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Preface

The workshop on Declarative Agent Languages and Technologies (DALT), in its
fourth edition this year, is a well-established forum for researchers interested in
sharing their experiences in combining declarative and formal approaches with
engineering and technology aspects of agents and multiagent systems. Building
complex agent systems calls for models and technologies that ensure predictabil-
ity, allow for the verification of properties, and guarantee flexibility. Developing
technologies that can satisfy these requirements still poses an important and
difficult challenge. Here, declarative approaches have the potential of offering
solutions that satisfy the needs for both specifying and developing multiagent
systems. Moreover, they are gaining more and more attention in important ap-
plication areas such as the Semantic Web, Web services, security, and electronic
contracting.

DALT 2006 was held as a satellite workshop of AAMAS 2006, the fifth In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems,
in May 2006 in Hakodate, Japan. Following the success of DALT 2003 in Mel-
bourne (LNAI 2990), DALT 2004 in New York (LNAI 3476), and DALT 2005 in
Utrecht (LNAI 3904), the workshop again provided a discussion forum to both
(a) support the transfer of declarative paradigms and techniques to the broader
community of agent researchers and practitioners, and (b) to bring the issue
of designing complex agent systems to the attention of researchers working on
declarative languages and technologies.

This volume contains the 12 contributed articles that were selected by the
Programme Committee for presentation at the workshop as well as three invited
articles, originally presented as short papers at AAMAS 2006, that were extended
by their authors. The volume also includes the article “Producing Compliant
Interactions: Conformance, Coverage, and Interoperability” by Amit K. Chopra
and Munindar P. Singh. Professor Singh, from North Carolina State University,
was the invited speaker for this edition of DALT.

We would like to thank all authors for their contributions, the members of
the DALT Steering Committee for their precious suggestions and support, and
the members of the Programme Committee for their excellent work during the
reviewing phase.

October 2006 Matteo Baldoni
Ulle Endriss
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Producing Compliant Interactions: Conformance,
Coverage, and Interoperability

Amit K. Chopra and Munindar P. Singh

North Carolina State University

Abstract. Agents in an open system interact with each other based on (typically,
published) protocols. An agent may, however, deviate from the protocol because
of its internal policies. Such deviations pose certain challenges: (1) the agent
might no longer be conformant with the protocol—how do we determine if the
agent is conformant? (2) the agent may no longer be able to interoperate with
other agents—how do we determine if two agents are interoperable? (3) the agent
may not be able to produce some protocol computations; in other words, it may
not cover the protocol—how we determine if an agent covers a protocol?

We formalize the notions of conformance, coverage and interoperability. A
distinctive feature of our formalization is that the three are orthogonal to each
other. Conformance and coverage are based on the semantics of runs (a run being
a sequence of states), whereas interoperability among agents is based upon the
traditional idea of blocking. We present a number of examples to comprehensively
illustrate the orthogonality of conformance, coverage, and interoperability.

Compliance is a property of an agent’s execution whereas conformance is a
property of the agent’s design. In order to produce only compliant executions,
first and foremost the agent must be conformant; second, it must also be able to
interoperate with other agents.

1 Introduction

We investigate the topic of an agent’s compliance with a protocol by checking its design
for conformance with the protocol and interoperability with other agents. Our agents are
set in an open environment, and thus expected to be autonomous and heterogeneous.
The interactions of agents are characterized in terms of protocols. The autonomy of
an agent is reflected in its policies, which affect how it interacts with others, possibly
resulting in deviations from the given protocol.

Deviations complicate the task of determining compliance. To take a simple example,
a customer in a purchase protocol may send reminders to a merchant at its own discre-
tion even though the protocol did not encode sending reminders. Some deviations can
be flagrant violations. For example, a customer may not pay after receiving the goods
it ordered. What can we say about the compliance of these agents? Sending a reminder
seems like an innocuous deviation from protocol, whereas not sending the payment ap-
pears more serious. One could argue that sending reminders could have been easily in-
corporated into the protocol. However, when we consider that deviations in protocol are
a manifestation of the individual policies of agents, the number of possible deviations
from a protocol is potentially infinite. As more deviations are encoded, the resulting

M. Baldoni and U. Endriss (Eds.): DALT 2006, LNAI 4327, pp. 1–15, 2006.
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2 A.K. Chopra and M.P. Singh

protocol would become large and unwieldy. If each deviant protocol were published
as a separate protocol, too many niche protocols would arise. It is better to maintain a
smaller number of general protocols and to entertain deviations from such protocols.
However, not all deviations are acceptable from the point of view of compliance.

1.1 Compliance: Conformance and Interoperability

For an agent to be compliant with a protocol, first and foremost it must be conformant
with the protocol. While agent compliance can only be checked by monitoring the mes-
sages the agent exchanges with its peers at runtime, conformance can be verified from
its design. The design of an agent involves two primary components: protocols and poli-
cies. Protocols are the public part of the design and can be considered fixed for the set of
agents that adopt specific roles in the protocol. However, the policies are private to each
agent, and potentially unique to each agent. Hence, the design of an agent is a function
of its policies. An agent is conformant with a protocol if it respects the semantics of the
protocol. A useful criterion when considering conformance is the satisfaction of com-
mitments. Our definition of conformance supports commitments, but it is more general.

The distinction between conformance and compliance is important: an agent’s de-
sign may conform, but its behavior may not comply. This may be not only because of
the agent’s failure or unreliable messaging (which do not concern us here), but also be-
cause an agent’s design may preclude successful interoperation with its peers. In other
words, even though an agent is individually conformant, it may not be able to generate
compliant computations because of the other agents with whom it interacts, apparently
according to the same protocol. Interoperability is distinct from conformance; interop-
erability is strictly with respect to other agents, whereas conformance is with respect to
a protocol.

1.2 Coverage

A protocol may offer a number of alternative execution paths. Some of those paths may
be impossible for an agent who deviates from the protocol. Such a reduction in possi-
ble paths may be viewed as a reduction in the capabilities of an agent. Conversely, the
agent’s design may make it possible to interact along paths unforeseen in the protocol.
Such an addition may be viewed as an increase in the capabilities of an agent. Infor-
mally, we say an agent covers a protocol if it capable of taking any of the paths in the
protocol.

This notion of coverage is an important one: if an agent covers a protocol it would
appear to be at least as flexible as the protocol. That is, the agent can handle whatever the
protocol can “throw” at it. Moreover, in some settings it may be institutionally required
that an agent cover a protocol. For example, a tax official must report discrepancies in
reviewed filings to the main office; the official cannot ignore them.

1.3 Contributions and Organization

Our contributions include (1) an account of conformance and coverage based on a se-
mantics for protocols suitable for open systems; (2) showing how conformance, cover-
age, and interoperability are orthogonal concerns; and (3) establishing that in order to
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only produce compliant interactions, one has to consider both an agent’s conformance
with the protocol, and its interoperability with other agents.

Section 2 presents the representation of protocols as transition systems. Section 3
discusses the way in which an agent may deviate from protocol. Section 4 defines con-
formance and coverage. Section 5 discusses the interoperability of agents. Section 6
shows that conformance, coverage, and interoperability are orthogonal; it also discusses
the relevant literature.

2 Protocols

We represent protocols as transition systems; the transition systems are similar to those
described by C+ specifications [5]. The signature of a transition system is the set σ of
constants that occur in it. Here σact and σfl represent the sets of actions and fluents,
respectively. Each constant c is assigned a nonempty finite domain Dom(c) of symbols.
An interpretation of σ is an assignment c = v for each c ∈ σ where v ∈ Dom(c).

Informally, a transition system is a graph with states as vertices and actions as edges.
A state s is a particular interpretation of σfl, the set of fluents; a transition is a triple
〈s, e, s′〉 where s and s′ are states, and e is an interpretation of σact, the set of actions.
In addition, the initial and final states are marked.

Definition 1. A transition system is a 〈σfl, σact, S, s0, F, δ〉, where σfl is the set of
fluents, σact is the set of actions, S is the set of states such that S ⊆ 2σfl

, s0 ∈ S is an
initial state, F ⊆ S is the set of final states, δ ⊆ S × E × S is the set of transitions,
where E ⊆ 2σact

.

Figure 1 shows the transition system of a purchase protocol. The protocol has two roles:
merchant (mer) and customer (cus) engaging in the steps below:

1. The customer sends a request for quotes to the merchant.
2. The merchant responds either by sending an offer for the goods for which the cus-

tomer requested a quote, or by indicating the nonavailability of requested goods in
which case the protocol ends. By sending an offer, the merchant creates the con-
ditional commitment CC(mer, cus, a price, an item) meaning that if the customer
pays price a price, then the merchant will send the goods an item.

3. The customer can respond to the offer by either sending an accept, or a reject. Ac-
cepting the quote creates a conditional commitment CC(cus, mer, an item, a price),
meaning that if the merchant sends the goods, then the customer will pay. If the cus-
tomer sends a reject, the protocol ends.

4. If the customer sends a payment to the merchant, then CC(cus, mer, an item,
a price) is discharged and CC(mer, cus, a price, an item) is reduced to C(mer, cus,
an item) meaning that the merchant is now committed to sending the goods. But
if the merchant sends an item to the customer, then CC(mer, cus, a price,an item)
is discharged and CC(cus, mer, an item, a price) is reduced to C(cus, mer, a price)
meaning that the customer is now committed to paying for the goods.

5. If the customer has paid in the previous step, then the merchant sends the goods,
thereby discharging its commitment. But if the merchant has sent the goods in
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S0

S1

S4

S3

S2

sendRequest(cus,mer,an_item)

sendOffer(mer,cus,an_item,a_price)

sendAccept(cus,mer,an_item,a_price)

sendGoods(mer,cus,an_item,a_price)

S5

6S

sendGoods(mer,cus,an_item,a_price)sendPayment(cus,mer,an_item,a_price)

CC(cus,mer,an_item,a_price)
CC(mer,cus,a_price,an_item)

CC(mer,cus,an_item,a_price)

 C(cus,mer,a_price)

sendReject(cus,mer,an_item)

sendPayment(cus,mer,an_item,a_price)

C(mer,cus,an_item)

7S

S8

sendNoOffer(mer,cus,an_item)

Fig. 1. A purchase protocol

the previous step, then the customer sends the payment, thereby discharging its
commitment. In either case, no commitments or conditional commitments hold in
the resulting state, which is a final state of the protocol.

Table 1 shows the interpretation of states in the transition system. An action starting
with ‘send’ represents a single message exchange between roles with the sender role
and receiver role as the first and second arguments, respectively. The fluents initial and
final mark the start state and the final states respectively.

We now introduce some definitions related to transition systems.

Definition 2. A path in a transition system is a series of transitions 〈s0, e0, s1〉,
〈s1, e1, s2〉, . . .,〈sf−1, ef−1, sf 〉 such that s0 is the initial state, and sf is a final state.

A path may be abbreviated as 〈s0, e0, s1, e1, . . . , ef−1, sf 〉. Given a path ρ = 〈s0, e0,
s1, . . . , si, ei, . . . , ef−1, sf 〉, we say ei ∈ ρ (0 ≤ i < f ), and si ∈ ρ (0 ≤ i ≤ f ).

We restrict our attention to two-party protocols. All the actions performed by the
agents are communications. We further assume about the transition system of any pro-
tocol or agent that (1) only one action is performed along any transition; (2) in any
transition 〈s, e, s′〉, s �≡ s′; (3) there exist no transitions 〈s, e, s′〉 and 〈s, e′, s′〉 such
that e ≡ e′ (in other words, no two distinct actions cause a transition into the same
destination state from the same origin state); (4) the transition system is deterministic;
and (5) along any path in the transition system, an action is performed at most once.

Definition 3. A run in a transition system is a series of states 〈s0, s1, . . . , sf 〉 such that
there exists a path 〈s0, e0, s1, e1, . . . , ef−1, sf 〉 in the transition system.

For example, the protocol of Figure 1 has the runs: 〈s0, s1, s8〉, 〈s0, s1, s2, s7〉, 〈s0, s1,
s2, s3, s4, s6〉, and 〈s0, s1, s2, s3, s5, s6〉. Note that given the above restrictions, each
run maps to a unique path and vice versa.

Definition 4. The t-span [T ] of a transition system T is the set of paths in T .



Producing Compliant Interactions: Conformance, Coverage, and Interoperability 5

Table 1. States in Figure 1

State Fluents
s0 initial
s1 request(cus, mer, an item)
s2 request(cus, mer, an item) , offer(mer, cus, an item, a price) ,

CC(cus, mer, an item, a price)
s3 request(cus, mer, an item) , offer(mer, cus, an item, a price) ,

accept(cus, mer, an item, a price) , CC(cus, mer, an item, a price) ,
CC(mer, cus, a price, an item)

s4 request(cus, mer, an item) , offer(mer, cus, an item, a price) ,
accept(cus, mer, an item, a price) , goods(mer, cus, an item, a price) ,
C(cus, mer, a price)

s5 request(cus, mer, an item) , offer(mer, cus, an item, a price) ,
accept(cus, mer, an item, a price) , pay(cus, mer, an item, a price) ,
C(mer, cus, an item)

s6 request(cus, mer, an item) , offer(mer, cus, an item, a price) ,
accept(cus, mer, an item, a price) , goods(mer, cus, an item, a price) ,
pay(cus, mer, an item, a price) , final

s7 request(cus, mer, an item) , offer(mer, cus, an item, a price) ,
reject(cus, mer, an item, a price) , final

s8 request(cus, mer, an item) , no offer(mer, cus, an item) , final

Notice that t-span is thus defined for protocols, role skeletons, and agents.
For example, {〈s0, s1, s2, s7〉, 〈s0, s1, s8〉, 〈s0, s1, s2, s3, s4, s6〉, 〈s0, s1, s2, s3,

s5, s6〉} is the t-span of the purchase protocol of Figure 1.

3 Deviating from Protocol

A role skeleton is a projection of a protocol onto a particular role; it is the transition
system of the role. Figure 2 shows the customer skeleton. A customer’s policies are
combined with the customer role to create a new transition system representing the
customer agent. Saying an agent is conformant with a protocol is the same as saying it
is conformant with the role it adopts in the protocol; the same holds for coverage. Also
note that if the transition system of an agent is identical to the skeleton of the role it
adopts, we shall say that the agent follows the role.

The policies that go into designing an agent may be such that it follows a protocol.
Or, they may be such that the agent encodes deviations from the protocol. Below, we
list some common kinds of deviations.

Narrowing. The t-span of an agent is a proper subset of the t-span of the role skeleton
it adopts: a typical reason for this would be to simplify its implementation.

Example 1. As shown in the agent’s transition system in Figure 3, the customer re-
quires the goods to arrive before it sends the payment. Essentially, the customer has
removed a run from the role skeleton, namely, the run in which payment happens
before the delivery of goods.
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S0

S1

S4

S3

S2

sendRequest(mer,an_item)

recvOffer(mer,an_item,a_price)

sendAccept(mer,an_item,a_price)

recvGoods(mer,an_item,a_price)

S5

6S
recvGoods(mer,an_item,a_price)sendPayment(mer,an_item,a_price)

7S
sendReject(mer,an_item)

sendPayment(mer,an_item,a_price)

8S

recvNoOffer(mer,an_item)

Fig. 2. Customer role skeleton

S0

S1

S4

S3

S2

sendRequest(mer,an_item)

recvOffer(mer,an_item,a_price)

sendAccept(mer,an_item,a_price)

recvGoods(mer,an_item,a_price)

6S
sendPayment(mer,an_item,a_price)

7S
sendReject(mer,an_item)

8S

recvNoOffer(mer,an_item)

Fig. 3. Customer who sends payment only after receiving goods

Broadening. The t-span of the role skeleton is a proper subset of the t-span of the
agent that adopts that role: a typical reason for this would be to handle scenarios
not encoded in the protocol.

Example 2. The customer agent sends a reminder to the merchant about its com-
mitment to send goods. Thus, in addition to the original runs, the customer agent
includes the run in which it sends a reminder. For the sake of brevity, Figure 4 only
shows the additional run; the remaining runs are as in Figure 2.

Lengthening. The t-span of an agent is similar to that of the role skeleton except that
some runs in the t-span of the agent are longer than the corresponding runs in the
role skeleton: the reason is that additional actions happen along the path corre-
sponding to the run.
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S0

S

S"4

S3

S2

sendRequest(mer,an_item)

recvOffer(mer,an_item,a_price)

sendAccept(mer,an_item,a_price)

recvGoods(mer,an_item,a_price)

6S" sendPayment(mer,an_item,a_price)

sendReminder(mer,an_item,a_price)S 9

1

Fig. 4. The run in which customer sends a reminder

Example 3. If we replace the run 〈s0, s1, s2, s3, s4, s6〉 in the customer role skele-
ton (shown in Figure 2) with the run in which a reminder is sent (shown in Figure 4),
then it represents an example of lengthening.

Example 4 illustrates the shortening of runs.

Example 4. Consider the customer of Figure 5. After receiving goods, the customer
does not send payment for them. State s4 is a final state for this customer.

S0

S1

S4

S3

S2

sendRequest(mer,an_item)

recvOffer(mer,an_item,a_price)

sendAccept(mer,an_item,a_price)

recvGoods(mer,an_item,a_price)

S5

6S
recvGoods(mer,an_item,a_price)

7S
sendReject(mer,an_item)

sendPayment(mer,an_item,a_price)

8S

recvNoOffer(mer,an_item)

Fig. 5. Customer who does not pay for received goods

Gating. An agent may broaden or lengthen a protocol in such a way that it expects to
receive additional messages from its partners in order to proceed.
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Example 5. The customer agent may ask for warranty information upon receiving
the goods, in which case it expects the merchant to send the information before it
makes the payment. The customer is thus “gated” upon the receipt of warranty in-
formation. Figure 6 shows the additional run; the remaining runs are as in Figure 2.

Note that combinations of the above deviations are also possible. Example 5, for
instance, represents a case of both gating and broadening. It is also possible that an
agent represents narrowing as in Example 1, and at the same time represents broadening
and gating as in Example 5.

4 Conformance and Coverage

What can we say about the conformance of the customer agent in each of the above
examples? Clearly, no customer is following the purchase protocol. Then, are they are
all nonconformant? If we look at the agents from the point of view of commitments,
it sheds some light on their conformance. No commitments remain unsatisfied in any
run in the customers in Examples 1, 2, 3, and 5. We would expect that these customers
are determined conformant to their roles. The customer of Example 4, however, has a
pending commitment (to pay) in its final state s4. Consequently, this customer should
be determined to be nonconformant.

Similarly, what can we say about the coverage of the customer agent in each of the
above examples? Based on the discussion of coverage in Section 1, we would expect the
customers in Examples 2 and 5 to be determined to be covering the protocol, whereas
the customers in Examples 1 and 4 to be determined to be noncovering. The customer
of Example 3 is more interesting: it could be identified as noncovering since one of the
runs of the protocol is missing. However, this run has been replaced by a run that sends
a reminder: the replacement run is quite similar to the missing run. Sending a reminder
does not affect the commitments. Hence, we would expect the customer in Example 3
to be covering.

Our definitions of conformance and coverage rely on the notion of run subsump-
tion [6]. In the following, we briefly discuss run subsumption, then we formally define
conformance and coverage.

We introduce state similarity to compare states. A state-similarity function f maps a
state to a set of states, i.e., f : S→ 2S. From f , we induce a binary relation≈f⊆ S×S,
where ≈f= {(s, f(s)) : s ∈ S}. We require f to be such that ≈f is an equivalence
relation. For example, commitments could be used to compare states. Two states are
commitment similar if the same set of commitments hold in them.

Let ≺τ be a temporal ordering relation on states in a run τ . That is, s ≺τ s′ means
that s occurs before s′ in τ .

Definition 5. A run τj subsumes τi under a state-similarity function f , denoted by
τj �f τi if for every state si that occurs in τi, there exists a state sj that occurs in τj

such that sj ≈f si, and for all s′i that occur in τi, if si ≺τi s′i then there exists s′j that
occurs in τj such that sj ≺τj s′j and s′j ≈f s′i.
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S0

S1

sendRequest(mer,an_item)

recvOffer(mer,an_item,a_price)

S4

S
3

S2 sendAccept(mer,an_item,a_price)

recvGoods(mer,an_item,a_price)

6S"

sendPayment(mer,an_item,a_price)

S
10

sendInquiry(mer,an_item,a_price,warranty)

S
11

recvInfo(mer,an_item,a_price,warranty)

Fig. 6. The run in which the customer asks for warranty information

Run subsumption is reflexive, transitive, and antisymmetric up to state similarity
[6]. Longer runs subsume shorter runs, provided they have similar states in the same
temporal order.

The closure of a protocol is a span that is closed under run subsumption. That is,
if a run is in the closure, then all the runs that subsume it (under some state-similarity
function) are also in the closure. Closures are unique (under a particular state-similarity
function), and provide a firm basis for comparing protocols; a different closure may be
obtained by changing the state-similarity function. For the purposes of this paper, we
will use the commitment-similarity function.

Definition 6. The closure of a protocol P under a state-similarity function f is given
by [[P ]]f = {τ | ∀τ ′ ∈ [P ] : τ �f τ ′}.
Definition 7. An agent α is conformant with a protocol P under a state-similarity func-
tion f if [α] ⊆ [[P ]]f .

As expected, Definition 7 renders the customers in Examples 1, 2, 3 and 5 con-
formant with the protocol, and the customer in Example 4 nonconformant with the
protocol.

Definition 8. An agent α covers a protocol P under a state-similarity function f , if for
each τ ∈ [P ], there exists a τ ′ ∈ [α] such that τ ′ �f τ .

As expected, Definition 8 renders the customers in Examples 2, 3 and 5 as covering
the protocol, and the customers in Examples 1 and 4 as noncovering.

5 Interoperability

Section 4 defines the conformance of an agent with respect to its role skeleton. A con-
formant agent respects the semantics of the protocol: it encodes only runs in the closure
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of the protocol. However, just because an agent is conformant does not mean it can
always successfully interoperate with other conformant agents. Let us consider the ex-
amples below involving conformant customer and merchant agents; the merchant, in
particular, follows its role in the protocol.

It is worth considering the idea of how protocols can be operationally interpreted.
An agent may ignore messages that are not in its vocabulary (i.e., do not occur in its
t-span). Or an agent may ignore all messages that are unexpected, specifically including
those that are in the vocabulary but arrive out of order.

Example 6. The customer sends reminders as shown in Figure 4. The reminders are not
in the t-span of the protocol, but are in its closure. Thus they are allowed but may not
be implemented by agents playing other roles. Such reminders do not cause a problem
in interoperation: the merchant cannot handle reminders, but can ignore them.

Example 6 is benign in that even though the customer does something the merchant
does not expect, both can execute the protocol to completion. Therefore, we expect
these agents to be rendered interoperable.

Example 7. The customer sends payment only upon receipt of goods (as in Figure 3)
from a merchant. Even though, the customer and merchant are individually conformant
with their respective roles, they exists the possibility of a deadlock: the customer waits
for the merchant to send goods first, and the merchant waits for the customer to send
payment first.

Because of the possibility of a deadlock, we expect the agents in Example 7 to be
rendered noninteroperable.

Example 8. The customer agent asks for warranty according to the run shown in Fig-
ure 6. The merchant cannot fulfill the customer’s warranty information request: the
merchant simply ignores the request. And the customer would not send payment until
it receives the warranty information.

We expect the agents in Example 8 to be rendered noninteroperable. In this example,
noninteroperability causes a violation of a customer’s commitment to pay.

5.1 Verifying Interoperability

The interoperability of two agents depends upon the computations that they can jointly
generate. The agents may act one by one or in true concurrency. Definition 9 captures
the above intuitions for a product transition system of a pair of agents.

Definition 9. Given two agents α1 := 〈σfl
1 , σact

1 , S1, s01 , F1, δ1〉 and α2 := 〈σfl
2 , σact

2 ,

S2, s02 , F2, δ2〉, the product transition system α× = α1×α2 is given by α× := 〈σfl
× ,

σact× , S×, s0× , F×, δ×〉 where,

– σfl
× = σfl

1 ∪ σfl
2

– σact× = σact
1 ∪ σact

2
– S× = S1 × S2
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– s0× = (s01 , s02)
– F× = F1 × F2

– δ× ⊆ S××E××S× where E ⊆ 2σact
× such that 〈s, e, s′〉 ∈ δ×, where s = s1×s2

and s′ = s′1 × s′2, (s1, s
′
1 ∈ S1), (s2, s

′
2 ∈ S2), if and only if

• 〈s1, e, s
′
1〉 ∈ δ1, or

• 〈s2, e, s
′
2〉 ∈ δ2, or

• e = (e1, e2) and 〈s1, e1, s
′
1〉 ∈ δ1 and 〈s2, e2, s

′
2〉 ∈ δ2.

The technical motivation behind Definition 9 is that it accommodates the transitions
that would globally result as the agents enact the given protocol. When the agents act
one by one, the transitions are labeled with an action from their respective σact. When
the agents act concurrently, the transitions are labeled by a pair of actions, one from
each agent.

Interoperability can become challenging in light of the fact that communication be-
tween agents is asynchronous. The essence of these challenges is that an agent might
block indefinitely upon doing a receive. We verify the interoperability of agents by an-
alyzing their product transition system for the absence of such problems.

The sending of a message m by an agent α is represented by send(α, m). Similarly,
receiving a message is represented by recv(α, m). When the identity of the agent does
not matter, we write only send(m) and recv(m) instead. Below x, y, . . . range over
messages m1, m2, . . ., and α, β, . . . are agents.

Definition 10. An action a strictly precedes an action b on a path ρ in the product
transition system, denoted by a ≺ρ b, if and only if a ∈ ei and b ∈ ej such that
ei, ej ∈ ρ and i < k. If we change the index condition to i ≤ k, we say a �ρ b.

Next, we identify all the pathological paths in the product, i.e., those that can be never
be realized during execution. A kind of pathological path is one whose execution is im-
possible under considerations of asynchrony, for instance, a path where the receipt of a
message happens precedes its sending. Another kind of pathological path can be iden-
tified when we associate angelic determinism with attempted receipts of messages. The
idea is that if an action send(α, x) happens, and it it is possible to execute one of either
recv(β, x) or recv(β, y) (x �= y), then recv(β, x) is executed. Definition 11 allows for
angelic nondeterminism on receives; specifically, it identifies paths that appear “bad”
as they appear to block on a receive, but are “saved” by angelic nondeterminism.

Definition 11. A path ρ = 〈. . . , si, ei, sj , . . .〉 is said to be locally matched by a path
ρ′ = 〈. . . , si, e

′
i, sk, . . .〉 in the product transition system if and only if

– recv(α, x) ∈ ei and send(β, x) never occurs on ρ, and
– recv(α, y) ∈ e′i and send(β, y) occurs on ρ′.

Definition 12 defines a product transition system that contains only paths that can be
realized (paths which block are considered realizable).

Definition 12. A causal product transition system based on two agents is a transition
system whose set of paths is a subset of the paths of the product transition system of the
two agents such that it contains no path ρ = 〈. . . , si, ei, si+1, . . .〉 that satisfies one of
the conditions below:
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– for some i, ei = recv(x) or ei = (recv(x), send(y)), such that recv(x) ≺ρ

send(x), or
– it is locally matched.

Definition 13. A path ρ = 〈. . . , si, ei, si+1, . . .〉 in the product transition system is a
deadlock path if and only if ei = (recv(x), recv(y)) and recv(x) ≺ρ send(x) and
recv(y) ≺ρ send(y).

Note that Definition 12 does not consider ei = (recv(x), recv(y)) as they might be
the indication of deadlocks. However, it might remove other paths that are an indica-
tion of deadlocks, for example, ρ where recv(α, x) ≺ρ recv(β, y) and recv(α, x) ≺ρ

send(β, x) and recv(β, y) ≺ρ send(α, y). However, from the construction of the prod-
uct, if there is such a path ρ in the product, there must be a corresponding deadlock path
ρ′. Hence, ρ may be removed without compromising our ability to detect deadlocks.

Definition 14. A path ρ = 〈. . . , si, ei, si+1, . . .〉 is a blocking path if and only if for
some recv(x) ∈ ei, there occurs no send(x) on the path.

Definition 15. A path ρ = 〈. . . , si, ei, si+1, . . .〉 is an out-of-order path if and only if
recv(α, x) �ρ recv(α, y) and send(β, y) �ρ send(β, x).

Definition 16. Two agents are interoperable if and only if in the causal product of their
transition systems

– there exists no deadlock path, and
– there exists no blocking path, and
– there exists no out-of-order path.

As expected, Definition 16 renders the agents in Example 6 interoperable. Also as
expected, it renders the agents in Examples 7 and 8 as noninteroperable; it also renders
the customer in Example 4 noninteroperable with a merchant that follows protocol. In
fact, if the customer and merchant each follows their roles, they will be rendered nonin-
teroperable (and rightly so) because of the nonlocal choice between sending goods and
sending payment. It may be argued that a protocol with nonlocal choice is inherently
incomplete and, therefore, may be considered as an abstract protocol. For such pro-
tocols further negotiation is necessary between the agents or their designers to ensure
interoperability.

6 Discussion

We have defined conformance and coverage in a way that respects the semantics of
the protocol. Although we have used a commitment-based semantics, the semantics
primarily depend on the state-similarity function. Our definitions of conformance and
coverage allow agents flexibility in their interactions, which is crucial in open settings.
By contrast, interoperability is strictly about an agent receiving a message it expects to
receive. In that manner, interoperability is less semantic, and imposes strict restrictions
on agents to interoperate.
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6.1 Proving Orthogonality

We prove the orthogonality of conformance, coverage, and interoperability with the
help of examples. We have already seen that agents that follow the customer and mer-
chant roles respectively in the purchase protocol of Figure 1 are not interoperable. Now
we consider a variant of the purchase protocol which does not have the pay-before-
goods path. Specifically, let’s consider the protocol of Figure 1, but without the run
〈s0, s1, s2, s3, s5, s6〉. Let this variant be P ′. Figure 3 would then depict the customer
role skeleton; the merchant’s role skeleton would be symmetric except that the sends
and receives would be swapped. Table 2 considers the conformance and coverage of
different merchant agents with respect to P ′, and the agents’ interoperability with a
customer that follows the customer role. (Figure 7 shows the paths that the table refers
to.) It is clear from the table that the conformance, coverage, and interoperability are
orthogonal concerns, because examples of all possible combinations of their truth and
falsity exist.

S

S0

12

sendGoods(cus,an_item,a_price)

S0

S
13

sendGoods(cus,an_item, a_price)

S
14

recvPayment(cus,an_item,a_price)

S4

S
6

recvPayment(cus,an_item, a_price)

S
15

recvFeedback(cus,an_item,a_price)

"Free goods" path "Expecting payment for unordered goods" path

"Feedback" path

Fig. 7. Some runs used in Table 2

6.2 Literature

Baldoni et al. [2] and Endriss et al. [4] present alternative formalizations of confor-
mance and interoperability. Both formalizations, however, violate the orthogonality of
conformance and interoperability with the result that many agents that should be con-
sidered conformant in a practical setting—and are determined to be conformant ac-
cording to our formalization—are rendered nonconformant in theirs. For example, they
would both determine the customer who sends reminders to be nonconformant. Agents
that are conformant by our definition, but gate on some message not in the role they
are playing, seem to present a problem. Such agents would not be interoperable with
agents that are conformant but do not send the message being gated upon. Importantly,
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Table 2. Orthogonality of conformance (C), coverage (V), and interoperability (X)

Merchant agents C V X
Only has path expecting payment for unordered goods × × ×
Has additional free goods path and no reject path × × �
Has additional path expecting payment for unordered goods × � ×
Has additional free goods path × � �
Has the goods-pay path gated on feedback and no reject path � × ×
Has no reject path � × �
Has the goods-pay path gated on feedback � � ×
Follows role � � �

such agents could potentially violate their commitments because of the gating; in other
words, they could potentially produce noncompliant executions. For example, the cus-
tomer in Example 5 would violate its commitment to pay if it fails to receive the war-
ranty information.

Deeming such an agent nonconformant would, however, be unduly restrictive. The
noninteroperability of such an agent with other agents could be detected, and special
measures taken to ensure that an agent does not blindly enter such interactions. Specif-
ically, such measures include developing agents who can negotiate with others about
the possibilities of deviating from their chosen roles. Even if the agents involved can-
not negotiate—then the agents are effectively noninteroperable—this situation is more
acceptable than potentially violating a commitment. Our formalization of conformance
and interoperability supports such scenarios.

Approaches based on verifying compliance at runtime [1,7] are important in the con-
text of open systems since agents may behave in unpredictable ways; also it is necessary
to have independent arbiters in case of disputes involving agents. Such approaches are
complementary to this work.

6.3 Directions

A possible direction is to extend this work to more general protocols and agents: specif-
ically, multiparty protocols and agents with infinite runs. Also, this work may be tied
together with work on protocol transformations [3]: it would be interesting to be able
to determine which transformers, when applied to a protocol, would preserve confor-
mance, coverage, and interoperability.
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Abstract. Ontologies play a key role in agent communication and the
emerging Semantic Web to define a vocabulary of concepts and their re-
lationships. Different agents and web services may use vocabularies from
different ontologies to describe their data. The current research on on-
tology mapping and ontology translation mainly focuses on how to map
and translate vocabularies and associated data instances from one on-
tology to another. However, more complicated true statements, such as
axioms (rules), are used or being developed to describe the relationships
among the concepts. When extending one ontology using complicated
true statements (theory) from another, we must confront the problem of
theory translation, which is difficult because of the asymmetry of trans-
lation. In this paper, using an inferential approach we call axiom deriva-
tion, we show how to translate complex axioms between different time
ontologies. We also prove the validity of our algorithm.

1 Introduction

Ontologies, which can be defined as the formal specification of a vocabulary of
concepts and the relationships among them, play a key role in agent communi-
cation and the emerging Semantic Web [3]. Multiple agents and Semantic Web
services often need to share data, in spite of the fact that they describe similar
domains using different vocabularies, or use the same symbols to mean different
things. This semantic heterogeneity problem has received significant attention.
(See [21] for a survey.) We can distinguish several different problems:

1. Ontology matching and mapping: Finding correspondences (matchings) and
mappings between the concepts of two ontologies. The mappings are of-
ten equivalences, subclass-superclass (or subproperty-superproperty) rela-
tionships and other more complicated relationships.
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2. Ontology translation: Translating a dataset (assertions) or a query expressed
using one ontology (or set of ontologies) into a form that uses a different
ontology (or set).

3. Theory translation: Translating more complicated true statements (theory),
such as axioms, of one ontology into the vocabulary of another while pre-
serving their validity.

Significant works [10,17,20,5] cover the first category while others [15,7,9,14,8]
concern the second. In this paper we focus on the third.

Ontologies constrain the meanings of vocabularies by expressing relationships
among their symbols, such as subset-superset links, role declarations, and the
like. Complex relationships can be expressed only with logical theory, such as
axioms (rules). For example, to overcome the expressivity limitation of OWL
(Web Ontology Language [2]), the research on OWL Rule languages [16] has
proposed a Horn clause rules extension to represent the relationships among
properties. On the other hand, the semantic mappings between the concepts of
different ontologies also can be represented as logical axioms. For example, the
research on MAFRA [17] and C-OWL [4] can represent the mappings between the
contents of different ontologies by extending DAML+OIL [1] and OWL syntax
and semantics. Our previous work on OntoMerge [13,14] has used first order
bridging axioms to represent semantic mappings. It is well known that complex
mapping rules can not be generated fully automatically; human experts may
need to help the process based on the mapping suggestions from automatic or
semi-automatic ontology mapping tools such as those described in [10,17,20,5].

Normally, the data instances and queries can be automatically translated from
the source ontology to the target ontology once the semantic mappings have
been discovered and presented to translators [7,9,14,8]. However, little research
has been done on translating the axioms or other complicated true statements
(theory) automatically, which raises the possibility that important semantic con-
straints will be lost in translation. It is important to represent theories in different
vocabularies and preserve their validity.

In this paper, we will first use one inferential framework to unify the ontology
translation and theory translation for facts, queries, axioms and other complicated
true statements. One assumption of our framework is that the mappings between
the concepts from different ontologies are represented as Horn-like mapping rules,
which we call bridging axioms. We point out that it is the asymmetry of translation
that makes the translation of axioms and other complicated theories difficult. We
then describe an algorithm called axiom derivation for translating theories, such
as those axioms in time ontologies, from one ontology to another by both forward
and backward chaining. We also prove the validity of our algorithm.

2 Framework and Previous Work

2.1 Merged Ontologies and Bridging Axioms

In this section we briefly review our previous work on ontology translation. We
assume that in order to translate facts from one ontology to another there must
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be a merged ontology in which all the relevant symbols are allowed to interact.
For example, consider a pair of genealogy ontologies Gonto1 and Gonto2. The
former uses the symbols husband and married while the latter uses male partner,
spouse, and in marriage. The matchings (correspondences) between them can be
represented as:

husband −→ male partner, spouse
married −→ in marriage

but these correspondences only hint at the actual semantic relationships, which
can be expressed exactly using these axioms (rules):

(∀x, y)husband(x, y)→ male partner(x, y) (1)

(∀x, y)husband(x, y) ↔ spouse(x, y) (2)

(∀x, y)married(x, y) ↔ in marriage(x, y) (3)

where x and y are universal variables to represent male and female respectively.
We call these axiomatic mapping rules bridging axioms. We have developed Web-
PDDL as a strongly typed first-order logic language with Lisp-like syntax, to
express Horn-like bridging axioms. These axioms are embedded in a merged
ontology complete with namespace declarations and type-equivalence rules. For
example, to represent axiom 2, we use the following Web-PDDL expression:

(forall (x - @Go1:Male y - @Go1:Female)
(iff (@Go1:husband x y)

(@Go2:spouse x y)))

where Go1 and Go2 are prefixes of Gonto1 and Gonto2. These correspond to XML
namespaces, and when Web-PDDL is translated to RDF [19], that is exactly
what they become. The hyphen notation is used to declare a constant or variable
to be of a type T , by writing “x - T ”.

However, unlike typical Horn clauses, bridging axioms can have conjunction
of predicates on the conclusion side (see more examples later in Section 5). The
predicates in bridging axioms can have built-in (but non-recursive) functions as
arguments. Based on our previous experience with mapping different pairs of
ontologies, this form is expressive enough for most mappings found by mapping
tools or human experts.

2.2 Inferential Ontology Translation

We will use the symbol � to indicate translation: α � β means that β is the
translation of α. We call the ontology Os that α uses the source ontology and
Ot, the one β uses, the target. In the case of sets of assertions (“datasets”), we
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stipulate that the translation of αd is simply the strongest set of assertions, βd,
in Ot entailed by αd. A consequence of this stipulation is that

(KB; αd) � βd only if (KB; αd) � βd

where we add to the left-hand sides the symbol KB to refer to the merged ontol-
ogy which includes bridging axioms (mapping rules). It means we use entailment
(�) to define dataset translation: if all the bridging axioms in KB and all the
assertions in αd are true, then all the assertions in βd should be true. Alter-
natively, we say that βd is a logical (or semantic) consequence of KB and αd.
The only way to guarantee this entailment is to use sound inference (�) in first
order theory. In other words, “�” entails soundness, so we actually can use �
to implement dataset translation:

(KB; αd) � βd ⇔ (KB; αd) � βd ⇒ (KB; αd) � βd

This definition means that βd is the largest set of assertions that can be derived
from KB and αd by inference.

Similarly, if αq is a query in Os, its translation is a query βq in Ot such that
any answer (set of bindings) to βq is also an answer to αq. In other words:

(KB; αq) � βq only if (KB; θ(βq)) � θ(αq)

for any substitution θ, which is from the facts in the target database. It means
we still use entailment (�) to define the query translation. It is easy to get, for
any substitution θ,

(KB; αq) � βq ⇔ (KB; θ(βq)) � θ(αq)
⇒ (KB; θ(βq)) � θ(αq)

where a sound inference (�) can actually implement and guarantee the entail-
ment. The point is that βq need not be (and seldom is) equivalent to αq, in
the sense that any answer to one is an answer to the other. All we need is that
any answer to βq be an answer to αq. If we take Os to be Gonto2 and Ot to
be Gonto1, the query male partner(?x, ?y) in Gonto2 will be translated into the
query husband(?x, ?y) in Gonto1. But the set of all husbands is not equivalent to
the set of all male partners, since husbands are only one kind of male partners.

In order to use bridging axioms for inferential ontology translation, we built
a special purpose first-order theorem prover called OntoEngine. OntoEngine has
both forward chaining and backward chaining reasoners using generalized modus
ponens [22]. The dataset translation can be implemented by a forward chaining
reasoner and the query translation can be implemented by a backward chaining
reasoner. Our framework has been evaluated by using OntoEngine on several
real ontology translation tasks. Some of them need OntoEngine to process large
sets of data. The results of experiments show that the translation for both data
and queries works efficiently [14,11].
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3 Asymmetry and Composition of Theory Translation

3.1 Asymmetry of Translation

In the previous section, we have shown that a genealogy ontology Gonto1 has
two concepts (properties): husband and married. There may be a first-order logic
axiom to describe their relationship:

(∀x, y)husband(x, y) → married(x, y) (4)

We also know that another genealogy ontology Gonto2 has male partner, spouse
and in marriage as mapped properties. Some facts (assertions) expressed in the
language of Gonto1, can be translated into the language of Gonto2 by simply
replacing corresponding properties:

husband(John, Mary) � male partner(John, Mary)

husband(John, Mary) � spouse(John, Mary)

married(John, Mary) � in marriage(John, Mary)

The translations are correct in terms of the semantics of Gonto1 and Gonto2,
where husband can be thought of as spouse and a special kind of male partner.
However, if we use the same technique to translate the axiom (4) of Gonto1 to
Gonto2, we get:

(∀x, y)male partner(x, y)→ in marriage(x, y) (5)

(∀x, y)spouse(x, y)→ in marriage(x, y) (6)

It is obvious that (5) is not always true since a man is a partner of a woman
doesn’t mean that he must be in a marriage with her; (5) is not a valid axiom
in Gonto2. But (6) is true as an axiom in Gonto2. Why is it that the translation
from (4) to (6) is correct, but the translation from (4) to (5) is not correct?

Given our inferential ontology translation framework, translation exhibits cer-
tain asymmetries that one must be wary of. Query translation is different from
assertion translation. We will subscript the symbol � with a “Q” to indicate
the query case (�Q), and with a “D” (for “data”) to indicate the assertion or
dataset case(�D). (We leave the subscript off in those cases where the context
allows either reading.) In addition, if βt is the translation of αs:

(KB; αs) � βt

that doesn’t mean αs is the translation of βt:

(KB; βt) � αs

Slightly less obviously, if (KB; P ) � Q we can’t conclude (KB;¬P ) � ¬Q.
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3.2 Composition of Theory Translation

Instead (not surprisingly), negation ends up involving the same duality as query
translation. Assume that R is an expression which can be derived from KB and
¬Ps by inference. Using the deduction theorem in first-order logic and consider-
ing that ¬Ps → R is equivalent to ¬R → Ps, we know that

(KB;¬Ps) � R ⇔ KB � (¬Ps → R)
⇔ KB � (¬R → Ps)
⇔ (KB;¬R) � Ps

This gives us a way to translate negations. We can think of Ps as a “ground
query” (θ(Ps) = Ps): Given Ps, try to find a Q

′
t, which satisfies (KB; Q

′
t) � Ps.

But this is just the problem of translating the query Ps: (KB; Ps) �Q Q
′
t.

Therefore, if the query translation of Ps is Q
′
t, ¬Q

′
t can be derived from KB

and ¬Ps by the data translation and vice versa:

(KB; Ps) �Q Q
′
t ⇒ (KB;¬Ps) �D ¬Q

′
t

(KB; Ps) �D Q
′
t ⇒ (KB;¬Ps) �Q ¬Q

′
t

Theory, such as axioms, are usually more complex than a typical dataset el-
ement, and it would be useful if we could attack this complexity by translating
the pieces of a complex formula and composing the results. The presence of
asymmetry means that care is required in doing the composition. For conjunc-
tions and disjunctions, composition of translation is straightforward. It is easy
to show that if we know that

(KB; Ps1) � Qt1 ; (KB; Ps2) � Qt2

then

(KB; Ps1 ∧ Ps2) � Qt1 ∧Qt2

(KB; Ps1 ∨ Ps2) � Qt1 ∨Qt2

But when we encounter a negation we must flip from “D” mode to “Q” mode
or vice versa.

Since every complicated true statement (theory) in first-order can be put into
CNF 1, we just need to consider the translation of negations and disjunctions.
The composition of the translation of disjunctions is straightforward. In the
following section, we will describe an algorithm for translating implications (e.g.,
axiom (4)), which includes translating negations. It actually shows that we can
translate any true statement (theory) from one ontology to another ontology,
after we transform the theory to CNF form.
1 Conjunctive normal form (CNF): a conjunction of clauses, where each clause is a

disjunction of literals. Literals can have negations and variables. For example, the
implication Ps1 → Ps2 can be transformed to its equivalent ¬Ps1 ∨ Ps2.
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4 Axiom Derivation

4.1 Conditional Facts and ICF Axioms

To explain our approach to theory (axiom) translation, we first show how to
translate conditional facts using OntoEngine. A conditional fact is a formula of
the form:

P1 ∧ · · · ∧ Pi · · · ∧ Pn → Q1 ∧ · · · ∧Qj ∧ · · · ∧Qm

where all Pi(1 ≤ i ≤ n) and Qj(1 ≤ j ≤ m) are ground atomic formulas (facts).
The axioms, such as axioms 4 and horn-like bridging axioms, can be put in this
form which we call ICF (Implicative Conjunction Form), but of course axioms
have quantified variables:

∀v1 . . . ∃vk . . . vl, P1 ∧ · · · ∧ Pi · · · ∧ Pn → Q1 ∧ · · · ∧Qj ∧ · · · ∧Qm

where the v are quantified and typed variables, some universal (e.g., v1) and
some existential.

It is unusual but not unheard of for people to need to express that some facts
are true only if some other facts are also true:

precedes(deathof(Roosevelt), endof(WW2))→
president(Truman, endof(WW2))

“If Roosevelt died before the end of World War 2, then Truman was president
at the end of World War 2.”

4.2 Conditional Fact Translation

Conditional fact translation is the translation of a conditional fact from the
source ontology to the target ontology. This is a typical example for which we
need to consider asymmetry of translation since the translation of implications
actually includes the translation of negations and disjunctions. For example,
suppose we have a simple conditional fact in Gonto1:

@Go1 : husband(A, B) → @Go1 : married(A, B)

where Go1 is the prefix of Gonto1 (adopting some syntax from Web-PDDL) and
A and B are a male and a female. We want to translate this conditional fact to
Gonto2 which has prefix Go2.

Considering the asymmetry of translation, the antecedent @Go1:husband(A,B)
can be translated to @Go2:spouse(A,B) by the query translation with backward
chaining, and the conclusion @Go1:married(A,B) can be translated to @Go2:
in marriage(A,B) by data translation with forward chaining. We know the result

@Go2 : spouse(A, B) → @Go2 : in marriage(A, B)

is a true statement in Gonto2.
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In summary, the algorithm to do conditional fact translation is:
Procedure CFT(Cs, M)
input: conditional fact Cs in the source ontology Os, bridging axioms M

between Os and the target ontology, Ot

output: translated conditional fact Ct in Ot

steps:
1. Let Ants be the antecedent of Cs and Cons be the conclusion of Cs (Cs: Ants →

Cons.)

2. Get the antecedent of Ct, Antt, by backward chaining of Ants with M from Os

to Ot.

3. Get the conclusion of Ct, Cont, by forward chaining of Cons with M from Os

to Ot.

4. Return Ct as Antt → Cont.

It should be obvious that this process yields a valid result, in the sense that
the translated fact follows from the original fact and the axioms. If backward
chaining from the antecedent fails to find any goals in the target ontology, then
the antecedent of the translated conditional fact will be empty, or false, making
the translation itself equivalent to true — and hence useless.

4.3 Extending Conditional Facts Translation to Axiom Derivation

The translation of ICF axioms can still be thought of as an inference process
called axiom derivation, if we can transform the axioms to conditional facts and
transform the conditional facts back to axioms. The idea is to substitute Skolem
constants for the variables temporarily. (A similar technique was used in [18].)
In general, axiom derivation can be broken into three steps:

From ICF axioms to conditional facts: we can use Universal Elimination
and Existential Elimination [22] to transform ICF axioms to conditional facts.
Suppose that we have an axiom in the source ontology O s:

(∀x, y)@O s : P(x, y) →
(∃z)@O s : Q(x, z) ∧@O s : R(z, y)

We can substitute the universal quantified variables with constants (e.g., Atx and
Bty) and substitute the existential quantified variables with uniquified Skolem
terms (e.g., Skz01):

@O s : P(Atx, Bty) →
@O s : Q(Atx, Skz01) ∧@O s : R(Skz01, Bty)

Conditional facts translation: suppose that the target ontology is O t and
we already have the merged ontology of O s and O t. The conditional fact in
O s can be translated to O t. By backward chaining from the antecedent and
forward chaining from the conclusion, we finally get a conditional fact in O t:

@O t : S′(Atx, Ctc) ∧@O t : T′(Ctc, Bty) →
@O t : U(Atx, Skz01) ∧@O t : V(Skz01, Skd02)

∧@O t : W(Bty, Skz01)
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where Ctc is a constant and Skd02 is a new generated Skolem term by forward
chaining.

From conditional facts to ICF axioms: we can use Universal Generaliza-
tion [18] and Existential Introduction [22] to transform conditional facts back to
ICF axioms.

We can use Universal Generalization to replace all constants which have sub-
stituted universal variables with universal variables. For example, Atx, Bty and
Ctc can be replaced by x, y and c. We also can use Existential Introduction
to replace all Skolem terms with existential variables. Skz01 and Skd02 can be
replaced by z and d. Therefore, the generated ICF axiom looks thus:

(∀x, y, c)@O t : S′(x, c) ∧@O t : T′(c, y)→
(∃z, d)@O t : U(x, z) ∧@O t : V(z, d) ∧@O t : W(y, z)

4.4 Proof of Axiom Derivation

It’s not so obvious that this procedure works, but we can prove that it does.
Theorem: Any axiom developed by the above procedure is a logical conse-

quence of the axioms of the merged ontologies.
Proof: It suffices to show that the negation of the axiom is inconsistent with

the merged ontology. As usual, we assume the axiom is in ICF form:

Y1v1 . . . Ykvk(R1 ∧ · · · ∧Ri ∧ · · · ∧Rn → T1 ∧ · · · ∧ Tm)

where the vj are quantified variables and Yj are the quantifiers, some universal
and some existential. The axiom this is derived from is

X1u1 . . . Xkuk(P1 ∧ P2 ∧ . . . ∧ Pn → Q1 ∧ . . . ∧Qm)

where the ui are quantified variables and the Xi are also the quantifiers, some
universal and some existential.

What we will actually show is that a weakened version of the negation of the
axiom is inconsistent; from which it follows that a strong version is inconsistent
as well. Negating the axiom flips the quantifiers, so the existentials become uni-
versals and vice versa. We weaken the negation of the axiom by moving all the
existentials inward. If (∃x∀y)(. . .) is true, then so is (∀y∃x)(. . .). We can then
use the resolution procedure to derive a contradiction. Skolemizing the weakened
version turns the (originally) universally quantified variables into Skolem con-
stants and the (originally) existentially quantified variables into free variables.
In addition, the conclusion becomes disjunctive, so that we have a list of clauses:

R′
1 R′

2 . . . R′
n

¬T ′
1 ∨ ¬T ′

2 ∨ . . . ∨ ¬T ′
m

Now we mimic the deductions performed during our axiom derivation proce-
dure, running them in reverse. That is, if we inferred θ(R1 ∧ . . . ∧ Rk) from Ri

using a backward-chaining rule R1 ∧ . . .∧Rk → Pi, where Pi and Ri unify with
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substitution θ, we now infer θ′(R′
i) from θ′(R′

1 ∧ . . .). The unification then is
possible now, because R′

i is derived from Ri by replacing some Skolem constants
with different Skolem constants (possibly losing some of their arguments). The
resulting θ′ is less restrictive than the original θ, so the process can be repeated
until variants of the original Pi are derived. Similarly, we can run the forward
chaining from T1 backward to Q1, resulting in a smaller clause (with some free
variables substituted) ¬T ′′

2 ∨ . . .¬T ′′
m. We now repeat the procedure for T ′′

2 , and
so forth, until the empty clause is derived. Q.E.D.

5 Axiom Derivation for Different Time Ontologies

We want to evaluate our axiom derivation algorithm in some real application sce-
narios. We are especially interested in the translation between complex ontologies
which have large sets of axioms. For example, several time ontologies, such as
Cyc time 2, SUMO 3 time, and OWL-Time (formerly DAML-Time) 4, describe
temporal concepts and their relationships which are represented using large sets
of logic axioms (e.g., the OWL-Time ontology has around 180 first order axioms.)

Researchers have manually built some mappings among the concepts of some
time ontologies, but have not talked about how to represent the axioms in differ-
ent time ontologies. In this paper, we use an example to illustrate the automatic
translation of axioms from the Cyc time ontology to the OWL-Time ontology.

For example, one of the axioms in the Cyc time ontology can be represented
in Web-PDDL as following:

(forall (te1 - TemporalThing da2 - Date)
(if (dateOfEvent te1 da2)

(and (startingDate te1 da2)
(endingDate te1 da2))))

It is an axiom to describe the relationship between three properties: dateOfEvent,
startingDate and endingDate. This axiom means if some event happens on a
specific date, it must begin and end on the same date. The task for OntoEngine
is to represent this axiom in the OWL-Time ontology.

We have manually generated the bridging axioms between the Cyc time and
OWL-Time ontologies. Here are some examples (cyc and ot are the prefixes for
the Cyc time and OWL-Time ontologies.):

(forall (e1 - @cyc:Eventuality d2 - @cyc:Date)
(iff (@cyc:dateofEvent e1 d2)

(exists (ti - @ot:Interval)
(and (@ot:during e1 ti)

(@ot:int-during ti d2)))))

2 http://www.cyc.com/cycdoc/vocab/time-vocab.html
3 http://ontology.teknowledge.com/
4 http://www.isi.edu/∼pan/OWL-Time.html
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(forall (t1 - @cyc:TimeInterval d2 - @cyc:Date)
(iff (@cyc:startingDate t1 d2)

(exists (ti - @ot:Instant)
(and (@ot:begins ti t1) (@ot:inside ti d2)))))

(forall (t1 - @cyc:TimeInterval d2 - @cyc:Date)
(iff (@cyc:endingDate t1 d2)

(exists (ti - @ot:Instant)
(and (@ot:ends ti t1) (@ot:inside ti d2)))))

...

Where the Cyc time ontology’s Date type is treated as a specialization (sub-
type) of TimeInterval. With those bridging axioms, OntoEngine can do axiom
derivation from the Cyc time ontology to the OWL-Time ontology.

First, that axiom in the Cyc time ontology will be transformed to a conditional
fact:

(:objects T1 - @cyc:TemporalThing D2 - @cyc:Date)

(if (@cyc:dateOfEvent T1 D2)
(and (@cyc:startingDate T1 D2)

(@cyc:endingDate T1 D2)))

Then OntoEngine can do backward chaining from the antecedent,
(@cyc:dateOfEvent T1 D2), and forward chaining from both (@cyc:startingDate
T1 D2) and (@cyc:ending Date T1 D2). Finally the translated conditional fact in
OWL-Time ontology can be transformed back to an axiom in the OWL-Time
ontology:

(forall (e - Eventuality d - Interval)
(if (exists (t - Interval)

(and (during e t) (int-during t d)))
(exists (ti1 ti2 - Instant)

(and (begins ti1 t) (inside ti1 d)
(ends ti2 t) (inside ti2 d)))))

It is interesting that this generated axiom does not belong to those 180 existing
axioms in the OWL-Time ontology. It is a new axiom. However, it does make
sense to describe the relationships between an event and a time interval: during
the interval the event happens but it may not be through the whole interval.
The total 44 axioms in the Cyc time ontology can be automatically translated
to 18 axioms in the OWL-Time ontology in 2 seconds using OntoEngine. Not all
axioms in the Cyc time ontology can be translated to the OWL-Time ontology
because those two ontologies do not have exactly the same concepts.

This real example shows that some time ontologies may have different axioms
from other time ontologies, although they have very similar concepts (i.e., types
and properties). If we fail to port the axioms from one to another, we lose
important aspects of the semantics of the terms involved.
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6 Related Work

A lot of other ontology translation work [7,9] focuses on term rewriting between
different ontologies or different ontology languages, but does not use inference.
To the best of our knowledge, the only other work on axiom (theory) translation
is [6]. This work presents a formalism for knowledge translation based on the
theory of contexts [18]. The authors define knowledge translation in terms of
truth, and like us they propose using a theorem prover to perform translations.
However, the paper doesn’t say exactly how the theorem-proving process would
work. We have shown that a special-purpose inference engine using backward and
forward chaining can be used in an efficient mechanism for translating axioms.

7 Conclusion

Complex ontologies require complicated true statements (theory), such as logic
axioms (rules). Many relationships among their symbols simply can’t be ex-
pressed any other way. Based on our formal framework and inference engine for
inferential ontology translation, this paper has described and proved the correct-
ness of an axiom derivation algorithm for theory translation from one ontology
to another.

We have shown that theory translation is necessary in some real application
scenarios in which ontologies have large sets of axioms, such as different time
ontologies. Although our algorithm is provably correct, practical application re-
quires further work on problems of incompleteness and redundancy. Our algo-
rithm does not by itself guarantee that the axioms we produce are complete, nor
does it avoid producing axioms that are already present in the target ontology.
Those are problems for future research for theory translation.
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Abstract. This paper presents complexity results for model checking formulae
of CTLK (a logic to reason about time and knowledge in multi-agent systems)
in concurrent programs. We apply these results to evaluate the complexity of
verifying programs of two model checkers for multi-agent systems: MCMAS and
Verics.

1 Introduction

Multi-agent systems (MAS) are a successful paradigm employed in the formalisation
of many scenarios [33,34], including communication protocols, security protocols, au-
tonomous planning, etc. In many instances, MAS are modelled by means of multi-
modal logics with modal operators to reason about temporal, epistemic, doxastic, and
other properties of agents.

As MAS being modelled grow larger, however, automatic techniques are crucially re-
quired for the formal verification of MAS specifications. Accordingly, various authors
have investigated the problem of verification for MAS [35,3,1,13,28,18,30]. In particu-
lar, [35,3,1] reduce the problem of model checking MAS to the verification of temporal-
only models, while [28,18,30,13] extend traditional model checking techniques to the
verification of MAS. Model checking [9] was traditionally developed for the verifi-
cation of hardware circuits using temporal logics. Various tools are available for the
verification of temporal logics [28,23,7,16], and complexity results for model checking
temporal logics are well known [8,31,32,19]. In contrast, model checking for MAS is
still in its infancy. In particular, to the best of our knowledge, the complexity of model
checking for MAS has been little explored [15].

In this paper we review various complexity results for temporal and multi-modal
logics and we investigate the complexity of model checking the logic CTLK in con-
current programs. The main result of this paper is presented in Section 3, where we
show that the problem of model checking formulae of CTLK in concurrent programs
is PSPACE-complete. This result allows to establish complexity results for the problem
of verifying MCMAS [22] and Verics [28] programs.

This paper is organised as follows. Temporal logics, model checking, and complex-
ity classes are briefly reviewed in Sections 2.1 – 2.3; Section 2.4 introduces the logic
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CTLK and presents some results for model checking extensions of temporal logics.
Section 3 contains the main result of this paper: the proof of PSPACE-completeness
for model checking CTLK in concurrent programs. Section 4 presents an application
of this result to the evaluation of the complexity of verifying programs for two tools,
MCMAS[22] and Verics [28]. We conclude in Section 5.

2 Notation and Preliminaries

2.1 Temporal Logics and Model Checking

CTL The language LCTL of Computational Tree Logic (CTL, [24,9]) is defined over
a set of atomic formulae AP = {p, q, . . . } as follows:

ϕ ::= p|¬ϕ|ϕ ∨ ϕ|EXϕ|E[ϕUψ]|EGϕ.

The remaining temporal operators to express eventuality and universality can be derived
in standard way, for instance: EFϕ = E(�Uϕ), and AGϕ = ¬EF¬ϕ [17].

CTL formulae are interpreted in Kripke models. A Kripke model M for CTL is a
tuple M = (S, R, V, I) where S is a set of states, R ⊆ S × S is a serial transition
relation (the temporal relation), V : S → 2AP is an evaluation function, and I ⊆ S is
a set of initial states. A path π =< π0, π1, π2, · · · > of M is an infinite sequence of
states in S such that (πi, πi+1) ∈ R for all i ≥ 0.

Satisfiability of a CTL formula ϕ at a state s ∈ S of a given model M is defined
inductively as follows:

s |= p iff p ∈ V (s),
s |= ¬ϕ iff s �|= ϕ,
s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2,
s |= EX(ϕ) iff there exists a path π such that π0 = s and π1 |= ϕ,
s |= E[ϕUψ] iff there exists a path π such that π0 = s and a k ≥ 0

such that πk |= ψ and πi |= ϕ for all 0 ≤ i < k,
s |= EG(ϕ) iff there exists a path π such that π0 = s and πi |= ϕ for all i ≥ 0.

We write M |= ϕ if ϕ is satisfied at all states of the Kripke model M (notice that
some authors write M |= ϕ when ϕ is satisfied in the set of initial states I of M ; the
two approaches are equivalent from a complexity point of view).

Model Checking. Model checking is the problem of establishing (possibly in auto-
matic way) whether or not a formula ϕ is satisfied on a given model M . While this
check may be defined for a model M of any logic, traditionally the problem of model
checking has been investigated mainly for temporal logics. Various tools have been
developed for temporal logics [23,16,7,28]. Typically, a tool for temporal logic model
checking provides a programming language to describe a Kripke model S and imple-
ments efficient techniques for the automatic verification of formulae (see Section 2.3).

2.2 Turing Machines and Complexity Classes

In this section we follow the presentation given in [29]. A k-string Turing machine
(k ≥ 1) is a tuple TM = (K, Σ, δ, s) where K is a set of states, Σ is a set of symbols
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(the alphabet of TM ), δ is a transition function, and s ∈ K is an initial state. Addi-
tionally, a Turing machine TM is equipped with k “heads” (one for each string) to read
symbols from a certain position on the string, signposted by a “cursor”. The transition
function δ : K × Σk → (K ∪ {h,′′ yes′′,′′ no′′}) × (Σ × {⇒,⇐,−})k is the pro-
gram of the machine and describes the evolution of the machine. The special symbols
{⇒,⇐,−} denote the direction of the cursor of TM , and {h,′′ yes′′,′′ no′′} are special
halting states for TM . At the beginning of a run, TM is provided with an input string
x ∈ Σ∗ and the heads are at the beginning of each string. We refer to [29] for more
details.

The output of a Turing machine TM on input x is denoted by TM(x), and it is
defined to be yes (resp. no) if TM halts on state yes (resp. no) on input x. If the
machine halts in state h, then TM(x) is defined to be the string on the last tape. A
language L ⊆ Σ∗ is decided by a Turing machine TM if, for all strings x ∈ L,
TM(x) = yes.

A k-string non-deterministic Turing machine is a tuple NTM = (K, Σ, Δ, s),
where Δ is a transition relation Δ ⊆ K × Σk × (K ∪ {h,′′ yes′′,′′ no′′}) × (Σ ×
{⇒,⇐,−})k.

A language L ⊆ Σ∗ belongs to the complexity class TIME(f(n)) if there exists a
deterministic Turing machine deciding L in time f(n). A language L ⊆ Σ∗ belongs
to the complexity class SPACE(f(n)) if there exists a deterministic Turing machine
deciding L in space f(n) [29]. NTIME and NSPACE are non-deterministic complexity
classes defined analogously for non-deterministic Turing machines.

Important complexity classes are L (logarithmic space), NL (non-deterministic
logarithmic space), P (polynomial time), NP (non-deterministic polynomial time),
PSPACE (polynomial space). The following inclusions hold: L ⊆ NL ⊆ P ⊆ NP ⊆
PSPACE [29].

2.3 Model Checking Concurrent Programs

In many practical instances, when using model checkers, states and relations of tem-
poral models are not listed explicitly. Instead, a compact description is usually given
for a model M . Various techniques are available to provide succinct descriptions (vari-
ables, program constructors, etc). In this paper we focus on concurrent programs [19].
Concurrent programs offer a suitable framework to investigate the complexity of model
checking when compact representations are used because, as exemplified in Section 4,
various techniques can reduced concurrent programs1.

Formally, a program is a tuple D =< AP, AC, S, Δ, s0, L >, where AP is a set of
atomic propositions, AC is a set of actions, S is a set of states, Δ : S × AC → S is
a transition function, s0 is the initial state, and L : S → 2AP is a valuation function.

1 Notice that some authors [31] define the problem of establishing whether or not a formula
ϕ holds on a model whose description is given in a compact way with the term symbolic
model checking. On the other hand, other authors [25] define symbolic model checking to be a
technique that “avoids building a state graph by using Boolean formulas to represent sets and
relations.” To avoid confusion, we will refer to symbolic model checking in the latter, stricter
sense.



32 A. Lomuscio and F. Raimondi

Given n programs Di =< APi, ACi, Si, Δi, s
0
i , Li > (i ∈ {1, . . . , n}), a concurrent

program DC =< APC , ACC , SC , ΔC , s0
C , LC > is defined as the parallel composition

of the n programs Di, as follows:

– APC = ∪1≤i≤nAPi;
– ACC = ∪1≤i≤nACi;
– SC =

∏
1≤i≤n Si;

– (s, a, s′) ∈ ΔC iff

• ∀1 ≤ i ≤ n, if a ∈ ACi, then (s[i], a, s′[i]) ∈ Δi, where s[i] is the i-th
component of a state s ∈ S.

• if a �∈ ACi, then s[i] = s′[i];

– LC(s) = ∪iLi(s[i]).

(in the remainder, we will drop the subscript C when this is clear from the context)
CTL formulae can be interpreted in a (concurrent) program D by using the standard

Kripke semantics for CTL formulae in a model M = (S, R, V ). Indeed, the set of states
S of M can be taken to be set of states S of D, the temporal relation R can be defined
by Δ, and the evaluation function V can be defined by L (we refer to [19] for more
details). By slight abuse of notation, we will sometimes refer to the programs Di and to
D with the term “Kripke models”.

Summary of Known Results for Temporal Logics Model Checking. Traditionally,
the complexity of temporal logics model checking has been investigated assuming that
models are given explicitly. In this approach, complexity is given as a function of
the size of the model and of the size of the formula. Known results are reported in
Table 1.

Table 1. The complexity of model checking for some temporal logics

Logic Complexity
CTL [8,31] P-complete
LTL [32] PSPACE-complete

CTL* [8,32] PSPACE-complete
μ-calculus [19] MC∈ NP ∩ co-NP

The complexity of model checking concurrent programs against CTL specifications
is investigated in [19]; the authors analyse first the program complexity of model check-
ing, i.e., the complexity of model checking as a function of the size of the model only
(with a fixed formula). Results are presented in Table 2.

Based on these results, the authors of [19] employ automata-based techniques to
evaluate the complexity of model checking as a function of the size of the formula
and the sum of the sizes of the concurrent programs constituting D. Their results are
presented in Table 3.
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Table 2. Program complexity of model checking for some temporal logics in concurrent programs

Logic Program complexity
CTL NLOGSPACE-complete

CTL* NLOGSPACE-complete
μ-calculus P-complete

Table 3. Program complexity and complexity of model checking for some temporal logics

Logic Program complexity Complexity
CTL PSPACE-complete PSPACE-complete
CTL* PSPACE-complete PSPACE-complete

μ-calculus EXPTIME-complete EXPTIME

2.4 CTLK

CTLK is an extension of CTL with epistemic operators [10]. Well-formed CTLK
formulae are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E[ϕUψ] | Kiϕ.

The formula Kiϕ expresses the fact that agent i knows ϕ.
CTLK formulae can be interpreted in a Kripke model M = (W, Rt,∼1, . . . ,

∼n, V ) where W is a set of states, Rt ⊆ S × S is a serial transition relation (the
temporal relation), ∼i⊆ S × S are equivalence relations (the epistemic relations), and
V : S → 2AP is an evaluation function for a given set AP of atomic propositions.
Formulae are interpreted in a standard way, by extending the interpretation of CTL
formulae of Section 2.1 with the following:

M, w |= Kiϕ iff for all w′ ∈W , ∼i (w, w′) implies M, w′ |= ϕ,

Notice that CTLK is a multi-dimensional logic obtained by the fusion (or inde-
pendent join) [12,2] of CTL with S5n, where n is the number of distinct epistemic
modalities.

CTLK formulae can be interpreted in concurrent programs: the temporal operators
of CTLK are interpreted as in [19], while epistemic operators are evaluated by defin-
ing epistemic accessibility relations based on the equivalence of the components of the
states of a conxcurrent program (a similar approach can be found in [10]). Specifically,
let D =< AP, AC, S, Δ, s0, L > be a concurrent program obtained by the parallel
composition of n programs Di =< APi, ACi, Si, Δi, s

0
i , Li > (i ∈ {1, . . . , n}). No-

tice that a state s ∈ S is a tuple (s1, . . . , sn) such that, for all i ∈ {1, . . . , n}, si ∈ Si.
We define two states s = (s1, . . . , sn) and s′ = (s′1, . . . , s′n) to be related via the
epistemic accessibility relation ∼i iff si = s′i, i.e., two states of S are related via the
epistemic relation ∼i iff the i-th components of the two states are identical.

Known Results About Model Checking Temporal-Epistemic Logics. An upper
bound for “explicit” model checking formulae on Kripke models is given by the fol-
lowing theorem.
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Theorem 1. ([10], p.63) Consider a Kripke model M = (W, R1, . . . , Rn, V ) for a
normal modal logic (e.g. S5n, K, etc.) and a formula ϕ. There is an algorithm that,
given a model M and a formula ϕ, determines in time O(|M | × |ϕ|) whether or not
M |= ϕ.

The time complexity for model checking fusion (independent join) of logics can be
derived using the following theorem [11]:

Theorem 2. Let M = (W, R1, R2, V ) be a model for the fusion of two logics L1
and L2, and ϕ a formula of L1 ⊕ L2 (where ⊕ denotes the fusion of two logics). The
complexity of model checking for L1 ⊕ L2 on input ϕ is:

O(m1 + m2 + n · n) +
2∑

i=1

((O(k) + O(n)) · CLi(mi, n, k))

where mi = |Ri|, n = |W |, k = |ϕ|, and CLi is the complexity of model checking for
logic Li, as a function of mi, n and k.

The following lower bound can be shown:

Lemma 1. Model checking is P-hard for the logic K, for D, and for any normal logic
obtained by fusion (aka independent join), in which one of the components is either K,
or D, or CTL.

Proof. Following the approach of [31] for CTL, by reduction of a P-complete problem
to model checking. Consider SAM2CVP (synchronous alternating monotone fanout 2
circuit value problem [14]). Any circuit can be reduced to a Kripke model for K or
for D (but not to models for other logics, such as T, where accessibility relations are
constrained). Consider then the formula ϕ = ��� . . .��1. The circuit evaluate to 1
iff M, w0 |= ϕ.

The lemma above gives an immediate P-completeness result for the logic CTLK with
common knowledge. Indeed, a P-time algorithm is provided in [26] for model check-
ing epistemic operators and common knowledge in S5n, and CTL is known to be P-
complete (see Table 1).

3 The Complexity of Model Checking CTLK in Concurrent
Programs

Similarly to temporal logics, model checkers for multi-modal logics accept a “com-
pact” description of Kripke models. In this section we present a proof for the PSPACE-
completeness of the problem of model checking CTLK in concurrent programs; this
result will be employed in Section 4 to investigate the complexity of existing tools.

Following the approach of Section 2.3, we will analyse the complexity of model
checking a concurrent program D =< AP, AC, S, Δ, s0, L > obtained by the parallel
composition of n programs Di =< APi, ACi, Si, Δi, s

0
i , Li >.
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We first introduce some lemmas that will be used in the proof of the main theorem.
Lemma 3 states that, if the formula EGϕ is true at a state s of a model M , then ϕ is
true on a path of length |M | starting from s and vice-versa. Corollary 4 states that, if
E[ϕUψ] is true at a state s of a model M , then there is a state s′ on a path starting from
s at a distance not greater than |M | from s, in which s′ |= ψ, and such that ϕ holds in
all states from s to s′. Moreover, we report three well known theorems, as variations of
these will be used in the proof of Theorem 7.

Theorem 3. Given a Kripke model M = (S, R, V, I) for CTL, a state s ∈ S, and a
formula ϕ, M, s |= EGϕ iff there exists a path π starting from s of length |π| ≥ |M |
s.t. M, πi |= ϕ for all 0 ≤ i ≤ |M |.
Proof. If M, s |= EGϕ, then there exists a path π from s such that, for all i ≥ 0,
M, πi |= ϕ; as the relation R is serial, this path is infinite (so, obviously, |π| ≥ |M |).

Conversely, if there is a path π from s of length |π| ≥ |M |, then such a path must
necessarily include a backward loop. As M, πi |= ϕ for all i in this loop, it suffices to
consider the (infinite) trace generated by this loop to obtain a (semantical) witness for
M, s |= EG.

Theorem 4. Given a Kripke model M = (S, R, V, I) for CTL, a state s ∈ S, and
two formulae ϕ and ψ, M, s |= E[ϕUψ] iff there exists a path π starting from s s.t.
M, πi |= ψ for some i ≤ |M |, and M, πj |= ϕ for all 0 ≤ j ≤ i.

Proof. If M, s |= E[ϕUψ], by the definition of the until operator, there must exist a
state s′ in which ψ holds, and ϕ holds in every state from s to s′. Moreover, the state s′

cannot be at a “distance” greater than |M | from s.
The other direction is obvious.

The proof of Theorem 7 requires a procedure for establishing whether or not two
states s, s′ ∈ S of a Kripke model M are connected via a temporal path. Moreover,
the same proof requires a procedure to convert a non-deterministic Turing machine into
a deterministic one. Both problems are in fact instances of the same problem: reacha-
bility of two nodes in a graph. Formally, given a graph G and two nodes (x, y) ∈ G,
REACHABILITY is the problem of establishing whether there is a path from x to y or
not. The following known theorems are related to REACHABILITY.

Theorem 5. (Savitch’s Theorem) REACHABILITY ∈ SPACE(log2(n)).

Corollary 1. ([29], p.150) NSPACE(f(n)) ⊆ SPACE(f2(n)).

Notice that, by Corollary 1, NPSPACE = PSPACE.

Theorem 6. ([29], p.153) NSPACE(f(n)) = co−NSPACE(f(n)).

We are now ready to provide a proof for the main claim of this section:

Theorem 7. Symbolic model checking for CTLK is PSPACE-complete.
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Proof. Proof idea: Given a formula of ϕ of CTLK and a concurrent program D, we
define a non-deterministic polynomially-space bounded Turing machine T that halts
in an accepting state iff ¬ϕ is satisfiable in D (i.e. iff there exists a state s ∈ S
s.t.D, s |= ¬ϕ). Based on this, we conclude that the problem of model checking is
in co-NPSPACE. From this, considering Corollary 1 and Theorem 6, we conclude that
symbolic model checking for CTLK is PSPACE-complete (the lower bound being
given by the complexity of symbolic model checking CTL).

Proof details: T is a multi-string Turing machine whose inputs are D and ϕ. T oper-
ates “inductively” on the structure of the formula ϕ (see also [6] for similar approaches),
by calling other machines (“sub-machines”) dealing with a particular logical operator.
The input of T includes the states of the program Si (1 ≤ i ≤ n), the transition re-
lations, the evaluation functions and all the other input parameters of each Δi. This
information can be stored on a single input tape, separated by appropriate delimiters.
The formula ϕ is negated, and then it stored on the same tape. The following is a de-
scription of the “program” of T .

The machine T starts by guessing a state s and by verifying that s is reachable from
the initial state; if it is not, the machine halts in a “no” state. The algorithm of Theorem 5
can be used here, but notice that a polynomial amount of space is needed to store a state
of D (as it is the product of states of Di); this algorithm uses the transition relations
Δi encoded in the input tapes to verify reachability. In the remainder of this proof, we
assume that whenever a new state is “guessed”, it is also checked for reachability from
the initial state.

The computation proceeds recursively on the structure of ¬ϕ = ψ by calling one
of the machines described below. Each machine accepts a state s and a formula, and
returns either 0 (the formula is false in s) or 1 (the formula is true in s). Notice that each
machine can call any other machine. The following is a description of the formula-
specific machines:

– The machine Tp for atomic formulae simply checks whether or not the state is in
L(s); if it is, then the machine returns 1. Otherwise, it returns 0.

– The machine T¬ for formulae of the form ψ = ¬ψ′ calls the appropriate machine
for ψ′ and returns the opposite.

– The machine T∨ for disjunction of the form ψ = ψ′∨ψ′′ first calls the machine for
ψ′, and then for ψ′′, and returns the appropriate result.

– The machine TEX for formulae of the form ψ = EX(ϕ′) is as follows: Consider
the machine that guesses a state s′ ∈ S, checks whether it is reachable with a
temporal transition from s, and then calls the sub-machine for ϕ′ (if s′ is not reach-
able, the machine halts in a “no” state). Notice that this sub-machine will return
1 iff it can “guess” an appropriate successor where ϕ′ holds, and it uses at most
a polynomial amount of space. By Corollary 1, it is possible to build a determin-
istic machine based on this non-deterministic machine returning either 0 or 1 in
polynomial space; TEX is taken to be this “deterministic” machine.

– The machine TEG for formulae of the form ψ = EG(ϕ′) is as follows: consider a
machine executing the following loop:
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s-now = s;
counter = 0;
do
guess a state s’;
check that s’ is reachable from s-now;

if s’ is not reachable, return 0;
if (f does not hold in s’) then

return 0;
else

s-now = s’;
end if
if (counter > |M|)

return 1;
else

counter = counter + 1;
end if

end do

Based on Lemma 3, this machine guesses a path of length greater than |M | (this
value can be computed by considering the size of the input) in which ϕ′ holds.
When (and if) such a path is found, the machine returns 1 (notice that this machine
uses a polynomial amount of space and always halts). By Corollary 1, it is possible
to build a deterministic machine TEG in PSPACE that returns 1 iff there exists a
path of length greater than |M | in which ϕ′ holds.

– The machine TEU for formulae of the form ψ = E[ϕ′Uψ′′] is as follows. Consider
the machine executing this code:

s-now = s;
counter = 0;
do
if ( psi’’ holds in s-now) then

return 1;
else

if ( psi’ does not hold in s-now) then
return 0;

else
guess a state s’;
check that s’ is reachable from s-now;

if s’ is not reachable return 0;
s-now = s’;
counter = counter + 1;

end if
end if
if ( counter > |M| )

return 0;
end if

end do
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This machine implements the idea of Corollary 4: it tries to find a state s′ in which
ψ′′ holds and which is at a distance not greater than |M | from s. As in the previous
cases, the machine is non-deterministic, it uses a polynomial amount of space, and
it always halts; thus, by Corollary 1, a deterministic machine TEU can be built that
uses only a polynomial amount of space.

– The machine TK for formulae of the form ψ = Kiϕ
′ is as follows. Consider a sub-

machine that guesses a state s′ ∈ S, checks whether it is reachable with an epis-
temic transition from s (i.e. it checks whether the i-th component of the two states
are equal), and then calls the sub-machine for ¬ϕ′. Notice that this sub-machine
will return 1 iff it can “guess” a appropriate successor where ¬ϕ′ holds, and it uses
at most a polynomial amount of space. By Corollary 1, it is possible to build a de-
terministic machine TK based on this non-deterministic machine returning either 0
(if a state in which ¬ϕ holds is reachable form s), or 1 (if no such state exists) in
polynomial space.

Each of the machines above uses at most a polynomial amount of space, and there are
at most |ϕ| calls to this machines in each run of T . Thus, T uses a polynomial amount
of space. ��

Notice that this proof differs from the proof of PSPACE-completeness for symbolic
model checking CTL presented in [19]. The authors of [19] investigate the complexity
of various automata and apply these results to the verification of branching time logics.
Unfortunately, it does not seem that their technique can easily extended to epistemic
modalities. Thus, the proof above provides an alternative proof of the upper bounds for
symbolic model checking CTL, which can be easily extended to CTLK.

4 Applications

MCMAS [22] and Verics [28] are two tools for the automatic verification of multi-agent
systems via model checking. Both tools allow for the verification of CTLK formulae
in Kripke models. MCMAS uses interpreted systems [10] to describe Kripke models in
a succinct way. Verics employs networks of automata. Both approaches can be reduced
to concurrent programs, and vice-versa; thus, Theorem 7 allows to establish PSPACE-
completeness results for the problem of verifying MCMAS and Verics programs.

4.1 The Complexity of Model Checking MCMAS Programs

MCMAS [22] is a symbolic model checker for interpreted systems. Interpreted sys-
tems [10] provide a fine grain semantics for temporal and epistemic operators, based
on a system of agents. Each agent is characterised by a set of local states, by a set
of actions, by a protocol specifying the actions allowed in each local state, and by an
evolution function for the local states. MCMAS accepts as input a description of an in-
terpreted system and builds a symbolic representation of the model by using Ordered
Binary Decision Diagrams (OBDDs, [4]). We refer to [10,22,30] for more details. An
excerpt of a sample input file for MCMAS is reported in Figure 1.
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Agent SampleAgent
Lstate = {s0,s1,s2,s3};
Lgreen = {s0,s1,s2};
Action = {a1,a2,a3};
Protocol:
s0: {a1};
s1: {a2};
s2: {a1,a3};
s3: {a2,a3};

end Protocol
Ev:
s2 if ((AnotherAgent.Action=a7);
s3 if Lstate=s2;

end Ev
end Agent

Fig. 1. MCMAS input file (excerpt)

An interpreted systems described in MCMAS can be reduced to a concurrent program:
each agent is associated with a program Di =< APi, ACi, Si, Δi, s

0
i , Li >, where ACi

is the set of actions for agent i, Si is the set of local states for agent i, and the evolution
function Δi is the one provided for the agent.

In the formalism of interpreted systems an agent’s evolution function may depend
on the other agents’ actions. Thus, we modify the definition of a concurrent program
D =< AP, AC, S, Δ, s0, L > obtained by the composition of n programs Di (one for
each agent), as follows:

– AP = ∪1≤i≤nAPi,
– AC =

∏
1≤i≤n ACi,

– S =
∏

1≤i≤n Si,
– (s, a, s′) ∈ Δ iff ∀1 ≤ i ≤ n, (s[i], a, s′[i]) ∈ Δi,
– L(s) = ∪iLi(s[i]).

Notice that, instead of taking the union, AC is now the Cartesian product of the
agents’ actions ACi, and the transition function is modified accordingly. Thus, given
an interpreted system and a CTLK formula ϕ described in the formalism of MCMAS,
it is possible to obtain a concurrent program D of size equal to the original MCMAS

description (modulo some constant), so that the Turing machine T defined in Section 3
can be employed to perform model checking of ϕ. Hence, we conclude that model
checking MCMAS programs is in PSPACE.

Conversely, the problem of model checking a formula ϕ in the parallel composition
of n programs Di =< APi, ACi, Si, Δi, s

0
i , Li > can be reduced to an MCMAS pro-

gram. Indeed, it suffices to introduce an agent for each program, whose local states are
Si and whose actions are ACi. The transition conditions for the agent can be taken to be
Δi, augmented with the condition that a transition between two local states is enabled
if all the agents including the same action in ACi perform the transition labelled with
the particular action.
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It is worth noticing that the actual implementation of MCMAS requires, in the worst
case, an exponential time to perform verification. Indeed, MCMAS uses OBDDs, and it is
known [5] that OBDDs may have a size which is exponential in the number of variables
used.

4.2 The Complexity of Model Checking Verics Programs

Verics [28] is a tool for the verification of various types of timed automata and for the
verification of CTLK properties in multi-agent systems. In this section we consider
only the complexity of verification of CTLK properties in Verics.

A multi-agent system is described in Verics by means of a network of (un-timed)
automata [20]: each agent is represented as an automaton, whose states correspond to
local states of the agent. In this formalism a single set of action is present, and automata
synchronise over common actions.

The reduction from Verics code to concurrent programs is straightforward: each au-
tomaton is a program Di and no changes are required for the parallel composition pre-
sented in Section 2.3, and similarly a concurrent program can be seen as a network of
automata. Thus, we conclude that the problem of model checking Verics programs is
PSPACE-complete.

Notice that the actual implementation of Verics performs verification by reducing
the problem to a satisfiability problem for propositional formulae. Similarly to MCMAS,
this reduction may lead to exponential time requirements in the worst case.

5 Conclusion

In this paper we have reviewed various results about the complexity of model checking
for temporal logics, both for “explicit” and for symbolic model checking. We have ex-
tended some of these results to richer logics for reasoning about knowledge and time.
In particular, we have presented Theorem 7 which provides a result for the complexity
of symbolic model checking CTLK. To the best of our knowledge, no other complex-
ity results for symbolic model checking temporal-epistemic logics are available, with
the exception of [26,27]. The authors of [26,27] investigate the complexity of model
checking for LTL extended with epistemic operators and common knowledge in syn-
chronous/asynchronous systems with perfect recall. Let LX,U,K1,...,Kn,C be the full
language of this logic. Complexity results are presented in Table 4. Intuitively, model
checking for these semantics is more complex than for the “standard” Kripke semantics
(also called “observational” semantics by the authors), because perfect recall causes
local states to be unbounded strings, thus “generating” an infinite set of worlds, upon
which model checking should be performed.

Our work differs from [26,27] in analysing the problem of symbolic model checking
for the generic framework of concurrent programs, in which models are not described
explicitly: in turn, the generic result in Theorem 7 provides a concrete methodology to
investigate the complexity of verifying MCMAS and Verics programs.

Finally, the work presented here is similar in spirit to [15] where complexity results
for the verification of ATL against simple reactive modules are presented.
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Table 4. Complexity of MC for some perfect recall semantic

Language Complexity
LK1,...,Kn,C , synchronous PSPACE-hard
LK1,...,Kn,C , asynchronous undecidable
LX,K1,...,Kn,C , synchronous PSPACE-complete
LX,U,K1,...,Kn , synchronous non-elementary

LX,U,K1,...,Kn,C , synchronous undecidable
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Abstract. This paper is concerned with the problem of obtaining pre-
dictable interactions between groups of agents in open environments
when individual agents do not expose their bdi logic. The most popular
approaches to this in practise have been to model interaction protocols
and to model the deontic constraints imposed by individual agents. Both
of these approaches are appropriate and necessary but their combination
creates the practical problem of ensuring that interaction protocols are
meshed with agents that possess compatible deontic constraints. This is
essentially an issue of property checking dynamically at run-time. We
show how model checking can be applied to this problem.

1 Introduction

One of the most fundamental challenges of multi-agent system engineering is to
enable predictable, reliable interaction amongst groups of agents without requir-
ing a deep standardisation of the way in which they are engineered and while
preserving as much as possible their autonomy in individual reasoning. It is not
plausible that agents built independently and with no agreement on forms of in-
teraction could be predictably reliable, so researchers have searched for ways of
standardising some aspects of coordination in the hope that this small amount of
standardisation would provide predictability sufficient for important tasks. Two
contrasting approaches to this problem have emerged:

– The use of explicit models of interactions (in a generic process or state-
machine language) along with mechanisms by which agents can locate, reason
about and participate in models of interaction that they judge appropriate.
These are built to describe forms of interaction (thus are detached from
individual agents) and are typically accessed when an agent anticipates it
wants to initiate or join that type of interaction.

– The specification of constraints imposed by individual agents on the inter-
actions they will allow: deontic constraints. These are built locally for an
individual agent and typically accessed when a specific interaction is antici-
pated with an individual agent.

These two approaches are compatible, in the sense that they attack different
aspects of a similar problem. They have not, however, been combined. Hitherto,
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this has not been a major problem, because neither approach had significant
user communities. Those now are developing so that it is of practical importance
to have a way of answering the question “Given an interaction model and an
agent with given deontic constraints wishing to participate in that model, could
that combination work?” This is a difficult question because both interaction
models and deontic constraints are sophisticated logical objects, so the inference
involved is not (say) simple term matching or subsumption. It is also difficult
because in practise the question must be answered automatically and in real
time, so inference mechanisms must be self contained and efficient. This involves
an engineering balance which we explore in the rest of this paper.

In Section 2, we explain in detail the distinction we make between interaction
and deontic definitions, relating those in Section 3 to model checking. Interaction
models are shared between agents and are therefore portable. In Section 4, we
explain how this is achieved in the lcc language and demonstrate how this links
cleanly to the types of process calculi used in model checking. Section 5 then
defines the language used to describe properties checked by our system, while
the model checking algorithm (which is surprisingly compact) is summarised in
Section 6.

2 Motivation and Design Goals

Let us consider the following example. For finding and reserving a suitable va-
cation package consisting of booking a flight ticket and a hotel reservation, a
customer agent contacts a broker to find a suitable travel agent. The broker
searches for appropriate agents for the given scenario. The scenario is similar to
the travel agent use case of [1]. Figure 1 presents an overview of the interaction
while Figure 2 defines the section of the interaction model corresponding to the
communication between the customer and travel agents (ICT of Figure 1). The
interaction starts when a customer agent (C) provides the travel agent (T ) with
its vacation’s start date, end date, and its destination (SD, ED, D). The travel
agent forwards this information to the airline web services (As) for retrieving
quotations (FL) which are forwarded to the customer agent. After the customer
selects a flight (Fx), the travel agent searches the hotel directory (HD) and
sends a detailed list of hotel options (HL) back to the customer. The customer
selects a hotel (Hx), the travel agent computes the total amount (TA) to be
paid, and the customer sends its payment details (PD). The travel agent verifies
the payment details with the credit card web service (CD), which either provides
a signed payment authorisation (PId, Sign) or the reason (R) for payment fail-
ure. If the payment is authorised, a copy is sent to the airline and hotel agents
(A and H) for confirming the booking. Otherwise, the customer is informed of
the failure and it might either choose to retry sending payment details or quit
the interaction.

In addition to the interaction rules (Figure 2), the objects involved may also
lay down their own set of restrictions: their deontic rules. Table 1 provides a
sample of such rules. For example, the customer agent’s request for booking both
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Travel Agent
Service

Customer
Agent Airline WS 2

Airline WS 3

Airline WS 1

Credit Card WS

Hotels
Directory

ICT

Fig. 1. Overview of the travel agent scenario

KEY

: agent A1 engages in another interaction with
  agent A2 to reach goal G

: agent A1 transmits message M to agent A

: agent A computes constraint C: initial state

: intermidiate state

: final state

compute(A,C)

transmit(A1,A2,M)

interact(A1,A2,G)

confirm_booking(FId,HId))

fail_payment(PD,R))
transmit(T,C,

transmit(C,T,payment(PD))

available_hotels(HL))
transmit(T,C,

get_vacation_details(SD,ED,D))
compute(C,

due_payment(TA,CD))
transmit(T,C,

chosen_hotel(Hx))
transmit(C,T,

compute(C,
get_payment_details(CD,PD))

compute(C,

query_airlines(SD,ED,D,FL))
interact(T,As,

select_flight(FL,Fx))

compute(T,query(HD,D,HL))

vacation_details(SD,ED,D))
transmit(C,T,

transmit(T,C,
available_flights(FL))

chosen_flight(Fx))
transmit(C,T,

interact(T,H,
pay_hotel(Hx,PId,Sign,HId))

transmit(T,C,

transmit(C,T,quit)compute(C,
select_hotel(HL,Hx))

get_details(Fx,Hx,A,H,TA))
compute(T,

interact(T,A,
pay_airline(Fx,PId,Sign,FId))

verify_payment(PD,PId,Sign,R))
interact(T,CD,

Fig. 2. The rules of interaction between the customer and travel agent (ICT of Figure 1)

a plane ticket and a hotel requires the travel agent to be capable of querying the
hotel directory. The broker then needs to verify Rule 1 which states that an agent
A may query a directory D only if it has access to it (‘+’ implies an action is



46 N. Osman, D. Robertson, and C. Walton

Table 1. A sample of deontic rules

# Rule Enforced by Description
1- (A, D, +query(D, , )) ←

(A, D, +access).
Broker Broker verifies that an

agent is capable of per-
forming a query on a di-
rectory by verifying that it
has access to the directory

2- (A, self, +access) ←
member(A, syta).

Hotel directory Hotel directory allows A to
access it only if it was a
member of syta

3- (A, , +get payment details( , CD)) ←
customer(A, CD).

Broker Broker verifies that cus-
tomer agent A is capable
of paying its bills by veri-
fying that it is a customer
of the selected credit card
web service CD

4- (CD, , +authenticate(X.509)). Travel agent Travel agent needs to en-
sure that the credit card
web service CD is capa-
ble of authenticating itself
with X.509 certificate

5- (self, , −encrypt(X)) ←
¬(X = OpenPGP ).

Customer agent Customer agent is prohib-
ited to use any encryption
other than OpenPGP

permitted while a ‘−’ implies it is prohibited). The success of this rule, however,
is dependent on other agents’ deontic rules. For example, the hotel directory may
enforce its own rule (Rule 2) which states that an agent A may access it only if
it is a member of the Student and Youth Travel Association (stya). Rules may
be used to address issues such as access control (Rule 1), authorisation (Rule 2),
authentication and trust (Rule 4), security (Rule 5), and others (Rule 3). While
some of these rules (e.g. Rules 1 and 3) are a requirement for the broker to fulfil,
others (e.g. Rules 2, 4 and 5) are a requirement for other agents and services
engaged in this scenario (see ‘Enforced by’ column of Table 1). However, it is
the broker’s responsibility to make sure that no conflicts arise from the agents’
requirements and constraints, and that the deontic rules of all agents engaged
in a given scenario are consistent.

With the broker being responsible for finding suitable agents for a given inter-
action protocol, it should also be capable of verifying, at interaction time, that
the protocol it has instantiated with agents is likely to work. This, however, re-
lies on the correctness of the interaction protocol as well as the compatibility of
the chosen agents. For example, trying to ally the customer agent with a travel
agent that does not have access to a hotel directory will result in a scenario
failure, regardless of whether the interaction protocol itself is error free or not.
This requires a verifier that can handle both interaction and deontic constraints,
and is capable of operating automatically at run-time. The broker could then use
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such a verifier to verify an instance of the interaction protocol — the interaction
protocol for a given set of agents.

3 Implementation Plan

Our goal is to achieve a verifier which could be used by agents at interaction
time for verifying mas through the verification of the interaction and deontic
rules. Figure 3 illustrates the move from the design to the implementation plan.

Verifier

MAS Specification

Design

System Model

Model Checker

Implementation

Interaction Model a process calculus

Deontic Model a policy language

Fig. 3. Implementation plan

As illustrated by the travel agency example, the broker agent will need to
verify the interaction protocol for various deontic rules until a team of collab-
orating agents is reached. In open systems consisting of autonomous agents, it
is necessary for agents to be capable of automatically verifying, at run-time,
dynamic protocols affected by dynamic deontic rules. For this reason, we choose
model checking from amongst other verification techniques because it provides
a fully automatic verification process which could be carried out by the agents
during interaction time.

For specifying interaction protocols, which deal with coordinating messages
between agents, we choose process calculus. Process calculus is a calculus for
representing concurrent and distributed processes, and accounts for the non-
deterministic and non-terminating nature of these processes. Its success in ef-
ficiently describing the rules for coordinating messages makes them especially
appealing for specifying interaction protocols of mas.

Policy languages, on the other hand, have been widely used in hardware sys-
tems and networks for expressing deontic rules — the rules of obligations, per-
missions and prohibitions. Policy languages address issues such as security, trust
negotiation, access control mechanism, authorisations, etc. This makes them
good candidates for specifying agents’ deontic rules.

Implementing the Model Checker. The model checking problem can be
defined as follows: Given a finite transition system S and a temporal formula
φ, does S satisfy φ? The model checking process is divided into three stages:
modelling, specification, and verification. The system to be verified must first
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be modelled in the language of the model checker S. The properties to which
the system model is verified upon should be specified using the model checker’s
temporal logic φ. Both the system model and the properties specification are fed
to the model checker for the verification stage. The model checker is, essentially,
an algorithm that decides whether a model S satisfies a formula φ. Some model
checkers may also provide a counter example when the property is not satisfied.
This is traditionally used to aid the human debugging process. Since humans
are not involved in our automatic checking, we do not need our model checker
to generate counter examples. Figure 4 provides a representation of the model
checking process.

Checking
Algorithm

Model
Result:

System Model:

Property Specification:
True/False

S

φ

Fig. 4. The model checking process

Our system model S is a bundle of interaction and deontic rules (Figure 3). For
specifying the interaction rules of the system model, we choose the Lightweight
Coordination Calculus (lcc) (Section 4) mainly for two reasons (refer to Sec-
tion 8 for details): (1) it supports the attachment of a deontic layer to the inter-
action layer, and (2) it supports the use of a dynamic local model checker. For
defining the property specifications φ, we choose a modified version of the modal
μ-calculus (Section 5) basically for its contribution to the compact size of our
dynamic model checker. Finally, a logic-based local model checking algorithm
(Section 6) is chosen for implementing our verifier.

The result is a significantly small sized model checker (based solely on the
rules of Figures 8 and 11) implemented in tabled Prolog. The use of computa-
tional logic allows us to efficiently compute constraints, which is essential for
verifying deontic constraints. Furthermore, the local model checking technique
implies that the state-space is not constructed beforehand, but generated and
traversed one step at a time until a solution is reached. The use of tabled Prolog
for performing local model checking throws the burden of searching the state-
space on the tabled Prolog system, keeping the model checker small and simple.
This relatively efficient and extremely compact model checker can be used au-
tomatically by agents at run-time.

4 Lightweight Coordination Calculus (LCC)

lcc is the calculus used for specifying interaction protocols of mas. It is based
on the concept of agents playing roles and sharing a dialogue framework for
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achieving distributed coordination. An interesting and important aspect of lcc
is its capability to define the interaction protocol without having to specify de-
tails of agents involved in this interaction. This supports our requirement for sep-
arating the interaction layer from the agent layer. Furthermore, the constraints
in the lcc language provide the link needed for connecting the deontic layer to
the interaction layer (Section 4.1). The use of lcc, however, has several other
advantages. Its syntax presents it as a process calculus which makes it suitable
to be used as our model checker’s description language (Section 4.3). The syntax
also presents it as a logic programming language [2] which affects the efficiency
of our constraints’ computation (Section 8). Finally, lcc is a lightweight calculus
whose only requirement on agents that want to engage in an interaction is to be
able to apply the transition rules of Figure 8 (the clause expansion mechanism).
This lightweight nature along with its clause expansion mechanism provides the
support needed for a dynamic local model checker (Section 6.1).

4.1 LCC Syntax

The lcc interaction framework is the set of clauses specifying the expected
message passing behaviour. Its syntax is given in Figure 5.

Framework := {Clause, . . .}
Clause := Agent :: ADef
Agent := a(Role, Id)
ADef := null ← C | Agent ← C | Message ← C |

ADef then ADef | ADef or ADef |
ADef par ADef

Message := M ⇒ Agent | M ⇐ Agent
C := Term | C ∧ C | C ∨ C

Role := Term
M := Term

null denotes an event which does not involve message passing.
Term is a structured term in Prolog syntax.
Id is either a variable or a unique agent identifier.

Fig. 5. Syntax of the lcc dialogue framework

Agents, in lcc, are defined by their roles and identifiers. A framework is com-
posed of a set of clauses. A clause gives each agent role a definition that specifies
its acceptable behaviour. An agent can either do nothing (usually used for in-
ternal computations), take a different role, or send/receive messages (M ⇒ A,
M ⇐ A). Agent definitions can get more complex by using the sequential (then),
choice (or), parallel composition (par), and conditional (←) operators. The con-
ditional operator is used for linking constraints to message passing actions. These
constraints can be used to link the interaction model to the deontic model.
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Example: The Travel Agency Scenario. To illustrate the specification of
systems with lcc, let us consider a section of the travel agency scenario. Figure 6
models the interaction between the customer and the travel agent described
earlier in Figure 2. The first two clauses specify the interaction rules of the
two roles played by the customer agent. The interaction starts when the agent
retrieves it vacation details: start date SD, end date ED, and destination D. It
then sends these details to the travel agent, receives a list of available flights FL,
selects an appropriate flight Fx, sends its choice to the travel agent, receives a
list of available hotel options HL, selects a hotel Hx, sends its choice to the
travel agent, receives the bill of amount TA to be paid via credit card CD,
and finally takes a different role paying customer for paying its bill. The role
paying customer is responsible for retrieving the payment details (e.g. credit
card number, expiry date, etc.). Then it either receives a message confirming its
bookings (confirm booking), or a message informing it of the reason R for the
payment’s failure. In the latter case, the agent might either decide to retry its
payment (a(paying customer(T, CD), C)) or send a quit message to the travel
agent to conclude the interaction.

Similarly, the last two clauses specify the travel agent’s rules governing its
interaction with the customer. To keep the example simple and short, Fig-
ure 6 omits role definitions dealing with the travel agent’s interaction with other
agents, e.g. query airlines, get airline replies, and pay services.

4.2 LCC Clause Expansion

This section explains the clause expansion mechanism of lcc which supports
decentralised coordination. The mechanism also directly affects our choice of
model checking technique: local model checking (see Section 6.1).

Decentralised coordination is achieved by sending the protocol along with the
messages. When an agent needs to send a message to another agent, the tuple
(I, M, A, R,P) is transmitted, where I identifies the interaction, M the message,
A the receiving agent, R the receiving agent’s role in the interaction, and P the
protocol. The protocol itself consists of three elements: a set of lcc clauses PF

that defines the protocol framework, a set of clauses PS that defines the current
protocol state, and a set of clauses K defining the common knowledge. The
protocol framework is the original protocol which remains unchanged throughout
an interaction. The protocol state consists of those clauses which are constantly
modified to keep track of the current protocol state. Common knowledge in lcc
is the knowledge needed to carry out a given interaction protocol. It is specific
to the given interaction. Please refer to [3] for further details.

Figure 7 describes the algorithm of lcc’s coordination mechanism. The algo-
rithm is triggered when an agent receives a tuple of the form (I, M, A, R,P).

Upon receiving a tuple (I, M, A, R, (PF , PS , K)), the agent checks whether a
copy of its own protocol state exists in PS by checking for a clause matching
its role R and Id A. If such a clause does exist, then it is retrieved. Otherwise,
the agent’s original clause is retrieved from PF . The incoming message M is
added to the list of incoming messages Mi and the transition rules of Figure 8
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a(customer(T ), C) ::
vacation details(SD, ED, D) ⇒ a(travel agent( , , ), T )

← get vacation details(SD, ED, D) then
available flights(FL) ⇐ a(travel agent( , , ), T ) then
chosen flight(Fx) ⇒ a(travel agent( , , ), T )

← select flight(FL, Fx) then
available hotels(HL) ⇐ a(travel agent( , , ), T ) then
chosen hotel(Hx) ⇒ a(travel agent( , , ), T )

← select hotel(HL, Hx) then
due payment(TA, CD) ⇐ a(travel agent( , , ), T ) then
a(paying customer(T, CD), C).

a(paying customer(T, CD), C) ::
payment(PD) ⇒ a(verify payment( , , ), T )

← get payment details(CD, PD) then
( confirm booking(FId, HId) ⇐ a(verify payment( , , ), T )
or
(fail payment(PD, R) ⇐ a(verify payment( , , ), T ) then

(a(paying customer(T, CD), C)
← retry payment(CD)

or
quit ⇒ a(verify payment( , , ), T )

← ¬retry payment(CD) ) ) ).

a(travel agent([As], HD, CD), T ) ::
vacation details(SD, ED, D) ⇐ a(customer( ), C) then
a(query airlines([As], SD, ED, D), T ) then
a(get airline replies([As], [], FL), T ) then
available flights(FL) ⇒ a(customer( ), C) then
chosen flight(Fx) ⇐ a(customer( ), C) then
null ← query(HD, D, HL) then
available hotels(HL) ⇒ a(customer( ), C) then
chosen hotel(Hx) ⇐ a(customer( ), C) then
due payment(TA, CD) ⇒ a(customer( ), C) then
a(verify payment(CD, H, A), T )

← get airline agent(Fx, A) ∧ get hotel agent(Hx, H)

a(verify payment(CD, H, A), T ) ::
payment(PD) ⇐ a(paying customer( , ), C) then
a(verify payment(PD, CD, P Id, Sign, R), T ) then
( a(pay services(H, A, PId, Sign, FId, HId), T )

← R = null then
confirm booking(FId, HId) ⇒ a(paying customer( , ), C) )
or

( fail payment(PD, R) ⇒ a(paying customer( , ), C)
← ¬R = null then

(a(verify payment(CD, H, A), T )
or quit ⇐ a(paying customer( , ), C)) ).

Fig. 6. lcc interaction model of Figure 2

are applied. The agent’s new protocol state replaces the old one (if it existed) in
PS resulting in a new protocol state PSn. Finally, messages that need to be sent
to other agents will be transmitted via the tuple (I, Mx, Ax, Rx, (PF , PSn, K)).

For the agent to perform a transition step, the transition rules of Figure 8
are applied exhaustively. The rules state that M ⇐A can perform a transition
in(M) to the empty process nil by retrieving the incoming message M . M ⇒A
can perform a transition out(M) to nil by sending the message M . null can
perform the transition # to nil (# represents internal computations). A ← C
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receive message

NO

YESYES

NO

NO

YES

endany messages

(I, M, A, R, (PF , PS , K))

Mx to send?

transform (a(R, A) :: X)
to (a(R, A) :: Xn) by

add M to Mi

in PS , replace (a(R, A) :: X)
with (a(R, A) :: Xn)

and save as PSn

for each message Mx, send
(I, Mx, Ax, Rx, (PF , PSn, K))

(a(R, A) :: X) ∈ PF ?(a(R, A) :: X) ∈ PS?

applying transition rules

Fig. 7. lcc’s coordination mechanism

can perform a transition to E if C is satisfied and A can perform a transition
to E. A, with definition A ::B, can perform a transition to E if B can perform
a transition to E. Aor B can perform a transition to E if either A or B can
perform a transition to E. Apar B can perform a transition either to E par B
if A can perform a transition to E, or to Apar E if B can perform a transition
to E. Apar B can also perform the transition τ to E par F if both A and B can
perform transitions to E and F , respectively. Finally, Athen B can perform a
transition to B if A can perform a transition to the empty process nil; otherwise,
it can perform a transition to E then B if A can perform a transition to E.

4.3 LCC: Process Calculus for Modelling MAS

lcc ,the calculus used for both specifying the interaction model and building
the executable model, is also a process calculus. We propose a model checker
that accepts lcc as its description language. The lcc protocol, capturing the
actual system to be checked, is directly fed to the model checker. This avoids
the complexity of modelling the system in another language, and the possibility
of introducing errors in doing so. Eliminating this step also contributes to the
remarkably small size of the model checker.

Comparing lcc to traditional process calculi: an agent in the lcc language
is equivalent to a process. The syntax of an lcc process, as defined earlier, is:

ADef := null ← C | Agent ← C | Message ← C |
ADef then ADef | ADef or ADef |
ADef par ADef

Similar to traditional process calculi, an agent can be defined in terms of
other agents, i.e. an agent can take a different role (Agent = a(Role, Id)). The
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M ⇐ A
in(M)−−−−→ nil

B
a−→ E

(A ← C)
#(X)−−−→ A

sat(C) ∧ X in C

B
a−→ E

M ⇒ A
out(M)−−−−−→ nil

A
a−→ E

(A ← C)
a−→ E

sat(C) ∧ (a 
= #/ )

null
#−→ nil

A
a−→ E

A par B
a−→ E par B

B
a−→ E

A
a−→ E

A ::= B
B

a−→ E

A par B
a−→ A par E

A
a−→ E

A or B
a−→ E

A
a−→ E B

a−→ F

A par B
τ−→ E par F

B
a−→ E

A or B
a−→ E

A
a−→ nil

A then B
a−→ B

A
a−→ E

A then B
a−→ E then B

E 
= nil

sat(C) is true if the constraint C can be satisfied.
nil is the empty process which can not perform any actions.
in(M) is the action of receiving a message M .
out(M) is the action of sending a message M .
#/ is the action of internal computations.
a is any action (message passing or internal computations).
a is the co-action of a. A message input action is the co-action of its output action,
and vice versa. Note that internal computational actions do not have co-actions.
τ is a complete internal action. It is the result of carrying out an action and its
co-action in parallel.
X in C implies that X is a term in the conjunction of terms C.

Fig. 8. lcc’s transition rules

actions an agent can take are restricted to message passing actions. M ⇒ A
and M ⇐ A are used for sending and receiving messages, respectively. This is
similar to Milner’s ccs value passing actions a(x) and a(x) where x represents
the message sent and a represents the channel between the two communicating
agents. However, lcc names the processes involved rather than the channels.
The sequential operator then is similar to Hoare’s csp’s sequential operator [;]
rather than ccs’s prefix operator [.]. The choice operator or is equivalent to [+]
in ccs. Similarly, the parallel composition operator par (in the current version
of lcc) is equivalent to [|] in ccs. lcc also defines a conditional operator ←
equivalent to if C then E in ccs. lcc’s empty process null is similar to ccs’s
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nil process. The null process is usually used in lcc when an agent needs to
carry out internal computational actions (see Figure 8).

5 μ-Calculus: A Modified Version

The previous section introduces lcc which we use in parallel with deontic con-
straints for modelling mas scenarios. This constitutes the system model M . We
now introduce a modified version of the μ-calculus which is used for specifying
properties φ. The system model M is then fed to the model checker along with
property specifications φ to verify whether or not M satisfies φ.

5.1 μ-Calculus Syntax and Semantics

The syntax and semantics of the μ-calculus are provided by Figure 9 [4].
The semantics imply that a state E always satisfies tt, and never ff. The

propositional variable Z is satisfied if E belongs to the valuation of Z. E satisfies
φ1 ∧ φ2 if it satisfies both φ1 and φ2, and it satisfies φ1 ∨ φ2 if it satisfies either
φ1 or φ2. 〈A〉φ is satisfied if E can take an action a, element of A, to state F ,
such that F satisfies φ. Similarly, [A]φ is satisfied if for all actions ai that E can
take to Fi, where ai is an element of A, then Fi satisfies φ. νZ.φ is satisfied if E
belongs to the union of all post-fixed points, while μZ.φ is satisfied if E belongs
to the intersection of all pre-fixed points.

The modifications we made to the language is that A, the set of actions, may
now contain message passing actions as well as non-communicative actions #(C),
where C is a constraint to be satisfied by some agent or any other constraint we
would like to verify.

Compared to other temporal logics, the μ-Calculus has a simpler syntax yet
more complex formulae. This simplified syntax is another reason behind the
compact model checker (see Figure 11).

5.2 μ-Calculus for Specifying MAS Properties

Choosing the right temporal logic is crucial since it controls which behavioural
aspects of the system model may be verified. In what follows, we give an idea of
the type of properties that may be verified using our modified μ-calculus version.

Let us consider the travel agency scenario of Figure 6. The broker needs to
verify that certain properties are satisfied. For example, the customer is inter-
ested in an interaction that guarantees providing flight and hotel quotations.
Property 1 verifies the message passing actions of an interaction protocol. It
states that if the customer agent requests a vacation package (by sending the
vacation details message), then the travel agent will always eventually send back
a list of flights and hotels (by sending the available f lights and available hotels
messages).
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Syntax:

φ ::= tt | ff | Z | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈A〉φ | [A]φ | νZ.φ | μZ.φ

Semantics:

E |= tt
E 
|= ff
E |= Z iff E ∈ V (Z)
E |= φ1 ∧ φ2 iff E |= φ1 and E |= φ2

E |= φ1 ∨ φ2 iff E |= φ1 or E |= φ2

E |= 〈A〉φ iff ∃F ∈ {E′ : E
a−→ E′ and a ∈ A}.F |= φ

E |= [A]φ iff ∀F ∈ {E′ : E
a−→ E′ and a ∈ A}.F |= φ

E |= νZ.φ iff E ∈ ⋃{S : S ⊆ ‖φ‖}
E |= μZ.φ iff E ∈ ⋂{S : ‖φ‖ ⊆ S}

tt and ff are the logical true and false, respectively.
Z is a propositional variable.
A is a set of actions
E and F are states of the transition system.
S is a set of states.
V (Z) is the set of states satisfying Z.

Fig. 9. μ-Calculus syntax and semantics

νZ. [−]Z∧
[out(vacation details( , , ), a(travel agent( , , ), ))]

( μY.〈−〉tt∧
[in(available flights( ), a(travel agent( , , ), ))]

( μX.〈−〉tt∧
[in(available hotels( ), a(travel agent( , , ), ))]X))

(1)

Property 1 is read as follows: It is always the case (νZ.[−]Z) that if a request
for a vacation package is made (out( vacation details( , , ),
a(travel agent( , , ), ))) then eventually (μY.〈−〉tt) a list of available flights
and hotels will be received (in(available f lights( ), a(travel agent( , , ), ))
and in(available hotels( ), a(travel agent( , , ), ))).

While property 1 above verifies the correctness of the message passing actions,
our modified version of the μ-calculus allows us to test for non-communicative
actions as well. This gives way to verifying deontic rules in parallel with inter-
action rules. For example, the broker will need to verify that the travel agent is
capable of accessing the hotel directory. Property 2 models this: In every run of
the interaction, it is always the case that the hotel directory is eventually queried.
The property is said to be satisfied if the lcc constraint query(HD, D, HL) on
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the travel agent role of Figure 6 can be satisfied. However, this property holds
only if the deontic rules of the travel agent and the hotel directory provide the
travel agent with the access needed to perform its query (see Rules 1 and 2 of
Table 1).

μZ. 〈#(query(HD, , ))〉tt ∨ (〈−〉tt ∧ [−]Z) (2)

6 The Model Checker

Following the introduction of the lcc and the μ-calculus languages used for
specifying system models and temporal properties, respectively, this section
introduces the model checker’s technique and algorithm. Model checking lcc
protocols suggests — given its logic programming nature along with its clause
expansion mechanism — the use of a logic based local model checker.

6.1 Local Model Checking

In lcc, agents’ actions are a result of the transition rules applied to the protocols
(Figure 8). With each transition, the agent is traversing the state-space graph
(or the transition graph [4]). For example, the transition graph of the process
a(paying customer(CD, T ), C) of Figure 6 is provided by Figure 10. The state
s0, the initial state of this process, can only take a transition out(payment(PD))
to state s1, where payment(PD) is the message sent and in is the name of the
channel between the two communicating agents, the customer and the travel
agent. The interaction proceeds, traversing the transition graph one step at a
time. Note that when model checking a system, the transition graph of the whole
system is used.

s0 s1 s3

s2 s4

in(confirm booking(FId,HId))

out(payment(PD)) in(fail payment(PD,R))

out(payment(PD))

out(quit)

Fig. 10. Transition Graph of process a(paying customer(CD,T ), C) of Figure 6

The nature of the lcc language and its transition rules proposes the use of
a local model checker. While global model checking is based on generating the
whole state-space, local model checking partially constructs the state-space one
step at a time until a solution is reached. Model checking approaches based on
tableaux systems (e.g. [5]) provide such a solution. Termination, in such scenar-
ios, is then to be addressed. We refer to the xmc model checker for inspiration.



Dynamic Model Checking for Multi-agent Systems 57

The xmc system [6] is a model checker built on top of xsb [7], a tabled Prolog
system. The concept of caching in tabled Prolog ensures termination, avoids re-
dundant subcomputations, and computes the well-founded model of normal logic
programs. We rationally reconstruct the xmc model to accept lcc models and
our verified version of μ-calculus. The result is a simplified and remarkably com-
pact model checker that is based solely on the μ-calculus’ proof rules as well as
lcc’s transition rules (Figures 11 and 8, respectively). This significantly simpli-
fied version does not affect the model checker’s efficiency discussed in Section 8,
the base of which is the xsb system.

6.2 Model Checking Algorithm

We now define our model checking algorithm as follows. A system S is said
to satisfy a formula φ if its initial state E satisfies φ. Hence, the initial state
E and the formula φ are passed to the model checker. Model checking is then
performed in a top-down manner based on the μ-calculus semantics presented
in Figure 9. Rules concerning the verification of E |= tt, E �|= ff, E |= Z,
E |= φ1 ∧ φ2, E |= φ1 ∨ φ2, E |= 〈A〉φ and E |= [A]φ can easily be encoded in
Prolog. The challenge is dealing with the greatest and least fixed point formulae.
Prolog, by nature, computes the least fixed point solution. The greatest fixed
point, however, is the dual of the least fixed point, i.e. the greatest fixed point
formula is satisfied if the least fixed point of the negated formula fails to be
satisfied. In xsb, this can be achieved by making use of the negation predicate
sk not/1 in addition to the tabled environment which ensures that a least fixed
point solution is found if it does exist in the table.

The result is a simple, straightforward, and compact xsb coded model checker:
the code is directly translated into xsb from Figure 11, where E

A−→ F follows
lcc’s transition rules of Figure 8. However, this simple and straightforward algo-
rithm limits the μ-calculus to the alternation-free fragment where nesting of least
and greatest fixed-point operators is prohibited. That is because formulae with
alternation result in loops through negation which are not easily handled by xsb.

7 Related Work

In this field, different verification techniques have been applied to various aspects
of multi-agent systems. In [8] and [9], message passing actions affect the mental
states of agents (or the beliefs, desires, and intentions). The verification process
is carried by testing the mental states of the agents involved in an interaction.
Consequently, the verified system’s results hold for a particular set of agents.
The approach presented in this paper separates the interaction layer from the
agents bdi layer. The verification process does not require access to the agents’
bdi models (only deontic constraints specific to the interaction are required).
Moreover, the model checker is dynamic. This allows it to be invoked at run-
time to verify properties affected by interaction and/or dynamic deontic rules.

[10] offers a technique which separates the mental state of agents from the so-
cial state of an interaction. Both the system specification and the properties to
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models(E,tt) ← true

models(E,φ1 ∨ φ2) ← models(E,φ1) ∨ models(E,φ2)

models(E,φ1 ∧ φ2) ← models(E,φ1) ∧ models(E,φ2)

models(E, 〈A〉φ) ← ∃F. ((E
A−→ F ) ∧ models(F,φ))

models(E, [A]φ) ← ∀F. ((E
A−→ F ) → models(F,φ))

models(E,μZ.φ) ← models(E,φ)

models(E, νZ.φ) ← dual(φ, φ′) ∧ ¬models(E,φ′)

Fig. 11. The modal μ-calculus proof rules

be verified are written in dltl. Verification is carried based on the use of Buchi
automata. Model checking is then applied to the proof of the formulas to be
verified. This makes the verification process a complex process based on a com-
bination of model checking and other techniques. This paper proposes a simple
and automatic technique which allows the agents themselves to perform the veri-
fication process at run-time, which is one of the main contributions of this paper.

[11] and [12] also separate the mental state from the social state. These
approaches strictly limit the verification process to verifying message passing
actions only. The approach presented in this paper allows the model checker
to verify message passing actions of the interaction model as well as deontic
constraints affecting the interaction. This is made possible by introducing the
modified version of the μ-calculus of Section 5 which permits the verification of
constraints in lcc which are essentially a link to the deontic constraints.

[13] differs from all other techniques since it focuses on the evolution of knowl-
edge in mas. The system is a Real Time Interpreted System. The temporal logic
used is tectlk — a logic for knowledge and real time. All system states should
be represented by bit vectors and are, hence, encoded before the verification
process is initiated. These then undergo a translation process and the resulting
propositional formula is fed to a sat solver for verification. This technique differs
from the one presented in this paper since it verifies the change of knowledge in
mas. Furthermore, all system states need to be encoded before the verification
process can take place. This paper proposes a technique which requires only the
initial state of the system. Local model checking is then used to incrementally
generate the state-space until a solution is reached. This is applied via the proof
rules of Figure 11 and the transition rules of Figure 8. The whole process is an
automatic process that could be carried out by agents at run-time.

8 Conclusion

This paper presents a model checker which may be invoked at run-time by agents
for verifying instances of the interaction protocol. Each of the languages chosen
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— lcc, policy languages, or μ-calculus — contribute to the following features
of the model checker:

1. LCC for supporting the attachment of a deontic model to the
interaction model
Policy languages are essentially a tuple of the form (s,o,<sign>a) which
permits or prohibits — depending on the sign of a — a subject s from
executing action a on object o. Additionally, conditions may be attached
to rules (see Table 1). In short, policy languages are a set of constraints.
Constraints in lcc could then act as a window to the dynamic, agent specific
set of deontic rules. For example, constraint query(HD, D, HL) of the travel
agency interaction protocol triggers deontic Rules 1 and 2 of Table 1.

2. Logic-based programming for efficient constraint computing
The use of computational logic results in a model checker that deals effi-
ciently with constraints and complex data structures. This is crucial for us
since our system model makes heavy use of constraints and structured terms.

3. A compact size model checker for agents to use at run-time
The use of the modal μ-calculus along with local model checking techniques,
which is suggested by the transition rules of lcc, results in an very simple and
compact model checker. The model checker is constructed from the rules of
Figures 8 and 11 and encoded in xsb. This throws the burden of searching the
state-space on the underlying xsb system. As a result, the small size of the
model checker makes it a good candidate to be used by agents at run-time.

As for efficiency, the model checker has worked well when tested on some
scenarios. For example, the verification of property 2 of Section 5.2 with
five agents involved — a customer agent, a travel agent, an airline agent, a
hotel agent, and a credit card agent — consumes 0.039 sec of cpu time and
2.18mb of memory when run on a P4 2GHz machine. A more complex ex-
ample, an auction system with a set of three bidders, consumes 0.868 sec and
51mb. These are preliminary results only, and further tests and evaluation
still needs to be taken.

4. LCC for supporting dynamic model checking of dynamic system
models
The decentralised coordination mechanism driven by the clause expansion
mechanism of lcc allows agents to verify dynamic deontic rules as well as
dynamic interaction protocols at run-time. This is made possible by retriev-
ing the current protocol state at run-time along with the current deontic
rules, and feeding this information to the model checker.
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Abstract. The AgentSpeak agent-oriented programming language has recently
been extended with various new features, such as speech-act based communica-
tion, internal belief additions, and support for reasoning with ontological knowl-
edge, which imply the need for belief revision within an AgentSpeak agent. In this
paper, we show how a polynomial-time belief-revision algorithm can be incorpo-
rated into the Jason AgentSpeak interpreter by making use of Jason’s language
constructs and customisation features. This is one of the first attempts to include
automatic belief revision within an interpreter for a practical agent programming
language.

1 Introduction

After almost a decade of work on abstract programming languages for multi-agent sys-
tems, practical multi-agent platforms based on these languages are now beginning to
emerge. On such language is AgentSpeak, and in particular its implementation in Ja-
son [7]. AgentSpeak continues to evolve, and a number of AgentSpeak extensions have
been reported in the literature and incorporated into Jason. Some of these new features,
such as internal belief additions, speech-act based communication, and support for rea-
soning with ontological knowledge, have led to a greater need for belief revision as
part of an AgentSpeak agent’s reasoning cycle. However, in common with other mature
agent-oriented programming languages [5], AgentSpeak does not currently provide au-
tomatic support for belief revision. While the current Jason implementation provides
a simple form of belief update, which can be customised for particular applications,
the problem of belief-base consistency has, so far, remained the responsibility of the
programmer.
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The lack of support for belief revision in practical agent programming languages is
understandable, given that known belief revision algorithms have high computational
complexity. However recent work by Alechina, Jago and Logan has changed this pic-
ture. In [2] they presented a polynomial time belief revision algorithm for resource
bounded agents. The algorithm is theoretically well-motivated, in the sense of produc-
ing revisions that conform to a generally accepted set of postulates characterising ra-
tional belief revision. In this paper, we show how this work can be incorporated into
the Jason AgentSpeak interpreter by making use of Jason’s language constructs and
customisation features. In doing so, we also clarify the desired outcome of belief con-
traction in AgentSpeak from the logical point of view.

The problem of how to incorporate belief revision into a practical agent programming
language has been largely ignored in the literature. There has been some initial work
on belief revision in an abstract programming language, for example, in [24]. In [10],
Clark and McCabe show how the Go! agent programming language can be extended
to incorporate dependency (or reason) maintenance. In their approach, the removal of
a belief B automatically results in B being removed from justifications of other be-
liefs, and if B was the only justification, then those beliefs are automatically removed.
However, the removal of sufficient beliefs to prevent B being re-derived is left to the
programmer. We believe our approach is one of the first attempts to include automatic
belief revision within an interpreter for a practical agent programming language.

The remainder of the paper is organised as follows. In Sections 2 and 3 we give a brief
overview of AgentSpeak programming and its implementation in Jason. In Section 4,
we state our desiderata for belief revision in AgentSpeak, and in Section 5 we summarise
the main points of the algorithm first presented in [2]. We then discuss the integration of
the belief revision algorithm into Jason in Section 7, and in Section 8 we give a simple
example which illustrates the importance of belief revision in practical programming of
multi-agent systems. Finally, we conclude and outline directions for future work.

2 AgentSpeak

The AgentSpeak(L) programming language was introduced in [22]. It is based on logic
programming and provides an elegant abstract framework for programming BDI agents.
The BDI architecture is, in turn, the predominant approach to the implementation of
intelligent or rational agents [27], and a number of commercial applications have been
developed using this approach.

An AgentSpeak agent is defined by a set of ground (first-order) atomic formulæwhich
comprise its belief base, and a set of plans which form its plan library. An AgentSpeak
plan has a head which consists of a triggering event (specifying the events for which
that plan is relevant), and a conjunction of belief literals representing a context. The
conjunction of literals in the context must be a logical consequence of that agent’s current
beliefs if the plan is to be considered applicable when the triggering event happens (only
applicable plans can be chosen for execution). A plan also has a body, which is a sequence
of basic actions or (sub)goals that the agent has to achieve (or test) when the plan is
triggered. Basic actions represent the atomic operations the agent can perform to change
the environment. Such actions are also written as atomic formulæ, but using a set of
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action symbols rather than predicate symbols. AgentSpeak distinguishes two types of
goals: achievement goals and test goals. Achievement goals are formed by prefixing
atomic formulæ with the ‘!’ operator, while test goals are prefixed with the ‘?’ operator.
An achievement goal states that the agent wants to achieve a state of the world where the
associated atomic formula is true. A test goal states that the agent wants to test whether
the associated atomic formula is a logical consequence of its beliefs.

An AgentSpeak agent is a reactive planning system. Plan exeucution is triggered by
the addition (‘+’) or deletion (‘-’) of beliefs due to perception of the environment, or
to the addition or deletion of goals as a result of the execution of plans triggered by
previous events.

A simple example of an AgentSpeak program for a Mars robot is given in Figure 1.
The robot is instructed to be especially attentive to “green patches” on rocks it observes
while roving on Mars. The AgentSpeak program consists of three plans. The first plan
says that whenever the robot perceives a green patch on a certain rock (a belief addition),
it should try and examine that particular rock. However this plan can only be used (i.e.,
it is only applicable) if the robot’s batteries are not too low. To examine the rock, the
robot must retrieve, from its belief base, the coordinates it has associated with that rock
(this is the reason for the test goal in the beginning of the plan’s body), then achieve the
goal of traversing to those coordinates and, once there, examine the rock. Recall that
each of the achievement goals will trigger the execution of some other plan.

+green patch(Rock)
: not battery charge(low)
<- ?location(Rock,Coordinates);

!traverse(Coordinates);
!examine(Rock).

+!traverse(Coords)
: safe path(Coords)
<- move towards(Coords).

+!traverse(Coords)
: not safe path(Coords)
<- ...

Fig. 1. Examples of AgentSpeak Plans for a Mars Rover

The two other plans (note the last one is only an fragment) provide alternative courses
of action that the rover should take to achieve the goal of traversing towards some
given coordinates. Which course of action is selected depends on its beliefs about the
environment at the time the goal-addition event is handled. If the rover believes that
there is a safe path in the direction to be traversed, then all it has to do is to take
the action of moving towards those coordinates (this is a basic action which allows
the rover to effect changes in its environment, in this case physically moving itself).
The alternative plan (not shown here in full) provides an alternative means for the agent
to reach the rock when the direct path is unsafe.
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3 Jason

The Jason interpreter implements the operational semantics of AgentSpeak as given,
e.g., in [8]. Jason 1 is written in Java, and its IDE supports the development and execu-
tion of distributed multi-agent systems [6]. Some of the features2 of Jason are:

– speech-act based inter-agent communication (and annotation of beliefs with infor-
mation sources);

– annotations on plan labels, which can be used by elaborate (e.g., decision-theoretic)
selection functions;

– the possibility to run a multi-agent system distributed over a network (using SACI
or some other middleware);

– fully customisable (in Java) selection functions, trust functions, and overall agent
architecture (perception, belief-revision, inter-agent communication, and acting);

– straightforward extensibility (and use of legacy code) by means of user-defined
“internal actions”;

– clear notion of multi-agent environments, implemented in Java (this can be a simu-
lation of a real environment, e.g., for testing purposes before the system is actually
deployed).

3.1 Extensions to AgentSpeak

Recent work appearing in the literature has made important additions to AgentSpeak,
which have also been (or are in the process of being) implemented in Jason. Below we
briefly discuss some of these features, focusing on those that have particular implica-
tions for belief revision.

Belief additions. This is one of the earliest extensions of the AgentSpeak language, and
one of the most important from the point of view of belief revision. Experience with
AgentSpeak has shown that the execution of some plans could be greatly facilitated by
allowing a plan instance being executed to add derived beliefs to the agent’s belief base.
A formula such as +bl in the body of a plan, has the effect of adding the belief literal
bl to the belief base. Together with the ability to exchange beliefs and plans with other
agents (see below), such derived beliefs can result in the agent’s belief base becoming
inconsistent (i.e., both b and ˜b are in the belief base, for some belief b)3. Unless the
programmer intends to make use of paraconsistency, this is clearly undesirable, yet it is
not checked or handled automatically in the current version of Jason.

Speech-act based communication and plan exchange. Another important addition, first
proposed in [17], is the extension of the AgentSpeak operational semantics to allow
speech-act based communication among AgentSpeak agents. That work gave semantics
to the change in the mental attitudes of AgentSpeak agents when receiving messages
from other agents (using a speech-act based language). This involves not only changes

1 Jason is Open Source (GNU LGPL) and may be obtained from http://jason.sf.net.
2 As of this writing, the current version of Jason is v0.8.
3 The ‘˜’ operator denotes strong negation in Jason.
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in beliefs and goals, but also the plans used by the agent. The latter allows agents to
exchange know-how with other agents in the form of plans for dealing with specific
events [3]. The intuitive idea is that if one does not know how to do something, one
should ask someone who does. To implement this idea of cooperation through plan ex-
change between agents, it was necessary to enable agents to retrieve plans for a given
triggering event for which the agent has no applicable plan, and also to annotate plans
with access specifiers (e.g., to prevent private plans being accessed by other agents) or
with indications of what the agent should do with the retrieved plan once it has been
used for a particular event (e.g., discard it, or keep it in the plan library for future ref-
erence). However the ability to exchange beliefs and plans with other agents increases
the chances of the agent’s belief base becoming inconsistent.

Prolog-like Rules. An extension currently being implemented in Jason is that the be-
lief base will no longer be just a set of ground literals, but will also have Prolog-like
rules. This is similar to the 3APL implementation [11], where the belief base is effec-
tively a Prolog program. The lack of such rules forced AgentSpeak programmers to use
plans for deriving useful information, and the consequence of this was that programs
were less clear because theoretical and practical reasoning were mixed together. With
this addition, we now have a clear separation between rules that allow agents to derive
conclusions that follow from their current belief state and plans which allow agents to
decide how to act. However, for uniformity, we do not use the Prolog syntax for the
body of rules; instead, we use the same syntax as used in the context of AgentSpeak
plans (with the same expressive power).

Ontological reasoning. Ontologies are presently being used in various agent-based ap-
plications (see, e.g., [9]). In [18], the AgentSpeak-DL extension of AgentSpeak was
proposed which aimed at incorporating ontological reasoning within an AgentSpeak
interpreter. The language was extended so that the belief base can include Descrip-
tion Logic [4] operators. In addition to the usual ABox (factual knowledge in the form
of ground atomic formulæ), the belief base can also have a TBox (containing defini-
tions of complex concepts and relationships between them). This results in a number of
changes in the interpretation of AgentSpeak programs: (i) queries to the belief base are
more expressive as their results do not depend only on explicit knowledge but can also
be inferred from the ontology; (ii) the notion of belief update must be refined so that
following the addition of a property of an individual, the resulting belief base is consis-
tent with the agent’s concept descriptions; (iii) the search for a plan (in the agent’s plan
library) that is relevant for dealing with a particular event is more flexible as this is not
based solely on unification, but also on the subsumption relation between concepts; and
(iv) agents may share knowledge by using web ontology languages such as OWL.

The issue of belief revision is clearly important in the context of ontological rea-
soning, and this is another motivation for the work presented here. In particular, con-
sider item (ii) above. For example, if the belief base contains both unstable(p) and
¬dangerous(p), and the TBox contains unstable � dangerous then the agent’s belief
state is inconsistent. However, simply ignoring the belief addition unstable(p) since it
would cause an inconsistency in the belief base, or always forcing such additions and
removing the contradicting belief instead, are both clearly unacceptable.
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Belief annotations. Another important change in the version of AgentSpeak inter-
preted by Jason is that atomic formulæ now can have “annotations”. An annotation
is a list of terms enclosed in square brackets immediately following a predicate. For
example, the annotated belief “green patch(r1)[doc(0.9)]” could be used by
a programmer to represent the fact that rock r1 is believed to have a green patch in
it, and this is believed with a degree of certainty (doc) of 0.9. Within the belief base,
an important use of annotations is to record the sources of information for a particular
belief. A (pre-defined) term source(s) is provided for that purpose, where s can be
an agent’s name (to denote the agent that has communicated that information), or two
special atoms, percept and self, which denote, respectively, that a belief arose
from perception of the environment, or from the agent explicitly adding a belief to
its own belief base as a result of executing a plan. The initial beliefs that are part of
the source code of an AgentSpeak agent are assumed to be internal beliefs (i.e., as if
they had a [source(self)] annotation), unless the belief has any source explicit
annotation given by the user. For more on the annotation of sources of information for
beliefs, see [17].

As will be seen below, annotations can be used to support context sensitive belief
revision, where beliefs of a particular type or from a particular source are preferred to
others when an inconsistency arises.

3.2 Belief Update in Jason

Users can customise certain aspects of the (practical) reasoning of a Jason agent by
overriding methods of the Agent class. This includes, for example, the three user-
defined selection functions that are required by an AgentSpeak interpreter. One of the
methods of the Agent class that can be overridden, which is of interest here, is the brf
method. This represents the belief revision function commonly found in agent architec-
tures (although the Agents literature often assumes that this function is used mainly for
belief update, rather than belief revision).

In the current version of Jason, the brf method takes a list of additions to the belief
base, and is used for both belief update and belief revision. Belief update following
perception of the environment results in a call to brf with literals in the list of additions
representing the percepts4). It is assumed that all perceptible properties are included in
the list of additions: all current beliefs no longer within the list of percepts are deleted
from the belief base, and all percepts not currently in the belief base are added to it.
For other changes in the belief base, the default brf method in Jason simply adds to
the belief base any belief addition executed within a plan, as well as any information
from permitted sources; the source is annotated on the belief added to belief base, so
that consideration of the degree of trust in any particular belief can be taken by the
programmer. At present, belief additions (from whatever source) are not checked for
consistency, with the result that the belief base can become inconsistent, unless suffi-
cient care is taken by the programmer.

4 The fact that a literal is a percept rather than other forms of information is explicitly stated in
the annotations: all percepts have a source(percept) annotation.
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4 Requirements for Belief Revision in AgentSpeak

We have two main objectives in adding belief revision to AgentSpeak. First the belief
revision algorithm should be theoretically well-motivated, in the sense of producing
revisions which conform to a generally accepted set of postulates characterising ra-
tional belief revision. Second, we want the resulting language to be practical, which
means that the belief revision algorithm must be efficient. Our approach draws on re-
cent work [2] on efficient (polynomial-time) belief revision algorithms which satisfy the
well-known AGM postulates [1] characterising rational belief revision and contraction.

The theory of belief revision as developed by Alchourron, Gärdenfors, and Makin-
son in [13,1,14] models belief change of an idealised rational reasoner. The reasoner’s
beliefs are represented by a potentially infinite set of beliefs closed under logical conse-
quence. When new information becomes available, the reasoner must modify its belief
set to incorporate it. The AGM theory defines three operators on belief sets: expansion,
contraction, and revision. Expansion, denoted K + A, simply adds a new belief A to
K and the resulting set is closed under logical consequence. Contraction, denoted by
K

.− A, removes a belief A from the belief set and modifies K so that it no longer
entails A. Revision, denoted K

.
+ A, is the same as expansion if A is consistent with

the current belief set, otherwise it minimally modifies K to make it consistent with A,
before adding A.

Contraction and revision cannot be defined uniquely, since in general there is no
unique maximal set K ′ ⊂ K which does not imply A. Instead, the set of “rational”
contraction and revision operators is characterised by the AGM postulates [1]. The basic
AGM postulates for contraction are:

(K .−1) K
.− A = Cn(K .− A) (closure)

(K .−2) K
.− A ⊆ K (inclusion)

(K .−3) If A /∈ K , then K
.− A = K (vacuity)

(K .−4) If not � A, then A /∈ K
.− A (success)

(K .−5) If A ∈ K , then K ⊆ (K .− A) + A (recovery)
(K .−6) If Cn(A) = Cn(B), then K

.− A = K
.− B (equivalence)

where Cn(K) denotes closure of K under logical consequence.
AGM style belief revision is sometimes referred to as coherence approach to belief

revision, because it is based on the ideas of coherence and informational economy. It
requires that the changes to the agent’s belief state caused by a revision be as small
as possible. In particular, if the agent has to give up a belief in A, it does not have to
give up believing in things for which A was the sole justification, so long as they are
consistent with the remaining beliefs.

While AGM belief revision provides an appealing definition of rational belief revi-
sion, it is generally considered to apply only to idealised agents, because of the assump-
tion that the set of beliefs is closed under logical consequence. To model AI agents, an
approach called belief base revision has been proposed (see for example [16,19,25,23]).
A belief base is a finite representation of a belief set. Revision and contraction opera-
tions can be defined on belief bases instead of on logically closed belief sets. However
the complexity of these operations ranges from NP-complete (full meet revision) to low
in the polynomial hierarchy (computable using a polynomial number of calls to an NP
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oracle which checks satisfiability of a set of formulæ) [21]. The reason for the high
complexity is the need to check for classical consistency while performing the opera-
tions. One way around this is to weaken the language and the logic of the agent so that
the consistency check is no longer an expensive operation (as suggested in [20]). This
is also the approach taken in [2] and adopted here.

Another strand of theoretical work in belief revision is the foundational, or reason-
maintenance approach to belief revision. Reason-maintenance style belief revision is
concerned with tracking dependencies between beliefs. Each belief has a set of justi-
fications, and the reasons for holding a belief can be traced back through these justi-
fications to a set of foundational beliefs. When a belief must be given up, sufficient
foundational beliefs have to be withdrawn to render the belief underivable. Moreover, if
all the justifications for a belief are withdrawn, then that belief itself should no longer be
held. Most implementations of reason-maintenance style belief revision are incomplete
in the logical sense, but tractable.

In the next section we present an approach to belief revision and contraction for
resource-bounded agents which allows for both AGM and reason-maintenance style
belief revision. AGM-style contraction by A removes beliefs which imply A, but does
not remove beliefs for which A is the sole justification. In contrast, reason-maintenance
style contraction in addition removes beliefs for which A is the sole justification. Both
AGM and reason-maintenance contraction have the same polynomial-time complexity
and satisfy the AGM postulates with the exception of the recovery postulate (K .−5).

5 The Belief Revision Algorithm

In this section we briefly describe the contraction algorithm introduced in [2]. We
define AGM-style contraction by a literal A as the removal of A and sufficient literals
from the agent’s belief base so that A is no longer a consequence of the beliefs in the
belief base. We explain in more detail in Section 6 what we mean by “consequence”;
for the moment, we assume that a belief is derivable if it has been asserted using the
agent’s plans or has been inferred using ontological definitions and the literals in the
agent’s belief base.

The inferential relationships between the beliefs in the agent’s belief base can be
represented as a directed graph, where the nodes are beliefs and justifications. A justi-
fication consists of a belief literal and a support list containing the beliefs which were
used to derive that literal, for example: (A, [B, C]), where A was derived from B and
C. If A has been derived in several different ways, for example, from B, C and from D
(where B, C and D are in the belief base), the graph contains several justifications for
A, for example (A, [B, C]) and (A, [D]). We say a belief is independent if it has at least
one non-inferential justification, e.g., beliefs acquired by perception, communicated
beliefs, and the literals in the belief base when the agent starts. Non-inferential justifica-
tions are of the form (D, []), i.e., the support list is empty. In the graph, each justification
has one outgoing edge to the belief it is a justification for, and an incoming edge from
each belief in its support list. We assume that each support list s has a designated least
preferred member w(s). Intuitively, this is a belief which is not preferred to any other
belief in the support list, and which we would be prepared to discard first, if we have to
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give up one of the beliefs in the list. We discuss possible preference orderings and their
computation in the next section. We assume that we have constant time access to w(s).

The algorithm to contract by a belief A is as follows:

For each of A’s outgoing edges
to a justification (C, s),
remove (C,s) from the graph.

For each of A’s incoming edges
from a justification (A, s),

if s is empty:
remove (A, s);

else:
contract by w(s);

Remove A.

To implement reason-maintenance style contraction, we also recursively remove beliefs
which have no incoming edges.

The algorithm runs in time O(kr + n), where k the maximal number of beliefs in
any support list, r is the number of plans, and n the number of literals in the belief
base [2]. Indeed, the upper bound on the number of steps required to remove justifica-
tions corresponding to plan instances is r(k + 1) (one constant time operation for each
belief in the context of the plan and one for the belief asserted by the plan). Remov-
ing all justifications corresponding to foundational beliefs costs n steps. The last step
in the contraction algorithm (removing a belief) is executed at most n times. Reason-
maintenance style contraction adds one extra traversal of the justification graph, but has
the same complexity.

In [2], it was shown that the contraction operator defined by the algorithm above
satisfies (K .−1)–(K .−4) and (K .−6); (K .−5) is not satisfied. To give an example, suppose
B can be derived using A (but not vice versa). If we contract by B, then A is also
removed from the belief base. When we expand by B, A is not restored to the belief
base.

5.1 Preferred Contractions

In general, an agent will prefer some contractions to others. In this section we focus on
contractions based on preference orders over individual beliefs, e.g., degree of belief or
commitment to beliefs. We assume that an agent associates an a priori quality with each
non-inferential justification for its independent beliefs. For example, communicated in-
formation may be assigned a degree of reliability by its recipient which depends on
the degree of reliability of the speaker (i.e., the speaker’s reputation), percepts may be
assumed to be more reliable than communicated information, and so on.

For simplicity, we assume that quality of a justification is represented by non-
negative integers in the range 0, . . . , m, where m is the maximum size of the belief
base. A value of 0 means the lowest quality and m means highest quality. We take the
preference of a literal A, p(A), to be that of its highest quality justification:

p(A) = max{qual(j0), . . . , qual(jn)},
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where j0, . . . , jn are all the justifications for A, and we define the quality of an inferen-
tial justification to be that of the least preferred belief in its support:5

qual(j) = min{p(A) : A ∈ support of j}.

This is similar to ideas in argumentation theory: an argument is only as good as its weak-
est link, yet a conclusion is at least as good as the best argument for it. This approach
is also related to Williams “partial entrenchment ranking” [26] which assumes that the
entrenchment of any sentence is the maximal quality of a set of sentences implying it,
where the quality of a set is equal to the minimal entrenchment of its members. While
this approach is intuitively appealing, nothing hangs on it, in the sense that any pref-
erence order can be used to define a contraction operation, and the resulting operation
will satisfy the postulates.

To perform a preferred contraction, we preface the contraction algorithm given above
with a step which computes the preference of each literal in the belief base, and for
each justification, finds the position of a least preferred member of the support list.
The preference computation algorithm can be found in [2]. We then simply run the
contraction algorithm to recursively delete the weakest member of each support in the
dependency graph of A.

We define the worth of a set of literals Γ as worth(Γ ) = max{p(A) : A ∈ Γ}.
In [2], it was shown that the contraction algorithm removes the set of literals with the
least worth. More precisely:

Proposition 1. If contraction of the set of literals in the belief base K by A resulted in
removal of the set of literals Γ , then for any other set of literals Γ ′ such that K − Γ ′

does not imply A, worth(Γ ) ≤ worth(Γ ′).

The proof is given in [2]. Computing preferred contractions involves only modest com-
putational overhead. The total cost of computing the preference of all literals in the
belief base is O(n log n+kr), where n the number of literals in the belief base, k is the
maximal number of beliefs in any support list, and r the number of plans. As the con-
traction algorithm is unchanged, this is also the additional cost of computing a preferred
contraction. Computing the most preferred contraction can therefore be performed in
time linear in kr + n.

6 Belief Revision in AgentSpeak

The belief revision algorithm presented above was developed for rule based agents,
where rules could easily be interpreted as corresponding to logical implications. How-
ever the execution of AgentSpeak plans cannot always be interpreted as corresponding
to logical derivations. In this section we show how the algorithm can be applied in the
context of AgentSpeak and briefly discuss the notion of consistency which our contrac-
tion algorithm maintains between the beliefs of an AgentSpeak agent.

5 Literals with no supports (as opposed to an empty support) are viewed as having an empty
support of the lowest quality.
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The original version of the algorithm presented in [2] assumed a forward-chaining
rule-based agent, with rules of the form A1, . . . , An → B, which fires its rules to
quiescence (i.e., until no more rules are applicable). To define for those agents what it
means for the belief base to be consistent and what it means for a belief to be derivable,
we interpret rules as Horn clauses and literals as atomic formulæof predicate logic, and
postulate that the agent “reasons” using a single inference rule of generalised modus
ponens:

δ(A1), . . . , δ(An), ∀x̄(A1 ∧ . . . ∧An → B)
δ(B)

where δ is a substitution function which replaces all free variables of a formula with
constants. In [2], the resulting logic is called W . Clearly, the language of W is weaker
than the language of full classical logic (e.g., it does not have disjunctions). The deduc-
tive power of the logic is also weaker; for example, from A → B and ¬A → B the
agent cannot derive B, as it would have been possible in classical logic. It was shown
in [2] that the beliefs of a quiescent forward-chaining agent are closed with respect to
consequence in W , and that the contraction algorithm restores consistency in the sense
of W ; that is, after contraction by A the agent can no longer derive A in W from its
beliefs.

Since not all rule-based agents fire their rules to quiescence, [2] also analysed belief
contraction in the non-quiescent case. In that case, the agent’s beliefs at each point in
time are closed with respect to the set of rule instances which have been applied by the
agent up to that point in time. Even this is not exactly true if the agent uses refractory
rule firing, that is, each rule instance is only fired once. This means that if A(x) implies
B(x), A(a) is in the belief base, B(a) is derived and then removed, B(a) can not be
re-derived again using the same rule. However in this paper we ignore refractory rule
firing and take “derivable” to mean “derivable using previously fired rule instances”.
In effect, we over-approximate the set of literals the agent can derive with respect to
refractory rule firing.

As noted above, the execution of AgentSpeak plans cannot always be interpreted
as corresponding to logical derivations. We therefore assume that, in future versions
of Jason, plans that can be used to derive a new belief on the basis of currently held
beliefs will be annotated by the programmer to indicate that they are relevant for belief
revision. We call such plans declarative-rule plans. A declarative-rule plan of the form
“te : l1 & ...& ln <- bd”, where te is a triggering event and bd a plan body
starting with belief addition +bl, is interpreted as an implication l1, . . . , ln → bl; if the
triggering event, te, is itself a belief addition, it is included in the antecedent as well:
te, l1, . . . , ln → bl. When declarative rules or ontological reasoning are used to check
if a plan is applicable, e.g., if a plan with literals l1, . . . ln in its context is applicable
not because l1, . . . , ln are in the belief base, but because other literals m1, . . . , mn are,
and the agent’s declarative rules or ontological reasoning entails mi � li for each i, we
interpret this as a plan instance with m1, . . . , mn in its context. A belief is then derivable
if it is derivable from the belief base using the plan instances used so far, with the results
of the declarative rules or ontological reasoning substituted in the actual plan instances;
so instead of, e.g., l1, . . . , ln → bl in the implications, we have m1, . . . , mn → bl
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where m1, . . . , mn are the belief literals in the belief base which were actually used for
the plan to be considered applicable, given the agent’s declarative or ontological rules.

We say that a belief base of an AgentSpeak agent is consistent if a contradiction is
not derivable by generalised modus ponens from the contents of the belief base and the
agent’s plans (represented as implications) which were used in the agent’s execution so
far. In particular, after contracting by bl, bl is not re-derivable from the corresponding
set of implications and atomic beliefs in the logic W .

7 Implementation of Belief Revision in Jason

Future versions of Jason will incorporate an implementation of the belief revision al-
gorithm described above. The belief revision functionality will be split between the
existing brf and a new buf responsible for belief update. Perception of the environment
will be followed by a call to buf with the literals in the list of additions representing
the list of percepts. As in the current version of Jason, it is assumed that all perceptible
properties are included in the list of additions: all current beliefs no longer within the
list of percepts are deleted from the belief base, and all percepts not currently in the
belief base are added to it. All other additions to the belief base are handled by brf.
Belief additions in plans annotated for belief revision result in a call to brf with the
new belief as argument. If the new belief is inconsistent with the current belief base,
brf may discard it or may delete some other belief(s) to allow the new belief to be con-
sistently added to the belief base. Which beliefs are actually deleted is determined by a
user-specified preference order (see below).

The directed graph used by the belief revision algorithm is implemented in terms
of two lists for each belief: a “dependencies list” (the literals that allowed the
derivation of the belief literal in question), and a “justifies list” (which other be-
liefs the literal in question justifies, i.e., it appears in their dependencies list). The
new brf method maintains two special annotations for each belief in the belief base
“dep([...]), just([...])” which record the dependencies and justifies lists
for the belief respectively. The literals to populate these two lists are retrieved from
the intention that generated the belief change. For example, if the top of the intention
structure that generated a belief change +bl has a plan instance of the form “te : l1
& ...& ln <- bd”, where te is a triggering event and bd a plan body in which +bl
is the first action, the support list of the justification is simply the (ground) literals from
the plan context, “[l1,. . . ,ln]”. If the triggering event, te, is itself a belief (addition),
the literal in te is included together with the context literals in the support list as noted
above. If a belief was added as a result of a plan being applicable using declarative rules
or ontological reasoning, e.g., if the literal l1 is not in the belief base, but some other
literal l is, and l � l1 is an instance of an declarative or ontology rule, then l will be
in the support list for bl instead of l1. For each literal in the support list l1, . . . , ln we
add the justification to the literal’s “justifies” list. We also record the time at which the
justification was added to the relevant list.

In addition to the “dependencies” and “justifies” lists, the belief revision algorithm
also requires the definition of a partial order relation specifying contraction preference.
To allow for user customisation, this is defined as a separate method that can also be
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overridden. The default definition of this method gives preference to perceived infor-
mation over communicated information (as also happens in [24]), and in case of infor-
mation from sources of similar reliability, it gives preference to newer information over
older information (this is why the time when a justification was inserted is also added
as an annotation).

During belief update and revision, the “dependencies” and “justifies” lists are up-
dated to reflect the beliefs (and their justifications) which have been removed from the
agent’s belief base. Deletion of beliefs as a result of belief update results in the appro-
priate changes to the justification structure and belief base: with AGM-style revision,
the deleted belief is removed from the “dependencies” lists of all other beliefs in the
belief base; with reason-maintenance style revision, any beliefs in whose “justifies” list
a deleted belief appears are also deleted. The buf method also removes any justification
which has a deleted perceptual belief in its support list, and marks the justified belief as
a self-supporting (independent) belief. This additional bookkeeping reflects the special
status of perceptual beliefs: perceptual beliefs can trigger or justify the addition of other
beliefs, but their deletion is not in itself a reason for removing a derived belief. When
an inconsistency is detected during belief revision, brf determines which of the two
beliefs is less preferred, and then (recursively) deletes the least preferred belief in the
“dependencies” list of the contracted belief. With reason-maintenance style revision,
any beliefs in whose “justifies” list a deleted belief appears are also deleted.

The implementation described above is conservative in revising only the agent’s be-
lief state. The agent’s plans are considered part of the agent’s program and are not
revised (though revising plans, in particular those received from other agents, would
be an interesting extension). Similarly, when revising beliefs derived using ontological
rules, we assume the ontology used by the agent to be immutable and consistent, and
that it is consistent with every other ontology it references. Moreover, intention revision
remains the responsibility of the programmer. Changes in the agent’s intentions follow-
ing the removal of beliefs to restore consistency, or changes in beliefs as a consequence
of intention reconsideration, must be programmed using the appropriate Jason mech-
anisms. All belief changes, regardless of whether they are internal, communicated, or
perceived can lead to the execution of a plan which could be used, for example, to drop
an intention. If the belief revision algorithm has to remove any beliefs to ensure consis-
tency, this will also generate the appropriate (belief-deletion) internal events, which in
turn can trigger the execution of a such plans to revise the agent’s intentions.

8 An Example

To illustrate the importance of belief revision in the context of AgentSpeak (or, more
generally, an agent programming language), we present a simple scenario of an agent
that buys stocks from the stock market. The agent receives financial information (or
guesses) from other agents, some of which can be trusted (or are currently considered
trustworthy), and it also has access to Web Services which filter relevant newspaper sto-
ries and provide symbolic versions of such news for stock market agents. As these web
services are authenticated, this corresponds to actual perception of the “environment”.

Suppose our agent receives a message 〈ag1, tell, salesUp(c1)〉 and its plan library
has the following plan:



74 N. Alechina et al.

+salesUp(C)[source(A)]
: wellManaged(C) & trust(A)
<- +goodToBuy(C).

When the plan is executed, the brf() method will then add
goodToBuy(c1)[source(ag1)] to the belief base with
[salesUp(c1), wellManaged(c1), trust(ag1)] in its “dependen-
cies” list, and goodToBuy(c1) is added to the “justifies” lists of the beliefs
salesUp(c1), wellManaged(c1), and trust(ag1). In the context of the
overall agent program, the idea is that if the agent ever comes to have the goal of
buying stocks, it can make use of beliefs such as goodToBuy, together with various
other conditions, to decide which specific stocks to buy.

Now assume that, from the financial news web service, the agent acquires the belief
stocks(c2,10)[source(percept)], which means that company c2’s stocks
are up by 10 points, and the agent also believes that rival(c2,c1) (i.e., that compa-
nies c2 and c1 are competitors), so that increase in the stocks of one of them tends to
lead to a decrease in the other’s stocks. Assume further that the agent happens to have
the following plan:

+stocks(C,P)
: P > 5 & rival(C,R)
<- +˜goodToBuy(R).

When the plan is executed, the attempt to simply add ˜goodToBuy(c1) to the belief
base would not be carried out because it would result in an inconsistent belief state. With
the default contraction preference relation, it is not difficult to see that, in this instance,
the algorithm would contract by goodToBuy(c1) because its support is based on
communicated information which is less reliable than the observed information from
which ˜goodToBuy(c1) was derived.

As can be seen, the belief revision algorithm takes care of ensuring that inconsisten-
cies, such as goodToBuy(c1) and ˜goodToBuy(c1)) being believed simultane-
ously, never occur in the belief base. Moreover, the data structures used by the algorithm
(the dependencies and justifications lists) allow it to automatically revise the belief base
in ways that previously would have required significant programming effort. For exam-
ple, suppose the agent receives news that a crooked CEO has just been fired from c1.
The agent is likely to have a plan to update its beliefs about c1 being well managed as a
consequence of such new information about the CEO. If the user has chosen the reason-
maintenance style of the algorithm, and there is no other justification for goodToBuy,
then the algorithm would remove not only the wellManaged(c1) belief, but also
the goodToBuy(c1) belief because the latter depends on the former. Similarly if for
some reason the agent later finds out that ag1 is not trustworthy after all.

However, if the user opts for AGM-style revision, removing wellManaged would
not remove goodToBuy. Although in this example the reason-maintenance style is
arguably more appropriate, in other applications the coherence style might be more
useful. In either case, it is clear that without the use of automatic belief revision, it
would be very difficult for a programmer to ensure that revision occurs appropriately
in all situations. The programmer would either have to develop an application-specific
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brf method, or else write specific plans to handle all possible belief change events that
might affect any derivations the agent can make.

9 Conclusions and Future Work

As multi-agent programming languages become richer, it becomes harder for program-
mers to ensure that the belief states of agents developed using these languages are kept
consistent. In this paper we briefly summarised the rationale for including automatic be-
lief revision in an agent programming language. Using the AgentSpeak programming
language as an example, we showed how a number of features recently added to the lan-
guage have dramatically increased the need for automatic belief revision. We motivated
the choice of the polynomial-time belief revision algorithm presented in [2], and de-
scribed its integration into the Jason AgentSpeak interpreter. We also gave a simple ex-
ample which illustrates the usefulness of such an automatic belief revision mechanism
in a practical multi-agent system scenario, and sketched how it can significantly reduce
the programming efforts required. We believe that other agent-oriented programming
languages and their platforms [5], which currently push responsibility for maintaining
a consistent belief state onto programmers, can also benefit from our approach.

A limitation of the work presented here is that we only consider plans which cor-
respond to classical implication; in particular, we don’t consider negation as failure in
plan contexts. Belief revision in the presence of negation as failure would be an in-
teresting problem to consider, since it corresponds to belief revision in default logic.
Another interesting question to be considered in further work is the need for belief revi-
sion as a consequence of intention reconsideration. On the more practical side, we plan
to develop large-scale agent applications to assess the performance of Jason with belief
revision.
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Abstract. In this paper we propose a foundational ontology of the social con-
cepts of organization and role which structure institutions. We identify which
axioms model social concepts like organization and roles and which properties
distinguish them from other categories like objects and agents: the organizational
structure of institutions and the relation between roles and organizations. All so-
cial concepts depend on descriptions defining them, which are collectively ac-
cepted, and the descriptions defining the components of organizations, including
roles, are included in the description of the organizations they belong to. Thus,
the relational dependence of roles means that they are defined in the organizations
they belong to.

1 Introduction

In order to constrain the autonomy of agents and to control their emergent behavior in
multiagent systems, the notion of organization has been applied [8,22]. According to
Zambonelli et al. [22] “a multiagent system can be conceived in terms of an organized
society of individuals in which each agent plays specific roles and interacts with other
agents”. For Zambonelli et al. [22] “an organization is more than simply a collection
of roles [...] further organization-oriented abstractions need to be devised and placed in
the context of a methodology [...] As soon as the complexity increases, modularity and
encapsulation principles suggest dividing the system into different sub-organizations”.

There is not yet a common agreement, however, on how to model organizations, sub-
organizations and roles, and, in particular, which are the ontological assumptions behind
them. For example, departments and roles are parts of an organization, but they do not
exist without it. Can organizations be explained by means of agent based models? Or
can they be better modelled with the object oriented paradigm?

Since the existence of institutions depends on what Searle [18] calls the construc-
tion of social reality, it is possible that institutions, organizations and roles have very
different properties with respect to objects or agents. Searle [18] argues that social re-
ality is constructed by means of so called “constitutive rules” which state what “counts
as” institutional facts in the institution. Constitutive rules define institutions: they exist
only because of the collective acceptance of constitutive rules by a community. Searle’s
construction of social reality does not explain all issues, in particular, the fact that
some institutions have a structure in terms of sub-institutions and roles. We will call
structured institutions organizations. Thus Searle’s analysis is not sufficient starting
point for a foundational ontology, that specifies which are the properties distinguishing
organizations from objects and agents. We need to know the axioms which allow to
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distinguish organizations from other concepts, rather than specifying all the properties
of organizations, including those in common with agents. Thus the research questions
of this paper are:

– How do organizations and roles differ from objects and agents?
– How can a foundational ontology of social entities like, organizations and roles be

constructed?

We are inspired by [2,3] which study some properties of social entities. However,
these works are based on a very specific multiagent framework, which uses the so called
agent metaphor, i.e., the attribution of mental attitudes to social entities to explain them.

So in this paper we analyse organizations using a more abstract axiomatic ontology
and we consider additional properties. The methodology we choose is to extend the
ontology of Masolo et al. [15]. The main properties of their framework are three. First,
it allows to express the fact that social concepts are defined by means of descriptions.
Second, it explains the definitional dependence of a role from another concept and the
relational nature of roles. Last, it offers a temporalized classification relation, used for
modelling the fact that roles are anti-rigid.

We extend Masolo et al. [15]’s axiomatic ontology to model institutions and their
organizational structure and to explain the asymmetry in the relations defining roles.

This paper is structured as follows. First, we consider the differences between social
reality and objects and agents. In Section 3, we present Masolo et al. [15]’s model. In
Section 4, starting from the limitations of [15] we extend it to define the foundational
ontology. Conclusions end the paper.

2 The Properties of Organizations

The role of knowledge representation and software engineering is to provide models
and techniques that make it easier to handle the complexity arising from the large num-
ber of interactions in a system [13]. Models and techniques allow expressing knowledge
and to support the analysis and reasoning about a system to be developed. As the con-
text and needs of software change, advances are needed to respond to changes. For
example, today’s systems and their environments are more varied and dynamic, and
accommodate more local freedom and initiative [21].

For these reasons, agent orientation emerged as a new paradigm for designing and
constructing software systems [13,21]. The agent oriented approach advocates decom-
posing problems in terms of autonomous agents that can engage in flexible, high-level
interactions. Much like the concepts of activity and object that have played pivotal roles
in earlier modelling paradigms - Yu [21] argues - the agent concept can be instrumental
in bringing about a shift to a much richer, socially-oriented ontology that is needed to
characterize and analyze today’s systems and environments.

The notions of institution, organization and role are part of this socially-oriented
ontology. It is not clear, however, if the ontological assumptions behind this kind of
entities are the same which underlie objects and agents. Many approaches recognize as
properties of social entities being the addressee of obligations [7], like agents are, the
delegation mechanisms among roles [11], etc. Moreover, organizations are modelled
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as collections of agents, gathered in groups [8], playing roles [13,16] or regulated by
organizational rules [22]. We focus instead on the distinguishing properties of the social
concepts of organization and role.

Consider, for example, an organization which is composed by a direction area and a
production area. The direction area is composed by the CEO and the board. The board
is composed by a set of administrators. The production area is composed by two pro-
duction units; each production unit by a set of workers. The direction area, the board,
the production area and the production units are sub-organizations. In particular, the
direction area and the production areas belong to the organization, the board to the
direction area, etc. The CEO, the administrators and the members of the production
units are roles, each one belonging to a sub-organization, e.g., the CEO is part of the
direction area. This recursive decomposition terminates with roles: roles, unlike organi-
zations and sub-organizations, are not composed by further social entities. Rather, roles
are played by other agents, real agents who have to act as expected by their role.

Besides the decomposition structure, as [3] argue in organizations we have relations
among the components of the organization which specify which are the powers of each
component to modify the institutional properties of the other component institutions.
This relation does not necessarily matches the decomposition hierarchy. For example,
the senior board member has the power to command other members of the board to
participate to a board meeting, even if it is at the same decomposition level of the other
members. We do not consider yet this aspect in this paper.

Is it possible to model such structures in the object oriented paradigm? The object
oriented paradigm is based on the idea that software design and implementation can
be inspired by our commonsense view of the reality made of objects. For Booch [5] a
basic property of objects is that they can be decomposed. Decomposition allows coping
with complexity: “the most basic technique for tackling any large problem is to divide it
into smaller, more manageable chunks each of which can then be dealt with in relative
isolation”. Isolation is the idea that code should be encapsulated in classes hiding the
implementation of the objects’ state; thus, other objects can access an object’s state only
via its public interface. Decomposition means that an object can include other objects
which exist independently of it, like they were parts of the object.

In case of organizations, the situation is different. In the decomposition structure, the
components of an organization do not exist independently from the organization itself.
For example a department does not exist without the organization it belongs to. If an
organization goes bankrupt its departments do not exist anymore and similarly the roles
in them (there is no CEO nor employee anymore). Viceversa, an organization can close
a department without necessarily giving up its identity.

One alternative could be to see whether organizations can be modelled as agents, but
again some difficulties arise. Organizations can have organizations as their parts, while
agents cannot have parts which are homogeneous with the whole. Moreover, agents can
play roles but they cannot have roles as their parts.

However, some form of decomposition should be added to multiagent systems, as
noticed by Zambonelli et al. [22]: agents alone, and also roles, are not sufficient to
deal with the complexity of a system; an organizational structure added to a multiagent
system fosters modularity and encapsulation.
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3 Background

Masolo et al. [15] present a formal framework for developing axiomatical ontologies
of socially constructed entities, and study the ontological nature of roles. Social entities
and roles exist just because of social conventions, i.e., constitutive rules accepted by
communities of agents: these can be social concepts like organization, nation, money,
or social individuals like the ECAI Conference or the FIAT company.

In Masolo et al. [15] roles are ‘properties’ according the position defended by
Sowa [19]: roles can be ‘predicated’ of different entities, i.e., different entities can play
the same role, e.g., different persons can all be students. The basic properties of roles
are the anti-rigidity (see Section 1) and being founded. According to Guarino and Welty
[12] the definition of foundation is: “a property a is founded on a property b if, neces-
sarily, for every instance x of a there exists an instance y of b which is not ‘internal’
to x”. The notion of ‘internalness’ is complex: e.g., if x is a car, things internal to it
can be parts of it (its wheels), but also constituents of it (the metal it is made of) or
qualities of it (its color). To avoid all trivial cases, Fine [9] introduces another notion
of dependence: “to say that an object x depends upon an F is to say that an F will be
ineliminably involved in any definition of x”.

This notion can be generalized to properties considering that a property a is def-
initionally dependent on a property b if, necessarily, any definition of a ineliminably
involves b. To model this ‘definitions’ are explicitly introduced in the domain of dis-
course. [15] consider ‘reified’ social concepts and roles, as well as their descriptions,
i.e, the constitutive rules that define them. This allows to formally characterize in a first-
order theory the relationships among all these entities and to talk of roles as ‘first-class
citizens’, similarly to more common entities like objects, events, etc.

Masolo et al. [15]’s approach is based on a distinction between the properties and
relations in the ground ontology (like DOLCE [10]) and those at the object level repre-
senting the social reality. The former ones are represented as predicates and, therefore,
assumed as static, rigid, extensional, and not explicitly defined or linked to a description
(i.e., the primitive predicates of the theory). The latter ones (called “concepts”) are reified
and not necessarily static, rigid, and extensional, and for which it is possible to explicitly
describe some aspects of the conventions that define them (called “descriptions”).

Social concepts, denoted by CN(x) are defined (DF ) or used (US) by descriptions
(DS) and they classify (CF ) other individuals: DF (x, y) stands for “the concept x is
defined by the description y” to deal with the social, relational, and contextual nature of
social concepts. US(x, y) stands for “the concept x is used by the description y”; they
introduce a temporalized classification relation to link concepts with the entities they
classify, while accounting for the dynamic behavior of social roles: CF (x, y, t) stands
for “at the time t, x is classified by the concept y” or, more explicitly, “at the time t, x
satisfies all the constraints stated in the description of y”.

In the axioms defining [15]’s theory, ED(x) stands for “x is an endurant”, i.e., an
entity that is wholly present at any time it is present, e.g., a book, Trento, a law, some
metal, etc. NASO(x) stands for “x is a non-agentive social object”, i.e., an endurant
that: (i) is not directly located in space and, has no direct spatial qualities; (ii) has
no intentionality; (iii) depends on a community of intentional agents, e.g., a law, an
organization, a currency, an asset etc.; TL(x) stands for “x is a temporal location”,
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i.e., a temporal interval or instant; P (x, y) stands for “x is part-of y”, for perdurants
and temporal locations; PRE(x, t) stands for “x is present at the time t”.

We report here the most important axioms of their theory. Concepts, and descrip-
tions as well, are non-agentive social objects; concepts are linked to descriptions by the
relations used-by (US) and defined-by (DF ). Theorem T2 below captures the fact that
a concept must be defined by a single description. This is not true for the US relation:
concepts can be used by different descriptions.

(A1) DS(x) ⊃ NASO(x)
(A2) CN(x) ⊃ NASO(x)
(A3) DS(x) ⊃ ¬CN(x)
(A4) US(x, y) ⊃ (CN(x) ∧DS(y))
(A5) DF (x, y) ⊃ US(x, y)
(A8) (DF (x, y) ∧DF (x, z)) ⊃ y = z
(T1) DF (x, y) ⊃ (CN(x) ∧DS(y))
(T2) CN(x) ⊃ ∃!y(DF (x, y))
(A11) CF (x, y, t) ⊃ (ED(x) ∧CN(y) ∧ TL(t))
(A14) CF (x, y, t) ⊃ ¬CF (y, x, t)
(A15) (CF (x, y, t) ∧ CF (y, z, t)) ⊃ ¬CF (x, z, t)

The properties of anti-rigidity (AR) and foundation (FD) for roles can be defined
in this formalism. A concept is anti-rigid if, for any time an entity is classified under it,
there exists a time at which the entity is present but not classified under the concept:

(D1) AR(x) ≡df ∀y, t(CF (y, x, t) ⊃ ∃t′(PRE(y, t′) ∧ ¬CF (y, x, t′)))

A concept x is founded if its definition involves (at least) another concept y (defini-
tional dependence) such that for each entity classified by x, there is an external entity
classified by y:

(D2) FD(x) ≡df

∃y, d(DF (x, d) ∧ US(y, d) ∧ ∀z, t(CF (z, x, t) ⊃
∃z′(CF (z′, y, t) ∧ ¬P (z, z′, t) ∧ ¬P (z′, z, t)))

Roles are anti-rigid and founded:

(D3) RL(x) ≡df AR(x) ∧ FD(x)

Masolo et al. [14] extend [15]’s framework introducing explicitly a relation between
an institution and a role to express that a role like student is relationally dependent, e.g.,
for a person to be a student it requires the existence of another entity, namely a certain
university, to which this person is related by an enrollment relation. As Steimann [20]
shows, this view of roles as anti-rigid and relationally dependent predicates is supported
by the vast majority of approaches in the conceptual modeling and object-modeling
literature.

Roles can be defined on the basis of a relation whose arguments are characterized
by specific properties. For example, the role of ‘being a student’ can be defined as: “a
student is a person enrolled in a university”. In this case, ‘being a student’ is defined
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on the basis of ‘being enrolled in’, ‘being a person’, and ‘being a university’. Formally,
considering the previous properties as predicates, this definition can be formulated as:

Student(x) ≡df Person(x) ∧ ∃y(enr(x, y) ∧ University(y))

But given a specific relation r of arity n, it is possible to define n different predicates
rm. For example, in the case of the relation enr(x, y)⊃ (Person(x)∧University(y)),
the predicate EnrollingUni can be defined as:

EnrollingUni(x) ≡df ∃y(enr(y, x))

Hence the authors are aware that there is an asymmetry in the relation defining roles.
EnrollingUni has exactly the “same logical form” as Student, but this does not imply
that EnrollingUni is a role. Let us assume a theory containing an axiom stating that,
necessarily, universities enroll at least one student, i.e., when a university loses all its
students, it ceases to be a university. In this theory, ‘being an enrolling university’ is a
rigid property of universities, and therefore it cannot be a role (assuming University as
rigid). In addition, the two predicates EnrollingUni and University coincide from an
extensional point of view (since all universities are enrolling universities) and they can-
not be distinguished by means of the theory. In this case, the predicate EnrollingUni
seems “redundant” with respect to the predicate University because they are provably
equivalent.

Bottazzi and Ferrario [6] start analysing organizations in [15]’s framework. They
consider organizations as agentive entities, but they act in a very peculiar way, namely
through the actions of some agents who, in virtue of the institutionalized (INST ) roles
(RL) they play (AFF ), are delegated to act on their behalf (REP ):

(B1) AFF (x, y, t) ≡df AG(x) ∧ ∃z(RL(z) ∧ CF (x, z, t) ∧ INST (z, y))

Moreover organizations are social individuals (SI), thus, differently from social con-
cepts and roles, they don’t classify particulars (like agents or physical objects):

(B2) ORG(x) ⊃ SI(x)

A necessary condition for social individual to be an organization (ORG) is the exis-
tence of at least one representative agent who is affiliated to it.

(B3) ORG(x) ⊃ ∃y, z(AFF (y, x, t) ∧REP (z, x))

4 The Ontology of Organizations

Summarizing the discussion in Section 2, the basic properties of institutions, organi-
zations and roles are, first, that organizations are institutions with an organizational
structure in terms of sub-organizations and roles. Second, sub-organizations and roles
are defined by the organizations they belong to. The decomposition hierarchy of the
organizational structure, however, is not based on the part-of relation of objects. In par-
ticular, it is transitive (a role in a department is part of the organization the department
belongs to), but the parts do not exist without and before the whole.
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The formal framework of Masolo et al. [15] is the suitable starting point for defining
a foundational ontology of organizations and roles. Our requirements, however, are not
fully satisfied in their axiomatization.

First of all, they do not consider the structure of social entities. They do not de-
fine sub-organizations nor roles as parts of organizations. So an institution does not
have a recursive decomposition structure. Roles have been recognized as depending on
some other entity which is used in their definition, but they are not defined in the entity
they depend on. Moreover, we need to extend this dependence relation to specify that
also sub-organizations, and not only roles, depend on the organizations. The extended
framework of [14] is a closer starting point for our axiomatization. The introduction of
an explicit relation between an institution and a role explains the link between them.
But still they do not capture the fact that a role is part of the institution and it is defined
by it as we claim.

We will fulfill the above requirements in our ontology in the following way. The
organizational structure of an institution is defined exploiting the fact that an institution
is defined by a description. We say that a sub-organization or a role are defined by a
description which is part of the description defining the institution they belong to. This
explains also why the relations associating roles to institutions are asymmetric and why
roles are part of the institution and not only involved in a relation with the institution.

In the ontology we define the following predicates used in the definitions below:

– The predicates social concept CN and description DS are borrowed from [15].
Non agentive social object (NASO), agent (AG), affiliate (AFF ), representative
(REP ) and social individual (SI) are inspired by [6].

– The part-of relation P is extended to hold between descriptions: a description d
of a concept c can use US other concepts, but it can also include the definition of
another concept. We assume P is a transitive property and that a part (pre)exists
independently of the whole:

P (a, b) ⊃ ∃t(PRE(a, t) ∧ ¬PRE(b, t))
– The relation defined-by of [15] relates concepts and descriptions DF (c, d): the

concept c (CN(c)) is defined by the description d (DS(d)). The defined-by relation
is used also to define the relation MDF which identifies a minimal description of
a concept c: a description which cannot be reduced without being unable to define
the concept.

MDF(c, d) ≡df DF (c, d) ∧ ¬∃d′P (d′, d) ∧DF (c, d′)
Note that to have non-minimal descriptions we have to change Axiom A8 of [15]
(and thus theorem T2), so that only minimal descriptions are unique:

(A8’) (MDF(x, y) ∧MDF(x, z)) ⊃ y = z

The first requirement of our foundational ontology is that organizations are insti-
tutions which have a structure. We do not introduce here a primitive part-of relation
between organizations and suborganizations, nor we can use P since we need different
properties, like the fact that the parts do not exist without the whole. Thus we introduce
a new predicate IP. An organization c is institutionally part-of (IP) another organiza-
tion c′ if it is defined inside the minimal description defining the other one. Note that we
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need a minimal description, otherwise we could have a description d which is the union
of two (minimal) descriptions d′ and d′′ defining two unrelated concepts. Requiring a
minimal description thus means that the definition of c is essential to define c′.

IP(c, c′) ≡df ∃d, d′ MDF(c, d) ∧MDF(c′, d′) ∧ P (d, d′)
Since the P relation between descriptions is transitive, also the IP relation is transi-

tive: a role which is part of a sub-organization of an organization, it is also part of the
organization.

The following axiom states that if a sub-organization c is part of organization c′ then
the concept c′ is used in the definition of c.

(C1) IP(c, c′) ⊃ ∃d MDF(c, d) ∧ US(c′, d)
We can use the IP predicate to define our notion of definitional foundation DFD

for roles. Our definition is a revised version of the founded FD predicate of [15]. It
captures the idea that a role is not only a concept which is part of (IP) another concept,
but it requires the existence of an instance of such concept for each of its instances.

Definition 1 (Definitional foundation)

DFD(x) ≡df

∃y IP(x, y) ∧ ∀z, t (CF (z, x, t) ⊃ ∃z′(CF (z′, y, t)¬P (z, z′, t) ∧ ¬P (z′, z, t)))
We write also:

DFD(x, y) ≡df

IP(x, y) ∧ ∀z, t (CF (z, x, t) ⊃ ∃z′(CF (z′, y, t) ∧ ¬P (z, z′, t) ∧ ¬P (z′, z, t)))

The difference with respect to the FD predicate of [15] is that DFD requests that a
concept is used in a definition of x, but also that this definition is part of the definition
of another concept.

Which is the relation between the two definitions? The DFD property is stronger
than FD since we assume Axiom C1.

Theorem 1

From Axiom C1 and from the fact that MDF(x, d) ⊃ DF (x, d) we have:

DFD(x) ⊃
[∃y, d DF (x, d) ∧ US(y, d)∧
∀z, t (CF (z, x, t) ⊃

∃z′ (CF (z′, y, t) ∧ ¬P (z, z′, t) ∧ ¬P (z′, z, t)))] ⊃ FD(x)

We can introduce now our definition of institutions, organizations and roles. Extend-
ing [14] institutions (INS) are social individuals (SI , thus defined by descriptions)
which act through their representatives (REP ); organizations (ORG) are institutions
which have affiliates, and thus may have sub-organizations and roles as their parts. Sub-
organizations (S-ORG) are organizations which are part of some organization and roles
are anti-rigid definitionally founded concepts, and there is no institution part of them.

Definition 2 (Institutions, organizations and roles)

INS(x) ≡df SI(x) ∧ ∃y AG(y) ∧REP (y, x)
ORG(x) ≡df INS(x) ∧ ∃y AFF (y, x)
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S-ORG(x) ≡df ORG(x) ∧ ∃y IP(x, y)
RL(x) ≡df AR(x) ∧ DFD(x) ∧ ¬∃y IP(y, x)

where affiliation AFF is redefined in the following way since we do not have yet a
notion of institutionalization and validity as [14]:

(C2) AFF (x, y) ≡df

AG(x) ∧ ∃z(RL(z) ∧ CF (x, z) ∧ IP (z, y))
As a consequence of this definition an organization must have at least a role. Since

IP is transitive, it is possible that this role belongs to a sub-organization of the organi-
zation itself.

In the following example a simple organization composed by one institution with
one role is illustrated:

Example 1
c1 is an organization which is minimally defined by description d1 (see Figure 1). De-
scription d1 includes also a subdescription d2 which is the minimal description of the
concept c2, a role of c1. c2 classifies an agent a1.

DS(d1), DS(d2), SI(c1), RL(c2), AG(a1)
MDF(c1, d1), MDF(c2, d2)
P (d2, d1), CF (a1, c2), REP (a1, c2)
Thus, c2 is a part of c1: IP(c2, c1), and c1 is an organization ORG(c1), which is

represented by its affiliate a1.

Note that with respect to [14] we do not define roles in terms of relations. As discussed
in Section 3, the limitation of their approach is that by defining roles based on relations,
the asymmetry due to the definitional dependence of roles is lost. In our approach,
instead, a relation like enrolment enr between the role Student and University is
defined based on these two concepts: e.g.,

enr(x, y) ≡def Person(x) ∧ University(y) ∧ CF (x, Student)∧
IP (Student, University)

5 Conclusions

In knowledge representation, and more specifically in the field of description logics, the
term ‘role’ is nowadays synonymous of an arbitrary binary relation used to characterize
the structure of a concept. The concept ‘person’, for instance, may have the role ‘likes’,
which represents the relationship between a person and what she likes best. But this is
not what is meant by social roles.

In multi-agent systems (MAS) roles are generally viewed as descriptions of agent’s
acting and interacting, where agents include also societies or organizations of agents.
The characterization of this kind of social roles (in the restricted sense) is founded on
theories of action and behavior (involving tasks, goals, plans, etc.) and deontic notions.
In [22] a role is viewed as an “abstract description of an entity’s expected function”
which is defined by four attributes: responsibilities (that determine the functionality



A Foundational Ontology of Organizations and Roles 87

REP

DS CN

MDF

MDF

is−ais−ais−a is−a

SI

NASO

is−a is−a

CF

IP

AG

AFF

d1

d2

c2

c1

a1

Fig. 1. An example of organization

of the role), permissions, activities, and protocols. Pacheco and Carmo [17] clearly
distinguish roles from agents (agents can act, and roles cannot). But these descriptions
do not tell much about what distinguish roles from objects or agents.

In object-oriented programming languages the focus has been on technical issues
(multiple and dynamic classification, multiple inheritance, objects changing their at-
tributes and behaviors, etc.), rather than what are the roles’ distinguishing properties.

In this paper we propose a foundational ontology of organizations and roles which
extend Masolo et al. [15]’s proposal. Institutions are social concepts which exist be-
cause of descriptions defining them, which are collectively accepted, and act through
representatives. Organizations are institutions which have a structure in terms of sub-
institutions. Sub-organizations are organizations which are parts of other organizations.
Finally, roles are components which do not have further organizational structure and
which can be played by agents.

This work can be seen as the ontological justification of other different approaches
in the area of multiagent systems and also in programming languages.

For example, [3,4] study organizations composed of sub-organizations and roles us-
ing the so called agent metaphor. The agent metaphor allows to describe social entities,
like normative systems, as they were agents, and thus attributing them mental attitudes
like beliefs and goals. Since an organization is described as an agent, then it can at-
tribute mental attitudes to other social entities, thus creating them. In this way, it can
define sub-organizations and roles by describing them as agents, in a recursive way.

Moreover our ontology can be used to model organizations by means of standard ob-
ject oriented representation languages, like UML. No new primitive in UML is needed,
but just a pattern can be used, where, first, classes which are definitionally dependent on
other classes are defined inside the class which they depend on; secondm each instance
of the dependent class is related to an instance of the class it depends on. This pattern
is used by Baldoni et al. [1] for extending object oriented programming languages like
Java.

Future work is introducing the notion of power among the components of organi-
zations. The difficulty is that powers access the institutional properties of the other
components even if they are considered as private properties. Moreover, we do not dis-
tinguish descriptions from descriptions which are valid as [6] do.
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Abstract. This paper discusses the problem of efficient propagation of
uncertain information in dynamic environments and critical situations.
When a number of (distributed) agents have only partial access to infor-
mation, the explanation(s) and conclusion(s) they can draw from their
observations are inevitably uncertain. In this context, the efficient propa-
gation of information is concerned with two interrelated aspects: spread-
ing the information as quickly as possible, and refining the hypotheses
at the same time. We describe a formal framework designed to inves-
tigate this class of problem, and we report on preliminary results and
experiments using the described theory.

1 Introduction

Consider the following situation: witness of a threathening and unexpected event,
say a fire in a building, Jeanne has to act promptly to both escape the danger and
warn other people who might get caught in the same situation. However, there
are no official signs or alarms indicating where the fire actually started. Given her
partial knowledge of the situation, Jeanne may build some hypotheses explaining
her observations (where the fire did start in the first place, maybe why), but the
conclusions she may reach would remain uncertain (that is, uncertainty here lies
on the fact that she has incomplete knowledge of the world, rather than untrusted
perceptions of this world). In addition, there is no way for Jeanne to trigger an
alarm. In other words, Jeanne will try to both circulate the information in order
to spread the information to colleagues, and refine the hypotheses at the same
time. Typically, Jeanne faces two questions:

– What information should I transmit?
– To whom should I transmit this information?

Clearly, these two questions are interrelated. Depending on the person Jeanne
selected to communicate with, she may decide to transmit different messages:
the objectives being to ensure that the transmitted information can be used
efficiently in the next transmission, and so on. This defines, we believe, a prob-
lem of efficient propagation of uncertain information. The purpose of this paper
is to put forward a formal framework expliciting both the reasoning and com-
municational aspects involved in these situations. We explore some preliminary

M. Baldoni and U. Endriss (Eds.): DALT 2006, LNAI 4327, pp. 89–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



90 G. Bourgne, N. Maudet, and S. Pinson

properties of the proposed framework and interaction protocol, and illustrate
our approach with a case study experimented using the described theory.

The remainder of this paper is as follows. Section 2 presents the formal reason-
ing machinery that we shall use in the framework: it heavily builds upon Poole’s
Theorist system [14]. Section 3 details the communication module, and explores
specifically some properties of a protocol designed to exchange hypotheses. Sec-
tion 4 describes our case study example, instantiating the proposed framework.
The situation involves a number of agents trying to escape from a burning build-
ing. We give the detail of a simple example, showing how critical, in this crisis
context, can be the decisions taken by agents as to whether/what communicate.
Section 5 draws connections to related works, and Section 6 concludes.

2 Agents’ Reasoning

This section introduces the formal machinery involved in the agents reasoning
process. The described situation suggests agents able to deal with partial per-
ception of the world, to build hypotheses from observations they make, to draw
conclusions from a set of explanations, and to communicate with each other in or-
der to exchange pieces of information. Agents reasoning process builds on Poole’s
framework [14,15], which allows to elegantly combine both the explanation and
the prediction processes, using a single axiomatization. In what follows, by
formulae we mean well-formed formulae in a standard first order language. Each
agent is (a slightly modified version of) an instance of a Theorist system [14]:

〈F ,H, Δ, O, E,≤〉
where

– F a set of facts, closed formulae taken as being true in the domain;
– Δ a set of defaults, formulae taken as being true without evidence of the

contrary. They are used for prediction and can be part of an explanation;
– H a set of formulae which act as conjectures, possible hypotheses common

to all agents, usually a set of abducible predicates ;
– O is a set of grounded formulae representing the observations made so far

by the agent. Each agent believes every observation in this set to be true;
– E is the set of prefered explanations, it is the set of all justifiable explanations

of the observation set O;
– ≤ is the preference relation, a pre-order on the explanations common to all

agents.

We first recall a number of basic definitions.

Definition 1 (Scenario [15]). A scenario of (F , A) is a set θ∪F where θ is a
set of ground instances of elements of A such that θ∪F is consistent. θ is called
the assumption of the explanation.
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Definition 2 (Explanation of a closed formulae [15]). If g is a closed for-
mula, then an explanation of g from (F , A) is a scenario of (F , A) that implies g.

We now introduce a couple of further notions that proved to be appropriate in
our context. Events occuring in the world and observed by the agents may or
may not be explained, or contradicted, by the agent model.

Definition 3 (Positive observation). A positive observation of (F ,H, Δ) is
an observation o such that there exists an explanation of o from (F ,H ∪Δ)

Definition 4 (Negative observation). A negative observation of (F ,H, Δ) is
an observation o ∈ O such that there exists an explanation of ¬o from (F ,H∪Δ)

In the following, we shall note P (O) to refer to the set of all positive observations
of (F ,H, Δ) in O, and N(O) to refer to the set of all negative observations of
(F ,H, Δ) in O. Note that this is not necessarily a partition: some observations
may have no explanation, while some others may have both positive and negative
explanations.

Definition 5 (Explanation of an observation set). If O is a set of obser-
vations, an explanation of O from (F ,H∪Δ) is an explanation ξ of P (O) from
(F ,H ∪Δ) such that ξ ∪ N(O) is consistent (which implies the consistency of
ξ ∪O).

That is: ξ = P ∪D∪F where P is a set of ground instances of elements of H,
D is a set of ground instances of elements of Δ, ξ |= P (O) and P ∪D∪F∪N(O)
is consistent.

In the following, we shall also refer to the conjunction h of the elements of P as
the hypothesis associated to this explanation.

Definition 6 (Justifiable explanation). A justifiable explanation of O from
(F ,H) is an explanation such that if any element of its associated hypotheses
set θ is removed from it, it is no longer an explanation of O. In other words, a
justifiable explanation is an explanation that is minimal wrt. set inclusion.

Based on this system, we also define, for each agent ai:

1. Hi, the set of prefered hypotheses associated with Ei, the set of justifiable
explanations. For a given set of observation Oi, Eexp, the explanation function
returns the set of all justifiable explanations of Oi from (F ,H∪Δ). Ehyp(Oi)
gives the set of hypotheses associated with Eexp(Oi). We assume Eexp and
Ehyp to be deterministic, and common to all agents.

2. h is the favoured hypothesis from E. The agent choses one favoured hypoth-
esis among its own minimal hypotheses according to the preference relation.

In summary, for each agent we have:

– Ei = Eexp(Oi);
– Hi = Ehyp(Oi);
– hi ∈ min(Hi).
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This ensures that hi is associated with a minimal justifiable explanation for
Oi, that is :

– hi is consistent with Oi, that is � ∃oi ∈ Oi s.t. hi |= ¬oi;
– hi explains all elements of P (Oi);
– hi is justifiable from Oi, that is for each clause ck of the conjunction hi

(hi = h′
i ∧ ck), there is an element o of P (Oi) such that hi |= o but h′

i �|= o;
– hi is minimal according to the preorder ≤.

Typically, as suggested by the aforementioned model, different explanations
will exist for a given formula. What should be the preference relation between
explanations? Clearly there can be many different ways to classify prefered ex-
planations. In [14], different comparators are introduced. In our framework, we
shall use variants of two of them:

1. minimal explanation— prefer the explanations that make the fewest (in
terms of set inclusion) assumptions. This is what we have defined as justifi-
able explanation to avoid confusion with the minimal explanations according
to the preference relation;

2. least presumptive explanation— an explanation is less presumptive than an-
other explanation if it makes fewer assumptions in terms of what can be
implied from this explanation. An explanation ξ1 is less presumptive than
another explanation ξ2 iff ∀g s.t. ξ1 |= g, it is the case that ξ2 |= g. There-
fore, a least presumptive explanation is an explanation which is not less
presumptive than any other explanation.

Now we need to see how these agents will evolve and interact in their environ-
ment. In our context, agents evolve in a dynamic environment, and we classicaly
assume the following system cycle:

1. Environment dynamics : the environment evolves according to the defined
rules of the system dynamics;

2. Perception step : agents get perceptions from the environment. These per-
ceptions are typically partial (e.g. the agent can only see a portion of the
map), but we assume that they are certain, in the sense that the sensors are
assumed perfect;

3. Reasoning step: agents compare perception with predictions, seek explana-
tions for (potential) difference(s), refine their hypotheses, draw new con-
clusions. More precisely, during this step, if the agent perception proves its
hypothesis to be false, the agent computes the possible explanations for these
new perception, given its previous perception. It makes use of Theorist for
this task. It must then select the action to be executed in the next phase;

4. Action step: agents modify the environment by executing the action selected
by the previous deliberation steps.

What remains to be described, of course, is the interaction module and the
way agents will exchange hypotheses and observations.
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3 Agents’ Communication

In our system, observations are not only made directly by agents (by perceiv-
ing the environment): they can also result from communication between agents.
The cycle is then augmented with an explicit communication step, which directly
follows the reasoning step. During the Communication step, agents engage com-
munication with other agents to warn of their observation and tune up their
hypotheses. In a given round, a given agent can only communicate with one
agent. If that agent is occupied talking to another agent, it must wait or choose
a different agent to communicate with. We now describe the interaction protocol
pictured in Fig. 1, together with agents’ behaviour.

1 2

3

counterpropose

propose

accept

4 5
challenge

accept

argue

counterpropose

counterexample

Fig. 1. Hypotheses Exchange Protocol

3.1 Description of the Interaction Protocol and Strategies

Upon receiving a hypothesis h1 (propose(h1) or counterpropose(h1)) from a1,
agent a2 is in state 2 and has the following possible replies:

– if ∃o2 ∈ N(O2) s.t. h1 |= ¬o2, then the agent knows a counter-example that
contradicts this hypothesis: he will communicate this counter-example and
utter counterexample(o2). We are back in state 1 of the protocol. Agent will
then recompute his hypothesis with this new fact, and will propose h′

1;
– if ∃o2 ∈ P (O2) s.t. h1 �|= o2, then the agent knows an example of positive

observation that is not explained by this hypothesis: he will communicate
this uncovered example and utter counterexample(o2), as in the previous
case.;

– otherwise, no observation made by a2 contradicts h1 and h1 implies P (O2),
that h1 is the hypothesis associated with an explanation of O2. We have then
the following cases:
• if the agent has no argument in favour of the hypothesis (h1 �∈ H2 where

Hi is the set of the hypothesis associated to agent ai’s prefered explana-
tions), he will challenge a1 in order to obtain some arguments supporting
this hypothesis. Agent a1 is then bound to communicate an argument
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(argue(arg))1, leading to state 5. Upon receiving this argument, a2 re-
computes his hypothesis by using this argument. If h1 is obtained, he
will accept, leading to the final state 3. Otherwise, a different hypothesis
h′

2 is obtained and proposed, leading back to state 2;
• otherwise h1 ∈ H2 : h1 is a hypothesis associated to a justifiable expla-

nation of O. We have then two possibilities:
∗ if h1 is not prefered to h2 in the sense of the defined preference

relation, then agent a2 would counterpropose(h2), leading to state 2
with inverted roles;

∗ otherwise, h1 is necessarily prefered to h2: a2 will then respond
accept, concluding the conversation (state 3).

3.2 Local Properties of the Interaction Protocol

We first investigate locally the properties of the proposed protocol, that is, the
outcome of a single dialogue governed by the rules and decision process described
in the previous subsection, and involving only two agents.

Lemma 1. Let c = |O1 ∪O2| − |O1 ∩O2|. If c = 0 then O1=O2 and H1 = H2.

Proof. Clearly, O1∩O2 ⊆ O1∪O2. If c = 0, |O1∪O2|= |O1∩O2|, hence O1∪O2=
O1 ∩ O2. Now because O1 ∩O2 ⊆ O1 ⊆ O1 ∪ O2, (and symetrically for O2), we
have O1 = O2. By virtue of the determinism of the explanation function, we
conclude that H1 = Ehyp(O1) = Ehyp(O2) = H2. �

The first property that needs to be verified is the termination. We show that
this algorithm enjoys this property.

Property 1 (Termination). Termination is guaranteed, and the length of the in-
teraction process (in terms of the number of exchanged messages) is bounded by
4× c + |O1 ∩O2|.
Proof. Let c = |O1 ∪O2| − |O1 ∩O2|. By Lemma 1, we know that in case c = 0,
it follows that O1 = O2 and H1 = H2 (in which case we note O = O1 = O2
and H = H1 = H2). Then observe that, H = Ehyp(O), together with the fact
that h1, h2 ∈ H , guarantees that h1 and h2 are the favoured hypotheses of the
justifiable explanations of O. The following points then follow (i) � ∃o ∈ O s.t.
h1 |= ¬o or h2 |= ¬o, (ii) � ∃o ∈ P (O) s.t. h1 �|= o or h2 �|= o, (iii) h1 ∈ H2 and
h2 ∈ H1, and (iv) both h1, h2 ∈ min(H), no hypothesis is then strictly prefered
to the other one.

Given this, as soon as the system is in state 2, all termination conditions are
met. But we also know that the message exchange between agents leads to state
2 every 3 messages at most. Termination is then guaranteed when c = 0.

We now need to prove that c will eventually reach the value 0. To do that, we
will show that every 4 messages at most, it decreases of 1.
1 Note that the agent keeps track of the communicated arguments, which allows him

not to send twice the same argument to this agent during a communication step.
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The first message leads to state 2. Without loss of generality, we assume that
the last message is, say, from agent aj to agent ai (hypothesis hj is then proposed
to ai). Following the agent’s decision algorithm previously described, there are
now four possibilities:

(i) ∃oi ∈ Oi, s.t. hj |= ¬oi or ∃oi ∈ P (Oi), s.t. hj �|= oi, then ai sends a
counterexample oi to aj . In this case, O′

j = Oj ∪ {oi} with oi ∈ Oi and
oi �∈ Oj , which means that |O′

j ∩Oi| = |Oj ∩Oi|+ 1, and |Oj ∪Oi| remains
unchanged. It follows that c is decreased by 1;

(ii) � ∃oi ∈ Oi s.t. hj |= ¬oi and ∀oi ∈ P (Oi), hj |= oi and hj �∈ Hi, then ai

requires an argument and aj provides oj . In this case, O′
i = Oi ∪ {oj}. If

oj ∈ Oi, then ai repeats its challenge until he gets an observation oj he didn’t
know before. Since aj keeps track of its messages, at most |O1 ∩ O2| such
messages can be exchanged. We eventually reach o′j such that O′

i = Oi∪{oj′}
where o′j ∈ Oj and o′j �∈ Oi;

(iii) � ∃oi ∈ Oi s.t. oi |= ¬hj and ∀oi ∈ P (Oi), hj |= oi and hj ∈ Hi but hj �∈
min(Hi), then ai respond with counterpropose(hi). We are back in state 2,
but now we are sure that hi �∈ Hj (because hi ≤ hj and hj ∈ min(Hj), by
definition), which means that we would be in case (i) or (ii);

(iv) � ∃oi ∈ Oi s.t. oi |= ¬hj , and ∀oi ∈ P (Oi), hj |= oi, and hj ∈ min(Hi), but
then ai accepts and the protocol terminates. �

Corollary 1. After termination, the following properties are guaranteed:

– a1 and a2 are consistent;
– a1 and a2 have a hypothesis that explains both P (O1) and P (O2);
– a1 and a2 have a hypothesis that is justifiable from O1 and O2;
– a1 and a2 have a hypothesis that is minimal for O1 and O2 (that is h1 ∈

min(Ehyp(O2)) and h2 ∈ min(Ehyp(O1))).

3.3 Global Properties of the Communication Protocol

The properties previously described hold locally, when only two agents interact
over one communication step. The next question is then to ask whether these
properties can be guaranteed at a more global level. Clearly, many properties
will not hold any longer when considered globally. One simple such property is
the consistance, which cannot be transitive when only based on the bilateral
hypotheses exchange protocol described. This can be observed by constructing
an example where an agent a would first communicate a hypothesis to agent
b, not revealing the full arguments supporting its position though. Now if b
communicates in turn with a third agent, say c, it is clear that he may not be in
a position to effectively defend this hypothesis, and may accept c’s hypothesis.
a and c would then not be consistent. This is formally stated as follows.

Property 2. The consistance property guaranteed by the communication proto-
col is not transitive.
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Proof. We construct the following counterexample : agent a1 can communicate
with agent a2 and a3, but agents a2 and a3 cannot communicate with each
other. We assume that they share the following facts {p(X) → r(X), q(X) →
r(X), p(X) → s(X)}, where p(X) and q(X) are hypotheses. We start with the
following sets of observations P1 = {r(a),¬p(X)}, P2 = { }, and P3 = {s(a)}.
Agent a1 communicates q(A), which is challenged by a2. a1 then provides an
explanation (r(a)). Now a2 communicates with a3 and proposes q(a), but a3
has an additional observation, namely s(a). Upon receiving this hypothesis, a3
challenges a2 and a2 provides the only argument he has in possession: r(a).
But a3 knows the further observation that s(a) which makes the hypothesis
p(a) prefered. a3 makes this counterproposal, a2 challenges and a3 gives his
argument (s(a)). Now a2 will accept. At this point of the interaction though, a1
holds q(a) as favoured hypothesis, while a3 prefers p(a), which is not consistent
with ¬p(X) ∈ P1. �

What this suggests is that we will need much more elaborated synchronization
techniques to guarantee that these desirable properties still hold at the global
level. However, in our context where time is a critical factor, and where commu-
nication can be highly restricted, it will be interesting to investigate in which
situations simple protocols, like the one described here, can still give promising
result and ensure an average good efficiency of the information propagation. As
a first step towards this objective, we give in the next section an instance of
the proposed framework and show a critical situation where communication and
hypotheses exchange proves to be efficient.

4 A Case Study: Crisis Management

This section presents an instance of the general framework introduced earlier.
We first describe the different parameters used to instantiate the framework. A
complete example is then detailed.

4.1 Description of the Situation

This experiment involves agents trying to escape from a burning building. The
environment is described as a spatial grid with a set of walls and (thankfully)
some exits. Time and space are considered discrete. Time is divided in rounds.

Agents are localised by their position on the spatial grid. These agents can
move and communicate with other agents. In a round, an agent can move of one
cell in any of the four cardinal directions, provided it is not blocked by a wall. In
this application, agents communicate with any other agent (but, recall, a single
one) given that this agent is in view, and that they have not yet exchanged
their current favoured hypothesis. Note that this spatial constraint on agents’
communication could be relaxed in other contexts (which would require, in turn,
to apply a more elaborated recipient choice algorithm).

At time t0, a fire erupts in these premises. From this moment, the fire prop-
agates. Each round, for each cases where there is fire, the fire propagates in
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the four directions. However, the fire cannot propagate through a wall. If the
fire propagates in a case where an agent is positioned, that agent burns and is
considered dead. It can of course no longer move nor communicate. If an agent
gets to an exit, it is considered saved, and can no longer be burned. It still can
communicate, but need not move.

Agents know the environment and the rules governing the dynamics of this
environment, that is, they know the map as well as the rules of fire propagation
previously described. They also locally perceive this environment, but cannot
see further than 3 cases away, in any direction. Walls also block the line of
view, preventing agents from seeing behind them. Within their sight, they can
see other agents and whether or not the cases they see are on fire. All these
perceptions are memorised.

In order to deliberate, agents maintain a list of their possible explanations E
(and a list of associated hypotheses H) explaining their observations about fire,
and a prediction of fire propagation based on their favoured hypothesis h. The
preference relation (≤) is the following:

– the agent prefers the minimal explanation, taking into account only fire
origins. In other words, an agent will prefer an explanation using an unique
fire origin propagating over one using several sources;

– the agent prefer the least presumptive explanation, taking into account prop-
agation and origins. In practice it means that the agent will favour an ex-
planation considering the fire origin as closer to the observed manifestation.

Based on the reasoning described above, agents also maintain a list of possible
escape route, sorted by simply favouring the shortest paths to exits.

4.2 Sample of Agents Theories

We now give a snapshot of the declarative representation of agents’ knowledge,
illustrating the different kind of rules involved in this example.

– Facts (F), Defaults (Δ) allow to represent the static elements of the environ-
ment, as well as the general rules governing the dynamic of the environment.
For instance, the following three rule state that there is indeed a vertical wall
at location (0,1), that the fire can always be assumed to have started at the
location it is observed, and eventually that the fire should propagate in four
possible directions. This last one is an example of a rule justified in normal
circumstances, but which may suffer exceptions: it is then represented as a
default rule.

fact vwall(at(0,1)).
fact fire(T,at(X,Y)) <- origin(T,at(X,Y)).
default rule_propagates_L(T2,from(X2,Y)): fire(T,at(X,Y)) <-

previous(X,X2), previous(T,T2), fire(T2,at(X2,Y)).

– Constraints prevent default rules from applying. They are considered as part
of the Facts ((F )) For example, the landscape includes walls and doors which
prevent the fire from propagating.
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constraint not rule_propagates_L(T,from(X,Y)) <- vwall(at(X,Y))

– The possible hypotheses set (H), in this example application, is the set of
all conjunctions of possible fire origin(s).

– Observations (O) can either be of the form fire(T,at(X,Y)), or of the form
nofire(T,at(X,Y)).

4.3 Example

We are now in a position to describe the steps of our illustrative example.

[Round t=0] A fire erupts at (6,6), but nobody can initially see it. It will prop-
agate until t=3 before beeing seen.

[Round t=3]

Perception step. Agent a1 sees fire at (3,6) (not expected), and agent a3.
Agent a2 sees fire at (6,3) and (5,4) (not expected). Agent a3 sees a1.

Explanation step (a1). Having computed an explanation for fire(t=3, at
(3,6)), a1 gets 12 possible explanations, each one exhibiting a single origin.
One such explanation, as provided by the Theorist system, states that the
fire may have started at location (4,5), before propagating to the north (i.e.
from south) and to the west.

Answer is fire(t3, at(3, 6))
Theory is
[rule_propagates_R(t2, from(4, 6)),
rule_propagates_D(t1, from(4, 5)),
origin(t1, at(4, 5))]

To classify these hypotheses, he first selects the minimal hypothesis consid-
ering only the origin. In this case, all the hypotheses suppose only one origin
for the observed fire. Among those, he then selects the less presumptive
hypothesis. In this case, the selected hypothesis is:

[origin(t3, at(3, 6))]

Explanation step (a2). Searching explanations for fire at (6,3) and (5,4), a2
gets 6*6 possible explanations, such as :

Answer is fire(t3, at(6, 3)) and fire(t3, at(5, 4))
Theory is
[rule_propagates_R(t2, from(6, 4)),
origin(t2, at(6, 4)),
origin(t3, at(6, 3))]

Among those theories, only four of the explanations propose a common ori-
gin, and as such are minimal according to the origin criteria. Among those
four, the less pre-emptive one is eventually:
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[rule_propagates_R(t2, from(6, 4)),
rule_propagates_D(t2, from(6, 4)),
origin(t2, at(6, 4))].

Communication step. Agents a1 and a3 are the only agents seeing each other.
Agent a3 has no reason to initiate a communication, but a1 has one: it has
just changed its hypothesis and will try propagating and validating it. a3
asks for arguments and a1 sends it fire(t=3,at(3,6)). With this facts,
Agent 3 recomputes its hypothesis and get the same favoured hypothesis.
The hypothesis is confirmed and the communication stopped.

[Round t=4]

Action step. a3 moves towards the west exit, which is the closest exit. a1 moves
towards the east exit, for the same reason. Although it is closer to the east
exit, a2 moves towards the west exit because it predicts that fire will arrive
at the east exit before it can go out this way.

Perception step. Agent a1 sees a2 and conversely. All the fire seen by agents
were predicted during this step.

Explanation step. No agents has been confronted to unpredicted events. They
have no need for explanation and just trim their hypotheses list.

Communication step. Agents a1 and a2 will communicate. Agent a1 sends its
hypothesis (origin(t=3,at(3,6))). As this hypothesis is not invalidated
by its perception but does not belong to its hypotheses list, a2 asks for
arguments. Agent a1 sends argument (fire(t=3,at(3,6))), and a2 then
computes possible explanations for this and its perception, and gets 6*6*12
possible explanations. Among those, only one contains a common origin for
the three observed fires:

[rule_propagates_R(t2, from(6, 4)),
rule_propagates_D(t2, from(6, 4)),
rule_propagates_D(t1, from(6, 5)),
rule_propagates_D(t0, from(6, 6)),
rule_propagates_R(t3, from(4, 6)),
rule_propagates_R(t1, from(5, 6)),
rule_propagates_R(t0, from(6, 6)),
origin(t0, at(6, 6))].
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Agent a2 then proposes this hypothesis to a1, which in turn ask for argu-
ments. Finally both agree upon this hypothesis.

Action step. Agent a3 continues its escape towards the west exit. Agent a2
confirms its chosen path with its new hypothesis, and keeps going towards
the west door. Agent a1, however, using its new hypothesis, discover that its
escape route is bad. It changes its course to go towards the west exit.

[Round t=5 to 10] From time t=5 to time t=10, agents a1, a2 and a3 exit the
building. Agents a1 and a2 are closely followed by the fire: one false move would
have been fatal! If a1 did not communicate with a2 or a3 it would not have been
able to determine whether the fire was coming from left or right, and would have
chosen the east exit and been trapped by the fire.

5 Related Work

Our approach has several facets that can be related to a number of related works.
We now introduce some of these related works, starting with the studies of the
notion of rumours in social science, that proved to be very inspiring for us.

Rumour in Social Sciences. Rumour is a complex phenomenon that has been
the object of numerous studies in social science but is often seen as something
that can only bring lies or diffamation. Studies of rumour in social science show,
however, that there is more to rumour than just a routing or perception sharing
system. Whereas the first studies, done during and after World War II, seem
to consider rumour as something dangerous which should be avoided (rumours
could lead to moral loss or information leak), more recent stances are some-
what more neutral or positive about it. J.N Kapferer [10] defines rumour as “the
emergence and circulation in the social body of information that either are not
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yet publicly confirmed by official sources or are denied by them”. As an unofficial
information, it must use alternative ways to be distributed, such as individ-
ual communication (gossip, word-of-mouth). He precises that a rumour spreads
very quickly because it has value, and because this value decreases over time.
Moreover the rightness of the content has no importance. A true rumour spread
exactly like a false rumour. The exactitude of the content is not a criteria to de-
fine rumour. However, one can choose to take a slightly different perspective on
the rumouring process. Shibutani [20] defines rumour as improvised news result-
ing from a collective discussion process, usually originating from an important
and ambiguous event. In his own words, rumour is “common use of the group
individual ressources to get a satisfying intepretation of an event”. In this case,
the rumour is seen as being both an (i) information routing process and (ii) an
interpretation and comment adding process. Crucially, the distorsion of infor-
mation that is often seen as characteristic of rumour is seen as an evolution of
the content due to continual interpretation by the group. A crucial aspect of ru-
mour, of course, is that it is a decentralized process. The information propagates
without any official control. It is deeply linked with spatial or communication
constraint, and can be an efficient way to convey information in spite of these.
It is also expected that this process is quite robust to agent error or disparition.

Distributed Diagnosis. The problem of multiagent diagnosis has been studied
by Roos and colleagues [16,17], where a number of distributed entities try to
come up with a satisfying global diagnosis of the whole system. They show in
particular that the number of messages required to establish this global diagnosis
is bound to be prohibitive, unless the communication is enhanced with some
suitable protocol. The main difference with our approach lies in the dynamic
nature of our context, as well as in the constraints governing agents’ interactions
that we assume.
Argument-based Interaction. The idea of enhancing communication between
agents by adding extra-information that may have the form of arguments has
been influential over the last past years in the multiagent community [13]. How-
ever, although this approach has several clear advantages (e.g. improving ex-
pressivity, or facilitating conformance checking), its effectiveness regarding the
speed and likelihood of fullfillment of the goal of the interaction has seldom been
tested (exceptions are the work of [9], or [11], for instance).

Gossip Problem. Rumours and gossip first appeared within the distributed
system community with the gossip problem: each agent has a distinct piece of
information (called a rumour) to start with. The goal is to make every agent
know all the rumours [19]. Some variation of it are the rumour-spreading prob-
lem, where the agent to communicate to is selected each round by an adversary
[1], and the collect problem. In the last one, each of n processes in a shared
memory system have several pieces of information, and all these processes must
learn all the values of all others while making as few as possible primitive read
or write operations [18]. It has also been used for reaching consensus [6]. This
differs from our approach, mainly because we do not seek to necessarily converge
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towards a common knowledge of (initially distributed) informations. Also, in
these approaches, agents do not modify informations they propagate.

Gossip-based protocols. Each agent has a determined number of neighbours it
can communicate with. Each time an agent receives a rumour, it transmits it to
to a number of agents chosen at random among its neighbours. Then in turn,
each of these agents would do the same. This rumour spreading is analogous
to the spreading of an epidemic, which have been the object of mathematical
studies [2] and can spread exponentionally fast. Such an information propaga-
tion system has first been used for replicated database consistency management
[8]. It has been applied to unstructured peer-to-peer communities. Every time
an agent detects a change in the system (that would be the rumour), it sends it
to a random neighbour, and repeats this operation until it has contacted enough
neighbour(s). Some anti-entropy mechanisms are sometimes used to ensure that
every agent can get to know each change, even if the rumour has already died
out [7]. Another application of these protocols is reliable multicast [3]. It aims at
propagating an information from an agent to another agent without a centralised
source or knowledge of the system topology, and with a lower cost than with a
simple flooding. It is robust to agent deficiency, and very scalable. A variation of
it uses weight to enhance the reliability in specific topology [12]. This approach
is related to the “recipient selection” aspect of our problem. However, the trans-
mitted information is, again, assumed to be unaffected by agents’ reasoning.

Rumour routing. Another approach of rumour as an alternative to flooding is
rumour routing [4]. In the context of sensor networks, there is a need to transmit
queries to agents having observed an event. A fast route between an agent making
a request and the agents observing the events might be needed. It can be found
by flooding event notifications or queries, and creating a network-wide gradient
field [21], but it is a costly approach. Braginsky and Estrin instead propose to use
a kind of traceable rumour. Each time an agent observes a new event, it sends
an event notification rumour to a random neighbour. This neighbour transmits
it in turn to another neighbour, keeping trace of whom it received it from, and
how many agent(s) have acted as relay(s), creating rumour paths. When an
agent needs to make a query, it sends it to one of its neighbours. If it has heard
of the event concerned before, it transmits the query to the agent who told it
the rumour, else it transmits to a random neighbour. Eventually, the query will
cross the rumour path and be led to the right source. As in the preceding cases,
rumour routing propagates pure information, therefore the main studied aspects
are the velocity and robustness of these processes.

Reputation Systems. Buchegger and Le Boudec, for instance, use the term of
rumour in a reputation system [5]. Their agents can make decisions about the
reliability of others agents according to their previously observed behaviour,
but also according to what others agents tell about it. In this case, rumour is
primarily intended to mean “second-hand information”. In this case, agents can
keep track of previous partners’ behaviours, and also report their observations
to other agents. However, these agents are not able to explicitly reason over the
justifications governing their decisions.
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6 Conclusion

This paper discusses the problem of efficient propagation of uncertain informa-
tion in dynamic environments and critical situations. When a number of (dis-
tributed) agents have only partial access to information, the explanation(s) and
conclusion(s) they can draw from their observations are inevitably uncertain.
In this context, the efficient propagation of information is concerned with two
interrelated aspects: spreading the information as quickly as possible, and refin-
ing the hypotheses at the same time. We describe a formal framework designed
to investigate this class of problem, and propose a simple protocol allowing hy-
potheses exchange. We also prove some preliminary properties of the protocol
and report on an experiment conducted using the described theory.

An obvious advantage of this process (that we observed on the described
example) is that agents do not wait to collect all data before providing and
propagating hypotheses. In our example this allows agents to escape a building
before being caught by the fire. When exactly temporary hypotheses are good
enough to be acted upon is to be determined, but this process definitely enable
quicker reaction to events than a static centralized data analysis.

The problem is that, of course, it can give incomplete or wrong hypothe-
ses, as the very preliminary analysis of the global properties of the framework
suggests. More elaborated communication techniques may then be investigated,
allowing agents to backtrack and further refine their hypotheses. In critical sit-
uations however, it is unlikely that agents will dispose of sufficient resources to
fully synchronize their hypotheses and observations. In consequence, we believe
the situations as the one described in our case study to be well suited to such
an approach. Further studies are required, however, to determine when exactly
this kind of communication would be beneficial, but we expect quickly evolv-
ing systems to provide interesting applications. Whereas this paper has mainly
focused on agents’ reasoning and content selection, we plan to investigate in fu-
ture research the related problem of recipient selection. Finally, it would also be
interesting to consider more complex cases, for instance where agents may have
unreliable perceptions of the world, or where malicious propagators of informa-
tion could adopt an uncooperative behaviour.
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References

1. J. Aspnes and W. Hurwood. Spreading rumors rapidly despite an adversary. In
Proc. 15th ACM Symposium on Principles of Distributed Computing, pages 143–
151, 1996.

2. N. Bailey. The Mathematical Theory of Infectious Diseases. Charles Griffin and
Company, London, 1975.

3. K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal
multicast. ACM Transactions on Computer Systems, 17(2), 1999.



104 G. Bourgne, N. Maudet, and S. Pinson

4. D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In
Proceedings of the 1st ACM international workshop on Wireless sensor networks
and applications, 2002.

5. S. Buchegger and J. Le Boudec. The effect of rumor spreading in reputation
systems for mobile ad-hoc networks. In Proceedings of Modeling and Optimization
in Mobile, Ad Hoc and Wireless Networks, 2003.

6. B. Chlebus and D. Kowalski. Gossiping to reach consensus. In Proceedings of the
14th ACM Symp. on Parallel Algorithms and Architectures, pages 220–229, 2002.

7. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. PlanetP: Using
Gossiping to Build Content Addressable Peer-to-Peer Information Sharing Commu-
nities. In Twelfth IEEE International Symposium on High Performance Distributed
Computing (HPDC-12), pages 236–246. IEEE Press, June 2003.

8. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database mainte-
nance. In Proceedings of 6th ACM Symposium on Principles of Distributed Com-
puting, pages 1–12. Vancouver, British Columbia, Canada, 1987.

9. H. Jung and M. Tambe. Argumentation as distributed constraint satisfaction:
Applications and results. In Proceedings of the fifth international conference on
Autonomous agents (AGENTS01), pages 324–331, 2001.

10. J.-N. Kapferer. Rumeurs, le plus vieux média du monde. Points Actuel, 1990.
11. N. C. Karunatillake and N. R. Jennings. Is it worth arguing? In Proceedings of the

First International Workshop on Argumentation in Multi-Agent Systems (ArgMAS
2004), pages 62–67, 2004.

12. M.-J. Lin and K. Marzullo. Directional gossip: Gossip in a wide area network. In
Proceedings of the Third European Dependable Computing Conference (EDCC-3),
pages 364–379, 1999.

13. S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by
arguing. Journal of Logic and Computation, 8(3):261–292, 1998.

14. D. Poole. Explanation and prediction: An architecture for default and abductive
reasoning. Computational Intelligence, 5(2):97–110, 1989.

15. D. Poole. A methodology for using a default and abductive reasoning system.
International Journal of Intelligent Systems, 5:521–548, 1990.

16. N. Roos, A. ten Tije, and C. Witteveen. A protocol for multi-agent diagnosis with
spatially distributed knowledge. In Proceedings of the Second international joint
conference on Autonomous Agents and Multi-Agent Systems (AAMAS03), pages
655–661, 2003.

17. N. Roos, A. ten Tije, and C. Witteveen. Reaching diagnostic agreement in mul-
tiagent diagnosis. In Proceedings of the Third International joint conference on
Autonomous Agents and Multi-Agent System (AAMAS04), pages 1254–1255, 2004.

18. M. Saks, N. Shavit, and H.Woll. Optimal time randomized consensus - making
resilient algorithms fast in practice. In Proceedings of the 2nd ACM-SIAM Sym-
posium on Discrete Algorithms, pages 351–362, 1991.

19. S.Even and B. Monien. On the number of rounds needed to disseminate informa-
tion. In Proceedings of the First Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 318–327, 1989.

20. T. Shibutani. Improvised News : A Sociological Study of Rumor. Indianapolis and
New york, 1966.

21. F. Ye, G. Zhong, S. Lu, and L. Zhang. Gradient broadcast: A robust data delivery
protocol for large scale sensor networks. ACM Wireless Networks, 11(2), 2005.



A Fibred Tableau Calculus for Modal Logics of Agents�

Vineet Padmanabhan and Guido Governatori

School of Information Technology & Electrical Engineering
The University of Queensland, Queensland, Australia

{vnair,guido}@itee.uq.edu.au

Abstract. In [15,19] we showed how to combine propositional multimodal log-
ics using Gabbay’s fibring methodology. In this paper we extend the above men-
tioned works by providing a tableau-based proof technique for the combined/
fibred logics. To achieve this end we first make a comparison between two types
of tableau proof systems, (graph & path), with the help of a scenario (The Friend’s
Puzzle). Having done that we show how to uniformly construct a tableau calcu-
lus for the combined logic using Governatori’s labelled tableau system KEM. We
conclude with a discussion on KEM’s features.

1 Introduction

Modelling and reasoning about cognitive attitudes like knowledge, belief, desire, goals,
intention etc. of agents is an active research area within the artificial intelligence com-
munity [6,23]. It is often the case that normal1 multimodal logics are used to formalise
these mental notions. Multimodal logics generalise modal logics allowing more than
one modal operator to appear in formulae, i.e., a modal operator is named by means of
a label, for instance �i which identifies it. Hence a formula like �iϕ could be interpreted
as ϕ is known by the agent i or ϕ is believed by agent i etc. representing respectively the
knowledge and belief of an agent. In addition to the above representation, multimodal
logics of agents (MMA) impose constraints between the different mental attitudes in
the form of interaction axioms. For instance, if we consider MMA’s like BDI [20] then
we can find interaction axioms of the form INT(ϕ) → DES(ϕ), DES(ϕ) → BEL(ϕ)
denoting respectively intentions being stronger than desires and desires being stronger
than beliefs. Moreover, these interaction axioms are non-homogeneous in the sense that
every modal operator is not restricted to the same system, i.e., the underlying axiom
systems for DES is K and D of modal logic whereas that of BEL is KD45. Hence the
basic BDI logic L can be seen as a combination of different component logics plus the
two interaction axioms as given below

L≡ (⊗n
i=1KD45BELi)⊗ (⊗n

i=1KDDESi)⊗ (⊗n
i=1KDINTi)

+ {INTiϕ → DESiϕ}+{DESiϕ → BELiϕ} (1)
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DP0558854 on “A Formal Approach to Resource Allocation in Service Oriented Market-
places”.

1 General modal systems with an arbitrary set of normal modal operators all characterised by
the axiom K: �(ϕ → ψ) → (�ϕ → �ψ) and the necessitation rule. i.e., � ϕ/ ��ϕ .
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In a similar manner any MMA consists of a combined system of logic of knowl-
edge, beliefs, desires, goals and intentions as mentioned above. They are basically well
understood standard modal logics combined together to model different facets of the
agents. A number of researchers have provided such combined systems for different
reasons and different applications. However, investigations into a general methodology
for combining the different logics involved has been mainly neglected to a large extent.
Recently [15,19] it has been shown that fibring/dovetailing [8] can be adopted as a
semantic methodology to characterise multimodal logics. But in that work we did not
provide any proof techniques for the fibred logics. In this paper we extend our previous
work so as to provide a tableau proof technique for the fibred logic which in turn is
based on the labelled tableau system KEM [11,10,1].

The key feature of our tableau system is that it is neither based on resolution nor
on standard sequent/tableau techniques. It combines linear tableau expansion rules with
natural deduction rules and an analytic version of the cut rule. The tableau rules are
supplemented with a powerful and flexible label algebra that allows the system to deal
with a large class of intensional logics admitting possible world semantics (non-normal
modal logic [14], multi-modal logics [11] and conditional logics [2]). The label algebra
is intended to simulate the possible world semantics and it has a very strong relationship
with fibring [10].

As far as the field of combining logics is concerned, it has been an active research
area since some time now and powerful results about the preservation of important
properties of the logics being combined has been obtained [16,4,22]. Also, investiga-
tions related to using fibring as a combining technique in various domains has produced
a wealth of results as found in works like [8,24,21,5]. The novelty of combining log-
ics is the aim to develop general techniques that allow us to produce combinations of
existing and well understood logics. Such general techniques are needed for formalis-
ing complex systems in a systematic way. Such a methodology can help decompose
the problem of designing a complex system into developing components (logics) and
combining them.

One of the main advantages of using fibring as a semantic methodology for combin-
ing multimodal logics as compared to other combining techniques like fusion 2 is that
the later has the problem of not being able to express interaction axioms, much needed
for Multi-Agent-System (MAS) theories. Fibring is more powerful because of the pos-
sibility of adding conditions on the fibring function. These conditions could encode
interactions between the two classes of models that are being combined and therefore
could represent interaction axioms between the two logics. One such result was shown
in [15]. Moreover, fibring does not require the logics to be normal. This allows fibring
to be used to model combinations of epistemic logic without being forced to suffer
from the logical omniscience problem. The drawbacks of other combining techniques
like embedding and independent combination when compared to fibring have been dis-
cussed at length in [18]. Another advantage is that fibring makes it possible to combine
logics at different levels, obtaining hierarchical modal logics, i.e., a logic with another
logic embedded in it, or more precisely a logic with two modal operators such that

2 Normal bimodal and polymodal logics without any interaction axioms are well studied as
fusions of normal monomodal logics [16,22].
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the first can occur in the scope of the other but not the other way around; see [9] for
applications of hierarchical logics. For the second case it is possible to combine logic
with different semantics. We can combine, let us say, a normal temporal logic whose
semantics is given in terms of Kripke models and an epistemic non-normal modal logic
with a neighbourhood semantics. This is not possible with other combining techniques
where the semantics for the logics to be combined must be homogeneous. Finally the
fibring methodology allows us to study the structure of the combined logic based on
the structures of the component logics, and often it gives us conditions under which im-
portant meta-theoretical properties of the component logics (soundness, completeness,
decidability and so on) are preserved by the combination.

The paper is structured as follows. The next section provides a brief introduction
to the technique of fibring. Section 3 outlines the path-based and graph-based tableau
procedures. Section 4 describes the KEM tableau system. The paper concludes with
some final remarks.

2 Fibring Multimodal Logics

Consider the basic BDI logic L given in (1) which is defined from three component
logics, viz., KD45n for belief, and KDn for desires and intentions. For sake of clarity,
consider two of the component logics, �1(KD45) and �2(KD) and their corresponding
languages L�1 ,L�2 built from the respective setsQ1 andQ2 of atoms having classes of
modelsM�1 ,M�2 and satisfaction relations |=1 and |=2. Hence we are dealing with two
different systems S1 and S2 characterised, respectively, by the class of Kripke models
K1 and K2. For instance, we know how to evaluate �1ϕ (BEL(ϕ)) in K1 (KD45)
and �2ϕ (DES(ϕ)) in K2 (K D). We need a method for evaluating �1 (resp. �2) with
respect to K2 (resp. K1). In order to do so, we are to link (fibre), via a fibring function
the model for �1 with a model for �2 and build a fibred model of the combination. The
fibring function can evaluate (give a yes/no) answer with respect to a modality in S2,
being in S1 and vice versa. The interpretation of a formula ϕ of the combined language
in the fibred model at a state w can be given as

w |= ϕ if and only if F(w) |=∗ ϕ

where F is a fibring function that maps a world to a model suitable for interpreting ϕ
and |=∗ is the corresponding satisfaction relation (|=1 for �1 or |=2 for �2).

Example 1. Let �1,�2 be two modal logics as given above and let ϕ = �1�2p0 be
a formula on a world w0 of the fibred semantics. ϕ belongs to the language L(1,2) as
the outer connective (�1) belongs to the language L1 and the inner connective (�2)
belongs to the language L2.

By the standard definition we start evaluating �1 of �1�2 at w0. Hence according
to the standard definition we have to check whether �2p0 is true at every w1 accessible
from w0 since from the point of view of L1 this formula has the form �1 p (where
p = �2p0 is atomic). But at w1 we cannot interpret the operator �2, because we are in
a model of �1, not of �2. In order to do this evaluation we need the fibring function F
which at w1 points to a world v0, a world in a model suitable to interpret formulae from
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�2. (Fig.1). Now all we have to check is whether �2p0, is true at v0 in this last model
and this can be done in the usual way. Hence the fibred semantics for the combined
language L(1,2) has models of the form (F1,w1,ν1,F1), where F1 = (W1,R1) is a
frame, and F1 is the fibring function which associates a model M2

w from L2 with w in
L1 i.e. F1(w) =M2

w.

f
1

w0

w1

w2

w3

v0

v1

KM
M KB 2

Fig. 1. An Example of Fibring

2.1 Fibring MMA

Let I be a set of labels representing the modal operators for the intentional states (be-
lief, goal, intention) for a set of agents, and �i, i ∈ I be modal logics whose respective
modalities are �i, i ∈ I.

Definition 1. [8] A fibred model is a structure (W,S,R,a,ν,τ,F) where

– W is a set of possible worlds;
– S is a function giving for each w a set of possible worlds, Sw ⊆W;
– R is a function giving for each w, a relation Rw ⊆ Sw×Sw;
– a is a function giving the actual world aw of the model labelled by w;
– ν is an assignment function νw(q0)⊆ Sw, for each atomic q0;
– τ is the semantical identifying function τ : W → I. τ(w) = i means that the model

(Sw,Rw,aw,νw) is a model in Ki, we use Wi to denote the set of worlds of type i;
– F, is the set of fibring functionsF : I×W %→ W. A fibring functionF is a function

giving for each i and each w ∈W another point (actual world) in W as follows:

Fi(w) =
{

w if w ∈ SM andM ∈Ki

a value in Wi, otherwise

such that if w �= w′ then Fi(w) �=Fi(w′). It should be noted that fibring happens when
τ(w) �= i. Satisfaction is defined as follows with the usual truth tables for Boolean con-
nectives:

w |= q0 iff ν(w,q0) = 1, where q0 is an atom

w |= �iϕ iff

{
w ∈M andM ∈Ki and ∀w′(wRw′ → w′ |= ϕ),or

w ∈M, andM �∈Ki and ∀F ∈ F,Fi(w) |= �iϕ .

We say the model satisfies ϕ iff w0 |= ϕ .
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A fibred model for �FI can be generated from fibring the semantics for the modal logics
�i, i ∈ I. The detailed construction is given in [19]. Also, to accommodate the interac-
tion axioms specific constraints need to be given on the fibring function. In [15] we
outline the specific conditions required on the fibring function to accommodate axiom
schemas of the type Ga,b,c,d :3. We do not want to get into the details here as the main
theme of this paper is with regard to tableau based proof techniques for fibred logics.

What we want to point out here, however, is that the fibring construction given in
[15,19] works for normal (multi-)modal logics as well as non-normal modal logics.

3 Multimodal Tableaux

In the previous sections we showed that agent logics are usually normal multimodal
logics with a set of interaction axioms and introduced general techniques like fibring to
explain such combined systems. In this section, before getting into the details related
to the constructs needed for a tableau calculus for a fibred/combined logic, we outline
with an example two types of tableau systems (graph & path) that can be used to reason
about the knowledge/beliefs of agents in a multi-agent setting. Having done that, in the
next section, we describe how to uniformly construct a sound and complete tableau
calculus for the combined logic from calculi for the component logics.

Example 2. (The Friends Puzzle) [3] Consider the agents Peter, John and Wendy with
modalities �p,� j, and �w. John and Peter have an appointment. Suppose that Peter
knows the time of appointment. Peter knows that John knows the place of their ap-
pointment. Wendy knows that if Peter knows thetime of appointment, then John knows
that too (since John and Peter are friends). Peter knows that if John knows the place
and the time of their appointment, then John knows that he has an appointment.
Peter and John satisfy the axioms T and 4. Also, if Wendy knows something then Pe-
ter knows the same thing (suppose Wendy is Peter’s wife) and if Peter knows that John
knows something then John knows that Peter knows the same thing.

The Knowledge/belief base for Example 2 can be formally given as follows;

1. �ptime A1 Tp : �pϕ → ϕ
2. �p� j place A2 4p : �pϕ → �p�pϕ
3. �w(�ptime → � jtime) A3 Tj : � jϕ → ϕ
4. �p� j(place∧ time → appointment) A4 4 j : � jϕ → � j� jϕ

A5 Iwp : �wϕ → �pϕ
A6 Sp j : �p� jϕ → � j�pϕ

Fig. 2. Knowledge base related to the Friend’s puzzle

So we have a modal language consisting of three modalities �p,� j and �w denoting
respectively the agents Peter, John and Wendy and characterised by the set A = {Ai |
i = 1, . . . ,6} of interaction axioms. Suppose now that one wants to show that each of

3 Ga,b,c,d�a�bϕ → �c�dϕ .
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∧-rules
σ ϕ ∧ψ

σ ϕ
σ ψ

σ ¬(ϕ ∨ψ)

σ ¬ϕ
σ ¬ψ

σ ¬(ϕ → ψ)

σ ϕ
σ ψ

For any prefix σ

∨-rules
σ ϕ ∨ψ

σ ϕ | σ ψ
σ ¬(ϕ ∧ψ)

σ ¬ϕ | σ ¬ψ
σ ϕ → ψ

σ ¬ϕ | σ ¬ψ
For any prefix σ

¬¬-rules
σ¬¬ϕ

σϕ
For any prefix σ

�-rules
σ �iϕ
σ .ni ϕ

σ ¬�iϕ
σ .ni ¬ϕ

if the prefix σ .ni is

new to the branch (i ∈ {1, . . . ,m})
�-rules

σ �iϕ
σ .ni ϕ

σ ¬�iϕ
σ .ni ¬ϕ

If the prefix σ .ni already

occurs on the branch (i ∈ {1, . . . ,m})
Tprules:

σ �pϕ
σ ϕ

σ ¬�pϕ
σ ¬ϕ

σ ϕ
σ �pϕ

Tjrules:
σ � jϕ

σ ϕ
σ ¬� jϕ

σ ¬ϕ
σ ϕ

σ � jϕ

4prules:
σ �pϕ

σ .n∗p�pϕ
σ ¬�pϕ

σ .n∗p�p¬ϕ
σ .np �pϕ

σ �pϕ
σ .np ¬�pϕ

σ �p¬ϕ

4 jrules:
σ � jϕ

σ .n∗j� jϕ
σ ¬� jϕ

σ .n∗j� j¬ϕ
σ .n j � jϕ
σ � j¬ϕ

σ .n j ¬� jϕ
σ � j¬ϕ

Iwprules:
σ �wϕ
σ .n∗pϕ

σ ¬�wϕ
σ .n∗p¬ϕ

σ .np ϕ
σ �wϕ

Sp jrules:
σ �p� jϕ
σ .n∗j�pϕ

σ ¬�p� jϕ
σ .n∗j�p¬ϕ

σ .n j �pϕ
σ �p� jϕ

σ .n j ¬�pϕ
σ �p� j¬ϕ

(∗) prefix already occurs on the branch

Fig. 3. Tableau rules corresponding to the Friend’s Puzzle

the friends knows that the other one knows that he has an appointment, i.e., one wants
to prove

� j�pappointment∧�p� jappointment (2)

is a theorem of the knowledge-base. The tableaux rules for a logic corresponding to the
Friends puzzle are given in Fig.3 [17], and the tableaux proof for (2) is given in Fig.4
[17]. The tableaux in Fig.4. is a prefixed tableau [7] where the accessibility relations
are encoded in the structure of the name of the worlds. Such a representation is often
termed as a path representation. We show the proof of the first conjunct and the proof
runs as follows. Item 1 is the negation of the formula to be proved; 2, 3, 4 and 5 are
from Example 2; 6 is from 1 by a �-rule; 7 is from 6 by an Sp j-rule; 8 is from 7 by a
�-rule; 9 is from 8 by a �-rule; 10 is from 5 by a �-rule; 11 is from 10 by a �-rule. 12
and 24 are from 11 by a ∨-rule; 13 and 16 are from 12 by a ∨-rule; 14 is from 3 by a
�-rule; 15 is from 14 by a �-rule; the branch closes by 13 and 15; 17 is from 4 by an
Iwp-rule; 18 and 22 are from 17 by a ∨-rule; 19 is from 18 by a �-rule; 20 is from 2 by
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1 ¬� j�pappointment 1.
1 �ptime 2.
1 �p� j place 3.
1 �w(�ptime → � jtime) 4.
1 �p� j(place∧ time → appointment) 5.
1.1 j ¬�pappointment 6.
1 �p� j¬appointment 7.
1.1p � j¬appointment 8.
1.1p.2 j ¬appointment 9.
1.1p � j(place∧ time → appointment) 10.
1.1p.2 j place∧ time → appointment 11.

1.1p.2 j ¬(place∧ time) 12. 1.1p.2 j appointment 24.

1.1p.2 j ¬place 13. 1.1p.2 j ¬time 16.
1.1p � j place 14. 1.1p �ptime → � jtime 17.
1.1p.2 j place 15.

1.1p ¬�ptime 18.
1.1p.2p ¬time 19. 1.1p � jtime 22.
1.1p �ptime 20. 1.1p.2 j time 23.
1.1p.2p time 21.

Fig. 4. Proof of � j�p appointment using path representation

a 4p-rule; 21 is from 20 by a �-rule; the branch closes by 19 and 21; 23 is from 22 by
a �-rule; the branch closes by 16 and 23; by 9 and 24 the remaining branch too closes.

In a similar manner the tableaux proof for (2) using a graph representation where
the accessibility relations are represented by means of an explicit and separate graph of
named nodes is given in Fig.6. Each node is associated with a set of prefixed formulae
and choice allows any inclusion axiom to be interpreted as a rewriting rule into the path
structure of the graph. The proof uses the rules given in Fig.5. which is often referred
to as the Smullyan-Fitting uniform notation. We will be using this notation in the next
section for our KEM tableaux system. The proof for (2) as given in [3] runs as follows.
Steps 1-4 are from Fig.2 and 5 is the first conjunct of (2). Using π-rule we get items
6 and 7 (from 5) and 8 and 9 (from 6). We get 10 from 7 using axiom A6 in Fig.2 and
ρ-rule in Fig.5. Similarly 11 is from 9 via A6 and ρ-rule. By making use of the ν-rule
in Fig.5 we get 12 (from 4 and 10) and 13 (from 12 and 11). 14a and 14b are from 13
using β -rule (“a” and “b” denote the two branches created by the application of β -rule).
Branch “a” (14a) closes with 8. Applying β -rule again we get 15ba and 15bb from 14b
(“ba” and “bb” denote the two branches created by the application of β -rule). Applying
ν-rule we get 16ba (from 3 and 10) and 17ba (from 16ba and 11). Branch “ba” closes
because of 15ba and 17ba. We get 16bb from 10 via axiom A5 in Fig.2 and π-rule in
Fig.5. Similarly from 2 and 16bb by using ν-rule we get 17bb. We get 18bba and 18bbb
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(1)
w : α
w : α1

w : α2

α-rule

(2)
w : β

w : β1 | w : β2
β -rule

(3)
w : νi wρiw′

w′ : ν0
i

ν-rule where wρiw′ is available on the branch

(4)
w : πi

w′ : π0
i

w : ρiw′

π-rule where w′ is new on the branch

(5)
wρs1 w1 . . .wm−1ρsm w′

wρi1 w′
1

...

w′
n−1ρin w′

ρ-rule where w′
1, . . . ,w

′
n−1 are new on the branch and

�i1 . . .�in ϕ → �i′1
. . .�i′m ϕ ∈ A

α α1 α2
T (ϕ ∧ψ) T ϕ T ψ
F (ϕ ∨ψ) F ϕ F ψ
F (ϕ → ψ) T ϕ F ψ
F (¬ϕ) T ϕ T ϕ

(a) ∧-formulae

β β1 β2
F (ϕ ∧ψ) F ϕ F ψ
T (ϕ ∨ψ) T ϕ T ψ
T (ϕ → ψ) F ϕ T ψ
T (¬ϕ) F ϕ F ϕ

(b) ∨-formulae

νi ν0
T�iϕ Tϕ
F�iϕ F ϕ

(c) �-
formulae

πi π0
F�iϕ Fϕ
T�iϕ T ϕ

(d) �-
formulae

Fig. 5. Tableaux rules based on uniform notation for propositional inclusion modal logics [3]

from 17bb by applying the β -rule (“bba” and “bbb” denote the branches created by
the β -rule). By using ν-rule we get 19bba (from 18bba and 11). Branch “bba” (19bba)
closes with 15bb. From 18bbb using π-rule we get 19bbb and 20bbb. From 10 and
20bbb via axiom A2 (in Fig.2) and ρ-rule (in Fig.5) we get 21bbb. By applying ν-rule
to 1 and 21bbb we get 22bbb as a result of which the branch “bbb” closes (22bbb and
19bbb).

It should be noted that axiom schemas like A1, . . . ,A6 of Example 2 given in Fig. 2
belong to the class of axioms called inclusion axioms. In particular they belong to axiom
sets of the form, �i1 . . .�in →�i′1

. . .�i′m (in > 0, i′m ≥ 0), which in turn characterise the
class of normal modal logics called inclusion modal logics. As shown in [3], for each
axiom schema of the above type the corresponding inclusion property on the accessi-
bility relation can be given as

Ri1 ◦Ri2 ◦ . . .Rin ⊇ Ri′1
◦Ri′2

. . .◦Ri′m (3)

where “◦” denotes the relation composition Ri1 ◦Ri2 = {(w,w′′)∈W ×W | ∃w′ ∈W such
that (w,w′) ∈ Ri1 and (w′,w′′) ∈ Ri2}. This inclusion property is used to rewrite items
7. (w0R johnw1) and 9. (w1Rpeterw2) of the proof given in Fig.6 so as to derive a new
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1. w0 : T�ptime 14b. w2 : F(place ∧ time)
2. w0 : T�w(�ptime → � jtime) 15ba. w2 : F place
3. w0 : T�p� j place 16ba. w3 : T� j place
4. w0 : T�p� j(place∧ time → appointment) 17ba. w2 : Tplace
5. w0 : F� j�pappointment ×
6. w1 : F�pappointment 15bb. w2 : Ftime
7. w0R johnw1 16bb. wRwi f ew3
8. w2 : F appointment 17bb. w3 : T(�ptime → � jtime)
9. w1Rpeterw2 18bba. w3 : T � jtime
10. w0Rpeterw3 19bba. w2 : Ttime
11. w3R johnw2 ×
12. w3 : T� j(place∧ time → appointment) 18bbb. w3 : F�ptime
13. w2 : T (place∧ time → appointment) 19bbb. w4 : Ftime
14a. w2 : T appointment 20bbb w3Rpeterw4

× 21bbb. w0Rpeterw4
22bbb. w4 : T time

×

Fig. 6. Proof of � j�p using graph representation

path (w0Rpeterw3) and (w3R johnw2) as in items 10. and 11. The corresponding tableaux
rule for this property is given as ρ-rule (5) in Fig.5. Also, the type of interaction axiom
schemas of Example 2 involves the interaction between the same mental attitude of
different agents. There is also another type where there is interaction between different
mental attitudes of the same agent. The interaction axioms given in (1) is of the later
type. In the coming sections we will show that the KEM tableau can deal with both
types of interaction axioms.

As pointed out in [3], the main difference between the two types of tableaux, (graph
and path), is in the use of ν-rule. In the case of path representation one needs to use
a specific ν-rule for each logic as can be seen from Fig.3. These rules code the prop-
erties of the accessibility relations so as to express complex relations between prefixes
depending on the logic. Whereas in the case of graph representation the accessibility
relations are given explicitly. Also, it has been pointed out in [3] that the approach based
on path representation can be used only for some subclasses of inclusion axioms and
therefore difficult to extend the approach to the whole class of multi-modal systems.

4 Labelled Tableau for Fibred MMA Logic

In this section we show how to adapt KEM, a labelled modal tableaux system, to deal
with the fibred combination of multimodal agent logics. In labelled tableaux systems,
the object language is supplemented by labels meant to represent semantic structures
(possible worlds in the case of modal logics). Thus the formulas of a labelled tableaux
system are expressions of the form A : i, where A is a formula of the logic and i is a
label. The interpretation of A : i is that A is true at (the possible world(s) denoted by) i.

KEM’s inferential engine is based on a combination of standard tableaux linear ex-
pansion rules and natural deduction rules supplemented by an analytic version of the
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cut rule. In addition it utilises a sophisticated but powerful label formalism that en-
ables the logic to deal with a large class of modal and non-classical logics. Furthermore
the label mechanism corresponds to fibring and thus it is possible to define tableaux
systems for multi-modal logic by a seamless combination of the (sub)tableaux systems
for the component logics of the combination.

It is not possible in this paper to give a full presentation of KEM for fully fledged
multimodal agent logics supplemented with the interaction axioms given in Example 2.
(for a comprehensive presentation see [10]). Accordingly we will limit ourselves to a
single modal operator for each agent and we will show how to characterise the axioms
and the interaction of example 2.

4.1 Label Formalism

KEM uses Labelled Formulas (L-formulas for short), where an L-formula is an expres-
sion of the form A : i, where A is a wff of the logic, and i is a label. For fibred MMA
(from now on FMMA) we need to have labels for various modalities (belief, desire,
intention) for each agent. However, as we have just explained we will consider only one
modality and thus will have only labels for the agents.

The set of atomic labels, ℑ1, is then given as

ℑ1 =
⋃

i∈Agt
Φ i,

where Agt is the set of agents. Every Φ i is partitioned into two (non-empty) sets of
atomic labels: Φ i

C = {wi
1,w

i
2, . . .} the set of constants of type i, and Φ i

V = {Wi
1,W

i
2, . . .}

the set of variables of type i. We also add a set of auxiliary un indexed atomic labels ΦA,
again partitioned into variables ΦA

V = {W1,W2, . . .} and constants ΦA
C = {w1,w2, . . .},

that will be used in unifications and proofs.

Definition 1 (labels). A label u ∈ ℑ is either (i) an atomic label, i.e., u ∈ ℑ1 or (ii) a
path term (u′,u) where (iia) u′ ∈ ΦC ∪ΦV and (iib) u ∈ ΦC or u = (v′,v) where (v′,v)
is a label.

As an intuitive explanation, we may think of a label u ∈ ΦC as denoting a world (a given
one), and a label u ∈ ΦV as denoting a set of worlds (any world) in some Kripke model.
A label u = (v′,v) may be viewed as representing a path from v to a (set of) world(s) v′

accessible from v (the world(s) denoted by v).
For any label u =(v′,v) we shall call v′ the head of u, v the body of u, and denote them

by h(u) and b(u) respectively. Notice that these notions are recursive (they correspond
to projection functions): if b(u) denotes the body of u, then b(b(u)) will denote the
body of b(u), and so on. We call each of b(u), b(b(u)), etc., a segment of u. The length
of a label u, �(u), is the number of atomic labels in it. sn(u) will denote the segment
of u of length n and we shall use hn(u) as an abbreviation for h(sn(u)). Notice that
h(u) = h�(u)(u). Let u be a label and u′ an atomic label. We use (u′;u) as a notation for
the label (u′,u) if u′ �= h(u), or for u otherwise. For any label u, �(u) > n, we define the
counter-segment-n of u, as follows (for n < k < �(u)):

cn(u) = h(u)× (· · ·× (hk(u)× (· · ·× (hn+1(u),w0))))
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where w0 is a dummy label, i.e., a label not appearing in u (the context in which such
a notion occurs will tell us what w0 stands for). The counter-segment-n defines what
remains of a given label after having identified the segment of length n with a ‘dummy’
label w0. The appropriate dummy label will be specified in the applications where such
a notion is used. However, it can be viewed also as an independent atomic label. In the
context of fibring w0 can be thought of as denoting the actual world obtained via the
fibring function from the world denoted by sn(u).

Example 3. Given the label u = (wi
4,(W

k
3 ,(wj

3,(W
j

2 ,wj
1)))), according to the above de-

finitions its length �(u) is 5, the head h(u) is wi
4, the body b(t) is (W k

3 ,(wj
3,(W

j
2 ,wj

1))),
the segment of length 3 is s3(u) = (wj

3,(W
j

2 ,wj
1)), and the relative counter-segment-3 is

c3(u) = (wi
4,(W

k
3 ,w0)), where w0 = s3(u) = (wj

3,(W
j

2 ,wj
1)).

To clarify the notion of counter-segment, which will be used frequently in the course
of the present work, we present, in the following table the list of the segments of u in
the left-hand column and the relative counter-segments in the right-hand column.

s1(u) = w1 c1(u) = (wi
4,(W

k
3 ,(wj

3,(W
j

2 ,w0))))
s2(u) = (W j

2 ,wj
1) c2(u) = (wi

4,(W
k
3 ,(wj

3,w0)))
s3(u) = (wj

3,(W
j

2 ,wj
1)) c3(u) = (wi

4,(W
k
3 ,w0))

s4(u) = (W k
3 ,(wj

3,(W
j

2 ,wj
1))) c4(u) = (wi

4,w0)
s5(u) = u c5(u) = w0

So far we have provided definitions about the structure of the labels without regard to
the elements they are made of. The following definitions will be concerned with the
type of world symbols occurring in a label.

We say that a label u is i-preferred iff h(u) ∈ Φ i; a label u is i-pure iff each segment
of u of length n > 1 is i-preferred. Thus when we consider the label u of Example 3 then
u is i-preferred, b(u) is k-preferred and s3(u) is j-pure and consequently k-preferred. We
will use ℑi, i ∈ Agt, for the set of i-pure labels.

4.2 Label Unifications

The basic mechanism of KEM is its logic dependent label unification. In the same
way as each modal logic is characterised by a combination of modal axioms (or se-
mantic conditions on the model), KEM defines a unification for each modality and
axiom/semantic condition and then combines them in a recursive and modular way.
In particular we use what we call unification to determine whether the denotation of
two labels have a non empty intersection, or in other terms whether two labels can be
mapped to the same possible world in the possible worlds semantics.

The second key issue is the ability to split labels and to work with parts of labels.
The mechanism permits the encapsulation of operations on sub-labels. This is an im-
portant feature that, in the present context, allows us to correlate unifications and fibring
functions. Given the modularity of the approach the first step of the construction is to
define unifications (pattern matching for labels) corresponding to the single modality in
the logic we want to study.
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Every unification is built from a basic unification defined in terms of a substitution
ρ : ℑ1 �→ ℑ such that:

ρ : 1ΦC

Φ i
V �→ ℑi for every i ∈ Agt

ΦA
V �→ ℑ

The substitution ρ is such that every constant is mapped to itself, while the mapping of
variables depends on their types. For a variable of type i, i ∈ Agt, the variable is mapped
to an arbitrary i-pure label, but this restriction is dropped for auxiliary variables, thus
any label can be associated to an auxiliary variable.

Accordingly, we have that two atomic (“world”) labels u and v σ -unify iff there is
a substitution ρ such that ρ(u) = ρ(v). We shall use [u;v]σ both to indicate that there
is a substitution ρ for u and v, and the result of the substitution. The σ -unification is
extended to the case of composite labels (path labels) as follows:

[i; j]σ = k iff ∃ρ : h(k) = ρ(h(i)) = ρ(h( j)) and b(k) = [b(i);b( j)]σ

Clearly σ is symmetric, i.e., [u;v]σ iff [v;u]σ . Moreover this definition offers a flexible
and powerful mechanism: it allows for an independent computation of the elements of
the result of the unification, and variables can be freely renamed without affecting the
result of a unification, and the σ -unification of any two labels can be computed in linear
time [13].

We are now ready to introduce the unifications corresponding to the modal operators
at hand, i.e., �w, � j and �p characterised by the axioms in Figure 2. We can capture the
relationship between �w and �p by extending the substitution ρ by allowing a variable
of type w to be mapped to labels of the same type and of type p.

ρw(W w) ∈ ℑw ∪ℑp

Then the unification σw is obtained from the basic unification σ by replacing ρ with
the extended substitution ρw. This procedure must be applied to all pairs of modalities
�1,�2 related by the interaction axiom �1ϕ → �2ϕ .

For the unifications for �p and � j (σ p and σ j) we assume that the labels involved
are i-pure. First we notice that these two modal operators are S4 modalities thus we
have to use the unification for this logic.

[u;v]σS4 =

⎧⎨
⎩

[u;v]σD if �(u) = �(v)
[u;v]σT if �(u) < �(v),h(u) ∈ ΦC

[u;v]σ4 if �(u) < �(v),h(u) ∈ ΦV

(4)

It is worth noting that the conditions on axiom unifications are needed in order to pro-
vide a deterministic unification procedure. The σT and σ4 are defined as follows:

[u;v]σT =

⎧⎪⎪⎨
⎪⎪⎩

[s�(v)(u);v]σ if �(u) > �(v), and
∀n ≥ �(v), [hn(u);h(v))]σ = [h(u);h(v)]σ

[u;s�(u)(v)]σ if �(u) > �(v), and
∀n ≥ �(u), [h(u);hn(v)]σ = [h(u);h(v)]σ
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The above unification allows us to unify to labels such that the segment of the longest
with the length of the other label and the other label unify, provided that all remaining
elements of the longest have a common unification with the head of the shortest. This
means that after a given point the head of the shortest is always included in its extension,
and thus it is accessible from itself, and consequently we have reflexivity.

Example 4. For the notion of σT -unification, take for example the labels

u = (wp
3 ,(W p

1 ,wp
1)) v = (wp

3 ,(W p
2 ,(wp

2 ,wp
1)))

Here [W p
2 ;wp

3 ]σ = [wp
3 ;wp

3 ]σ. Then the two labels σT -unify to (wp
3 ,(wp

2 ,wp
1 )). This in-

tuitively means that the world wp
3 , accessible from a sub-path s(v) = (W p

2 ,(wp
2 ,wp

1)),
after the deletion of W p

2 from v, is accessible from any path u which turns out to denote
the same world(s) as s(u); in fact the step from wp

2 to W p
2 is irrelevant because of the

reflexivity relation of the model.

[u;v]σ4 =

⎧⎪⎪⎨
⎪⎪⎩

c�(u)(v) if �(v) > �(u),h(u) ∈ ΦV and
w0 = [u;s�(u)(v)]σ

c�(v)(u) if �(u) > �(v),h(v) ∈ ΦV and
w0 = [s�(v)(u);v]σ

In this case we have that the shortest label unifies with the segment with the same
length of the longest and that the head of the shortest is variable. A variable stands for
all worlds accessible from the predecessor of it. Thus, given transitivity every element
extending the segment with length of the shortest is accessible from this point.

Example 5. For the notion of σ4-unification, take for example the labels

u = (W j
3 ,(wj

2,w
j
1)) v = (wj

5,(w
j
4,(w

j
3,(W

j
2 ,wj

1))))

Here s�(u)(v)= (wj
3,(W

j
2 ,wj

1)). Then u and v σ4-unify to (wj
5,(w

j
4,(w

j
3,(w

j
2,w

j
1)))) since

[u;s�(u)(v)]σ = [(W j
3 ,(wj

2,w
j
1));(w

j
3,(W

j
2 ,wj

1))]σ . This intuitively means that all the
worlds accessible from a sub-path s�(u)(v) of v are accessible from any path u which
leads to the same world(s) denoted by s�(u)(v). Here W j

3 stands for the set of worlds

accessible from wj
2; Then wj

3, after the unification of (wj
2,w

j
1) and (W j

2 ,wj
1), is one of

such worlds. wj
4 is accessible from wj

3 and, via transitivity, from wj
2. The same for wj

5.

Then a unification corresponding to axiom A6 from Example 2 is

[u;v]σSp, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cm(v) if h(u) ∈ Φ j
V and cn(v) is p-pure, and

h�(u)−1(u) ∈ Φ p
V and cm(sn(v)) is j-pure, and

w0 = [s�(u)−2(u);sm(v)]σ
cm(u) if h(v) ∈ Φ j

V and cn(u) is p-pure, and
h�(v)−1(v) ∈ Φ p

V and cm(sn(u)) is j-pure and
w0 = [sm(u);s�(v)−2(v)]σ

This unification allows us to unify two labels such that in one we have a sequence of a
variable of type p followed by a variable of type j and a label where we have a sequence
of labels of type j followed by a sequence of labels of type p.
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Example 6. As an example of σSp, j -unification consider the labels

u = (W j
2 ,(W p

2 ,(wp
2 ,ww

1 ))) v = (wp
3 ,(W j

4 ,(wj
3,(W

p
1 ,ww

1 ))))

Given the two labels u and v we have that the last two elements of u are, in this order,
a variable of type j, h(u) ∈ Φ j

V , and a variable of type p, h3(u) ∈ Φ p
V . Thus we have

to check that there are two sequences of p-pure and j-pure labels in v. Clearly c4(v) =
(wp

3 ,w0) is p-pure and c2(s4(u)) = (W j
4 ,(wj

3,w0)) is j-pure. Thus the last thing to do
is to verify whether s2(v) and s�(u)−2(u) = s2(u) σ -unify; it is immediate to verify that
[s2(u);s2(v)]σ. Thus [u;v]σSp, j = (wp

3 ,(W j
4 ,(wj

3,(w
p
2 ,ww

1 )))).

The unification for �p and � j are just the combination of the three unifications given
above. Finally the unification for the logic L defined by the axioms A1–A6 is obtained
from the following recursive unification

[u;v]σL =
{

[u;v]σw,p, j

[cm(u);cn(v)]σw,p, j where w0 = [sm(u);sn(v)]σL

σw,p, j is the simple combination of the unifications for the three modal operators. Hav-
ing accounted for the unification we now give the inference rules used in KEM proofs.

Example 7. To illustrate the σL-unification consider the labels

u = (wj
3,(w

j
2,(W

j
1 ,(W p

1 ,ww
1 )))) v = (W j

2 ,(wp
1 ,(wj

1,w
w
1 )))

A simple inspection of the label shows that none of the other unifications can be used
here to unify the two labels. The only way is to split the labels in appropriate seg-
ments and counter-segments and then use the σL-unification. We split the labels as
follows c3(u) = (wj

3,(w
j
2,w0)) and c2(v) = (W j

2 ,w0). Now it is easy to verify that

[c3(u);c2(v)]σ4. On the other hand we have that s3(u) = (W j
1 ,(W p

1 ,ww
1 )) and s2(v) =

(wj
1,w

w
1 ), and [s3(u);s2(u)]σSp, j . Thus we can identify w0 with [s3(u);s2(u)]σSp, j , and

then [u;v]σL.

Notice that the unification mechanism, in particular the splitting of the labels into
segments and counter-segments and the use of subunifications for them follows the
same idea as fibring. As the fibring function takes us to a new model specific to the
modal operator we evaluate, the decomposition of the unification allows us to reduce
the unification of complex labels with atomic labels of multiple types to unifications of
pure labels, where we can use the unifications for the component logics.

4.3 Inference Rules

For the inference rules we use the Smullyan-Fitting unifying notation [7].

α : u

α1 : u
(α)

α2 : u

β : u

β c
i : v

(i = 1,2)

β3−i : [u;v]σL
(β )

The α-rules are just the familiar linear branch-expansion rules of the tableau method.
The β -rules are nothing but natural inference patterns such as Modus Ponens, Modus
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Tollens and Disjunctive syllogism generalised to the modal case. In order to apply such
rules it is required that the labels of the premises unify and the label of the conclusion
is the result of their unification.

ν i : u

ν i
0 : (W i

n,u)
(ν)

π i : u

π i
0 : (wi

n,u)
(π)

where W i
n is a new label. The ν and π rules are the normal expansion rule for modal

operators of labelled tableaux with free variable. The intuition for the ν rule is that if
�iA is true at u, then A is true at all worlds accessible via Ri from u, and this is the
interpretation of the label (W i

n,u); similarly if �iA is false at u (i.e., ¬BA is true), then
there must be a world, let us say wi

n accessible from u, where ¬A is true. A similar
intuition holds when u is not i-preferred, but the only difference is that we have to make
use of the fibring function instead of the accessibility relation

A : u | ¬A : u
(PB)

A : u

¬A : v

×
[ if [u;v]σL](PNC)

The Principle of Bivalence (PB) represents the semantic counterpart of the cut rule of
the sequent calculus (intuitive meaning: a formula A is either true or false in any given
world). PB is a zero-premise inference rule, so in its unrestricted version can be applied
whenever we like. However, we impose a restriction on its application. PB can be only
applied w.r.t. immediate sub-formulas of unanalysed β -formulas, that is β formulas
for which we have no immediate sub-formulas with the appropriate labels in the tree.
The Principle of Non-Contradiction (PNC) states that two labelled formulas are σL-
complementary when the two formulas are complementary and their labels σL-unify.

It is possible to show that the resulting calculus is sound and complete for the class
of (fibred) models corresponding to the (fibred) logic determined by the axiom in Fig. 2;
see [10] for the techniques needed to prove the results. Notice that the Knowledge base
of Fig 2 does not specify whether the modal operators are normal or not. While this
could be a problem for other combination techniques and tableaux systems, this does
not affect fibring, and KEM. It is possible to differentiate normal and non-normal modal
logic in KEM based on additional conditions on the substitution function ρ , see [14].

4.4 Proof Search

Let Γ = {X1, . . . ,Xm} be a set of formulas. Then T is a KEM-tree for Γ if there ex-
ists a finite sequence (T1,T2, . . . ,Tn) such that (i) T1 is a 1-branch tree consisting of
{X1 : t1, . . . ,Xm : tm}; (ii) Tn = T , and (iii) for each i < n,Ti+1 results from Ti by an
application of a rule of KEM. A branch θ of a KEM-tree T of L-formulas is said to be
σL-closed if it ends with an application of PNC, open otherwise. As usual with tableau
methods, a set Γ of formulas is checked for consistency by constructing a KEM-tree
for Γ . Moreover we say that a formula A is a KEM-consequence of a set of formu-
las Γ = {X1, . . . ,Xn} (Γ �KEM(L) A) if a KEM-tree for {X1 : u1, . . . ,Xn : un,¬A : v} is
closed using the unification for the logic L, where v ∈ ΦA

C , and ui ∈ ΦA
V . The intuition

behind this definition is that A is a consequence of Γ when we take Γ as a set of global
assumptions [7], i.e., true in every world in a Kripke model.
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We now describe a systematic procedure for KEM by defining the following notions.
Given a branch θ of a KEM-tree, we call an L-formula X : u E-analysed in θ if either (i)
X is of type α and both α1 : t and α2 : u occur in θ ; or (ii) X is of type β and one of the
following conditions is satisfied: (a) if βC

1 : v occurs in θ and [u;v]σ, then also β2 : [u;v]σ
occurs in θ , (b) if βC

2 : v occurs in θ and [u;v]σ, then also β1 : [u;v]σ occurs in θ ; or
(iii) X is of type μ and μ0 : (u′,u) occurs in θ for some appropriate u′ of the right type,
not previously occurring in θ . We call a branch θ of a KEM-tree E-completed if every
L-formula in it is E-analysed and it contains no complementary formulas which are not
σL-complementary. We say a branch θ of a KEM-tree completed if it is E-completed
and all the L-formulas of type β in it either are analysed or cannot be analysed. We call
a KEM-tree completed if every branch is completed.

The following procedure starts from the 1-branch, 1-node tree consisting of {X1 :
u, . . . ,Xm : v} and applies the inference rules until the resulting KEM-tree is either
closed or completed. At each stage of proof search (i) we choose an open non com-
pleted branch θ . If θ is not E-completed, then (ii) we apply the 1-premise rules until θ
becomes E-completed. If the resulting branch θ ′ is neither closed nor completed, then
(iii) we apply the 2-premise rules until θ becomes E-completed. If the resulting branch
θ ′ is neither closed nor completed, then (iv) we choose an L-formula of type β which is
not yet analysed in the branch and apply PB so that the resulting LS-formulas are β1 : u′

and βC
1 : u′ (or, equivalently β2 : u′ and βC

2 : u′), where u = u′ if u is restricted (and al-
ready occurring when h(u) ∈ ΦC), otherwise u′ is obtained from u by instantiating h(u)
to a constant not occurring in u; (v) (“Modal PB”) if the branch is not E-completed
nor closed, because of complementary formulas which are not σL-complementary, then
we have to see whether a restricted label unifying with both the labels of the comple-
mentary formulas occurs previously in the branch; if such a label exists, or can be built
using already existing labels and the unification rules, then the branch is closed, (vi) we
repeat the procedure in each branch generated by PB.

It is possible to give termination conditions for KEM-trees resulting in canonical
trees. Essentially a canonical tree will examine each combination of a formula and label
only once, and it produces finitely many formulas and labels. Thus, if one proves that an
unification for an axiom terminates and satisfies some reasonable algebraic properties,
then the KEM-trees for that axiom terminate. Thus the proof search in a KEM tableau for
a combination of logics L1, . . . ,Ln terminates if each Li has a terminating KEM search
procedure, and connecting axioms have unifications satisfying some safe conditions. A
thorough analysis of the termination conditions for KEM and fibring is beyond the scope
of this paper and it is left for future research. In particular we want to study the extent
of the termination conditions for canonical trees and label structures developed in [12].

Fig.7. shows a KEM tableaux proof using the inference rules in section 4.3 and
following the proof search mentioned above to solve the first conjunct of (2). The proof
goes as follows; 1. is the negation of the formula to be proved. The formulas in 2–5 are
the global assumptions of the scenario and accordingly they must hold in every world
of every model for it. Hence we label them with a variable W0 that can unify with every
other label. This is used to derive 12. from 11. and 5. using a β -rule, and for introducing
15.; 6. is from 1., and 7. from 6. by applying π rule. Similarly we get 8. from 2., 9. from
8. using ν rule. 10. comes from 9. and 7. through the use of modus tollens. Applying
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1. F� j�pappt w0 9. T(place∧ time → appt) (W j
1 ,W p

1 ,w0)
2. T�p� j(place∧ time → appt) W0 10. Fplace∧ time (wp

1 ,w j
1,w0)

3. T�w(�ptime → � jtime) W0 11. T�ptime → � jtime (W w
1 ,w0)

4. T�p� j place W0 12. T� j place (W p
2 ,w0)

5. T�ptime W0 13. Tplace (W j
2 ,W p

2 ,w0)
6. F�pappt (w j

1,w0) 14. Ftime (wp
1 ,w j

1,w0)
7. Fappt (wp

1 ,w j
1,w0) 15. T�ptime (w j

1,w0)
8. T� j(place∧ time → appt) (W p

1 ,w0) 16. Ttime (W p
3 ,w j

1,w0)
×

Fig. 7. Proof of � j�p using KEM representation

ν rule twice we can derive 11. from 3. as well as 13. from 12. Through propositional
reasoning we get 14. from 10. and by using ν rule on 15. we get 16. (14. and 16.) are
complementary formulas and this results in a closed tableaux because the labels in 14.
and 16. unify, denoting that the contradiction holds in the same world.

5 Concluding Remarks

In this paper we have argued that multimodal logics of agents (MMA) can be explained
in terms of fibring as combination of simpler modal logics. Then we have outlined three
labelled tableaux systems (path, graph and unification). For each of the method we have
seen how they can deal with the Friend’s puzzle as a way to evaluate their features.

In the path approach, as mentioned earlier, we need to use specific ν-rule for each
logic whereas KEM uses only one ν-rule and unification is logic dependent. The graph
approach on the other hand does not require, in general, any new rule, since it uses the
semantic structure to propagate formulas to the appropriate labels. It is then suitable
for an approach based on fibring, since the relationships between two labels can be
given in terms of fibring. But then the advantage of KEM over the graph approach is
in the full flexibility of the application of the rules. In the graph based approach one
need to apply the π-rules (or the ρ-rule) before the ν-rules whereas in KEM no such
restrictions exist. Also KEM is more suited for fibring because the mechanism it uses
to check and manipulate labels during model generation is close to semantic fibring.

KEM, in general similar to the graph approach, does not need logic dependent rules,
however, similar to the path approach, it needs logic dependent label unifications. We
have seen that the label algebra can be seen as a form of fibring [10], thus simple
fibring does not require special attention in KEM; therefore it allows for a seamless
composition of (sub)tableaux for modal logics. The label algebra contrary to the graph
reasoning mechanism is not based on first order logic and thus can deal with complex
structure and is not limited to particular fragment. Indeed KEM has been proved able
to deal with complex label schema for non-normal modal logics in a uniform way [14]
as well as other intensional logics such as conditional logics [2]. For these reasons we
believe that KEM offers a suitable framework for constructing decision procedures for
multi-modal logic for multi-agent systems. As we only described the static fragment of
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MMA logics, (no temporal evolution was considered), the future work is to extend the
tableaux framework so as to accommodate temporal modalities.
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Abstract. AgentSpeak is a well-known language for programming intelligent
agents which captures the key features of reactive planning systems in a sim-
ple framework with an elegant formal semantics. However, the original language
is too abstract to be used as a programming language for developing multi-
agent system. In this paper, we address one of the features that are essential for
a pragmatical agent programming language. We show how certain patterns of
AgentSpeak plans can be used to define various types of declarative goals. In or-
der to do so, we first define informally how plan failure is handled in the extended
version of AgentSpeak available in Jason, a Java-based interpreter; we also define
special (internal) actions used for dropping intentions. We then present a number
of plan patterns which correspond to elaborate forms of declarative goals. Fi-
nally, we give examples of the use of such types of declarative goals and describe
how they are implemented in Jason.

1 Introduction

The AgentSpeak(L) language, introduced by Rao in 1996, provides a simple and elegant
framework for intelligent action via the run-time interleaved selection and execution of
plans. Since the original language was proposed, substantial progress has been made
both on the theoretical foundations of the language (e.g., its formal semantics [6]), and
on its use, via implementations of practical extensions of AgentSpeak [5]. However, one
problem with the original AgentSpeak(L) language is that it lacks many of the features
that might be expected by programmers in practical development. Our aim in this paper
is to focus on the integration of one such features, namely the definition of declarative
goals with the use of plan patters. Throughout the paper, we use AgentSpeak as a more
general reference to AgentSpeak(L) and its extensions.

In this paper, we consider the use of declarative goals in AgentSpeak programming.
By a declarative goal, we mean a goal that explicitly represents a state of affairs to be
achieved, in the sense that, if an agent has a goal p(t1, . . . , tn), it expects to eventu-
ally believe p(t1, . . . , tn) (cf. [19]) and only then can the goal be considered achieved.
Moreover, we are interested not only in goals representing states of affairs, but goals
that may have complex temporal structures. Currently, although goals form a central
component of AgentSpeak programming, they are only implicit in the plans defined by
the agent programmer. For example, there is no explicit way of expressing that a goal
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should be maintained until a certain condition holds; such temporal goal structures are
defined implicitly, within the plans themselves, and by ad hoc efforts on the part of
programmers.

While one possibility would be to extend the language and its formal semantics
to introduce an explicit notion of declarative goal (as done in other languages, e.g.,
[19,7,22]), we show that this is unnecessary. We introduce a number of plan patterns,
corresponding to common types of explicit temporal (declarative) goal structures, and
show how these can be mapped into AgentSpeak code. Thus, a programmer or designer
can conceive of a goal at the declarative level, and this goal will be expanded, via these
patterns, into standard AgentSpeak code. We also show how such goal patterns can be
used in Jason, a Java-based implementation of an extended version of AgentSpeak [4].

In order to present the plan patterns that can be used for defining certain types of
declarative goals discussed in the literature, the plan failure handling mechanism im-
plemented in Jason, and some pre-defined internal actions used for dropping goals,
need to be presented. Being able to handle plan failure is useful more generally than
simply in the context of defining plan patterns that can represent complex declarative
goals. In most practical scenarios, plan failure is not only possible, it is commonplace:
a key component of rational action in humans is the ability to handle such failures. Af-
ter presenting these features of Jason that are important in controlling the execution of
plans, we can then show the plan patterns that define more complex types of goals than
has been claimed to be possible in AgentSpeak [7]. We present (declarative) mainte-
nance as well as achievement goals, and we present different forms of commitments
towards goal achievement/maintenance (e.g., the well-known blind, single-minded, and
open-minded forms of commitment [18]). Finally, we discuss Jason implementations,
using the defined patterns, of examples that appeared in the literature on declarative
goals; the examples also help in showing why declarative goals with complex temporal
structures are an essential feature in programming multi-agent systems.

2 Goals and Plans in AgentSpeak

In [17], Rao introduced the AgentSpeak(L) programming language: a logic-based lan-
guage that provides an elegant abstract framework for programming BDI agents. In
this paper, we only give a very brief introduction to AgentSpeak; see e.g. [6] for more
details.

An AgentSpeak agent is created by the specification of a set of initial beliefs and a set
of plans. A belief atom is simply a first-order predicate in the usual notation, and belief
atoms or their negations are belief literals. The initial beliefs define the state of the
belief base at the moment the agent starts running; the belief base is simply a collection
of ground belief atoms (or, in Jason, literals).

AgentSpeak distinguishes two types of goals: achievement goals and test goals.
Achievement goals are predicates (as for beliefs) prefixed with the ‘!’ operator, while
test goals are prefixed with the ‘?’ operator. Achievement goals state that the agent
wants to achieve a state of the world where the associated predicate is true. (In practice,
these lead to the execution of other plans.) A test goal states that the agent wants to test
whether the associated predicate is a belief (i.e., whether it can be unified with one of
the agent’s beliefs).
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Next, the notion of a triggering event is introduced. It is a very important concept
in this language, as triggering events define which events may initiate the execution of
plans; the idea of event, both internal and external, will be made clear below. There are
two types of triggering events: those related to the addition (‘+’) and deletion (‘-’) of
mental attitudes (beliefs or goals).

Plans refer to the basic actions that an agent is able to perform on its environ-
ment. Such actions are also defined as first-order predicates, but with special predi-
cate symbols (called action symbols) used to distinguish them. The actual syntax of
AgentSpeak programs is based on the definition of plans, as follows. If e is a trig-
gering event, b1, . . . , bm are belief literals, and h1, . . . , hn are goals or actions, then
e : b1 & . . . & bm ← h1 ; . . . ; hn. is a plan.

An AgentSpeak(L) plan has a head (the expression to the left of the arrow), which is
formed from a triggering event (denoting the purpose for that plan), and a conjunction
of belief literals representing a context (separated from the triggering event by ‘:’). The
conjunction of literals in the context must be satisfied if the plan is to be executed (the
context must be a logical consequence of that agent’s current beliefs). A plan also has
a body, which is a sequence of basic actions or (sub)goals that the agent has to achieve
(or test) when the plan is triggered.

Besides the belief base and the plan library, the AgentSpeak interpreter also man-
ages a set of events and a set of intentions, and its functioning requires three selection
functions. The event selection function selects a single event from the set of events;
another selection function selects an “option” (i.e., an applicable plan) from a set of
applicable plans; and a third selection function selects one particular intention from the
set of intentions. The selection functions are supposed to be agent-specific, in the sense
that they should make selections based on an agent’s characteristics in an application-
specific way. An event has the form 〈te, i〉, where te is a plan triggering event (as in
the plan syntax described above) and i is that intention that generated the event or T for
external events.

Intentions are particular courses of actions to which an agent has committed in order
to handle certain events. Each intention is a stack of partially instantiated plans. Events,
which may start the execution of plans that have relevant triggering events, can be ex-
ternal, when originating from perception of the agent’s environment (i.e., addition and
deletion of beliefs based on perception are external events); or internal, when generated
from the agent’s own execution of a plan (i.e., a subgoal in a plan generates an event of
type “addition of achievement goal”). In the latter case, the event is accompanied with
the intention which generated it (as the plan chosen for that event will be pushed on top
of that intention). External events create new intentions, representing separate focuses
of attention for the agent’s acting within the environment.

3 Plan Failure

We identify three cases of plan failure. The first cause of failure is a lack of relevant
or applicable plans, which can be understood as the agent “not knowing how to do
something”. This happens either because the agent simply does not have the know-how
(in case it has no relevant plans) — this could happen through simple omission (the
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programmer did not provide any appropriate plans) — or because all known ways of
achieving the goal cannot currently be used (there are known plans but whose contexts
do not match the agent’s current beliefs). The second is where a test goal fails; that is,
where the agent “expected” to believe in a certain condition of the world, but in fact
the condition did not hold. The third is where an action fails. There are two types of
actions: internal actions can be compared to a “native method”, and basic actions which
effectively change the environment where the agent is situated. The former are boolean
functions, whereas the latter represent the effectors within the agent architecture which
are assumed to provide feedback to the interpreter stating whether the requested action
was executed or not.

Regardless of the reason for a plan failing, the interpreter generates a goal deletion
event (i.e., an event for “−!g”) if the corresponding goal achievement (+!g) has failed.
This paper introduces for the first time an (informal) semantics for the notion of goal
deletion as used in Jason. In the original definition, Rao syntactically defined the possi-
bility of goal deletions as triggering events for plans (i.e., triggering event with -! and
-? prefixes), but did not discuss what they meant. Neither was goal deletion discussed
in further attempts to formalise AgentSpeak or its ancestor dMars [12,11]. Our own
choice was to use this as some kind of plan failure handling mechanism1, as discussed
below (even though this was probably not what they originally were intended for).

The idea is that a plan for a goal deletion is a “clean-up” plan, executed prior to
(possibly) “backtracking” (i.e., attempting another plan to achieve the goal for which a
plan failed). One of the things programmers might want to do within the goal deletion
plan is to attempt again to achieve the goal for which the plan failed. In contrast to
conventional logic programming languages, during the course of executing plans for
subgoals, AgentSpeak programs generate a sequence of actions that the agent performs
on the external environment so as to change it, the effects of which cannot be undone
by simply backtracking (i.e., it may require further action in order to do so). Therefore,
in certain circumstances, one would expect the agent to have to act so as to reverse the
effects of certain actions taken before the plan failed, and only then attempting some
alternative course of action to achieve that goal, and this is precisely the practical use
of plans with goal deletions as triggering events.

It is important to observe that omitting possible goal deletion plans for existing goal
additions implicitly denotes that such goal should never be backtracked, i.e., no alterna-
tive plan for it should be attempted in case one fails. To specify that backtracking should
always be attempted (e.g., until special internal actions in the plan explicitly cause the
intention to be dropped), all the programmer has to do is to specify a goal deletion plan
(for a given goal g addition) with empty context and the same goal in the body, as in
“-!g: true ← !g.”.

When a failure happens, the whole intention is dropped if the triggering event of the
plan being executed was neither an achievement nor a test goal addition: only these can

1 The notation −!g, i.e., “goal deletion” also makes sense for such plan failure mechanism; if a
plan fails there is a possibility that the agent may need to drop the goal altogether, so it is to
handle such event (of the possible need to drop a goal) that plans of the form ‘−!g : . . .’ are
written.
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be attempted to recover from failure using the goal deletion construct2. In cases other
than goal aditions, a failed plan means that the whole intention cannot be achieved. If
a plan for a goal addition (+!g) fails, the intention i where that plan appears is sus-
pended, and the respective goal deletion event (〈−!g, i〉) is included in the set of events.
Eventually, this might lead to the goal addition being attempted again as part of the
plan to handle the -!g event. When the plan for -!g finishes not only itself but also
the failed +!g plan below it3 are removed from the intention. As it will be clear later, it
is a programmer’s decision to attempt the goal again or not, or even to drop the whole
intention (possibly with special internal action constructs, whose informal semantics
is given below), depending on the circumstances. What happens when a plan fails is
shown in Figure 1.

+!g1(t): ct
<− a(t);
   !g2(t);
   ?g2(t);
   ... .

te   ct:
<− !g1(t);
   ... .

(a) An Intention before
Plan Failure

   !g2(t);
   ?g2(t);
   ... .

te   ct:
<− !g1(t);
   ... .

<− a(t);
+!g1(t): ct

   ... .
   !g1(t);

<− ... ;
−!g1(t): ct

(b) That Intention after
Plan Failure

Fig. 1. Plan Failure

In the circumstance described
in Figure 1(a) above, suppose
a(t) fails, or otherwise after that
action succeeds an event for
+!g2(t) was created but there
was no applicable plan to handle
the event, or ?g2(t) is not is the
belief base, nor there are appli-
cable plans to handle a +?g2(t)
event. In any of those cases, the
intention is suspended and an
event for −!g1(t) is generated.
Assuming the programmer in-
cluded a plan for −!g1(t), and
the plan is applicable at the time
the event is selected, the inten-
tion will eventually look as in
Figure 1(b). Otherwise the orig-
inal goal addition event is re-
posted or the whole intention

dropped, depending on a setting of the Jason interpreter that is configurable by pro-
grammers. (See [1] for an overview of how various BDI systems deal with the problem
of there being no applicable plans.)

The reason why not providing goal deletion plans in case a goal is not to be back-
tracked works is because an event (with the whole suspended intention within it) is dis-
carded in case there are no relevant plans for a generated goal deletion. In general, the
lack of relevant plans for an event indicates that the perceived event is not significant for
the agent in question, so they are simply ignored. An alternative approach for handling
the lack of relevant plans is described in [2], where it is assumed that in some cases,
explicitly specified by the programmer, the agent will want to ask other agents how to

2 Note it is inappropriate to have a goal deletion event posted for a failure in a goal deletion plan,
as this could easily cause a loop in an intention.

3 The failed plan is left in the intention, for example, so that programmers could check which
plan failed (e.g., by means of Jason internal actions).
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handle such events. The mechanism for plan exchange between AgentSpeak agents pre-
sented in [2] allows the programmer to specify which triggering events should generate
attempts to retrieve external plans, which plans an agent agrees to share with others,
what to do once the plan has been used for handling that particular event instance, and
so on.

In the next section, besides the plan failure handling mechanism, we also make use
of a particular standard internal action. Standard internal actions, as opposed to user-
defined internal actions, are those available with the Jason distribution; they are de-
noted by an action name starting with symbol ‘.’. Some of these pre-defined internal
actions manipulate the implementation of the structures used in giving semantics to the
AgentSpeak interpreter. For that reason, they need to be precisely defined. As the focus
here is on the use of patterns for defining declarative goals, we will give only informal
semantics to the internal action that will be used in the patterns given in the next section.

The particular internal action used in this paper is .dropGoal, which has two vari-
ants. The first is .dropGoal(g,true), which is used when the agent realises the
goal has already been achieved so whatever plan was being executed to achieve that
goal does not need to be executed any longer. The second is .dropGoal(g,false),
which is used when the agent realises that the goal has become impossible to achieve,
therefore the plan that required g being achieved as one of its subgoals has to fail. More
specifically, when .dropGoal(g,true) is executed, any intention that has the goal
g in the triggering event of any of its plans will be changed as follows. The plan with
triggering event +!g is removed and the plan below that in the stack of plans forming
that intention carries on being executed at the point after goal g appeared. Goal g, as it
appears in the .dropGoal internal action, is used to further instantiate the plan where
the goal that was terminated early appears. With .dropGoal(g,false), the plan
for +!g is also removed, but an event for the deletion of the goal whose plan body re-
quired g is generated instead: as there is no way of achieving g, the plan requiring g to
be achieved has failed.

It is perhaps easier to understand how these actions work with reference to Figure 2.
The figure shows the consequence of each of these internal actions being executed (the
plan where the internal action appeared is not shown; it is likely to be within another
intention). Note that the state of the intention, as shown in the figure, is not the immedi-
ate state resulting from the execution of one of these internal actions (i.e., not the state
at the end of the reasoning cycle where the internal action was executed) but the most
significant next state of the changed intention.

4 Declarative Goal Patterns

Although goals form a central component of the AgentSpeak conceptual framework,
it is important to note that the language itself does not provide any explicit constructs
for handling goals with complex temporal structure. For example, a system designer
and programmer will often think in terms of goals such as “maintain P until Q be-
comes true”, or “prevent P from becoming true”. Creating AgentSpeak code to realise
such complex goals has, to date, been largely an ad hoc process, dependent upon the
experience of the programmer. Our aim in this section is firstly to define a number of
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ct+!g2(t): 

<− !g1(t);
ct+!g0(t): 

   !g4(t);

   ... .
<− !g2(t);

+!g1(t): ct

<− ... ;
   !g3(t);
   ... .

   ... .

...

(a) Initial Intention

ct+!g4(t): 

<− !g4(t);

   ... .

<− ... ;

   !g5(t);

ct+!g0(t): 

...

   ... .

(b) After
.dropGoal(g1(t),true)

<− !g1(t);
ct+!g0(t): 

   ... .

<− ... ;
ct

   !g0(t);

−!g0(t):

   !g4(t);
   ... .

...

(c) After
.dropGoal(g1(t),false)

Fig. 2. Standard Internal Actions for Dropping Goals

declarative goal structures, and secondly to show how these can be realised in terms
of patterns of AgentSpeak plans — that is, complex combinations of plan structures
which are often useful in actual scenarios. As we shall see, such patterns can be used to
implement, in a systematic way, not only complex types of declarative goals, but also
the types of agent commitments that they can represent, as discussed for example by
Cohen and Levesque [8].

As an initial motivational example for declarative goals, consider a robot agent with
the goal of being at some location (represented by the predicate l(X,Y )) and the
following plan to achieve this goal:

+!l(X,Y): bc(B) & B > 0.2 ← go(X,Y).

where the predicate bc/1 stands for “battery charge”, and go identifies an action that
the robot is able to perform in the environment.

At times, using an AgentSpeak plan as a procedure can be quite useful as a pro-
gramming practice. Thus, in a way, it is important that the AgentSpeak interpreter does
not enforce any declarative semantics to its only (syntactically defined) goal construct.
However, in the plan above, l(X,Y ) is clearly meant as a declarative goal; that is, the
programmer expects the robot to believe l(X,Y ) (by perceiving the environment) if
the plan executes to completion. If it fails because, say, the environment is dynamic, the
goal cannot be considered achieved and, normally, should be attempted again.

This type of situation is commonplace in multi-agent system, and this is why it is im-
portant to be able to define declarative goals in agent-oriented programming. However,
in regards to AgentSpeak, this can be done without the need to change the language
and/or its semantics. As similarly pointed out by van Riemsdijk et al. [19], we can
easily transform the above procedural goal into a declarative goal by adding a corre-
sponding test goal at the end of the plan’s body, as follows:

+!l(X,Y): bc(B) & B > 0.2 ← go(X,Y); ?l(X,Y).
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This plan only succeeds if the goal is actually (believed to be ) achieved; if the given
(procedural) plan executes to completion (i.e., without failing) but the goal happens not
to be achieved, the test goal at the end will fail. In this way, we have taken a simple
procedural goal and transformed it into a declarative goal – the goal to achieve some
state of affairs. We will see later that the plan failure mechanism in Jason can be used
to for the various attitudes that agents can have due to a declarative goal not being
achieved (e.g., because the test goal at the end of the plan failed).

The solution for defining simple declarative goals as given above forms a plan pat-
tern, which can be applied to solve other similar problems that, as we mention above,
are commonplace in agent programming. Our approach to include declarative goals in
AgentSpeak programming is inspired by the successful adoption of design patterns in
object oriented design [13]. To represent such patterns for AgentSpeak, we shall make
use of skeleton programs with meta variables. For example, the general form of an
AgentSpeak plan for a simple declarative goal, as the one used in the robot’s location
goal above, is as follows:

+!g: c ← p; ?g.

Here, g is a meta variable that represents the declarative goal, c is a meta variable that
represents the context expression stating in which circumstances the plan is applicable,
and p represents the procedural part of the plan body (i.e., a course of action to achieve
g). Note that, with the introduction of the final test goal, this plan to achieve g finishes
successfully only if the agent believes g after the execution of plan body p.

To simplify the use of the patterns, we also define pattern rules which rewrite a set of
AgentSpeak plans into a new set of AgentSpeak plans according to a given pattern.4 The
following pattern rule, called DG (Declarative Goal), is used to transform procedural
goals into declarative goals. The pattern rule name is followed by the parameters which
need to be provided by the programmer, besides the actual code (i.e., a set of plans) on
which the pattern will be applied.

+!g: c1 ← p1.
+!g: c2 ← p2.
. . .
+!g: cn ← pn.

DGg (n ≥ 1)
+!g: g ← true.
+!g: c1 ← p1; ?g.
+!g: c2 ← p2; ?g.
. . .
+!g: cn ← pn; ?g.
+g: true ← .dropGoal(g, true).

Essentially, this rule adds ?g at the end of each plan in the given set of plans which has
+!g as trigger event, and creates two extra plans (the first and the last plans above). The

4 Note that some of the patterns presented in this paper require the atomic execution of certain
plans, but we avoid including this in the patterns for clarity of presentation; this feature is
available in Jason through a simple plan annotation.
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first plan checks whether the goal g has already been achieved — in such case, there is
nothing else to do. That last plan is triggered when the agent perceives that g has been
achieved while it is executing any of the courses of action pi (1 ≤ i ≤ n) which aim
at achieving g; in this circumstance, the plan being executed in order to achieve g can
be immediately terminated. The internal action .dropGoal(g, true) terminates
such plan with success (as explained in Section 3).

In this pattern, when one of the plans to achieve g fails, the agent gives up achieving
the goal altogether. However it could be the case that for such goal, the agent should try
another plan to achieve it, as in the “backtracking” plan selection mechanism available
in platforms such as JACK [21,14] and 3APL [10,9]. In those mechanisms, usually
only when all available plans have been tried in turn and failed is the goal abandoned
with failure, or left to be attempted again later on. The following rule, called BDG
(Backtracking Declarative Goal), defines this pattern based on a set of conventional
AgentSpeak plans P transformed by the DG pattern (each plan in P is of the form
+!g: c ← p):

P
BDGg

DGg(P)
-!g: true ← !g.

The last plan of the pattern catches a failure event, caused when a plan from P fails, and
then tries to achieve that same goal g again. Notice that it is possible that the same plan
is selected and fails again, causing a loop if the plan contexts have not been carefully
programmed. Therefore, the programmer would need to specify the plan contexts in
such a way that a plan is only applicable if it has a chance of succeeding regardless of
it having been tried already (recently).

Instead of worrying about defining contexts in such complex way, in some cases it
may be useful for the programmer to apply the following pattern, called EBDG (Exclu-
sive BDG), which ensures that none of the given plans will be attempted twice before
the goal is achieved:

+!g: c1 ← b1.
+!g: c2 ← b2.
. . .
+!g: cn ← bn.

EBDGg

+!g: g ← true.
+!g: not p1(g) & c1 ← +p1(g); b1.
+!g: not p2(g) & c2 ← +p2(g); b2.
. . .
+!g: not pn(g) & cn ← +pn(g); bn.
-!g: true ← !g.
+g: true ← -p1(g); -p2(g); . . . .dropGoal(g, true).

In this pattern, each plan, when selected for execution, initially adds a belief pi(g); the
goal g is used as an argument to p so as to avoid interference between various instances
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of the pattern for different goals. The belief is used as part of the plan contexts (note the
use of not pi in the contexts of the plans in the pattern above) to state that the plan
should not be applicable in a second attempt (of that same plan within a single adoption
of goal g for that agent).

In the pattern above, despite the various alternative plans, the agent can still end
up dropping the intention with the goal g unachieved, if all those plans become non-
applicable. Conversely, in a blind commitment goal the agent can drop the goal only
when it is achieved. This type of commitment towards the achievement of a declarative
goal can thus be understood as fanatical commitment [18]. The BCGg,F pattern below
defines this type of commitment:

P
BCGg,F

F(P)
+!g: true ← !g.

This pattern is based on another pattern rule, represented by the variable F ; F is often
BDG, although the programmer can chose any other pattern (e.g., EBDG if a plan
should not be attempted twice). Finally, the last plan makes the agent attempt to achieve
the goal even in case there is no applicable plan. It is assumed that the selection of plans
is based on the order that the plans appear in the program and all events have equal
chance of being chosen as the event to be handled in a reasoning cycle.

For most applications, BCG-style fanatical commitment is too strong. For example,
if a robot has the goal to be at some location, it is reasonable that it can drop this goal
in case its battery charge is getting very low; in other words, the agent has realised that
it has become impossible to achieve the goal, so it is useless to keep attempting it. This
is very similar to the idea of a persistent goal in the work of Cohen and Levesque: a
persistent goal is a goal that is maintained as long as it is believed not achieved, but
still believed possible [8]. In [22] and [7], the “impossibility” condition is called “drop
condition”. The drop condition f (e.g., “low battery charge”) is used in the Single-
Minded Commitment (SMC) pattern to allow the agent to drop a goal if it becomes
impossible:

P
SMCg,f

BCGg,BDG(P)
+f: true ← .dropGoal(g, false).

This pattern extends the BCG pattern adding the drop condition represented by the
literal f in the last plan. If the agent comes to believe f , it can drop goal g, signalling
failure (refer to the semantics of the internal action .dropGoal in section 3). This
effectively means that the plan in the intention where g appeared, which depended on g
being achieved to then carry on the plan execution, must itself fail (as g is now impos-
sible to achieve). However, there might be an alternative for that plan which does not
depend on g, so that plan’s failure handling may take care of such situation.

As we have a failure drop condition for a goal, we can also have a success drop
condition, e.g., because the motivation to achieve the goal has ceased to exist. Suppose
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a robot has the goal of going to the fridge because its owner has asked it to fetch a beer
from there; then, if the robot realises that its owner does not want a beer anymore, it
should drop the goal [8]. The belief “my owner wants a beer” is the motivation m for
the goal. The following pattern, called Relativised Commitment Goal (RCG) defines a
goal that is relative to a motivation condition: the goal can be dropped with success if
the agent no longer has the motivation for it.

P
RCGg,m

BCGg,BDG(P)
-m: true ← .dropGoal(g, true).

Note that, in the particular combination of RCG and BCG above, if the attempt to
achieve g ever terminates, it will always terminate with success, since the goal will be
dropped only if either the agent believes it has been achieved achieved (by BCG) or m
is removed from belief base.

Of course we can combine the last two patterns above to create a goal which can be
dropped if it has been achieved, has become impossible to achieve, or the motivation to
achieve it no longer exists, representing what is called an “open-minded commitment”.
The Open-Minded Commitment pattern (OMC) defines this type of goal:

P
OMCg,f,m

BCGg,BDG(P)
+f: true ← .dropGoal(g, false).
-m: true ← .dropGoal(g, true).

For example, an impossibility condition could be “no beer at location (X ,Y )” (de-
noted below by ¬ b(X,Y)), and the motivation condition could be “my owner wants a
beer” (denoted below by wb). Consider the plan below as representing the single known
course of action to achieve goal l(X,Y):

+!l(X,Y): bc(B) & B > 0.2 ← go(X,Y).

When the pattern OMCl(X,Y ),¬b(X,Y ),wb is applied to the initial plan above, we get the
following set of plans:

+!l(X,Y): l(X,Y) ← true.
+!l(X,Y): bc(B) & B > 0.2 ← go(X,Y); ?l(X,Y).
+!l(X,Y): true ← !l(X,Y).
-!l(X,Y): true ← !l(X,Y).
+¬b(X,Y): true ← .dropGoal(l(X,Y), false).
-wb: true ← .dropGoal(l(X,Y), true).

Another important type of goal in agent-based systems are maintenance goals,
whereby an agent needs to ensure that the state of the world will always be such that
g holds. Such agent will need plans to act on the events that indicate the maintenance
goal may fail in the future. In realistic environments, however, agents will likely fail in
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preventing the maintenance goal from ever failing. Whenever the agent realises that g
is no longer in its belief base (i.e., believed to be true), it will certainly attempt to bring
about g again by having the respective (declarative) achievement goal. The pattern rule
that defines a Maintenance Goal (MG), but particularly in the sense of realising the
failure in a goal maintenance, is as follows:

P
MGg,F

g.
-g: true ← !g.
F(P)

The first line of the pattern states that, initially (when the agent starts running) it will
assume that g is true. (As soon as the interpreter obtains perception of the environment
for the first time, the agent might already realise that such assumption was wrong.) The
first plan is triggered when g is removed from the belief base, e.g. because g has not
been perceived in the environment in a given reasoning cycle, and thus the maintenance
goal g is no longer achieved. This plan then creates a declarative goal to achieve g. The
type of commitment to achieving g if it happens not to be true is defined by F , which
would normally be BCG given that the goal should not be dropped in any circumstances
unless it is has been achieved again. (Realistically, plans for the agent to attempt pro-
actively to prevent this from ever happening would also be required, but the pattern is
useful to make sure the agent will act appropriately in case things go wrong.)

We now show another useful pattern, called Sequenced Goal Adoption (SGA). This
pattern should be used when various instances of a goal should not be adopted concur-
rently (e.g., a robot should not try to clean two different places at the same time, even
if it has perceived dirt in both places, which will lead to the adoption of goals to clean
both places). To solve this problem, the SGA pattern adopts the first occurrence of the
goal and records the remaining occurrences as pending goals by adding them as special
beliefs. When one such goal occurrence is achieved, if any other occurrence is pending,
it gets activated.

SGAt,c,g

t: not fl( ) & c ← !fg(g).
t: fl( ) & c ← +fl(g).
+!fg(g): true ← +fl(g); !g; -fl(g).
-!fg(g): true ← -fl(g).
-fl( ): fl(g) ← !fg(g).

In this pattern, t is the trigger leading to the adoption of a goal g; c is the context
for the goal adoption; fl(g) is the flag to control whether an instance of goal g is
already active; and fg(g) is a procedural goal that guarantees that fl will be added
to the belief base to record the fact that some occurrence of the goal has already been
adopted, then adopts the goal !g, as well as it guarantees that fl will be eventually
removed whether !g succeeds or not. The first plan is selected when g is not being
pursued; it simply calls the fg goal. The second plan is used if some other instance of
that goal has already been adopted. All it does is to remember that this goal g was not
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immediately adopted by adding fl(g) to the belief base. The last plan makes sure that
whenever a goal adoption instance is finished (denoted by the removal of a fl belief),
if there are any pending goal instances to be adopted, they will be activated through the
fg call.

5 Using Patterns in Jason

Jason is an interpreter for an extended version of AgentSpeak and is available Open
Source under GNU LGPL at http://jason.sourceforge.net [4]. It imple-
ments the operational semantics of AgentSpeak which first appeared in [6]. It also
implements the plan failure mechanism and the pre-defined internal action5 used in
the patterns described in Section 4. Since these features are enough for programming
declarative goals, Jason already supports this. However, it would be clearly not accept-
able if the programmer had to apply the patterns by hand.

To simplify the programming of sophisticated goals by the use of patterns, we ex-
tended the language interpreted by Jason to include pre-processing directives. The syn-
tax for pattern directives is:

directive ::=
"{" "begin" <pattern-name>"("<parameters>")" "}"

<agent-speak-program>
"{" "end" "}"

Source
Code

Pre-processor
Patterns

AgentSpeak
Code

AgentSpeak Interpreter

Fig. 3. Jason Pre-Processing and Patterns

We have implemented a pre-processor
for Jason which also handles patterns as
illustrated in Figure 3. Each pattern is im-
plemented in a Java class that receives
an AgentSpeak program and returns an-
other program, transformed as defined
by the respective pattern. This imple-
mentation allows us, and even users, to
make new patterns available in a straight-
forward manner. One simply has to
create a new Java class for the new
pattern and register this class with the
pre-processor6.

In the remainder of this section,
we will illustrate how the Jason pre-
processing directives for the use of
patterns can be used to program a clean-
ing robot for the scenario described in [7]
(where the robot was implemented using

5 The internal action used here is not yet available in the latest public release of Jason, but will
be available in the next release.

6 Note that this too will only be available in the next release of Jason.
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Jadex [15,16]). The first goal of the robot is to maintain its battery charged: this is
clearly a maintenance goal (MG). The agent should pursue this goal when its battery
level goes below 20% and should remain pursuing it until the battery is completely
charged. In the program below, based on the perception of the battery level, the belief
battery charged, which indicates that the goal is satisfied, is either removed or
added to the belief base, signalling whether the corresponding achievement goal must
be activated or not.

+battery level(B): B < 0.2 ← -battery charged.
+battery level(B): B = 1.0 ← +battery charged.

{ begin mg("battery charged", bcg("battery charged")) }
+!battery charged : not l(power supply)

go(power supply).
+!battery charged: l(power supply) ← plug in.

{ end }

The first plan of the pattern for the battery charged goal moves the agent to
the place where there is a power supply, if it is not already there (according to its
l(power supply) belief). Otherwise, the second plan will plug the robot to the
power supply. The plug in action will charge the battery and thus change the robot’s
state that is perceived back through battery level(B) percepts (which generate
+battery level(B) events).

The second goal the robot might adopt is to patrol the museum at night. This goal is
therefore activated when the agent perceives sunset (represented by the event+night).
Whenever activated, the goal can be dropped only if the agent perceives dawn (repre-
sented by the event -night). The following program defines patrol as this kind of
goal using a RCG pattern with night as the motivation:

+night: true ← !patrol.

{ begin rcg("patrol", "night") }
+!patrol: battery charged ← wander.

{ end }

The agent will never have the belief patrol in its belief base, since no plan or
perception of the environment will add this particular belief. The goal is, in some
sense, deliberately unachievable, while RCG maintains the agent committed to the goal
nevertheless. However, it is considered as achieved (finished with success) when the
motivation condition is removed from the belief base. Note that the context for the
!patrol plan is that the battery is charged, therefore while the maintenance goal
battery charged is active, the robot does not wander, but it resumes wandering
as soon the battery becomes charged again. We are thus using this belief to create an
interference between goals (i.e., charging the battery precludes patrolling).
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The last goal the robot might adopt is to clean the museum during the day whenever
it perceives waste around. Since the robot can perceive various different pieces of waste
around, it would accordingly generate several concurrent instances of this goal. How-
ever these goals are mutually exclusive: they cannot be achieved simultaneously; trying
to go in two different directions must be avoided, and expressing this at the declarative
level avoids too much work on implementing application-specific intention selection
functions (which are part of AgentSpeak interpreters). This is indeed another kind of
interference between different goals. The SGA pattern is used in the program below to
ensure that only one clean goal instance is being attempted at one moment in time.
The event that triggers this goal is +waste(X,Y) (some waste being perceived at
location 〈X,Y〉), and the context is not night:

{ begin sga("+waste(X,Y)", "not night", "clean(X,Y)")}
{ end }

{ begin omc("clean(X,Y)", "night", "waste(X,Y)")}
+!clean(X,Y): l(X,Y) ← pick; go(bin); drop.
+!clean(X,Y): not l(X,Y) ← go(X,Y).

{ end }
+battery charged: true ← .suspend(clean(X,Y)).
-battery charged: true ← .resume(clean(X,Y)).

In the program above, an open-minded commitment pattern (OMC) is used to cre-
ate the clean(X,Y) goal with night as the failure condition (at sunset, the goal
should be abandoned with failure) and waste(X,Y) as the motivation (if the agent
cames to believe that there is no longer waste at that location, the goal can be dropped
with success). The last two plans are used to suspend and resume the goal when the
battery charge goal is active. Of course we could add battery charge in the
context of the plans (as we did in the patrol goal); however, using the .suspend
internal action is more efficient because the goal becomes actually suspended (until
resumed with the respective .resume internal action) rather than being continuously
attempted without any applicable plans.

6 Conclusions

In this paper we have shown that sophisticated types of goals discussed in the agents
literature can be implemented in the AgentSpeak language with the extensions already
available in Jason. In fact, this is done by combining AgentSpeak plans, forming cer-
tain patterns, for each type of goal and commitment towards goals that agents may
have. Therefore, our approach is to take advantage of the simplicity and well-defined
semantics of the AgentSpeak language, using only its well-known support for proce-
dural goals plus the idea of “plan patterns” to support the use of declarative goals with
complex temporal structures in AgentSpeak programming.
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Besides the use of internal actions such as .dropGoal (that are available in Jason
for general use, independently of this proposal for declarative goals), our proposal does
not require either: (i) syntactical or semantical changes in the language (as done, for
example, in [22,7]); nor (ii) the definition of a goal base (cf. [19]) which is also usual
in other approaches. Van Riemsdijk et at. [20] also pointed out that declarative goals
can be built based on the procedural goals available in 3APL, by simply checking if
the corresponding belief is true at the end of the plan execution. What they proposed
in that paper corresponds to our BDG pattern. In this work, we further define various
other types of declarative goals, represented them as patterns of AgentSpeak programs,
and we also presented an implementation in Jason (using a pre-processor) that facili-
tates this approach for declarative goals. Another advantage of our approach is that, as
complex types of goals are mapped to plain AgentSpeak using pre-processing patterns,
programmers can easily change existing patterns to fit their specific requirements, or
indeed create new patterns if necessary.

In future work we intend to formalise our approach based on the existing operational
semantics and to verify some properties of the programs generated by the patterns,
including a comparison with approaches that use a goal base to introduce declarative
goals. An example of an issue that might be of particular interest in such comparison is
how the use of plan patters will affect other aspects of agent-based development such as
debugging. In the future, we also plan to support conjunctive goals such as p∧q (where
both p and q should be satisfied at the same time, as done in [19]), possibly through the
use of plan patterns as well. Furthermore, we plan to investigate other patterns that may
useful in the practical development of large-scale multi-agent systems.
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Abstract. In this paper, we describe the declarative agent program-
ming language Jadl (JIAC Agent Description Language). Based on three-
valued logic, it incorporates ontologies, FIPA-based speech acts, a
(procedural) scripting part for (complex) actions, and allows to define
protocols and service based communication. Rather than relying on a
library of plans, the framework implementing Jadl allows agents to plan
from first principles. We also describe the framework and some applica-
tions that have been implemented.

1 Introduction

The growth of interconnected devices, as well as the digitisation of content, has
led to ever more complex applications running on ever more diverse devices.
In recent years, the concept of service has become an important tool in coping
with this development. Broadly speaking, services allow loosely coupled software
entities to interact. Rather than providing a fixed and rigid set of interfaces,
services provide means to adapt software to the ever faster changing environment
of businesses. However, while the growing number of devices and networks poses
a challenge to software engineering, it also opens the door to new application
areas and offers possibilities to provide services on a new level of integration,
context awareness, and interaction with the user.

In order to leverage the current and developing network and device technolo-
gies, a programming paradigm is needed that embraces distributed computing,
open and dynamic environments, and autonomous behaviour.

Agent technology is such a paradigm. While there are many different areas
and theories within the agent community, most work to make true the idea of
an open, distributed, dynamic, and intelligent framework.

Without wanting to go into all the diverse subjects that research into agents
encompasses, we want to point out some of the more prominent concepts and
ideas here. On the level of single agents, BDI [1] has arguably been one of the
most influential ideas. By assigning high level mentalistic notions to agents a new
level of abstraction has been reached which allows to program agents in terms
of goals rather than means. Agents contain not only functionality, but also the
ability to plan (or alternatively a plan library) in order to achieve set goals. On
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the other hand, reactive behaviour is often desirable within agents, and should
be supported in some way.

Research into interaction between agents is another important field. Here,
agent communication languages attach semantic information about the “state
of mind” of the sending agent [2]. Also, in order to enable interaction between
agents, they need to understand each other. Ontologies allow agents to use a
shared vocabulary, and to de-couple syntax and interpretation.

Agent-based technologies provide one possible and much sought-after ap-
proach to containing the complexity of today’s soft- and hardware environment.
However, while agents have been the subject of research for more than a decade,
there are hardly any applications in the industry. There are differing views as to
the reason for the slow uptake. Some blame a lack of “killer applications”, or the
general disconnect between research community and industry players. Others
say that there is no problem at all, because industry uptake only happens at a
certain maturity level has been reached [3]. Another reason that agent technolo-
gies have not been so successful is the lack of dedicated programming languages
that allow the programmer to map agent concepts directly onto language con-
structs, and frameworks that cater for the needs of enterprise applications, such
as security and accounting.

In this paper, we present the agent programming language Jadl (JIAC Agent
Description Language). The thrust of the paper is to give a rather broad overview
over the language — a planned series of papers will go into the different areas
and cover them in greater detail.

The structure of this paper is as follows. After a broad overview over the
different elements of Jadl (Section 2), we will describe its different features in
some detail. In particular, we highlight knowledge representation in Section 3,
followed by Section 4 with some words about programming the agents using
reactive and planning elements. Section 5 finalises this part with a discussion
on high-level communication. After introducing the framework that implements
Jadl in Section 6, we proceed by presenting some of the projects that have
been implemented using the framework (Section 7), and wrap up with some
conclusions in Section 8.

2 Jadl Overview

Before we delve into different aspects of the language, it is important to give
a broad overview over the language, in order to allow the reader to place the
different elements of the language within their respective context.

Jadl is an agent programming language developed during the last few years
at the DAI Laboratory of the Technische Universität Berlin. It is the core of
an extensive agent framework called JIAC, and has originally been proposed by
Sesseler [4]. As JIAC has been developed in cooperation with the telecommunica-
tions industry, it has until now not been available to the general public (though
this might change soon, so watch this space!). Its stated goal is to support the
creation of complex service-based applications. In Sections 6 and 7 we describe
the framework and some exemplary implementations based on JIAC.
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Jadl is based on three-valued predicate logic [5], thereby providing an open
world semantics. It comprises four main elements: plan elements, rules, ontolo-
gies, and services.

While the first three elements are perhaps not too surprising, we should say a
word or two about the last part, services. While we go into details in Section 5,
we note here that agents communicate via services. From the perspective of the
agent execution engine, a service call is handled the same way internal (complex)
actions are executed. This is possible as services have the same structure as
actions, having pre- and post conditions, as well as a body that contains the
actual code to be executed. Reducing (or extending) communication to only
consist of service calls allows us to incorporate advanced features like security
and accounting into our framework. Also, programming communication becomes
easier as all messages are handled in a clearly defined frame of reference.

Agents consist of a set of ontologies, rules, plan elements, and initial goal
states, as well as a set of so-called AgentBeans (which are Java classes im-
plementing certain interfaces). The state of the world is represented within a
so-called fact base which contains instantiations of categories (which are defined
in ontologies). AgentBeans contain methods which can be called directly from
within Jadl, allowing the agent to interact with the real world, via user interfaces,
database access, robot control, and more.

In the following sections, we will detail some different areas of Jadl, namely
knowledge representation, agent behaviour, and communications.

3 Knowledge Representation

The language Jadl was designed to specifically meet the needs of open and
dynamic agent systems. In a dynamic system where agents and services may
come and go any time, the validity period of local information is quite short.
Therefore, any system that allows and supports dynamic behaviour needs to
address the issue of synchronisation and sharing of information. One answer to
this is addressed by research in the area of transaction management (e.g. [6]).
Our approach, however is to incorporate the idea of uncertainty about bits of
information into our knowledge representation and thus allow the programmer to
actively deal with outdated, incomplete or wrong data. Even leaving aside for a
moment that there are unsolved issues when it comes to transaction management
in multi-agent systems, we felt there are many cases when a real transaction-
management would have been too much and it is quite acceptable and probably
even more effective to just identify the bits of information that are inconsistent
and afterwards update those bits.

We realised the concept of uncertainty by using a situation calculus that
features a three valued logic. The use of logic allows us to use powerful and
well known AI-techniques within a single agent. The third truth value is added
for predicates that cannot be evaluated, with the information available to a
particular agent. Thus, a predicate can be explicitly evaluated as unknown. This
is an integral part of the language, and the programmer is forced to handle
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uncertainty when developing a new agent. Consequently, JIAC allows to handle
incomplete or wrong information explicitly.

Jadl allows to define knowledge bases which are the basis of most of the rest
of the language. Every object that the language refers to needs to be defined in
an ontology. Jadl implements strong typing, i.e. contrary to for example Prolog,
variables range over categories, rather than the full universe of discourse.

Categories are represented in a tree-like structure. Each node represents a cat-
egory, with attached a set of (typed) attributes. Categories “inherit” attributes
of ancestors.

Categories are specified as follows:

CatDecl = (cat CatName (ext CatName+) AttributeDecl*), where
AttributeDecl = (AttName Type Keyword*)

Keywords encode meta-information about the attributes.
To note here is that we allow multiple inheritance. Categories inherit all at-

tributes of all ancestors. As attribute names are silently expanded to include the
category structure, naming conflicts are avoided.

In addition to categories, Jadl allows to define functions and comparisons
(which essentially are functions with a boolean, or rather 3-valued return type).
The interpretation of functions is given by operational semantics. In practise,
functions are encoded in Java.

While Jadl uses its own language to describe ontologies, we have developed a
OWL-light to Jadl translator which allows JIAC agents to use published OWL-
based ontologies.

Complex actions, or plan elements, describe the functional abilities of the
agent. They in turn might call Java-methods, or use the Jadl scripting language.
There are different types of plan elements — (internal) actions, and protocols
and service invocations. All of them though have the same global structure. They
consist of three main elements (in addition to the action name):

(act ActName pre PreCond eff Effect Body)

Pre-condition and Effect are described using logical formulae, consisting of ele-
ments defined in associated ontologies. It should be noted here that Jadl does not
always allow the full power of first order formulae. For example, pre-conditions
and effects can only consist of conjuncts. Also, formulae have to be written in
disjunctive normal form. The body of an action can be either a script, a service,
or an inference. Once the exectuion of this body is finished, the results are writ-
ten to the variables, and afterwards the effect-formula is evaluated with these
results to determine whether the action was successful. This way JIAC ensures
that the actual result of an action does match the specified effect. Furthermore,
protocols usually inherit the effect of their associated service. They may however
have their own precondition, as there may be multiple protocols for a service -
not all of which have to be applicable at a certain state.
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4 Agent Behaviour

4.1 Goals and Action Selection

As Jadl is meant to be interpreted in a BDI-like architecture, it includes the
concept of achievement goals. These goals are implemented as simple formulae
which an agent tries to fulfill once the goal is activated.

Goal = (goal Condition)

Once an agent has a goal, it tries to find an appropriate action that fulfills
that goal. Such an action may either be a simple script or a service that is
provided by another agent. For this selection, there is no difference between
actions that can be executed locally and actions that are in fact services. The
actual selection is done by comparing the formula stated in the goal (including
the respective variable bindings) with the effects of all actions known to the
agent. In this matching process, the literals of the formulae are compared, and
if compatible, the values from the goal variables are bound to the corresponding
variables of the action. After the action is completed, the results are writen to
the original variables of the goal and the goal formula is evaluated to ensure that
the goal is actually reached. If that is not the case, the agent is replanning its
actions, and may try to reach the goal with other actions. One fact that should
be mentioned here is that this matching of course considers the types of the
variables. As these types may also include categories that come from ontologies,
the matching process does also consider the semantic information that is present
in those ontologies, e.g. inheritance.

4.2 Reactive Behaviour

Jadl allows to define rules. These rules are a means to realize the reactive be-
haviour of an angent. More specifically, a rule can give the agent a goal, whenever
a certain event occurs. Rules are implemented in a rather straightforward fash-
ion, consisting of a condition and two actions, one of which is executed when the
condition becomes true, and the other when the condition becomes false.

Rule = (rule Condition Action Action)

Specifically, whenever an object is either added, removed, or changed in the
fact base, the conditions that match the object type of the fact in question are
tested against it, and execute the true or false action-part respectively. If the
test yields unknown, no action is taken. The restriction of applicable rules to
the matching object types is purely for efficiency purposes — if tested, rules
whose condition does not match the fact will always yield unknown. Actions can
themselves be either a new goal or a call to an AgentBean. In the former case,
a new planning task for the agent is effectively created.



146 T. Konnerth, B. Hirsch, and S. Albayrak

4.3 Planning

In the literature, there are numerous agent programming languages available.
We can roughly classify them as logic based (such as AgentSpeak(L) [7,8], 3APL
[9,10], Golog [11,12], and MetateM [13,14]) and Java based (such as Jack [15],
Jade [16], Cougaar, [17] and MadKit [18]). The languages are mostly in the
prototype stage, and provide high level concepts that implement some notion of
BDI [19].

Generally, the concept of having beliefs, desires, and intentions, is “translated”
into belief bases, goals, and a plan library. In particular, possibly with the ex-
ception of Golog and Cougaar, which allows for planning from first principles,
all those languages assume a library of fully developed plans (modulo some pa-
rameters). A general execution cycle therefore maps internal and external states
via some matching function to one or more plans, which are then (partially)
executed.

While this approach certainly has its merits, in particular when it comes to
execution speed, it is by no means clear that planning from first principles is
not a viable alternative, certainly if approached with caution. The language we
are presenting here has been used to implement numerous complex applications,
showing that planning has its place and its uses in agent programming.

(Complex) Actions. Before we detail the execution algorithm, we need to
introduce the plan elements which are combined to plans which then are executed
by the agent.

Plan elements can take a number of different forms. These include actions, as
well as protocols, and services, which we will detail in the next subsection.

Actions, rather than being atomic elements, can be scripts. Jadl script pro-
vides keywords for sequential and parallel execution, conditionals, calls to Agent-
Beans, and even the creation of new goals, which then lead to new planning
actions. It should be clear to the reader that extensive use of the scripting
language, and especially the ability to trigger new plans, should be used with
caution.

For a discussion on protocols and services, we refer the reader to Section 5.
While it is out of the scope of this paper to describe the action language in

detail, we want to give the reader an impression in Figure 1. As Jadl is logic
based, variables need to be bound and unbound to actual objects that are stored
in the fact base. Also, formulae can be evaluated in order to ascertain their values.
Sequential and parallel execution, as well as branching instructions can be used.
Note further the keywords iseq and seq in the example. While the latter reflects
a simple sequential execution of following elements, the former iterates through
the given list (in this case a list of e-mail objects) and executes the sequence
for each element. The branch statement executes the body if the test condition
evaluates to true.

Plan Generation and Execution. While Jadl can be used to provide a library
of fully developed plans, its execution environment allows for planning from first
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(seq
(unbind ?coredata)
(unbind ?emailList)
(unbind ?email)
(eval (att coredata ?c ?coredata))
(eval (att email ?coredata ?emailList))

(bind ?haveIt false)

(iseq ?emailList (var ?emailObj:EMailAddress)
(seq
(branch (isTrue (var ?haveIt))

cont
(par
(eval (att email ?emailObj ?email))
(bind ?haveIt true)

)
)

)
)
(bind ?e ?email)

)

Fig. 1. Code Snippet of a complex script

principles. It employs the UCPOP algorithm [20], which generates a set of partial
plans based on a goal state and a set of actions. The partial plans are then
“flattened” by a scheduler to create a full plan.

In order to create partial plans, the system first tries to reach the goal state
by using local plan elements only, as this is considered the fastest and cheapest
way of reaching a goal. If no plan can be found, the directory facilitator (DF) of
the agent platform is contacted, and all available services are downloaded to the
planning agent. Then, a second planning cycle is run, this time with the services
registered at the DF included in the search. To limit the search space as far as
possible, the algorithm ever only considers plan elements (and therefore services)
that are relevant. Here, relevancy is determined by using ontology information
on pre-conditions. So, a plan elements written for cars will be considered when
looking for a BMW, but plan elements dealing with houses will not be used to
expand the plan.

4.4 Scheduling and Failure Handling

In order to arrive at a full plan, the partial plans need to be ordered in a con-
sistent fashion. As scheduling can be computationally expensive, the algorithm
does little optimisation, and mainly ensures that the causal links (i.e. the order
of actions that depend on each other) are met. Actions that are executed in
parallel are not checked for consistency.
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The actual execution has fall-back mechanisms on several levels. As can be
seen in Figure 2, the execution of a goal (which can be either a single goal, or
one of a number of steps that have been computed by the planner) is approached
as follows. First, the locally known plan elements are matched against the goal.
If one is found, and its pre-conditions are met, it is executed. If the precondi-
tions are not yet fulfilled, the planner tries to find further planelements, that
may meet the preconditions recursively. If either the goal or some preconditions
cannot be met with the locally known planelements, a request is sent to the di-
rectory facilitator (DF), and the goal is again matched against the received set of
services. As mentioned before, elements that are atomic actions for the planner
(and execution model) can be complex actions, and even service calls. We will
describe service calls in details later, and want to mention only that in the case
of service calls, unsuccessful service invocations are also repeated with different
service providers before re-initiating the process of finding a new action. Also
note that the re-initialisation only occurs once, as otherwise a loop could occur.

Fig. 2. Fulfilling a goal
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5 High Level Communications

Protocols and services are used for communication purposes. In order to al-
low for an open system, agents solely communicate using service calls. Actual
messages follow the FIPA ACL standard [21]. Rather than either exposing its
whole functionality, or alternatively having an implicit representation of func-
tionalities that might or might not be used by other agents, JIAC forces the
programmer to define explicitly the functionalities that the agent exposes to the
outside. This is done by explicitly configuring the list of services that are ex-
posed to other agents. Each service has attached a number of protocols that
can be executed during the service invocation, allowing for a conscious de-
sign of protocols. Figure 3 shows a small example which provides a time-synch
service.

Figure 3 details a service definition. The example service is defined as an action
(act timeSyncService) which has four elements. Firstly, a variable ?t of type
TimeActualization is declared. The type is defined in the TimeSync ontology.
Second, we have the pre-conditions which must hold for the service to be exe-
cuted. In our example, this is set to true, but can be any conjunctive formula (and
can include unkown attributes as well. Thirdly, the effect of executing the ser-
vice is described. The example service sets the attribute locallySynchronized
of the object assigned to ?t to true. Finally the actual service description starts.

A service consists of a service object, which is defined by a name, a set of
protocols, and some ontologies. We should note here that the set of protocols
includes protocols for negotiation as well as service provision. Figure 3 for exam-
ple defines two protocols. The first describes the actual service protocol which
implements the body of the service, while the contractNet protocol has the flag
multi true which defines it as a one-to-many negotiation protocol that is used
for provider-selection.

The actual linking of protocols to services happens during runtime. Whenever
an agent decides to execute a service it looks up the corresponding protocols
(which are identified by their names) an tries to negotiate the protocol with
the service-partner. If they can find a common protocol, both protocol-sides are
intiated, otherwise the service fails.

Channelling communication through services makes security much easier to
implement. This is because agents can only interact through the clearly defined
service invocation, rather than any sort of interaction. Secondly, services can
define additional meta-data such as costs, AAA, or QoS in a clear and consistent
manner, allowing agents (and their owners) to have clear policies concerning the
provision of functionalities to third party contacts. Again, allowing for simple
message exchanges makes accounting very complex.

The last two points, security and accounting, are important aspects of any
industrial application of agent technology. Only if we can guarantee a certain
level of security, and only if we can ensure that services offered can actually be
accounted according to clear and definable policies can we ever hope to convince
industry players to consider agent technology as a viable alternative to today’s
technologies.
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(act timeSyncService
(var ?t:TimeActualization)
(pre true)
(eff
(att locallySynchronized ?t true)

)
(service
(obj Service:DAI_1

(name "timeSyncService")
(protocols
[Protocol:

(obj Protocol
(name "timeSyncServiceProtocol")
(provider true)

)
(obj Protocol
(name "contractNet")
(multi true)

)
]

)
(ontologies
{string:
"de.dailab.jiac.ontology.Service:DAI_1"
"de.dailab.scb.ontology.TimeSync:DAI_1"
}

)
)

)
)

Fig. 3. Example of a service definition in Jadl

Meta-protocol

As mentioned before, service calls are wrapped by a meta-protocol in JIAC (see
Figure 4), which deals with session handling, security, accounting, provider and
transport selection, and error handling, leaving the programmer to concentrate
on the actual functionality and protocol interaction.

In order to trigger a service invocation, the agent must have failed to satisfy a
goal which using just actions that are available by the agent itself. This includes
services, that the agents provides by himself. If such a situation occurs, the agent
sends a request to the DF, which answers with a list of services that could fulfil
the goal. The agent then chooses one service, and notifies the DF, which again
sends back a list, but this time of agents that are providing the requested service.

As Figure 4 shows, a service invocation consists of three distinct phases. Dur-
ing the initiation phase, the user and provider(s) agree on a protocol to use. This
includes security negotiations, as well as accounting and QoS requirements.
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Fig. 4. Graphical representation of the meta-protocol

Once this is done, a (optional) negotiation protocol is triggered, during which
the actual provider agent is chosen. Only then, the actual service is invoked.

To note here is that while a service provision is always a one-to-one commu-
nication, the actual service selection allows for one-to-many communication. If
the negotiation protocol is empty, the first service provider is chosen. The meta
protocol catches any errors that might occur during service provision (i.e. time
outs, or cancel- and not-understood messages), and reacts accordingly. For ex-
ample, in case of a failed service provisioning, it returns to the selection phase
and chooses another agent that can provide the service. Only once no more
agents are available does the service provisioning fail (from the point of view of
the agent). In that case, a re-plan action is triggered.

For a more detailed description of the meta-protocol we refer the reader to
[22].

6 JIAC

In the preceding sections we have described the Jadl language. Now, we describe
the JIAC framework which implements Jadl.

JIAC consists of a (java-based) run-time environment, a methodology, tools
that support the creation of agents, as well as numerous extensions, such as
web-service-connectivity, accounting and management components, device in-
dependent interaction, an owl-to-Jadl translator, a OSGI-connector and more.
An agent consists of a set of application specific java-classes, rules, plan ele-
ments, and ontologies. Strong migration is supported, i.e. agents can migrate
from one platform to another during run-time. JIAC’s component model allows
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to exchange, add, and remove components during run time. Standard compo-
nents (which themselves can be exchanged as well) include a fact-base compo-
nent, execution-component, rule-component, and more. A JIAC agent is defined
within a property file which describes all elements that the agent consists of.

JIAC is the only agent-framework that has been awarded a common criteria
EAL3 certificate, an internationally accepted and renowned security certificate.

Conceptually, an agent system consists of a number of platforms, each of
which has its own directory facilitator and agent management system. The DF
registers the agents on the platform, as well as the services that they offer. We
have investigated a number of different techniques to connect different DF’s,
such as P2P and hierarchical approaches. On each platform, a number of agent
“lives” at each moment. Agents themselves implement one or more agent roles.
Each role consists of the components that are necessary to implement it. Usually,
this will include plan elements, ontologies, rules, and AgentBeans. Here, Jadl and
the elements that can be described using it come into play.

Currently we finalise a new version of the tool-suite which is based on Eclipse.
Programming in Jadl, as well as creating and running JIAC agents is supported
on different levels. Additional to text-based support elements such as syntax
highlighting and code folding, most Jadl elements can be displayed and edited in
a graphical interface, removing the sometimes awkward syntax as far as possible
from the user, and allowing her to focus on functionality rather than syntax
debugging.

In addition to the tools that support Jadl itself, we have created a number of
additional tools. A security tool provides methods to manage certificates, and en-
sure secure communication between agents. An accounting tool provides the user
with means to create and manage user databases and related elements such as
tariff information. The Agent configurator allows to display and modify agent’s
components during run-time, and to change goals, plan elements, and so forth.
We have also incorporated advanced testing and logging features, to facilitate
debugging and the general quality of the produced code. Without wanting to go
into details, we have extended the Unit-test approach to agents, thereby provid-
ing a test-environment where interactions of agents can be tested automatically,
for example in conjunction with a cruise-control server.

While tools help to hide the inherent complexity, they can only partially sup-
port the programmer during the design phase of a project. Recognising this,
JIAC provides users with a methodology which is rooted in the concepts of
Jadl, and of JIAC. Here, we focus not only on design but also on practical
needs of project management. The JIAC methodology describes the interaction
between customer, designer, and project manager, and uses the agile program-
ming approach [23]. Continuous integration is another important element of the
methodology, and is supported by above described testing environment.

Both, the methodology and the tool-suite support re-use of components. On
the tool side, we are currently implementing a repository which can can be
accessed via the network, and which holds functionality that can be included in
projects. On the methodology side, special care is taken to enable re-use during
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analysis, design, and implementation. It also encourages programmers to refine
new functionality to a re-usable form towards the end of the project, facilitating
further the re-use of components.

Most importantly, the service concept supports re-use of functionality by de-
sign. Each created service can be invoked by other agents, thereby offering the
most natural re-use of functionality.

Another extension to JIAC is the IMASU (Intelligent Multi-Access Service
Unit). With it, interfaces between agents and (human) users can be described
abstractly. The unit creates an appropriate user interface for a number of devices,
such as web-browsers (HTML), PDA’s and mobile phones (WML), and telephone
(VoiceXML) [24].

7 Implemented Applications

To give the reader an idea about the power of the framework, we present some
of the projects that have been implemented.

BerlinTainment. This project is aimed at simplifying the provision of informa-
tion over the internet. In order to provide cultural and leisure related function-
ality to visitors of Berlin, a personalised service based on the JIAC framework
has been developed. Agents provide and integrate information from restaurants,
route planners, public transport information, cinemas, theatres, and more. Using
BerlinTainment, users can plan their day out, make reservations, be guided to
the various locations, and be informed about touristic sites from one place, and
with various devices [25].

PIA. (Personal Information Agent) concerns the collection, dissemination, and
provision of personalised content. It employs agents on three layers. Firstly,
extractor agents monitor sources of information and extract content provided in
different formats, such as HTML pages, PDF, and Microsoft Word documents.
Secondly, filter-agents analyse the content based on preferences of the users.
Thirdly, presentation agents control the presentation and output of the filtered
data, again based on the users preference and device. PIA is used internally in
our institute to collect information concerning research projects and grants, as
well as providing personalised news-letters [26].

8 Conclusion

In this paper we have presented the agent programming language Jadl. Based on
three-valued logic, it provides constructs to describe ontologies, protocols and
services, and complex actions. JIAC agents use a planner to construct plans
from those actions. There, internal actions and service invocations are handled
transparently to the planning component.

The Jadl language and its framework, JIAC, provide arguably all elements that
are needed for a successful agent deployment. JIAC provides tools, a methodol-
ogy, and a host of extensions that provide extensions like webservice-interaction,
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OSGI-connectors, accounting, security, and network components that support the
creation of complex services in commercial settings.

We do not claim to have created a language that the best choice for creating
anything related with agents. However, we have tried to show that Jadl covers a
host of issues that we think should be covered by agent programming languages.
Using JIAC, several large implementations have been done, and shown to us the
merits of the language.
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Abstract. Social commitments are developed for multi-agent systems
according to the current practice in law regarding contract formation
and breach. Deafeasible commitments are used to provide a useful link
between multi-agent systems and legal doctrines. The proposed model
makes the commitments more expressive relative to contract law and
it stresses the representational rather than the operational side of the
commitment life cycle. As a consequence, the broader semantics helps
in modeling different types of contracts (gratuitous promises, unilateral
contracts, bilateral contracts, and forward contracts) and negotiation
patterns. The semantics of higher-order commitments is useful in decid-
ing whether to sign an agreement or not and to represent a larger variety
of protocols and legal contracts.

1 Introduction

Artificial agents and the contracts they make are ubiquitous, while at the same
time, there is a lack of application of the current practice in law to multi-agent
systems (MAS). From the point of view of law, there is a philosophical debate
regarding when to attach person-hood to artificial agents. The actual context of
web services representing business entities and agents interacting with services
implies legal responsibilities for each agent. From the engineering point of view,
agents have to be built and synchronized with the norms and values of society.

Social commitments were introduced as a way to capture the public aspects of
communication [1] and research has been focused on the development of agent
communication languages and flexible interaction protocols [2,3]. As commit-
ments appear to be sometimes too restrictive (deontic obligations) and some-
times too flexible, allowing unconstrained modification of commitments, social
commitments should be more flexible than usual obligations but also more con-
strained than permissions [1]. On this line, we apply principles of contract law
as an objective measure to decide on the flexibility of the operations on commit-
ments, beginning with a commitment-based representation of different types of
agreements from contract law. The main advantage of applying current practice
in law to model commitments within multi-agents systems is that the principles
of contract law are verified and polished during years of economical and judicial
practice.
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Modeling agent communication implies several approaches: mental (BDI and
modalities), social (which highlights the public and observable elements like so-
cial commitments that agents exchange when conversing), and argumentative
(based on agent reasoning capabilities). When participating in an agreement,
agents should use their mental states, share information and reason about new
facts. We seek to synchronize the social commitments developed for MAS with
existing legal doctrines, which the law applies in case of contract formation. We
define a framework by using the temporalised normative positions in defeasible
logic [4] to introduce defeasible commitments for representing contract laws [5]
in the model of the life cycle of commitments.

2 Temporalised Normative Positions

For defining defeasible commitments, we are using the temporalised normative
positions [4]. A theory in normative defeasible logic (NDL) is a structure (F , RK ,
RI , RA, RO, �) where F is a finite set of facts, RK RI RA RO are respectively
a finite set of persistent or transitive rules (strict, defeasible, and defeaters) for
knowledge, intentions, actions, and obligations, and � representing the superi-
ority relation over the set of rules.

A rule in NDL is characterized by three orthogonal attributes: modality, per-
sistence, strength. As for modality, RK represents the agent’s theory of the world,
RA encodes its actions, RO the normative system or his obligations, while RI

and the superiority relation capture the agent’s strategy or its policy. A per-
sistent rule is a rule whose conclusion holds at all instants of time after the
conclusion has been derived, unless a more powerful rule, according to the supe-
riority relation, has derived the opposite conclusion. A transient rule establishes
the conclusion only for a specific instance of time [4].

Strict rules are rules in the classical sense, that is whenever the premises are
indisputable, then so is the conclusion, while defeasible rules are rules that can
be defeated by contrary evidence. For “sending the goods means the goods were
delivered”, if we know that the goods were sent then they reach the destination,
unless there is other, not inferior, rule suggesting the contrary. Defeaters are
rules that cannot be used to draw any conclusions. Their only use is to prevent
some conclusions, as in “if the customer is a regular one and he has a short delay
for paying, we might not ask for penalties”, they cannot be used to support a“not
penalty” conclusion, but can prevent the derivation of the penalty conclusion.

We use the following notation: →t
X , ⇒t

X and �t
X denote transitive rules

(strict, defeasible, defeaters), while →p
X , ⇒p

X and �p
X denote persistent rules

(strict, defeasible, defeaters), where X ∈ {K, I, A, O} represents the modality.
A conclusion in NDL is a tagged literal where +Δτ

Xq:t means that q is definitely
provable of modality X , at time t in NDL (figure 1); and +∂τ

Xq:t means that q is
defeasibly provable of modality X , at time t in NDL (figure 2). Here τ ∈ {t, p},
t stands for transient, while p for a persistent derivation. A strict rule r ∈ Rs is
ΔX −applicable if r ∈ Rs,X∀a : tk ∈ A(r) : ak : tk is ΔX −provable. A strict rule
r ∈ Rs is ΔX − discarded if r ∈ Rs,X∃ak : tk ∈ A(r) : ak : tk is ΔX − rejected,
and similarly for ∂. The conditions for concluding whether a query is transient
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+Δt
X : If P (i + 1) = +Δt

Xq : t then
q : t ∈ F , or
∃r ∈ Rt

s,X [q : t] r is ΔX − applicable

+Δp
X : If P (i + 1) = +Δp

Xq : t then
q : t ∈ F , or
∃r ∈ Rp

s,X [q : t] r is ΔX − applicable or

∃t′ ∈ Γ : t′ < t and +Δp
Xq : t′ ∈ P (1..i).

Fig. 1. Transient and persistent definite proof for modality X

or persistent, definitely provable is shown in the figure 1. For the transient case,
at step i + 1 one can assert that q is definitely transient provable if there is a
strict transient rule r ∈ Rt

s with the consequent q and all the antecedents of r
have been asserted to be definitely (transient or persistent) provable, in previous
steps. For the persistent case, the persistence condition allows us to reiterate
literals definitely proved at previous times. For showing that q is not persistent
definitely provable, in addition to the condition we have for the transient case, we
have to assure that, for all instances of time before now the persistent property
has not been proved. According to the above conditions, in order to prove that
q is definitely provable at time t we have to show that q is either transient, or
persistent definitely provable [4]. Defeasible derivations have an argumentation

+∂t
X : If P (i + 1) = +∂t

Xq : t then
(1) +ΔXq : t ∈ P (1..i) or
(2)−ΔX ∼q : t ∈ P (1..i) and

(2.1) ∃r ∈ Rsd,X [q : t]: r is ∂X-applicable and
(2.2) ∀s ∈ R[∼q : t]: s is ∂X -discarded or

∃w ∈ R(q : t) : w is ∂X -applicable or w � s

Fig. 2. Transient defeasible proof for modality X

like structure [4]: firstly, we choose a supported rule having the conclusions q we
want to prove, secondly we consider all the possible counterarguments against q,
and finally we rebut all the above counterarguments showing that, either some of
their premises do not hold, or the rule used for its derivation is weaker than the
rule supporting the initial conclusion q. A goal q which is not definitely provable
is defeasibly transient provable if we can find a strict or defeasible transient rule
for which all its antecedents are defeasibly provable, ∼q is not definitely provable
and for each rule having ∼q as a consequent we can find an antecedent which
does not satisfy the defeasible provable condition (figure 2). For the persistence
case, an additional clause verifies if the literal q : t has been persistent defeasibly
proved before, and this conclusion remained valid all this time (there was no
time t” when the contrary ∼q was proved by firing the rule s, or the respective
rule was no stronger than the one sustaining q).
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3 Types of Commitments

The classical definition of a conditional commitment states that a commitment
is a promise from a debtor x to a creditor y to bring about a particular sentence
p under a condition q. Starting from this definition we provide a generalized
commitment abstract data type.

Definition 1. A commitment is a relation

Cn
m(x, y, qn : [tissue], [�]pm : [tmaturity]) : [texpiration]

with optional literals within square brackets, representing the promise p made
by debtor x to creditor y in exchange of which the action q is requested, where
the time of maturity tmaturity shows the time remaining until the promise pm

is satisfied by the debtor x if the request qn holds until time tissue and � ∈
{+Δ,−Δ, +∂,−∂} is an optional tag used to express informing messages.

The parameters m and n help us to define meta commitments or higher-order
commitments, providing a rich semantics used to express a large variety of con-
tractual clauses and negotiation patterns: m is a measure of the promises made by
the debtor to the creditor, while n is a measure of the requests made by the debtor
to the crediror. We define two operators for the functional composition of com-
mitments: ◦q which deals with requests and ◦p which deals with promises and one
operator � for logical composition, used for aggregating commitments into con-
tracts. We propose two main categories of high order commitments: contractual
patterns which include contractual commitments and guarantee commitments
and negotiation patterns as request commitments and informing commitments.

3.1 Contractual Commitments

When m ∈ {1, 3} we name the resulting commitments contractual. Next, we
discuss each type of contractual commitments from a legal point of view.

The example “I will give you the item g1 in 5 days.” is represented by C0
1 (me,

you, 1, g1 : 5), defined by law as gratuitous promise.

Definition 2. In a Gratuitous Promise (n=0, m=1) the debtor x promises the
creditor y to bring about p until tmaturity without requesting anything (n = 0).

C0
1 (x, y, 1, p : tmaturity)

The example “I will give you the item g1 in 5 days after you will pay the price”
will be represented by C1

1 (me, you, pay(you) : tpay, g1 : tpay + 5), where the con-
dition is brought about by the creditor you. The law defines such a commitment
a unilateral contract, involving an exchange of the offerer’s promise p for the
oferee’s act q, with the completion of the act required to indicate acceptance.

Definition 3. A Unilateral Contract (n=1, m=1) involves an exchange of the
offerer’s promise p for the oferee’s act q, where the debtor x promises the creditor
y to bring about p until tmaturity if condition q holds at time tissue.

C1
1 (x, y, q : tissue, p : tmaturity)
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Consider the example “I will give you the item g1 no later than 5 days, if you
promise me in maximum 1 day that you will pay the price no later than 3 days”
represented as C1

3 (me, you, C0
1 (you, me, 1, pay : 3) : 1, g1 : 5).

Definition 4. In a Bilateral Contract (n=1, m=3) both sides make promises,
the debtor x promises the creditor y to bring about p if the creditor y promises
x to bring about p1.

C1
3 (x, y, C0

1 (y, x, 1, p1), p)

We note that a C1
3 commitment is somehow weaker than a C1

1 commitment. This
fine grained mechanism opens the possibility of designing agents with different
levels of attitude towards risk and it also refines the idea of leveled commitment
contracts [6].

“I will give you the item g1 no later than 5 days, if you promise me to pay the
price no later than 3 days under the condition that oil price reaches 135$; my
offer expires in 10 days.” is represented by C4

3 (me, you, C1
1 (you, me, oilPrice =

135, pay : 3) : 10, g1 : 5).

Definition 5. In a Conditional Bilateral Contract (n=4, m=3) the debtor x
promises the creditor y to bring about p if agent y promises x to bring about p1
under condition q1.

C4
3 (x, y, C1

1 (y, x, q1, p1), p)

The above semantics includes a form of negotiation because, at the creation
of the inner commitment, both C4

3 and C1
1 commitments are open offers (see

section 4). Therefore, the agents are not committed to them1 and they may be
canceled anytime in this state, without considering it a breach.

“The supplier x commits to deliver an extra number of r items to the buyer
y if the buyer orders that quantity no longer than 20 days” is represented by:
C4

1 (x, y, C0
1 (y, x, r, 1) : 20, deliver(r)).

Definition 6. In an Option Contract (n=4, m=1) the debtor x promises the
creditor y to bring about p if the creditor y requests that p until texpiration.

C4
1 (x, y, C0

1 (y, x, p, 1) : texpiration, p)

When an option contract is not exercised until texpiration it expires.

3.2 Guarantee Commitments

In these commitments (m = 4) the debtor promises that a specific commitment
will exist in a given window of time.

For “I guarantee you that the bank will commit in maximum 7 days to give
you the credit” we use the formula C0

1 (me, you, 1, C0
1(bank, you, 1, credit) : 7).

1 A contract was not formed yet, from the contract law point of view, they are derived
in this state as knowledge and not as obligations.
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Definition 7. In a Guarantee to Commit (n=0, m=4) the debtor x guarantees
the creditor y that a special commitment will exist until texpiration

C0
4 (x, y, 1, C0

1 (z, y, 1, p1) : texpiration)

obtainable from C0
1 ◦p C0

1 .

If z = y the creditor manifests its own intention to commit or it guarantees that
it will make the respective gratuitous promise no longer than texpiration. It can
be seen as a precommitment or an intention to commit.

Definition 8. In a Forward Unilateral Contract (n=2, m=4) the debtor x guar-
antees the creditor y that a specific unilateral contract will exist until texpiration.

C2
4 (x, y, 1, C1

1 (z, y, q1, p1) : texpiration)

According to contract law, the particular case in which z = x is a form of a
forward contract, obtainable from C0

1 ◦p C1
1 . Applying the composition operators

◦q or ◦p we can also model forward bilateral contracts and forward conditional
bilateral contracts.

3.3 Request Commitments

When m ∈ {0, 2} the debtor does not promise anything directly, called re-
quest commitments. For both m = 0 and n = 0 we have a free commitment
C0

0 (x, y, 1, 1), while n �= 0 gives the following types of requests.
“Please pay me the price in two days” is represented as a request act

C1
0 (me, you, price : 2, 1)2.

Definition 9. In a Request Act (n=1, m=0) the debtor x requests the creditor
y to bring about q until time tissue.

C1
0 (x, y, q : tissue, 1)

The debtor does not promise anything, satisfying q leading to its acceptance. If
the requested act is a negative sentence, it represents a taboo [7] or interdiction.

“Please promise me that you will pay for the item in 3 days” is represented as
C1

2 (me, you, C0
1 (you, me, 1, pay : 3), 1).

Definition 10. A Request a Promise (n=1, m=2) is used by a debtor x to
request the creditor y to promise until texpiration that it will bring about p1 until
tmaturity

C1
2 (x, y, C0

1 (y, x, 1, p1 : tmaturity) : texpiration, 1)

obtainable from C1
0 ◦q C0

1 .

2 With n = 1 we denote q1 = q and p0 = 1.
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Acceptance of the request is done by creating the inner commitment C0
1 (y, x, 1,

p1 : tmaturity) until the deadline texpiration. When the time-out elapses the
request commitment reaches the failed state. If the creditor wants to explic-
itly reject the request, it will respond by creating the negative commitment
¬C0

1 (y, x, 1, pay : 3) : 5, having the same deadline with the request commit-
ment3. The meaning of the above rejection is “I will not commit to you to bring
about p1 in 3 days; I will reconsider your request after 5 days”.

Definition 11. In a Request a Unilateral Contract (n=4, m=2) the debtor x
requests the creditor y to commit to bring about p1 if the condition q1 holds.

C4
2 (x, y, C1

1 (y, z, q1, p1) : texpiration, 1)

3.4 Informing Commitments

We see the informing act as a form of commitment in the sense that the agent
who propagates some information guarantees its validity. In other words, it is
committed to the creditor that the notified fact is true, based on the debtor’s
view of the world. Contract law names such type of statement terms. The truth
of the term is guaranteed by the agent that made the statement. We use this
type of commitment to allow information sharing between agents, a key-point in
the coordination of multi-agent systems.

The situation “My partner informs me that he has already sent the money,
while the bank says that the payment has not been made yet” is coded with
C0

1 (partner, me, 1, +∂p
Kpay) and C0

1 (bank, me, 1,−∂p
Kpay). The agent me will

fire both defeasible rules r1 : C0
1 (partner, me, 1, +∂p

Kpay) ⇒ pay and r2 :
C0

1 (bank, me, 1,−∂p
Kpay) ⇒ ¬pay, but it will give more credit to the statement

of the bank r2 � r1.

Definition 12. In a Fact Notification the debtor x informs creditor y if a spe-
cific sentence p is +Δτ

Xp, −Δτ
Xp, +∂τ

Xp, or −∂τ
Xp according to its defeasible

theory D.
C0

1 (x, y, 1, �p)

“I inform you that agent z has an active commitment for delivering to me the
item g1 within 3 days” is represented by C0

4 (me, you, 1, +Δp
OC0

1 (z, me, 1, g1 : 3)),
which may help me in the negotiation process with you.

Definition 13. In a Commitment Existence Notification the debtor x informs
the creditor y about the existence of a specific commitment according to its de-
feasible theory D.

C0
4 (x, y, 1, �C0

1 (z, w, 1, p))

When the sentence is definitely provable (� = ±Δ) we have a strong notification,
while when it is deafeasibly provable (� = ±∂) a weak notification, a revocable
commitment4.
3 Otherwise a form of negotiation may arise.
4 Similar to the FIPA ACL uncertainty operator.
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4 Commitment Life Cycle

During its life cycle, a commitment may be in one of the following states: open
offer, active, released, breached, fulfilled, canceled, or failed (figure 3), which are
also useful to be considered from a legal perspective.

t          =0maturity

t          =0maturity

Active

Released

>Cancel

p=1

p=1

<Release

<Release

>Create

Open offer

> executed by debtor x
< executed by creditor y

Failed Cancelled

Breached

Fulfilled

>Cancel v

Acceptance

Fig. 3. Life cycle with acceptance dependent on the type of commitment

We consider first a gratuitous promise C0
1 (x, y, 1, p : tmaturity) : texpiration.

Under the donative-promise principle, a simple, unrelied-upon gratuitous com-
mitment is unenforceable since there is no consideration [8] or no element of
exchange. Therefore, the breach of a C0

1 commitment attracts only social sanc-
tions or trust sanctions. The use of normative foundation of trust attached to
a C0

1 commitment serves to promote business relations. In the case when the
creditor y has relied on the commitment, one can make use of the doctrine of
promissory estoppel. This doctrine comes from the equity part of the law and it
prevents one party from withdrawing a promise made to a creditor, if that credi-
tor has relied on that promise and acted upon it. The only remedy of contract law
that can be applied in this case is reliance damages [8]. Also, the law stipulates
that this reliance must be foreseeable. In the context of open agent systems we
define a foreseeable fact as one which has been notified to the potential breacher.
For instance, in a supply chain scenario, the creditor must notify the promiser
that, based on the C0

1 commitment, it has signed other contracts: “I inform you
that, based on your gratuitous promise, I commit to deliver item g1 to my client
z within 3 days”. This is represented by C0

4 (me, you, 1, +Δp
KC0

1 (me, z, 1, g1 : 3)).
On the other hand, the estoppel is “a shield, not a sword”. It cannot be used as
the basis of an action on its own. Hence, we implement estoppel with defeaters.

In the case of the life cycle of a unilateral contract, the debtor x can revoke his
commitment anytime before acceptance. When the condition q becomes true, the
commitment becomes active. Until then, the debtor may cancel without consid-
ering this as a breach. Most courts now hold that creditor y must give notice of its
acceptance after it has done the requested act. If it does not do that, the commit-
ment that was formed by the act may be canceled without breach (of course, the
debtor must return the money). Therefore, the acceptance of a C1

1 commitment
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can be viewed as a composite operation: execution of q and a fact notification
C0

1 (x, y, 1, +∂p
Kq). Due to the late activation of the C1

1 commitment the promiser
x has maximal protection. If acceptance is late (tissue < tacceptance < tmaturity),
it becomes a counter-offer and it creates the power of acceptance for the initial
debtor x.

Similar rules are defined for other types of commitments. The main idea is
that the commitment is derived as knowledge in an open offer state and as
obligation in an active state. The transition from the open offer state into the
active state takes place when the acceptance of the proposed commitment occurs.
The acceptance depends on the type of commitment and it is equivalent to:
reliance in case of a gratuitous promise, accomplishment of q and notification
about it in the case of a unilateral contract, creation of the required commitment
in the case of a bilateral contract.

→t
I promise(p : tm, y) : ti

⇒p
I riskProne : ti

→p
K promissoryEstoppel : ti

r0 : promise(p : tm, y) : ti, riskProne : ti ⇒t
A create(x, c) : ti

r1 : create(x, c) : ti →p
K c : ti

r2 : c : ti, tm = ti →p
K ¬c : ti

r3 : c : ti, cancel(x, c) : ti ⇒p
K ¬c : ti

r4 : c : ti, release(y, c) : ti →p
O ¬c : ti

r5 : breached : ti ⇒p
O relianceDamages : ti+3, ¬c : ti

r6 : specificPerformance : ti �p
O ¬c : ti

r7 : execute(p) : ti ⇒p
K p : ti+2

r8 : assign(y, z, c) : ti, c : ti ⇒p
O ¬c : ti, C

0
1 (x, z, 1, p : tm) : ti

r9 : delegate(x, z, c) : ti, c : ti ⇒p
O ¬c : ti, C

0
1 (z, y, 1, p : tm) : ti

Fig. 4. Sample of rules for commitment operations

Possible operations on commitments: create, cancel, release, assign, and del-
egate (figure 4) are discussed next, considering their legal effect on a gratuitous
commitment c = C0

1 (x, y, 1, p : tm).

Create. Consider that agent x has the intention to satisfy sentence p for agent y,
until deadline tm. Its policy is risk prone, meaning that it creates the gratuitous
commitment c, while it has no guarantee that its partner will give something in
exchange. Moreover, the interaction is made under the doctrine of promissory
estoppel. The above intentions drive the agent to create the commitment c (rule
r0, which being transitive, the create action is executed once). The creation of a
commitment, an action typically undertaken by the debtor, is equivalent to an
open offer in contract law. Therefore, it is derived only as persistence knowledge
(rule r1) and is not considered an obligation in this state.

Cancel. The debtor x may cancel a commitment with no penalties only if the
commitment is an open offer (rule r3). The breached state is reached when the
time for accomplishing the promise elapses, activating the mechanism for com-
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puting reliance damages, which usually assumes the creation of another commit-
ment or contrary-to-duty obligation. In some situations, a commitment may be
active even after it is breached, allowed by defining rule r5 as defeasible. There-
fore, a normative agent may block the derivation of that conclusion in order to
force the execution of a specific commitment c (rule r6). When the time-out of
an open offer commitment expires its state becomes failed (rule r2).

Release. If the acceptance has been made, this operation releases the debtor
from its gratuitous commitment (rule r4). The agent x executes p, but the effect
is expected to be seen after two time steps (rule r7). The defeasible rule r7 leaves
space to treat some exceptions.

Assign. The assign operation, transferring the rights held by the creditor y to
another party, the assignee z, may be executed only by the creditor y and the
state of the commitment is preserved (rule r8). Common law favors the freedom
of assignment, unless there is an express prohibition against it, requiring that it
must occur in the present, to assign in the future having no legal effect.

Delegate. The delegate operation, transferring the duties held by the debtor
x to another party z, is executed only by the debtor x and the state of the
commitment is preserved (rule r9). The creditor must be informed of the act of
delegation. In case z breaches, the creditor y may elect to treat this failure as a
breach of the original commitment and to sue the debtor x or to choose the role
of a third party beneficiary.

5 Using Higher-Order Commitments

5.1 English Auction

We illustrate the usage of commitments in the English auction (figure 5). Ac-
cording to contract law, when an item is put up for auction, this is usually not
an offer, but rather a solicitation of offers (bids) or an invitation to treat. The
English auction protocol uses the pattern“request a unilateral contract”5. There-
fore, the auctioneer a has to compose a request commitment with a unilateral
contract (f1 in figure 6, where ”-” is used to express existential quantification)
for item g1 with starting price 10$, and bids expected for 3 time steps. If bids
are accepted, a has to deliver g1 at t7, while b has to pay for it at t9.

Suppose that two bids are received (f2 and f3) at t2, both open offers. Hence,
at this stage, both b and b′ may cancel their C1

1 commitments without breach,
and a also may cancel its C4

2 commitment, because the inner commitment is not
active yet (according to current practice in law). The above commitments reach
the active state and they become obligations only if a accepts them. The bidders
have made offers according to the auctioneer request regarding the deadline for
5 For the simplified Net bill protocol [9] which ignores the cryptography-related aspect

and also the existence of a third party agent, unlike the complete version of the
Net bill protocol [10] we would use the ”request a conditional bilateral contract”
C6

3 (x, y, C4
3(y, x, C1

1(x, y, Deliver,EPO), receipt), 1).
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r21 : deliver(g1) : t3 →p
K C0

1 (b, a, 1, +∂p
Kg1 : t7)) : t3

r22 : deliver(g1) : t3 ⇒p
K g1 : t7

r23 : g1 : t3 →p
O C0

1 (b, a, 1, +∂p
Kg1 : t7)) : t3

r24 : pay : t9 →t
A release(a, b, C0

1 (b, a, 1, 12 : t9)) : t9

Fig. 5. Sample rules for English auction

f1 : C4
2 (a,−, C1

1 (−, a, g1 : t7, bid > 10 : t9) : 3, 1) : t1
f2 : C1

1 (b, a, g1 : t7, 12 : t9) : t2
f3 : C1

1 (b′, a, g1 : t7, 11 : t9)) : t2
f4 : C2

4 (a, b′, 1, +Δp
K¬C1

1 (b′, a, g1 : t7, 11 : t9))) : t3
f5 : C2

4 (a, b, 1, +Δp
OC1

1 (b, a, g1 : t7, 12 : t9))) : t3
f6 : deliver(g1) : t3
f7 : C0

1 (a, b, 1, +∂p
Kg1 : t7)) : t3

f8 : C0
1 (b, a, 1, +Δp

Kg1 : t7)) : t7
f9 : C0

1 (b, a, 1, +∂p
K12 : t9)) : t7

Fig. 6. A trace in English auction

sending bids and tmaturity. In other encounters they might react with different
terms, which would be considered a counter-offer and a more complex form of
negotiation would arise.

At t3, when the deadline for receiving bids expires, a clears the auction, con-
sidering the bids that conform to the request and accepting the winning one
(lower level aspects of coordination are not shown). It may explicitly reject one
bid (f4) and accept the other one (f5). In a unilateral contract the completion of
the requested act is necessary to indicate acceptance. Most courts now hold that
creditor y must also give notice of its acceptance after it has done the requested
act. Therefore, the acceptance of a C1

1 commitment can be viewed as a composite
operation: execution (f6) and a commitment notification (f7). At this time, the
existence of the requested commitment C1

1 in f1 is verified and C4
2 is discharged,

leaving C1
1 .

The defeasible derivation rule r22 allows to treat some exceptions (e.g., due
to an accident the item has not arrived). When the partner informs that the
item has arrived (f8), the strict rule r24 fires, C1

1 becomes active, and when
the item arrives after 4 time steps b1 releases it. With the payment made, the
auctioneer would release the debtor b from its commitment (rule r24), otherwise
the mechanism for treating exceptions should be activated according to a’s policy.

5.2 Supply Chain Contract

Higher order commitments may be aggregated into contracts (figure 7) signed
between agents. We illustrate the usage of commitments in the formal represen-
tation of supply chain contracts, traditionally governed by long time running
contracts. The current trend consists in a reorientation towards more flexible
contracts, at least regarding nonstrategic resources. The selection of the best
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alternative assumes a good estimation of the risk implied. The types of contrac-
tual clauses which include elements of risk management are: the total minimum
quantity contract6 (clause i), the periodical contract with options7 (clauses ii,
iii), or requirement contracts8 (clause iv), illustrated in the following contract:
(i) The supplier s commits to deliver the quantity of items needed by the buyer
b at the price of 20$ per unit, if the buyer b guarantees that the respective quan-
tity, in the orders made on June and July, consists of at least 100 items (r41 in
figure 8). (ii) The supplier s commits to deliver daily the item g1 to the buyer
b at the price P=15$ (r44, first part). (iii) The supplier s commits to deliver an
extra number of r items to the buyer b for the price P=10$ if the buyer orders
that quantity no longer than 20 days (r44, second part). (iv) The buyer b com-
mits to agent s not to order items from the competitor z, only if the delay in
delivering the items is greater than 2 days (r46). (v) The supplier s guarantees
to notify the buyer b until 15 June if the rate of progress of the work is too slow
to meet the time of maturity (r48 in figure 8).

We need two different commitments that are logically composed, in order
to represent a periodical contract with options (r44 in figure 8). The periodic-
ity is modeled by inferring the create operation with action modality. Hence,
in each day a similar commitment will be created. This is logically composed
with the commitment in which the seller promises to execute the option if the
buyer exercises it before a future date. If we denote C1

0 (b, s, p, 1) : Jun by Ci,
C1

0 (b, s, q, 1) : Jun by Cii, C1
1 (s, b, 15 : 1, 30 : 1) : 1 by Ciii, C1

0 (b, s, r, 1) : 20 by
Civ, C1

0 (b, z, g, 1) by Cv, and C0
1 (s, b, 1, +ΔtooSlow) : 15Jun) by Cvi, the static

formal representation appears in figure 9.

5.3 Risk in the Supply Chain

A fundamental difference between human and agent societies is that humans,
even if they are governed by laws during their interactions, demonstrate some
heterogeneity in their interpretation of what a commitment represents. Allowing
such a heterogeneity in agent societies is certainly not easy, but probably funda-
mental to deploy them in realistic applications, especially if they interact with

6 The buyer guarantees that his cumulative orders for all periods in the contract
horizon will exceed a specified minimum quantity. In return, the supplier offers price
discounts. In practice, the supplier provides a menu of (per unit price, total minimum
commitment) pairs from which the buyer chooses a commitment at the corresponding
price (rules r42, r43 in figure 8).

7 At the beginning of the horizon, the buyer commits to purchase given quantities every
period. The buyer has a limited flexibility to purchase options (at unit option price)
from the supplier that allows him to buy additional units, by paying an exercise price.
So, options permit the buyer to adjust order quantities to the observed demands.

8 The supplier commits to deliver all the items that the buyer will order. The buyer
commits not to order from another agent. Thus, the supplier takes the risk of demand
fluctuations, while the buyer gives up its right of buying from another supplier.
Therefore it can loose some future bargain opportunities. This contract assigns the
seller a monopolistic power over its partner.



168 I.A. Letia and A. Groza

Guarantee Promise

Guarantee Fact

Forward Contract

Guaranteee Commitments

Unilateral Contract

Bilateral Contract

Contractual Commitments

Request Promise

Request a Request

Request Act

Request Commitments

Conditional Notification

Commitment Notification

Fact Notification

Informing Commitments

C
ontractual Pattern

N
ogotiation Pattern

is−a

is−a

is−a

is−a

is−a

is−a

H
igh O

rder C
om

m
itm

ent

has−DT

has−DT

has−DT

has−DT

has−DT

has−DT

debtor

Agent

Action

breached

open offer

active

fulfilled

create

cancel

release

assign

delegate

Gratuitous Promise

C
ontract L

aw

creditor

has−DT

Defeasible Theory
persistent

persistent

persistent

transitive

transitive

transitive

persistent

O

K

I

A

controls

is−a

Communicative Act

released

has−stateaggregated−in

Contract

updates know
ledge

updates legal obligations

is−a

Commitment Operation

instance−of

is−a

Time
transitive

governed−by

Fig. 7. Aggregation of contractual patterns into a contract

human users. Consider the contract between two agents me and you, with agent
me having to deliver the item, while agent you having to pay for it.

There are more alternatives to represent this process, depending on the com-
mitments signed between agents, identified here by five levels of risk attitudes
(table 1)9. Assuming agent me has a risk prone strategy (⇒p

I riskProne : ti), it
will create commitments C0

1 (me, you, 1, deliver) and C4
0 (me, you, C0

1 (you, me, 1,
pay), 1). The acceptance of C0

1 (me, you, 1, deliver) appears when agent you re-
lies on it and it also notifies agent me about this reliance10. Once the acceptance
occurred, the commitment reaches the active state (⇒p

O C0
1 (me, you, 1, deliver))

and thus it becomes an obligation for agent me. On the other side, agent you has

9 The agent’s attitude towards risk has also consequences in choosing the type of rem-
edy in case of breach. For instance, in case of a risk prone strategy, the gratuitous
promise is governed by the reliance damages doctrine, while in the case of a mod-
erate risk averse strategy the unilateral contract is preferred under the expectation
damages theory.

10 Such a notification may look like this: “I (agent me), based on a gratuitous
promise, commit to deliver item g1 to my client z within 3 days”, represented by
C0

4 (you,me, 1, +Δp
KC0

1 (you, z, 1, g1 : 3)).
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r41 :→p
K C3

5 (s, b, C0
3 (b, s, 1, C1

0 (b, s, p, 1) : Jun ∧ C1
0(b, s, q, 1) : Oct ∧ p + q > 100),

C1
1 (s, b, 20 ∗ (p + q), p + q))

r42 :→p
K C3

5 (s, b, C0
3 (b, s, 1, C1

0 (b, s, p, 1) : Jun ∧ C1
0(b, s, q, 1) : Oct ∧ p + q > 200),

C1
1 (s, b, 18 ∗ (p + q), p + q))

r43 :→p
K C3

5 (s, b, C0
3 (b, s, 1, C1

0 (b, s, p, 1) : Jun ∧ C1
0(b, s, q, 1) : Oct ∧ p + q > 300),

C1
1 (s, b, 16 ∗ (p + q), p + q))

r44 :→p
A create(C1

1(s, b, 15 : 1, g1 : 1) : 1)�
→p

K C3
5 (s, b, C1

0(b, s, r, 1) : 20, C1
1 (s, b, 10 ∗ r, r))

r46 :→p
K C3

1 (b, s, delay ≤ 2, ¬C1
0 (b, z, g, 1))

r47 : C1
0 (b, z, g, 1)) →p

K breach
r48 :→p

K C1
4 (s, b, tooSlow : ti ∧ ti < 15Jun, C0

1 (s, b, 1, +ΔtooSlow) : 15Jun)
r42 � r41, r43 � r42.

Fig. 8. Rules for generating a supply chain contract

〈{[C1
1 (s, b) ◦q (Ci ∧ Cii ∧ p + q > 100) ◦p (C1

1 (s, b) ◦q 20 ∗ (p + q) ◦p p + q)]∨
[C1

1 (s, b) ◦q (Ci ∧ Cii ∧ p + q > 200) ◦p (C1
1 (s, b) ◦q 18 ∗ (p + q) ◦p p + q)]∨

[C1
1 (s, b) ◦q (Ci ∧ Cii ∧ p + q > 300) ◦p (C1

1 (s, b) ◦q 16 ∗ (p + q) ◦p p + q)]}∧
{Ciii � [C1

1 (s, b) ◦q Civ ◦p (C1
1(s, b) ◦q 10 ∗ r ◦p r)]}∧

C1
1 (b, s) ◦q delay ≤ 2 ◦p Cv∧

C1
1 (s, b) ◦q (tooSlow : ti ∧ ti ≤ 15Jun) ◦p Cvi〉

Fig. 9. Representation of the contract

no obligation at all, knowing only that its partner has requested to promise to
pay for the item11. In case of a risk neutral strategy, the acceptance occurs at the
creation of the inner commitment (→t

A create(you, C0
1 (you, me, 1, pay)) ). Thus,

each agent has one obligation: →p
O C0

1 (me, you, 1, deliver) for agent me and
→p

O C0
1 (you, me, 1, pay) for agent you. In case of a risk averse strategy the ac-

ceptance of the unilateral contract is done by the completion of the requested act,
in this case the payment. Therefore, agent me has the obligation to deliver the
item only after it had received the payment (pay →p

O C0
1 (me, you, 1, deliver)).

Table 1. Risk attitudes between two agents

Risk Commitments Meaning

risk prone C0
1(me, you, 1, deliver)∧ I commit to deliver the item and I

C4
0(me, you, C0

1(you, me, 1, pay), 1) request you to commit to pay for it
moderate risk prone C0

1(me, you, 1, deliver)∧ I commit to deliver the item
C1

0(me, you, pay, 1) and I request you to pay for it
risk neutral C1

3(me, you, C0
1(you, me, 1, pay), I commit to deliver the item

deliver) if you commit me to pay for it
moderate risk averse C1

1(me, you, pay, deliver) I commit to deliver the item
after you pay for it

risk averse C1
4(me, you, pay, C0

1(me, you, 1, deliver)) I will commit to deliver the item
if you pay me

11 In the case of a moderate risk prone strategy, agent me requests agent you to effec-
tively pay for the item and not only to promise to pay.
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Table 2 illustrates a normal flow of the execution for both risk neutral and
moderate risk averse agents. From another viewpoint, risk attitudes may be
seen as different business interaction protocols used for executing the same task.
Therefore, high order commitments can handle exceptions that might occur when

Table 2. Risk neutral and moderate risk averse behavior

Moderate risk averse
State me you common information

t1 open offer →t
A create(me, C1

1(me, →p
K C1

1(me, you, pay, deliver)
you, pay, deliver))

t2 acceptance →t
A pay →p

O C1
1(me, you, 1, deliver)

t3 fulfilled →t
A deliver

Risk neutral
State me you common information

t1 open offer →t
A create(me, C1

3(me, you, →p
K C1

3(me, you, C0
1(you, me,

C0
1(you, me, 1, pay), deliver) 1, pay), deliver)

t2 acceptance →t
A create(me, →p

O C0
1(me, you, 1, deliver)

C0
1(you, me, 1, pay)) →p

K C0
1(you, me, 1, pay)

t3 fulfilled →t
A deliver →p

O C0
1(you, me, 1, pay)

t4 →t
A pay

some actions might be executed in an unacceptable sequence, without the need
to introduce preconditions for actions as in [9]. Note also, for the risk neutral
scenario the deliver operation is equivalent to reliance on the contract and,
based on the promissory estoppel principle, the commitment C0

1 (you, me, 1, pay)
is derived as obligation.

Now consider the situation when agent me is conditioned by its supplier sup.
In order to deliver its output item, it has to obtain first its input item (table 3)
with other possible attitudes towards risk. In table 3 agent me has the obligation

Table 3. Risk attitudes considering a third party

Risk Commitments Meaning

risk averse C1
5(me, you, C0

1(sup, me, 1, deliver′), If my supplier commits to deliver my input
C0

1(me, you, 1, deliver) item, I commit to deliver my output item
risk neutral C5

5(me, you, C1
3(sup, me, If my supplier commits to deliver my input

C0
1(me, sup, 1, pay′), deliver′), item if I promise him to pay,

C0
1(me, you, 1, deliver)) I commit to deliver my output item

risk prone C5
3(me, you, C1

1(sup, me, pay, deliver), If my supplier commits to deliver
C0

1(me, you, 1, deliver) my input item if I pay it,
I commit to deliver my output item

to deliver its output item only in case it has active contracts with its supplier
regarding its input item. A similar risk averse strategy can be adopted on the
other side of the flow within the supply chain. In this situation, the contracts
with the suppliers become active only if demand exists for the items, a part of
the market fluctuations being taken by the supplier instead of me.

We also advocate that defeasible logic is appropriate for the problem in
hand. Consider the defeasible theory in figure 10 and the scenario in which
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badCreditCard appears after the agent has been inferred C1
0 (me, you, 1, deliver :

ti+2) as obligation. Traditionally two solutions exist: it is considered an excep-
tion, modeled as a protocol [9] which is attached to the initial flow that must
be reconsidered or, in some deontic approaches, a rollback operator is used. The
nonmonotonic property of defeasible logic allows the obligation to be defeated
when an exception occurs.

r51 :→p
K C1

1 (me, you, pay : ti, deliver : ti+2)
r52 : pay : ti →p

O C1
0 (me, you, 1, deliver : ti+2)

r53 : badCreditCard : ti �p
O C1

0 (me, you, 1, deliver : ti)
r53 � r52.

Fig. 10. Dealing with new information

Another point is that defeasible logic simplifies the process of specifying pre-
conditions for commitments in the spirit suggested by Winikoff et al. [9], who
propose that preconditions be replaced by commitments to avoid certain actions,
termed prohibitions. Thus, a prohibition of the form P (x, a) states that agent
x is prohibited from performing action a. At the communicative level, in our
framework this is specified by C1

0 (y, x,¬a : tissue, 1), in which agent y requests
agent x not to execute action a at least until time tissue. At the defeasible theory
level, this prohibition is simply captured by defeaters: �p

A a : tissue. Following
this idea, a conditional prohibition [9] of the form P (x, a, p), stating that agent
x is prohibited from performing action a if p holds, is specified as a communica-
tive act by C4

2 (y, x, C1
1 (x, y, p,¬a) : tissue, 1). Similarly, the correspondent rule

at the logic level is p �p
A a : tissue. Additionally, we can specify exactly when

the action is prohibited or if the prohibition is persistent.

6 Related Work and Conclusions

Ideas from legal reasoning have been applied to social commitments [1,7], but
not using the contract law, although the rich semantics of higher-order commit-
ments [7] introduces concepts like: ought, pledge, taboo, convention, collective
commitment, obligation, claim, privilege, power, and immunity.

The declarative contracts in RuleML [11] use a semantic part for contracts and
contracts have already been represented with defeasible logic and RuleML [12].
By introducing commitments, we offer a more flexible solution for contract mon-
itoring and for agents reasoning on current actions.

Causal logic has been used [13] for protocol engineering, leading to a formal
method for protocol design, and commitments can also be modeled in event
calculus [14]. Our commitments are addressed in a more contractual style and the
deadlines attached to commitments offer a realistic approach from a contractual
point of view.

Commitments between a network of agents have also been analyzed [3], but
without time constraints. Our higher-order commitments are closer to the leveled
commitment contracts [6], with different attitudes toward risk.
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Verdicchio and Collombetti [15] treat the semantics of communicative acts in
terms of social commitments, instead of the classical approach, with a precom-
mitment similar to our commitment having the open offer state derived from
contract law. Our higher-order commitments have a similar semantics to the
derivative communicative acts [15], but we also cover the completion of the re-
quested act. In [16] a commitment-based architecture for contract enactment
is proposed, where exceptions in the contract are handled by the virtual or-
ganization to which the agents belong. Our proposed commitments can model
specific contracts that appear in real life scenarios and exceptions are caught
using defeasible reasoning.

With defeasible commitments in the execution of contracts, we obtain two
main advantages. On the one hand, agents can reason with incomplete informa-
tion, including confidential contractual clauses. On the other hand, this frame-
work is suitable for exceptions and legal reasoning: (i) concerning resolution of a
dispute, strategies are explainable; (ii) skeptical mechanism; (iii) allows prefer-
ences; (iv) linear complexity; (v) fine-grained mechanism to deal with exceptions
in the same manner for expected or unexpected ones.

Acknowledgments

We are grateful to the anonymous reviewers for useful comments. Part of this
work was supported by the grant 27702-990 from the National Research Council
of the Romanian Ministry for Education and Research.

References

1. Pasquier, P., Flores, R.A., Chaib-draa, B.: Modelling flexible social commitments
and their enforcement. In Gleizes, M.P., Omicini, A., Zambonelli, F., eds.: Engi-
neering Societies in the Agents World. LNAI 3451, Springer-Verlag (2005) 139–151

2. Mallya, A.U., Singh, M.P.: Modeling exceptions via commitment protocols. In: 4th
International Joint Conference on Autonomous Agents and Multiagent Systems,
Utrecht, Netherlands, ACM Press (2005) 122–129

3. Wan, F., Singh, M.: Formalizing and achieving multiparty agreements via com-
mitments. In: 4th International Joint Conference on Autonomous Agents and
Multiagent Systems, Utrecht, Netherlands, ACM Press (2005) 770–777

4. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in de-
feasible logic. In: 10th International Conference on Artificial Inteligence and Law,
Bologna, Italy (2005) 25–34

5. Letia, I.A., Groza, A.: Running contracts with defeasible commitments. In Moonis,
A., Dapoigny, R., eds.: Advances in Applied Artificial Intelligence. LNCS 4031,
Springer-Verlag (2006) 91–100

6. Sandholm, T., Lesser, W.: Leveled commitment contracts and strategic breach.
Games and Economic Behavior 35 (2001) 212–270

7. Singh, M.P.: An ontology for commitments in multiagents systems: Toward a
unification of normative concepts. Artificial Intelligence and Law 7 (1999) 97–113



Agreeing on Defeasible Commitments 173

8. Craswell, R.: Contract law: General theories. In Bouckaert, B., Geest, G.D., eds.:
Encyclopedia of Law and Economics, Volume III. The Regulation of Contracts.
Cheltenham (2000) 1–24

9. Winikoff, M., Liu, W., Harland, J.: Enhancing commitment machines. In: Declar-
ative Agent Languages and Technologies. LNAI 3476, Springer-Verlag (2005) 198–
220

10. Cox, B., Tygar, J., Sirbu, M.: Netbill security and transaction protocol. In: 1st
USENIX Workshop on Electronic Commerce, New York (1995) 77–88

11. Grosof, B.: Representing E-Commerce rules via situated courteous logic programs
in RuleML. Electronic Commerce Research and Applications 3(1) (2004) 2–20

12. Governatori, G.: Representing business contracts in RuleML. Journal of Cooper-
ative Information Systems 14(2-3) (2005) 181–216

13. Chopra, A.K., Singh, M.P.: Contextualizing commitment protocols. In: 5th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, Hako-
date, Japan, ACM Press (2006) 1345–1352

14. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus:
An approach for specifying and executing protocols. Annals of Mathematics and
Artificial Intelligence 42(1-3) (2004) 227–253

15. Verdicchio, M., Colombetti, M.: A commitment-based communicative act library.
In: 4th International Joint Conference on Autonomous Agents and Multiagent
Systems, Utrecht, Netherlands, ACM Press (2005) 755–761

16. Udupi, Y.B., Singh, M.P.: Contract enactment in virtual organizations: A
commitment-based approach. In: 21st National Conference on Artificial Intelli-
gence, Boston, Massachusetts, AAAI Press (2006)



A Dynamic Logic Programming Based System
for Agents with Declarative Goals

Vivek Nigam� and João Leite

CENTRIA, New University of Lisbon, Portugal
vivek.nigam@gmail.com,
jleite@di.fct.unl.pt

Abstract. Goals are used to define the behavior of (pro-active) agents.
It is our view that the goals of an agent can be seen as a knowledge base of
the situations that it wants to achieve. It is therefore in a natural way that
we use Dynamic Logic Programming (DLP), an extension of Answer-
Set Programming that allows for the representation of knowledge that
changes with time, to represent the goals of the agent and their evolution,
in a simple, declarative, fashion. In this paper, we represent agent’s goals
as a DLP, discuss and show how to represent some situations where the
agent should adopt or drop goals, and investigate some properties that
emerge from using such representation.

1 Introduction

It is widely accepted that intelligent agents must have some form of pro-active
behavior [20]. This means that an intelligent agent will try to pursue some set
of states, represented by its goals. Generally, to determine these states, agents
must reason for example, with their beliefs, capabilities or with other goals. It is
therefore our perspective that the goals of an agent can be seen as a knowledge
base encoding the situations it wants to achieve. Consider the following program,
containing one rule, as an example of an agent’s goal base:

goal(write paper) ← not deadline over

the agent will consider to write a paper (goal(write paper)), if the deadline is
believed not to be past (not deadline over).

Programming with a declarative knowledge representation has demonstrated
several advantages over classical programming. For instance, explicitly encoded
knowledge can easily be revised and updated. Recently, an increasing amount of
research [19,7,14,17,18,16] has been devoted to the issue of programming agents
with a declarative representation of goals. The declarative side of goals intimately
related to the need to check if a goal has been achieved, if a goal is impossible, if
a goal should be dropped, i.e., if the agent should stop pursuing a goal, if there is

� Supported by the Alβan Program, the European Union Programme of High Level
Scholarships for Latin America, no. E04M040321BR.

M. Baldoni and U. Endriss (Eds.): DALT 2006, LNAI 4327, pp. 174–190, 2006.
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interference between goals [19,16]; and also to the need to construct agents that
are able to communicate goals with other agents [14]. In [19,16,14] the reader
can find examples illustrating the need for a declarative aspect to goals.

Furthermore, agents, due to changes in the environment, have the need to
drop goals (maybe because the goal has been achieved, or a failure condition is
activated [19]), adopt new goals [6,17,16,19], or even change the way they reason
to determine their goals. Consider, in the previous example, that the deadline
to submit the paper has been postponed. Clearly, the previous rule is not valid,
since the previous deadline in no longer a condition to drop the goal of writing
the paper, hence the rule should be updated. This means that the goals of an
agents are dynamic knowledge bases, where not only the extensional part (i.e.,
the set of facts) change, but also their intentional part (i.e., the set of rules).

In this paper, we will address the problem of representing and reasoning about
dynamic declarative goals using Dynamic Logic Programming (DLP).

In [13,9], the paradigm of DLP was introduced. According to DLP, knowledge
is given by a series of theories, encoded as generalized logic programs1, each rep-
resenting distinct states of the world. Different states, sequentially ordered, can
represent different time periods, thus allowing DLP to represent knowledge that
undergoes successive updates. Since individual theories may comprise mutually
contradictory as well as overlapping information, the role of DLP is to employ
the mutual relationships among different states to determine the declarative se-
mantics for the combined theory comprised of all individual theories at each
state. Intuitively, one can add, at the end of the sequence, newer rules (arising
from new or reacquired knowledge) leaving to DLP the task of ensuring that
these rules are in force, and that previous ones are valid (by inertia) only so far
as possible, i.e. that they are kept for as long as they are not in conflict with
newly added ones, these always prevailing.

There has been, in the past years, an intense study of the properties of DLP
to represent knowledge bases that evolve with time [2,9,12]. However, up to now,
there hasn’t been much investigation of how DLP could be used to represent, in a
declarative manner, the goals of an agent. Since DLP allows for the specification
of knowledge bases that undergo change, and enjoys the expressiveness provided
by both strong and default negations, by dint of its foundation in answer-set
programming, it seems a natural candidate to be used to represent and to reason
about the declarative goals of an agent, and the way they change with time.

For our purpose, we will use a simple agent framework to be able to clearly
demonstrate the properties obtained by using DLP. The agents in this frame-
work are composed of data structures representing their beliefs (definite logic
program), goals (DLP), and committed goals (intentions). The semantics of
these agents are defined by a transition system composed of reasoning rules. We
propose three types of reasoning rules: 1) Intention Adoption Rules: used to
commit to a goal by adopting plans to achieve it; 2) Goal Update Rules: used to
update an agent’s goals using the DLP semantics; 3) Intention Dropping Rules:
used to drop previously committed goals. We show that agents in this frame-

1 Logic programs with default and strong negation both in the body and head of rules.
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work are able to express achievement and maintenance goals, represent failure
conditions for goals, and are able to adopt, drop or change their goals.

The remainder of the paper is structured as follows: in the next Section we
are going to present some preliminaries, introducing Dynamic Logic Program-
ming. In Section 3, we introduce the agent framework we are going to use. Later
in Section 4, we discuss some situations related to when to drop and adopt
new goals, and how to use the DLP semantics to represent these situations. In
Section 5, we give a simple example illustrating how DLP could be used to rep-
resent goals, to finally draw some conclusions and propose some further research
topics in Section 6.

2 Preliminaries

In this section, we are going to give some preliminary definitions that will be
used throughout the paper. We start by introducing the syntax and semantics
of goal programs. Afterwards, we introduce the semantics of Dynamic Logic
Programming.

2.1 Languages and Logic Programming

Let K be a set of propositional atoms. An objective knowledge literal is either an
atom A or a strongly negated atom ¬A. The set of objective knowledge literals is
denoted by L¬

K. If {L1, . . . , Ln} ⊆ L¬
K then goal (L1, . . . , Ln), def (L1, . . . , Ln),

maintenance (L1, . . . , Ln) ∈ LG2. We dub the element of LG objective goal liter-
als. An objective literal is either an objective knowledge literal or an objective
goal literal. A default knowledge (resp. goal) literal is an objective knowledge
(resp. goal) literal preceded by not . A default literal is either a default knowl-
edge literal or a default goal literal. A goal literal is either an objective goal literal
or a default goal literal. A knowledge literal is either an objective knowledge lit-
eral or a default knowledge literal. A literal is either an objective literal or a
default literal. We use L¬,not

K to denote the set of knowledge literals and Lnot
G to

denote the set of goal literals.
The set, LG also known as the goal language, uses a special symbol, goal(.)

to represent the conjunction of achievement goals; the special symbol, mainte-
nance(.), to represent maintenance goals; the special symbol, def(.), to represent
defeasible goals.

A goal rule r (or simply a rule) is an ordered pair Head (r) ← Body (r) where
Head (r) (dubbed the head of the rule) is a goal literal and Body (r) (dubbed the
body of the rule) is a set of literals. A rule with Head (r) = L0 and Body (r) =
{L1, . . . , Ln} will simply be written as L0 ← L1, . . . , Ln. A goal program (GP)
P , is a finite or infinite set of rules. If Head(r) = A (resp. Head(r) = not A)
then not Head(r) = not A (resp. not Head(r) = A). If Head (r) = ¬A (resp.
2 We will consider that there is a total order over the set of objective literals, L¬

K,
and that the order in which the objective literals appear in the symbols of the goal
language are based in this predefined ordering.
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Head(r) = A), then ¬Head (r) = A (resp. ¬Head(r) = ¬A). By the expanded
goal program corresponding to the GP P , denoted by P, we mean the GP ob-
tained by augmenting P with a rule of the form not ¬Head (r) ← Body (r) for
every rule, in P , of the form Head (r) ← Body (r), where Head (r) is an ob-
jective goal literal3. Two rules r and r′ are conflicting, denoted by r �� r′, iff
Head(r) = not Head(r′).

An interpretation M is a set of objective literals that is consistent i.e, M does
not contain both:

– A and ¬A;
– goal(L1, . . . , L, . . . , Ln) and goal(L1, . . . ,¬L, . . . , Ln);
– maintenance(L1, . . . , L, . . . , Ln) and maintenance(L1, . . . ,¬L, . . . , Ln);
– maintenance(L1, . . . , L, . . . , Ln) and goal(L1, . . . ,¬L, . . . , Ln).

An objective literal L is true in M , denoted by M � L, iff L ∈ M , and
false otherwise. A default literal not L is true in M , denoted by M � not L,
iff L /∈ M , and false otherwise. A set of literals B is true in M , denoted by
M � B, iff each literal in B is true in M . Only inconsistent sets of objective
literals (In), will entail the special symbol ⊥ (denoted by In |= ⊥). ⊥ can be
seen semantically equivalent to the formula A ∧ ¬A. An interpretation M is an
answer set (or stable model) of a GP P iff M ′ = least (P ∪ {not A | A �∈ M}),
where M ′ = M ∪{not A | A �∈ M}, A is an objective literal, and least(.) denotes
the least model of the definite program obtained from the argument program by
replacing every default literal not A by a new atom not A.

For notational convenience, we will no longer explicitly state the alphabet K.
And as usual, we will consider all the variables appearing in the programs as a
shorthand for the set of all their possible ground instantiations.

2.2 Dynamic Logic Programming

A dynamic logic (goal) program (DLP) is a sequence of goal programs. Let P
= (P1, ..., Ps) be a DLP and P ′ a GP. We use ρ (P) to denote the multiset of all
rules appearing in the programs P1, ...,Ps, and (P , P ′) to denote (P1, ..., Ps, P

′).
The semantics of a DLP is specified as follows:

Definition 1 (Semantics of DLP). [9,1] Let P = (P1, . . . , Ps) be a dynamic
logic program A be an objective literal, ρ (P), M ′ and least(.) be as before. An
interpretation M is a (goal dynamic) stable model of P iff

M ′ = least ([ρ (P) − Rej(M,P)] ∪ Def(M,P))

Where:

Def(M,P) = {not A | �r ∈ ρ(P), Head(r) = A, M � Body(r)}
Rej(M,P) = {r | r ∈ Pi, ∃r′ ∈ Pj , i ≤ j ≤ s, r �� r′, M � Body(r′)}

3 Expanded programs are defined to appropriately deal with strong negation in up-
dates. For more on this issue, the reader is invited to read [10,9]. From now on, and
unless otherwise stated, we will always consider generalized logic programs to be in
their expanded versions.



178 V. Nigam and J. Leite

We will denote by SM(P) the set of stable models of the DLP P . Further
details and motivations concerning DLPs and its semantics can be found in [9].

The next example illustrates how a DLP could be used to represent the goals
of an agent.

Example 1. Consider the goals of a young agent that reached a point in her life
that she is interested in having a boyfriend. However, to find a boyfriend (as
many know) may not be the easiest task, but she knows that being pretty helps
to achieve it. We can represent this situation by the following program:

P1 : goal(boyfriend) ← not boyfriend
goal(pretty) ← not pretty, goal(boyfriend)

As she is not pretty and doesn’t have a boyfriend, her initial goals would be
to have a boyfriend and to be pretty, represented by the unique stable model
of P1, {goal(boyfriend), goal(pretty)}. Her mother, noticing the desires of her
daughter and as usual looking for the best for her child, immediately tells her
that she should study. As the agent respects her mother, she updates her goals
with the program P2, stating the incompatibility between studying and having
a boyfriend:

P2 : not goal(boyfriend) ← goal(study)
goal(study) ←

Since, P2 is a newer program than P1, the rule goal(boyfriend) ← not
boyfriend will be rejected, according to the semantics of DLP, by the rule
not goal(boyfriend) ← goal(study). Furthermore, the goal of being pretty will
no longer be supported. Hence, the DLP (P1, P2) has a unique stable model,
{goal(study)}. After sometime, the agent grows and becomes more confident
(to a point that she can question her mother). As she is tired of studying and
attending the boring math classes, she decides that studying is no longer her
objective. She then, updates her goals with the program P3:

P3 : not goal(study) ←

As a result, the rule goal(study) ← will be rejected and she will once more
have as a goal to find a boyfriend. The DLP (P1, P2, P3) has the unique stable
model {goal(boyfriend), goal(pretty)}. However, discussing with some of her
friends (or maybe reading some women magazine), she discovers that to be
pretty either she has to wear nice clothes (go to the shopping) or have a nice
body (fitness), therefore she updates her goal with the program, P4:

P4 : goal(shopping) ← not shopping, goal(pretty), not goal(fitness)
goal(fitness) ← not fitness, goal(pretty), not goal(shopping)

The DLP (P1, P2, P3, P4) has two stable models, one representing that she
has the goal of shopping {goal(boyfriend), goal(pretty), goal(shopping)}, and
another of getting fit {goal(boyfriend), goal(pretty), goal(fitness)}.
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As illustrated in the example above, a DLP can have more than one stable
model. But then, how to deal with these stable models and how to represent the
semantics of a DLP? This issue has been extensively discussed and three main
approached are currently being considered [9]:

Skeptical - |=∩ According to this approach, the intersection of all stable mod-
els is used to determine the semantics of a DLP. Therefore, a formula ϕ is
entailed by the DLP P , denoted by P |=∩ ϕ, iff it is entailed by all the
program’s stable models;

Credulous - |=∪ According to this approach, the union of all stable models is
used to determine the semantics of a DLP. Therefore, a formula ϕ is entailed
by the DLP P , denoted by P |=∪ L, iff it is entailed by one of the program’s
stable models;

Casuistic - |=Ω According to this approach, one of the stable models is selected
by a selection function Ω, to represent the semantics of the program. Since,
the stable models can be seen as different consistent options, or possible
worlds, by adopting this approach the agent would commit to one of these
options. We use P |=Ω L, to denote that formula ϕ is entailed by the stable
model of the DLP P , selected by Ω;

3 Agent Framework

In this Section, we define the agent framework4 that we will use to demonstrate
the properties obtained by using Dynamic Logic Programming to represent the
goals of an agent. An agent in this framework is composed by a belief base
representing what the agent believes the world is; a goal base representing the
states the agent wants to achieve; a set of reasoning rules; and a set of intentions
with two associated plans representing the goals that the agent is currently
committed to achieve. We are considering that the agent has, at its disposal, a
plan library represented by the set of plans Plan. A plan can be viewed as a
sequence of actions that can modify the agent’s beliefs or/and the environment
surrounding it, and is used by the agent to try to achieve a committed goal, as
well as to do the cleaning up actions.

The idea behind associating two plans to an agent’s intention, is that one of
the plans, πachieve, will be used to try to achieve the intention, and the second
plan, πclean, is used to do all the cleaning up actions after the goal is dropped,
or when there are no more actions to be performed in πachieve. For example, if
an agent’s intention is to bake a cake, it would execute an appropriate plan to
achieve its goal (πachieve), gathering the ingredients, the utensils, and setting up
the oven. After the cake is baked, the agent would still have to wash the utensils
and throw the garbage away, these actions could be seen as clean up actions
(πclean).

4 The agent framework defined in this section could be seen as a modified (simplified)
version of the agent framework used in the 3APL multi-agent system [5].
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Our main focus in this paper is to investigate the properties of representing
the goal base as a Dynamic Logic Program. We are not going to give the deserved
attention to the belief base. We consider the belief base as a simple definite logic
program. However, a more complex belief base could be used. For example, we
could represent the belief base also as a Dynamic Logic Program and have some
mechanism such that the agent has an unique model for its beliefs5. Elsewhere,
in [15], we explore the representation of 3APL agent’s belief base as a DLP.

Since, the reasoning rules of an agent don’t change, it is useful to define the
concept of agent configuration to represent the variable state of an agent.

Definition 2 (Agent Configuration). An agent configuration is a tuple 〈σ, γ,
Π〉, where σ is a definite logic program over K, representing the agent’s belief
base, γ = (P1, . . . , Pn) is a DLP representing it’s goal base, such that every Pi

is a goal program and that the DLP (γ, σ) has at least one stable model, and
Π ⊆ Plan × Plan× LG the intention base of the agent.

As the goals of an agent might be dependent on its beliefs, to determine its
goals it will be necessary to integrate the agent’s belief base (σ) and its goal
base (γ). We straightforwardly use the DLP semantics to do this integration by
considering the DLP (γ, σ) to determine the agent’s goals. Consider the following
illustrative example:

Example 2. Consider an agent with a goal base, γ = (P ), consisting of the
following program P , stating that the agent will try to have a girlfriend if it has
money, and if it doesn’t have the goal of saving money:

P : goal(girlfriend) ← have money, not goal(save money)

And with its belief base, σ, stating that the agent will have money if it has
low expenses and a high income, and that currently this is the case:

σ : have money ← low expenses, high income
high income ←
low expenses ←

To determine if goal(girlfriend) will be a goal of the agent we update γ with
σ, and clearly having a girlfriend will be a goal of the agent, since
goal(girlfriend) will be entailed by the DLP (γ, σ). Note that since σ is a
definite logic program, and goal rules in γ do not have knowledge literals in
their heads, the update of γ with σ amounts to determine the unique model of
σ and use it to perform a partial evaluation of γ.

Moreover, we only consider the agent configurations, 〈σ, γ, Π〉, where the DLP
(γ, σ) has at least one model, since an agent without semantics for its goal base
wouldn’t be of much interest in this work.
5 For example, a belief model selector that would select one of the stable models of

the belief base to represent the agent’s beliefs.
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We assume that the semantics of the agents is defined by a transition system.
A transition system is composed of a set of transition rules that transforms one
agent configuration into another agent configuration, in one computation step.
It may be possible that one or more transition rules are applicable in a certain
agent configuration. In this case, the agent must decide which one to apply.
This decision can be made through a deliberation cycle, for example, through a
priority among the rules. In this paper, we won’t specify a deliberation cycle.
An unsatisfied reader can consider a non-deterministic selection of the rules.

We now introduce the intention adoption rules. These rules are used to adopt
plans to try to achieve goals of the agent. Informally, if the agent has a goal,
goal(L1, . . . , Ln), that currently doesn’t have plans in the agent’s intention base
(Π), the rule will adopt a couple of plans, πachieve, πclean, by adding the tuple
(πachieve, πclean, goal(L1, . . . , Ln)) to the agent’s intention base. However, as ar-
gued by Bratman in [4], agent’s shouldn’t pursue at the same time contradictory
goals. Therefore, similarly as done in [18], we check if by adopting a new goal,
the intentions of the agent are consistent.

Definition 3 (Intention Adoption Rules). Let 〈σ, γ, Π〉 be an agent config-
uration and goal(L1, . . . , Ln) ∈ LG , where

Π = {(π1
achieve, π

1
clean, goal(L1

1, ..., L
1
i )), ..., (π

m
achieve, π

m
clean, goal(Lm

1 , ..., Lm
j ))}

such that {(πachieve, πclean, goal (L1, . . . , Ln))} � Π, and x ∈ {∩,∪, Ω}.

[(γ, σ) |=x goal (L1, . . . , Ln) ∨ (γ, σ) |=x maintenance (L1, . . . , Ln)]∧
{L1

1, . . . , L
1
i , . . . , L

m
1 , . . . , Lm

j , L1, . . . , Ln} � ⊥
〈σ, γ, Π〉 −→ 〈σ, γ, Π ∪ {(πachieve, πclean, goal (L1, . . . , Ln))}〉

Notice that the condition of consistency of the agent’s intentions may not yet be
the best option to avoid irrational actions. Winikoff et al. suggest, in [19], that
it is necessary also to analyze the plans of the agent, as well as the resources
available to achieve the intentions. However, this is out of the scope of this paper.

We have just introduced a rule to adopt new intentions. Considering that
intentions are committed goals, if the goal that the intention represents is no
longer pursued by the agent, it would make sense to drop it. Therefore, we
introduce into our agent framework the Intention Dropping Rule. Informally,
the semantics of this rule is to stop the execution of the plan used to achieve the
goal (πachieve), if the goal is no longer supported by the goal base of an agent,
and start to execute the plan used to perform the cleaning up actions (πclean).
The next definition formalizes this idea.

Definition 4 (Intention Dropping Rule). Let 〈σ, γ, Π〉 be an agent configu-
ration, x ∈ {∩,∪, Ω}, where {(πachieve, πclean, ψ)} ⊆ Π, ψ = goal (L1, . . . , Ln),
and πachieve �= ∅. Then:

(γ, σ) �x goal (L1, . . . , Ln) ∧ (γ, σ) �x maintenance (L1, . . . , Ln)
〈σ, γ, Π〉 −→ 〈σ, γ, Π \ {(πachieve, πclean, ψ)} ∪ {(∅, πclean, ψ)}〉
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Since an agent’s goal base is represented by a Dynamic Logic Program, an
agent can easily update its goal base with a GP using the DLP semantics. As we
will investigate in the next Section, updating a goal base with a GP will enable
the agent to have dynamic goals, e.g. by goal adoption or goal dropping. For this
purpose, we introduce a new type of reasoning rule to the system, namely the
Goal Update Rules.

Definition 5 (Goal Update Rule). The Goal Update Rule is a tuple 〈ΣB, ΣG,
P 〉 where P is a Goal Program, and ΣB ⊆ L¬,not, and ΣG ⊆ Lnot

G . We will call
ΣB and ΣG the precondition of the goal update rule.

Informally, the semantics of the goal update rule 〈ΣB, ΣG, P 〉, is that when the
precondition, ΣB, ΣG, is satisfied, respectively, by the agent’s belief base and by
its goal base, the goal base of an agent is updated by the goal program P . For
example, consider the rule:

〈{tough competition}, {goal(go to school)}, {goal(good in math) ←}〉

according to which the agent will only update its goal base with the goal of
being good in math, if the agent believes that the competition will be tough
(tough competition), and if it has the goal of going to school (goal(go to school)).

Definition 6 (Semantics of Goal Update Rules). Let 〈σ, γ, Π〉 be an agent
configuration, and x ∈ {∩,∪, Ω}. The semantics of a Goal Update Rule, 〈ΣB,
ΣG, P 〉 is given by the transition rule:

σ |= ΣB ∧ (γ, σ) |=x ΣG

〈σ, γ, Π〉 −→ 〈σ, (γ, P ), Π〉

In this framework, we will use the special symbols, goal() and maintenance() to
be able to differentiate between maintenance and achievement goals. A mainte-
nance goal represents a state of affairs that the agent wants to hold in all states.
For example, a person doesn’t want to get hurt. An achievement goal represents
a state of affairs that, once achieved, is no longer pursued. For example, an agent
that has as goal to write a paper for a congress, after it believes it has written
the paper, it should no longer consider this as a goal.

We are going to use a goal update operator to drop the achievement goals that
have been achieved. The idea is to apply the goal update operator whenever the
belief base of the agent is changed (this could be done by a deliberation cycle).

Definition 7 (Goal Update Operator - Γ ). Let 〈σ, γ, Π〉 −→ 〈σ′, γ′, Π ′〉
be a transition in the transition system, x ∈ {∩,∪, Ω}, where 〈σ, γ, Π〉 and
〈σ′, γ′, Π ′〉 are agent configurations. We define the goal update operator, Γ , as
follows:

Γ (γ, σ′) = γ′ = (γ, μ(σ′, γ))

where:

μ(σ′, γ) = {not goal(L1, . . . , Lm) ←| (γ, σ′) |=x goal(L1, . . . , Lm),
σ′ |= {L1, . . . , Lm}}
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Notice that the agent will still consider maintenance goals as goals even if the
goal is currently achieved.

As previously mentioned, the semantics of an individual agent is defined by the
reasoning rules we just introduced. More specifically the meaning of individual
agents consist of a set of so called computation runs.

Definition 8 (Computation Runs). Given a transition system, a computa-
tion run, CR(s0), is a finite or infinite sequence, s0, . . . , sn, . . . , such that for all
i ≥ 0, si is an agent configuration, and si → si+1 is a transition in the transition
system.

From the above definitions it is easy to see that a maintenance goal will remain
entailed by the agent unless dropped by means of a goal update rule, or no
longer supported due to some change in the agent’s beliefs. Similar reasoning is
applicable to achievement goals: if an achievement goal is not dropped using a
goal update rule, and the beliefs of the agent do not change so as to no longer
support it, it will remain entailed by an agent until it believes that the goal is
achieved. We will investigate more about goal update rules in the next Section,
when we discuss goal adoption and goal dropping.

4 Adopting and Dropping Goals

In this section we are going to investigate how to represent, in our system,
situations where an agent has to adopt or drop goals. We begin, in Subsection
4.1, by discussing some possible motivations of why an agent should adopt a goal
and also investigate how to represent these motivations in our agent framework.
Later, in Subsection 4.2, we investigate how to represent failure conditions for
goals and discuss some other situations to drop a goal. Finally in Subsection 4.3,
we identify some further properties of our framework.

4.1 Goal Adoption

Agents often have to adopt new goals. The reasons for adopting new goals can be
varied, the simplest one, when dealing with pro-active agents, could be because
the agent doesn’t have any goals and it is in an idle state.

We follow [17], and distinguish two motivations behind the adoption of a goal:
internal and external. Goals that derive from the desires of an agent, represented
by abstract goals, have an internal motivation to be adopted. External motiva-
tions, such as norms, obligations, and impositions from other agents, can also
be a reason for the agent to adopt new goals. An example of a norm, in the
daily life, is that a person should obey the law. Obligations could derive from
a negotiation where an agent commits to give a service to another agent e.g.
your internet provider should (is obliged to) provide the internet connection at
your home. Agents usually have a social point of view e.g. a son usually respects
his father more than a stranger, and it may be the case that an agent imposes
another agent some specific goals e.g. a father telling the son to study.
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To be able to commit to obligations, changes in norms, or changes in desires,
an agent needs to be able to update its goal base during execution. For example,
if a new deal is agreed to provide a service to another agent, the agent must
entail this new obligation. By using the Goal Update Rule, an agent will be able
to update its goal base and adopt new goals, as states the following proposition.

Proposition 1 (Goal Adoption Property). Let Goal ∈ LG , 〈σ, γ, Π〉 −→
〈σ, γ′, Π〉 be the transition rule of the goal update rule 〈ΣB, ΣG, P 〉, where r :
Goal ←∈ P is not conflicting in P , and x ∈ {∩,∪, Ω}. Then:

(γ′, σ) |=x Goal

Proof: Since Goal ←∈ P is not conflicting in P . For all interpretations, r will not
be rejected by any other rule in the goal base. Therefore, we have that (γ′, σ) |=x

Goal.

Now, we discuss some situations where an agent has to adopt new goals.

Adopt New Concrete Goals - Dignum and Conte discuss in [6], that an
agent may have some desires that can be represented by abstract goal κ
that is usually not really achievable, but the agent believes that it can be
approximated by some concrete goals (κ1, . . . , κn). Consider that the agent
learns that there is another concrete goal κl that, if achieved, can better
approximate the abstract goal, κ. The agent can update its goal base us-
ing the following Goal Update Rule, 〈{concrete goal(κl, κ)}, {}, {goal(κl) ←
goal(κ)}〉, as κ is a goal of the agent, it will activate the new rule, hence the
new concrete goal, κl, will also be a goal of the agent. In example 1, the girl
agent considers initially that a more concrete goal to have a boyfriend is of
being pretty;

Norm Changes - Consider that the agent belongs to a society with some norms
that have to be obeyed (norm1, . . . , normn) and furthermore that there is
a change in the norms. Specifically, the normi is changed to norm′

i, hence
the agent’s goal base must change. We do this change straightforwardly, us-
ing the goal update rule, 〈{change(normi, norm′

i)}, {}, {not goal(normi) ←
; goal(norm′

i) ←}〉. This update will force all the rules, r, with Head(r) =
goal(normi) to be rejected and normi will no longer be a goal of the agent.
Notice that there must be some coherence with the change in the norms. For
example, the agent shouldn’t believe that on change(normi, normj) and at
the same time on change(normj , normi);

New Obligations - Agents are usually immersed with other agents in an en-
vironment and, to achieve certain goals, it might be necessary to negotiate
with them. After a negotiation round, it is normal for agents to have an
agreement that stipulates some conditions and obligations (e.g. in Service
Level Agreements [8]). The agent can again easily use the goal update rules
to incorporate new obligations, 〈{obligation(φ)},{}, {goal(φ) ←}〉, as well
as dismiss an obligation when an agreement is over, 〈{¬obligation(φ)}, {},
{not goal(φ) ←}〉;
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Impositions - Agents not only negotiate, but sometimes have to cooperate with
or obey other superior agents. This sense of superiority is quite subjective and
can be, for example, the obedience of an employee to his boss, or a provider
towards his client. It will depend on the beliefs of the agent to decide if it
should adopt a new goal or not, but this can be modeled using the goal
update rule, 〈{received(achieve, φ, agenti), obey(agenti)}, {}, { goal(φ) ←
}〉. Meaning that if it received a message from agenti to adopt a new goal
φ, and the receiving agent believes it should obey agenti, it will update
its goal base. Notice that more complex hierarchy could be achieved by
means of preferences between the agents. However, it would be necessary
to elaborate a mechanism to solve possible conflicts (e.g by using Multi-
Dimensional Dynamic Logic Programming [11]).

4.2 Goal Dropping

In this Subsection, we are going to investigate some situations where the agent
must drop a goal and discuss how this could be done with our agent framework.

The next proposition, states that goal update rules can be used to drop
achievement goals, as well as maintenance goals.

Proposition 2 (Goal Drop Property). Let 〈σ, γ, Π〉 −→ 〈σ, γ′, Π〉 be the
transition rule of the goal update rule 〈ΣB, ΣG, P 〉, such that r : not Goal ←∈ P ,
and x ∈ {∩,∪, Ω}, where Goal ∈ LG. Then:

(γ′, σ) �x Goal

Proof: Since r ∈ P and that the goal update rule semantics adds the program P
to the end of the goal base. r will reject all the rules, r′, in the goal base γ, with
Head(r′) = Goal. Therefore, (γ′, σ) �x Goal.

We already have discussed in the previous Subsection, some situations where
the agent must drop a goal, for instance, when obligations with other agents are
ended, or when there is change in the norms that the agent should obey. Another
situation that could force an agent to drop a goal, is suggested by Winikoff et al.
in [19], by defining failure conditions. The idea is that when the failure condition
is true the goal should be dropped. We can easily define failure conditions for
goals using Goal Update Rules. Consider the following example:

Example 3. Consider an agent that has to write a paper until a deadline of a
conference. We could represent this situation using the following Goal Update
Rule, 〈{deadline over}, ∅, {not goal(write paper) ←〉. The agent will drop the
goal of writing a paper if the deadline is over.

Agents should also drop achievement goals, whenever this goal is achieved. The
agent framework will perform this by using the goal update operator whenever
there is a change in the agent’s beliefs. As the following proposition shows, this
operator updates the agent’s goal base in such a way that the agent will no
longer consider as goals previous achievement goals that have been achieved.
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Proposition 3 (Goal Update Operator Property). Let A = 〈σ, γ, Π〉 be an
agent configuration such that σ |= {L1, . . . , Ln}, and (γ, σ) |=x goal(L1, . . . , Ln),
and let γ′ = Γ (γ, σ), and x ∈ {∩,∪, Ω}. Then for any belief base σi:

(γ′, σi) �x goal(L1, . . . , Ln)

Proof: Since σ |= {L1, . . . , Ln}, and (γ, σ) |=x goal(L1, . . . , Ln), the goal up-
date operator will update the goal base γ with a program P containing the rule
not goal(L1, . . . , Ln) ←, that will reject all the rules in the goal base with head
goal(L1, . . . , Ln). Therefore, for any σi and x ∈ {∪,∩, Ω}, we have that (γ′, σi)
�x goal(L1, . . . , Ln).

4.3 Further Properties

We still can identify some more properties that could be elegantly achieved by
using the goal update rule:

Defining Maintenance and Achievement Goals - We can define a goal as
a maintenance goal if a certain condition is satisfied. For example, an ini-
tially single male agent finds the woman agent of its life and marries it. After
this is achieved, it might like to be married with this agent until the end of
its life. This can be represented by the goal update rule 〈{married(girl)},
{}, { maintenance(married(girl)) ←}〉. The opposite can also be easily
achieved, using the goal update rule. A goal that initially was a maintenance
goal can be dropped or switched to an achievement goal. For example, con-
sider that the previous agent had a fight with its agent wife and, after the
divorce, it doesn’t want to marry again. This can be represented by the
goal update rule, 〈{divorce(girl)}, {}, { not goal(married(girl)) ←; not
maintenance(married(girl)) ←}〉. We define a new achievement or modify
a maintenance goal to an achievement by using the following goal update
rule 〈{achieve(L)}, {}, { goal(L) ←; not maintenance(L) ←}〉;

The next corollary guarantees the effectiveness of the change of one
achievement goal to a maintenance goal. A similar result could be used to
change one maintenance goal to an achievement goal.

Corollary 1 (Achievement to Maintenance Goal). Let 〈σ, γ, Π〉 −→
〈σ, γ′, Π〉 be the transition rule of the goal update rule 〈ΣB, ΣG, P 〉, where
P = {maintenance(L1, . . . , Ln) ←; not goal(L1, . . . , Ln) ←}, and x ∈ {∩,∪,
Ω}. Then:

(γ′, σ) �x goal(L1, . . . , Ln) ∧ (γ′, σ) |=x maintenance(L1, . . . , Ln)

Proof: Follows from propositions, 1 and 2.

Corollary 2 (Maintenance to Achievement Goal). Let 〈σ, γ, Π〉 −→
〈σ, γ′, Π〉 be the transition rule of the goal update rule 〈ΣB, ΣG, P 〉, where
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P = {not maintenance(L1, . . . , Ln) ←; goal(L1, . . . , Ln) ←}, and x ∈ {∩,∪,
Ω}. Then:

(γ′, σ) |=x goal(L1, . . . , Ln) ∧ (γ′, σ) �x maintenance(L1, . . . , Ln)

Proof: Follows from propositions, 1 and 2.

Representing Defeasible Goals - We can use the special symbol def(.) to
represent Defeasible Goals, i.e. goals that with the current knowledge are
considered as goals (or not), but if new knowledge is acquired, the goals are
dropped (or adopted). We take the surgery example from Bacchus and Grove
[3]. A person may prefer not having surgery over having surgery, but this
preference might be reversed in the circumstances where surgery improves
one’s long term health. We can defeasibly infer that the person prefers no
surgery only as long as it is known that surgery improves his or her long
term health. This could be modeled by the following program:

maintenance(long life) ←
goal(¬surgery) ← not goal(surgery), not def(¬surgery)
goal(surgery) ← not goal(¬surgery), not def(surgery)
def(¬surgery) ← needs surgery, maintenance(long life)
def(surgery) ← not needs surgery

the agent will only have surgery as a goal if it needs surgery (needs surgery)
and has the goal of living long.

5 Example

Consider the following situation. The wife agent of a recently married couple,
invites her mother-in-law for dinner at her house. Since, the couple has recently
been married, the wife is still very concerned of her relations with her mother-
in-law (mother-in-law are famous for not being very fond of daughter-in-law).
And as the daughter-in-law loves her husband, she doesn’t want any problems
with his mother. We can represent its initial goal base as γ = (P1), where P1 is
as follows:

P1 : maintenance(husband′s love) ←
goal(please motherInLaw) ← maintenance(husband′s love)

P1 states that she has as maintenance goal to have the love of her husband
and hence, she has to please her mother-in-law, represented by its unique stable
model, {maintenance(husband′s love), goal(please motherInLaw)}. To please
her mother-in-law is not a very easy task (probably, there is no plan to please
a person, but there are plans to achieve more concrete goals). However, she
knows that by making a good dinner, she will give her mother-in-law a very
good impression. But not being a real master cook, the wife agent searches in
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the internet how to make a good dinner, and discovers that she should use white
wine if serving fish, and red wine if serving lamb. Promptly, she updates her
goals using the following goal update rule:

〈{norm(lamb, red wine), norm(fish, white wine)}, {goal(please
motherInLaw)}, P2〉

where:

P2 : goal(lamb, red wine) ← not goal(fish, white wine)
goal(fish, white wine) ← not goal(lamb, red wine)

The wife’s goal base, (P1, P2) has two stable models, namely one where she
has as goal to prepare fish with white wine ({maintenance(husband′s love),
goal(please motherIn Law), goal(fish, white wine)}) and another where she
instead, would like to cook lamb with red wine ({maintenance(husband′s love),
goal(please mother InLaw), goal(lamb, red wine)}). She decides for some rea-
son, that the lamb would be a better option. Notice that the agent in this
example, is using the Casuistic approach to handle the multiple stable models
(where the agent chooses one of the DLP’s stable models to determine its seman-
tics). However, she finds out that the red wine she reserved for a special occasion
is mysteriously gone. Therefore, she cannot make lamb with red wine anymore
(failure condition), updating its goal base with the following goal update rule,
〈{not red wine}, {}, P3〉, where:

P3 : not goal(lamb, red wine) ←

After this update, the wife’s goals will change, and she will have to prepare
the fish with white wine. since the rule in P3 will reject the rule with head
goal(lamb, red wine) in P2. Hence, the DLP (P1, P2, P3) will have one stable
model, namely:

{maintenance(husband′s love), goal(please motherInLaw),
goal(fish, white wine)}.

After preparing the fish and collecting the white wine, the wife updates its goal
base with the following program, P4, obtained from the goal update operator:

P4 : not goal(fish, white wine) ←

Since the rule not goal(fish, white wine) ← in P4 will reject the rule with
head goal(fish, white wine) in P2, the goals of the agent will be again:

{maintenance(husband′s love), goal(please motherInLaw)}

However, the wife agent still puzzled how the red wine mysteriously disappeared,
tries to find it. Until a point that she looks inside the husband’s closet, and finds
a shirt stained with the wine and inside its pocket a paper with a love letter and
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a telephone. Immediately, she considers that her husband is cheating her with
another women and updates her goals with the following goal update rule:

〈{cheating husband}, {}, {not maintenance(husband′s love) ←}〉

The rule in this new update will reject the rule maintenance(husband′s love) ←
in P1 and she won’t consider as a goal to have the husband’s love. Furthermore,
the cheated wife will no longer consider as a goal to please her mother-in-law.

In this example, we illustrate several aspects of how an agent framework with
a DLP representing its goal base, can be used. First, we can represent more
concrete goals using logic rules, e.g., when the wife agent had the maintenance
goal of having her husband’s love, she had the more concrete goal of pleasing
his mother. Second, representing the norms of society, e.g., when the agent in-
vestigated in the internet how the dinner should be, in this case, red wine with
lamb and white wine with fish. Third, dropping goals, when the agent realized
that the goal of preparing lamb with red wine is not achievable (since there is no
red wine) the agent drops this goal, and when the agent prepared the fish and
arranged the white wine the goal of making dinner was dropped. Fourth, knowl-
edge updates, when the agent finds out that her husband is cheating her with
another girl, she updates negatively the goal of having the love of her husband,
and consequently, the goal of pleasing her mother-in-law is abandoned.

6 Conclusions

In this paper, we introduced a simple agent framework with the purpose of
introducing the agent’s goal base as a Dynamic Logic Program. We investigated
some properties of this framework. We were able to express, in a simple manner,
maintenance and achievement goals, as well as identify some situations where
the agent would need to adopt and drop goals, and how this could be done in
this framework.

Since the objective of this paper was to investigate the use of DLP as the goal
base of an agent, we didn’t investigate any additional properties we could have
by also using the belief base as a DLP. We also didn’t give an adequate solution
for conflicting intentions, since it would probably be also necessary to analyze
the plans of the agent as well as its resources [19] to be able to conclude which
goals to commit to.

Further investigation could also be done to solve possible conflicts in the social
point of view of the agent. For example, if the agent considers the opinion of his
mother and father equally, it would be necessary to have a mechanism to solve
the conflicts since the agent doesn’t prefer any one of them more than the other.
[11] introduces the concept of Multi Dimensional Dynamic Logic Programming
(MDLP) that could represent an agent’s social point of view. Further investiga-
tion could be made in trying to incorporate the social point of view of an agent
as a MDLP in our agent framework.
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Abstract. In this paper, we propose a collaborative framework to realize a Vir-
tual Enterprise (VE) for the domain of Micro Assembly. The framework is devel-
oped using 3APL technologies [7] and employs the idea of viewing WebService
composition as a planning problem [8]. We describe the implementation of the
framework and experiment with two micro assembly work cells.

1 Introduction

In today’s business world, being innovative and withstanding competitive pressure from
contemporary engineering partners are a key to success for any engineering partners.
With dynamic nature of consumer demands, engineering partners often need a sophisti-
cated mechanism to tap those momentous market demands. One such mechanism which
will facilitate as well as satisfy the engineering partners need is the concept of a Vir-
tual Enterprise (VE). A VE is a conglomeration of different engineering partners who
are geographically distributed and are formed to meet the market demands; they share
diverse resources and expertise. A resource can be a machine, a software program, a
component, a service, etc. Each resource might have a cost associated with it. Fur-
thermore, there might be one or several resources at various locations, which can be
involved in one of the life cycle activities of a product (design, analysis, engineering,
planning, assembly, service, etc.) of a product. However, the very diverse nature of a
VE’s resources (especially its software components) causes heterogeneity which slows
down the process of forming and implementing collaborations among the engineering
partners.

The goal of this research is to develop a framework that facilitates VE based collab-
orations and seamless flow of information exchange among the partners. We explore
the design and implementation of such a framework using the agent technologies and
address semantic interoperability issues.

To demonstrate our approach, a prototype VE was created using the proposed col-
laborative framework for an emerging domain called the assembly of micro devices.
Micro Assembly is a domain where micron sized parts are assembled using computer
enabled micro assembly work cells. We target this domain for the following reasons:
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Micro Devices Assembly (MDA) is a technology alternative to Micro Electro Mechan-
ical Systems (MEMS); when micron sized parts having varying material properties and
complex shapes cannot be manufactured using MEMS methods, they have to be as-
sembled. As MDA is an emerging industrial domain, many engineering partners do not
possess the whole range of tools and resources to accomplish micro assembly related
tasks such as micro assembly planning, simulation and actual physical implementation;
this makes it necessary for such potential MDA partners to function as a VE. By coming
together, the engineering partners and vendors can respond quickly to various customer
requests.

As many parts in the Micro Assembly domain are assembled using computer pro-
grams within the context of an Internet based VE, we need a multi-agent devel-opment
platform in which agents with various capabilities can be created to respond to vari-
ous customer requests. Each agent should have their own belief, capabilities, goals, and
rules for reasoning. This platform should also facilitate the agent commu-nication and
collaboration. As 3APL [7] lends itself to addressing these issues, it was used for the
design and implementation.

The paper is organized as follows: Section 2 provides a review of some past and
recent developments of Virtual Enterprises using agent based approaches. Section 3
highlights the 3APL framework. Section 4 describes the collaborative system design.
Section 5 discusses the development of collaborative framework using 3APL. Section 6
discusses VE formation for Micro Assembly domain using the proposed collaborative
framework and Section 7 is the conclusions.

2 Literature Review

In this section, background information about virtual enterprises as well as a review of
agent based systems is provided. Other issues such as agent communications, agent in-
teraction protocols, and distributed problem solving approaches in agent based systems
are also discussed.

In [3], the notion of a VE is outlined; a VE is a temporary consortium of companies
where diverse resources in a working environment is used to manage all or part of
different resources towards achieving a common goal. Common information definition
and sharing problem while forming Virtual Enterprises are discussed in [6]. The paper
also discusses the issues of interaction among the companies that will agree upon a
contract to form virtual enterprise.

In [9], the concept of forming Virtual Enterprises using agent based systems is pro-
posed. In this conceptualization, partners of a virtual enterprise are considered as soft-
ware agents. This paper also discusses different agent communication protocols such as
KQML and KIF. A significant agent communication protocol proposed by US Defense
Advanced Research Projects Agency’s (DARPA) Knowledge-Sharing Effort known as
Knowledge Query Management Language (KQML) is presented in [11]. The language
includes variety of primitives, assertives, and directives which allow agents to query
other agents, subscribe to other agents services, or find other agents for distributed prob-
lem solving. KQML assumes that each agent is built with its own knowledge bases. This
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allows other agents to extract information from the knowledge base of that particular
agent.

In [4], a language called Knowledge Interchange Format is discussed. KIF is a lan-
guage for interchanging knowledge between heterogeneous programs. KIF has a declar-
ative semantics which allows agents to understand a KIF representation without any
interpreters. It allows expressing arbitrary sentences using first order predicate calcu-
lus. It has constructs to represent knowledge in the domain, represent non monotonic
reasoning rules and define objects, functions and relations. KIF has been employed in
the development of the Process Specification Language (PSL), a language specifically
designed to facilitate correct and complex exchange of process information among man-
ufacturing systems [5].

In [8], it is observed that web services markup will allow agent technologies to effi-
ciently capture the ’meta’ data associated with the services and reason about them. This
paves way for agent technologies to perform automated web services discovery, exe-
cution, composition and interoperation. In automated web services discovery, the soft-
ware agent automatically discovers the web services based on user constraints, which
is performed manually in the current World Wide Web (WWW). In automated web
services execution, the software agent discovers the web services based on user con-
straints, understands the requirements for the services, and executes them automatically.
In automated web services composition and interoperation, the software agent selects
the required web services, compose and interoperate them to accomplish the requested
complex task.

In [13], a need is identified to automate the process of discovering, executing, com-
posing, and monitoring services. Automation refers to no human intervention and al-
lows for the use of software agents. For a software agent to automatically process and
execute a service, a machine understandable description of the service is required. One
such language which provides descriptions that are machine understandable is OWL-
S which is evolved as a collaborative work of BBN Technologies, Carnegie Mellon
University, Nokia, Stanford University, SRI International, and Yale University.

In [2], the importance of using ontologies in manufacturing domain is explained.
The paper emphasis on the need for developing richer ontological structures especially
to the manufacturing domain so that more sophisticated intelligent applications can be
developed.

3 3APL Language

An Abstract Agent Programming Language (3APL) developed at Universiteit Utrecht
is a new agent oriented programming language for developing agents with cognitive
capability, as given in [7]. The language comes with programming constructs that allows
developing agents with complex mental states. An 3APL agent developed using this
language is given by a tuple

〈B, G, P, A〉
where

– B is Belief base,
– G is Goal base,
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– P is a set of Practical reasoning rules and
– A is an Action base.

A discussion of each of these components follows

3.1 Belief Base

A belief base encodes the agent knowledge about its operating environment and is a set
of first order sentences. For example, a belief that Robot is at room A is reprensented by
the atom at(Robot, RoomA); other belief that a robot is not at the room x then it is at
the room next to x is rexpressed by the sentence ∀x, y(¬at(Robot, x)∧nextto(x, y) ⇒
at(Robot, y)). Notice that a belief base can contain non-grounded sentences.

3.2 Goal Base

A goal base consists of goals-to-do goals. 3APL considers goals of procedural type.
Under this view, a goal can be considered as an imperative program. A goal defines a
plan of actions for an agent to execute. The language allows for the definition of sim-
ple and complex goals. Simple goals (also called basic goals) are of three types: basic
action, test goal, and achievement goal. For example, a simple goal like inquireUDDI()
allows an agent to inquire the UDDI registry. Complex goals (also called composite
goals) are composed from basic goals and are used to specify complex actions such
as sequences of actions, disjunctive goals, or non-deterministic choices, etc. Conven-
tional programming constructs such as ’;’ and ’+’ are used to create complex goals.
For example, ”goal1; goal2” defines a sequence of goals and ”goal1 + goal2” defines a
disjunctive goal.

3.3 Practical Reasoning Rules

A 3APL agent can manipulate its goals by using a set of practical reasoning rules.
These reasoning rules define a plan of action for an agent to execute its goals. Using
these rules, an agent can monitor as well as revise its goals in the goal base. A type of
reasoning called Means-End reasoning is followed, which means that if there is an agent
which believes that an assembly plan, say plan 1, is qualified enough to accomplish its
goal, then it will conclude to follow that plan. A practical reasoning rule has head, body,
guard, global and local variables as its components which is symbolically given by

π ← ϕ|π′,

where

– π is the head of a given rule,
– ϕ is the guard of the given rule and
– π′ is the body of the rule,

Global variables are free first order variables in the head of a rule, and local variables
are non global first order variables in the body of a rule.

A practical rule π ← ϕ|π′ says that if the agent adopts some goal or plan π and
believes that ϕ is true, then it may consider adopting π′ as a new goal.
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3.4 Action Base

Action base defines the set of primitive actions (or basic actions) that an agent can
execute. This set of basic actions defines the capabilities of an agent with which an
agent can change its mental state of belief about its working environment.

4 Framework Design

We follow the idea behind the design of this system follows the model proposed in
[9,10]. We view each partner in a VE as an agent who has its own knowledge about
the environment, its actions (basic and complex), its set of practical rules, and its own
goals. A VE is a collection of agents who collaborate to achieve a common goal. As we
have discussed above, most activities in the Micro Assembly domain are controlled by
computer programs. As such, each partner is implemented as a software agent who can
offer their services (or actions) to others. Our framework facilitates the communication
between agents and allows users of the system to simulate the VE. The overall design
of our framework is depicted in Figure 1.

Central to our system is a central manager agent which is a 3APL agent. This agent
facilitates the communication between different agents and creating solutions for users’
requests.

An agent can advertise its services in a service directory, which is implemented as a
part of our system. A 3APL service directory agent provides other agents in the system
the capability to find service provider(s) that can satisfy their needs. This agent com-
municates with other agents through the agent manager. In our implementation, each
service is specified by its inputs and its execution method.

One issue in a collaborative framework is the semantically differences between dif-
ferent agents. This is also an issue in our framework. We follow others by addressing
this issue using ontologies and develop ontologies for the Micro Assembly domain.
To incorporate ontologies into our system, a 3APL agent is developed. This agent also
communicates with other agents through the agent manager. We call this the meta-
information of services.

We note that in [1], design and development of ontologies for physical devices are
explained.

5 Framework Implementation

This section discusses the implementation of the collaborative framework as shown in
Figure 1. It consists of following agents

1. User Agent
2. Virtual Enterprise Agent (or Enterprise Agent Manager)
3. Ontology Agent
4. Service Directory Agent and
5. Service Provider Agents
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Fig. 1. Collaborative System for Virtual Enterprise

All these agents are implemented using 3APL and they run in 3APL platform. Plug-
in programming construct is provided by 3APL platform so that agents can use the
plug-in as their working environments and access the methods available in them. With
the help of plug-ins, agents in 3APL platform can access the external JAVA methods,
virtually allowing an agent to execute a service provided by another agent. For each
agent in the our system, an associated plug-in is developed to assist the formation of
Virtual Enterprise in real time. Detailed descriptions of 3APL agents used in the collab-
orative system are given below.

5.1 User Agent

User Agent provides the user interface to the collaborative system. This agent is prob-
ably the simplest agent in the system. It acts on behalf of real world entities such as
human users, software applications, or even other business vendors who may need to
accomplish a task.
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5.2 Virtual Enterprise Agent

The Virtual Enterprise Agent coordinates the various activities in the collaborative
framework. It is responsible for processing users’ requests (from the user agent) and
providing an initial solution (i.e. plan) for these requests. In the course of find-ing this
solution, it queries the Ontology agent for meta-information and uses this information
to find a list of best available service providers by querying the Service Directory agent.

The Virtual Enterprise Agent also serves as a search engine for other agents who need
to find service providers for their own needs. Figure 2 shows a view of collaborative
framework implemented in 3APL platform with developed plug-ins and participating
software agents

Fig. 2. Collaborative System for VE using 3APL

5.3 Ontology Agent

The Ontology Agent in the collaborative system provides the necessary meta-
information for the VE agent to further process the input from the user agent. For
demonstration purpose, some sample ontologies are created using Stanford’s Protege
editor. Figure 3 displays a part of the ontology developed for the Micro Assembly
domain.

The ontologies developed for the collaborative system are deployed in a Tomcat
web server. Any modifications to the existing ontologies are done through the ontology
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Fig. 3. Sample Ontology

agent. This is achieved by means of a Ontology plug-in developed to assist the ontol-
ogy agent. Ontology plug-in contains some basic functions for querying and modifying
existing ontologies.

5.4 Service Directory Agent

The Service Directory Agent in the collaborative system is used to maintain a service
directory where service provider agents will publish their services. This will facilitate
other agents in the collaborative system, especially VE agents, to access the available
services and use them to process the user agent’s input. Oracle UDDI registry is used
as the service directory in this collaborative system. Oracle UDDI registry comes along
with the Oracle Application Server 10g. In this UDDI registry, instead of saving normal
WSDL descriptions for services, OWL-S descriptions of services are saved. Requests
from other agents for available services in the UDDI registry are made through this
service directory agent. A service directory plug-in is developed for the agent to ac-
complish this task. The plug-in is developed with methods to connect to the service
directory, publish OWL-S services in the service directory and inquire for available
services.

5.5 Service Provider Agent

The engineering services in the collaborative system are provided by the service
provider agents. Services provided by these agents range from software resources to
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actual physical implementation. Along with describing the service capabilities, the con-
figurations of actual physical implementations are also described using OWL. This al-
lows the Virtual Enterprise agent to know more about the actual hardware implemen-
tation of devices. The collaborative system contains multiple service pro-viders who
will serve the needs of a user agent. Publication of services by these agents is accom-
plished through the service directory plugin, which provides methods for publishing the
services into the UDDI registry.

6 Example Scenario

In this section, an example scenario is provided from the Micro Assembly domain for
the collaborative framework implemented. In this application scenario, a user agent
wants to assemble various micron sized parts (for eg. cams) on micron sized pins. Here,
the goals of user agent are identification and formation of partnerships with potential
engineering partners and their subsequent execution of associated services.

Possible interactions that will happen in this collaborative framework are listed be-
low (refer to Figure 4) and are elaborated subsequently.

1. Interactions between Service Directory Agent and Service Provider Agents.
2. Interactions between Virtual Enterprise Agent and Ontology Agent.

Fig. 4. Interactions among the agents in the collaborative system
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3. Interactions between Virtual Enterprise Agent and Service Directory Agent.
4. Interactions between User Agent and Virtual Enterprise Agent.
5. Interactions between Service Provider Agents and User Agent.

6.1 Service Directory Agent and Service Provider Agents

To demonstrate this interaction, a set of service provider agents have been designed and
implemented. These include service directory agents capable of providing

1. Services based on software applications such as assembly sequence generators, 3D
path planners and virtual prototyping and analysis Environments.

2. Services based on actual physical resources such as micro assembly work cells.

A brief description of some of these resources is provided along with their OWL and
OWL-S descriptions.

In order to assemble micron sized parts on micron sized pins,various micro assembly
work cells with different assembling capabilities can be used. An ontology is developed
to describe the capabilities in terms of work cell specifications. For example, a physical
work cell as shown in the left hand side of Figure 5 is developed with gripper having
the capability of assembling pins and cams in the size range of 100-200 microns (diam-
eter) and a few millimeters in length. Due to the page limit, all OWL descriptions and
grounding files necessary for the operation of the example are omitted. They are ac-
cessible from http://web.nmsu.edu/∼gobinath/file.htm. The maximum
and minimum gripping force exerted by the gripper on its target object and its operating
conditions are also described by an OWL element.

The assembly services of the micro assembly work cells are made available as web
services. As the assembly service requires physical components (cams and pins in this
case) to be assembled, a software validation program is developed to validate the dimen-
sions of input components with the capability of the respective micro assembly work
cell. For example, in micro assembly work cell as shown in Figure 5, the validation

Fig. 5. Micro Assembly Work Cells (Left: Physical Work Cell , Right: Virtual Work Cell )
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program validates the input by comparing the dimensions of the gripper and the parts
to be assembled. If the validation program returns the positive results, further steps will
be taken to ship the parts to the respective work cell location. This validation program
is also made available as web services whose grounding information in OWL-S format
is given in the above mentioned URL.

Apart from the work cells, virtual prototyping environments have been developed
which form part of the VE resources. Right hand side of Figure 5 shows a snapshot of
the virtual environment (which depicts work cell), which can be used to study alternates
assembly and path plans, etc.

The virtual environment is also accessible via web services. Service grounding infor-
mation for one of the these VE partners is described in OWL-S format and is available
at http://web.nmsu.edu/∼gobinath/file.htm.

Some of the software resources within the collaborative framework include micro
assembly sequence generators as well as 3D path planners.

6.2 Genetic Algorithm Based Assembly Sequence Generator Agent

Assembly sequence generators are used to determine the order in which parts have to be
assembled to form a final product. In this research, a genetic algorithm based assembly
sequence generator is used to determine the order in which pins have to be picked and
placed during micro assembly. This module is developed specific to the micro assembly
work cell and it takes initial and final part positions and Gripper home position as its
input.

6.3 Path Planning Agent

Path planning service provider agent is used to determine a shortest collision free path
for each candidate assembly sequence in a given virtual micro assembly work cell con-
figuration (otherwise known as state). At any given time instance, the configuration of
a virtual micro assembly work cell is defined by positions of all four translation stages
and open or closed nature of gripper. For a given configuration, the positions of com-
ponents such as micro pins, obstacles and destination holes/cams in work piece platen
are updated in order to maintain their positional relativity with the translation stages.
Countless number of configurations are possible for a given micro assembly work cell
and all are not useful in determining the path for the gripper. Therefore, the configura-
tions are categorized into two types:

1. Feasible configuration
2. Infeasible configuration

A Feasible configuration is defined as the one for which the positions of four translation
stages are not in their limiting zones. If position of any one of the translation stage is in
the limiting zone for a configuration, then it is infeasible.

In this project, two path planners based on genetic algorithm and A* are imple-
mented. The input information to these path planners are information that can be ob-
tained about the presence of obstacles and other work cell components; the output from
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the path planner can be used as inputs to a virtual reality based simulation environment,
which can be used to compare various path planning alternatives provided by path plan-
ning agents in the VE. It should be noted that a variety of path planning agents which
are based on various approaches such as Dijkstra’s algorithm and heuristics can also be
incorporated; while other approaches have been implemented, they are not included in
the discussion for purposes of brevity. An overview of A* based path planning agent is
provided below.

6.4 A* Based Path Planner

This path planning agent first generates a grid structure based on position of obstacles
and other work components in the virtual micro assembly work cell. After generating
the grid structure, except the pin that needs to be picked, it marks out other pins in the
grid as obstacles. The position of the pin that needs to be picked first in the grid be-
comes the initial node for the agent. From the initial node, the agent starts to explore
adjacent grid cells by deciding upon which translation stages (X, Y or Z) need to be
moved. It uses Manhattan Distance method to estimate the distance from the current
node to the goal node (destination hole / cam). The agent stops exploring grid cells
once it reaches the destination hole / cam without any collisions. If it wouldn’t deter-
mine the path to the destination hole/cam, it queries the sequence generator agent for
another candidate assembly sequence. Below steps provide an overall idea about its
implementation.

– Inputs:
• Positions of Linear, X, Y and Z translation stages before assembly
• Positions of pins (1 n), obstacles (1m) and holes/cams (1n), where m is the

number of obstacles and n is the number of pins and cams
– Output:

• A shortest collision free path

STEPS:

1. From the configuration space of the virtual micro assembly work cell, select a fea-
sible configuration

2. Generate the grid structure to the selected feasible configuration with grid element
size equal to the bounding box size of the gripper

3. Restructure the grid by calculating the number of units Y translation stage needs to
be moved

4. Save the Y translation stage movements in a global PATH variable
5. Using assembly sequence, find the pin that needs to be picked first. Mark other pins

as obstacles in the grid
6. Depending upon the pin that needs to be picked, update PATH variable with X / Z

translation stage movements
7. Create a search graph with the position of the pin (P) that needs to be picked as its

starting node. Put the starting pin position on the OPEN list
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8. Create another list called CLOSE to mark the positions that are already visited by
the gripper in the grid. Initially this will be empty

9. If the OPEN list is empty, then exit with failure
10. Select the first pin position from the OPEN list. If pin position is same as destination

hole / cam position, we have a path and save it in PATHTEMP list. If they are not
same, save it in PATHTEMP list

11. Identify the adjacent gird element positions for the first pin position from OPEN
list. Save those grid element positions in OPEN list. Also save those positions in
CLOSE list and mark them as visited. If the adjacent grid element position is al-
ready marked for visited, then it cannot be saved in the CLOSE list

12. Calculate the distance (f(n)) for each adjacent grid element position in OPEN list.
Distance calculation is done by f(n) = g(n) + h(n), where g(n) is number of units
moved by X / Z translation stages and h(n) is the heuristic estimation.Manhattan
Distance method is used in this implementation and the value of h(n) is calculated
by [(Cx - Gx) + (Cy - Gy) + (Cz - Gz)]*DISTANCE, where where Cx, Cy, Cz =
Position of pin in the grid, Gx, Gy, Gz = Position of destination hole/cam in the
grid and DISTANCE = Number of units needs to be moved in X or Z translation
stage

13. Sort OPEN list with adjacent element close to destination position
14. Repeat steps from 10 to 14 until destination position is reached. Now PATHTEMP

list contains the path with grid element positions
15. Update the PATH variable with PATHTEMP variable to get the final path
16. Repeat steps from 5 to 15 for other pins in the assembly sequence
17. If path cannot be found for any one of the pins in the assembly sequence, go to step

1 to choose another feasible configuration

The Virtual Reality based environment is considered as a simulation agent in the VE.
It uses a scene graph for internal representation and management of various objects
of interest. The VR environment is built using COIN3D (which is the open source
version of OpenGL Inventor). The scenegraph contains CAD models of physical micro
assembly work cells in its nodes. The scenegraph is further rendered as a virtual reality
environment by the COIN3D graphical engine.

After receiving messages from the service provider agent, the service directory agent
publishes the service in the Oracle UDDI registry.

6.5 User Agent and Virtual Enterprise Agent

In this interaction, the user agent sends the input requirements to the virtual enterprise
agent. Below are some sample input requirements to the VE agent:

Send (VE_Agent, inform, domain (Micro_Assembly))
Send (VE_Agent, inform, input ())
Send (VE_Agent, inform, radius (pin1, 0.5))
Send (VE_Agent, inform, radius (pin2, 0.5))
Send (VE_Agent, inform, radius (pin3, 0.5))
Send (VE_Agent, inform, radius (cam1, 0.6))
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Send (VE_Agent, inform, radius (cam2, 0.6))
Send (VE_Agent, inform, radius (cam3, 0.6))
Send (VE_Agent, inform, goal ())
Send (VE_Agent, inform, on (cam1, pin1))
Send (VE_Agent, inform, on (cam2, pin2))
Send (VE_Agent, inform, on (cam3, pin3))

This sequence of message states that the user would like to assemble three pins
(pin1, pin2, pin3) of radius 0.5 into three cams of radius 0.6 by placing pin1 on cam1,
pin2 on cam2, and pin3 on cam3.

6.6 Virtual Enterprise Agent and Ontology Agent

For the VE agent to process users’ request, it needs to create a plan for doing it and
who can provide the necessary services required to execute this plan. This information
is available in the meta-information managed by the Ontology agent. The VE agent
first queries the Ontology agent for meta-information about the services available in the
system and devises a plan to achieve the goals of the users (as done in[8]).

In our experimental scenario, ontology for the micro assembly domain is developed
and deployed in a Tomcat Application Server. Some sample 3APL messages for this
interaction are given below.

Send (Ontology_Agent, inform,
queryForMeta (Micro_Assembly))

Send (Ontology_Agent, inform, whatis (pin1))
Send (Ontology_Agent, inform, whatis (cam1))

Once the Ontology Agent receives the input from the VE agent, the Ontology Agent
processes the input to find the corresponding ontology (in this case the ontology of
Micro Assembly domain) and queries the ontology to find possible relationships be-
tween the input and the concepts it contained using the ontology plug-in. For sample
input messages from VE agent, the ontology agent responds by sending the following
messages,

Send(VE_Agent, inform, metaInfo (Micro_Assembly))
Send(VE_Agent, inform, steps ())
Send(VE_Agent, inform, physical_implementation ())
Send(VE_Agent, inform, planning ())
Send(VE_Agent, inform, simulation ())
Send(VE_Agent, inform, isObject (pin1, true))
Send(VE_ Agent, inform, isObject (cam1, true))

6.7 Virtual Enterprise Agent and Service Directory Agent

With the meta information and the original input, the VE agent now requests the service
directory agent for service providers. The sample messages of this interaction are given
below.
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Send(SD_Agent, inform,
serviceProviderfor(physical_implementation))

Send(SD_Agent, inform, serviceProviderfor(planning))
Send(SD_Agent, inform, serviceProviderfor(simulation))

After receiving these messages, the service directory agent searches the UDDI reg-
istry for available service providers. In a UDDI registry, there may be more than one ser-
vice provider who can serve the user agent’s input request. Those service providers are
known as potential partners in VE context. From the list of potential service providers,
the service directory agent should choose one best service provider for the user agent.
Before the selection of a best service provider, the Service direc-tory agent will check
for the requirements for each of the potential service providers. The requirements for
a service provider may be correct inputs or even some services from other service
providers. If all the requirements of a service provider are satis-fied and it also satisfies
the requirements of user agent, the service directory agent will announce the service
provider as best partner. If user agent’s requirement does not match with the service
providers’ requirements, then service directory agent will announce the unavailability
of service providers. After finding the service providers, the service directory agent re-
turns the access point URLs of each of the identified business vendors to the VE agent.
Message transfers during this interaction are

Send(VE_Agent, inform, accessPointURL
(http://128.123.245.156:9090/ontology/Implementer.owl))
Send(VE_Agent, inform, accessPointURL
(http://128.123.245.156:9090/ontology/planning.owl))
Send(VE_Agent, inform, accessPointURL
(http://128.123.245.156:9090/ontology/simulator.owl))

The resulting access point URLs are then sent to User Agent for execution.

6.8 Service Directory Agent and User Agent

After obtaining the access point URLs of service provider agents, the User agent exe-
cutes the services available at the service provider sites.

7 Conclusion

In this paper, a collaborative system is developed to form a Virtual Enterprise for the
domain of Micro Assembly. 3APL language is used to develop the agents which con-
stitute the collaborative system. Ontology for Micro Assembly domain is developed to
provide a common ground to share the information contained in it among the agents.
Although it is still an ad-hoc development, this prototypical system demonstrates that
agent technologies can be very useful in VE development, a rather new area to agent
researchers. In the future, we would like to study and develop methodologies for a sys-
tematic development of VE in the Micro Assembly domain.
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Abstract. Agent-UML (AUML) extended UML in order to facilitate the mod-
eling process for agent based systems. It offers several graphical notations, in-
cluding protocol diagrams which represent agent interaction protocols. In this
paper, we describe an AUML-based framework to specify generic protocols. We
call generic protocols, agent interaction protocols where only a general behavior
of the interacting entities can be described. From AUML protocol diagrams, we
identified five fundamental concepts on top of which we defined formal speci-
fications of generic protocols. Through our specifications, we addressed a lack
in generic protocol representation by emphasizing the description of actions per-
formed in the course of interactions based on such protocols. The framework we
developed is formal, expressive and of practical use. It helps decouple interaction
concerns from the rest of an agent’s architecture. As an application, we used this
framework to publish the specifications of generic protocols for agent interac-
tions in several multi-agent system applications we developed. Additionally, the
framework helped us address two issues faced in the design of agent interactions
based on generic protocols, protocol configuration and their dynamic selection.

1 Introduction

Interaction is one of the key aspects in agent-oriented design. It allows agents to put
together the necessary actions in order to perform complex tasks collaboratively. The
coordination mechanisms needed for a safe performance of these actions are often rep-
resented as a sequence of message exchanges, called interaction protocols. Usually,
only a general description of the behavior required of agents partaking in these in-
teractions is provided. Such protocols are called generic protocols. The description of
generic protocols, especially with respect to their correct interpretation is a critical is-
sue in open and heterogeneous multi-agent systems (MAS). A subsequent issue is the
need to decouple interaction concerns from the other components of an agent, whatever
architecture is adopted for that agent.

To date, there has been some endeavor to develop new protocol specification for-
malisms. The formalisms developed thus far have several drawbacks. They usually fo-
cus on data exchange through a communication channel (Promela/SPIN [10]). Some
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others are either informal (or semi-formal) (e.g., AUML [2]) or demand advanced
knowledge in logics (e.g., the formal notations defined by Paurobally et al [13], Al-
berti et al [1] and Giordano et al [8]). Therefore, there is an obvious need for a formal,
yet practical and expressive generic protocol representation framework. Additionally,
such a framework should provide the building blocks to help fix the separation issue
between interaction aspects and the other elements of the architecture adopted for an
agent. We address this need in this paper.

The solution we developed is a framework to specify generic protocols. It con-
forms to the principles established for conversation policies by Greaves et al [9].
Our protocol notation is based on Agent-UML (AUML), a popular agent interaction
representation formalism. But, we address (in our framework) the lacks and incom-
pleteness which limit AUML. As commonly witnessed in several protocol represen-
tation formalisms, AUML only stresses the sequence of message exchanges. How-
ever, some actions are needed to produce these messages and handle them when
received. Even, as we will see later, some actions which neither send messages nor
handle them, might be executed during an interaction. Thus, in addition to the de-
scription of message exchange, our framework introduces the description of actions
needed in the course of an interaction. This provides us with the ability to describe
the behavior agents will exhibit while playing a role in a protocol. A particular as-
pect in our framework is our focus on generic protocols, which keeps us from pro-
viding a complete representation for actions. Hence, we introduced action categories
to fix this weakness.

Our framework offers several advantages. It builds on the graphical representation
of protocol diagrams in AUML, which offers the (human) designers a better message
exchange perception. In addition, it offers the means to depict what happens beyond
the message exchange layer, in the course of an interaction. The framework is expres-
sive, formal and of practical use for protocol representation. Particularly, we offer at
least the same expressiveness as in AUML (and its extensions) without introducing new
constructs (sequence, loop and other control flows). Rather, we efficiently exploit event
description to cover all these possibilities. Also, protocols in our framework are easily
implemented following a XML format. As a concrete application, we used our frame-
work to publish the specifications of generic protocols agent interactions are based on
in several MAS applications we developed. Moreover, we used this framework to ad-
dress two issues in agent interaction design for open and heterogeneous MAS: (1) an
automatic derivation of agent interaction model from generic protocol specifications, in
order to address the issue of consistency during interactions based on generic protocols
in an heterogeneous MAS; and (2) an analysis of generic protocol specifications in or-
der to enable agents to dynamically select protocols when they have to perform tasks in
collaboration.

The remainder of this paper is organized as follows. Section 2 discusses some related
work. Section 3 introduces the fundamental concepts we use in the framework and
presents both the specifications and their semantics. Section 4 discusses some properties
one can check for a protocol represented following this framework. Finally, section 5
concludes the paper.



A Modeling Framework for Generic Agent Interaction Protocols 209

2 Related Work

Several formalisms have been developed to represent interaction protocols. We discuss
some of them in this section.

AUML [2] and its extensions are graphical frameworks for protocol diagram repre-
sentation. These frameworks, though practical and easy to use, do not emphasize the
representation of actions performed in the context of an interaction. It is then hard to
reason about the behavior agents, playing a role in a protocol, should be required of be-
yond the message exchange layer. As well, the graphical representation is useful only
for human designers; it remains unreadable for computers. Casella and Mascardi [3]
addressed this limitation by automating the translation process from AUML to a textual
description, which is more machine readable. Winikoff [18] puts this textual represen-
tation of AUML protocol diagrams a step further. The work proposed a textual nota-
tion which defines a syntax for AUML protocol diagram specifications. The notation
is accompanied by a tool that helps view the graphical representation corresponding to
a textual specification. The advantage of relating a textual notation to AUML (whether
automatically or not), though undebatable, is weakened by many other AUML’s original
limitations, f.i., the lack of emphasis on the description of (generic) actions in protocol
representation, and the ambiguity about the formal semantics for protocols as well.

Some formal frameworks have been proposed for protocol representation. For ex-
ample, Walton [17] defined a framework using concepts similar to ours. However, this
framework directly introduces the notion of agent in protocol representation. This does
not help separate the interaction concerns from the other parts of the architecture of an
agent. In our opinion, this association between agents and roles should result from a
configuration and instantiation process of protocols. Paurobally et al [13] made signifi-
cant advances in the area of protocol representation for agent interaction. This work de-
veloped a formal framework which combines Propositional Dynamic Logic and belief
and intention modalities (PDL-BI). The framework covers a broad spectrum of issues
related to agent interactions. However, it requires advanced knowledge in logics. In our
opinion, logics is useful to define the semantics and check some properties for protocols.
But due to the complexity it may introduce, we strongly believe that it should be hid-
den at the specification stage, as usually done in programming languages. Additionally,
PDL-BI focuses on message exchanges. But, as we showed above, agent interaction
protocols demand more than message exchange. Alberti et al [1] and Giordano et al [8]
also developed formal protocol representation notations based on temporal logic. These
formalisms are too theoretical, and thus cannot gain wide adoption in the area of proto-
col representation. Also, they suit commitment protocols, which aim at describing the
social states the agents share during an interaction, instead of their mental states. The
main difference between these two formalisms and ours is the different (representation
and) interpretation of actions and messages.

IOM/T [5] is another recent language for agent interaction representation. Our work,
though sharing some similarities with IOM/T, departs from it in the following points.
Firstly, we focus on generic protocols, where we consider generic actions. Secondly, the
behavior of agents in IOM/T (the actions they perform) is not associated with the events
which occur in the MAS. Thirdly, the language is Java-like. However, we believe that
a protocol description language is supposedly a declarative one. Especially for open
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and heterogeneous MAS. We address this need in this paper by developing a formal
framework for generic protocol representation. Our framework proposes an expressive
declarative language which offers ease of use.

3 The Framework

We introduce the fundamental concepts our framework is based on. Then, we present
the specifications and the semantics of these concepts.

3.1 Fundamental Concepts

Our framework is based on the AUML protocol diagram. From AUML, we identified
five fundamental concepts: protocol, role, event, action and phase. A graphical illustra-
tion of these concepts is given in Fig. 1.

protocol

Role: R2Role: R1

message1

message2

message3
.
.
.

phase

event: message
       reception

action

Fig. 1. Graphical illustration of concepts in generic protocols

Definition 1. (Protocol) A protocol is a sequence of message exchanges between at
least two roles. The exchanged messages are described following an Agent Communi-
cation Language (ACL) e.g., FIPA ACL [7], KQML [12], the commitment-based ACL
introduced in [4].

More formally, a protocol consists of a collection of roles R, which interact with one
another through message exchanges. The messages belong to a collection M and the
exchange takes place following a sequence, Ω. A protocol can also have some intrin-
sic properties Θ (attributes and keywords) which are propositional contents (actually
predicates) that provide a context for a further interpretation of the protocol. We note
p def=< Θ,R,M,Ω >.

In Ω, the message exchange sequence, each element is denoted by rı
mk−−−−−−→

aα,mk−1
rj, to

be interpreted as “the role rı sends the message mk to rj, and that mk is generated after
action aα’s execution and the prior exchange of mk−1”.

Definition 2. (Generic Protocol) A generic protocol is a protocol wherein the actions
which are taken, to handle, produce the contents of exchanged messages, etc. are not
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thoroughly specified. A complete description of these actions depends on the architec-
ture of each agent playing a role in the protocol.

Each of the communicating entities is called a role. Roles are understood as standard-
ized patterns of behavior required of all agents playing a part in a given functional
relationship in the context of an organization [6].

Definition 3. (Role) In our framework, a role consists of a collection of phases. As we
will see later (Section 3.2), a role may also have global actions (which are not bound
to any phase) and some data other than message content, variables.

∀r ∈ R, r def=< Θr,Π,Ag,V >, where Θr corresponds to the role’s intrinsic prop-
erties (e.g., cardinality) which are propositional contents that help further interpret the
role, Π the set of phases, Ag the set of global actions and V the set of variables. In
our framework, roles can be of two types: (1) initiator, the unique role of the protocol
in charge of starting1 its execution; (2) participant, any role partaking in an interaction
based on the protocol.

The behavior of a role is governed by events. An event is an atomic change which
occurs during the interaction. An informal description of the types of event we consider
in our framework is given in Table 1. A formal interpretation of these events is discussed
in Section 3.3. The behavior a role adopts once an event occurs is described in terms of
actions.

Table 1. Event Types

Event Type Description

Change The content of a variable has been changed.
Endphase The current phase has completed.
Endprotocol The end of the protocol is reached.
Messagecontent The content of a message has been constructed.
Reception A new message has been received.
Variablecontent The content of a variable has been constructed.
Custom Particular event (error control or causality).

Definition 4. (Action) An action is an operation a role performs during its execution.
This operation transforms the whole environment or the internal state of the agent cur-
rently playing this role. An action has a category ν, a signature Σ and a set of events it

reacts to or produces. We note a
def
=< ν, Σ, E >.

Since our framework focuses on generic protocols, we can only provide a general2

description for the actions which are executed in these protocols. Hence, we introduced
action categories to define the semantics of these actions. Table 2 contains an informal
description of these categories. We discuss their semantics in Section 3.3.

1 Starting a protocol demands more than sending its initial message.
2 The term general here is used in the sense of describing the skeleton of these actions.
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Table 2. Action Categories

Action Category Description

Append Adds a value to a collection.
Remove Removes a value from a collection.
Send Sends a newly generated message.
Set Sets a value to a variable.
Update Updates the value of a variable.
Compute Computes a new information.

Definition 5. (Phase) Successive actions sharing direct links can be grouped together.
Each group is called a phase. Two actions aı and aj share a direct link, if the input
arguments (or only a part of the input) of aj are generated by (the output result of) aı.

3.2 Formal Specifications

The formal specifications are defined through an EBNF grammar. Only essential parts
of this grammar are discussed in this section. A thorough description of this grammar is
given in Appendix A. In sake of easy implementation of generic protocols, we represent
them in XML in our framework. However, as XML is too verbose, a simpler (bracket-
based) representation will be used for illustration in this paper.

Running Example. We will use the Contract Net Protocol (CNP) [16] to illustrate our
specification formalism. The sequence diagram (protocol diagram in AUML) of this
protocol is given in Fig. 2. Note that the labels placed on the message exchange arrows
in the figure are not performatives, but message identifiers.

Initiator Participant

cfp

deadline

refuse

propose

reject-proposal

accept-proposal

failure

inform-done

inform-ref

Fig. 2. The Contract Net Protocol
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The rationale of CNP consists in an initiator having some participants perform some
processing on its behalf. But beforehand, the participants which will perform the
processing are selected on the basis of the bids they proposed, in-reply to the initia-
tor’s call for proposals. When the selected participants are done with their processing,
each of them notifies the initiator agent of the correct execution (or error occurrence) of
the part it committed to performing.

Protocol. The following production rules define a protocol. In As one can see from
these rules, the exchange sequence Ω contrary to Definition 1, is not explicitly specified.
Actually, it is located in the definition of roles, and precisely in the send actions of these
roles.

< protocol > := < protproperties >< roles >< messagepatterns >

< protproperties > := < protdesc >< protattributes >< protkeywords? >

< protdesc > := < identifier >< title >< location >

< protattributes > := < class >< participantcount >

< protkeywords > := < protkeyword+ >

< protkeyword > := “IncrementalResolution′′| . . .

Example 1, we exemplified the use of these rules to specify CNP.

(protocol
(protproperties
(protdesc :ident cnpprot :title ContractNet :location Cnp.xml)
(protocolattributes :class Request :participantcount 1)
(protkeywords ‘‘containsMultipleInstanceRole’’))
(roles ...)
(messagepatterns ...))

Example 1. Specifying CNP

The properties of a protocol consist of descriptors (identifier, title and location), key-
words and attributes, which we identified from the experiments we carried out with our
framework. The keywords are propositional contents which help further characterize
the protocols. Currently, we consider the following keywords: (1) ContainsMultiple-
InstanceRole which means that there can be several instances of a participant role in
this protocol; (2) ContainsIterativeProcess, which means that a sequence of actions
can be repeatedly executed in the protocol; (3) IncrementalResolution, which means
that an anytime algorithm can lie behind the execution of the protocol; (4) ContainsDi-
vidableProcessing which means that the processing associated with this protocol can be
divided for several participants; (5) SubscriptionRequired, which means that the
processing associated with this protocol requires a prior subscription; (6) AlterableCom-
mitment which means that the commitments are not indefeasible.
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Concerning the attributes, they are functions which we use to refine the description
of a protocol. The current version of our framework allows two attributes to be set:
(1) class, which indicates what kind of processing is implied by the protocol, (2) par-
ticipantcount, which indicates how many types of participant roles does the protocol
contain.

Role. Protocol diagrams only show the communication flow between roles. However,
there may be some information beyond the communication layer. For example, in CNP,
the action an initiator executes, in order to make a decision upon the bids the partic-
ipants issued, is hidden behind the communication flow. Actually, this action exploits
information from different participants of the protocol. Moreover, information like the
deadline for bidding, cannot be extracted from any message content. We introduced a
global area for each role where we describe actions which are beyond the communica-
tion flow, as well as data which cannot be extracted from any message content. Note
that actions relevant to the global area are not tied up with any phase. The production
rules hereafter define a role.

< roles > := < role >< role > | < roles >< role >

< role > := < roleprop >< variables? >< actions? >< phases >

< roleprop > := < roledesc >< roleattributes >< rolekeywords? >

< roledesc > := < identifier >< name >

< roleattributes > := < cardinality >

< variables > := < variable+ >

< variable > := < ident >< type >

< actions > := < action+ >

Each role is described through its intrinsic properties (f.i., cardinality), its variables,
its global actions and phases. From Example 2, the initiator role of CNP has three
variables: deadline, bidsCol and deliberations. deadline informs of the
moment when bidding should stop. bidsCol is a collection where bids issued by
participants are stored. deliberations contains the decision (accept or reject) the
initiator made upon each bid. Each variable has an identifier and the type of data it
contains. The content of a variable is characterized using some abstract data types. We
also use these data types to represent message content and action signature. String,
Number and Char are some examples of the data types we use in our framework. The
description of these types is out of the scope of this paper. The only global action in this
role is named Deliberate. Through this action, the initiator makes a decision upon
the participants’ bids. Global actions are described in the same way as local (located in a
phase) ones: category (see Table 3.1), signature (input and output data types) and events
(input and output). Note that each part (input and output) of the signature as well as the
events is composite. We introduce three types of connector (and, or, xor, with their usual
meanings) to assemble the elements of these parts. Deliberate is a compute action.
It takes a date and a collection as input arguments (:dir in) and a Map as output result.
Deliberate is executed when the value of deadline changes (change event) and
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that at least one bid has been stored in bidsCol. Once executed it changes the value
of deliberations. The reserved word eventref is used here to refer to an event
defined elsewhere (change event which occurred against the bidsCol variable). As
we will see later, this special word sometimes helps define causality between actions.

(role :ident initiator
(roleprop (roledesc :ident initiator :name Initiator)
(roleattributes :cardinality 1))
(variables (variable :ident bidsCol :type collection)
(variable :ident deliberations :type map)
(variable :ident deadline :type date))
(actions(action :category compute :description Deliberate
(signature (arg :type date :dir in)
(arg :type collection :dir in)(arg :type map :dir out))
(events (event :type change :dir in :object deadline :ident evt0)
(eventref :dir in :ident evt5)
(event :type change :dir out :object deliberations :ident evt1))))

(phases ...))

Example 2. Specifying the initiator role of CNP

Phase. As stated above, each phase is a group of actions that share direct links. We use
the following rules to define a phase.

< phases > := < phase+ >

< phase > := < actions >

< action > := < category >< description? >< signature >< events >

For example, in the initiator role of CNP, the first phase consists of producing and
sending the cfp message. This phase contains two actions: prepareCFP and
sendCFP. prepareCFP produces the cfp message. It is followed by sendCFP
which sends the message to each identified participant. The description of this phase is
given in Example 3.

(phase :ident phs1
(actions (action :category compute :description prepareCFP

(signature(arg :type date :dir in)(arg :type any :dir out))
(events (event :type variablecontent :dir in :object deadline)
(event :type messagecontent :dir out :object cfp :ident evt2)))

(action :category send :description sendCFP
(signature (message :ident cfp))
(events(eventref :dir in :ident evt2)
(eventref :type custom :dir out :ident cus01)
(event :type endphase :dir out :ident evt3)))))

Example 3. Specifying the first phase of the initiator role of CNP
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Message. Though we did not define messages as a concept, we use them in the formal
specifications because they contain part of the information manipulated during interac-
tions. The concept of message is well known in ACL, and their semantics is defined
accordingly. We propose an abstract representation of messages, which we call mes-
sage patterns. A message pattern is composed of the performative and the content type
of the message. We also offer the possibility to define the content pattern, a UNIX-like
regular expression which depicts the shape of the content. Note that at runtime, these
messages will be represented with all the fields as required by the adopted ACL. In our
framework, we represent all the message patterns once in a block and refer to them in
the course of the interaction when needed. In our opinion, it sounds that only one ACL
be used all along a single protocol description. The following rules define message pat-
terns. Example 4 describes the message patterns used in CNP.

< messagepatterns > := < acl >< messagepattern+ >

< acl > := ′fipa′|′kqml′

< messagepattern > := < performative >< identifier >< content >

< content > := < type >< pattern? >

(messagepatterns :acl Kqml
(messagepattern :performative achieve :ident achmsg
(content :type any :pattern ...))
(messagepattern :performative sorry :ident refuse
(content :type null :pattern ...))
(messagepattern :performative tell :ident propose
(content :type any :pattern ...))
(messagepattern :performative deny :ident reject
(content :type null :pattern ...))
(messagepattern :performative tell :ident accept
(content :type string :pattern ...)) ...)

Example 4. Specifying message patterns in CNP

Design Guideline. As a guideline for protocol design and specifications in our frame-
work, we recommend several design rules. Following these rules ensures that the result-
ing protocol specifications are wellformed and correct (ambiguity and inconsistency-
proof). In the future, we envision to devise some algorithms (and a tool) which automate
the process of checking whether a protocol specification complies with our guidelines.
We introduce these guidelines here.

Proposition 1. For each role of a protocol, there should be at least one action which
drives into the terminal state. Every such action should be reachable from the role’s
initial state.

Corollary 1. From their semantics, roles can be represented as graphs. And for every
path in this graph, there should be an action which drives to a terminal state.
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Proposition 2. For every message mı of the message set M of a protocol, there is at
least one send action of a role in the protocol, which sends mı.

Proposition 3. When two distinct actions can be executed at a point in a role definition,
the set of events which fire each action, though intersect-able, should be distinguishable.

Proposition 4. When an action produces a message, it should be immediately followed
by a send action, which will be responsible for sending the message.

3.3 Semantics of the Concepts

Event. As we saw, an event informs of an atomic change. This change may have to do
with the notified role’s internal state. But usually, the notification is about other roles’
internal state. Therefore, events are the grounds for role coordination. In this section,
we briefly discuss the semantics of some events used in our framework. When needed
in the definition of the semantics of our concepts, we introduce some expressions in a
meta-language, which we call primitives.

change: this event type notifies of a change of the variable’s value. Let v be a variable,
change(v) denotes the event. We introduce the value primitive, which returns the value
of a data at a given time point. Let d and t be a data and a time point respectively,
V alue(d, t) denotes this function. Value(d, t) = ∅ means that the data d does not exist
yet at time point t. We interpret the change event as follows:

∃ t1, t2(t1 < t2) ∧ (Value(v, t1) �= ∅) ∧ (Value(v, t1) �= Value(v, t2))

endprotocol: this event type notifies of the end of the current interaction. The phases
in each role, have either completed or are unreachable. Also any global action of each
role is either already executed or unreachable. A phase is unreachable if none of its
actions is reachable. Actually, if the initial action is unreachable, the phase it belongs to
will also be unreachable. We introduced three new primitives: Follow, Executed and Un-
reachable. Follow is a function which returns all the immediate successors of a phase.
Let π1 and π2 be two phases, π2 immediately follows π1, if any of the input events of
the initial action of π2 refers to a prior event generated by one of the actions (usually
the last one) of π1. Unreachable is a predicate which means that the required conditions
for the execution of an action do not hold, therefore preventing this action from being
executed. Finally, Executed is a predicate which means that an action has already been
executed. Let Π be the set of phases for a role r and Aπ the set of executable actions
for a phase π in r. Let also AGr be the set of global actions of r. We interpret the
endprotocol event as follows:

∀r ∈ R, ∀aα ∈ AGr , (Unreachable(aα) ∨ Executed(aα)) ∧ (∀π ∈ Π, (Follow(π)=∅)
∨(∀ai ∈ Aπ , Unreachable(ai)))

reception: this event type notifies of the reception of a new message. Let m′ denote
the received message, we interpret this event as follows (notation being reception(m’)):

∃ t1, t2(t1 < t2) ∧ (m′ /∈t1 M′) ∧ (m′ ∈t2 M′)
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The symbol ∈t (resp. /∈t) means belongs (resp. does not belong) at time point t. M′ is
the set of messages an agent received during an interaction.

variablecontent: this event notifies of the (fresh) construction of the content of a
variable. Let v be a variable, variablecontent(v) denotes the event, which we interpret
as follows:

∃ t1, t2(t1 < t2) ∧ (Value(v, t1) = ∅) ∧ (Value(v, t2) �= ∅)

Action. Actions are executed when events occur. And once executed, they may gener-
ate new events. Events are therefore considered as Pre and Post conditions for actions’
execution. Here again, we only discuss the semantics of some action categories: ap-
pend, set, compute and send. Let E be the set of all the event types we consider in our
framework and E′ = E− {endphase, endprotocol}.

append: this action adds a data to a collection. Let ai be such an action. In the
following we introduce two primitives: isElement() and Arguments(). isElement() is a
predicate which returns true when a data belongs to a collection at a given time point.
Arguments() returns the input arguments of an action.

Pre = {ej, ej ∈ E′}
Post = {ej , ∃k ek = change ∧ (∃t1, t2, d, v ∈ Arguments(ai), (t1 < t2) ∧
(isElement(v, d, t1) = false) ∧ (isElement(v, d, t2) = true))}

send: this action sends a message. It is effective both at the sender and the receiver
sides. Let ai be such an action. We interpret it as follows:
at the sender side:

Pre = {ej, ∀mj ∈ Arguments(ai), ∃ k, ek = messagecontent(mj)}
Post = {Trans(mj) = true}

at the receiver side:

Pre = ∅
Post = {ej, ∀mj ∈ Arguments(ai), ∃! k, ek = reception(mj)}

set: this action sets the value of a data. Let ai be such an action,

Pre = {ej, ej ∈ E′}
Post = {ej, ∀vj ∈ Arguments(ai), ∃! ej , ej = variablecontent(vj)}

compute: this action computes some information. Let ai be such an action,

Pre = {ej, ej ∈ E′}
Post = {ej , ej ∈ E′ − {reception}}

ACL usually define the semantics of their performatives by considering the belief and
intention of the agents exchanging (sender and receiver) these performatives. This ap-
proach is useful to show the effect of a message exchange both at the sender and the
receiver sides. In our framework, we adopt a similar approach when an action produces
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or handles a message. We use the knowledge the agent performing this action has with
respect to the message. Hence, we introduce a new predicate, Know(φ, ag), which we
set to true when the agent ag has the knowledge φ. Know is added to the post con-
ditions of the action when the latter produces a message. It is rather added to the pre
conditions of the action when it handles a message. Note that φ is the content of the
message. In the future, we wish to extend the interpretation of this predicate and enable
agents to share some social states. Thus, our specification formalism could cover the
commitment protocols.

Moreover, when an action ends up a phase or the whole protocol, its Post condition
is extended with endphase and endprotocol, respectively.

Phase. The semantics of a phase is that of a collection of actions sharing some causal-
ity relation. The direct links between actions of a phase are augmented with a causality
relation introduced by events. We note π

def=< Aπ ,≺ >, where Aπ is a set of actions
and ≺ a causality relation which we define as follows:

∀aı,aj ∈ Aπ,aı ≺ aj ⇐⇒ ∃e ∈ Post(aı), e ∈ Pre(aj).

Proposition 5. Let aı and aj be actions of a phase π, such that aı always precedes aj,

(aı ≺ aj) ∨ (∃ap, . . . ,ak,aı ≺ ap . . . ≺ ak ≺ aj)

Role. The causality relation between actions of phases can be extended to interpret
roles. Indeed, an event generated at the end of a phase can be referred to in other
phases. On this basis, we defined an operational semantics for roles. The inference
rules behind this semantics cover sequences, loops, alternatives, etc. In these inference
rules, defined as usually, the statements are replaced by actions. We do not discuss
these rules in this paper due to space constraint. Thanks to the operational seman-
tics, we interpret a role is a labeled transition system with some intrinsic properties.
r =< Θr,S,Λ,−→ > where Θr are the intrinsic properties of the role, S is a fi-
nite set of states, Λ contains transitions labels (these are the actions the role performs
while running), and −→ ⊆ S × Λ × S is a transition function. As an illustration, we
give the semantics of the initiator role of CNP, which we call r0. Note that the mes-
sages associated with the send actions are numbered following their position in Fig. 2.
r0 =< Θr0 ,S,Λ,−→ > Θr0 = {”cardinality = 1” ∧ ”isInitiator = true”} S =
{S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12} Λ = {a0, a1, a2, a3, a4, a5,
a6,a7,a11} −→ = {(S0,a0,S1), (S1, send[m0],S2), (S2, a1,S7), (S2, a2,S3),
(S3,a4,S4), (S4,a3,S5), (S5, send[m3],S11), (S5, send[m4],S6), (S6, a5,S8),
(S6,a6,S9), (S6,a7,S10), (S2,a11,S12)}.

Protocol. The semantics of a protocol is that of a collection of interacting graphs (the
roles) which coordinate their execution following the message exchange sequence Ω.
This collection also has some intrinsic properties, some propositional contents which
are true in the environment of the MAS. Nevertheless, some limitations subsist in this
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way of interpreting generic protocols. Usually a priori semantics is proposed for proto-
cols. However, a priori semantics is not sufficient to interpret a generic protocol. Two
main reasons account for such an insufficiency. Firstly, the message exchange sequence
can be mapped to a graph of possibilities in the regard of exchanged messages. There-
fore, the semantics of an interaction based on this protocol corresponds to a path in this
graph. Secondly, the semantics of communicative acts defined in ACL is not enough
to define the semantics of a protocol. The semantics of the executed actions should be
included too. However, except send actions, all the other actions can only have general
interpretation before the execution of the interaction, or its configuration for an agent.
A more precise semantics of these actions can only be known at runtime (or sometimes
the design time for agents). To this end, we introduce a posteriori semantics for proto-
cols in our framework. Particularly, we draw on Protocol Operational Semantics (POS)
developed by Koning and Oudeyer [11]. In our framework, this additional interpretation
feature consists in refining the path followed in each graph corresponding to the roles
involved in the interaction. Also, the semantics of the actions is enriched by that of the
methods executed in place.

As an illustration, let us assume that the semantics of each role of CNP is known,
we define that of the whole protocol as follows. p =< Θ,R,M,Ω >, where R =

{r0, r1} and M = {m0,m1, . . .m8}. Ω =< r0
m0−−→
a0

r1, r1
m1|m2|m8−−−−−−−→

a7,m0
r0, r0

m3|m4−−−−→
a3,m2

r1, r1
m5|m6|m7−−−−−−−→

a10,m4
r0 >.

4 Properties

When one designs a generic protocol, it is mandatory to formally prove its properties,
in order to ease a wide adoption of this protocol. In this section we discuss some gen-
eral properties for protocols designed in our framework. Here, we focus on two prop-
erties, liveness and safety, related to the correctness of protocols specified following
our framework. Finally, we discuss the termination property, which one of the critical
ones, for generic protocols. Note that we assume that the design guidelines discussed
in Section 3.2 are respected. There are other properties specific to generic protocols,
equivalence, compliance, similarity, which we do not discuss in this paper.

4.1 Liveness

Definition 6. Liveness A role of a protocol is alive when it still has a sequence of ac-
tions to perform before reaching its terminal state. As a consequence, a protocol is alive
when at least one of its roles is still alive.

Proposition 6. For every role of a protocol, events will always occur and fire some
transition until the concerned role enters a terminal state.

Proof. We prove this property only on a design standpoint, i.e. we do not assume any-
thing about what actually happens in the MAS at runtime. Each role is considered a
transition system; and from the description of transition systems, unless a faulty situa-
tion is encountered, an event will always occur and require to fire a transition until the
role enters a terminal state, where the execution stops.
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4.2 Safety

Definition 7. (Safety) A safe protocol is one where nothing inconsistent happens dur-
ing its execution. Particularly, we focus on two aspects of safety: (1) consistent message
exchange, which means that each sent message is received and handled by at least one
role; (2) Unambiguous execution, which explicitly requires some clear conditions to
hold every time a role has to take an action.

Proposition 7. (Consistent message exchange) The message exchange sequence of
a protocol, designed in our framework and which respects our design guidelines, is
consistent. Precisely, any message a role sends is received and handled at least by one
role. By the same token, any message a role receives has a sender (generally another
role).

Proof. From Proposition 2, each message in M is sent at least by one send action. On
the other hand, every reception event in any role is related to a received message which
belongs to M too. Thus, every received message has been generated and automatically
sent (see Proposition 4) by a send action, supposedly of a different role.

Proposition 8. (Unambiguous protocol execution) For each action a role can take,
there is an unambiguous set of events which fire its execution.

Proof. Let aı be an action of a role r and Eaı be the set of events which fire the ex-
ecution of aı. If aı is the unique action that can be performed at the current execution
point of r, the proposition is straightforward. Let’s now assume that there exists another
action aj which can be executed at the same point as aı. If Eaı ∩ Eaj = ∅, then the
proposition is also straightforward. In the case where Eaı ∩ Eaj �= ∅, from Proposi-
tion 3 we know that Eaı �= Eaj . Thus, for aı to be performed events in Eaı − Eaj

should occur. And Eaı − Eaj is a unambiguous subset of Eaı .

4.3 Termination

Proposition 9. (Termination) Each role of a protocol represented in our framework
always terminates.

Proof. From Proposition 1, each role has a sequence of actions which bring that role
to a terminal state. Once this terminal state is reached, the interaction stops for the
concerned role. When all the roles enter a terminal state, the whole interaction definitely
stops. However, this proof is insufficient when there are several alternatives or loops in
the protocol. Corollary 1 addresses this case. Actually, only one path of the graph (with
respect to the transition system) corresponding to the current role will be explored. And
as this path ends up with an action driving to a terminal state, the role will terminate.

5 Conclusion

We believe that a special care is needed for the specifications of generic protocols,
since only partial information can be provided for them. Therefore, we developed a
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framework to represent generic protocols for agent interactions. Our framework puts
forth the description of the actions performed by the agents during interactions, and
hence highlights the behavior required of them during the execution of protocols. In this,
we depart from the usual protocol representation formalisms which only focus on the
description of exchanged messages. Our framework is based on a graphical formalism,
AUML. It is formal, at least as expressive as AUML (and its extensions) and of practical
use. As we discussed in the paper, this framework has been used to address various
issues in agent interaction design.

Since actions in generic protocols can be described only in a general way, a more
precise description of these actions is dependent on the architecture of the agent that
will perform them in the context of an interaction. This is usually done by hand by
agent designers when they have to set up agent interaction models. Doing such a con-
figuration by hand may lead to inconsistent message exchange in an heterogeneous
MAS. We address this issue by developing an automatic generic protocol configuration
mechanism (see [15]). This mechanism consist in looking for similarities between the
functionalities in the architecture of an agent and actions of generic protocols.

Protocol selection is another issue we faced while designing agent interactions based
on generic protocols. Usually, agent designers select the protocols their agents will use
to interact during the performance of collaborative tasks. However, this static protocol
selection severely limits interaction execution in open and heterogeneous MAS. Thus,
we developed a dynamic protocol selection mechanism (see [14]) to address these lim-
itations. During the dynamic protocol selection, agents reason about the specifications
of the protocols known to them and the specification of the task to perform. Again, we
used this framework, since it enables us to accomplish the reasoning about the manda-
tory coordination mechanisms for the performance of collaborative tasks.
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A EBNF Grammar

< protocol > := < protproperties >< roles >< messagepatterns >

< protdescriptors > := < protdescriptors >< protattributes >< protkeywords? >

< protattributes > := < class >< participantcount >

< protocolkeyword > := ”containsconcurrentroles”|”iterativeprocess”| . . .
< roles > := < role >< role > | < roles >< role >

< messagepatterns > := < acl >< messagepattern+ >

< role > := < roleproperties >< variables? >< actions? >< phases >

< roledescriptors > := < roledescriptors >< roleattributes >< rolekeywords? >

< roleattributes > := < cardinality >< concurrentparticipants? >

< rolekeywords > := < rolekeyword+ >

< cardinality > := < digit+ > |”n”
< variables > := < variable+ >

< variable > := < identifier >< type >

< type > := ”number”|”string”|”char”|”boolean”| . . .
< actions > := < action+ >

< phases > := < phase+ >

< phase > := < identifier >< actions >

< action > := < category >< description? >< signature? >< events >

< category > := ”append”|”custom”|”remove”|”send”|”set”|”update”
< signature > := < arguments > | < messages >

< arguments > := (< argset > | < argdesc >) +
< argset > := < settype > (< argset > | < argdesc >) +

< argdesc > := < identifier >< type >< direction >

< messages > := (< message > | < messageset >) +
< message > := < identifier >

< messageset > := < settype > (< messageset > | < message >) +
< settype > := ”and”|”or”|”xor”
< events > := (< event > | < eventref > | < eventset >) +

< eventset > := < settype > (< event > | < eventref > | < eventset >) +
< event > := < identifier? >< eventtype >< object >

< eventtype > := ”change”|”custom”|”endphase”| . . .
< object > := < message > | < variableid >

< eventref > := < identifier >

< messagepattern > := < identifier >< performative >< content >

< performative > := < fipaperformative > | < kqmlperformative >

< content > := < type >< pattern? >
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Abstract. This paper presents two approaches for generating and ex-
ecuting the plans of cognitive agents. They can be used to define the
semantics of programming languages for cognitive agents. The first ap-
proach generates plans before executing them while the second approach
interleaves the generation and execution of plans. Both approaches are
presented formally and their relation is investigated.

1 Introduction

Various programming languages have been proposed to implement cognitive
agents [14,2,8,6,9,12,5,7,11]. These languages provide data structures to repre-
sent the agent’s mental attitudes such as beliefs, goals and plans. Beliefs describe
the state of the world the agent is in, goals describe the state the agent wants
to reach and plans are the means to achieve these goals.

Most of these programming languages can be viewed as inspired in some way
by the Procedural Reasoning System (PRS) [6]. This system was proposed as
an alternative to the traditional planning systems [13], in which plans to get
from a certain state to a goal state are constructed by reasoning about the re-
sults of primitive actions. PRS and most of today’s cognitive agent programming
languages, by contrast, use a library of pre-specified plans.1 The goals for the
achievement of which these plans can be selected, are part of the plan specifi-
cation. Further, plans might not consist of primitive actions only, but they can
also contain subgoals. If a subgoal is encountered during the execution of a plan,
a plan for achieving this subgoal should be selected from the plan library, after
which it can be executed. An agent can for example have the plan to take the
bus into town, to achieve the subgoal of having bought a birthday cake, and
then to eat the cake.2 This subgoal of buying a birthday cake will have to be
fulfilled by selecting and executing in turn an appropriate plan of for example
which shops to go to, paying for the cake, etc., before the agent can execute
1 The language ConGolog [7], in which the agent reasons about the result of the

execution of its actions, is an exception.
2 Assuming that both taking the bus into town and eating cake are primitive actions

that can be executed directly.

M. Baldoni and U. Endriss (Eds.): DALT 2006, LNAI 4327, pp. 225–238, 2006.
© Springer-Verlag Berlin Heidelberg 2006



226 M.B. van Riemsdijk and M. Dastani

the action of eating the cake. Plans containing subgoals are called partial plans,
while plans containing only primitive actions are called total.

An important advantage of PRS and similar systems over traditional planning
systems is that they do not require search through potentially large search spaces.
A disadvantage of PRS-like systems has to do with the fact that most of these
systems allow for multiple plans to be executed concurrently, i.e., the agent
may pursue multiple goals simultaneously. These plans can conflict, as they, for
example, can require the same resources. In PRS-like systems, in which plans
for subgoals are selected during execution of the plan, it is difficult to predict
whether plans will conflict. If a plan containing subgoals is selected, it is not yet
known how the subgoals of this plan will be achieved. It is therefore difficult to
assess whether this plan will conflict with other plans of the agent.

One way to approach this issue, is to use a representation of plans that con-
tains information that can be used to detect possible conflicts among plans, as
proposed by Thangarajah et al. [16,15]. Once these conflicts are detected, plans
can be scheduled in such a way that conflicts do not occur during execution of
the plans.

In this paper, we take a slightly different approach. That is, in order to be
able to compare an approach in which information about conflicting plans is
taken into account with an approach of plan execution in the PRS style, we take
an operational approach to the former, which we call plan generation. The idea
of plan generation is to use pre-specified partial plans to generate total plans
offline, i.e., before the plans are executed. Since conflicts among plans generally
depend on the primitive actions within the plans, the generation of total plans
provides for the possibility to check whether plans are conflicting. We assume
that a specification of conflicts among plans is given, e.g., in a way comparable
with the work of Thangarajah et al.

In order to compare plan generation with plan execution, we first introduce
a framework for plan generation (Section 2). This framework defines how non-
conflicting sets of plans can be generated on the basis of a plan library (i.e.,
rules for selecting plans to achieve (sub)goals), a set of top-level goals, and a set
of initial partial plans. These definitions are inspired by default logic. In default
logic, various so-called extensions, which consist of consistent sets of first-order
formulas, can be derived on the basis of possibly conflicting default rules, and
an initial set of facts. The fact that default rules might conflict, gives rise to
the possibility of deriving multiple extensions on the basis of a single default
theory. We adapt the notion of extension as used in default logic, to the context
of conflicting plans. An extension then consists of a set of non-conflicting plans.
The idea of adapting the notion of extension as used in default logic to the
context of plans, is inspired by the BOID framework [2]. It was however not
worked out in detail in the cited paper.

The language we use as an example of a PRS style framework, is a simplified
version of the cognitive agent programming language 3APL [8,3], and is pre-
sented in Section 3. We assume that a specification of conflicts among plans is
given. Ways of specifying conflicts have been investigated in the literature (see,
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e.g., [16]), and further research along these lines is beyond the scope of this pa-
per. We show in Section 4 that, for any total plan in an extension of a so-called
plan generation agent, there is a corresponding initial plan in the execution set-
ting, which has the same semantics. If one would assume that in an offline plan
generation context, a single extension is chosen for execution, one could say that
the behavior of a plan generation agent is “included” in the behavior of a plan
execution agent. This is intuitive, since the incorporation of a notion of conflict
among plans restricts the set of plans which can be executed concurrently.

2 Plan Generation

In this section, we present a framework for plan generation that is based on [2].
In that paper, a non-standard approach to planning is taken, in which rules are
used to specify which plan can be adopted for a certain goal. This is in contrast
with planning from first principles, in which action specifications are taken as
the basis, and a sequence of actions is sought that realizes a certain goal state
according to the action specifications, given an initial situation. In [2] and in the
current paper, it is the job of the agent programmer to specify which (composed)
plan (or plan recipe) is appropriate for which goal.

Throughout this paper, we assume a language of propositional logic L with
negation and conjunction, with typical element φ. The symbol |= will be used
to denote the standard entailment relation for L.

Below, we define the language of plans. A plan is a sequence of basic ac-
tions and achieve(φ) statements, the latter representing that the goal φ is to be
achieved. In correspondence with the semantics of 3APL, basic actions change
an agents beliefs when executed. This will be defined formally in Section 3. One
could add a test statement and non-deterministic choice, but we leave these out
for reasons of simplicity. A total plan is a plan containing only basic actions.

Definition 1. (plans) Let BasicAction with typical element a be a set of basic
actions and let φ ∈ L. The set of plans Plan with typical element π is then
defined as follows.

π ::= a | achieve(φ) | π1; π2

The set of total plans TotalPlan is the subset of Plan containing no achieve(φ)
statements. We use ε to denote the empty plan and identify ε; π and π; ε with π.

Before we define the notion of an agent, we define the rules that represent which
plan can be adopted to achieve a certain goal. These plan generation rules have a
propositional formula as the head, representing the goal, and a plan as the body.
In principle, plan generation rules can be extended to include a belief condition
in the head, indicating that the plan in the body can be adopted if the agent has
a certain goal and a certain belief. The belief condition could then be viewed as
the precondition of the plan. For reasons of simplicity, we however define rules
as having only a condition on goals.

Definition 2. (plan generation rule) The set of plan generation rules RPG is
defined as follows: RPG = {φ ⇒ π | φ ∈ L, π ∈ Plan}.
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A plan generation agent is a tuple consisting of a belief base, a goal base, a
plan base and a rule base. The belief base and goal base are consistent. The
rule base consists of a set of plan generation rules and may not contain multiple
rules for the same goal. This prevents that multiple plans for the same goal can
be adopted, which could be considered undesirable. The plans base contains the
initial set of plans of the agent.

Definition 3. (plan generation agent) A plan generation agent3, typically de-
noted by A, is a tuple 〈σ, γ, Π, PG〉 where σ ⊆ L is the belief base, γ ⊆ L is the
goal base, Π ⊆ Plan is the plan base and PG ⊆ RPG is a set of rules. Further,
σ �|= ⊥ and γ �|= ⊥ and all sets σ, γ, Π and PG are finite. Finally, PG does not
contain multiple rules with an equivalent head, i.e., if φ ⇒ π ∈ PG, there is not
a rule φ′ ⇒ π′ ∈ PG such that φ ≡ φ′.

When generating plans, we want to take into account conflicts, for example with
respect to resources, that may arise among plans. For this, we assume a notion
of coherency of plans. A plan π being coherent with a set of plans Π will be
denoted by coherent(π, Π). We assume that once a (partial) plan is incoherent
with a set of plans, this plan cannot become coherent again by refining the plan,
i.e., by replacing a subgoal with a more concrete plan.

We are now in a position to define how a coherent set of plans is generated on
the basis of an agent 〈σ, γ, Π, PG〉. A natural way in which to define this plan
generation process, is an approach inspired by default logic. In default logic,
consistent sets of formulas or extensions are generated on the basis of a possibly
conflicting set of default rules, and a set of formulas representing factual world
knowledge. Here, we generate sets of coherent plans on the basis of an initial set
of plans Π , a goal base γ, and a set of plan generation rules PG.

The idea is that we take the plan base Π of the agent, which may contain
partial plans, as the starting point. These partial plans in Π are refined by means
of applying plan generation rules from PG. If π1; achieve(φ); π2 is a plan in Π
and φ ⇒ π is a rule in PG, then this rule can be applied, yielding the plan
π1; π; π2. This process can continue, until total plans are obtained. Further, a
plan generation rule φ ⇒ π can be applied if φ follows from the goal base γ. In
that case, a new plan π is added to the existing set of plans, which can in turn
be refined through rule applications.

The plans that are generated in this way should however be mutually coherent.
A plan can thus only be added to the existing set of plans through refinement
or plan addition, if this plan is coherent with already existing ones. Different
choices of which plan to refine or to add may thus have different outcomes in
terms of the resulting set of coherent plans: the addition of a plan may prevent
the addition of other plans that are incoherent with this plan.

Differing from [2], we define the notion of an extension in the context of plans
through the notion of a process. This is based on the concept of a process as used
in [1] to define extensions in the context of default logic. A process is a sequence
of sets of plans, such that each consecutive set is obtained from the previous by
3 In this section we take the term “agent” to mean “plan generation agent”.
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applying a plan generation rule. A process can formally be defined in terms of a
transition system which is a set of transition rules that indicate the transitions
between consecutive sets of plans.

Given a set of plans Ei and an agent 〈σ, γ, Π, PG〉, a rule φ ⇒ π ∈ PG can be
applied if φ follows from γ. The plan π is then added to Ei, that is, if π �∈ Ei

and coherent(π, Ei). This rule can also be applied if there is a plan of the form
π1; achieve(φ); π2 in Ei.4 In that case, the plan π1; π; π2 is added to Ei, again
only if the plan is not already in Ei and it is coherent with Ei. One could also
remove the original plan π1; achieve(φ); π2 from Ei, but addition of the refined
plan is more in line with the definition of processes and extensions in default
logic. It would be more useful if a plan of the form π1; achieve(φ); π2 could be
refined by a rule φ′ ⇒ π if φ ≡ φ′, but we omit this extra clause to simplify our
definitions. The first element of a process of an agent is the plan base Π of the
agent.

Definition 4. (process) Let A = 〈σ, γ, Π, PG〉 be an agent. A sequence of sets
E0, . . . , En with Ei ⊆ Plan is a process of A iff E0 = Π and it holds for all
Ei with 0 ≤ i ≤ n − 1 that Ei → Ei+1 is a transition that can be derived in
the transition system below. Let φ ⇒ π ∈ PG be a plan generation rule. The
transition rule for plan addition is then defined as follows:

γ |= φ π �∈ E coherent(π, E)
E → E′

where E′ = E∪{π}. The transition rule for plan refinement is defined as follows:

π1; achieve(φ); π2 ∈ E π1; π; π2 �∈ E
coherent(π1; π; π2, E)

E → E′

where π1, π2 ∈ Plan and E′ = E ∪ {π1; π; π2}.

We assume that the plan generation rules of an agent are such that no infinite
processes can be constructed on the basis of the corresponding transition system.

The notion of an extension is defined in terms of the notion of a closed process.
A process is closed iff no rules are applicable to the last element of the process.
This is formalized in the definitions below. Note that not all processes are closed.
A closed process can be viewed as a process that has terminated, i.e., there are
no transitions possible from the last element in the process. It is however the
case that we assume that any process can become a closed process.

Definition 5. (applicability) A plan generation rule φ ⇒ π is applicable to a
set E ⊆ Plan iff a transition E → E′ can be derived in the transition system
above on the basis of this rule.

4 Note that, for example, a plan achieve(φ) is also of this form, as π1 and π2 can be
the empty plan ε (see Definition 1).
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Definition 6. (closed process) process E0, . . . , En of an agent A=〈σ, γ, Π, PG〉
is closed iff there is not a plan generation rule δ ∈ PG such that δ is applicable
to En.

Definition 7. (extension) A set E ⊆ Plan is an extension of A = 〈σ, γ, Π, PG〉
iff there is a closed process E0, . . . , En of A such that E = En.

The execution of a plan generation agent is as follows. An extension of the agent
is generated. This extension is a coherent set of partial and total plans. The
total plans can then be executed according to the semantics of execution of
basic actions as will be provided in Section 3.

3 Plan Execution

In this section, we present a variant of the agent programming language 3APL,
which suits our purpose of comparing the language with the plan generation
framework of the previous section. An important component of 3APL agents
that we need in this paper, is the so-called plan revision rules which have a plan
as the head and as the body. During execution of a plan, a plan revision rule
can be used to replace a prefix of the plan, which is identical to the head of the
rule, by the plan in the body. If the agent for example executes a plan a; b; c and
has a plan revision rule a; b ⇒ d, it can apply this rule, yielding the plan d; c.

Here we do not need the general plan revision rules that can have a composed
plan as the head. We only need rules with statements of the form achieve(φ) as
the head and a plan as the body.

Definition 8. (plan revision rule) The set of plan revision rules RPR is defined
as follows: RPR = {achieve(φ) ⇒ π | φ ∈ L, π ∈ Plan}.

An agent in this context is similar to the plan generation agent of Definition 3,
with a rule base consisting of a set of plan revision rules. The rule base may not
contain multiple rules for the same achieve(φ) statement. We also introduce a
function T that takes a belief base σ and a basic action a and yields the belief
base resulting from executing a in σ. This function is needed in order to define
the semantics of plan execution. We use Σ = ℘(L) to denote the set of belief
bases.

Definition 9. (plan execution agent) Let T : (BasicAction×Σ) → Σ be a func-
tion specifying the belief update resulting from the execution of basic actions. A
plan execution agent, typically denoted by A′, is a tuple 〈σ, γ, Π, PR, T 〉, where
σ ⊆ L is the belief base, γ ⊆ L is the goal base, Π ⊆ Plan is the plan base
and PR ⊆ RPR is a set of plan revision rules. Further, σ �|= ⊥ and γ �|= ⊥ and
all sets σ, γ, Π and PR are finite. The rule base PR does not contain multiple
rules with an equivalent head, i.e., if achieve(φ) ⇒ π ∈ PR, there is not a rule
achieve(φ′) ⇒ π′ ∈ PR such that φ ≡ φ′.
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We can now move on to defining the semantics of plan execution. As it will
become clear, we only need the semantics of individual plans for the relation
between plan generation and plan execution that we will establish in Section 4.
The semantics of executing a plan base containing a set of plans can be defined
by interleaving the semantics of individual plans (see [8]).

The semantics of a programming language can be defined as a function taking
a statement (plan) and a state (beliefbase), and yielding the set of states resulting
from executing the initial statement in the initial state. In this way, a statement
can be viewed as a transformation function on states. There are various ways
of defining a semantic function and in this paper we are concerned with the
so-called operational semantics [4].

The operational semantics of a language is usually defined using transition
systems [10]. A transition system for a programming language consists of a set
of axioms and derivation rules for deriving transitions for this language. A tran-
sition is a transformation of one configuration into another and it corresponds
to a single computation step. A configuration is here a tuple 〈π, σ〉, consisting
of a plan π and a belief base σ. Below, we give the transition system TransA′

that defines the semantics of plan execution. This transition system is specific
to agent A′.

There are two kinds of transitions, i.e., transitions describing the execution of
basic actions and those describing the application of a plan revision rule. The tran-
sitions are labelled to denote the kind of transition. A basic action at the head of a
plan can be executed in a configuration if the function T is defined for this action
and the belief base in the configuration. The execution results in a change of belief
base as specified through T and the action is removed from the plan.

Definition 10. (TransA′) Let A′ be a plan execution agent with a set of plan
revision rules PR and a belief update function T . The transition system TransA′ ,
consisting of a transition rule for action execution and one for rule application,
is defined as follows. Let a ∈ BasicAction.

T (a, σ) = σ′

〈a; π, σ〉 →exec 〈π, σ′〉
Let achieve(φ) ⇒ π ∈ PR.

〈achieve(φ); π′, σ〉 →apply 〈π; π′, σ〉
Note that the goal base is not used in this semantics. Based on this transition
system, we define the operational semantic function below. This function takes
an initial plan and belief base. It yields the belief base resulting from executing
the plan on the initial belief base, as specified through the transition system.

Definition 11. (operational semantics) Let xi ∈ {exec, apply} for 1 ≤ i ≤ n.
The operational semantic function OA′

: Plan → (Σ → Σ) is a partial function
that is defined as follows.

OA′
(π)(σ) =

⎧⎨
⎩

σn if 〈π, σ〉 →x1 . . . →xn 〈ε, σn〉 is a finite sequence of
transitions in TransA′

undefined otherwise
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The result of executing a plan is a single belief base, as plan execution as defined
in this paper is deterministic: in any configuration, there is only one possible next
configuration (or none). See for example [17] for a specification of the semantics
of plan execution in case of non-determinism.

4 Relation Between Plan Generation and Plan Execution

In this section, we will investigate how these two are related. In order to do this,
we first define a function f , which transforms plan generation rules into plan
revision rules of a similar form.

Definition 12. (plan generation rules to plan revision rules) The function
f : ℘(RPG) → ℘(RPR), transforming plan generation rules into plan revision
rules, is defined as follows: f(PG) = {achieve(φ) ⇒ π | φ ⇒ π ∈ PG}.

The theorem we prove, relates the operational semantics of the total plans of
an extension of a plan generation agent, to the plans in the initial plan base
of a corresponding plan execution agent. It says that for any total plan α in
the extension, there is a plan π in the plan base of the plan execution agent,
such that the operational semantics of α and π are equivalent. The plan α is
a plan from the plan generation agent and we have not defined an operational
semantics in this context. We however take for the operational semantics of α
the operational semantics for plans as defined in the context of plan execution
agents. Note though that, for the semantics of α, only the exec transition of the
transition system on which the operational semantics is based, is relevant.5

The intuition as to why this relation would hold, is the following. The gen-
eration of a total plan α from a partial plan π under a set of plan generation
rules PG, corresponds with the execution of π, under a set of plan revision rules
f(PG). The plan revision rules applied during execution of π have a plan gen-
eration counterpart that is applied during generation of α. Further, the basic
actions that are executed during the execution of π, are precisely the basic ac-
tions of α (in the same order). Because of this, the operational semantics of α
and π are equivalent, as the execution of basic actions completely determines
the changes to the initial belief base, and therefore the belief base at the end of
the execution.

If A = 〈σ, γ, Π, PG〉 is a plan generation agent, the rule base of the corre-
sponding plan execution agent A′ should thus be f(PG). For the belief base and
goal base of A′, we take σ and γ, respectively. As for the plan base of A′, we
cannot just take Π , for the following reason. A total plan α in an extension of A
can be generated either from a partial plan π that was already in Π , or from a
plan π that has been added by applying a plan generation rule to the goal base
(through a plan addition transition in the process). If the latter is the case, we

5 We could have defined a new transition system for total plans, only containing
the exec transition of the system of Definition 10, and a corresponding operational
semantics. This is straightforward, so we omit this.
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have to make sure that π is in the plan base of A′, as this is the plan of which
the semantics is equivalent with α. We thus define that the plan base of A′ is
Π ∪ {π | achieve(φ) ⇒ π ∈ f(PG), γ |= φ}. We now have the following theorem.

Theorem 1. Let A = 〈σ, γ, Π, PG〉 be an agent and let E be an extension
of A. Let A′ = 〈σ, γ, Π ′, f(PG), T 〉 where Π ′ = Π ∪ {π | achieve(φ) ⇒ π ∈
f(PG), γ |= φ} and let α ∈ TotalPlan. We then have the following.

∀α ∈ E : ∃π ∈ Π ′ : OA′
(α)(σ) = OA′

(π)(σ)

In order to prove this theorem, we need a number of auxiliary definitions and
lemmas. The first is the notion of an extended process. The idea is, that we
want to derive from a given process p and a given total plan α in the extension
corresponding with p, those steps in p that lead from some initial partial plan π
to α. For this, we give each plan in the plan base of the agent a unique number.
Then, we associate with each step in the process the number of the plan that is
being refined. If a plan is added through a plan addition transition, we give this
new plan a unique number and associate this number with the transition step.

The elements of the sets of an extended process are thus pairs from Plan×N.
A pair (π, i) ∈ (Plan× N) will be denoted by πi. We use the notion of a natural
number i being fresh in E to indicate uniqueness of i in E: i is fresh in E if there
is not a plan πi in E.6 Further, a rule φ ⇒ π can only be applied to refine a plan
π1; achieve(φ); π2, if achieve(φ) is the leftmost achieve statement of the plan,
i.e., if π1 is a total plan. This corresponds more closely with the application of
plan revision rules in plan execution, as during execution always the first (or
leftmost) achieve statement of a plan is rewritten.

Definition 13. (extended process) Let A = 〈σ, γ, Π, PG〉 be a plan generation
agent and let I(Π) be Π where each plan in Π is assigned a unique natural num-
ber. A sequence of sets, alternated with natural numbers, E0, i1, E1, . . . , in, En

with Ei ⊆ Plan and ij ∈ N with 1 ≤ j ≤ n is an extended process of A
iff E0 = I(Π) and it holds for all triples Ek, i, Ek+1 in this sequence that
Ek →i Ek+1 is a transition that can be derived in the transition system below.

Let φ ⇒ π ∈ PG be a plan generation rule. The transition rule for plan
addition is then defined as follows:

γ |= φ π �∈ E coherent(π, E)
E →i E′

where E′ = E ∪ {πi} with i fresh in E. The transition rule for plan refinement
is defined as follows:

(α1; achieve(φ); π2)i ∈ E (α1; π; π2)i �∈ E
coherent(α1; π; π2, E)

E →i E′

where α1 ∈ TotalPlan, π2 ∈ Plan and E′ = E ∪ {(α1; π; π2)i}.
6 We refer to the pairs πi as plans and we will from now on take the set Plan as

including both ordinary plans π and pairs πi.
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The notion of a closed process (Definition 6) as defined for processes in
Definition 4, is applied analogously to extended processes.

We will prove theorem 1 using the notion of an extended process. Theorem 1
is however defined in terms of an extension, which is defined in terms of ordinary
processes, rather than extended processes. We thus have to show that extended
processes and processes are equivalent in some sense. We show that for any closed
process there is a closed extended process that has the same final set of plans,
with respect to the total plans in this set. We only provide a brief sketch of the
proof.

Lemma 1. (process equivalence) Let A be a plan generation agent and let
t : ℘(Plan) → ℘(TotalPlan) be a function yielding the total plans of a set of plans.
The following then holds: there is a closed process E0, . . . , En of A, iff there is
a closed extended process E′

0, i1, E
′
1, . . . , in, E′

n of A such that t(En) = t(E′
n)

(modulo superscripts of plans).

Sketch of proof: (⇐) If a transition E →i E′ can be derived in the transition
system of Definition 13, then a transition E → E′ can be derived in the system
of Definition 4 (modulo superscripts). (⇒) This is proven by viewing the plan
generation rules as the production rules of a grammar and the total plans that
can be generated by these rules as the language of this grammar. The formulas φ
and the statements achieve(φ) are considered the non-terminals of the grammar
and the set of basic actions BasicAction the terminals. The plans of the first
element of an (extended) process can be viewed as the start symbols of the
grammar, together with those plans that are added through the transition rule
for plan addition.

It is the case that for any derivation of a string (or total plan) in the grammar,
an equivalent leftmost derivation, in which at each derivation step the leftmost
non-terminal is rewritten, can be constructed. Derivations in an extended pro-
cess correspond with leftmost derivations, from which the desired result can be
concluded. �

Given a closed extended process p with En as its final element, and a total plan
αi ∈ En, we are interested in those steps of p that lead to the derivation of αi.
In other words, we are interested in those steps that are labelled with i. For this,
we define the notion of an i-process of an extended process. This consists of a
sequence of pairs of sets of plans, where each pair corresponds with a derivation
step that is labelled with i, in the original extended process.

Given the i-process pi of an extended process p, we define the notion of the i-
derivation of pi. The i-derivation of pi is the sequence of singleton sets of plans,7

that is yielded by subtracting for each pair (E, E′) occurring in pi, the set E
from the set E′. An i-derivation is thus a sequence πi

1, π
i
2, . . . , π

i
m,8 in which

7 It is a sequence of singleton sets, as each pair in an i-process corresponds with a
derivation step in the original process. In a derivation step from E to E′, exactly
one plan is added to E.

8 We omit curly brackets.
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each plan is labelled with i. The sequence can be viewed as the derivation of the
plan πi

m from the initial plan πi
1, as each step from πi

j to πi
j+1 in this sequence

corresponds with the application of a plan generation rule to πi
j , yielding πi

j+1.

Definition 14. (i-derivation) Let A = 〈σ, γ, Π, PG〉 be a plan generation agent
and let p = E0, i1, E1, . . . , in, En be a closed extended process of A. The i-process
pi of p is then defined as a sequence of pairs (E′

0, E
′
1), . . . , (E

′
m−1, E

′
m) such that

the following holds: (E, E′) occurs in pi iff E, i, E′ occurs in p and for any two
consecutive pairs (Ej , Ej+1), (Ej+2, Ej+3) occurring in pi it should hold that
Ej+1 ⊆ Ej+2.

Let pi = (E0, E1), . . . , (Em−1, Em) be the i-process of a closed extended pro-
cess p. The i-derivation of pi is then defined as follows: (E1\E0), . . . , (Em\Em−1).

We want to associate the semantics of a total plan α in some extension of a plan
generation agent, with the semantics of a corresponding plan π in the initial plan
base of a plan execution agent. We do this by showing that the basic actions
executed during the execution of π, correspond exactly with the basic actions
of α. For this, we define a variant of the transition system of Definition 10, in
which the configurations are extended with a third element. This element, which
is a total plan, represents the basic actions that have been executed so far in the
execution. Further, we define the execution of a sequence of basic actions in one
transition step. This is convenient when proving lemma 2.

Definition 15. (Trans′A′) Let A′ be a plan execution agent with a set of plan
revision rules PR and a belief update function T . The transition system Trans′A′ ,
consisting of a transition rule for action execution and one for rule application,
is defined as follows.

Let α ∈ TotalPlan be a sequence of basic actions and let T ′ : (TotalPlan×Σ) →
Σ be the lifting of T to sequences of actions, i.e.,
T ′(a; α)(σ) = T ′(α)(T (a)(σ)). Further, let α′ ∈ TotalPlan be a sequence of
basic actions, representing the actions that have already been executed.

T ′(α, σ) = σ′

〈α; π, σ, α′〉 →exec 〈π, σ′, α′; α〉

Let achieve(φ) ⇒ π ∈ PR.

〈achieve(φ); π′, σ, α〉 →apply 〈π; π′, σ, α〉

It is easy to see that an operational semantics O′ can be defined9 on the basis
of this transition system that is equivalent with the operational semantics of
Definition 11, i.e., such that O′(π)(σ) = O(π)(σ) for any plan π and belief base
σ. The initial configuration of any transition sequence in Trans′A′ should be of
the form 〈π, σ, ε〉, as the third element represents the sequence of actions that
have been executed, which are none in the initial configuration.

In the proof of lemma 2, we use the notion of a maximum prefix of a plan.
9 We omit superscript A′.
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Definition 16. (maximum prefix) Let α ∈ TotalPlan and let π ∈ Plan. We
then say that α is a maximum prefix of π iff α = π or π = α; achieve(φ); π′.
Note that π′ can be ε.

Lemma 2 says the following. Let αi be a total plan in a closed extended process
of a plan generation agent, and let πi

1 be the first plan of the i-derivation of αi.
It is then the case that the actions executed during the execution of π1 (given
an appropriate set of plan revision rules), are exactly the actions of α (in the
same order).

Lemma 2. Let A = 〈σ, γ, Π, PG〉 be a plan generation agent and let p =
E0, i1, E1, . . . , in, En be a closed extended process of A. Let αi ∈ En where
α ∈ TotalPlan. Further, let πi

1, . . . , α
i be the i-derivation of the i-process pi of p.

Let A′ = 〈σ, γ, Π ′, f(PG), T 〉 be a plan execution agent where Π ′ = Π ∪ {π |
achieve(φ) ⇒ π ∈ f(PG), γ |= φ}. Further, let T ′(α)(σ) be defined and let
xi ∈ {exec, apply} for 1 ≤ i ≤ m − 1. The following then holds.

A transition sequence of the form
〈π1, σ, ε〉 →x1 . . . →xm−1 〈ε, σm, α〉

can be derived in Trans′A′ . (4.1)

Sketch of proof: We say that a plan πi corresponds with a configuration
〈π′, σ, α〉 iff π = α; π′. Let πi

k and πi
k+1 be two consecutive plans in the i-

derivation of pi, where πi
k is of the form α2; achieve(φ2); π2 and πi

k+1 is of the
form α2; π; π2. This corresponds with the application of plan generation rule
φ2 ⇒ π. Let π be of the form α3; achieve(φ3); π3. We then have that the following
transition sequence can be derived in Trans′A′ .

〈achieve(φ2); π2, σ, α2〉 →apply

〈α3; achieve(φ3); π3; π2, σ, α2〉 →exec

〈achieve(φ3); π3; π2, σ
′, α2; α3〉 (4.2)

This pair of transitions is correspondence and maximum prefix preserving. If
π1 (transition sequence (4.1)) is of the form α1; achieve(φ1); π, we can derive
a transition in which α1 is executed. This yields a configuration of the form
〈achieve(φ1); π, σ′, α1〉, which corresponds with πi

1 and for which it holds that
α1 is a maximum prefix of π1. From this configuration, a sequence of apply
and exec transitions can be derived, given that we have (4.2) for every pair
πi

k and πi
k+1 occurring in the i-derivation. From the fact that this sequence of

transitions is correspondence and maximum prefix preserving, we can conclude
that the final configuration 〈πm, σm, αm〉 of the sequence must be of the form
〈ε, σm, α〉 (observe that αi is the final plan of the i-derivation, which should
correspond with 〈πm, σm, αm〉). �

We are now in a position to prove theorem 1.
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Proof of theorem 1 (sketch): We do not repeat the premisses of the theorem.
Let α ∈ E be a total plan in E. By lemma 1, we then have that there is a closed
extended process with a final set En such that αi ∈ En for some natural number
i. Let πi

1, . . . , α
i be the corresponding i-derivation. The plan π1 was either added

in the process through a plan addition transition, or it was already in Π . From
this we can conclude that π1 ∈ Π ′.

If T ′(α)(σ) is defined, we have by lemma 2 that a transition sequence of the
form 〈π1, σ, ε〉 →x1 . . . →xm−1 〈ε, σm, α〉 can be derived in Trans′A′ . We thus
have OA(π1)(σ) = σm. From the fact that only action executions may change
the belief base, and the fact that α are the actions executed over the transition
sequence, we can then conclude that OA(α)(σ) = σm. A similar line of reasoning
can be followed if T ′(α)(σ) is not defined. �

5 Conclusion and Future Research

In this paper, we presented two formal approaches for generating and executing
the plans of cognitive agents and discussed their characteristics. We explained
how these approaches can be used to define the semantics of programming lan-
guages for cognitive agents in terms of operational semantics. The relation be-
tween these approaches is investigated and formally established as a theorem.
The presented theorem shows that the behavior of plan generation agents is
“included” in the behavior of plan execution agents.

However, for reasons simplicity, many simplifying assumptions have been in-
troduced which make the presented approaches too limited to be applied to
real cognitive agent programming languages. Future research will thus concern
extending the results to more elaborate versions of the presented agent pro-
gramming frameworks. Also, the characteristics of special cases will have to be
investigated such as the case where there is only one extension of a plan gener-
ation agent. Finally, the notion of coherence between plans is not explored and
left for future research.
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Abstract. We outline the Abstract Contract Calculator, a prototype
language implemented in Haskell (a declarative programming language)
in which we model agents executing abstract actions relative to deon-
tic concepts derived from Standard Deontic Logic and Dynamic Deontic
Logic. The concepts of abstract actions are derived from Dynamic Logic.
The logics are declarative, while the implementation is operational. Ac-
tions have explicit action preconditions and postconditions. We have de-
ontic specification of complex actions. We implement a Contrary-to-Duty
Obligations case. We distinguish Contrary-to-Duty Obligations from obli-
gations on sequences, which has not previously been accounted for in the
literature. The central innovation is the expression of complex violation
and fulfillment markers. The language can be used to express a range of
alternative notions of actions and deontic specification.

1 Introduction

We present an overview of key elements of the Abstract Contract Calculator
(ACC) written in Haskell, which is a functional programming language
(see Wyner (2006a) for the code and documentation for the ACC). The ACC
processes the deontic notions of prohibition, permission, and obligation applied
to complex, abstract actions. As an intuitive example, suppose Bill is obligated
to leave the room. The deontic specification “obligated” applies to an agentive
action “Bill’s leaving the room”. Were Bill to remain in the room, he would
violate the obligation. He may then be obligated to pay a fine. An example with
a complex action is Bill is obligated to leave the room, and after having left the
room, to going downstairs. Bill can violate this obligation by first leaving the
room, but not then going downstairs. The objective of the implementation is to
abstractly model such reasoning patterns.

The scope of the paper is restricted in several ways. Actions and deontic no-
tions have been extensively discussed in the Deontic Logic and Dynamic Logic
literature (Lomuscio and Nute 2004; Jones and Sergot 1993; Sergot 1991; Roy-
akkers 1996; d’Altan, Meyer, and Wieringa 1996; Wieringa and Meyer 1993b;
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Harel 2000; Meyer 1988; and Khosla and Maibaum 1987). We do not have space
to present these logics. We cannot presume the reader is an expert in this liter-
ature. Therefore, we discuss only what is useful for our presentation. As a tool
to investigate alternative formal representations of the concepts, the implemen-
tation contributes to clarifying the issues around the logics.

A second restriction is that while we use intuitive concepts to guide the im-
plementation, the implementation applies to abstractions. Though we discuss
intuitions of obligations on an action such as leaving a room, he implementation
only applies to abstract actions such as Action6. We work with abstractions
because we can fully define the abstract actions, how functions apply to them,
and how the deontic notions apply to them. It is hard define how the functions
could apply to intuitive notions such as leave the room. Furthermore, the intu-
itive actions divert from the core issues of the implementation which are deontic
specifications on abstract simple and complex actions, contract states, contract
modification, and an agent’s execution of an action relative to a contract. We
believe it is valuable to study these abstract issues, which can then be applied
in more concrete examples.

The outline of the paper is as follows. In the first section, we informally dis-
cuss the key issues which motivate the implementation. In the second section,
we present an overview of the implementation conceptually along with relevant
fragments of Haskell code. In the final two sections, we touch on other proposals
for implementing deontic notions, weakness of the implementation, several as-
pects of the implementation which were not discussed in this paper, and issues
for future research.

2 Driving Issues

The implementation is driven by four interlocking issues: compositional and
productive flags which signal violation or fulfillment of a deontic specification;
negation of an action as antonym or opposite; complex actions, particularly
sequences; and the Contrary-to-Duty paradox. In the following, we briefly outline
the motivations which guide the implementation.

2.1 Violability

We adopt the view that violability is the central notion of the deontic specifica-
tion. For example, if Bill is obligated to leave the room and does not, then we
want to represent that Bill has violated his obligation, which we may do here with
the proposition Bill has violated his obligation to leave the room. Consequences
may follow from this violation. In this way, bad behavior is marked and reasoned
with rather than ruled out (Anderson and Moore 1967; Meyer 1988; and Khosla
and Maibaum 1987). We do not adopt the approach of recent proposals which
use the deontic notions to filter out or to prioritize actions (Garcia-Camino et.
al. 2005; Aldewereld et. al. 2005).
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In Standard Deontic Logic (Carmo and Jones 2002) or Dynamic Deontic Logic
(Khosla and Maibaum 1987; Meyer 1988), a distinguished proposition marks that
a deontic specification has been violated. However, this implies that all violations
are alike. Yet, it is clear that a single violation marker is not sufficient. Jill’s
violation of an obligation to leave the room may have different consequences
from Bill’s violation of an obligation to walk down the stairs. The richer the
structure of the marker, the subtler the ways it can be used (van den Meyden
1996; Wieringa and Meyer 1993a; and Kent, Maibaum, and Quirk 1993).

Wyner (2006b) has argued that the markers for violation markers have to be
productively and compositionally derived from the agent, the deontic specifica-
tion, the input actions, and the mode of combination of the actions. Productivity
here means that from a finite lexicon and a finite set of well-formedness rules on
simple and complex expressions, we can generate novel expressions. Composi-
tionality means that the meaning of a complex expression is determined by the
meanings of the component expressions and the mode of combination. Propo-
sitional and predicate logic are productive and compositional. For example, we
want to distinguish between the violation markers relative to Bill is obligated to
leave the room and Jill is obligated to go downstairs. In the former, the violation
marker should be Bill has violated his obligation to leave the room, while in the
latter it should be Jill has violated her obligation to go downstairs. Clearly, these
two propositions are distinct, and distinct consequences may follow from each.
In addition, the violation markers are derived from the obligation expression.
Therefore, just as the obligation expressions are formed from productive and
compositional rules, so too should be the related violation markers.

2.2 Action Opposition and Deontic Specification

Another component of our analysis is the calculation of actions in opposition.
Suppose Bill is obligated to deliver pizzas for an hour. It is intuitively clear
that some actions count toward fulfilling the obligation and some other actions
count towards violating the obligation. Furthermore, not just any activity which
is not itself an action of delivering pizzas counts toward a violation. Indeed,
some actions which Bill executes are deontically underspecified. If this were not
the case, then anything Bill does other than delivering pizzas leads to a violation.
More formally, set-theoretic complementation is not the appropriate notion for
action negation in our domain of application, for it would imply that at any one
time, the agent can either violate the obligation or fulfill it. There would be no
actions which are deontically underspecified, which is unreasonable. Instead, we
need some means to calculate the opposite actions with respect to the particular
input action, leaving other actions underspecified.

In general, we want to be able to calculate the relevant opposite of an action, if
there is one (a restriction discussed below). Though action opposition in natural
language is unclear, we can define it clearly on abstract actions. Suppose α, β,
and γ are abstract actions. For an action, say α, from the domain of actions, we
provide the means to calculate the opposite action, say it is β. We can say that
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γ is not in any relation of opposition to either α or β. Thus, if it is obligatory
to do α, one violates this obligation by doing β. If one had done γ, no violation
or fulfillment would be implied.

The function from an action to its opposites is partial ; it need not be the
case that every action has an opposite. For our purposes, we observe that an
obligation on an action is only semantically meaningful where there is an opposite
of the action as well. For example, suppose that Bill is obligated to leave the
room. If the action descriptions of leaving the room and remaining in the room
are both provided in the model, then the obligation appears to be well-formed
and meaningful. However, if for any reason, leaving the room is not available
(say Bill is unable to move), then the obligation appears vacuous. We only allow
obligations which can be fulfilled by one action or violated by another.

2.3 Contrary-to-Duty Obligations

Contrary-to-Duty (CTD) Obligations have been a central problem in Deontic
Logic (Carmo and Jones 2002). Thus, an implementation ought to provide for
it. One example of a CTD problem is as follows:

Example 1. [a.] It is obligatory that Bill leave the room.
[b.] If Bill leaves the room,

then it is obligatory that Bill goes downstairs.
[c.] If Bill doesn’t leave the room,

then it is obligatory that Bill looks out the window.
[d.] Bill doesn’t leave the room.

We conclude from (d) and (a) that Bill has violated the obligation to leave
the room. Furthermore, from (c) and (d), we conclude that it is obligatory that
Bill look out the window. Though this is a toy example, legal reasoning often
follows such patterns where one obligation together with a fact implies another
obligation (Carmo and Jones 2002).

Wyner (2006b) argues that violation and fulfillment markers are key to an
analysis of CTD cases; that is, rather than reasoning from propositional an-
tecedents in (b) and (c), we reason from violation and fulfillment markers relative
to the primary obligation as follows:

Example 2. [a.] It is obligatory that Bill leave the room.
[b.] If Bill fulfills his obligation to leave the room,

then it is obligatory that Bill goes downstairs.
[c.] If Bill violates his obligation to leave the room,

then it is obligatory that look out the window.
[d.] Bill doesn’t leave the room.

Given (d) and (a), it is implied that Bill has violated his obligation to leave the
room. In turn, this violation and (c) imply that it is obligatory for Bill to look
out the window.



A Functional Program for Agents, Actions, and Deontic Specifications 243

The advantage to this alternative analysis is that it creates a tight link be-
tween the initial obligation (a), restricted conditions of violation (d), and the im-
plied obligations (b) or (c). It blocks unwanted inferences in other cases (Wyner
2006b), which we do not have space to demonstrate here.

2.4 Obligations on Sequences Versus Sequences of Obligations

Wyner (2006b) argues that obligations on sequences and sequences of obliga-
tions are not equivalent, contra Meyer (1988), who conflates them, and Khosla
and Maibaum (1987), who mention the distinction, but do not elaborate. For
example, suppose two actions leaving the room and going downstairs. We can
put them together as a sequence leave the room, and having left the room, go
downstairs. We can impose an obligation on the sequence: It is obligatory for
Bill to leave the room, and having left the room, to go downstairs. Alternatively,
we can make a sequence of obligations, where one obligation follows another: It
is obligatory for Bill to leave the room, and having left the room, it is obligatory
for him to go downstairs. In the first, Bill can fulfull the obligation only after
executing both actions in the proper order. Bill can violate the obligation on the
sequence by failing to execute one action or by executing the actions out of turn.
In the sequence of obligations case, there are two obligations. Bill can fulfill the
first obligation, and yet violate the second. This shows that the obligation on
the sequence and the sequence of obligations are not equivalent.

In addition, the violations which are marked are distinct: in an obligation on
a sequence, the violation must mark that it is a violation on a sequence leaving
the room, and having left the room, going down stairs per se. In a sequence of
obligations, the violations only mark violations of particular actions leaving the
room and going down stairs.

A key objective of the implementation is to support a language which can
distinguish obligations on sequences and sequences of obligations. The language
should also generate distinct violation markers for each so as to allow different
inferences to follow.

In general, we have to be able to productively and compositionally calculate
the opposite of any action as well as the violation marker for any action. This is
crucial since it is not feasible to have a listing of every possible complex action
and its opposite, nor the violation markers for every possible complex action.
Productivity and compositionality are also crucial to handle novel actions, which
are new basic actions that we introduce to a particular system. For instance, if
our total inventory of basic actions is leaving the room and going downstairs, we
could apply a function to a list to determine the opposites as well as the violation
markers. That is, the opposition of leaving the room is listed as remaining in the
room and the violation marker for It is obligatory for Bill to leave the room is
Bill has violated the obligation to leave the room. But, if our functions need to
apply to an action not otherwise on the list, say jumping up and down, no output
would be produced and the system would hang. We do not want reasoning and
action execution to hang when it is fed novel input.
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So far as we know, the importance of productivity, compositionality, lexical
semantic opposition, or the calculation of complex violation markers have not
been recognized in the Deontic Logic or Dynamic Logic literature.

To this point, we have sketched some of the key conceptual issues which drive
the structure of the implementation.

3 An Overview of the Implementation

We have implemented our system in Haskell, which is a functional programming
language. Speaking broadly, functional programming languages implement the
Lambda Calculus. It is a programming language which is particularly well suited
to computational semantics (Doets and van Eijck 2004; van Eijck 2004).

In the following subsections, we present highlights of the prototype implemen-
tation. It is a programming tool in that provides a language in which alternative
notions of deontic specification on agentive actions can be systematically exam-
ined and animated. One enters at the command line an agentive action in a
context, and the program calculates whether the agent has violated or fulfilled a
particular contract as well as any ways this induces contract modification. The
result of the calculation is output.

We present the implementation starting from the simplest. States of Affairs
are lists of atomic propositions along with indices for worlds and times. Basic
Actions are essentially functions from States of Affairs to States of Affairs. Lexi-
cal Semantic Functions allow us to calculate actions in specified lexical semantic
relations such as opposite. These functions help us define the consequences of
deontically specified actions. Deontic Operators apply to actions to specify what
actions lead to States of Affairs in which fulfillment or violation is marked rela-
tive to the action and agent. We call such a specification a Contract Flag State.
We implement reasoning for Contrary-to-Duty Obligations by modifying contract
states relative to violation or fulfillment flags. Code snippets and input/output
examples are given in numbered Code and Data samples.

3.1 States of Affairs

We construct many of our expressions from basic Haskell types for strings
String, integers Int, and records, which are labels associated with values of
a given type. In terms of these, we have several derived types.

Code 1. type PropList = [String]
type World = Int
type Time = Int
type SOA = Rec (properties :: PropList,

time :: Time, world :: World)
type DBSoas = [SOA]

Our atomic propositions are of type String such as prop1 and prop2. Pre-
fixing a string with neg- forms the negation of a proposition, and we have a
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double negation elimination rule. Lists of propositions, of type PropList, form
the properties which define the properties which hold of a state of affairs. We
can filter the lists for consistency. This means that we remove from the model
any list of properties which has a proposition and its negation such as [prop1,
neg-prop1]. Filtering serves to constrain the logical space of models under con-
sideration and used for processing. For our purposes, we do not have complex
propositions other than negation. Nor do we address inference from propositions
at the level of contexts.

States-of-Affairs, which are of type SOA, are records comprised of a list of
properties along with indices for world and time. An example SOA is:

Data 1. (properties = [prop1, prop7, prop5, neg-prop3],
time = 2, world = 4)

Lists of expressions of type SOA are of type DBSoas. These can be understood as
alternative states of affairs or possible worlds.

3.2 Basic Actions

An action is of a record of type Action, which has fields for a label of type
String, preconditions xcond of type PropList, and postconditions ycond of type
PropList. An action is used to express state transitions from SOAs where the
preconditions hold to SOAs where the postconditions hold. An action with an
agent is of type AgentiveAction, which is a record with fields for an action and
an Agent of type String. A list of agentive actions is of type DBAgentiveAction.

Code 2. type Action = Rec (label :: String,
xcond :: PropList,
ycond :: PropList)

type DBAction = [Action]
type Agent = String
type AgentiveAction = Rec (action :: Action,

agent :: Agent)
type DBAgentiveAction = [AgentiveAction]

An example of an agentive action is:

Data 2. (action = (label = Action6,
xcond = [prop1, prop7, prop5],
ycond = [prop3, neg-prop4, neg-prop6]),

agent = Jill)

This represents an abstract agentive action, which contrasts with agentive ac-
tions found in natural language such as Jill leaves. We work exclusively with
abstract agentive actions since we can explicitly work with the properties which
exhaustively define them. It is harder to do so with natural language expressions
since it is not clear that we can either explicitly or exhaustively define them in
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terms of component properties. Nonetheless, we can refer to the natural language
examples where useful.

The function doAgentiveAction in Code 3 takes expressions of type SOA
and AgentiveAction and outputs an expression of type SOA.

Code 3. type doAgentiveAction :: SOA → AgentiveAction → SOA

In the definition of the function (not provided), an action can be executed
so long as the preconditions of the action are a subset of the properties of the
SOA with respect to which the action is to be executed. Following execution of
the action, the postconditions of the action hold in the subsequent context, and
the time index of the resultant SOA is incrementally updated (in this paper, we
do not manipulate the world index). Further constraints on the execution of
the well-formed transitions are that the properties of the resultant SOA must
be consistent (no contradictions) and non-redundant (no repeat propositions).
In addition, we inertially maintain any properties of the input SOA which are
not otherwise changed by the execution of the action. In Data 3, we have an
example.

Data 3. input> doAgentiveAction
(properties = [prop1, neg-prop3, prop5, prop7],
time = 2, world = 4)

(action = (label = Action6,
xcond = [prop1, prop5, prop7],
ycond = [prop3, neg-prop4, neg-prop6]),
agent = Jill)

output> (properties = [prop1, prop3, neg-prop4,
prop5, neg-prop6, prop7],
time = 3, world = 4)

3.3 Lexical Semantic Functions

For the purposes of deontic specification on agentive actions, we define lexical se-
mantic functions. These functions allow us to functionally (in the mathematical
sense) determine actions in specified relationships. This is especially important
for the definition of obligation, where we want to determine which specific alter-
natives of a given action induce violation. One observation we want to account
for is the following. Informally, if it is obligatory for Jill to leave the room, then
Jill would violate the obligation by remaining in the room. On the other hand,
if it is obligatory for Jill to remain in the room, then Jill would violate the
obligation by leaving the room. In other words, we see a reciprocal relationship
between actions in opposition. Furthermore, notice that if Jill’s leaving the room
is obligatory, then the action which fulfills the obligation and the action which
violates the obligation must both be executable in the same SOA. This means that
the actions have the same precondition properties. While the natural language
case provides the intuitions behind the functions, we implement them with re-
spect to our abstract actions. We only provide a sample of the lexical semantic
functions (see Wyner (2006a) for further discussion).
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Let us suppose a (partial) lexical semantic function findOpposites, which is
a function from Action to Action. For processing, it takes a lexicon and some
constraints. For example, suppose findOpposites applied to the action labelled
Action6 yields Action7 and vice versa. While there are many potential imple-
mentations of action opposition, we have defined the function findOpposites
such that it outputs an action which is the same as the input action but for
the negation of one of the postcondition propositions. This closely models the
natural language example of the opposition between leave and remain. As an
illustration, we have the following:

Data 4. input> findOpposites (label = Action6,
xcond = [prop1, prop7, prop5],
ycond = [prop3, neg-prop4, neg-prop6])

output> (label = Action7, xcond = [prop1, prop7, prop5],
ycond = [prop3, neg-prop4, prop6])

Three things are important about the function actionOpposites for our pur-
poses. First, we can calculate specific alternative actions which give rise to vi-
olations. As discussed earlier, it is unintuitive that just any action other than
the obligated action should give rise to violation. Second, as a calculation, we
can find an opposite for any action where the lexical structure allows one. For
the purposes of deontic specification, it need not be the case that every action
has an antonym (although one could define a function and lexical space to allow
this). Crucially, this holds for atomic as well as complex actions. And finally, the
function actionOpposites is defined so as to provide reciprocal actions; that is,
the opposite of Action6 is Action7 and vice versa. Thus, the function closely
models the natural language case discussed above.

3.4 Deontic Specifications

The previous three subsections are components of deontic specifications on ac-
tions, which we model on the following intuition. Suppose an agent Jill is obli-
gated to delivery a pizza. This implies that were she to deliver the pizza, in the
context after the delivery of the pizza, we would want to indicate that Jill has
delivered the pizza. Moreover, by doing so, she has fulfilled her obligation with
respect to her obligation to deliver the pizza. On the other hand, suppose Jill
were not to deliver the pizza, which is the opposite of delivering the pizza. In
this case, we should indicate in the subsequent context that Jill that has not de-
livered the pizza. Furthermore, by doing so, she has violated her obligation with
respect to delivering the pizza. We assume there are deontically underspecified
actions as well. For example, if Jill eats an apple, which she could do concur-
rently over the course of delivering the pizza or not delivering the pizza, it may
be that she does not incur a violation or fulfillment flag relative to that action.
While it is possible that we use a fixed list for some cases to determine when
violation markers arise, this will not work for complex actions or novel actions,
which are those actions that are not already prelisted in a lexicon.
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To define the deontic specifications, we provide a type ContractFlag. This
type is a record having fields for: the action which is executed (indicated by
the label), the deontic specification on the action (i.e. obligated, permitted, or
prohibited), the action which is deontically specified (indicated by the label and
which can be distinct from the action that is executed), whether execution of the
action flags for violation or fulfillment, and the agent which executes the action.
Lists of contract flags are of type ContractFlagState.

Code 4. type ContractFlag = Rec (actionDone::String,
deonticSpec::String, onSpec:: String,
valueFlag::String, agent::Agent)

type ContractFlagState = [ContractFlag]

The violation and fulfillment flags, which are String types that are values of
valueFlag, are key in reasoning what follows from a particular flag. In other
words, that an agent has violated an obligation on an action may imply that the
agent incurs an additional obligation. Indeed, such reasoning is central to legal
reasoning. This is further developed in the section below on Contrary-to-Duty
Obligations.

A deontic specifier is a function from an AgentiveAction to a list of results
in a ContractFlagState. A list of actions DBAction and propositions PropList
are also input for the purposes of code development.

Code 5. type obligatedCompFlag :: AgentiveAction →
DBAction → [PropList] → ContractFlagState

In Code 6, a ContractStateFlag is calculated relative to an input agentive
action inAgentiveAction (along with a lexicon and compatibility constraints).
Expressions of the form #label list return the value associated with given the
label found in the list. Expressions of the form [ x | x ← P ] are list comprehensions
in Haskell; they are analogous to the set-builder notation of set theory, where
for S = {x + 2 | x ∈ {1,. . . ,5} ∧ odd(x)}, the result is S = {3, 5, 7}. List
comprehension works much the same way, but using lists rather than sets.

We discuss the code relative to the line numbers in Code 6. Lines 1-2 con-
stitute a guard on the function: if the action from the input agentive action
has an opposite (i.e. is a non-empty list), only then do we return a non-empty
ContractStateFlag list. Otherwise, we return the empty list (line 14). This
reflects the conceptual point that there can only be obligations on an action
where the obligation can be violated (Wyner 2006a). Thus, where we return a
non-empty list, there is some action in opposition to the input action. In lines
3-7, we create a list of type ContractState which represents the fulfillment of
the obligation on the action. In lines 7-13, we find the opposite to the input
action and use it to create a list of type ContractState which represents the
violation of the action. We use ++ to conjoin these to lists to produce a list of
type ContractFlagState.
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Code 6. obligatedCompFlag inAgentiveAction inDBAction inComp
1 | ((findOpposites (#action inAgentiveAction)
2 inDBAction inComp) /= []) =
3 ([(actionDone=(#label (#action inAgentiveAction)),
4 deonticSpec="Obligated",
5 onSpec=(#label (#action inAgentiveAction)),
6 valueFlag="Fulfilled",
7 agent=(#agent inAgentiveAction))] ++
8 [(actionDone=(#label x), deonticSpec="Obligated",
9 onSpec=(#label (#action inAgentiveAction)),
10 valueFlag="Violated",
11 agent=(#agent inAgentiveAction))
12 | x ← (findOpposites
13 (#action inAgentiveAction) inDBAction [])])
14 | otherwise = []

To illustrate, let us assume that when we apply obligatedCompFlag to an
agentive action labelled Action6 with agent Jill. The output is:

Data 5. [(actionDone = Action6, agent = Jill,
deonticSpec = Obligated, onSpec = Action6,
valueFlag = Fulfilled),

(actionDone = Action7, agent = Jill,
deonticSpec = Obligated, onSpec = Action6,
valueFlag = Violated)]

This is of type ContractStateFlag. It indicates that were Jill to execute
Action6, then Jill would have fulfilled her obligation on Action6. On the
other hand, were Jill to execute Action7, then Jill would have violated her
obligation on Action6.

As lists of records, we can manipulate them. For example, we can add to or
subtract from contract states. For example, the following represents Jill’s obli-
gation with respect to Action6 and Bill’s prohibition with respect to Action9.

Data 6. [(actionDone = Action6, agent = Jill,
deonticSpec = Obligated, onSpec = Action6,
valueFlag = Fulfilled),

(actionDone = Action7, agent = Jill,
deonticSpec = Obligated, onSpec = Action6,
valueFlag = Violated),

(actionDone = Action9, agent = Bill,
deonticSpec = Prohibited, onSpec = Action9,
valueFlag = Violated)]

Manipulations of ContractStateFlag expressions are crucial for modelling
contract change, which is key to the analysis and implementation of Contrary-
to-Duty Obligations.
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3.5 Contrary-to-Duty Obligations

To model reasoning for CTDs, we enrich our States-Of-Affairs to include expres-
sions of type contractFlagState as well as histories of type history. Histories
are lists of records of what was done, when, by whom, and whether it counts as
a fulfillment or violation relative to a deontic specification. Such records are of
type HistoryFlag. They are much like ContractState expressions, but record
the world and time at which the action is executed. An important difference
between HistoryFlag and ContractStateFlag expressions is in how they are
processed. This is further developed below.

Code 7. type HistoryFlag = Rec (actionDone::String,
deonticSpec::String, onSpec:: String,
valueFlag::String, agent::Agent,
world::World, time::Time)

type History = [HistoryFlag]

Our SOAs are enriched with both a ContractFlagState and a History.

Code 8. type SOAHistorical = Rec (properties::PropList,
actionDone::String, history::History,
contractFlagState::ContractFlagState,
world::World, time::Time)

Actions are executed with doAgentiveActionSOAHist, which is function from
SOAHistorical to SOAHistorical. We illustrate this informally below. Suppose
the following input SOAHistorical to doAgentiveActionSOAHist. Notice that
the history is empty, which means that there is no evidence that an action has
been executed.

Data 7. (contractFlagState =
[(actionDone = Action6, agent = Jill,
deonticSpec = Obligated, onSpec = Action6,
valueFlag = Fulfilled),

(actionDone = Action7, agent = Jill,
deonticSpec = Obligated, onSpec = Action6,
valueFlag = Violated),

(actionDone = Action9, agent = Bill,
deonticSpec = Prohibited, onSpec = Action9,
valueFlag = Violated)],

history = [],
properties = [prop1, prop7, prop5, neg-prop4,

neg-prop6], time = 2, world = 7)

Suppose that Jill does execute Action7 with respect to this SOAHistorical.
This means that we should indicate that Jill has violated her obligation. Thus,
in the history of the subsequent SOAHistorical, we record that Jill executed
Action7. We also record that this action violates Jill’s obligation to execute
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Action6, as well as the world and time stamp where the violation occurred.
We also see that the time of the SOAHistorical is updated. The properties are
updated as well.

Data 8. (contractFlagState =
[(actionDone = Action6, agent = Jill,
deonticSpec = Obligated, onSpec = Action6,
valueFlag = Fulfilled),

(actionDone = Action7, agent = Jill,
deonticSpec = Obligated, onSpec = Action6,
valueFlag = Violated),

(actionDone = Action9, agent = Bill,
deonticSpec = Prohibited, onSpec = Action9,
valueFlag = Violated)],

history = [(actionDone = Action7, agent = Jill,
deonticSpec = obligated, onSpec = Action6,
time = 2, valueFlag = Violated, world = 7)],

properties = [prop1, prop7, prop5, prop3, neg-prop4,
prop6], time = 3, world = 7)

The next step in the implementation of CTDs is to allow contract state mod-
ification relative to actions which have been executed in the history. Recall from
the discussion of CTDs that we only want a secondary obligation to arise in a
context where some other obligation has been violated. In other words, if a par-
ticular violation of an obligation is marked in the History, we want a secondary
obligation to be introduced into (or subtracted from) the ContractStateFlag
of the SOAHistorical. For example, suppose Jill is obligated to leave the room.
If Jill violates this obligation (by remaining in the room), then she incurs a
secondary obligation to pay £5 to Bill. On the other hand, if Jill fulfills her
obligation, then she incurs a secondary permission to eat an ice cream. The sec-
ondary obligations or permissions only arise in cases where a primary obligation
has been violated or fulfilled.

To implement this, we have to examine whether a particular violation marker
appears in the history. Second, we have to make that violation marker trigger
ContractStateFlagmodification. For instance, suppose that it is marked in the
History that Jill has violated her obligation to do Action6 by doing Action7.
As a consequence of that, we modify the current contract state by removing
her previous obligation and introducing an obligation on Action11. In such an
operation, only the ContractStateFlag is modified. This gives the appearance
of inference in a state, for there is no state change marked by temporal updating.

We have a function doRDS, which implements action execution for relativized de-
ontic specifications ; it is a function from AgentiveActionsand SOAHistorical to
SOAHistorical. It incorporates modification of the ContractStateFlag. Where
we assume the steps just outlined are applied to the ContractStateFlag in
Data 7, a result is along the following lines:
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Data 9. (contractFlagState =
[(actionDone = Action11, agent = Jill,
deonticSpec = Obligated, onSpec = Action11,
valueFlag = Fulfilled),

(actionDone = Action15, agent = Jill,
deonticSpec = Obligated, onSpec = Action11,
valueFlag = Violated),

(actionDone = Action9, agent = Bill,
deonticSpec = Prohibited, onSpec = Action9,
valueFlag = Violated)],

history = [(actionDone = Action7, agent = Jill,
deonticSpec = obligated, onSpec = Action6,
time = 2, valueFlag = Violated, world = 7)],

properties = [prop1, prop7, prop5, prop3, neg-prop4,
prop6], time = 3, world = 7)

The implementation captures the essence of the CTD problem. It models how
the execution of an action relative to a ContractFlagState induces a modifica-
tion of the ContractFlagState.

3.6 Deontic Specification on Complex Actions

Earlier, we argued that we want to provide richer markers for deontic specifica-
tion on complex actions. In order to construct these richer markers, we represent
a sequence such as α;β with a richer structure which distinguishes the input ac-
tions α and β, the resultant action (suppose) γ, and the mode of formation such
as the sequence operator. The deontic specifiers can then access different com-
ponent parts of the complex action representation. This allows us to define a
range of deontic specifications, as discussed below.

We implement complex actions as records. Complex Actions have fields for
the input actions, the complex action operator, and the result of the application
of the operator to the input actions. We discuss here only the sequence operator,
as it raises the more complex and interesting problems for deontic specification.
We represent sequences schematically as follows.

Data 10. (inActionA = ActionA, inActionB = ActionB,
operator = SEQ, outAction = ActionC)

The outAction is, in this case, function composition of the input actions (pace
several restrictions on well-formedness and alternative formulations): the pre-
conditions of ActionC are the preconditions of ActionA; the postconditions of
ActionC are those of ActionB together with those of ActionA which remain
by inertia; the preconditions of ActionB must be a subset of the postcondition
properties of ActionA; and the postcondition properties of ActionC must other-
wise be consistent. Our decomposition of actions into explicit preconditions and
postconditions as well as our explicit construction of complex actions relative
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to those conditions distinguishes our approach from Dynamic Logic approaches,
where there are basic actions.

In Meyer (1988), obligations on sequences are reduced to sequences of obliga-
tions on the component actions. In Khosla and Maibaum (1987), obligations on
sequences are irreducible to sequences of obligations, but rather are obligations
on the sequence per se. In Wyner (2006a), we have further discussion of the sig-
nificance of the difference, particularly the CTD problem. Here, we simply point
out that the implementation provides ways to articulate these differences. For
example, suppose Jill is the agent of the sequence and ActionD is the opposite
of ActionA and ActionE is the opposite of ActionB. To provide the distributive
interpretation of obligation in Meyer (1988), Obldist, we need two components.
First, we have an initial contract state for the obligation on the first action:

Data 11. [(actionDone = ActionA, agent = Jill, deonticSpec =
Obligated, onSpec = ActionA, valueFlag = Fulfilled),

(actionDone = ActionD, agent = Jill, deonticSpec =
Obligated, onSpec = ActionA, valueFlag = Violated)]

In addition, we have a ContractStateModTrigger record which specifies that
in the context where the first action has been executed (checked in the history),
then the obligation on the second action of the sequence is introduced. This
results in the following contract state, which specifies the fulfillment and violation
cases for each of the component actions:

Data 12. [(actionDone = ActionA, agent = Jill, deonticSpec =
Obligated, onSpec = ActionA, valueFlag = Fulfilled),

(actionDone = ActionD, agent = Jill, deonticSpec =
Obligated, onSpec = ActionA, valueFlag = Violated),

(actionDone = ActionB, agent = Jill, deonticSpec =
Obligated, onSpec = ActionB, valueFlag = Fulfilled),

(actionDone = ActionE, agent = Jill, deonticSpec =
Obligated, onSpec = ActionB, valueFlag = Violated)]

We might say that the obligated sequence has been fulfilled where the obligations
on each action have been fulfilled and in the right order.

In contrast, we could represent Khosla and Maibaum’s (1987) interpretation
by applying the operator to ActionC with a collective interpretation of obliga-
tion, Oblcoll. We suppose that ActionF is the opposite of ActionC :

Data 13. [(actionDone = ActionC, agent = Jill, deonticSpec =
Obligated, onSpec = ActionC, valueFlag = Fulfilled),

(actionDone = ActionF, agent = Jill, deonticSpec =
Obligated, onSpec = ActionC, valueFlag = Violated),

The most interesting case is the interruptable notion of obligation on a se-
quence. In this case, there is a violation and fulfillment flag with respect to the
whole sequence, and the actions must apply in a given order. We assume the fol-
lowing initial contract state, where we emphasize that the marker for violation
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is relative to the complex action per se and there is no marker for fulfillement
of the sequence:

Data 14. [(actionDone = ActionD, agent = Jill, deonticSpec =
Obligated, onSpec = ActionC, valueFlag = Violated),

The second component is the ContractStateModTrigger, which specifies that
after execution of the first action ActionA, an obligation to execute the second
action arises such that fulfillment of this obligation marks fulfillment of the
obligation of the sequence, while violation of this obligation marks violation of
the obligation on the sequence. The resulting contract state looks like:

Data 15. [(actionDone = ActionD, agent = Jill, deonticSpec =
Obligated, onSpec = ActionC, valueFlag = Violated),

(actionDone = ActionB, agent = Jill, deonticSpec =
onSpec = ActionC, valueFlag = Fulfilled),

Obligated, (actionDone = ActionE, agent = Jill,
deonticSpec = Obligated, onSpec = ActionC,
valueFlag = Violated),

It is in such cases that a productive and compositional analysis comes to the
fore.

We see that we can define deontic specifications on complex actions in different
ways, which may be designed to suit particular purposes and interpretations. The
language is thus very expressive and can be used to implement different notions of
values applied to actions for the purposes of simulation in a multi-agent system.
Further discussion appears in Wyner (2006a).

4 Some Comparisons

There have been several recent efforts to operationalize deontic specifications.
Some we have already discussed. For example, Garcia-Camino et. al. (2005) and
Aldewereld et. al. (2005) appear to use deontic specifications to filter out or sort
actions. We do not believe that this represents the essence of the deontic notions.
Sergot (2004) uses the event calculus and only considers permissions. While we
may eventually want to integrate deontic specifications into an event calculus,
we would want to be clear about deontic specifications themselves; it does not
seem necessary to add the additional and potentially obscuring components of
the event calculus. In addition, Sergot (2004) has neither complex actions nor
an analysis of the CTD problem. Boella and van der Torre (2006) present an
architecture for normative systems which is similar in that deontic specifications
add information to basic information. However, it is unclear how they implement
their design, integrate complex actions, or account for the CTD problem.
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5 Conclusion

We have sketched the issues and implementation of the Abstract Contract Cal-
culator. We have pointed out the key role of calculating action opposition and
violation and fulfillment markers for complex actions. We have shown the im-
portance of violation and fulfillment markers for reasoning with the CTD case.
We sketched the implmentation in a Haskell program. The language allows the
expression of alternative concepts of the deontic notions. One can input an agen-
tive action, whether simple or complex, and determine, relative to a contract,
whether that action violates or fulfills an obligation.

The main strength of the approach is that it allows alternative definitions
of actions and deontic notions to be represented and animated. One can se-
lect which, out of those alternatives, most accurately represent one’s intuitions.
However, the program is a language, not a logic, even if logic-based. It needs to
be expressed in an explicit logic. Along these lines, we can consider the various
databases or registers (i.e. contractFlagState, history, and properties) as
abstract objects which are input to functions that provide output such as we find
in the database. Actions are then made to be functions on assignment functions
on values to variables, capturing the dynamic aspect. As the implementation
uses abstract actions and has no temporal operators, it has limited application.

One key aspect of the implementation which we have not discussed here are
consistency constraints and implicational relations between deontic specifica-
tions. For this, we define a notion of the negation of a deontic specification. We
also introduce lexical relations between positive and negative deontic specifica-
tions. Further discussion appears in Wyner (2006a).

We plan to enrich the structure of agents to give them some capacity to reason
with respect to their goals, preferences, and relationships to other agents. As we
want to model organizational behavior, we want to add roles, powers, a counts as
relation between actions, and organizational struture to the implementation. The
jural relations of rights and duties can also be incorporated into the language.
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