexivity: E(x, y) ≤ L(x, y)
(ii) T -E-antisymmetry: T

(
L(x, y), L(y, x)

) ≤ E(x, y)

Moreover, we call a T -E-ordering L strongly complete if max
(
L(x, y), L(y, x)

)
=

1 for all x, y ∈ X .

We now briefly mention a crucial result that helps to clarify the connection
between the two types of fuzzy relations and the semantics of the four oVQL
conditions.

Definition 3. A crisp ordering- on a domain X and a T -equivalence E : X2 →
[0, 1] are called compatible if and only if the following holds for all x, y, z ∈ X :

x - y - z ⇒ E(x, z) ≤ min
(
E(x, y), E(y, z)

)
Compatibility between a crisp ordering - and a fuzzy equivalence relation E
can be interpreted as follows: the two outer elements of any three-element chain
are at most as similar as any two inner elements.

Theorem 1. [1] Consider a fuzzy relation L on a domain X and a T -equiva-
lence E. Then the following two statements are equivalent:

(i) L is a strongly complete T -E-ordering.
(ii) There exists a linear ordering - the relation E is compatible with such that

L can be represented as follows:

L(x, y) =
{

1 if x - y
E(x, y) otherwise



214 U. Bodenhofer, J. Küng, and S. Saminger

Theorem 1 particularly implies that the “combination” of a crisp linear ordering
- and a fuzzy equivalence relation compatible with - has a clear theoretical
interpretation as a vague concept of ordering (a “linear ordering with impreci-
sion”). This is exactly what we need to define the semantics of the four oVQL
conditions in a theoretically sound way: if we manage to transfer the distance-
based interpretation of the “IS” condition into one using a fuzzy equivalence
relation that is compatible with the underlying linear ordering, then Theorem 1
provides the perfect justification of the above ad-hoc idea to “combine” a crisp
linear ordering with a flexible interpretation based on distances.

The question arises how to transform distances into a fuzzy equivalence rela-
tion in a meaningful way such that the closer a value is to a query, the higher
the degree of fulfillment is. For this purpose, a well-established result is available
if the t-norm T under consideration is continuous Archimedean [24, 36] (sim-
plistically, this means that T is a continuous mapping fulfilling T (x, x) < x
for all x ∈ ]0, 1[). Such a t-norm can always be represented by means of a
so-called additive generator, i.e. a continuous and strictly decreasing bijection
f : [0, 1] → [0,∞], such that the following representation holds:

T (x, y) = f−1(min(f(x) + f(y), f(0))
)

Note that there is a major difference between t-norms with a generator for which
f(0) = ∞ holds and those with a generator that fulfills f(0) <∞. In the former
case, we speak of a strict t-norm with the product TP(x, y) = x·y being the most
important representative. In the latter case, T belongs to the class of nilpotent t-
norms, out of which the so-called �Lukasiewicz t-norm TL(x, y) = max(x+y−1, 0)
is the most prominent representative. Note that the additive generator f is
determined up to a positive multiplicative constant. Therefore, we can assume
without any loss of generality that f(0) = 1 in the nilpotent case f(0) <∞.

Theorem 2. [14] Consider a continuous Archimedean t-norm T with additive
generator f , a pseudo-metric d : X2 → ]0,∞[, and a real constant C > 0. Then
the following mapping is a T -equivalence:

Ed,C(x, y) = f−1(min( 1
C · d(x, y), f(0))

)
(1)

Theorem 2 states that we can transform a (pseudo-)metric into a T -equivalence
if we consider a continuous Archimedean t-norm T . The following example shows
how this can be done for the two basic t-norms TL and TP.

Example 2. Let us consider a metric d : X2 → [0,∞[. It is clear that d′(x, y) =
1
C · d(x, y) (for C > 0) is a metric as well. Since fL(x) = 1 − x is a self-inverse
additive generator of the �Lukasiewicz t-norm TL fulfilling f(0) = 1, Theorem 2
implies that

Ed,C(x, y) = max
(
1− 1

C · d(x, y), 0)
defines a TL-equivalence [14,25]. The value C is obviously the maximal distance
of two objects x and y up to which E(x, y) > 0 can hold.
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The function fP(x) = − lnx is an additive generator of product t-norm TP,
where f−1

P (x) = exp(−x). Then Theorem 2 yields that

E′
d,C(x, y) = exp

(− 1
C · d(x, y))

is a TP-equivalence. The value C does not have an as intuitive interpretation
in this example as above. Anyway, C has the same quantitative influence: the
larger C is chosen, the slower E(x, y) decreases with increasing distance d(x, y).

The only question remaining open is how a fuzzy equivalence relation can be
constructed from a (pseudo-)metric such that compatibility with a given crisp
ordering is fulfilled. The following proposition provides the vehicle to answer this
question.

Proposition 1. Let T be a continuous Archimedean t-norm with an additive
generator f and let - be an ordering of the domain X. If a pseudo-metric d :
X2 → [0,∞[ fulfills

x - y - z ⇒ d(x, z) ≥ max
(
d(x, y), d(y, z)

)
(2)

for all x, y, z ∈ X, then its induced fuzzy equivalence relation Ed, defined as in
(1), is compatible with -.

Note that scaling a given pseudo-metric d with a factor 1
C (with C > 0) does not

change the compatibility with an ordering in the sense of (2), i.e. a pseudo-metric
d fulfills (2) if and only if d′(x, y) = 1

C · d(x, y) does so.

Example 3. Consider the real numbers R (or any subset of them) and the usual
linear ordering of real numbers. For a given sequence x ≤ y ≤ z, we trivially
have that

|x− y| = |y − x| = y − x

|x− z| = |z − x| = z − x

|y − z| = |z − y| = z − y

and we obtain (with d(a, b) = |a − b|) d(x, z) = z − x ≥ y − x = d(x, y) and
d(x, z) = z−x ≥ z− y = d(y, z), which proves that the absolute distance of real
numbers is compatible with the linear ordering ≤. As a consequence, we obtain
that

EC(x, y) = max
(
1− 1

C · |x− y|, 0)
is a TL-equivalence on R that is compatible with ≤ and that

E′
C(x, y) = exp

(− 1
C · |x− y|)

is a TP-equivalence on R that is compatible with ≤. Then Theorem 1 implies
that

LC(x, y) =
{

1 if x ≤ y
max

(
1− 1

C · |x− y|, 0) otherwise

is a TL-Ed,C-ordering on R and that
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L′
C(x, y) =

{
1 if x ≤ y
exp

(− 1
C · |x− y|) otherwise

is a TP-E′
d,C-ordering on R. Of course, these constructions can be carried out

analogously for any other continuous Archimedean t-norm T .

The conclusion of Example 3 is that we now have a meaningful and theoretically
sound way to construct fuzzy orderings on the real numbers by “combining”
ordering and distance. This enables us to define the semantics of the four types
of oVQL conditions. In the following, assume that we are given a continuous
Archimedean t-norm T with additive generator f .

For a given non-numeric column, a condition “x IS q” is evaluated in the
following way: for a concrete value x0, the degree to which x0 fulfills the condition
is computed as3

t(“x IS q” | x0) = Ed,C(x0, q) (3)

where
Ed,C(x, y) = f−1(min( 1

C · d(x, y), f(0))
)

(4)

and d is a metric for the column under investigation which is constructed using
an NCR.

For a numeric attribute, we are able to define the degrees to which the four
conditions are fulfilled by

t(“x IS q” | x0) = EC(x0, q) (5)
t(“x IS AT LEAST q” | x0) = LC(q, x0) (6)
t(“x IS AT MOST q” | x0) = LC(x0, q) (7)

t(“x IS WITHIN (a, b)” | x0) = min
(
LC(min(a, b), x0), LC(x0,max(a, b))

)
(8)

with
EC(x, y) = f−1(min( 1

C · |x− y|, f(0))
)

and

LC(x, y) =
{

1 if x ≤ y,
f−1

(
min( 1

C · |x− y|, f(0))
)

otherwise.

Note that this formulation of the semantics of the four oVQL conditions uses
distances that need not be normalized. Instead of a normalization that is only
determined by the data, the user has influence on how the raw distances are
converted into matching degrees. If C is chosen independently of the data set,
no bias to specific records in the data set can occur. If T = TL, C even has a clear
interpretation (see Example 2). Therefore, it makes sense to leave the choice of
C to the user (at least as an option). If he/she does not choose a particular value,
a reasonable default value can be chosen. In the context of our hotel example,
this means that either the user specifies the maximum acceptable distance C
or a common sense default value (e.g. C = 20km) is chosen by the system.
3 The mapping t(Q | x0) is a dummy function that evaluates the degree to which a

concrete value x0 fulfills the query Q.
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Analogously for price and category: the user may decide which deviation from the
query value q is tolerable. The optional choice of the value C, no matter whether
we consider a numeric attribute or a non-numeric one, is possible through the
“TOLERATE UP TO” expression.

4 The Aggregation Issue

The semantics of single oVQL conditions have been defined in the previous sec-
tion. It remains to clarify how to proceed if the query involves two or more such
conditions. In analogy to the original VQS, it would be desirable to aggregate
the degrees to which a given record fulfills the individual conditions into one
overall matching degree.

In the original VQS, this aggregation is done by means of a weighted average
of distances, which is a reasonable choice, since a weighted average of metrics
is again a metric. In the framework of fuzzy equivalence relations and fuzzy or-
derings, it is not clear whether this way of aggregating degrees of fulfillment is
appropriate, as we are dealing with truth values instead of distances. Weighted
averages still seem appropriate from a purely intuitive point of view. This view-
point, however, needs further justification.

Suppose that we have a VQS query consisting of n conditions. Let us denote
the degrees to which a given record fulfills these conditions with t1, . . . , tn. We
want to aggregate these degrees into one global degree to which the record fulfills
the entire query. If we model the aggregation by means of a mapping A : [0, 1]n →
[0, 1], it appears natural to require at least the following properties:

1. If all conditions are perfectly fulfilled, i.e. all degrees t1, . . . , tn are 1, then
the global degree should of course be 1. In mathematical terms:

A(1, . . . , 1) = 1 (9)

2. If none of the single queries is fulfilled at all, i.e. all degrees t1, . . . , tn are 0,
then the global degree of fulfillment should be 0, too:

A(0, . . . , 0) = 0

3. If one degree ti is increased while the others are kept constant, the overall
degree must not decrease, i.e. A should be non-increasing in each component.

4. VQS allowed to introduce weights that allow the user to assign degrees of
relative importance to each condition. As these weights (optional expression
“WEIGHTED BY”) are also defined in oVQL, A must offer the possibility
to integrate weights.

The first three requirements are exactly the conditions that A is an n-ary aggre-
gation operator [12]. Aggregation operators are a very general class of functions.
The question arises which other properties to demand from A in order to have
meaningful and interpretable results. The use of weighted averages for aggre-
gating distances in VQS is justified by the fact that weighted averages/sums
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are metric-preserving aggregation operators [33,35]. In the investigations of this
paper, we consider single conditions whose semantics are modeled by means of
fuzzy equivalence relations and fuzzy orderings. Both classes of fuzzy relations
are reflexive and T -transitive (for some fixed continuous Archimedean t-norm
T ). Analogously to the distance-based setting of VQS, it would be desirable that
both properties are preserved if the fuzzy relations are aggregated by A. That
would guarantee that the global degree of matching fulfills the same properties
as the individual fuzzy relations that are used to evaluate single conditions.

The preservation of reflexivity is guaranteed by (9). The preservation of T -
transitivity is a much more complex matter. As a recent investigation has shown
[35], this preservation is equivalent to the dominance of the t-norm T by the
aggregation operator A.

Definition 4. Consider an n-ary aggregation operator A and a t-norm T . We
say that A dominates T if and only if, for all sequences (x1, . . . , xn) ∈ [0, 1]n

and (y1, . . . , yn) ∈ [0, 1]n, the following property holds:

T
(
A(x1, . . . , xn),A(y1, . . . , yn)

) ≤ A
(
T (x1, y1), . . . , T (xn, yn)

)
Dominance is a highly non-trivial matter in the theory of triangular norms and
aggregation operators. For this paper, we suffice with a basic result that enables
us to define weighted aggregation operators which dominate a given continuous
Archimedean t-norm in a straightforward way.

Theorem 3. [35] Consider a continuous Archimedean t-norm T with additive
generator f and a weighting vector w = (w1, . . . , wn) (where wi ∈ [0,∞[). If
f(0) = ∞, we require that

∑n
i=1 wi > 0, and if f(0) < ∞, we require that∑n

i=1 wi ≥ 1. Then the following function is an aggregation operator that domi-
nates T :

Aw(x1, . . . , xn) = f−1(min(f(0),
n∑

i=1

wi · f(xi))
)

(10)

It is obvious that, for w1 = · · · = wn = 1, Aw coincides with the n-ary extension
of the t-norm T . If, more generally,

∑n
i=1 wi = n, a kind of weighted n-ary

variant of the t-norm T is obtained. In case
∑n

1=1 wi = 1, Aw can be considered
as the weighted quasi-arithmetic mean induced by the generator f [35].

Example 4. Let us apply this construction to the �Lukasiewicz t-norm TL:

Aw(x1, . . . , xn) = 1− (min(1,
n∑

i=1

wi · (1 − xi))
)

= max
(
0,

n∑
i=1

wi · xi −
n∑

i=1

wi + 1)
)

It is easy to see that in the case
∑n

i=1 wi = 1 nothing else than the ordinary
weighted arithmetic mean is obtained. Analogously, the same construction can
be applied for the product t-norm TP:
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A′
w(x1, . . . , xn) = exp

( n∑
i=1

wi · lnxi)
)

=
n∏

i=1

xwi

i

This operator coincides with the weighted geometric mean if
∑n

i=1 wi = 1.

Example 4 shows that the ad-hoc idea of using weighted averages like in VQS
is justified in the fuzzy relation-based framework of this paper too, but only for
T = TL. If T �= TL, the corresponding weighted quasi-arithmetic mean with
respect to T must be chosen to preserve T -transitivity. In case TP, the weighted
geometric mean is obtained.

Remark 1. The main benefit of a system like VQS is that a ranking of records
according to the closeness to the query is obtained. Practically, the matching
degrees themselves are of minor importance—what matters is the ranking. In
case that the chosen t-norm T is strict, the ranking result is invariant with
respect to the sum of the weights (of course, as long as this sum is positive;
cf. Theorem 3). If T is nilpotent, the sum of the weights has more influence. If∑n

i=1 wi = 1, the term
∑n

i=1 wi·f(xi) in (10) cannot exceed f(0). If
∑n

i=1 wi > 1,
it may happen that

∑n
i=1 wi · f(xi) > f(0), which means a loss of information.

Therefore, we suggest to normalize all weights in the query such that their sum
is 1, which is simple and results in a minimal loss of information. We suggest
the following strategy:

– If the user specifies weights for all conditions (i.e. a sequence of weights
w̃1, . . . , w̃n that does not necessarily sum up to 1), the weights for aggregation
are chosen as (i = 1, . . . , n)

wi =
w̃i∑n
i=1 w̃i

.

– If the user specifies no weights or only for some conditions, the remaining
“raw weights” are filled up with 1’s. Then the interpretation is transparent
for the user: With a weight w̃i > 1, he/she can strengthen the importance
of a condition. With a weight w̃i < 1, he/she correspondingly weakens the
importance of a condition.

Note that the aggregation methods described in this section are tailored to
the specific needs of a framework that makes use of T -transitive fuzzy relations.
In fuzzy querying, also other means of aggregation are commonly used, such as,
Ordered Weighted Average (OWA) operators [12,20,41,43] or linguistic quanti-
fiers [22, 42, 45].

5 Summary and Demonstrative Examples

Sections 3 and 4 together provide the mechanisms that are necessary to define
the semantics of oVQL. The following things have to be fixed in order to make
the ordering-enriched VQS work:
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Table 4. Result sets for the unweighted query for T = TL (above) and T = TP (below)

# Location t1 t2 t3 t
3 Salzburg Liefering 0.7800 1.0000 1.0000 0.9267
7 Salzburg Aigen 0.7900 0.5333 1.0000 0.7744
9 Salzburg Maxglan 0.8100 1.0000 0.5000 0.7700
6 Salzburg Aigen 0.7900 1.0000 0.5000 0.7633
1 Salzburg Center 1.0000 0.0000 1.0000 0.6667
2 Salzburg Center 1.0000 0.0000 1.0000 0.6667
5 Mattsee 0.0000 1.0000 1.0000 0.6667
8 Linz 0.0000 1.0000 1.0000 0.6667
4 Anif 0.5500 0.3333 1.0000 0.6278

# Location t1 t2 t3 t
3 Salzburg Liefering 0.8025 1.0000 1.0000 0.9293
7 Salzburg Aigen 0.8106 0.6271 1.0000 0.7981
9 Salzburg Maxglan 0.8270 1.0000 0.6065 0.7945
6 Salzburg Aigen 0.8106 1.0000 0.6065 0.7893
2 Salzburg Center 1.0000 0.3679 1.0000 0.7165
5 Mattsee 0.3447 1.0000 1.0000 0.7011
4 Anif 0.6376 0.5134 1.0000 0.6892
1 Salzburg Center 1.0000 0.0357 1.0000 0.3292
8 Linz 0.0013 1.0000 1.0000 0.1086

1. NCR tables for the non-numeric attributes and corresponding distance mea-
sures (corresponding to d in (4))

2. A continous Archimedean t-norm T with additive generator f
3. For all attributes, a default value for the tolerance radius C

Then, for a given query and a given record, the degrees to which the individual
conditions are fulfilled can be computed as specified in (3) and (5)–(8). The final
aggregation of these degrees into the overall degree to which the record fulfills
the query is done with the aggregation operator specified in (10). This degree of
fulfillment is computed for each record in the table under consideration. Finally,
these degrees of fulfillment are sorted and the sorted list of records is presented
to the user in descending order (better fitting records first).

Example 5. We reconsider the hotel data set of Example 1 presented in Table 1.
The matrix of distances between locations is again given as in Table 2. Table 4
shows the results that are obtained for the following query:

SELECT FROM HotelTable
WHERE Location IS ‘Salzburg Center’

TOLERATE UP TO 20
AND Price IS WITHIN (60,70)

TOLERATE UP TO 10
AND StarCategory IS AT LEAST 4

TOLERATE UP TO 2
INTO ResultSet
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Table 5. Result sets for the weighted query for T = TL (above) and T = TP (below)

# Location t1 t2 t3 t
3 Salzburg Liefering 0.7800 1.0000 1.0000 0.8533
1 Salzburg Center 1.0000 0.0000 1.0000 0.8333
2 Salzburg Center 1.0000 0.0000 1.0000 0.8333
9 Salzburg Maxglan 0.8100 1.0000 0.5000 0.7900
7 Salzburg Aigen 0.7900 0.5333 1.0000 0.7822
6 Salzburg Aigen 0.7900 1.0000 0.5000 0.7767
4 Anif 0.5500 0.3333 1.0000 0.5889
5 Mattsee 0.0000 1.0000 1.0000 0.3333
8 Linz 0.0000 1.0000 1.0000 0.3333

# Location t1 t2 t3 t
3 Salzburg Liefering 0.8025 1.0000 1.0000 0.8636
2 Salzburg Center 1.0000 0.3679 1.0000 0.8465
9 Salzburg Maxglan 0.8270 1.0000 0.6065 0.8106
7 Salzburg Aigen 0.8106 0.6271 1.0000 0.8043
6 Salzburg Aigen 0.8106 1.0000 0.6065 0.7998
4 Anif 0.6376 0.5134 1.0000 0.6629
1 Salzburg Center 1.0000 0.0357 1.0000 0.5738
5 Mattsee 0.3447 1.0000 1.0000 0.4916
8 Linz 0.0013 1.0000 1.0000 0.0118

Now consider the following query:

SELECT FROM HotelTable
WHERE Location IS ‘Salzburg Center’

TOLERATE UP TO 20 WEIGHTED BY 4
AND Price IS WITHIN (60,70)

TOLERATE UP TO 10
AND StarCategory IS AT LEAST 4

TOLERATE UP TO 2
INTO ResultSet

The weight for the condition referring to the location means that the closeness
of the location receives a four times as large importance as price and cate-
gory. The weights used for aggregation (according to Remark 1) are, therefore,
(w1, w2, w3) = (2

3 ,
1
6 ,

1
6 ). Table 5 shows the results obtained for T = TL and

T = TP. In all four tables, the columns labeled t1, t2, and t3 contain the degrees of
fulfillment of the three single conditions in the query (referring to location, price,
and category). The rightmost column displays the overall degree of matching.

6 The Choice of the Underlying t-Norm

In Example 5, the following rankings are obtained for the query with equal
weights (we denote the degree of matching for the i-th record with tj):
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t3 > t7 > t9 > t6 > t1 = t2 = t5 = t8 > t4 for T = TL

t3 > t7 > t9 > t6 > t2 > t5 > t4 > t1 > t8 for T = TP

The following rankings are obtained for the second query with weights:

t3 > t1 = t2 > t9 > t7 > t6 > t4 > t5 = t8 for T = TL

t3 > t2 > t9 > t7 > t6 > t4 > t1 > t5 > t8 for T = TP

We clearly see, at least for this specific example, that the results depend on the
choice of the underlying t-norm. However, we also see that, for instance, the
best four matches for the unweighted query are equally ranked for TL and TP.
This is not a coincidence, but has a clear mathematical explanation. To explain
that, we consider a query consisting of n conditions “xi IS qi”. We restrict to
this case for simplicity just to investigate the role of the underlying t-norm.
With additional effort, analogous arguments can be constructed involving also
the three other types of conditions. Then, for each attribute xi, a metric di is
defined (using an NCR for a non-numeric attribute and the absolute distance
for a numeric attribute). Given a record (x̃1, . . . , x̃n) and corresponding query
values (q̃1, . . . , q̃n), the degrees of fulfillment are computed as

ti = t(“xi IS qi” | x̃i) = Edi,Ci(x̃i, qi) = f−1(min( 1
Ci

· di(x̃i, qi), f(0))
)
.

Then the overall degree of fulfillment is given as

Aw(t1, . . . , tn) = f−1(min(f(0),
n∑

i=1

wi · f(ti))
)

= f−1(min(f(0),
n∑

i=1

wi ·min( 1
Ci

· di(x̃i, qi), f(0)))
)

= (∗)

Let us first consider the strict case, i.e. f(0) = ∞. Then the overall degree of
matching simplifies to

(∗) = f−1( n∑
i=1

wi

Ci
· di(x̃i, qi)

)
. (11)

This implies that the ranking of a set of records only depends on the ranking
of the weighted sum

∑n
i=1

wi

Ci
· di(x̃i, qi). Firstly, this means that all strict t-

norms give exactly the same ranking of records (as f is a strictly decreasing
continuous bijection [0,∞] → [0, 1]). It is therefore, absolutely sufficient to pick
out one convenient representative of this class of t-norms, for which TP is the
canonical choice. Moreover, if each value Ci is chosen as the maximal distance of
the values for attribute xi, then even exactly the same ranking as in the original
VQS is obtained. This fact might indicate at first glance that the results in this
paper—at least for strict t-norms—do not provide any added value compared
with the original VQS. This may be true under the restrictive assumptions of
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this example. However, we (1) have gained fundamental theoretical insight and
a sound justification from the theory of fuzzy relations, (2) there is now the
possibility to formulate also the other three types of conditions, and (3) the
values Ci provide additional influence on the rating of distances for the user.

In the nilpotent case, i.e. f(0) = 1, the situation is slightly more complicated.
The overall degree of fulfillment is given as

(∗) = f−1(min(1,
n∑

i=1

wi ·min( 1
Ci

· di(x̃i, qi), 1))
)
.

In case that, for all i = 1, . . . , n, 1
Ci
·di(x̃i, qi) ≤ 1 and that

∑n
i=1

wi

Ci
·di(x̃i, qi) ≤ 1,

the overall degree of fulfillment is the same as in (11). That also explains why
the rankings of the four best-matching records t3 > t7 > t9 > t6 are the same
for TL and TP for the unweighted query in Example 5.

Let us briefly summarize our findings about the choice of the underlying t-
norm T . There are basically two choices for T . Any strict t-norm leads to the
same results, therefore, there is no point in choosing any other than the simplest
representative, TP. If a nilpotent t-norm is chosen, the particular choice does
have influence on the result. From a practical perspective, however, TL is a
pragmatic and justifiable choice. Choosing a nilpotent t-norm has the advantage
that, for a given condition, the tolerance radius C has a clear and unambiguous
interpretation. However, any information outside this radius is lost, which is not
the case for strict t-norms. Whether this is desired or not has to be decided
according to the requirements of the concrete application.

7 A Real-World Example

The concepts introduced in this paper have been evaluated with a prototype
implemented by two students of the first author [2]. The goal was to develop

Table 6. Intermediate query result before flexible interpretation; the rightmost column
provides the distance from Linz (zip 4020)

# Location HP Year Mileage (km) Price (EUR) Distance (km)
1 4364 St. Thomas 90 1994 164000 3750 35
2 4232 Münzbach 116 2000 120000 13950 31
3 4871 Zipf 101 2000 17500 18500 64
4 4651 Stadl-Paura 90 1991 187900 2800 39
5 4064 Oftering 107 1991 109000 2900 13
6 5350 Strobl 101 1997 137000 8750 88
7 5222 Munderfing 90 1996 156000 5900 86
8 4905 Thomasroith 90 1994 214500 4590 54
9 4840 Vöcklabruck 110 1998 n.a. 5700 56

10 4656 Kirchham 116 1991 200000 1600 46
11 4141 Pfarrkirchen 90 1995 189000 3950 42
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Table 7. Result sets for TL (left) and TP (right; numbers rounded to three digits)

# t1 t2 t3 t4 t5 t
1 0.00 0.00 0.00 0.00 1.00 0.20
2 0.00 0.40 1.00 0.00 0.00 0.28
3 0.00 1.00 1.00 1.00 0.00 0.60
4 0.00 0.00 0.00 0.00 1.00 0.20
5 0.35 1.00 0.00 0.00 1.00 0.47
6 0.00 1.00 0.50 0.00 1.00 0.50
7 0.00 0.00 0.00 0.00 1.00 0.20
8 0.00 0.00 0.00 0.00 1.00 0.20
9 0.00 1.00 1.00 n.a. 1.00 0.75

10 0.00 0.40 0.00 0.00 1.00 0.28
11 0.00 0.00 0.00 0.00 1.00 0.20

# t1 t2 t3 t4 t5 t
1 0.174 0.368 0.135 0.004 1.000 0.126
2 0.212 0.549 1.000 0.069 0.019 0.173
3 0.041 1.000 1.000 1.000 >0.000 0.096
4 0.142 0.368 0.030 0.001 1.000 0.065
5 0.522 1.000 0.030 0.145 1.000 0.296
6 0.012 1.000 0.607 0.022 1.000 0.176
7 0.014 0.368 0.368 0.006 1.000 0.103
8 0.067 0.368 0.135 >0.000 1.000 0.053
9 0.061 1.000 1.000 n.a. 1.000 0.497

10 0.100 0.549 0.030 >0.000 1.000 0.056
11 0.122 0.368 0.223 0.001 1.000 0.093

a flexible query answering interface to a relational database containing cars for
sale.

The most important table in the database is the list of available cars. This
table has 53 columns and a total of approx. 65000 rows/records. Technical data,
features, age, mileage, and the zip code where it is available can be stored for
each car. Roughly half of the columns are categorical and half are numerical.
The different models and brands are stored in separate auxiliary tables in a
normalized way. For the zip code, two more tables are available, one that maps
a zip code to a town name and one table that assigns a distance (in km) to each
pair of zip codes.

The prototype in its current version mainly complies with the principles pre-
sented in Section 2, but does not make use of NCRs. For the zip code, a complete
distance table is available anyway, so there is no particular need for an NCR.
All other categorical attributes are treated in a crisp way without any flexible
interpretation. It is possible to choose between two t-norms, TL and TP.

Let us consider the following query:

SELECT FROM CarTable
WHERE Model IS ‘Volkswagen Passat’
AND Layout IS ‘Wagon’
AND Location IS ‘Linz’ TOLERATE UP TO 20
AND HorsePower IS WITHIN (100,110) TOLERATE UP TO 10
AND YearBuilt IS AT LEAST 1998 TOLERATE UP TO 2
AND Mileage IS AT MOST 80000 TOLERATE UP TO 15000
AND Price IS AT MOST 10000 TOLERATE UP TO 1000

INTO ResultSet

The first two conditions are referring to categorical attributes that are not inter-
preted in a flexible way. Hence, we only need to consider records fulfilling those
two conditions. Table 6 shows a list of 11 cars to be considered.

Then Table 7 shows the results obtained for TL and TP. In these tables, the
columns labeled t1,. . . ,t5 contain the degrees to which records fulfill the five
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conditions (in this order: distance, horsepower, year, mileage, price) that are
interpreted as described previously (cf. Section 5). The final matching degree is
shown in the last columns labeled t.

Note that the table contains relatively many missing values. In [2], we pro-
ceeded in the following way: if a value was missing in the record under consid-
eration, the respective condition was supposed to be fulfilled with a degree of 1.
The rationale behind this strategy was that there is no evidence that the record
would not fulfill this condition (which corresponds to a kind of optimistic ap-
proach). We have figured out, however, that this ad-hoc approach could lead to
significantly distorted matching degrees. That is why we propose to leave such
values uninterpreted and to consequently leave them out during aggregation
(corresponding to a kind of neutral approach).

The following rankings are obtained for the query (we denote the degree of
matching for the j-th record/car with tj):

t9 > t3 > t6 > t5 > t2 = t10 > t1 = t4 = t7 = t8 = t11 for T = TL

t9 > t5 > t6 > t2 > t1 > t7 > t3 > t11 > t4 > t10 > t8 for T = TP

Obviously, the rankings significantly differ for the two basic t-norms which is
obvious from the discussion in Section 6.

Extensive experiments were carried out with the prototype. The goal was
to evaluate the general concept of the ordering-enriched VQS and its possible
advantages over classical querying. The following points are worth mentioning:

1. The language of VQS is easy to use and easy to interpret for humans. Even
non-skilled persons were easily able to interpret the queries and the result
lists.

2. VQS is computationally efficient, mainly because of its pragmatic approach,
i.e. the use of Euclidean distances.

3. At least for numeric attributes, the degrees to which records fulfill queries
depend on the query values in a continuous way. Therefore, the approach is
robust with respect to noisy data and the choice of a particular query value.

Finally, note that the framework of VQS permits much more sophisticated
concepts to deal with categorical attributes (instead of dealing with them crisply
as in this prototypical case study). For some attributes, an NCR would be
straightforward. For categorical attributes with a small number of possible in-
stances, distance/similarity tables seem feasible. In this example, none of the
two ways is feasible for the car model column, as the database currently con-
tains around 1000 models from 90 manufacturers. An idea in this direction would
be to derive the similarities from the data describing the individual cars by PCA,
clustering, or machine learning [13].

8 Concluding Remarks

We have proposed an approach how to support queries involving ordering con-
ditions in the vague query system VQS. This has been accomplished by utilizing
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the correspondence between (pseudo-)metrics and fuzzy equivalence relations
and applying results from the theory of fuzzy orderings. It is worth to mention
that VQS has just been considered as a case study. In fact, the applicability of
fuzzy orderings to realizing ordering-based flexible queries is not restricted to
VQS, but can be carried out analogously for any distance-based flexible query
answering system.
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Abstract. The present paper gives a state-of-the-art overview of gen-
eral representation results for fuzzy weak orders. We do not assume that
the underlying domain of alternatives is finite. Instead, we concentrate
on results that hold in the most general case that the underlying domain
is possibly infinite. This paper presents three fundamental representa-
tion results: (i) score function-based representations, (ii) inclusion-based
representations, (iii) representations by decomposition into crisp linear
orders and fuzzy equivalence relations.

1 Introduction

Weak orders are among the most fundamental concepts in preference modeling.
A binary relation 	 on a given non-empty domain X is called a weak order if it
has the following three properties for all x, y, z ∈ X :

x 	 x (reflexivity)
if x 	 y and y 	 z then x 	 z (transitivity)
x 	 y or y 	 x (completeness)

Obviously the only difference between weak orders and linear orders is that weak
orders need not be antisymmetric, i.e., a weak order 	 is a linear order if and
only if the additional property

if x 	 y and y 	 x then x = y (antisymmetry)

holds for all x, y ∈ X . It is easy to see that the ranking of linearly ordered prop-
erties of objects constitutes a weak order, e.g., ranking cars by their maximum
speed, ranking persons by their height or weight, ranking products by their price,
and so forth. This basic fact is not only a fundamental construction principle,
but a fundamental representation of weak orders.
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Theorem 1. A binary relation 	 on a non-empty domain X is a weak order
if and only if there exists a linearly ordered non-empty set Y and a mapping
f : X → Y such that 	 can be represented in the following way for all x, y ∈ X:

x 	 y if and only if f(x) ≤ f(y) (1)

The proof that a relation defined as in Eq. (1) is a weak order is straightforward.
To prove the existence of a set Y and a mapping f such that representation (1)
holds for a given weak order 	, one has to follow the following steps: (a) define
an equivalence relation ∼ as the symmetric kernel of 	, (b) define Y as the factor
set X/∼, (c) define f as the projection f(x) = 〈x〉∼, (d) prove that the projection
of 	 onto X/∼ is a linear order on X/∼, (e) prove that representation (1) holds.
From this perspective, we can view weak orders as linear orders of equivalence
classes. In the context of Theorem 1, the equivalence classes contain exactly
those elements that share the same property, i.e., those elements for which f
yields the same value.

Note that there is an alternative construction of Y and f . Let us define the
foreset of an element x ∈ X , denoted C(x), as the set of elements smaller than
or equivalent to x, i.e., C(x) = {y ∈ X | y 	 x}. Then define Y as the set of all
foresets, i.e., Y = {C(x) | x ∈ X}. It is straightforward to prove that x 	 y if
and only C(x) ⊆ C(y), and it follows directly from the completeness of 	 that
Y is linearly ordered with respect to ordinary set inclusion. Thus, we can also
conclude that weak orders on X can be represented by embedding into linearly
ordered subsets of the partially ordered set (P(X),⊆).

In the case that X is at most countable, Theorem 1 can be strengthened in
the following way: it is always possible to choose Y = [0, 1], i.e., for each weak
order, we can find a mapping f : X → [0, 1] such that representation (1) holds.
In other words, weak orders on countable domains can always be embedded into
the linear order on the unit interval. This is a classic result that goes back to
Cantor [7, 17, 21].

Weak orders are not only simple and fundamental concepts (as the above ex-
amples illustrate), they are the basis for representing other fundamental concepts
in preference modeling and order theory: it is known that preorders, i.e., reflex-
ive and transitive binary relations, are uniquely characterized as intersections of
weak orders.

In analogy to the crisp case, fuzzy weak orders are fundamental concepts in
fuzzy preference modeling [8, 11, 12, 19]. Given a non-empty set of alternatives
X , a fuzzy relation R : X2 → [0, 1] is a fuzzy weak order if it has the following
three properties for all x, y, z ∈ X , where T denotes a left-continuous t-norm:

R(x, x) = 1 (reflexivity)
T (R(x, y), R(y, z)) ≤ R(x, z) (T -transitivity)
R(x, y) = 1 or R(y, x) = 1 (strong completeness)

The goal of this paper is to provide an overview of representation results for
fuzzy weak orders. We concentrate on those results that hold for all possible
domains X . Results holding only for finite and/or countable domains will not
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be considered. Consequently, this paper is organized as follows. After providing
some preliminaries in Section 2, we discuss score function-based representations
in depth in Section 3 that will be complemented by inclusion-based represen-
tations in Section 4. Section 5 is devoted to decomposing fuzzy weak orders
into crisp linear orders and fuzzy equivalence relations—in direct analogy to the
factor set representation discussed above.

Note that this paper is a state-of-the-art review that mainly integrates results
from previously published papers on similarity-based fuzzy orders [3, 4, 5]. This
paper consistently views the results from the perspective of fuzzy weak orders.

2 Preliminaries

In this paper, we solely use values from the unit interval to express degrees of
order/preference. This is not a serious restriction from a practical point of view,
and it is also the standard setting widely used in fuzzy preference modeling.
Correspondingly, we use left-continuous triangular norms as standard models
for fuzzy conjunctions [16].

Definition 1. An associative, commutative, and non-decreasing binary opera-
tion on the unit interval (i.e. a [0, 1]2 → [0, 1] mapping) which has 1 as neutral ele-
ment is called triangular norm, short t-norm. A t-norm T is called left-continuous
if the equality

T (sup
i∈I

xi, y) = sup
i∈I

T (xi, y)

holds for all families (xi)i∈I ∈ [0, 1]I and all y ∈ [0, 1].

The three basic t-norms are denoted as TM(x, y) = min(x, y), TP(x, y) = x · y,
and TL(x, y) = max(x+ y − 1, 0). Further assume that

T
→

(x, y) = sup{u ∈ [0, 1] | T (x, u) ≤ y}

denotes the unique residual implication of T . For the sake of completeness, let us
list the following fundamental properties (valid for all x, y, z ∈ [0, 1]) [13,15,16]:

(I1) x ≤ y if and only if T
→

(x, y) = 1
(I2) T (x, y) ≤ z if and only if x ≤ T

→
(y, z)

(I3) T (T
→

(x, y), T
→

(y, z)) ≤ T
→

(x, z)
(I4) T

→
(1, y) = y

(I5) T (x, T
→

(x, y)) ≤ y
(I6) y ≤ T

→
(x, T (x, y))

Furthermore, T
→

is non-increasing and left-continuous in the first argument and
non-decreasing and right-continuous in the second argument.

If T is a continuous t-norm, then the following holds for all x, y, z ∈ [0, 1]:

(I7) if z ≥ x then T
→

(x, y) = T
→

(T
→

(z, x), T
→

(z, y))
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The biimplication of T is defined as T
↔

(x, y) = T (T
→

(x, y), T
→

(y, x)) and fulfills
the following assertions for all x, y, z ∈ [0, 1], see [13, 15]:

(B1) T
↔

(x, y) = 1 if and only if x = y
(B2) T

↔
(x, y) = T

↔
(y, x)

(B3) T
↔

(x, y) = min(T
→

(x, y), T
→

(y, x))
(B4) T (T

↔
(x, y), T

↔
(y, z)) ≤ T

↔
(x, z)

(B5) T
↔

(x, y) = T
→

(max(x, y),min(x, y))

In this paper, uppercase letters will be used synonymously for fuzzy sets/re-
lations and their corresponding membership functions. The fuzzy power set of
X will be denoted with F(X) = {A | A : X → [0, 1]}.

A binary fuzzy relation R : X2 → [0, 1] is called

– reflexive if R(x, x) = 1 for all x ∈ X ,
– symmetric if R(x, y) = R(y, x) for all x, y ∈ X ,
– T -transitive if T (R(x, y), R(y, z)) ≤ R(x, z) for all x, y, z ∈ X ,
– strongly complete if max(R(x, y), R(y, x)) = 1 for all x, y ∈ X .

Fuzzy relations that are reflexive and T -transitive are called fuzzy preorders
with respect to T , short T -preorders. Symmetric T -preorders are called fuzzy
equivalence relations with respect to T , short T -equivalences. As mentioned in
Section 1 already, strongly complete T -preorders are called fuzzy weak orders
with respect to T , short weak T -orders. Given a T -equivalence E : X2 → [0, 1],
a binary fuzzy relation L : X2 → [0, 1] is called a fuzzy order with respect to T
and E, short T -E-order, if it is T -transitive and additionally has the following
two properties:

– E-reflexivity: E(x, y) ≤ L(x, y) for all x, y ∈ X
– T -E-antisymmetry: T (L(x, y), L(y, x)) ≤ E(x, y) for all x, y ∈ X

Given a binary fuzzy relation R : X2 → [0, 1] and an x ∈ X , analogously
to the crisp case (cf. Section 1), the foreset of x is defined as the fuzzy set
C(x) ∈ F(X) that expresses the degree to which a given value y ∈ X is smaller
than or equivalent to x, i.e., C(x)(y) = R(y, x) [2].

3 Score Function-Based Representations

The starting point of this section is Theorem 1. It is natural to first ask the
question whether there is a straightforward generalization of this theorem to the
case of fuzzy weak orders.

Theorem 2. A binary fuzzy relation R : X2 → [0, 1] is a weak T -order if and
only if there exist a non-empty domain Y , a T -equivalence E : Y 2 → [0, 1], a
strongly complete T -E-order L : Y 2 → [0, 1], and a mapping f : X → Y such
that the following equality holds for all x, y ∈ X:

R(x, y) = L(f(x), f(y)) (2)



General Representation Theorems for Fuzzy Weak Orders 233

Theorem 2 can be viewed from two different angles. On the one hand, it is a nice
straightforward generalization of Theorem 1 and demonstrates the smooth inter-
play between fuzzy weak orders and strongly complete fuzzy orders (analogously
to the crisp case). On the other hand, fuzzy weak orders and strongly complete
fuzzy orders are basically the same concepts. From this point of view, Theorem 2
does not provide us with a new construction method or any new insight. More
insight would potentially be obtained if we could restrict the choice of Y or E to
certain standard cases that could be utilized for constructions in an easier way.

One interesting question is, for instance, whether Y , L, and f can be chosen
such that Theorem 2 holds for E being the crisp equality (i.e., with L being a
so-called T -order [4, 12, 13, 14], which, in the case that T = TM, is nothing else
but a fuzzy partial order in the sense of Zadeh [18, 19, 26]). The answer is quick
and negative: as demonstrated in [4, Subsection 2.3], strongly complete fuzzy
orders with respect to some t-norm T and the crisp equality can only be crisp
orders. Thus, it is never possible to embed a non-crisp weak order into a strongly
complete T -order, so it is impossible to strengthen Theorem 2 by fixing E as the
crisp equality.

So the question remains whether there is any standard choice Y,E, L, f into
which we can embed all, or at least a subclass of, weak T -orders. As shown by
Ovchinnikov, it is possible to embed a weak T -order into a continuous weak
T -order on the real numbers R, but it is necessary to restrict to strict t-norms
and finite domains X [20]. Since this is outside the scope of this paper, we turn
our attention to a different investigation. The standard crisp case consists of the
unit interval [0, 1] equipped with its natural linear order. Given a left-continuous
t-norm T , the canonical fuzzification of the natural linear order on [0, 1] consists
in the residual implication T

→
[4, 13, 15]. The following proposition, therefore,

provides us with a construction that can be considered a straightforward coun-
terpart of (1).

Proposition 1. Given a function f : X → [0, 1], the relation defined by

R(x, y) = T
→(

f(x), f(y)
)

(3)

is a weak T -order.

The function f in Proposition 1 can also be understood as a fuzzy set on X . In
this section, we rather leave this aspect aside and adopt the classical interpreta-
tion as a score function.

Note that the simple construction of Proposition 1 is not a unique character-
ization, i.e., there are weak T -orders that cannot be represented by means of a
single score function. In order to demonstrate that, let us consider a set X with
at least three elements. We choose an arbitrary linear order of the elements of X
(which always exists due to basic results from order theory [22, 23]) and define
R as the crisp linear order itself:

R(x, y) =
{

1 if x ≤ y
0 otherwise
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Clearly, R is a fuzzy weak order with respect to every t-norm T . Now assume that
there exists a score function f : X → [0, 1] such that representation (3) holds. Let
us choose an arbitrary chain of three distinct elements x < y < z. Then it clearly
follows that R(z, x) = T

→
(f(z), f(x)) = 0 and R(z, y) = T

→
(f(z), f(y)) = 0. Since

the monotonicity of T
→

and (I4) imply T
→

(x, y) ≥ T
→

(1, y) = y, it trivially follows
that T

→
(x, y) = 0 can hold only if y = 0. Thus, we obtain that f(x) = f(y) = 0.

This entails
R(y, x) = T

→
(f(y), f(x)) = T

→
(0, 0) = 1,

which is a contradiction. Hence, we obtain that the most basic fuzzy weak
orders—crisp linear orders—are never representable as in Proposition 1, no mat-
ter which t-norm we choose. It is, therefore, justified to introduce the repre-
sentability according to Proposition 1 as a distinct notion.

Definition 2. Consider a weak T -order R : X2 → [0, 1]. R is called repre-
sentable if there exists a function f : X → [0, 1], called generating (score) func-
tion, such that Eq. (3) holds.

Example 1. Let us consider X = [0, 5] and the following two score functions
f1, f2 : X → [0, 1]:

f1(x) = min
(
1,max(0, x− 2)

)
f2(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ [0, 1[
0.4 · (x− 1) if x ∈ ]1, 2[
0.7 + 0.3 · (x− 2) if x ∈ [2, 3[
1 if x ∈ [3, 5]

Figure 1 depicts six fuzzy weak orders defined according to Proposition 1:

R1(x, y) = T
→
M(f1(x), f1(y)) R2(x, y) = T

→
M(f2(x), f2(y))

R3(x, y) = T
→
P(f1(x), f1(y)) R4(x, y) = T

→
P(f2(x), f2(y))

R5(x, y) = T
→
L(f1(x), f1(y)) R6(x, y) = T

→
L(f2(x), f2(y))

The fuzzy relations plotted in Figure 1 have one common feature: the lower
right edge always corresponds to the generating score function. More specifically,
all fuzzy weak orders in the left column fulfill R(5, y) = f1(y), while R(5, y) =
f2(y) holds for the fuzzy weak orders in the right column. Note that this is
true independent of the t-norm chosen (at least for the three basic t-noVrms).
The question arises whether this is a coincidence or whether there is a principle
behind. The following theorem tells us that the latter is the case, but even more
than that, we obtain a unique characterization of representable fuzzy weak orders
(at least for continuous t-norms).

Theorem 3. Assume that T is continuous. Then a weak T -order R is repre-
sentable if and only if the following function is a generating function of R:

f̄(x) = inf
z∈X

R(z, x)
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Fig. 1. Fuzzy weak orders constructed from the two score functions f1 and f2 by means
of Proposition 1 using the three basic t-norms

Theorem 3 provides us with an easy-to-use tool for checking whether a fuzzy
weak order is representable—we only have to check whether one specific function
is a generating score function. Note, however, that the generating function need
not be unique, i.e., it may happen that a fuzzy weak order R is generated by some
score function f that does not coincide with f̄ defined as in Theorem 3. Let us
shortly consider this issue and ask ourselves under which condition f̄ coincides
with some generating score function f . So assume that R is representable as
R(x, y) = T

→
(f(x), f(y)), then we obtain the following:
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f̄(x) = inf
z∈X

R(z, x) = inf
z∈X

T
→

(f(z), f(x)) = T
→(

sup
z∈X

f(z), f(x)
)

Then supz∈X f(z) = 1 is a sufficient criterion for f and f̄ to coincide:

f̄(x) = T
→(

sup
z∈X

f(z), f(x)
)

= T
→

(1, f(x))
(I4)
= f(x)

It should be clear now that by far not all fuzzy weak orders are repre-
sentable by single score functions—for all left-continuous t-norms, there exist
non-representable fuzzy weak orders. What has not been answered so far is the
question whether fuzzy weak orders can be represented by more than one score
function. The following well-known theorem provides us with a starting point to
this investigation.

Theorem 4. [24] Consider a binary fuzzy relation R : X2 → [0, 1]. Then the
following two statements are equivalent:

(i) R is a T -preorder.
(ii) There exists a non-empty family of X → [0, 1] score functions (fi)i∈I such

that the following representation holds:

R(x, y) = inf
i∈I

T
→

(fi(x), fi(y)) (4)

Theorem 4 is essential for two main reasons: (1) it shows that every T -preorder is
an intersection of representable weak T -orders, (2) as weak T -orders are a special
kind of T -preorders, we know for sure that, for each weak T -order R, there exists
a family of score functions such that R can be represented as in Eq. (4). Be
aware, however, that this is only a representation of theoretical nature. We do
not know yet how to choose a family of score functions (fi)i∈I such that fuzzy
relation defined as in Eq. (4) is guaranteed to fulfill strong completeness. The
following theorem provides us with a unique characterization of weak T -orders.

Theorem 5. Consider a binary fuzzy relation R : X2 → [0, 1]. Then the follow-
ing two statements are equivalent:

(i) R is a weak T -order.
(ii) There exists a crisp weak order 	 and a non-empty family of X → [0, 1]

score functions (fi)i∈I that are non-decreasing with respect to 	 such that
representation (4) holds.

If we want to use Theorem 5 to construct fuzzy weak orders on the real numbers
(or a subset of them), one can start from the natural linear order of real numbers,
since this order is a crisp weak order, of course. The question arises whether
each fuzzy weak order can be represented by a family of score functions that are
monotonic with respect to a linear order. The following theorem gives a positive
answer and characterizes weak T -orders as intersections of representable weak
T -orders that are generated by score functions that are monotonic at the same
time with respect to the same crisp linear order.
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Theorem 6. Consider a binary fuzzy relation R : X2 → [0, 1]. Then the follow-
ing two statements are equivalent:

(i) R is a weak T -order.
(ii) There exists a linear order - and a non-empty family of X → [0, 1] score

functions (fi)i∈I that are non-decreasing with respect to - such that repre-
sentation (4) holds.

Example 2. We consider X = [0, 5] again and a family of five functions that are
defined as follows:

g1(x) = min(1, x)

g2(x) = min
(
1,max(0, x− 1)

)
g3(x) = min

(
1,max(0, x− 2)

)
g4(x) = min

(
1,max(0, x− 3)

)
g5(x) = min

(
1,max(0, x− 4)

)
It is immediate that all five functions are non-decreasing with respect to the
natural order of real numbers. Figure 2 depicts six fuzzy weak orders defined in
accordance with Theorem 6:

R7(x, y) = min
i∈{1,3,5}

T
→
M(gi(x), gi(y)) R8(x, y) = min

i∈{1,...,5}
T
→
M(gi(x), gi(y))

R9(x, y) = min
i∈{1,3,5}

T
→
P(gi(x), gi(y)) R10(x, y) = min

i∈{1,...,5}
T
→
P(gi(x), gi(y))

R11(x, y) = min
i∈{1,3,5}

T
→
L(gi(x), gi(y)) R12(x, y) = min

i∈{1,...,5}
T
→
L(gi(x), gi(y))

Example 2 uses the natural linear order of real numbers and rather simple
monotonic score functions. The next example constructs some more complicated
weak TL-orders on the basis of a non-trivial order on the real numbers.

Example 3. Let us consider the following transformation function:

ϕ(x) =

{
4− x if x ∈ [1, 3]
x otherwise

It is immediate that ϕ is a bijective R → R mapping that equals the identity
in ]−∞, 1[ ∪ ]3,∞[ and flips the values in [1, 3]. It is clear, therefore, that the
binary relation

x - y if and only if ϕ(x) ≤ ϕ(y)

is a linear order on the real numbers. Taking the score functions g1, . . . , g5
from Example 2, we can define another family of score functions h1, . . . , h5 as
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Fig. 2. Six fuzzy weak orders constructed by means of Theorem 6 using the three basic
t-norms

hi(x) = gi(ϕ(x)) (for all x ∈ [0, 5]). It is easy to see that all functions hi are
non-decreasing with respect to -. Thus, we can use them to define fuzzy weak
orders. Figure 3 shows three weak TL-orders defined as follows:

R13(x, y) = T
→
L(h3(x), h3(y))

R14(x, y) = min
i∈{1,3,5}

T
→
L(hi(x), hi(y))

R15(x, y) = min
i∈{1,...,5}

T
→
L(hi(x), hi(y))
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Fig. 3. Three weak TL-orders with a non-trivial underlying crisp linear order

4 Inclusion-Based Representations

As mentioned in Section 1, Theorem 1 can also be proved by embedding the
given weak order into the partially ordered set (P(X),⊆). Technically, this is
done by mapping the elements x ∈ X to their foresets C(x). The question arises
whether an analogous technique works for fuzzy weak orders as well. This section
is devoted to this topic.

Consider the fuzzy power set F(X). Then the well-known crisp inclusion of
fuzzy sets

A ⊆ B if and only if A(x) ≤ B(x) for all x ∈ X

is a crisp partial order on F(X) [25]. Given a left-continuous t-norm T , we can
define the following two binary fuzzy relations on F(X) [1, 4, 13]:

INCLT (A,B) = inf
x∈X

T
→

(A(x), B(x))

SIMT (A,B) = inf
x∈X

T
↔

(A(x), B(x))

It was proved in [4] that SIMT is a T -equivalence on F(X) and that INCLT is a
T -SIMT -order on F(X). Moreover, it is easy to see from elementary properties
of residual (bi)implications that INCLT (A,B) = 1 if and only if A ⊆ B and that
SIMT (A,B) = 1 if and only if A = B.

The following theorem provides us with a unique characterization of fuzzy
weak orders that is based on an embedding of the given fuzzy weak order into
the fuzzy power set.

Theorem 7. Consider a binary fuzzy relation R : X2 → [0, 1]. Then the follow-
ing two statements are equivalent:

(i) R is a weak T -order.
(ii) There exists a non-empty family of fuzzy sets S ⊆ F(X) that are linearly

ordered with respect to the inclusion relation ⊆ and a mapping ϕ : X → S
such that the following representation holds for all x, y ∈ X:

R(x, y) = INCLT (ϕ(x), ϕ(y)) (5)
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We can formulate an equivalent result that appears a bit more appealing than
Theorem 7.

Corollary 1. Consider a binary fuzzy relation R : X2 → [0, 1]. Then the fol-
lowing two statements are equivalent:

(i) R is a weak T -order.
(ii) There exists a mapping ϕ : X → F(X) fulfilling ϕ(x) ⊆ ϕ(y) or ϕ(y) ⊆ ϕ(x)

for all x, y ∈ X such that representation (5) holds.

If we omit the linearity conditions in Theorem 7 and Corollary 1, a unique
representation of T -preorders is obtained: a fuzzy relation R is a T -preorder if
and only if there exists a mapping ϕ : X → F(X) such that Eq. (5) holds [5].
In this sense, the T -preorder INCLT on F(X) “contains” all T -preorders that
can be defined on X . Weak T -orders are then the sub-class that is obtained by
restricting to linearly ordered subsets of F(X).

The proof of Theorem 7 (and Corollary 1) is based on mapping each x ∈ X to
its foreset. However, there is no restriction to only use foresets in (5), as long as
the range of the embedding mapping ϕ(X) is linearly ordered. Thus, Theorem 7
and Corollary 1 give rise to potentially interesting constructions. For infinite do-
mains, however, INCLT (A,B) is mostly difficult to compute, as an infimum over
an infinite set has to be determined. Only under very restrictive assumptions,
for instance, that all membership functions of the fuzzy sets ϕ(x) are piecewise
linear or differentiable, practically feasible constructions are imaginable. One can
overall conclude that Theorem 7 and Corollary 1 provide us with nice theoreti-
cal insight, but they do not have much practical value. That is why we do not
provide an example in this section.

5 Decompositions into Crisp Linear Orders and
T -Equivalences

The standard proof of Theorem 1 is based on the factorization with respect to the
symmetric kernel of a given weak order (cf. Section 1). One can state, in other
words, that a crisp weak order can always be decomposed into a crisp linear
order and an equivalence relation. This section follows this idea and presents
corresponding results for fuzzy weak orders. Before coming to the main result,
let us shortly introduce an important prerequisite.

Definition 3. Let - be a crisp order on X and let E : X2 → [0, 1] be a
fuzzy equivalence relation (regardless of the underlying t-norm T ). E is called
compatible with - if and only if the following inequality holds for all ascending
three-element chains x - y - z in X :

E(x, z) ≤ min(E(x, y), E(y, z))

Compatibility of a crisp order and a fuzzy equivalence relation can be under-
stood as follows: the two outer elements of an ascending three-element chain are
at most as similar as any two elements of this chain.
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Theorem 8. Consider a binary fuzzy relation R : X2 → [0, 1]. Then the follow-
ing two statements are equivalent:

(i) R is a weak T -order.
(ii) There exists a crisp linear order - and a T -equivalence E that is compatible

with - such that R can be represented as follows:

R(x, y) =

{
1 if x - y

E(x, y) otherwise
(6)

Representation (6) simply says the following: weak T -orders are characterized
as unions of crisp linear orders and compatible T -equivalences. In other words,
we can say that weak T -orders are a fuzzification of crisp linear orders, and the
fuzzy component can solely be attributed to a T -equivalence.

To utilize Theorem 8 for constructing weak T -orders, we have to know more
about how to construct T -equivalences that are compatible with a given crisp
linear order. Let us start with a well-known result on T -equivalences.

Theorem 9. [24] Consider a binary fuzzy relation E : X2 → [0, 1]. Then the
following two statements are equivalent:

(i) E is a T -equivalence.
(ii) There exists a non-empty family of X → [0, 1] functions (fi)i∈I such that

the following representation holds:

E(x, y) = inf
i∈I

T
↔

(fi(x), fi(y)) (7)

The following theorem finally provides a unique characterization of T -equiva-
lences that are compatible with a given crisp linear order.

Theorem 10. Consider a crisp linear order - on X and a binary fuzzy relation
E : X2 → [0, 1]. Then the following two statements are equivalent:

(i) E is a T -equivalence that is compatible with -.
(ii) There exists a non-empty family of X → [0, 1] functions (fi)i∈I that are

non-decreasing with respect to - such that representation (7) holds.

Note that Theorem 10 remains valid if we replace “non-decreasing” in (ii) by
“non-increasing”.

Example 4. It is easy to see that E1(x, y) = exp(−|x−y|) is a TP-equivalence on
the real numbers X = R that is compatible with the natural order ≤ and that
E2(x, y) = max(1 − |x − y|, 0) is a TL-equivalence on the real numbers X = R
that is also compatible with ≤ [6, 9, 10]. Hence, Theorem 8 entails that

R16(x, y) =

{
1 if x ≤ y

exp(−|x− y|) otherwise

= min(1, exp(y − x))
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is a weak TP-order and

R17(x, y) =

{
1 if x ≤ y

max(1− |x− y|, 0) otherwise

= min(1,max(1− x+ y, 0))

is a weak TL-order. Figure 4 shows these two fuzzy weak orders (where the plots
are restricted to [0, 5]2).
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Fig. 4. Two fuzzy weak orders constructed from the absolute distance of real numbers

6 Concluding Remarks

In this contribution, we have highlighted various representations of fuzzy weak
orders. Score function-based representations and the decomposition of fuzzy
weak orders into crisp linear orders and fuzzy equivalence relations also provided
us with practically feasible construction methods. Unlike most of the existing lit-
erature, we have not assumed that the underlying domain is finite.
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Abstract. Relational representation theorems are presented in a unified
framework for general (including non-distributive) lattices endowed with
various negation operations.

1 Introduction

We present relational representation theorems in a unified framework for the
lattice based algebras of logics with various negation operations, for both general
(including non-distributive) lattices and for distributive lattices.

The negation operations include sufficiency or negative necessity as negation,
Heyting negation, pseudo-complement, De Morgan negation and ortho-negation.
Part of the results are carried out within the framework of Urquhart’s repre-
sentation theorem for lattices [17] and Allwein–Dunn developments on Kripke
semantics for linear logic [1] which we jointly call Urquhart–Allwein–Dunn –
framework, generalized to a duality between the algebras and abstract frames
(relational systems). In order to have it in the same unified framework, we also
include representations of distributive lattices with relative pseudo-complement,
with relative pseudo-complement and minimal negation (of Johansson), with De
Morgan negation, and Boolean algebras with sufficiency (negative necessity) op-
erator. The distributive lattice cases contain known results, but we include them
to present all results together in the unified framework.

Our framework, based on a generalization of the Urquhart–Allwein–Dunn
representation, requires the following steps:

Step 1. A class of algebras is given. Its signature is that of lattices extended
by a unary operation corresponding to negation.

Step 2. We define a class of relational structures (frames) that provide a
Kripke-style semantics for the logic whose algebraic semantics is determined by
the class of algebras in question.

H. de Swart et al. (Eds.): TARSKI II, LNAI 4342, pp. 245–266, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Step 3. For any algebra W of the given class we define its canonical frame.
The universe X(W ) of this frame consists of all pairs (x1, x2) such that x1 is
a filter and x2 is an ideal of the lattice reduct of W and (x1, x2) is a maximal
disjoint pair. Relations are defined on X(W ) which correspond in an appropriate
way to the operations of the algebra.

Step 4. For any frame X we define its complex algebra. The universe of the
complex algebra is a family L(X) of special subsets of X referred to as �-stable
sets.

Step 5. We prove a representation theorem saying that every algebra W is
embeddable into the complex algebra of its canonical frame, i.e., L(X(W )). The
universe of the representation algebra consists of subrelations of X(W ).

Below we list several well known examples of classical representations giving,
in particular, the algebras, frames, complex algebras and canonical frames.

The class of Boolean algebras has the class of sets as its class of frames which
can be seen as relational systems with the empty family of relations. A canonical
frame is the set of ultrafilters of a given algebra. A complex algebra is the
powerset algebra of the set of ultrafilters. The Stone representation theorem
says that a given Boolean algebra is embeddable into this powerset algebra.

The class of distributive lattices has the class of partial orders as its class of
frames. A canonical frame is the set of prime filters of a given distributive lattice
with set inclusion. A complex algebra of a frame is a family of ≤-increasing
subsets with the set union and intersection. The representation theorem says
that a given distributive lattice is embeddable into the complex algebra of the
canonical frame.

The class of ortholattices has the class of orthogonality spaces (sets with
orthogonality relations, i.e., irreflexive and symmetric relations ⊥, first defined
by Foulis and Randall) as its class of frames. A canonical frame is the set of
proper filters of a given ortholattice with the set inclusion and ortho-negation
defined by orthogonality relation ⊥: for two proper filters x and y, x ⊥ y iff
there is an element a such that −a ∈ x and a ∈ y. A complex algebra of a frame
is a family of regular subsets of this frame defined as follows: first a ⊥ Y iff
for all b ∈ Y , a ⊥ b and Y ∗ = {a : a ⊥ Y }; now Y is ⊥-regular iff Y = Y ∗∗.
The representation theorem of Goldblatt [9] says that a given ortholattice is
embeddable into the lattice of regular subsets of the orthogonality space.

The framework described above serves, on the one hand, as a tool for investi-
gation of classes of lattices with negation operations and, on the other hand, as
a means for developing Kripke-style semantics for the logics whose algebraic se-
mantics is given. Then representation theorems play an essential role in proving
completeness of the logics with respect to a Kripke-style semantics determined
by a class of frames associated with a given class of algebras. In this paper we
deal mainly with the algebraic aspects of lattices with negation. The framework
presented above has been used in [13] and [7] in the context of lattice-based
modal logics. It has been applied to lattice-based relation algebras in [6] and
to double residuated lattices in [11] and [12]. In our relational representations
we will provide definitions of abstract relational systems or frames such that
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particular properties of the relations in frames correspond to particular types of
negations.

2 Negations

We follow J.M. Dunn’s analysis of negations, also known as “Dunn’s Kite of
Negations”. Dunn’s study of negation in non-classical logics as a negative modal
operator is an application of his gaggle theory, cf. [5], which is a generalization of
the Jonsson-Tarski Theorem. In gaggle theory, negation ¬ is treated as a Galois
connective on an underlying poset or bounded lattice. This treatment requires
the Galois condition:

(Gal) a ≤ ¬b ⇔ b ≤ ¬a
Further analysis of negation on a bounded lattice leads to the following condi-
tions for ¬ (we always assume that 0 is the least element and 1 the greatest):

(Suff1) ¬(a ∨ b) = ¬a ∧ ¬b (Sufficiency 1)
(Suff2) ¬0 = 1 (Sufficiency 2)
(WCon) a ≤ b⇒ ¬b ≤ ¬a (Weak Contrapositive, Preminimal)
(Weak¬¬) a ≤ ¬¬a (Weak Double Negation)
(Abs) a ∧ ¬a = 0 (Absurdity, Intuitionistic)
(DeM) ¬¬a ≤ a (De Morgan, Strong Double Negation)

Lemma 2.1. In any bounded lattice with an operation ¬ the following implica-
tions hold:

(a) (Suff1) ⇒ (WCon)
(b) (Gal) ⇒ (Suff2)
(c) (Gal) ⇔ (Suff1) and (Weak¬¬)
(d) (Gal) ⇔ (WCon) and (Weak¬¬)

Proof. We show only the implication (Gal) ⇒ (Suff1) of (c). By (Weak¬¬),
a ≤ a ∨ b ≤ ¬¬(a ∨ b), hence by (Gal), ¬(a ∨ b) ≤ ¬a. Similarly, ¬(a ∨ b) ≤ ¬b,
so we have ¬(a ∨ b) ≤ ¬a ∧ ¬b. By (Gal), a ≤ ¬(¬a ∧ ¬b) and b ≤ ¬(¬a ∧ ¬b),
so a ∨ b ≤ ¬(¬a ∧ ¬b) hence ¬a ∧ ¬b ≤ ¬(a ∨ b).

As noted in (b), one may derive ¬0 = 1 from (Gal) or its equivalents. If one
has, in addition, either (Abs) or (DeM) then one may also derive ¬1 = 0. Also
note that from (WCon) one may derive ¬a∨¬b ≤ ¬(a∧ b). Lastly, by (c), note
that the class of bounded lattices with negation satisfying the Galois condition
(Gal) is a variety (i.e., an equational class) with equational axioms (Suff1) and
(Weak¬¬).

We shall consider five types of negation on bounded (non-distributive) lat-
tices. In each case, the negation satisfies (Suff1) and (Suff2); in the first and
weakest case we consider just these two axioms. The next case is Heyting nega-
tion in which the negation satisfies (WCon), (Weak¬¬) (or, equivalently, just
(Gal)) and (Abs); such algebras are also called ‘weakly pseudo-complemented
lattices’. Thereafter, we consider ‘pseudo-complemented lattices’ which satisfy,
in addition, the following pseudo-complement quasi-identity:
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(Pcq) a ∧ b = 0 ⇒ a ≤ ¬b.
Its converse is derivable from the identity (Abs). In the case of De Morgan
negation the identities (Gal) and (DeM) are assumed giving the class of ‘De
Morgan lattices’. Finally, ortho-negation is considered which satisfies (Gal) and
both (Abs) and (DeM); these algebras are known as ‘ortholattices’.

In the distributive lattice case, we consider ‘relatively pseudo-complemented
lattices’, that is, where the ‘residuum’ (or relative pseudo-complement) of ∧
exists, denoted →. One may induce a negation by choosing any element ∂ in the
lattice and defining ¬x = x→ ∂. The negation induced in this way is a minimal
negation in the sense of Johansson and Rasiowa. This negation satisfies (Gal)
(hence also (WCon) and (Weak¬¬)) but not necessarily (Abs) (unless the chosen
element ∂ is the least element, in which case we have Heyting algebras). It does
not necessarily satisfy (DeM) either, so we also consider distributive lattices in
which (DeM) is added, namely, ‘De Morgan algebras’. Adding both (Abs) and
(DeM) to (Gal) results in the class of Boolean algebras. At the end we consider
Boolean algebras with sufficiency (or negative necessity) operator.

Part I Non-distributive Lattices

3 Preliminaries

We give here the necessary background on the relational representation of non-
distributive lattices in the style of Urquhart [17] (see also [6] and [13]). The
representations of non-distributive lattices with negations is built on top of this
framework.

Let X be a non-empty set and let �1 and �2 be two quasi-orders on X . The
structure 〈X,�1,�2〉 is called a doubly ordered set if it satisfies:

(∀x, y)((x �1 y and x �2 y) ⇒ x = y). (1)

For a doubly ordered set X = 〈X,�1,�2〉, A ⊆ X is �1–increasing (resp.,
�2–increasing) if, for all x, y ∈ X , x ∈ A and x �1 y (resp., x �2 y) imply
y ∈ A. We define two mappings �, r : 2X → 2X by

�(A) = {x ∈ X : ∀y(x �1 y ⇒ y /∈ A)} (2)
r(A) = {x ∈ X : ∀y(x �2 y ⇒ y /∈ A)}. (3)

Then A ⊆ X is called �–stable (resp., r–stable) if �(r(A)) = A (resp., r(�(A)) =
A). The set of all �-stable subsets of X will be denoted by L(X).

Lemma 3.1. [6],[13] If 〈X,�1,�2〉 is a doubly ordered set then, for all A ⊆ X,

(a) �(A) is �1–increasing and r(A) is �2–increasing,
(b) if A is �1–increasing, then A ⊆ �(r(A)),
(c) if A is �2–increasing, then A ⊆ r(�(A)).
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Lemma 3.2. [17] Let 〈X,�1,�2〉 be a doubly ordered set. Then the mappings
� and r form a Galois connection between the lattices of �1–increasing and �2–
increasing subsets of X. In particular, for every �1–increasing set A and �2–
increasing set B,

A ⊆ �(B) iff B ⊆ r(A).

Let X = 〈X,�1,�2〉 be a doubly ordered set. Define two binary operations ∧C

and ∨C on 2X and two constants 0C and 1C as follows: for all A,B ⊆ X ,

A ∧C B = A ∩B (4)
A ∨C B = �(r(A) ∩ r(B)) (5)

0C = ∅ (6)
1C = X. (7)

Observe that the definition of ∨C in terms of ∧C resembles a De Morgan law
with two different negations. In [17], L(X) = 〈L(X),∧C ,∨C , 0C , 1C〉 is shown
to be a bounded lattice; it is called the complex algebra of X.

Let W = 〈W,∧,∨, 0, 1〉 be a bounded lattice. By a filter-ideal pair of W
we mean a pair (x1, x2) such that x1 is a filter of W , x2 is an ideal of W
and x1 ∩ x2 = ∅. The family of all filter-ideal pairs of W will be denoted by
FIP (W ). Define the following three quasi-ordering relations: for any (x1, x2),
(y1, y2) ∈ FIP (W ),

(x1, x2) �1 (y1, y2) iff x1 ⊆ y1

(x1, x2) �2 (y1, y2) iff x2 ⊆ y2

(x1, x2) � (y1, y2) iff (x1, x2) �1 (y1, y2) and (x1, x2) �2 (y1, y2).

We say that (x1, x2) ∈ FIP (W ) is maximal if it is maximal with respect to �.
We denote by X(W ) the set of all maximal filter-ideal pairs of W . Note that
X(W ) is a binary relation on 2W . In the sequel, if we write x ∈ X(W ), we
shall assume that x = (x1, x2) where x1 denotes the filter and x2 denotes the
ideal. The same convention holds for y, z, etc. It was shown in [17] that for any
x ∈ FIP (W ) there exists y ∈ X(W ) such that x � y; in this case, we say that
x has been extended to y.

If W = 〈W,∧,∨, 0, 1〉 is a bounded lattice then the canonical frame of W
is defined as the relational structure X(W ) = 〈X(W ),�1,�2〉.

Consider the complex algebra L(X(W )) of the canonical frame of a bounded
lattice W . Note that L(X(W )) is an algebra of subrelations of X(W ). Define
a mapping h : W → 2X(W ) by

h(a) = {x ∈ X(W ) : a ∈ x1}.
Then h is a map from W to L(X(W )) and, moreover, we have the following
result.

Proposition 3.1. [17] For every bounded lattice W , h is a lattice embedding of
W into L(X(W )).
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The following theorem is a weak version of Urquhart’s result.

Theorem 3.1 (Representation theorem for lattices). Every bounded lat-
tice is embeddable into the complex algebra of its canonical frame.

4 Lattices with Sufficiency (Negative Necessity) Operator

By a lattice with a sufficiency operator we mean an algebra W = 〈W,∧,∨,¬, 0, 1〉
which is a bounded lattice with a unary operation ¬, called a sufficiency operator,
satisfying:

(Suff1) ¬(a ∨ b) = ¬a ∧ ¬b
(Suff2) ¬0 = 1.

Such operators are also called ‘negative necessity’. (Note that such operators
are antitone.) The name is due to its modal interpretation (cf. Or�lowska, E.,
Vakarelov, D. [13]). The operator [R]¬, which is the composition of the classical
necessity operator [R] with the classical negation, is a sufficiency operator. Recall
that, given a Kripke frame 〈X,R〉, where R is a binary relation on X and A ⊆ X ,
the classical necessity is defined by

[R]A = {x ∈ X : ∀y(xRy ⇒ y ∈ A)}.
Let LS denote the variety of all lattices with a sufficiency operator. The

following definitions and results are based on the treatment of sufficiency in [13].
Let RLS denote the class of all sufficiency frames, i.e., relational structures of

the type X = 〈X,�1,�2, R, S〉, where 〈X,�1,�2〉 is a doubly ordered set (i.e.,
�1 and �2 are quasi-orders satisfying (1)) and R and S are binary relations on
X such that the following hold:

(Mono R) (x′ �1 x and xRy and y �2 y
′) ⇒ x′Ry′

(Mono S) (x �2 x
′ and xSy and y′ �1 y) ⇒ x′Sy′

(SC RS) xRy ⇒ (∃x′ ∈ X)(x �1 x
′ and x′Sy)

(SC SR) xSy ⇒ (∃y′ ∈ X)(y �1 y
′ and xRy′).

The conditions (Mono R) and (Mono S) are called sufficiency monotonicity
conditions, and (SC RS) and (SC SR) are called sufficiency stability conditions.

Unary operators [R] and 〈S〉 are defined on 2X as follows. For all A ⊆ X ,

[R]A = {x ∈ X : ∀y(xRy ⇒ y ∈ A)},
〈S〉A = {x ∈ X : ∃y(xSy and y ∈ A)}.

For each W ∈ LS we define the canonical frame of W as the relational
structure X(W ) = 〈X(W ),�1,�2, R

c, Sc〉, where X(W ) is the set of all maxi-
mal disjoint filter-ideal pairs of W and, for all x = (x1, x2), y = (y1, y2) ∈ X(W ),

x �1 y iff x1 ⊆ y1

x �2 y iff x2 ⊆ y2

xRcy iff ∀a(¬a ∈ x1 ⇒ a ∈ y2)
xScy iff ∀a(a ∈ y1 ⇒ ¬a ∈ x2).
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Lemma 4.1. [13] If W ∈ LS then X(W ) ∈ RLS.

Let X = 〈X,�1,�2, R, S〉 ∈ RLS . Then 〈X,�1,�2〉 is a doubly ordered set
hence we may consider its complex algebra 〈L(X),∧C ,∨C , 0C , 1C〉, where L(X)
is the set of �-stable sets (see definitions (2) and (3)) and the operations are
defined as in (4–7). We extend this definition to define the complex algebra of
X as L(X) = 〈L(X),∧C ,∨C ,¬C , 0C , 1C〉 where, for all A ⊆ X ,

¬CA = [R]r(A).

Lemma 4.2. [13] If X ∈ RLS then L(X) ∈ LS.

Let W = 〈W,∧,∨,¬, 0, 1〉 ∈ LS. By the above lemmas, we have L(X(W )) ∈ LS
as well. Recall that the function h : W → L(X(W )) defined by

h(a) = {x ∈ X(W ) : a ∈ x1}
is an embedding of the lattice part of W into L(X(W )). Moreover, h also
preserves negation, hence we have the following result.

Theorem 4.1. [13] Each W ∈ LS is embeddable into L(X(W )).

5 Lattices with Heyting Negation

A weakly pseudo-complemented lattice is an algebra W = 〈W,∧,∨,¬, 0, 1〉 which
is a bounded lattice with a unary operation ¬ satisfying:

(WCon) a ≤ b⇒ ¬b ≤ ¬a
(Weak¬¬) a ≤ ¬¬a
(Abs) a ∧ ¬a = 0

We denote by W the variety of all weakly pseudo-complemented lattices. By
Lemma 2.1, W also satisfies (Gal), (Suff1) and (Suff2), as well as ¬1 = 0 and
¬a ∨ ¬b ≤ ¬(a ∧ b).

We shall need the following lemma. We use (X ] to denote the downward
closure of a subset X of a lattice and [X) for the upward closure. Also, for any
subset X of a a weakly pseudo-complemented lattice, we define

¬X = {¬b : b ∈ X}.
Lemma 5.1. Let F be a proper filter of W ∈ W. Then the following hold.

(a) (¬F ] is an ideal.
(b) F ∩ (¬F ] = ∅.
(c) For all a ∈W , ¬a ∈ F iff a ∈ (¬F ].

Proof. (a) Note that (¬F ] is downward closed. Suppose that a, b ∈ (¬F ]. Then
a ≤ ¬c and b ≤ ¬d for some c, d ∈ F . Since F is a filter, c∧d ∈ F so ¬(c∧d) ∈ ¬F .
Since a ∨ b ≤ ¬c ∨ ¬d ≤ ¬(c ∧ d), we have a ∨ b ∈ (¬F ]. Thus, (¬F ] is an ideal.

(b) Suppose there is some a ∈ F ∩ (¬F ]. Then a ≤ ¬b for some b ∈ F , so
b ≤ ¬a. Thus, ¬a ∈ F hence 0 = a ∧ ¬a ∈ F , which is a contradiction.

(c) If ¬a ∈ F then ¬¬a ∈ (¬F ] hence a ∈ (¬F ] since a ≤ ¬¬a. If a ∈ (¬F ]
then a ≤ ¬b for some b ∈ F , so b ≤ ¬a hence ¬a ∈ F .
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We will denote byRW the class of all relational structures of type X = 〈X,�1,
�2, C〉, where 〈X,�1,�2〉 is a doubly ordered set and C is a binary relation on
X such that the following hold:

(FC1) (∀x, y, z)((xCy and z �1 x) ⇒ zCy)
(FC2) (∀x, y, z)((xCy and y �2 z) ⇒ xCz)
(FC3) (∀x)(∃y)(xCy and x �1 y)
(FC4) (∀x, y)(xCy ⇒ ∃z(yCz and x �1 z))
(FC5) (∀s, t, y)[(yCs and s �2 t) ⇒ ∃z(y �1 z and ∀u(z �2 u⇒ tCu))].

For each W ∈ W we define the canonical frame of W as the relational
structure X(W ) = 〈X(W ),�1,�2, C〉, where X(W ) is the set of all maximal
disjoint filter-ideal pairs of W and, for all x = (x1, x2), y = (y1, y2) ∈ X(W ),

x �1 y iff x1 ⊆ y1

x �2 y iff x2 ⊆ y2

xCy iff ∀a(¬a ∈ x1 ⇒ a ∈ y2).

Lemma 5.2. If W ∈ W then X(W ) ∈ RW .

Proof. We know that 〈X(W ),�1,�2〉 is a doubly ordered set. Properties (FC1)
and (FC2) are straightforward to prove. For (FC3), suppose x ∈ X(W ). By
Lemma 5.1, 〈x1, (¬x1]〉 is a disjoint filter-ideal pair, so we can extend it to a
maximal one, say y. If ¬a ∈ x1 then a ∈ (¬x1] (by Lemma 5.1(c)) hence a ∈ y2.
Thus, xCy. Also, x1 ⊆ y1, i.e., x �1 y, so we have found the required y.

For (FC4), suppose x, y ∈ X(W ) and xCy. By Lemma 5.1(a), (¬y1] is an
ideal. If a ∈ x1 ∩ (¬y1] then a ∈ x1 implies ¬¬a ∈ x1, which implies ¬a ∈ y2.
But a ∈ (¬y1] implies ¬a ∈ y1 (by Lemma 5.1(c)), which contradicts the fact
that y1 ∩ y2 = ∅. Thus, x1 ∩ (¬y1] = ∅. Thus, we can extend 〈x1, (¬y1]〉 to a
maximal disjoint filter-ideal pair, say z. If ¬a ∈ y1 then a ∈ (¬y1] hence a ∈ z2,
so yCz. Also, x �1 z, so we have proved (FC4).

For (FC5), suppose that s, t, y ∈ X(W ) such that yCs and s �2 t. First, we
show that y1∩ (¬t1] = ∅. Suppose a ∈ y1∩ (¬t1]. Then, ¬¬a ∈ y1 hence ¬a ∈ s2.
Since s �2 t we have ¬a ∈ t2. Also, a ≤ ¬b for some b ∈ t1, so ¬a ≥ ¬¬b ≥ b
hence ¬a ∈ t1. This contradicts the fact that t1 and t2 are disjoint.

We therefore have that 〈y1, (¬t1]〉 is a disjoint filter-ideal pair, so we may
extend it to a maximal one, say z. Then, y1 ⊆ z1, i.e., y �1 z. Suppose z �2 w
and ¬a ∈ t1. Then ¬¬a ∈ ¬t1 so a ∈ (¬t1] ⊆ z2 ⊆ w2 hence a ∈ w2. Thus, we
have proved (FC5).

Let X = 〈X,�1,�2, C〉 ∈ RW . Since 〈X,�1,�2〉 is a doubly ordered set we
may consider its complex algebra 〈L(X),∧C ,∨C , 0C , 1C〉, where L(X) is the set
of �-stable sets with operations defined as in (4–7). Extending this definition
we define the complex algebra of X as L(X) = 〈L(X),∧C ,∨C ,¬C , 0C , 1C〉,
where, for A ∈ L(X),

¬CA = {x ∈ X : ∀y(xCy ⇒ y /∈ A)}.
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Lemma 5.3. If A is �-stable then so is ¬CA.

Proof. We have ¬CA = {x : ∀y(xCy ⇒ y /∈ A)} and

�r(¬CA) = {x : ∀s(x �1 s⇒ ∃t(s �2 t and ∀u(tCu⇒ u /∈ A)))}.
Let x ∈ ¬CA and suppose that x �1 s for some s. We claim that t = s satisfies
the required properties. Clearly, s �2 s. If sCu, then xCu since x �1 s, by (FC1)
hence u /∈ A. Thus, x ∈ �r(¬CA) so ¬CA ⊆ �r(¬CA).

For the reverse inclusion, note that, since A is �-stable, we have

¬CA = ¬C�r(A) = {x : ∀y(xCy ⇒ ∃z(y �1 z and ∀u(z �2 u⇒ u /∈ A)))}.
Let x ∈ �r(¬CA) and suppose that xCy for some y. By (FC4), there exists s
such that

x �1 s and yCs.

Then, since x ∈ �r(¬CA) and x �1 s, there exists t such that

s �2 t and ∀u(tCu⇒ u /∈ A).

Since yCs and s �2 t, by (FC5) there exists z such that

y �1 z and ∀u(z �2 u⇒ tCu).

Thus, ∀u(z �2 u⇒ u /∈ A), so we have found the required z, so x ∈ ¬C�r(A) =
¬CA.

Lemma 5.4. If X ∈ RW then L(X) ∈ W.

Proof. To see that (WCon) holds, suppose A,B are �-stable sets and A ⊆ B.
Let x ∈ ¬CB. Then, for all y, xCy implies y /∈ B hence also y /∈ A, so x ∈ ¬CA.

To see that (Weak¬¬) holds, note that

¬C¬CA = {x : ∀y(xCy ⇒ ∃z(yCz and z ∈ A))}.
Let x ∈ A and suppose that xCy for some y. By (FC4), there exists z such that
yCz and x �1 z. Since A is �1–increasing and x ∈ A, we have z ∈ A. Thus, the
required z exists, showing that x ∈ ¬C¬CA.

To see that (Abs) holds, let A be an �-stable set and suppose there exists
x ∈ A ∩ ¬CA. By (FC3), there exists a y such that xCy and x �1 y. Since
x ∈ ¬CA and xCy we have y /∈ A. But x ∈ A and A is �-stable, hence �1–
increasing, so x �1 y implies y ∈ A, a contradiction.

The above lemmas show that if W ∈ W then so is L(X(W )). Recall that the
function h : W → L(X(W )) defined by

h(a) = {x ∈ X(W ) : a ∈ x1}
is an embedding of the lattice part of W into L(X(W )). We show that h also
preserves negation.
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Theorem 5.1. [8] Each W ∈ W is embeddable into L(X(W )).

Proof. We need only show that h(¬a) = ¬Ch(a) for all a ∈ W , where

h(¬a) = {x : ¬a ∈ x1}

and
¬Ch(a) = {x : ∀y(xCy ⇒ a /∈ y1)}.

First, let x ∈ h(¬a) and suppose that xCy for some y. Then ¬a ∈ x1 so a ∈ y2
hence a /∈ y1, as required.

Next, let x ∈ ¬Ch(a) and suppose that ¬a /∈ x1. Then a /∈ (¬x1] (by
Lemma 5.1(c)) so 〈[a), (¬x1]〉 forms a disjoint filter-ideal pair which we can
extend to a maximal one, say y. If ¬c ∈ x1 then c ∈ (¬x1] so xCy hence a /∈ y1,
a contradiction since [a) ⊆ y1.

6 Pseudo-complemented Lattices

A pseudo-complemented lattice is an algebra W = 〈W,∧,∨,¬, 0, 1〉 which is a
bounded lattice with a unary operation ¬ satisfying:

a ∧ b = 0 ⇔ a ≤ ¬b.

The class of all pseudo-complemented lattices is denoted P . Note that (Gal) is
derivable by

a ≤ ¬b ⇔ a ∧ b = 0 ⇔ b ∧ a = 0 ⇔ b ≤ ¬a.

Thus, (Suff1), (Suff2), (WCon) and (Weak¬¬) are derivable and, from a ≤ ¬¬a,
we get a ∧ ¬a = 0, so (Abs) is derivable hence also ¬1 = 0. The class W of
weakly pseudo-complemented lattices is easily seen to satisfy the quasi-identity

a ≤ ¬b ⇒ a ∧ b = 0,

hence P is a subclass of W defined by the quasi-identity

(Pcq) a ∧ b = 0 ⇒ a ≤ ¬b.
As an example that shows that P is a proper subclass of W consider the lattice
with 6 elements 1, 0, a, b, c, d, where 1 is the top, 0 is the bottom and a, b, c, d
are incomparable. Let ¬a = b, ¬b = a, ¬c = d and ¬d = c. This example is in
W but not in P since a ∧ c = 0 but a �≤ ¬c.

We will denote byRP the class of all relational structures of type X = 〈X,�1,
�2, C〉, where 〈X,�1,�2〉 is a doubly ordered set and C is a binary relation on
X such that (FC1–FC5) hold as well as

(FC6) (∀x, y)(xCy ⇒ ∃z(x �1 z and y �1 z)).
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That is, RP is the subclass of RW defined by (FC6).
If W ∈ P then W ∈ W as well hence its canonical frame is the relational

structure X(W ) = 〈X(W ),�1,�2, C〉, where X(W ) is the set of all maximal
disjoint filter-ideal pairs of W and, for all x, y ∈ X(W ),

x �1 y iff x1 ⊆ y1

x �2 y iff x2 ⊆ y2

xCy iff ∀a(¬a ∈ x1 ⇒ a ∈ y2).

Lemma 6.1. If W ∈ P then X(W ) ∈ RP .

Proof. We need only show that (FC6) holds. So, let x, y ∈ X(W ) such that
xCy. Consider the filter generated by x1 ∪ y1, denoted Fi(x1 ∪ y1). We claim
that 0 /∈ Fi(x1 ∪ y1). If we suppose otherwise, then there exist a1, . . . , an ∈ x1
and b1, . . . , bm ∈ y1 such that

(
∧n

i=1 ai) ∧ (
∧m

j=1 bj) = 0.

If we set a =
∧n

i=1 ai and b =
∧m

j=1 bj , then a ∈ x1 and b ∈ y1 such that a∧b = 0.
But this implies that a ≤ ¬b, by (Pcq), hence ¬b ∈ x1. Finally, since xCy and
¬b ∈ x1, we have b ∈ y2. Thus, b ∈ y1 ∩ y2, a contradiction.

This shows that 0 /∈ Fi(x1 ∪ y1) so 〈Fi(x1 ∪ y1), {0}〉 is a disjoint filter-ideal
pair. This can be extended to a maximal disjoint filter-ideal pair, say z. Then
x �1 z and y �1 z, as required.

Let X = 〈X,�1,�2, C〉 ∈ RP (so X satisfies (FC1–FC6)). Then X is also in
RW hence we may consider its complex algebra L = 〈L(X),∧C ,∨C ,¬C , 0C , 1C〉,
where L(X) is the set of �-stable sets, the lattice operations are defined as in
(4–7) and, for A ∈ L(X),

¬CA = {x ∈ X : ∀y(xCy ⇒ y /∈ A)}.
Lemma 6.2. If X ∈ RP then L(X) ∈ P.

Proof. We need only show that L(X) satisfies the quasi-identity (Pcq), i.e., for
A,B ∈ L(X),

A ∩B = ∅ ⇒ A ⊆ ¬CB = {x ∈ X : ∀y(xCy ⇒ y /∈ B)}.
Suppose that A ∩ B = ∅ and let x ∈ A. Let y ∈ X such that xCy. By (FC6),
there exists z ∈ X such that x �1 z and y �1 z. Since x ∈ A and A is �1–
increasing, we have z ∈ A as well. If y ∈ B then, since B is �1–increasing, it
would follow that z ∈ B and hence that z ∈ A∩B, contradicting our assumption
that A ∩B = ∅. Thus, y /∈ B hence x ∈ ¬CB, as required.

Thus, we have shown that if W ∈ P then so is L(X(W )). Moreover, from the
previous section we know that h is an embedding of W into L(X(W )), hence
we have the following result.

Theorem 6.1. [8] Each W ∈ P is embeddable into L(X(W )).
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7 Lattices with De Morgan Negation

By a De Morgan lattice we mean an algebra W = 〈W,∧,∨,¬, 0, 1〉 which is a
bounded lattice with a unary operation ¬ satisfying:

(Gal) a ≤ ¬b⇒ b ≤ ¬a
(DeM) ¬¬a ≤ a

Let M denote the variety of all De Morgan lattices. Recall that from (Gal)
and (DeM) one may derive (Suff1), (Suff2), (WCon), (Weak¬¬) and ¬1 = 0.
The following are also derivable in M:

¬¬a = a
¬(a ∧ b) = ¬a ∨ ¬b
¬a = ¬b ⇒ a = b.

We will denote byRM the class of all relational structures of type X = 〈X,�1,
�2, N〉, where 〈X,�1,�2〉 is a doubly ordered set, N : X → X is a function
and, for all x, y ∈ X ,

(M1) N(N(x)) = x,
(M2) x �1 y ⇒ N(x) �2 N(y),
(M3) x �2 y ⇒ N(x) �1 N(y).

The representation in this section essentially comes from [1], where the func-
tion N is called a ‘generalized Routley-Meyer star operator’. We give full details
here and in the next section show how the method may be extended to ortho-
lattices.

For each W ∈ M, define the canonical frame of W as the relational struc-
ture X(W ) = 〈X(W ),�1,�2, N〉, whereX(W ) is the set of all maximal disjoint
filter-ideal pairs of W and, for x, y ∈ X(W ),

x �1 y iff x1 ⊆ y1,
x �2 y iff x2 ⊆ y2,
N(x) = (¬x2,¬x1), where ¬A = {¬a : a ∈ A} for any A ⊆W .

Lemma 7.1. If W ∈M then X(W ) ∈ RM .

Proof. We have already observed that 〈X(W ),�1,�2〉 is a doubly ordered set.
Condition (M1) follows from (DeM) and conditions (M2) and (M3) are immedi-
ate. Thus, we need only show that N is a function from X(W ) to X(W ). That
is, if x ∈ X(W ), we must show that N(x) is a maximal disjoint filter-ideal pair.
(This is also done by Allwein and Dunn.) Let a1, a2 ∈ x2 hence ¬a1,¬a2 ∈ ¬x2.
Then ¬a1 ∧ ¬a2 = ¬(a1 ∨ a2) and a1 ∨ a2 ∈ x2, hence ¬x2 is closed under ∧.
If ¬a1 ≤ b then ¬b ≤ ¬¬a1 = a1, so ¬b ∈ x2. Then b = ¬¬b ∈ ¬x2, so ¬x2 is
upward closed. Thus, ¬x2 is a filter. Similarly, ¬x1 is an ideal. Also, ¬x1 and ¬x2
can be shown disjoint using the implication: ¬b = ¬c⇒ b = c and the fact that
x1 and x2 are disjoint. To show maximality, suppose y ∈ X(W ) and ¬x1 ⊆ y1
and ¬x2 ⊆ y2. Then ¬¬x1 ⊆ ¬y1, i.e., x1 ⊆ ¬y1 and also x2 ⊆ ¬y2. Since
(¬y2,¬y1) is a disjoint filter-ideal pair, the maximality of x implies x1 = ¬y2
and x2 = ¬y1. Thus, ¬x1 = y2 and ¬x2 = y1 so N(x) is maximal.
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If X = 〈X,�1,�2, N〉 ∈ RM , then 〈X,�1,�2〉 is a doubly ordered set, so we
may consider its complex algebra 〈L(X),∧C ,∨C , 0C , 1C〉, where L(X) is the set
of �-stable sets and the operations are as in (4–7). We extend this definition
to define the complex algebra of X as L(X) = 〈L(X),∧C ,∨C ,¬C , 0C , 1C〉
where, for A ∈ L(X),

¬CA = {x ∈ X : N(x) ∈ r(A)}.

Lemma 7.2. If X ∈ RM then L(X) ∈M.

Proof. We need to show that ¬CA is �-stable, i.e., �r(¬CA) = ¬CA, and that
L(X) satisfies (Gal) and (DeM). Since � and r form a Galois connection, by
Lemma 3.2, we have ¬CA ⊆ �r(¬CA) iff r(¬CA) ⊆ r(¬CA). For the converse,
suppose that for every y, if x �1 y then y /∈ r(¬CA) and assume, to the contrary,
that x /∈ ¬CA. Then N(x) /∈ r(A) and there is z such that N(x) �2 z and
z ∈ A. It follows by (M3) and (M1) that x �1 N(z) and hence, by the above
assumption, N(z) /∈ r(¬CA). Thus, there is t such that N(z) �2 t and t ∈ ¬CA.
By application of N and (M3) and (M1), we have that z �1 N(t) and N(t) ∈
r(A), in particular N(t) /∈ A. But z ∈ A and A is �1–increasing, as A = �r(A),
hence N(t) ∈ A, a contradiction.

To prove (Gal), suppose that A ⊆ ¬CB. Then, for every x, if x ∈ A then
N(x) ∈ r(B). Suppose that x ∈ B and, to the contrary, that x /∈ ¬CA, i.e.,
N(x) /∈ r(A), in which case N(x) �2 y and y ∈ A, for some y. By (M3) and (M1),
x �1 N(y) hence N(y) ∈ B since B = �r(B) is �1–increasing. But also y ∈ ¬CB,
by the assumption, and N(y) ∈ r(B), a contradiction since B ∩ r(B) = ∅.

To prove (DeM), let x ∈ ¬C¬CA, hence N(x) ∈ r(¬CA). We show that
x ∈ �(r(A)) which equals A since A is �-closed. Let x ≤1 w. Then N(x) ≤2
N(w), by (M2), hence N(w) ∈ r(¬CA) since r(¬CA) is ≤2–increasing. Thus,
N(w) /∈ ¬CA, i.e., w = N(N(w)) /∈ r(A). Thus, x ∈ �(r(A)) = A.

The above lemmas imply that if W ∈ M, then L(X(W )) ∈ M as well. Recall
that the function h : W → L(X(W )) defined by

h(a) = {x ∈ X(W ) : a ∈ x1}

is an embedding of the lattice part of W into L(X(W )). As in the case of
Heyting negation, we shall show that h also preserves De Morgan negation.

Theorem 7.1. [8] Each W ∈M is embeddable into L(X(W )).

Proof. We need only show that h(¬a) = ¬Ch(a) for all a ∈ W , where

h(¬a) = {x ∈ X(W ) : ¬a ∈ x1}

and

¬Ch(a) = {x ∈ X(W ) : N(x) ∈ r(h(a))}
= {x ∈ X(W ) : (∀y ∈ X(W ))(¬x1 ⊆ y2 ⇒ a /∈ y1)}.
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First, let x ∈ h(¬a). Then ¬a ∈ x1, hence a = ¬¬a ∈ ¬x1. Suppose that
¬x1 ⊆ y2. Then a /∈ y1, since y1 and y2 are disjoint.

Next, let x ∈ ¬Ch(a). Suppose, to the contrary, that ¬a /∈ x1. Then a /∈ (¬x1]
and so 〈[a), (¬x1]〉 is a disjoint filter-ideal pair, which can be extended to a
maximal one, say y. Thus, (¬x1] ⊆ y1, so a /∈ y1, but [a) ⊆ y1, a contradiction.

8 Lattices with Ortho-negation (Ortholattices)

An ortholattice is an algebra W = 〈W,∧,∨,¬, 0, 1〉 which is a bounded lattice
with a unary operation ¬ which satisfies (Gal), (DeM) and (Abs). That is, the
negation in an ortholattice is both De Morgan and Intuitionistic. Let O denote
the variety of all ortholattices. Since O is a subclass of both W and M, it satisfies
all the identities satisfied by either class. We extend the relational representation
for De Morgan lattices to ortholattices.

We will denote by RO the class of all relational structures of type X = 〈X,�1,
�2, N〉, where 〈X,�1,�2〉 is a doubly ordered set and N : X → X is a function
such that, for all x, y ∈ X ,

(M1) N(N(x)) = x
(M2) x �1 y ⇒ N(x) �2 N(y)
(M3) x �2 y ⇒ N(x) �1 N(y)
(O) (∀x)(∃y)(x �1 y and N(x) �2 y)

That is, RO is the subclass of RM defined by (O). If W ∈ O, then W ∈M hence
its canonical frame is the relational structure X(W ) = 〈X(W ),�1,�2, N〉,
where X(W ) is the set of all maximal disjoint filter-ideal pairs of W and, for x,
y ∈ X(W ),

x �1 y iff x1 ⊆ y1
x �2 y iff x2 ⊆ y2
N(x) = (¬x2,¬x1), where ¬A = {¬a : a ∈ A} for A ⊆W .

Lemma 8.1. If W ∈ O then X(W ) ∈ R(O).

Proof. We need only show that X(W ) satisfies (O). Let x ∈ X(W ). Observe
that x1 and ¬x1 are disjoint, for if a ∈ x1 ∩ (¬x1) then a ∈ x1 and a ∈ ¬x1, so
¬a ∈ ¬¬x1 = x1, hence a ∧ ¬a ∈ x1. But, by (Abs), a ∧ ¬a = 0, so x1 = W , a
contradiction. Thus, we may extend (x1,¬x1) to a maximal disjoint filter-ideal
pair y. Then x1 ⊆ y1 and ¬x1 ⊆ y2, so we have found a y that satisfies the
required conditions of (O).

If X = 〈X,�1,�2, N〉 ∈ RO, then X ∈ RM so it has a canonical algebra
L(X) = 〈L(X),∧C ,∨C ,¬C , 0C , 1C〉 defined as in the De Morgan negation case.

Lemma 8.2. If X ∈ RO then L(X) ∈ O.

Proof. We need only show that L(X) satisfies A ∧C (¬CA) = 0C . Suppose, to
the contrary, that there exists A ∈ L(X) such that A ∩ (¬CA) �= ∅, and let
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x ∈ A ∩ (¬CA). By (O), there exists y such that x �1 y and N(x) �2 y. Since
A is �1–increasing, y ∈ A. Since x ∈ ¬CA, N(x) ∈ r(A). But then N(x) �2 y
implies y /∈ A, a contradiction.

Thus, the above lemmas imply that if W ∈ O, then L(X(W )) ∈ O as well.
Since the map h is an embedding of De Morgan lattices, we have the following
result.

Theorem 8.1. [8] Each W ∈ O is embeddable into L(X(W )).

Part II Distributive Lattices

9 Relatively Pseudo-complemented Lattices

A relatively pseudo-complemented lattice is an algebra W = 〈W,∧,∨,→〉 where
〈W,∧,∨〉 is a lattice and → is a binary operation on W satisfying:

a ∧ c ≤ b ⇔ c ≤ a→ b.

The operation → is the ‘residuum’ of ∧. For properties of relatively pseudo-
complemented lattices, see [15] or [2]). It is known that every relatively pseudo-
complemented lattice is distributive and has a constant 1 definable by 1 = a→ a,
which is the greatest element of the lattice. We include 1 in the language so that
W = 〈W,∧,∨,→, 1〉. It is known that all relatively pseudo-complemented lat-
tices form a variety and we denote this variety by RP . RP satisfies the following:

a→ b = 1 ⇔ a ≤ b
1 → b = b, a→ 1 = 1
a→ b = 1 and a = 1 ⇒ b = 1
a→ (b→ c) = b→ (a→ c)
a ∧ (a→ b) = a ∧ b
b ≤ a→ b
a ≤ b⇒ c→ a ≤ c→ b.

In the case of distributive lattices such as RP the relational representation is
built on the set of prime ideals of the lattice rather than the maximal disjoint
filter-ideal pairs used in the non-distributive cases. The underlying relational
structures are of the type 〈X,≤〉, where X is a set and ≤ a quasi-order on X .
The class of all such relational structures is denoted by RRP .

For each W ∈ RP we define the canonical frame of W as the relational
structure X(W ) = 〈X(W ),≤C〉, where X(W ) is the set of all prime filters of
W and ≤C=⊆.

Lemma 9.1. If W ∈ RP then X(W ) ∈ RRP .

For each 〈X,≤〉 ∈ RP , we define the operation [≤] : 2X → 2X by

[≤]A = {x ∈ X : ∀y(x ≤ y ⇒ y ∈ A)}.
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Observe that [≤]A is the largest upward closed subset of A. Note also that
[≤] is monotonic and, for any A ⊆ X , [≤]A = A iff A is upward closed, and
[≤][≤]A = [≤]A.

If X = 〈X,≤〉 ∈ RRP we define the complex algebra of X as L(X) =
〈L(X),∧C ,∨C ,→C , 1C〉 where L(X) = {A ⊆ X : [≤]A = A} and, for all
A,B ∈ L(X),

A ∧C B = A ∩B,
A ∨C B = A ∪B,
A→C B = [≤](−A ∪B), where −A is the set complement of A in X ,
1C = X .

Lemma 9.2. If X ∈ RRP then L(X) ∈ RP.

Proof. It is clear that L(X) is closed under ∧C and ∨C and that these operations
describe a distributive lattice with greatest element 1C . We need only show that
→C is the residuum of ∩, i.e., for all A,B,C ∈ L(X),

A ∩ C ⊆ B iff C ⊆ A→C B = [≤](−A ∪B).

Assume that A ∩ C ⊆ B and let x ∈ C. Take any y ∈ X such that x ≤ y. Then
y ∈ C since C is a filter. If y ∈ A then y ∈ A ∩ C hence y ∈ B so y ∈ −A ∪ B.
If y /∈ A then, trivially, y ∈ −A ∪ B. Conversely, assume C ⊆ [≤](−A ∪ B)
and let x ∈ A ∩ C. Then x ∈ C hence x ∈ [≤](−A ∪ B). Since x ≤ x, we have
x ∈ −A ∪B, but x ∈ A, so we must have x ∈ B, as required.

The above lemmas show that if W ∈ RP , then so is L(X(W )). To show that
W embeds into L(X(W )) we define the map f : W → L(X(W )) by

f(a) = {F ∈ X(W ) : a ∈ F}.
For the proof of next theorem we need the following observations. Let F be a

(lattice) filter of a relatively pseudo-complemented lattice W . Then the following
hold for all a, b ∈ W :

a ∈ F and a→ b ∈ F ⇒ b ∈ F ;
if b /∈ F , then there is a prime filter F ′ such that F ⊆ F ′ and b /∈ F ′.

Theorem 9.1. Each W ∈ RP is embeddable into L(X(W )).

Proof. That the map f is a lattice embedding follows by standard arguments of
M.H. Stone [16] (see also [2]). We need only show the preservation of relative
pseudo-complement by f , i.e., that f(a → b) = f(a) →C f(b) = [≤C ](−f(a) ∪
f(b)). Let F ∈ f(a → b), i.e., a → b ∈ F . It follows that a /∈ F or b ∈ F , hence
F /∈ f(a) or F ∈ f(b), i.e., F ∈ −f(a) ∪ f(b), so f(a → b) ⊆ −f(a) ∪ f(b).
Since for every a ∈W , f(a) = [≤C ]f(a) we have, by monotonicity of [≤C ], that
f(a → b) = [≤C ]f(a → b) ⊆ [≤C ](−f(a) ∪ f(b)). For the converse inclusion,
suppose F ∈ [≤C ](−f(a) ∪ f(b)). Then, for all G,

F ⊆ G⇒ a /∈ G or b ∈ G. (8)
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In particular, a /∈ F or b ∈ F . If b ∈ F then, since b ≤ a → b, we have
a → b ∈ F . If b /∈ F , then a /∈ F . We show that also in this case a → b ∈ F .
Suppose, to the contrary, that a → b /∈ F . Set H = {c : a → c ∈ F}. Since
a→ (c ∧ d) = (a→ c) ∧ (a→ d), it follows that H is closed under meets. Since
c ≤ d implies a → c ≤ a → d, H is upward closed. Thus, H is a filter of W .
Moreover, F ⊆ H , a ∈ H and b /∈ H . Thus, we may extend H to a prime filter
H ′ such that b /∈ H ′, but F ⊆ H ′ and a ∈ H ′, contradicting (8).

10 Relatively Pseudo-complemented Lattices with
Minimal Negation

Now we consider relatively pseudo-complemented lattices with minimal nega-
tion, also called minimal negation of Johansson [10], (cf. Dunn and Hardegree
[5]) or contrapositional negation, (cf. Rasiowa [14]). This is a relatively pseudo-
complemented lattice enriched with an operation corresponding to minimal nega-
tion, (i.e., minimal negation of Johansson, or contrapositional negation).

By a relatively pseudo-complemented lattice with minimal negation we mean an
algebra W = 〈W,∧,∨,→,¬, ∂, 1〉, where 〈W,∧,∨,→, 1〉 is a relatively pseudo-
complemented lattice, ∂ ∈ W (not necessarily the smallest element) and ¬ is a
unary operator satisfying:

(RPM1) a→ ¬b ≤ b→ ¬a,
(RPM2) ¬1 = ∂.

Let RPM denote the variety of all relatively pseudo-complemented lattices with
minimal negation. Note that (RPM1) is equivalent to a → ¬b = b → ¬a and
corresponds to the condition for quasi-minimal, or Galois, negation (Gal): a ≤
¬b⇒ b ≤ ¬a.
Lemma 10.1

(a) If W ∈ RPM, then ¬a = a→ ∂ for all a ∈W .
(b) Let W ∈ RP and let ∂ be any element of W . If we define a unary operation

¬ by ¬a = a→ ∂ for all a ∈W , then ¬ is a minimal negation.

Proof. (a) For all a ∈ W we have ¬a = 1 → ¬a = a → ¬1 = a → ∂. (b) For
(RPM1), for all a, b ∈ W we have a→ ¬b = a→ (b→ ∂) = b→ (a→ ∂) = b→
¬a. For (RPM2), we have ¬1 = 1 → ∂ = ∂.

We will denote by RRPM the class of all relational structures of type X = 〈X,
≤, D〉, where ≤ is a quasi-order on X and D ⊆ X .

For each W ∈ RPM we define the canonical frame of W as X(W ) =
〈X(W ),≤C , DC〉, where X(W ) is the set of all prime filters of W , ≤C=⊆ and

DC = {F ∈ X(W ) : ∂ ∈ F}.
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Lemma 10.2. If W ∈ RPM then X(W ) ∈ RRPM .

If X = 〈X,≤, D〉 ∈ RRPM , then 〈X,≤〉 ∈ RRP hence it has a complex algebra
〈L(X),∧C ,∨C ,→C , 1C〉 as defined in the previous section. The complex alge-
bra of X, denoted L(X), is the extension of this algebra by the constant ∂C

and the operation ¬C defined by

∂C = [≤]D,

¬CA = A→C ∂C for A ∈ L(X).

Lemma 10.3. If X ∈ RRPM then L(X) ∈ RPM.

Proof. Since [≤][≤]D = [≤]D, we have ∂C ∈ L(X) and hence L(X) is also closed
under ¬C . Since L(X) is a relatively pseudo-complemented lattice, (RPM1)
follows from properties of →. (RPM2) follows from ¬C1 = [≤](−X ∪ [≤]D) =
[≤][≤]D = [≤]D = ∂C .

Thus, if W ∈ RPM so is L(X(W )).

Theorem 10.1. Each W ∈ RPM is embeddable into L(X(W )).

Proof. From the previous section we know that the function f : W → L(X(W ))
defined by

f(a) = {F ∈ X(W ) : a ∈ F}
is an embedding on the reduct 〈W,∧,∨,→, 1〉. We have f(∂) = {F ∈ X(W ) :
∂ ∈ F} = DC and f(∂) is an upward closed subset of X(W ) so f(∂) = [≤]DC =
∂C . Since → is preserved it follows that ¬ is too.

11 Distributive Lattices with De Morgan Negation

Now we consider distributive lattices with negation operation corresponding to
De Morgan negation (i.e., satisfying (Gal) and (DeM)). We will see the difference
in techniques of representation between the previous non-distributive case and
the distributive case. The representation theorem below is a modification of the
result of Bia�lynicki-Birula and Rasiowa [3] to the unified framework.

By a De Morgan algebra (also called a distributive lattice with involution) we
mean a De Morgan lattice 〈W,∧,∨,¬, 0, 1〉 whose lattice reduct is distributive.
Let DM denote the variety of all De Morgan algebras. Thus, DM satisfies (Gal)
and (DeM), as well as (Suff1), (Suff2), (WCon), (Weak¬¬), ¬1 = 0 and

¬¬a = a
¬(a ∧ b) = ¬a ∨ ¬b
¬a = ¬b ⇒ a = b.

For W ∈ DM and A ⊆W , let ¬A = {¬a : a ∈ A}. Then the following hold:

(A1) ¬A = {a : ¬a ∈ A}
(A2) ¬(W −A) = W − (¬A)
(A3) ¬¬A = A
(A4) A is a prime filter iff ¬A is a prime ideal.
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We will denote by RDM the class of all relational structures of type X =
〈X,≤, N〉, where ≤ is a quasi-order on X , N : X → X is a function and, for all
x, y ∈ X ,

(DM1) x ≤ y ⇒ N(y) ≤ N(x),
(DM2) N(N(x)) = x.

Compare these with (M1–M3). If we let N(A) = {N(x) : x ∈ A}, for A ⊆ X ,
then the following hold:

(A5) N(A) = {x : N(x) ∈ A}
(A6) N(X −A) = X −N(A)
(A7) N(A ∪B) = N(A) ∪N(B)
(A8) NN(A) = A.

The only non-trivial property is (A6), but this follows since: x ∈ N(X − A) iff
N(x) ∈ X −A iff N(x) �∈ A iff x /∈ N(A).

For each W ∈ DM we define the canonical frame of W as the relational
structure X(W ) = 〈X(W ),≤C , NC〉, where X(W ) is the set of all prime filters
of W , ≤C=⊆ and, for F ∈ X(W ),

NC(F ) = W − (¬F ).

Lemma 11.1. If W ∈ DM then X(W ) ∈ RDM .

Proof. We first show thatN is a function fromX(W ) to X(W ). Let F ∈ X(W ),
so F is a prime filter. It is routine to check that NC(F ) is a filter. For primeness,
suppose that a ∨ b ∈ NC(F ) = W − (¬F ). Then a ∨ b /∈ ¬F so ¬(a ∨ b) =
¬a ∧ ¬b /∈ F . Thus, either ¬a /∈ F or ¬b /∈ F , so a /∈ ¬F or b /∈ ¬F , hence
a ∈W − (¬F ) or b ∈W − (¬F ).

For (DM1), suppose F,G ∈ X(W ) and F ⊆ G. Now, by (A2), (A1) and
definitions we have a ∈ NC(G) iff a ∈ W − (¬G) iff a /∈ ¬G iff ¬a /∈ G hence,
by the assumption, ¬a /∈ F iff a /∈ ¬F iff a ∈ W − (¬F ) iff a ∈ NC(F ).

For (DM2), by (A6) and (A7) we have NC(NC(F )) = W − (¬NC(F )) =
W − (¬(W − (¬F ))) = W − (W − ¬¬F ) = ¬¬F = F .

If X = 〈X,≤〉 ∈ RDM we define the complex algebra of X as L(X) =
〈L(X),∧C ,∨C ,¬C , 0C , 1C〉 where L(X) = {A ⊆ X : [≤]A = A} and, for all
A,B ∈ L(X),

A ∧C B = A ∩B,
A ∨C B = A ∪B,
¬CA = X −N(A),
1C = X ,
0C = ∅.

Recall that, for A ⊆ X ,

[≤]A = {x ∈ X : ∀y(x ≤ y ⇒ y ∈ A)}.
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Lemma 11.2. If X ∈ RDM then L(X) ∈ DM.

Proof. We show that if A ∈ L(X), then ¬CA ∈ L(X), that is ¬CA = [≤]¬CA.
Let x ∈ ¬CA, so N(x) /∈ A. Suppose that x /∈ [≤]¬CA. Then there is y such
that x ≤ y and y /∈ ¬CA, thus N(y) ∈ A = [≤]A, that is ∀z(N(y) ≤ z ⇒ z ∈ A).
Since x ≤ y, we have N(y) ≤ N(x), and taking z = N(x) we get N(x) ∈ A, a
contradiction. For the converse, let x ∈ [≤]¬CA. Then ∀y(x ≤ y ⇒ N(y) /∈ A);
suppose that x /∈ ¬CA, hence N(x) ∈ A. Taking y = x we get a contradiction.

Now we show that ¬C¬CA = A. Using (A6) and (A8) we have X−N(¬CA) =
X−N(X−N(A)) = X− (X−NN(A)) = NN(A) = A. This proves (DeM) and
(Weak¬¬) hence (Gal) follows by Lemma 2.1. Next we show (Suff1), i.e., that
¬C(A∪B) = ¬CA∩¬CB. By (A7) we have x ∈ X−N(A∪B) iff x /∈ N(A∪B)
iff N(x) /∈ A and N(x) /∈ B iff x ∈ ¬CA ∩ ¬CB.

The above lemmas imply that if W ∈ DM, then L(X(W )) ∈ DM as well.
Recall that the function f : W → L(X(W )) defined by

f(a) = {F ∈ X(W ) : a ∈ F}

is an embedding of the lattice parts of W and L(X(W )). We show that it
preserves negation as well.

Theorem 11.1. Each W ∈ DM is embeddable into L(X(W )).

Proof. We need only show the preservation of negation. We have, by definition,

¬Cf(a) = X(W )− (NC(f(a))
= X(W )− {NC(F ) : F ∈ f(a)}
= X(W )− {W − (¬F ) : a ∈ F}

and
f(¬a) = {G : ¬a ∈ G}.

Note that a ∈ F iff ¬a ∈ ¬F iff ¬a /∈ W − (¬F ). Thus, {W − (¬F ) : a ∈ F}
consists of all G ∈ X(W ) for which ¬a /∈ G. Therefore X(W ) − {W − (¬F ) :
a ∈ F} consists of all G ∈ X(W ) such that ¬a ∈ G, i.e., ¬Cf(a) = f(¬a).

12 Boolean Algebras with Sufficiency Operator

By a Boolean algebra with sufficiency (or negative necessity) operator we mean
an algebra W = 〈W ′,¬〉, where W ′ = 〈W,∧,∨,−, 0, 1〉 is a Boolean algebra,
and ¬ a unary operation satisfying:

(Suff1) ¬(a ∨ b) = ¬a ∧ ¬b
(Suff2) ¬0 = 1.
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Let SUA denote the variety of all Boolean algebras with sufficiency operator.
We extend the relational representation to Boolean algebras with sufficiency
operator.

A frame is a relational structure of type X = 〈X,R〉, where R ⊆ X ×X . Let
R be a class of all frames.

For each W ∈ SUA we define the canonical frame of W as the relational
structure X(W ) = 〈X(W ), RC〉, where X(W ) is the set of all prime filters of
W and, for F,G ∈ X(W ),

FRCG iff ¬G ∩ F �= ∅
where ¬A = {a ∈W : ¬a ∈ A} for each A ⊆ X .

Given a frame X = 〈X,R〉, we define the complex algebra of X as L(X) =
〈P(X),¬C〉, where P(X) is the powerset Boolean algebra of X and, for A ∈
P(X),

¬CA = {x ∈ X : A ⊆ R(x)} = {x ∈ X : ∀y(y ∈ A⇒ xRy)}.
Lemma 12.1. If W ∈ SUA, then X(W ) ∈ R. If X ∈ R then L(X) ∈ SUA.

Theorem 12.1. Each W ∈ SUA is embeddable into L(X(W )).

Proof. The embedding is defined in a standard way:

f(a) = {G ∈ X(W ) : a ∈ G}.

Acknowledgement. We are indebted to the referees for valuable remarks that
helped to improve the final version of the paper.
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Abstract. We present classes of algebras which may be viewed as weak
relation algebras, where a Boolean part is replaced by a not necessarily
distributive lattice. For each of the classes considered in the paper we
prove a relational representation theorem.

1 Introduction

In the first paper on lattice-based relation algebras [8] we presented a class of
lattices with the operators, referred to as LCP algebras, which was the abstract
counterpart to the class of relation algebras with the specific operations of rela-
tive product and converse. In the present paper we expand the LCP class with
new operators which model residua of relative product, relative sum, dual con-
verse, and dual residua of relative sum. In the classical relation algebras based
on Boolean algebras these operators are definable with the standard relational
operations and the complement. In lattice-based algebras they should be speci-
fied axiomatically since there is no way to define them without a complement.
We construct this extension in two steps. In Section 5 we introduce the class of
LCPR algebras which extend the class LCP with the residua of product, and
in Section 6 we present the class of LCPRS algebras which are obtained from
LCPR algebras by adding sum, dual converse, and dual residua of sum. For
each of these classes we prove a relational representation theorem in the style of
Urquhart-Allwein-Dunn (see [1], [19]). Sections 2, 3, and 4 present an overview
of Urquhart’s representation theory for lattices and a survey of LCP algebras.
The contributions of the paper fit, on the one hand, into the study of lattices
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with additional operators presented in a number of papers, for example in [10],
[15], [17], [18], and on the other hand, into a relational approach to modeling
algebraic and logical structures. A study of lattices with operators evolved from
the concept of Boolean algebras with operators originated in [13]. It is continued,
among others, in the context of modeling incomplete information in [3], [5], [7],
and [14].

2 Doubly Ordered Sets

In this section we recall the notions introduced in [8] and some of their properties.

Definition 1. Let X be a non–empty set and let �1 and �2 be two quasi or-
derings in X. A structure (X,�1,�2) is called a doubly ordered set iff for all
x, y ∈X, if x�1 y and x�2 y then x= y. !"
Definition 2. Let (X,�1,�2) be a doubly ordered set. We say that A⊆X is
�1–increasing (resp. �2–increasing) whenever for all x, y ∈X, if x∈A and
x �1 y (resp. x�2 y), then y ∈A. !"
For a doubly ordered set (X,�1,�2), we define two mappings l, r : 2X → 2X

by: for every A⊆X ,

l(A)= {x∈X : (∀y ∈X) x�1 y ⇒ y �∈A} (1)
r(A)= {x∈X : (∀y ∈X) x�2 y ⇒ y �∈A}. (2)

Observe that mappings l and r can be expressed in terms of modal operators as
follows: l(A)= [�1](−A) and r(A)= [�2](−A), where − is the Boolean comple-
ment and [�i], i=1, 2, are the necessity operators determined by relations �i.
Consequently, r and l are intuitionistic–like negations.

Definition 3. Given a doubly ordered set (X,�1,�2), a subset A⊆X is called
l–stable (resp. r–stable) iff l(r(A))=A (resp. r(l(A))=A). !"
The family of all l-stable (resp. r–stable) subsets of X will be denoted by L(X)
(resp. R(X)).

Recall the following notion from e.g. [4]:

Definition 4. Let (X,�1) and (Y,�2) be partially ordered sets and let f and
g be mappings f : X → Y , g : Y → X. We say that f and g are a Galois
connection iff for all x, y ∈X

x�1 g(y) iff y�2 f(x). !"
Lemma 1. [17] For any doubly ordered set (X,�1,�2) and for any A⊆X,

(i) l(A) is �1–increasing and r(A) is �2–increasing
(ii) if A is �1–increasing, then r(A)∈R(X)
(iii) if A is �2–increasing, then l(A)∈L(X)
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(iv) if A∈L(X), then r(A)∈R(X)
(v) if A∈R(X), then l(A)∈L(X)
(vi) if A,B ∈L(X), then r(A) ∩ r(B)∈R(X).

It is well–known that the following facts hold.

Lemma 2. The family of �i–increasing sets, i=1, 2, forms a distributive lat-
tice, where join and meet are union and intersection of sets.

Lemma 3. [19] For every doubly ordered set (X,�1,�2), the mappings l and r
form a Galois connection between the lattice of �1–increasing subsets of X and
the lattice of �2–increasing subsets of X.

In other words, Lemma 3 implies that for any A∈L(X) and for any B ∈R(X),
A⊆ l(B) iff B⊆ r(A).

Lemma 4. [8] For every doubly ordered set (X,�1,�2) and for every A⊆X,

(i) l(r(A))∈L(X) and r(l(A))∈R(X)
(ii) if A is �1–increasing, then A⊆ l(r(A))
(iii) if A is �2–increasing, then A⊆ r(l(A)).

Lemma 4 immediately implies:

Corollary 1. For every doubly ordered set (X,�1,�2) and for every A⊆X,

(i) if A∈L(X), then A⊆ l(r(A))
(ii) if A∈R(X), then A⊆ r(l(A)).

Let (X,�1,�2) be a doubly ordered set. Define two binary operations in 2X : for
all A,B⊆X ,

A !B = A ∩B (3)
A "B = l(r(A) ∩ r(B)). (4)

Observe that " is defined from ! resembling a De Morgan law with two different
negations.

Moreover, put

0 = ∅. (5)
1 = X (6)

In [19] it was shown that for a doubly ordered set (X,�1,�2), the system
((X),!,",0,1) is a lattice. This lattice is called the complex algebra of X .
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3 Urquhart’s Representation of Lattices

In this paper we are interested in studying relationships between relational struc-
tures (frames) providing Kripke–style semantics of logics, and algebras based on
lattices. Therefore, we do not assume any topological structure in the frames. As
a result, we have a weaker form of the representation theorems than the original
Urquhart result, which requires compactness.

Let (W,∧,∨, 0, 1) be a non–trivial bounded lattice.

Definition 5. A filter-ideal pair of a bounded lattice (W,∧,∨, 0, 1) is a pair
x= (x1, x2) such that x1 is a filter of W , x2 is an ideal of W and x1∩x2 = ∅. !"
The family of all filter–ideal pairs of a lattice W will be denoted by FIP (W ).
Let us define the following two quasi ordering relations on FIP (W ): for any
(x1, x2), (y1, y2)∈FIP (W ),

(x1, x2) 
1 (y1, y2) ⇐⇒ x1 ⊆ y1 (7)
(x1, x2) 
2 (y1, y2) ⇐⇒ x2 ⊆ y2. (8)

Next, define

(x1, x2)
 (y1, y2) ⇐⇒ (x1, x2)
1 (y1, y2) & (x1, x2)
2 (y1, y2).

We say that (x1, x2)∈FIP (W ) is maximal iff it is maximal with respect to

 . We will write X(W ) to denote the family of all maximal filter–ideal pairs of
the lattice W .

Observe that X(W ) is a binary relation on 2W .

Proposition 1. [19] Let (W,∧,∨, 0, 1) be a bounded lattice. Then for every
(x1, x2)∈FIP (W ) there exists (y1, y2)∈X(W ) such that (x1, y1)
 (y1, y2).

For any (x1, x2)∈FIP (W ), the maximal filter–ideal pair (y1, y2) such that
(x1, x2)
 (y1, y2) will be referred to as an extension of (x1, x2).

Definition 6. Let (W,∧,∨, 0, 1) be a bounded lattice. The canonical frame of
W is the structure (X(W ),
1,
2). !"
Lemma 5. For every bounded lattice W , its canonical frame (X(W ),
 1,
 2)
is a doubly ordered set.

Consider the complex algebra (L(X(W )),!,",0,1) of the canonical frame of
a lattice (W,∧,∨, 0, 1). Observe that L(X(W )) is an algebra of subrelations of
X(W ).

Let us define the mapping h : W → 2X(W ) as follows: for every a∈W ,

h(a) = {x∈X(W ) : a∈x1}. (9)
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Theorem 1. [19] For every lattice (W,∧,∨, 0, 1) the following assertions hold:

(i) For every a∈W , r(h(a))= {x∈X(W ) : a∈x2}
(ii) h(a) is l–stable for every a∈W
(iii) h is a lattice embedding.

The following theorem is a weak version of the Urquhart result.

Theorem 2 (Representation theorem for lattices). Every bounded lattice
is isomorphic to a subalgebra of the complex algebra of its canonical frame.

4 LCP Algebras and Frames

In this section we recall the class LCP of lattices with the operations of product
and converse introduced in [8]. We add one more axiom, (CP0), to the axioms
of LCP postulated in [8] and we explain its role.

Definition 7. An LCP algebra is a system (W,∧,∨,� ,⊗, 0, 1, 1′) such that
(W,∧,∨, 0, 1) is a non–trivial bounded lattice, � is a unary operation in W
and ⊗ is a binary operation in W satisfying the following conditions for all
a, b, c∈W ,

(CP.0) 0⊗ a = a⊗ 0 = 0
(CP.1) a�� = a
(CP.2) (a ∨ b)� = a� ∨ b�

(CP.3) a⊗ 1′ = 1′ ⊗ a = a
(CP.4) a⊗ (b ⊗ c) = (a⊗ b)⊗ c
(CP.5) a⊗ (b ∨ c) = (a⊗ b) ∨ (a⊗ c)
(CP.6) (a ∨ b)⊗ c = (a⊗ c) ∨ (b⊗ c)
(CP.7) (a⊗ b)� = b� ⊗ a�. !"

It is worth noting that axiom (CP.0) does not follow from the remaining axioms.
Consider, for example, a bounded lattice (W,∧,∨, 0, 1) and define the additional
operations ⊗ and � as follows: for all a, b∈W ,

a� = a

a⊗ b = a ∨ b

1′ = 0.

One can easily check that axioms (CP.1)–(CP.7) hold, but (CP.0) does not.
Consequently, Lemma 24 of [8] needs repair. For its proof we refer to [1]. The
crucial argument is on page 529 of [1] in the paragraph following equation (3).
In line 4 of this paragraph they obtain the disjoint pair ([t), U), which, as they
claim, can be extended to the maximal filter–ideal pair. This, however, is only
possible if t �=0.

Note also that axiom (CP.0) follows from the relation algebra axioms and
implies that 0 �=1′ in every LCP algebra with at least two elements. To see that,
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suppose that (CP.0) holds and 0 = 1′. Then 1 = 1′ ⊗ 1 = 0 ⊗ 1 = 0, which
contradicts our hypothesis that W has at least two elements.

For any A⊆W , let us denote

A� = {a� ∈W : a∈A}. (10)

Lemma 6. [8] For any LCP algebra (W,∧,∨,� ,⊗, 0, 1, 1′) and for all subsets
A,B⊆W ,

(i) A⊆B iff A� ⊆B�

(ii) A�� = A.

Some other properties of LCP algebras can be found in [8].

Definition 8. An LCP frame is a relational system (X,�1,�2, C,R, S,Q, I)
such that (X,�1,�2) is a doubly ordered set, C is a mapping C : X → X, R, S,
and Q are ternary relations on X and I ⊆X is an unary relation on X satisfying
the following conditions for all x, y ∈X:
Monotonicity conditions:

(MCP.1) x�1 y implies C(x)�1 C(y)
(MCP.2) x�2 y implies C(x)�2 C(y)
(MCP.3) R(x, y, z) & x′ �1 x & y′ �1 y & z�1 z

′ =⇒ R(x′, y′, z′)
(MCP.4) S(x, y, z) & x�2 x

′ & y′ �1 y & z′ �2 z =⇒ S(x′, y′, z′)
(MCP.5) Q(x, y, z) & x′ �1 x & y�2 y

′ & z′ �2 z =⇒ Q(x′, y′, z′)
(MCP.6) I(x) & x�1 x

′ =⇒ I(x′)
Stability conditions:

(SCP.1) C(C(x))= x
(SCP.2) R(x, y, z) =⇒ ∃x′′ ∈X (x�1 x

′′ & S(x′′, y, z))
(SCP.3) R(x, y, z) =⇒ ∃y′′ ∈X (y�1 y

′′ & Q(x, y′′, z))
(SCP.4) S(x, y, z) =⇒ ∃z′′ ∈X (z�2 z

′′ & R(x, y, z′′))
(SCP.5) Q(x, y, z) =⇒ ∃z′′ ∈X (z�2 z

′′ & R(x, y, z′′))
(SCP.6) ∃u∈X(R(x, y, u)&Q(x′, u, z))=⇒∃w∈X(R(x′, x, w)&S(w, y, z))
(SCP.7) ∃u∈X(R(x, y, u)&S(u, z, z′))=⇒∃w∈X(R(y, z, w)&Q(x,w, z′))
(SCP.8) I(x) & (R(x, y, z) or R(y, x, z)) =⇒ y�1 z
(SCP.9) ∃u∈X(I(u) & S(u, x, x))
(SCP.10) ∃u∈X(I(u) & Q(x, u, x))
(SCP.11) Q(x, y, z) ⇐⇒ S(C(y), C(x), C(z)). !"

In [1] there was no general concept of LCP frames. The results of [1] concern
canonical frames and complex algebras of the canonical frames. In our approach
canonical frames are examples of a general frame.

For an LCP frame (X,�1,�2, C,R, S,Q, I) let us define the following map-
pings � : 2X → 2X and ⊗S , ⊗Q , � : 2X × 2X → 2X by: for all A,B⊆X ,

A� = {C(x) : x∈A} (11)
A⊗Q B = {z∈X : ∀x, y ∈X(Q(x, y, z) & x∈A =⇒ y∈ r(B)} (12)
A⊗S B = {z∈X : ∀x, y ∈X(S(x, y, z) & y ∈B =⇒ x∈ r(A)} (13)
A�B = l(A⊗Q B). (14)
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Moreover, put

1′ = l(r(I)). (15)

The family L(X) of all l–stable subsets of X is closed under the operations (11)
and (14).

Lemma 7. [8] Let (X,�1,�2, C,R, S,Q, I) be an LCP frame. Then for all
A,B⊆X,

(i) if A is l–stable, then so is A�

(ii) if A and B are l–stable, then so is A�B

(iii) 1′ is l–stable
(iv) if A and B are l–stable, then A⊗S B = A⊗Q B.

Definition 9. The complex algebra of an LCP frame (X,�1,�2, C,R, S,Q, I)
is a system (L(X),!,",�,�,0,1,1′) with the operations defined by (3)–(4), (11),
(14) and the constants defined by (5), (6) and (15). !"
Theorem 3. The complex algebra of an LCP frame is an LCP algebra.

Proof. In [8] it was shown that any complex algebra of an LCP frame satisfies
the axioms (CP.1)–(CP.7). Then it suffices to show that (CP.0) also holds, i.e.
0�A=A� 0= 0 for every A∈L(X).

First, note that l(L(X))=∅ and r(0)=L(X). Next, since for every A⊆X and
for every x, y, z ∈X it holds Q(x, y, z) & x∈∅ =⇒ y∈ r(A), whence 0⊗Q A=
L(X). Therefore, 0�A= l(0⊗Q A)= 0. Moreover, from the definition of ⊗Q it
is easily observed that A⊗Q 0=L(X). Consequently, A�0= l(A⊗Q 0)= 0.

Let (W,∧,∨,�,., 0, 1, 1′) be an LCP algebra. We will write FIP (X) (resp.
X(W )) to denote the family of all filter–ideal pairs (resp. maximal filter–ideal
pairs) of the lattice reduct of W . Note that since W is non–trivial, X(W ) is not
empty.

Let us define a mapping C
 : FIP (X) → FIP (X) by: for x∈FIP (X),

C
(x) = (x1
�, x2

�). (16)

Moreover, let us define the following three ternary relations on X(W ) by: for all
x, y, z ∈X(W ),

R
(x, y, z) ⇐⇒ (∀a, b∈W ) a∈x1 & b∈ y1 =⇒ a⊗ b∈ z1 (17)
S
(x, y, z) ⇐⇒ (∀a, b∈W ) a⊗ b∈ z2 & b∈ y1 =⇒ a∈x2 (18)
Q
(x, y, z) ⇐⇒ (∀a, b∈W ) a⊗ b∈ z2 & a∈x1 =⇒ b∈ y2 (19)

Also, let

I
 = {x∈X(W ) : 1′ ∈x1}. (20)

We extend the operation⊗ for subsets ofX in the following way: for allA,B⊆W ,

A⊗B = {a⊗ b : a∈A, b∈B}.
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Then it is straightforward to see that for all x, y, z ∈X(W ),

R
(x, y, z) ⇐⇒ x1 ⊗ y1 ⊆ z1 (21)
S
(x, y, z) ⇐⇒ −x2 ⊗ y1 ⊆ −z2 (22)
Q
(x, y, z) ⇐⇒ x1 ⊗−y2 ⊆ −z2. (23)

In [8] we showed that for x∈X(W ), C
(x)∈X(W ).

Definition 10. Let an LCP algebra (W,∧,∨,�,⊗, 0, 1, 1′) be given. The system
(X(W ),
1,
2, C


, R
, S
, Q
, I
) is called the canonical frame of W . !"

The following auxiliary lemma will be useful.

Lemma 8. [8] Let (W,∧,∨,⊗,� , 0, 1, 1′) be an LCP algebra and let Δ and ∇
be a filter and an ideal of W , respectively. Then the set

V = {a∈W : ({a} ⊗Δ) ∩∇ �= ∅}

is an ideal of W .

In the following theorem we show that canonical frames satisfy the postulates
assumed for the LCP frames. We only give a few exemplary proofs which were
not given in [8].

Theorem 4. The canonical frame of an LCP algebra is an LCP frame.

Proof. Let an LCP algebra (W,∧,∨,� ,⊗, 0, 1, 1′) be given and let (X(W ),
1,

2, C


, R
, S
, Q
, I
) be its canonical frame. Proceeding as in [1] one can prove
that (MCP.3)–(MCP.5) and (SCP.2)–(SCP.7) hold in the canonical frame.

We show now that (MCP.1) is satisfied. Let x, y ∈X(W ) be such that x
1y.
This means that (i) x1 ⊆ y1. Also, C
(x)= (x�

1 , x�
2 ). By Lemma 6, (i) is equiv-

alent with x�
1 ⊆ y�

1 , so C
(x)
1C

(y). In the analogous way we can show that

(MCP.2) holds.
Next we prove that (MCP.6) is satisfied. Let x, x′ ∈X(W ) and assume that

I
(x) and x
1x
′ hold. From (20) we immediately get 1′ ∈x1 ⊆ x′1, so I
(x′)

holds.

Furthermore, we show that (SCP.1) holds. For every x=(x1, x2)∈X(W ), we
have: C
(C
(x))=C
(x�

1 , x�
2 )= (x��

1 , x��
2 )= (x1, x2)=x by Lemma 6(ii).

Consider now the condition (SCP.8). Assume that for any x, y, z ∈X(W ),
I
(x) holds, i.e. (ii) 1′ ∈ x1, and R
(x, y, z) or R
(y, x, z). Let R
(x, y, z) holds.
Hence, by (ii), we get (∀b∈W ) b∈ y1 ⇒ 1′⊗b∈ z1. Since 1′⊗b= b, we get y1⊆ z1,
that is y
1z. If R
(y, x, z) holds, then again by (ii) we get (∀a∈W ) a∈ y1 ⇒
a⊗ 1′ ∈ z1, so since a⊗ 1′ = a, we obtain again y1⊆ z1, i.e. y
1z.

We show now that (SCP.9) holds. Let y ∈X(W ) and consider the set
V = {a∈W : ({a} ⊗ y1) ∩ y2 �= ∅}. By Lemma 8, V is an ideal of W . Let [1′) be
the filter generated by 1′. We show that [1′) ∩ V = ∅. Suppose that there exists
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a∈W such that (iii) a∈ [1′) and (iv) a∈V . From (iii) it follows that (v) 1′ � a.
Also, (iv) implies that there exists b∈W such that (vi) b∈ y1 and (vii) a⊗b∈ y2.
Since ⊗ is isotone in both arguments, (v) implies 1′ ⊗ b�a ⊗ b. But 1′ ⊗ b= b,
so we have b� a⊗ b, which in view of (vii) and the fact that y2 is an ideal gives
b∈ y2 – a contradiction with (vi).

Then ([1′), V ) is a filter–ideal pair. Let u=(u1, u2) be its extension to the
maximal pair. Therefore, [1′)⊆ u1 and V ⊆u2. Since 1′ ∈ [1′), we get 1′ ∈u1,
so I
(u) holds. We show now that S
(u, y, y) holds. Let a, b∈W be such that
a⊗ b∈ y2 and b∈ y1. Then a∈V , so a∈u2. Whence S
(u, y, y) holds.

In the similar way one can check that (SCP.10) holds.
Finally we show that (SCP.11) holds. Using the axiom (CP.7) and the defi-

nition (10), we have for all x, y, z ∈X(W ),

S
(C
(y), C
(x), C
(z)) iff (∀a, b∈W ) a⊗ b∈ z�
2 & b∈x�

1 =⇒ a∈ y�
2

iff (∀a, b∈W ) (a⊗ b)� ∈ z2 & b� ∈ x1 =⇒ a� ∈ y2

iff (∀a, b∈W ) b� ⊗ a� ∈ z2 & b� ∈x1 =⇒ a� ∈ y2

iff (∀c, d∈W ) c⊗ d∈ z2 & c∈x1 =⇒ d∈ y2

iff Q
(x, y, z).

This completes the proof.

We conclude this section by stating the representability of LCP algebras.

Theorem 5. Every LCP algebra is isomorphic to a subalgebra of the complex
algebra of its canonical frame.

Proof. See [8].

In the axiomatization of relation algebras, apart from the axioms for Boolean
algebras, the only axiom which contains complementation is

a⊗−(a� ⊗−b)� b.

This axiom is equivalent to the De Morgan equivalences

(a⊗ b) ∧ c = 0 ⇐⇒ (a� ⊗ c) ∧ b = 0 ⇐⇒ (c⊗ b�) ∧ a = 0 (24)

and could be added to the LCP axioms. However, we showed in [8] that adding
(24) does not add anything new. An alternative is the modular inequality

(a⊗ b) ∧ c� a⊗ (b ∧ (a� ⊗ c)). (25)

(25) is true for relation algebras and is also an axiom for rough relation algebras
([5]), i.e., relation algebras based on regular double Stone algebras. One consequ-
ence of (25) is that for every a < 1′ we have a⊗ 1 < 1 (here a < b means a� b
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0

1

1'

t

s

a

b

Fig. 1. An LCP–algebra where (25) fails

Table 1. Composition Table

⊗ a b s t

a a 1 a t ∨ 1′ ∨ a

b 1 b 1 b

s a s ∨ 1′ ∨ b s s ∨ t ∨ 1′

t 1 b s ∨ t ∨ 1′ t

and a �= b). The following example from [9] shows that not every LCP–algebra
satisfies (25).

Example 1. Consider the algebra L of Fig.1. By (CP.2) and (CP.5) it is enough
to define how composition and converse act on the join irreducible elements.
These are 1′, a, b, s, t, and we set a�= b, s�= t. Composition for the non–identity
irreducible elements is given in Table 1. Now consider

(t⊗ a) ∧ b = b since t⊗ a = 1
�� t⊗ s from the composition table
= t⊗ [(s ∨ t ∨ 1′) ∧ a] from the lattice ordering
= t⊗ [(s⊗ b) ∧ a]
= t⊗ [(t� ⊗ b) ∧ a].

So we may want the following inequality as an additional axiom of LCP algebras:

(CP.8) (a⊗ b) ∧ c� a⊗ (b ∧ (a� ⊗ c)).

To obtain a representation theorem for LCP algebras with (CP.8) is still an
open problem.

The next example illustrates the constructions employed in the proof of the
representation theorem.

Example 2. Consider analgebra (W,∧,∨,�,⊗, 0, 1, 1′)withW = {a, b, c, , 0, 1},
∧ and ∨ as on Fig.2, a� = a for every a∈W , ⊗ in given in Table 2, and 1′ = c.
The maximal filter–ideal pairs of W are

x = ([a), (b]), y = ([b), (c]), z = ([c), (a]).
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Fig. 2. The pentagon

Table 2. The product ⊗

⊗ a b c 1
a 1 a a 1
b a b b 1
c a b c 1
1 1 1 1 1

Let us find R, Q, and S. We can simplify the calculations by observing that
A⊗B = B ⊗A for any A,B⊆W , since ⊗ is symmetric on W .
R(x, y, z) iff x1 ⊗ y1⊆ z1:

R(x, x, v) x1 ⊗ x1 = {1}, and {1} ⊆ v1 for all v ∈FIP (W ).
R(x, y, v) x1 ⊗ y1 = {a, 1}, and {a, 1} ⊆ v1 only for v= x.
R(x, z, v) x1 ⊗ z1 = {a, 1}, and {a, 1} ⊆ v1 only for v= x.
R(y, y, v) y1 ⊗ y1 = {b, 1}, and {b, 1} ⊆ v1 for v ∈{y, z}.
R(y, z, v) y1 ⊗ z1 = {b, 1}, and {b, 1} ⊆ v1 for v ∈{y, z}.
R(z, z, v) z1 ⊗ z1 = {c, 1}, and {c, 1} ⊆ v1 for v= z.

S(x, y, z) iff (−x2 ⊗ y1) ∩ z2 = ∅:

S(x, x, v) −x2 ⊗ x1 = {1}, and {1} ∩ v2 = ∅ for all v ∈FIP (W ).
S(x, y, v) −x2 ⊗ y1 = {a, 1}, and {a, 1} ∩ v2 = ∅ for v ∈{x, y}.
S(x, z, v) −x2 ⊗ z1 = {a, 1}, and {a, 1} ∩ v2 = ∅ for v ∈{x, y}.
S(y, x, v) −y2 ⊗ x1 = {a, 1}, and {a, 1} ∩ v2 = ∅ for v ∈{x, y}.

S(y, y, v) −y2 ⊗ y1 = {a, b, 1}, and {a, 1} ∩ v2 = ∅ for v ∈{y, z}.
S(y, z, v) −y2 ⊗ z1 = {a, b, 1}, and {a, 1} ∩ v2 = ∅ for v ∈{y, z}.
S(z, x, v) −z2 ⊗ x1 = {a, 1}, and {a, 1} ∩ v2 = ∅ for v ∈ {x, y}.
S(z, y, v) −z2 ⊗ y1 = {b, 1}, and {b, 1} ∩ v2 = ∅ for v ∈{y, z}.
S(z, z, v) −z2 ⊗ z1 = {b, c, 1}, and {b, c, 1} ∩ v2 = ∅ only for v= z.
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Q(x, y, z) iff (x1 ⊗−y2) ∩ z2 = ∅:
Q(x, x, v) x1 ⊗−x2 = {a, 1} and {a, 1} ∩ v2 = ∅ for v ∈{x, y}.
Q(x, y, v) x1 ⊗−y2 = {a, 1} and {a, 1} ∩ v2 = ∅ for v ∈{x, y}.
Q(x, z, v) x1 ⊗−z2 = {a, 1} and {a, 1} ∩m2 = ∅ for v ∈{x, y}.
Q(y, x, v) y1 ⊗−x2 = {a, 1} and {a, 1} ∩ v2 = ∅ for v ∈{x, y}.
Q(y, y, v) y1 ⊗−y2 = {a, b, 1} and {a, b, 1} ∩ v2 = ∅ for v ∈{y, z}.
Q(y, z, v) y1 ⊗−z2 = {b, 1} and {a, b, 1} ∩ v2 = ∅ for v ∈{y, z}.
Q(z, x, v) z1 ⊗−x2 = {a, 1} and {a, 1} ∩ v2 = ∅ for m∈{x, y}.
Q(z, y, v) z1 ⊗−y2 = {a, b, 1} and {a, b, 1} ∩ v2 = ∅ for v ∈{y, z}.
Q(z, z, v) z1 ⊗−z2 = {b, c, 1} and {b, c, 1} ∩ v2 = ∅ only for v= z.

The embedding h is given by
h(0) = ∅ h(a) = {x} h(c) = {z}.
h(1) = {x, y, z} h(b) = {y, z}

We conclude this section with the observation that the diamond lattice of
Figure 3 cannot be made into an LCP algebra. We omit the proof which is
straightforward, if somewhat tedious.

0

1

a cb

Fig. 3. The diamond lattice

5 LCPR Algebras and Frames

In this section we extend LCP algebras by adding the residuation operations.
In classical relation algebras residuations are definable with composition (;),
converse (�) and complement(−) as x/y = −(y�;−x) and y\x = −(−x; y�).

Definition 11. By an LCPR algebra we mean a system (W,∧,∨,�,⊗,→,←,
0, 1, 1′) such that (W,∧,∨,�,⊗, 0, 1, 1′) is an LCP algebra and → and ← are
binary operations in W satisfying the following conditions for all a, b, c∈W ,

(CPR.1) a⊗ b� c iff b� a→ c
(CPR.2) a⊗ b� c iff a� c← b.

The operations ← and → are called the left and the right residuum of ⊗, respec-
tively. !"
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Note that an LCPR algebra is an extension of a residuated lattice by the converse
� operation.

The following lemma provides some basic properties of LCPR algebras.

Lemma 9. Let (W,∧,∨,�,⊗,→,←, 0, 1, 1′) be an LCPR algebra. Then for any
a, b, c∈W and for every indexed family (bi)i∈I of elements of W ,

(i) if a� b, then
c⊗ a� c⊗ b and a⊗ c� b⊗ c

b→ c� a→ c and c→ a� c→ b

a← c� b← c and c← b� c← a

(ii) a� b iff a� � b�

(iii) (a ∧ b)� = a� ∧ b�

(iv) a⊗ (a→ b)� b (iv’) (b← a)⊗ a� b

(v) (a→ b)⊗ (b→ c)� a→ c (v’) (a← b)⊗ (b← c)� ← c

(vi) b� a→ (a⊗ b) (vi’) a� (a⊗ b) ← b

(vii) (a→ b)� = b� ← a� (vii’) (a← b)� = b� → a�

(viii) if supi bi exists, then
a⊗ supi bi = supi(a⊗ bi)
supi bi ⊗ a = supi(bi ⊗ a)

(ix) if infi bi exists, then (ix’) if infi bi exists, then
a→ infi bi = infi(a→ bi) infi bi ← a = infi(bi ← a)

(x) if supi bi exists, then (x’) if supi bi exists, then
supi bi → a = infi(bi → a) a← supi bi = infi(a← bi).

Proof. By way of example we prove (vii)

Let c∈W such that c� (a→ b)�. Then we have:
c� (a→ b)� iff c� � (a→ b) by (ii), (CP.1)

iff a⊗ c� � b by (CPR.1)
iff (a⊗ c�)� � b� by (ii)
iff c⊗ a� � b� by (CP.1), (CP.7)
iff c� b� ← a� by (CPR.2).

For the recent development of residuated lattices we refer, for example, to [2],
[11], [12], and [16].

LCPR frames are the same as LCP frames defined in Section 3 (Definition 8).
Let an LCPR frame (X,�1,�2, C,R, S,Q, I) be given. We define the following

two mappings −� , − : 2X × 2X → 2X as follows: for all A,B⊆X ,

A−�B = {x∈X : (∀y, z ∈X)(R(y, x, z) & y ∈A =⇒ z ∈B)} (26)
B −A = {x∈X : (∀y, z ∈X)(R(x, y, z) & y ∈A =⇒ z ∈B)}. (27)
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Lemma 10. For any A,B ⊆ X,

(i) A−�B and A−B are �1–increasing
(ii) if A and B are l–stable, then so are A−�B and A−B.

Proof.

(i) Assume that for some A,B⊆X , A−�B is not �1–increasing. Then there
are x, y ∈X such that (i.1) x∈A−�B (i.2) x �1 y, and (i.3) y �∈A−�B.
From (i.3), by the definition (26), there exist u,w∈X such that (i.4) R(u, y, w)
(i.5) u∈A and (i.6) w �∈B. Next, by (i.2), (i.4) and the monotonicity condition
(MCP.3), we get R(u, x, w), which together with (i.5) and (i.6) gives x �∈A−�B
– a contradiction with (i.1).

Proceeding in the similar way one can show that A−B is �1–increasing.
(ii) Let A,B⊆X . We show first that A−B is l–stable.
By (i), A−B is �1–increasing, so from Lemma 4(ii), A−B⊆ l(r(A−B)).
Then it suffices to show that l(r(A−B))⊆A−B.
Let x∈X be such that (ii.1) x �∈A−B. We will show (ii.2) x �∈ l(r(A−B)).
From (ii.1), by the definition (27) it follows that there exist y, z∈X such that
(ii.3) R(x, y, z) (ii.4) y∈B (ii.5) z �∈A. Since B is l–stable, (ii.5) means that
z �∈ l(r(A)), so there exists z′ ∈X such that (ii.6) z�1 z

′ and (ii.7) z′ ∈ r(A).
From (ii.3), (ii.6) and the monotonicity condition (MCP.3), R(x, y, z′), which
by the stability condition (SCP.1) implies that there is x′ ∈X such that (ii.8)
x�1 x

′ and (ii.9) S(x′, y, z′). We show now that (ii.10) x′ ∈ r(A−B). This, by
(ii.8), gives (ii.2).

Consider an arbitrary x′′ ∈X satisfying (ii.11) x′ �2 x
′′. By (MCP.4), (ii.9)

and (ii.11) lead to S(x′′, y, z′), which by (SCP.3) gives that there exists z′′ ∈X
such that (ii.12) z′ �2 z

′′ and (ii.13) R(x′′, y, z′′). From Lemma 1(ii), r(B) is
�2–increasing, so by (ii.7) and (ii.12) we get z′′ ∈ r(A), whence (ii.14) z′′ �∈A.
In view of the definition (27), (ii.4), (ii.13) and (ii.14) imply (ii.15) x′′ �∈A−B.
Therefore, we have shown that for any x′′ ∈X satisfying (ii.11), the condition
(ii.15) holds, hence (ii.10) was proved.

Using the relation Q in place of S, in the analogous way we can show that
A−�B is l–stable. !"

Definition 12. The complex algebra of an LCPR frame (X,�1,�2, C,R, S,
Q, I) is a structure (L(X),!,",�,�, −� , − ,0,1,1′) with the operations de-
fined by (3), (4), (11), (14), (26), (27) and the constants (5), (6), and (15). !"

We show that the complex algebra of an LCPR frame is an LCPR algebra. It is
sufficient to show the following lemma.

Lemma 11. For any LCPR frame (X,�1,�2, C,R, S,Q, I) and for all l–stable
subsets A,B,C ⊆X,

(i) A�B ⊆ C iff B ⊆ A−�C

(ii) A�B ⊆ C iff A ⊆ C −B.
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Proof.

(i) (⇐) Assume that (i.1) A�B⊆C and (i.2) B �⊆A−�C. From (i.2), there
exists x∈X such that (i.3) x∈B and (i.4) x �∈A−�C. By the definition (26),
(i.4) means that for some y, z ∈X it holds (i.5) R(y, x, z), (i.6) y ∈A and (i.7)
z �∈C. Next, from (i.1) and (i.7) we get (i.8) x �∈A�B. By the definition (14),
A�B= l(A⊗Q B), but from Lemma 7(iv), A⊗Q B = A⊗S B. Then we get (i.8)
implies that there exist z′ ∈X such that (i.9) z�1 z

′ and (i.10) z′ ∈A⊗S B. Fur-
thermore, from (i.5) and (i.9), by (M.3) we get R(y, x, z′), which by (S.1) implies
that there is y′ ∈X such that (i.11) y�1 y

′ and (i.12) S(y′, x, z′). Also, (i.3),
(i.10) and (i.12) imply y′ ∈ r(A), which together with (i.11) gives y �∈ l(r(A)).
Since A is l–stable, this means y �∈A – a contradiction with (i.6).

(⇒) Assume that (i.13) A�B �⊆C. We will show that (i.14) B �⊆A−�C.
From (i.13), there is x∈X such that (i.15) x∈A�B and (i.16) x �∈C.

Since C is l–stable, (i.16) gives x �∈ l(r(C)), so there exists x′ ∈X such that
(i.17) x�1 x

′ and (i.18) x′ ∈ r(C). Next, from (i.15), (i.17), and Lemma 7(iv),
x′ �∈A⊗S B, which means that there are y, z ∈X such that (i.19) S(y, z, x′),
(i.20) z ∈B and (i.21) y �∈ r(A). From (i.21), there is y′ ∈X such that (i.22)
y�2 y

′ and (i.23) y′ ∈A. By (M.4), (i.19) and (i.22) imply S(y′, z, x′). Hence,
applying (S.3) we get that for some x′′ ∈X such that (i.24) x′ �2 x

′′ it holds
(i.25) R(y′, z, x′′). Furthermore, by (i.18) and (i.24) it follows that x′′ �∈C, which
together with (i.23) and (i.25) gives z′ �∈A−�C. Whence, in view of (i.20) we
finally obtain (i.14).
In the analogous way (ii) can be proved. !"
Therefore, we have

Theorem 6. The complex algebra of an LCPR frame is an LCPR algebra. !"
Since LCPR frames are just LCP frames, the above theorem implies the following

Corollary 2. Any LCP algebra can be isomorphically embedded into an LCPR
algebra. !"
Let (W,∧,∨,⊗,→,←, 0, 1) be an LCPR algebra. For any two subsets A,B⊆W ,
let us define:

A← B = {a← b : a∈A & b∈B}
A→ B = {a→ b : a∈A & b∈B}.

Lemma 12. Let (W,∧,∨,⊗,→,←, 0, 1) be an LCPR algebra and let Δ and Δ′

be filters of W and let ∇ be an ideal of W . Define the following subsets of W :

U = {a∈W : Δ ∩ (∇ ← {a} �= ∅}
U ′ = {a∈W : Δ ∩ ({a} → ∇) �= ∅}
V = {a∈W : Δ ∩ ({a} ← Δ′) �= ∅}
V ′ = {a∈W : Δ ∩ (Δ′ → {a}) �=∅}.

Then U and U ′ are ideals of W and V and V ′ are filters of W .
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Proof. By way of example we show that U is an ideal of W . Let a, b∈W be
such that (i) a∈U and (ii) b�a. By the definition of U , (i) implies that there
exists c∈∇ such that (iii) c ← a∈Δ. By Lemma 9(i) we get from (ii) that
c ← a� c ← b. Hence, by (iii), we get (iv) c ← b∈Δ, since Δ is a filter.
Therefore, for some c∈∇ (iv) holds, which implies b∈U .

Assume that (v) a, b∈U . It suffices to show that a ∨ b∈U . From (v), there
are c, d∈∇ such that (vi) c ← a∈Δ and (vii) d ← b∈Δ. Since c� c ∨ d and
d� c ∨ d, by Lemma 9(i) we get c ← a� (c ∨ d) ← a and d ← b� (c ∨ d) ← b.
Hence, by (vi) and (vii) it follows that (c ∨ d) ← a∈Δ and (c ∨ d) ← b∈Δ, so
((c ∨ d) ← a) ∧ ((c ∨ d) ← b)∈Δ. By Lemma 9(x’), ((c ∨ d) ← a) ∧ ((c ∨ d) ←
b) = (c ∨ d) ← (a ∨ b). Then (c ∨ d) ← (a ∨ b)∈Δ. Since c, d∈∇, c ∨ d∈∇. So
we get that for some e= c ∨ d∈∇, e← (a ∨ b)∈Δ, which gives a ∨ b∈U .

The canonical frame of an LCPR algebra is the same as the canonical frame of an
LCP algebra (Definition 10), i.e., it is a system (X(W ),
1,
2, C


, R
, S
, Q
, I
).
Given the canonical frame of an LCPR algebra, define the following auxiliary
ternary relations on X(W ): for all x, y, z ∈X(W ),

R

←(x, y, z) iff (∀a, b∈W ) b← a∈x1 & a∈ y1 =⇒ b∈ z1 (28)

R

→(x, y, z) iff (∀a, b∈W ) a∈x1 & a→ b∈ y1 =⇒ b∈ z1. (29)

Note that

Lemma 13. R
 = R

← = R


→

Proof. We show that R
 =R
←. The proof of R
 =R
→ is analogous.
(⊆) Assume on the contrary that for some x, y, z ∈X(W ), (i) R
(x, y, z) and
there exist a, b∈W such that (ii) b ← a∈x1 (iiii) a∈ y1 (iv) b �∈ z1. From (i),
(ii) and (iii) it follows that (b← a)⊗ a∈ z1. By Lemma 9(iv’), (b← a)⊗ a� b.
Since z1 is a filter, this implies b∈ z1 – a contradiction with (iv).

(⊇) Similarly, assume that for some x, y, z ∈X(W ), (v) R
←(x, y, z) and there
exist a, b∈W such that (vi) a∈x1, (vii) b∈ y1 and (viii) a⊗ b �∈ z1. By Lemma
9(vi’), a� (a⊗ b) ← b, so from (vi), (a⊗ b) ← b∈x1, since x1 is a filter. By (v)
this gives a⊗ b∈ z1 – a contradiction with (viii).

Theorem 7 (Representation theorem for LCPR algebras). Any LCPR
algebra is isomorphic to a subalgebra of the complex algebra of its canonical
frame.

Proof. In view of Theorem 5 it suffices to show that

(i) h(a← b) = h(a) − h(b)
(ii) h(a→ b) = h(a)−� h(b).

(i) (⊆) Let x∈h(a ← b). By the definition (9) of the mapping h, this means
that (i.1) a← b∈x1. Assume that x �∈h(a) − h(b). Then there are y, z ∈X(W )
such that (i.2) R
(x, y, z), (i.3) y∈ h(b) and (i.4) z �∈h(a). From (i.3) we get
(i.5) b∈ y1. By Lemma 13, R
 =R
←, so from (i.1), (i.2), (i.5) and the definition
of R


←, it follows a∈ z1, i.e. z ∈ h(a), which contradicts (i.4).



Lattice-Based Relation Algebras II 283

(⊇) Assume that (i.6) x �∈ h(b← a). We will show that x �∈h(b) − h(a).
From (i.6) we have (i.7) b← a �∈x1. Define

U = {c∈W : x1 ∩ ((b] ← {c}) �= ∅},

where (b] stands for the ideal generated by b. By Lemma 12, U is an ideal.
Suppose that a∈U . Then there exists b′ ∈W such that (i.8) b′ � b and (i.9)
b′ ← a∈x1. By Lemma 9(iii’) and (i.8) we get (i.10) b′ ← a� b← a. Since x1 is
a filter, (i.9) and (i.10) imply b← a∈x1, which contradicts (i.7). Hence a �∈U .
Let [a) be the filter generated by a. Then [a)∩U = ∅, so ([b), U) is a filter–ideal
pair. Let (y1, y2) be its extension to the maximal filter–ideal pair. Then [a)⊆ y1
and U ⊆ y2. Since a∈ y1, we have (i.11) y∈ h(a).
Now, consider a set:

V = {c∈W : x1 ∩ ({c} ← y1) �= ∅}.

By Lemma 12, V is a filter of W . Suppose that b∈V . Then there is c′ ∈W such
that (i.12) c′ ∈ y1 and (i.13) b ← c′ ∈x1. By the definition of U , (i.13) implies
c′ ∈U ⊆ y2 – a contradiction with (i.12). Hence b �∈V . Then (V, (b]) is a filter–
ideal pair. Let (z1, z2) be its extension to the maximal filter–ideal pair. Then
(i.14) V ⊆ z1 and (b]⊆ z2. Since b∈ z2, we get b �∈ z1, so (i.15) z �∈h(b).

Finally, consider c, d∈W such that c ← d∈x1 and d∈ y1. Then c∈V , so
c∈ z1 by (i.14). By the definition (28), R


←(x, y, z) holds, and so (i.16) R
(x, y, z)
by Lemma 13. Therefore, we have shown that for some y, z∈X(W ), (i.11), (i.15)
and (i.16) hold, which means by (27) that x �∈h(b) − h(a).

The proof of (ii) is similar

6 LCPRS Algebras and Frames

In the classical relation algebras relative sum is definable with composition and
complement, namely we have x ⊕ y = −(−x;−y). In the lattice-based relation
algebras sum must be added as a new independent operator. This is the purpose
of the present section.

Definition 13. An LCPRS algebra is a system (W,∧,∨,�,�,⊗,⊕,→,←
,⇒,⇐, 0, 1, 0′, 1′) such that (W,∧,∨,�,⊗,→,←, 0, 1, 1′) is an LCPR algebra,
� is an unary operations in W (dual converse), ⊕ is a binary operations in W
(sum), and ⇒, ⇐ are binary operations in W (dual right and dual left residua
of ⊕) satisfying for all a, b, c∈W ,

(CPRS.0) 1⊕ a= a⊕ 1 = 1
(CPRS.1) a�� = a
(CPRS.2) (a ∧ b)� = a� ∧ b�

(CPRS.3) a⊕ 0′ = 0′ ⊕ a = a
(CPRS.4) a⊕ (b ⊕ c) = (a⊕ b)⊕ c
(CPRS.5) a⊕ (b ∧ c) = (a⊕ b) ∧ (a⊕ c)
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(CPRS.6) (a ∧ b)⊕ c = (a⊕ c) ∧ (b ⊕ c)
(CPRS.7) (a⊕ b)� = b� ⊕ a�

(CPRS.8) a⊕ b� c iff b� a⇒ c
(CPRS.9) a⊕ b� c iff a� c⇐ b

(CPRS.10) 0′ ∧ 1′ = 0
(CPRS.11) 0′ ∨ 1′ = 1. !"

Let L = (W,∧,∨, 0, 1) be a bounded lattice. By the opposite lattice we mean a
lattice Lop = (W,∨,∧, 1, 0), where the meet (resp. the join) of Lop is the join
(resp. the meet) of L and the greatest (resp. the least) element of Lop is the
least (resp. the greatest) element of L. Observe that the algebra obtained from
LCPRS algebra by deleting axioms (CPRS.10) and (CPRS.11) can be viewed
as a join of an LCPR algebra based on the lattice L and an LCPR algebra based
on Lop. In other words, we have:

Proposition 2. Let (W,∧,∨,�,�,⊗,⊕,→,←,⇒,⇐, 0, 1, 0′, 1′) be an LCPRS
algebra. Then (W,∨,∧,�,⊕,⇒,⇐, 1, 0, 0′) is an LCPR algebra.

Proof. Straightforward from Definitions 11 and 13.

Remark 1. If follows that properties of operations �, ⊕, ⇒, and ⇐ can be
easily obtained from the analogous properties of the operations �, ⊗, →, ←,
respectively. !"

Remark 2. Note that axioms (CPRS.10) and (CPRS.11) provide a connection
between the LCPR part of an LCPRS algebra L and the LCPR part of L based
on its opposite part. !"

Definition 14. An LCPRS frame is a system (X,�1,�2, C, Γ ,R, S,Q,Θ, Υ ,
Ω, I, J) such that (X,�1,�2, C,R, S,Q, I) is an LCPR frame, Γ is a mapping
Γ : X → X, Θ, Υ , Ω are ternary relations on X and J ⊆X is a unary relation
on X such that the following conditions are satisfied for all x, x′, y, y′, z, z′ ∈X,

Monotonicity conditions:

(MCPRS.1) x�1 x
′ =⇒ Γ (x)�1 Γ (x′)

(MCPRS.2) x�2 x
′ =⇒ Γ (x)�2 Γ (x′)

(MCPRS.3) Θ(x, y, z) & x′ �2 x & y′ �2 y & z�2 z
′ =⇒ Θ(x′, y′, z′)

(MCPRS.4) Υ (x, y, z) & x�1 x
′ & y′ �2 y & z′ �1 z =⇒ Υ (x′, y′, z′)

(MCPRS.5) Ω(x, y, z) & x′ �2 x & y�1 y
′ & z′ �1 z =⇒ Ω(x′, y′, z′)

(MCPRS.6) J(x) & x�2 x
′ =⇒ J(x′)

Stability conditions:

(SCPRS.1) Γ (Γ (x)) = x
(SCPRS.2) Θ(x, y, z) =⇒ ∃x′′ ∈X (x�2 x

′′ & Υ (x′′, y, z))
(SCPRS.3) Θ(x, y, z) =⇒ ∃y′′ ∈X (y�2 y

′′ & Ω(x, y′′, z))
(SCPRS.4) Υ (x, y, z) =⇒ ∃z′′ ∈X (z�1 z

′′ & Θ(x, y, z′′))
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(SCPRS.5) Ω(x, y, z) =⇒ ∃z′′ ∈X (z�1 z
′′ & Θ(x, y, z′′))

(SCPRS.6) ∃u∈X(Θ(x, y, u)&Υ (u, z, y))=⇒∃w∈X(Θ(y, z′, w)&Ω(x,w, y))
(SCPRS.7) ∃u∈X(Θ(x, y, u) & Ω(z, u, z′)) =⇒

∃w∈X(Θ(z, x, w) & Υ (w, y, z′))
(SCPRS.8) J(x) & (Θ(x, y, z) or Θ(y, x, z)) =⇒ y�2 z
(SCPRS.9) ∃u∈X(J(u) & Υ (u, x, x))
(SCPRS.10) ∃u∈X(J(u) & Ω(x, u, x))
(SCPRS.11) Ω(x, y, z) = Υ (Γ (y), Γ (x), Γ (z))
(SCPRS.12) lr(I) ∩ l(J) = ∅
(SCPRS.13) r(I) ∩ rl(J) = ∅. !"

Let (X,�1,�2) be a doubly ordered set. By the opposite doubly ordered set we
mean a structure (X,�op

1 ,�op
2 ), where �op

1 =�2 and �op
2 =�1. Observe that the

frame obtained from the LCPRS frame by deleting axioms (SCPRS.12) and
(SCPRS.13) can be viewed as a join of the LCPR frame based on a doubly
ordered set (X,�1,�2) with the LCPR frame based on the opposite doubly
ordered set (X,�op

1 ,�op
2 ). Therefore, we have:

Proposition 3. Let (X,�1,�2, C, Γ ,R, S,Q,Θ, Υ ,Ω, I, J) be an LCPRS
frame. Then (X,�2,�1, Γ ,Θ, Υ ,Ω, J) is an LCPR frame.

Proof. Straightforward from the definition of LCPR frame and Definition 14.

Remark 3. From the above proposition it follows easily that the properties of the
relations Γ , Θ, Υ , Ω, and J can be obtained from the properties of the relations
C, R, S, Q, and I, respectively, by interchanging the roles of the orderings �1
and �2. !"
Remark 4. Note that axioms (SCPRS.12) and (SCPRS.13) provide a connec-
tion between the LCPR part of an LCPRS frame and its opposite part. !"
Given an LCPRS frame (X, � 1, � 2, C, Γ ,R, S,Q,Θ, Υ ,Ω, I, J), let us define
the following mappings � : 2X → 2X and ⊕Ω , ⊕Υ , � ,=�,= : 2X ×2X → 2X

by: for all A,B⊆X ,

A� = {Γ (x)∈X : x∈A} (30)
A⊕Ω B = {z ∈X : ∀x, y ∈X (Ω(x, y, z) & x∈ r(A) =⇒ y ∈B} (31)
A⊕Υ B = {z ∈Z : ∀x, y ∈X (Υ (x, y, z) & y ∈ r(B) =⇒ x∈A} (32)
A � B = A⊕Ω B. (33)
A=�B = {x∈X : (∀y, z ∈X)(Θ(y, x, z) & y∈A =⇒ z ∈B)} (34)
B =A = {x∈X : (∀y, z ∈X)(Θ(x, y, z) & y∈A =⇒ z ∈B)}. (35)

Moreover, put

0′ = l(J). (36)
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Definition 15. Let (X,�1,�2, C, Γ,R, S,Q,Θ, Υ ,Ω, I, J) be an LCPRS frame.
The complex algebra of X is a structure (L(X),!,",�,�,�, � , −� , − ,
=�,=,0,1,0′,1′) such that L(X) is the family of all l–stable subsets of X, the
operations !, ", �, �, �, � , −� , − , =�, = are respectively defined by (4),
(3), (11), (30), (14), (33), (26), (27), (34), (35), and the constants 0, 1, 0′,
and 1′ are given by (5), (6), (15) and (36), respectively. !"
We will show now that complex algebras of LCPRS frames are LCPRS algebras.

Theorem 8. The complex algebra of an LCPRS frame is an LCPRS algebra.

Proof. Since J is �2–increasing by (MCPRS.6), L(J) is l–stable. From Theorem
6, Proposition 3, and Remark 3 it follows that we only need to show that the
connecting axioms (CPRS.10) and (CPRS.11) hold, i.e.,

(i) 0′ ! 1′ = 0
(ii) 0′ " 1′ =1.

(i) 0′ ! 1′ = lr(I) ∩ l(J) = ∅ by (SCPRS.12).
(ii) By the definitions (15), (36), and (4), 0′ " 1′ = l(rlr(I) ∩ rl(J)). Also, by
Lemma 4(ii), I ⊆ lr(I), so rlr(I)⊆ r(I). Next, rlr(I) ∩ rl(J) ⊆ r(I) ∩ rl(J) = ∅
by (SCPRS.13). Hence we have: rlr(I)∩ rl(J) = ∅, so l(rlr(I)∩ rl(J)) = l(∅) =
X(W )

Let (W,∧,∨,�,�,⊗,⊕,→,←,⇒,⇐, 0, 1, 0′, 1′) be an LCPRS algebra. As be-
fore, by FIP (X) and (resp. X(W )) we denote the family of all filter–ideals pairs
(resp. maximal filter–ideal pairs) of W .

Lemma 14. Let (W,∧,∨,�,�,⊗,⊕,→,←,⇒,⇐, 0, 1, 0′, 1′) be an LCPRS al-
gebra. Then for every a∈W , l({x∈X(W ) : a∈x2}) = {x∈X(W ) : a∈x1}.
Proof. (⊆) Let a �∈x1. It follows that x1 ∩ (a] = ∅, so (x1, (a]) is a filter–ideal
pair. Let y be its extension to the maximal filter–ideal pair. Hence x1⊆ y1 and
a∈ y2. It follows that x �∈ l({x∈X(W ) : a∈x2}).
(⊇) Let a∈x1. Take y ∈X(W ) such that x1 ⊆ y1. Then a∈ y1, whence a �∈ y2.

Define a mapping Γ 
 : FIP (W ) → FIP (W ) by: for every x∈FIP (W ),

Γ 
(x) = (x1
�, x2

�). (37)

Furthermore, let us define the following ternary relations on X(W ): for all
x, y, z ∈X(W ),

Θ
(x, y, z) ⇐⇒ (∀a, b∈W ) a∈x2 & b∈ y2 =⇒ a⊕ b∈ z2 (38)
Ω
(x, y, z) ⇐⇒ (∀a, b∈W ) a∈x2 & a⊕ b∈ z1 =⇒ b∈ y1 (39)
Υ 
(x, y, z) ⇐⇒ (∀a, b∈W ) b∈ y2 & a⊕ b∈ z1 =⇒ a∈x1. (40)

Also, put

J
 = {x∈X(W ) : 0′ ∈x2} (41)
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Definition 16. Let (W,∧,∨,�,�,⊗,⊕,→,←,⇒,⇐, 0, 1, 0′, 1′) be an LCPRS
algebra. The canonical frame of W is a structure (X(W ), 
 1, 
 2, C


, Γ 
, R
,
Q
, S
, Θ
, Ω
, Υ 
, I
, J
) such that (X(W ), 
 1, 
 2, C


, R
, Q
, S
, I
) is the
canonical frame of the LCPR part (W,∧,∨,�,⊗,→,←, 0, 1, 1′) of W and Γ 
,
Θ
, Ω
, Υ 
, and J
 are defined by (37)–(41). !"
Theorem 9. The canonical frame of an LCPRS algebra is an LCPRS frame.

Proof. We have to show that the conditions (SCPRS.12) and (SCPRS.13) hold
in the canonical frame of an LCPRS algebra. The remaining conditions follow
from Theorem 6, Proposition 3, and Remark 1.
We show that lr(I
) ∩ l(J
) = ∅. Note that

lr(I
) ∩ l(J
)
= lr({x∈X(W ) : 1′ ∈x1}) ∩ l({x∈X(W ) : 0′ ∈ x2})
= l({x∈X(W ) : 1′ ∈ x2}) ∩ l({x∈X(W ) : 0′ ∈x2}) by Theorem 1(i)
= {x∈X(W ) : 1′ ∈x1} ∩ {x∈X(W ) : 0′ ∈x1} by Lemma 14
= {x∈X(W ) : 1′ ∈x1 & 0′ ∈x1}
⊆ {x∈X(W ) : 1′ ∧ 0′ ∈x1}

However, by (CPRS.10), 1′ ∧ 0′ = 0. Since x1 is a proper filter, 0 �∈x1, so we
have {x∈X(W ) : 1′ ∧ 0′ ∈x1}= ∅, and consequently lr(I
) ∩ l(J
) = ∅.
Now we prove that r(I) ∩ rl(J)= ∅. Observe:

r(I) ∩ rl(J)
= r({x∈X(W ) : 1′ ∈x1}) ∩ rl({x∈X(W ) : 0′ ∈x2})
= r({x∈X(W ) : 1′ ∈x1}) ∩ r({x∈X(W ) : 0′ ∈x1}) by Lemma 14
= {x∈X(W ) : 1′ ∈x2} ∩ {x∈X(W ) : 0′ ∈ x2} Theorem 1(i)
= {x∈X(W ) : 1′ ∈x2 & 0′ ∈x2}
⊆ {x∈X(W ) : 1′ ∨ 0′ ∈x2}.

Since 1′∨0′ = 1 �∈x2, it follows that {x∈X(W ) : 1′∨0′ ∈x2} = ∅. In conclusion,
r(I) ∩ rl(J)= ∅.
We conclude this section by the following representation theorem.

Theorem 10 (Representation theorem for LCPRS algebras)
Any LCPRS algebra is isomorphic to a subalgebra of the complex algebra of its
canonical frame.

Proof Taking into account Propositions 2, 3, and Remarks 1, 3 the proof is
analogous to the proof of Theorem 7.

7 Conclusion

In this paper we have studied not necessarily distributive lattices with operators
that are the abstract counterparts to the converse and composition of binary
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relations. On the algebraic side, we have presented relational representation the-
orems for these classes of algebras. These theorems are obtained by a suitable
extensions of Urquhart’s representation theorem for lattices [19]; here, we have
stressed the relational aspect of representability and have omitted the topologi-
cal aspect.

On the logical side, with every class of algebras studied in the paper we have
associated an appropriate class of frames. These frames constitute a basis of a
Kripke-style semantics for the logics whose algebraic semantics is determined
by the classes of algebras presented in the paper. The representation theorems
would enable us to prove completeness of the logics. For a detailed elaboration
of the respective relational logics one can follow the developments in [1] and [17].
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77–98.

8. Düntsch, I., Or�lowska, E., and Radzikowska, A. M. (2003). Lattice–based relation
algebras and their representability. In Theory and Applications of Relational Struc-
tures as Knowledge Instruments, de Swart, H. C. M. et al (eds), Lecture Notes in
Computer Science 2929, Springer–Verlag, 234–258.

9. Düntsch, I. and Winter, M. (2006). Rough relation algebras revisited. Fundamenta
Informaticae. To appear.

10. Gehrke, M. and Jónsson, B. (1994). Bounded distributive lattices with operators.
Mathematica Japonica 40, No 2, 207–215.

11. Hart, J. B., Rafter, L., and Tsinaksis, C. (2002). The structure of commutative
residuated lattices. Internat. J. Algebra Comput. 12(4), 509–524.

12. Jipsen, P. and Tsinaksis, C. (2003). A Survey of Residuated Lattices. In Martinez,
J. (ed.), Ordered algebraic structures, Kluwer Academic Publishers, Dordrecht,
19–56.

13. Jónsson, B. and Tarski, A. (1951). Boolean algebras with operators. Part I. Amer-
ican Journal of Mathematics 73, 891–936.

14. Or�lowska, E. (1995). Information algebras. Lecture Notes in Computer Science 639,
Proceedings of AMAST’95, Montreal, Canada, 50–65.



Lattice-Based Relation Algebras II 289

15. Or�lowska, E. and Radzikowska, A. M. (2001). Information relations and opeators
based on double residuated lattices. Procedings of the 6th International Workshop
on Relational Methods in Computer Science RelMiCS’01, Oisterwijk, Netherlands,
185–199.

16. Or�lowska, E. and Radzikowska, A. M. (2002). Double residuated lattices and their
applications. Relational Methods in Computer Science, de Swart, H. C. M. (ed),
Lecture Notes in Computer Science 2561, Springer–Verlag, Heidelberg, 171–189.

17. Or�lowska, E. and Vakarelov, D. (2005). Lattice-based modal algebras and modal
logics. In: Hajek, P., Valdés–Villanueva, L. M., and Westerstahl, D.(eds), Logic,
Methodology and Philosophy of Science. Proceedings of the 12th International
Congress. King’s College London Publications, 147–170.

18. Sofronie-Stokkermans, V. (2000). Duality and canonical extensions of bounded dis-
tributive lattices with operators, and applications to the semantics of non-classical
logics. Studia Logica 64, Part I, 93–122, Part II, 151–172.

19. Urquhart, A. (1978). A topological representation theorem for lattices. Algebra
Universalis 8, 45–58.



Some Aspects of Lattice and Generalized
Prelattice Effect Algebras
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Abstract. Common generalizations of orthomodular lattices and MV -
algebras are lattice effect algebras which may include noncompatible
pairs of elements as well as unsharp elements. Thus elements of these
structures may be carriers of states, or probability measures, when they
represent properties, questions or events with fuzziness, uncertainty or
unsharpness. Unbounded versions of these structures (more precisely
without top elements) are generalized effect algebras which can be ex-
tended onto effect algebras. We touch only a few aspects of these struc-
tures. Namely, necessary and sufficient conditions for generalized effect
algebras to obtain their effect algebraic extensions lattice ordered or
MV -effect algebras. We also give one possible construction of pastings of
MV -effect algebras together along an MV -effect algebra to obtain lattice
effect algebras. In conclusions we give some applications of presented re-
sults about sets of sharp elements, direct and subdirect decompositions
of lattice effect algebras and about smearings (resp. the existence) of
states an probabilities on them.

1 Introduction

Lattice effect algebras generalize orthomodular lattices (including Boolean al-
gebras) and MV-algebras [1]. Effect algebras, introduced in 1994 by Foulis and
Bennet [4], or equivalent in some sense, D-poset introduced in 1994 by Kôpka
and Chovanec [9] may be carriers of probability measures, where elements of
these structures represent properties, questions or events with fuzziness, uncer-
tainty or unsharpness. In spite of these facts there are (even finite lattice) effect
algebras admitting no states and no probabilities (see [8] and [17]).

In the classical (Kolmogorovian) probability theory the set of events is a
Boolean algebra (σ-algebra), assuming that every two events are simultaneously
measurable (compatible) and thus this theory cannot explain events occurring,
e.g., in quantum physics, as well as in many other areas. Orthomodular lattices
are generalizations of Boolean algebras. They may include noncompatible pairs
of elements.

Another generalization of Boolean algebras are MV-algebras, which were origi-
nally constructed to give an algebraic structure of the infinite-valued Lukasiewicz
propositional logics. Hence MV-algebras may include unsharp elements (i.e., el-
ements x and nonx need not be disjoint).

H. de Swart et al. (Eds.): TARSKI II, LNAI 4342, pp. 290–317, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Common generalizations of the above mentioned algebraic structures are lat-
tice effect algebras, which may include noncompatible pairs of elements as well
as unsharp elements.

On the other hand, a lattice effect algebra E is an orthomodular lattice iff
every element of E is sharp and E is an MV-algebra iff every pair of elements of
E is compatible. Thus a lattice effect algebra E is a Boolean algebra iff every pair
of its elements is compatible and every element of E is sharp. Moreover, every
maximal subset of pairwise compatible elements in a lattice effect algebra is an
MV-effect algebra being a sub-lattice and a sub-effect algebra of E ([14]), called a
block of E, and E is a set-theoretical union of its blocks, hence maximal sub-MV-
algebras. Further, the set S(E) of all unsharp elements of E is an orthomodular
lattice which is a sub-lattice and a sub-effect algebra of E ([6]). Finally, the set
of all sharp elements of E which are compatible with every other element of E
forms a Boolean algebra C(E) called a center of E. Hence C(E) = S(E) ∩ B(E)
where B(E) =

⋂{M ⊆ E | M block of E}. Evidently, C(E) is also a sub-
lattice and a sub-effect algebra of E. Thus the known facts on Boolean algebras,
orthomodular lattices and MV-algebras may help us for study of lattice effect
algebras.

Finally, note that lattice effect algebras are in fact bounded lattices. Their
unbounded versions are generalized effect algebras (i.e., without top elements),
which can be embedded into effect algebras as proper ideals with a special prop-
erty (namely: from every pair of elements x and nonx they contain exactly one).
In this case, for a prelattice generalized effect algebra P and the effect algebra
E extending P the set S(E)∩P is a generalized orthomodular lattice, C(E)∩P
is a generalized Boolean algebra and for every block M the M ∩ P is a general-
ized MV-effect algebra, under which they all are proper ideals (with the above
mentioned special property) in S(E), C(E), and M respectively (see [27]).

2 Basic Definitions and Important Examples

In 1994, Foulis and Bennett [4] have introduced a new algebraic structure, called
an effect algebra. Effects represent unsharp measurements or observations on a
quantum mechanical system. For modelling unsharp measurements in a Hilbert
space, the set of all effects is the set of all selfadjoint operators T on a Hilbert
space H with 0 ≤ T ≤ 1. In a general algebraic form an effect algebra is defined
as follows:

Definition 1. A partial algebra (E;⊕, 0, 1) is called an effect-algebra if 0, 1 are
two distinguished elements and ⊕ is a partially defined binary operation on E
which satisfies the following conditions for any a, b, c ∈ E:

(Ei) b⊕ a = a⊕ b if a⊕ b is defined,
(Eii) (a⊕ b)⊕ c = a⊕ (b⊕ c) if one side is defined,
(Eiii) for every a ∈ E there exists a unique b ∈ E such that a ⊕ b = 1 (set

a′ = b),
(Eiv) if 1⊕ a is defined then a = 0.
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Unbounded versions (mutually equivalent) of effect algebras were studied by
Foulis and Bennett (cones), Kalmbach and Riečanová (abelian RI-semigroups
and RI-posets), Hedĺıková and Pulmannová (cancellative positive partial abelian
semigroups). Their common definition is the following:

Definition 2. A partial algebra (E;⊕, 0) is called a generalized effect algebra
if 0 ∈ E is a distinguished element and ⊕ is a partially defined binary operation
on E which satisfies the following conditions for any a, b, c ∈ E:

(GEi) a⊕ b = b⊕ a, if one side is defined,
(GEii) (a⊕ b)⊕ c = a⊕ (b⊕ c), if one side is defined,
(GEiii) a⊕ 0 = a for all a ∈ E,
(GEiv) a⊕ b = a⊕ c implies b = c (cancellation law),
(GEv) a⊕ b = 0 implies a = b = 0.

The following proposition with a trivial verification indicates the relation be-
tween effect algebras and generalized effect algebras.

Proposition 1. If (E;⊕, 0) is a generalized effect algebra and there is 1 ∈ E
such that for all a ∈ E there is b ∈ E with a⊕ b = 1 then (E;⊕, 0, 1) is an effect
algebra. Conversely, if (E;⊕, 0, 1) is an effect algebra then the partial operation
⊕ satisfies axioms (GEi)–(GEv) of a generalized effect algebra.

In every effect algebra E (generalized effect algebra E) the partial binary oper-
ation 0 and relation ≤ can be defined by

(ED) a ≤ c and c0 a = b iff a⊕ b is defined and a⊕ b = c (set b = c0 a).

Then ≤ is a partial order on E under which 0 is the least element of E.
If E is an effect algebra and (E;≤) is a lattice (complete lattice) then E is

called a lattice effect algebra (complete effect algebra).

Definition 3. [11] Let (E;⊕, 0) be an effect algebra (generalized effect algebra).
If Q ⊆ E is such that 0 ∈ Q and for all a, b, c ∈ Q with a ⊕ b = c when at
least two of a, b, c are in Q then a, b, c ∈ Q, then Q is called a sub-effect algebra
( sub-generalized effect algebra) of E.

Note that every sub-effect algebra (sub-generalized effect algebra) Q of effect
algebra (generalized effect algebra) E is an effect algebra (generalized effect
algebra) in its own right.

Recall that a nonvoid subset I of a partially ordered set L is an order ideal if
a ∈ L, b ∈ I, and a ≤ b implies a ∈ I. If I �= L then I is called proper.

Definition 4. Let (P ;≤,⊕, 0) be a generalized effect algebra. Let P ∗ be a set
disjoint from P with the same cardinality. Consider a bijection a 1→ a∗ from P
onto P ∗. Let E = P ∪̇P ∗ be the disjoint union of P and P ∗. Define a partial
binary operation ⊕∗ on E by the following rules. For a, b ∈ P

(i) a⊕∗ b is defined if and only if a⊕ b is defined, and a⊕∗ b = a⊕ b
(ii) b∗⊕∗a and a⊕∗b∗ are defined iff b0a is defined and then b∗⊕∗a = (b0a)∗ =

a⊕∗ b∗.

Then E = P ∪̇P ∗ will be called an effect algebraic extension of P .
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Theorem 1. [3] For every generalized effect algebra P and E = P ∪̇P ∗ the
structure (E;⊕∗, 0, 0∗) is an effect algebra. Moreover P is an order ideal in
E closed under ⊕∗ and the partial order induced by ⊕∗ when restricted to P ,
coincides with the partial order induced by ⊕.

Since the definition of ⊕∗ on E = P ∪̇P ∗ coincides with ⊕- operation on P , it
will cause no confusion if from now on we will use the same notation ⊕ also for
its extension on E.

Definition 5. Let (P1;⊕1, 01), (P2,⊕2, 02) be generalized effect algebras. A map-
ping ψ : P1 → P2 is called a generalized effect algebra morphism iff whenever
a, b ∈ P1 with defined a⊕1 b then we have ψ(a⊕1 b) = ψ(a)⊕2 ψ(b). A bijective
generalized effect algebra morphism ψ such that ψ−1 : P2 → P1 is also a gener-
alized effect algebra morphism is called a generalized effect algebra isomorphism
of P1 and P2 (we write P1 ∼= P2 and P1 and P2 are said to be isomorphic). If
there is a sub-generalized effect algebra Q ⊆ P2 and a generalized effect algebra
isomorphism ϕ : P1 → Q then ϕ is called a generalized effect algebra embedding
of P1 into P2. Then we usually identify Q = ϕ(P1) with P1 and we say that P1
is up to isomorphism a sub-generalized effect algebra of P2.

Assume that (E1;⊕1, 01, 11) and (E2;⊕2, 02, 12) are effect algebras. An injection
ϕ : E1 → E2 is called an embedding if ϕ(11) = 12 and for a, b ∈ E1 we have
a ≤ b′ iff ϕ(a) ≤ (ϕ(b))′ in which case ϕ(a⊕1 b) = ϕ(a)⊕2ϕ(b). We can easily see
that then ϕ(E1) is a sub-effect algebra of E2 and we say that E1 and ϕ(E1) are
isomorphic, or that E1 is up to isomorphism a sub-effect algebra of E2. Clearly,
if E1 and E2 are lattice effect algebras then ϕ(E1) is a sublattice of E2. We
usually identify E1 with ϕ(E1).

Recall that a direct product
∏{Eκ | κ ∈ H} of effect algebrasEκ is a cartesian

product with ⊕, 0, 1 defined “coordinatewise”, i.e., (aκ)κ∈H ⊕ (bκ)κ∈H exists iff
aκ⊕κ bκ is defined for each κ ∈ H and then (aκ)κ∈H ⊕(bκ)κ∈H =

(
aκ⊕κ bκ

)
κ∈H

.
Moreover, 0 = (0κ)κ∈H , 1 = (1κ)κ∈H . An element z ∈ E is called central if the
intervals [0, z] and [0, z′] with the inherited ⊕-operation are effect algebras in
their own right and E ∼= [0, z] × [0, z′], see [11]. The set C(E) = {z ∈ E | z is
central} is called a center of E. If C(E) = {0, 1} then E is called irreducible.

Definition 6. A subdirect product of a family {Eκ | κ ∈ H} of lattice effect
algebras is a sublattice-effect algebra Q (i.e., Q is simultaneously a sub-effect
algebra and a sublattice) of the direct product

∏{Eκ | κ ∈ H} such that each
restriction of the natural projection prκi

to Q is onto Eκi . Moreover, Q is a
sub-direct product decomposition of a lattice effect algebra E if there exists an
isomorphism ϕ : E → Q (of E onto Q).

A horizontal sum of finite chains C1 = {0, a, 2a, . . . , 1 = naa} and C2 = {0, b, 2b,
. . . , 1 = nbb} is a lattice effect algebra E = C1 ∪ C2 with identified elements 0
and 1 and such that C1 ∩ C2 = {0, 1} and ka and �b for k �= na and � �= nb are
noncomparable, i.e., ka ∨ �b = 1 and ka ∧ �b = 0. In the same manner we define
a horizontal sum of any family of finite chains.
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Example 1. (Standard effect algebra of real numbers) Assume that E is the
interval [0, 1] of real numbers and define the partial binary operation ⊕ on [0, 1]
as follows:

for a, b ∈ [0, 1], a⊕ b is defined iff a + b ≤ 1 and then a⊕ b = a + b.
Then ([0, 1];⊕, 0, 1) is called a standard effect algebra of real numbers.

Example 2. (Generalized effect algebra of nonnegative integers)
Let P = {0, 1, 2, . . .} be a set of all nonnegative integers with usual + operation,
hence k⊕ l = k+ l for all k, l ∈ P . Then (P ;⊕, 0) is a generalized effect algebra.
Moreover, the effect algebraic extension E = P ∪̇P ∗ is an infinite chain with the
greatest element 0∗. It is a noncomplete lattice effect algebra since

∨
P does not

exist in E.
Let G = E ∪ {s} = P ∪̇P ∗∪̇{s} where {s} ∩P = {s} ∩P ∗ = ∅ and a ≤ s ≤ b∗

for all a ∈ P , b∗ ∈ P ∗. Then G is a chain being a complete lattice admitting no
⊕ operation satisfying the axioms of effect algebra.

Proposition 2. On every finite chain (P,≤) there exists a unique operation ⊕
such that a ≤ b iff there is c ∈ P with a⊕ c = b (⊕ is compatible with ≤), [26].

Proof. Let P = {0, x1, x2, . . . , xn} and 0 < x1 < x2 < . . . < xn = 1. Here x < y
means that x ≤ y and x �= y. Suppose that ⊕ is compatible with ≤ on P . Then
for the derived0 and a fixed k ∈ {1, 2, . . . n} we have xk00 = xk, xk0xk = 0 and
for i > k, xk0xi is not defined. Moreover, 0 = xk0xk < xk0xk−1 < xk0xk−2 <
. . . < xk 0x1 < xk 0 0 = xk. It follows that xk 0xk−1 = x1, xk 0xk−2 = x2,. . . ,
xk 0 x1 = xk−1, xk 0 0 = xk since the chain 0 < x1 < x2 < . . . xk−1 < xk

contains all elements between 0 and xk. We conclude that xk 0 xi = xk−i for
every i < k, which gives that xk = xi ⊕ xk−i. So the unique ⊕ is xi ⊕ xk = xi+k

if i+ k ≤ n, otherwise xi ⊕ xk is not defined.

Note that the above proof shows that every finite chain is an effect algebra of
the form

0 < a < a⊕ a < . . . < a⊕ a⊕ . . .⊕ a︸ ︷︷ ︸
n−times

= na = 1 (Fig. 1).

Fig. 1.

Example 3. (Distributive diamond, Fig. 2) Let P = {0, a, b, 1}. Put

1 = a⊕1 a = b⊕1 b, x⊕1 0 = 0⊕1 x = x for all x ∈ P ,
1 = a⊕2 b = b⊕2 a, x⊕2 0 = 0⊕2 x = x for all x ∈ P .
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Fig. 2.

E1 = (P ;⊕1, 0, 1) is called a distributive diamond. It is a horizontal sum of finite
chains {0, a, 1} and {0, b, 1}. E2 = (P ;⊕2, 0, 1) is a Boolean algebra.

Evidently, partial orders derived by (ED) on P from ⊕1 and ⊕2 coincide.
Now, for every positive integer k, set Gk =

∏∞
n=1 Fn where Fn = E1 for

n ≤ k and Fn = E2 for all n > k. Then Gk are mutually nonisomorphic,
complete (distributive) effect algebras. However, all Gk as posets with partial
orders derived by (ED) coincide (see [28]).

Example 4. (Orthomodular lattices including Boolean algebras)
Let (L;∨,∧,⊥, 0, 1) be an orthomodular lattice (Boolean algebra iff L is dis-
tributive). Define a ⊕ b = a ∨ b iff a ≤ b⊥. Then (L;⊕, 0, 1) is a lattice effect
algebra.

Definition 7. An MV-algebra is an algebra (M,⊕,∗ , 0, 1), where M is a non-
empty set, 0 and 1 are constant elements of M , ⊕ is a binary operation, and ∗

is a unary operation satisfying the following axioms:

(MVA1) (a⊕ b) = (b⊕ a),
(MVA2) (a⊕ b)⊕ c = a⊕ (b⊕ c),
(MVA3) a⊕ 0 = a,
(MVA4) a⊕ 1 = 1,
(MVA5) (a∗)∗ = a,
(MVA6) 0∗ = 1,
(MVA7) a⊕ a∗ = 1,
(MVA8) (a∗ ⊕ b)∗ ⊕ b = (a⊕ b∗)∗ ⊕ a.

The lattice operations ∨ and ∧ on M can be defined by the formulas

a ∨ b = (a∗ ⊕ b)∗ ⊕ b and a ∧ b =
(
(a⊕ b∗)∗ ⊕ b∗

)∗
.

We write a ≤ b iff a ∨ b = b. The relation ≤ is a partial ordering on M and
0 ≤ a ≤ 1 for any a ∈ M . An MV -algebra is a distributive lattice with respect
to the operations ∨ and ∧.

Example 5. (MV-algebras and MV-effect algebras) Another important example
of a lattice effect algebra can be derived from an MV-algebra (M ;⊕, ∗, 0, 1) if
we define a partial binary operation ⊕̂ on M by: a⊕̂b = a ⊕ b iff a ≤ b∗. Then
(M ; ⊕̂, 0, 1) is a lattice effect algebra in which a⊕̂(a∗ ∧ b) = b⊕̂(b∗ ∧ a) for all
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a, b ∈ E (then E is called an MV-effect algebra). In this case for every a ∈ E we
have a⊕ a∗ = 1, i.e. a∗ = a′.

Conversely, every lattice effect algebra (E; ⊕̂, 0, 1) in which a⊕̂(a∗ ∧ b) =
b⊕̂(b∗ ∧ a) for all a, b ∈ E can be organized into an MV-algebra by putting
a⊕ b = a⊕̂(a∗ ∧ b) for all a, b ∈ E [2].

Finally, note that examples of lattice effect algebras which are neither ortho-
modular lattices nor MV-algebras are, for instance, a 0–1-pasting (horizontal
sum) of two MV-algebras or a direct product of an orthomodular lattice and
an MV-effect algebra. Here, instead of all these structures, we consider derived
effect algebras.

Example 6. (D-lattices) If for a lattice effect algebra we consider the partial
binary operation 0 derived from ⊕ by (ED), as a fundamental operation, then
(E;0, 0, 1) becomes a D-lattice [9]. Conversely, from every D-lattice (E;0, 0, 1)
we can derive a lattice effect algebra (E;⊕, 0, 1) by putting a ⊕ b = c iff a ≤ c
and b = c0 a.

Definition 8. Assume that (E;⊕, 0, 1) is an effect algebra.

1. If E is a lattice effect algebra then Q ⊆ E is called a sub-lattice effect algebra
of E iff Q is a sub-effect algebra of E and for every pair a, b ∈ Q, a∨ b ∈ Q.

2. If E is an MV-effect algebra then Q ⊆ E is called a sub-MV-effect algebra
of E iff Q is a sub-lattice effect algebra of E.

Example 7. Let us consider the following sets of real functions:

E1 = {f : [0, 1] → [0, 1] | f is a function}
E2 = {f ∈ E1 | f is continuous}
E3 = {f ∈ E1 | f(x) = ax2 + bx+ c; a, b, c ∈ (−∞,∞), x ∈ [0, 1]}
E4 = {f ∈ E1 | f(x) = kx+ q; k, q ∈ (−∞,∞), x ∈ [0, 1]}
E5 = {f ∈ E1 | f(x) = d; d ∈ [0, 1], x ∈ [0, 1]}.

We define the following partial binary operation ⊕ on E1:
For f, g ∈ E1, f ⊕ g is defined iff f + g ≤ 1 and then f ⊕ g = f + g. Moreover,

we denote the function f(x) = 0 for all x ∈ [0, 1] by 0 and the function g(x) = 1
for all x ∈ [0, 1] by 1. Then (E1;⊕, 0, 1) is a complete MV-effect algebra.

• For k > n, (k, n ∈ {1, 2, . . . , 5}) Ek is a sub-effect algebra of En.
• E2 is a sub-lattice effect algebra of a complete MV-effect algebra E1.
• E3 is not a lattice ordered effect algebra (f ∨ g does not exist for functions
f(x) = (x− 1

3 )2, g(x) = (x− 2
3 )2, x ∈ [0, 1], but f ∧ g = 0).

• E4 is a lattice effect algebra but E4 is not a sublattice of E3 (E2, E1, re-
spectively).

• E5 is a complete MV-effect algebra.

We see that a sub-effect algebra of MV-effect algebra need not be an MV-effect
algebra, even it need not be lattice ordered.
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3 Prelattice Generalized Effect Algebras

In this section, it is of our interest to answer a question for which generalized
effect algebra P the effect algebraic extension E = P ∪̇P ∗ (from Theorem 1) is
lattice ordered, and all joins and meets existing in P (denoted by a∨P b, a∧P b)
are preserved for E. We will call such generalized effect algebra a prelattice
generalized effect algebra (see [27]).

It is rather surprising that a prelattice effect algebra P need not be lattice or-
dered. In general, a prelattice generalized effect algebra P need not be a sublattice
of the lattice effect algebra E = P ∪̇P ∗.

Example 8. Let P = {0, a, b, a ⊕ a, b ⊕ b} be a generalized effect algebra. It is
easy to check that E = P ∪̇P ∗ is a lattice effect algebra in spite of the fact that
P is not a lattice, as, e.g., a ∨P b does not exist (see Fig. 3).

Assume that P is a generalized effect algebra. For the effect algebraic extension
E = P ∪̇P ∗ the partial order on E, when restricted to P , coincides with the

Fig. 3.

Fig. 4.
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original partial order on P . In spite of this fact, the lattice operations join and
meet of elements a, b ∈ P (a ∨P b, a ∧P b) need not be preserved for E, if they
exist in P .

Example 9. Let P = {0, a, b, a⊕ b, b⊕ b} be a generalized effect algebra and let
E = P ∪̇P ∗ be its effect algebraic extension. Obviously, a ⊕ b = a ∨P b, while
a ∨E b does not exist (see Fig. 4).

The following theorems establishe a necessary and sufficient condition for the
inheritance of a ∨P b, for a, b ∈ P , by the effect algebra E = P ∪̇P ∗ (see [27]).

Theorem 2. Let P be a generalized effect algebra and E = P ∪̇P ∗. For every
a, b ∈ P with a ∨P b existing in P the following conditions are equivalent

(i) a ∨E b exists and a ∨E b = a ∨P b.
(ii) For every c ∈ P the existence of a ⊕ c and b ⊕ c implies the existence of

(a ∨P b)⊕ c.

Proof. (i)⇒(ii): If a⊕ c and b⊕ c exists in P then a ≤ c∗ and b ≤ c∗ which gives
a ∨E b ≤ c∗ and hence (a ∨E b)⊕ c = (a ∨P b)⊕ c exists in P .

(ii)⇒(i): By the assumptions for all c, d ∈ P we have: a, b ≤ d implies a∨P b ≤
d, as well as a, b ≤ c∗ implies a ∨P b ≤ c∗, since (a ∨P b) ⊕ c exists in P . Thus
a ∨E b = a ∨P b.

Theorem 3. Let P be a generalized effect algebra. Then E = P ∪̇P ∗ is a lattice
effect algebra preserving joins and meets existing in P if and only if the following
conditions are satisfied for all a, b ∈ P :

(i) a ∧P b exists.
(ii) If there is d ∈ P such that a, b ≤ d then a ∨P b exists.
(iii) For all c ∈ P the existence of a ∨P b, a⊕ c and b⊕ c implies the existence

of (a ∨P b)⊕ c.
(iv) Either a ∨p b exists or

∨{c ∈ P | a⊕ c and b⊕ c are defined} exists in P .
(v)

∨{c ∈ P | c ≤ b and a⊕ c is defined} exists in P .

Proof. Let a, b ∈ P . If c ∈ E and c ≤ a, b then c ∈ P and hence a ∧E b exists iff
a ∧P b exists, in which case a ∧E b = a ∧P b.

Let d ∈ P such that a, b ≤ d. Then the existence of a∨E b implies a∨E b ≤ d,
which gives a∨E b ∈ P and hence there is a∨P b and a∨P b = a∨E b. Conversely,
by (iii), the existence of a ∨P b implies that for all c ∈ P with a, b ≤ c∗ we have
a ∨P b ≤ c∗ and hence there is a ∨E b and a ∨E b = a ∨P b.

If there is no d ∈ P with a, b ≤ d then a ∨P b does not exist and then a ∨E b
exists iff there is x ∈ P such that x =

∨{c ∈ P | a⊕ c and b⊕ c are defined}, in
which case a ∨E b = x∗. Hence a ∨E b exists by (iv).

Finally, a∗ ∧E b exists iff there is y ∈ P such that y =
∨{c ∈ P | c ≤ b and

a⊕c is defined}. In this case a∗∧E b = y. Thus, using de Morgan laws, we obtain
that E is a lattice effect algebra iff (i)–(v) are satisfied for every pair a, b ∈ P .

Note that if for a, b ∈ P in Theorem 3 the element a ∨P b exists then the
existence of

∨{c ∈ P | a ⊕ c and b ⊕ c are defined} in P is not necessary to
obtain E = P ∪̇P ∗ lattice ordered. For instance, this occurs when P = [0,∞)
with the usual addition.
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Definition 9. A generalized effect algebra P satisfying conditions (i)–(v) of
Theorem 3 is called a prelattice generalized effect algebra.

Theorem 4. Let P be an effect agebra and let E = P ∪̇P ∗. Then

(i) 1∗ is an atom of E.
(ii) a⊕ 1∗ = (a′)∗, for every a ∈ P .
(iii) a⊕ b∗ = (b0 a)∗, for all a, b ∈ P with a ≤ b.
(iv) E ∼= P × {0, 1∗}.
(v) E is a lattice effect algebra iff P is a lattice effect algebra, in which case P

is a sublattice of E.
(vi) E is a distributive or modular lattice effect algebra or MV-effect algebra iff

P has these properties.

Proof. (i) Since for a ∈ P the existence of a ⊕ 1 implies a = 0, we obtain that
the condition a ≤ 1∗ implies a = 0. Moreover, for all a ∈ P we have 1∗ ≤ a∗ and
hence 1∗ is an atom of E.

(ii) Let a ∈ P . Then a ≤ 1 = (1∗)∗, hence a ⊕ 1∗ exists in E and a ⊕ 1∗ =
0∗0 (a⊕ 1∗) = (0∗0 1∗)0 a = (10 a) = a′. We obtain that (a⊕ 1∗)∗ = a′ which
gives a⊕ 1∗ = (a′)∗.

(iii) If a, b ∈ P with a ≤ b then a ≤ (b∗)∗ which gives the existence of a⊕ b∗.
Further, (a⊕ b∗)∗ = 0∗0 (b∗⊕a) = (0∗0 b∗)0a = b0a, hence a⊕ b∗ = (b0a)∗.

(iv) Let us define a map ϕ : E → P × {0, 1∗} as follows: for a ∈ P let
ϕ(a) = (a, 0) and ϕ(a∗) = (a′, 1∗). Evidently ϕ is a bijection of E onto P×{0, 1∗}.
Further, if a, b ∈ P and a ⊕ b is defined in P then ϕ(a ⊕ b) = (a ⊕ b, 0) =
(a, 0) ⊕ (b, 0) = ϕ(a) ⊕ ϕ(b). If a ∈ P , b∗ ∈ P ∗ and a ⊕ b∗ is defined in E
then by (iii) we have ϕ(a ⊕ b∗) = ϕ((b 0 a)∗) = ((b 0 a)′, 1∗) = (b′ ⊕ a, 1∗) =
(b′, 1∗) ⊕ (a, 0) = ϕ(a) ⊕ ϕ(b∗). If a∗, b∗ ∈ P ∗ then a∗ ⊕ b∗ does not exist. This
proves that ϕ is an isomorphism.

(v) Evidently, a lattice effect algebra P satisfies conditions (i)–(v) of Theo-
rem 3, which implies that E = P ∪̇P ∗ is a lattice effect algebra in which P is a
sublattice. Conversely, if E is a lattice then P is a sublattice of E, since P is a
bounded poset.

(vi) This follows by the fact that E is a direct product of P and the Boolean
algebra {0, 1∗}.

4 Blocks of Lattice Effect Algebras

Compatibility of elements of effect algebras (D-posets) were introduced by Kôpka
in [7] and Chovanec and Kôpka in [2]. Moreover, they have shown that the family
of MV-effect algebras coincides with the family of lattice effect algebras with
pairwise compatible elements. In this section we are going to show that every
lattice effect algebra E is a set-theoretical union of MV-effect algebras (MV-
algebras, see Example 5) called blocks of E. Here a block of E is any maximal
subset of pairwise compatible elements of E (see [14]).
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Lemma 1. For elements of a lattice effect algebra (E;⊕, 0, 1) the following con-
ditions are satisfied:

(i) If u ≤ a, v ≤ b and a⊕ b is defined then u⊕ v is defined.
(ii) If b⊕ c is defined, then a ≤ b iff a⊕ c ≤ b⊕ c.
(iii) If a⊕ c and b⊕ c are defined, then (a⊕ c) ∨ (b⊕ c) = (a ∨ b)⊕ c.
(iv) a ≤ b iff b′ = 10 b ≤ 10 a = a′.
(v) If a ≤ b′, then a⊕ b = (a ∨ b)⊕ (a ∧ b).

The proof is left to the reader.

Definition 10. Elements a, b of a lattice effect algebra (E;⊕, 0, 1) are compat-
ible (denoted by a↔ b) if a ∨ b = a⊕ (b0 (a ∧ b)).

Lemma 2. ([27]) Let E be a lattice effect algebra and let a, b ∈ E. The following
conditions are equivalent:

(i) a↔ b.
(ii) (a0 (a ∧ b))⊕ (b0 (a ∧ b)) is defined.

Proof. Since E is a lattice effect algebra, for all a, b ∈ E we have 0 = (a ∧ b)0
(a ∧ b) = (a 0 (a ∧ b)) ∧ (b 0 (a ∧ b)), see [3, p. 70]. Assume that a ↔ b. Then
a∨ b = b⊕ (a0 (a∧ b)) = (a∧ b)⊕ (b0 (a∧ b))⊕ (a0 (a∧ b)) which implies (ii).
Conversely (ii) implies (a0(a∧b))⊕(b0(a∧b)) = (a0(a∧b))∨(b0(a∧b)) ≤ (a∧b)′
which gives that (a∧ b)⊕ (a0 (a∧ b))⊕ (b0 (a∧ b)) = [(a0 (a∧ b))⊕ (a∧ b)]∨
[(b0 (a ∧ b))⊕ (a ∧ b)] = a ∨ b which implies that a ∨ b = b⊕ (a0 (a ∧ b)).

Theorem 5. [14] Let (E;⊕, 0, 1) be a lattice effect algebra and let x, y, z ∈ P
be such that x↔ z and y ↔ z. Then

(i) x ∨ y ↔ z,
(ii) if x ≤ y then y 0 x↔ z,
(iii) x′ = 10 x↔ z,
(iv) x ∧ y ↔ z,
(v) x⊕ y ↔ z.

Proof. By assumptions there exist x⊕ (z 0 (x ∧ z)) and y ⊕ (z 0 (y ∧ z)).
(i) Since x ∧ z, y ∧ z ≤ (x ∨ y) ∧ z ≤ z we obtain z 0 ((x ∨ y) ∧ z) ≤ z 0 (x ∧

z), z0 (y ∧ z) and hence (x⊕ (z0 (x∧ z)))∨ (y⊕ (z 0 (y ∧ z))) ≥ x⊕ (z0 ((x∨
y) ∧ z)) ∨ (y ⊕ (z 0 ((x ∨ y) ∧ z))) = (x ∨ y)⊕ (z 0 ((x ∨ y) ∧ z)) which implies
that x ∨ y ↔ z.

(ii) If x ≤ y then x∧z ≤ y∧z and x∨z ≤ y∨z. It follows that there exists w ∈ P
such that (x∧z)⊕w = y∧z and x∨z = x⊕(z0(x∧z)) ≤ y∨z = y⊕(z0(y∧z)) =
(y∧z)⊕(y0(y∧z))⊕(z0(y∧z)), thus (x∧z)⊕(x0(x∧z))⊕(z0(x∧z)) ≤ (y∧z)⊕
(y0(y∧z))⊕(z0(y∧z)) and since z = (x∧z)⊕(z0(x∧z)) = (y∧z)⊕(z0(y∧z))
we obtain x 0 (x ∧ z) ≤ y 0 (y ∧ z). The last implies that there is e ∈ P such
that (x0 (x∧ z))⊕ e = y0 (y∧ z). We obtain y = (x∧ z)⊕w⊕ e⊕ (x0 (x∧ z))
and y ⊕ (z 0 (y ∧ z)) = (x ∧ z) ⊕ w ⊕ e ⊕ (x 0 (x ∧ z)) ⊕ (z 0 (y ∧ z)). These
equalities imply that y 0 x = w ⊕ e and z = w ⊕ [(x ∧ z)⊕ (z 0 (y ∧ z))

]
, since
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(x∧z)⊕w = y∧z. We conclude that y0x↔ z since w⊕e⊕[(x∧z)⊕(z0(y∧z))]
exists.

(iii) Evidently 1 ↔ z and x ≤ 1, which implies by (ii) that x′ = 10 x↔ z.
(iv) By (iii) x′ ↔ z and y′ ↔ z which by (i) implies that x′ ∨ y′ ↔ z and by

(iii) x ∧ y = (x′ ∨ y′)′ ↔ z.
(v) x⊕ y = 10 (x′ 0 y) ↔ z by conditions (ii) and (iii).

Lemma 3. If (E;⊕, 0, 1) is a lattice effect algebra of pairwise compatible el-
ements then it can be organized into an MV-algebra if we put a∗ = 1 0 a,
a − b = a 0 (a ∧ b) and a ⊕ b = (a∗ − b)∗ for all a, b ∈ E. Hence E is an
MV-effect algebra (see Example 5).

The common consequence of Theorem 5 and Lemma 3 is the following:

Corollary 1. Every maximal subset M of pairwise compatible elements of a
lattice effect algebra (E;⊕, 0, 1) is a sublattice and a sub-effect algebra of E.
Moreover, M is an MV-effect algebra in its own right.

Theorem 6. [14] Every lattice effect algebra P is a set-theoretical union of MV-
effect algebras, its blocks. Every subset A ⊆ P of mutually compatible elements
is contained in a block.

Proof. Let ∅ �= A ⊆ P be a set of mutually compatible elements of P and
A = {B ⊆ P | A ⊆ B, B is a set of mutually compatible elements}. Then every
chain B ⊆ A (i.e., for X,Y ∈ B we have X ⊆ Y or Y ⊆ X) the set

⋃B ∈ A.
By the maximal principle there exists a maximal element M ∈ A. Moreover for
a ∈ P the set A = {0, a, a′, 1} is mutually compatible.

In view of Lemma 3 and Corollary 1, a lattice effect algebra E is an MV-effect
algebra iff every pair of elements of E is compatible.

It is worth noting that if E in Theorem 6 is an orthomodular lattice then
every block of E is a Boolean algebra.

5 Generalized MV-Effect Algebras and Blocks of
Prelattice Generalized Effect Algbras

In [27] it has been shown how generalized effect algebras can be introduced in
order to obtain MV-effect algebras (MV-algebras) by their effect algebraic exten-
sions. Moreover, every prelattice generalized effect algebra P is a set-theoretical
union of generalized MV-algebras (blocks) which are maximal subsets of pair-
wise compatible elements in P . Further, connections between blocks of effect
algebraic extension E = P ∪̇P ∗ of P and blocks of P have been shown.

If P is a prelattice generalized effect algebra then elements a, b ∈ P are com-
patible in the lattice effect algebra E = P ∪̇P ∗ iff (a0(a∧b))⊕(b0(a∧b)) exists.
Since in this case we have (a0 (a∧ b))⊕ (b0 (a∧ b)) ∈ P , it makes sense to call
elements a, b compatible in P . In this case a∨b ∈ P since a∨b = b⊕(a0(a∧b)).
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Definition 11. Elements a, b of a prelattice generalized effect algebra P are
called compatible if (a0 (a ∧ b))⊕ (b0 (a ∧ b)) is defined.

In what follows for Q ⊆ P we will denote by Q∗ the set {y∗ ∈ P ∗ | y ∈ Q}.
Theorem 7. Let P be a prelattice generalized effect algebra and E = P ∪̇P ∗.
Let M ⊆ E be a block of E. Then

(i) M ∩ P ∗ = (M ∩ P )∗.
(ii) M ∩ P is a maximal pairwise compatible subset of P and a sublattice of E.

Conversely, if Q is a maximal subset of pairwise compatible elements of P
then Q∪̇Q∗ is a block of E.

(iii) M∩P is a prelattice generalized effect algebra and (M∩P )∪̇(M∩P )∗ = M .

Proof. (i) For x, y ∈ E we have x ↔ y iff x ↔ y∗ (see Theorem 5) which gives
y ∈ M iff y∗ ∈ M and therefore y ∈ M ∩ P iff y∗ ∈ M ∩ P ∗. It follows that
M ∩ P ∗ = (M ∩ P )∗.

(ii) Let x ∈ P and x↔ y for all y ∈M ∩ P . Then x↔ y∗ for all y ∈M ∩ P ∗

and thus x↔ y for all y ∈M which gives x ∈M by maximality of M . Further,
by Theorem 5, if x ↔ y and x ↔ z then x ↔ y ∨ z and x ↔ y ∧ z, therefore
M ∩ P is a sublattice of E, because y, z ∈ P and y ↔ z implies y ∨E z ∈ P .
If Q is a maximal subset of pairwise compatible elements of P then Q∪̇Q∗ is a
maximal subset of pairwise compatible elements of E, hence Q∪̇Q∗ is a block
of E.

(iii) M ∩ P is a generalized effect algebra since both M and P are gener-
alized effect algebras. Further, P satisfies conditions (i)–(v) of Theorem 3 by
the assumption that P is prelattice and M satisfies these conditions, since M is
a lattice. Therefore M ∩ P is a prelattice generalized effect algebra. Obviously
M = (M ∩ P )∪̇(M ∩ P )∗ as M ∩ P ∗ = (M ∩ P )∗ by (i).

Corollary 2. Every prelattice generalized effect algebra P is a union of maximal
subsets of pairwise compatible elements of P .

Proof. If P is a prelattice effect algebra then E = P ∪̇P ∗ is a lattice effect algebra
and by Theorem 6 we have E =

⋃{M ⊆ E | M is a block of E}. Therefore
P =

⋃{M ∩ P |M is a block of E}. The rest follows by Theorem 7, (ii).

Definition 12. A maximal subset of pairwise compatible elements of a prelattice
generalized effect algebra P is called a block of P . A prelattice generalized effect
algebra with a unique block is called a generalized MV-effect algebra.

Theorem 8. For a generalized effect algebra P the following conditions are
equivalent:

(i) P is a generalized MV-effect algebra.
(ii) E = P ∪̇P ∗ is an MV-effect algebra.
(iii) P is a prelattice generalized effect algebra and for all a, b ∈ P the sum

(a0 (a ∧ b))⊕ (b0 (a ∧ b)) exists in P .

The proof is straightforward.
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Theorem 9. A generalized effect algebra P is a generalized MV-effect algebra
iff the following conditions are satisfied

(i) P is a lattice.
(ii) For all a, b, c ∈ P the existence of a ⊕ c and b ⊕ c implies the existence of

(a ∨P b)⊕ c.
(iii)

∨{c ∈ P | a⊕ c exists and c ≤ b} exists in P , for all a, b ∈ P .
(iv) (a0 (a ∧ b))⊕ (b0 (a ∧ b)) exists for all a, b ∈ P .

Proof. Obviously conditions (i)–(iii) imply conditions (i)–(v) of Theorem 3 hence
P is a prelattice generalized effect algebra and condition (iv) implies that it has
a unique block.

Conversely, if P is a generalized MV-effect algebra then obviously (ii)–(iv) are
satisfied. Let a, b ∈ P then a ∧P b exists by Theorem 3, (i) and a ∧P b = a ∧E b.
Further, there is (a0 (a ∧ b)) ≤ (a ∧ b)∗ and since E = P ∪̇P ∗ is a lattice effect
algebra we obtain

[(a0(a∧b))⊕(b0(a∧b))]⊕(a∧b) = [(a0(a∧b)∨(b0(a∧b))]⊕(a∧b) = a∨b ∈ P .

Theorem 10
(i) Every prelattice generalized effect algebra is a union of generalized MV-effect

algebras (blocks).
(ii) A generalized MV-effect algebra P is an MV-effect algebra iff there exists an

element 1 ∈ P such that for every a ∈ P there exists a unique b ∈ P for
which a⊕ b = 1.

The proof follows by Theorems 7 and 8.

Example 10. The set P1 = {0, 1, 2, 3, . . .} of nonnegative integers with the usual
addition and the set P2 = [0,∞) of nonnegative real numbers with usual addition
are examples of generalized MV-effect algebras. It is easy to see that E1 = P1∪̇P ∗

1
and E2 = P2∪̇P ∗

2 are linearly (totally) ordered MV-effect algebras.

More generally, the positive cone G+ of any lattice ordered abelian group (G; +,
0,≤) is a generalized effect algebra.

Further examples are all extendable commutative BCK-algebras directed up-
wards (see Section 7).

6 Sharp and Central Elements of Lattice and Generalized
Prelattice Effect Algebras

The notion of sharp elements of effect algebras has been introduced by S. Gudder
in [5]. In [27] it has been shown, how this notion can be introduced for generalized
prelattice effect algebras in order of its inheritance from their effect algebraic
extensions.

Definition 13. Let (E;⊕; 0, 1) be an effect algebra. An element z ∈ E is sharp
if z ∧ z′ = 0. Put S(E) = {z ∈ E | z ∧ z′ = 0}.
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It has been shown in [6] that in every lattice effect algebra the set S(E) is a
sub-lattice effect algebra. Moreover, S(E) is an orthomodular lattice.

Definition 14. An element z of a generalized effect algebra P is called a sharp
element if for all e ∈ P the conditions e ≤ z and z ⊕ e is defined imply that
e = 0. Let S(P ) = {z ∈ P | z a sharp element of P}.
Theorem 11. ([24]) Let P be a prelattice generalized effect algebra and let
S(P ) = {z ∈ P | z is a sharp element of P}. Let E = P ∪̇P ∗. Then

(i) S(P ) = S(E) ∩ P .
(ii) If z1, z2 ∈ S(P ) and z1 ⊕ z2 is defined in E then z1 ⊕ z2 ∈ S(P ).
(iii) S(P ) is a prelattice generalized effect algebra and S(E) = S(P )∪̇(S(P ))∗,

when S(E) is considered as lattice effect algebra and (S(P ))∗ = {z∗ | z ∈
S(P )}.

(iv) S(P ) is a generalized orthomodular poset being a proper ideal in the ortho-
modular lattice S(E), closed under orthogonal joins and for every z ∈ S(E)
either z ∈ S(P ) or 0∗ 0 z ∈ S(P ).

Proof. (i) Since E is a lattice effect algebra, for e, z ∈ P we have e ≤ z ∧ z∗

iff e ≤ z and z ⊕ e is defined. It follows that z ∧ z∗ = 0 iff for all e ∈ P the
conditions e ≤ z and z ⊕ e is defined imply e = 0. It follows that z ∈ S(P ) iff
z ∈ S(E) ∩ P .

(ii) If z1, z2 ∈ S(P ) and z1 ⊕ z2 is defined in E then z1 ≤ z∗2 which gives that
z1 ∧ z2 ≤ z∗2 ∧ z2 = 0 and hence z1⊕ z2 = z1 ∨ z2 ∈ S(E)∩P because S(P ) ⊆ P ,
P is closed under ⊕ and S(E) is a sublattice of E.

(iii) Since S(E) is a sublattice and a sub-effect algebra of a lattice effect
algebra E we may consider S(E) as a lattice effect algebra in its own right.
Further, by (i) and (ii), S(P ) is a proper order ideal in S(E) closed under ⊕.
If we set (S(P ))∗ = {z∗ | z ∈ S(P )} then S(E) = S(P )∪̇(S(P ))∗ and by
[3, Proposition 1.2.7] we obtain that the effect algebra S(P )∪̇(S(P ))∗ coincides
with S(E).

(iv) This follows by (ii) and (iii) and the facts that for all z1, z2 ∈ S(E)
with z1 ≤ z∗2 we have z1 ∧ z2 = 0 and z1 ⊕ z2 = z1 ∨ z2, under which S(E) =
S(P )∪̇(S(P ))∗.

Definition 15. Let P be a generalized MV-effect algebra. Then Q ⊆ P is called
a sub-generalized MV-effect algebra of P if Q is simultaneously a sub-generalized
effect algebra and a sub-lattice of P .

Theorem 12. Let P be a generalized MV-effect algebra. The following condi-
tions are equivalent:

(i) z ∈ S(P ),
(ii) [0, z] = {x ∈ P | x ≤ z} with ⊕|[0,z] (⊕ restricted to [0, z]) is an MV-effect

algebra being a sub-generalized MV-effect algebra of P .

Proof. (i)⇒(ii): Let x, y ≤ z with x ⊕ y defined in P . Let E = P ∪̇P ∗. Then
z∗ ∈ S(E) which gives z ∧ z∗ = 0. By the assumptions we have z∗ ≤ y∗ which
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gives that y ⊕ z∗ is defined in E and y ⊕ z∗ = y ∨ z∗ ≤ x∗, since y ≤ z implies
y ∧ z∗ ≤ z ∧ z∗ = 0. It follows that x ⊕ y ⊕ z∗ is defined in E and hence
x⊕y ≤ z. Thus [0, z] is closed under ⊕ and it is a sublattice of P . It follows that
([0, z];⊕|[0,z], 0, z) is an MV-effect algebra in its own right, since for all x, y ≤ z
we have (x0 (x ∧ y)⊕ (y 0 (x ∧ y)) ≤ z.

(ii)⇒(i): Let e ≤ z and e⊕ z be defined in P . Then e, z ≤ z ⇒ e ⊕ z ∈ [0, z]
which gives e⊕ z ≤ z and hence e = 0. Thus z ∈ S(P ).

Finally, note that the notion of a central element of a generalized effect algebra
P has been introduced in [11]. Recall that z ∈ P is central iff P is isomorphic
to a direct product of [0, z] and Qz = {x ∈ P | x ∧ z = 0}. Moreover z ∈ P is
central element of P iff it is a central element of E = P ∪̇P ∗ iff E is isomorphic
to the direct product [0, z] × [0, z∗] and then for Qz defined above we have
Qz = P∩[0, z∗] (see [11, Section 5]). Thus if C(E) = {z ∈ E | z is central element
of E} and C(P ) = {z ∈ E | z is central element of P} then C(P ) = C(E) ∩ P .

For a lattice effect algebra E the subset B(E) =
⋂{M ⊆ E | M a block

of E} is called a compatibility center of E. By Theorem 7, for a prelattice
generalized effect algebra P and lattice effect algebra E = P ∪̇P ∗ we obtain that
B(E)∩P =

⋂{M ∩P |M is a block of E}. We will call B(E)∩P a compatibility
center of P and denote it by B(P ). Since for every lattice effect algebra E the
equality C(E) = S(E) ∩B(E) holds (see [12, Theorem 2.5, (iv)]), we obtain:

Theorem 13. For every prelattice generalized effect algebra P the condition
C(P ) = S(P ) ∩ B(P ) is satisfied. If P is a generalized MV-effect algebra then
C(P ) = S(P ).

As a consequence of Theorem 13 we obtain that an element z of a prelattice
generalized effect algebra P is central iff z is a sharp element of P compatible
with every element of P . Because D ⊆ P is a block of P iff there is a block M
of E = P ∪̇P ∗ such that D = M ∩ P and M ∩ P ∗ = (M ∩ P )∗ = D∗ we obtain
that B(P ) is a generalized MV-effect algebra such that the MV-algebra B(E) =
B(P )∪̇(B(P ))∗. Moreover, the center C(P ) is a proper order ideal in the Boolean
algebra C(E) closed under ⊕ and such that for every z ∈ C(E) either z ∈ C(P )
or 0∗0 z ∈ C(P ) and thus C(E) = C(P )∪̇(C(P ))∗ = (C(E)∩P )∪̇(C(E)∩P ∗),
hence C(P ) is a generalized Boolean algebra.

7 BCK Algebras Equivalent to Generalized MV-Effect
Algebras

We are going to show that Dedekind complete (or, more generally, extendable)
commutative BCK-algebras directed upwards are equivalent to generalized MV-
effect algebras (see [24]).

A result due to Yutani [30] says that the class of commutative BCK-algebras
forms a variety, hence it is equationally definable. We present this equational
base to set up these algebraic structures (see also [3, Theorem 5.1.18]).

Definition 16. An algebra (X ; ∗, 0) of type (2, 0) is a commutative BCK-algebra
if the following conditions are satisfied for all x, y, z ∈ X:
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(i) x ∗ (x ∗ y) = y ∗ (y ∗ x),
(ii) (x ∗ y) ∗ z = x ∗ (z ∗ y),
(iii) x ∗ x = 0,
(iv) x ∗ 0 = x.

We can define a partial order≤ (called the BCK-order) in X = (X ; ∗, 0) by x ≤ y
iff x∗ y = 0. Then 0 is the least element of (X ;≤). Condition (i) in Definition 16
is called commutativity and it makes X a lower semilattice with respect to the
BCK-order. It means that for all x, y ∈ X the greatest lower bound x∧ y exists
in X and x ∧ y = x ∗ (x ∗ y). We say that a commutative BCK-algebra has
the relative cancellation property if for a, x, y ∈ X with a ≤ x, y we have that
x ∗ a = y ∗ a implies x = y.

Theorem 14. Let (X ; ∗, 0) be a commutative BCK-algebra having the relative
cancellation property. Let a partial binary operator ⊕ for elements a, b, c ∈ X be
defined by

(GEA) a⊕ b is defined and a⊕ b = c iff c ≥ b and c ∗ b = a.

Then (X ;⊕, 0) is a generalized effect algebra and the BCK-order coincides with
the partial order derived from ⊕.

Proof. The fulfilling of the conditions (GEi)–(GEiv) has been proved in [3,
p. 332]. Let us show the fulfillment of (GEv). Let a ⊕ b = 0 then by prop-
erty (VI) in Theorem 5.2.6 of [3] we obtain that 0 ≤ a implies 0 ⊕ 0 ≤ a⊕ 0 ≤
a ⊕ b = 0 = 0 ⊕ 0 and hence a ⊕ 0 ≤ 0 ⊕ 0 which gives a ≤ 0. Hence a = 0
and by the same manner b = 0. This proves that (X ;⊕, 0) is a generalized effect
algebra. It follows that for a, b, c ∈ X we have a⊕ b is defined and a⊕ b = c iff
b ≤ c and c 0 b = a which implies that partial orders in (X ; ∗, 0) and (X ;⊕, 0)
coincide.

Recall that a poset (X ;≤) is called directed upwards if for every a, b ∈ X there
is c ∈ X such that a ≤ c and b ≤ c. A commutative BCK-algebra X is called
directed upwards if it is directed upwards with respect to the BCK-order. In
[3, Lemma 5.2.2] it has been shown that every upwards directed commutative
BCK-algebra has the relative cancellative property.

Definition 17. Let (X ; ∗, 0) be a directed upwards commutative BCK-algebra.
Then X is called extendable if for all elements a, b ∈ X the set {c ∈ X | c ≤ b
and there is d ≥ a with d ∗ a = c} has the supremum in X.

Recall that a directed upwards commutative BCK-algebra X is called Dedekind
complete if every P ⊆ X with an upper bound (lower bound) in X has the
supremum (infimum) in X . Clearly, in this case X is extendable.

We are going to show that extendable upwards directed commutative BCK-
algebras are unbounded versions of bounded commutative BCK-algebras and if
they are Archimedean then they can be embedded densely into complete com-
mutative BCK-algebras .
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We say that a commutative BCK-algebra (X ; ∗, 0) with the relative cancella-
tion property is Archimedean iff the generalized effect algebra (X ;⊕, 0) derived
by (GEA) is Archimedean iff for every nonzero element x there is a greatest
positive integer n such that nx = x⊕ x⊕ . . .⊕ x (n times) is defined in X .

Theorem 15. (i) Let (X ; ∗, 0) be an extendable directed upwards commutative
BCK-algebra. Let a partial operation ⊕ on X be defined by

(GEA) a⊕ b is defined and a⊕ b = c iff c ≥ b and c ∗ b = a
Then (X ;⊕, 0) is a generalized MV-effect algebra.

(ii) Let (X ;⊕, 0) be a generalized MV-effect algebra. Let a binary operation ∗ on
X be defined by

(BCK) a ∗ b = a0 (a ∧ b), for all a, b ∈ X.
Then (X ; ∗, 0) is an extendable directed upwards commutative BCK-algebra.

In both cases (i) and (ii), the partial orders in (X ; ∗, 0) and (X ;⊕, 0) coincide.

Proof. (i) By Theorem 14 (X ;⊕, 0) is a generalized effect algebra and partial
orders on X derived from ⊕ and ∗ coincide. By [3, Prop. 5.1.19], X is a distrib-
utive lattice. Hence the existence of a⊕ c and b⊕ c implies that (a⊕ c)∨ (b⊕ c)
exists in X and by [3, Proposition 5.1.19, (iv)] we have

((a⊕ c) ∨ (b⊕ c))0 c = ((a⊕ c)0 c) ∨ ((b ⊕ c)0 c) = a ∨ b

which implies that (a ⊕ c) ∨ (b ⊕ c) = (a ∨ b) ⊕ c. By Theorem 3, the effect
algebraic extension E = X∪̇X∗ is a lattice effect algebra, since for all a, b ∈ X
we have {c ∈ X | c ≤ b, a⊕ c is defined } = {c ∈ X | c ≤ b and there is d ≥ a
with d∗a = c}. Hence (X ; ∗, 0) is extendable iff (X ;⊕, 0) is prelattice. Moreover,
by [3, Theorem 5.2.6] we have, for all x, y ∈ X

(x ∨ y) ∗ y = x ∗ (x ∧ y)

and because y ≤ x ∨ y and x ∧ y ≤ x we obtain (x ∨ y)0 y = x0 (x ∧ y) which
gives that x↔ y and hence (x0 (x∧y))⊕ (y0 (x∧y)) exists in X by Lemma 2.
Thus, by Theorem 9 we obtain that (X ;⊕, 0) is a generalized MV-effect algebra.

(ii) By Theorem 8 the effect algebraic extension E = X∪̇X∗ is an MV-effect
algebra. It follows that (E; ∗, 0, 1) with binary operation ∗ defined by (BCK) is
a bounded commutative BCK-algebra (see [3, Theorem 6.33]). It follows that
(X ; ∗, 0) with inherited ∗ operation is a commutative BCK-algebra. This is be-
cause X is an order ideal in E and hence for a, b ∈ X we have a∗b = a0(a∧b) ≤ a
which gives a ∗ b ∈ X . Moreover, X is a lattice and hence it is directed upwards.
Further (X ;⊕, 0) is a prelattice which implies that (X ; ∗, 0) is extendable as we
have shown in part (i). Clearly partial orders derived from ⊕ and ∗ coincide.

8 Embeddings of Archimedean Generalized MV-Effect
Algebras into Complete MV-Effect Algebras

We can show that when the MacNeille completion MC(P ) of a generalized effect
algebra P cannot be organized into a complete effect algebra by extending the
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operation ⊕ onto MC(P ) then still P may be densely embedded into a complete
effect algebra (see [24]). Namely, we show these facts for Archimedean generalized
MV-effect algebras (GMV-effect algebras, for short).

Definition 18. Let P be a GMV-effect algebra. Then Q ⊆ P is called a sub-
GMV-effect algebra of P if Q is simultaneously a sub-generalized effect algebra
and a sub-lattice of P .

It is well known that every poset P has a MacNeille completion MC(P ) (i.e.,
completion by cuts). By Schmidt [29] a MacNeille completion MC(P ) of a poset
P is up to isomorphism (unique over P ) any complete lattice into which P can be
supremum-densely and infimum-densely embedded, which means that for every
x ∈ MC(P ) there exist M,Q ⊆ P such that x =

∨
ϕ(M) =

∧
ϕ(Q), where

ϕ : P →MC(P ) is the embedding. In this case MC(P ) preserves all infima and
suprema existing in P .

In what follows (for simplicity of notations) for subsets Q1, Q2, Q of a gener-
alized effect algebra we will write Q1⊕Q2 instead of {p⊕ q | p ∈ Q1, q ∈ Q2} as
well as Q1 ≤ Q2 iff p ≤ q for all p ∈ Q1 and q ∈ Q2 and then we write Q2 0Q1
instead of {q 0 p | q ∈ Q2, p ∈ Q1}. We will write Q ≤ p instead of Q ≤ {p}.

If for an element x of a generalized effect algebra P there is a maximal natural
number n such that nx = x⊕ x · · · ⊕ x (n times) exists in P then n is called an
isotropic index of x (written n = ord(x), or n = nx for short). Otherwise we put
ord(x) = ∞. Hence P is Archimedean if every x ∈ P has a finite isotropic index.

Remark 1. For an Archimedean GMV-effect algebra P without maximal ele-
ments, the MacNeille completion MC(P ) need not be a complete effect algebra
including P as a sub-GMV-effect algebra. Moreover, P need not be meet-dense
in MC(E), where E = P ∪̇P ∗.

Example 11. Let Q be a direct product of effect algebras Qn = {0, 1, 2, . . . , n},
n ∈ N (see Proposition 2). Let

P =
{
(an)∞n=1 ∈ Q | an �= 0 for only finite number of indices

}
.

with ⊕-operation inherited from Q. Then P is a GMV-effect algebra without
maximal elements. Clearly,

P ∗ =
{
(an)∞n=1 ∈ Q | an �= n for only finite number of indices

}
.

Further, P is Archimedean and E = P ∪̇P ∗ is an Archimedean MV-effect algebra

with MC(E) =
∞∏

n=1

{{0, 1, 2, . . . , n} | n ∈ N
}

= Q. Moreover, E is a sub-MV-

effect algebra (of finite and cofinite elements) of MC(E). On the other hand
MC(P ) = P ∪ {b}, where b = (n)∞n=1. MC(P ) is not a complete MV-effect
algebra including P as a sub-GMV effect algebra, since ⊕ from P cannot be
extended onto MC(P ) to make MC(P ) a complete effect algebra. Further, we
see that P is join-dense but not meet dense in MC(E), see also [13].

Let (E;≤) be a poset and Q ⊆ P ⊆ E. We will denote by
∨

P Q (
∨

E Q) the least
upper bound of Q in (P ;≤) (in (E;≤)). Here (P ;≤) is a subposet of (E;≤).

Theorem 16. Let P be an Archimedean GMV-effect algebra and let E = P ∪̇P ∗

be its effect-algebraic extension. Then
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(i) MC(E) is a complete MV-effect algebra including P , up to isomorphism, as
a sub-GMV-effect algebra.

(ii) If P has a maximal element then MC(E) = MC(P )⊕{0, 1∗P} ∼= MC(P )×
{0, 1∗P}, where 1P =

∨
P P .

(iii) If P does not have maximal elements then
∨

E P = 0∗ is the unity of
MC(E), P is, up to isomorphism, join-dense in MC(E) and MC(P ) need
not be a complete MV-effect algebra extending P .

Proof. (i) For every a∗ ∈ P ∗ the ord(a∗) = 1 because a∗ ⊕ a∗ is not defined.
It follows that E is Archimedean iff P is Archimedean. Thus, by [15, Theo-
rem 3.4] we obtain that MC(E) is a complete MV-effect algebra including E,
up to isomorphism, as a sub-MV-effect algebra which gives that P is, up to iso-
morphism a sub-GMV-effect algebra of MC(E). This is because P is a prelattice
and sub-generalized effect algebra of E.

(ii) Let u ∈ P be a maximal element in P . Then for every y ∈ P we have
y ≤ u∨y ≤ u, since P is a lattice. It follows that u =

∨
P P and P is an MV-effect

algebra. By [27, Theorem 2.3, (iv)] we obtain that E = P⊕{0, 1∗P} ∼= P×{0, 1∗P},
where 1P = u =

∨
P P . Since P is an Archimedean effect algebra we obtain

that MC(P ) is a complete effect algebra containing P , up to isomorphism, as
a join-dense sub-MV-effect algebra. Moreover, MC(E) = MC(P ) ⊕ {0, 1∗P} ∼=
MC(P )× {0, 1∗P}.

(iii) Let P have no maximal elements. Let x ∈ P be such that P ≤ x∗.
Then P ⊕ x ⊆ P , because P is closed under ⊕. It follows that P ⊕ x ≤ x∗

and P ⊕ x ⊕ x ⊆ P ,. . .P ⊕ nx ≤ x∗, . . ., where nx = x ⊕ x ⊕ . . . ⊕ x (n times)
exists for every n ∈ N . Since P is Archimedean, we obtain that x = 0 and∨

E P = 0∗. Clearly, 0∗ is the unity of E. Further, for every x∗ ∈ P ∗ we obtain
by [6, Theorem 2.1] that

x∗ = x∗ ∧ 0∗ = x∗ ∧
∨

E
P =

∨
E

(P ∧ x∗) ,

because x∗ ↔ P . Since P is an order ideal in E we have P ∧ x∗ ⊆ P .
Let us put P̂ = {x ∈ MC(E) | S ⊆ P , x =

∨
MC(E) S}. As we have just

proved E ⊆ P̂ . Let us show that P̂ = MC(E). Assume A ⊆ P̂ , A �= ∅. By
definition of P̂ , for every x ∈ A there is Sx ⊆ P with

∨
MC(E) Sx = x. It follows

that
∨

MC(E) A =
∨

MC(E)

(⋃
x∈A Sx

) ∈ P̂ , because
⋃

x∈A Sx ⊆ P . Thus for all

Q ⊆ E we have
∨

MC(E) Q ∈ P̂ , because E ⊆ P̂ . Moreover, if x ∈ MC(E)

then there is Qx ⊆ E with
∨

MC(E) Qx = x and hence x ∈ P̂ . We obtain

MC(E) ⊆ P̂ ⊆MC(E). Example 11 shows that MC(P ) need not be a complete
MV-effect algebra extending P .

Corollary 3. Every Archimedean GMV-effect algebra P is, up to isomorphism,
a join-dense sub-GMV-effect algebra of a complete MV-effect algebra Ê preserv-
ing all suprema and infima existing in P .

Proof. If P has a maximal element then let Ê = MC(P ). If P does not have
maximal elements then let Ê = MC(P ∪̇P ∗). By Theorem 16, P is join-dense in
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Ê, up to isomorphism (i.e., for every x ∈ Ê there is Q ⊆ P with x =
∨

E ϕ(Q),
where ϕ : P → Ê is the embedding). We may identify P with its isomorphic
image in Ê. Then for every nonzero element x ∈ Ê there is a nonzero element
a ∈ P such that a ≤ x. Assume that M ⊆ P and

∨
P M = b ∈ P . Let z ∈ Ê

and M ≤ z. Then M ≤ b∧ z. If b∧ z �= b then b0 (b∧ z) �= 0 and hence there is
c �= 0, c ∈ P and c ≤ b0 (b ∧ z) ≤ b. It follows that

b ∧ z = b 0 (b0 (b ∧ z)) ≤ b0 c ∈ P

which gives that M ≤ b ∧ z ≤ b 0 c. Thus b ≤ b 0 c which implies that c = 0,
a contradiction. We obtain that b ∧ z = b and hence b ≤ z. This proves that∨

MC(E) M =
∨

P M = b. Similarly, if
∧

P M ∈ P then
∧

P M =
∧

MC(E) M .

Corollary 4. The effect algebraic extension E = P ∪̇P ∗ of an Archimedean
GMV-effect algebra P preserves all suprema and infima existing in P .

Proof. Let Q ⊆ P and let
∨

P Q ∈ P exist. Then
∨

MC(E) Q =
∨

P Q ∈ P by
Corollary 3. It follows that

∨
E Q =

∨
P Q. By the same manner we obtain that∧

E Q =
∧

P Q if
∧

P Q exists.

9 Pastings of MV-Effect Algebras

In Section 4 we have shown that every lattice effect algebra is a set-theoretical
union of MV-effect algebras (MV-algebras, see Example 5). The converse as-
sertion is not true, i.e., a set-theoretical union of MV-effect algebras need not
be a lattice effect algebra. If a union of MV-effect algebras (Mκ;⊕κ, 0κ, 1κ) is
a lattice effect algebra (E;⊕, 0, 1) such that for all κ: 0κ = 0, 1κ = 1 and the
restriction of ⊕ onto Mκ coincides with ⊕κ, then E is called a pasting of Mκ

(see [25]).
Every MV-effect algebra M has the Riesz decomposition property (RDP, for

short): a, b, c ∈ M with c ≤ a ⊕ b implies that there is a1 ≤ a and b1 ≤ b such
that c = a1 ⊕ b1.

Recall that the length of a finite chain is the number of its elements minus 1.
The length (height) of a lattice L is finite if the supremum over the number of
elements of chains in L equals to some natural number n and then n−1 is called
length of the lattice L.

Every finite chain 0 < a < 2a < . . . < 1 = naa is a distributive effect algebra
in which every pair of elements is compatible, hence it is an MV-effect algebra.

An element a of an effect algebra E is called an atom if 0 ≤ b < a implies
b = 0 and E is called atomic if for every x ∈ E, x �= 0 there is an atom a ∈ E
with a ≤ x. Clearly every finite effect algebra is atomic.

Definition 19. Let E be an effect algebra and let (Eκ)κ∈H be a family of sub-
effect algebras of E such that:
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(i) E =
⋃

κ∈H

Eκ.

(ii) If x ∈ Eκ1 \ {0, 1}, y ∈ Eκ2 \ {0, 1} and κ1 �= κ2, κ1, κ2 ∈ H, then x∧ y = 0
and x ∨ y = 1.

Then E is called a horizontal sum of effect algebras (Eκ)κ∈H .

Example 12. If MV-effect algebras M1 and M2 are finite chains of different
lengths then the horizontal sum of M1 and M2 is the unique lattice effect algebra
E such that {M1,M2} is the family of all blocks of E.

Really, assume that M1 = {0, a, . . . , naa}, M2 = {0, b, . . . , nbb} and na < nb.
Contrary to our claim, assume that ka = �b for some � �= nb. Then a ≤ ka =
�b < b′, which gives a ↔ b and hence, by [14], M1 ∪M2 is the set of pairwise
compatible elements, a contradiction. Thus ka = �b implies � = nb which gives
k = na, because nbb ∈ S(E) while for k < na we have ka /∈ S(E). This proves
that E = M1 ∪M2 is the horizontal sum of its blocks M1 and M2.

If M1 and M2 have the same length, i.e., na = nb then M1 and M2 are
isomorphic MV-effect algebras (by Proposition 2) and we can identify them. In
this case we will call a and b isotropically equivalent.

Definition 20. Let M1 and M2 be complete atomic MV-effect algebras, let A1
and A2 be the sets of all atoms of M1 and M2, respectively, and let D1 ⊆ A1
and D2 ⊆ A2. The sets D1 and D2 are called isotropically equivalent (written

D1
istr∼ D2) if there is a bijection ϕ : D1 → D2 such that np = ord(p) = nϕ(p) =

ord(ϕ(p)) for all p ∈ D1. If D1 = {p} and D2 = {q} then p and q are called
isotropically equivalent atoms.

Example 13. Assume that M1 and M2 are complete atomic MV-effect algebras
and E = M1 ∪M2 is an effect algebra such that {M1,M2} is the family of all
blocks in E. Then every atom p of E is an atom of M1 or M2 and conversely, since
p ↔ x iff p ≤ x or p ≤ x′. Further, if p ∈ M1 ∩M2 then {0, p, 2p, . . . , npp} ⊆
M1 ∩ M2, because x ↔ p gives x ↔ kp for all kp existing in E, and hence
the isotropic indices of p in M1 and M2 must coincide. Moreover, if for atoms
p �= q we have npp = nqq then p �↔ q and the interval [0, npp]E in E is the
horizontal sum of chains {0, p, . . . , npp} and {0, q, . . . , nqq}. Otherwise we have
p ↔ q, which implies q ≤ p ⊕ q = p ∨ q = npp and by RDP we obtain q = p,
a contradiction. Moreover, kp = �q for k < np implies that q ≤ kp ≤ p′, which
again gives p↔ q hence p = q, a contradiction.

Recall that a map ω : E → [0, 1] ⊆ R is called a (finitely additive) state on an
effect algebra (E;⊕, 0, 1) if ω(1) = 1 and x ≤ y′ ⇒ ω(x ⊕ y) = ω(x) + ω(y),

and ω is called (o)-continuous if xα
(o)→ x⇒ ω(xα) → ω(x) in R. Here, for a net

(xα)α∈E of elements of E we right xα
(o)→ x if there exist nets (uα)α∈E , (vα)α∈E

such that uα ≤ xα ≤ vα for all α ∈ E and uα ↑ x, vα ↓ x (i.e., α ≤ β ⇒ uα ≤ uβ ,
vα ≥ vβ and x =

∨{uα | α ∈ E} =
∧{vα | α ∈ E}.
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Theorem 17. Let (Mκ)κ∈H be a family of complete atomic MV-effect alge-
bras such that there are nonempty sets Dκ of atoms of Mκ, κ ∈ H satisfying

Dκ1

istr∼ Dκ2 , for every pair κ1, κ2 ∈ H. Let uκ =
⊕{npp | p ∈ Dκ} �= 1κ and

[0κ, u
′
κ]Mκ �= {0κ, u

′
κ}, κ ∈ H. Then for chosen κ0 ∈ H and every κ ∈ H:

(i) uκ ∈ C(Mκ).
(ii) [0κ, uκ]Mκ

∼= [0κ0 , uκ0 ]Mκ0
.

(iii) Fκ = [0κ, uκ]Mκ ∪ [u′κ, 1κ]Mκ
∼= Fκ0 and Fκ0 is an MV-effect algebra.

(iv) There is a complete atomic effect algebra E =
⋃

κ∈H Mκ, whose family of all
blocks coincides with (Mκ)κ∈H ,

⋂
κ∈H Mκ = Fκ0 and E ∼= [0κ0 , uκ0 ]Mκ0

×G,
where G is the horizontal sum of all [0κ, u

′
κ]Mκ , κ ∈ H.

(v) Mκ1 ∩Mκ2 = Fκ0 , for any pair of blocks of E.
(vi) There is an (o)-continuous state on E.

Proof. (i) Let Aκ be the set of all atoms of Mκ, κ ∈ H . By [18, Theorem 3.3], for
every x ∈ Mκ there is a set {aα ∈ Aκ | α ∈ E} and positive integers kα, α ∈ E
such that x =

⊕{kαaα | α ∈ E} =
∨{kαaα | α ∈ E}. Moreover, x ∈ S(Mκ) iff

kα = naα = ord(aα) for all α ∈ E . Since Mκ is an MV-effect algebra, we have
S(Mκ) = C(Mκ), which proves that uκ ∈ C(Mκ).

(ii) Since Mκ is an MV-effect algebra, it satisfies Riesz decomposition property.
By part (i) of the proof and RDP we have that for every p ∈ Dκ the element
npp is an atom of S(Mκ) = C(Mκ) and hence the interval [0κ, npp]Mκ in Mκ is a
finite chain 0κ < p < 2p < . . . < npp (see [20]). Let ϕ : Dκ → Dκ0 be a bijection
satisfying np = ord(p) = ord(ϕ(p)) = nϕ(p) for all p ∈ Dκ. We can extend the
mapping ϕ onto [0κ, npp]Mκ by putting ϕ(kp) = kϕ(p) for all k ≤ np. Obviously,
ϕ [0κ, npp]Mκ → [0κ0 , ϕ(npp)]Mκ0

is an isomorphism. Further {npp | p ∈ Dκ}
is the set of all atoms of the center C([0κ, uκ]Mκ) which, by [19, Lemma 4.3],
gives [0κ, uκ]Mκ

∼=∏{[0κ, npp]Mκ | p ∈ Dκ} ∼=
∏{[0κ0 , ϕ(npp)]Mκ0

| p ∈ Dκ0} ∼=
[0κ0 , uκ0 ]Mκ0

.
(iii) Using (ii) we obtain Fκ

∼= [0κ, uκ]Mκ × {0κ, u
′
κ} ∼= [0κ0 , uκ0 ]Mκ0

×
{0κ0, u

′
κ0
} ∼= Fκ0 . Since Fκ0 is a sub-effect algebra and a complete sub-lattice of

Mκ0 , we obtain that Fκ0 is a complete atomic MV-effect algebra as well.
(iv) Since the intervals [0κ, u

′
κ]Mκ are complete sub-lattices of Mκ, these inter-

vals, with ⊕ inherited from Mκ, as well as their horizontal sum G are complete
atomic effect algebras. Moreover, ([0κ, u

′
κ]Mκ)κ∈H is a family of blocks of G. Let

us construct an effect algebra E =
⋃

κ∈H Mκ
∼= [0κ0 , uκ0 ]Mκ0

×G by such a way
that we identify all Fκ = [0κ, uκ]Mκ ∪ [u′κ, 1κ]Mκ , κ ∈ H , with the MV-effect al-
gebra Fκ0 and, moreover, we make a horizontal sum of all [0κ, u

′
κ]Mκ identifying

all 0κ with 0κ0 and u′κ with u′κ0
. By [21] every block of E is isomorphic to a direct

product of [0κ0 , uκ0]Mκ0
and a block of G, and conversely, since [0κ0 , uκ0 ]Mκ0

is
an MV-effect algebra. This proves that M is a block of E iff there is κ ∈ H such
that M ∼= [0κ, uκ]Mκ × [0κ, u

′
κ]Mκ and hence M = Mκ.

(v) Let κ1, κ2 ∈ H . Then Mκ1
∼= [0κ0 , uκ0 ]Mκ0

× [0κ1 , u
′
κ1

]Mκ1
and Mκ2

∼=
[0κ0 , uκ0 ]Mκ0

× [0κ2 , u
′
κ2

]Mκ2
. Further, we have identified elements 0κ0 , 0κ1 and

0κ2 , and elements u′κ0
, u′κ1

and u′κ2
. It follows that in E we have [0κ1 , u

′
κ1

]Mκ1
∩

[0κ2 , u
′
κ2

]Mκ2
= {0κ0, u

′
κ0
}. We obtain that

Mκ1 ∩Mκ2
∼= [0κ0 , uκ0 ]× {0κ0 , u

′
κ0
} ∼= Fκ0 .
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(vi) By (iii), E ∼= [0, u]×G, where u ∈ C(E), [0, u] is a complete atomic MV-
effect algebra and G is the horizontal sum of a family (Eκ)κ ∈ H of complete
atomic MV-effect algebras. By [19, Theorem 5.2], on every complete atomic
MV-effect algebra Eκ there is an (o)-continuous state ωκ, κ ∈ H . Let us define
a mapping ωG : G → [0, 1] by the following way: For every x ∈ G let ωG(x) =
ωκ(x), where κ ∈ H be such that x ∈ Eκ. Obviously ωG is an (o)-continuous
state on G. Further, let ω0 be an (o)-continuous state on [0, u]. For every pair
of nonnegative real numbers k1 and k2 with k1 + k2 = 1, the mapping ω =
k1ω0+k2ωG is an (o)-continuous state on E. The last follows by the facts that for
x, y ∈ E with x ≤ y′ we have (x⊕y)∧u = (x∧u)⊕(y∧u), as well as (x⊕y)∧u′ =
(x∧u′)⊕ (y∧u′) (see [19, Lemma 4.1]) and x⊕ y = ((x⊕ y)∧u)⊕ ((x⊕ y)∧u′).
Further for xα, x ∈ E such that xα ↑ x, α ∈ E we have xα∧u ↑ x∧u, xα∧u′ ↑ x∧u′
and xα = (xα ∧ u) ⊕ (xα ∧ u′) ↑ (x ∧ u) ⊕ (x ∧ u′) = x, α ∈ E , since there is
κ ∈ H such that for all α ∈ E we have xα ∧ u′ ∈ Eκ.

Definition 21. The complete atomic effect algebra E, constructed in Theo-
rem 17, is called a pasting of MV-effect algebras (Mκ)κ∈E together along an
MV-effect algebra
[0κ0 , uκ0 ]Mκ0

∪ [u′κ0
, 1κ0 ]Mκ0

⊆Mκ0 , for chosen κ0 ∈ H.

Remark 2. Form the proof of Theorem 17 it is clear that if the chosen sets Dκ of
atoms of Mκ are finite then the completeness of MV-effect algebras Mκ, κ ∈ H
can be weakened to the assumption that all Mκ are Archimedean, since then
elements uκ =

⊕{npp | p ∈ Dκ} exist. Obviously, then E =
⋃

κ∈H Mκ will be
an Archimedean atomic lattice effect algebra admitting an (o)-continuous state.

If Mκ, κ ∈ H are complete atomic Boolean algebras and all sets Dκ of atoms
of Mκ have the same cardinality then E =

⋃
κ∈H Mκ constructed in Theorem 17

will be a complete atomic orthomodular lattice with blocks Mκ, κ ∈ H . If Dκ are
finite then the assumption of completeness of Mκ can be omitted. For pasting
of orthomodular posets we refer the reader to Navara and Rogalewicz [10].

10 Applications, Conclusions and Open Problems

Recently studied new algebraic structures (for modeling of noncompatibility,
uncertainity or unsharpness), lattice effect algebras have sub-lattice effect alge-
bras which are well-known structures: orthomodular lattices (the sets S(E) of
all sharp elements), Boolean algebras (centers C(E)) and MV-algebras (blocks
M ⊆ E and the centers of compatibility B(E)).

(1) The result about sets S(E) shows that lattice effect algebras are in fact
“smeared” orthomodular lattices. Moreover, this “smearing” is done in such a
good way that also existing states or probabilities (additive maps ω : S(E) →
[0, 1] ⊆ (−∞,∞) such that ω(1) = 1 and x ≤ y′ ⇒ ω(x⊕ y) = ω(x) + ω(y)) on
S(E) are smeared onto whole lattice effect algebras.

Smearing Theorem for States, [18]. For every complete (o)-continuous
atomic effect algebra (E;⊕, 0, 1) the following conditions are equivalent:
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(i) There is a state on the orthomodular lattice S(E) = {x ∈ E | x ∧ x′ = 0}.
(ii) There is a state on E.
(iii) There is an (o)-continuous state on E.

Smearing Theorem for (o)-Continuous States ([23]). Let E be a complete
atomic effect algebra and let ω : S(E) → [0, 1] ∈ (−∞,∞) be an (o)-continuous
state on S(E). Then there is a state ω̂ on E extending ω

From the point of view of constructing states or probabilities on lattice effect
algebras the following theorem is a crucial fact:

Theorem on Basic Decomposition of Elements ([23]). Let E be a complete
atomic effect algebra. Then for every x ∈ E, x �= 0, there exists a unique wx ∈
S(E), a unique set {aα | α ∈ A} of atoms of E and unique positive integers kα,
α ∈ A such that

x = wx ⊕
(⊕{kαaα | α ∈ A})

and if w ∈ S(E) with w ≤ x0 wα then w = 0.
(2) For more detailed description of some important sub-families of lattice

effect algebras, it is a big help to know its direct and subdirect product decompo-
sitions (see Definition 6).

Theorem on Subdirect Product Decompositions ([21]). Let (E;⊕, 0, 1) be
a lattice effect algebra and D ⊆ C(E) with (1)

∨
D = 1 and (2) d1 ∧ d2 = 0 for

all d1 �= d2; d1, d2 ∈ D. Then:

(i) E is isomorphic to a subdirect product of the family of effect algebras {[0, d] |
d ∈ D}.

(ii) Up to isomorphism, E is a sub-lattice of Ê =
∏{[0, d] | d ∈ D}.

(iii) If, moreover, E is complete or D is finite then E ∼= Ê.

Corollary A ([21]). Under the assumptions of Subdirect Product Decompositions
theorem, if, moreover E is complete or D is finite then:

(i) M is a block of E iff M ∼= ∏{Md | d ∈ D, Md is a block of E} =
∏{M ∩

[0, d] | d ∈ D}.
(ii) S(E) ∼=∏{S([0, d]) | d ∈ D}.
(iii) B(E) ∼=∏{B([0, d]) | d ∈ D}.
(iv) C(E) ∼=∏{C([0, d]) | d ∈ D}.
Corollary B ([21]). Under the assumptions of Subdirect Product Decompositions
theorem, if ϕD is the embedding of E into

∏{[0, d] | d ∈ D} defined for all x ∈ E
by ϕD(x) = (x ∧ d)d∈D, then

(i) M is a block of E iff there are blocks Md of [0, d], d ∈ D such that M =
ϕ−1

D

(∏{Md | d ∈ D}).
(ii) S(E) = ϕ−1

D

(∏{S([0, d]) | d ∈ D}),
(iii) B(E) = ϕ−1

D

(∏{B([0, d]) | d ∈ D}),
(iv) C(E) = ϕ−1

D

(∏{C([0, d]) | d ∈ D}).
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(3) Using results from (2), we can obtain a detailed description of some families
of Archimedean atomic lattice effect algebras. Note that a lattice effect algebra
is called distributive (modular) if it is a distributive (modular) lattice.

Proposition A ([20]). Every atomic Archimedean distributive effect algebra can
be sub-directly decomposed into finite chains and distributive diamonds.

Proposition B ([22]). Every complete atomic modular effect algebra E can be
decomposed into direct product

∏{[0, p] | p atom of C(E)} where every interval
[0, p] has at least one of the following properties:

(i) [0, p] is an irreducible complete atomic modular ortholattice.
(ii) [0, p] is a finite chain.
(iii) [0, p] is a horizontal sum of a family of Boolean algebras and chains, all of

length 2.

(4) Evidently, for families of MV-effect algebras, distributive and modular
effect algebras we have

MV-effect algebras ⊆ distributive effect algebras ⊆ modular effect algebras.
Using their descriptions from (3) we can prove the existence of (o)-continuous
states on them.

Existence Theorem for States ([22]). Let E be a complete atomic modular
effect algebra. Then:

(i) There is an (o)-continuous state on E.
(ii) There is a faithful (o)-continuous subadditive state on E iff C(E) is separable.

Here subadditivity of a state ω on E means that ω(a ∨ b) ≤ ω(a) + ω(b) for all
a, b ∈ E. A state is faithful if ω(a) = 0 implies a = 0.

(5) Finally, let us note that some subfamilies of lattice effect algebras are
characterized by relations between subalgebras S(E), C(E) and B(E). Thus

(a) E is an orthomodular lattice iff E = S(E) and then C(E) = B(E). Con-
versely, C(E) = B(E) does not imply E = S(E), see Fig. 5.

(b) E is an MV-effect algebra iff E = B(E) and then C(E) = S(E). Conversely,
C(E) = S(E) does not imply E = B(E), see Fig. 6.

(c) E is a Boolean algebra iff E = C(E) and then C(E) = S(E) = B(E).
Conversely, C(E) = S(E) = B(E) does not imply E = C(E), see Fig. 6.

Fig. 5.
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Fig. 6.

Open Problems

The following questions are still unanswered:

(1) For which lattice effect algebras we have C(E) = S(E) and for which C(E) =
S(E) = B(E)?

(2) Does there exist an atomic lattice effect algebra with non-atomic C(E) or
with non-atomic S(E)? It is known that an atomic orthomodular lattice with
a nonatomic block exists.

(3) Since for a generalized effect algebra P and its effect algebraic extension
E = P ∪̇P ∗ we have S(E) ∩ P = S(P ), C(E) ∩ P = C(P ) and B(E) ∩ P =
B(P ) (see previous sections), we may ask which algebraic and probabilistic
properties of P are preserved for (inherited from) E = P ∪̇P ∗.

(4) In Section 9 we have shown one possibility of pastings of MV-effect algebras.
It would be interesting to study other pastings of MV-effect algebras for
constructing lattice effect algebras.
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Abstract. We present a decision procedure for the quantifier-free satisfi-
ability problem of the language BLmf of bounded lattices with monotone
unary functions. The language contains the predicates = and ≤, as well as
the operators � and � over terms which may involve uninterpreted unary
function symbols. The language also contains predicates for expressing in-
creasing and decreasing monotonicity of functions, as well as a predicate
for pointwise function comparison.

Our decision procedure runs in polynomial time O(m4) for normalized
conjunctions of m literals, thus entailing that the quantifier-free satisfi-
ability problem for BLmf is NP-complete. Furthermore, our decision
procedure can be used to decide the quantifier-free satisfiability problem
for the language CLmf of complete lattices with monotone functions.
This allows us to conclude that the languages BLmf and CLmf are
equivalent for quantifier-free formulae.

1 Introduction

Lattices are partial orders in which every pair of elements has a least upper bound
and a greatest lower bound. They have several applications in mathematics and
computer science, including model checking [7], knowledge representation [11],
partial order programming [12], denotational semantics [10], rewrite systems [4],
relational methods in computer science [5], computer security [9], and so on.

In this paper we introduce the language BLmf (Bounded Lattices with
monotone functions) for expressing constraints over lattices and monotone func-
tions. The language BLmf contains the equality predicate =, the ordering pred-
icate ≤, and the operators ! (meet) and " (join). The language also allows for
uninterpreted unary function symbols, and has the following predicates for ex-
pressing monotonicity properties of functions:

– the predicate symbol inc(f), stating that the function f is increasing;
– the predicate symbol dec(f), stating that the function f is decreasing;
– the predicate symbol const(f), stating that the function f is constant;
– the predicate symbol leq(f, g), stating that f(a) ≤ g(a), for each a.
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We prove that the quantifier-free satisfiability problem of BLmf is decidable.
In particular, we present a decision procedure that allows one to decide the
BLmf -satisfiability of normalized conjunctions1 of m literals in polynomial time
O(m4). Such result entails at once that the quantifier-free satisfiability problem
of BLmf is NP-complete.

We also study the language CLmf of complete lattices with monotone func-
tions. The syntax of CLmf is the same of that of BLmf . Semantically, CLmf
differs from BLmf in that a model of the language CLmf involves a complete
lattice rather than just a bounded lattice.

We show that our decision procedure for the quantifier-free satisfiability prob-
lem of BLmf is also a decision procedure for the quantifier-free satisfiability
problem of CLmf . Therefore it follows that a quantifier-free formula is BLmf -
satisfiable if and only if it is CLmf -satisfiable, so that the language BLmf and
CLmf are equivalent for quantifier-free formulae.

1.1 Related Work

Cantone, Ferro, Omodeo, and Schwartz [1] provide a decision procedure for the
quantifier-free language POSMF of lattices extended with unary function sym-
bols and the predicates inc(f) and dec(f). The language POSMF does not
contain the operators ! and ", and it does not contain the predicates const(f)
and leq(f, g). The decision procedure for POSMF is based on a nondetermin-
istic quadratic reduction to the quantifier-free fragment of set theory MLS
(cf. [6]).

Sofronie-Stokkermans [13] proved that the quantifier-free languages of (a) par-
tially ordered sets, (b) totally ordered sets, (c) dense totally ordered sets, (d)
semilattices, (e) lattices, (f) distributive lattices, (g) boolean algebras, and (h)
real numbers can be extended, while still preserving decidability, with one or
more monotone increasing unary functions.

In a preliminary version of this paper [2], which dealt only with the quantifier-
free satisfiability problem of the language CLmf , the authors give a flawed proof
of the decidability of CLmf . The bug is as follows: In [2, page 9], the partial
order 〈A,≤A〉 is not necessarily a lattice, and therefore the functions !A and "A

are not well-defined in general. Here we fix such problem by taking the Dedekind-
MacNeille completion of the partial order 〈A,≤A〉 (see Section 4, Proposition 28,
for details).

Tarski [14] proved that the fully quantified language of lattices is undecidable.

1.2 Organization of the Paper

In Section 2 we introduce some basic notions of lattice theory, and we define
the syntax and semantics of the language BLmf . In Section 3 we present our
decision procedure for the quantifier-free satisfiability problem of BLmf , and we
give an example of our decision procedure in action. In Section 4 we prove that

1 The notion of normalized set of literals will be defined in Definition 20.
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our decision procedure is correct, and we analyze its complexity. In Section 5 we
discuss the language CLmf . In Section 6 we draw some final conclusions.

2 Preliminaries

2.1 Partial Orders

Definition 1. A partial order is a pair (A,≤) where A is a nonempty set
and ≤ is a reflexive, antisymmetric, and transitive binary relation of A. �

Definition 2. Let (A,≤) be a partial order and let ∅ �= X ⊆ A. We say that y
is a maximum of X with respect to (A,≤) if the following conditions hold:

– y ∈ X ;
– x ≤ y, for each x ∈ X . �

When it exists, the maximum of X with respect to (A,≤) is unique. Conse-
quently, we use the notation max (X,A,≤) to denote the unique maximum of X
with respect to (A,≤) when it exists; otherwise, we let max (X,A,≤) = undef .

Definition 3. Let (A,≤) be a partial order and let ∅ �= X ⊆ A. We say that y
is a minimum of X with respect to (A,≤) if the following conditions hold:

– y ∈ X ;
– y ≤ x, for each x ∈ X . �

When it exists, the minimum ofX with respect to (A,≤) is unique. Consequently,
we use the notation min(X,A,≤) to denote the unique minimum of X with
respect to (A,≤) when it exists; otherwise, we let min(X,A,≤) = undef .

Definition 4. Let (A,≤) be a partial order and let ∅ �= X ⊆ A. We say that y
is a least upper bound of X with respect to (A,≤) if the following conditions
hold:

– x ≤ y, for each x ∈ X ;
– if x ≤ z, for each x ∈ X , then y ≤ z. �

When it exists, the least upper bound of X with respect to (A,≤) is unique.
Consequently, we use the notation lub(X,A,≤) to denote the unique least
upper bound of X with respect to (A,≤) when it exists; otherwise, we let
lub(X,A,≤) = undef .

Proposition 5. Let (A,≤) be a partial order and let ∅ �= X ⊆ A. Then,
max (X,A,≤) �= undef implies max (X,A,≤) = lub(X,A,≤). �

Definition 6. Let (A,≤) be a partial order and let ∅ �= X ⊆ A. We say that
y is a greatest lower bound of X with respect to (A,≤) if the following
conditions hold:
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– y ≤ x, for each x ∈ X ;
– if z ≤ x, for each x ∈ X , then z ≤ y. �

When it exists, the greatest lower bound of X with respect to (A,≤) is unique.
Consequently, we use the notation glb(X,A,≤) to denote the unique great-
est lower bound of X with respect to (A,≤) when it exists; otherwise, we let
glb(X,A,≤) = undef .

Proposition 7. Let (A,≤) be a partial order and let ∅ �= X ⊆ A. Then,
min(X,A,≤) �= undef implies min(X,A,≤) = glb(X,A,≤). �

2.2 Lattices

Definition 8. A lattice is a tuple (A,≤,",!) where:

– (A,≤) is a partial order;
– glb({a, b}, A,≤) �= undef and lub({a, b}, A,≤) �= undef , for all a, b ∈ A;
– a " b = lub({a, b}, A,≤);
– a ! b = glb({a, b}, A,≤). �

Definition 9. A bounded lattice is a tuple (A,≤,",!,1,0) where:

– (A,≤,",!) is a lattice;
– 1 = max (A,A,≤);
– 0 = min(A,A,≤). �

Definition 10. A complete lattice is a tuple (A,≤,",!,1,0) where:

– (A,≤,",!,1,0) is a bounded lattice;
– glb(X,A,≤) �= undef and lub(X,A,≤) �= undef , for each ∅ �= X ⊆ A. �

Remark 11. If (A,≤,",!,1,0) is a complete lattice, we let lub(∅, A,≤) = 0
and glb(∅, A,≤) = 1. �

Proposition 12. Let (A,≤,",!,1,0) be a complete lattice. Then, the following
properties hold:

a " b = b " a , a ! b = b ! a ,

(a " b) " c = a " (b " c) , (a ! b) ! c = a ! (b ! c) ,
a " a = a , a ! a = a ,

a " (a ! b) = a , a ! (a " b) = a .

Moreover, we have:

a ≤ b ↔ a " b = b ↔ a ! b = a . �

Proposition 13. Let (A,≤,",!,1,0) be a complete lattice, and let X,Y ⊆ A.
Then, X ⊆ Y implies lub(X) ≤ lub(Y ). �

Proposition 14. Let (A,≤,",!,1,0) be a complete lattice, and let X,Y ⊆ A.
Then, X ⊆ Y implies glb(Y ) ≤ glb(X). �
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2.3 Dedekind-MacNeille Completion

The Dedekind-MacNeille completion allows one to extend a partial order (A,≤)
into a complete lattice. It was introduced by MacNeille [8], who generalized the
Dedekind completion [3] for constructing the set R of real numbers from the set
Q of rational numbers.

Proposition 15 ([8]). Let (A,≤) be a partial order. Then there exists a unique2

minimal complete lattice (B,3,",!,1,0) such that:

(a) A ⊆ B;
(b) a ≤ b iff a 3 b, for each a, b ∈ A;
(c) If lub(X,A,≤) �= undef , then lub(X,B,3) = lub(X,A,≤), for each ∅ �=

X ⊆ A;
(d) If glb(X,A,≤) �= undef , then glb(X,B,3) = glb(X,A,≤), for each ∅ �=

X ⊆ A. �

Definition 16. Let (A,≤) be a partial order. The Dedekind-MacNeille
completion of (A,≤) is the unique complete lattice (B,3,",!,1,0) satisfying
properties (a)–(d) of Proposition 15. �

2.4 Syntax of BLmf

The language BLmf (Bounded Lattices with monotone functions) is a quantifier-
free language containing the following symbols:

– arbitrarily many variables x, y, z, . . . ;
– the constant symbols 1 and 0;
– the function symbols " and !;
– the binary predicate symbols ≤ and =;
– arbitrarily many unary function symbols f , g, . . .
– the predicate symbol inc(f);
– the predicate symbol dec(f);
– the predicate symbol const(f);
– the predicate symbol leq(f, g).

Definition 17. The set of BLmf-terms is the smallest set satisfying the fol-
lowing conditions:

– Every variable is a BLmf -term;
– 1 and 0 are BLmf -terms;
– If s and t are BLmf -terms, so are s " t and s ! t;
– If s is a BLmf -term and f is a function symbol, then f(s) is a BLmf -term.

2 Up to an isomorphism.
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BLmf-atoms are of the form:

s = t , s ≤ t , inc(f) ,
dec(f) , const(f) , leq(f, g) ,

where s, t are BLmf -terms and f, g are unary function symbol.
BLmf-formulae are constructed from BLmf -atoms using the propositional

connectives ¬, ∨, ∧, →, and ↔. BLmf-literals are BLmf atoms or their
negations. �
If ϕ is a BLmf -formula, we denote with vars(ϕ) the set of variables occurring
in ϕ. If Φ is a set of BLmf -formulae, we let vars(Φ) =

⋃
ϕ∈Φ vars(ϕ).

2.5 Semantics of BLmf

Definition 18. A BLmf-interpretation A is a pair
(
A, (·)A) where A �= ∅

and (·)A interprets the symbols of the language BLmf as follows:

–
(
A,≤A,"A,!A,1A,0A) is a bounded lattice;

– =A is interpreted as the identity in A;
– each variable x is mapped to an element xA ∈ A;
– each unary function symbol f is mapped to a function fA : A→ A;
– [inc(f)]A = true iff a ≤A b implies fA(a) ≤A fA(b), for each a, b ∈ A;
– [dec(f)]A = true iff a ≤A b implies fA(b) ≤A fA(a), for each a, b ∈ A.
– [const(f)]A = true iff fA(a) = fA(b), for each a, b ∈ A.
– [leq(f, g)]A = true iff fA(a) ≤A gA(a), for all a ∈ A. �

Let ϕ be either a BLmf -formula or a BLmf -term, and let A be a BLmf -
interpretation. We denote with ϕA the evaluation of ϕ under A.

Definition 19. A BLmf -formula A is BLmf-satisfiable if there exists a
BLmf -interpretation A such that ϕA = true. A set Φ of BLmf -formulae is
BLmf-satisfiable if there exists a BLmf -interpretation A such that ϕA =
true, for each ϕ ∈ Φ. �

3 A Decision Procedure for BLmf

In this section we present a decision procedure for the quantifier-free satisfiability
problem for the language BLmf . Without loss of generality, we restrict ourselves
to normalized sets of BLmf -literals.

Definition 20. A set Γ of BLmf -literals is normalized if it satisfies the fol-
lowing conditions:

1. Each BLmf -literal in Γ is of the form

x = y , x �= y , x ≤ y , x �≤ y ,

x = y " z , x = y ! z , x = f(y) ,
inc(f) , dec(f) , const(f) , leq(f, g) ,

where:
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– x, y, z can be either variables or the constant symbols 1 and 0;
– f, g are unary function symbols.

2. For each unary function symbol f , no more than one of the following BLmf -
literals is in Γ :

inc(f) , dec(f) , const(f) . �

Proposition 21. Every finite set of BLmf-literals can be converted in polyno-
mial time into a BLmf-equisatisfiable normalized set of BLmf-literals. �

Proof. Let Γ be a finite set of BLmf -literals. By opportunely introducing
fresh variables, we can convert all literals in Γ—while still preserving BLmf -
satisfiability—to literals conforming condition 1 of Definition 20. In particular,
literals of the form ¬inc(f) can be replaced by a conjunction x ≤ y ∧ u =
f(x) ∧ v = f(y) ∧ u �≤ v, where x, y, u, and v are fresh variables. Similar
replacements can be performed for the literals of the form ¬dec(f), ¬const(f),
and ¬leq(f, g). Finally, condition 2 of Definition 20 can be enforced by exploiting
the following equivalences:

inc(f) ∧ dec(f) ≡ const(f) ,
inc(f) ∧ const(f) ≡ const(f) ,
dec(f) ∧ const(f) ≡ const(f) ,

inc(f) ∧ dec(f) ∧ const(f) ≡ const(f) . �

Given a normalized set Γ of BLmf -literals, we define the following four pairwise
disjoint sets:

– INC (Γ ) contains all unary function symbols f such that the literal inc(f)
is in Γ .

– DEC (Γ ) contains all unary function symbols f such that the literal dec(f)
is in Γ .

– CONST (Γ ) contains all unary function symbols f such that the literal
const(f) is in Γ .

– NORM (Γ ) contains all unary function symbols that do not belong to
INC (Γ ) ∪DEC (Γ ) ∪ CONST(Γ ).

Our decision procedure is based on the inference rules shown in Figure 1. In
order to ensure termination we require the following:

– If R is not a fresh-variable rule, then R cannot be applied to a conjunction
of normalized literals Γ if the conclusion of R is already in Γ .

– If R is a fresh-variable rule whose conclusion is a literal �, then R cannot be
applied to Γ if the literal �{fresh/w} is already in Γ , for some variable w.

Definition 22. A normalized set Γ of BLmf -literals is saturated if no infer-
ence rule in Figure 1 can be applied to Γ . �
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=-rules

x = x

x = y
�

�{x/y}

≤-rules

x ≤ x

x ≤ y
y ≤ x

x = y

x ≤ y
y ≤ z

x ≤ z x ≤ 1 0 ≤ x

!-rules

x = y � z

x ≤ y
x ≤ z

x = y � z
w ≤ y
w ≤ z

w ≤ x

"-rules

x = y � z

y ≤ x
z ≤ x

x = y � z
y ≤ w
z ≤ w

x ≤ w

Functions rules

x = x′

y = f(x)
y′ = f(x′)

y = y′

inc(f)
x ≤ x′

y = f(x)
y′ = f(x′)

y ≤ y′

dec(f)
x ≤ x′

y = f(x)
y′ = f(x′)

y′ ≤ y

const(f)
y = f(x)
y′ = f(x′)

y = y′

leq(f, g)
y = f(x)
y′ = g(x)

y ≤ y′

Fresh-variables rules

leq(f, g)
y = f(x)

fresh = g(x)

leq(f, g)
y = g(x)

fresh = f(x) fresh = f(1) fresh = f(0)

Notes
– In the second =-rule, the literal � does not contain any function symbol. Additionally, by �{x/y}

we mean the literal obtained by replacing any occurrence of x in � by y.
– In the first = rule, first ≤-rule, and last two ≤-rules, the variables x already occurs in Γ .
– In the fresh-variables rules, fresh stands for a newly introduced variable.

Fig. 1. Inference rules for computing closure(Γ )
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If Γ is a normalized set of BLmf -literals, we denote with closure(Γ ) the smallest
saturated set of BLmf -literals containing Γ . Note that the set closure(Γ ) is
normalized.

The above two constraints on the applicability of the inference rules in Figure 1
imply that closure(Γ ) has at most O(m4) literals, for any normalized set Γ of
BLmf -literals with m literals.

Proposition 23. Let Γ be a normalized set of BLmf-literals with m literals.
Then closure(Γ ) has at most O(m4) literals. �
Proof. Clearly, the first two fresh-variables rules introduce at most O(m2)-
variables. The second two fresh-variables rules introduce at most O(k)-variables,
where k is the number of unary function symbols in Γ . Since k = O(m), it
follows that all the fresh-variables rules introduce at most O(m2)-variables, and
therefore closure(Γ ) contains at most O(m2)-variables. Therefore, the remaining
rules can introduce at most O((m2)2) literals, which implies that closure(Γ )
contains at most O(m4)-literals. �
Definition 24. A normalized set Γ of BLmf -literals is consistent if it does
not contain any two complementary literals �,¬�; otherwise it is inconsistent.�
Given a finite normalized set Γ of BLmf -literals, our decision procedure consists
of the following two steps:

Step 1. Compute Δ = closure(Γ ).
Step 2. Output satisfiable if Δ is consistent; otherwise output unsatis-

fiable.

Example 25. Let Γ be the following set of BLmf -literals

Γ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
inc(f) ,
dec(g) ,
leq(f, g) ,
f(0) = g(0) ,
f(x) �= g(x)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

We claim that Γ is BLmf -unsatisfiable. In fact, the first four literals imply that
f = g, which contradicts the last literal.

We use our decision procedure in order to automatically check that Γ is
BLmf -unsatisfiable. First, note that Γ is BLmf -equisatisfiable with the follow-
ing normalized set Γ ′ of BLmf -literals:

Γ ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inc(f) ,
dec(g) ,
leq(f, g) ,
y1 = f(0) ,
y2 = g(0) ,
y1 = y2 ,
z1 = f(x) ,
z2 = g(x) ,
z1 �= z2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Then, note that closure(Γ ′) must contain, among others, the following literals:

0 ≤ x , by the fifth ≤-rule ,
y1 ≤ z1 , by the second functions rule ,
z1 ≤ z2 , by the fifth functions rule ,
z2 ≤ y2 , by the third functions rule ,
z2 ≤ y1 , by the second =-rule ,
y1 ≤ z2 , by the third ≤-rule ,
z2 = y1 , by the second ≤-rule ,
z1 ≤ y1 , by the second =-rule ,
z1 = y1 , by the second ≤-rule ,
z1 = z2 , by the second =-rule .

Since closure(Γ ′) contains the complementary literals z1 = z2 and z1 �= z2,
our decision procedure outputs unsatisfiable, as desired. �

4 Correctness and Complexity

Proposition 26. Let Γ be a BLmf-satisfiable normalized set of BLmf-
literals, and let Γ ′ be the result of extending Γ by means of an application of
one of the inference rules in Figure 1. Then Γ ′ is BLmf-satisfiable. �

Proof. Let A be a BLmf -interpretation satisfying Γ . If Γ ′ involves the same
variables of Γ , then it is routine to verify that A satisfies Γ ′ too. Otherwise, if Γ ′

is obtained from Γ by applying a fresh-variables rule, and therefore it involves a
variable fresh not present in Γ , then it can easily be argued that Γ ′ is satisfied
by a suitable variant A′ of the BLmf -interpretation A, which assigns the same
values to every symbol of the language, except possibly the variable fresh. �

Proposition 27 (Soundness). Let Γ be a BLmf-satisfiable finite normalized
set of BLmf-literals. Then closure(Γ ) is BLmf-satisfiable. �

Proof. By Propositions 23 and 26. �

Proposition 28. Any saturated and consistent normalized set of BLmf-literals
is BLmf-satisfiable. �

Proof. Let Γ be a saturated and consistent set of BLmf -literals.
Let X = vars(Γ ) ∪ {1,0}, and let ∼ be the binary relation of X induced by

the literals of the form x = y in Γ . By saturation with respect to the =-rules, ∼
is an equivalence relation. Consequently, we can form the quotient set A = X/∼.

Let - be the binary relation of A defined as follows:

[x]∼ - [y]∼ ⇐⇒ x ≤ y is in Γ .
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Since ∼ is an equivalence relation, - is well-defined. Moreover, by saturation
with respect to the ≤-rules, (A,-) is a partial order with maximum [1]∼ and
minimum [0]∼.3

Let (B,3,+, ·,�,⊥) be the Dedekind-MacNeille completion of (A,-). Note
that we have � = [1]∼ and ⊥ = [0]∼.

We define a BLmf -interpretation B =
(
B, (·)B) by letting:

– a =B b iff a = b.
– a ≤B b iff a 3 b;
– a "B b = a+ b;
– a !B b = a · b;
– 1B = � = [1]∼;
– 0B = ⊥ = [0]∼;
– xB = [x]∼;
– fB(a) = lub(Zf,a, B,3) where

Zf,a = Xf,a ∪
⋃

leq(h,f)∈Γ

Xh,a ,

and

Xf,a =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{[y]∼ | y = f(x) is in Γ and a = [x]∼} , if f ∈ NORM (Γ ) ,
{[y]∼ | y = f(x) is in Γ and [x]∼ 3 a} , if f ∈ INC (Γ ) ,
{[y]∼ | y = f(x) is in Γ and a 3 [x]∼} , if f ∈ DEC (Γ ) ,
{[y]∼ | y = f(x) is in Γ} , if f ∈ CONST (Γ ) .

By construction, B is a BLmf -interpretation. Next, we show that B satisfies
all BLmf -literals in Γ .

Literals of the form x = y. We have x ∼ y, which implies xB = [x]∼ =
[y]∼ = yB.

Literals of the form x 	= y. If it were xB = yB, we would have x ∼ y, which
implies that the literal x = y is in Γ , a contradiction.

Literals of the form x ≤ y. We have [x]∼ - [y]∼, so that [x]∼ 3 [y]∼.
Therefore [x]∼ ≤B [y]∼, which in turn implies [x ≤ y]B = true.

Literals of the form ¬(x ≤ y). We have [x]∼ � [y]∼. Hence [x]∼ �3 [y]∼,
which implies [x ≤ y]B = false .

Literals of the form x = y �z. By saturation with respect to the !-rules, we
have that [x]∼ = glb({[y], [z]}, A,-). It follows that [x]∼ = glb({[y], [z]}, B,3).
3 In general, (A, �) is not a lattice. As an example, consider Γ = closure({u ≤ x, v ≤

x, u ≤ y, v ≤ y}). This is the flaw in [2], which we correct in this paper by taking
the Dedekind-MacNeille completion of (A, �).
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Literals of the form x = y �z. By saturation with respect to the "-rules, we
have that [x]∼ = lub({[y], [z]}, A,-). It follows that [x]∼ = lub({[y], [z]}, B,3).

Literals of the form y = f(x). Let the literal y = f(x) be in Γ . We need to
show that yB = fB (xB). This amounts to verify that [y]∼ = lub(Zf,[x]∼ , B,3).
Since the literal y = f(x) is in Γ , we have immediately [y]∼ ∈ Xf,[x]∼ ⊆ Zf,[x]∼ .
Therefore, it is enough to show that [y′]∼ 3 [y]∼ holds, for each [y′]∼ ∈ Zf,[x]∼ .

Thus, let [y′]∼ ∈ Zf,[x]∼ . It is convenient to distinguish the following two
cases.

Case 1: [y′]∼ ∈ Xf,[x]∼ . We consider the following four subcases.
(1a) Let f ∈ NORM (Γ ). Then a literal of the form y′ = f(x′) is in Γ , and

[x]∼ = [x′]∼. Hence the literal x = x′ is in Γ . By saturation with respect
to the rules of Figure 1, it follows that also the literal y = y′ is in Γ , and
therefore [y]∼ = [y′]∼.

(1b) Let f ∈ INC (Γ ). Then a literal of the form y′ = f(x′) is in Γ . Moreover,
[x′]∼ 3 [x]∼, which implies [x′]∼ - [x]∼, so that the literal x′ ≤ x is
in Γ . By saturation, it follows that the literal y′ ≤ y is in Γ too, which
implies [y′]∼ - [y]∼, and therefore [y′]∼ 3 [y]∼.

(1c) Let f ∈ DEC (Γ ). Then a literal of the form y′ = f(x′) is in Γ . Moreover,
[x]∼ 3 [x′]∼, which implies [x]∼ - [x′]∼, so that the literal x ≤ x′ is in
Γ . By saturation, it follows that also the literal y′ ≤ y must be in Γ ,
which implies [y′]∼ - [y]∼, and therefore [y′]∼ 3 [y]∼.

(1d) Let f ∈ CONST (Γ ). Then a literal of the form y′ = f(x′) is in Γ .
By saturation, it follows that the literal y = y′ is in Γ , and therefore
[y]∼ = [y′]∼.

Case 2: [y′]∼ ∈ Xh,[x]∼ , where the literal leq(h, f) is in Γ , and h is a function
symbol distinct from f . We consider the following four subcases.

(2a) Let h ∈ NORM (Γ ). Then a literal of the form y′ = h(x′) is in Γ , such
that [x]∼ = [x′]∼. By saturation, it follows that the literal y = f(x′) is
in Γ . But then, again by saturation, the literal y′ ≤ y must be in Γ .
Therefore, [y′]∼ - [y]∼, which implies [y′]∼ 3 [y]∼.

(2b) Let h ∈ INC (Γ ). Then a literal of the form y′ = h(x′) is in Γ , such that
[x′]∼ 3 [x]∼. Therefore, [x′]∼ - [x]∼, so that the literal x′ ≤ x is in Γ .
By saturation, a literal of the form y′′ = h(x) must be in Γ . Therefore,
again by saturation, the literals y′ ≤ y′′ and y′′ ≤ y are in Γ , so that also
the literal y′ ≤ y is in Γ . Hence, [y′]∼ - [y]∼, which implies [y′]∼ 3 [y]∼.

(2c) Let h ∈ DEC (Γ ). Then a literal of the form y′ = h(x′) is in Γ , such that
[x]∼ 3 [x′]∼. Therefore, [x]∼ - [x′]∼, so that the literal x ≤ x′ is in Γ .
By saturation, a literal of the form y′′ = h(x) must be in Γ . Therefore,
again by saturation, the literals y′ ≤ y′′ and y′′ ≤ y are in Γ , so that also
the literal y′ ≤ y is in Γ . Hence, [y′]∼ - [y]∼, which implies [y′]∼ 3 [y]∼.

(2d) Let h ∈ CONST (Γ ). Then a literal of the form y′ = h(x′) is in Γ . By
saturation, a literal of the form y′′ = h(x) is in Γ . Therefore, again
by saturation, the literals y′ = y′′ and y′′ ≤ y are in Γ , so that also
the literal y′ ≤ y must be in Γ . Therefore, [y′]∼ - [y]∼, which implies
[y′]∼ 3 [y]∼.
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Literals of the form inc(f). Let the literal inc(f) be in Γ . We need to
show that the function fB is increasing in the lattice (B,3,+, ·,�,⊥). Thus,
let a, b ∈ B such that a 3 b. To prove that fB(a) 3 fB(b), or equivalently that
lub(Zf,a, B 3) 3 lub(Zf,b, B,3), it is enough to show that for each [y]∼ ∈ Zf,a

there exists [y′]∼ ∈ Zf,b such that [y]∼ 3 [y′]∼.
Thus, let [y]∼ ∈ Zf,a. We distinguish two cases.

Case 1: [y]∼ ∈ Xf,a. Then the literal y = f(x) is in Γ and [x]∼ 3 a 3 b, which
implies [y]∼ ∈ Xf,b ⊆ Zf,b.

Case 2: [y] ∈ Xh,a, where the literal leq(h, f) is in Γ , and h is a function symbol
distinct from f . We consider the following four subcases.

(2a) h ∈ NORM (Γ ). Then a literal of the form y = h(x) is in Γ , and a = [x]∼.
It follows that the literal y′ = f(x) is in Γ . But then, by saturation, the
literal y ≤ y′ is in Γ . Therefore, [y]∼ - [y′]∼, which implies [y]∼ 3 [y′]∼.
Moreover, [y′]∼ ∈ Xh,b ⊆ Zf,b.

(2b) h ∈ INC (Γ ). Then a literal of the form y = h(x) is in Γ , and [x]∼ 3 a 3
b. Therefore, [y] ∈ Xh,b ⊆ Zf,b.

(2c) h ∈ DEC (Γ ). Then a literal of the form y = h(x) is in Γ , and a 3 [x]∼.
By saturation, the following literals are in Γ : y′ = h(0), y′′ = f(0),
y ≤ y′, y′ ≤ y′′, and y ≤ y′′. It follows that [y]∼ - [y′′]∼, which implies
[y]∼ 3 [y′′]∼. Moreover, since [0]∼ = 0B 3 b, we have [y′′]∼ ∈ Xf,b ⊆
Zf,b.

(2d) h ∈ CONST (Γ ). Then a literal of the form y = h(x) is in Γ . By satura-
tion, the following literals are in Γ : y′ = h(0), y′′ = f(0), y = y′, y′ ≤ y′′,
and y ≤ y′′. It follows that [y]∼ - [y′′]∼, which implies [y]∼ 3 [y′′]∼.
Moreover, since [0]∼ = 0B 3 b, we have [y′′]∼ ∈ Xf,b ⊆ Zf,b.

Literals of the form dec(f). This case is similar to the case of literals of the
form inc(f).

Literals of the form const(f). This case is similar to the case of literals of
the form inc(f).

Literals of the form leq(f, g). We have Zf,a ⊆ Zg,a. Therefore, fB(a) =
lub(Zf,a, B,3) 3 lub(Zg,a, B,3) = gB(a). �

Proposition 29 (Completeness). Let Γ be a normalized set of BLmf-lite-
rals, and assume that closure(Γ ) is consistent. Then Γ is BLmf-satisfiable. �

Proof. By Proposition 28, closure(Γ ) is BLmf -satisfiable. It follows that Γ is
BLmf -satisfiable, since Γ ⊆ closure(Γ ). �

Proposition 30. The satisfiability problem for finite sets of BLmf-literals is
decidable in polynomial time. �

Proof. By Propositions 21 and 23. �
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Proposition 31. The satisfiability problem for BLmf-formulae is NP-comple-
te. �

Proof. The satisfiability problem for BLmf -formulae is clearly NP-hard, In
order to show membership to NP , it suffices to note that one can check whether
a BLmf -formula is BLmf -satisfiable by:

1. guessing a disjunct Γ of a DNF of ϕ;
2. converting Γ to a conjunction of normalized literals Γ ′;
3. computing closure(Γ ′);
4. checking whether closure(Γ ′) is consistent. �

5 The Language CLmf

In this section we define the language CLmf (complete lattices with monotone
functions) and we prove that it is equivalent to the language BLmf for
quantifier-free formulae.

Syntactically, the language CLmf coincides with BLmf . Semantically, we
have the following definition.

Definition 32. A CLmf-interpretation A is BLmf -interpretation in which
the lattice

(
A,≤A,"A,!A,1A,0A) is complete. �

Proposition 33. Let ϕ be a quantifier-free BLmf- or CLmf-formula. Then ϕ
is BLmf-satisfiable if and only if ϕ is CLmf-satisfiable. �

Proof. Assume first that ϕ is CLmf -satisfiable. Since every CLmf -interpre-
tation is also a BLmf -interpretation, it follows that ϕ is BLmf -satisfiable.

Conversely, assume that ϕ is BLmf -satisfiable. Without loss of generality, we
can assume that ϕ is a normalized set of BLmf -literals. Let ψ = closure(ϕ).
By Proposition 26, ψ is BLmf -satisfiable. It follows that ψ is consistent. By
Proposition 28, ψ is CLmf -satisfiable. Since ϕ ⊆ ψ, it follows that ϕ is CLmf -
satisfiable. �

6 Conclusion

We presented a decision procedure for the quantifier-free satisfiability problem
of the language BLmf (Bounded Lattices with monotone functions). The lan-
guage contains the predicates = and ≤, the operators ! and " over terms which
may involve uninterpreted unary function symbols, predicates for expressing in-
creasing and decreasing monotonicity of functions, and a predicate for pointwise
function comparison.

We proved that our decision procedure runs in polynomial time O(m4) for
conjunctions of literals, thus entailing that the quantifier-free satisfiability prob-
lem for BLmf is NP-complete.
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Finally, we defined the language CLmf (Complete Lattices with monotone
functions), and we proved that the languages CLmf and BLmf are equivalent
for quantifier-free formulae.

In our proofs, we used the hypothesis that lattices are bounded (see, for
instance, Proposition 28, case of literals of the form inc(f), subcases 2c and 2d).
Thus, a possible direction of future research would be to relax this hypothesis,
and study the language Lmf (Lattices with monotone functions) in which the
semantics does not require lattices to be bounded. We conjecture that Lmf
is decidable. A promising result in this direction can be found in [13], where
decidability is proved after removing from Lmf the predicates dec(f), const(f),
and leq(f, g).
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Abstract. This paper addresses the relation of dominance on the class
of continuous t-norms with a particular focus on continuous ordinal sum
t-norms. Exactly, in this framework counter-examples to the conjecture
that dominance is not only a reflexive and antisymmetric, but also a
transitive relation could be found. We elaborate the details which have
led to these results and illustrate them by several examples. In addition,
to this original and comprehensive overview, we provide geometrical in-
sight into dominance relationships involving prototypical Archimedean
t-norms, the �Lukasiewicz t-norm and the product t-norm.

1 Introduction

The dominance property was originally introduced within the framework of prob-
abilistic metric spaces [42] and was soon abstracted to operations on an arbitrary
partially ordered set [38]. A probabilistic metric space allows for imprecise dis-
tances: the distance between two objects p and q is characterized by a cumulative
distribution function Fpq : R → [0, 1]. The metric in such spaces is defined in anal-
ogy to the axioms of (pseudo-)metric spaces, the most disputable axiom being
the probabilistic analogue of the triangle inequality. For an important subclass
of probabilistic metric spaces known as Menger spaces the triangle inequality
reads as follows: for any three objects p, q, r and for any x, y ≥ 0 it holds that

Fpr(x+ y) ≥ T (Fpq(x), Fqr(y)) , (1)
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where T : [0, 1]2 → [0, 1] is a t-norm, i.e. a binary operation on the unit interval
which is commutative, associative, increasing in both arguments and which has
neutral element 1.

The dominance property plays an important role in the construction of Carte-
sian products of probabilistic metric spaces, as it ensures that the triangle in-
equality holds for the resulting product space provided it holds for all factor
spaces involved [38,42]. Similarly, it is responsible for the preservation of the
T -transitivity property when building fuzzy equivalence or fuzzy order relations
on a product space, i.e. R : X2 → [0, 1], defined by R(x,y) = A(R1(x1, y1), . . . ,
Rn(xn, yn)) with X =

∏n
i=1 Xi, Ri : X2

i → [0, 1] fuzzy relations on Xi being all
T -transitive, i.e.

T (Ri(x, y), Ri(y, z)) ≤ Ri(x, z)

and A some aggregation operator, or when intersecting such fuzzy relations on a
single space, i.e. R(x, y) = T (R1(x, y), . . . , Rn(x, y)) [2,3,8,32]. The dominance
property was therefore introduced in the framework of aggregation operators
where it enjoyed further development, again due its role in the preservation
of a variety of properties, most of them expressed by some inequality, during
(dis-)aggregation processes (see also [9,29]).

Besides these application points of view, the dominance property turned out
to be an interesting mathematical notion per se. Due to the common neutral
element of t-norms and their commutativity and associativity, the dominance
property constitutes a reflexive and antisymmetric relation on the class of all
t-norms. Whether it is also transitive has been posed as an open question already
in 1983 in [38] and remained unanswered for quite some time. Several particular
families of t-norms have been investigated (see, e.g., [17,34,40]) and supported
the conjecture that the dominance relation would indeed be transitive, either
due to its rare occurrence within the family considered or due to its abundant
occurrence, in accordance with the parameter of the family. Several research
teams participating in the EU COST action TARSKI have been studying various
aspects of the dominance relation over the past few years. Finally, the conjecture
was recently rejected [35]: the dominance relation is not transitive on the class
of continuous t-norms and therefore also not on the class of t-norms in general.
The counterexample was found among continuous ordinal sum t-norms.

In this contribution we discuss the dominance relation on the class of contin-
uous t-norms and elaborate the details which have led to the counterexamples
demonstrating the non-transitivity of the dominance relation in the class of
t-norms. First, we provide a thorough introduction of all the necessary proper-
ties and details about t-norms. We then continue with a brief discussion of the
dominance relation on the class of continuous Archimedean t-norms and provide
geometrical insight in two prototypical cases. Subsequently, we turn to continu-
ous ordinal sum t-norms and particular families of such ordinal sum t-norms. The
present contribution provides a comprehensive and original overview of the state-
of-the-art knowledge of the dominance relation on the class of continuous ordinal
sum t-norms and as such depends on results also published in [17,30,31,35].
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2 Triangular Norms

For the reader’s convenience we briefly summarize basic properties of t-norms
which will be necessary for a thorough understanding of the following parts.
Many of the herein included results (including proofs, further details and refer-
ences) can be found in [18,19,20] or in the monographs [1,17].

2.1 Basic Properties

Triangular norms (briefly t-norms) were first introduced in the context of prob-
abilistic metric spaces [36,38,39], based on some ideas already presented in [24].
They are an indispensable tool for the interpretation of the conjunction in fuzzy
logics [14] and, as a consequence, for the intersection of fuzzy sets [46]. Further,
they play an important role in various further fields like decision making [11,13],
statistics [26], as well as the theories of non-additive measures [21,27,41,45] and
cooperative games [4].

Definition 1. A triangular norm (briefly t-norm) is a binary operation T on
the unit interval [0, 1] which is commutative, associative, increasing and has 1 as
neutral element, i.e. it is a function T : [0, 1]2 → [0, 1] such that for all x, y, z ∈
[0, 1]:

(T1) T (x, y) = T (y, x),
(T2) T (x, T (y, z)) = T (T (x, y), z),
(T3) T (x, y) ≤ T (x, z) whenever y ≤ z,
(T4) T (x, 1) = x.

It is an immediate consequence that due to the boundary and monotonicity
conditions as well as commutativity it follows that, for all x ∈ [0, 1], any t-norm
T satisfies

T (0, x) = T (x, 0) = 0, (2)
T (1, x) = x. (3)

Therefore, all t-norms coincide on the boundary of the unit square [0, 1]2.

Example 1. The most prominent examples of t-norms are the minimum TM, the
product TP, the �Lukasiewicz t-norm TL and the drastic product TD (see Figure 1
for 3D and contour plots). They are given by:

TM(x, y) = min(x, y), (4)
TP(x, y) = x · y, (5)
TL(x, y) = max(x+ y − 1, 0), (6)

TD(x, y) =

{
0 if (x, y) ∈ [0, 1[2 ,
min(x, y) otherwise.

(7)

Since t-norms are just functions from the unit square into the unit interval, the
comparison of t-norms is done in the usual way, i.e. pointwisely.
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Fig. 1. 3D plots (top) and contour plots (bottom) of the four basic t-norms TM, TP,
TL, and TD (observe that there are no contour lines for TD)

Definition 2. Let T1 and T2 be two t-norms. If T1(x, y) ≤ T2(x, y) for all x, y ∈
[0, 1], then we say that T1 is weaker than T2 or, equivalently, that T2 is stronger
than T1, and we write T1 ≤ T2.

Further, t-norms can be transformed by means of an order isomorphism, i.e.
an increasing [0, 1] → [0, 1] bijection, preserving several properties (like, e.g.,
continuity) of the t-norm involved.

Definition 3. Let T be a t-norm and ϕ an order isomorphism. Then the iso-
morphic transform of T under ϕ is the t-norm Tϕ defined by

Tϕ(x, y) = ϕ−1(T (ϕ(x), ϕ(y))) . (8)

Note that the drastic product TD and the minimum TM are the smallest and
the largest t-norm, respectively. Moreover, they are the only t-norms that are
invariant under arbitrary order isomorphisms.

Let us now focus on the continuity of t-norms.

Definition 4. A t-norm T is continuous if for all convergent sequences (xn)n∈N,
(yn)n∈N ∈ [0, 1]N we have

T
(

lim
n→∞ xn, lim

n→∞ yn

)
= lim

n→∞T (xn, yn) .

Obviously, the basic t-norms TM, TP and TL are continuous, whereas the dras-
tic product TD is not. Note that for a t-norm T its continuity is equivalent
to the continuity in each component (see also [17,18]), i.e. for any x0, y0 ∈
[0, 1] both the vertical section T (x0, ·) : [0, 1] → [0, 1] and the horizontal section
T (·, y0) : [0, 1] → [0, 1] are continuous functions in one variable.
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The following classes of continuous t-norms are of particular importance.

Definition 5. (i) A t-norm T is called strict if it is continuous and strictly
monotone, i.e. it fulfills for all x, y, z ∈ [0, 1]

T (x, y) < T (x, z) whenever x > 0 and y < z .

(ii) A t-norm T is called nilpotent if it is continuous and if each x ∈ ]0, 1[ is
a nilpotent element of T , i.e. there exists some n ∈ N such that

T (x, . . . , x︸ ︷︷ ︸
n times

) = 0 .

The product TP is a strict t-norm whereas the �Lukasiewicz t-norm TL is a
nilpotent t-norm. Both of them are Archimedean t-norms, i.e. they fulfill for
all (x, y) ∈ ]0, 1[2 that there exists an n ∈ N such that

T (x, . . . , x︸ ︷︷ ︸
n times

) < y .

It is remarkable that continuous Archimedean t-norms can be divided into just
two subclasses — the nilpotent and the strict t-norms [17,18]. Moreover, since
two continuous Archimedean t-norms are isomorphic if and only if they are
either both strict or both nilpotent, we can immediately formulate the following
proposition (see also [17,18]).

Proposition 1. Let T be a t-norm.

– T is a strict t-norm if and only if it is isomorphic to the product TP.
– T is a nilpotent t-norm if and only if it is isomorphic to the �Lukasiewicz

t-norm TL.

Besides the above introduced properties, idempotent elements play an important
role in the characterization of t-norms.

Definition 6. Let T be a t-norm. An element x ∈ [0, 1] is called an idempotent
element of T if T (x, x) = x. We will further denote by I(T ) the set of all
idempotent elements of T . The numbers 0 and 1 (which are idempotent elements
for each t-norm T ) are called trivial idempotent elements of T , each idempotent
element in ]0, 1[ will be called a non-trivial idempotent element of T .

The set of idempotent elements of the minimum TM equals [0, 1] (actually, TM is
the only t-norm with this property) whereas TP, TL, and TD possess only trivial
idempotent elements.

2.2 Ordinal Sum T-Norms

Ordinal sum t-norms are based on a construction principle for semigroups which
goes back to A.H. Clifford [5] (see also [6,15,28]) based on ideas presented
in [7,16]. It has been successfully applied to t-norms in [12,22,37].
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Definition 7. Let (]ai, bi[)i∈I be a family of non-empty, pairwise disjoint open
subintervals of [0, 1] and let (Ti)i∈I be a family of t-norms. The ordinal sum
T = (〈ai, bi, Ti〉)i∈I is the t-norm defined by

T (x, y) =

{
ai + (bi − ai)Ti( x−ai

bi−ai
, y−ai

bi−ai
), if (x, y) ∈ [ai, bi]

2 ,

min(x, y), otherwise.

We will refer to 〈ai, bi, Ti〉 as its summands, to [ai, bi] as its summand carriers,
and to Ti as its summand operations or summand t-norms. The index set I is
necessarily finite or countably infinite. It may also be empty in which case the
ordinal sum is nothing else but TM.

Note that by construction, the set of idempotent elements I(T ) of some ordi-
nal sum T = (〈ai, bi, Ti〉)i∈I contains the set M = [0, 1] \⋃i∈I ]ai, bi[. Moreover,
I(T ) = M if and only if each Ti has only trivial idempotent elements. It is
clear that an ordinal sum t-norm is continuous if and only if all of its summand
t-norms are continuous.

In general, the representation of a t-norm as an ordinal sum of t-norms is not
unique. For instance, for each subinterval [a, b] of [0, 1] we have

TM = (∅) = (〈0, 1, TM〉) = (〈a, b, TM〉) .

This gives rise to the following definition.

Definition 8. A t-norm T that has no ordinal sum representation different from
(〈0, 1, T 〉) is called ordinally irreducible.

Note that each continuous Archimedean t-norm, in particular also TP and TL,
has only trivial idempotent elements and is therefore ordinally irreducible. More-
over, there are no other ordinally irreducible continuous t-norms.

Based on the above information, we can now turn to the representation of
continuous t-norms (see also [17,22,25,38])

Theorem 1. A binary operation on the unit interval is a continuous t-norm if
and only if it is an ordinal sum of continuous Archimedean t-norms.

Therefore, continuous t-norms are either:

– strict, i.e. isomorphic to the product t-norm TP,
– nilpotent, i.e. isomorphic to the �Lukasiewicz t-norm TL,
– the minimum TM itself, i.e. I = ∅, or
– non-trivial ordinal sums with strict or nilpotent summand operations, i.e.
I �= ∅ and no ]ai, bi[ equals ]0, 1[.
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2.3 The Dominance Property for T-Norms

Let us now focus on the dominance relation on the class of t-norms [38,42,44].

Definition 9. We say that a t-norm T1 dominates a t-norm T2, or equivalently,
that T2 is dominated by T1, and write T1 ) T2, if for all x, y, u, v ∈ [0, 1]

T1(T2(x, y), T2(u, v)) ≥ T2(T1(x, u), T1(y, v)) . (9)

Due to the fact that 1 is the common neutral element of all t-norms, dominance
of one t-norm by another t-norm implies their comparability (see also [29]), i.e.
T1 ) T2 implies T1 ≥ T2. Similarly to the ordering of t-norms, any t-norm T
is dominated by itself and by TM, and dominates TD, i.e. for any t-norm T it
holds that

TM ) T, T ) T, T ) TD .

As a consequence we can immediately state that dominance is a reflexive and
antisymmetric relation on the class of all t-norms. We will show later that it is
not transitive, not even on the class of continuous t-norms. Hence, the dominance
relation is not a partial order on the set of all t-norms.

Finally, we mention that a dominance relationship between two t-norms is
preserved under isomorphic transformations [32].

Proposition 2. A t-norm T1 dominates a t-norm T2 if and only if (T1)ϕ dom-
inates (T2)ϕ for any order isomorphism ϕ.

3 Continuous Archimedean T-Norms

3.1 Isomorphic Transformations

The problem we study here is to determine whether a first continuous Archime-
dean t-norm T1 dominates a second such t-norm T2. Since dominance is preserved
under isomorphic transformations, this problem can be transformed into one of
the following prototypical problems. Suppose that T1 ) T2:
– If T1 is nilpotent, then T2 has to be nilpotent as well. In that case, there exist

some order isomorphisms ϕ and ψ such that (T1)ϕ = TL and (T2)ψ = TL
leading to

T1 ) T2 ⇔ (T1)ψ ) TL ⇔ TL ) (T2)ϕ .

– If T1 is strict, then T2 can be either strict or nilpotent. In both cases, there
exist order isomorphisms ϕ and ψ such that

T1 ) T2 ⇔ (T1)ψ ) TL ⇔ TP ) (T2)ϕ

in case T2 is nilpotent, and
T1 ) T2 ⇔ (T1)ψ ) TP ⇔ TP ) (T2)ϕ

in case T2 is strict.

Summarizing, it suffices to investigate the classes of t-norms dominating or being
dominated either by TP or by TL. In the next section, we will provide a geo-
metrical interpretation for these particular cases. Necessary as well as sufficient
conditions for aggregation operators (and therefore also t-norms) dominating
one of these t-norms can be found, e.g., in [29,30,32,43].
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3.2 Geometrical Interpretation

The inequality expressing dominance is difficult to grasp since it concerns four
variables involved in various compositions of mappings. Providing an insightful
geometrical interpretation would be more than welcome. We will present such
an interpretation for the two cases discussed above: t-norms dominating or being
dominated either by TL or by TP.

Note that the inequality expressing dominance trivially holds if at least one
of the arguments equals 0. Hence, we can restrict our attention to arguments
x, y, u, v ∈ ]0, 1] only.

Dominance Relationships Involving TL. Let us consider some t-norm T
which dominates TL, i.e. for all x, y, u, v ∈ [0, 1] we have

T (TL(x, u), TL(y, v)) ≥ TL(T (x, y), T (u, v)) . (10)

For any fixed u, v ∈ ]0, 1], we introduce new variables a = TL(x, u) and b =
TL(y, v) ranging over [0, u] and [0, v], respectively. If a = 0 then x + u − 1 ≤ 0;
similarly, if b = 0 then y + v − 1 ≤ 0. In any case, it follows that T (x, y) +
T (u, v) − 1 ≤ 0 and (10) is satisfied trivially as both sides evaluate to 0. On
the other hand, if a, b > 0 then x and y can be recovered from the expressions
x = 1 − u + a and y = 1 − v + b. Using these new variables, the dominance
inequality is transformed into

T (a, b) ≥ TL(T (1− u+ a, 1− v + b), T (u, v)) (11)

for all u, v ∈ ]0, 1] and all a ∈ [0, u], b ∈ [0, v]. The right-hand side can be
interpreted geometrically in the following way:

– First, the graph of T (1− u+ a, 1− v+ b) as a function of a and b is nothing
else but a translation of the original graph such that the point (1, 1, 1) is
moved to the point (u, v, 1).

– Using TL to combine this function with the value T (u, v) means that this
translated graph is subsequently translated along the direction of the z-axis
such that the original reference point (1, 1, 1) is now located in the point
(u, v, T (u, v)).

– As a consequence, parts of the resulting surface are now located outside the
unit cube. Due to the definition of TL, these parts are simply truncated by
0, i.e. they are substituted by the corresponding parts of the xy-plane.

The fact that T dominates TL means that this translated surface lies below the
original one, and this for any choice of u, v. The situation in which a t-norm T
is dominated by TL has a similar interpretation, the only difference being that
the translated surface should now be above the original one.

In Fig. 2, this geometrical interpretation is illustrated for the case TM ) TL.
For any choice of u, v (see Fig. 2 (a)) the box [0, u] × [0, v] × [0, TM(u, v)] is
constructed (see Fig. 2 (b)) and the original graph of TM is translated moving
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Fig. 2. Geometrical interpretation of TM dominating TL

the point (1, 1, 1) to the point (u, v, TM(u, v)) (see Fig. 2 (c)). Then the trans-
lated surface is compared with the original one (see Fig. 2 (d)). One can see
immediately that the new surface lies below the original one for any choice of
u, v.

Dominance Relationships Involving TP. The case of a t-norm T dominating
TP has an even simpler geometrical interpretation. First of all, T ) TP means
that for all x, y, u, v ∈ [0, 1] it holds

T (xu, yv) ≥ T (x, y)T (u, v) .

For any fixed u, v ∈ ]0, 1], we introduce new variables a = xu and b = yv rang-
ing over [0, u] and [0, v], respectively. Using these new variables, the dominance
inequality is transformed into

T (a, b) ≥ T ( a
u ,

b
v )T (u, v) (12)

for all u, v ∈ ]0, 1] and all a ∈ [0, u], b ∈ [0, v]. The right-hand side can be
interpreted geometrically in the following way.

The graph of T ( a
u ,

b
v )T (u, v) as a function of a and b is exactly the graph of

T linearly rescaled in order to fit into the box [0, u] × [0, v] × [0, T (u, v)]. This
rescaling is obviously different for any u, v. The fact that T dominates TP means
that this rescaled graph lies below the original graph. The situation in which
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Fig. 3. Geometrical interpretation of TM dominating TP
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a t-norm T is dominated by TP has again a similar interpretation, the only
difference being again that the rescaled graph should now be above the original
one.

In Fig. 3, this geometrical interpretation is illustrated for the case TM ) TP.
For any choice of u, v (see Fig. 3 (a)) the box [0, u] × [0, v] × [0, TM(u, v)] is
constructed (see Fig. 3 (b)) and the original graph of TM is rescaled in order to
fit into this box (see Fig. 3 (c)). Then the rescaled surface is compared with the
original one (see Fig. 3 (d)). One can see immediately that the new surface lies
below the original one for any choice of u, v.

4 Continuous Non-Archimedean T-Norms

Let us now focus on dominance involving continuous non-Archimedean t-norms,
i.e. involving non-trivial ordinal sums of continuous Archimedean t-norms.

4.1 Summand-wise Dominance

When studying the dominance relationship between two ordinal sum t-norms,
we have to take into account the underlying structure of the ordinal sums.
In case both ordinal sum t-norms are determined by the same family of non-
empty, pairwise disjoint open subintervals, dominance between the ordinal sum
t-norms is determined by the dominance between all corresponding summand
t-norms [30].

Proposition 3. Consider the two ordinal sum t-norms T1 = (〈ai, bi, T1,i〉)i∈I

and T2 = (〈ai, bi, T2,i〉)i∈I . Then T1 dominates T2 if and only if T1,i dominates
T2,i for all i ∈ I.

4.2 Ordinal Sum T-Norms with Different Summand Carriers

In case the structure of both ordinal sum t-norms is not the same, we are able to
provide some necessary conditions which lead to a characterization of dominance
between ordinal sum t-norms in general. Assume that the ordinal sum t-norms T1
and T2 under consideration are based on two at least partially different families of
summand carriers, i.e. T1 = (〈a1,i, b1,i, T1,i〉)i∈I and T2 = (〈a2,j , b2,j, T2,j〉)j∈J .
W.l.o.g. we can assume that these representations are the finest possible, i.e.
that each summand t-norm is ordinally irreducible.

Since for a continuous t-norm T the existence of a non-trivial idempotent
element d is even equivalent to being representable as an ordinal sum T =
(〈0, d, T ′〉, 〈d, 1, T ′′〉) for some summand t-norms T ′ and T ′′ (see also [17]), it is
indeed reasonable to assume that the representations of two continuous t-norms
T1 = (〈a1,i, b1,i, T1,i〉)i∈I and T2 = (〈a2,j , b2,j, T2,j〉)j∈J are such that there exists
no T1,i, resp. T2,j, with a non-trivial idempotent element d ∈ ]a1,i, b1,i[, resp.
d ∈ ]a2,j, b2,j [.
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Necessary Conditions Due to the Induced Order. Since any t-norm is
bounded from above by TM and dominance implies their comparability we im-
mediately can state the following lemma [30].

Lemma 1. If a t-norm T1 dominates a t-norm T2, then T1(x, y) = TM(x, y)
whenever T2(x, y) = TM(x, y).

Geometrically speaking, if an ordinal sum t-norm T1 dominates an ordinal sum
t-norm T2, then it must necessarily consist of more regions where it acts as
TM than T2. Two such cases are displayed in Fig. 4 (a) and (c). Note that no
dominance relationship between T1 and T2 is possible in a case like illustrated
in Fig. 4 (b).

T1

a1,1 b1,1 a1,2 b1,2 a1,3 b1,3

T2

a2,1 b2,1 a2,2 b2,2

T1

a1,1 b1,1 a1,2 b1,2

T2

a2,1 b2,1 a2,2 b2,2

T1

a1,1 b1,1

T2

a2,1 b2,1 a2,2 b2,2

(a) (b) (c)

Fig. 4. Examples of two ordinal sum t-norms T1 and T2 differing in their summand
carriers

Therefore, we can immediately state the following corollary [30].

Corollary 1. Consider the two ordinal sum t-norms T1 = (〈a1,i, b1,i, T1,i〉)i∈I

and T2 = (〈a2,j , b2,j , T2,j〉)j∈J with ordinally irreducible summand t-norms only.
If T1 dominates T2 then

∀i ∈ I : ∃j ∈ J : [a1,i, b1,i] ⊆ [a2,j , b2,j] . (13)

Note that each [a2,j, b2,j ] can contain several or even none of the summand
carriers [a1,i, b1,i] (see also Fig. 4 (a) and (c)). Hence, for each j ∈ J we can
consider the following subset of I:

Ij = {i ∈ I | [a1,i, b1,i] ⊆ [a2,j, b2,j ]} . (14)

Based on these notions and due to Proposition 3, dominance between two
ordinal sum t-norms can be reformulated in the following way [30].



The Dominance Relation on the Class of Continuous T-Norms 345

Proposition 4. Consider two ordinal sum t-norms T1 = (〈a1,i, b1,i, T1,i〉)i∈I

and T2 = (〈a2,j , b2,j, T2,j〉)j∈J with ordinally irreducible summand operations
only. Then T1 dominates T2 if and only if

(i) ∪j∈JIj = I,
(ii) T j

1 ) T2,j for all j ∈ J with

T j
1 = (〈ϕj(a1,i), ϕj(b1,i), T1,i〉)i∈Ij (15)

and ϕj : [a2,j , b2,j] → [0, 1], ϕj(x) = x−a2,j

b2,j−a2,j
.

Note that due to Proposition 4, the study of dominance between ordinal sum t-
norms can be reduced to the study of dominance of a single ordinally irreducible
t-norm by some ordinal sum t-norm. In particular, if all ordinal sum t-norms
involved are just based on a single t-norm T ∗ as summand operation, it suffices
to investigate the dominance of T ∗ by ordinal sum t-norms T = (〈ai, bi, T

∗〉)i∈I .

Example 2. Let us now briefly elaborate the three different cases of ordinal sum
t-norms displayed in Fig. 4 in more detail :

– Consider the ordinal sum t-norms T1 and T2 as displayed in Fig. 4 (a). Due
to Proposition 3, T1 ) T2 is equivalent to showing that T1,1 ) T2,1 and
T 2

1 ) T2,2, where T 2
1 is the ordinal sum t-norm defined by

T 2
1 = (〈ϕ2(a1,2), ϕ2(b1,2), T1,2〉, 〈ϕ2(a1,3), ϕ2(b1,3), T1,3〉) ,

with ϕ2 : [a2,2, b2,2] → [0, 1], ϕ2(x) = x−a2,2
b2,2−a2,2

.
– Having a look at the ordinal sum t-norms T1 and T2 as displayed in Fig. 4 (b),

we immediately see that [a1,1, b1,1] � [a2,1, b2,1] and vice versa, so that

T1(x, y) = TM(x, y) �= T2(x, y) for some x, y ∈ [a2,1, a1,1] ,
T2(x, y) = TM(x, y) �= T1(x, y) for some x, y ∈ [b2,1, b1,1] .

Hence, due to Lemma 1, in this case a dominance relationship is impossible.
– On the other hand, for the ordinal sum t-norms T1 and T2 as displayed

in Fig. 4 (c), the dominance of T2 by T1 is still possible. Again, due to
Proposition 3, T1 ) T2 is equivalent to T 2

1 ) T2,2, where T 2
1 is the ordinal

sum t-norm defined by

T 2
1 = (〈ϕ2(a1,1), ϕ2(b1,1), T1,1〉) ,

with ϕ2 : [a2,2, b2,2] → [0, 1], ϕ2(x) = x−a2,2
b2,2−a2,2

.

Necessary Conditions Due to Idempotent Elements. The idempotent
elements play an important role in dominance relationships, as is expressed by
the following proposition [30].

Proposition 5. If a t-norm T1 dominates a t-norm T2, then the following
observations hold:

(i) I(T1) is closed under T2;
(ii) I(T2) ⊆ I(T1).
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Fig. 5. Illustrations to Example 3

Note that for the representation of a continuous ordinal sum t-norm T = (〈ai, bi,
Ti〉)i∈I in terms of ordinally irreducible summand t-norms Ti, the set of idempo-
tent elements is given by I(T ) = [0, 1] \⋃i∈I ]ai, bi[. Therefore, this proposition
has some interesting consequences for the boundary elements of the summand
carriers. Firstly, all idempotent elements of T2 are idempotent elements of T1, i.e.
either endpoints of summand carriers of T1 or elements of some domain where T1
acts as TM. Secondly, for any idempotent elements d1, d2 of T1 we know that also
T2(d1, d2), is an idempotent element of T1. Consequently, if T1 is some ordinal
sum t-norm that dominates T2 = TP, resp. T2 = TL, and d ∈ I(T1) then also
dn ∈ I(T1), resp. max(nd− n + 1, 0) ∈ I(T1), for all n ∈ N.

Example 3. Consider a t-norm T ∗ with trivial idempotent elements only, i.e.
I(T ∗) = {0, 1}. We are now interested in constructing ordinal sum t-norms T1
with summand operations T ∗ which fulfill the necessary conditions for dom-
inating T2 = T ∗ as expressed by Proposition 5. Clearly, T1 = (〈d, 1, T ∗〉) is
a first possibility (see Fig. 5 (a)). Adding one further summand to T1, i.e.
building T ′

1 = (〈a, d, T ∗〉, 〈d, 1, T ∗〉), demands that a ≥ T2(d, d), since otherwise
T2(d, d) /∈ I(T ′

1) (see also Fig. 5 (b)).

5 Particular Continuous Ordinal Sum T-Norms

We will now focus on particular ordinal sum t-norms with either the �Lukasie-
wicz t-norm or the product t-norm as only summand operation and study the
dominance relationship between such t-norms.

5.1 Ordinal Sum T-Norms Based on TL

According to Proposition 5, the set of idempotent elements of a t-norm T1 domi-
nating a t-norm T2 should be closed under T2 and should contain the idempotent
elements of T2. If we restrict our attention to ordinal sum t-norms with TL as
only summand operation, this proposition can be turned into a characteriza-
tion [33].
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Proposition 6. Consider two ordinal sum t-norms T1 and T2 based on TL, i.e.
T1 = (〈ai, bi, TL〉)i∈I and T2 = (〈aj , bj , TL〉)j∈J . Then T1 dominates T2 if and
only if the following two conditions hold:

(i) I(T1) is closed under T2;
(ii) I(T2) ⊆ I(T1).

Now consider the particular case T2 = TL. Clearly, the second condition is triv-
ially fulfilled and can be omitted. In order to be able to apply the above propo-
sition to this case, we need to understand what it means for a set to be closed
under TL [33].

Lemma 2. A subset S ⊆ [0, 1] is closed under TL if and only if the set

1− S = {1− x | x ∈ S}
is closed under truncated addition, i.e. whenever a, b ∈ 1−S also min(a+ b, 1) ∈
1− S.

Consequently, an ordinal sum t-norm T based on TL dominates TL if and only
if the set of its complemented idempotent elements is closed under truncated
addition. Let us apply this insight to some particular families of ordinal sum
t-norms based on TL.

The Mayor-Torrens Family. The Mayor-Torrens t-norms form a family pa-
rameterized by a single real parameter λ ∈ [0, 1] [23]:

TMT
λ = (〈0, λ, TL〉) .

These t-norms are ordinal sums based on TL with a single summand located in
the lower left corner of the unit square (see also Fig. 6 (a)). In particular, it
holds that TMT

0 = TM and TMT
1 = TL. Note that TMT

λ1
≥ TMT

λ2
if and only if

λ1 ≤ λ2. Hence, TMT
λ1

) TMT
λ2

implies λ1 ≤ λ2.
If λ1 = 0 or λ1 = λ2, then the dominance relationship trivially holds. Suppose

that 0 < λ1 < λ2, then TMT
λ1

dominates TMT
λ2

if and only if TMT
λ∗ = (〈0, λ∗, TL〉)

dominates TL with λ∗ = λ1
λ2

(see also Proposition 4). The set of idempotent
elements of TMT

λ∗ is
I(TMT

λ∗ ) = {0} ∪ [λ∗, 1]

and therefore
1− I(TMT

λ∗ ) = [0, 1− λ∗] ∪ {1} .
For a = 1 − λ∗ and b = min(a, 1−a

2 ) it holds that a, b ∈ 1 − I(TMT
λ∗ ), a + b < 1

but a+ b �∈ 1− I(TMT
λ∗ ). According to Lemma 2 and Proposition 6, there exist

no dominance relationships within the Mayor-Torrens family other than TM

dominating all other members and self-dominance. Hence, there exists no triplet
of pairwisely different t-norms TMT

λ1
, TMT

λ2
and TMT

λ3
fulfilling TMT

λ1
) TMT

λ2
and

TMT
λ2

) TMT
λ3

, implying that the dominance relation is (trivially) transitive, and
therefore a partial order, on this family. The Hasse-diagram of ((TMT

λ )λ∈[0,1],4)
is displayed in Fig. 6 (b).
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0 λ1 ≤ λ2 1

TL

TL

. . .

TM = TMT
0

(a) (b)

Fig. 6. Examples of Mayor-Torrens t-norms, Hasse-diagram of ((TMT
λ )λ∈[0,1], �)

The Modified Mayor-Torrens Family. In this paragraph, we consider the
family of t-norms parameterized by a single real parameter μ ∈ [0, 1]:

Tμ = (〈μ, 1, TL〉) .
Contrary to the Mayor-Torrens family, the summands are located in the upper
right corner of the unit square. Hence, T0 = TL and T1 = TM (see also Fig. 7 (a)).
Note that Tμ1 ≥ Tμ2 if and only if μ1 ≥ μ2. Hence, Tμ1 ) Tμ2 implies μ1 ≥ μ2.

If μ1 = 1 or μ1 = μ2, then the dominance relationship trivially holds. Assume
that μ2 < μ1 < 1, then Tμ1 dominates Tμ2 if and only if Tμ∗ dominates TL with
μ∗ = μ1−μ2

1−μ2
. The set of idempotent elements of Tμ∗ is

I(Tμ∗) = [0, μ∗] ∪ {1}
and therefore

1− I(Tμ∗) = {0} ∪ [1− μ∗, 1] .

One easily verifies that the latter set is closed under truncated addition. Hence,
within the modified family, it holds that Tμ1 ) Tμ2 whenever μ1 ≥ μ2. In other
words, this family is totally ordered by the dominance relation. The Hasse-
diagram of ((Tμ)μ∈[0,1],4) is displayed in Fig. 7 (b).

Violation of Transitivity. We can now provide counterexamples to the con-
jecture that the dominance relation is transitive on the class of t-norms by con-
sidering ordinal sum t-norms based on TL with two summands. More specifically,
we consider the t-norm Tλ = (〈0, λ, TL〉, 〈λ, 1, TL〉) with parameter λ ∈ [0, 1]. We
will show that for any λ ∈ ]0, 1

2

]
it holds that

TMT
λ ) Tλ, Tλ ) TL, TMT

λ �) TL (16)

violating the transitivity of the dominance relation.
First, both TMT

λ and Tλ can be understood as ordinal sum t-norms with
the same structure: TMT

λ can be written as (〈0, λ, TL〉, 〈λ, 1, TM〉), hence the
common summand carriers are [0, λ] and [λ, 1] (see Fig. 8).
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0 μ2 ≤ μ1 1

TL

TL

TM = T1

TL = T0

(a) (b)

Fig. 7. Examples modified Mayor-Torrens t-norms, Hasse-diagram of ((Tμ)μ∈[0,1], �)

Since TL ) TL and TM ) TL, Proposition 3 implies that TMT
λ ) Tλ for any

λ ∈ [0, 1]. Second, the set of idempotent elements of Tλ is given by I(Tλ) =
{0, λ, 1} and thus

1− I(Tλ) = {0, 1− λ, 1} .

This set is closed under truncated addition if and only if 1− λ ≥ 1
2 . Therefore,

according to Lemma 2 and Proposition 6, it holds that Tλ dominates TL if and
only if λ ∈ [0, 1

2 ]. Finally, in the Mayor-Torrens family it does not hold that
TMT

λ ) TL = TMT
0 for any λ ∈ ]0, 1[. Combining all of the above shows that

(16) holds if and only if λ ∈ ]0, 1
2

]
.

0 < λ ≤ 1
2 1

TL

0 < λ ≤ 1
2 1

TL

TL

0 1

TL

Fig. 8. Three ordinal sum t-norms based on TL violating the transitivity of the domi-
nance relation. From left to right: TMT

λ , Tλ and TL. Violation of transitivity occurs if
and only if λ ∈ 0, 1

2 .

5.2 Ordinal Sum T-Norms Based on TP

We now turn to ordinal sum t-norms with TP as only summand operation and
start again with a family of t-norms with a single summand in the lower left
corner of the unit square.
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The Dubois-Prade Family. The Dubois-Prade t-norms form a family para-
meterized by a single real parameter λ ∈ [0, 1] [10]:

TDP
λ = (〈0, λ, TP〉) .

The case λ = 0 corresponds to TM, the case λ = 1 to TP. Note that TDP
λ1

≥ TDP
λ2

if and only if λ1 ≤ λ2. Hence, TDP
λ1

) TDP
λ2

implies λ1 ≤ λ2.
If λ1 = 0 or λ1 = λ2, then the dominance relationship trivially holds. There-

fore, suppose that 0 < λ1 < λ2. The set of idempotent elements of TDP
λ1

is given
by

I(TDP
λ1

) = {0} ∪ [λ1, 1] .

It then holds that

0 �= TDP
λ2

(λ1, λ1) = λ2 · TP(λ1
λ2
, λ1

λ2
) = λ1

λ2
· λ1 < λ1

due to the strict monotonicity of TP. Hence, TDP
λ2

(λ1, λ1) /∈ I(TDP
λ1

). According
to Proposition 5, TDP

λ1
does not dominate TDP

λ2
.

Consequently, the only dominance relationships in the Dubois-Prade family
are TM dominating all other members and self-dominance. The dominance rela-
tion is again (trivially) transitive, and therefore a partial order, on this family
(see Fig. 9).

0 λ1 ≤ λ2 1

TP

TP

. . .

TM = TDP
0

(a) (b)

Fig. 9. Examples of Dubois-Prade t-norms, Hasse-diagram of ((TDP
λ )λ∈[0,1], �)

In contrast to dominance between ordinal sum t-norms based on TL, dominance
between ordinal sum t-norms based on TP is not fully understood. The following
lemma provides one way of constructing an ordinal sum t-norm based on TP
dominating TP. It follows immediately from Proposition 5.

Lemma 3. Let λ ∈ ]0, 1[ and m ∈ N. Then the ordinal sum t-norm Tλ,m defined
as

Tλ,m = (〈λn, λn−1, TP〉)n=1,2,...,m

dominates TP.

This simple lemma allows to construct interesting examples.
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The Modified Dubois-Prade Family. Similarly as for the Mayor-Torrens
family, we propose a modification of the Dubois-Prade family, by locating the
single summand in the upper right corner of the unit square. Explicitly, we
consider the family of t-norms parameterized by a single real parameter λ ∈ [0, 1]:

Tλ = (〈λ, 1, TP〉) .

Note that these t-norms are special cases of Lemma 3 as Tλ = Tλ,1. In particular,
T0 = TP and T1 = TM. Note that Tλ1 ≥ Tλ2 if and only if λ1 ≥ λ2. Hence,
Tλ1 ) Tλ2 implies λ1 ≥ λ2.

If λ1 = 1 or λ1 = λ2, then the dominance relationship again trivially holds.
Moreover, due to Lemma 3, the dominance relationship also holds if λ2 = 0, i.e.
Tλ1 ) T0. Consider the case 0 < λ2 < λ1 < 1, then Tλ1 dominates Tλ2 if and
only if (〈λ1−λ2

1−λ2
, 1, TP〉) dominates TP. Thanks to Lemma 3, it then follows that

the modified Dubois-Prade family is totally ordered by the dominance relation
(see Fig. 10 (b)).

0 λ2 ≤ λ1 1

TP

TP

TM = T1

TP = T0

(a) (b)

Fig. 10. Examples modified Dubois-Prade t-norms, Hasse-diagram of ((Tλ)λ∈[0,1], �)

Violation of Transitivity. Also ordinal sum t-norms based on TP allow us to
construct a counterexample demonstrating the non-transitivity of the dominance
relation. Consider the ordinal sum t-norms T1 = (〈1

4 ,
1
2 , TP〉, 〈3

4 , 1, TP〉) and T2 =
T 1

2 ,2 (see Lemma 3). It then holds that

T1 ) T2, T2 ) TP, T1 �) TP

violating the transitivity of the dominance relation (see Fig. 11).
Note that the t-norm T1 can also be written as T1 = (〈1

4 ,
1
2 , TP〉, 〈1

2 , 1, T
∗〉)

with T ∗ the member of the modified Dubois-Prade family with parameter λ =
1
2 . Using Proposition 3 and the dominance relationships within the modified
Dubois-Prade family, it follows immediately that T1 ) T2. The dominance rela-
tionship T2 ) TP is an immediate consequence of Lemma 3. Finally, we consider
the set of idempotent elements of T1:

I(T1) =
[
0, 1

4

] ∪ [ 12 , 3
4

]
.
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0 1
4

1
2

3
4 1

TP

TP

0 1
4

1
2 1

TP

TP

0 1

TP

Fig. 11. Three ordinal sum t-norms based on TP violating the transitivity of the dom-
inance relation

It holds that 5
8 ∈ I(T1), while

TP(5
8 ,

5
8 ) = 25

64 �∈ I(T1) .

Proposition 5 then implies that T1 does not dominate TP.

6 Final Remarks

The dominance relation is a reflexive and antisymmetric relation on the class of
t-norms. That it is not transitive and therefore not a partial order was illustrated
by several examples whereas the particular role of ordinal sums dominating either
the �Lukasiewicz t-norm or the product t-norm is remarkable. Note that by the
isomorphism property of dominance these examples can be transformed into
counterexamples involving arbitrary nilpotent resp. strict t-norms. Properties
related to idempotent elements and to the induced order heavily determine the
occurrence of dominance within particular families of t-norms as shown by the
parameterized families in the last section.
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Abstract. The paper addresses the problem of extending aggregation
operators typically defined on [0, 1] to the symmetric interval [−1, 1],
where the “0” value plays a particular role (neutral value). We distin-
guish the cases where aggregation operators are associative or not. In the
former case, the “0” value may play the role of neutral or absorbant ele-
ment, leading to pseudo-addition and pseudo-multiplication. We address
also in this category the special case of minimum and maximum defined
on some finite ordinal scale. In the latter case, we find that a general class
of extended operators can be defined using an interpolation approach,
supposing the value of the aggregation to be known for ternary vectors.

1 Introduction

Most of the works done on aggregation operators take the [0, 1] interval as range
for quantities to be aggregated, or some similar structure, i.e. a closed interval
of some linearly ordered set (see, e.g., [3,17,21]). The lower and upper bounds
of this interval represent the worst and best scores that can be achieved on each
dimension.

We may desire to introduce a third remarkable point of the interval, say e,
which will play a particular role, for example a neutral value (in some sense) or
an absorbant value. This situation is already considered for uninorms [28]: e is
a neutral element in the sense that, U denoting a uninorm, U(e, x) = x for any
x ∈ [0, 1].

For convenience, up to a rescaling, we may always consider that we work on
[−1, 1], and 0 corresponds to our particular point, denoted e before. In the more
general case of bounded linearly ordered sets, we will apply a symmetrization
procedure.

The motivation for such a work may be only mathematical. However, there
are psychological evidence that in many cases, scores or utilities manipulated by
humans lie on a bipolar scale, that is to say, a scale with a neutral value making
the frontier between good or satisfactory scores, and bad or unsatisfactory scores.
With our convention, good scores are positive ones, while negative scores reflect
bad scores. Most of the time, our behaviour with positive scores is not the same
than with negative ones: for example, a conjunctive attitude may be turned
into a disjunctive attitude when changing the sign of the scores. So, it becomes
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important to define agregation operators being able to reflect the variety of
aggregation behaviours on bipolar scales.

Let M be an aggregation operator defined on [−1, 1]. Clearly, the restriction
of M to non negative numbers corresponds to some (usual) aggregation operator
M+ on [0, 1]. Similarly, its restriction to [−1, 0] corresponds to a (possibly differ-
ent) operator M−, after some suitable symmetrization. However, this does not
suffice to define the value of M for the mixed case, when positive and negative
scores coexist. The exact way to do this is dependent on the nature of M and
the meaning of 0. We shall distinguish several cases.

Let us consider first that M is associative, so that we need to consider only
two arguments. For the meaning of the 0 point, we can think of two cases of
interest: either 0 is a neutral value in the sense that M(0, x) = M(x, 0) = x for
any x ∈ [−1, 1], or 0 is an absorbing value, i.e. M(0, x) = M(x, 0) = 0, for any
x ∈ [−1, 1]. The first case leads naturally to pseudo-additions, while the second
one leads to pseudo-multiplications. This is the topic of Section 3. The particular
case of the definition of min and max on [−1, 1] will be addressed in Section 4,
where we deal with symmetrized linearly ordered sets.

Let us consider now (possibly) non associative aggregation operators. A first
important class of operators are those under the form:

M(x) := φ(M+(x+),M−(x−)) (1)

where x ∈ [−1, 1]n for some n, and x+ := x ∨ 0, x− := (−x)+, M+,M− are
given aggregation operators on [0, 1], and φ is a pseudo-difference. We call such
aggregation operators separable. A more general case is defined as follows. We
say that x is a ternary vector if x ∈ {−1, 0, 1}n for some n. Let us suppose
that the value of M for each ternary vector is given. Then we define M for every
x ∈ [−1, 1]n by some interpolation rule between the known values. The separable
case is recovered if M+ and M− are also obtained by some interpolation rule. As
in the usual unipolar case, we will show that this type of aggregation operator is
based on an integral (Section 6). We begin by a preliminary section introducing
necessary definitions.

2 Basic Material

We begin by recalling definitions of t-norms, t-conorms, uninorms and nullnorms
(see, e.g., [19,21] for details).

Definition 1. A triangular norm (t-norm for short) T is a binary operation on
[0, 1] such that for any x, y, z ∈ [0, 1] the following four axioms are satisfied:

(P1) commutativity: T (x, y) = T (y, x);
(P2) associativity: T (x, T (y, z)) = T (T (x, y), z));
(P3) monotonicity: T (x, y) ≤ T (x, z) whenever y ≤ z;
(P4) neutral element: T (1, x) = x.
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Any t-norm satisfies T (0, x) = 0. Typical t-norms are the minimum (∧), the
algebraic product (·), and the �Lukasiewicz t-norm defined by TL(x, y) := (x +
y − 1) ∨ 0.

Definition 2. A triangular conorm (t-conorm for short) S is a binary operation
on [0, 1] such that, for any x, y, z ∈ [0, 1], it satisfies P1, P2, P3 and

(P5) neutral element: S(0, x) = x.

Any t-conorm satisfies S(1, x) = 1. Typical t-conorms are the maximum ∨, the
probabilistic sum SP(x, y) := x+ y− xy, and the �Lukasiewicz t-conorm defined
by SL(x, y) := (x + y) ∧ 1. T-norms and t-conorms are dual operations in the
sense that for any given t-norm T , the binary operation ST defined by

ST (x, y) = 1− T (1− x, 1− y)

is a t-conorm (and similarly when starting from S). Hence, their properties are
also dual. The above examples are all dual pairs of t-norms and t-conorms.

A t-norm (or a t-conorm) is said to be strictly monotone if T (x, y) < T (x, z)
whenever x > 0 and y < z. A continuous t-norm (resp. t-conorm) is Archimedean
if T (x, x) < x (resp. S(x, x) > x) for all x ∈ ]0, 1[. A strictly monotone and con-
tinuous t-norm (resp. t-conorm) is called strict. Strict t-norms (resp. t-conorms)
are Archimedean. Non-strict continuous Archimedean t-norms (resp. t-conorms)
are called nilpotent.

Any continuous Archimedean t-conorm S has an additive generator s, i.e. a
strictly increasing function s : [0, 1] → [0,+∞], with s(0) = 0, such that, for any
x, y ∈ [0, 1]:

S(x, y) = s−1[s(1) ∧ (s(x) + s(y))] . (2)

Similarly, any continuous Archimedean t-norm has an additive generator t that
is strictly decreasing and satisfies t(1) = 0. Strict t-conorms are characterized by
s(1) = +∞, nilpotent t-conorms by a finite value of s(1). Additive generators are
determined up to a positive multiplicative constant. If t is an additive generator
of a t-norm T , then s(x) = t(1 − x) is an additive generator of its dual t-
conorm ST .

Definition 3. [28] A uninorm U is a binary operation on [0, 1] such that, for
any x, y, z ∈ [0, 1], it satisfies P1, P2, P3 and

(P6) neutral element: there exists e ∈ ]0, 1[ such that U(e, x) = x.

It follows that on [0, e]2 a uninorm behaves like a t-norm, while on [e, 1]2 it
behaves like a t-conorm. In the remaining parts, monotonicity implies that U
is comprised between min and max. Associativity implies that U(0, 1) ∈ {0, 1}.
Uninorms such that U(0, 1) = 1 are called disjunctive, while the others are called
conjunctive.

If U is a uninorm with neutral element e, strictly monotone on ]0, 1[2, and
continuous on [0, 1]2 \ {(0, 1), (1, 0)}, there exists an additive generator u, i.e. a
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strictly increasing [0, 1] → [−∞,∞] mapping u such that u(e) = 0 and for any
x, y ∈ [0, 1]:

U(x, y) = u−1(u(x) + u(y)) , (3)

where by convention ∞−∞ = −∞ if U is conjunctive, and +∞ if U is disjunc-
tive.

Definition 4. [2] A nullnorm V is a binary operation on [0, 1] such that for any
x, y, z ∈ [0, 1], it satisfies P1, P2, P3, and there is an element a ∈ [0, 1] such
that

V (x, 0) = x, ∀x ≤ a, V (x, 1) = x, ∀x ≥ a.

By monotonicity, V (x, a) = a for all x ∈ [0, 1], hence a is an absorbant value, and
V restricted to [0, a]2 is a t-conorm, while its restriction to [a, 1]2 is a t-norm.
Remark that this is the opposite situation of uninorms. On the remaining part
of [0, 1]2, monotonicity imposes that V (x, y) = a. Hence to each pair of t-norm
and t-conorm corresponds a unique nullnorm, provided a is fixed.

We turn to the definition of Choquet and Sugeno integrals. We denote by [n]
the set {1, . . . , n} of the n first integers, which will be the number of arguments
of our aggregation operators. Details on what follows can be found in, e.g., [16].

Definition 5. A (normalized) capacity is a function μ : 2[n] → [0, 1] satisfying
μ(∅) = 0, μ([n]) = 1, and μ(A) ≤ μ(B) for every A,B ∈ 2[n] such that A ⊆ B.

To any capacity μ we associate its conjugate μ, which is a capacity defined by:

μ(A) := 1− μ([n] \A), A ⊆ [n].

Definition 6. Let x ∈ [0, 1]n and μ be a capacity on [n].

(i) The (discrete) Choquet integral of x w.r.t. μ is defined by:

Cμ(x) :=
n∑

i=1

[xσ(i) − xσ(i−1)]μ({xσ(i), . . . , xσ(n)}),

with σ indicating a permutation on [n] such that xσ(1) ≤ · · · ≤ xσ(n), and
xσ(0) := 0.

(ii) The (discrete) Sugeno integral of x w.r.t. μ is defined by:

Sμ(x) :=
n∨

i=1

[xσ(i) ∧ μ({xσ(i), . . . , xσ(n)})],

with same notations.

These two aggregation operators being integrals, they are called integral-based
operators. Others can be defined, considering other integrals defined w.r.t capac-
ities and based on pseudo-additions and pseudo-multiplications (see, e.g., Muro-
fushi and Sugeno [23], Benvenuti et al. [1], and Sander and Siedekum [24,25,26]).
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For any A ⊆ [n], let us denote by (1A, 0Ac) the vector x of [0, 1]n such that
xi = 1 if i ∈ A and 0 else. These are the set of vertices of [0, 1]n. An important
property is that for any capacity μ, Cμ(1A, 0Ac) = Sμ(1A, 0Ac) = μ(A) for all
A ⊆ [n]. Moreover, as explained hereafter, the Choquet integral is the only linear
interpolator using the fewest number of vertices of [0, 1]n (see [9,15]).

Let us denote by F an aggregation operator on [0, 1]n such that for any A ⊆
[n], F (1A, 0Ac) = μ(A) for a given capacity μ. Let us find a linear interpolation
using the fewest possible vertices of [0, 1]n. For a given x ∈ [0, 1]n, let us denote
by V(x) the set of vertices used for the linear interpolation, which writes

F (x) =
∑

A⊆[n]|(1A,0Ac )∈V(x)

[
α0(A) +

n∑
i=1

αi(A)xi

]
F (1A, 0Ac), (4)

where αi(A) ∈ R, i = 0, . . . , n, ∀A ∈ V(x). To keep the meaning of interpolation,
we impose that the convex hull conv(V(x)) contains x, and any x ∈ [0, 1]n

should belong to a unique polyhedron conv(V(x)) (except for common facets),
and continuity should be ensured. Hence, the hypercube is partitioned into q
polyhedra defined by their sets of vertices V1, . . . ,Vq, all vertices being vertices
of [0, 1]n. Such an operation is called a triangulation. Note that the least possible
number of vertices is n+1, otherwise the polyhedra would not be n-dimensional,
and hence a finite number would not cover the whole hypercube.

Many different triangulations are possible, but there is one which is of partic-
ular interest, since it leads to an interpolation where all constant terms α0(A)
are null. This triangulation uses the n! canonical polyhedra of [0, 1]n:

conv(Vσ) = {x ∈ [0, 1]n | xσ(1) ≤ · · · ≤ xσ(n)}, for some permutation σ on [n].

Note that all these polyhedra have n + 1 vertices.

Proposition 1. The linear interpolation (4) using the canonical polyhedra is
the Choquet integral w.r.t. μ. Moreover, no other triangulation using polyhedra
of n + 1 vertices can lead to an interpolation.

As shown in [9], the Sugeno integral is the lowest possible max-min interpolation
between vertices in the canonical triangulation.

3 Pseudo-additions and Multiplications

In this section, we work on interval [−1, 1]. Our aim is to define associative
operators where 0 is either a neutral or an absorbing element, which we will
suppose commutative in addition. Let us denote respectively ⊕,⊗ : [−1, 1]2 −→
[−1, 1] these operators, and let us adopt an infix notation. In summary, they
should fulfil the following requirements for any x, y, z ∈ [−1, 1]:

R1 Commutativity: x⊕ y = y ⊕ x, x⊗ y = y ⊗ x.
R2 Associativity: x⊕ (y ⊕ z) = (x ⊕ y)⊕ z, x⊗ (y ⊗ z) = (x⊗ y)⊗ z.
R3 x⊕ 0 = x, x⊗ 0 = 0.
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Endowing [−1, 1] with the usual ordering, we may require in addition that ⊕ is
monotone in each argument. As observed by Fuchs [6], under the assumption of
monotonicity, associativity implies that ⊕ cannot be decreasing. Indeed, suppose
e.g. ⊕ is decreasing in first place and take x′ ≤ x. Then x′⊕(y⊕z) ≥ x⊕(y⊕z) =
(x⊕ y)⊕ z ≥ (x′ ⊕ y)⊕ z = x′ ⊕ (y⊕ z), a contradiction unless ⊕ is degenerate.
Hence we are lead to assume R4. For ⊗, let us require for the moment that it is
monotone only on [0, 1], which leads to R5.

R4 Isotonicity for ⊕: x⊕ y ≤ x′ ⊕ y, for any x′ ≤ x.
R5 Isotonicity on [0, 1]2 for ⊗.

The above requirements make that we recognize⊕ as a t-conorm when restricted
to [0, 1]2. To make ⊗ on [0, 1]2 a t-norm, we need in addition the following:

R6 Neutral element for ⊗: x⊗ 1 = x, for all x ∈ [0, 1].

Let us call ⊕,⊗ satisfying R1 to R6 pseudo-addition and pseudo-multiplication.
We address first the construction of ⊕. Since [−1, 1] is a symmetric interval,

and if 0 plays the role of a neutral element, then we should have

R7 Symmetry: x⊕ (−x) = 0, for all x ∈ [−1, 1].

Under R1, R2, R3, R4, and R7, the problem of defining ⊕ amounts to defining
an ordered group on [−1, 1] (see Fuchs [6] and [20,19]). We recall here necessary
notions and facts.

Definition 7. Let (W,≤) be a linearly ordered set, having top and bottom de-
noted �,⊥, a particular nonextremal element e, and let us consider ⊕ an in-
ternal binary operation on W , and 0 a unary operation such that x ≤ y iff
0(x) ≥ 0(y).

– (W,≤,⊕,0, e) is an ordered Abelian group (OAG) if it satisfies for all
nonextremal elements x, y, z:
(i) x⊕ y = y ⊕ x
(ii) x⊕ (y ⊕ z) = (x⊕ y)⊕ z
(iii) x⊕ e = x
(iv) x⊕ (0(x)) = e
(v) x ≤ y implies x⊕ z ≤ y ⊕ z.

– (W,≤,⊕,0, e) is an extended ordered Abelian group (OAG+) if in addition
(i) �⊕ x = �, ⊥⊕ x = ⊥ for all x, 0(�) = ⊥, 0(⊥) = �.
(ii) If x, y are non extremal, then x⊕ y is non extremal.

Clearly, our concern is to find an OAG+, with W = [−1, 1], � = 1,⊥ = −1,
0 = −, and ⊕ corresponds to our operation ⊕.

Definition 8. (i) An isomorphism of an OAG (OAG+) W = (W,≤,⊕,0, e)
onto an OAG (OAG+) W′ = (W ′,≤′,⊕′,0′, e′) is a one-to-one mapping φ
from W onto W ′ preserving the structure, i.e. such that
(i) φ(x ⊕ y) = φ(x) ⊕′ φ(y)
(ii) φ(0x) = 0′φ(x)
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(iii) φ(e) = e′

(iv) x ≤ y iff φ(x) ≤′ φ(y).
(ii) W is a substructure of W′ if W ⊆ W ′ and the structure of W is the

restriction of the structure of W′ to W , i.e. x ⊕ y = x ⊕′ y, 0x = 0′x,
e = e′, and x ≤ y iff x ≤′ y, for all x, y ∈ W .

(iii) An isomorphic embedding of W into W′ is an isomorphism of W onto a
substructure of W′.

Definition 9. (i) An OAG W is dense if there is no least positive element,
i.e. an element x ∈ W such that x > e, and there is no y ∈ W such that
e < y < x.

(ii) An OAG W is completely ordered if each non empty bounded X ⊆ W has
a least upper bound.

Obviously, (]− 1, 1[,≤,⊕,−, 0) is dense and completely ordered, the same holds
if the interval is closed.

Theorem 1. If W is a completely ordered and dense OAG, then it is isomorphic
to (R,≤,+,−, 0).

The same result holds if W is an OAG+ and if R is replaced by R := R ∪
{−∞,∞}.

This shows that necessarily, ⊕ has the following form:

x⊕ y = φ−1[φ(x) + φ(y)] (5)

where φ : [−1, 1] −→ R is one-to-one, odd, increasing, and satisfies φ(0) = 0.
Clearly, φ restricted to [0, 1] is the additive generator of a strict t-conorm (see
Section 2), and moreover, ⊕ is a uninorm with e = 1

2 and additive generator φ,
up to a rescaling on [0, 1] (see Section 2). These results were shown directly in
[11].

Let us turn to the case of ⊗. If we impose distributivity of ⊗ w.r.t. ⊕ (called
R8), then necessarily ⊗ obeys the rule of sign of the usual product, i.e., for any
x, y ≥ 0, (−x)⊗ y = −(x⊗ y). Indeed,

0 = (x ⊕ (−x))⊗ y = (x ⊗ y)⊕ ((−x)⊗ y)

which entails (−x) ⊗ y = −(x ⊗ y). This case corresponds to ordered rings
and fields (see Fuchs [6]). Then ⊗ is not monotone on [−1, 1]2, and is uniquely
determined by its values on [0, 1]2, where it is a t-norm T . In summary, under
R1, R2, R3, R5 and R8, ⊗ has the following form:

x⊗ y = sign(x · y)T (|x|, |y|),
for some t-norm T , and

sign(x) :=

⎧⎪⎨⎪⎩
1, if x > 0
−1, if x < 0
0, if x = 0.



362 M. Grabisch

If distributivity is not needed, nothing prevents us from imposing monotonic-
ity of⊗ on the whole domain [−1, 1]2 (called R5’). Then, if we impose in addition
(−1)⊗x = x for all x ≤ 0 (called R6’), up to a rescaling in [0, 1], ⊗ is a nullnorm
with a = 1/2, since ⊗ is associative, commutative, non decreasing, and −1 is
neutral on [−1, 0]2, 1 is neutral on [0, 1]2. In sumary, under R1, R2, R5’, R6
and R6’, ⊗ has the following form:

x⊗ y =

⎧⎪⎨⎪⎩
T (x, y), if x, y ≥ 0
S(x+ 1, y + 1)− 1, if x, y ≤ 0
0, else

for some t-norm T and t-conorm S.

4 Minimum and Maximum on Symmetrized Linearly
Ordered Sets

The previous section has shown that except for strict t-conorms, there is no way
to build pseudo-addition fulfilling requirements R1, R2, R3, R4, and R7. Hence
extending the maximum on [−1, 1] in this way is not possible. However, we will
show that this is in fact almost possible. Also, since our construction works on
any linearly ordered set, this section addresses the construction of aggregation
operators on ordinal bipolar scales.

We consider a linearly ordered set (L+,≤), with bottom and top denoted O, 1l
respectively, and we define L := L+ ∪ L−, where L− is a reversed copy of L+,
i.e. for any a, b ∈ L+, we have a ≤ b iff −b ≤ −a, where −a,−b are the copies of
a, b in L−.

Our aim is to define extensions of minimum and maximum operators on L,
denoted �,� and called symmetric minimum and symmetric maximum, in the
same spirit as above. Specifically, we should require among others:

(C1) �,� coincide with ∨,∧ respectively on L+

(C2) �,� are associative and commutative on L.
(C3) −a is the symmetric of a, i.e. a�(−a) = O.
(C4) −(a� b) = (−a)�(−b), −(a� b) = (−a)� b, ∀a, b ∈ L.

Conditions C1 and C2 replace requirements R1 to R4 above, while condition
C3 is requirement R7. Condition C4 tells that �,� should behave like addi-
tion and product on real numbers. The following result shows that this task is
impossible [10].

Proposition 2. We consider conditions (C1), (C3), (C4), and denote by
(C4+) condition (C4) when a, b are restricted to L+. Then:

(1) Conditions (C1) and (C3) implies that associativity cannot hold for �.
(2) Under (C1) and (C4+), O is neutral for �. If we require in addition

associativity, then |a�(−a)| ≥ |a|. Further, if we require isotonicity of �, then
|a�(−a)| = |a|.
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In [7], the following definitions for �,� were proposed.

a� b :=

⎧⎨⎩
−(|a| ∨ |b|) if b �= −a and |a| ∨ |b| = −a or = −b
O if b = −a
|a| ∨ |b| else.

(6)

Except for the case b = −a, a� b equals the absolutely larger one of the two
elements a and b.

a� b :=
{−(|a| ∧ |b|) if sign a �= sign b
|a| ∧ |b| else. (7)

The absolute value of a� b equals |a| ∧ |b| and a� b < O iff the two elements a
and b have opposite signs1. Both operators are represented on Figure 1. These
operators have the following properties [10].

1

−1

0 1

−1

a

−a

0−1 1−a a

1

−1

0−1 1

0

a−a

−a

a

a

−a

Fig. 1. Constant level curves of the symmetric maximum (left) and minimum (right)

Proposition 3. The structure (L,�,�) has the following properties.

(i) � and � fulfil conditions C1, C3 and C4.
(ii) 1l (resp. O) is the unique absorbant element of � (resp. �);
(iii) � is associative for any expression involving a1, . . . , an, ai ∈ L, such that∨n

i=1 ai �= −∧n
i=1 ai.

(iv) � is associative on L.
(v) � is distributive w.r.t � in L+ and L− separately.
(vi) � is isotone, i.e. a ≤ a′, b ≤ b′ implies a� b ≤ a′ � b′.

The following result [10] shows that there is no “better” definition of � under
the given conditions.

1 As in Section 3, one may impose as well non-decreasingness of � on [−1l, 1l], making
� a nullnorm.



364 M. Grabisch

Proposition 4. Under conditions (C1), (C3) and (C4), no operation is asso-
ciative on a larger domain than � as given by (6).

The problem of non associativity may be a severe limitation if � is used as a
group operation to perform computation, like �

n
i=1 ai. To overcome this diffi-

culty, Grabisch has proposed several computation rules [10], which amount to
eliminate situations where non associativity occurs, as given in Prop. 3. We
denote them by 〈·〉.

(i) The splitting rule 〈·〉+−, splitting positive and negative terms:

〈 n
�

i=1
ai〉+− :=

(
�

ai≥O

ai

)
�

(
�

ai<O

ai

)
.

(ii) The strong rule 〈·〉0, cancelling maximal opposite terms successively until
condition (iii) in Prop. 3 is satisfied. Formally,

〈 �
ai∈A

ai〉0 := �

ai∈A\Ā
ai,

with the convention that �∅ ai := O, and A := a1, . . . , an, while Ā :=
ā1, . . . , ā2k is the sequence of pairs of maximal opposite terms.

(iii) The weak rule 〈·〉=, cancelling maximal opposite terms as before, but with
duplicates, i.e. the set Ā contains in addition all duplicates of maximal op-
posite terms.

Taking for example L = Z and the sequence of numbers 3, 3, 3, 2, 1, 0,−2,−3,
−3, for which associativity does not hold, the result for splitting rule is 0, while
we have:

〈3 � 3 � 3 �2 � 1 � 0 �−2 �−3 �−3〉0 =3 � 2 � 1 � 0 �−2 = 3
〈3 � 3 � 3 �2 � 1 � 0 �−2 �−3 �−3〉= =1 � 0 = 1.

The symmetric maximum with the strong rule coincides with the limit of some
family of uninorms proposed by Mesiar and Komorniková [22].

We give several simple properties of these computation rules.

Lemma 1. All computation rules satisfy the following boundary property for
any sequence a1, . . . , an

n∧
i=1

ai ≤ 〈 n
�

i=1
ai〉 ≤

n∨
i=1

ai.

Lemma 2. The rules 〈·〉+− and 〈·〉0 are isotone, i.e. they satisfy

ai ≤ a′i, i = 1, . . . , n implies 〈 n
�

i=1
ai〉 ≤ 〈 n

�
i=1

a′i〉.
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Computation rule 〈·〉= is not isotone, as shown by the following example: take
the sequence −3, 3, 1 in Z. Applying the weak rule leads to 1. Now, if 1 is raised
to 3, the result becomes O.

The sequence a1, . . . , an in L is said to be a cancelling sequence for the rule
〈·〉 if 〈�n

i=1 ai〉 = O. We denote by O〈·〉 the set of cancelling sequences of 〈·〉.
We say that computation rule 〈·〉1 is more discriminating than rule 〈·〉2 if

O〈·〉1 ⊂ O〈·〉2 .

Lemma 3
O〈·〉0 ⊂ O〈·〉= ⊂ O〈·〉+− .

5 Separable Operators

We consider here non necessarily associative operators M , in the spirit of means.
We assume in this section that the underlying scale is [−1, 1], otherwise specified.
We denote by n the number of arguments of M .

A simple way to build bipolar aggregation operators is the following. Let
M+,M− be given aggregation operators on [0, 1]. M+ defines the aggregation
for positive values, while M− defines the aggregation of negative values:

M(x) = M+(x) if x ≥ 0, M(x) = −M−(−x) if x ≤ 0.

For any x ∈ [−1, 1]n, we define x+ := x ∨ 0 and x− := (−x)+. Note that
x = x+ − x−, which suggests the following construction:

M(x) := φ(M+(x+),M−(x−)), ∀x ∈ [−1, 1]n, (8)

where φ is a pseudo-difference, defined as follows.

Definition 10. Let S be a t-conorm.

(i) The S-difference
S− is defined by

a
S− b := inf{c | S(b, c) ≥ a}

for any (a, b) in [0, 1]2.
(ii) The pseudo-difference associated to S is defined by

a0S b :=

⎧⎪⎪⎨⎪⎪⎩
a

S− b, if a ≥ b

−(b
S− a), if a ≤ b

0, if a = b

Two simple particular cases are with S = ∨ and S = SL. Then for any a, b ∈
[−1, 1]

a0∨ b = a�(−b), a0L b = a− b,

as it can be easily checked. If S is a strict t-norm with additive generator s, then
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a0S b = g−1(g(a)− g(b)),

with g(x) = s(x) for x ≥ 0, and g(x) = −s(−x) for x ≤ 0 (see [11]).
A bipolar aggregation operator defined by Eq. (8) is called separable.

If M+ = M− is a strict t-conorm S with generator s, and 0S is taken as
pseudo-difference, we recover the construction of Section 3. Indeed, taking n = 2
(sufficient since associative), and g being the generator of 0S:

M(x, y) = S(x+, y+)0S S(x−, y−)

= g−1(g(S(x+, y+))− g(S(x−, y−)))

= g−1(g(x+) + g(y+)− g(x−)− g(y−))

= g−1(g(x) + g(y))

which is Eq. (5), and indeed g is odd, strictly increasing, and g(0) = 0.
An interesting case is when M+,M− are integral-based operators, such as

the Choquet or Sugeno integrals (see definitions in Section 2). Applying (8)
with suitable pseudo-differences, we recover various definitions of integrals for
real-valued functions. Specifically, let us take M+,M− to be Choquet integrals
with respect to capacities μ+, μ−, and φ is the usual difference 0L. Then:

– Taking μ+ = μ− we obtain the symmetric Choquet integral [4] or Šipoš
integral [27]:

Čμ(x) := Cμ(x+)− Cμ(x−).

– Taking μ− = μ+ we obtain the asymmetric Choquet integral [4]:

Cμ(x) := Cμ(x+)− Cμ(x−).

– For the general case, we obtain what is called in decision making theory the
Cumulative Prospect Theory (CPT) model.

CPTμ+,μ−(x) := Cμ+(x+)− Cμ−(x−).

We consider now that M+,M− are Sugeno integrals, with respect to capac-
ities μ+, μ−, and φ is the residuated difference associated to the maximum, i.e.
φ(x, y) := x�(−y). Then as above,

– Taking μ+ = μ− we obtain the symmetric Sugeno integral [8]:

Šμ(x) := Sμ(x+)�(−Sμ(x−)).

– Taking μ+ = μ− we obtain the asymmetric Sugeno integral [7]:

Ŝμ(x) := Sμ(x+)�(−Sμ(x−)).

– For the general case, we obtain what corresponds to the CPT model in an
ordinal version.

OCPTμ+,μ−(x) := Sμ+(x+)�(−Sμ−(x−)).
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Note that the above development on Sugeno integral could have been done
on any linearly ordered set L, provided L has enough structure so we can de-
fine conjugate capacities. For a general study of the Sugeno integral as well as
symmetric and asymmetric versions on linearly ordered sets, see Denneberg and
Grabisch [5].

6 Integral-Based Operators

Let us study the case of integral-based operators, and we will limit ourself to
the Choquet and Sugeno integrals, which are the most representative.

As explained in Section 2, the Choquet integral can be defined as the “sim-
plest” linear interpolation between vertices of [0, 1]n. Extending the domain to
[−1, 1]n, let us try to keep a similar approach.

The basic ingredient of the interpolative view is that Cμ(1A, 0Ac) =
Sμ(1A, 0Ac) = μ(A). Let us call binary vectors those of the form (1A, 0Ac). In the
unipolar case, coordinates of binary vectors are the boundaries of the interval
[0, 1]. In the bipolar case, apart boundaries, we should also consider 0, as this
value plays a particular role. We thus consider ternary vectors, whose compo-
nents are either 1, 0 or −1. We denote them (1A,−1B, 0(A∪B)c), which means
that xi = 1 if i ∈ A, xi = −1 if i ∈ B, and 0 elsewhere. Obviously, A ∩B = ∅,
so that the set of ternary vectors is obtained when the pair (A,B) belongs to
Q([n]) := {(A,B) | A,B ⊆ [n], A ∩ B = ∅}. The basic idea is to produce an
aggregation function F which coincides with a set of fixed quantities v(A,B),
for (A,B) ∈ Q([n]). In order to define a monotone aggregation operator, we are
led to the following definition.

Definition 11. [12,14] A (normalized) bicapacity v on [n] is a function v :
Q([n]) → [−1, 1] satisfying v(∅,∅) = 0, v([n],∅) = 1, v(∅, [n]) = −1, and
v(A,B) ≤ v(C,D) whenever A ⊆ C and B ⊇ D.

Applying the same interpolative approach between ternary vectors, we are led
to the following (see details in [15]). Let us consider x ∈ [−1, 1]n. Defining
N+

x := {i ∈ [n] | xi ≥ 0}, N−
x := [n] \ N+

x , with similar considerations of
symmetry, we obtain as linear interpolation:

F (x) = |xσ(1)|F (1N+
x
,−1N−

x
, 0(N+

x ∪N−
x )c)

+
n∑

i=2

(|xσ(i)|−|xσ(i−1)|)F (1{σ(i),...,σ(n)}∩N+
x
,−1{σ(i),...,σ(n)}∩N−

x
, 0{σ(i),...,σ(n)}c)

where σ is a permutation on [n] such that |xσ(1)| ≤ · · · ≤ |xσ(n)|. This expression
is the Choquet integral of |x| w.r.t. a set function νN+

x
defined by:

νN+
x

(A) := F (1A∩N+
x
,−1A∩N−

x
, 0Ac).

Recalling that F (1A,−1B, 0(A∪B)c) =: v(A,B), we finally come up with the
following definition.
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Definition 12. [13] Let v be a bicapacity and x ∈ [−1, 1]n. The Choquet inte-
gral of x w.r.t v is given by

Cv(x) := Cν
N

+
x

(|x|)

where νN+
x

is a set function on [n] defined by

νN+
x

(C) := v(C ∩N+
x , C ∩N−

x ),

and N+
x := {i ∈ [n] | xi ≥ 0}, N−

x = [n] \N+
x .

When there is no fear of ambiguity, we drop subscript x in N+
x , N−

x .
It is shown in [13] that if the bicapacity v has the form v(A,B) := μ+(A) −

μ−(B) for all (A,B) ∈ Q([n]), where μ+, μ− are capacities, then Cv(x) =
CPTμ+,μ−(x), for all x ∈ [−1, 1]n. Hence the Choquet integral based on a bica-
pacity encompasses the CPT model, and thus symmetric and asymmetric Cho-
quet integrals.

By analogy, a definition can be proposed for the Sugeno integral w.r.t a bica-
pacity:

Sv(x) := Sν
N

+
x

(|x|)
with the same notations as above. However, since νN+

x
may assume negative

values, it is necessary to extend the definition of Sugeno integral as follows:

Sν(x) :=
〈 n

�
i=1

[xσ(i) � ν({σ(i), . . . , σ(n)})]〉+−
where x ∈ [0, 1]n, ν is any real-valued set function such that ν(∅) = 0, and σ
is a permutation on [n] such that x becomes non decreasing. 〈·〉+− indicates the
splitting rule defined in Section 4. Then, the Sugeno integral for bicapacities can
be rewritten as

Sv(x) =
〈 n

�
i=1

[
|xσ(i)|� v({σ(i), . . . , σ(n)} ∩N+, {σ(i), . . . , σ(n)} ∩N−)

]〉+

−
.

(9)

This formula is similar to the one proposed by Greco et al. [18].
The following result shows that the Sugeno integral w.r.t. a bicapacity en-

compasses the OCPT model.

Proposition 5. Let v be a bicapacity of the form v(A,B) := μ+(A)�(−μ−(B)),
where μ+μ− are capacities. Then the Sugeno integral reduces to

Sv(x) := Sμ+(x+)�(−Sμ−(x−)) = OCPTμ+,μ−(x), ∀x ∈ [−1, 1]n.

Note that if μ+ = μ− (v could then be called a ∨-symmetric bicapacity), then
Sv is the symmetric Sugeno integral.
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Proof. Denote by σ a permutation on [n] such that |x| is non-decreasing, and
put Aσ(i) := {σ(i), . . . , σ(n)}. Since x+, x−, μ+, μ− are non negative, we have

Sμ+(x+) =
n∨

i=1

[
x+

σ(i) ∧ μ+(Aσ(i) ∩N+)
]

Sμ−(x−) =
n∨

i=1

[
x−σ(i) ∧ μ−(Aσ(i) ∩N−)

]
.

Using the definition of v, we get

Sv(x) =
〈 n

�
i=1

[
|xσ(i)|�[μ+(Aσ(i) ∩N+)�(−μ−(Aσ(i) ∩N−))]

]〉+

−
.

Due to the definition of 〈·〉+−, we have to show that if Sμ+(x+) is larger (resp.
smaller) than Sμ−(x−), then the maximum of positive terms is equal to Sμ+(x+)
and is larger in absolute value than the maximum of negative terms (resp. the
maximum of absolute value of negative terms is equal to Sμ−(x−) and is larger
in absolute value than the maximum of positive terms).

Let us consider σ(i) ∈ N+. Two cases can happen.

– if μ+(Aσ(i) ∩N+) > μ−(Aσ(i) ∩N−), then the corresponding term reduces
to x+

σ(i) �μ+(Aσ(i) ∩N+). This term is identical to the ith term in Sμ+(x+).
– if not, the ith term in Sv(x) reduces to −x+

σ(i) �μ−(Aσ(i) ∩ N−). Due to
monotonicity of μ+, this will be also the case for all subsequent indices
σ(i+1), . . . σ(i+k), provided they belong to N+. Moreover, assuming σ(i+
k + 1) ∈ N−, we have

|xσ(i+k+1)|�
[
μ+(Aσ(i+k+1) ∩N+)�(−μ−(Aσ(i+k+1) ∩N−))

]
= −|xσ(i+k+1)|�μ−(Aσ(i+k+1) ∩N−)

≤ |xσ(j)|�μ−( Aσ(j) ∩N−︸ ︷︷ ︸
Aσ(i+k+1)∩N−

), ∀j = i, . . . , i+ k.

Hence, in the negative part of Sv(x), the term in σ(i+k+1) remains, while all
terms in σ(i), . . . , σ(i+k) are cancelled, and it coincides with the (i+k+1)th
term in Sμ−(x−). On the other hand, in Sμ+(x+)�(−Sμ−(x−)), the term in
σ(i) in Sμ+(x+) is smaller in absolute value than the term in σ(i+ k+ 1) of
Sμ−(x−), so that the term in σ(i) cannot be the result of the computation,
and thus it can be discarded from Sμ+(x+).

A similar reasoning can be done with σ(i) ∈ N−. This proves that Sv(x) and
Sμ+(x+)� (−Sν−(x−)) are identical.
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