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Abstract. Adapting security protocols to wireless sensor networks ar-
chitectures is a challenging research field because of their specific con-
straints. Actually, sensors are computationally weak devices, unable to
perform heavy cryptographic operations like classical asymmetric algo-
rithms (RSA, Diffie-Hellman). In this paper, we introduce Tiny 3-TLS,
an extension and adaptation of TLS handshake sub-protocol that allows
establishing secure communications between sensing nodes and remote
monitoring terminals. Our protocol aims at guaranteeing the integrity
and confidentiality of communications between sensors and distant ter-
minals, after having established mutual authentication between the two
parties. In order to achieve these security goals without putting too much
burden on sensing devices, Tiny 3-TLS rely on an intermediate node, the
sink node. Depending on the trustworthiness of this sink node and on
the applications, we propose two versions of our proposition. Besides, we
provide a formal validation of the protocol’s security goals achievement
and an evaluation of its computation and delay performances.

1 Introduction

Wireless sensor networks (WSN) have been generating much interest in the last
few years. The need for efficient security is more and more appealed since the
most of sensor applications require wireless communications for flexible deploy-
ment purposes. Besides, the accuracy and the integrity of the conveyed data
may be of very high importance. For instance, WSN may be deployed in e-
health applications, including medical monitoring and remedies administration,
which are critical as the patients’ lives are at stake. Most WSN architectures
rely on a central node that collects and processes the data. It is generally an
entity located outside the WSN, and is linked to it through an interconnecting
architecture (usually the Internet), either an ad hoc or an infrastructure-based
network. The interconnection between WSN and Internet is made by means of
a gateway acting as a radio base station: the sink. This gateway modifies the
message from the WSN in order to be compliant to Internet, usually IP-based,
protocols. The complete operation of this gateway is not detailed in this docu-
ment.The need for security is a request of WSN community. On the one hand,
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the major constraint is the weak resources of such nodes in terms of memory,
processing capacity and power consumption. That’s why it is not possible to use
classical cryptographic algorithms and security protocols in networking archi-
tectures that include WSNs. On the other hand, TLS (Transport Layer Security
protocol) [6] has become the de facto secure application-level tunneling proto-
col; in order to adapt it in the context of wireless sensor networks, we propose
a solution which enables establishing TLS tunnels between a node of the WSN,
and a monitoring remote device. The negotiation may rely on the sink node to
perform as much cryptographic operations as possible. The remainder of this
paper will unfold as follows: the next section will focus on the existing tunnel-
ing technologies and the security mechanisms for WSN. Next, we describe our
solution to support traditional sensor networks security mechanisms, followed
by an evaluation of the computation time of our protocol over Avrora platform
[1] and a formal validation of the protocol from a security point of view using
an automatic protocol analyzer. Finally we conclude and provide some possible
extensions to our work.

2 Related Work

TLS, is an application-independant set of protocols that enables encryption, au-
thentication and integrity for data exchanged between a client and a server. TLS
consists of many subprotocols, among which Handshake protocol. This latter al-
lows a client and a server to negotiate a cyphersuite, authenticate each other
and obtain a shared master key, usually using public key algorithms. Once the
shared master key established, the two parties derive symmetric keys and use
symmetric algorithms for fast encryption and authentication of application data.
Thus, TLS Handshake protocol uses public key technology to support symmetric
key management. Although many prior security proposals for sensor networks
considered that sensor constraints were incompatible with public key cryptog-
raphy, many more recent work showed that public key technology can also be
deployed in the realm of sensor networks. Watro et al.[3] conceived a security
scheme, Tiny PK, based on public key technology, for providing authentication
and key exchange between an external party and a sensor network. The fact is
that TinyPK is based on a precautionous implementation of RSA cryptosystem
albeit Elliptic Curve Cryptography (ECC) appears as an alternative to RSA for
resource constrained devices. Indeed, ECC can offer equivalent security for fairly
smaller keys. Moreover, TinyPK uses checksums to insure message integrity dur-
ing its key management protocol, whereas checksums have shown to be poor and
easily misled integrity mechanisms. An end-to-end security architecture for low
power devices (Sizzle), which lies on ECC, has been implemented by Gupta et
al.[4]. It allows embedding a secure web server in low power devices for moni-
toring and control purposes. Sizzle architecture is composed of a control station
located somewhere in the internet, the sensors being controlled and a gateway
that serves as a bridge between these two elements. The gateway connects to the
internet using an ethernet-like high-speed link and connects to the sensors via a
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lower-speed wireless link such as 802.15.4 [13]. In Sizzle, the gateway does not
perform any cryptographic operation as all data stays encrypted when crossing
the gateway. It just transmits the messages between the control station and the
sensors. As a consequence, all the burden of cryptographic operations is on the
sensors. Moreover the gateway does not authenticate itself neither to the control
station nor to the sensors; and these, are not authenticated either. Therefore,
man in the middle attacks are easily achievable.

3 Tiny 3-TLS

3.1 Trust Model and Security Goals

The goal of our solution is to provide an end-to-end secure communication be-
tween a remote device and a wireless sensor network . Tiny 3-TLS achieves the
following security functionalities:

– injective agreement on a shared session key between a remote terminal and
the WSN, possibly through the help of the gateway,

– mutual authentication between the gateway and the remote node

These goals are validated using an automatic protocol analyser, as described
in section 5.

Even though classical TLS Handshake achieves these goals, it is not adapted
as is to our context. We use concepts from IEEE 802.1X standard [15] trust
model to build trust between the WSN, the gateway and the remote node (see
figure 1). In this scheme, the WSN acts as the authenticator (the resource), the
remote node as the supplicant and the gateway as the authentication server.

Fig. 1. Trust establishment sequence

Figure 1 shows the pre-establishment of trust between the security gate-
way and the group of sensors in (1). Once trust is established between the gate-
way and the remote node (2), it is transitiveley achieved between the remote
node and the WSN (3).

3.2 Problem Statement

Partially Trusted Versus Fully Trusted Gateway:
Tiny 3-TLS adapts TLS handshake sub-protocol in order to have secure com-
munications between a remote client terminal and a sensor network. To balance
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sensors’ low computational capabilities, the Tiny 3-TLS architecture is based
on a third party [5], the security gateway (GW) that assists the sensors for
cryptographic computations.

Henceforth, we consider two cases:

– In the first case, the security gateway is partially trusted by the sensors and
will only help the two parties to authenticate each other. Loosely speaking,
by partially trusted, we mean that the gateway introduces the group of
sensors to the distant terminal and reciprocally this latter to the sensors,
but will not interfere further in the sensors/terminal relationship. In fact,
this mutual authentication will help establishing a shared secret, unknown to
the gateway, between the two parties, allowing the data exchanged between
the terminal and the sensors to remain encrypted when crossing the gateway.
Thus, at the end of Tiny 3-TLS handshake, we will have a secure end to end
tunnel between the two entities.

– In the other case, the security gateway is fully trusted. That is to say, the
gateway will not only help the authentication between the two parties but
will also possess the shared secret between both entities.

Use Cases:
Among project MAGNET-Beyond [14] scenarios, one could consider MAG-
NET.Care. In this scenario, a patient is connected to the external world through
his Body Area Network (BAN), which includes a set of sensors reporting health
data like the current temperature and blood pressure to a coordinator/receiver,
acting as a cluster head, which in turn sends reports to a remote monitoring de-
vice. The coordinator is connected to the external world by means of a gateway.
Whenever the remote monitor polls the BAN for data, the gateway acts as a
reverse proxy, authenticates the monitoring device and then grants access.

One possible application of the partially trusted gateway scenario could be
that of an attending medical practitioner who wants to monitor his patient’s

Fig. 2. A partially trusted gateway use case
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Fig. 3. A fully trusted gateway use case

health condition while he is at the hospital. He can connect his laptop to the
hospital gateway (Security Gateway) and query the sensors connected to the pa-
tient. Then the gateway authenticates the laptop to the patients sensors. How-
ever, if the gateway is not fully trusted, it won’t see the information exchanged
between the physician laptop and the sensors, for evident privacy reasons. This
use case is shown in figure 2.

On the other hand, if the patient is at home and, the physicians at the hospital
want to retrieve some health data (see figure 3), the monitoring device authenti-
cates to the patient’s residential gateway. The reverse proxy in this case is part
of the personal network of the patient and therefore should be fully trusted.

Protocol Assumptions and Statements:
Tiny 3-TLS handshake involves three parties among which a sensor network.
When the gateway is partially trusted, in order to establish a shared secret mas-
ter key which is unknown to the gateway between the sensors and the distant
terminal, Tiny 3-TLS uses ECDH (Elliptic Curve Diffie-Hellman) key agreement
protocol [7, 8]. In fact, asymmetric cryptography is necessary in order to dis-
tribute safely among the targeted entities, the shared secret, even if the gateway
is watching. As precised above, ECC (Elliptic Curve Cryptography) offers asym-
metric cryptography with considerably lower computational burden and smaller
key sizes than traditional asymmetric cryptosystems and thus, is fully conve-
nient to a protocol involving a sensor network. On the other hand, when the
gateway is totally trusted, the classical TLS key agreement is used, since the
shared master key no more needs to be hidden from the security gateway.

In this paper, we have considered that the handshake is done between the
client terminal and a cluster head sensor. Once the master key (shared secret
between the two entities) is derived, the cluster head sensor will broadcast the
keys in a secure manner to other sensors. This broadcast is out of the scope of
this paper.
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We assume that the security gateway and the sensor network share a sym-
metric key K that is used to encrypt any message between both entities. We will
use in the table 1 syntax to describe Tiny 3-TLS.

Table 1. Figure 1 and 2 syntax

BigAlice, GW, TinyBob Principals
K Symmetric Key shared between the gateway and TinyBob

PKx Public key of principal x
IDx Identifier of principal x

Certx Certificate of principal x
H(.) Hash function

ECDHx Elliptic curve Diffie-Hellman public values of principal x
PK−1

x Private key of principal x
{M} K M encrypted with key K

Nx Nonce generated by principal x
Px Ciphersuite offer by principal x
x|y x concatenated to y

PMS Pre-Master Secret
M Concatenation of all previously exchanged messages between BigAlice

and the gateway

3.3 Case 1: The Security Gateway Is Partially Trusted

In this case, the security gateway GW supports the remote terminal (BigAl-
ice) and the sensor network (TinyBob) in sharing a secret, though without pos-
sessing it. First of all, BigAlice sends a Client Hello message that contains its
identifier, the SessionID, a ciphersuite offer and a nonce (1). This message is
encrypted with K symmetric key and forwarded by GW to TinyBob (2). This
latter replies with a Server Hello message including its identifier, the SessionID,
a nonce, a ciphersuite counteroffer and its ECDH public values (3). GW keeps
the ECDH values for itself and transmits to BigAlice a Server Hello message
containing the SessionID and TinyBob’s identifier, nonce and cyphersuite coun-
teroffer. It also conveys its own certificate and a certificate request to BigAlice
(4). Hence, BigAlice responds with its certificate, its ECDH public values and
a newly generated nonce (gateway authentication nonce, N ′

BigAlice), both en-
crypted with GW public key (recovered from GW certificate) and a signature
of its ECDH public values, TinyBob’s nonce and identifier (5). The gateway
authenticates BigAlice and recovers its ECDH public values and the ”gateway
authentication nonce”. It ciphers this latter and TinyBob’s ECDH public ele-
ments, with BigAlice public key and transmits the ciphertext to BigAlice (6).
The fact that the gateway could decipher the ”gateway authentication nonce”
and send it back to BigAlice, authenticates the gateway. Likewise, it sends
to TinyBob, BigAlice’s ECDH public values and a hash of all previously ex-
changed messages between the gateway and BigAlice, all being encrypted by
K (7). Finally, TinyBob and BigAlice can communicate directly and exchange
”Finished” messages (8, 9) where
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Finished = H(R, M) where R = PRF (DHK, NBigAlice, NTinyBob),
DHK being ECDH agreed key.

BigAlice sends its ”Finished” message to TinyBob encrypted with BigAliceMas-
terKey. Likewise, TinyBob sends its ”Finished” message to BigAlice encrypted
with TinyBobMasterKey.

BigAliceMasterKey = KeyGen(IDBigAlice, NBigAlice, NTinyBob, R)
T inyBobMasterKey = KeyGen(IDTinyBob, NBigAlice, NTinyBob, R) (figure 4).

Fig. 4. The gateway is partially trusted

3.4 Case 2: The Security Gateway Is Fully Trusted

In this case, all the communication between TinyBob and BigAlice can be seen
in the clear by the gateway. Client and Server Hello messages are identical to
previous case (messages 1-4), except for the third message which do not contain
TinyBob’s public Diffie-Hellman elements. Once Client and Server Hello mes-
sages exchanged, BigAlice generates a symmetric pre-master secret (PMS). It
responds to the gateway with its certificate, PMS and TinyBob’s nonce encrypted
with GW public key (recovered from GW certificate) and a signature of PMS,
TinyBob’s nonce and identifier. Big Alice adds a ”Finished” message (5) where :

Finished = H(R, H(M)) where R = PRF (PMS, NBigAlice, NTinyBob)

Once the ”Finished” message received from BigAlice, the gateway generates a
nonce, a Client-read-key and a Client-write-key:

Client − write − key = KeyGen(IDBigAlice, NBigAlice, NTinyBob, R)
Client − read − key = KeyGen(IDTinyBob, NBigAlice, NTinyBob, R)

Then, the gateway encrypts these three elements with K and transmits the
cyphertext to TinyBob (6). TinyBob decrypts the cyphertext and sends back a
hash of its identifier and the nonce generated by the gateway (7). Finally the
gateway sends BigAlice a ”Finished” message (8) (figure 5).
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Fig. 5. The gateway is fully trusted

4 Performance Evaluation of Tiny 3-TLS

We have emulated our protocol from the sensor side by means of Avrora for
the analysis of the execution time. Avrora (Beta 1.6 version released in July
2005) is an AVR (Advanced Virtual Risc) Simulation and Analysis Framework
developped by the UCLA Compilers Group. It provides some information (time
consumption, sleep period, energy consumption) about the application down-
loaded on a sensor. It emulates the code processing on a MICA2 sensor. MICA2
uses a 7,37 Mhz single processor board (MPR2400CA) with 128 KB of EEP-
ROM for instructions and 4 KB for data. The application is written in Nesc for
TinyOS 1.x.

In this paper we aimed at limiting the number of computations made by
the sensors, specially public key cryptography. In the case where a gateway is
fully or at least partially trusted (i.e trusted for authentication), this latter can
help decreasing the burden on sensors. Indeed, there are few cases where the
gateway is unknown or publicly available. Sizzle [4] is an end-to-end security
architecture for low power devices. This solution is the closest of the objectives
of our architecture. There are few differences between the both solutions and
the following table illustrates the advantages and the drawbacks, in terms of
computation, of our two use cases (Partially and Fully trusted) compared to [4]
proposition.

Table 2. Comparison of Partially and Fully trusted use cases with Sizzle[4]

Tiny 3-TLS version Partially trusted Fully trusted
Tiny 3-TLS additional operations - 1 symmetric encryption - 1 symmetric encryption

- 1 symmetric decryption - 1 symmetric decryption
Sizzle [4] additional operations - 1 signature verification - 1 Diffie-Hellman shared key generation

- 1 signature verification
- ”Finished” messages calculations
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In comparison with ”Sizzle”, both versions of Tiny 3-TLS protocol perform
one additional symmetric encryption and one additional decryption operation
while performing less asymmetric cryptographic computations.

In the Partially Trusted Gateway use case, symmetric decryption of the Client
Hello message sent by the gateway to the sensor (message 2) and the encryp-
tion of the sensor response (message 3) last 44,8 ms and 156,8 ms, respectively.
A signature verification, even in an optimized implementation will always last
longer by at least two orders of magnitude. This confirms the fact that Partially
Trusted Gateway scenario is less time and energy expensive than Sizzle. In a
more obvious fashion, the Fully Trusted Gateway use case is also advantageous
in terms of time and energy consumption. Indeed, both symmetric encryption
and decryption of Client Hello messages last 44,8 ms. Besides, the most costly
operation, that is key agreement, is delegated to the gateway.

5 Security Analysis and Formal Validation

AVISPA Security Analyser:
In order to analyze the security of Tiny 3-TLS, we used Automatic Validation of
Internet Protocols and Application (AVISPA) tool, a security protocol analyzer
[2]. AVISPA uses a High Level Protocol Specification Language (HLPSL) [9]
to describe security protocols and specifying which security goals are achieved
by a given one. HLPSL is an expressive and straightforward language, based
on the work of Lamport on Temporal Logic of Actions [12]. Communication
channels are represented by the variables carrying different properties of a par-
ticular environment. We have used OFMC [11] tool since it provides support
for specific algebraic properties, in our case the exponential operator used for
Diffie-Hellman key agreement in the first case. We correctly compiled our HLPSL
model and validated Tiny 3-TLS. The output of the analyzer is provided in
table 3.

The Attacker Model:
We have used Dolev-Yao intruder model [10] in which all communications with
the intruder are synchronous. In other words, the intruder is in full knowledge
of all messages to and from the honest participants. In this model, the attacker
can not lead physical attacks against legitimate entities, however, it can par-
ticipate to the protocol, generating its own messages, replaying old messages
and eavesdropping on communications between the different entities. Though,
we test our protocol against replay, identity theft, information leakage and man
in the middle attacks.

In both cases, the output shows that the security goals are reached after
the validation process and that the protocol is safe (that is no attack threat-
ening the specified goals was found). These goals are 1) Mutual strong au-
thentication between BigAlice and GW,and 2) secrecy of Client-write-key and
Client-read-key.
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Table 3. OFMC output of AVISPA security analyzer

Partially trusted Fully trusted
% Version of 2005/06/07 % Version of 2005/06/07
SUMMARY SUMMARY
SAFE SAFE
DETAILS DETAILS
BOUNDED NUMBER OF SESSIONS BOUNDED NUMBER OF SESSIONS
PROTOCOL PROTOCOL
GOAL GOAL
as specified as specified
BACKEND BACKEND
OFMC OFMC
COMMENTS COMMENTS
STATISTICS STATISTICS
parseTime: 0.00s parseTime: 0.00s
searchTime: 25.21s searchTime: 4.87s
visitedNodes: 5206 nodes visitedNodes: 1499 nodes
depth: 13 plies depth: 11 plies

6 Conclusion and Future Work

In this paper, we proposed Tiny 3-TLS, an extension to TLS handshake that
helps establishing end-to-end tunnels between nodes in a wireless sensor network
and an external remote terminal. Contrary to other propositions, we rely on the
sink node as an intermediate for trust establishment, since it is a fundamental
entity in any network architecture that includes sensors.

Depending on the trust model of the sink node, we designed two versions of
the protocol with the objective of relieving as far as possible the low-capacity
node, that is the sensor, from the burden of costly cryptographic operations and
the transmission of their results. Another design challenge was to introduce as
few new messages as possible. The resulting protocol, in both versions, does not
introduce any change in TLS handshake implementation from the client side.

Finally, we formally validated the new protocol using an automatic protocol
analyzer, AVISPA. We are currently implementing the whole protocol and we
will consider in future work the dissemination of the generated keys to other sen-
sors of the cluster and network in order to support one-to-many communication
security based on TLS.
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