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Abstract. This work describes a low-cost Public-Key Cryptography
(PKC) based solution for security services such as key-distribution and
authentication as required for wireless sensor networks. We propose a
custom hardware assisted approach to implement Elliptic Curve Cryp-
tography (ECC) in order to obtain stronger cryptography as well as to
minimize the power. Our compact and low-power ECC processor contains
a Modular Arithmetic Logic Unit (MALU) for ECC field arithmetic. The
best solution features 6718 gates for the MALU and control unit (data
memory not included) in 0.13 μm CMOS technology over the field F2131 ,
which provides a reasonable level of security for the time being. In this
case the consumed power is less than 30 μW when operating frequency
is 500 kHz.

Keywords: sensor networks, pervasive computing, Elliptic Curve Cryp-
tography, authentication, key-distribution, hardware implementation.

1 Introduction

The field of embedded security is in constant evolvement and new applications
are constantly emerging. Extreme examples are sensor nodes and RFID tags as
they put new requirements on implementations of Public-Key protocols with a
very low budget for the number of gates, power, bandwidth etc. Especially the
security in wireless sensor networks is of crucial importance as a large number
of nodes is exposed in sometimes hostile environments and if only one node is
captured by the attacker, the impact to the complete network can be devastat-
ing. Therefore, various cryptographic services are required for these applications
and common use of symmetric-key algorithms such as AES and MACs are not
just imposing problems such as key protection and management but can be at
the same time even more expensive. Although for example, authentication can
be obtained by means of symmetric-key cryptography, it is evident that PKC
substantially simplifies security protocols. In addition, the use of PKC reduces
power due to less protocol overhead [2].

To the best of our knowledge very few papers discuss the possibility for PKC
in these applications although the benefits of PKC are evident especially for
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key distribution between the nodes and various authentication protocols. For
example, the authentication of the base station is easily performed assuming the
public key of the base station can be stored in each node [3]. If only resistance
against passive attacks is needed, the algorithm of Schnorr [9] can be used for
this purpose as it is known that this scheme is secure against passive attacks
under the discrete logarithm assumption. The main cost of this algorithm for
the case of ECC is just one point multiplication.

In this paper we investigate the possibility for PK services for pervasive com-
puting. We show that ECC processors can be designed in such a way to qualify
for lightweight applications suitable for wireless sensor networks. Here, the term
lightweight assumes low die size and low power consumption. Therefore, we pro-
pose a hardware processor supporting ECC that features very low footprint and
low-power. We investigate ECC over binary fields F2p where p is a prime as
proposed in standards [4].

The paper is organized as follows. Section 2 lists some related work. In Sect. 3
we give some background information on Elliptic Curve Cryptography and sup-
porting arithmetic. In Sect. 4 we elaborate on a suitable selection of parame-
ters and algorithms and we outline our architecture and describe our hardware
implementation. Our results are discussed in Sect. 5. Section 6 concludes the
paper.

2 Related Work

Two emerging examples of PKC applications dealing with extremely constrained
environments are sensor networks and radio frequency identification tags
(RFIDs). They put new requirements on implementations of PK algorithms with
very tight constraints in number of gates, power, bandwidth etc. Therefore, as
related previous work we mention implementations of Public-Key cryptosystems
for these applications.

Wireless distributed sensor networks are expected to be used in a broad range
of applications, varying from military to meteorological applications [3]. As the
current generation is powered by batteries, ultra-low power circuitry is a must
for these applications. On the other hand, there is a clear need for PKC in this
context, especially for services such as key-exchange protocols that are typically
provided by means of PKC.

RFID tags are passive devices consisting of a microchip connected with an
antenna. Typically, they have no battery, but they obtain power from the elec-
tromagnetic field produced by the RFID reader. Today they are mainly used
for identification of products but recent applications include also counterfeit-
ing [10]. The application areas for RFIDs vary from supply chain management,
inventory management, preventing banknotes counterfeiting to vehicles tracking,
security of newborn babies etc. In short, RFID tags are meant to be a ubiquitous
replacement for bar codes with some added functionality.

The work of Gaubatz et al. [3] discusses the necessity and the feasibility
of PKC protocols in sensor networks. In [3], the authors investigated
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implementations of two algorithms for this purpose i.e. Rabin’s scheme and
NTRUEncrypt. The conclusion is that NTRUEncrypt features a suitable low-
power and small footprint solution with a total complexity of 3000 gates and
power consumption of less than 20 μW at 500 kHz. On the other hand, they
showed that Rabin’s scheme is not a feasible solution. In [2] the authors have
compared the previous two algorithm implementations with an ECC solution
for wireless sensor networks. The architecture of the ECC processor occupied an
area of 18 720 gates and consumed less than 400 μW of power at 500 kHz. The
field used was a prime field of order ≈ 2100.

Some more efforts for PKC processors for RFID tags include the results of
Wolkerstorfer [11] and Kumar and Paar [5]. Wolkerstorfer [11] showed that ECC
based PKC is feasible on RFID-tags by implementing the ECDSA on a small
IC. The chip has an area complexity of around 23 000 gates and it features a
latency of 6.67 ms for one point multiplication at 68.5 MHz. However, it can
be used for both types of fields e.g. F2191 and Fp192 . The results of Kumar and
Paar [5] include an area complexity of almost 12 kgates and a latency of 18 ms
for one point multiplication over F2131 at 13.56 MHz. The operating frequency
is in both cases too high for those applications and therefore the results cannot
be properly evaluated. Namely, with such a high frequency the power consumed
becomes too large, which has the most crucial impact on the feasibility of the
implementations. We compare the previous implementations with our results in
Section 5 in more detail.

3 Elliptic Curve Cryptography

ECC relies on a group structure induced on an elliptic curve. A set of points
on an elliptic curve together with the point at infinity, denoted ∞, and with
point addition as binary operation has the structure of an abelian group. Here
we consider finite fields of characteristic two. A non-supersingular elliptic curve
E over F2n is defined as the set of solutions (x, y) ∈ F2n × F2n to the equation:
y2 + xy = x3 + ax2 + b where a, b ∈ F2n , b �= 0, together with ∞.

The main operation in any ECC-based primitive such as key-exchange or
encryption is the scalar multiplication which can be viewed as the top level
operation. The point scalar multiplication is achieved by repeated point addition
and doubling. All algorithms for modular exponentiation can also be applied for
point multiplication.

At the next (lower) level are the point group operations i.e. addition and
doubling. The point addition in affine coordinates is performed according to the
following formulae. Let P1 = (x1, y1) and P2 = (x2, y2) be two points on an
elliptic curve E. Assume P1, P2 �= ∞ and P1 �= −P2. The sum P3 = (x3, y3) =
P1 + P2 is computed as follows [1]:
If P1 �= P2,

λ = (y2 + y1) · (x2 + x1)−1

x3 = λ2 + λ + x1 + x2 + a
y3 = λ(x1 + x3) + x3 + y1 .
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If P1 = P2,
λ = y1/x1 + x1
x3 = λ2 + λ + a
y3 = (x1 + x3)λ + x3 + y1 .

There are many types of coordinates in which an elliptic curve may be repre-
sented. In the equations above affine coordinates are used, but so-called projec-
tive coordinates have some implementation advantages. The main conclusion is
that point addition can be done in projective coordinates using only field multi-
plications, with no inversions required. More precisely, only one inversion needs
to be performed at the end of a point multiplication operation.

The lowest level consists of finite field operations such as addition, subtraction,
multiplication and inversion required to perform the group operations. More
details on ECC and its mathematical background can be found in [1].

4 Elliptic Curve Processor (ECP) for Pervasive
Computing

4.1 Algorithms Selection and Parameters

For the point multiplication we chose the method of Montgomery (Algorithm 1)
[8] that maintains the relationship P2 − P1 as invariant. It uses a representation
where computations are performed on the x-coordinate only in affine coordinates
(or on the X and Z coordinates in projective representation). That fact allows
us to save registers which is one of the main criteria for obtaining a compact
solution.

Algorithm 1. Algorithm for point multiplication
Require: an integer k > 0 and a point P
Ensure: x(kP )

k ← kl−1, ..., k1, k0

P1 ← P , P2 ← 2P .
for i from l − 2 downto 0 do

If ki = 1 then
x(P1) ← x(P1 + P2), x(P2) ← x(2P2)
Else
x(P2) ← x(P2 + P1), x(P1) ← x(2P1)

end for
Return x(P1)

We chose as starting point for our optimizations the formulas of Lopez and
Dahab [7]. The original formulas in [7] require 2 or 3 intermediate registers if
the point operations are performed sequentially or in parallel respectively. In the
case of sequential processing it is enough to use two intermediate variables but
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in our case we eliminate one more intermediate register, which added a few more
steps to the original algorithms. The results of our optimizations are shown in
Algorithm 2.

Algorithm 2 requires only one intermediate variable T , which results in 5
registers in total. The required registers are for the storage of the following
variables: X1, X2, Z1, Z2 and T . Also, the algorithm shows the operations and
registers required if the key-bit ki = 0. Another case is completely symmetric
and it can be performed accordingly. More precisely, if the addition operation is
viewed as a function f(X2, Z2, X1, Z1) = (X2, Z2) for ki = 0 due to the symmetry
for the case ki = 1 we get f(X1, Z1, X2, Z2) = (X1, Z1) and the correct result is
always stored in the first two input variables. This is possible due to the property
of scalar multiplication based on Algorithm 1.

Algorithm 2. EC point operations that minimize the number of registers

Require: Xi, Zi, for i = 1, 2, x4 =
x(P2 − P1)

Ensure: X(P1 + P2) = X2,
Z(P1 + P2) = Z2

1: X2 ← X2 · Z1

2: Z2 ← X1 · Z2

3: T ← X2 · Z2

4: Z2 ← Z2 + X2

5: Z2 ← Z2
2

6: X2 ← x4 · Z1

7: X2 ← X2 + T

Require: b ∈ F2n , X1, Z1

Ensure: X(2P1) = X1, Z(2P1) =
Z1,

1: X1 ← X2
1

2: Z1 ← Z2
1

3: T ← Z2
1

4: Z1 ← X1 · Z1

5: T ← T 2

6: T ← b · T
7: X1 ← X2

1

8: X1 ← X1 + T

4.2 Binary Fields Arithmetic

From the formulae for point operations as given in Algorithm 2 it is evident that
we need to implement only multiplications and additions. Squaring is considered
as a special case of multiplication in order to minimize the area and inversion is
avoided by use of projective coordinates. We assume that conversion to affine co-
ordinates can be computed at the base station’s side. Note also that, if necessary,
the one inversion that is required can be calculated by use of multiplications. In
this way the area remains almost intact and some small control logic has to be
added.

4.3 Global Architecture

Our Elliptic Curve Processor (ECP) is shown in Fig. 1. The operational blocks
are as follows: a Control Unit (CU), an Arithmetic Unit (ALU), and Memory
(RAM and ROM). In ROM the ECC parameters and the constants x4 and b are
stored. On the other hand, RAM contains all input and output variables and it
therefore communicates with both, the ROM and the ALU.
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The Control Unit controls the scalar multiplication and the point opera-
tions. In addition, the controller commands the ALU which performs field mul-
tiplication, addition and squaring. When the START signal is set, the bits of
k =

∑nk−1
i=0 ki2i, ki = {0, 1}, nk = �log2k�, are evaluated from MSB to LSB re-

sulting in the assignment of new values for P1 and P2, dependent on the key-bit
ki. When all bits have been evaluated, an internal counter gives an END signal.
The result of the last P1 calculation is written to the output register and the
VALID output is set. The CU consists of a number of simple state machines
and a counter and its area cost is small. The processor memory consists of the
equivalent to five n-bit (n = p) registers.

As our ALU deals with modular arithmetic in a binary field we refer to it
from now on as the Modular Arithmetic Logic Unit (MALU) for which give
more details in the following section.

control
unit

ROM

RAM

ALU

Fig. 1. ECP architecture

4.4 Modular Arithmetic Logic Unit (MALU)

In this section the architecture for the MALU is briefly explained. The datapath
of the MALU is an MSB-first bit-serial F2n multiplier with digit size d as illus-
trated in Figure 2. This arithmetic unit computes A(x)B(x) mod P (x) where
A(x) =

∑
aix

i, B(x) =
∑

bix
i and P (x) =

∑
pix

i. The proposed MALU com-
putes A(x)B(x) mod P (x) by following the steps: The MALUn sums up three
types of inputs which are aiB(x), miP (x) and T (x), and then outputs the inter-
mediate result, Tnext(x) by computing Tnext(x) = (T (x) + aiB(x) + miP (x))x
where mi = tn. By providing Tnext as the next input T and repeating the same
computation for n times, one can obtain the multiplication result.

Modular addition, A(x) +C(x) mod P (x) can be also supported on the same
hardware logic by setting C(x) to the register for T (x) instead of resetting
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register T (x) when initializing the MALU. This operation requires additional
multiplexors and XORs. However the cost of this solution is much cheaper com-
pared to the case of having a separate modular adder. This type of hardware
sharing is very important for such low-cost applications.

The proposed datapath is scalable in the digit size d which can be determined
arbitrary by exploring the best combination of performance and cost.

In Fig. 2 the architecture of our MALU is shown for finite fields operations in
F2163 . To perform a finite field multiplication, the cmd value should be set to 1
and the operands should be loaded into registers A and B. The value stored in
A is evaluated digit per digit from MSB to LSB. We denote the digit size by d.
The result of the multiplication will be provided in register T after � 163

d � clock
cycles. A finite field addition is performed by giving cmd the value 0, resetting
register A and loading the operands into registers B and T . The value that is
loaded into T is denoted by C. After one clock cycle, the result of the addition is
provided in register T . The cmd value makes sure that only the last cell is used
for this addition.

Fig. 2. Architecture of the MALU

The cells inside the MALU all have the same structure, which is depicted in
Fig. 3. A cell consists of a full-length array of AND-gates, a full-length array of
XOR-gates and a smaller array of XOR-gates. The position of the XOR-gates
in the latter array depends on the irreducible polynomial. In this case, the poly-
nomial P (x) = x163 + x7 + x6 + x3 + 1 is used. The cmd value determines
whether the reduction needs to be done or not. In case of a finite field multipli-
cation, the reduction is needed. For finite field addition, the reduction will not
be performed.
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The output value Tout is either given (in a shifted way) to the next cell or to
the output register T in Fig. 2. The input value Tin is either coming from the
previous cell or from the output register T .

Fig. 3. Logic inside one cell of the MALU

The strong part of this architecture is that it uses the same cell(s) for finite
field multiplication and addition without a big overhead in multiplexors. This is
achieved by using T as an output register as well as an input register. The flip-
flops in T are provided with a load input, which results in a smaller area overhead
compared to a solution that would use a full-length array of multiplexors.

5 Results and Discussion

Now we give the results for area complexity and the latency in the case of ECC
point multiplication. The designs were synthesized by Synopsys Design Vision
using a 0.13 μm CMOS library. We used binary fields from bit-size 131 to 163 as
recommended by NIST. ECC with key sizes of around 160 bits is usually com-
pared with RSA for 1024 bits although those are only rough estimates. Namely,
according to the work of Lenstra and Verheul 163 bit long key sizes for ECC
correspond to RSA keys that are much longer than 1024 bits [6]. More precisely,
one could achieve that level of security with around 130 bits long ECC keys.
Therefore, we can assume that ECC over F2131 provides a good level of security
for these applications.

The results of the area complexity for various architectures with respect to
the choice of fields and the size of d for the MALU are given in Table 1. The
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Table 1. The area complexity of MALU in gates of the ECC processor for various
fields and digit sizes

Field size d=1 d=2 d=3 d=4
131 4446 4917 5376 5837
139 4716 5214 5712 6189
151 5117 5652 6187 6700
163 5525 6105 6685 7243

Table 2. The complete area complexity in gates of the ECC processor for various fields
and digit sizes

Field size d=1 d=2 d=3 d=4
131 6718 7191 7645 8104
139 7077 7635 8132 8607
151 7673 8205 8738 9252
163 8214 8791 9368 9926

Table 3. The complete area complexity in μm2 of the ECC processor for various fields
and digit sizes

Field size d=1 d=2 d=3 d=4
131 34936.7 37395.6 39754.4 42139
139 36802.9 39702.5 42287.6 44755.2
151 39901.2 42666 45439.5 48109.2
163 42714.4 45714.2 48715.8 51617.1

results for the complete architecture in gates and in μm2 are given in Table 2
and Table 3 respectively.

The graphical representations of our results for area are shown in Fig. 4 and
Fig. 5. We can observe that the upper bound for the area of the MALU is slightly
more than 7 kgates. On the other hand the complete area, so MALU and the
CU together is less than 10 kgates.

The graphical representations of our results for area in μm2 and for the total
power consumed are shown in Fig. 6 and Fig. 7. The power estimates were
made assuming the operating frequency of 500 kHz. With this frequency the
power stays between 20 and 30 μW which is assumed to be acceptable for sensor
networks applications.

Next we give the numbers for the performance. For the point multiplication we
used Algorithm 1 and for point operations Algorithm 2. We calculate the total
number of cycles for each field operation by use of the following formulae for
field operations. The total number of cycles for one field multiplication is �n

d �+3
where n and d are the bit size of an arbitrary element from the field in which we
are working and the bit size respectively. On the other hand, one field addition
takes 4 cycles. The number of cycles required for one point multiplication in the
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Fig. 4. Results for area complexity of the
ECC-dedicated MALU for various fields
and digit sizes
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Fig. 5. Results for complete area com-
plexity of ECC processor for various fields
and digit sizes

131 139
151

163

1

2
3

4

0

10000

20000

30000

40000

50000

A
re

a
 [u

m
2 ]

Field length

D
ig

it 
si

ze

Fig. 6. Results for area complexity in
μm2 of the ECC-processor for various
fields and digit sizes
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Fig. 7. Results for the power consumed
by the ECC processor for various fields
and digit sizes

case of field F2p , where p is a prime is: (nk − 1)[13(� (nk−1)
d � + 3) + 12]. Here, nk

denotes the number of bits of the scalar k e.g. the secret key.
The results for the total number of cycles of one point multiplication for

fields F2131 and F2163 are given in Table 4. To calculate the time for one point
multiplication we need an operating frequency. However, the frequency that can
be used is strictly influenced by the total power. We assumed an operating
frequency of 500 kHz as suggested in [3] in order to estimate the actual timing.
We get 115 ms for the best case of ECC over F2131 (d = 4) and 190 ms for the
best case of ECC over F2163 (d = 4). Our results are compared with other related
work in Table 5.
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Table 4. The number of cycles required for one point multiplication for ECC over
fields F2131 and F2163

Field size d=1 d=2 d=3 d=4
131 210 600 109 200 74 880 57 720
163 353 710 182071 124 858 95 159

Table 5. Comparison with other related work

Ref. Fin. field Area [gates] Techn. [μm] Op. freq. [kHz] Perf. [ms] Power [μW ]
[5] F2131 11 969.93 0.35 13 560 18 -
[2] Fp100 18 720 0.13 500 410.45 under 400
[11] F2191 , Fp192 23 000 0.35 68 500 9.89 n.a.
our F2131 8104* 0.13 500 115 under 30

We underline again that our result for the area complexity does not include
RAM. The amount of storage that is required for our implementation is to
store 5n bits, where n is the number of bits of elements in a field. Assuming
factor 6 for each bit of RAM, which is quite conservative, the total area of our
processor would be around 12 kgates. This result is close to the result of [5],
but only with respect to area. Assuming the same frequency for their processor
would result in a latency of almost half a second, which is probably to slow for
real applications. The work of Wolkerstorfer is also considering area in mm2

and power consumption1 for various technologies. As another comparison our
architecture consumes an area smaller than 0.05 mm2, without RAM.

We can conclude that our architecture presents the smallest known ECC pro-
cessor for low-cost applications. The performance and power estimates are also
implying a feasible solution for various applications of pervasive computing.

6 Conclusions

This work gives a low-power and low footprint processor for ECC suitable for
sensor networks. We give detailed results for area and performance estimates for
ECC over F2p where p is a prime of bit-length varying from 131 to 163. We also
include the power numbers obtained by the simulation.
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