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Preface

The 17th International Workshop on Implementation and Application of Func-
tional Languages (IFL 2005) was held in Dublin, Ireland, September 19–21, 2005.
It was organized by the Department of Computer Science at Trinity College,
University of Dublin.

IFL 2005 was the 17th event in the annual series of IFL workshops. The aim
of the workshop series is to bring together researchers actively engaged in the
implementation and application of functional and function-based programming
languages. It provides an open forum for researchers who wish to present and
discuss new ideas and concepts, work in progress, preliminary results, etc., re-
lated primarily, but not exclusively, to the implementation and application of
functional languages. Topics of interest cover a wide range from theoretical as-
pects over language design and implementation towards applications and tool
support.

Previous IFL workshops were held in Germany (Lübeck, Aachen and Bonn),
the UK (Southampton, Norwich, London, St. Andrews, and Edinburgh), in The
Netherlands (Nijmegen and Lochem), in Sweden (B̊astad and Stockholm), and
in Spain (Madrid). In 2006, the 18th International Workshop on Implementation
and Application of Functional Languages was held in Budapest, Hungary.

We have continued the innovation introduced for IFL 2004, in which the term
“application” was added to the workshop name. Our aim was to reflect the
broader scope IFL has gained over recent years and to make IFL even more
attractive for researchers in the future. The number of researchers attending IFL
2005 and the subject range of submissions demonstrated the appropriateness
of this modification. Continuity with previous workshops was maintained by
keeping the well-known and familiar acronym IFL.

Continuity and consistency with previous workshops are ensured by the pres-
ence of the IFL Steering Committee (http://www.ifl-symposia.org/) formed
of experienced former Programme Chairs and other researchers with a strong
historical connection to IFL. Papers are selected using a rigourous refereeing
process involving at least three external referees, with higher standards pertain-
ing to papers that are co-authored by Programme Committee members. Each
paper is discussed anonymously and on camera before being ranked for inclusion
in the final proceedings. Decisions are adjudicated by the Programme Chair,
who is precluded from submitting any paper. The Programme Chair also directs
discussion and voting on the award of the Peter Landin Prize, using a secret
ballot.

IFL 2005 attracted 53 researchers from 14 different countries. Most partic-
ipants came from Europe: 12 from the UK, 5 each from Germany and The
Netherlands, 3 from Hungary, and 1 each from Belgium, Denmark, Greece,
Portugal, and 19 from Ireland. We also welcomed two participants from the USA,
and one each from Canada, Brazil and Mongolia. During the three days of the
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workshop 32 presentations were given, organized into 10 individual sessions. The
draft proceedings distributed during the workshop contained 37 contributions.
They were published as Technical Report TCD-CS-2005-60 of the Department
of Computer Science, Trinity College, University of Dublin. This volume follows
the IFL tradition since 1996 in publishing a high-quality subset of contributions
presented at the workshop in the Springer Lecture Notes in Computer Science
series. All participants who gave a presentation at the workshop were invited
to resubmit revised versions of their contributions after the workshop. We re-
ceived 22 papers, each of which was reviewed by at least three members of the
international Programme Committee according to normal conference standards.
Following an intensive discussion the Programme Committee selected 13 papers
to be included in this volume.

Since 2002 the Peter Landin Prize has been awarded annually to the author
or the authors of the best workshop paper. The Programme Committee was
pleased to give this prestigious award to Clemens Grelck, Karsten Hinckfuß,
and Sven-Bodo Scholz, for their contribution on “With-Loop Fusion for Data
Locality and Parallelism.” Previous Peter Landin Prize winners were Olivier
Danvy, Arjen van Weelden, Rinus Plasmeijer, and Pedro Vasconcelos. IFL 2005
was generously sponsored by the Department of Computer Science at Trinity
College Dublin. We are grateful to them for their financial and organizational
support. We wish to thank all participants of IFL 2005 who made this workshop
the successful event it was. Last but not least, we are indebted to the members
of the Programme Committee who completed their reviews in a very short time
frame.

August 2006 Andrew Butterfield, Clemens Grelck, Frank Huch
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A Framework for Point-Free Program
Transformation�

Alcino Cunha, Jorge Sousa Pinto, and José Proença

CCTC / Departamento de Informática, Universidade do Minho
4710-057 Braga, Portugal

{alcino,jsp,jproenca}@di.uminho.pt

Abstract. The subject of this paper is functional program transforma-
tion in the so-called point-free style. By this we mean first translating
programs to a form consisting only of categorically-inspired combinators,
algebraic data types defined as fixed points of functors, and implicit re-
cursion through the use of type-parameterized recursion patterns. This
form is appropriate for reasoning about programs equationally, but diffi-
cult to actually use in practice for programming. In this paper we present
a collection of libraries and tools developed at Minho with the aim of sup-
porting the automatic conversion of programs to point-free (embedded
in Haskell), their manipulation and rule-driven simplification, and the
(limited) automatic application of fusion for program transformation.

1 Introduction

Functional Programming has always been known to be appropriate for activities
involving manipulation of programs, such as program transformation. This is
due to the strong theoretical basis that underlies the programming languages:
the semantics of functional programs are easier to formalize.

As with any programming paradigm, different functional programmers use
different styles of programming; it is however true that most advanced program-
mers resort to some concise form where functions are written as combinations of
other functions, rather than programming by explicit manipulation of the argu-
ments and explicit recursion. For instance a function that sums the squares of
the elements in a list can be written in Haskell as

sum_squares = (foldr (+) 0) . (map sq) where sq x = x*x

A radical style of programming is the so-called point-free style, which totally
dispenses with variables. For instance the function sq above can be written as
sq = mult . (id /\ id), where the infix operator /\ corresponds to the split
combinator that applies two functions to an argument, producing a pair, and
mult is the uncurried product.

The origins of the point-free style can be traced back to the ACM Turing
Award Lecture given by John Backus in 1977 [1]. Instead of explicitly referring
� This work was partially supported by FCT project PURe (POSI/CHS/44304/2002).

A. Butterfield, C. Grelck, and F. Huch (Eds.): IFL 2005, LNCS 4015, pp. 1–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 A. Cunha, J.S. Pinto, and J. Proença

arguments, Backus recommended the use of functional forms (combinators) to
build functions by combining simpler ones. The particular choice of combinators
should be driven by the associated algebraic laws.

In the modern incarnation of these ideas, the combinators correspond to
morphisms in a category (where the denotational semantics of the language are
constructed) and the desired laws follow directly from universal properties of
this category. What is more, this approach extends smoothly to the treatment
of recursion in what is known as the data type-generic approach to program-
ming [8,14]. This allows one to reason equationally about functions obtained
by applying standard recursion patterns, thus replacing the use of fixpoint
induction.

The generic aspect of this approach comes from the fact that all the construc-
tions are parameterized by the recursive data types involved in the computations.
It is widely accepted that this style is a good choice for reasoning about programs
equationally and generically. It has also proved to be fruitful in the field of pro-
gram transformation [4], where well-known concepts like folding or fusion over
lists were first introduced by Bird to derive accumulator-based implementations
from inefficient specifications [2].

As a simple example of the kind of transformation we mean, in the function
sum_squares given above, the fold can be equationally fused with the map to
give the following one-pass function, where plus is uncurried sum.

sum_squares’ = foldr aux 0 where aux = curry (plus . (sq . fst /\ snd))

The drawback of using this radical point-free style is that, as the examples
in this paper show, programs written without variables are not always easy to
write or understand. In fact, it is virtually impossible to program without using
variables here and there. Pointwise vs. point-free is a lively discussion subject
in Haskell forums; the goal of the present paper is to present a set of libraries
and tools that support point-free program transformation, but this includes the
automatic translation of code to point-free form, so that programmers may apply
point-free techniques to their code with variables.

Specifically, we present here the following components, which are all freely
available as part of the UMinho Haskell Software distribution.

Pointless: A library for point-free programming, allowing programmers to type-
check and execute point-free code with recursion patterns, parameterized by
data types. With the help of extensions to the Haskell type system, we have
implemented an implicit coercion mechanism that provides a limited form
of structural equivalence between types. This has allowed us to embed in
Haskell a syntax almost identical to the one used at the theoretical level.

DrHylo: A tool that allows programmers to automatically convert Haskell code
to point-free form with recursion patterns. In particular, we employ the well-
known equivalence between simply typed λ-calculi and cartesian closed cat-
egories suggested by Lambek [12]. This serves as the basis for the translation
of a core functional language to categorical combinators, extended by the first
author [3] to cover sum types. A second component here is the application
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Γ � � : 1
Γ (x) = A

Γ � x : A

Γ [x �→ A] � M : B

Γ � λx. M : A → B

Γ � M : A → B Γ � N : A

Γ � M N : B

Γ � M : A Γ � N : B

Γ � 〈M, N〉 : A × B

Γ � L : A + B Γ � M : A → C Γ � N : B → C

Γ � case L M N : C

Γ � M : A × B

Γ � fst M : A

Γ � M : A × B

Γ � snd M : B

Γ � M : A

Γ � inl M : A + B

Γ � M : B

Γ � inr M : A + B

Γ � M : F (μF )
Γ � inμF M : μF

Γ � M : μF

Γ � outμF M : F (μF )
Γ � M : A → A

Γ � fix M : A

Fig. 1. Typing rules

of a standard algorithm that converts recursive functions to hylomorphisms
of adequate regular data-types, thus removing explicit recursion.

SimpliFree: A tool for manipulating point-free code. Its use will be exemplified
here: (i) for the simplification of the very verbose terms produced by DrHylo;
and (ii) for program transformation by applying fold fusion.

Organization of the Paper. Section 2 introduces the languages used in the paper,
and Sect. 3 reviews notions of point-free equational reasoning, with the help of
an example. Pointless, DrHylo, and SimpliFree are described in Sects. 4, 5 and
6. Finally Sect. 7 concludes the paper.

2 The Pointwise and Point-Free Styles of Programming

In both styles, types are defined according to the following syntax.

A, B ::= 1 | A → B | A × B | A + B | μF
F, G ::= Id | A | F ⊗ G | F ⊕ G | F � G

We assume a standard domain-theoretic semantics, where types are pointed
complete partial orders, with least element ⊥. 1 is the single element type, A → B
is the type of continuous functions from A to B, A×B is the cartesian product,
A + B is the separated sum (with distinguished least element), and μF is a
recursive (regular) type defined as the fixed point of functor F .

Id denotes the identity functor, A the constant functor that always returns A,
⊗ and ⊕ the lifted product and sum bifunctors, and � composition of functors.
For example, booleans can be defined as Bool = 1 + 1, natural numbers as
Nat = μ(1 ⊕ Id), and lists with elements of type A as List A = μ(1 ⊕ A ⊗ Id).

Pointwise Language. Terms with variables are generated by the grammar

L, M, N ::= � | x | M N | λx. M | 〈M, N〉 | fst M | snd M |
case L M N | inl M | inr M | inμF M | outμF M | fix M

Apart from variable, abstraction, and application, we find �, which is the unique
inhabitant of the terminal type (as such, it equals ⊥1); fst and snd are projections
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from a product type and inl and inr are injections into a sum type; 〈·, ·〉 is
a pairing construct, and case performs case-analysis on sums. Associated with
each recursive type μF are two unique strict functions inμF and outμF , that are
each other’s inverse. These provide the means to construct and inspect values of
the given type. Whenever clear from context, the subscripts will be omitted.

The typing rules are presented in Fig. 1. We now show examples of terms in
this language.

zero : Nat
zero = in (inl �)

nil : List A
nil = in (inl �)

succ : Nat → Nat
succ = λx. in (inr x)

cons : A → List A → List A
cons = λht. in (inr 〈h, t〉)

swap : A × B → B × A
swap = λx. 〈snd x, fst x〉

null : List A → Bool
null = λl.case (out l) (λx.true) (λx.false)

distr : A × (B + C) → (A × B) + (A × C)
distr = λx. case (snd x) (λy. inl 〈fst x, y〉) (λy. inr 〈fst x, y〉)

Recursive functions are defined explicitly using fix. For example, assuming that
mult : Nat × Nat → Nat, the factorial and length functions can be defined as

fact : Nat → Nat
fact = fix (λf. λx. case (out x) (λy. succ zero) (λy. mult 〈succ y, f y〉))
length : List A → Nat
length = fix (λf. λl. case (out l) (λx. zero) (λx. succ (f (snd y))))

Point-free Language. The set of combinators that is of interest to us comes
from universal constructions in almost bicartesian closed categories, that is, cat-
egories with products, non-empty sums, exponentials, and terminal object. See
for instance [13] for a thorough treatment of the subject.

The point-free language contains the constants fst, snd, inl, inr, in, and out,
with the obvious types, and also the set of combinators given below. To con-
vey the meaning of each combinator, we give its definition in the pointwise
language.

(· ◦ ·) : (B → C) → (A → B) → A → C
(· ◦ ·) = λfgx. f (g x)

id : A → A
id = λx. x

(· � ·) : (A → B) → (A → C) → A → (B × C)
(· � ·) = λfgx. 〈f x, g x〉

bang : A → 1
bang = λx. �

(· � ·) : (A → C) → (B → C) → (A + B) → C
(· � ·) = λfgx. case x (λy. f y) (λy. g y)

ap : (A → B) × A → B
ap = λx. (fst x) (snd x)

· : (A × B → C) → A → B → C
· = λfxy. f 〈x, y〉

It is convenient to have derived combinators corresponding to the operation of
the product, sum, and exponentiation functors. These can be defined, respec-
tively, as f × g = f ◦ fst � g ◦ snd, f + g = inl ◦ f � inr ◦ g, and f• = f ◦ ap.
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The point-free language contains only values of functional type. As such, el-
ements of a non-functional type A are denoted by functions of the isomorphic
type 1 → A. The previous examples can be written in the point-free language:

zero : 1 → Nat
zero = in ◦ inl

nil : 1 → List A
nil = in ◦ inl

succ : Nat → Nat
succ = in ◦ inr

cons : A → List A → List A
cons = in ◦ inr

swap : A × B → B × A
swap = snd � fst

null : List A → Bool
null = (true � false ◦ bang) ◦ out

distr : A × (B + C) → (A × B) + (A × C)
distr = (swap + swap) ◦ ap ◦ ((inl � inr) × id) ◦ swap

The language also contains a recursion operator: the hylomorphism recursion
pattern. This was introduced with the first study of recursion patterns in a
domain-theoretic setting [13], and was later proved to be powerful enough to
allow for the definition of any fixpoint [14]. It is defined as follows.

hyloμF : (F B → B) → (A → F A) → A → B
hyloμF = λg. λh. fix(λf. g ◦ Ff ◦ h)

Function h computes the values passed to the recursive calls, and g combines
the results of the recursive calls to compute the final result. The recursion tree
of a function defined as a hylomorphism is modeled by μF . The factorial and
length functions can then be defined in the point-free language as follows.

fact : Nat → Nat
fact = hyloList Nat (zero � mult) ((id + succ � id) ◦ outNat)
length : List A → Nat
length = hyloNat inNat ((id + snd) ◦ outList A)

Naturally, other derived operators can be defined using hylomorphism. The
following correspond to the well-known fold and unfold recursion patterns:

foldμF : (F A → A) → μF → A
foldμF = λg. hyloμF g outμF

unfoldμF : (A → F A) → A → μF
unfoldμF = λg. hyloμF inμF g

3 Point-Free Program Transformation

The basic laws of the non-recursive calculus are given in the appendix. We will
exemplify their use in the context of a non-trivial program transformation taken
from [4]. We resort to the following fold-fusion law to treat recursion:

f ◦ (|g|)F = (|h|)F ⇐ f strict ∧ f ◦ g = h ◦ Ff cata-Fusion

where we use the compact notation (|g|)F for foldμF g (strictness conditions are
discussed in detail in [4]). Consider the function isums::[Int]->[Int] that
computes the initial sums of a list.
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isums [] = []
isums (x:xs) = map (x+) (0 : isums xs)

This can be optimized by introducing an accumulating parameter to store at each
point the sum of all previous elements in the list. We first define an operator
⊕ : List Int × Int → List Int as ⊕ (l, x) = mapList (plus x) l. The function isums
can then be written as the fold isums = (|nil � ⊕ ◦ swap ◦ (id × cons ◦ zero � id)|).

The optimized function isumst can be calculated from the equation isumst =
⊕ ◦ isums, or isumst l y = mapList (plus y) (isums l) pointwise, which plays the
role of specification to the transformation. It can be checked that one obtains
by fusion, with F the base functor of lists,

isumst = (|nil � comp ◦ swap ◦ (plus × k)|)

if there exists a function k such that ⊕ ◦ cons ◦ zero � id = k ◦ ⊕ (the derived
constant combinator · is defined in the appendix. The following calculation
allows to identify k = cons• ◦ split ◦ id � id.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⊕ ◦ cons ◦ zero � id
= { isums-Aux}

cons• ◦ split ◦ (plus × ⊕) ◦ zero � id
= { ×-Absor, zero is a left-identity of plus }

cons• ◦ split ◦ id � ⊕
= { const-Fusion }

cons• ◦ split ◦ id ◦ ⊕ � ⊕
= { ×-Fusion }

cons• ◦ split ◦ id � id ◦ ⊕

This uses a new split combinator that internalizes (·�·) in the point-free language,
as well as an auxiliary law proved elsewhere [4].

split : (BA × CA) → (B × C)A

split = (ap × ap) ◦ π1 × id � π2 × id
split-Def

⊕ ◦ cons = cons• ◦ split ◦ (plus × ⊕) isums-Aux

Substituting k and converting the resulting definition back to pointwise, one
obtains at last the following linear time definition (isums runs in quadratic time).

isums_t :: [Int] -> Int -> [Int]
isums_t [] y = []
isums_t (x:xs) y = (x+y) : isums_t xs (x+y)

4 Pointless Haskell: Programming Without Variables

This section describes our implementation of a Haskell library for point-free
programming.
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Implementing the Basic Combinators. It is well known that the semantics of
a real functional programming language like Haskell differs from the standard
domain-theoretic characterization, since all data types are by default pointed
and lifted (every type has a distinct bottom element). This means that Haskell
does not have true categorical products because (⊥, ⊥) �= ⊥, nor true categori-
cal exponentials because (λx.⊥) �= ⊥. For instance, any function defined using
pattern-matching, such as \(_,_) -> 0, can distinguish between (⊥, ⊥) and ⊥.
This problem does not occur with sums because the separated sum also has a
distinguished least element.

As discussed in [6], this fact complicates equational reasoning because the
standard laws about products and functions no longer hold. In point-free how-
ever, as will be shown later, pairs can only be inspected using a standard set of
combinators that cannot distinguish both elements, and thus Haskell pairs can
safely be used to model products. If we prohibit the use of seq, the same applies
to functions. Sums are modeled by the standard Haskell data type Either.

data Either a b = Left a | Right b

Concerning the implementation of the terminal object 1, the special prede-
fined unit data type () is not appropriate, because it has two inhabitants ()
and undefined. The same applies to any isomorphic data type with a single
constructor without parameters. 1 can however be defined as the following data
type, whose only inhabitant is undefined (to be denoted by _L).

newtype One = One One
_L = undefined

The definition of the point-free combinators in the Pointless library is trivial
(see [3] for details). Equipped with these definitions, non-recursive point-free
expressions can be directly translated to Haskell. For example, the swap and
distr functions can be encoded as follows.

swap :: (a,b) -> (b,a)
swap = snd /\ fst
distr :: (c, Either a b) -> Either (c,a) (c,b)
distr = (swap -|- swap) . app . ((curry inl \/ curry inr) >< id) . swap

Implementing Functors and Data Types. The implementation of recursive types
in Pointless is based on the generic programming library PolyP [15]. This library
also views data types as fixed points of functors, but instead of using an explicit
fixpoint operator, a non-standard multi-parameter type class with a functional
dependency [10] is used to relate a data type d with its base functor f.

class (Functor f) => FunctorOf f d | d -> f
where inn’ :: f d -> d

out’ :: d -> f d

The dependency d -> f means that different data types can have the same
base functor, but each data type can have at most one. The main advantage of
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using FunctorOf is that predefined Haskell types can be viewed as fixed points
of functors (the use of the primes will be clarified later). A relevant subset of
PolyP was reimplemented in Pointless according to our own design principles.

To avoid the explicit definition of the map functions, regular functors are
described using a fixed set of combinators, according to the definitions

newtype Id x = Id {unId :: x}
newtype Const t x = Const {unConst :: t}
data (g :+: h) x = Inl (g x) | Inr (h x)
data (g :*: h) x = g x :*: h x
newtype (g :@: h) x = Comp {unComp :: g (h x)}

The Functor instances for these combinators are trivial and omitted here.
Given this set of basic functors and functor combinators, the recursive structure
of a data type can be captured without declaring new functor data types. For
example, the standard Haskell type for lists can be declared as the fixed point

instance FunctorOf (Const One :+: (Const a :*: Id)) [a]
where inn’ (Inl (Const _)) = []

inn’ (Inr (Const x :*: Id xs)) = x:xs
out’ [] = Inl (Const _L)
out’ (x:xs) = Inr (Const x :*: Id xs)

Naturally, it is still possible to work with data types declared explicitly as fixed
points. The fixpoint operator can be defined at the type level using newtype.

newtype Functor f => Mu f = Mu {unMu :: f (Mu f)}

The corresponding instance of FunctorOf can be defined once and for all.

instance (Functor f) => FunctorOf f (Mu f)
where inn’ = Mu

out’ = unMu

The following multi-parameter type class is used to convert values declared
using the functor combinators into standard Haskell types and vice-versa.

class Rep a b | a -> b
where to :: a -> b

from :: b -> a

The first parameter should be a type declared using the basic set of functor
combinators, and the second is the type that results after evaluating those com-
binators. The functional dependency imposes a unique result to evaluation. Un-
fortunately, a functional dependency from b to a does not exist because, for
example, a type A can be the result of evaluating both Id A and A B.

The instances of Rep are rather trivial. For the case of products and sums,
the types of the arguments should be computed prior to the resulting type. This
evaluation order is guaranteed by using class constraints. We give as examples
the identity, constant, and product functors:
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instance Rep (Id a) a
where to (Id x) = x

from x = Id x
instance Rep (Const a b) a

where to (Const x) = x
from x = Const x

instance (Rep (g a) b, Rep (h a) c) => Rep ((g :*: h) a) (b, c)
where to (x :*: y) = (to x, to y)

from (x, y) = from x :*: from y

To ensure that context reduction terminates, standard Haskell requires that
the context of an instance declaration must be composed of simple type variables.
In this example, although that condition is not verified, reduction necessarily
terminates because contexts always get smaller. In order to force the compiler
to accept these declarations, a non-standard type system extension must be
activated with the option -fallow-undecidable-instances.

A possible interaction with a Haskell interpreter could now be

> to (Id ’a’ :*: Const ’b’)
(’a’,’b’)
> from (’a’,’b’) :: (Id :*: Const Char) Char
Id ’a’ :*: Const ’b’
> from (’a’,’b’) :: (Id :*: Id) Char
Id ’a’ :*: Id ’b’

Note the annotations are compulsory since the same standard Haskell type can
represent different functor combinations. This type-checking problem can be
avoided by annotating the polytypic functions with the functor to which they
should be specialized (similarly to the theoretical notation). Types cannot be
passed as arguments to functions, and so this is achieved indirectly through the
use of a “dummy” argument. By using the type class FunctorOf, together with
its functional dependency, it suffices to pass as argument a value of a data type
that is the fixed point of the desired functor.

To achieve an implicit coercion mechanism it suffices to insert the conversions
in the functions that refer to functors, namely inn’, out’, and fmap (thus the
use of primes). The following functions should be used instead.

inn :: (FunctorOf f d, Rep (f d) fd) => fd -> d
inn = inn’ . from
out :: (FunctorOf f d, Rep (f d) fd) => d -> fd
out = to . out’
pmap :: (FunctorOf f d, Rep (f a) fa, Rep (f b) fb) =>

d -> (a -> b) -> (fa -> fb)
pmap (_::d) (f::a->b) =

to . (fmap f :: FunctorOf f d => f a -> f b) . from

Implementing Recursion. A polytypic hylomorphism operator can be defined:

hylo :: (FunctorOf f d, Rep (f b) fb, Rep (f a) fa) =>
d -> (fb -> b) -> (a -> fa) -> a -> b

hylo mu g h = g . pmap mu (hylo mu g h) . h
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Due to the use of implicit coercion it is now possible to program with hylomor-
phisms in a truly point-free style. For example, the definition of factorial from
Section 2 can now be transcribed directly to Haskell. The same applies to de-
rived recursion patterns. Notice the use of bottom as the dummy argument to
indicate the type to which a polytypic function should be instantiated.

fact :: Int -> Int
fact = hylo (_L :: [Int]) f g where g = (id -|- succ /\ id) . out

f = one \/ mult
fold (_::d) g = hylo (_L::d) g out
unfold (_::d) g = hylo (_L::d) inn g

5 DrHylo: Deriving Point-Free Hylomorphisms

DrHylo is a tool for deriving point-free definitions for a subset of Haskell.
The resulting definitions can be executed with the Pointless library. It is based on
the well-known equivalence between the simply-typed λ-calculus and cartesian
closed categories, first stated by Lambek [12]. One half of this correspondence is
testified by a translation from pointwise terms to categorical combinators, later
used by Curien to study a new implementation technique for functional lan-
guages – the categorical abstract machine [5]. We show here how the translation
can be extended to handle sums and recursion.

This translation is the starting point for our point-free derivation mechanism.
The way variables are eliminated resembles the translation of the lambda calculus
into de Bruijn notation, where variables are represented by integers that measure
the distance to their binding abstractions. Typing contexts are represented by
left-nested pairs, as defined by the grammar Γ ::= � | 〈Γ, x : A〉, with x a variable
and A a type. The translation Φ operates on typing judgments, translated as
Φ(Γ : B � M : A) : B → A according to the rules (typing information omitted)

Φ(Γ � �) = bang
Φ(Γ � x) = path(Γ, x)
Φ(Γ � MN) = ap ◦ (Φ(Γ � M) � Φ(Γ � N))
Φ(Γ � λx.M) = Φ(〈Γ, x〉 � M)
Φ(Γ � 〈M, N〉) = Φ(Γ � M) � Φ(Γ � N)
Φ(Γ � fst M) = fst ◦ Φ(Γ � M)
Φ(Γ � snd M) = snd ◦ Φ(Γ � M)
Φ(Γ � inl M) = inl ◦ Φ(Γ � M)
Φ(Γ � inr M) = inr ◦ Φ(Γ � M)
Φ(Γ � case L M N) = ap ◦ (either ◦ (Φ(Γ � M) � Φ(Γ � N)) � Φ(Γ � L))
Φ(Γ � in M) = in ◦ Φ(Γ � M)
Φ(Γ � out M) = out ◦ Φ(Γ � M)

path(〈c, y〉, x) =
{

snd if x = y
path(c, x) ◦ fst otherwise

Each variable is replaced by the path to its position in the context tuple,
given by function path. The translation of a closed term M : A → B is a point of
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type 1 → (A → B), which can be converted into the expected function of type
A → B as ap ◦ (Φ(� � M) ◦ bang � id).

Concerning the translation of the case construct, first notice that case L M N
is equivalent to (M � N) L. This equivalence exposes the fact that a case is just
an instance of application, and as such its translation exhibits the same top
level structure ap ◦ (Φ(Γ � M � N) � Φ(Γ � L)). The question remains of how
to combine Φ(Γ � M) : Γ → (A → C) and Φ(Γ � N) : Γ → (B → C) into a
function of type Γ → (A+B → C). Our solution is based on the internalization
of the uncurried version of the either combinator, that can be defined in point-
free as follows.

either : (A → C) × (B → C) → (A + B) → C

either = (ap � ap) ◦ (fst × id + snd × id) ◦ distr

We give as examples the translations of the swap and coswap functions. The
former is translated as the following closed term of functional type, which we
then convert to a function of type A × B → B × A and simplify as expected.

Φ(� � swap) = snd ◦ snd � fst ◦ snd : 1 → (A × B → B × A)

ap ◦ (snd ◦ snd � fst ◦ snd ◦ bang � id)
= { ×-Absor }

ap ◦ (snd ◦ snd � fst ◦ snd × id) ◦ (bang � id)
= { ∧-Cancel }

(snd ◦ snd � fst ◦ snd) ◦ (bang � id)
= { ×-Fusion }

snd ◦ snd ◦ (bang � id) � fst ◦ snd ◦ (bang � id)
= { ×-Cancel }

snd � fst

Consider now the translation of the function coswap defined as

coswap : A + B → B + A
coswap = λx.case x (λy. inr y) (λy. inl y)

The following result is obtained, which (given some additional facts about either)
can be easily simplified into the expected definition inr � inl.

ap ◦ (either ◦ (inr ◦ snd � inl ◦ snd) � snd) : 1 → (A + B → B + A)

It can be shown that the translation Φ is sound [5], i.e, all equivalences proved
with an equational theory for the λ-calculus can also be proved using the equa-
tions that characterize the point-free combinators. Soundness of the translation
of sums is proved in [3].

Translating Recursive Definitions. Two methods can be used for translating
recursive definitions into hylomorphisms. The first is based on the direct encod-
ing of fix by a hylomorphism, first proposed in [14]. The insight to this result
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is that fix f is determined by the infinite application f (f (f . . .)), whose re-
cursion tree is a stream of functions f , subsequently consumed by application.
Streams can be defined as Stream A = μ(A ⊗ Id) with a single constructor
in : A × Stream A → Stream A. Given a function f , the hylomorphism builds
the recursion tree in (f, in (f, in (f, . . .))), and then just replaces in by ap. The
operator and its straightforward translation are given as follows

fix : (A → A) → A
fix = hyloStream (A→A) ap (id � id) Φ(Γ � fix M) = fix ◦ Φ(Γ � M)

Although complete, this translation yields definitions that are difficult to ma-
nipulate by calculation. Ideally, one would like the resulting hylomorphisms to
be more informative about the original function definition, in the sense that the
intermediate data structure should model its recursion tree. An algorithm that
derives such hylomorphisms from explicitly recursive definitions has been pro-
posed [9]. In the present context, the idea is to use this algorithm in a stage prior
to the point-free translation: first, a pointwise hylomorphism is derived, and then
the translation is applied to its parameter functions. DrHylo incorporates this
algorithm, adapted to the setting where data types are declared as fixed points,
and pattern matching is restricted to sums. Although restrictions are imposed
on the syntax of recursive functions, most useful definitions are covered.

Given a single-parameter recursive function defined as a fixpoint, three trans-
formations are produced by the algorithm: one to derive the functor that gen-
erates the recursion tree of the hylomorphism (F), a second one to derive the
function that is invoked after recursion (A), and a third one for the function that
is invoked prior to recursion (C). In general, the function fix (λf. λx. L) : A → B
is translated as the following hylomorphism.

hyloμ(F(L)) (λx. A(L)) (λx. C(L)) : A → B

For example, the length function is converted into the following hylomorphism,
which can easily be shown to be equal to the expected definition.

length : List A → Nat
length = hyloμ(1⊕Id) (λx. case x (λy.in (inl �)) (λy. in (inr y)))

(λx. (out x) (λy. inl �) (λy. inr (snd y)))

Pattern Matching. In order to apply this translation to realistic Haskell code,
we still need to accommodate in our λ-calculus some form of pattern-matching,
and data types defined by collections of constructors. It is well-known how to
implement an algorithm for defining FunctorOf instances for most user-defined
data types [15]. This algorithm is incorporated in DrHylo, and since it replaces
constructors by their equivalent fixpoint definitions, it suffices to have pattern-
matching over the generic constructor in, sums, pairs, and the constant �.

We will now introduce a new construct that implements such a mechanism,
but with some limitations: there can be no repeated variables in the patterns,
no overlapping, and the patterns must be exhaustive. It matches an expression
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against a set of patterns, binds all the variables in the matching pattern, and
returns the respective right-hand side.

P ::= � | x | 〈P, P 〉 | in P | inl P | inr P
M, N ::= . . . | match M with {P → N ; . . . ; P → N}

Instead of directly translating this new construct to point-free, a rewriting system
is defined that eliminates generalized pattern-matching, and simplifies expres-
sions back into the core λ-calculus previously defined [3]. We remark that since
Haskell does not have true products, this rewrite relation can sometimes produce
expressions whose semantic behaviour is different from the original.

Consider the Haskell function \ (x,y) -> 0. It diverges when applied to _L,
but returns zero if applied to (_L,_L). This function can be encoded using match
and translated into the core λ-calculus using the following rewrite sequence.

λz.match z with {〈x, y〉 → in (inl �)}
� λz.match (fst z) with {x → match (snd z) with {y → in (inl �)}}
� λz.match (fst z) with {x → in (inl �)}
� λz.in (inl �)

The resulting function is different from the original since it never diverges. Apart
from this problem, with this pattern-matching construct it is now possible to
translate into point-free many typical Haskell functions, using a syntax closer to
that language. For example, distr and the length function can be defined as

distr : A × (B + C) → (A × B) + (A × C)
distr = λx.match x with {〈y, inl z〉 → inl 〈y, z〉; 〈y, inr z〉 → inr 〈y, z〉}
length : List A → Nat
length = fix(λf.λl.match l {in (inl �) → in (inl �); in (inr 〈h, t〉) → in (inr (f t))})

6 SimpliFree: Implementing Program Transformations

This section presents SimpliFree, a tool to transform Haskell programs written
in the point-free style using Pointless. This tool can be used both to simplify
point-free expressions, namely those generated by DrHylo, and to perform some
program transformations using fold fusion. For full details on the tool and its
implementation the reader is directed to [16].

Basic Principles. SimpliFree is based on the concept of strategic rewriting: there
is a clear distinction between rewrite rules, that just dictate how an equational
law should be oriented in order to transform a full term, and rewriting strategies,
that specify how the basic rules should be applied inside a term and combined
in order to produce a full rewrite system.

Likewise to other program transformation tools, such as MAG [7], SimpliFree
is based on the notion of active source: inside a Pointless program one can also
define the rules and strategies that will be used to transform it. When the tool
runs with such a program as input, a new Haskell file is produced where:
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– Point-free expressions are parsed into an abstract syntax data type Term.
– Rewrite rules are converted into functions of type Term -> m Term, that try

to use Haskell’s own pattern matching mechanism to apply a rewrite step to
a term (m must be a monad belonging to class MonadPlus).

– Strategies are built using a basic set of strategy combinators defined in the
SimpliFree library, which in turn are defined using the strategic programming
library Strafunski [11].

When the resulting file is compiled and executed it returns the transformed
Pointless program. Alternatively, it can also be interpreted, allowing the user
to inspect the full sequence of rewrite rules applied to a particular expression.
Notice that the SimpliFree library already implements some powerful strategies
that can be used to effectively simplify most point-free expressions.

Implementing Rules. Rules and strategies are defined in a special annotated
block inside the program to be transformed. In particular, rules have a name,
and a definition that uses the same concrete syntax of the Pointless library. For
example, ×-Cancel, applied to the first argument of a split, and ×-Fusion,
applied from right to left, can be defined as follows.

{- Rules:
prodCancel1 : fst . (f /\ g) -> f
prodFusionInv : (f . h) /\ (g . h) -> (f/\g) . h
-}

One of the fundamental problems to be solved when converting these rules
into Haskell functions is how to handle the associativity of composition. In or-
der to avoid implementing matching modulo associativity from scratch, a basic
completion procedure had to be implemented on rewrite rules. Sequences of com-
positions are kept right-associated, and when the left hand side of a rule is a
composition, it should be matched not only against a single composition, but
also against a prefix of a sequence of compositions. For example, the first rule
above is translated into the following function.

prodCancel1 (FST :.: (f :/\: g)) = return (f)
prodCancel1 (FST :.: ((f :/\: g) :.: x)) = return (f :.: x)
prodCancel1 _ = fail "rule prodCancel1 not applied"

Completion is not always this trivial. For example, when a variable is the left
argument of a composition there might be the need to try different associations
before finding a successful matching. Another problem arises when non-linear
patterns are used in the left-hand side of a rule. Since the Haskell matching
mechanism cannot handle these patterns, fresh identifiers must be generated
to replace repeated variables, and appropriate equality tests have to be intro-
duced in the function bodies. If a rule combines both these problems (such as
prodFusionInv above) its implementation becomes rather complex.

Strategies. As mentioned above, Strafunski was used in the implementation of
strategies and strategy combinators. Strafunski supports two kinds of strategies:
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type-preserving strategies, of type TP m for a given monad m, that given a term
of type t return a term of type m t; and type-unifying strategies, of type TU a
m, where the result is always of type m a regardless of the type of the input.
In SimpliFree all strategies are type-unifying. To be more specific they have
type TU Computation m, where Computation is a data type containing both the
resulting point-free term, and the list of all intermediate steps in the rewriting
sequence. For each step, both the name of the applied rule and the resulting
term is recorded.

First of all, there is a basic function that promotes a rule into a strategy:

rulePF :: (MonadPlus m)=>String -> (Term -> m Term) -> TU Computation m

Given a rule, it tries to apply it at most once anywhere inside a term. If successful,
it applies an auxiliary type preserving strategy to the full term that associates
all compositions to the right. The first argument of rulePf is the name of the
rule to be recorded.

The library also provides a series of strategy combinators, such as and, that
given two strategies tries to apply the first and, if successful, applies the second
to the result of the first; or, that given two strategies tries to apply the first and,
if not successful, tries to apply the second; many, that repeatedly tries to apply
a strategy until it fails; oneOrMore, that tries to apply a strategy at least once;
and opt, that tries to apply a strategy at most once.

Using these strategy combinators we could define the following strategy in a
specially annotated block inside a Pointless program.

{- Strategies:
simplestrat : compute and (many fold_macros)
compute : simplify and (opt ((oneOrMore unfold_macros) and compute))
simplify : many base_rules

base_rules : natId1 or natId2 or prodCancel1 or prodCancel2 ...
unfold_macros : exp_unfold or swap_unfold ...
fold_macros : exp_fold or swap_fold ...
-}

Each strategy has a name and definition that can refer to rules (defined inside the
Rules block) or use strategy combinators to build complex rewriting systems. In
this example, simplestrat tries to apply as many as possible rules from a set of
base rules (that encode most of the laws presented in the appendix) in order to
simplify a term. When these rules can no longer be applied, it tries to expand one
or more macros (such as the definition of common functions like swap, or derived
combinators like exponentiation) and returns to the simplification process. If no
macros remain to be expanded the simplification stops. In the end it tries to
rebuild macros in order to return a more understandable point-free expression
to the user. Notice that the translation of strategies to Haskell is trivial: it is
only necessary to replace rule invocation by the application of rulePF to the
respective name.
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Example. The SimpliFree tool has a predefined strategy advstrat that can be
used to effectively simplify the point-free expressions derived by DrHylo. This
strategy is an elaboration of the strategy simplstrat presented above. In a
Pointless program we can specify which of the defined or predefined strategies
should be used to transform each point-free declaration. After applying the tool
to such a program, the resulting Haskell file contains for each declaration an addi-
tional function whose invocation produces the specified transformation, printing
at the same time all intermediate steps. The name of this function is just the
concatenation of the point-free declaration name and the strategy name (sepa-
rated by an underscore). For example, after specifying that the swap definition
returned by DrHylo should be transformed using the strategy advstrat, the
following result can be obtained in the Haskell interpreter.

*Main> swap_advstrat
app . ((curry ((snd . snd) /\ (fst . snd)) . bang) /\ id)

= { expCancel }
((snd . snd) /\ (fst . snd)) . (bang /\ id)

= { prodFusion }
(snd . snd . (bang /\ id)) /\ (fst . snd . (bang /\ id))

= { prodCancel2 }
(snd . id) /\ (fst . snd . (bang /\ id))

= { natId2 }
snd /\ (fst . snd . (bang /\ id))

= { prodCancel2 }
snd /\ (fst . id)

= { natId2 }
snd /\ fst

More elaborate examples, in particular involving the conditional fusion law,
can be found in [16].

7 Conclusions and Future Work

We have focused on the most important aspects of each component of the frame-
work; more documentation can be found at the UMinho Haskell Software
pages:

http://wiki.di.uminho.pt/wiki/bin/view/PURe/PUReSoftware

While Pointless has reached a stable stage of development, there are still many
points for improvement in the other components. In DrHylo, the translation of
recursive functions must be improved with the automatic translation to other
standard recursion patterns such as folds, unfolds, and paramorphisms, rather
than always resorting to the all-encompassing hylomorphisms.

In SimpliFree, we plan to incorporate other laws for recursive functions, such
as unfold-fusion. An immediate goal is to make the fusion mechanism more
powerful, to cover at least all the transformations that can be done in state-of-
the-art tools such as MAG.
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A significant improvement will be the introduction of truly generic laws: in
the current version of SimpliFree different fold fusion laws are used for different
data types. This is an unfortunate mismatch with the theoretical notation, where
recursion patterns and laws are generically defined once and for all.
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A Laws of the Calculus

π1 � π2 = id ×-Reflex
fst ◦ (f � g) = f ∧ snd ◦ (f � g) = g ×-Cancel
(f � g) ◦ h = f ◦ h � g ◦ h ×-Fusion
(f × g) ◦ (h � i) = f ◦ h � g ◦ i ×-Absor
(f × g) ◦ (h × i) = f ◦ h × g ◦ i ×-Functor
f � g = h � i ⇔ f = h ∧ g = i ×-Equal
f � g strict ⇔ f strict ∧ g strict ×-Strict

inl � inr = id +-Reflex
(f � g) ◦ inl = f ∧ (f � g) ◦ inr = g +-Cancel
f ◦ (g � h) = f ◦ g � f ◦ h ⇐ f strict +-Fusion
(f � g) ◦ (h + i) = f ◦ h � g ◦ i +-Absor
(f + g) ◦ (h + i) = f ◦ h + g ◦ i +-Functor
f � g = h � i ⇔ f = h ∧ g = i +-Equal
f � g strict +-Strict

ap = id ∧-Reflex

f = ap ◦ (f × id) ∧-Cancel

f ◦ (g × id) = f ◦ g ∧-Fusion

fA ◦ g = f ◦ g ∧-Absor

(f ◦ g)A = fA ◦ gA ∧-Functor

f = g ⇔ f = g ∧-Equal

f strict ⇔ f left-strict ∧-Strict

f = f ◦ π2 const-Def

f ◦ g = f const-Fusion
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Abstract. Interaction nets are a graphical paradigm of computation
based on graph rewriting. They have proven to be both useful and en-
lightening in the encoding of linear logic and the λ-calculus. This paper
offers new techniques for the theory of interaction nets, with applications
to the encoding of specific strategies in the λ-calculus. In particular we
show how to recover the usual call-by-value and call-by-name reduction
strategies from general encodings.

1 Introduction

Graph rewriting has long been considered as the right implementation technique
for functional programming languages, with one of the main motivations being
that it captures sharing [27, 21, 24]. The general idea of graph transformation is
to represent a functional program using a graph. Reduction is then expressed by
replacing one sub-graph by another, in some context. However, such a formalism
is potentially non-confluent, and a general pattern-match to identify a reduction
can be highly costly. To encode a specific strategy, we need also to find the next
redex to reduce.

Thus, to compute efficiently with graphs, we need to be able to identify redexes
easily, and also remove the non-determinism to obtain a confluent system. In-
teraction nets [9] are one such formalism that are specific forms of graph rewrite
systems, and they are well engineered for implementation. The main features of
interaction nets are that:

– The left-hand side of all rewrite rules consist of just two nodes, which makes
pattern matching a very simple operation.

– A number of constraints are placed upon the rewrite rules which makes the
reduction confluent by construction (thus we do not need to look for confluent
sub-systems of the general formalism). In fact reductions commute, which
means that all reduction sequences are simply permutations of each other.
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– Further, a graph rewrite step can neither copy nor erase another redex, and
thus they are local rewrite rules.

If we consider a system, such as the λ-calculus, compiled into interaction nets,
then:

– the strategy is fixed by the compilation;
– the next redex is easy to find;
– reduction is local, and can be potentially implemented in parallel (even if

there is no parallelism in the original program) [22].

For these reasons, we believe that interaction nets are a solid foundation for
graph reduction systems for functional languages. Over the last few years, we
have seen a number of systems of interaction nets for encoding linear logic (proofs
and the cut-elimination process), and the λ-calculus (terms and the β-reduction
process, which includes the substitution process), as well as other formalisms,
for example term rewriting systems. See for instance [2, 7, 8, 17, 18, 19].

Perhaps one of the most interesting aspects of these works is that the en-
codings have offered new efficient strategies for reduction: examples include β-
optimal reduction [13] and closed reduction [4], amongst others. This is related
to the fact that interaction nets naturally capture sharing: no active pair (the
interaction nets analogue of a redex) can ever be duplicated.

However, on the other side of the coin, interaction nets have not appeared to
lend themselves to encoding existing strategies, for instance lazy cut-elimination
in linear logic, call-by-value and call-by-name evaluation in the λ-calculus, as
well as strategies for term rewriting systems. This is directly related to the
above point, that active pairs can never be duplicated, and moreover interaction
nets are free from strategies (they can be externally imposed, see for instance [3],
but we can only place an order on the permutations possible for reduction).

The purpose of this paper is to show a general framework for interaction nets
which will allow strategies to be encoded. The main are:

– We give an encoding of lazy cut-elimination in linear logic in interaction nets.
This strategy, given in [6], has been frequently studied in the computational
understandings of linear logic, and states that the exponential of linear logic
(!) is a constructor, and since we do not know whether we need the contents
of the box (it can be erased, duplicated or opened) we should wait before
evaluating inside. This corresponds to reduction to weak head normal form
(whnf) in the λ-calculus. This interpretation of the exponential has been
widely used in the literature, including Abramsky’s proof expressions [1],
which we can now encode faithfully in interaction nets.

– As a further development of the encoding of linear logic, we show how the
different encodings of the λ-calculus into linear logic take on their usual
meanings (i.e. the “call-by-value” translation gives call-by-value evaluation,
the “call-by-name” translation gives call-by-name evaluation, etc.), which
has never been the case, and is often a point of confusion with previous
systems (i.e. the interaction net system encoding β-optimal reduction in the
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λ-calculus offers the same strategy (β-optimal) whether we use the “call-by-
value” or “call-by-name” translation).

Related work. Several works have investigated encoding strategies standard re-
duction strategies. Lippi [14] has given an encoding for head reduction; Sinot [25]
has given an encoding for call-by-name and call-by-value using a synchronising
mechanism (there is a unique token that travels through the net to initiate re-
duction). The work reported in this paper is a continuation of the work started
in [5] and [20].

Structure. The rest of this paper is structured as follows: in the next section,
we recall interaction nets, and some of the basic results that we need for the
rest of the paper. In Section 3 we give our first contribution which is a general
notion of a net in normal form, and give some examples. In Section 4 we show
how to encode lazy reduction in linear logic. Section 5 is devoted to the λ-
calculus, and the call-by-name and call-by-value translations (and a combination
of the two). In Section 6 we discuss the results and compare the approach with
other interaction net encodings of strategies. Finally, we conclude the paper in
Section 7.

2 Background

Here we recall interaction nets and justify why we consider them useful for
functional language implementation. An interaction net system [9] is specified
by giving a set Σ of symbols, and a set R of interaction rules. Each symbol α ∈ Σ
has an associated (fixed) arity. An occurrence of a symbol α ∈ Σ will be called
an agent. If the arity of α is n, then the agent has n + 1 ports : a distinguished
one called the principal port depicted by an arrow, and n auxiliary ports labelled
x1, . . . , xn corresponding to the arity of the symbol. Such an agent will be drawn
in the following way:

��
��

α

�

� �· · ·x1 xn

A net N built on Σ is a graph (not necessarily connected) with agents at the
vertices. The edges of the graph connect agents together at the ports such that
there is only one edge at every port. The ports of an agent that are not connected
to another agent are called the free ports of the net. There are two special
instances of a net: a wiring (no agents), and the empty net.

A pair of agents (α, β) ∈ Σ ×Σ connected together on their principal ports is
called an active pair ; the interaction net analog of a redex. An interaction rule
((α, β) =⇒ N) ∈ R replaces an occurrence of the active pair (α, β) by a net N .
The rule has to satisfy two conditions: all the free ports are preserved during
reduction, and there is at most one rule for each pair of agents. The following
diagram illustrates the idea, where N is any net built from Σ.
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��
��

α ��
��

β��
�

�

�

�

...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

If a net does not contain any active pairs then we say that it is in normal form.
We use the notation =⇒ for a one step reduction and =⇒∗ for the transitive
and reflexive closure.

We consider interaction nets as an important model of computation for several
reasons:

1. All aspects of a computation are captured by the rewriting rules—no exter-
nal machinery such as copying a chunk of memory, or a garbage collector,
are needed. Interaction nets are amongst the few formalisms which model
computation where this is the case, and consequently they can serve as both
a low level operational semantics and an object language for compilation, in
addition to being well suited as a high-level programming language.

2. Interaction nets naturally capture sharing—interaction steps can never be
duplicated. Thus only normal forms can be duplicated, and this must be done
incrementally. Using interaction nets as an object language for a compiler
offers strong evidence that this sharing will be passed on to the programming
language being implemented. One of the most spectacular instances of this
is the work by Gonthier, Abadi and Lévy, who gave a system of interaction
nets to capture both β-optimal reduction [13] in the λ-calculus [7] (Lamping’s
algorithm [12]), and optimal reduction for cut-elimination in linear logic [8].

3. There is growing evidence that interaction nets can provide a platform for
the development of parallel implementations, specifically parallel implemen-
tations of sequential programming languages. Using interaction nets as an
object language for a compiler offers strong evidence that the programming
language being implemented may be executed in parallel (even if there was
no parallelism in the original program).

Lafont’s interaction combinators [11] are a fixed system of interaction nets
which consists of just three agents and six rewrite rules. Lafont demonstrated
that this extremely simple system of rewriting is universal—any other system of
interaction nets can be encoded (we also note that interaction nets are Turing
complete: they can simulate a Turing machine). This important result in interac-
tion nets is analogous to the functional completeness of S and K in Combinatory
Logic. Below we give the three interaction combinators γ (a constructor), δ (a
duplicator) and ε (an eraser), and in Figure 1 we give the six interaction rules
for this system.

��
��

γ
� �

��
��

δ
� �

��
��

ε

� � �
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�
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Fig. 1. Interaction Rules

The constructor agent γ can be used as a binary multiplexing/demultiplexing
agent: it groups two edges (the auxiliary ports) into one (the principal port).
The interaction rule for γγ can then be understood as removing the shared
edge. This idea can be generalised to n-ary multiplexing nets using pairs of nets
(Mn, M∗

n), where Mn is a multiplexing net of size n, and M∗
n is the corresponding

demultiplexing net. Both Mn and M∗
n are constructed using only the agents γ

and ε, and the pair (Mn, M∗
n) must satisfy the condition that the following

reduction sequence is satisfied:

�
�

�
�

Mn

· · ·
�

�
�

�
M∗

n
· · ·

=⇒∗

· · · · · ·

There are many possible ways of building these nets, one such way is given in
Figure 2, where the duality between Mn and M∗

n is clear. An important point
for this paper is that the nets Mn and M∗

n do not contain δ agents. Note also
that for n > 0 the ε agent is not necessary since we can construct the nets from
n − 1 γ agents. These nets are instances of principal nets (see [11]) and thus
can be fully erased with ε agents, and fully duplicated with δ agents, as shown
below:
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Fig. 2. Constructing Multiplexing Nets

This example system will in fact be heavily used in the rest of this paper: δ
agents will always be used to duplicate, ε agents will be used to erase a net, and
γ agents will be used to construct multiplexing nets which will be used in the
compilation later.

3 Normal Form Nets

Here we present the first contribution of the paper, which is a general notion of
a construction of a net in normal form. To motivate the ideas, consider that we
want to do the following:

N N N

��
��

δ

�

� �

=⇒∗

That is, we want to duplicate a net N , using a sequence of interactions with
the δ agent. To achieve this with the standard rules for δ given above, N must
satisfy the following conditions:

1. N must be free from δ agents, because the interaction rule for two δ
agents causes an annihilation (i.e. δ cannot copy δ). This issue has had a
lot of attention, and is in fact the main difficulty in encoding both linear
logic and the λ-calculus in interaction nets. There are several solutions to
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this problem in the literature: indexing agents (as used in the interaction
net implementation of Lamping’s β-optimal algorithm [12]), two different δ
agents (called δ and c) together with a mechanism for introducing δ agents
in a well-balanced discipline (as given by Abramsky for the so-called syn-
chronous box encoding of linear logic [16]), and finally a general solution to
the problem using a package which extracts δ agents from a given net, which
is due to Lafont [11].
In this paper all the nets that we duplicate will be δ-free by virtue of the
encoding.

2. N must be in normal form, otherwise the duplication process will force
a normalisation. This of course is an advantage, in that redexes are not
duplicated, but a disadvantage if we want to duplicate active pairs which is
required if we want to simulate standard reduction strategies. The main idea
of this paper is that for any net, we can cut edges corresponding to active
pairs, which leaves us with a net in normal form.

3. N must be deadlock-free, which means that there cannot be any cycles of
principal ports in the net. In this paper we ignore this case, as all the nets
that we build are deadlock-free.

The purpose of this section is to show a general way of allowing the above
reduction sequence, for any net. Thus we need a mechanism which allows active
pairs to be duplicated and erased, and moreover, this should be possible for all
nets, even nets not having a normal form. The approach that we adopt is to
provide a net transformation, which will be called a cut-net, with the following
two properties:

1. A cut-net, called C(N), can be duplicated and erased, and
2. N can be recovered from C(N).

Example. The example below shows the general construction. Consider the fol-
lowing net, which is built with agents + and Z (representing addition and zero)
containing two active pairs:

��
��
+

��
��
+

��
��
Z

��
��
Z ��

��
Z

�
�

�
� �

If we cut the active pairs, and connect the free edges from the Z agents together
to an M2, and the free edges from the + agents to an M∗

2 , then we obtain a
net with three free edges. This completes the construction of an active-pair-free
package. This net, and the corresponding decoder net are shown below.
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��
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��
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��
Z

��
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��
+

� � �
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�
�

�





M2 �

�





M∗

2

The decoder net (which is just an edge) is connected to the nets M2 and M∗
2

for decoding. This recovers the edges of the original net, and thus recovers the
active pairs.

We now formalise this process, and prove some properties of the encoding.

Definition 1 (Active Pair Extraction). Let N be a net built using agents
with the signature Σ. Active pairs can be cut giving the net N−, and grouped
with a multiplexing pair. The result of this packing of N is denoted C(N), where
we assume that n (n > 0) edges have been cut.

N−

�
�

�
�Mn

M∗
n

...

...
�

�

�
�

/

The resulting system has agents in Σ ∪ {γ} and an additional rule for γγ needs
to be added.

Definition 2 (C(N) Decoding). The corresponding decoder for edge extrac-
tion is simply an edge connecting the two additional free edges together.

Lemma 1 (Unpack). Let C(N) be a cut-net of the net N , then the following
reduction sequence exists which recovers N from the C(N):

C(N) =⇒∗ N//

Lemma 2 (Duplicate). For any net N , if C(N) is a net without deadlocks,
and without δ agents, then:

/ /C(N) C(N) C(N)

��
��

δ

��
��

δ�

�

�

��

�

=⇒∗
��
��

δ �

�

�
/
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Lemma 3 (Erase). For any net N , if Pe(N) is a terminating net free from
deadlocks, then it can be completely erased:

Pe(N)

��
��

ε

��
��

ε

�

�

=⇒∗
��
��

ε � /

As a consequence of the above Lemmas, cut-nets can be erased, duplicated and
unpacked. In the following two sections we look at two applications of this result
for the encoding of lazy reduction in linear logic, and reduction strategies in the
λ-calculus.

4 Lazy Cut-Elimination in Linear Logic

In this section we show how cut-nets can be used to encode boxes in linear
logic [6], in such a way as not to allow any internal reductions. Thus, we obtain an
interaction net implementation of lazy cut-elimination for linear logic. We refer
the reader to [10] for the lazy cut-elimination strategy. Here we only show the
encoding of the multiplicative exponential fragment of linear logic, the additives
can also be encoded but will not be used for the λ-calculus that we give as
the main application in the next section. We base our encoding on the system
presented in [16], but in fact any interaction system encoding linear logic can be
adapted to work with lazy reduction.

Let π be a proof with conclusion Γ . Our translation T (π) into interaction
nets will have the following general form:

T (π) C(T (π))

/ /

The free edges at the bottom correspond to Γ (one edge for each formula, in the
correct order, to avoid labelling the free edges). C(T (π)) is the cut-net, i.e. all
active pairs have been abstracted.

Axiom, Cut and Multiplicatives. If π is an axiom, then T (π) is simply translated
into an edge. The proof and the corresponding net are given by:

(Axiom)
A⊥, A

If π ends with a cut rule, then let π1 be a proof of Γ, A and π2 a proof of
A⊥, Δ, then T (π) is built by connecting the ports A and A⊥ together with an
edge. The rule and the corresponding net are given by:
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Γ, A A⊥, Δ
(Cut)

Γ, Δ

T (π1) T (π2)

/ /

If π ends with the Tensor rule, then let π1 be a proof of Γ, A and π2 a proof of
B, Δ. T (π) is then built in the following way by introducing an agent ⊗, which
connects the edges A and B together to form a single edge. The rule and the
corresponding net are given by:

Γ, A B, Δ
(⊗)

Γ, A ⊗ B, Δ

T (π1) T (π2)

/ /

��
��
⊗
�

�
��

�
��

The principal port of the ⊗ agent corresponds to the conclusion A ⊗ B in the
rule, and the auxiliary ports correspond to the premises A and B respectively.

If π1 is a proof of Γ, A, B then we can build a proof π of Γ, A�B using the
Par rule. T (π) is then built by introducing an agent �, which connects the edges
A and B together to form a single edge. The rule and the corresponding net are
given by:

Γ, A, B
(�)

Γ, A�B

T (π1)

/

��
��
�

�

�� ��

The principal port of the � agent corresponds to the conclusion A�B in the
rule, and the auxiliary ports correspond to the premises A and B respectively.

Cut-elimination is simulated for the multiplicatives by the following rule,
which is nothing more than the proof net reduction rule:

��
��
⊗

� �

��
��
�

� �

� �

=⇒

Promotion rule. Let π1 be a proof of ?Γ, A, and π the proof of ?Γ, !A built from
π1 using the promotion rule (!). The rule and the corresponding net T (π) are
then given by:

?Γ, A
(!)

?Γ, !A

C(T (π1))

�
!

−

−
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where we have introduced an n-ary agent ! which groups the edges corresponding
to the context ?Γ , the main conclusion A, and the additional two edges derived
from the construction. The principal port of the ! agent corresponds to the main
conclusion !A in the proof. We remark that C(T (π)) is a net in normal form,
and is also a net free from δ agents and deadlocks.

Dereliction rule. Let π1 be a proof of Γ, A, and π the proof of Γ, ?A built from
π1 using the dereliction rule (D). The rule and the corresponding net T (π) are
then given as follows, where we have introduced a new agent d corresponding to
the rule.

Γ, A
(D)

Γ, ?A

T (π1)

/

��
��

d

�

The dereliction cut-elimination step is the following, which “opens” an exponen-
tial box:

π1

?Δ, A
(!)

?Δ, !A

π2

A⊥, Γ
(D)

?A⊥, Γ
(Cut)

?Δ, Γ

→

π1

?Δ, A

π2

A⊥, Γ
(Cut)

?Δ, Γ

This rule suggests the following net transformation, which is simply the trans-
lation of the left and right-hand sides of the rule:

C(T (π1))

�
!

−

−

T (π2)

��
��

d

�
/

=⇒∗
T (π1) T (π2)

/ /

The following is the only rule that we need, which will make all the connections
required, and moreover connect the additional edges for the package together
which, by the Unpack Lemma 1, easily shows that this cut-elimination step is
correctly simulated.

��
��

d

��
!

/

/

=⇒
/
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Contraction rule. Let π1 be a proof of Γ, ?A, ?A, and π the proof of Γ, ?A built
from π1 using the contraction rule (C). The rule and the corresponding net
T (π) are then given by the following, where we have introduced a new agent c
corresponding to contraction.

Γ, ?A, ?A
(C)

Γ, ?A

T (π1)

/

��
��

c

�

�� ��

In Figure 3 we show the cut-elimination step, which causes duplication of the
proof π1. To implement this in interaction nets, we require that c will copy the
! agent, and introduce δ agents to duplicate the package. In the same figure, we
also give the interaction rule which implements the cut-elimination step.

π1

?Δ, A
(!)

?Δ, !A

π2

?A⊥, ?A⊥, Γ
(C)

?A⊥ , Γ
(Cut)

?Δ, Γ

→

π1

?Δ, A
(!)

?Δ, !A

π1

?Δ, A
(!)

?Δ, !A

π2

?A⊥, ?A⊥ , Γ
(Cut)

?Δ, ?A⊥ , Γ
(Cut)

?Δ, ?Δ, Γ
======== (C)

?Δ, Γ

! ��
��

c
� �

��/

/

!
�

!
�

��
��

δ ��
��

δ ��
��

δ ��
��

δ

� � � �

/

��
��

c

�

�
��

						

/

/
/

=⇒

Fig. 3. Contraction cut-elimination step and interaction rule

With this rule and the addition of rules for δ with all the other agents of
the system (δ simply duplicates all agents except another δ, cf. Figure 1 for
the combinators), together with the Duplicate Lemma 2, we see that the cut-
elimination step is correctly implemented.

Weakening rule. Let π1 be a proof of Γ , and π the proof of Γ, ?A built from π1
using the weakening rule (W ). The rule and the corresponding net T (π) are then
given by the following, where we have used the ε agent to represent weakening.
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Γ
(W )

Γ, ?A
T (π1)

/ ��
��

ε

�

The weakening cut-elimination step is given by the following rule:

π1

?Δ, A
(!)

?Δ, !A

π2

Γ
(W )

?A⊥, Γ
(Cut)

?Δ, Γ

→

π2

Γ
==== (W )
?Δ, Γ

which corresponds to the following net transformation:

C(T (π1))

�
!

−

−

T (π2)

��
��

ε

�
/

=⇒∗
T (π2)

/

��
��

ε

�
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In words, we erase completely the promoted proof, and weakenings are intro-
duced for each formula in Δ. With the addition of rules for ε to erase each agent
in the system, and then by the Erase Lemma 3 the net can be completely erased,
and we see that this cut-elimination step is correctly implemented.

This completes the lazy cut-elimination procedure for linear logic:

Theorem 1. Let π be a proof with conclusion Γ , then if π reduces to π′ by lazy
cut-elimination, then T (π) reduces to T (π′).

Proof. Direct consequence of the above simulations.

We remark that this system is one of the simplest encodings of linear logic, and
moreover, the correctness is established without any of the usual complications
generally encountered. One application of this encoding of lazy cut-elimination
is for the implementation of proof expressions [1] (for the multiplicative ex-
ponential part) as a system of interaction nets, and thus offers an alternative
implementation technique for the parallel implementation of proof expressions.

5 Application to λ-Calculus Translations

In this section we briefly outline how three translations of the λ-calculus into
linear logic offer very different systems of interaction nets when using the encod-
ing for lazy cut-elimination. We remark that this is not at all the case with other
encodings, for instance, the interaction system for encoding β-optimal reduction
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gives the same strategy (β-optimal reduction) for any of the translations used.
The following table summarises the results that we present in this section:

whnf hnf
Call-by-value !(A −◦ B) N/A
Call-by-name !(!A −◦ B) !A −◦ B

We recall that (closed) weak head normal forms (whnf) are terms of the form
λx.t, for any t, and (closed) head normal forms (hnf) are terms of the form
λx.xit, where xi is the head variable. We begin with a general remark. A packed
net, which is the encoding of a promotion rule, is a net in normal form which
can be erased and duplicated. Thus an encoding which uses promotion for the
function will immediately give a reduction strategy to weak head normal form.
Similarly, if a promotion is used for the argument, then we cannot perform any
reduction on that argument and thus obtain call-by-name reduction. These basic
observations will now be spelled out for each case below.

The call-by-value translation. Recall that the call-by-value translation of the
λ-calculus into linear logic (also known as the !(A −◦ B) translation) places an
exponential box around the function, which will be packaged, thus no reduction
inside an abstraction is possible. For this reason, we see easily that we obtain
reduction to weak head normal form. We begin by giving the translation. Vari-
ables are translated into a connecting edge (no agents), and abstraction λx.t and
application tu are given by the following two nets:

C(T (t))

!

��
��
�

/

/

�

� T (t)

T (u)

��
��

d

�
/

/

��
��
⊗

Remark that for the abstraction, if there is no occurrence of the variable x in
t, then we must use an ε agent connected to the left auxiliary port of the �
agent, and if an application shares a common free variable, then we must use a
contraction (c) agent.

Proposition 1. 1. Let t be a whnf, then T (t) is a net in normal form.
2. If t reduces to a whnf v by the call-by-value strategy, then T (t) =⇒∗ T (v).

The call-by-name translation. The call-by-name translation, also known as the
!A −◦ B translation, is distinguished by the placing of the box around the
argument. Thus we see immediately that no reduction inside an argument is
possible.
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The translation is straightforward: a variable becomes a dereliction agent, and
abstraction λx.t and application tu are given by the following two nets, where
again we may have to use ε and c in the same way as the previous case.
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��
��
�

�

�� �� T (t)

C(T (u))

/

/

�
��
��
⊗

−
!
�

Proposition 2. 1. Let t be a hnf, then T (t) is a net in normal form.
2. If t reduces to a hnf v by the call-by-name strategy, then T (t) =⇒∗ T (v).

The combined call-by-name/value translation. Finally, we look at the combined
translation, also known as the !(!A −◦ B) translation, which is nothing more
than a superposition of the above two translations. Therefore, variables become
dereliction agents, abstraction is promoted, and the application uses a dereliction
and a promotion. Since there is now a box around the function and the argument,
we obtain call-by-name to weak head normal form.

Proposition 3. 1. Let t be a whnf, then T (t) is a net in normal form.
2. If t reduces to a whnf v by the call-by-name strategy, then T (t) =⇒∗ T (v).

6 Evaluation of the Results

The idea of encoding a specific strategy in interaction nets is not a new one.
As we stated in the introduction, there are other approaches that have been
previously studied. Here we briefly compare these, and also state some further
applications of the technique introduced in this paper.

One of the first attempts to encode a specific reduction strategy in the
λ-calculus was through encodings of abstract machines into term rewriting sys-
tems. From this a system of interaction nets can be obtained through the in-
teraction net encoding of the term rewriting system [2]. Using this approach it
is possible to write different abstract machines, performing different reduction
strategies, in a uniform way to simulate a variety of different strategies. How-
ever, this translation works on the syntax of the system, and therefore we find a
collection of interaction rules which are doing nothing else but manipulating the
syntax (for instance, lists need to be encoded for some environment machines,
and operations are needed to manipulate these lists—these interactions have
nothing to do with the actual computation). It is a therefore a general approach
to simulating existing reduction strategies in interaction nets, where efficiency
is not a concern.
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Lippi [14, 15] gave an interaction net encoding of a specific reduction strategy
in the λ-calculus. His approach is very powerful: nets can be encoded (frozen)
and decoded (unfrozen) dynamically, whereas our approach only allows nets to
be decoded (encoding is done only at compile time). However, there is a cost to
this, in that nets need to be traversed with specific coding/decoding agents to
perform these operations. Such a cost is dependent on the size of the net, which
has an effect on the overall performance.

More recently, Sinot [25, 26] has investigated ways of controlling the evaluation
order of λ-terms represented as interaction nets. This is achieved by a single
control node that traverses the net to identify the next redex. Incorporating such
control mechanisms in the same framework is quite an achievement, but each
specific strategy needs a new set of rules for the control agents. Moreover, the
natural parallelism of interaction nets is disturbed through this level of control,
but is perhaps the best approach to simulate a specific reduction strategy.

Finally, we should also remark that Pinto [23] has studied weak reduction
in interaction nets. This approach is quite different in that the evaluation of
interaction nets is constrained to follow a particular reduction order. There are
cases when one can do this to achieve a specific strategy in the underlying system,
and of course there is no overhead in the interaction system (no need to introduce
any new agents or rules).

Our goal is to simulate a specific reduction strategy the most efficient way,
by taking an efficient implementation of the λ-calculus and block some of the
β-reductions. Packing nets in this way has relatively little overhead. It is also
worth remarking that all the proofs for correctness are obtained directly from
the rewriting system, and thus are quite straightforward to obtain.

The ideas of this paper can also work beyond the λ-calculus. In particular,
they can be used for any system of interaction nets where some order of evalu-
ation is required. When encoding functional languages, with a given reduction
semantics, then we are forced to find some way to control the evaluation order.
This is particularly pertinent when side-effects are available in the language.
We have also experimented with the approach for encoding other programming
paradigms, and we will report on this more completely in the future.

7 Conclusions

In this paper we have put forward interaction nets as an implementation
formalism for functional programming languages. In particular, to capture stan-
dard, existing reduction strategies. This has been achieved using encoding tech-
niques from interaction nets. Although this paper has focused on the λ-calculus
(through linear logic), the way forward to cover richer languages is already quite
well developed.

One of the most striking features of the encodings is the simplicity of the
system: the proofs of correctness are far simpler than any other system of in-
teraction. Additionally, we have shown that the different embeddings of the
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λ-calculus into linear logic allow us to obtain interaction net evaluators for the
λ-calculus which offer different strategies for reduction.
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Abstract. In programs written in lazy functional languages such as for
example Clean and Haskell, the programmer can choose freely whether
particular subexpressions will be evaluated lazily (the default) or strictly
(must be specified explicitly). It is widely known that this choice affects
resource consumption, termination and semantics in several ways. How-
ever, functional programmers tend to be less aware of the consequences
for logical program properties and formal reasoning.

This paper aims to give a better understanding of the concept of
explicit strictness and its impact on properties and reasoning. It will be
shown that explicit strictness may make reasoning more cumbersome,
due to the introduction of additional definedness conditions.

Fortunately, these definedness conditions can be handled quite effec-
tively by proof assistants. This paper describes the specific support that
is offered by Sparkle for expressing and proving definedness conditions.
This support makes reasoning with explicit strictness almost appear like
reasoning without explicit strictness. To our knowledge, Sparkle is cur-
rently the only proof assistant with such strictness specific support.

1 Introduction

Lazy functional programming languages, such as for example Clean and Haskell,
are excellent for developing readable and reliable software. One of their key
features is lazy evaluation, which makes it possible to adopt a natural, almost
mathematical, programming style. The downside of lazy evaluation, however, is
lack of control; it becomes very difficult to predict when subexpressions will be
evaluated, which makes resource management a non-trivial task.

This issue has been addressed by the introduction of explicit strictness, with
which a functional programmer can enforce the evaluation of a subexpression by
hand. Adding explicit strictness can indeed change the resource consumption of
programs significantly, and it is therefore used a lot in practice. Moreover, explicit
strictness can easily be incorporated in the semantics of functional languages,
and is therefore theoretically sound as well.

Not all is well, however. In this paper, we will show that the addition (or
removal) of strictness to programs may also give rise to many unexpected (and
undesirable) effects. Of course, some effects are already widely known, such as
for example the possible introduction of non-termination. However, less widely
known to programmers, is that explicit strictness may:
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– break program properties, forcing them to be reformulated by adding (or
removing) definedness conditions;

– break proof rules that are based on reduction, adding a new definedness
precondition to them that has to be shown to be satisfied in order for the
rule to be applicable.

In other words: changing strictness properties can have serious consequences for
formal reasoning. In general, the addition of explicit strictness makes reasoning
more cumbersome and forces one to pay attention to technical details that are
not so interesting. Fortunately, exactly these kinds of details can be dealt with
effectively by means of a proof assistant.

We will demonstrate the facilities that Sparkle, the proof assistant for Clean,
offers for dealing with definedness conditions. Sparkle has been introduced in
[6], but its specific definedness facilities have not yet been addressed in any
publication. The definedness facilities of Sparkle include:

1. a dedicated proof rule for proving definedness conditions;
2. an upgraded reduction system that takes advantage of available definedness

information; and
3. a mechanism to conveniently denote definedness conditions.

With these facilities, definedness conditions are often handled in the background
and are hidden from the user completely, making reasoning with strictness look
like reasoning without strictness.

This paper is structured as follows. First, in Section 2 the concept of explicit
strictness is introduced, both informally and formally. Also, its effects on pro-
gram semantics and program transformations are discussed. Then, in Section
3 the effects of explicit strictness on program properties and reasoning will be
examined. The three kinds of support that Sparkle offers for this purpose will
be introduced in Section 4. Finally, Sections 5 and 6 discuss related work and
conclusions.

2 The Concept of Explicit Strictness

Although it is seldom mentioned in publications, explicit strictness is present in
almost every real-world lazy program. Explicit strictness is used for:

– improving the efficiency of data structures (e.g. strict lists),
– improving the efficiency of evaluation (e.g. functions that are made strict in

arguments that always have to be evaluated),
– enforcing the evaluation order in interfacing with the outside world (e.g. an

interface to an external C-call is defined to be strict in order to ensure that
the arguments are fully evaluated before the external call is issued).
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Language features that are used to explicitly enforce strictness include:

– type annotations (in functions: Clean and in data structures: Clean, Haskell),
– special data structures (unboxed arrays: Clean, Haskell),
– special primitives (seq: Haskell),
– special language constructs (let!, #!: Clean).

Implementers of real-world applications make it their job to know about explicit
strictness, because without it essential parts of their programs would not work
properly. The compiler generates code that takes strictness annotations into
account by changing the order of evaluation. It is often thought that the only
effects of changes in evaluation order can be on the termination properties of the
program as a whole and on the program’s resource consumption (with respect
to space or time). Therefore, strictness is usually considered an implementation
issue only.

However, in the following subsections we will show that explicit strictness is far
from an implementation issue only. In Section 2.1 it is illustrated that strictness
has a fundamental influence on program semantics, because explicit strictness is
not just an ‘option’ that may be ignored by the reduction system, but a ‘must’
that changes reduction order. An example of how radical this influence can be,
is given in Section 2.2. Finally, to deal with that influence, formal semantics are
extended with strictness in Section 2.3.

2.1 When Strictness Is Not an Option but a Must

With explicit strictness, performing an evaluation is not anymore just an option.
Instead each explicit strictness annotation constitutes an evaluation obligation
that has to be fulfilled before proceeding further. We will illustrate the conse-
quences of this changed evaluation with the following example.

Consider the following Clean definition of the function f, which by means of
the !-annotation in the type is made explicitly strict in its first argument. In
Haskell a similar effect can be obtained using an application of seq.

f :: !Int -> Int
f x = 5

Without the strictness annotation, the property ∀x[f x = 5] would hold uncondi-
tionally by definition. Now consider the effects of the strictness annotation in the
type which makes the function f strict in its argument. Clearly, the proposition
f 3 = 5 still holds. However, f undef = 5 does not hold, because f undef does
not terminate due to the enforced evaluation of undef. Therefore, ∀x[f x = 5]
does not hold unconditionally. The property can be fixed by adding a defined-
ness condition using the special symbol ⊥, denoting undefined. This results in
∀x[x �= ⊥ → f x = 5], which does hold for the annotated function f.

Another consequence is that the definition of f cannot just be substituted in
all its occurrences. Instead it is only allowed to substitute f when it is known
that its argument x is not undefined. This has a fundamental impact on the
semantics of function application.
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The addition of an exclamation mark by a programmer is therefore more than
just a harmless annotation. It also has an effect on the logical properties of func-
tions. Changes in logical properties are not only important for the programmer
but also for those who work on the compiler. Of course, it is obvious that code
has to be generated to accommodate the strictness. Less obvious however, is the
consequences adding strictness may have on the correctness of program trans-
formations. There can be far-reaching consequences on various kinds of program
transformations. An example of such a far-reaching consequence is given in the
next subsection.

2.2 A Dramatic Case of the Influence of Explicit Strictness

The Clean compiler uses term graph rewriting semantics [3] to incorporate pat-
tern matching, sharing and cycles. With term graph rewriting semantics, on right-
hand sides of definitions those parts that are not connected to the root cannot
have any influence on the outcome. These definitions are thrown away in a very
early stage of the compilation process. Consequently, possible syntactic and se-
mantic errors in such disconnected definitions may not be spotted by the com-
piler. This can be annoying but it is consistent with the term graph rewriting
semantics. When strictness comes into the picture, however, this early connect-
edness program transformation of the compiler is no longer semantically valid.

This is illustrated by the following example. Take the following Clean programs
with definition K x y = x:

Start Start
#! y = undef #! y = undef
= K 42 y = 42

The programs use the #!-notation of Clean which denotes a strict let. The strict let
will be formally defined in Section 2.3. It forces y to be evaluated before the result
of Start is computed. In Haskell the same effect can be achieved using a seq.

For the left program, due to the #! y must be evaluated first. So, the result
of the program is: ”Error: undefined!”.

For the right program one would expect the same result. But, the result is
different since the compiler removes unconnected nodes before any analysis is
done, transforming the right program into Start = 42. So, the result of the
right program is 42. This makes the right program a wrong program and the left
program the right program. Clearly, this is an unwanted situation.

Due to the combination of connectedness and explicit strictness Clean pro-
grams are not always referentially transparent anymore. The meaning is not
always preserved during reduction and it is not always sound to substitute a
definition. Of course, this situation is acknowledged as a bug in the compiler
for several years now. The consequences of removing this bug, however, are so
drastic for the structure of the compiler that at this point in time this bug still
remains to be present.

It may be a relief to the reader that Sparkle’s mixed lazy/strict semantics are
not based on connectedness.
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2.3 Incorporating Explicit Strictness in Formal Semantics

The semantics of lazy functional languages have been described elegantly in
practice in various ways: both operationally and denotationally, in terms of a
term-graph rewrite system, in [12]; or just operationally, in terms of a graph
rewrite-system, in [14]. All these semantics are well established, are widely known
and accepted in the functional language community, and have been used for
various kinds of theoretical purposes.

The basic forms of all these semantics, however, are limited to lazy expres-
sions in which no explicit strictness is allowed to occur. If one wants to include
strictness, an upgrade is required, because the introduction of strictness in an
expression has an effect on its meaning that cannot be described in terms of
existing concepts. In other words, strictness has to be accounted for on the se-
mantic level as well.

As a starting point we will use the operational semantics of Launchbury [12].
We extend this to a mixed lazy/strict semantics, which is able to cope with
laziness as well as with strictness. In this paper, we will limit ourselves to the
basic definitional components of the mixed semantics. The formal proofs that
our extension is correct are therefore not included; however, these proofs can be
built analogously to the proofs in [12].

We will choose to extend expressions with the strict let, which is the basic
primitive for denoting strictness in Clean. The strict let is a variation of the
normal let, which only allows the actual sharing to take place after the expression
to be shared has first successfully been reduced to weak head normal form.
Moreover, it only allows a single non-recursive expression to be shared at a
time; this keeps the strict let as simple as possible, yet still sufficiently powerful.

In the base set of expressions, we will include basic values (b ∈ BasicV alue),
constructors (c ∈ Constructor) and case distinctions in the same manner as in
[12]. Furthermore, we will also include a constant expression ‘⊥’ that denotes
the undefined computation. This ⊥ can simply be regarded as an abbreviation
for let x = x in x. Adding the strict let to this set of expressions leads to:

e ∈ Exp ::= λ x. e (lambda expressions)
| x (variables)
| e x (applications)
| let x1 = e1 · · · xn = en in e (let expressions)

| b (basic values)
| c x1 . . . xn (constructor applications)
| case e of {ci y1 · · · ymi → ei}n

i=1 (case distinctions)
| ⊥ (undefined expression)

| let! x = e1 in e (strict let expressions)

Due to its similarity with the normal let, the strict let is a convenient primitive
that can be added to the semantical level with minimal effort. Naturally, all
forms of explicit strictness can easily be expressed in terms of the strict let. This
also goes for the basic Haskell primitive, seq:
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for all expressions e1, e2 and fresh variables x,
seq e1 e2 is equivalent to let! x = e1 in e2.

Launchbury describes both an operational and a denotational semantics, which
both have to be updated to cope with the strict let. Here, we treat the extension
of the operational semantics only. This semantics is given by means of a multi-
step term-graph rewrite system which has to be extended with a rule for the strict
let. The new rule is much like the rule for the normal let, but also demands the
reduction of the shared expression to weak head normal form as an additional
precondition:

(Γ, x1 �→ e1 · · ·xn �→ en) : e ⇓ Δ : z
Γ : let x1 = e1 · · · xn = en in e ⇓ Δ : z

Let

Γ : e1 ⇓ Θ : z1 (Θ, x1 �→ z1) : e ⇓ Δ : z
Γ : let! x1 = e1 in e ⇓ Δ : z

StrictLet

(for the technical details of this definition: see [12])

The addition of this single StrictLet rule is sufficient to incorporate the concept
of explicit strictness in a formal semantics. Our extension is equivalent to the one
that is introduced in [2] for dealing formally with parallelism. In [2] seq is used
as the basic primitive to denote explicit strictness. Using the equivalence of seq
and let! sketched above, the proofs of soundness and computational adequacy
that were given in [2] can be applied to our mixed semantics as well.

3 Reasoning in the Context of Strictness

In the previous sections, a general introduction to the concept of explicit strict-
ness has been provided and its, more or less obvious, effects on programs and
semantics have been discussed. In this section, the effect of strictness on reason-
ing will be described. We will show that adding or removing strictness requires
program properties to be reformulated. As a consequence, the proofs of the re-
formulated properties may have to be redone from scratch. In addition, certain
proof rules may no longer be applicable and have to be replaced as well.

The effects of strictness on reasoning are not so commonly known, mainly
because programming and reasoning are usually separate activities that are not
carried out by the same person. With this paper, we strive to show that the
effects of strictness on reasoning are quite profound and should not be ignored.

3.1 Strictness and Logical Properties

A logical (equational) property about a program is constructed by means of log-
ical operators (∀, ∃, ∧, ∨, →, ¬) out of basic equations of the form E1[x1 . . . xn] =
E2[x1 . . . xn], where x1 . . . xn are the variables that have been introduced by the
quantors. The equations in a property can be divided into a number of con-
ditions that precede a single obligatory conclusion. A property with conclusion
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E1 = E2 denotes that E1 may safely be replaced by E2 in all contexts, if properly
instantiated and if all conditions are satisfied.

Semantically, two expressions may only be replaced by each other if either:
(1) they both compute the exact same value; or (2) they both do not compute
any value at all. Note that this is a total semantics, and an expression that does
not terminate, or terminates erroneously, may not be replaced by an expression
that successfully computes a value, nor vice versa.

If explicit strictness is added to or removed from a program, the value that it
computes on success is not affected, but the conditions under which it produces
this defined value are. Unfortunately, if the definedness conditions of an expres-
sion E1 are changed, but the definedness conditions of E2 stay the same, then a
previously valid equation E1 = E2 will become invalid, because the replacement
of E1 by E2 is no longer allowed.

In other words: the addition or removal of strictness to programs may cause
previously valid logical properties to be broken. From a proving point of view
this is a real problem: suppose one has successfully proved a difficult property
by means of a sequence of lemmata, then the invalidation of even a single lemma
may cause a ripple effect throughout the entire proof! The adaptation to such a
ripple effect is both cumbersome and resource-intensive.

Unfortunately, the invalidation of logical properties due to changed strictness
annotations is quite common. This invalidation can usually be fixed, either by
the addition or, quite surprisingly, by the removal of definedness conditions. This
is illustrated briefly by the following two examples:

Example of the addition of a condition:
∀f,g∀xs [map (f o g) xs = map f (map g xs)]

Affected by strictness:
This property is valid for lazy lists, but invalid for element-strict lists.
Note that no assumptions can be made about the possible strictness of f or
g. Instead, the property must hold for all possible functions f and g.

Invalid in the strict case because:
Suppose xs = [12], g 12 = ⊥ and f (g 12) = 7.
Then map (f o g) xs = [7], both in the lazy and in the strict case.
However, map f (map g xs) = [7] in the lazy case, but ⊥ in the strict case.

Extra definedness condition for the lazy case:
The problematic case can be excluded by demanding that for all elements of
the list g x can be evaluated successfully.

Reformulated property for the strict case:
∀f,g,xs [∀x∈xs [g x �= ⊥] → map (f o g) xs = map f (map g xs)].

Example of the removal of a condition:
∀xs [finite xs → reverse (reverse xs) = xs]

Affected by strictness:
This property is valid both for lazy lists and for spine-strict lists. How-
ever, the condition finite xs is satisfied automatically for spine-strict lists. In
the spine-strict case, the property can therefore safely be reformulated (or,
rather, optimized) by removing the finite xs condition.
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Invalid without finite condition in the lazy case because:
Suppose xs = [1, 1, 1, . . .].
Then reverse (reverse xs) = ⊥, both in the lazy and in the strict case.
However, xs = ⊥ in the strict case, while it is unequal to ⊥ in the lazy case.

Reformulated property for the strict case:
∀xs [reverse (reverse xs) = xs]

In Section 4.3 it will be shown how mathematical conditions such as finite xs
and ∀x[g x �= ⊥] can be expressed within the Sparkle framework.

In principle, all invalidated properties can be fixed this way. The definedness
conditions to be added can be obtained by carefully considering the consequences
of components of quantified variables to be undefined. Such an analysis is far
from easy, however, and it is easy to forget certain conditions. On paper, this may
lead to incorrect proofs; when using a proof assistant, this makes it impossible
to prove the property at all.

An automatic analysis to obtain definedness conditions would be helpful. This
does not seem too far-fetched. An idea is to extend the GAST-system (see [11])
for this purpose. With GAST, it is possible to automatically generate valid values
for the quantified variables and test the property on these values. However,
GAST currently is not able to cope with undefinedness.

3.2 Strictness and Formal Reasoning

Formal reasoning is the process in which formal proofs are constructed for logical
program properties. These proofs are constructed by the repeated application of
proof steps. Each proof step can be regarded as a function from a single property
to a list of new properties. The conjunction of the produced properties must be
logically stronger, and hopefully also easier to prove, than the input property.

In the previous section, it has been shown that the addition or removal of
strictness to programs often requires a reformulation of the associated logical
properties. This is not the only cumbersome effect of strictness on reasoning,
however. A second problem is that strictness changes the behavior of reduction,
and consequently also of proof steps that make use of reduction. This in turn
may cause existing proofs to become invalid.

A proof step that makes use of reduction is based on the observation that if
e1 reduces to e2, then e1 is also semantically equal to e2, and therefore e1 may
safely be replaced with e2 within a logical property to be proved. It is clear that
this relation is changed by the introduction of strictness. It is not intuitively
clear where this change is problematic for the actual proof process.

The hidden reason is the availability of logical expression variables within
propositions. Such a variable denotes an ‘open position’, to be replaced with a
concrete expression later. It is introduced and bound by means of a (existential
or universal) quantor. When reduction is forced, due to explicit strictness, to
reduce such a variable to weak head normal form, the following problem occurs:

Suppose that e is an expression in which the variable x occurs lazily.
Suppose that e reduces to e′.
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Suppose that within e, x is now marked as explicitly strict.
Then, the strict version cannot be reduced at all, because the required
preparatory reduction of x to weak head normal fails.

In other words: the introduction of explicit strictness causes a previously valid
reduction to become invalid. This in turn causes proof steps that depend on it
to become invalid. That in turn causes the proof as a whole to become invalid.
This effect is illustrated in the following basic example:

Property: ∀x[id x = x].
Proof: Introduce x. Reduce (id x) to x. Use reflexivity. QED.
Validity: This proof is only valid if the first argument of id is not explicitly

marked as strict. If it is, then the strictness annotation forces x to be reduced
to weak head normal form before the application (id x) may be expanded.
Because x cannot be brought into weak head normal form, (id x) cannot be
reduced at all, and the proof sketched above becomes invalid.

This effect actually occurs quite frequently, which is a big nuisance. It causes
many previously valid proof steps to become invalid, and therefore requires the
proofs themselves to be revised. Fortunately, this revision is often easily realized.
A general solution, which usually suffices, is to distinguish explicitly between
x = ⊥ and x �= ⊥. In the first case, the whole expression reduces to ⊥. In the
second case, it is statically known that x has a weak head normal form, and
reduction is therefore allowed to continue in the same way as in the lazy case.

Nevertheless, the introduction of explicit strictness makes reasoning more diffi-
cult. To deal with this problem, the proof assistant Sparkle offers specific support
to deal with explicit strictness. The following section is devoted to explaining
this support.

4 Tool Support for Explicit Strictness in Sparkle

Sparkle [6] is Clean’s dedicated proof-assistant. Apart from its location of origin
Sparkle is used rather intensively in Budapest (Object Abstraction [16]) and
Dublin (I/O models [7]). Sparkle works directly on a desugared version of Clean,
called Core-Clean. Sparkle allows properties of functions to be expressed using a
first-order logic. Predicates are not supported. Sparkle offers the usual operators
and quantors with the restriction that quantification is only allowed over typed
expressions and propositions.

Basic units: True, False, e1 = e2, x
Operators: ¬, ∧, ∨, →,↔
Quantors: ∀, ∃

Sparkle is aimed towards making proving possible for the programmer. It con-
tains many features to lower the threshold to start with proving theorems about
programs, such as:
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– it can be called from within the Clean Integrated Development Environment;
– it can load a complete Clean project including all the modules of the project;
– the proof environment is highly interactive and allows a wide range of infor-

mation to be displayed in separate windows at the user’s will;
– the proof tactics are dedicated to the programming language.

Sparkle’s reduction semantics are based on term graph rewriting. Sparkle has a
total semantics. The constant expression ⊥ is used to represent the “undefined”
value. Both non-terminating reductions and erroneous reductions are equal to
⊥. For example: hd [ ] reduces to ⊥ on Sparkle’s semantic level. Error values
propagate stepwise to the outermost level. For example: (hd [ ]) + 7 reduces to
⊥ + 7 reduces to ⊥.

Sparkle’s semantics of equality are based on reduction in a manner which is
independent of the reduction strategy. The equality copes with infinite reductions
and equalities between infinite structures using the concept of an observation of
an expression. The observation of an expression is obtained by replacing all its
redexes by ⊥. What remains is the fully evaluated part. Two expressions e1 and
e2 are equal if: (1) for all reducts r1 of e1, there exists a reduct r2 of e2 such
that the observation of r1 is smaller than the observation of r2; and (2) also the
analogue property holds for all reducts of e2. The observational ordering is such
that an expression r1 is smaller than r2 if r2 can be obtained by substituting
subexpressions for ⊥’s in r1.

Being dedicated to the use of a lazy programming language, Sparkle gener-
ates on the one hand definedness conditions for extensionality (f = g not only
requires f x = g x for all x, but also f = ⊥ ↔ g = ⊥), induction (base case
for ⊥) and case-distinction (base case for ⊥ as well). On the other hand Sparkle
also offers specific support for reasoning with definedness conditions in the con-
text of explicit strictness. To our knowledge, Sparkle is currently the only proof
assistant that fully supports explicit strictness in the context of a lazy functional
programming language. The specific support consists of three components:

1. a specific ‘Definedness’ tactic; and
2. a smart reduction proof step: the ‘Reduce’ tactic;
3. using an ‘eval’ function to denote definedness conditions.

These three kinds of support are explained in detail in the following sections.

4.1 The ‘Definedness’ Tactic of Sparkle

Definedness conditions on variables and expressions occur frequently in proofs.
They are introduced by various tactics that take explicit strictness into account,
such as ‘Induction’, ‘Case’ and ‘Assume’. These conditions usually appear in
parts of the proof that are not in the main line of reasoning. Therefore, one
wishes to get rid of them as soon as possible with as little effort as possible.

Unfortunately, proving definedness conditions often involves several small rea-
soning steps as is illustrated by the following example:
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Example of proving a definedness condition:
∀x,y[¬(x = ⊥) → y = (let! z = x in Cons 7 z) → ¬(y = ⊥)].

Proof without the Definedness tactic:
Introduce x and y.
Assume H1: ¬(x = ⊥) and H2: y = (let! z = x in Cons 7 z).
Using H1, reduce H2 to H2’: y = Cons 7 x.
Rewrite H2’ in the goal, which leaves ¬(Cons 7 x = ⊥) to be proved.
This follows from the injectivity of Cons.
QED.

In Sparkle the ‘Definedness’ tactic is introduced to remove the burden of all such
small proofs from the user. This tactic analyzes all subexpressions that occur in
the hypotheses that have been introduced, and attempts to determine if they are
‘defined’ (statically known to be unequal to ⊥) or ‘undefined’ (statically known
to be equal to ⊥). If the tactic finds any overlap between the defined expressions
and the undefined ones, it then proves any goal by contradiction.

The tactic is implemented by the following algorithm, which assumes that it
is activated in a goal with hypotheses H1 . . . Hn and a statement to prove of the
form ∀x1...xi [P1 → (P2 → . . . (Pj → Q) . . .)] (note that i and j can be zero for
no top-level quantors or implications, making the form universal):

1. Collect as many known equalities as possible in the set Eq as follows:
– for all 1 ≤ i ≤ n, if Hi states e1 = e2, then add (e1 = e2) to Eq ;
– for all 1 ≤ j ≤ n, if Pj states e1 = e2, then add (e1 = e2) to Eq ;
– if Q states ¬(e1 = e2), then add (e1 = e2) to Eq.

Note that ¬Q can be used as a hypothesis here, because Q and (¬Q → False)
are logically equivalent.

2. Collect as many known inequalities as possible in the set Eq as follows:
– for all 1 ≤ i ≤ n, if Hi states ¬(e1 = e2), then add (e1 �= e2) to Eq ;
– for all 1 ≤ j ≤ n, if Pj states ¬(e1 = e2), then add (e1 �= e2) to Eq ;
– if Q states e1 = e2, then add (e1 �= e2) to Eq .

3. Determine X , the set of all subexpressions that occur in the goal as a whole.
4. Compute D = {e ∈ X | Eq � Defined(e)} and

U = {e ∈ X | Eq � Undefined(e)}.
5. If D and U overlap, then the tactic proves the goal.

In Tables 1 and 2, two derivation systems are defined, one for statically comput-
ing Eq � Undefined(e) and one for statically computing Eq � Defined(e). The
derivation rules are described formally using the representation of expressions
given in Section 2.3. In practice, Sparkle implements procedural variations of the
derivation systems that have been lifted to Core-Clean. Proving the soundness of
the derivation systems (meaning that expressions in D have a weak head normal
form, while those in U have not) is left as future work.

The special tactic ‘Definedness’ is quite powerful and very useful in practice. It
can be used to automatically get rid of almost all kinds of valid definedness con-
ditions that have been stated in order to keep reduction going in strict contexts.
The proof of the example can be simplified with it as follows:
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Table 1. Derivation system for statically computing undefinedness

Eq � Undefined(⊥)

(e1 = e2) ∈ Eq Eq � Undefined(e2)
Eq � Undefined(e1)

(e1 = e2) ∈ Eq Eq � Undefined (e1)
Eq � Undefined(e2)

Eq , (xi = ei), . . . , (xn = en) � Undefined(e)
Eq � Undefined(let x1 = e1 . . . xn = en in e)

Eq � Defined(e1) Eq , (x = e1) � Undefined(e)
Eq � Undefined (let! x = e1 in e)

Eq � Undefined(e)
Eq � Undefined(case e of {ci y1 · · · ymi → ei}n

i=1)
Eq � Undefined(e1)

Eq � Undefined(let! x = e1 in e)

Example of proving a definedness condition (2):
∀x,y[¬(x = ⊥) → y = (let! z = x in Cons 7 z) → ¬(y = ⊥)].

Proof with the Definedness tactic:
Apply Definedness.
Q.E.D.

Explanation:
Eq is computed to be {(x �= ⊥), (y = (let! z = x in Cons 7 z)), (y = ⊥)}.
Derive(1) Eq � Undefined(⊥) (base case)
Derive(2) Eq � Undefined(y) (from 1, with equality)
Derive(3) Eq � Defined(x) (from 1, with inequality)
Derive(4) Eq , z = x � Defined(Cons 7 z) (base case)
Derive(5) Eq � Defined(let! z = x in Cons 7 z) (from 3+4, with let! rule)
Derive(6) Eq � Defined(y) (from 5, with equality)
Contradiction between 2 and 6.

4.2 The ‘Reduce’ Tactic of Sparkle

One of the proof steps (or tactics, as they are usually called in the context of
mechanized proof assistants) that is made available by Sparkle is ‘Reduce’. This
tactic applies reduction within the current logical property to be proved.

Sparkle operates on a basic functional language with a reduction mechanism
similar to the one given in Section 2.3. The reduction tactic of Sparkle does not
necessarily have to correspond completely to the formal reduction relation of this
language; instead, it suffices that it is sound, meaning that it may only transform
e1 to e2 if e1 = e2 formally holds. Of course, the tactic does have to be based on
reduction, because it must look like normal reduction to the end-user.

This degree of freedom is used by Sparkle to offer specific support for the reduc-
tion of explicitly strict subexpressions that contain logical expression variables.
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Table 2. Derivation system for statically computing definedness

Eq � Defined(b) Eq � Defined(λ x. e) Eq � Defined(c x1 . . . xn)

(e1 = e2) ∈ Eq Eq � Defined(e2)
Eq � Defined(e1)

(e1 = e2) ∈ Eq Eq � Defined(e1)
Eq � Defined(e2)

(e1 �= e2) ∈ Eq Eq � Undefined(e2)
Eq � Defined(e1)

(e1 �= e2) ∈ Eq Eq � Undefined(e1)
Eq � Defined(e2)

Eq , (xi = ei), . . . , (xn = en) � Defined(e)
Eq � Defined(let x1 = e1 . . . xn = en in e)

Eq � Defined(e1) Eq , (x = e1) � Defined(e)
Eq � Defined(let! x = e1 in e)

The aim of this support is to hide the cumbersome effects of strictness to the user,
allowing the same proof style and the same proof rules to be used both for the lazy
and for the strict case.

The support offered by Sparkle manifests itself in the following customized be-
havior when reduction encounters explicit strictness of the form let! x = e1 in e:

– First, reduction is recursively applied to e1 as usual.
– If this results in either ⊥ or a weak head normal form, then reduction con-

tinues as usual.
– Suppose that, due to logical expression variables, the recursive reduction

cannot be completed and instead results in some expression e′1 that is neither
⊥ nor a weak head normal form.

– Then, and this is new, apply the same definedness analysis that was described
in Section 4.1. If this analysis determines that e1 is defined (e1 ∈ D), then
reduction is allowed to continue by expanding the strict let.
This expansion is semantically sound, because the definedness analysis shows
that ¬(e1 = ⊥), which implies that e1 has a weak head normal form, even
though it is not known at this point what it actually looks like.

– If this fails, then add x = ⊥ as hypothesis and perform another definedness
analysis. If this analysis shows that e is undefined (e ∈ U), then reduction
is allowed to continue by expanding the strict let.
This expansion is semantically sound, because the definedness analysis shows
that x = ⊥ → e = ⊥, which means that the explicit strictness annotation
has no effect on semantics and may safely be ignored.

If either of the two ’escape clauses’ succeed, then it seems to the user as if
reduction has the same effect in the strict case as in the lazy case. In other
words: by silently checking for additional conditions, Sparkle can sometimes hide
the cumbersome effects of explicit strictness on reduction altogether.
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To illustrate the additional power of the reduction mechanism, consider the
following two basic examples:

Example of continuation of reduction:
Suppose that datatype (Tree a) is defined as follows:

:: Tree a = Leaf | Edge !a !(Tree a) !(Tree a)
Suppose that the function treeDepth has the following signature:

treeDepth :: !(Tree a) -> Int
Suppose that the logical expression variable x (of type Tree Int) and the
hypothesis ¬(x = ⊥) have both been introduced earlier in the proof.
Then, Sparkle allows the function application treeDepth (Edge 7 Leaf x)
to be expanded, because by means of recursive analysis Sparkle is able to
determine that Edge 7 Leaf x is unequal to ⊥.

Note that: this example uses strict constructors and strict functions, which
can be considered as notational sugar for the strict let.

Example of increased stability of proofs:
Suppose that the identify function is defined as follows:
id :: !a -> a
id x = x

Sparkle determines statically that if the argument of the function is unde-
fined, then the result of the function will be undefined as well. Therefore,
Sparkle allows applications of id to be expanded, regardless of its argument.
The proof of Section 3.2, which was shown to be invalid with a standard
reduce tactic, in fact becomes valid when the powerful strictness specific
‘Reduce’ tactic of Sparkle is used.

Note that: this example uses strict functions as well.

4.3 Using an ‘eval’ Function to Denote Definedness Conditions

In many cases, it may seem impossible to express definedness conditions just
using the first-order logic of Sparkle. For instance, spine evaluation of data-
structures is very hard to express. However, the possibility to define functions
in the higher-order programming language and the possibility to use these func-
tions as predicates gives unexpected expressive power. The higher-order of the
programming language can be combined with the Sparkle’s first order logic.

On the programming level we define a function eval. The purpose of this
function is to fully reduce its argument and return True afterwards. Such an
‘eval’ function is usually used to express evaluation strategies in the context of
parallelism [4,17]. We use eval for expressing definedness conditions.

In the standard program library of Sparkle (StdSparkle), the function eval
is defined by means of overloading. The instance on characters is defined by:

class eval a :: !a -> Bool

instance eval Char
where eval :: !Char -> Bool

eval x = True
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Now, in a logical property, (eval x) can be used as termination condition. As is
usual in proof assistants, this is equivalent to (eval x = True). The meaning of
this condition is as follows:

– If (it is known that) x can be successfully reduced to an arbitrary character,
then eval x will produce True and the condition will be satisfied, since
True = True is True.

– If (it is known that) x cannot successfully be reduced to a character, then
eval x does not terminate and is equal to ⊥ on the semantic level. Therefore,
the condition is not satisfied, because ⊥ = True is False.

– Note that eval is defined in such a way that eval x never reduces to False.
So, all cases are covered in the previous reasoning.

The same principle can be used for lists, making use of overloading to assume
the presence of ‘eval’ on the element type. This leads to the following definition:

instance eval [a] | eval a
where eval :: ![a] -> Bool | eval a

eval [x:xs] = eval x && eval xs
eval [] = True

This instance of eval fully evaluates both the list itself and all its elements. It
can therefore be used to express the condition that a list must be fully evaluated.
Below we give a few examples of the use of eval in properties of functions:

– ∀n[eval n → n < n = False]
– ∀n,xs [eval n → take n xs ++ drop n xs = xs]
– ∀p,xs [eval (map p xs) → takeWhile p xs ++ dropWhile p xs = xs]
– ∀x,p,xs [eval x → eval xs → eval (map p xs) →

isMember x (filter p xs) = isMember x xs && p x]

The conditions in the examples of Section 3.1 can be expressed using ‘eval’.
The property of the first example is then expressed as follows (using isMember
instead of the mathematical ∈):

∀f,g,xs [∀x[isMember x xs → eval(g x)] → map (f o g) xs = map f (map g xs)]

To express the definedness condition of the second example of Section 3.1 we
need another variant of ‘eval’ that does not evaluate its argument fully but that
evaluates only the ‘spine’ of the argument. This is given below.

Expressing Spine Evaluation and List Finiteness. Spine evaluation can be
expressed easily by means of an ‘eval’ variant. However, if already an instance
for full evaluation is given, then a new function must be defined since the type
class system allows only one instance per type.

evalSpine :: ![a] -> Bool
evalSpine [x:xs] = evalSpine xs
evalSpine [] = True
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This same function evalSpine also expresses finiteness of lists, as when the spine
of a list is fully evaluated, the list is evidently finite.

Some valid properties that are defined using evalSpine:

– ∀xs [eval (length xs) → evalSpine xs]
– ∀xs [evalSpine xs → evalSpine (reverse xs)]

The second example of Section 3.1 can now be reformulated to:

∀xs [evalSpine xs → reverse (reverse xs) = xs]

Properties of ‘eval’. All instances of the class ‘eval’ have to share certain
properties. To prove properties of all members of a certain type class, the recently
added tool support for general type classes can be used [10]. With this tool, the
following properties of ‘eval’ can be stated and proven in Sparkle.

– ∀x[eval x → x �= ⊥]
– ∀x[eval x �= False]

5 Related Work

In [5] Danielsson and Jansson perform a case study in program verification using
partial and undefined values. They assume proof rules to be valid for the pro-
gramming language. They do not use a formal semantics. We expect that our
formal semantic approach can be used as a basis to prove their proof rules.

With the purpose of deriving a lazy abstract machine Sestoft [15] has re-
vised Launchbury’s semantics. Launchbury’s semantics require global inspection
(which is unwanted for an abstract machine) for preserving the Distinct Names
property. When an abstract machine is to be derived from the semantics used
in this paper, analogue revisions will be required. As is further pointed out by
Sestoft [15] the rules given by Launchbury are not fully lazy. Full laziness can be
achieved by introducing new let-bindings for every maximal free expression [8].

An equivalent extension of Launchbury’s semantics can be found in [2]. In
this paper, a formal semantics for Glasgow Parallel Haskell is constructed on top
of the standard Launchbury’s semantics. Interestingly, not only parallellism is
added, but enforced strictness in terms of a seq-construct as well. Furthermore, it
is formally shown that this extension is sound. However, no properties are proven
that are specific for the seq, such as the relation between ‘lazy’ and ‘strict’ terms.
It is possible to translate seq’s to let!s (and vice versa) and shown properties can
be compared directly.

Andrew Pitts [13] discusses non-termination issues of logical relations and
operational equivalence in the context of the presence of existential types in a
strict language. He provides some theory that might also be used to address
the problems that arise in a mixed lazy/strict context. That would require a
combination of his work and the work of Patricia Johann and Janis Voigtländer
[9] who use a denotational approach to present some “free” theorems in the
presence of Haskell’s seq.
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At Chalmers University of Technology for the language Haskell a proof as-
sistant Agda [1] has been developed in the context of the CoVer project. As
with Sparkle the language is translated to a core-version on which the proofs
are performed. Being geared towards facilitating the ’average’ functional pro-
grammer Sparkle uses dedicated tactics and proof rules based on standard proof
theory. Agda uses constructive type theory on λ-terms enabling independent
proof checking. However, in contrast to Sparkle, Agda has no facilities to prove
properties that are related to changed strictness properties.

Another project that aims to integrate programming, properties and valida-
tion is the Programatica project (www.cse.ogi.edu/PacSoft/projects/programatica)
of the Pacific Software Research Center in Oregon. A wide range of validation
techniques for programs written in different languages is intended to be sup-
ported. For functional languages they use a logic (P-logic) based on a modal
μ-calculus (in which also undefinedness can be expressed). In the Programatica
project properties are mixed with the Haskell source. So, reasoning is bound to
take place on the more complex syntactical source level instead of on a simpler
core-language.

6 Conclusions / Future Work

The impact of changes in strictness properties on logical program properties is
shown to be quite significant. It is illustrated how program properties can be
adapted to reflect these changes. Furthermore, it is explained what the influence
of explicit changes in strictness is on the semantics and on the reasoning steps.

We have shown that the special combination of several techniques, that have
been made available in the proof assistant Sparkle to deal with definedness as-
pects, is well suited to assist the programmer in constructing the required proofs.
We do not know of any other proof assistant with such a combined set of tech-
niques to help dealing with these kinds of proofs.

Future work could be to study the relation of our approach to an approach
which only aims to prove partial correctness.
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Abstract. Landin’s J operator was the first control operator for func-
tional languages, and was specified with an extension of the SECD ma-
chine. Through a series of meaning-preserving transformations (transfor-
mation into continuation-passing style (CPS) and defunctionalization)
and their left inverses (transformation into direct style and refunctional-
ization), we present a compositional evaluation function corresponding
to this extension of the SECD machine. We then characterize the J op-
erator in terms of CPS and in terms of delimited-control operators in
the CPS hierarchy. Finally, we present a motivated wish to see Landin’s
name added to the list of co-discoverers of continuations.

1 Introduction

Forty years ago, Peter Landin unveiled the first control operator, J, to a hereto-
fore unsuspecting world [24, 23, 25]. He did so to generalize the notion of jumps
and labels and showed that the resulting notion of ‘program closure’ makes sense
not just in an imperative setting, but also in a functional one. He specified the
J operator by extending the SECD machine [22].

At IFL’04, Danvy presented a ‘rational deconstruction’ of Landin’s SECD
machine into a compositional evaluation function [9]. The goal of this work is to
extend this rational deconstruction to the J operator.

1.1 Deconstruction of the SECD Machine with the J Operator

Let us outline our deconstruction of the SECD machine before substantiating it
in Section 2. We essentially follow the order of Danvy’s deconstruction [9], though
with a twist: in the middle of the derivation, we abandon the stack-threading,
callee-save features of the SECD machine for the more familiar register-based,
caller-save features of traditional definitional interpreters [18, 28, 31].

The SECD machine is defined as the transitive closure of a transition function
over a quadruple—a data stack containing intermediate values (of type S), an
environment (of type E), a control stack (of type C), and a dump (of type D):
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run : S * E * C * D -> value

The definition of this transition function is complicated because it has several
induction variables, i.e., it dispatches on several components of the quadruple.

– We disentangle it into four transition functions, each of which has one in-
duction variable, i.e., dispatches on one component of the quadruple:

run_c : S * E * C * D -> value
run_d : value * D -> value
run_t : term * S * E * C * D -> value
run_a : S * E * C * D -> value

The first function, run c, dispatches towards run d if the control stack is
empty, run t if the top of the control stack contains a term, and run a if
the top of the control stack contains an apply directive. This disentangled
specification is in defunctionalized form: the control stack and the dump
are defunctionalized data types, and run c and run d are the corresponding
apply functions.

– Refunctionalization eliminates the two apply functions:
run_t : term * S * E * C * D -> value
run_a : S * E * C * D -> value
where C = S * E * D -> value and D = value -> value

As identified in the first rational deconstruction [9], the resulting program is a
stack-threading, callee-save interpreter in continuation-passing style (CPS).

– In order to focus on the nature of the J operator, we eliminate the data stack
and adopt the more familiar caller-save evaluation strategy:

run_t : term * E * C * D -> value
run_a : value * value * C * D -> value
where C = value * D -> value and D = value -> value

The interpreter is still in CPS.
– The direct-style transformation eliminates the dump continuation:

run_t : term * E * C -> value
run_a : value * value * C -> value
where C = value -> value

The clause for the J operator and the main evaluation function are expressed
using the delimited-control operators shift and reset [10]. The resulting evalu-
ator still threads an explicit continuation, even though it is not tail-recursive.

– The direct-style transformation eliminates the control continuation:
run_t : term * E -> value
run_a : value * value -> value

The clauses catering for the non-tail-recursive uses of the control continua-
tion are expressed using the delimited-control operators shift1, reset1, shift2,
and reset2 [4, 10, 14, 21, 30]. The resulting evaluator is in direct style. It is
also in closure-converted form: the applicable values are a defunctionalized
data type and run a is the corresponding apply function.

– Refunctionalization eliminates the apply function:
run_t : term * E -> value

The resulting evaluator is compositional.
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There is plenty of room for variation in the present reconstruction. The path
we are taking seems reasonably pedagogical—in particular, the departure from
threading a data stack and managing the environment in a callee-save fashion.
Each of the steps is reversible: one can CPS-transform and defunctionalize an
evaluator into an abstract machine [1, 2, 3, 4, 9].

1.2 Prerequisites and Domain of Discourse

Up to Section 2.4, we use pure ML as a meta-language. We assume a basic fa-
miliarity with Standard ML and with reasoning about ML programs as well as
an elementary understanding of defunctionalization [13, 31], the CPS transfor-
mation [10, 11, 18, 28, 31, 34], and delimited continuations [4, 10, 14, 16, 21]. From
Section 2.5, we use pure ML with delimited-control operators.

The Source Language of the SECD Machine. The source language is the λ-
calculus, extended with literals (as observables) and the J operator. A program
is a closed term.

datatype term = LIT of int
| VAR of string
| LAM of string * term
| APP of term * term
| J

type program = term

The Control Directives. A directive is a term or the tag APPLY:

datatype directive = TERM of term | APPLY

The Environment. We use a structure Env with the following signature:

signature ENV = sig
type ’a env
val empty : ’a env
val extend : string * ’a * ’a env -> ’a env
val lookup : string * ’a env -> ’a

end

The empty environment is denoted by Env.empty. The function extending an
environment with a new binding is denoted by Env.extend. The function fetching
the value of an identifier from an environment is denoted by Env.lookup.

Values. There are five kinds of values: integers, the successor function, function
closures, program closures, and “state appenders” [6, page 84]:

datatype value = INT of int
| SUCC
| FUNCLO of E * string * term
| PGMCLO of value * D
| STATE_APPENDER of D
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withtype S = value list (* stack *)
and E = value Env.env (* environment *)
and C = directive list (* control *)
and D = (S * E * C) list (* dump *)

A function closure pairs a λ-abstraction (i.e., its formal parameter and its body)
and its lexical environment. A program closure is a first-class continuation. A
state appender is an intermediate value; applying it yields a program closure.

The Initial Environment. The initial environment binds the successor function:

val e_init = Env.extend ("succ", SUCC, Env.empty)

1.3 Overview

We first detail the deconstruction of the SECD machine into a compositional
evaluator in direct style (Section 2). We then analyze the J operator (Section 3),
review related work (Section 4), and conclude (Sections 5 and 6).

2 Deconstruction of the SECD Machine
with the J Operator

2.1 The Starting Specification

Several formulations of the SECD machine with the J operator have been pub-
lished [6,15,24]. We take the most recent one, i.e., Felleisen’s [15], as our starting
point, and we consider the others in Section 4.

(* run : S * E * C * D -> value *)
(* where S = value list, E = value Env.env, C = directive list, *)
(* and D = (S * E * C) list *)
fun run (v :: nil, e, nil, nil)

= v
| run (v :: nil, e’, nil, (s, e, c) :: d)

= run (v :: s, e, c, d)
| run (s, e, (TERM (LIT n)) :: c, d)

= run ((INT n) :: s, e, c, d)
| run (s, e, (TERM (VAR x)) :: c, d)

= run ((Env.lookup (x, e)) :: s, e, c, d)
| run (s, e, (TERM (LAM (x, t))) :: c, d)

= run ((FUNCLO (e, x, t)) :: s, e, c, d)
| run (s, e, (TERM (APP (t0, t1))) :: c, d)

= run (s, e, (TERM t1) :: (TERM t0) :: APPLY :: c, d)
| run (s, e, (TERM J) :: c, d) (* 1 *)

= run ((STATE_APPENDER d) :: s, e, c, d)
| run (SUCC :: (INT n) :: s, e, APPLY :: c, d)

= run ((INT (n+1)) :: s, e, c, d)
| run ((FUNCLO (e’, x, t)) :: v :: s, e, APPLY :: c, d)

= run (nil, Env.extend (x, v, e’), (TERM t) :: nil, (s, e, c) :: d)
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| run ((PGMCLO (v, d’)) :: v’ :: s, e, APPLY :: c, d) (* 2 *)
= run (v :: v’ :: nil, e_init, APPLY :: nil, d’)

| run ((STATE_APPENDER d’) :: v :: s, e, APPLY :: c, d) (* 3 *)
= run ((PGMCLO (v, d’)) :: s, e, c, d)

fun evaluate0 t (* evaluate0 : program -> value *)
= run (nil, e_init, (TERM t) :: nil, nil)

The SECD machine does not terminate for divergent source terms. If it becomes
stuck, an ML pattern-matching error is raised (alternatively, the codomain of
run could be made value option and a fallthrough else clause could be added).
Otherwise, the result of the evaluation is v for some ML value v : value. The
clause marked “1” specifies that the J operator, at any point, denotes the current
dump; evaluating it captures this dump and yields a state appender that, when
applied (in the clause marked “3”), yields a program closure. Applying a program
closure (in the clause marked “2”) restores the captured dump.

2.2 A Disentangled Specification

In the definition of Section 2.1, all the possible transitions are meshed together in
one recursive function, run. As in the first rational deconstruction [9], we factor
run into four mutually recursive functions, each of them with one induction
variable. In this disentangled definition,

– run c interprets the list of control directives, i.e., it specifies which transition
to take according to whether the list is empty, starts with a term, or starts
with an apply directive. If the list is empty, it calls run d. If the list starts
with a term, it calls run t, caching the term in an extra component (the first
parameter of run t). If the list starts with an apply directive, it calls run a.

– run d interprets the dump, i.e., it specifies which transition to take according
to whether the dump is empty or non-empty, given a valid data stack.

– run t interprets the top term in the list of control directives.
– run a interprets the top value in the current data stack.

(* run_c : S * E * C * D -> value *)
(* run_d : value * D -> value *)
(* run_t : term * S * E * C * D -> value *)
(* run_a : S * E * C * D -> value *)
(* where S = value list, E = value Env.env, C = directive list, *)
(* and D = (S * E * C) list *)
fun run_c (v :: nil, e, nil, d)

= run_d (v, d)
| run_c (s, e, (TERM t) :: c, d)

= run_t (t, s, e, c, d)
| run_c (s, e, APPLY :: c, d)

= run_a (s, e, c, d)
and run_d (v, nil)

= v
| run_d (v, (s, e, c) :: d)

= run_c (v :: s, e, c, d)
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and run_t (LIT n, s, e, c, d)
= run_c ((INT n) :: s, e, c, d)

| run_t (VAR x, s, e, c, d)
= run_c ((Env.lookup (x, e)) :: s, e, c, d)

| run_t (LAM (x, t), s, e, c, d)
= run_c ((FUNCLO (e, x, t)) :: s, e, c, d)

| run_t (APP (t0, t1), s, e, c, d)
= run_t (t1, s, e, (TERM t0) :: APPLY :: c, d)

| run_t (J, s, e, c, d)
= run_c ((STATE_APPENDER d) :: s, e, c, d)

and run_a (SUCC :: (INT n) :: s, e, c, d)
= run_c ((INT (n+1)) :: s, e, c, d)

| run_a ((FUNCLO (e’, x, t)) :: v :: s, e, c, d)
= run_t (t, nil, Env.extend (x, v, e’), nil, (s, e, c) :: d)

| run_a ((PGMCLO (v, d’)) :: v’ :: s, e, c, d)
= run_a (v :: v’ :: nil, e_init, nil, d’)

| run_a ((STATE_APPENDER d’) :: v :: s, e, c, d)
= run_c ((PGMCLO (v, d’)) :: s, e, c, d)

fun evaluate1 t (* evaluate1 : program -> value *)
= run_t (t, nil, e_init, nil, nil)

Proposition 1 (full correctness). Given a program, evaluate0 and evaluate1

either both diverge or both yield values that are structurally equal.

2.3 A Higher-Order Counterpart

In the disentangled definition of Section 2.2, there are two possible ways to
construct a dump—nil and consing a triple—and three possible ways to construct
a list of control directives—nil, consing a term, and consing an apply directive.
(We could phrase these constructions as two data types rather than as two lists.)

These data types, together with run d and run c, are in the image of defunc-
tionalization (run d and run c are the apply functions of these two data types).
The corresponding higher-order evaluator reads as follows; it is higher-order be-
cause c and d now denote functions:

(* run_t : term * S * E * C * D -> value *)
(* run_a : S * E * C * D -> value *)
(* where S = value list, E = value Env.env, C = S * E * D -> value *)
(* and D = value -> value *)
fun run_t (LIT n, s, e, c, d)

= c ((INT n) :: s, e, d)
| run_t (VAR x, s, e, c, d)

= c ((Env.lookup (x, e)) :: s, e, d)
| run_t (LAM (x, t), s, e, c, d)

= c ((FUNCLO (e, x, t)) :: s, e, d)
| run_t (APP (t0, t1), s, e, c, d)

= run_t (t1, s, e,
fn (s, e, d) => run_t (t0, s, e,

fn (s, e, d) => run_a (s, e, c, d), d), d)
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| run_t (J, s, e, c, d)
= c ((STATE_APPENDER d) :: s, e, d)

and run_a (SUCC :: (INT n) :: s, e, c, d)
= c ((INT (n+1)) :: s, e, d)

| run_a ((FUNCLO (e’, x, t)) :: v :: s, e, c, d)
= run_t (t, nil, Env.extend (x, v, e’), fn (v :: nil, e’’, d) => d v,

fn v => c (v :: s, e, d))
| run_a ((PGMCLO (v, d’)) :: v’ :: s, e, c, d)

= run_a (v :: v’ :: nil, e_init, fn (v :: nil, e, d) => d v, d’)
| run_a ((STATE_APPENDER d’) :: v :: s, e, c, d)

= c ((PGMCLO (v, d’)) :: s, e, d)

fun evaluate2 t (* evaluate2 : program -> value *)
= run_t (t, nil, e_init, fn (v :: nil, e, d) => d v, fn v => v)

The resulting evaluator is in CPS, with two layered continuations c and d. It
threads a stack of intermediate results (s), an environment (e), a control con-
tinuation (c), and a dump continuation (d). Except for the environment being
callee-save, the evaluator follows a traditional eval–apply schema: run t is eval
and run a is apply. Defunctionalizing it yields the definition of Section 2.2.

Proposition 2 (full correctness). Given a program, evaluate1 and evaluate2

either both diverge or both yield values that are structurally equal.

2.4 A Stack-Less, Caller-Save Counterpart

We want to focus on J, and the non-standard aspects of the evaluator of Sec-
tion 2.3 (the data stack and the callee-save environment) are a distraction. We
therefore transmogrify the evaluator into the more familiar register-based, caller-
save form [18, 28, 31], renaming run t as eval and run a as apply. Intermediate
values are explicitly passed instead of being stored on the data stack, and envi-
ronments are no longer passed to apply and to the control continuation:

(* eval : term * E * C * D -> value *)
(* apply : value * value * C * D -> value *)
(* where E = value Env.env, C = value * D -> value, *)
(* and D = value -> value *)
fun eval (LIT n, e, c, d)

= c (INT n, d)
| eval (VAR x, e, c, d)

= c (Env.lookup (x, e), d)
| eval (LAM (x, t), e, c, d)

= c (FUNCLO (e, x, t), d)
| eval (APP (t0, t1), e, c, d)

= eval (t1, e,
fn (v1, d) => eval (t0, e,

fn (v0, d) => apply (v0, v1, c, d), d), d)
| eval (J, e, c, d)

= c (STATE_APPENDER d, d)
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and apply (SUCC, INT n, c, d)
= c (INT (n+1), d)

| apply (FUNCLO (e’, x, t), v, c, d)
= eval (t, Env.extend (x, v, e’), fn (v, d) => d v,

fn v => c (v, d))
| apply (PGMCLO (v, d’), v’, c, d)

= apply (v, v’, fn (v, d) => d v, d’)
| apply (STATE_APPENDER d’, v, c, d)

= c (PGMCLO (v, d’), d)

fun evaluate3 t (* evaluate3 : program -> value *)
= eval (t, e_init, fn (v, d) => d v, fn v => v)

The new evaluator is still in CPS, with two layered continuations.

Proposition 3 (full correctness). Given a program, evaluate2 and evaluate3

either both diverge or both yield values that are structurally equal.

2.5 A Dump-Less Direct-Style Counterpart

The evaluator of Section 2.4 is in continuation-passing style, and therefore it is
in the image of the CPS transformation. The clause for J captures the current
continuation (i.e., the dump), and therefore its direct-style counterpart naturally
uses call/cc [11]. With an eye on our next step, we do not, however, use call/cc
but its cousins shift and reset [10, 14] to write the direct-style counterpart.

Concretely, we use an ML functor to obtain an instance of shift and reset
with value as the type of intermediate answers [14, 16]: reset delimits the (now
implicit) dump continuation in evaluate, and corresponds to its initialization
with the identity function; and shift captures it in the clauses where J is evaluated
and where a program closure is applied:

structure SR = Shift_and_Reset (type intermediate_answer = value)

(* eval : term * E * C -> value *)
(* apply : value * value * C -> value *)
(* where E = value Env.env and C = value -> value *)
fun eval (LIT n, e, c)

= c (INT n)
| eval (VAR x, e, c)

= c (Env.lookup (x, e))
| eval (LAM (x, t), e, c)

= c (FUNCLO (e, x, t))

| eval (APP (t0, t1), e, c)
= eval (t1, e, fn v1 => eval (t0, e, fn v0 => apply (v0, v1, c)))

| eval (J, e, c)
= SR.shift (fn d => d (c (STATE_APPENDER d))) (* * *)

and apply (SUCC, INT n, c)
= c (INT (n+1))
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| apply (FUNCLO (e’, x, t), v, c)
= c (eval (t, Env.extend (x, v, e’), fn v => v)) (* * *)

| apply ((PGMCLO (v, d)), v’, c)
= SR.shift (fn d’ => d (apply (v, v’, fn v => v))) (* * *)

| apply (STATE_APPENDER d, v, c)
= c (PGMCLO (v, d))

fun evaluate4 t (* evaluate4 : program -> value *)
= SR.reset (fn () => eval (t, e_init, fn v => v))

The dump continuation is now implicit and is accessed using shift. CPS-trans-
forming this evaluator yields the evaluator of Section 2.4.

Proposition 4 (full correctness). Given a program, evaluate3 and evaluate4

either both diverge or both yield values that are structurally equal.

2.6 A Control-Less Direct-Style Counterpart

The evaluator of Section 2.5 still threads an explicit continuation, the control
continuation. It however is not in continuation-passing style because of the non-
tail calls to c, eval, and apply (in the clauses marked “*”) and for the occurrences
of shift and reset. This pattern of control is characteristic of the CPS hierarchy [4,
10,14,21]. We therefore use the delimited-control operators shift1, reset1, shift2,
and reset2 to write the direct-style counterpart of this evaluator (shift2 and reset2
are the direct-style counterparts of shift1 and reset1, and shift1 and reset1 are
synonyms for shift and reset).

Concretely, we use two ML functors to obtain layered instances of shift and
reset with value as the type of intermediate answers [14, 16]: reset2 delimits
the (now twice implicit) dump continuation in evaluate; shift2 captures it in
the clauses where J is evaluated and where a program closure is applied; reset1
delimits the (now implicit) control continuation in evaluate and in apply, and
corresponds to its initialization with the identity function; and shift1 captures
it in the clause where J is evaluated:

structure SR1 = Shift_and_Reset (type intermediate_answer = value)

structure SR2 = Shift_and_Reset_next (type intermediate_answer = value
structure over = SR1)

(* eval : term * E -> value *)
(* apply : value * value -> value *)
(* where E = value Env.env *)

fun eval (LIT n, e)
= INT n

| eval (VAR x, e)
= Env.lookup (x, e)

| eval (LAM (x, t), e)
= FUNCLO (e, x, t)
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| eval (APP (t0, t1), e)
= let val v1 = eval (t1, e)

val v0 = eval (t0, e)
in apply (v0, v1) end

| eval (J, e)
= SR1.shift (fn c => SR2.shift (fn d => d (c (STATE_APPENDER d))))

and apply (SUCC, INT n)
= INT (n+1)

| apply (FUNCLO (e’, x, t), v)
= SR1.reset (fn () => eval (t, Env.extend (x, v, e’)))

| apply (PGMCLO (v, d), v’)
= SR1.shift (fn c’ => SR2.shift (fn d’ =>
d (SR1.reset (fn () => apply (v, v’))))

| apply (STATE_APPENDER d, v)
= PGMCLO (v, d)

fun evaluate5 t (* evaluate5 : program -> value *)
= SR2.reset (fn () => SR1.reset (fn () => eval (t, e_init)))

The control continuation is now implicit and is accessed using shift1. The dump
continuation is still implicit and is accessed using shift2. CPS-transforming this
evaluator yields the evaluator of Section 2.5.

Proposition 5 (full correctness). Given a program, evaluate4 and evaluate5

either both diverge or both yield values that are structurally equal.

2.7 A Compositional Counterpart

We now turn to the data flow of the evaluator of Section 2.6. As for the SECD
machine without J [9], this evaluator is in defunctionalized form: each of the val-
ues constructed with SUCC, FUNCLO, PGMCLO, and STATE APPENDER are constructed
at one place and consumed at another (the apply function). We therefore refunc-
tionalize them into the function space value -> value:

datatype value = INT of int
| FUN of value -> value

val e_init = Env.extend ("succ",
FUN (fn (INT n) => INT (n+1)),
Env.empty)

structure SR1 = Shift_and_Reset (type intermediate_answer = value)

structure SR2 = Shift_and_Reset_next (type intermediate_answer = value
structure over = SR1)

(* eval : term * E -> value *)
(* where E = value Env.env *)
fun eval (LIT n, e)

= INT n
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| eval (VAR x, e)
= Env.lookup (x, e)

| eval (LAM (x, t), e)
= FUN (fn v => SR1.reset (fn () => eval (t, Env.extend (x, v, e))))

| eval (APP (t0, t1), e)
= let val v1 = eval (t1, e)

val (FUN f) = eval (t0, e)
in f v1 end

| eval (J, e)
= SR1.shift (fn c => SR2.shift (fn d =>
d (c (FUN (fn (FUN f) => FUN (fn v’ => SR1.shift (fn c’ =>

SR2.shift (fn d’ =>
d (SR1.reset (fn () =>

f v’))))))))))

fun evaluate5’ t (* evaluate5’ : program -> value *)
= SR2.reset (fn () => SR1.reset (fn () => eval (t, e_init)))

Defunctionalizing this evaluator yields the evaluator of Section 2.6.

Proposition 6 (full correctness). Given a program, evaluate5 and evaluate5’

either both diverge or both yield values that are related by defunctionalization.

2.8 Summary

We graphically summarize the derivations as follows. The evaluators in the top
row are the defunctionalized counterparts of the evaluators in the bottom row.

evaluate3 ��

refunct.
��

evaluate4 ��
CPS transf.��

��

evaluate5
CPS transf.��

��
evaluate3’

DS transf.
��

��

evaluate4’
��

DS transf.
��

��

evaluate5’
��

defunct.

��

3 Three Simulations of the J Operator

The evaluator of Section 2.7 and the refunctionalized counterparts of the evalu-
ators of Sections 2.5 and 2.4 are compositional. They can be viewed as syntax-
directed encodings into their meta-language, as embodied in the first Futamura
projection [19]. Below, we state these encodings as three simulations of J: one in
direct style, one in CPS with one layer of continuations, and one in CPS with
two layers of continuations.

We assume a call-by-value meta-language with right-to-left evaluation.
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– In direct style, using shift2 (S2), reset2 (〈〈〈·〉〉〉2), shift1 (S1), and reset1 (〈〈〈·〉〉〉1):L

�n� = n
�x� = x

�t0 t1� = �t0� �t1�
�λx.t� = λx.〈〈〈�t�〉〉〉1

�J� = S1λc.S2λd.d (c λx.λx′.S1λc′.S2λd′.d 〈〈〈x x′〉〉〉1 )

A program p is translated as 〈〈〈〈〈〈�p�〉〉〉1〉〉〉2.
– In CPS with one layer of continuations, using shift (S) and reset (〈〈〈·〉〉〉):

�n�′ = λc.c n
�x�′ = λc.c x

�t0 t1�
′ = λc.�t1�

′ λx1.�t0�
′ λx0.x0 x1 c

�λx.t�′ = λc.c λx.λc.c (�t�′ λx.x)
�J�′ = λc.Sλd.d (c λx.λc.c λx′.λc′.Sλd′.d (x x′ λx′′.x′′) )

A program p is translated as 〈〈〈�p�′ λx.x〉〉〉.
– In CPS with two layers of continuations (the outer continuation, i.e., the

dump continuation, can be η-reduced in the first three clauses):

�n�′′ = λc.λd.c n d
�x�′′ = λc.λd.c x d

�t0 t1�
′′ = λc.λd.�t1�

′′ (λx1.λd.�t0�
′′ (λx0.λd.x0 x1 c d) d) d

�λx.t�′′ = λc.λd.c (λx.λc.λd.�t�′′ (λx.λd.d x) λx.c x d) d

�J�′′ = λc.λd.c (λx.λc.λd′′′ .c (λx′.λc′.λd′.x x′ (λx′′.λd′′.d′′ x′′) d) d′′′) d

A program p is translated as �p�′′ (λx.λd.d x) λx.x.

Analysis: The simulation of literals, variables, and applications is standard. The
control continuation of the body of each λ-abstraction is delimited, correspond-
ing to it being evaluated with an empty control stack in the SECD machine.
The J operator abstracts the control continuation and the dump continuation
and immediately restores them, resuming the computation with a state ap-
pender which holds the abstracted dump continuation captive. Applying this
state appender to a value v yields a program closure (boxed in the three sim-
ulations above). Applying this program closure to a value v′ has the effect of
discarding both the current control continuation and the current dump continu-
ation, applying v to v′, and resuming the captured dump continuation with the
result.

The first rational deconstruction [9] already characterized the SECD machine
in terms of the CPS hierarchy: the control stack is the first continuation, the
dump is the second one (i.e., the meta-continuation), and abstraction bodies
are evaluated within a control delimiter (i.e., an empty control stack). Our
work further characterizes the J operator as capturing (a copy of) the meta-
continuation.
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4 Related Work

4.1 Landin and Burge

Landin [24] introduced the J operator as a new language feature motivated by
three questions about labels and jumps:

– Can a language have jumps without having assignment?
– Is there some component of jumping that is independent of labels?
– Is there some feature that corresponds to functions with arguments in the

same sense that labels correspond to procedures without arguments?

He gave the semantics of the J operator by extending the SECD machine.
In addition to using J to model jumps in Algol 60 [23], he gave examples
of programming with the J operator, using it to represent failure actions as
program closures where it is essential that they abandon the context of their
application.

In his textbook [6, Section 2.10], Burge adjusted Landin’s original specifi-
cation of the J operator. Indeed, in Landin’s extension of the SECD machine,
J could only occur in the context of an application. Burge adjusted the orig-
inal specification so that J could occur in arbitrary contexts. To this end, he
introduced the notion of a “state appender” as the denotation of J.

Thielecke [36] gave a detailed introduction to the J operator as presented by
Landin and Burge. Burstall [7] illustrated the use of the J operator by simulating
threads for parallel search algorithms, which in retrospect is the first simulation
of threads in terms of first-class continuations.

4.2 Reynolds

Reynolds [31] gave a comparison of J to escape, the binder form of Scheme’s
call/cc [8]1. He gave encodings of Landin’s J (i.e., restricted to the context of an
application) and escape in terms of each other.

His encoding of escape in terms of J reads as follows:

(escape k in t)∗ = let k = J λx.x in t∗

As Thielecke notes [36], this encoding is only valid immediately inside an ab-
straction. Indeed, the dump continuation captured by J only coincides with the
continuation captured by escape if the control continuation is the initial one (i.e.,
immediately inside a control delimiter). Thielecke generalized the encoding by
adding a dummy abstraction:

(escape k in t)∗ = (λ().let k = J λx.x in t∗) ()

From the point of view of the rational deconstruction, this dummy abstraction
implicitly inserts a control delimiter.
1 escape k in t ≡ call/cc λk.t.
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Reynolds’s converse encoding of J in terms of escape reads as follows:

(let d = J λx.t1 in t0)
◦ = escape k in (let d = λx.k t1

◦ in t0
◦)

where k does not occur free in t0 and t1. For the same reason as above, this
encoding is only valid immediately inside an abstraction.

4.3 Felleisen

Felleisen showed how to embed Landin’s extension of applicative expressions
with J into the Scheme programming language [15]. The embedding is defined as
Scheme syntactic extensions (i.e., macros). J is treated as a dynamic identifier
that is bound in the body of every abstraction. Its control aspect is handled
through Scheme’s control operator call/cc.

As pointed out by Thielecke [36], Felleisen’s simulation can be stated in direct
style, assuming a call-by-value meta-language with right-to-left evaluation and
call/cc. In addition, we present the corresponding simulations using C and reset,
using shift and reset, and in CPS:

– In direct style, using either of call/cc, C, or shift (S), and one global control
delimiter (〈〈〈·〉〉〉):

�x� = x
�t0 t1� = �t0� �t1�

�λx.t� = λx.call/cc λd.let J = λx.λx′.d (x x′) in �t�

= λx.Cλd.let J = λx.λx′.d (x x′) in d �t�

= λx.Sλd.let J = λx.λx′.Sλc′.d (x x′) in d �t�

A program p is translated as 〈〈〈�p�〉〉〉.
– In CPS:

�x�′ = λc.c x
�t0 t1�

′ = λc.�t1�
′ λx1.�t0�

′ λx0.x0 x1 c

�λx.t�′ = λc.c (λx.λd.let J = λx.λc.c λx′.λc′.x x′ d in �t�′ d)

A program p is translated as �p�′ λx.x.

Analysis: The simulation of variables and applications is standard. The con-
tinuation of the body of each λ-abstraction is captured, and the identifier J
is dynamically bound to a function closure (the state appender) which holds
the continuation captive. Applying this function closure to a value v yields a
program closure (boxed in the simulations above). Applying this program clo-
sure to a value v′ has the effect of applying v to v′ and resuming the captured
continuation with the result, abandoning the current continuation.
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4.4 Felleisen and Burge

Felleisen’s version of the SECD machine with the J operator differs from Burge’s.
In the notation of Section 2.1, Burge’s clause for applying program closures reads

| run ((PGMCLO (v, (s’, e’, c’) :: d’’)) :: v’ :: s, e, APPLY :: c, d)
= run (v :: v’ :: s’, e’, APPLY :: c’, d’’)

instead of

| run ((PGMCLO (v, d’)) :: v’ :: s, e, APPLY :: c, d)
= run (v :: v’ :: nil, e_init, APPLY :: nil, d’)

Felleisen’s version delays the consumption of the dump until the function, in the
program closure, completes, whereas Burge’s version does not. The modification
is unobservable because a program cannot capture the control continuation and
because applying the argument of a state appender pushes the data stack, the
environment, and the control stack on the dump. Felleisen’s modification can be
characterized as wrapping a control delimiter around the argument of a dump
continuation, similarly to the simulation of static delimited continuations in
terms of dynamic ones [5].

Burge’s version, however, is not in defunctionalized form. In an extended
version of this article [12], we put it in defunctionalized form without inserting
a control delimiter and we outline the corresponding compositional evaluation
functions and simulations.

5 Summary and Conclusion

We have extended the rational deconstruction of the SECD machine to the J op-
erator, and we have presented a series of alternative implementations, including
a compositional evaluation function in CPS. In passing, we have also presented
new applications of defunctionalization and new examples of control delimiters
and of both pushy and jumpy delimited continuations in programming practice.

6 On the Origin of First-Class Continuations

We have shown that jumping and labels are not essentially connected with
strings of imperatives and in particular, with assignment. Second, that
jumping is not essentially connected with labels. In performing this piece
of logical analysis we have provided a precisely limited sense in which the
“value of a label” has meaning. Also, we have discovered a new language
feature, not present in current programming languages, that promises to
clarify and simplify a notoriously untidy area of programming—that con-
cerned with success/failure situations, and the actions needed on failure.

– Peter J. Landin, 1965 [24, page 133]
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It was Strachey who coined the term “first-class functions” [35, Section 3.5.1]2.
In turn it was Landin who, through the J operator, invented what we know
today as first-class continuations [17]. Indeed, like Reynolds for escape, Landin
defined J in an unconstrained way, i.e., with no regard for it to be compatible
with the last-in, first-out allocation discipline prevalent for control stacks since
Algol 603.

Today, ‘continuations’ is an overloaded term, that may refer

– to the original semantic description technique for representing ‘the meaning
of the rest of the program’ as a function, the continuation, as multiply co-
discovered at the turn of the 1970’s [32]; or

– to the programming-language feature of first-class continuations as typically
provided by a control operator such as J, escape, or call/cc, as invented by
Landin.

Whether a semantic description technique or a programming-language feature,
the goal of continuations was the same: to formalize Algol’s labels and jumps. But
where Wadsworth and Abdali gave a continuation semantics to Algol, Landin
translated Algol programs into applicative expressions in direct style. In turn,
he specified the semantics of applicative expressions with the SECD machine,
i.e., using first-order means. The meaning of an Algol label was an ISWIM ‘pro-
gram closure’ as obtained by the J operator. Program closures were defined by
extending the SECD machine, i.e., still using first-order means.

Landin did not use an explicit representation of the rest of the computation in
his direct semantics of Algol 60, and so he is not listed among the co-discoverers
of continuations [32]. Such an explicit representation, however, exists in the
SECD machine, in first-order form: the dump, which represents the rest of the
computation after returning from the current function call.

In this article, we have shown that, though it is first-order, the SECD
machine directly corresponds to a compositional evaluation function in CPS—
the tool of choice for specifying control operators since Reynolds’s work [31].
As a corollary, the dump directly corresponds to a functional representation of
control, since it is a defunctionalized continuation. Therefore, in the light of de-
functionalization, we wish to see Landin’s name added to the list of co-discoverers
of continuations.
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Abstract. This paper considers the use of dependent types to capture informa-
tion about dynamic resource usage in a static type system. Dependent types allow
us to give (explicit) proofs of properties with a program; we present a depen-
dently typed core language TT, and define a framework within this language for
representing size metrics and their properties. We give several examples of size
bounded programs within this framework and show that we can construct proofs
of their size bounds within TT. We further show how the framework handles
recursive higher order functions and sum types, and contrast our system with
previous work based on sized types.

1 Background and Motivation

Obtaining accurate information about the run-time time and space behaviour of com-
puter software is important in a number of areas. One of the most significant of these is
embedded systems. Embedded systems are becoming an increasingly important appli-
cation area: today, more than 98% of all processors are used in embedded systems and
the number of processors employed in such systems is increasing year on year. At the
same time, the complexity of embedded software is growing apace. Assembly language,
until recently the development language of choice, has consequently been supplanted
by C/C++, and there is a growing trend towards the use of even higher-level languages.
This trend towards increased expressivity is, however, in tension with the need to un-
derstand the dynamic run-time behaviour of embedded systems. Such understanding is
critical for the construction of resource-bounded software.

Because there is a need for strong guarantees concerning the run-time behavior
of embedded software to be available at compile-time, existing approaches have usu-
ally either focused on restricting the programming language so that only resource-
bounded programs are expressible, or else relied on painstaking, and often manual
and inaccurate, post-facto performance measurement and analysis. However, restrict-
ing the language deprives the programmer of many useful abstraction mechanisms (c.f.
[22,27,28]). Conversely effective program analyses work at a low level of abstraction,
and thus cannot deal effectively with high-level abstraction mechanisms, such as poly-
morphism, higher-order functions (e.g. fold), algebraic data types (e.g. Either), and
general recursion.

A. Butterfield, C. Grelck, and F. Huch (Eds.): IFL 2005, LNCS 4015, pp. 74–90, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Dependently Typed Framework for Static Analysis of Program Execution Costs 75

In this paper we develop a framework based on dependent types which is capable
of expressing dynamic execution costs in the type system. We focus on a strict, purely
functional expression language and exemplify our approach with reference to the size of
a data structure. The approach is, however, general and should, in due course, be readily
extensible to other metrics such as dynamic heap allocation, stack usage or time.

A key feature of a dependently typed setting is that it is possible to express more
complex properties of programs than the usual simply typed frameworks in use in lan-
guages such as Standard ML or Haskell. In fact, computation is possible at the type
level, and it is also possible to expose proof requirements that must be satisfied. These
capabilities are exploited in the framework we present here to allow static calculation
of cost bounds; we use type level computation to construct bounds on execution costs.
In this way we can statically guarantee that costs lie within required limits.

1.1 Dependent Types

The characteristic feature of a dependent type system is that types may be predicated on
values. Such systems have traditionally been applied to reasoning and program verifica-
tion, as in the LEGO [17] and COQ [6] theorem provers. More recent research, however,
has led to the use of dependent types in programming itself, for example Cayenne [2]
and Epigram [20,19]. Our aim is to use dependent types to include explicit size in-
formation in programs, rather than as an external property. In this way, type checking
subsumes checking of these properties.

1.2 Contributions

We have previously used sized type systems such as [15,24] to represent program exe-
cution cost; such systems seem attractive for this purpose because there is a clear link
between, for example, data structure size and heap usage. However, there are limits to
the expressivity of sized type systems. In particular, there is a limit to the form of ex-
pressions we can use to express size, leading to difficulty in giving accurate sizes to
higher order functions. In this paper, we explore the benefits of using a dependently
typed intermediate language to represent size constraints of a high level program:

– We can express more complex properties than those available in the sized type sys-
tem; we are not restricted in the constraint language. Since we can write programs
at the type level, we can extend the constraint language as we wish. In particular,
this gives us more flexibility in expressing the cost of higher order functions. There
need be no loss of size information — we can give each program as precise a size
predicate as we need.

– With dependent types, we can verify the correctness of constraints given by an
external inference system. A program with embedded size constraints is a com-
plete, self-contained, checkable term; correctness of the constraints is verified by
the typechecker, a small and well understood (and hence relatively straightforward
to verify) program. We do not have to provide soundness or completeness proofs
for our framework if we implement it entirely within a system already known to be
sound and complete.
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– In situations where a sized type inference system is not powerful enough to derive
a size recurrence, or where the user requires a weaker constraint on the size, we
can allow the user to specify the size constraint by hand and still be able to check
it. Dependent types allow us to overcome the limitations of a sized type based
inference system — it is always possible for the user to provide hints.

– Where an automated proof construction system is not powerful enough to solve a
constraint, we can expose proof obligations to the user, either for the user to solve,
or to show that a constraint cannot be satisfied.

It is important to note that we do not use a dependent type system to help infer size in-
formation; this is left to an external inference system, or to the programmer (or possibly
to some extent both). Rather, we use dependent types to verify that the constraints we
have are satisfiable.

2 Programming with Dependent Types

We use a strongly normalising type theory with inductive families [9], similar to Luo’s
UTT [16]. This language, which we call TT, is an enriched lambda calculus, with the
usual properties of subject reduction, Church Rosser, and uniqueness of types. The
strong normalisation property is guaranteed by allowing only primitive recursion over
strictly positive inductive datatypes. This is a dependent type system, with no syntactic
distinction between types and terms; hence we can have arbitrarily complex terms in
types. Full details of TT are given in [4]. For clarity of the presentation here, we use a
higher level notation similar to the Epigram notation of [20]. In this section, we give a
brief introduction to programming and theorem proving with inductive families.

2.1 Inductive Families

Inductive families are simultaneously defined collections of algebraic data types which
can be indexed over values as well as types. For example, we can define a “lists with
length” (or vector) type; to do this we first declare a type of natural numbers to represent
such lengths, using the natural deduction style notation proposed for Epigram in [20]:

data
N : �

where 0 : N

n : N

s n : N

It is straightforward to define addition and multiplication by primitive recursion. Then
we may make the following declaration of vectors; note that nil only targets vectors of
length zero, and cons x xs only targets vectors of length greater than zero:

data A : � n : N

Vect A n : �
where nil : Vect A 0

x : A xs : Vect A k
cons x xs : Vect A (s k)

We leave A and k as implicit arguments to cons; their type can be inferred from the type
of Vect. When the type includes explicit length information like this, it follows that a
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function over that type will express the invariant properties of the length. For example,
the type of the following program vPlus, which adds corresponding numbers in each
vector, expresses the invariant that the input vectors are the same length as the output:

let xs, ys : Vect A n
vPlus xs ys : Vect A n

vPlus nil nil �→ nil
vPlus (cons x xs) (cons y ys) �→ cons (x + y) (vPlus xs ys)

Unlike in a simply typed language, we do not need to give error handling cases when
the lengths of the vectors do not match; the typechecker verifies that these cases are
impossible.

2.2 Theorem Proving

The dependent type system of TT also allows us to express properties directly. For
example, the following heterogeneous definition of equality, due to McBride [18], is
built in to TT (rather than introduced as a datatype, so we omit the data keyword):

a : A b : B
a = b : �

A : � a : A
refl a : a = a

This definition introduces an infix type constructor, =, parametrised over two types;
we can declare equality between any two types, but can only construct an instance of
equality between two definitionally equal values in the same type; e.g. refl (s 0) is an
instance of a proof that s0 = s0. Furthermore, since equality is an ordinary datatype just
like N and Vect, we can also write programs by case analysis on instances of equality,
such as the following program which can be viewed as a proof that s respects equality:

let p : n = m
resp s p : (s n) = (s m)

resp s (refl n) �→ refl (s n)

We can also represent more complex properties, such as the less than or equal
relation:

data x , y : N

x≤y : �
where leO : 0≤y

p : x≤y
leS p : s x≤s y

Note that x and y can be left implicit, as their types (and even their values) can be
inferred from the type of the relation. For example, leS (leS leO) could represent a proof
of s (s 0) ≤ s (s (s (s 0)).

As with equality, given a proof, we can write programs by recursion over the proof.
For example, we can write a safe subtraction function (i.e. the result is guaranteed to
be non-negative) by primitive recursion over the proof that the second argument is less
than or equal to the first:

let n,m : N p : m ≤ n
minus n m p : N

minus n 0 (leO n) �→ n
minus (s n) (s m) (leS p) �→ minus n m p
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The values for the arguments n and m are determined by the indices of leO and leS; no
case analysis on the numbers themselves is required. The Curry-Howard isomorphism
[8,13] describes this correspondence between proofs and programs. We will exploit this
further in developing our framework; by expressing the size properties explicitly in a
program’s type, we know that a type correct program is also a size correct program.

3 Dependent Types for Resource Analysis

In previous work [24] we have extended the basic sized type system by incorporating
notions of time, for time costs, and latent costs to capture cost information for higher-
order functions. The notion of size is now used to obtain information about bounds on
the size of function arguments and results. This can in turn be used to calculate time and

space costs of executing a function. For example, given map : (α
fc→ β) → [α]n

mapc→
[β]n, we can deduce that the latent cost for map, mapc, is proportional to fc × n.

In this paper, we consider the use of dependent types to represent program size; thus
we can use sized type inference to give size bounds where possible, and represent these
bounds in a dependently typed framework. In this way we can check that both machine
generated and user specified bounds are admissible.

3.1 Source Language

Our source language is a strict, higher order functional language with no partial appli-
cation (to avoid additional complications such as currying, although in future work we
may remove this restriction). The exact details are not important to the dependently
typed framework we will develop — it suffices to say that the syntax is similar to
Haskell. For the moment, we assume that functions are total, and recursion is primitive.
Ultimately, we hope to apply the methods presented to multi-stage Hume programs [11],
ensuring the resource properties we specify are preserved between stages.

Our aim is to describe a resource framework in which all source language programs
can be represented homogeneously along with proofs of their resource bounds, in or-
der to facilitate an automated translation into TT. There are two aspects to consider:
representation of datatypes, and representation of functions.

3.2 Representing Datatypes

The key idea behind our framework is that each user defined type is represented within
the framework by a type predicated on a natural number, N. Thus we can embed size
information explicitly within a type, and represent proofs of size properties directly in
TT code via relations such as = and ≤. e.g. Given the user defined type of lists . . .

data List a = nil | cons a (List a)

. . . we can create a “sized list” type in our dependently typed framework as follows,
where the size of the empty list is 0, and the size of the non-empty list is one more than
the size of its tail:
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data A : N → �
ListS A : N → �

where nilS : ListS A 0

x : A xn xs : ListS A xsn
consS x xs : ListS A (s xsn)

Note that the element type A, like all types within the framework, is also predicated on
a size. We use the convention that sized types (and their constructors) generated from
the source language are given the suffix S.

We can be flexible as to what the size information for a structure is; whether it be
high level information such as the above length of list, or the total size of all elements
in the list, or more low level information such as the number of heap cells required to
store a structure. Within our framework, the meaning of the size index of a family is not
important, what matters is that the index satisfies the required properties.

3.3 Representing Functions

With dependent types, we can ensure that the size index of a value satisfies the required
properties of that value by specifying those properties in the types of functions. In our
TT representation of functions, we would like to be able to capture such properties.

To this end, we define the following Size type, which pairs a sized value with a
predicate describing the properties that value respects:

data A : N → � P : ∀n :N. A n → �
Size A P : �

where val : A n p : P n val
size val p : Size A P

The size constructor takes a value of type A n , coupled with a proof that A satisfies the
required property, specified by the predicate P .

We use S (n, v) : A. P as a shorthand for Size A (λn :N. λv :A n. P).
We translate1 functions in the source language to a function in TT which returns a

Size; to demonstrate this, let us consider the append function on lists, as shown above
for Vect and defined in the source language as:

append nil ys = ys
append (cons x xs) ys = cons x (append xs ys)

Given the size of List, the size of the result is the sum of the sizes of the inputs. In our
framework, we express the type of this function as follows:

let xs : ListS A xsn ys : ListS A ysn
append xs ys : (S (n, v) : ListS A. n = xsn + ysn)

The predicate given to Size requires that any result of this function must be paired
with a proof that its size (n) is equal to the sum of the input sizes. In the definition
of append we show that the return values satisfy the predicate by returning the value
paired with a proof object. In many cases these proofs can be constructed automatically

1 By hand, currently.
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via the Omega decision procedure; in the following definition of append, we indicate
where in the term there are proof objects to construct with the “hole” notation �n. As
a notational convenience, we allow pattern matching let definitions, in order to extract
size information and the return value separately from the recursive call:

append nilS ys �→ size ys �1
append (consS x xs) ys �→ let (size val p) = append xs ys in

size (consS x val ) �2

Given val : ListS A n , xs : ListS A xsn and y : ListS A ysn , the types of the holes
are as follows:

�1 : ysn = 0 + ysn
�2 : s n = (s xsn) + ysn

Normalising the goals gives the following equalities to prove (note that in the case of
�2 reduction is possible because + is defined by recursion on its first argument):

�1 : ysn = ysn
�2 : s n = s (xsn + ysn)

To prove �1 is straightforward, by reflexivity (refl ysn). We can prove �2 by induction,
using p : n = xsn + ysn and a lemma resp s to show that s respects equality. The
full definition of append, including these proofs, is as follows:

let xs : ListS A xsn ys : ListS A ysn
append xs ys : (S (n, v) : ListS A. n = xsn + ysn)

append nilS ys �→ size ys (refl ysn)
append (consS x xs) ys �→ let (size val p) = append xs ys in

size (consS x val ) (resp s p)

Although we have filled in the proof details explicitly here, in many cases this can be
done automatically. We cannot do this in general, as the problem is the type inhabitation
problem, to find a term a : A for any A — however, for certain classes of A, there is
a method for constructing an appropriate a (if it exists). For the examples in this paper,
all proof obligations can be discharged using COQ’s omega tactic, based on Pugh’s
Omega calculator [23].

4 Examples

We present several examples of functions defined in our framework. These examples
have all been implemented in the COQ theorem prover, using the omega tactic to solve
all of the equational constraints. A COQ script implementing these examples can be
found on the first author’s web page.2

For these examples, we define representations of booleans and natural numbers. We
give the size of a boolean as zero in both cases — if we are not interested in the size
of a type, we can give all of its values a size of zero. We could also give the booleans

2 http://www.dcs.st-and.ac.uk/∼eb/
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size one, to represent the fact that values occupy a single heap cell. We give the size of
a natural number as the magnitude of the number it represents.

data BoolS : N → �
where TrueS : BoolS 0 FalseS : BoolS 0

data NatS : N → �
where OS : NatS 0

i : NatS n
SS i : NatS (s n)

We also take operations such as if . . . then . . . else and ≤ as primitive.
For each source function, we identify an output size and its relation to the size of the

inputs. Given this, we can construct the type of the TT representation, with the return
type as a Size structure. Then the TT function itself is constructed by traversing the
syntax tree of the source function, with proof objects inserted where necessary.

4.1 Partitioning a List

The split function partitions a list into a pair of lists based on a pivot value (values
smaller than or larger than the pivot). The source language definition is:

split pivot nil = (nil,nil)
split pivot (cons x xs) = let (l,r) = split pivot xs in

if x<=pivot
then (cons x l, r)
else (l, cons x r)

With sized types it is difficult to infer an upper bound cost for this function, as the sizes
of each element of the pair are considered independently and so inference assumes the
worst case for each. However, it should be clear that the operation is size preserving.
We use the following (sized) definition of pairs:

data A, B : N → � n : N

PairS A B : N → �
where a : A an b : B bn

mkPairS a b : PairS A B (s (s 0))

As well as the usual projections, fst and snd, we have fstS and sndS to project out
the size of each component.

We have chosen to represent the size of a pair as 2 (the number of elements). There
are other choices we could make here, e.g. the sum of the sizes of the elements. We
choose 2 to demonstrate that a function’s size predicate can depend on values as well
as sizes.

In writing the type of split, we need to identify the output size of interest, and its
relation to the input size. This is a size preserving relationship — the output size of
interest is obtained from the sizes of each element of the pair which is returned, and we
express in the type that the sum of the sizes of these elements is equal to the size of the
input list:

let piv : N xs : ListS NatS xsn
split piv xs : (S (n, v) : PairS (ListS NatS) (ListS NatS).

xsn = (fstS v) + (sndS v))
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The implementation of this follows the structure of the source language implementation,
subject to managing the Size structure. We leave the proof obligations as holes to be
filled in by the Omega calculator.

split piv nilS �→ size (mkPairS nilS nilS) �1
split piv (consS x xs) �→ let (size (mkPairS l r) p) = split piv xs in

if (x ≤ piv )
then size (mkPairS (consS x l) r) �2
else size (mkPairS l (consS x r)) �3

The fact that this definition typechecks (as we have verified in COQ) gives us a strong
static guarantee about the properties that the function satisfies. As the type of split
specifies the size relationship between the input and the output, a well typed implemen-
tation of split such as this must satisfy that relationship.

Here, allowing the user to specify size information in advance is beneficial; it is
easy to check that the size information is correct although it is difficult to infer. Some
methods are proposed to infer a size for split — Vasconcelos describes a method based
on abstract interpretation in his forthcoming PhD thesis; Hofmann and Jost in [12] are
able to infer the appropriate heap space usage using a linear type system, although this
method is restricted to functions which admit a linear bound. More recent work (to be
described in Jost’s forthcoming PhD thesis) allows cost inference for polymorphic and
higher order functions.

4.2 Map

Higher order functions present additional complications, in that we need not only the
type of the function argument, but also its size information. Consider the map function,
defined as follows:

map f nil = nil
map f (cons x xs) = cons (f x) (map f xs)

Recall that for each function, we identify an output size and its relation to the sizes
of the inputs. However, we do not know either of these until we know some more
information about f. Therefore the solution we adopt is to associate a size predicate
and a size function with the function argument. This allows us to express the size of the
higher order function in terms of the size of its arguments. In the case of map, this is
not such a great problem, given the size metric we have chosen for lists — the length of
the resulting list has no relationship to the function argument:

let

P : ∀n :N. B n → � fs : N → N

f : A an ′ → S (n, v) : B . P n v (fs an ′) xs : ListS A xsn
map P fs f xs : S (n, v) : B . n = xsn

Again, the definition of map is built by following the syntax tree of the source function,
with the addition of the size structures:
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map P fs f nilS �→ size nilS �1
map P fs f (consS x xs) �→ let (size val1 p1) = f x in

let (size val2 p2) = map P fs f xs in
size (consS val1 val2) �2

Other higher order functions, such as zipWith and filter follow a similar pattern,
filter having a different size metric giving an upper bound on the size of the resulting
list, rather than an exact size. In the case of filter we can even imagine the framework
giving a more precise size where some argument is known — for example, the size
of filter isEven [1,3,...] is clearly zero; by giving a size expression which
depends on the value of the list, this size can be statically determined.

If we were to choose a different size metric for lists, for example total heap usage or
maximum stack size, we would be faced with the problem of how to relate the size of
f to the size of the resulting list. This is a general problem with the handling of higher
order functions, as we shall see in the size of twice.

4.3 Twice

The twice function simply applies a function to its argument twice; i.e., it is the
Church numeral 2. Although conceptually much simpler than map it presents a greater
difficulty, since the size relationship between input and output is not uniform. It is de-
fined in the source language as follows:

twice f x = f (f x)

Intuitively, the effect of this function on the size of x should be twice the effect of f
on x . However, this is hard to represent in a sized type system; the limitations of the
expression language at the type level make it difficult to give a precise cost to many
functions, and this is especially the case with higher-order functions. Here, the func-
tion is applied twice, with different sizes in each case, but a sized type system cannot
represent this.

To represent this in our framework, we again associate a size predicate and function
with f . However, this is not quite enough —- we also need to know that the predicate
satisfies a transitivity property (intuitively, verifying that the predicate respects repeated
application). We therefore associate three additional arguments with f , being P , fs and
Ptrans in the following declaration:

let

P : ∀n :N. ∀a :A n. N → � fs : N → N

Ptrans : P as a (fs cs) → P bs b (fs as) → P bs b (fs (fs cs))
f : A an ′ → (S (n, v) : A. P n v (fs an ′))

twice P fs Ptrans f a : (S (n, v) : A. P n v (fs (fs an ′)))

Ptrans is a predicate transformer; it is a predicate level reflection of function composi-
tion. We now have enough information in the type to define twice:

twice P fs Ptrans f x �→ let (size val1 p1) = f x in
let (size val2 p2) = f val1 in
size val2 �1
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Again, despite the complicated type, the definition of twice follows the same form as
the original definition and the proof obligations are straightforward to discharge via the
Ptrans transformer. In this case, �1 can be instantiated simply by Ptrans p1 p2.

This function on its own does not give any direct size information; this should not
be surprising since we do not have size information for a specific f . An application of
twice on the other hand will give us this information. For example, given double:

let i : NatS in
double i : S (n, p) : NatS. n = 2 ∗ in

We can apply twice to double, and get the obvious cost:

let i : NatS in
twicedouble i : S (n, p) : NatS. n = 4 ∗ in

twicedouble i �→ twice (λa, b :N. a = b) (λn :N. 2 ∗ n) �1 double i

The hole for the transitivity proof is left for the omega tactic to fill in; the proposition
to be proven is ∀a, b, c :N. a = 2 ∗ b → b = 2 ∗ c → a = 2 ∗ (2 ∗ c), which is solved
by omega without difficulty, although the proof term itself is non-trivial.

The size predicates and transitivity proof we use are specific to the instance of f . In a
more complex case, where f is itself a higher order function, such as (twice twice),
type correctness requires that the higher order f is applied to a predicate.

4.4 Fold

The fold function may be seen as a generalisation of twice, applying a function
several times across a list. It can be defined in the source language as follows:

fold f a nil = a
fold f a (cons x xs) = f x (fold f a xs)

Dealing with this in a sized type system presents a difficult problem; we do not know
how many times f will be applied, nor do we know the content of the list, so an expres-
sion language which can only represent size is not strong enough at the type level.

Since TT has a more flexible language at the type level, we can implement fold,
although it presents more difficulty than twice. Firstly, f is now a function of two
arguments (and hence so is fs). Secondly, and more importantly, fold is recursive and
the number of times f is applied depends on the input.

Since we have no partial application, we can write down the types of f and fs as
functions of two arguments. The size of the result of the fold depends not only on the
size effect of f , but also on the input list itself. Therefore, we create a function foldSize
to be run at the type level which computes the size of the result of folding a list:

let
fs : N → N → N an : N xs : ListS B xsn

foldSize fs an xs : N

foldSize fs an nilS �→ an
foldSize fs an (consS xxn xs) �→ fs xn (foldSize fs an xs)

Note that the implicit size of the x argument to consS is used to compute the size;
this argument is subscripted. The function follows the structure of the original source
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language fold function, but calculating the size of the result from the size function
for f. When we create the TT version of fold, we express the result size in terms of
foldSize:

let

P : ∀n :N. A n → N → � fs : N → N → N

f : A an ′ → B bn ′ → S (n, v) : A. P n v (fs an ′ bn ′)
a : A an xs : ListS B xsn

fold P fs f a xs : (S (n, v) : A.
P n v (foldSize fs an xs)))

fold P fs f a nilS �→ size a �1
fold P fs f a (consS x xs) �→ let (size val1 p1) = fold P fs f a xs in

let (size val2 p2) = f val1 a in
size val2 �2

However, there is still a problem; how do we provide the required proofs for �1 and
�2? The solution, as with the Prefl predicate transformer used in twice, is to require
additional predicate transformers as arguments for fold. We get the type of these pred-
icate transformers simply by observing which properties we need to prove to complete
the definition. The full definition is as follows:

let

P : ∀n :N. A n → N → � fs : N → N → N

Prefl : ∀n :N. ∀a :A n. P n a n
Ptrans : ∀an :N. ∀a :A an . ∀bn :N. ∀b :A bn. ∀cn :N. ∀dn :N.

P bn b dn → P an a (fs bn bn) → P an a (fs cn dn)
f : A an ′ → B bn ′ → S (n, v) : A. P n v (fs an ′ bn ′)
a : A an xs : ListS B xsn
fold P fs Prefl Ptrans f a xs : (S (n, v) : A.

P n v (foldSize fs an xs)))

fold P fs Prefl Ptrans f a nilS �→ size a (Prefl a)
fold P fs Prefl Ptrans f a (consS x xs)

�→ let (size val1 p1) = fold P fs Prefl Ptrans f a xs in
let (size val2 p2) = f val1 a in
size val2 (Ptrans p1 p2)

On applying fold, we are required to provide appropriate proof terms to instantiate
Prefl and Ptrans . This is to be expected — it is only when we apply a higher order
function that we know enough about its usage to expose concrete proof obligations.

4.5 Sum Types

An important class of function involves construction and case analysis on sum types.
One example is the Either type, which represents a choice between two values in two
separate types:

data Either a b = Left a | Right b

The either function implements a generic elimination of Either, and applies the
appropriate function depending on which constructor was used to build the instance of
Either a b:
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either :: (a->c) -> (b->c) -> Either a b -> c
either f g (Left l) = f l
either f g (Right r) = g r

Again, there is a problem in representing this in a sized type system; there are two
functions, f and g, only one of which will be applied depending on the value of the
Either instance. To represent this with sized types we have to be conservative and
assume a worst case, that the function which gives the larger size will be applied.

We can overcome this problem in our framework. To represent Either we take the
size to be the size of the value which is stored:

data A,B : N → �
EitherS A B : N → �

where a : A an
LeftS a : EitherS A B an

b : B bn
RightS b : EitherS A B bn

As with fold, we create a type level function eitherS which computes the size of
the result of either given its input. We choose to use the same predicate for l , r and
either, and define either as follows:

let

P : ∀n :N. C n → N → �
ls : N → N l : A an → S (n, v) : C . P n v (ls an)
rs : N → N r : B bn → S (n, v) : C . P n v (rs bn)
x : EitherS A B xn

either P ls l rs r x : S (n, v) : C . P n v (eitherS ls rs x )
either p ls l rs r (LeftS a) �→ l a
either p ls l rs r (RightS b) �→ r b

It is possible that we could use different predicates for l and r if eitherS also computed
an appropriate predicate for the return type. It simplifies the definition to require the
same predicates, however, and if at the call site we want to use specific l and r with
different predicates, it is possible to combine the predicates — if l ’s result satisfies
predicate P and r ’s result satisfies predicate Q , then each satisfies predicate P ∨ Q .

4.6 Summary

We have found that it is straightforward to translate a first order function into the TT
framework by hand, simply by identifying an output size and the relationship it has with
the input size. In the examples we have looked at, the required equational constraints
can be satisfied using COQ’s omega tactic.

Higher order functions present more difficulty, as we can not tell anything specific
about size from the HOF itself. The examples we have given present a variety of such
functions and show how we can overcome this difficulty. The approach we take for
higher order functions is to associate the following with each function argument:

– A size function which computes the size of the result given the function’s input. We
can create this for any function by following the syntax tree of the source language
function.
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– A size predicate which specifies the property that the result size (i.e. the result of
the size function) must satisfy. We assume that these are provided along with the
source function, having been either specified by the user, or given by an external
inference system.

– A number of predicate transformers which specify the properties the predicate
must satisfy; we can generate these mechanically by observing the properties which
need to be proved to complete the definition.

4.7 Towards an Automated Transformation

Having shown how to represent these functions in the framework, we need to consider
how to automate the translation from the source language into TT; it is important to
note that although the definitions of higher order functions look very complex in the
TT framework, the programmer will never need to see these definitions.

We believe that the homogeneous framework we have chosen for TT programs will
make automated construction straightforward. In most cases, all that is required is the
traversal of the structure of the source program, managing Size structures and iden-
tifying proof obligations where necessary. In many cases even proof construction is
automatable with the omega tactic (or even by simpler proof search methods). In more
difficult cases, we envisage a theorem proving interface allowing the user to give hints.

To facilitate the construction of TT terms, we are building a theorem proving library3

and equipping it with appropriate tactics. In particular, we have implemented tactics for
management of the Size structure and identifying the required predicate transformers
for higher order functions. Our system keeps track of remaining proof obligations, al-
lowing these to be solved by the user or (in future) by an automated proof search tool
such as the Omega calculator. The biggest difficulty we envisage is the presentation
of useful diagnostics to the user when the automated tools are unable to solve a proof
obligation, whether because the tools are not powerful enough, or because the theorem
is unprovable.

5 Related Work

Other than our own work [24], we are aware of three main studies of formally bounded
time and space behaviour in a functional setting [5,14,26]. All such approaches are
based on restricted language constructs to ensure that bounds can be placed on time/
space usage, and require considerable programmer expertise to exploit effectively. In
their proposal for Embedded ML, Hughes and Pareto [14] have combined the earlier
sized type system [15] with the notion of region types [25] to give bounded space and
termination for a first-order strict functional language [14]. This language is however
restricted in a number of ways: most notably in not supporting higher-order functions,
and in requiring the programmer to specify detailed memory usage through type speci-
fications. The practicality of such a system is correspondingly reduced.

There is active research into programming with dependent types — [1] describes the
rationale and gives an example of programming in EPIGRAM; [21] gives an example of

3 Available from http://www.dcs.st-and.ac.uk/∼eb/TT/
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generic programming with dependent types. Augustsson and Carlsson have used depen-
dent types to verify type correctness properties of an interpreter [3]. Xi and Pfenning
have also exploited size properties of dependent types in DML for optimising array
lookup [29], using dependent types to guarantee the bounds of an array. However, the
form of dependent types permitted by DML is limited to a specific constraint domain
(e.g. integers, for representing size, with their usual operations) so it is not possible to
compute sizes in the type, as in our framework.

Crary and Weirich [7] have developed a dependent type system that provides an ex-
plicit upper bound on the number of steps needed to complete a computation. Space is
conservatively bounded by the same bound as time. The language does support higher-
order functions, although unlike our system their language of cost functions is lim-
ited to using a fixed set of operators. Grobauer’s work [10] also applies dependent
types, extracting time bounds for DML programs, although this is limited to first-order
functions.

Hofmann and Jost have shown in [12] how to obtain bounds on heap space consump-
tion of first-order functional programs based on linear types. They are extending these
methods to deal with polymorphic and higher order functions, as described in Jost’s
forthcoming PhD thesis. Vasconcelos also describes methods which extend the basic
sized type inference in his forthcoming PhD thesis, using a method based on abstract
interpretation. Unlike our framework, these methods have the limitation that they do
not allow bounds to depend on input data (as for example we have done with either,
and may like to do in any case where we know an argument statically). However, these
techniques complement our own work — our framework is intended to check externally
specified size bounds. Furthermore our framework builds on these systems in that the
bounds can be programmer specified as well as inferred, allowing resource bounded
programs we would not otherwise be able to write (e.g. either, or higher order func-
tions which do not admit a linear bound).

6 Conclusions

We have presented a flexible framework for describing and verifying size metrics for
functional programs. By using a dependently typed core language, TT, we are able to
make explicit the properties which a program must satisfy in the type and hence showing
that a program satisfies those properties is simply a matter of typechecking. We have
implemented these examples in the COQ theorem prover; by using COQ’s omega tactic
to construct proofs of the equational constraints required by the Size type automatically,
we can see that in principle it should be possible to mechanise the construction of TT
code from the source programs.

Within this framework, we have the flexibility to use any appropriate size metric,
and to extend the language of constraints in order to be able to express more complex
bounds, such as those which arise in higher order functions. The size bounds of a higher
order function will often depend on its function arguments, and so having a rich lan-
guage at the type level allows us to express size in terms of this. Although there are
some difficulties here, as demonstrated in particular by the fold example, these can be
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overcome within the framework; the definitions of fold and either show how we can
use type level computation to give a precise cost for higher order functions.

This paper documents the first stage of the design and implementation of a resource-
safe intermediate language for multi-stage Hume programs — we have implemented
several examples by hand within the framework. By doing so, and in particular by in-
vestigating more complex higher order functions such as fold and their applications, we
hope to be able to derive a method for mechanically constructing TT terms from source
language programs. If we wish to use TT as a core language for Hume programs, such
a translation method is essential. Nonetheless, we believe that through implementing
higher order functions by hand within the framework, we have identified the key fea-
tures which will need to be considered by an automatic translation — specifically, the
separation of a size function and predicate, and the generation of a size function for
each source language function.
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Abstract. Starting with an evaluator for a language, an abstract ma-
chine for the same language can be mechanically derived using successive
program transformations. This has relevance to studying both the time
and space properties of programs because these can be estimated by
counting transitions of the abstract machine and measuring the size of
the additional data structures needed, such as environments and stacks.
In this paper we will use this process to derive a function that accurately
counts the number of steps required to evaluate expressions in a simple
language, and illustrate this function with a range of examples.

1 Introduction

The problem of reasoning about intensional properties of functional programs,
such as the time requirements, is a long-running one. It is complicated by diffe-
rent evaluation strategies and sharing of expressions, meaning that some parts
of a program may not be run or only partially so. One of the issues involved in
reasoning about the amount of time a program will take to complete is what to
count as an atomic unit in evaluation, or an evaluation step.

An evaluator is usually an implementation of the denotational semantics [13]
of a language — it evaluates an expression based on the meaning of its sub-
expressions. This level of understanding helps us reason about extensional pro-
perties of the language, but it doesn’t say anything about the underlying way
that the evaluation is taking place. By contrast, an operational semantics [10]
shows us the method that is being used to evaluate an expression, and the
conventional approach is to use this to measure the number of steps that are
required. This, however, may not be very accurate because what is usually being
measured is β-reductions, each of which may take arbitrarily long. An example
of this approach is using the tick monad [15], which counts β-reductions.

It is proposed that a more realistic measure would be to count transitions
in an actual machine. The idea is to get more detailed information than by
just counting β-reductions, but still have a principled way of obtaining this
information. This would not be as accurate as actual time measurements, but
would provide a useful half-way house between these two approaches. What is
needed is a justification that the machine correctly implements the evaluation
semantics and a way to reflect the number of steps required by the machine back
to the semantic level.
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Recently Danvy et al have explored the basis of abstract machines, and the
process of deriving them from evaluators [1, 2, 3, 5]. This process uses, in par-
ticular, two program transformation techniques: transformation to continuation
passing style, to make order of evaluation explicit; and defunctionalization, to
eliminate the consequent use of higher-order functions.

In this paper, we will apply this process to the problem of accurately counting
evaluation steps. In brief, this consists of introducing a simple language in which
to write expressions, an evaluator for this language, and then deriving a cor-
responding abstract machine using successive program transformations. Simple
step counting is then added to the machine, by threading and incrementing a
counter that measures the number of transitions.

The next stage is to apply the same process but in the reverse order, resulting
in an evaluator that additionally counts the number of steps, directly correspon-
ding to the number of transitions of the underlying abstract machine. Finally, a
direct step counting function will be calculated from this evaluator and will be
used to reason about evaluation of some example computations expressed in the
language.

A particular aspect of our derivation process is that the program at each stage
is calculated directly from a specification of its behaviour [8]. All the programs
are written in Haskell [9], but no specific features of this language are used, so
they may be easily adapted to other functional languages.

2 A Simple Language

To start with we will consider a simple language with expressions consisting of
integers and addition, and with integers as values:

data Expr = Add Expr Expr | Val Int
type Value = Int

Although this language is not powerful enough to be used to analyse the time
requirements of any interesting computations, it will be sufficient to show the
derivation process without over-complication. An extended language will be pre-
sented later to look at some example functions.

2.1 Evaluator

The initial evaluator takes an expression and evaluates it to a value:

eval :: Expr → Value
eval (Val v) = v
eval (Add x y) = eval x + eval y

That is, evaluating an integer value returns that integer, and evaluating an ad-
dition evaluates both sides of the addition to an integer and then adds them
together. The order of evaluation is not specified at this level but will be de-
termined by the semantics of the underlying language; in particular, when the
expression is an addition, Add x y, the evaluation of the x or y may occur first.
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2.2 Tail-Recursive Evaluator

Our aim is to turn the evaluator into an abstract machine, a term-rewriting
system that makes explicit the step-by-step process by which evaluation can be
performed. More precisely, we seek to construct an abstract machine implemen-
ted in Haskell as a first-order, tail-recursive function.

The evaluator is already first order, but it is not tail-recursive. It can be made
so by transforming it to continuation passing style (CPS) [11]. A continuation is
a function that represents the rest of a computation; this makes the evaluation
order of the arguments explicit, so intermediate results need to be ordered using
the continuation. A program can be transformed in to CPS by redefining it to
take an extra argument, a function which is applied to the result of the original
one. In our case, the continuation function will take an argument of type Value
and its result is a Value:

type Con = Value → Value

The new tail-recursive evaluator can be calculated from the old one by using the
specification:

evalTail :: Expr → Con → Value
evalTail e c = c (eval e)

That is, the new evaluator has the same behaviour as simply applying the con-
tinuation to the result of the original evaluator. The definition of this function
can be calculated by performing induction on the structure of the expression, e.

Case : e = Val v

evalTail (Val v) c
= { specification }

c (eval v)
= { definition of eval }

c v

Case : e = Add x y

evalTail (Add x y) c
= { specification }

c (eval (Add x y))
= { definition of eval }

c (eval x + eval y)
= { reverse β-reduction, abstract over eval x }

(λm → c (m + eval y)) (eval x )
= { inductive assumption for x }

evalTail x (λm → c (m + eval y))
= { reverse β-reduction, abstract over eval y }

evalTail x (λm → (λn → c (m + n)) (eval y))
= { inductive assumption for y }

evalTail x (λm → evalTail y (λn → c (m + n)))
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In conclusion, we have calculated the following recursive definition:

evalTail :: Expr → Con → Value
evalTail (Val v) c = c v
evalTail (Add x y) c = evalTail x (λm →

evalTail y (λn → c (m + n)))

In the case when the expression is an integer the continuation is simply applied
to the integer value. In the addition case, the first argument to the addition is
evaluated first, with the result being passed in to a continuation. The second
expression argument is then evaluated inside the continuation, with its result
being passed in to an inner continuation. Both integer results are added together
in the body of this function and the original continuation is applied to the result.

The evaluator is now tail recursive, in that the right hand side is a direct
recursive call and there is nothing to be done after the call returns. In making
the evaluator tail-recursive we have introduced an explicit evaluation order: the
evaluation of the addition now has to occur in left-to-right order.

The semantics of the original evaluation function can be recovered by substi-
tuting in the identity function for the continuation:

eval e = evalTail e (λv → v)

2.3 Abstract Machine

The next step is to make the evaluator first order. This is done by defunctiona-
lizing the continuations [11]. At the moment, the continuations are functions of
the type Value → Value, but the whole function space is not required: the conti-
nuation functions are only created in three different ways. Defunctionalization is
performed by looking at all places where functions are made and replacing them
with a new data structure that takes as arguments any free variables required.

The data structure required is as follows,

data Cont = Top for the initial continuation (λv → v)
| AddL Cont Expr for (λm → evalTail y (...))
| AddR Value Cont for (λn → c (m + n))

The reason for the constructor names is that the data structure is the structure
of evaluation contexts for the language [6]. It could alternatively be viewed as a
stack, pushing expressions still to be evaluated and values to be saved.

To recover the functionality of the continuation we define an apply function
which has the same semantics for each instance of the continuation function:

apply :: Cont → Con
apply Top = λv → v
apply (AddR m c) = λn → apply c (m + n)
apply (AddL c y) = λm → evalTail y (apply (AddL c m))

We now seek to construct a new evaluator, evalMach , that behaves in the same
way as evalTail , except that it uses representations of continuations, rather than
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real continuations; that is, we require evalMach e c = evalTail e (apply c). From
this specification, the definition of evalMach can be calculated by induction on e:

Case : e = Val v

evalMach (Val v) c
= { specification }

evalTail (Val v) (apply c)
= { definition of evalTail }

apply c v

Case : e = Add x y

evalMach (Add x y) c
= { specification }

evalTail (Add x y) (apply c)
= { definition of evalTail }

evalTail x (λm → evalTail y (λn → apply c (m + n)))
= { definition of apply }

evalTail x (λm → evalTail y (apply (AddR m c)))
= { definition of apply }

evalTail x (apply (AddL c y))
= { inductive assumption, for x }

evalMach x (AddL c y)

We have now calculated the following recursive function:

evalMach :: Expr → Cont → Value
evalMach (Val v) c = apply c v
evalMach (Add x y) c = evalMach x (AddL c y)

Evaluating an integer calls the apply function with the current context and the
integer value. Evaluating an addition evaluates the first argument and stores the
second with the current context using the AddL constructor.

Moving the λ-abstracted terms to the left and applying the specification in
the AddL case, gives the following revised definition for apply :

apply :: Cont → Value → Value
apply Top v = v
apply (AddR m c) n = apply c (m + n)
apply (AddL c y) m = evalMach y (AddR m c)

The apply function takes a context and a value and returns the value if the
context is Top. When the context is AddR this represents the case when both
sides of the addition have been evaluated, so the results are added together
and the current context is applied to the result. The AddL context represents
evaluating the second argument to the addition, so the evalMach function is
called and the result from the first argument and the current context saved
using the AddR context.
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The original semantics can be recovered by passing in the equivalent of the
initial continuation, the Top constructor:

eval e = evalMach e Top

2.4 Step Counting Machine

The number of time steps required to evaluate an expression is to be measured
by counting the number of transitions of the abstract machine. The abstract ma-
chine derived can be simply modified by adding a step count that is incremented
each time a transition, a function call to evalMach or apply , is made. The step
count is added as an accumulator, rather than just incrementing the count that
the recursive call returns, so that it is still an abstract machine.

It is relevant here to note that this is just one possible derivation to produce
an abstract machine. Different abstract machines may be generated by applying
different program transformations, as demonstrated in [5].

type Step = Int
stepMach :: (Expr ,Step) → Cont → (Value,Step)
stepMach (Val v , s) c = apply ′ c (v , s + 1)
stepMach (Add x y, s) c = stepMach (x , s + 1) (AddL c y)
apply ′ :: Cont → (Value,Step) → (Value,Step)
apply ′ Top (v , s) = (v , s + 1)
apply ′ (AddL c y) (m, s) = stepMach (y, s + 1) (AddR m c)
apply ′ (AddR m c) (n, s) = apply ′ c (m + n, s + 1)

In this case we are only counting the machine transitions and the actual
addition of the integers is defined to happen instantly, though this could be
extended by introducing an additional factor that represents the number of steps
to perform an addition.

The evaluation function now returns a pair, where the first part is the eva-
luated value, and the second is the number of steps taken, which is initialised
to zero. Therefore, the semantics of the original evaluator can be recovered by
taking the first part of the pair returned:

eval e = fst (stepMach e 0 Top)

2.5 Step Counting Tail-Recursive Evaluator

The aim now is to derive a function that counts the number of steps required to
evaluate an expression. The specification for this is the second part of the pair
returned by the abstract machine:

steps e = snd (stepMach (e, 0) Top)

The first stage in the reverse process is to refunctionalize the representation of the
continuation. The original continuation was a function of type Value → Value,
so the type of the new one will be (Value,Step) → (Value,Step).

type Con ′ = (Value,Step) → (Value,Step)
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Again, this can be calculated by induction on e, from the following specification:

stepTail (e, s) (apply ′ c′) = evalMach (e, s) c′

The refunctionalized version is:

stepTail :: (Expr ,Step) → Con ′ → (Value,Step)
stepTail (Val v) s c = c (v , s + 1)
stepTail (Add x y) s c = stepTail x (s + 1) (λ(m, s ′) →

stepTail y (s ′ + 1) (λ(n, s ′′) → c (m + n, s ′′ + 1)))

The step counting semantics can be redefined as:

steps e = snd (stepTail (e, 0) ((v , s) → (v , s + 1)))

Now, the same program transformations are performed in the reverse order to
derive an evaluator that counts steps at the evaluator level, corresponding to the
number of transitions of the abstract machine.

2.6 Step Counting Evaluator with Accumulator

The step counting evaluator can be transformed from CPS back to direct style
by calculation, using the following specification to remove the continuation:

c (stepAcc (e, s)) = stepTail (e, s) c

The resulting evaluator is:

stepAcc :: (Expr ,Step) → (Value,Step)
stepAcc (Val v) s = (v , s + 1)
stepAcc (Add x y) s = let (m, s ′) = stepAcc (x , s + 1)

(n, s ′′) = stepAcc (y, s ′ + 1)
in (m + n, s ′′ + 1)

The new step counting function becomes:

steps e = snd (stepAcc (e, 0)) + 1

2.7 Step Counting Evaluator

At the moment the step counting evaluator treats the step count as an accumu-
lator. This can be removed, by calculating a new function without one, using
the specification:

stepEval e = let (v , s ′) = stepAcc (e, s)
in (v , s ′ − s)

Again, this can be calculated by induction over the structure of the expression,
to give the new step counting evaluator:

stepEval :: Expr → (Value,Step)
stepEval (Val v) = (v , 1)
stepEval (Add x y) = let (m, s) = stepEval x

(n, s ′) = stepEval y
in (m + n, s + s ′ + 3)
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The semantics of the steps function can be expressed as:

steps e = snd (stepEval e) + 1

2.8 Step Counting Function

The final stage is to calculate a standalone steps function. This will take an
expression and return the number of steps to evaluate the expression, calling
the original evaluator when the result of evaluation is required. The resulting
function can be produced by routine calculation:

steps e = steps ′ e + 1
steps ′ (Val v) = 1
steps ′ (Add x y) = steps ′ x + steps ′ y + 3

The derived steps function shows that that evaluation of an expression is an
auxiliary function steps ′ plus a constant one. This increment operation at the
end comes from the transition in the abstract machine that evaluates the initial
(Top) context. In steps ′, the number of steps to evaluate an integer is a constant
one, and the number of steps to evaluate an addition is the number of steps to
evaluate each argument plus a constant three. This is more accurate because we
now see the overhead of each addition: if we were counting β-reductions then
this would only have been a single step of evaluation.

3 Extending the Language

We’ve now shown the derivation process for a small test language, but this lan-
guage is not powerful enough to express computations that have interesting time
behaviour. We now extend it with the untyped λ-calculus (variables, abstraction
and application), lists and recursion over lists in the form of fold-right.

These could have been expressed directly in λ-calculus, for example by using
Church encoding instead of integers, but this would introduce an unrealistic
overhead in evaluation. Moreover, a more general recursion operator could have
been introduced instead of fold-right, but for simplicity one tailored to our data
structure, lists, is sufficient. Using fold-right will also simplify the process of
reasoning about time properties, just as it has proved useful for reasoning about
extensional ones [7].

The language is implemented as the following Haskell data type:

data Expr = Var String | Abs String Expr | App Expr Expr
| Add Expr Expr | Val Value
| Cons Expr Expr | Foldr Expr Expr Expr

data Value = Const Int | ConsV Value Value | Nil | Clo String Expr Env

That is, an expression is either a variable, abstraction, application of two ex-
pressions, addition of two expressions, fold-right over an expression (where the
function and empty list-case arguments are both expressions), a list containing
further expressions or a value. In turn, a value is either an integer, list containing
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further values or a closure (an abstraction paired with an environment containing
bindings for all free variables in the abstraction).

The data type differentiates between expressions and values, in particular lists
that contain unevaluated and evaluated expressions, so that there is no need to
iterate repeatedly over the list to check if each element is fully evaluated, which
would introduce an artificial evaluation overhead.

The primitive functions, such as Add and Foldr , are implemented as fully
saturated, in that they take their arguments all at once. The main reason for this
is to make it easier to define what a value is: if they were introduced as constants
then, for example, App Add 1 would be a value, since it cannot be further
evaluated. This doesn’t affect what can be expressed in the language; partial
application can be expressed by using abstractions, so an equivalent expression
would be Abs "x" (Add 1 (Var "x")), which would be evaluated to a closure.

Note that, for simplicity, the language has not been provided with a type
system. Rather, in this article we assume that only well-formed expressions are
considered.

4 Evaluator

For simplicity, we will consider evaluation using the call-by-value strategy, where
arguments to functions are evaluated before the function is applied. Evaluation
is performed using an environment, that is used to look up what a variable is
bound to. This avoids having to substitute in expressions for variables, which is
complicated by the need to deal with avoiding name-capture. Under call-by-value
evaluation arguments are evaluated before function application, so variables will
be bound to a value. The environment is represented as a list of pairs:

type Env = [(String,Value)]

The initial evaluator is given below:

eval :: Expr → Env → Value
eval (Val v) env = v
eval (Var x ) env = fromJust (lookup x env)
eval (Abs x e) env = Clo x e env
eval (App f e) env = let Clo x e ′ env ′ = eval f env

v = eval e env
in eval e ′ ((x , v) : env ′)

eval (Add x y) env = let Const m = eval x env
Const n = eval y env

in Const (m + n)
eval (Cons x xs) env = ConsV (eval x env) (eval xs env)
eval (Foldr f v xs) env = case eval xs env of

Nil → eval v env
ConsV z zs → let f ′ = eval f env

x = eval (Foldr (Val f ′) v (Val zs)) env
in eval (App (App (Val f ′) (Val z )) (Val x )) [ ]
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That is, values are already evaluated, so they are simply returned. Variables are
evaluated by returning the value the variable is bound to in the environment.
Under the call-by-value strategy, evaluation is not performed under λ-terms, so
abstractions are turned in to values by pairing them with the current environ-
ment to make a closure. An application, App f e, is evaluated by first evaluating
f to an abstraction, then evaluating the body of the abstraction, with the envi-
ronment extended with the variable bound to the value that e evaluates to.

Addition is performed by first evaluating both sides to an integer and then
adding them together. This will give another integer result and so does not
require further evaluation. Evaluating a Cons consists of evaluating the first
and second arguments (the head and the tail of the list) and then re-assembling
them using the ConsV constructor to make an evaluated list.

Evaluation of the Foldr case proceeds by first evaluating the list argument
and doing case analysis. If the list is Nil then the result is the evaluation of
the second argument, v . In the non-empty case, first the function argument
is evaluated, then the fold-right applied to the tail of the list, and finally the
function is applied to the head of the list and the result of folding the tail of
the list. This evaluation is performed with an empty environment, since all the
expressions are values at that point.

The evaluation of the fold-right could have been specified in different ways.
The completely call-by-value way would be to evaluate the arguments in left to
right order, so that the first two arguments are evaluated before the list argu-
ment. However, for the Nil list argument case, the function argument to Foldr
is evaluated even though it is not required. The approach in the evaluator is to
evaluate the list argument first to allow pattern matching and then evaluate the
other arguments depending on what the list evaluated to. So when the list eva-
luates to Nil only the second argument to Foldr is evaluated. The justification
not to use the purely call-by-value way is that it would introduce some artificial
behaviour of the Foldr function. When the λ-calculus is extended with a con-
ditional function, for example, it is not implemented to expand both branches
under call-by-value evaluation, but more efficiently by evaluating the condition
first and then one branch depending on the value of the condition. In prac-
tice, this has little effect because the function supplied to the fold is often an
abstraction and therefore is already evaluated.

5 Complete Function

Performing the derivation process for this extended language (which, as pre-
viously, proceeds by calculation) yields the following steps function:

steps e = steps ′ e [ ] + 1
steps ′ (Val v) env = 1
steps ′ (Var x ) env = 1
steps ′ (Abs x e) env = 1
steps ′ (App f e) env = let (Clo x e′ env ′) = eval f env

v = eval e env
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in steps ′ f env + steps ′ e env +
steps ′ e ′ ((x , v) : env ′) + 3

steps ′ (Add x y) env = steps ′ x env + steps ′ y env + 3
steps ′ (Cons x xs) env = steps ′ x env + steps ′ xs env + 3
steps ′ (Foldr f v xs) env = steps ′ xs env + case eval xs env of

Nil → steps ′ v env + 2
ConsV y ys → let f ′ = Val (eval f env)

x = Val (eval (Foldr (Val f ′) v (Val ys)) env)
in steps ′ f env+ steps ′ (Foldr (Val f ′) v (Val ys)) env +

steps ′ (App (App f ′ (Val y)) x ) [ ] + 4

As mentioned earlier, the derived function has calls to the original evaluator,
where the result of evaluation is required. For example, in the Foldr case, a case
analysis has to be performed on the evaluated third argument, to know if it is
empty or not, and so whether to supply the v argument, or to keep folding.

We want to be able to reason about how the time requirements of some exam-
ple functions depends on the size of the arguments to the function. In the case
of functions defined using fold-right, it would be easier to reason about the time
usage if it was expressed as a function over the size of the list, rather than as a
recursive function — the steps function above the Foldr case makes a recursive
call to fold the tail of the list. This can naturally be expressed as a fold-right
over the value list data structure, defined as:

foldrVal :: (Value → b → b) → b → Value → b
foldrVal f v Nil = v
foldrVal f v (ConsV x xs) = f x (foldrVal f v xs)

Also, if the number of steps to apply the function f to two arguments does
not depend on the value of the arguments, such as adding two expressions, then
a useful further simplification is to express this as a function over the length of
the list argument supplied, defined as:

lengthVal = foldrVal (λ n → n + 1) 0

6 Example Functions

We can now use the derived steps function to look at some examples. Each step
counting function produced was simplified by hand and then QuickCheck [4]
was used to verify that the result produced was equal to the original function,
to check that no errors had been introduced during simplification.

6.1 Summing a List

Summing a list of integers can be expressed using fold-right:

sum [ ] = 0
sum (x : xs) = x + sum xs ⇔ sum xs = foldr (+) 0 xs
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The fold-right definition replaces each list constructor (:) with +, and the [ ] at
the end of the list with 0, the unit of addition. First we translate the definition of
sum into the language syntax and then call the steps function on the application
of sum to an argument. The number of steps required to evaluate applying the
sum function to a list of integers, xs, is given below:

steps (App sum (Val xs)) = 21 ∗ (lengthVal xs) + 10

The function can be expressed as a length because the steps required to evaluate
the addition of two values is a constant. The step count is a constant multiplied
by the length of the list argument plus a constant amount; it is directly propor-
tional to the length of the list argument. Though, of more interest is that we
can see the constant factors involved in the evaluation.

6.2 Sum with an Accumulator

An alternative definition of sum is to use an accumulator; the fold-right is used
to generate a function which is applied to the identity function in the empty list
case, and in the non-empty case adds the head of the list to the accumulator.

sumAcc [ ] a = a
sumAcc (x : xs) a = sumAcc xs (a + x ) ⇔ sumAcc xs = foldr f id xs 0

where f x g a = g (a + x )

Using an accumulator could potentially save on space, because additions could
be performed without having to expand the whole list first. It would be useful
to know what effect an accumulator has on the number of steps taken.

Translating the accumulator version and applying steps gives a result of the
same form, linear on the length of the list, but the constant values are larger,
because there is an additional overhead in evaluating the extra abstractions:

steps (App sumAcc (Val xs)) = 26 ∗ (lengthVal xs) + 15

6.3 Concatenation

Concatenating a list of lists can be defined by folding the append function over
the list, and append can also be expressed as a fold-right:

concat xs = foldr append [ ] xs
append xs ys = foldr (:) ys xs

First we need to analyse the append function. The number of steps to evaluate
append applied to two list arguments is as follows:

steps (App (App append (Val xs)) (Val ys)) = 21 ∗ (lengthVal xs) + 15

So the number of steps to evaluate an append is proportional to the length of the
first list argument. The step count of the concat function can now be calculated
using this function. With the step count from the append function inlined, the
resulting steps function is:

steps (App concat (Val xss)) = foldrVal f 10 xss
where f ys s = 21 ∗ (lengthVal ys) + 20 + s
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The number of steps required in evaluation is the sum of the steps taken to apply
the append function to each element in the list. If the argument to concat is a
list where all the list elements are of the same length (so the number of steps
taken in applying the append function will always be constant), then this can
be simplified to:

steps (App concat (Val xss)) = 20 + case xss of
Nil → 0
ConsV ys yss → (lengthVal xss) ∗ (21 ∗ (lengthVal ys))

The number of steps is now proportional to the length of the input list multiplied
by the number of steps to evaluate appending an element of the list, which is
proportional to the length of that element.

6.4 Reversing a List

Reversing a list can be expressed directly as a fold-right by appending the re-
versed tail of the list to the head element made in to a singleton list:

reverse [ ] = [ ]
reverse (x : xs) = reverse xs ++ [x ] ⇔ reverse xs = foldr f [ ] xs

where f x xs = xs ++ [x ]

Translating the definition of reverse in to the language syntax and applying the
steps function gives the step count function: The steps function for reverse is

steps (App reverse (Val xs)) = fst (foldrVal g (10,Nil) xs)
where g z (s, zs) = (s + 21 ∗ (lengthVal zs) + 34,

eval (App (App append (Val zs)) (Val (ConsV z Nil))) [ ])

dependent on the steps required to perform the append function for each element,
which is proportional to length of the first argument to append . The size of this
argument is increased by one each time, so the function is a sum up to the length
of the list:

10 +
length xs−1∑

x=0

21x + 34

Expanding this sum gives the following expression:

10 + 34 ∗ (length xs) +
21 ∗ (length xs − 1) ∗ (length xs)

2
� c (length xs)2

This is less than a constant multiplied by the square of the length of the list, for
example when c = 11 for all lists of length greater than 47. This means that the
time requirements are quadratic on the length of the list [14].

6.5 Fast Reverse

The reverse function can also be expressed using an accumulator:

fastrev [ ] a = a
fastrev (x : xs) a = fastrev xs (x : a) ⇔ fastrev xs = foldr f id xs 0

where f x g a = g (x : a)
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This definition should have better time properties because, as shown above, the
steps required in evaluating the append function is proportional to the length
of the first argument, so appending the tail of the list would be inefficient. The
steps function produced for the accumulator version is directly proportional to
the length of the list:

steps (App fastrev (Val xs)) = 26 ∗ (lengthVal xs) + 15

7 Conclusion and Further Work

We have presented a process that takes an evaluator for a language, and derives a
function that gives an accurate count of the number of steps required to evaluate
expressions using an abstract machine for the language. Moreover, all the steps
in the derivation process are purely calculational, in that the required function
at each stage is calculated directly from a specification of its desired behaviour.

Using an extended λ-calculus under call-by-value evaluation, the examples
in the previous section give the expected complexity results, but also show the
constants involved. This is useful to know because of the additional overheads
that functions of the same complexity may have, for example in summing a list
with and without an accumulator. They also show the boundaries at which one
function with a lower growth rate but larger constants becomes quicker than
another, for example in the two different definitions of the reverse function.

Ultimately, the most accurate information is to do real timing of programs.
The approach taken in the profiler [12] that is distributed with the Glasgow
Haskell Compiler, is similar to that here, in that abstract machines are used to
bridge the gap between a big-step cost semantics and a small-step implemen-
tation. A regular clock interrupt is used to collect time information and assign
to the costs of functions. However, this is a profiler, and we want to be able to
express costs as a function over the arguments supplied, and not just in terms
of hard time measurements. The thesis of this paper is that we can obtain this
useful information relatively easily.

This work could be extended by considering more complicated evaluation
strategies, such as call-by-name or lazy evaluation. It would also be interesting
to apply the same technique to look at the space requirements for functions, by
measuring the size of the additional data structures produced at the abstract
machine level. Finally, a useful addition to this work would be to develop a
calculus to automate deriving the step functions.
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Abstract. The iData Toolkit is a toolkit that allows programmers to
create interactive, type-safe, dynamic web applications with state on a
high level of abstraction. The key element of this toolkit is the iData ele-
ment. An iData element is a form that is generated automatically from a
type definition and that can be plugged in in the web page of a web ap-
plication. In this paper we show how this automatic generation of forms
has been implemented. The technique relies essentially on generic pro-
gramming. It has resulted in a concise and flexible implementation. The
kernel of the implementation can be reused for any graphical package.
The iData Toolkit is an excellent demonstration of the expressive power
of modern generic (poly-typical) programming techniques.

1 Introduction

In this paper we present the implementation of the iData Toolkit, which is a novel
toolkit to program forms in dynamic server-side web applications. The low level
view, and standard definition, of a form is that of a collection of (primitive)
interactive elements, such as text input fields, check boxes, radio buttons, pull
down menus, that provide the application user with a means to exchange struc-
tured information with the web application. Seen from this point of view, and if
programmed that way, creating forms results in a lot of low level HTML coding.
A high level view of forms is to think of them as being editors of structured val-
ues of appropriate type. From the type, the low level realization can be derived
automatically. This can be done once by the toolkit developer. Seen from that
point of view, and if programmed that way, creating forms is all about creating
data types. This results in a lot less code plumbing and no HTML-coding at all.

In the iData Toolkit project, we have adopted the high level view of forms
described above. We call these high level forms iData. An iData has two major
components: (i) a state, or value, which type is determined by the programmer,
and (ii) a form, or rendering, which is derived automatically by the toolkit from
the state and its type. The programmer manipulates the iData in terms of the
state and its type, whereas the user manipulates the iData in terms of a low-
level form. Clearly, the iData Toolkit needs to mediate between these two worlds:
every possible type domain must be mapped to forms, and every user action on
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these forms must be mapped back to the original type domain, with a possibly
different value. This is the challenge that is addressed in this paper.

An approach as sketched above can be implemented in any programming lan-
guage with good support for data types and type-driven programming. Mod-
ern functional programming languages such as Clean [22,2] and Haskell [19]
come with highly expressive type systems. One example of type-driven program-
ming is generic programming [12,13,1], which has been incorporated in Clean and
GenericH∀skell [16]. In this paper we use Clean. We assume the reader is familiar
with functional and generic programming.

Generic programming has proven productive in the iData Toolkit by providing
us with concise and flexible solutions for many of the chores of web programming.
In this paper we focus on its crucial contribution to solving the main challenge in
the context of the iData Toolkit: the automatic creation of forms from arbitrary
data types, and the automatic creation of the correct data type and value from
a user-manipulated form. The key idea is that each iData is fully responsible for
keeping track of its rendering, its state recovery, and correctly handling user-
edit operations. They, and only they, can do this because they have all type
information that is necessary for these operations.

It should be observed that although we give a few examples, this paper is
about the implementation of the iData Toolkit. Due to limitations of space, we
cannot explain the programming method. This is presented elsewhere [20,21].
We have used the iData Toolkit to create realistic real world applications, such
as a web shop. These demonstrate that this technique can be used in practice.

This paper is structured as follows. We first introduce the concept and im-
plementation challenges of iData (Sect. 2). Then we present the concrete imple-
mentation of iData (Sect. 3). After this, we discuss the achieved results (Sect.
4). We present related work (Sect. 5) and conclude (Sect. 6).

2 The Concept of iData

In this section we explain the main concepts of the iData Toolkit by means
of a few key toy examples (Sect. 2.2–2.6). They illustrate the implementation
challenges that need to be solved. These are summarized in Sect. 2.7. Please
notice that although the code of these examples has a static flavor, each of these
examples are complete interactive web applications. We first present the major
design decisions in Sect. 2.1.

2.1 Major Design Decisions

The key idea of an iData Toolkit program is that it is a function that computes
an HTML page that contains a set of interconnected iData elements. An iData
element is a self contained interactive element that is in charge of its state. The
state can be any programmer defined data type. The iData Toolkit is constructed
in such a way that the state of an iData element is always a valid instance of
the type. Type constraints on the input are not always sufficient: individual
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iData elements can impose additional constraints on the values of their state
that can not be expressed with types, or they are interconnected and need to
modify their state as a consequence of the modification of another iData change.
For this reason, every complete1 user manipulation of an iData element requires
a response of that element and the iData elements that are connected with it.
Currently, this has been implemented by enforcing a round trip between browser
and server.

The code of an iData Toolkit application is a single function that is evalu-
ated every time a client web browser requires a web page from this application.
Initially, no previous states are available to the application, and the iData el-
ements are activated with their initial values. During subsequent requests, the
web browser provides the states of all iData elements and detailed information
about which iData element has been modified by the user. The implementation of
the toolkit uses this information to recover previous unaltered states, and create
a valid altered new state. This is hidden completely from the programmer. He
can reason about the program as a collection of interconnected iData elements,
one of which has a modified state value.

Generic programming has been crucial to implement the core functionality
of the iData Toolkit: rendering state in terms of low-level forms, recovering pre-
vious states, and incorporating arbitrary user modifications in states. Generic
programming has also been used for tasks that could have been done with more
traditional means: (de-)serialization of states, and printing HTML. A key advan-
tage of generic programming is that one has a default application for free for
any type. If this generic solution is not appropriate, the programmer (or toolkit
developer) can use specialization to replace the default solution with a more
suitable solution. Specialization can be done for individual iData elements, but
also for complete types. With specialization, the iData Toolkit can be extended
with elements that have more logic at the client side, for instance for specialized
text input parsers.

The number and types of iData elements in an HTML page that is generated
by an iData Toolkit application depends on the values of the states of its iData
elements. During evaluation of the application, these iData elements are activated
and need to recover their previous, or altered, state from this collection of states.
This requires an identification mechanism that is able to associate typed iData
elements with serialized states. Exceptional cases are the absence of such a state
(initial occurrence of an iData element), or that the serialized state is of incorrect
type (page originated from a different application). The problem is reminiscent
of manipulating typed content that comes from files. Currently, this has been
implemented pragmatically: iData elements are identified with text labels. The
state of an iData element can be recovered successfully if it is present in the set
of previous states and can be converted successfully to a value of its type. In
every other case, the iData element obtains the initialization value with which
it is associated in the program code. This makes the approach robust. We are

1 In a text box this is the completion of the input, either by changing the input focus
or - for single line edit boxes - pressing the enter key.
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well aware that this is a deficient solution, particularly considering the strongly
typed discipline that we advocate with the iData Toolkit.

The code below shows the standard overhead of every iData Toolkit program:

module IFL2005Examples
import StdEnv , StdHtml 1.

Start :: *World → *World 2.

Start world = doHtml example world 3.

The proper library modules need to be imported (line 1). Lines 2–3 declare
the main function of every Clean program. The uniqueness attribute * just in
front of World guarantees that values of this type are always used in a sin-
gle threaded manner. Clean uses uniqueness typing [5,6] to allow destructive
updates and side-effects. The opaque type World represents the entire exter-
nal environment of the program. The iData program is given by the function
example :: *HSt → (Html ,*HSt). The wrapper function doHtml turns this func-
tion into a common Clean program. It initializes the HSt value with all serialized
values that can be found in the HTML page, and includes the World as well. This
implies that every iData Toolkit application has full access to the external world,
and can, for instance, connect to databases and so on. Below, we only show the
example functions, and skip the standard overhead.

2.2 iData Have Form

The first example demonstrates the fact that iData elements are type driven. It
creates a simple Int editor (Fig. 1(a)).

example :: *HSt → (Html ,*HSt) 1.

example hst 2.


 (nrF ,hst) = mkEdit (nIDataId "nr") 1 hst 3.

= mkHtml "Int editor" [ H1 [ ] "Int editor" , BodyTag nrF.form ] hst 4.

Fig. 1. Key toy examples: (a) a simple integer iData, (b) summing the value of iData,
(c) sharing iData, and (d) model-view separation of iData
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Passing multiple environments around explicitly is supported syntactically in
Clean by means of 
-definitions. These are non-recursive let -definitions, which
scope extends to the bottom, but not the right-hand side. This is the standard
approach in Clean. Even though the examples in this paper do not exploit the
flexibility of multiple environment passing (by for instance connnecting to a
database system), we present them in this style.

Key features of the iData Toolkit that are illustrated in this small example
are the activation of an iData element, nrF, from an initial value and its type,
1::Int. It is identified throughout the program with the value (nDataId "nr") ::
IDataId. This is done with the function mkEdit (line 3). This iData element has a
rendering in terms of a form, nrF.form (r.f denotes the selection of field f from
record r). The rendering is a text edit box in which only integer denotations can
be entered. In general, a user can only enter input that is type-safe.

The definition of the web page, given by the function mkHtml :: String [BodyTag ]
*HSt → (Html ,*HSt), is cleanly separated from the definition of the iData ele-
ments. The [BodyTag ] argument represents the page content. The algebraic type
BodyTag is discussed in more detail in Sect. 3.5. In these examples, we use its
data constructor H1 which represents the <h1></h1> HTML tag, and its data
constructor BodyTag which turns a list of BodyTags into a single BodyTag.

2.3 iData Have Value

In this example we show that iData not only have a form rendering, but also a
value in terms of the type that generated them.

example hst 1.


 (nrFs ,hst) = seqList [mkEdit (sumId nr) nr \\ nr ← [1..5 ] ] hst 2.

= mkHtml "Numbers" [ H1 [ ] "Numbers" , sumtable nrFs ] hst 3.

sumtable nrFs = STable [ ] ( [nrF.form \\ nrF ← nrFs ] 4.

++ 5.

[ [ toHtml (sum [nrF.value \\ nrF ← nrFs ] ) ] ] ) 6.

sumId i = nDataId ("sum"<$i) 7.

Fig. 1(b) shows the result of the above code. Five iData elements are activated:
nrFs :: [IData Int ] (line 2). The function sumtable (lines 4-6) places their forms
in a column, underneath of which the sum of their values is displayed. Whenever
the user alters one of the iData elements, the new sum is calculated and displayed
at the bottom of the iData elements. The reason that this statically looking
program has interactive behaviour, is that the behaviour is delegated to each of
the iData elements that are activated. This is why we prefer to speak of activation
of iData.

The value of an iData is given by the .value field of that iData. The library
function toHtml uses the generic form rendering function to render values of
arbitrary type into HTML. The overloaded operator <$ appends a String version
of its second argument to its first argument.
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2.4 iData Have Sharing

iData elements with the same identification value refer to the same iData element.
A first advantage of this scheme is that iData serve as storages of arbitrary types.
Hence, we do not need to introduce a separate concept for storing data. A second
advantage is that both the value and rendering of iData can be used arbitrarily
many times in a HTML page without causing ambiguity problems. We illustrate
the latter by replicating the column of integer iData and their sum in the example
below (see Fig. 1(c)):

example hst

 (nrFs ,hst) = seqList [mkEdit (sumId nr) nr \\ nr ← [1..5 ] ] hst
= mkHtml "Numbers"

[ H1 [ ] "Numbers" , STable [ ] [ [ sumtable nrFs ] , [sumtable nrFs ] ] ] hst

Editing any of the iData elements also automatically affects the other iData in
the same row. The sum is displayed twice, at the bottom of both columns.

2.5 iData Have Model-View Separation

In this example we demonstrate that the type of an iData can be uncoupled
from its rendering. The rendering can be derived instead from a different data
type, provided that the programmer defines the mapping between these two
data types. In this way, the type of the iData serves as its model, whereas the
rendered data type serves as its view. In Sect. 3.1, we explain the mapping
and its implementation in detail. Here, we assume the existence of a function,
counterIData, that has an Int model type, but a (Counter Int) view type, where
Counter is defined as a synonym type :: Counter a :== (a ,Button ,Button).

counterIData :: IDataId Int *HSt → (IData Int ,*HSt)

If we replace mkEdit in example 2.3, line 2, with counterIData then we obtain a
program that displays five counters instead of five integer editors (see Fig. 1(d)).
The counters are self contained. The counter iData ensures that its integer value
is incremented/decremented at every corresponding button press. Still, it has an
integer interface to the programmer, so the remainder of the program does not
change. Self contained iData are fully compositional.

2.6 iData Have Specialization

In this example we show that iData can be specialized, just as generic functions
can. Suppose we like the counters in Sect. 2.5 much better than the default
integer editors that were used in Sect. 2.2 and 2.3. We need to specialize the
generic HTML rendering function gForm for the Int type. This is done by:

gForm{|Int|} iDataId i hst = specialize asCounter iDataId i hst 1.

where asCounter :: IDataId Int *HSt → (IData Int ,*HSt) 2.

asCounter iDataId i hst 3.


 (counterF ,hst) = counterIData iDataId i hst 4.
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= ( { changed = counterF.changed 5.

, value = fst3 counterF.value 6.

, form = counterF.form } , hst ) 7.

fst3 (x ,_ ,_) = x // Clean standard library function

Function asCounter (lines 2-7) defines the specialization using counterIData (this
function is also defined via the specialization mechanism). Also, asCounter is a
good example of showing the flexibility of iData programming.

The library function

specialize :: (IDataId a *HSt → (IData a ,*HSt))
IDataId a *HSt → (IData a ,*HSt) | gUpd{|�|} a

is able to ‘plug in’ the specialization function into any arbitrary other iData
structure. Given this specialization of Int values, in any place where an iData
of an Integer value is needed, a counter iData will be made. In such a setting,
the programs 2.2, 2.3, and 2.4 now display self contained counters that behave
as expected instead of plain integer editors, without any change in the code of
these examples.

2.7 Implementation Challenges

The examples given in this section show that an implementation of the iData
Toolkit has to be able to perform the following tasks in a strongly typed program-
ming language context: (i) map values of arbitrary types to forms, (ii) map edit
operations in forms to new values of the given types, (iii) handle iData elements
as elements with shared value and shared rendering, (iv) handle model-view
separation correctly, and (v) handle specialization correctly. The key idea to
solve these challenges is by delegating this functionality to each iData element.
The implementation is discussed in the next section.

3 The Implementation of iData

In this section we present the implementation of iData. This is based on a single,
pivotal function, mkIData which applies a number of generic functions to handle
the challenges (i) upto (v) that were mentioned in Sect. 2.7. Because of its com-
plexity, we split up its discussion. In Sect. 3.1 we focus on mkIData, its arguments
and results, and the way that it incorporates the model-view separation (iv).
In Sect. 3.2 we explain the architecture of the HSt environment, in which all
iData values are stored (iii). In Sect. 3.3 we discuss all rendering issues of iData.
Rendering must be done in such a way that forms are generated from types (i),
and that user edit operations are correctly mapped back to values of the source
type (ii). In Sect. 3.4 we show how specialization (v) uses the framework to nest
arbitrarily many iData elements inside each other. Finally, we briefly touch on
the issue of emitting proper HTML code in the toolkit in Sect. 3.5.
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3.1 The Pivotal mkIData Function

The iData Toolkit revolves around a single concept, that of an iData. The toolkit
has exactly one function to create iData, mkIData with type signature:

mkIData :: IDataId m (IBimap m v) *HSt → (IData m ,*HSt)
| gForm{|�|} , gUpd{|�|} , gPrint{|�|} , gParse{|�|} v

This function is applied to four arguments.
The first argument is of type IDataId. Values of this type unambiguously

identify an iData element. The programmer (carefully) chooses String identifiers,
which is a typical way of identifying forms in web applications. It is the task of
the programmer to use unambiguous names in such a way that every use of
(mkIData id) refers to the same iData element of some type m. IDataId values
are created with one of the functions {n,s,p}[d]IDataId :: String→IDataId. The
programmer also controls the life span and edit mode of iData elements with
IDataId values.

:: IDataId = { id::String , lifespan::LifeSpan , mode::Mode }
:: LifeSpan = Page | Session | Persistent
:: Mode = Edit | Display

The life span of an iData element is determined by {n,s,p}: its value is remem-
bered as long as its page is being viewed (n), is stored persistently during a
session (s), or independently of sessions (p). By default, values can be edited in
the browser. If they should be displayed only, then any of the {n,s,p}dIDataId
functions can be used.

The second argument of mkIData is the initial value of the iData element. It
is used only when no iData element with given IDataId exists. This happens for
instance when the page is viewed for the first time.

The third argument of mkIData defines the model-view abstraction that has
been presented in example 2.5. This allows the application to work with iData
that have state values of type m, but that are visualized by means of values of
type v. This is a variant of the well-known model(-controller)-view paradigm
[15]. What is special about it in this context, is that views are also defined by
means of a data type, and hence can be handled generically in exactly the same
way! This is clearly expressed in the type signature of mkIData, which states that
the generic machinery must be available for the view model v.

The relation between a model m and its view v is given by the following
collection of functions of type IBimap m v:

:: IBimap m v = { toView :: m → Maybe v → v
, updView :: Bool → v → v
, fromView :: Bool → v → m
, resetView :: Maybe (v → v) }

Model values are transformed to views with toView. It can use the previous view
value if available. The self contained behavior of an iData element is given by
updView. Its first argument records if it has been changed by the user. The same
argument is passed to the function fromView which transforms view values back
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to model values. Finally, resetView is an optional separate normalization after
the local behavior function updView has been applied.

The function nextModelView computes a new model-view pair with these func-
tions in the following way:

nextModelView :: (IBimap m v) m (Maybe v) Bool → (m ,v)
nextModelView ibm init_m maybe_v changed


 v = ibm.toView init_m maybe_v

 v = ibm.updView changed v

 m = ibm.fromView changed v

 v = case ibm.resetView of Nothing = v

Just reset = reset v
= (m ,v)

This explains how the self contained counters in example 2.5 can be constructed.
They use the updView function to correctly set their integer value.

The fourth, and final, argument of mkIData is the HSt environment that is used
to store all iData values in. This environment is discussed thoroughly in Sect.
3.2. Here, we assume that we have the following access functions available on
HSt environment values:

findIDataValue:: IDataId *HSt → (Bool ,Maybe a ,*HSt) |gParse{|�|} , gUpd{|�|} a
replaceState :: IDataId a *HSt → *HSt |gPrint{|�|} a
resetCount :: *HSt → *HSt

The function findIDataValue locates the stored state of the identified iData el-
ement. The boolean result indicates whether this value has been edited by the
application user. It uses the generic functions gParse and gUpd for deserializa-
tion purposes and updating values that may have been altered by the user. New
iData values are stored in the HSt environment with the function replaceState.
Because these values are serialized, they require the generic function gPrint. Fi-
nally, resetCount makes sure that the internal counting mechanism of the HSt

environment is reset to zero. The reason for this is also explained in Sect. 3.2.
When applied to the arguments described above, mkIData activates the indi-

cated iData element. As a result, it returns a modified HSt environment, and an
(IData m) record value. This record holds the form rendering of the iData ele-
ment, its value, as has been discussed in examples 2.2 and 2.3, and the boolean
that states iff the iData element has been altered.

:: IData m = { form:: [BodyTag ] , value::m , changed::Bool }
We can now explain what mkIData does with model values of type m and view

values of type v. We walk through its implementation:

mkIData :: IDataId m (IBimap m v) *HSt → (IData m ,*HSt)
| gForm{|�|} , gUpd{|�|} , gPrint{|�|} , gParse{|�|} v

mkIData iDataId init_m ibm hst = nextIData (findIDataValue iDataId hst) 1.

where nextIData (changed ,maybe_v ,hst)

 (m ,v) = nextModelView ibm init_m maybe_v changed 2.


 (iData_v ,hst) = gForm{|�|} iDataId v (resetCount hst) 3.

| iData_v.changed && not changed 4.
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= nextIData (True ,Just iData_v.value ,hst) 5.

| otherwise

 hst = replaceState iDataId iData_v.value hst 6.


 iData_m = {changed=changed ,value=m ,form=iData_v.form} 7.

= (iData_m ,resetCount hSt)

First the possibly modified value of the given iData element is retrieved (line 1),
using the HSt access function findIDataValue that was introduced above. This is
a view value, and hence has type v. From this value, new model and view values
need to be computed (line 2). Next, the view value is rendered (line 3), using
the generic rendering function gForm (Sect. 3.3). As we have seen in example 2.6,
gForm can be specialized. With specialization, the programmer nests iData inside
each other. It may be the case that one of these nested iData has been altered
by the user. Due to recursion, its altered value shows up at this level. If this
occurs (condition on line 4 holds), then mkIData should proceed with the altered
value (line 5). In the end, the value of the resulting view iData is stored in the
HSt environment (line 6). The final iData has as value the new model value that
was computed by nextModelView, but as rendering the view rendering (line 7).

The function mkIData is a powerful tool to create model-view abstractions
with. Frequently occurring patterns of this function have been captured with
wrapper functions. Consider the mkEdit function that we have used in examples
2.2 and 2.3. It can be used as a ‘store’ in Display mode, or as a straight editor
in Edit mode.

mkEdit :: IDataId m *HSt → (IData m ,*HSt)
| gForm{|�|} , gUpd{|�|} , gPrint{|�|} , gParse{|�|} m

mkEdit iDataId=:{mode} m hst
= mkIData iDataId m

{ toView = λnew old → case old of (Just v) → v ; _ → new
, updView = case mode of Edit → λ_ v → v ; Display → λ_ _ → m
, fromView = λ_ v → v
, resetView = Nothing } hst

3.2 The Implementation of HSt

The HSt environment keeps track of the serialized states of active iData elements
in an iData Toolkit application. These states are either stored locally in the HTML
page of the web application (in case of {n,s}[d]IDataId values) or reside on disk
on the server side (in case of p[d]IDataId values). In addition, it holds a global
counter to generate position values in the generic representation of state values.

:: *HSt = { cntr::InputId , states::*IDataStates , world::*World }
:: InputId :== Int

IDataStates stores the serialized states of iData elements, together with their
IDataId value, and if they have been changed by the user. IDataStates is basically
an association list with a look-up function lookupState and update function
replaceState (replaceState was also encountered in Sect. 3.1).
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lookupState :: IDataId *HSt → (Bool ,Maybe a ,*HSt) | gParse{|�|} a
replaceState :: IDataId a *HSt → *HSt | gPrint{|�|} a

These require the World environment in case of persistent forms. The generic
functions gParse and gPrint are used for (de)serialization purposes.

In addition to the serialized states of iData, the *HSt environment also keeps
track of the user modifications by storing what has been changed into which new
value. This information can be retrieved by the function

getUserEdit :: *HSt → ((Maybe a ,Maybe b) ,*HSt) | gParse{|�|} a & gParse{|�|} b

The type of getUserEdit reveals that we are dealing with serialized values. The
first result is what has been changed, and the second result is its new value. For
the identification purpose an identification triplet is used. Its first element is the
identification string of the iData element. For convenience, it can be retrieved
separately as well with

getIDataName :: *HSt → (String ,*HSt)

The second element of the triplet is the value that has been changed. Generically
speaking, this can only be a basic value (alternatives UpdI upto UpdS) or a data
constructor (the name of which is stored in the UpdC alternative).

:: UpdValue = UpdI Int | UpdR Real | UpdB Bool | UpdS String | UpdC String

Of course, also the new value can be encoded in this way. The third element is
the position of the generic element in the generic representation. Because the
generic representation is a tree structure, this position can be obtained with a
straightforward numbering scheme. This information is sufficient to determine
for any iData element whether it has been changed, and, if so, which generic com-
ponent has been changed into what new value. This case analysis is performed
by decodeInput:

:: FormUpdate :== (InputId ,UpdValue)

decodeInput :: IDataId *HSt → (Maybe FormUpdate , (Bool ,Maybe a ,*HSt))
| gParse{|�|} a

decodeInput iDataId hst

 (name ,hst) = getIDataName hst
| name == iDataId.id

= case getUserEdit hst of
((Just (sid ,pos ,UpdI i) ,newi) ,hst) // case distinction on Int

= let ni = case newi of (Just ni) → ni ; _ → i
in (Just (pos ,UpdI ni) ,lookupState {iDataId & id=sid} hst)

(_ ,hst) = . . . // case distinction on other basic types
| otherwise

= (Nothing , lookupState iDataId hst)

This function checks whether the iData element that is identified by IDataId has
been edited. If so, its exact location in the generic representation is returned (of
type FormUpdate), as well as its current value (the result of using lookupState).
It should be noted that lookupState may fail to parse the input (e.g. the user
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entered 42.0 instead of 42 for an integer form). In that case, parsing fails, and
the previous (correct) value is restored. This makes the system type safe.

In the previous section the pivotal function mkIData used the function

findIDataValue:: IDataId *HSt → (Bool ,Maybe m ,*HSt) | gParse{|�|} , gUpd{|�|} m

that was able to retrieve the possibly modified value of an iData identified by
the IDataId argument. Before we can explain its definition, we need to delve
into the generic function gUpd that is able to repair any value of type a to a
new modified value of the same type a. It must be a generic function because
it needs to traverse the generic data representation of the old value in order to
locate the generic element that has been changed. This location is passed to the
application in the identification value.

generic gUpd a :: UpdMode a → (UpdMode ,a)

:: UpdMode = UpdSearch UpdValue InputId | UpdCreate [ConsPos ] | UpdDone

The UpdMode type represents the two passes gUpd goes through: (UpdSearch newv

cnt) represents the search for the generic element at location cnt with new value
newv, and (UpdCreate path) represents the creation of new values for a selected
data constructor that can be found at path (:: ConsPos = ConsLeft | ConsRight).

We illustrate the working of gUpd for basic types with the case for integers
(the other cases for basic types are analogous):

gUpd{|Int|} (UpdSearch (UpdI new) 0) _ = (UpdDone ,new) 1.

gUpd{|Int|} (UpdSearch val cnt) i = (UpdSearch val (cnt-1) ,i) 2.

gUpd{|Int|} (UpdCreate l) _ = (UpdCreate l ,0) 3.

gUpd{|Int|} mode i = (mode ,i) 4.

An existing value is replaced with new somewhere in a generic value at position
cnt if cnt = 0, otherwise it is not changed and the position is decreased (lines 1
and 2). The default value for new integers is 0 (line 3).

The remaining code of gUpd proceeds polytypically except for OBJECTs. The
generic constructor OBJECT marks the occurrence of a type constructor. It has
access to all data constructors of that type. In this case its new value is deter-
mined by the name of the selected data constructor (cname). At that point, gUpd
switches from searching mode into creation mode, in order to create arguments
of the data constructor. The route to the desired data constructor is returned
by getConsPath :: GenericConsDescriptor → [ConsPos ] .

gUpd{|OBJECT of desc|} gUpd_obj (UpdSearch (UpdC cname) 0) (OBJECT obj)

 (mode ,obj) = gUpd_obj (UpdCreate path) obj
= (UpdDone ,OBJECT obj)

where path = getConsPath (hd [cons \\ cons ← desc.gtd_conses
| cons.gcd_name == cname ]

We now have gathered all the building blocks to explain the behavior of
findIDataValue. As we have stated in the introduction, the key idea to the iData
Toolkit is to delegate state handling to every individual iData element. Every
manipulation in a web page that changes the current value of a form triggers
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the execution of the Clean application on the server side. The application, and
hence every iData element, has to figure out why it has been launched. There can
be only three reasons: 1. The iData has no previous state. This is the case for
instance for all iData when a page is created for the first time. The iData should
be initialized. 2. The iData has a previous state, but it was not edited. This is
the case when another iData has been edited. The iData should recover its pre-
vious state. 3. The iData was edited. The application user has altered the iData.
The iData should calculate its new state, given the update information and the
recovered previous state. This case analysis is performed by findIDataValue (the
numbers to the right coincide with the above cases):

findIDataValue :: IDataId *HSt → (Bool ,Maybe m ,*HSt) | gUpd{|�|} , gParse{|�|} m
findIDataValue iDataId hst

= case decodeInput iDataId hst of
(Just (cnt ,newv) ,(changed ,Just m ,hst)) 3.


 m = i f changed (snd (gUpd{|�|} (UpdSearch newv cnt) m)) m
= (True , Just m , hst)

(_ , (_ ,Just m ,hst)) 2.

= (False , Just m , hst)
(_ , (_ ,_ ,hst)) 1.

= (False , Nothing ,hst)

It uses decodeInput to deserialize the input data that has been passed to the
web application and look for the iData element with the given identification. The
reason of activating the iData element can then be determined straightforwardly.

3.3 Rendering iData

The final part of the implementation of the iData Toolkit is the rendering of
iData elements into forms in such a way that forms are generated for any type,
and that user manipulations can be traced back to a modified value of the same
type. The key idea to realize this relationship is by associating the identification
triplet (Sect. 3.2) with each element along the generic representation, and make
it send the new value in case of a user action. The generic function gForm creates
this form rendering of an iData element with a model value of type m:

generic gForm m :: IDataId m *HSt → (IData m ,*HSt)

The basic types are handled in the same way, using the function mkInput and the
union type Value:

gForm{|Int|} iDataId i hst

 (form ,hst) = mkInput iDataId (IV i) (UpdI i) hst
= ({changed=False ,value=i ,form=[form ]} ,hst)

:: Value = IV Int | RV Real | BV Bool | SV String | NQV String

The code of mkInput is given below. As mentioned earlier, we have used a types-
as-grammar approach to specify HTML. Readers that are familiar with HTML,
may be able to deduce the HTML output that is printed systematically from
these algebraic data types (Sect. 3.5). We discuss the interesting parts.
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mkInput :: IDataId Value UpdValue *HSt → (BodyTag ,*HSt)
mkInput iDataId val updval hst=:{cntr} 1.

= ( Input [ Inp_Type Inp_Text , Inp_Value val , Inp_Size defsize 2.

: case mode of 3.

Edit = [ Inp_Name identification_triplet 4.

, ‘Inp_Std [EditBoxStyle ] 5.

, ‘Inp_Events [OnChange callClean ] ] 6.

Display = [ Inp_ReadOnly ReadOnly 7.

, ‘Inp_Std [DisplayBoxStyle ] ] ] "" 8.

, {hst & cntr=cntr+1} ) 9.

where identification_triplet = encodeInfo (iDataId.id ,cntr ,updval) 10.

Basic forms in Display mode are read-only, and show this to the user (lines 7-8).
When Edited, the web application on the server side needs to resurrected, and
provided with the proper information. A script is called that sends all serialized
states, the identification triplet (line 4 and 10), and the new value of the edited
element back to the server, causing the application to be started with the new
data (Sect. 3.2).

For the generic constructors (UNIT, PAIR, EITHER, OBJECT, and CONS) gForm pro-
ceeds polytypically. UNIT values are displayed as EmptyBody. (PAIR a b) values are
placed below each other. (EITHER a b) values proceed recursively and display ei-
ther their left or right value. (OBJECT o) values proceed recursively. The form
that corresponds with (CONS c) values requires more HTML programming be-
cause it deals with the selection of data constructors. It generates a pull down
menu which entries correspond with all data constructors. In Edit mode, the
user can select one of these data constructors. Changes are handled in the same
way as with basic types, except that the selected constructor name is passed as
argument. All in all, gForm’s implementation requires 150 loc.

Finally, gForm has been specialized for several standard form elements. We do
not discuss their implementation. They are similar to the above Int instance.

3.4 Handling Specialization

In example 2.6, we have shown that programmers can specialize the iData Toolkit
in the same way as generic functions using the function specialize.

specialize :: (IDataId a *HSt → (IData a ,*HSt))
IDataId a *HSt → (IData a ,*HSt) | gUpd{|�|} a

specialize f iDataId v hst=:{cntr}

 newIDataId = {iDataId & id = iDataId.id<@"_"<@cntr} 1.


 (vF ,hst) = f newIDataId v (resetCount hst) 2.


 (UpdSearch _ c) = fst (gUpd{|�|} (UpdSearch (UpdI 0) -1) v) 3.

= (vF ,setCount (cntr - (c+1)) hst) 4.

It is the task of this function to embed the iData result of its argument function
inside the generic representation of an arbitrary data structure. What it does is
to create a new iData element that has a new IDataId identification value (line
1), and in which position counting starts afresh at zero (line 2). The proper
new count can be derived by creatively using the functionality of gUpd: having
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it search for an integer value at position -1 always fails, but it does return the
size of the generic representation of the newly created iData (line 3). This size c

is used to calculate the next legal position value (line 4).

3.5 Handling HTML

We have used a types-as-grammar approach to capture the official HTML gram-
mar with a family of algebraic data types. We have encountered them in the
above sections. The algebraic type BodyTag represents the collection of HTML
tags from anchors (A) to variables (Var), and includes a few data constructors
that allow flexible HTML generation:

:: BodyTag = A [A_Attr ] [BodyTag ] | . . . | Var [Std_Attr ] String
| STable [Table_Attr ] [ [ BodyTag ] ] | BodyTag [BodyTag ] | EmptyBody

One generic function, gHpr, has been written that generates proper HTML code
from values of these types. Generic programming is not strictly necessary for
this purpose. It does provide us with a concise generic function that can display
any HTML code. Its core definition is only 27 loc. Printing of 73 types can be
derived. Specialization is required for a few types, which adds 170 loc.

4 Discussion

In the previous section we have presented the implementation of the iData
Toolkit. The implementation relies essentially on generic programming: the func-
tions gForm and gUpd are able to manipulate values of arbitrary types in a type-
safe way. The generic descriptions of these functions are small: 150 loc for gForm,
and 80 loc for gUpd. We can provide specializations of these functions without
changing the core definition. This greatly enhances their flexibility.

For serialization and deserialization we have used folklore generic printing
and parsing functions that come with the standard generic Clean distribution.
These generic functions are not essential for the iData Toolkit. Currently we are
investigating whether we can use Clean dynamics for this purpose. They have as
advantage that they can handle higher-order data types as well. However, their
use and implementation is very delicate when compared with the robustness of
their string based generic counterparts. The types-as-grammar approach of han-
dling HTML is also very suited for generic programming. Again, it is not essential,
but it has proven to provide us with concise code that is easily maintainable.

Finally, the architecture of the iData Toolkit allows us to target any arbitrary
GUI library without much code modification. This is due to the fact that only
state information and the change information, both in serialized form, is required
by an iData Toolkit application in order to resurrect its next state and rendering.

5 Related Work

iData components are form abstractions. A pioneer project to experiment with
form-based services is Mawl [4]. The <bigwig> project [8] uses Powerforms [7].
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Both projects provide templates which, roughly speaking, are HTML pages with
holes in which scalar data as well as lists can be plugged in (Mawl), but also other
templates (<bigwig>). Powerforms reside on the client-side of a web application.
The type system is used to filter out illegal user input. They advocate compile-
time systems, just as we do, because this allows one to use type systems and
other static analysis. The main differences are that in our approach all first
order user types are admissible in iData, that iData are automatically derived
from these types, and that we can use the expressiveness of the host language
to obtain higher-order forms/pages.

Continuations are a natural means to structure interactive web applications.
This has been done by Hughes [14], using his Arrow framework; Queinnec [23],
who takes the position that continuations are at the essence of web browsers;
Graunke et al [10], who have explored continuations as (one of three) functional
compilation technique(s) to transform sequential interactive programs to CGI
programs. Our approach is simpler because for every page we have a complete
(set of) model value(s) that can be stored and retrieved generically in a page.
An application is resurrected by recovering its previous state, merging the user
modification, if any, and computing the proper next state that is re-rendered.

Many authors have worked on creating and manipulating HTML (XML) pages
in a strongly typed setting. Early work is by Wallace and Runciman [26] on XML
transformers in Haskell. The Haskell CGI library by Meijer [17] frees the program-
mer from dealing with CGI printing and parsing. Hanus uses similar types [11]
in Curry. Thiemann constructs typed encodings of HTML in extended Haskell
in an increasing level of precision for valid documents [24,25]. XML transform-
ing programs with GenericH∀skell has been investigated in UUXML [3]. Elsman
and Larsen [9] have worked on typed representations of XML in ML [18]. Our
types-as-grammar approach eliminates all syntactically incorrect programs, but
we have not put effort in eradicating all semantically incorrect programs. Our
research interest is in the automatic creation of forms from type specifications,
and less in the definition of the HTML pages in which they reside.

6 Conclusions

This paper focusses on the implementation of the iData Toolkit. We have not
been able to show how realistic, interconnected, real world applications are con-
structed with the toolkit. We have made a number of large applications, one of
which is a web shop that uses many interconnected iData elements in a dynamic
way, using server side data storage. Even these kind of applications can be made
in the same declarative style as shown by the key toy examples in this paper.

Creating the iData Toolkit is truly a challenge because it boils down to im-
plementing a multi-purpose unit, the iData, that automatically takes care of
initialization, state recovery and update, abstraction, and rendering. Generic
programming brings down the complexity significantly. It also provides us with
an open-ended implementation: without modifications to the core implementa-
tion, program developers can specialize the toolkit to their own preferences and
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needs per application. Although the iData Toolkit was designed for web applica-
tions, its architecture can be targeted at any graphical user interface platform
without significant changes. This is a major improvement to our previous work
on desktop applications. The implementation is concise, elegant, and efficient.
In all, the results of this project show that the iData Toolkit is an excellent case
study in the appropriateness of generic programming.
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Abstract. Composable memory transactions are a new communication
abstraction for Concurrent Haskell which provides the programmer with
a composable communication concept. Unfortunately, composable mem-
ory transactions are implemented as external functions for ghc version
6.4 and not available for other implementations of Concurrent Haskell.
We present an implementation of memory transactions within Concur-
rent Haskell. The presented library can be executed within older ghc
versions as well as with the popular Hugs system. Benchmarks show
that our library performes well. Furthermore, our (high-level) implemen-
tation can be extended and maintained more easily than the low-level
implementation provided by ghc 6.4.

1 Introduction

Harris, Marlow, Peyton Jones and Herlihy proposed a new communication ab-
straction for Concurrent Haskell [12,11], called software transactional memory
(STM) [8]. The approach is based on the transaction concept known from data-
bases and allows programmers to specify transaction sequences which are exe-
cuted atomically. In comparison to lock-based approaches, this concept provides:

– freedom from deadlock and priority inversion
– automatic roll-back on exceptions or timeouts
– freedom from the tension between lock granularity and concurrency

The approach is efficiently implemented as external C primitives in the newest
release (6.4) of the Glasgow Haskell Compiler (ghc) [6]. The implementation
relies on the fair implementation of Concurrent Haskell within ghc and is not
portable to other implementations of Concurrent Haskell, as in Hugs [10].

We present an implementation of STMs within Concurrent Haskell which
is executable on every platform providing Concurrent Haskell, including Hugs
(which also implements Concurrent Haskell within Haskell [2]). Although our
(final) implementation is slower than the external implementation provided in
ghc, it will be sufficiently fast in many applications (which usually do not perform
transactions all the time as our benchmark programs do) and appears to be a
good platform for experiments with possible extensions of STMs. A high-level
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implementation has also the opportunity of being more maintainable. Finally,
our completely different implementation could also inspire the developers of the
external implementation for more elegant or even more efficient code.

The paper is organized as follows: Section 2 introduces STMs and Section 3
defines our basic STM monad definition. Our first implementation is defined in
Section 4 which is then redefined to our second approach in Section 5. More
implementation details are presented in Section 6, before we discuss benchmarks
in Section 7 and conclude in Section 8.

2 Software Transactional Memory

Transactions provided by ghc 6.4 and described in [8] provide a monad STM as an
abstract data type for transactions. The execution of a transaction is guaranteed
to be “atomic” with respect to other concurrently executed threads. STMs pro-
vide optimistic synchronization, which means transactions are interleaved with
other transactions. A transaction is committed only if no other transaction has
modified the memory its execution depended on. Otherwise, the transaction is
restarted.

For communication inside the STM monad it provides transactional variables,
in terms of the abstract data type TVar. The interface is defined as follows:

data STM a -- abstract
instance Monad STM

-- Exceptions
throw :: Exception -> STM a
catchSTM :: STM a -> (Exception->STM a) -> STM a

-- Running STM computations
atomically :: STM a -> IO a
retry :: STM a
orElse :: STM a -> STM a -> STM a

-- Transactional variables
data TVar a -- abstract
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

Transactions are started within the IO monad by means of atomically1. When a
transaction is finished, it is validated that the transaction was executed on a con-
sistent system state, i.e. no other finished transaction may have modified relevant
parts of the system state in the meantime. In this case, the modifications of the
transaction are committed. Otherwise, they are discarded and the transaction is
re-executed. Accordingly, inconsistent program states i.e. shared resources that
are blocked by concurrent tasks can be detected by programmers and aborted
1 In [8] this function was called atomic.
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manually by calling retry. The provided implementation of retry avoids busy
waiting and suspends the thread performing retry until a re-execution again
makes sense. On top of retry, as a kind of alternative composition, it is possi-
ble to combine transaction as: stm1 `orElse` stm2. If stm1 performs a retry
action, then this is caught and stm2 is executed. If stm1 succeeds, then stm2 is
not executed at all.

Data modifiable by transactions is stored in TVars which can only be manipu-
lated within the STM monad. Beside modifications of TVars, no other side effects
like input/output are allowed within the STM monad which makes it possible to
re-execute transactions.

Finally, the STM monad provides exception handling, similar to the exception
handling ghc provides for the IO monad. For details see [8].

As a simple example, we present an implementation of the well-known din-
ing philosophers using STMs. The sticks are represented by boolean TVars. True
means the stick is laying on the table, i.e. it is available.

import STM
type Stick = TVar ()

takeStick :: Stick -> STM ()
takeStick s = do b <- readTVar s

if b then writeTVar s False
else retry

putStick :: Stick -> STM ()
putStick s = writeTVar s True

phil :: Int -> Stick -> Stick -> IO ()
phil n l r = do atomically $ do takeStick l

takeStick r
putStrLn (show n++". Phil is eating.")
atomically $ do putStick l

putStick r
phil n l r

startPhils :: Int -> IO ()
startPhils n = do sync <- newEmptyMVar

ioSticks <- atomically $ do
sticks <- mapM (const (newTVar True)) [1..n]
return sticks

mapM_ (\(l,r,i)->forkIO (phil eatings sync i l r))
(zip3 ioSticks (tail ioSticks) [1..n-1])

phil n (last ioSticks) (head ioSticks)

When trying to take a non-available stick, takeStick performs retry. The
philosopher suspends until its neighbor puts the stick back onto the table. In
the definition of putStick we do not perform a similar check since the behavior
of each philosopher thread guarantees that the stick is not laying on the table
(the TVar contains False) when performing putStick. However, this would be
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possible, too, and we used such a version for benchmarking as well. By combining
the two actions for taking the sticks as one atomic STM transaction, the program
is deadlock free. Putting the sticks back on the table in one atomic action is not
necessary, but is shorter than writing atomically twice.

The code for starting n philosophers is just presented for completeness and
not discussed any further.

3 Implementing STMs in Concurrent Haskell

We present two different implementations of STMs within Concurrent Haskell.
Both can be used in any Concurrent Haskell implementation, like older ghc
versions and Hugs. In comparison to the STM implementation available in ghc
6.4, our implementations have a (worst-case) slow down between 3 to 40.

In both approaches we define the STM monad as an extension of the IO monad
with a state used for collecting information about the execution of a transaction.
The STM monad is defined similarly to other IO monad extensions, e.g. the GUI
monad defined in TclHaskell [4] or other libraries for graphical user interfaces:

data STM a = STM (STMState -> IO (STMResult a))

instance Monad STM where
(STM tr1) >>= k = STM (\state -> do

stmRes <- tr1 state
case stmRes of

Success newState a ->
let (STM tr2) = k a in

tr2 newState
Retry newState -> return (Retry newState)
Invalid -> return Invalid

)
return x = STM (\state -> return (Success state x))

data STMResult a = Retry STMState
| Invalid
| Success STMState a

The data type STMResult covers the relevant results of an STM action. The type
STMState is the state carried through the STM monad. Its concrete realization
will be discussed further in each implementation.

4 Collecting Modifications in TVars

Our first approach for implementing STMs is closely related to the implementation
presented in [8] where a thread-local transaction log is used to collect and share
all TVar accesses within a thread. The transaction log holds references to all
used TVars and is responsible for the necessary verify and commit actions.

The original STM implementation [8] uses thread-local TLogs referencing the
global TVars. Therefore, each TLog is a list pointing to each TVar used in its
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thread. Unfortunately, in general, TVars have different types. This prohibits using
the same data structure in our implementation because of Haskell’s strict type
system. We use the opposite referencing structure instead: each TVar contains a
log which simply stores a list of its new local values of all threads/atomic blocks
it was modified by. This list maps transaction identifiers (IDs, discussed in more
detail in Section 6.2) to locally modified values.

The TVar value itself is stored in an IORef (IORef a). As a consequence,
TVar values can later be compared by pointer comparison of the inner IORefs.
Whenever a value is written to a TVar in a thread, we create a new IORef which
means the comparison with the old value IORef will indicate the modification.
Finally, the TVar contains a wait queue for retries (discussed in Section 4.1):

data TVar a = TVar (IORef (IORef a)) -- the TVar content
(MVar [(ID,IORef a)] -- thread local TVar copies
(IORef [MVar ()]) -- wait queue on retry

If a readTVar or writeTVar action is performed, the corresponding thread up-
dates its local version of the TVar value. To guarantee atomic modifications of
the TVar copies, these are embedded into an MVar. The local TVar value is ac-
cessed by a transaction identifier. Here we first used ThreadIds to emulate the
thread-local TLog structure used in [8]. ThreadIDs can be used to identify each
transaction as each thread can execute only one atomic transaction at a time.
Since ThreadIds are not available in Hugs each STM action obtains a fresh stmId
when started instead. Details how we provided identifiers are discussed in Sec-
tion 6.2. The stmId is part of the STMState record (defined later in this section)
passed through our STM monad. Writing a TVar can now easily be defined as
follows:

writeTVar (TVar _ tLog _) v = STM $ \stmState -> do
tLogs <- takeMVar tLog
putMVar tLog ((stmId stmState,v):tLogs)

readTVar (TVar tVarRef tLog _) = STM $ \stmState -> do
tLogs <- takeMVar tLog
case lookup (stmId stmState) tLogs of
Just v -> do return v

putMVar tLog tLogs
Nothing -> do tVarVal <- (readIORef tVarRef)

putMVar tLog tLogs
readIORef tVarVal

This implementation simply masks old values within the log list. In the real
implementation these values are replaced, to keep log lists short2.

Now, we have to find an implementation for checking the validity of a trans-
action and committing all modifications performed within a transaction. Again,

2 There are more efficient ways, e.g., balanced search trees, to represent the TVar log
which are not discussed here as we will present a more efficient solution without such
a log in Section 5.



A High-Level Implementation of Composable Memory Transactions 129

the type system does not allow holding a list of all read (for checking valid-
ity) and written (for committing) TVars. As a solution, we collect respective
IO functions and eventually execute them at the end of the atomic block. For
validating, this is an action of type IO Bool and for committing of type IO ().
Furthermore, we need a function for discarding the logs within the TVars.

Now, we have introduced most of the information to be kept in the STMState
which is defined as the following record:

data STMState = STMState {isValid :: IO Bool,
commit :: IO (),
discard :: IO (),
wait :: IO (),
retryMVar :: MVar (),
stmId :: ID}

The components wait and retryMVar are needed for suspending in retry and
discussed in Section 4.1. Validation, commit and discard actions within the state
are extended in each readTVar or writeTVar action. The function readTVar
extends the already stored validation by a comparison of its own value with the
new value stored in its log:

readTVar (TVar tVarRef tLog _) = STM $ \stmState -> do
... -- read the value of the TVar bound in variable val
oldVal <- readIORef tVarRef
let newState = stmState{isValid = do

b <- isValid stmState
if b then do

tVarVal <- readIORef tVarRef
return (tVarVal == oldVal)

else return False}
return (Success newState val)

In a writeTVar action the commit function is built up to copy the local TVar
value into the real TVar thus committing a successful atomic action.

writeTVar tVar@(TVar tVarRef tLog waitQ) = STM $ \stmState -> do
...
let newState = stmState{

commit = do commit stmState
commitAct (stmId stmState) tVar
notify waitQ,

discard = do tLogs <- takeMVar tLog
let (pres, _:posts) = filter ((stmId/=) . fst)

tLogs
putMVar tLog (pres ++ posts)
discard stmState}

return (Success newState ())

with commitAct defined as
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commitAct :: ID -> TVar a -> IO ()
commitAct stmId (TVar tVarRef tLog _) = do

tLogs <- readMVar tLog
let Just newRef = lookup stmId tLogs
v <- readIORef newRef
newTVarVal <- newIORef v
writeIORef tVarRef newTVarVal

The action commit does not only copy new values within the TVars. It also
notifies other transactions suspended within a retry action. This and the im-
plementation of notify are discussed in more detail in Section 4.1.

The function atomically starts and validates transactions. Non-valid trans-
actions are discarded (the corresponding TVar copies are deleted) and restarted.
Valid transactions are committed, i.e. the original TVar value is overwritten by
the value stored for the actual stmId. The IO functions for discarding and com-
mitting values are constructed in readTVar and writeTVar and stored in the
STMState as shown above. The whole process of validating, committing and
discarding may not be interupted by any other concurrent thread which is guar-
anteed by calling the functions takeGlobalLock and freeGlobalLock. Possible
implementations are discussed in Section 6.1.

atomically :: STM a -> IO a
atomically stmAction = do

stmResult <- startSTM stmAction
case stmResult of
Invalid -> atomically stmAction
Success newSTMState res -> do takeGlobalLock

valid <- isValid newSTMState
if valid

then do
commit newSTMState
discard newSTMState
freeGlobalLock
return res

else do
discard newSTMState
freeGlobalLock
atomically stmAction

So far, a distinction between Invalid and Retry actions is not necessary and we
only consider the STMResult Invalid. The discussion of orElse in Section 6.3
will distinguish these two cases.

4.1 Retry

In STMs it is also possible that the programmer marks a branch of the execution
as invalid, by executing the retry action. For instance, a dining philosopher
calls retry when trying to take a non-available stick. Of course, if he already
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sucessfully took his first stick, then he should put back his first stick, again.
Naturally, this is implemented within an atomic action as shown before.

When implementing retry it does not make sense to directly restart the
transaction, because the computation would execute exactly the same trans-
action again and deterministically reach the same retry action. Its branching
behavior only depends on the values of the TVars it read during its execution.
Hence, retry should suspend until any of the TVars read during its execution is
modified by another thread.

In Concurrent Haskell a thread can only suspend on exactly one MVar. Hence,
we introduce a retryMVar :: MVar () in the STMState, on which it suspends
in retry. Again, we guarantee the atomic execution of validation, commit and
restore by a global lock:

retry :: STM a
retry = STM (\stmState -> do

takeGlobalLock
valid <- isValid stmState
discard stmState
if valid then do wait stmState

freeGlobalLock
takeMVar (retryMVar stmState)
return Invalid

else do
freeGlobalLock
return Invalid)

After validating a transaction all stored modifications are discarded. Then, in
case of a valid transaction the thread should suspend. However, beforehand, it
has to register itself for being awoken again in each read TVar. This is imple-
mented by means of an accumulated wait action extending wait queues in all
read TVars in a similar way as presented for isValid, commit, and discard:

readTVar (TVar tVarRef tLog waitQ) = STM $ \stmState -> do
... -- val is bound here
let newState = stmState{...

wait = do
wait stmState
queue <- readIORef waitQ
putMVar waitQ (retryMVar stmState:queue)}

return (Success newState val)

After executing all wait actions retry suspends on its retryMVar and after
being awoken returns Invalid which initiates restarting the transaction in the
enclosing atomically.

For awaking suspended transactions, each committed writeTVar action sets
all registered retryMVars. The call to this notification was already integrated in
the definition of the commit action in writeTVar. For completeness, we present
the missing definition of notify:
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notify :: IORef [MVar ()] -> IO ()
notify waitQ = do

queue <- readIORef waitQ
writeIORef waitQ []
mapM_ tryPutMVar queue

Note, that race conditions between different notifys in different commit actions
are already avoided by locking the execution before committing. Hence, there is
no need to store the wait queue of a TVar within an MVar, an IORef is sufficient.

Benchmarks for this implementation show that the approach could be used in
practice. However, our implementation is (for programs only performing trans-
actions) up to 40 times slower than ghc’s internal implementation.

5 The Collecting Approach

Profiling programs using the presented STM implementation shows that

– much time is spent for modifying TVars and
– validation, commit and notification are very fast.

Since collecting actions performs very well, it would be nice to extend this idea
for the modifications while reading and writing as well. Inspecting transactions
from a more abstract point of view we observe that

– reading is in most cases performed on original TVars and
– writing is delayed to copying in commit.

Hence, why don’t we collect the writeTVar actions themselves in the commit
actions instead of an action which copies a value within the TVar? Then, the only
problematic case would be reading a TVar written beforehand. A modification
of a TVar is only available after performing the commit.

In practice, programmers will try to avoid reading an already written TVar
since the value written to the TVar is already known within the transaction.
On the other hand, composing transactions may create such cases in which two
composed transactions modify and read the same TVar more than once. We as-
sume that this case may occur in practice (and has to be handled correctly by
our implementation), but that it is not the regular case for every TVar in ev-
ery transaction. Furthermore, the programmer can avoid this case and optimize
programs by hand if necessary. Hopefully, the loss of efficiency for this special
case will not matter compared to the gained speedup of using collected actions
instead of modifying data structures within the TVar representations.

But how can we correctly access the value of an already modified TVar? The
problem is that we may not modify TVars to obtain the actual value, but the only
place where this value is stored is the accumulated commit action. A solution
is motivated by the search for deadlocks in Concurrent Haskell programs in [1].
Modifications of communication abstractions can be reversed. Hence, in parallel
to accumulating the commit action, we accumulate a restore action. With these
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two actions we can solve the problem of reading already written TVars. After
setting a global lock and checking validity of the actual transaction we can
commit all TVar modifications, read the actual value, and revert the modified
TVars. Fortunately, the overhead for this expensive operation will in some cases
be balanced by the fact that the earlier validation restarts the transaction earlier.

To identify the situation in which an already written TVar is read we have
to collect all modified TVars within the STMState. Again, Haskell’s type system
does not allow such a data structure. As before, this problem can be solved by
using unique identifiers which in this case identify the different TVars:

data TVar a = TVar (IORef (IORef a)) -- the TVar content
ID -- TVar identifier
(IORef [MVar ()]) -- wait queue on retry

In this implementation, all components of the TVar can be stored in IORefs, in
contrast to the thread local copies which had to be stored in an MVar to avoid race
conditions for concurrent modifications. The exclusive access to the TVar content
and the wait queue will be guaranteed by locking before their modifications.

The identifiers of all modified TVars within a transaction are stored in the
STMState. The modified STMState is defined as follows:

data STMState = STMState {stmId :: ID,
modifiedTVars :: [ID],
isValid :: IO Bool,
commit :: IO (),
notify :: IO (),
restore :: IO (),
wait :: IO (),
retryMVar :: MVar ()}

If such an already modified TVar is read, then we have to consider the “actual”
value of this TVarwithin our STM Monad. Otherwise, readTVar behaves as before.

readTVar (TVar tVarRef tId waitQ) = STM $ \stmState ->
if elem tId (modifiedTVars stmState) then do

takeGlobalLock
valid <- fIsValid
if valid then do commit stmState

tVarVal <- readIORef tVarRef
val <- readIORef tVarVal
restore stmState
freeGlobalLock
return (Success stmState val)

else do freeGlobalLock
return Invalid

else ...

Note, that the commit and restore actions have to be protected by a valida-
tion check to ensure consistency. For completeness, we also present the new
writeTVar code. The modifications of commit and notify stay unchanged.
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writeTVar (TVar tVarRef tId waitQ) v = STM $ \stmState -> do
tVarVal <- readIORef tVarRef
let newState =

stmState{modifiedTVars = n:modifiedTVars threadState,
commit = ...
notify = ...
restore = do writeIORef tVarRef tVarVal

restore stmState}
return (Success newState ())

Within the implementation details of [8] a potential problem arising from incon-
sistency has been highlighted with the following example:

f :: Integer -> Bool
f x = if x==0 then True else f (x-1)
foo v = atomically $ do

x <- readTVar v
y <- readTVar v
if f (x-y) then ... else ...

An inconsistent view of v can lead to nontermination. The solution proposed
in [8] is to check for consistency whenever the scheduler is about to switch a
thread engaged in a transaction. Of course, with our high-level approach access
to the scheduler is not easily feasable. Fortunately, this problem is similar to the
problem of reading an already written TVar. The solution is easy. We extend the
modifiedTVars of a transaction to a list of touchedTVarswhich is also extended
when reading a TVar. Then, an additional validity check can be started when
reading a TVar for the second time. For long transactions taking many schedule
switches this may perform even better than the approach taken in [8].

The nice idea behind the collecting approach is accumulating the whole trans-
action within IO actions which may then be performed when reaching the end of
the transaction. Benchmarks show that this implementation performs very well,
as we will discuss in Section 7.

6 More Implementation Details

So far, we presented the whole implementation of STMs in Concurrent Haskell.
However, some aspects of the implementation are not discussed yet.

6.1 Global Locks

In the presented implementations, we had to ensure that in some cases threads
do not interfere, e.g., for validating and committing transactions. In the pre-
sented code, we called functions takeGlobalLock and freeGlobalLock in the
corresponding cases. The simplest implementation of a global lock can be imple-
mented as a global MVar () constant by means of unsafePerformIO:
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globalLock :: MVar ()
globalLock = unsafePerformIO (newMVar ())

takeGlobalLock :: IO ()
takeGlobalLock = takeMVar globalLock

freeGlobalLock :: IO ()
freeGlobalLock = putMVar globalLock ()

However, it is also possible to avoid this unsafePerformIO call. We extend
TVars with a lock MVar ():

data TVar a = TVar (IORef (IORef a)) -- global TVar itself
ID -- TVar identifier
(MVar ()) -- TVar lock
(IORef [MVar ()]) -- wait queue on retry

and extend the touchedTVars in the STMState with such lock MVars as well:

data STMState = STMState{...
touchedTVars :: [(ID,MVar ())]
...}

During the computation of a transaction the lock MVars of all touched TVars are
collected, like in the definition of readTVar:

readTVar (TVar tVarRef tId tVarLock waitQ) = STM $ \stmState -> do
if isJust lookup tId (touchedTVars stmState)
then ...
else do

...
let newState = stmState{wait = ...

touchedTVars =
(tId,tVarLock):touchedTVars stmState}

return (Success newState val)

Instead of setting a global lock before validating and committing it is now pos-
sible to only lock the touched TVars by performing takeMVar on these collected
lock MVars. To avoid race conditions, it is important to sort these collected
lock MVars with respect to their IDs before taking the lock MVars. Unlocking the
touched TVars of a transaction is done by again putting () into these lock MVars.

Measurements show that this implementation is up to 20% slower than using
a global lock. Usually, the time for which a global lock is set is very short.
Hence, we use a global lock in our implementation. However, for the execution
on multi-processor machines [7] and [3] show that implementations without using
global locks perform better in many cases. Hence, it is important to have such
an implementation as well. Further interesting investigations would be how our
implementation scales for the examples in [3] on multi-processor machines.
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6.2 Unique Identifiers

In both approaches we needed unique identifiers: for identifying different STMs
in the first approach and different TVars in the second approach.

Again, a simple implementation uses a global state of Integer values (defined
by unsafePerformIO) which can only be increased when getting a new ID.

type ID = Integer

globalCount :: MVar ID
globalCount = unsafePerformIO (newMVar [0..])

getGlobalId :: IO ID
getGlobalId = do

num <- takeMVar globalCount
putMVar globalCount (num+1)
return num

Again, it would be nice to have an implementation without unsafePerformIO.
The idea is to use IORefs instead of numbers, since it is possible to compare them.

type ID = IORef ()

getGlobalId :: IO ID
getGlobalId = newIORef ()

The garbage collector takes care of unused IORefs. There is no need for explicit
releasing of identifiers at the end of an atomic block. However, the convenience
of these runtime system provided identifiers has to be paid by a slight slow
down. An alternative unsafePerformIO free implementation of unique identifiers
can be obtained by using stable pointers of Haskell’s Foreign Function Interface
[5,13]. Being able to avoid using unsafePerformIO is nice and shows the elegance
of the presented implementation.

6.3 OrElse

So far, we have not considered the implementation of orElse. The seman-
tics of combining two transaction as stm1 `orElse` stm2 is that if stm1 per-
forms a retry action, then all modifications within stm1 are discarded and stm2
is performed. Hence, validating the whole transaction means validating that
stm1 is still valid (reaching retry) and stm2 is valid. However, accumulated
commit/restore actions within stm1 have to be discarded. We implement this
behavior by extending commit, restore, and notify to lists (stacks) of IO
actions, the other parts of the STMState stay unchanged:

data STMState = STMState{...
commits :: [IO ()],
notifys :: [IO ()],
restores :: [IO ()],
...}
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When accumulating these actions in readTVar and writeTvar we only extend
the actions stored in the head position of these lists (the top-level stack frame).

At this point the distinction of the STMResults Invalid and Retry becomes
relevant. Only for Retry our orElse implementation may execute the second
transaction. In our second implementation Invalid is a possible intermediate
STMResult, since reading an already modified TVar performs an intermediate
validation.

orElse :: STM a -> STM a -> STM a
orElse (STM stm1) (STM stm2) =

STM (\stmState -> do
stm1Res <- stm1 stmState{commits = return ():commits stmState,

notifys = return ():notifys stmState,
restores = return ():restores stmState}

case stm1Res of
Retry newState ->

stm2 newState{commits = tail (commits newState),
notifys = tail (notifys newState),
restores = tail (restores newState)}

_ -> return stm1Res)

Note, that orElse extends the list of commit/notify/restore actions when ex-
ecuting stm1 and pops them again when (in case of retry) stm2 is executed.
As a matter of course, executing these actions in the definition of atomically
(and readTVar as well) must consider the list structure. For instance, instead of
commit stmState we have to perform:

sequence_ (reverse (commits stmState))

Reverting the list is necessary, because earlier modifications are located deeper
in the list. And the chronological order is important if the same TVar is written
twice within a transaction.

6.4 Exceptions

Exception handling as proposed for STMs can also be integrated into the presented
implementations. Unfortunately, the semantics of STM exceptions has a strange
behavior as the following example shows:

main = do
t <- atomically (newTVar 42)
r <- atomically (do

writeTVar t 43
catchSTM (do

writeTVar t 44
seq undefine (return True))

(\e -> return False))
print r
v <- atomically (readTVar t)
print v
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Executing this program, the following output is produced:

False
44

Although an exception occurs and is caught both modifications of t are commit-
ted. To us, it is not clear how a programmer is supposed to identify which parts
of a transaction are committed if an exception occurs. We would prefer that
only the transactions before catchSTM are committed when catching an excep-
tion. This can also be implemented more easily and more efficiently. However,
we want to cover exactly the semantics proposed in [8].

To track STM actions until an exception occurs, we extend the STMState with
an additional case for exceptions

data STMState = ...
| Exception StmState Exception

Furthermore, we extend the Monad instance for STM with these cases and catch
exceptions which may occur during the execution of tr2 newState, by means
of ghc’s catch function:

instance Monad STM where
(STM tr1) >>= k =

STM (\state -> do
stmRes <- tr1 state
case stmRes of

Success newState a ->
let (STM tr2) = k a in
catch (tr2 newState)

(\e -> return (Exception newState e))
Retry newState -> return (Retry newState)
Invalid -> return Invalid
Exception newState e -> return (Exception newState e)

)

It is not necessary to catch exceptions in tr1. These can be caught when starting
the STM monad in atomically.

By means of these explicit exceptions within the STM monad, we can easily
define catchSTM:

catchSTM (STM stm) stmHandler = STM (\stmState -> do
res <- stm stmState
case res of
Exception newState e ->

case stmHandler e of
STM ioHandler -> ioHandler newState

Success newState r -> return (Success newState r)
Retry newState -> return (Retry newState)
InValid -> return InValid)

Performing catch for each (>>=) operator is expensive. Hence, we improved our
code such that catch is only executed inside catchSTM by means of a boolean
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flag in the STMState. This flag is set and reset by catchSTM and exceptions are
only caught if the flag is set.

7 Benchmarks

It is quite challenging to generate a reliable benchmark analysis for concurrent
programs using STMs. Execution times depend on the actual scheduling thus
sometimes differing significantly from each other. This is also true for ghc 6.4’s
STM implementation itself. In addition benchmark results depend on the test
programs used and their frequency of TVar accesses. Finally, our benchmarks
perform mostly transactions. Therefore, small modifications (e.g., using a global
state or IORefs for implementing IDs) can yield a significant impact. Real ap-
plications will usually behave much more homogenious relative to the different
libraries used as real programs should also compute something. Hence, the exe-
cution time of transactions will be less relevant and most applications will work
fine with any correct implementation.

However, we want to present some results and conclusions of our benchmark
tests. We present benchmark test results of three different Haskell applications
using the STM library generated out of the final implementation mentioned in this
paper (collect) and the standard ghc 6.4 library as reference (ghcLib). The appli-
cations shown are: A standard dining philosopher implementation based on the
one shown in Section 2 (DinPhil), a modified dining philosopher implementation
with the philosophers atomically taking and putting their sticks three times in a
row before finally taking them (DinPhil3) and an STM stress test called conc049
presented in [14].

Each of the executables has been run and timed repeatedly on different ma-
chine configurations. Figure 1 presents median execution times in seconds, stan-
dard deviation of the runs and the slow down factor in comparison to ghc of
both approaches. All programs are compiled using ghc’s optimization option.

As expected our library is slower than the built in C implementation provided
by ghc. However, for common usage of transaction like in DinPhil and conc049
our implementation is only three times slower. For strange application modifying

median standard slow down
benchmark library execution time deviation factor

DinPhil ghcLib 0.77 0.002 1
collect 2.53 0.173 3.3

DinPhil3 ghcLib 1.39 0.003 1
collect 18.43 0.736 13.2

conc049 ghcLib 0.16 0.075 1

collect 0.43 0.342 2.7

Fig. 1. Benchmark results
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and reading the same TVar within one transaction like DinPhil3 our implemen-
tation is 13.2 times slower than ghc’s STMs. With this test we expose the weak
point of our implementation. However, such cases should be uncommon in real
applications and they can be easily optimized by the application programmer in
most cases. Furthermore, real applications will not only perform transactions,
but also perform other computations. In many real applications there should be
no noticeable slow down using our library.

A further analysis of the benchmark figures shows that the statistical devia-
tion between different runs is significantly higher using our library than ghc’s.
We suspect that the ”synchronization” of verify and commit actions with the
scheduler in the ghc library implementation ([8]) is one reason for a more consis-
tent behavior between different runs. Further research has to be made to analyze
these effects.

8 Conclusion

We have presented two re-implementations of software transactional memory
within Concurrent Haskell. The first implementation is closer related to the im-
plementation in ghc 6.4. Analyzing the run-time behavior of this implementation
yields to a more high-level implementation accumulating commit and validation
actions within the state inside the STM monad. Benchmarks show that this im-
plementation is between three to in the worst case 13 times slower than the
implementation in ghc 6.4. However, in real applications this will usually not be
a problem, since these programs will also perform other computations.

On the other hand, our implementation also has some advantages: it can be
executed in any Concurrent Haskell implementation, including Hugs and older
ghc versions. It works independently of the underlying scheduling model. It is an
implementation in a high-level language which can be maintained and extended
more easily. Hence, it should be a good platform for further research on transac-
tion based communication in Concurrent Haskell. The library is available from
the first author’s web page.

For future work, we want to investigate how software transactions could be
extended and how they could be used for distributed programming. A good
basis should be the implementation of Distributed Haskell [9] which extends
Concurrent Haskell to a distributed setting.
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Abstract. Polytypic functional programming has the advantage that it
can derive code for generic functions automatically. However, it is not
clear whether it is useful for anything other than the textbook exam-
ples, and the generated polytypic code is usually too slow for real-life
programs. As a real-life test, we derive a polytypic parser for the Haskell
98 syntax and look into other front-end compiler syntax tree operations.

We present a types–as–grammar approach, which uses polytypic pro-
gramming (in both Generic Haskell and Clean) to automatically derive
the code for a parser based on the syntax tree type, without using ex-
ternal tools. Moreover, we show that using polytypic programming can
even be useful for data–specific syntax tree operations in a (functional)
compiler, such as scope checking and type inference.

Simple speed tests show that the performance of polytypic parsers can
be abominable for real-life inputs. However, we show that much perfor-
mance can be recovered by applying (extended) fusion optimization on
the generated code. We actually have a derived parser whose speed is
close to one generated by a specialized Haskell parser generator.

1 Introduction

The construction of complex software often starts by designing suitable data
types to which functionality is added. Some functionality is data type specific,
other functionality only depends on the structure of the data type. Polytypic
programming is considered an important technique to specify such generic func-
tionality. It enables the specification of functions on the structure of data types,
and therefore, it is characterized as type dependent (type indexed) program-
ming. The requested overall functionality is obtained by designing your data
types such that they reflect the separation of specific and generic functionality.
By overruling the polytypic instantiation mechanism for those parts of the data
type that correspond to specific functionality, one obtains the desired overall
behavior. In essence, a programmer only has to program the exception and a
small polytypic scheme, since polytypic functions automatically work for the
major part of the data types. Examples of such generic operations are equality,
traversals, pretty-printing, and serialization.

The number of such generic operations in a specific program can be quite
small, and hence the applicability of polytypic programming seems limited. Poly-
typic functions that are data specific only make sense if the involved data types
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themselves are complex or very big. Otherwise, the definition of the polytypic
version of an operation requires more effort than defining this operation directly.
Moreover, the data-dependent functionality should be restricted to only a small
portion of the data type, while the rest can be treated generically.

This paper investigates the suitability of polytypic programming as a general
programming tool, by applying it to (a part of) compiler construction. Compil-
ers involve both rich data structures and many, more or less complex, operations
on those data structures. We focus on the front-end of compilers: parsing, post-
parsing, and type inference operations on the syntax tree. There exist many
special tools, e.g., parser generators and compiler compilers, that can be used
for constructing such a front-end. We show that polytypic programming tech-
niques can also be used to elegantly specify parsers. This has the advantage
that the polytypic functional compiler can generate most of the code. Another
advantage it that one can specify everything in the functional language itself,
without synchronization issues, e.g., between the syntax tree type and the gram-
mar definition, with external tools.

We have implemented polytypic parsers in both Generic Haskell [1] (a pre-
processor for Haskell [2]) and Clean [3]. We use (Generic) Haskell to present
our implementation in this paper, the Clean code is very similar. The poly-
typic parser we use in this paper differs from those commonly described in
papers on polytypic programming [4, 5]. Our parser is based on the types–as–
grammars approach: the context-free syntax of the language to parse is specified
via appropriate data type definitions. The types–as-grammar approach was pre-
viously used to construct a new version of the Esther shell originally described
in Weelden and Plasmeijer [6]. The shell uses polytypic programming to spec-
ify the parser and post-parsing operations on expressions the size of a single
command-line. This paper tackles larger inputs and grammars, including the
Haskell syntax.

Apart from its expressiveness, a programming technique is not very useful if
the performance of the generated code is inadequate. The basic code generation
schema that is used in the current implementations of polytypic systems pro-
duces inefficient code. We asses the efficiency of both the Generic Haskell and
the Clean implementations and compare them with the code generated by an
optimization tool by Alimarine and Smetsers [7]. This tool takes a polytypic
Clean program as input and produces a Haskell/Clean-like output without the
polytypic overhead.

To summarize, the main contributions of this paper are:

– We show that polytypic programming, introduced in Sect. 2, is not only
suited for defining more or less inherently generic operations, but also for
specifying data specific functionality.

– We describe a technique that allows us to derive a parser for context-free
languages automatically from the definition of a syntax tree in Sect. 3. The
technique is based on the idea to interpret types as grammar specifications.
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– We show that the same technique applies to several related syntax tree op-
erations in Sect. 4. As operations become more data specific, we gain less
from using polytypic programming. However, we show that it is not totally
unsuitable for non-generic algorithms.

– As most polytypic programmers know, polytypic programs (including our
parsers) have serious performance problems. Fortunately, we show in Sect. 5
that an appropriate optimization tool recovers a lot of efficiency, and that
our parsers can approach the speed of parsers generated by external tools.

Related work is discussed in Sect. 6, and we conclude in Sect. 7.

2 Polytypic Programming

Specifying polytypic functions is a lot like defining a type class and its instances.
The main difference is that a polytypic compiler can derive most of the instances
automatically, given a minimal fixed set of instances for three or four (generic)
types. The programmer can always overrule the derived instance for a certain
type by specifying the instance manually. This powerful derivation scheme even
extends to kinds (the types of types), which we will neither use nor explain in
this paper.

The fact that polytypic functions can be derived for most types is based on the
observation that any (user defined) algebraic data type can be expressed in terms
of eithers, pairs, and units. This generic representation, developed by Hinze [8],
is used by Generic Haskell and is encoded there by the following Haskell types:

data Sum a b = Inl a | Inr b −− either/choice between (In)left and (In)right
data Prod a b = a :∗: b −− pair/product of two types, left associative
data Unit = Unit −− the unit type

A data type and its generic representation are isomorphic. The corresponding
isomorphism can be specified as a pair of conversion functions. E.g., for lists
the generic representation and automatically generated associated conversion
functions are as follows.

type GenericList a = Sum (Prod a [a]) Unit

fromList :: [a] → GenericList a toList :: GenericList a → [a]
fromList (x:xs) = Inl (x :∗: xs) toList (Inl (x :∗: xs)) = x:xs
fromList [] = Inr Unit toList (Inr Unit) = []

Note that the generic representation type GenericList is not recursive and still
contains the original list type. A polytypic function instance for the list type
can be constructed by the polytypic system using the generic representation.
The derived instance for the list type uses the given instances for Sum, Prod,
Unit, and once again the currently deriving instance for lists. This provides the
recursive call, which one would expect for a recursive type such as lists.
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To define a polytypic function, the programmer has to specify its function
type, similar to a type class, and only the instances for the generic types (Prod,
Sum, and Unit) and non-algebraic types (like Int and Double). The polytypic
instances for other types that are actually used inside a program are automati-
cally derived. Polytypic functions are, therefore, most useful if a large collection
of (large) data types is involved, or if the types change a lot during development.

To illustrate polytypic programming we use the following syntax tree excerpt:

data Expr = Apply Expr Expr | Lambda Pattern Expr
| Case Expr [(Pattern, Expr)] | Variable String
| If Expr Expr Expr | · · ·

data Pattern = Var String | Constructor String [Pattern] | · · ·

data · · ·

We define a Generic Haskell function print of type a → String that is polytypic
in the type variable a, similar to Haskell’s show of type Show a⇒ a → String
that is overloaded in a. Instead of instances for the Show class, we define type
instances for print using the special parentheses {| |} .

print {| a |} :: a → String

print {| Int |} i = show i −− basic type instance

print {| Unit |} Unit = ”” −− unit instance

print {| Sum a b |} (Inl l) = print {| a |} l −− left either instance
print {| Sum a b |} (Inr r) = print {| b |} r −− right either instance

print {| Prod a b |} (l :∗: r) −− pair instance
= print {| a |} l++ ” ” ++ print {| b |} r

print {| Con d a |} (Con x) −− instance for constructors
= ”(” ++ conName d++ ” ” print {| a |} x++ ”)”

To print the parameterized type Sum, and also Prod, print requires printing
functions for the parameter types a and b. These are automatically passed un-
der the hood by Generic Haskell, similar to dictionaries in the case of over-
loading. print {| Sum a b |} can refer to these hidden dictionary functions using
print {| a |} and print {| b |} . Furthermore, the type Con, used in this example,
was added to the set of generic types in Generic Haskell as well as in Clean.
Run-time access to some information about the original data constructors is es-
pecially convenient when writing trace functions, such as print, for debugging
purposes.

data Con a = Con a ; data ConDescr = { conName :: String, · · · }
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When used in Generic Haskell, Con appears to get an additional argument d. This
is not a type argument but a denotation that allows the programmer to access
information about the constructor, which is of type ConDescr. In the example
print {| Con d a |} applies conName to d to retrieve the name of the constructor.

Observe that this polytypic print function does not depend on the structure
of the syntax tree type. If this type definition changes during development, the
underlying system will automatically generate a proper version of print. This
implementation of print is quite minimal, with superfluous parentheses and
spaces. It is easy to adjust the definition to handle these situations correctly, see
for example Jansson and Jeuring [4].

It is not difficult to specify the polytypic inverse of the print function. Using
a monadic parser library, with some utility functions such as symbol(s) and
parseInt that take care for low-level token recognition, one could specify a
polytypic parse function (similar to Haskell’s read) as follows:

type Parser a = · · · −− some monadic parser type

parse {| a |} :: Parser a

parse {| Unit |} = return Unit

parse {| Sum a b |} = mplus (parse {| a |} >>= return . Inl)
(parse {| b |} >>= return . Inr)

parse {| Prod a b |} = do l ← parse {| a |}
r ← parse {| b |}
return (l :∗: r)

parse {| Con d a |} = do symbol ’(’
symbols (conName d)
symbol ’ ’
x ← parse {| a |}
symbol ’)’
return (Con x)

parse {| Int |} = parseInt

Such a simple parser follows the print definition very closely and is easy to under-
stand. parse is obviously print’s inverse, and it can only parse input generated
by the print function, including redundant spaces and parentheses.

3 Polytypic Parsing of Programming Languages

This section introduces the types–as–grammar approach to polytypically derive
a parser. This parser builds on a small layer of monadic parser combinators, to
abstract from the lower level token recognition machinery. We use very naive
parser combinators (shown below) because they are easy to use and explain.
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To abstract from the parsing issues at the lexical level, we assume a separated
scanner/lexer and that the parser will work on a list of tokens. Later in Sect. 5,
we will test the efficiency of the polytypic parser using also a set of continuation
parser combinators that improve the error messages. The naive monadic parser,
using the Maybe monad, is implemented as follows.

newtype Parser a = Parser { parser :: [Token] → Maybe (a , [Token]) }

data Token = IdentToken String | LambdaToken | ArrowToken
| IfToken | ThenToken | ElseToken | · · · −− all tokens

token :: Token → Parser Token
token tok = Parser (λts → case ts of

(t:ts’) | t == tok → Just (t , ts’)
→ Nothing

instance Monad Parser where
return x = Parser (λts → Just (x , ts)) −− success parser
l >>= r = Parser (λts → case parser l ts of −− sequence parser

Just (x , ts’) → parser (r x) ts’
Nothing → Nothing )

instance MonadPlus Parser where
mzero = Parser (λts → Nothing) −− fail parser
mplus l r = Parser (λts → case parser l ts of −− choice parser

Just (x , ts’) → Just (x , ts’)
Nothing → parser r ts )

The mplus instance above defines a deterministic (exclusive) choice parser: if the
left argument of mplus parses successfully, the right argument is never tried. This
is done out of speed considerations and, if the parsers are written in the right way,
it does not matter for deterministic grammars. Algebraic data constructors have
unique names, which makes the grammar deterministic. This is also reflected
in the Parser type, i.e., the parser returns a Maybe result, which shows that it
returns at most one result.

To parse real programming languages we should not parse the constructor
names that occur in the syntax tree type. Instead, we should parse all kinds of
tokens such as i f , λ, and→. This requires writing most of the instances for the
polytypic function parse by hand. Another option is adding these tokens to the
abstract syntax tree, which becomes a non-abstract, or rich, syntax tree. Since
we instruct the polytypic parser using types, we cannot reuse the (constructors of
the) Token data type. Instead, we specify each token as a separate data type. This
gives us the ability to parse our own tokens, without the constructors getting in
the way. We can now define, for example, a nicer parser for lists that uses the
[] and _:_ notation.
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data List a = Cons a ColonToken (List a) | Nil EmptyListToken

data ColonToken = ColonToken
data EmptyListToken = EmptyListToken

parse {| ColonToken |} = symbol ’:’ >> return ColonToken
parse {| EmptyListToken |} = symbols ”[]” >> return EmptyListToken

parse {| Con d a |} = parser {| a |} >>= return . Con

intListParser = parse {| List Int |} −−automatically derived by the system

We partly reuse the parse definition from Sect. 2. We do not want to parse
the constructor names, therefore, we replace the Parse {| Con d a |} alternative
from Sect. 2 with the one shown above. Not parsing constructor names means
that the order of alternatives is important. Since parse {| Sum a b |} uses the
exclusive mplus, it gives priority to the Inl(eft) alternative over the Inr(ight)
alternative. Therefore, the textual order of the constructors of an algebraic data
type determines the order of parsing, which is similar to function definitions with
multiple alternatives in Haskell and Clean.

One can parse any context-free syntax by specifying the grammar using al-
gebraic data types. The grammar below is an excerpt of a small functional
programming language. It uses the convention that Ntype represents the non-
terminal type and Ttype represents a terminal symbol type.

data Nexpression = Apply Nexpression Nexpression
| Lambda Tlambda Nvariable Tarrow Nexpression
| If Tif Nexpression Tthen Nexpression

Telse Nexpression
| Variable Nvariable
| Value Nvalue

data Nvariable = Variable String

data Nvalue = Integer Int | Boolean Bool

data Tlambda = Tlambda; data Tarrow = Tarrow
data Tif = Tif ; data Tthen = Tthen; data Telse = Telse

parse {| Con d a |} = parse {| a |} >>= return . Con
parse {| String |} = identifierToken >>= λ(IdentToken s) → return s

parse {| Tlambda |} = token LambdaToken >> return Tlambda
parse {| Tarrow |} = token ArrowToken >> return Tarrow
parse {| Tif |} = token IfToken >> return Tif
parse {| Tthen |} = token ThenToken >> return Tthen
parse {| Telse |} = token ElseToken >> return Telse
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If we remove all constructors from the type definitions above, we end up with
something that looks very similar to the following grammar description in BNF
notation:

<expression> ::= <expression> <expression>
| ”λ” <variable> ”→” <expression>
| ” i f ” <expression> ”then” <expression>

”else” <expression>
| <variable>
| <value>

<variable> ::= String

<value> ::= Int | Bool

It is also easy to support extended BNF (EBNF) notation by introducing some
auxiliary data types: Plus to mimic (· · ·)+, Option to mimic [· · ·], and Star to
mimic (· · ·)�. The parsers for all of them can be derived automatically.

data Plus a = Plus a (Plus a) | One a
type Star a = Option (Plus a)
type Option a = Maybe a

data Nexpression = · · ·
| Lambda Tlambda (Plus Nvariable) Tarrow Nexpression
| · · ·

The use of parameterized data types, such as Plus, can make the definition of
the syntax tree type very concise. It is similar to two-level or van Wijngaarden
grammars [9]. We can now specify a lambda expression with multiple arguments
using Plus as shown above. Clearly, this corresponds to the following EBNF
grammar:

<expression> ::= · · ·
| ”λ” <variable>+ ”→” <expression>
| · · ·

An issue with this types–as–grammar approach is left-recursive type defi-
nitions. Most parser combinator libraries do not support left-recursive parser
definitions and run out of heap or stack space. Recently, Baars and Swierstra
developed parser combinators [10] that detect and remove left-recursion au-
tomatically . Our current solution is manually removing the (few occurrences
of) left-recursion by splitting the left-recursive type, as shown below. Only
Nexpression is (mutually) left-recursive because it has no argument of type
Ttoken before the Nexpression arguments. We write a small parser for the left-
recursive part, making sure that most of the parser is still derived automatically.

data Nexpression = Apply Nexpression Nexpression
| Term Nterm −− separate non-recursive part
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data Nterm = Lambda Tlambda (Plus Nvariable) Tarrow Nexpression
| · · ·

parse {| Nexpression |} = parse {| Plus Nterm |} >>= return . app
where

app (One t) = Term t
app (Plus t ts) = app’ (Term t) ts
app’ acc (One t) = Apply acc t
app’ acc (Plus t ts) = app’ (Apply acc t) ts

We extended this example to a basic functional language grammar, to test our
generated parser. Moreover, as a larger test, we converted Haskell’s grammar to
types and derived a parser for it. The results of those tests appear in Sect. 5.

4 Other Polytypic Syntax Tree Operations

Polytypic parsing and several other polytypic syntax tree operations are used in
the current version of the Esther shell [6], which is written using Clean’s gener-
ics. The Esther shell offers a basic lazy functional language as shell syntax. Its
grammar is specified as a type, using the approach of Sect. 3. This section uses
excerpts from the Esther shell to give an impression about how data specific syn-
tax tree operations, written using polytypic programming techniques, improve
conciseness, modularity, and allow easy changes to the syntax by adding and
rearranging types.

4.1 Restructuring Infix Expressions

A common syntax tree operation is re-parsing expressions that contain user
defined infix operators. Because they are user defined, they cannot be correctly
parsed during the first parse. The usual solution is to restructure the syntax tree
after parsing, once the precedence and associativity information is available.

data FixityInfo = · · · −− precedence and associativity information

fixInfix{| a | m |} :: (Functor m , Monad m) ⇒ a → FixityInfo→ m a

fixInfix{| Int |} i ops = return i
fixInfix{| Unit |} Unit ops = return Unit
fixInfix{| Sum a b |} (Inl l) ops = do l’ ← fixInfix{| a |} l ops

return (Inl l’)
fixInfix{| Sum a b |} (Inr r) ops = do r’ ← fixInfix{| b |} r ops

return (Inr r’)
fixInfix{| Prod a b |} (l :∗: r) ops = do l’ ← fixInfix{| a |} l ops

r’ ← fixInfix{| b |} r ops
return (l’ :∗: r’)
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fixInfix{| Nexpression |} (Term t) ops = do
t’ ← fixInfix{| Nterm |} t ops
return (Nterm t)

fixInfix{| Nexpression |} (Apply e1 e2) ops = · · ·−− rebuild expression tree

We overloaded fixInfix with the Monad class because this operation can fail due
to conflicting priorities. Generic Haskell requires mentioning this type variable
m at the left side of the function type definition. The polytypic restructuring
fixInfix function can be derived for all types except Nexpression, which is
where we intervene to restructure the syntax tree. Note that manually removing
the left-recursion and splitting the Nexpression type allows us to override the
polytypic function derivation at exactly the right spot. We lack the space to
show exactly how to restructure the expression tree. This can be found in the
current version of the Esther shell [6].

The traversal code in the instances for the generic representation types is
a common occurring pattern. This shows that we can elegantly and concisely
specify a syntax tree operation that operates on a very specific part of the tree.
There is no need to specify traversal code for any other type in the syntax tree,
these are all automatically derived.

4.2 Adding Local Variable Scopes

Another common operation is checking variable declarations in the context of
local scope. Scope can easily be added into the syntax tree using polytypic
programming. We simply define the Scope data type below and inject it into the
syntax tree where appropriate.

data Scope a = Scope a

data Nterm = LambdaWithScope (Scope Nlambda)
| · · ·

data Nlambda = Lambda Tlambda (Plus Npattern) Tarrow Nexpression
data Ncase = Case Tcase Nexpression Tof

(Plus (Scope Nalt, Tsemicolon))
data Nalt = Alternative (Plus Npattern) Tarrow Nexpression
data Npattern = · · ·

| VariablePattern Nvariable

We overrule the derived polytypic code for chkVars at the following positions in
the syntax tree types: Nvariable is an applied occurrence, except for occurrences
after a VariablePattern constructor (part of the Npattern type), where it is a
defining occurrence. Furthermore, we override the polytypic instance for Scope,
which ends a variable scope after lambda expressions and case alternatives.

chkVars {| a | m |} :: (Functor m , Monad m) ⇒ a → [String] → m [String]

chkVars {| Unit |} vs = return vs
chkVars {| Int |} vs = return vs
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chkVars {| Prod a b |} (l :∗: r) vs = chkVars {| a |} l vs>>=chkVars {| b |} r
chkVars {| Sum a b |} (Inl l) vs = chkVars {| a |} l vs
chkVars {| Sum a b |} (Inr r) vs = chkVars {| b |} r vs

chkVars {| Nvariable |} (Variable v) vs
| v ‘elem‘ vs = return vs
| otherwise = fail (”unbound variable: ” ++ v)

chkVars {| case VariablePattern |} (VariablePattern (Variable v)) vs
= return (v:vs) −−polytypic instance for a single constructor

chkVars {| Scope a |} (Scope x) vs = chkVars {| a |} x vs >> return vs

We make use of a Generic Haskell feature in the chkVars example above, which
is not found in Clean: overriding the generic scheme at the constructor level.
Instead of writing code for all constructors of the Npattern type, we only specify
the semantics for the VariablePattern (hence the use of the case keyword) and
let Generic Haskell derive the code for the other alternatives of the type.

4.3 Type Inference

As the compilation process proceeds, syntax tree operations tend to be less
generic and more data specific. Program transformations and code generation,
but also type checking, usually require writing polymorphic instances for almost
all types, since each type must be treated differently. At first sight, it seems as
if polytypic programming is no longer useful to implement such operations. In
this section, we will show that even for more data specific functions a polytypic
definition improves modularity because it splits the specification per type, even
if there is little profit from the automatic derivation mechanism. As an exam-
ple, we specify a type inference algorithm in a polytypic way. Type inference is
much more data specific than any other example in this paper, nevertheless, it
illustrates the way to polytypically specify syntax operations that occur later in
the compilation process.

The algorithm is based on the idea of strictly separating type inference into
the generation of constraints (in the form of type equations), and solving these
constraints by standard unification. We restrict ourselves to the generation part,
which is usually done by traversing the syntax tree and collecting constraints
corresponding to each syntactical construct. Such an algorithm not only takes
the syntax tree as input but also an environment containing type declarations
for functions, constructors, and variables. Moreover, during the generation pro-
cess we sometimes need fresh type variables, e.g., to instantiate a function’s
type scheme or to create local type variables used to express dependencies be-
tween derivations. Therefore, we supply the generation function with a heap data
structure and we use an accumulator to collect type equations. This leads to the
following polytypic function type and auxiliary type definitions.
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data Type = TVar String | TTVar VHeap | TBasic TBasic
| TApp String [Type] | TArr Type Type | TAll [String] Type

data TBasic = TBool | TInt
data Equ = Equ Type Type

type TypeState a = State (VHeap, [Equ]) a −− a state monad

gtype {| t |} :: t → Envs → TypeState Type

The VHeap is used to allocate fresh type variables. Mostly it suffices to gener-
ate unique integers to distinguish different type variables. These fresh variables
are represented by the TTVar-alternative in the definition of Type. The other
alternatives are used to represent type variables, basic types, type constructor
applications, arrow types, and type schemes, respectively.

The type equations are represented as a list of Equ elements. Together with
the VHeap, they form the state of the polytypic function. For convenience, the
implementation of the polytypic gtype function is based on the standard State
monad. For creating fresh variables, and for extending the list of type equations
we introduce the following functions.

freshVar :: TypeState VHeap
freshVar = State {runState = λ(vh, eqs) → (vh, (vh+1, eqs))}

newEqu :: Type → Type → TypeState ()
newEqu dt ot = State

{runState = λ(vh, eqs) → (() , (vh, Equ dt ot:eqs))}

The polytypic instance declarations are straightforward. We chose to interpret
a Prod of two terms as an application of the first to the second. The advantage
is that we can derive the instance for the type Nexpression automatically.

gtype {| Sum a b |} (Inl l) env = gtype {| a |} l env
gtype {| Sum a b |} (Inr r) env = gtype {| b |} r env
gtype {| Prod a b |} (x :∗: y) env = do tx ← gtype {| a |} x env

ty ← gtype {| b |} y env
fv ← freshVar
newEqu (TArr ty (TTVar fv)) tx
return (TTVar fv)

Clearly, there are not many other types for which we use the polytypic version;
most of the instances have to be given explicitly. E.g., for TfunctionId we can
use the following definition:

gtype {| TfunctionId |} (FunctionId name) env
= freshType name (fun_env env)

The overall environment has three separate environments: for functions, for con-
structors, and for type variables.
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type Env = String → Type
data Envs = Envs { fun_env :: Env, cons_env :: Env, var_env :: Env }
The function freshType takes care of the instantiation of the environment type.
It can be defined easily, using the freshVar function, for type variables intro-
duced by a TAll type. Another example is the alternative for Nif. Again, its
definition is straightforward.

gtype {| Nif |} (If Tif c Tthen t Telse e) env = do
tc ← gtype {| Nterm |} c env
newEqu tc (TBasic TBool)
tt ← gtype {| Nterm |} t env
te ← gtype {| Nterm |} e env
newEqu tt te
return tt

Although we have to specify many instances explicitly, it is not inconvenient
to use a polytypic specification: it splits the implementation into compact poly-
typic instances, which are easy to write while the resulting structure of the
algorithm remains clear.

Concluding this section, we want to remark that polytypic programming al-
lowed easy changes to the syntax by adding and rearranging types. Usually,
this was done by adding types and instances to polytypic functions, instead of
rewriting existing instances.

5 Performance of Polytypic Parsers

In this section we investigate the efficiency of the generated parsers for two dif-
ferent grammars/languages. Our elegant types–as-grammar technique is of little
practical use if the resulting programs perform poorly because of the automat-
ically derived code by the polytypic system. Who cares about the advantage of
not having to use an external tool, when the polytypic parsers performs an order
of magnitude worse than parser generator based parsers.

5.1 A Basic Functional Language Parser

The first example is the derived parser for the basic functional language from
Sect. 3. Since we are not interested in lexical analysis, we have tokenized the
test input for the parser manually resulting in a list of 663 tokens representing
45 small functions in this language. The programs under test copy the input list
of tokens 100 times and parse the resulting list 100 times. The results are shown
in Table 1. For Haskell we used Generic Haskell (GH) 1.42, which requires the
GHC 6.2.2 compiler. For Clean we used the Clean 2.1.1 distribution.

All programs were run with a heap size of 256MB. It’s remarkable to see
that the Haskell version used only a quarter of the heap allocated by the Clean
version. At first glance, it might not be clear that the generated executables
are very slow and consume huge amounts of memory. Both Generic Haskell
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Table 1. Performance figures for the derived basic functional language parser, using
Maybe parsers

Execution Garbage Total Total heap
time (s) collection (s) time (s) allocation (MB)

GH+GHC 27.2 1.4 28.6 3,500
Clean 45.0 6.7 51.8 11,600

and Clean have some built-in specific optimization techniques to improve the
performance of the derived functions. Moreover, these derived functions also
benefit from standard optimizations, such as dictionary elimination, higher-order
removal, etc. However, it appears that this is insufficient to obtain any acceptable
performance.

5.2 Improving the Automatically Derived Code

In [7] Alimarine and Smetsers present an optimization technique, called fusion,
of which they claim that it removes all the overhead introduced by the compila-
tion scheme for polytypic functions (developed by Hinze [8]) that is used both in
Generic Haskell and in Clean. Like deforestation, fusion aims at removing inter-
mediate data used for passing information between function calls. This is done
by combining nested pairs of consumer and producer calls into a single function
application, making the construction of intermediate data structures from the
producer to the consumer superfluous.

Fusion is not implemented in the Clean compiler, but incorporated in a sepa-
rate source–to–source translator. The input language for this translator is a basic
functional language extended with syntactical constructs for specifying polytypic
functions. The translator first converts polytypic definitions into ordinary func-
tion definitions and optimizes these generated functions, by eliminating data
conversions that are necessary to convert each object from and to its generic
representation. The optimized output is both Clean and Haskell syntax com-
patible, so it was easy to include performance figures using both compilers as a
back–end. These figures are shown in Table 2.

The programs ran under the same circumstances as those shown in Table 1.
Each test yields a syntax tree consisting of approximately 300, 000 constructors
per iteration. In the optimized Haskell version this leads to an allocation of 12

Table 2. Execution times for the optimized basic functional language parser, using
Maybe parsers

Execution Garbage Total Total heap
time (s) collection (s) time (s) allocation (MB)

Fusion+GHC 4.3 0.03 4.5 340
Fusion+Clean 6.3 0.4 6.7 1,500



156 A. van Weelden, S. Smetsers, and R. Plasmeijer

bytes per node. Representing a similar syntax tree in an imperative language
would require approximately the same number of bytes per node.

5.3 Using Continuation Based Parser Combinators

A nice aspect of our approach, is that the polytypic specification of the parser
in Sect. 3 and the underlying parser combinator library are independent: we
are free to choose different combinators, e.g., combinators that produce better
error messages, without having to adjust the polytypic definitions. To illustrate
this, we replaced the simple Maybe-combinators, by a set of continuation based
parser combinators, which collect erroneous parsings. These are similar to the
combinators by, e.g., Koopman [11] or Leijen and Meijer [12]. Although the error
reporting technique itself is simple, it appears that the results are already quite
accurate. Of course, one can fine-tune these underlying combinators or even
switch to an existing set of advanced combinators, e.g., Parsec [12], without
having to change the polytypic parser definition itself.

Table 3. Execution times for the derived and optimized basic functional language
parser, using continuation based parsers

Execution Garbage Total
time (s) collection (s) time (s)

GH+GHC 137.9 10.2 148.2
Clean 77.3 20.0 97.3
Fusion+GHC 18.6 0.41 19.0
Fusion+Clean 55.5 8.74 64.2

We have tested the unoptimized as well as the optimized version of the con-
tinuation based parser, see Table 3. This time, the figures are more difficult to
explain, in particular if you compare them with the execution times from the pre-
vious tables. In the literature, continuation passing parsers are often presented
as an efficient alternative for the naive combinators. However, our measurements
do not confirm this. The polytypic, as well as the optimized versions, are much
slower than the corresponding parser from the first test set, up to a factor of ten.
One might believe that the additional error information causes this overhead.
However, the loss in efficiency is almost the same when this information is not
included. Apparently, the gain that is obtained by avoiding explicit constructors
and pattern matching is completely undone by the use of continuations and,
therefore, higher-order applications.

5.4 A Haskell 98 Parser

As a second test we have implemented a (nearly) complete Haskell parser, sim-
ply by deriving polytypic parser instances for the Haskell syntax specified as
a collection of algebraic data types. These data types were obtained by a di-
rect conversion of the Haskell syntax specification as given in section 9.5 of the



Polytypic Syntax Tree Operations 157

Haskell 98 Report [2]. Again, we have compared the results for Generic Haskell
and Clean for both the Maybe and the continuation passing combinators. We
also optimized the generic code and compared the performance of all different
versions. The results are shown in Table 4. The parsers were run on an example
input consisting of approximately 500 again manually tokenized lines of Haskell
code, 2637 tokens

An optimization that replaces update-frames with indirections was added to
the Clean run-time system, reducing both heap and stack usage enough too
complete the tests on a 1.5Ghz 512MB Windows PC.

Table 4. Performance figures for the derived and optimized Haskell 98 parser, using
both Maybe and continuation bases parsers

GH+GHC (s) Clean (s) Fusion+GHC (s) Fusion+Clean (s)
Maybe 20.6 17.6 0.03 2.30
CPS 182 15.2 1.12 5.40

These execution times are quite revealing. We can conclude that Generic
Haskell as well as Clean generate extremely inefficient polytypic code. It is doubt-
ful whether these polytypic language extensions are really useful for building
serious applications. However, the optimization tool changes this completely, at
least for Haskell. The performance gain for the Maybe-parsers is even a factor of
700. This test indicates once more that the continuation passing parsers are less
efficient. It is strange to see that for Haskell the difference is much bigger than
for Clean: a factor of 35 and 2, respectively. We do not have an explanation for
the factor of 75 between GHC and Clean for the optimized Maybe-parsers.

We have also compared the efficiency of the optimized parsers with a Haskell
parser generated with the Happy tool [13]. This parser is included in the libraries
of the GHC Haskell compiler we used. The result is surprising: its execution time
is exactly the same as our Fusion+GHC Maybe-parser! To get more significant
results we ran both with 100 times the input (50, 000 lines of Haskell code, using
a 4MB heap). Our parser is five percent faster, but does not have a lexer or
decent error messages. Nonetheless, we believe that this shows that fusion is
really needed and that fusion works for polytypic parsers.

6 Related Work

Parsers are standard examples for polytypic programming (see Jansson and Jeur-
ing [4], Hinze [14]). However, the common definition gives a parser that can only
recognize expressions that can be defined in the corresponding programming lan-
guage itself. This is very natural because the type definitions in a programming
language can be regarded as a kind of grammar defining legal expressions in the
corresponding programming language. We have shown that this also works for
any context-free grammar.
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It has also been shown how a parser for another language can be constructed
from a grammar description. Atanassow, Clarke, and Jeuring [15] construct
parsers for XML from the corresponding DTD description. To the best of our
knowledge this paper is the first that describes the use of algebraic data type
definitions as a grammar for deriving polytypic parsers for arbitrary languages.

There exist other (lazy, functional) parser generator tools and combinator li-
braries [13, 16, 10–12], which may generate better parsers than our approach, due
to grammar analysis or handwritten optimizations. What makes our approach
appealing, is that the tool used to generate the parser is part of the language.
This removes the need to keep your syntax tree data structures synchronized
with an external tool: one can do it within the polytypic functional language,
and efficiently too, using extended fusion.

7 Conclusions

With this paper we have illustrated that polytypic programming techniques, as
offered by the Generic Haskell preprocessor and the Clean compiler, can effec-
tively be used for compiler construction. Additionally, we hope to have illustrated
that the technique is interesting for programming in general.

Polytypic functions are type driven, it is therefore important to know what
can be expressed in a type. In this paper we have shown that context-free gram-
mars can be encoded in a straightforward way using algebraic data types. We
have defined a polytypic parser using a types–as–grammar approach. Using such
a polytypic definition, a parser for an arbitrary context-free language can be
derived automatically. The polytypic function is defined in terms of parser com-
binators, and one can easily switch from one library to another.

Moreover, we have shown how other convenient polytypic post-parsing opera-
tions on the resulting rich syntax tree can be defined, even if not all syntax tree
operations gain much from the polytypic programming style. It gives you the
flexibility of moving data types within larger type structures, mostly by adding
polytypic instances without having to change (much of) the existing code.

Finally, we have shown that optimizations that remove the polytypic overhead
are really necessary to make polytypic programs usable. Currently, polytypic pro-
gramming, in either Generic Haskell or Clean, may be suitable for toy examples
and rapid prototyping but the derived code is definitely not efficient enough for
larger programs. Using the extended fusion optimization technique, the parser’s
efficiency came close to a parser generated by Happy. We believe that fusion
makes polytypic programming for real-world applications possible.
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1. Löh, A., Clarke, D., Jeuring, J.: Dependency-style Generic Haskell. In: Proceedings
of the eighth ACM SIGPLAN International Conference on Functional Program-
ming ICFP’03, ACM Press (2003) 141–152

2. Peyton Jones, S.: Haskell 98 language and libraries: the Revised Report. Cambridge
University Press (2003) http://www.haskell.org/definition/.



Polytypic Syntax Tree Operations 159

3. Alimarine, A., Plasmeijer, R.: A Generic Programming Extension for Clean. In
Arts, T., Mohnen, M., eds.: The 13th International workshop on the Implemen-
tation of Functional Languages, IFL’01, Selected Papers. Volume 2312 of LNCS.,
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Abstract. We report our experiences of programming in the functional
languageSaC[1] anumericalmethod for theKPI (Kadomtsev-Petiviashvili
I)equation.KPIdescribesthepropagationofnonlinearwaves inadispersive
medium. It is an integro-differential, nonlinear equation with third-order
derivatives, and so it presents a noticeable challenge in numerical solution,
as well as being an important model for a range of topics in computational
physics.The latter include: long internalwaves inadensity-stratifiedocean,
ion-acoustic waves in a plasma, acoustic waves on a crystal lattice, and
more. Thus our solution of KPI in SaC represents an experience of solving
a “real” problem using a single-assignment language and as such provides
an insight into the kind of challenges and benefits that arise in using the
functional paradigm in computational applications. The paper describes
the structure and functionality of the program, discusses the features of
functional programming that make it useful for the task in hand, and
touches upon performance issues.

1 Introduction

It is common knowledge that the uptake of the functional programming tech-
nology is impeded by the lack of convincing evidence of the functional paradigm
efficacy and suitability of expression. There is a considerable interest in seeing
so-called ‘real-life’ applications programmed in a functional language, especially
where these implementations show acceptable run-time performance and design
advantages of the functional programming method.

In functional programming, component algorithms, rather than whole prob-
lems, tend to be used as benchmarks. We ourselves evaluated the performance
of the Fast Fourier Transform component in the past [2] and so did the authors
of [3]; paper [4] uses the conjugate gradient method as a benchmark, and the
authors of [5] study the intricacies of matrix multiplication.

There is a significant advantage in using a whole application rather than a
component algorithm as a benchmark. Firstly, it provides a balance of design
patterns that may reflect more adequately the mix of methods, access patterns

A. Butterfield, C. Grelck, and F. Huch (Eds.): IFL 2005, LNCS 4015, pp. 160–177, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and programming techniques characteristic of a real-life programming project.
Secondly, one stands a better chance of discovering situations in which the quality
of expression or indeed the quality of generated code is properly challenged, so
that one may learn some important lessons.

This paper has precisely such intent. We have selected a problem in compu-
tational mathematics which is complex enough to be interesting, yet not too
complex, so that we are able to present the results and explain the design deci-
sions in a short conference paper. The rest of the paper is organised as follows.
The next Section introduces the equation and the solution method, Section 3
discusses the SaC implementation issues, Section 4 presents the conclusions we
have drawn from implementing the solution method in SaC, next Section briefly
discusses our equivalent Fortran code, Section 6 presents the results of perfor-
mance studies involving several platforms and commercial compilers as a basis
for comparison, and finally there are some conclusions.

2 The Equation

For this study we chose a problem that one of the authors had been familiar with
from the time some 20 years back when he was doing his PhD in computational
physics at University of Novosibirsk[6]: a Kadomtsev-Petviashvili equation. The
KPI (Kadomtsev Petviashvili I) has the following canonic form:

∂

∂x

(
∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3

)
− 3

∂2u

∂y2 = 0 .

For computational reasons, it is more convenient to use the equivalent form
of KPI:

∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3 − 3
∫ x

−∞

∂2u

∂y2 = 0

which can be written as

∂u

∂t
= N(u) + L(u) ,

where

N(u) = −6u
∂u

∂x
+ 3

∫ x

−∞

∂2u

∂y2 L(u) =
∂3u

∂x3 ,

are the nonlinear, diffractive part and the dispersion term, respectively.
The KPI model is very general indeed. It describes any physical system in

which waves propagate mostly in one direction, but suffer from diffraction, i.e.
the divergence of a wave packet across the propagation direction; dispersion, i.e.
the widening of the wave along the propagation direction due to different parts
of it propagating at different velocities; and hydrodynamic non-linearity, i.e. the
fact that the wave tends towards steeper and steeper shapes until it either breaks
or the steepening is arrested by the dispersion effects.
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To give an idea of where the KPI model may apply, we quote its original
application to water surface waves[7], its use as a model of ion-acoustic waves in
plasma[8] and the application to string theory in high-energy physics[9], but also
such a down-to-earth area as computing wave-resistance of a ship that travels
at high speed along a waterway [10].

The numerical method for this paper has been borrowed from [11], except the
boundary conditions whose discretisation was not defined there, so we used one
of our own, bearing in mind that its effect on performance is insignificant.

The spatial derivatives in L and N were discretised thus:

−∂3u

∂x3 → −ui+2,j − 2ui+1,j + 2ui−1,j − ui−2,j

2Δx3 ,

∂u

∂x
→ ui+1,j − ui−1,j

2Δx

and
∂2u

∂y2 → ui,j+1 − 2ui,j + ui,j−1

2Δy
.

The integration along x was discretised by Simpson method and modified to
take account of the boundary conditions.

The resulting scheme can be summarized as follows:

un+1/3 = un + γ1ΔtN(un) + α1Δt
L(un+1/3) + L(un)

2
,

un+2/3 = un+1/3 + γ2ΔtN(un+1/3) + ρ1ΔtN(un) + α2Δt
L(un+2/3) + L(un+1/3)

2
,

un+1 = un+2/3 + γ3ΔtN(un+2/3) + ρ2ΔtN(un) + α3Δt
L(un+1) + L(un+2/3)

2
,

which accounts for the Crank-Nicholson representation of the diffractive term
and the conventional Runge-Kutta time-integration to the third order of ac-
curacy. Here all α,γ and ρ are scalar constants chosen to achieve the required
approximation accuracy. The boundary conditions are periodic in y and absorb-
ing ∂2u

∂x2 = 0 in x at both ends of the interval. The upper indices n+1/3, n+2/3,
and n + 1 refer to the 3 substeps of time-integration that make up a full step.

3 Implementation

With the above equations as a starting point, we identify the following tasks.
First of all, since the above scheme is implicit in x, and a 5-point stencil is used
for L, a pentdiagonal solver is required for all three substeps. The solver (which
is a re-write of [12]) is a particular case of the LU-decomposition solver, taking
advantage of the fact that the matrix only has five nonzero diagonals to reduce
the solution complexity from O(n3) down to O(n) by recurrent substitution.
While this algorithm is recurrent in x, it is fully data-parallel in y. Hence we
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decided to produce a one-dimensional implementation of the solver (the recur-
rences in question) which will take as many additional axes as required by the
environment. The number of additional axes in our case would be one, since we
are focusing on the two-dimensional KPI; however the equation itself is defined
for three dimensions as well, hence the aforementioned additional flexibility is
quite important for developing a future-proof program. Next, the pentdiagonal
solver has, naturally, an elimination and a back-substitution phase, of which the
former can be pre-computed (save for the right-hand side), thanks to the lin-
earity of the scheme in the third derivative. Hence we need two functions, one
for the eliminator and one for the rest of the solver. The eliminator is displayed
in Fig. 1. Notice that the code is rank-monomorphic, in that it expects a fixed
rank of its arguments a, b, c, d, e, which are the contents of five nonzero diagonals
of the equation matrix, and in that it produces four fixed-rank arrays. Contrast
that with the main solver, presented in Fig. 2. Here the result has undeclared
rank, which can be 1,2, or more, which is decided on the basis of the shape of the
similarly undeclared right-hand side f . The function pent will ensure that the
shape of the result agrees with the shape of the argument; in any case, only the
first dimension of both f and the result is explicitly referred to in the code. The
very significant advantage of that has been that we could fully test this function
on short one-dimensional data and then use it in the program for 2d arguments
without any uncertainty as to its correctness in that case. Such rank invariance
is not available with conventional array programming using, e.g., Fortran-90.

Similarly we designed a little function for Simpson integration, Fig. 3, which is
rank-invariant, so it could be fully tested in a single dimension and then applied
in two dimensions as the scheme demands.

Figure 14 displays the main program. It defines several constants and creates
the first copy of u, which is the field array, by setting its shape and filling it in
with the known soliton distribution (for which the SaC code is not shown). Next,
it prepares the 5 diagonals a-e for the solver taking into account the boundary
conditions. This results in a code pattern whereby first an array is initialised
with the regular value, and then the boundaries are set by specific definitions.
Notice that the five arrays are in fact two-dimensional, which has nothing to
do with the two dimensions of the KPI equation, but merely reflects the fact
that the numerical scheme has three substeps, so it is convenient to initialize
the diagonals for all three substeps at once (by grouping them into a dimension)
and then use the correct vector at each substep. This is achieved by using a 3-
element vector eps in defining the default value for each of the diagonals. Finally
the eliminator prepent is run for all substeps simultaneously, using the second
dimension of the diagonal arrays.

The actual time stepping is performed by a for-loop at the end of the main
function. During the step the array u is redefined three times, each time with
the corresponding scheme formula. With little difficulty, one can see the original
mathematics by looking at the program. The main discrepancy is the choice of
indices for the constants α,γ and ρ which have to start from 0 since that is the C
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1 inline
double[.], /* p */

3 double[.], /* q */
double[.], /* bet */

5 double [.] /* den */
prepent( double[.] a,

7 double[.] b,
double[.] c,

9 double[.] d,
double[.] e)

11 {
n = shape( a)[0];

13 buf = genarray( [n], undef);
p = buf; q = buf; bet = buf; den = buf;

15

bet [0] = 1.0 / c[0];
17 p[0] = -d[0] * bet [0];

q[0] = -e[0] * bet [0];
19

bet [1] = -1.0 / ( c[1] + b[1] * p[0]);
21 p[1] = ( d[1] + b[1] * q[0]) * bet[1];

q[1] = e[1] * bet [1];
23 den [1] = b[1];

25 for ( i=2; i<n; i++) {
bet[i] = b[i] + a[i] * p[i -2];

27 den[i] = -1.0 / ( c[i] + a[i] * q[i-2] +
bet[i] * p[i-1]);

29 p[i] = ( d[i] + bet[i] * q[i -1]) * den[i];
q[i] = e[i] * den[i];

31 }

33 return( p, q, bet , den);
}

Fig. 1. SaC code of the eliminator of the pentdiagonal solver

convention, while they start from 1 in the algorithm. Other than that, we have
managed to represent the numerical scheme well near ditto.

4 Lessons and Conclusions

First of all, we must report that the programmer on this project is the first author
of the present paper, and that he had no prior experience in SaC programming,
was not associated with the SaC development team (while the other authors
belong to it) and therefore was a good model of a brave ‘computational scientist’,
willing to learn a new language. This was helped further by the fact that the
author in question is a computational scientist by training (up to and including
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inline
2 double [*]
pent ( double[.] p,

4 double[.] q,
double[.] bet ,

6 double[.] den ,
double[.] a,

8 double[.] f)
{

10 n = shape( a)[0];
u = genarray( shape( f), undef);

12 u[0] = f[0] * bet [0];
u[1] = ( den[1] * u[0] - f[1]) * bet[1];

14

for ( i=2; i<n; i++) {
16 u[i] = ( a[i] * u[i-2] + bet[i] * u[i-1] - f[i]) *

den[i];
18 }

u[n-2] = u[n-2] + p[n-2] * u[n-1];
20

for ( i=n-3; i>=0; i--) {
22 u[i] = u[i] + p[i] * u[i+1] + q[i] * u[i+2];

}
24

return( u);
26 }

Fig. 2. The main part of the pentdiagonal solver written in SaC

the doctoral level), with an established research record in this area. Hence the
experiment in SaC coding should be considered relevant, if only small-scale.
There is, of course, a slight inadequacy in that the author in question, while
not being familiar with SaC at the start of the experiment, had taught various
undergraduate subjects pertaining to functional programming, and so cannot
be considered totally unfamiliar, even though a conscious effort was made to
approach the task with a completely open, pragmatically driven mind.

Nevertheless, the first experience to be reported is that

Programming in SaC does not require any re-tuning of the application
programmer’s mental skills.

Indeed, as the code displayed so far suggests, the programmer only uses very
familiar language features:

– definitions, perceived as assignments;
– data-parallel definitions, encoded as so-called with-loops, but which feel

almost like normal elementwise assignment found in Fortran. The differ-
ence, while profound on the conceptual level, is superficial for an applications
programmer.
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inline
2 double [*]
simps( double[*] f,

4 double h)
{

6 r = genarray( shape( f), undef);
n = shape( f)[0];

8 r = with (i)
([0]<=[i]<=[0]) : (11.0*f[0]+14.0* f[1]-f[2])/24.0;

10 ([1]<=[i]<=[n-2]) : (f[i -1]+4.0*f[i]+f[i+1])/3.0;
genarray( [n], 0.0);

12

rs = r[2]; r[2] = r[1]; r[1] = r[0]; r[0] = 0.0;
14

for ( i=3; i<=n-1; i++) {
16 x = r[i];

r[i] = r[i-2] + rs;
18 rs = x;

}
20

return( r * h);
22 }

Fig. 3. The integrator

– functions which, due to the availability of multiple results, feel more like
Fortran procedures with the input and output parameters neatly separated
out.

The conclusion is that SaC does not frighten off a computational scientist to
the extent that fully-fledged functional languages would. There are plenty of
familiar features in SaC, presented in a very slight guise, making the whole
concept of SaC totally nonthreatening. More importantly, the following features
of functional languages do not play any role in SaC, namely

– recursive functions and recursive data structures. Indeed, while the under-
lying mechanisms might be recursive, the appearance of the code is data-
parallel (with-loops) and iterative/recurrent (for-loops). We did not use any
of the generally recursive mechanisms of the functional paradigm.

– higher-order functions. These would be the main kind of “glue” in main-
stream functional programming, and would normally present a considerable
difficulty to a computational scientist, especially where cost intuitions are
essential. A SaC applications programmer does not make any use of these
at all.

To summarise, the reason why a computational scientist would find SaC usable
are the absence of fundamentally unfamiliar concepts and the presence of familiar
ones albeit in a somewhat unusual form.
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The lack of control flow does not preclude “update mentality”, thanks to the
single-assignment rather than non-assignment semantics and terminology, but
requires the programmer to be aware of the two major programming modes:

data-parallel, via with-loops, and recurrent, via for-loops.

The programmer in this experiment felt acutely aware of recurrences. Indeed,
the code shows the importance of recurrent definitions (and their explicit repre-
sentations) quite convincingly. The integration function, the pentdiagonal solver
and even the main computational scheme are all recurrent as well as being data-
parallel. The programmer was assured by the other authors that the for-loop is
translated efficiently by the SaC compiler, so recurrences need not be avoided.
Equally, the programmer was continually aware of the data-parallelism of SaC
constructs. In approaching those, the most important feature turned out to be
rank subtyping, which allowed arrays to be represented in lower dimensions and
consistently used in higher dimensions, as mentioned in the previous Section.
This simplified testing as well as making the code unusually flexible.

Substitutional nature of SaC definitions positively encourages the programmer
to introduce as much notation as may be required to achieve readability and

expressiveness.

Under normal circumstances, the programmer is wary of extra variables in a
program, as these normally cause additional memory allocation and, more im-
portantly, additional memory cycles, synchronisation (if multithreading is used),
cache conflicts, etc. So one’s instinct would be to only use scalar “work” vari-
ables when formulae start to get too large. This applies even more to the use of
functions, since the machinery of local variables and parameter-passing inflicts
additional costs.

SaC, on the other hand, allows the programmer to forget such concerns com-
pletely. Indeed, the programmer in this experiment was assured by the SaC
team that any variables defined in a function will be completely transparent:
data will be “pulled through” them with no additional memory allocation or
synchronisation being at all necessary. The same applies to inlined functions.
They are completely transparent to the code generator of SaC, so it can be
safely assumed that such functions act merely as substitutions at the source
level, both semantically and efficiency-wise. The programmer has found that to
be very useful.

It should be mentioned that the substitutional nature of variable definitions
in SaC liberates the programmer from the duty to assiduously declare every
variable that he may for any reason wish to introduce. Having to declare ev-
ery variable is seen as a virtue in the imperative world: a modern Fortran
programmer writes a proud ”IMPLICIT NONE” in each module to prevent the
compiler from using default types. However if the whole point of a variable is
to denote a chunk of unwieldy expression which happens to have an application
meaning, then there is no reason why that denotation must be fully attributed
and potentially hold memory. It was a refreshing experience to use SaC variables
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as pure notation, not memory address synonyms, for which the functional style
ought to be credited.

5 Fortran Blues

For our performance studies, we have re-implemented the numerical method
in Fortran 90/95 as a basis for comparison. One must note that writing the
same code in Fortran was neither easy nor convenient. The main problem was
that the whole rank structure of the algorithm had to be reconsidered. While,
theoretically, rank polymorphism is available to the user of Fortran 95, in
practice this is severely impeded by the total lack of rank subtyping. It turned
out to be impossible to define a function that takes an argument of a higher
rank and treats it as a uniform collection of lower-rank array components to be
processed componentwise. The only exception is so-called elementwise functions

function simps(f,h)
2 implicit none

DOUBLE PRECISION ,intent(in),dimension (0:XM -1,0:YM -1)::f
4 DOUBLE PRECISION , intent(in) :: h

DOUBLE PRECISION , dimension (0:XM -1,0:YM -1) :: simps
6 DOUBLE PRECISION :: rs, w

8 integer :: i,j

10 do j=0, YM -1
simps(0,j) = (11*f(0,j)+14*f(1,j)-f(2,j))/24*h

12 do i=1,XM -1
simps(i,j) = (f(i-1,j)+4.0*f(i,j)+f(i+1,j))/3*h

14 end do
end do

16

do j=0, YM -1
18 rs=simps(2,j)

simps(2,j)=simps(1,j)
20 simps(1,j)=simps(0,j)

simps(0,j)=0
22

do i=3,XM -1
24 w=simps(i,j);

simps(i,j)=simps(i-2,j)+rs
26 rs=w

end do
28 end do

30 end function

Fig. 4. The Fortran version of the Simpson integrator
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subroutine prepent(a,b,c,d,e,P,Q,BET ,DEN)
2 implicit none

DOUBLE PRECISION ,intent(in),dimension (0:XM -1)::a,b,c,d,e
4 DOUBLE PRECISION ,intent(out),dimension (0:XM -1)::P,Q

DOUBLE PRECISION ,intent(out),dimension (0:XM -1)::BET ,DEN
6

BET (0) = 1/c(0)
8 P(0) = -d(0)* BET (0)

Q(0) = -e(0)* BET (0)
10

BET (1) = -1/(c(1)+b(1)*P(0))
12 P(1) = (d(1)+b(1)*Q(0))*BET (1)

Q(1) = e(1)* BET (1)
14 den (1) = b(1)

16 do i=2, XM -1
BET(i)=b(i)+a(i)*P(i-2);

18 DEN(i)= -1.0/(c(i)+a(i)*Q(i-2)+ BET(i)*P(i -1));
P(i)=(d(i)+BET(i)*Q(i-1))*DEN(i);

20 Q(i)=e(i)*DEN(i);
end do

22 end subroutine

Fig. 5. Elimination in Fortran

that can apply themselves to scalar components. The design ploy referred to
earlier, when a function was defined on 1d arrays and applied to 2d arrays
implicitly along the lower dimension, is not possible in Fortran.

We consequently had to opt for a fixed-rank design, and insert explicit DO-
loops in the code which merely spanned the ranges of unprocessed index variables.
We could have used data-parallel expressions with explicit array sections, but felt
that that would obfuscate the algorithm even more than the extra indices. Figure
5 shows the Fortran version of the integrator, where all the j-loops had to be
inserted into a code otherwise very similar to the one in Fig. 3.

The two parts of the linear solver had to be treated differently: the elimination
stage was programmed as rank 1, see Fig. 5 whilst the back-substitution stage
was made explicitly two-dimensional, Fig. 6.

On the positive side, the code is remarkably close to SaC, which demonstrates
how low the barrier to the functional method would be for anyone involved in
mainstream numerical computing. Such a programmer would only need to un-
learn a few reflexes (avoidance of notation, variable declarations for nonessential
objects, etc.) and perhaps learn a few SaC library functions.

6 Performance

We have measured the runtime of both Fortran and SaC versions of the poro-
gram for varying problem sizes on three platforms: Intel XEON/Linux, AMD
Athlon 64/Linux and Sun UltraSPARC/Solaris.
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function pent(p,q,bet ,den ,a,f)
2 implicit none

DOUBLE PRECISION , intent(in), dimension (0:XM -1) :: p
4 DOUBLE PRECISION , intent(in), dimension (0:XM -1) :: q

DOUBLE PRECISION , intent(in), dimension (0:XM -1) :: bet
6 DOUBLE PRECISION , intent(in), dimension (0:XM -1) :: den

DOUBLE PRECISION ,intent(in),dimension (0:XM -1,0:YM -1)::f
8 DOUBLE PRECISION , dimension (0:XM -1,0:YM -1) :: pent

10 do j=0,YM -1
pent (0,j)=f(0,j)*bet(0)

12 pent (1,j)=(den (1)* pent (0,j)-f(1,j))*bet(1)
end do

14

do i=2, XM -1
16 do j=0,YM -1

pent(i,j)=(a(i)*pent(i-2,j)+bet(i)*
18 *pent(i-1,j)-f(i,j))*den(i)

end do
20 end do

do j=0,YM -1
22 pent(XM -2,j)=pent(XM -2,j)+p(XM -2)* pent(XM -1,j)

end do
24 do i=XM -3,0,-1

do j=0, YM -1
26 pent(i,j)= pent(i,j)+p(i)* pent(i+1,j)+q(i)* pent(i+2,j)

end do
28 end do

end function pent

Fig. 6. Back substitution in Fortran

For the Intel and AMD processors, the Fortran code was compiled using
the Intel Fortran Compiler (or ifort for short) version 9.0. For the SaC pro-
gram, the current research compiler sac2c v1.00-alpha has been used. To yield
comparable results, the Intel C Compiler (or icc for short) version 9.0 served
as the back-end compiler for sac2c. For both Intel compilers the -fast option
was specified to switch on any speed optimisations. Since the -fast option is
currently not supported for AMD Athlon processors, a lesser option -O3 was
used when compiling for these.

The Sun UltraSPARC binaries were built using the Sun Studio Fortran com-
piler (or sfort for short) version 9.0. Again, for the sake of comparability, the
Sun Studio C compiler (or scc for short) version 9.0 was used as the back-end
compiler of sac2c. For both compilers, the -fast option was employed to obtain
optimised binaries.

For all platforms the run-times of both implementations were measured in
three consecutive runs and the average value was used. Values with a deviation
higher than 5% were not considered.
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Fig. 7. Relative runtime of the two KPI implementations on a dual Intel XEON 3.0GHz
machine. The runtime of the Fortran implementation is used as the base value.

Figure 7 shows the measured run-times on a dual Intel XEON 3.0GHz machine
running Red Hat Enterprise Linux. The run-times of the SaC implementation
are given relative to the Fortran run-times which serve as base values. The
problem size is given in elements per axis of the data array which is the largest
array size used within the algorithm. The results show that the SaC implemen-
tation outperforms the Fortran version by about 25%, despite its higher level
of abstraction.
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Fig. 8. Heap usage of the SaC and Fortran implementation in MB, measured on the
Intel XEON machine

To find the reasons of the runtime advantage of the SaC implementation
on the Intel XEON platform, we have measured the heap usage of both im-
plementations for each problem size. Figure 8 gives the details. Obviously, the
SaC implementation has a smaller memory footprint as the Fortran version,
irrespective of the given problem size. A closer analysis reveals that the SaC
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Fig. 9. Heap usage on the Intel XEON machine in multiples of data array size

heap usage is constantly 40% below the Fortran heap usage. This points to
the SaC version of KPI handling memory reuse more efficiently and therefore
requiring fewer simultaneous copies of the data array or intermediate arrays. To
strengthen this assumption, we have calculated the overall heap usage in terms
of multiples of the data array size. The results for both implementations of KPI
are presented in Fig. 9.

The heap size of the Fortran implementation turns out to be about 15 times
the size of the field array u. Given the declaration of 14 auxiliary arrays within
the Fortran source code, this suggests that the Fortran compiler did not
attempt to optimise array allocation. It seems that all arrays were allocated
statically exactly as they have been declared by the programmer.

On the other side, the heap usage of the SaC version of KPI is approximately 9
times the size of the field array, despite liberal use of array expressions associated
with auxiliary variables.

100%

80%

60%

40%

20%

0%
20001000500250

R
el

at
iv

e 
ex

ec
ut

io
n 

tim
e

Simulation size (elements per axis)

ifort sac2c/icc

Fig. 10. Relative runtime of the two KPI implementations on a AMD Athlon 64 2.0GHz
machine. The runtime of the Fortran implementation is used as the base value.
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As a second benchmarking platform, an AMD Athlon 64 2.00GHz machine
running SuSE Linux was used. Figure 10 gives the measured run-times. Similar
to the results for the Intel XEON machine, the SaC implementation outper-
forms the Fortran version of KPI. Note that the advantage of the SaC version
increases from about 7% for small problem sizes to 25% for a 2000 ×2000 data
array.

This gave rise to the question whether low memory usage and high locality
are more important to achieve good run times on the AMD machine than pure
code efficiency. To investigate this further, we enabled a more aggressive version
of With-loop Scalarisation [13] for the sac2c compiler to allow for optimisations
that duplicate code to achieve higher locality and lower memory usage. Figure
11 shows the measured run times. The improvement is at least 10% for all tested
problem sizes.
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Fig. 11. Relative run time of the two KPI implementations on a AMD Athlon 64
2.0GHz machine. The SaC version was explicitly optimised for memory usage by the
compiler. The runtime of the Fortran implementation is used as base value.

As our final benchmarking platform we used a SunFire 15k equipped with
72 UltraSparc III processors running at 900MHz under Sun Solaris. Figure 12
presents the measured run times. As on the AMD Athlon machine, we have mea-
sured two versions of the SaC implementation. The sac2c/scc version was com-
piled using the default settings of the sac2c compiler, whereas for the sac2c/scc
opt version the more aggressive optimisations have been enabled.

To our surprise, the performance figures on the SunFire platform tell a differ-
ent story compared to the cases discussed so far. For the conservatively optimised
version of the SaC implementation, the Fortran version is between 50% and
a factor of 2 faster. The more aggressively optimized version of the SaC imple-
mentation comes far closer to the Fortran version and even exceeds it in speed
for large problem sizes. Compared to the results for the AMD Athlon machine,
the differences between the two SaC versions is more striking. To investigate
whether the performance difference is due to the better heap management of the
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Fig. 13. Heap usage on the SunFire 15K in multiples of data array size

SaC compiler, we measured the heap usage of the aggressively optimised SaC
version and the Fortran version. The results are given in figure 13. Here as
well, we calculated the heap usage in multiplies of the size of the data array.

As the Figure shows, the heap usage of the SaC implementation converges at
5 times the data array size, whereas the Fortran implementation uses about
eleven times the data array size. The huge difference in memory consumption
for small problem sizes can be explained by memory used for initial setup.

An detailed investigation of why the Sun Studio Fortran compiler yields better
runtime results while using more heap space would require close inspection of the
object code and is as such beyond the scope of this paper. Due to the superscalar
nature and large cache sizes of the SPARC processors being used, pipeline and
cache effects may have a large impact on the runtime performance. As the SaC
compiler does not generate machine code directly but instead uses the Sun C
compiler as back end, pipeline and cache optimisations are out of its reach.
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1 int main ()
{

3 dx = 0.1; dy = 0.1; dt = 0.0002;
n = 500; m = 400; x0 = 15.0;

5 alpha = [ 8.0/15.0 , 2.0/15.0 , 1.0/3.0] * dt;
gamma = [ 8.0/15.0 , 5.0/12.0 , 3.0/4.0] * dt;

7 rho = [ -17.0/60.0, -5.0/12.0] * dt;
eps = alpha / ( 4.0* dx*dx*dx);

9 u = with (ij)
(. <= [i,j] <= .) : soliton( dx*tod( i) - x0,

11 dy*tod( i -199));
genarray( [ n, m], undef);

13 a = genarray( [ n], -eps);
a[0] = 0.0; a[1] = 0.0;

15 a[n-2] = 2.0*a[n-3]; a[n-1] = a[n-2];
a = { [i,j] -> a[j,i]};

17 b = genarray( [n], 2.0* eps);
b[0] = 0.0; b[1] = -b[2]; b[n-2] = 3.0*b[n-3];

19 b[n-1] = 2.0*b[n-3]; b = { [i,j] -> b[j,i]};
c = genarray( [n], 1.0);

21 c[0] = c[0]+2.0* eps; c[1] = c[1]+6.0* eps;
c[n-2] = c[n-2] -6.0* eps; c[n-1] = c[n-1] -2.0* eps;

23 c = { [i,j] -> c[j,i]};
d = genarray( [n], -2.0*eps);

25 d[0] = 2.0*d[2]; d[1] = 3.0*d[2];
d[n-2] = -d[n-3]; d[n-1] = 0.0; d = { [i,j] -> d[j,i]};

27 e = genarray( [n], eps);
e[0] = 2.0*e[2]; e[1] = e[0];

29 e[n-2] = 0.0; e[n-1] = 0.0;
e = { [i,j] -> e[j,i]};

31 p, q, bet , den = prepent( a, b, c, d, e);
out = 0;

33 for ( iter =1; iter <100000; iter ++) {
out = display( u, iter , out);

35 Nubase = N( u, dx, dy);
f = u + gamma [0]* Nubase +

37 alpha [0]*0.5*L(u,dx);
u=pent( p[0], q[0], bet[0], den[0], a[0], f);

39 f = u + gamma [1]*N( u, dx, dy) +
rho[0]* Nubase + alpha[1]*0.5* L(u,dx);

41 u = pent( p[1], q[1], bet[1], den[1], a[1], f);
f = u + gamma [2]*N( u, dx, dy) +

43 rho[1]* Nubase+alpha[2]*0.5* L(u,dx);
u = pent( p[2], q[2], bet[2], den[2], a[2], f);

45 }
return( out);

47 }

Fig. 14. The main program of the SaC implementation
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The conclusion to be drawn from these results is twofold. First of all, we have
shown that the SaC compiler is capable of creating binaries in the same runtime
league as two industrial-strength Fortran compilers. Secondly, we have seen
that whether a Fortran implementation or SaC implementation yields better
run times depends on the interplay of the SaC optimisations, the chosen C
compiler and the executing machinery. To what extent the choice of these can
be automated remains unclear and requires further research.

7 Conclusions

The results of a study of application programming in Single Assignment C has
been presented. We have discussed the various design issues, principles and
lessons arising from a programming exercise with a fairly mainstream equation,
using several component methods: a linear solver, a Simpson space integrator and
a Runge-Kutta time integrator. We have found Single Assignment C well-suited
as a tool for developing numerical applications, especially when extensibility is
required for future-proofness. We also found that the resulting code, although
more flexible and easier to write than conventional Fortran, was not dramati-
cally different in appearance, from which we conclude that SaC should present
a low learning barrier to a busy computational scientist.

Finally we have contrasted the SaC code performance with that of an equiv-
alent Fortran code using more than one compiler of commercial strength. We
did that in order to establish whether the computational scientist might be
discouraged from using the proposed methodology by unsatisfactory run-time
efficiency, which could result from a liberal use of the functional programming
method. The performance data we have obtained dispel this concern. In most
cases they show SaC advantage in both speed and space utilisation thanks to a
deeper level of optimisation that the SaC compiler is capable of.

Future work will focus on diversifying the benchmark code base by includ-
ing component methods such as Monte-Carlo, sparse matrix algebra, etc. while
continuing to provide whole application examples and supporting performance
studies. The ultimate goal is to create a body of evidence for the advocacy of
the functional method for computational science as well as the advocacy of the
specific array manipulation methodology developed within the SaC project. Our
hope is that this will help to convince the computation sector to adopt those
methods and techniques in large-scale numerical modelling.
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Abstract. With-loops are versatile array comprehensions used in the
functional array language SaC to implement aggregate array operations
that are applicable to arrays of any rank and shape. We describe the
fusion of with-loops as a novel optimisation technique to improve both
the data locality of compiled code in general and the synchronisation
behaviour of compiler-parallelised code in particular. Some experiments
demonstrate the impact of with-loop-fusion on the runtime performance
of compiled SaC code.

1 Introduction

SaC (Single Assignment C) [1] is a purely functional array processing language
designed with numerical applications in mind. Image processing and computa-
tional sciences are two examples of potential application domains. The language
design of SaC aims at combining generic functional array programming with a
runtime performance that is competitive with low-level, machine-oriented lan-
guages both in terms of execution time and memory consumption.

The programming methodology of SaC essentially builds upon two princi-
ples: abstraction and composition [1,2,3]. In contrast to other array languages,
e.g. Apl [4], J [5], Nial [6], or Fortran-90, SaC provides only a very small
number of built-in operations on arrays. Basically, there are primitives to query
for an array’s shape, for its rank, and for individual elements. Aggregate array
operations (e.g. subarray selection, element-wise extensions of scalar operations,
rotation and shifting, or reductions) are defined in SaC itself. This is done with
the help of with-loops, versatile multi-dimensional array comprehensions. SaC
allows us to encapsulate these operations in abstractions that are universally ap-
plicable (i.e., they are applicable to arrays of any rank and shape). More complex
array operations are not defined by with-loops, but by composition of simpler
array operations. Again, they can be encapsulated in functions that may still
abstract from concrete ranks and shapes of argument arrays.

Following this technique, entire application programs typically consist of var-
ious logical layers of abstraction and composition. This style of programming
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leads to highly generic implementations of algorithms and provides good oppor-
tunities for code reuse on each layer of abstraction. As a very simple example,
consider a function MinMaxVal that yields both the least and the greatest ele-
ment of an argument array. Rather than implementing this functionality directly
using with-loops, our programming methodology suggests to define the func-
tion MinMaxVal by composition of two simpler functions MinVal and MaxVal
that yield the least and the greatest element, respectively.

Direct compilation of programs designed on the principles of abstraction and
composition generally leads to poor runtime performance. Excessive creation
of temporary arrays as well as repeated traversals of the same array are the
main reasons. Separately computing the minimum and the maximum value of
an array A requires the processor to load each element of A into a register twice.
If the array is sufficiently small, it may entirely be kept in the L1 cache and
the second round of memory loads yields cache hits throughout. However, with
growing array size elements are displaced from the cache before temporal reuse
is exploited, and data must be re-fetched from off-chip L2 cache or even main
memory. In fact, the time it takes to compute minimums and maximums of two
values is completely negligible compared with the time it takes to load data
from memory. Therefore, we must expect a performance penalty of a factor of
two when computing the minimum and the maximum of an array in isolation
rather than computing both in a single traversal through memory.

This example illustrates the classical trade-off between modular, reusable code
design on the one hand and runtime performance on the other hand. Whereas
in many application domains a performance degradation of a factor of 2 or more
in exchange for improved development speed, maintainability, and code reuse
opportunities may be acceptable, in numerical computing it is not. Hence, in
our context abstraction and composition as software engineering principles are
only useful to the extent to which corresponding compiler optimisation technol-
ogy succeeds in avoiding a runtime performance penalty. What is needed is a
systematic transformation of programs from a representation amenable to hu-
mans for development and maintenance into a representation that is suitable for
efficient execution on computing machinery.

In the past, we have developed two complementary optimisation techniques
that avoid the creation of temporary arrays at runtime: with-loop-folding [7]
and with-loop-scalarisation [8]. In our current work we address the problem
of repeated array traversals, as illustrated by the MinMaxVal example. We pro-
pose with-loop-fusion as a novel technique to avoid costly memory traversals
at runtime. To make fusion of with-loops feasible, we extend the internal rep-
resentation of with-loops in order to accomodate the computation of multiple
values by a single with-loop, which we call multi-operator with-loop. We intro-
duce with-loop-fusion as a high-level code transformation on intermediate SaC
code. While the essence of fusion is formally defined in a very restricted setting,
we introduce additional pre- and postprocessing techniques that broaden the
applicability of fusion and improve the quality of fused code.
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The remainder of this paper is organised as follows. Section 2 provides a brief
introduction into with-loops. In Section 3 we extend the internal representation
of with-loops to multi-operator with-loops. The base case for with-loop-fusion
is described in Section 4. More complex cases are reduced to the base case using
techniques described in Section 5 and post-fusion optimisations in Section 6.
Section 7 illustrates the combined effect of the various measures on a small case
study while Section 8 reports on a series of experiments. In Section 10 we draw
conclusions and outline directions of future research.

2 With-Loops in SAC

As the name suggests, SaC is functional subset of C, extended by multi-dimen-
sional arrays as first class citizens. We have adopted as much of the syntax of
C as possible to ease adaptation for programmers with a background in imper-
ative programming, the prevailing paradigm in our targeted application areas.
Despite its C-like appearance, the semantics of SaC code is defined by context-
free substitution of expressions. “Imperative” language features like assignment
chains, branches, or loops are semantically explained and internally represented
as nested let-expressions, conditional expressions, and tail-end recursive func-
tions, respectively. Nevertheless, whenever SaC code is syntactically identical to
C code, the functional semantics of SaC and the imperative semantics of C also
coincide. Therefore, the programmer may keep his preferred model of thinking,
while the SaC compiler may exploit the functional semantics for advanced op-
timisations. Space limitations prevent us from further elaborating on the design
of SaC, but a rule of thumb is that everything that looks like C also behaves
as in C. More detailed introductions to SaC and its programming methodology
may be found in [1,2,3].

In contrast to other array languages SaC provides only a very small set of
built-in operations on arrays. Basically, they are primitives to retrieve data per-
taining to the structure and contents of arrays, e.g. an array’s rank (dim(array)),
its shape (shape(array)), or individual elements (array[index-vector]). Aggre-
gate array operations are specified in SaC itself using powerful array compre-
hensions, called with-loops. Their syntax is defined in Fig. 1.

WithExpr ⇒ with Generator : Expr Operation
Generator ⇒ ( Expr <= Identifier < Expr [Filter ] )
Filter ⇒ step Expr [ width Expr ]
Operation ⇒ genarray ( Expr [ , Expr ] )

| fold ( FoldOp , Expr )

Fig. 1. Syntax of with-loop expressions

A with-loop is a complex expression that consists of three parts: a generator,
an associated expression and an operation. The operation determines the overall
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meaning of the with-loop. There are two variants: genarray and fold. With
genarray( shp, default) the with-loop creates a new array of shape shp .
With fold( foldop, neutral) the with-loop specifies a reduction operation
with foldop being the name of an appropriate associative and commutative
binary operation with neutral element neutral .

The generator defines a set of index vectors along with an index variable rep-
resenting elements of this set. Two expressions, which must evaluate to integer
vectors of equal length, define lower and upper bounds of a rectangular index
vector range. For each element of this set of index vectors the associated expres-
sion is evaluated. Depending on the variant of with-loop, the resulting value is
either used to initialise the corresponding element position of the array to be
created (genarray) or it is given as an argument to the fold operation (fold).
In the case of a genarray-with-loop, elements of the result array that are not
covered by the generator are initialised by the (optional) default expression in
the operation part. For example, the with-loop
with ([1,1] <= iv < [3,4]) : iv[0] + iv[1]
genarray( [3,5], 0)

yields the matrix
0 0 0 0 0
0 2 3 4 0
0 3 4 5 0

. The generator in this example with-loop defines

the set of 2-element vectors in the range between [1,1] and [3,4]. The index
variable iv represents elements from this set (i.e. 2-element vectors) in the as-
sociated expression iv[0] + iv[1]. Therefore, we compute each element of the
result array as the sum of the two components of the index vector, whereas the
remaining elements are initialised with the value of the default expression. The
with-loop
with ([1,1] <= iv < [3,4]) : iv[0] + iv[1]
fold( +, 0)

sums up all non-zero elements of the above matrix and evaluates to 21. An
optional filter may be used to further restrict generators to periodic grid-like
patterns, e.g.,
with ([1,1] <= iv < [3,8] step [1,3] width [1,2]) : 1
genarray( [3,10], 0)

yields the matrix
0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 1 0 0
0 1 1 0 1 1 0 1 0 0

.

3 Multi-operator With-Loops

The aim of with-loop-fusion is to avoid the repeated traversal of argument ar-
rays by computing multiple values in a single sweep. Hence, a major prerequisite
for fusion is the ability to represent the computation of multiple values by a sin-
gle with-loop. Regular with-loops, as described in the previous section, define
either a single array or a single reduction value. To overcome this limitation we
extend the internal representation of with-loops to multi-operator with-loops,
as illustrated in Fig. 2.
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MultiOpWith ⇒ with [Generator : Expr [ , Expr ]* ]+[Operation ]+
Generator ⇒ ( Expr <= Identifier < Expr [Filter ] )
Filter ⇒ step Expr [ width Expr ]
Operation ⇒ genarray ( Expr )

| fold ( FoldOp , Expr )

Fig. 2. Pseudo syntax of multi-operator with-loop expressions

Internal multi-operator with-loops differ from language-level with-loops in
various aspects:
– They have a non-empty sequence of operations rather than exactly one.
– They have a non-empty sequence of generators rather than exactly one.
– Each generator is associated with a non-empty, comma-separated list of ex-

pressions rather than a single one.
– There is no default expression in genarray operations.

In the internal representation of with-loops, the default case is made explicit
by creating a full partition of the index space. If necessary, additional generators
are introduced that cover those indices not addressed by the original generator.
These generators are explicitly associated with the default expression. A side
condition not expressed in Fig. 2 is that all generators must be associated with
the same number of expressions, and this number must match the number of
operations. More precisely, the first operation corresponds to the first expression
associated with each generator, the second operation corresponds to each second
expression, etc. For example, the function MinMaxVal from the introduction can
be specified by the following multi-operator with-loop for argument arrays of
any rank and shape:
int, int MinMaxVal( int[*] A)
{

Min, Max = with (0*shape(A) <= iv < shape(A)) : A[iv], A[iv]
fold( min, MaxInt())
fold( max, MinInt());

return( Min, Max);
}

The multi-operator with-loop yields two values, which are bound to two vari-
ables using simultaneous assignment. While this simple example only uses fold
operations, fold and genarray operations are generally mixed. We do not fea-
ture multi-operator with-loops on the language level because they run counter
the idea of modular generic specifications. We consider the above representation
of MaxMinVal the desired outcome of an optimisation process, not a desirable
implementation.

4 With-Loop-Fusion — The Base Case

In the following we describe with-loop-fusion as a high-level code transforma-
tion. The base case for optimisation is characterised by two with-loops that



With-Loop Fusion for Data Locality and Parallelism 183

have the same sequence of generators and no data dependence (i.e., none of the
variables bound to individual result values of the first with-loop is referred to
within the second with-loop). A formalisation of with-loop-fusion for this base
case is shown in Fig. 3. We define a transformation scheme

WLFS[[pattern]] = expr | guard

that denotes the context-free replacement of an intermediate SaC program frag-
ment pattern pattern by the instantiated SaC expression expr provided that the
guard expression guard evaluates to true.

With-loop-fusion systematically examines intermediate SaC code to identify
pairs of suitable with-loops. The guard condition for applying WLFS is two-
fold. Firstly, all operation parts of type genarray must refer to the same shape.
Secondly, the two with-loops under consideration must be free of data depen-
dences. For the formalisation of this property we employ a function FV that
yields the set of free variables of a given SaC expression. The third prerequi-
site (i.e. the equality of the generator sequences) is expressed by using the same
identifiers in the pattern part of the transformation scheme. Here, we ignore
the fact that generators actually form a set rather than a sequence in order to
simplify our presentation. In the implementation we resolve the issue by keeping
generators sorted in a systematic way.

Since with-loop-fusion can be applied repeatedly, we define the transforma-
tion scheme WLFS on multi-operator with-loops. Hence, Ids(a) matches a
non-empty, comma-separated list of identifiers rather than a single identifier. No
special treatment of language-level with-loops is required. If all conditions are
met, WLFS takes two assignments with with-loops on their right hand sides
and concatenates

1. the sequences of assigned identifiers,
2. the sequences of expressions associated with each generator, and
3. the sequences of operations.

Intermediate SaC code is represented in a variant of static single assignment
form [9]. Therefore, index variables used in the two with-loops to be fused have
different names. In the transformation scheme WLFS we address this issue by
keeping the index variable of the first with-loop. All associated expressions that
originally stem from the second with-loop are systematically α-converted to
use the index variable of the first with-loop, too. In Fig. 3, this is denoted by
[expr]iv

(a)

iv(b) meaning that all free occurrences of iv(b) in expr are replaced by iv(a).
The transformation scheme WLFS as presented in Fig. 3 is meaning-preserv-

ing as it preserves the one-to-one correspondence between associated expressions,
with-loop operations, and bound variables. In the absence of data dependences,
the associated expressions and operations of the second with-loop may safely be
moved out of the scope of the identifiers bound by the first with-loop without
penetrating the static binding structure.
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WLFS
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Ids(a) ∩
kS

i=1

nS
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FV( expr
(b)
i,j ) = ∅

Fig. 3. Basic with-loop-fusion scheme

5 Enabling With-Loop Fusion

The transformation scheme WLFS, as outlined in the previous section, is only
applicable in a very restricted setting. In particular, adjacency in intermediate
code and the need for identical generator sets are difficult to meet in practice.
Instead of extending our existing transformation scheme to cover a wider range
of settings, we accompany WLFS by a set of preprocessing code transformations
that create application scenarios.
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Intermediate code between two with-loops under consideration for fusion
must be moved ahead of the first with-loop if it does not reference any of the
variables bound by it. The remaining code must be moved below the second
with-loop if it does not bind variables referenced within the second with-loop.
Any remaining code constitutes an indirect data dependence between the two
with-loops and prevents their fusion. The referential transparency of a single
assignment language like SaC substantially facilitates code reorganisation and
is one prerequisite to make with-loop-fusion effective in practice.
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Fig. 4. Intersection of generators

We unify generator sets of two with-loops by systematically computing inter-
sections of each pair of generators from the first and from the second with-loop.
This code transformation is formalised by the compilation scheme IS, defined in
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Fig. 4. IS takes two arguments: firstly, the with-loop whose generator set is to
be refined and, secondly, the with-loop which is under consideration for later fu-
sion. Each generator of the first with-loop is associated with the entire sequence
of generators of the second with-loop. The auxiliary scheme GEN effectively
maps the generator/expression pair that originates from the first with-loop to
each generator originating from the second with-loop. Finally, the auxiliary
scheme CUT defines the intersection between two individual generators. For the
sake of clarity we restrict our presentation to generators without step and width
specifications and refer to [10] for more details.

The resulting number of generators equals the product of the numbers of
generators of the individual with-loops. However, in practice many of the po-
tential generators refer to empty index sets. Therefore, we add another auxiliary
scheme ELIM that identifies and eliminates these generators. In addition, we
use a compile time threshold on the number of generators in fused with-loops
to prevent accidental code explosion in rare cases. We illustrate the unification
of generator sets in Fig. 5. We start with two language-level with-loops and as
a first step introduce additional generators that make each with-loop’s default
rule explicit. In a second step, we unify the two generator sets by computing all
pairwise intersections between generators, and, eventually, we apply with-loop-
fusion itself.

Another common obstacle to with-loop-fusion are data dependences between
with-loops. If the sets of generators are sufficiently simple or similar to make
fusion feasible, it is often beneficial to eliminate the data dependence by a for-
ward substitution of associated expressions of the first with-loop into the second
with-loop. More precisely, we analyse the second with-loop and replace every
reference to an element of an array defined by the first with-loop with the
corresponding defining expression.

Technically, the forward substitution of expressions from one with-loop into
another resembles with-loop-folding. However, it is of little help here as with-
loop-folding only performs the forward substitution of an associated expression
if the original with-loop eventually becomes obsolete in order to avoid duplica-
tion of work. Exactly this prerequisite is not met in a fusion scenario because the
values defined by both with-loops under consideration are necessarily needed in
subsequent computations. However, if we are sure to apply with-loop-fusion as
well and if the second with-loop solely references elements of the first with-loop
at the position of the index variable, we can guarantee that the duplication of
work introduced by forward substitution will be undone by subsequent transfor-
mations. This is demonstrated by means of a more realistic example, which we
discuss in Section 7.

6 Post-fusion Optimisations

After successful fusion of with-loops, generators are associated with multiple
expressions. The expressions themselves, however, are left unmodified. Taking
the definition of the function MinMaxVal introduced in Section 3 as an example,
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A = with ([1,1] <= iv < [6,6]) : 0
genarray( [9,9], 1);

B = with ([2,3] <= iv < [6,6]) : 2
genarray( [9,9], 3);

⇓ Making default rule explicit ⇓
A = with ([0,0] <= iv < [1,9]) : 1

([1,0] <= iv < [6,1]) : 1
([1,1] <= iv < [6,6]) : 0
([1,6] <= iv < [6,9]) : 1
([6,0] <= iv < [9,9]) : 1

genarray( [9,9]);

B = with ([0,0] <= iv < [2,9]) : 3
([2,0] <= iv < [6,3]) : 3
([2,3] <= iv < [6,6]) : 2
([2,6] <= iv < [6,9]) : 3
([6,0] <= iv < [9,9]) : 3

genarray( [9,9]);

⇓ Computing intersections ⇓
A = with ([0,0] <= iv < [1,9]) : 1

([1,0] <= iv < [6,1]) : 1
([1,1] <= iv < [2,6]) : 0
([1,6] <= iv < [6,9]) : 1
([2,1] <= iv < [6,3]) : 0
([2,3] <= iv < [6,6]) : 0
([6,0] <= iv < [9,9]) : 1

genarray( [9,9]);

B = with ([0,0] <= iv < [1,9]) : 3
([1,0] <= iv < [6,1]) : 3
([1,1] <= iv < [2,6]) : 3
([1,6] <= iv < [6,9]) : 3
([2,1] <= iv < [6,3]) : 3
([2,3] <= iv < [6,6]) : 2
([6,0] <= iv < [9,9]) : 3

genarray( [9,9]);

⇓ Fusing with-loops ⇓
A,B = with ([0,0] <= iv < [1,9]) : 1, 3

([1,0] <= iv < [6,1]) : 1, 3
([1,1] <= iv < [2,6]) : 0, 3
([1,6] <= iv < [6,9]) : 1, 3
([2,1] <= iv < [6,3]) : 0, 3
([2,3] <= iv < [6,6]) : 0, 2
([6,0] <= iv < [9,9]) : 1, 3

genarray( [9,9])
genarray( [9,9]);

Fig. 5. Example illustrating the systematic intersection of generators
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fusion has changed the order in which elements of the argument array A are
accessed, but the number of accesses is still the same. This change in the order
of memory accesses improves temporal locality. In fact, every second access is
guaranteed to be an L1 cache hit. Nevertheless, it would be even more desirable
to avoid the second memory access at all and to directly take the value from the
destination register of the first memory load.

Min, Max = with (0*shape(A) <= iv < shape(A)) : A[iv], A[iv]
fold( min, MaxInt())
fold( max, MinInt());

⇓ Abstraction into local assignment block ⇓
Min, Max = with (0*shape(A) <= iv < shape(A)) : { tmp1 = A[iv];

tmp2 = A[iv];
}: tmp1, tmp2

fold( min, MaxInt())
fold( max, MinInt());

⇓ Conventional optimisations ⇓
Min, Max = with (0*shape(A) <= iv < shape(A)) : { tmp1 = A[iv];

}: tmp1, tmp1
fold( min, MaxInt())
fold( max, MinInt());

Fig. 6. Illustration of post-fusion optimisation

Unfortunately, our current representation, which associates a sequence of un-
related expressions with each generator, effectively hinders our standard opti-
misations to further improve the code. Therefore, we introduce a block of local
variable bindings between each generator and its associated expressions. At the
same time, we restrict these expressions to be identifiers bound in that block.
Fig. 6 illustrates this transformation by means of the MinMaxVal example. Here,
we assume tmp1 and tmp2 to be fresh, previously unused identifiers. This rather
simple postprocessing step allows us to apply the full range of optimisation
techniques available in SaC. In the example common subexpression elimination
and variable propagation succeed in reducing the effective number of memory
references by one half.

7 Case Study

We illustrate the various code transformation steps involved in with-loop-fusion
by means of a small case study. Fig. 7 shows a dimension-invariant SaC imple-
mentation of a simple convolution algorithm with periodic boundary conditions
and convergence test. Within the function convolutionwe iteratively compute a
single relaxation step (relax) and evaluate a convergence criterion (continue).
Relaxation with periodic boundary conditions is realised by rotating the ar-
gument array one element clockwise and one element counterclockwise in each
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dimension. The convergence criterion continue yields true iff there is an index
position for which the absolute difference of the corresponding values in argu-
ment arrays A and B exceeds the given threshold eps. All array operations are
imported from the SaC standard array library and are themselves implemented
in SaC by means of with-loops.

double[+] relax (double[+] A)
{

for (i=0; i<dim(A); i+=1) {
R = R + rotate( i, 1, A) + rotate( i, -1, A);

}

return( R / (2 * dim(A) + 1));
}

bool continue (double[+] A, double[+] B, double eps)
{

return( any( abs( A - B) > eps));
}

double[+] convolution (double[+] A, double eps)
{

do {
B = A;
A = relax( B);

}
while (continue( A, B, eps));

return( A);
}

Fig. 7. Dimension-invariant specification of convolution

Specialisation of the dimension-invariant code to a concrete shape of argument
arrays and preceding optimisations, mostly function inlining and with-loop fold-
ing, lead to the intermediate SaC code shown on top of Fig. 8. In each iteration
of the convolution algorithm we essentially compute the relaxation step by a sin-
gle genarray-with-loop and the convergence test by a single fold-with-loop.
For illustrative purposes we assume a specialisation to 9-element vectors.

Fig. 8 illustrates the various steps required for even this simple example to
achieve successful fusion of the two with-loops. The first step is the unification
of the two generator sequences. The single generator of the fold-with-loop is
split into three parts and the associated expression is duplicated accordingly,
as described in Section 5. Unfortunately, the result of the relaxation step is
required for evaluating the convergence test. This data dependence still pre-
vents with-loop fusion. We eliminate it by replacing the reference to array A
in the fold-with-loop by the corresponding expression that defines the value
of this element of A in the genarray-with-loop. As the corresponding genera-
tors from both with-loops are treated in the same way from here on, we show
only one.



190 C. Grelck, K. Hinckfuß, and S.-B. Scholz

A = with ([0]<=iv<[1]): (B[iv+8]+B[iv]+B[iv+1])/3
([1]<=iv<[8]): (B[iv-1]+B[iv]+B[iv+1])/3
([8]<=iv<[9]): (B[iv-1]+B[iv]+B[iv-8])/3

genarray( [9]);
c = with ([0]<=jv<[9]): abs(A[jv]-B[jv])>=eps

fold( ||, false);

⇓ Generator unification ⇓
A = with ([0]<=iv<[1]): (B[iv+8]+B[iv]+B[iv+1])/3

([1]<=iv<[8]): (B[iv-1]+B[iv]+B[iv+1])/3
([8]<=iv<[9]): (B[iv-1]+B[iv]+B[iv-8])/3

genarray( [9]);
c = with ([0]<=jv<[1]): abs(A[jv]-B[jv])>=eps

([1]<=jv<[8]): abs(A[jv]-B[jv])>=eps
([8]<=jv<[9]): abs(A[jv]-B[jv])>=eps

fold( ||, false);

⇓ Data dependence elimination ⇓
A = with ...

([1]<=iv<[8]):(B[iv-1]+B[iv]+B[iv+1])/3
genarray( [9]);

c = with ...
([1]<=jv<[8]): abs(((B[jv-1]+B[jv]+B[jv+1])/3)-B[jv])>=eps

fold( ||, false);

⇓ With-loop fusion ⇓
A,c = with ...

([1]<=iv<[8]): (B[iv-1]+B[iv]+B[iv+1])/3,
abs(((B[iv-1]+B[iv]+B[iv+1])/3)-B[iv])>=eps

genarray( [9])
fold( ||, false);

⇓ Abstraction into local assignment block ⇓
A,c = with ...

([1]<=iv<[8]):
{ tmp1 = (B[iv-1]+B[iv]+B[iv+1])/3;

tmp2 = abs(((B[iv-1]+B[iv]+B[iv+1])/3)-B[iv])>=eps
}: tmp1, tmp2

genarray( [9])
fold( ||, false);

⇓ Conventional optimisations ⇓
A,c = with ...

([1]<=iv<[8]):
{ tmp0 = B[iv];

tmp1 = (B[iv-1]+tmp0+B[iv+1])/3;
tmp2 = abs(tmp1-tmp0)>=eps;

}: tmp1, tmp2
genarray( [9])
fold( ||, false);

Fig. 8. Illustration of fusion steps for convolution example
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We now apply with-loop fusion as defined in Section 4. Abstraction of subex-
pressions into a joint block of local variable bindings, as described in Section 6,
follows next. This opens up a plethora of further optimisation opportunities.
Most notable, common subexpression elimination avoids the repeated compu-
tation of the relaxation step introduced when eliminating the data dependence
between the two initial with-loops. The overall outcome of this sequence of code
transformations is an intermediate code representation that computes both the
relaxation step and the convergence test in a single sweep.

8 Experimental Evaluation

We have conducted several experiments in order to quantify the impact of with-
loop-fusion on the runtime performance of compiled SaC code. Our test system
is a 1100MHz Pentium III based PC running SuSE Linux, and we used gcc 3.3.1
as backend compiler to generate native code.

The first experiment involves our initial motivating example: computing mini-
mum and maximum values of an array. Fig. 9a shows runtimes for three different
problem sizes with and without application of with-loop-fusion. As expected,
there is almost no improvement for very small arrays. The benefits of fusion in
this example are two-fold. We do save some loop overhead, but our experiments
show this to be marginal. Therefore, the main advantage of fusion in this example
is that we can avoid one out of two memory accesses. However, as long as an
argument array easily fits into the L1 cache of the processor, the penalty turns
out to be negligible. As Fig. 9a shows, this situation changes in steps as the array
size exceeds L1 and later L2 cache capacities. In the latter case, with-loop-fusion
reduces program execution time by almost 50%.
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25%
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Fig. 9. Impact of with-loop-fusion on program execution times for computing mini-
mum and maximum element values (left), convolution with periodic boundaries and
convergence test (centre), and the SPEC benchmark tomcatv (right) for varying prob-
lem sizes

Our second benchmark is the convolution algorithm used as a case study in
Section 7. Fig. 9b shows our measurements. For a small problem size fusion again
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has no visible impact on performance, but with growing problem size a nearly
25% reduction can be observed. While this is truly a substantial performance
gain, we had anticipated more. For the given example, with-loop-fusion should
reduce the number of memory load operations in the inner loop from 5 (3 in
the relaxation kernel and 2 in the convergence criterion) to only 3. Keeping in
mind that this numerical kernel is fully memory bound, one would expect a
speedup of 40% rather than only 25%. However, a closer look at the generated
assembly code revealed that both short and simple loop kernels in the non-fused
case exclusively operate on registers, whereas the larger and more complex loop
kernel derived from the fused code partially operates on the stack. This explains
the sub-optimal performance gain observed.

The last experiment is based on a SaC implementation of the SPEC bench-
mark tomcatv. As shown in Fig. 9c, substantial performance gains can be ob-
served for this benchmark with growing problem size. Improvements of up to
80% must be attributed to the fact that unlike in the previous examples more
than two with-loops are fused at a time.

Having demonstrated the significant performance impact of with-loop-fusion,
it would be similarly interesting to see how many application cases exist across
a representative suite of programs. However, the answer critically depends on
programming style. In fact, we consider with-loop-fusion, as with-loop-folding
and with-loop-scalarisation, an enabling technology to make our propagated
programming methodology based on the principles of abstraction and composi-
tion feasible in practice. Rather than generally improving the runtime behaviour
of existing programs, with-loop-fusion eliminates the performance penalty of
compositional specifications and, thus, enables us to write code that is easier to
maintain and to reuse without sacrificing performance.

9 Related Work

With-loop-fusion is the third and last missing optimisation technique to system-
atically transform generic SaC programs into efficiently executable code. It is
orthogonal to our previously proposed optimisations, with-loop-folding [7] and
with-loop-scalarisation [8], in the sense that each of the three optimisations ad-
dresses a specific type of composition. With-loop-folding resolves vertical com-
positions of with-loops, where the result of one array operation becomes the
argument of subsequent array operations (i.e., program organisation follows a
producer-consumer pattern). With-loop-scalarisation addresses nested compo-
sitions of with-loops, where for each element of the set of indices of an outer
with-loop a complete inner with-loop is evaluated (i.e., in each iteration of the
outer with-loop a temporary array is created). Thus, both with-loop-folding
and with-loop-scalarisation aim at avoiding the actual creation of temporary
arrays at runtime. In contrast, with-loop-fusion addresses with-loops that are
unrelated in the data flow graph or that can be made so by preprocessing tech-
niques. In this case, fusion of with-loops does not change the number of data
structures created at runtime, but it reduces some loop overhead and — most
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important — it changes the order of references into existing arrays in a way that
improves data locality in memory hierarchies.

The wish to avoid the repeated traversal of large data structures is neither
specific to generic array programming in general nor to SaC in particular. In the
context of algebraic data types tupling [11] has been proposed to avoid repeated
traversals of list- and tree-like data structures. Rather than gathering two values
from the same data structure one after the other, tupling aims at gathering the
tuple of values in a single traversal, hence the name. Whereas, the underlying
idea essentially is the same in tupling and with-loop-fusion the different settings
make their concrete appearances fairly different.

Fusion techniques have a long tradition in research on implementation of func-
tional languages [12,13,14,15]. The growing popularity of generic programming
techniques [16,17] has created additional optimisation demand [18]. All these
approaches follow the mainstream of functional languages in that they focus on
lists or on algebraic data types. Much less work has been devoted to arrays, one
exception being functional array fusion [19]. All these techniques aim at iden-
tifying and eliminating computational pipelines, where a potentially complex
intermediate data structure is synthesised by one function for the sole purpose
to be analysed by another function later on. In contrast, the objective of with-
loop-fusion is not the elimination of intermediate data structures, which in SaC
is taken care of by with-loop-folding [7]. The essence of with-loop-fusion is more
similar to the aims of traditional loop fusion in high performance computing in
reducing loop overhead and the size of memory footprints.

There is a plethora of work on fusion of Fortran-style do-loops [20,21,22,23].
While the intentions are similar to the objectives of with-loop-fusion, the setting
is fairly different. Despite their name, our with-loops represent potentially com-
plex array comprehensions with abstract descriptions of multi-dimensional index
spaces rather than conventional loops. Whereas with-loops define the compu-
tation of an aggregate value in an abstract way, do-loops merely define a control
flow that leads to a specific sequence of read and write operations. Since the
fusion of do-loops changes this sequence a compiler must be sure that both the
old and the new sequence are semantically equivalent and that the new sequence
is beneficial with respect to some metric. Both require the compiler to develop
a deeper understanding of the programmer’s intentions. Consequently, much of
the work on loop fusion in Fortran is devoted to identification of dependences
and anti-dependences on a scalar or elementary level. In contrast, the functional
setting of SaC rules out anti-dependences and discloses the data flow. Rather
than reasoning on the level of scalar elements, with-loop-fusion addresses the
issue on the level of abstract representations of index spaces.

10 Conclusion and Future Work

Engineering application programs based on the principles of abstraction and
composition as in SaC leads to well-structured and easily maintainable software.
However, the downside of this approach is that it requires non-trivial compilation
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techniques which systematically restructure entire application programs into a
form that allows for efficient execution on real computing machinery.

In the current work, we have described with-loop-fusion as one mosaic stone
of this code restructuring compiler technology. With-loop-fusion takes two
with-loops and transforms them into a single generalised variant named multi-
operator with-loop, which we have introduced as a compiler internal intermedi-
ate code representation for exactly this purpose. The positive effect of with-loop
fusion is to avoid repeated traversals of the same array and replace memory load
and store operations by equivalent but much faster register accesses. In several
experiments we have demonstrated the potential of with-loop-fusion to achieve
substantial reductions of execution times. In fact, it has proved to be a major
prerequisite to make the modular programming style of SaC feasible in practice.

Individual with-loops also form the basis of compiler-directed parallelisation
of SaC programs following a data parallel approach [24]. Like folding and scalar-
isation with-loop-fusion has the effect to concentrate computational workload
scattered throughout multiple with-loops within a single one. Therefore, with-
loop-fusion also improves the quality of parallelised code by reducing the num-
ber of synchronisation barriers and the need for communication. Furthermore,
dealing with larger computational workload improves both the quality and the
efficiency of scheduling workload to processing units.

In the future, we plan to extend with-loop-fusion to handle genarray-with-
loops that define arrays of non-identical shape. The idea is to create a joint
with-loop whose generators cover the convex hull of the individual with-loop’s
index spaces. Index positions not existing in one or another result array would
be associated with a special value none and ignored by compiled code. Another
area of future research is the selection of with-loops for fusion. As fusion of two
with-loops may prevent further fusion with a third with-loop, we may want to
identify the most rewarding optimisation cases on the basis of heuristics.
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Abstract. This paper describes a document-centered environment for
Haskell that is aimed at making the language accessible to a broad range
of end users. In this environment (named Vital), Haskell modules are
presented as documents with the values they define displayed in place
textually or graphically (as ‘views’). An end user, who may have only a
superficial knowledge of Haskell, is able to edit a program (for example,
manipulating literal values of complex, user-defined ADTs) by interact-
ing with these views. The representation of an ADT and the range of
interactions possible with it (that is, its ‘look and feel’) are open-ended
and are defined (by an expert user) in terms of Haskell type classes
and implemented by a mechanism that employs a specialised form of
reflection.

1 Introduction

A document-centered environment (DCE) is one in which both the program and
the results it produces are presented to the user in the form of an integrated
document that supports direct manipulation. This term means that editing op-
erations are carried out on visual representations of the data, that they take
effect immediately and that they are easily reversible.

Usually the underlying language used in a DCE is declarative in nature. This
means that there is no hidden state to take account of and there is no layout-
defined order in which the individual program declarations or expressions need
to be evaluated.

The canonical example of a DCE system is the spreadsheet. A spreadsheet
program is implicitly defined by the ‘formulae’ in its cells and has a purely
declarative semantics. The order in which its cells are evaluated is determined
only by the dependancy relations between the cells. Many spreadsheet systems
provide a means for high-level visualisation of the contents of a spreadsheet, for
example, as a graph and support direct manipulation of the graph (for example,
dragging the ordinates of a graph causes the corresponding spreadsheet formulae
to be updated).

Other example of DCEs are the so-called ‘technical’ computing systems (such
as Mathcad, Mathematica or Maple). These allow a free-format for the layout of
expressions and data and support a limited range of types (typically numbers,
strings, lists and arrays).

But present-day realisations of DCEs are severely limited by the impoverished
semantics of their underlying languages. Typically these languages have largely
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first-order semantics with the declarative core of the language being bolstered
by imperative features (assignment statements, loops, etc.) to make up for their
limited expressiveness. These limitations and ad hoc extensions, together with
the lack of user-defined types and strong type-checking, severely limit the ability
of programmers (even expert ones) to construct reliable, correct, maintainable
programs — with well-known consequences.

1.1 A Document-Centered Environment for Haskell

In this paper we describe an approach, based on the use of Haskell, that over-
comes these limitations. In particular, it allows a graphical representation to be
defined for any type together with an associated set of kinds of direct manipu-
lation that a user can carry out on values of that type. The approach (described
in §2) is based on the use of Haskell’s type classes coupled with a mechanism
that, using reflection, provides controlled updating of the source text of the user
program.

A prototype implementation [9] of the approach, named Vital, has been de-
veloped and significant aspects of its implementation and performance are de-
scribed in §3. As with other systems intended to support end-user computing,
two classes of user are envisaged. Firstly, there are expert Haskell programmers,
who will design and implement libraries of domain-specific abstractions, (includ-
ing the graphical representation and direct manipulation of these abstractions).
Secondly, there are the end users (engineers, scientists, financial analysts, etc.)
who, possibly with only a superficial knowledge of Haskell, will program in terms
of these abstractions (mainly using direct manipulation on their graphical rep-
resentation).

Here, as an illustration, here is an example (taken from the prototype imple-
mentation described in §3) of this approach in action:

– Consider an applied mathematican (as an end user) working on a problem
involving binary relations. He can load a module that implements an ADT
representing binary relations (in this case, defined on sets of size 8) whose
values are displayed as directed graphs. Then, possibly starting from a null
relation, he can, using only mouse gestures, define a desired relation simply
by editing edges into its graph or he can carry out high-level operations (see
Fig. 1) such as transitive closure or intersection with a relational value on
the clipboard.

Whilst the operations that a user carries out appear to be operating directly
on the displayed values, they actually operate on the text of the Haskell source
program the user has implicitly constructed (and hence they indirectly update
the values displayed). This indirection brings several benefits:

– It allows values that may not have a defined textual representation (such as
functions or infinite data structures) to be manipulated.

– It means that the solution the user has developed (by direct manipulation) is
portable, since it takes the form of an ordinary Haskell program (with some
meta-data embedded as comments).
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Fig. 1. Visualisation of a binary relation. Clicking on one of the nodes drops down a
menu that allows edges to be inserted or deleted. Clicking elsewhere, as shown here,
drops down a menu that allows operations to be applied to the relation, or (for binary
operations) between it and a relation that has been copied to the clipboard.

– It achieves persistence, that is, it allows documents to be saved and restored
to an identical state.

2 Principles of Direct Manipulation

In this section we will describe the principles of a document-centered environ-
ment that supports direct manipulation. We will cast the description in terms of
Haskell but the principles are equally applicable for any other purely declarative
higher-order language that supports type classes. So as to be able to focus on
principles, we elide all inessential detail (but include some screenshots from the
implementation described in §3 to aid the explanation).

2.1 Document-Centered Environment

By a document-centered environment for Haskell, we mean an environment in
which Haskell modules are displayed as documents within which the individual
declarations are freely located with the value defined by each value declaration
optionally displayed adjacent to it. Fig. 2 shows part of a typical document.

Values may be displayed either textually or graphically. The way that a value
is displayed is determined by its type and by the corresponding instance decla-
rations for one or other of the predefined type classes:
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Fig. 2. A document containing a declaration for a function, f, an expression involving
f (whose value is an infinite list of integers), a couple of comments and a hypertext
link to another document

class Show a where class Display a where
show :: a -> String display :: a -> Pic
. . . . . .

The Show class is the usual means that Haskell interpreters employ to map
values to their textual representation as strings. The Display class, introduced
here, is an analogous class that maps values to their graphical representation
as pictures, that is, as elements of type Pic. Both type classes are on an equal
footing: the two types, String and Pic, are pervasive and are supported by
primitives that automatically render strings or pictures in place in a document.
We will refer to the graphical representation (as produced by the Display class)
of a value as a view of the value.

For example, the particular graphical representation used for binary relations
(as in Fig. 1) is defined by an instance declaration of the form

instance Display Rel where
display rel = . . .

(where Rel is an abstract type, declared elsewhere, of binary relations).
The type Pic is an algebraic datatype that provides constructors for a va-

riety of different kinds of picture together with a constructor for composition
(superposition):

data Pic
= NoPic
| Rect Int Int Color Color -- Rectangles
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. . .
| Trans Int Int Pic -- Linear translation
| Super Pic Pic -- Superposition
| PicText Format String -- Text
| PicImage Image -- Images

| Animation (Time -> Pic)
| forall s. Interaction s

(Time -> Int -> Int -> Bool -> s -> (s, Pic))
| PicAction Int Int Color Color (IO ())

Expressions in a document are, in accordance with standard Haskell seman-
tics, evaluated lazily. The process of evaluation is driven by the rendering mech-
anism which forces evaluation of only those parts of a string or a picture that
are visible within the current viewport. (A more detailed description of the ren-
dering mechanism, which allows (finite prefixes of) infinite values to be rendered
without risk of boundless recursion, is given in [8].)

2.2 Direct Manipulation

We now describe a mechanism that will allow an end-user to manipulate ADT
values by direct manipulation. This term[14] means that a user can interact with
a visual representation of a value by intuitively meaningful gestures, and that
any changes should be immediately displayed and should be reversible.

User’s perspective Seen from a user’s perspective, the system behaves as follows:

– The user clicks on the part (of the view of) the value that he wishes to change.
For example (see Fig. 1), the user might click on one of the elements of the
set (perhaps to add or remove a link to that element) or (as shown) might
click on the background of the picture (perhaps to perform an operation
such as reflexive closure on the overall relation).

– The system responds by displaying a menu (specific both to the type of the
value and to the location in the view where the user clicked) of allowable
operations.

– The user responds by selecting one of these operations.
– The system then updates the document so that it shows the result of the

operation.

A value-based approach. One approach to implementing this behaviour
would be to arrange for the selected operation (in the form of a user-defined
Haskell function) to be applied directly to the value itself. But, whilst simple
to implement, this approach would have two major disadvantages. Firstly, the
displayed value would be inconsistent with the Haskell declaration in the doc-
ument. Secondly, in order to be able to save and restore a document, it would
be necessary to provide some means of serialising values (for instance, [4]), and
this would limit the portability of the Haskell program.
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Reflection. Instead, we propose adopting an indirect approach involving the
use of reflection. When a user interacts with the graphical representation of the
value of a declaration, the effect is not directly to modify the value itself but
rather it is to invoke a Haskell function that will modify the Haskell source code
of the relevant declaration in such a way that it will, when evaluated, embody the
desired changes. (This is similar to the way that direct manipulation is handled
in spreadsheet systems: mouse gestures alter the formulae in the cells rather
than directly alter the displayed values.)

The mechanism required for supporting this approach to direct manipulation
can be split into two aspects:

– A type-specific aspect that defines the particular set of direct manipulation
operations (if any) that can be applied to values of each particular type.
This aspect can nicely be handled using the Haskell type class mechanism.

– A generic aspect that implements the services necessary for invoking the
type-specific component. This will involve a selection mechanism (allowing
a user to select a particular element in the graphical representation of a
value), a menu mechanism (that displays a menu of allowable operations
for values of a particular type) and a reflection mechanism (that allows
controlled updating of the Haskell source text of the user program).

This, then, is the overall approach. We now describe aspects of the approach in
more detail.

The Selection mechanism. Some operations applied by a user may take,
as a parameter, a location defined by the user clicking to select a particular
component (eg, a Rect component) within the view of a value. Views (that is,
values of type Pic, defined by the display method of the Display class) have a
tree structure, and so the location of the selected component can be defined by
a list of integer-valued selectors that define a path from the root of the tree to
the component. We introduce a type synonym for paths

type Path = [Int]

The type-specific operations. The repetoire of operations applicable to a
given value will, in general, depend both on its type and on the form of its
graphical representation (which, via the Display class, also depends on its type).
Thus, it is natural to make use of the Display class for defining this repetoire.

We need to cater for two distinct categories of direct manipulation operations:

– Discrete operations (for example, ones such as cut/copy/paste/update/
increment, etc.) where an operator is applied exactly once.

– Continuous operations (for example, ones such as dragging a slider to change
a colour or dragging a vertex of a shape to change a dimension) where an
operation is applied repeatedly (at a sufficient high rate to give an impression
of continuous adjustment).

A given type may include operations of either or both categories.
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For each operation (of either category) in the repetoire of a given type, we need
to be able to define both a name (for display to the user) for the operation and
a Haskell function (for implementing the operation). To this end, the Display
class includes these two methods:

– edit, for defining the repetoire of discrete operations, and
– adjust, for defining the repetoire of continuous operations (not further dis-

cussed here).

The full definition of the Display class is:

class Display a where
display :: a -> Pic
edit :: a -> Path -> [(String, EditFn a)]
adjust :: a -> Path -> [(String, AdjustFn a)]

edit x path = [] -- default methods
adjust x path = []

Both of these edit methods take both the value itself and also the path to the
component of the value that the user selected; this allows the set of operations
offered to the end user to be context dependent. Each method yields a list of
pairs, each consisting of:

– a string defining the name of the operation (that will appear in the menu of
operations offered to the user), and

– a function that will implement the operation by (reflectively) updating the
source text of the program

The operation-selection mechanism. When the user clicks within a docu-
ment, the system determines whether the location defined is within a component
of (the graphical representation of) a value. If it is, the system determines the
path corresponding to that location and then applies the relevant instances of
both the edit and the adjust methods to the value and its path. This yields a
list of (name, implementation) pairs defining the operations that (from a user’s
perspective) may validly be applied to the selected component of the displayed
value. The system displays these names as a menu, so allowing the user to select
the particular operation to be applied.

The selection by the user of a particular operation causes the system to apply
(reflectively) its associated implementation function.

Discrete operations. For an operation associated with the edit method (ie, for
a discrete operation), the implementation function is of type

type EditFn a = a -> Path -> String -> String

The system marshals the following arguments:
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– the value the user selected;
– the path to the selected graphical component of that value;
– the righthand side of the Haskell source code of the declaration that defined

that value.

To these arguments it applies the implementation function. The system then
updates the righthand side of the declaration with the resultant string, and
then triggers a re-display of the document (which in turn triggers the necessary
recompilation and reevaluation of the Haskell program). Assuming the imple-
mentation function has been correctly written, the overall effect will appear, to
the end user, as if the value itself had simply been updated in the desired way.

2.3 An Example

A simple example will help clarify the modus operandi of the system. Assume
that a library module is required that will provide an end user with the ability
to create, visualise and manipulate finite predicates on the natural numbers.

The first step is to define the signature and an implementation for an ADT
(named Pred) for such predicates. The signature could be defined as:

data Pred

nullPred :: Pred
complement :: Pred -> Pred
get :: Int -> Pred -> Bool
set :: Int -> Bool -> Pred -> Pred

predToString :: Pred -> String
stringToPred :: String -> Pred

where:

– nullPred is the null predicate;
– complement yields the complement of a predicate;
– get determines the truth value of a predicate at a given domain value;
– set specifies the truth value of a predicate at a given domain value;
– predToString yields a compact textual representation 1 of a predicate
– stringToPred is the left-inverse of the above function.

Next, an instance of the Display class is defined to specify what we can call
the desired look and feel for values of type Pred:

instance Display Pred where
display = displayPred -- defined below
edit = editPred -- defined below

1 Although the domain of the predicates is infinite, any particular predicate is con-
structed with a finite number of operations and so a textual representation is possible.
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Defining the ‘look’ of the ADT. We will assume that a predicate should
be displayed to an end user as (see Fig. 3) a row of squares containing ticks
or crossses (representing True/False values of the predicate for n = 0, 1, ..),
superimposed on a shaded background.

Fig. 3. Visualisation of a value of type Pred

This is achieved by defining the rendering function

displayPred :: Pred -> Pic
displayPred pred = . . .

(Since the domain of Pred is infinite, the pictorial representation of a predicate
is likewise of unbounded extent2.)

When the user selects (by clicking) a component of such a picture, the system
generates the path that identifies that component. This path (since it depends
intimately on the displayPred function) is a low-level representation of the
index position of an element of a predicate. For manipulating predicates, we will
need a high-level representation, that is, one that is compatible with the index
type used in the signature of the ADT. To this end, we define a path abstraction
function

decode :: Path -> Maybe Int
decode path = . . .

that yields the value Just i if the user clicks within the ith square of a predicate
picture, or the value Nothing if the user clicks elsewhere.

Defining the ‘feel’ of the ADT. We will assume that the following set of
operations on views of predicates should be available to an end user:

– Tick (ie, set the value of a selected element to True);
– Cross (ie, set the value of a selected element to False);
– Flip (ie, complement the value of every element);
– Evaluate (ie, define a string literal that represents the predicate).

These operations should be presented to the user in a context-dependent fashion:
the first two if the user selects an element of a predicate (by clicking within a
square), the second two if the user selects the overall predicate (by clicking within
2 As noted in earlier, the underlying display mechanism evaluates Pic values lazily

and displays only the elements that lie within the (scrollable) viewport.
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its background). In all four cases, the operations are discrete in nature (since
they should be applied once only not continuously).

This behaviour is achieved by defining the editPred function as:

editPred :: Pred -> Path -> [(String, EditFn Pred)]

editPred pred path =
case decode path of

Nothing -> [("Flip", complementFn),
("Evaluate", evalFn)]

Just i -> [("Tick", setTrueFn i),
("Cross", setFalseFn i)]

With this definition, if the user clicks within one of the elements of a view of
a predicate, then a menu appears offering a choice of Tick or Cross. If, alter-
natively, the user clicks on the background of the view, then a menu appears
offering a choice of Flip or Evaluate. (Since there is no instance defined for
the adjust method in the Display class, there are no menu entries present for
continuous operations.)

Finally, the actual editing functions need to be defined. These are of type

complementFn, evalFn, setTrueFn, setFalseFn ::
Pred -> Path -> String -> String

When one of these functions is invoked by the system, it will be supplied with
arguments representing:

– the value of the predicate
– the path to the selected picture component
– the righthand side of the declaration that defines the predicate

The task of an editing function is to synthesise a string that will be used, by
the system, to update the righthand side of the selected declaration so that it
will, when evaluated, yield the desired result. Here are their definitions:

complementFn _ _ rhs = "complement (" ++ rhs ++ ")"

evalFn pred _ _ = "stringToPred " ++ predToString pred

setTrueFn i _ _ rhs =
"set " ++ show i ++ " True (" ++ rhs ++ ")"

setFalseFn i _ _ rhs =
"set " ++ show i ++ " False (" ++ rhs ++ ")"

Example. As an example of the system in operation, assume that the initial
Haskell program is:

p, q :: Pred
p = set 3 True nullPred
q = set 1 p
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The system will display the value defined by the declaration for q as a row of
squares with ticks in the 1st and 3rd squares and crosses elsewhere.

Here is a typical sequence of interactions that might occur:

– The user clicks on the predicate background. The system applies the path
abstraction function to the path and obtains a Nothing value. This indicates
that the predicate as a whole is being selected and so the system displays a
menu with entries for Flip and Evaluate.

– The user selects the Flip entry. The system then applies the complementFn
function to the righthand side of the declaration for q, obtaining the string

complement (set 1 p)

with which it updates the declaration and then recompiles the program and
redisplays document.

– The user clicks on the 6th element of the predicate. This time, the path
abstraction function yields the value Just 6 and so the system displays a
menu with entries for Tick and Cross.

– The user selects the Cross entry and so the system applies the setFalse
function, obtaining the string

set 6 False (complement (set 1 p))

with which it updates the declaration, recompiles and redisplays the docu-
ment.

Following these operations, the declaration for q is

q = set 6 False (complement (set 1 p))

and the resultant predicate is displayed as a row of squares with crosses in the
1st, 3rd and 6th squares and ticks elsewhere.

Notice that, in the final document:

– the value of q still depends upon the value of p (if the latter was subsequently
changed by editing, then the value of the former would reflect the change.)

– the form of the declaration for q provides a trace of the sequence of editing
operations by which the resultant predicate was created.

Depending on the context, either of these properties may be an advantage. But, if
more than a small number of editing operations are carried out on a declaration,
it will begin to get unwieldy (and computationally inefficient). The Evaluate
operation provides a remedy for this; unlike the other operations (which augment
the original text of the righthand side of the declaration), this operation replaces
the expression on the righthand side by a literal that represents its value. In the
resultant Haskell program:

– the value of p becomes independent of all other bindings;
– depending on the actual value of the declaration and the actual way in

which this value is encoded (by the predToString function), the resultant
declaration may be more or less bulky than the original one.
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3 The ‘Vital’ Implementation

A prototype implementation3, named Vital4, has been created to explore the
practical realisation of the scheme described above. In this section we discuss
distinctive aspects of this system.

3.1 Pictures and the Pic Datatype

Pictures are pervasive in Vital. The Pic datatype, described in §2, is a primi-
tive of the system; values of type Pic are automatically rendered (in place) as
pictures. The constructors of the datatype allow complex pictures to be defined
in terms of simple geometric shapes, text and images, and pictures may also
involve animation, user interaction and event initiation.

Animation. The ability to incorporate animations as an integral part of a docu-
ment is particular useful in many end-user application areas. Typical uses range
from simple animated text (for instance, showing a continuously updated time
of day) to animated diagrams of complex mechanisms.

There are several possible approaches that could be used to implement anima-
tion but here the overriding concern is one of simplicity (for end users) — and, in
particular, avoiding the use of monadic constructions. Thus, an animated picture
is represented by a picture-valued function, fn :: Time -> Pic (supplied as an
argument to the Animation constructor). The system repeatedly (at the display
frame rate) applies the function to the current value of real time (measured in
ms) and triggers a redisplay of the document5.

User interaction. Pictures involving user interaction via the mouse may be
formed using the Interaction constructor and supplying it with the definition
of a finite-state machine, in the form of an initial state s0 :: s and a function

fn :: Time -> Int -> Int -> Bool -> s -> (s, Pic)

that yields a next state and a picture when supplied the current time, the cur-
rent x and y coordinates of the mouse cursor, the state of depression of the
3 This implementation is available at http://www.cs.kent.ac.uk/projects/vital/

and may be run via the web. It implements a representative subset of Haskell and
(at present) carries out type-checking at run time.

4 Vital: an acronym for ‘Visual Interactive Typed Applicative Language’.
5 Initially, it was assumed that a straightforward approach like this would be too

inefficient and, instead, a more elaborate scheme, limited to being able to display
only strictly periodic animations and involving the pre-computation and caching
of sequences of images, was implemented. Experience, however, showed that the
majority of the computational burden involved in typical animations is incurred at
the rendering stage, and so caching has a relatively minor effect. But, this is not
universally true; there is an important class of animation, those involving synthetic
images defined as spatial functions (as in [6]), where caching would be essential. This
could, however, be handled by having the user program pre-compute the sequence
of images and arranging for the animation function to select from the sequence in a
time-dependent way.
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mouse button and the current state. As with the Animation constructor, when
an Interaction constructor is encountered, the system repeatedly applies the
function to the current value of its arguments and triggers a redisplay of the
document. (Notice that these values of these arguments are not accessible from
the main program namespace and so the purely declarative semantics of Haskell
are not compromised.)

As with simple animation, this more general form of interaction is useful in
many end-user application areas. Typical uses range from controlling the view-
point used when rendering 3-D objects to simulating arcade-type games. In prac-
tice, libraries of higher-level functions (for example, for the numerical solution
and display of discrete dynamical systems defined by differential equations) can
easily be defined in terms of the Animation constructor. There appears to be
no reason why the approach embodied by the Fran system [15], which nicely
combines efficiency with user simplicity, should not also be implemented.

4 Related Work

As noted in the introduction, commercial spreadsheet systems support direct
manipulation, with mouse gestures being mapped to editing operations on the
formulae in the spreadsheet cells. It was this pattern of interaction that provided
the original motivation for the Vital scheme.

Functional language spreadsheets. The formulae in the traditional spreadsheet
system are first-order expressions and a spreadsheet can be regarded as implic-
itly defining a program in a purely declarative, first-order language. Two groups
have explored generalisation of this paradigm: a spreadsheet system implemented
in Clean is described in [5] and, more recently, a spreadsheet-like interface for
Haskell in [11]. In both cases, the first-order language conventionally used for
cell formulae is replaced by a higher-order, strongly typed language with the
aim of retaining the advantage of direct manipulation offered by the spread-
sheet approach whilst overcoming the limitations of an inexpressive first-order
language.

Graphical presentation of functional programs. Several authors[13,3,10] have ex-
plored the representation of functional programs using a graphical syntax but,
whilst such an approach would be compatible with a document-centered inter-
face, it appears that it would have few advantages (it is generally agreed that
the conventional text-based representation of programs is both more compact
and more convenient to use than graphical representation).

The Forms/3 system. The Forms/3 system[1,7], an innovative generalisation of
the spreadsheet paradigm, introduces data abstraction and direct manipulation
of the formulae defining such abstractions. The approach adopted by Vital has
been significantly influenced by concepts introduced in this system.

Data abstraction is implemented by allowing a ‘form’ (a freely-arranged col-
lection of ‘cells’ holding Lisp formulae) to be displayed either as a document or
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represented graphically in a programmer-defined manner. For example, a data
abstraction could be introduced to represent binary trees and such values dis-
played as tree diagrams. Further, a range of mouse gestures may be associated
with a data abstraction such that making the gesture (or pointing to an image
of the gesture) will modify the formulae in the cells of the associated form in
a programmer-defined way. For instance, the gesture of sketching a circle could
be associated with the act of creating an instance of a form to represent a circle
with the corresponding radius, or selecting a displayed string and sketching a
vertical stroke could be associated with replacing the formula that defines the
point size of the displayed string.

Values in Forms/3 are potentially time-varying and are represented by sparse
sequences; this allows user-interaction to be handled declaratively; in particular,
it allows user-input sequences to be captured and replayed.

5 Conclusions and Future Possibilities

This paper has described an approach to providing a document-centered inter-
face to Haskell with the aim of making the expressiveness and robustness that
this language offers available to non-expert end users (with supporting domain-
specific libraries written by expert users).

The interface presents the individual modules of a Haskell program as doc-
uments and the values declared in these modules as pictures (with text as a
special case). The interface supports direct manipulation, that is, values are
continuously displayed and can be manipulated in high-level (ie, visual) terms.

The key features of the approach are:

– The introduction of a Display class (an analog of the standard, text-based
Show class) with a display method that allows a pictorial representation to
be defined for each type.

– Picture values include both static and interactive pictures (defined by func-
tions modelling finite-state machines) and also event-sensitive pictures6 that
allow arbitrary imperative actions (defined by monadic values) to be initi-
ated.

– The Display class also includes methods allowing arbitrary programmer-
defined editing operations (discrete or continuous) to be defined on the pic-
torial representation of values. This co-location of the display and editing
methods within the Display class allows the choice of pictorial represen-
tation adopted for each type to be encapsulated within the corresponding
instance declaration — which aids code maintainability.

– These editing operations, although they appear to the user to operate di-
rectly on the pictorial values, in fact operate indirectly on the Haskell source
text of the corresponding declaration. This gives both persistence (ie, the
ability for the user program to be unloaded and subsequently restored) and
portability. It also allows editing operations to involve infinite or functional
values.

6 Event-sensitive pictures are not discussed in this paper.
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5.1 Future Developments

There are many interesting and potentially useful directions in which this ap-
proach can be further developed including, in particular, type-safe manipulation
and a Haskell-based implementation.

The graphical selection mechanism (that the user employs during direct ma-
nipulation) can be tightly coupled to the type checker so as to prevent (a priori)
type-unsafe gestures from even being expressed. (Preliminary results on this
technique have recently been presented by Callanan[2].)

The existing Vital prototype is a free-standing implementation of a Haskell
compiler. However, the recently-developed ‘Plugin’ library for Haskell[12], which
allows the dynamic, type-safe compilation and execution of Haskell code from
within a Haskell program, offers the exciting prospect of being able to imple-
ment a document-centered interface for Haskell entirely within Haskell itself. A
prototype system7, named Pivotal, based on this approach is presently being
explored.
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Abstract. Performance of generic array programs crucially relies on
program specialisation wrt. shape information. Traditionally, this is done
in a rather ad hoc fashion by propagating all shape information that is
available. When striving for a compositional programming style that ad-
heres to good software engineering principles this approach turns out to
be insufficient. Instead, static value information needs to be propagated
as well which introduces all the well known problems of partial evaluation
in general.

In this paper, we propose a static analysis that identifies to what ex-
tent specialisation needs to be employed in order to achieve a certain
level of shape information. This narrows the scope of specialisation far
enough to make specialisation for shape information feasible despite a
compositional programming style. Some examples to this effect are pre-
sented.

1 Introduction

Compiling abstract high-level specifications into efficiently executable code is
well-known to be a challenging task. Usually, a whole set of complementing
optimisations need to be orchestrated properly in order to achieve excellent run-
time performance. In the area of array programming, the effectiveness of many
optimisations relies on static knowledge of array rank (dimension) and array
shape (extent wrt. individual axes). Not only does static knowledge of shapes
facilitate many loop related optimisations, it is also essential for eliminating in-
termediate arrays[LLS98, Sch03] as well as compiler-introduced memory reuse
[Can89, GT04].

For most applications in array programming, the majority of array operations
are such that the shape of the result can be computed from the shapes, rather
than full values, of the arguments. Such operations often are referred to as uni-
form operations [Hui95]. Uniformity enables a straight-forward approach to an
effective utilisation of static shape information: Whenever a shape information is
statically available it is propagated into all existing function calls by specialising
these according to the given shapes. Since most array programs operate on a
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small set of different shapes only, non-termination of specialisation in practice
is rarely hit or otherwise can be detected by a compiler fairly easily [Kre03].
For these reasons, array languages such as Fish [JMB98, JS98] or SaC [Sch03]
follow that approach.

Unfortunately, uniformity is at odds with a compositional programming style.
In contrast to Fish, SaC allows the programmer to successively break down com-
plex (and usually uniform) array operations into compositions of small, rather
generic operations similar to those available in Apl. These small array opera-
tors typically separate concerns such as inspecting structural properties, selecting
parts of an array, or combining arrays into new ones. Unfortunately, the separa-
tion of concerns in most cases makes these small operators non-uniform, i.e., the
shapes of their results depend on argument values rather than argument shapes
only. Typical examples are operations such as take or drop. These operations
select parts of an array by taking or dropping a certain amount of elements,
respectively. The number of elements to be dropped or taken is specified as
an explicit parameter of these operations which renders the shape of the result
dependent on that parameter’s value.

Although such a programming style is desirable from a software engineering
perspective, it has a strong impact on the performance of such specifications.
A specialisation strategy as described above, i.e., based on specialisations to
shapes only, leads to a loss of shape information whenever non-uniform opera-
tions such as take or drop are used. As shown in [Kre03], the loss of static shape
information can have a significant effect on the overall performance.

One alternative to avoid this potential source of performance degradation
would be to specialise functions to argument values whenever these are statically
available. However, this would in fact fully embrace the online approach to partial
evaluation and, with it, its well-known difficulties: recursive functions introduce
undecidability, and the resulting code expansion may outweigh the potential gain
in performance (for surveys see [JGS93, Jon96]).

In order to avoid these difficulties, we propose a static program analysis that
for each function of a given program infers what level of argument specialisation
is required in order to compute the shape of the result. With this information,
we can restrict specialisation to argument values to those situations, where this
information is crucial for shape inference. In all other situations, a less aggressive
specialisation scheme, e.g. specialisation to argument shapes, can be applied.
Since Apl-style program compositions usually contain only a small percentage of
non-uniform operations it turns out that, by and large, only a few specialisations
to argument values are required in order to statically infer all shapes within a
large application program.

More generally, the proposed analysis can serve as a “specialisation oracle”
that guides the entire specialisation process as the inference algorithm does not
only compute the requirements for static shape knowledge, but it also determines
the requirements for other levels of static shape information such as static rank
knowledge. This additional information can be used for adjusting the speciali-
sation oracle so that it can predict the minimum level of specialisation that is
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required for a predefined level of overall shape information. Once the scope of
the specialisation has been determined, an online approach towards specialisa-
tion suffices for specialising most programs to the predefined level irrespective
of whether they have been written in a compositional style or not.

The inference algorithm is described in terms of a subset of SaC [Sch03], which
has been adjusted to a fairly generic λ-calculus syntax. This measure allows us
to concentrate on the language essentials and it may facilitate transferability
of results to other languages. Besides a formal description of the inference, its
effectiveness is demonstrated by means of several examples.

The paper is organised as follows: the next section introduces a stripped-down
version of SaC, called SaCλ. Section 3 discusses the issues of compositional
programming and function specialisation by means of a few examples. The main
idea of the analysis is presented in Section 4, before Section 5 and Section 6
provide the formal details of it. In Section 7 the formalism is applied to the
examples of Section 3. Section 8 relates the work to other approaches towards
the specialisation og generic program specifications before some conclusions are
drawn in Section 9.

2 SaCλ

This paper is based on a stripped-down version of SaC. It contains only the bare
essentials of the language and its syntax has been adjusted to a λ-calculus style
in order to facilitate transferability of results.

Fig. 1 shows the syntax of SaCλ. A program consists of a set of mutually
recursive function definitions and a designated main expression. Essentially, ex-

Program ⇒ [ FunId = λ Id[ , Id ]* .Expr ; ]*
main = Expr ;

Expr ⇒ Const

| Id

| FunId ( [ Expr [ , Expr ]* ] )
| Prf ( [ Expr [ , Expr ]* ] )
| if Expr then Expr else Expr

| let Id = Expr in Expr

| with( Expr <= Id < Expr ) : Expr
genarray( Expr , Expr )

Prf ⇒ shape
| dim
| sel
| ∗
| ...

Fig. 1. The syntax of SaCλ
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pressions are either constants, variables or function applications. As SaC does
neither support higher-order functions nor name-less functions, abstractions oc-
cur at top-level only. Function applications are written in C-style, i.e., with
parenthesis around arguments rather than entire applications. It should be noted
here that all constants are in fact arrays. Therefore, we use (nestings of) vectors
in square-brackets alongside with scalars as notation for constants. SaCλ pro-
vides a few built-in array operators, referred to as primitive functions. Among
these are shape and dim for computing an array’s shape and dimensionality
(rank), respectively. Furthermore, a selection operation sel is provided which
takes two arguments: an index vector that indicates the element to be selected
and an array to select from. These very basic array operations are complemented
by element-wise extensions of arithmetic and relational operations such as *
and >=, respectively. For improved readability, we use the latter in infix nota-
tion throughout our examples.

On top of this language kernel, SaC provides a special language construct for
defining array operations in a generic way which is called with-loop. For the
purpose of this paper, it suffices to consider a restricted form of with-loop only.
Fully-fledged with-loops are described elsewhere, e.g. in [Sch03]. They provide
several extensions which primarily relate to programming convenience. Since
these extensions do not affect the analysis in principle but would substantially
blow up the formal apparatus, we refrain from the fully-fledged version.

As can be seen from Fig. 1, with-loops in SaCλ take the general form

with ( lower <= idx vec < upper) :expr
genarray( shape, default)

where idx vec is an identifier, lower, upper, and shape denote expressions that
should evaluate to vectors of identical length and expr and default denote ar-
bitrary expressions that need to evaluate to arrays of identical shape. Such a
with-loop defines an array of shape shape, whose elements are either computed
from the expression expr or from the default expression default. Which of these
two values is chosen for an individual element depends on the element’s location,
i.e., it depends on its index position. If the index is within the range specified
by the lower bound lower and the upper bound upper, expr is chosen, otherwise
default is taken. As a simple example, consider the with-loop

with ([1] <= iv < [4]) : 2
genarray ( [5], 0)

It computes the vector [0, 2, 2, 2, 0]. Note here, that the use of vectors
for the shape of the result and the bounds of the index space (also referred
to as the ”generator”‘) allows with-loops to denote arrays of arbitrary rank.
Furthermore, the “generator expression” expr may refer to the index position
through the “generator variable” idx vec1. For example, the with-loop

1 Most of our examples use iv as variable name for the generator variable.
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with ([1,1] <= iv < [3,4]) : sel([0], iv) + sel([1], iv)
genarray ( [3,5], 0)

yields the matrix
0 0 0 0 0
0 2 3 4 0
0 3 4 5 0

.

We can formalise the semantics of SaCλ by a standard big-step operational
semantics for λ-calculus-based applicative languages as defined in several text-
books, e.g., [Pie02]. The core relations, i.e., those for conditionals, abstractions,
and function applications can be used in their standard form. Hence, only those
relations pertaining to the array specific features of SaCλ are shown in Fig. 2.

const :
n ⇓ < [], [n] >

vect :
∀i ∈ {1, . . . , n} : ei ⇓ < [ s1, . . . , sm], [ di

1, . . . , di
p] >

[ e1, . . . , en] ⇓ < [ n, s1, . . . , sm], [ d1
1, . . . , d1

p, . . . , dn
1 , . . . , dn

p ] >

dim :
e ⇓ < [ s1, . . . , sn], [ d1, . . . , dm] >

dim( e) ⇓ < [], [n] >

shape :
e ⇓ < [ s1, . . . , sn], [ d1, . . . , dm] >

shape( e) ⇓ < [ n], [ s1, . . . , sn] >

sel :

iv ⇓ < [ n], [ i1, . . . , in] >
e ⇓ < [ s1, . . . , sn], [ d1, . . . , dm] >

sel( iv, e) ⇓ < [], [ dl] >

where l =
n∑

j=1

(ij ∗
n∏

k=j+1

sk)

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk

* :

e1 ⇓ < [ s1, . . . , sn], [ d1
1, . . . , d1

m] >
e2 ⇓ < [ s1, . . . , sn], [ d2

1, . . . , d2
m] >

*( e1, e2) ⇓ < [ s1, . . . , sn], [ d1
1 ∗ d2

1, . . . , d1
m ∗ d2

m] >

with :

el ⇓ < [ n], [ l1, . . . , ln] >
eu ⇓ < [ n], [ u1, . . . , un] >

eshp ⇓ < [ n], [ shp1, . . . , shpn] >
edef ⇓ < [ s1, . . . , sm], [ d1, . . . , dp] >

∀i1 ∈ {l1, ..., u1 − 1} ... ∀in ∈ {ln, ..., un − 1} : (λ Id . eb [ i1, ..., in])

⇓ < [ s1, . . . , sm], [ d
[i1,...,in]
1 , . . . , d

[i1,...,in]
p ] >

with( el <= Id < eu) : eb genarray( eshp, edef)
⇓ < [ shp1, . . . , shpn, s1, . . . , sm],

[ d
[0,...,0]
1 , . . . , d

[0,...,0]
p , . . . , d

[shp1−1,...,shpn−1]
1 , . . . , d

[shp1−1,...,shpn−1]
p ] >

where d
[x1,...,xn]
i = di iff ∃j ∈ {1, ..., n} : xj ∈ {0, ..., lj − 1} ∪ {uj , ..., shpj − 1}

Fig. 2. An operational semantics for SaCλ
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As a unified representation for n-dimensional arrays we use pairs of vectors
< [ shp1, . . . , shpn], [ data1, . . . , datam] > where the vector [ shp1, . . . , shpn]
denotes the shape of the array, i.e., its extent with respect to the n individual
axes, and the vector [ data1, . . . , datam] contains all elements of the array in a
linearised form. Since the number of elements within an array equals the product

of the number of elements per individual axes, we have m =
n∏

i=1
shpi.

The first two evaluation rules of Fig. 2 show how scalars as well as vectors are
transformed into the internal representation. Note with the rule vect, that all
elements need to be of the same shape which ensures shape consistency in the
overall result.

The next three rules formalise the semantics of the main primitive operations
on arrays: dim, shape, and sel. Element-wise extensions of standard operations
such as the arithmetic and relational operations are demonstrated by the exam-
ple of the rule for multiplication (*).

The last rule gives the formal semantics of the with-loop in SaCλ. The
first three conditions require the lower bound, the upper bound and the shape
expression to evaluate to vectors of identical length. The next two conditions
relate to the default expression edef and the generator expression eb, respectively.
They ensure, that the default expression evaluates to an array of the same shape
as the generator expression does. Since the generator expression may refer to the
index variable, this is formalised by transforming the generator expression into
an anonymous function and by evaluating a pseudo-application of this function
to all indices specified in the generator. The lower part of the with-loop-rule
shows how the values from the individual generator expression evaluations and
the value of the default expression are combined into the overall result. The shape
of the result stems from concatenating the shape expression with the shape of the
default element. Its data vector consists of a concatenation of the data vectors
from the individual generator expression evaluations. Since the generator does
not necessarily cover the entire index space, the default expression values need to
be inserted whenever at least one element of the index vector [i1, . . . , in] is outside
the generator range, i.e., ∃j ∈ {1, ..., n} : xj ∈ {0, ..., lj − 1} ∪ {uj, ..., shpj − 1}.
Formally this is achieved by the “where clause” of the rule with.

3 A Motivating Example

The core language introduced in the previous section suffices to define generic
array operations similar to those available in array languages such as Apl, Nial,
or J. As an example, consider the operations take and create as defined in
Fig. 3. The function take expects two arguments v and a. It returns an array
of shape v whose elements are copied from those in the corresponding posi-
tions of the argument array a. Note here, that the specification of 0*v as lower
bound yields a vector of zeros of the same length as the vector v and, thus,
ensures shape-invariance, i.e., it makes take applicable to arrays of arbitrary
dimensionality.
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take = λ v,a . with ( 0*v <= iv < v): sel( iv, a)
genarray( v, 0)

create = λ s,x . with ( 0*s <= iv < s): x
genarray( s, x)

Fig. 3. A definition of take and create in SaCλ

The function create takes two arguments as well: a shape vector s and a
value x. From these it computes an array of shape s with all elements identical
to x. Again, shape-invariance is achieved by computing the bounds from the
vector s that determines the shape of the result.

Both these functions are non-uniform, i.e., result shapes cannot be computed
from the argument shapes only. Instead, argument values are required to deter-
mine the result shapes. Several application studies show that functions of this
sort usually prove very useful when adopting a compositional programming style
[Sch03, GS99]. A typical application of these operations is shown in Fig. 4. The

matmul = λ dl,dm,v . let
maind = dm * v

in let
lowerd = dl * take( shape( dl), v)

in let
zeros = create( shape( dm) - shape( dl), 0)

in maind + concat( zeros, lowerd)

Fig. 4. A definition of a sparse matrix vector multiply in SaCλ

function matmul implements a special case for a matrix vector product where
the matrix contains non-zero values on two diagonals only: the main diagonal
(argument dm) and another diagonal dl located below the main one. A third ar-
gument v represents the vector the matrix is to be multiplied with and, thus, is
expected to have as many elements as the main diagonal dm does. The difference
in length between the two diagonals determines the exact location of the lower
diagonal. Essentially, the matrix vector product consists of the sum of products
dm * v and dl * v. However, the vector v needs to be shortened prior to the
multiplication with dl to match its size, and the resulting vector (lowerd in
Fig. 4) needs to be prepended by sufficient zeros in order to match the length of
the main diagonal dm. The latter is achieved by concatenating a vector of zeros
(zeros in Fig. 4) of appropriate length.

The most remarkable aspect of this function is that although it makes use of
the two non-uniform operations take and create, matmul itself is uniform. This
stems from the fact that the shape determining arguments of take and create
are computed from the shape of the arguments dm and dl, a programming pattern
that can be observed rather frequently.
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A brute force approach to static inference based on specialisation to argu-
ment shapes only would only yield the dimensionalities for the results of the
applications of take and create, not their shapes. This, in turn, would lead to
the loss of static result shape knowledge for matmul itself. That knowledge can
only be gained, if take and create both are specialised wrt. values in their first
argument position, and if the subtraction in the first argument position of create
is computed statically.

The overall goal of the analysis presented in this paper is to statically infer
to what extent functions need to be specialised in order to achieve a certain
level of information for their results. In the given example, the analysis should
yield that take and create need to be specialised to values if the result shape
is required, and that for matmul it suffices to specialise wrt. argument shapes.
However, the analysis should also yield to which extent all subexpressions need
to be calculated statically in order to achieve that goal.

4 Basic Approach

Traditionally, binding time analysis is based on a two element domain: all ex-
pressions are either attributed as static or as dynamic. In our approach, we
distinguish four different levels of static array information2:

AUD (Array of Unknown Dimensionality):
no shape information is available at all;

AKD (Array of Known Dimensionality):
dimensionality is known but not the exact shape;

AKS (Array of Known Shape):
the exact shape is available at compile-time;

AKV (Array of Known Value):
not only the exact shape but also the value is statically known.

These four levels build the grounds for our analysis. We try to infer to which
extent static knowledge of the arguments of a function is needed in order to
achieve a certain level of static information about the result. Although we are
primarily interested in the level of information that is required for statically
computing the shape of the result only (AKS result), we need to infer the required
levels for all possible result levels. This extended effort is required as we may
find function applications in positions where other levels of shape information
than just AKS are required. Consider, for example, the expression shape( dm)
- shape( dl) of the matmul example. Here, it is essential for the inference to
find out which level of information is required for dm and dl in order to compute
the value of the expression statically.

As a consequence, we do not attribute each expression with one of these levels
only, but we need to infer mappings from the set of levels {AUD, AKD, AKS,
2 Readers familiar with SaC may notice that these levels directly correspond to the

hierarchy of array types in SaC which is essential when it comes to implementing
the specialisation phase.
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AKV} into itself. Once we have inferred such mappings for all arguments of a
function, we can use this information to find out which level of specialisation is
required in order to achieve a certain level of result information.

Let us consider the built-in operation shape as an example. For its relation
between result level and argument level, we find the following mapping in our
four-element-domain:

{ AUD→AUD,
AKD→AUD,
AKS →AKD,
AKV→AKS}

As the result of the primitive function shape always is a vector, no array infor-
mation at all is needed if we are interested in the dimensionality of the result.
The shape of the result requires the dimensionality of the argument only, and
the value of the result can be deduced from the shape of the argument.

In order to formalise this approach, we can identify the different levels of array
information as coarsening steps in the value domain of SaCλ. While AKV is
identical to our original domain of values of the form

< [ shp1, . . . , shpn], [ data1, . . . , datam] >,
AKS can be described by values of the form

< [ shp1, . . . , shpn], – >.
Taking the use of the ’–’ symbol for irrelevant values further, we can use

< [
n︷ ︸︸ ︷

–, . . . , –], – >
for AKD arrays and

< –, – >
for AUD arrays.

With these new domains, we can now deduce new semantic rules from those
of Fig. 2. We successively weaken the preconditions to less precise domains and
determine the effect of this information loss on the postconditions. Applying this
approach to the shape-rule, we obtain three new rules:

AKSshape :
e ⇓ < [ s1, . . . , sn], – >

shape( e) ⇓ < [ n], [ s1, . . . , sn] >

AKDshape :
e ⇓ < [

n︷ ︸︸ ︷
–, . . . , –], – >

shape( e) ⇓ < [ n], – >

AUDshape :
e ⇓ < –, – >

shape( e) ⇓ < [ –], – >

From these rules we observe that

– AKS arguments are mapped into AKV ones
– AKD arguments are mapped into AKS ones
– AUD arguments are mapped into AKD ones
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As we are interested in predicting the required argument shape-levels for a de-
sired return shape-level, we are actually looking for the inverse of the mapping
deduced from the semantic rules. The inverse is well-defined as all functions are
monotonic with respect to the array information hierarchy, i.e., providing more
shape information can never lead to fewer shape information of the result. Fur-
thermore, the finite domain/codomain guarantees an effective computability of
the inverse.

In case of the shape operation, we obtain exactly the same mapping as the
one we have derived earlier in an informal fashion.

Uniformity of a function can now easily be recognised from its associated
mapping: whenever AKS is mapped into a shape-level less or equal to AKS, we
know that the shape of the function’s result does at most require the shape of
the argument, not its value. The unpleasant non-uniform cases are those where
AKS is mapped into AKV .

5 Towards an Inference Algorithm

Rather than just giving the coarsened semantic rules, in the sequel, we develop
an algorithm for effectively inferring the shape-level mappings described in the
previous section for arbitrary SaCλ programs.

In order to achieve a more concise notation, we encode our four-element-
domain by the numbers 0,1,2 and 3. This allows us to represent the mappings
on that domain as four-element-vectors of these numbers. Applications of these
mappings then boil down to selections into the vector. Using 0 for AUD, 1
for AKD, 2 for AKS, and 3 for AKV, we can encode the mapping for shape
as [0, 0, 1, 2]. Similarly, we obtain the vector [0, 0, 0, 1] for the primitive oper-
ation dim. It shows that only if we are interested in the result value itself we
need to know something about the argument and all we need to know is its
dimensionality.

We refer to these vectors as propagation vectors as they, for a given func-
tion application, propagate a given return value demand into a demand for
the arguments. If we are, for example, interested in the value of an expression
shape( dm), i.e., we have a demand of 3 (AKV), this demand propagates into a
demand on dm by selecting the third element of the propagation vector of shape
yielding [0,0,1,2][3] = 2 (AKS) as demand for dm.

Functions with more than just one argument require as many propagation
vectors as we have arguments. For example, the built-in selection operation sel

has two propagation vectors:
[
[0, 2, 2, 3]
[0, 1, 2, 3]

]
. If we are interested in the dimension-

ality of the result, we need to consult the second element in each propagation
vector. It shows that the shape of the selection vector (first argument) is needed
as well as the dimensionality of the array to be selected from (second argument).

Computing propagation vectors of entire functions essentially boils down to
propagating all four possible demands through the body expression and col-
lecting the resulting demands for the individual arguments as vectors. As an
example, let us consider the expression λ a . sel([0], shape( shape( a))). It
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computes the shape of the shape of an array a and selects the only component
of the resulting vector which is identical to computing the array’s dimension-
ality. Hence, we expect a propagation vector identical to that of the primitive
operation dim to be computed for this function.

First, let us compute the demand for a assuming we need to statically com-
pute the value of the overall expression, i.e., we have an initial demand of 3
(AKV). That demand propagates into the second argument of the selection by
applying the second propagation vector of sel to it, i.e., we obtain [0,1,2,3][3] =
3 (AKV) as demand for the subexpression shape( shape( a)). Propagating
that demand through the outer application of shape yields [0,0,1,2][3] = 2 (AKS)
which subsequently is propagated through the inner application of shape result-
ing in [0,0,1,2][2] = 1 (AKD) as demand for a.

Similarly, the other three possible overall demands can be propagated through
the function body. All these result in a demand of 0 (AUD) for a. Combining
these results into a vector yields [0,0,0,1] as propagation vector for the given
function which corresponds to the propagation vector of the built-in operation
dim.

As all four demands can be computed independently, the propagation in fact
can be implemented as a data parallel operation that propagates entire demand
vectors through the function bodies, starting out from the canonical demand
vector [0,1,2,3].

6 Inferring Propagation Vectors

So far, all our example functions were combinators, i.e., they did not contain any
relatively free variables. Although that holds for all built-in operators and for all
user-defined functions in SaCλ, it does not hold for arbitrary expressions. These
can be nested let-expressions or with-loops both of which introduce locally
scoped variables. To address this situation, any inference scheme for propagation
vectors needs to deal with environments that hold demands for relatively free
variables.

We introduce a scheme SD(expr , dem, F) which computes an environment
that contains demand vectors for all relatively free variables of an expression
expr. It expects two additional parameters: an overall demand dem, and a func-
tion environment F that contains the propagation vectors of all functions. Fig. 5
shows a formal definition of that scheme. Constants meet any demand and do
not raise any new demands, hence, an empty set is returned for constants. If a
given demand dem is imposed on a variable Id then the singleton set is returned
containing the pair of the identifier and the given demand.

For function applications, the demand is translated into argument demands
by the appropriate propagation vectors first. These are either extracted from
the function environment F , or — in case of built-in operators — they are de-
termined by an auxiliary scheme PV . After the initial demand dem has been
translated into demands demi for the individual arguments, the scheme is re-
cursively applied to the argument expressions. The resulting sets of demands
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SD(Const, dem, F) = {}

SD(Id, dem, F) = {Id : dem}

SD(FunId(e1, ..., en), dem, F) =
n

i=1

SD(ei, demi, F)

where demi = (F(FunId)i)[dem]

SD(Prf(e1, ..., en), dem, F) =
n

i=1

SD(ei, demi, F)

where demi = (PV(Prf)i)[dem]

SD(let Id = e1in e2, dem, F) =
( SD(e2, dem, F) \ {Id} )

⊕ SD(e1, dem′, F)
where dem′ = PV(λ Id . e2)[dem]

SD with(elb<=Id<eub) : e
genarray(eshp, edef ) , dem, F =

SD(eshp, dems, F)
⊕ ( SD(e, dem, F) \ {Id} )
⊕ SD(edef , dem, F)
⊕ SD(elb, demId, F)
⊕ SD(eub, demId, F)

where dems = [0,2,3,3][dem]
demId = PV(λ Id . e)[dem]

Fig. 5. Scheme for inferring specialisation demands

for relatively free variables are combined by an operation denoted as ⊕. It con-
stitutes a union of sets for those variables that occur in one set only and an
element-wise maximum on the demand vectors for all variables that occur in
both sets.

Let-expressions essentially are a combination of the demands in the body and
the demands in the defining expression. However, the external demand dem needs
to be translated into the demand for the defining expression dem′ by computing
the propagation vector for the underlying λ-abstraction. Furthermore, we need
to exclude the demand for the defined variable from the demands inferred from
the body of the let-expression as relatively free occurrences in the body relate
to this very definition.

The dominating rule for inferring specialisation demands of array operations
is the rule for with-loops as these are the predominant language constructs
for defining array operations in SaC. While the overall demand dem can be
propagated without modification into the generator expression e and the de-
fault expression edef , the most important effect is the increase in demand for
the shape expression eshp. Here, we have a propagation vector [0,2,3,3] which
indicates that we lose one level of shape information. As a consequence, we need
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to statically infer the exact value of this expression if we want to find out the
shape of the result. The overall demand of the with-loop, again, is the combina-
tion of the demands of the individual components using the translated demands
dems, deme, and demId for the shape expression, defining expressions, and the
boundary expressions, respectively.

All that remains to be defined is the auxiliary scheme for obtaining the prop-
agation vectors PV as shown in Fig. 6. It takes a function and returns a vector

PV(shape) = [[0, 0, 1, 2]]

PV(dim) = [[0, 0, 0, 1]]

PV(sel) =
[0, 2, 2, 3]
[0, 1, 2, 3]

PV(∗) =
[0, 1, 2, 3]
[0, 1, 2, 3]

PV(λ Id1, ..., Idn . e) =

SD(e, [0, 1, 2, 3], F)(Id1)
...

SD(e, [0, 1, 2, 3], F)(Idn)

Fig. 6. Computing propagation vectors

of propagation vectors. For built-in operations such as shape, dim, etc. these
are constants defined as explained earlier. For user defined functions or abstract
functions as introduced by the scheme SD, the scheme SD itself can be utilised.
It is applied to the body of the function, assuming demand for all four different
levels ([0,1,2,3]). As this yields the demands for all relatively free variables it
suffices to select those entries that relate to the binding λ. Variables that do
not occur in these sets are not used within the body and, thus, obtain the prop-
agation vector [0,0,0,0]. This is realised by the selection operation denoted as
SD(...)(Idi).

With these definitions, we can define the overall propagation vector environ-
ment for user-defined functions F . Assuming a program of the form

f1 = e1
...

fn = en

main = e
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we obtain:

F =
n⊕

i=1
{fi : PV(ei)} .

The interesting aspect of this definition, from an implementational point of
view, is its recursive nature which arises from the reference to F in the definition
of PV(ei). However, due to the monotonicity of the maximum of the ⊕ operation
and the finiteness of the domain, the computation of F can be implemented as
a fixed-point iteration starting with propagation vectors [0,0,0,0].

7 Applying the Inference Algorithm

This section illustrates the formalism of the previous section by providing a
formal derivation of the propagation for the functions take and matmul from
Section 2. For take, we obtain:

PV(λ v,a . bodytake) =

[
SD(bodytake, [0, 1, 2, 3], F)(v)
SD(bodytake, [0, 1, 2, 3], F)(a)

]

Propagating the canonical demand [0,1,2,3] into the body of take, we obtain
demands for the subexpressions of the with-loop:

SD(bodytake, [0, 1, 2, 3], F)

= SD
(
with(0 ∗ v <= iv < v) : sel(iv, a)
genarray(v, 0) , [0, 1, 2, 3], F

)

=

⎛
⎜⎜⎜⎜⎝

SD(v, [0, 1, 2, 3], F)
⊕ ( SD(sel(iv, a), [0, 1, 2, 3], F) \ {iv} )
⊕ SD(0, [0, 1, 2, 3], F)
⊕ SD(0 ∗ v, PV(λ iv . sel( iv, a))[0,1,2,3], F)
⊕ SD(v, PV(λ iv . sel( iv, a))[0,1,2,3], F)

⎞
⎟⎟⎟⎟⎠

The demand for the lower and upper bound expressions of the generator of the
with-loop is computed as demand for iv when propagating the actual demand
through the body expression sel( iv, a). This is done by first computing the
propagation vector for the pseudo-function λ iv . sel( iv, a):

PV(λ iv . sel( iv, a))
= [SD(sel(iv, a), [0, 1, 2, 3], F)(iv)]
= [{iv : [0, 2, 2, 3]}(iv)]
= [[0, 2, 2, 3]]

With this propagation the demand for the bounds can be computed by mapping
the actual demand [0,1,2,3] on a selection into [0,2,2,3] which yields [0,2,2,3].
With this demand we obtain

SD(v, PV(λ iv . sel( iv, a))[0,1,2,3], F)
= SD(v, [[0, 2, 2, 3]] , F)
= {v : [0, 2, 2, 3]}
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and
SD(0 ∗ v, PV(λ iv . sel( iv, a))[0,1,2,3], F) = {v : [0, 2, 2, 3]}

For the result shape we have
SD(v, [0, 2, 3, 3], F) = {v : [0, 2, 3, 3]}.

From the body expression a demand on a arises as
( SD(sel(iv, a), [0, 1, 2, 3], F) \ {iv} ) = {a : [0, 1, 2, 3]}.

As the default expression is constant we have
SD(0, [0, 1, 2, 3], F) = {}.

Taking these together, we eventually obtain
SD(bodytake, [0, 1, 2, 3], F) = {v : [0, 2, 3, 3], a : [0, 1, 2, 3]}

which gives

PV(λ v,a . bodytake) =
[

[0, 2, 3, 3]
[0, 1, 2, 3]

]
.

From this result, we can easily identify the non-uniformity in the first argument
position of take. If the shape of the result is required, the demand of the in-
dividual arguments can be derived from the third position in the propagation
vectors. They show that we do need to specialise the first argument wrt. to the
argument value while it suffices to specialise the second argument wrt. its shape.
Similarly, we obtain for create:

PV(λ s,x . bodytake) =
[

[0, 2, 3, 3]
[0, 1, 2, 3]

]
.

Having these in place, we can now infer the propagation for matmul:

PV(λ dl,dm,v . bodymm) =

⎡
⎣SD(bodymm, [0, 1, 2, 3], F)(dl)

SD(bodymm, [0, 1, 2, 3], F)(dm)
SD(bodymm, [0, 1, 2, 3], F)(v)

⎤
⎦

Propagating the canonical demand [0,1,2,3] into the body of matmul we obtain:
SD(bodymm, [0, 1, 2, 3], F)

= SD

⎛
⎝let

maind = dm ∗ v
in letbody

, [0, 1, 2, 3], F

⎞
⎠

=
(

SD(letbody, [0, 2, 3, 3], F)
⊕ SD(dm ∗ v, PV(λ maind . letbody)[0,1,2,3], F)

)

Since PV(λ maind . letbody) = [SD(letbody, [0, 1, 2, 3], F)(maind)] we can see
how the inference is driven bottom-up. Computing SD(letbody, [0, 1, 2, 3], F)
recursively leads us into the innermost goal expression, i.e., maind + concat(
zeros, lowerd). As both, addition and concatenation are uniform, we have
SD(maind+ concat(zeros, lowerd), [0, 1, 2, 3], F)

= {maind : [0, 1, 2, 3], zeros : [0, 1, 2, 3], lowerd : [0, 1, 2, 3]}
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From this, we obtain that
PV(λ zeros . maind + concat( zeros, lowerd))[0,1,2,3] = [0,1,2,3]

and thus

SD

⎛
⎝let

zeros = create( shape( dm) - shape( dl), 0)
in maind + concat( zeros, lowerd)

, [0, 1, 2, 3], F

⎞
⎠

=
(

{maind : [0, 1, 2, 3], zeros : [0, 1, 2, 3], lowerd : [0, 1, 2, 3]}
⊕SD(create(shape(dm)− shape(dl), 0), [0, 1, 2, 3], F)

)
.

Here, we have reached the most interesting aspect of the inference for matmul.
Although create is non-uniform, we expect this expression not to raise a de-
mand higher than [0,1,2,3] for the variables dm and dl. Following the inference
algorithm rules, we obtain:

SD(create(shape(dm)− shape(dl), 0), [0, 1, 2, 3], F)
= SD(shape(dm) − shape(dl), [0, 2, 3, 3], F)

as the constant 0 does not raise any demand. As subtraction is uniform the
demand that was raised to [0,2,3,3] by create is propagated into the individual
subexpression, i.e., we have

SD(shape(dm) − shape(dl), [0, 2, 3, 3], F)
= SD(shape(dm), [0, 2, 3, 3], F) ⊕ SD(shape(dl), [0, 2, 3, 3], F)

According to the rule for primitive functions, we obtain as demand for dm as well
as dl: [0,0,1,2][[0, 2, 3, 3]] = [0,1,2,2]. From this result, we can see that we obtain
a demand of [0,1,2,2] which is even lower than the expected demand [0,1,2,3].
Having a closer look at the expression, we can observe that the value of the
entire expression in fact does not depend on the values of dm and dl but their
shapes only.
Using this result, we obtain

SD

⎛
⎝let

zeros = create( shape( dm) - shape( dl), 0)
in maind + concat( zeros, lowerd)

, [0, 1, 2, 3], F

⎞
⎠

=
(

{maind : [0, 1, 2, 3], zeros : [0, 1, 2, 3], lowerd : [0, 1, 2, 3]}
⊕{dm : [0, 1, 2, 2], dl : [0, 1, 2, 2]}

)
.

Propagating that information further up, we obtain
SD(letbody, [0, 1, 2, 3], F)

= SD

⎛
⎝let

lowerd = dl * take( shape( dl), v)
in letbody2

, [0, 1, 2, 3], F

⎞
⎠

=
(

{maind : [0, 1, 2, 3], dm : [0, 1, 2, 2], dl : [0, 1, 2, 2]}
⊕ SD(dl ∗ take(shape(dl), v), [0, 1, 2, 3], F)

)
.

As we have
SD(dl ∗ take(shape(dl), v), [0, 1, 2, 3], F) = {dl : [0, 1, 2, 3], v : [0, 1, 2, 3]}
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we further obtain
SD(letbody, [0, 1, 2, 3], F)
= {maind : [0, 1, 2, 3], dm : [0, 1, 2, 2], dl : [0, 1, 2, 3], v : [0, 1, 2, 3]}

Note here how the multiplication with dl increases the overall demand for that
variable in the AKV case from AKS to AKV .
Eventually, we obtain for the entire body of matmul:

SD(bodymm, [0, 1, 2, 3], F)
= {dm : [0, 1, 2, 2], dl : [0, 1, 2, 3], v : [0, 1, 2, 3]} ⊕ SD(dm ∗ v, [0, 1, 2, 3], F)
= {dm : [0, 1, 2, 2], dl : [0, 1, 2, 3], v : [0, 1, 2, 3]} ⊕ {dm : [0, 1, 2, 3], v : [0, 1, 2, 3]}
= {dm : [0, 1, 2, 3], dl : [0, 1, 2, 3], v : [0, 1, 2, 3]}

Similar as with dl, the use of dm as factor increases the demand for dm. This
supports our intuitive result that matmul is a uniform function with

PV(λ dl,dm,v . bodymm) =

⎡
⎣ [0, 1, 2, 3]

[0, 1, 2, 3]
[0, 1, 2, 3]

⎤
⎦.

8 Related Work

Generic programming on arrays can also be found in the programming language
Fish [JMB98, JS98]. It is based on the idea to divide up all functions into two
parts: one part that describes the actual computation of values and another
part that describes the computation of result shapes from argument shapes.
While the former is implemented at runtime, the latter is done statically by
the compiler. This separation eases the specialisation as the static parts are
identified by the programmer. In fact, it can be considered an offline approach
to partially evaluating Fish programs. However, specialisation wrt. argument
values in Fish cannot happen since all shape computations need to be defined
in terms of argument shapes only. This vastly simplifies the specialisation process
but comes at the price of lack in expressiveness. Only uniform array operations
can be defined which immediately rules out the definition of operations such as
take or create.

A similar situation can be found in the C++ based approach to generic ar-
ray programming called Blitz [Vel98]. There, the rank information is made a
template parameter which is resolved statically. Using the template mechanism
as a tool for partial evaluation (for details see [Vel99]) results in rank specific
C code that — at compile time — is derived from otherwise generic program
specifications. This way, similar to the Fish approach, the rank computation is
strictly separated from the value computation, as the template mechanism in
C++ is strictly separated from the rest of the language.

Further work on specialising generic programs for data types rather than
values can be found in the context of algebraic data types (ADT for short). Pro-
grams that are defined on generalisations of ADTs as they can be found in the
generics of Clean [Ali05], the generic type classes of the Glasgow Haskell Com-
piler [HP00] or in Generic-Haskell [CHJ+01], when left unspecialised, lead
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to significant runtime overhead [AS04]. To ameliorate that problem, Alimarine
and Smetsers in [AS04] propose specialisation to data types throughout generic
programs. They show that for non-recursive data types this specialisation can
be done always without risking non-termination which suggests a brute-force
approach similar to online partial evaluation. Although this is similar to the
specialisation approach in generic array programming there is a major difference
to be observed: in Clean, the underlying type system precludes types to depend
on argument values. As a consequence, generic array programming that would
allow definitions of functions such as take or create can only be done, if array
shapes are part of the data itself. In that case specialisation beyond the level of
data types would be required which is outside the scope of the work described
in [AS04].

9 Conclusions

This paper proposes an inference algorithm for analysing the relation between
the shapes of arguments and the shapes of return values of function definitions
in a first order functional array language. It determines for each function which
level of argument shape knowledge is required in order to determine a certain
level of return shape knowledge. This information can be used to steer function
specialisation in a way that ensures that all shapes are computed statically,
whenever possible. Once all functions are specialised to appropriate level, the
provided shape information can be utilised for various optimisations that are
essential for achieving highly efficient runtime behaviour.

With this apparatus at hand, abstractions can be chosen freely without
preventing the compiler from applying sophisticated optimisations that are re-
stricted to the intra-procedural case. As a consequence, non-uniform functions
such as take can be used as building blocks for large applications without intro-
ducing considerable runtime degradation.
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Haskell User’s Guide, 2001.

[GS99] C. Grelck and S.B. Scholz. Accelerating APL Programs with SAC. SIGAPL
Quote Quad, 29(2):50–58, 1999.



230 C. Grelck, S.-B. Scholz, and A. Shafarenko

[GT04] C. Grelck and K. Trojahner. Implicit Memory Management for SaC. In
C. Grelck and F. Huch, editors, Implementation and Application of Func-
tional Languages, 16th International Workshop, IFL’04, pages 335–348.
University of Kiel, 2004.

[HP00] R. Hinze and S. Peyton Jones. Derivable type classes. In G. Hutton, editor,
Proceedings of the 4th Haskell Workshop, 2000.

[Hui95] R. Hui. Rank and Uniformity. APL Quote Quad, 25(4):83–90, 1995.
[JGS93] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Auto-

matic Program Generation. Prentice-Hall, 1993.
[JMB98] C.B. Jay, E. Moggi, and G. Bellè. Functors, Types and Shapes. In
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