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Abstract. We present an investigation into the security of three practi-
cal pairing algorithms; the Tate, truncated Eta (ηT ) and Ate pairing, in
terms of side channel vulnerability. These three algorithms have recently
shown to be efficiently computable on the resource constrained smart
card, however no in depth side channel analysis of these specific pairing
implementations has yet appeared in the literature. We assess these al-
gorithms based on two main avenues of attack since the secret parameter
input to the pairing can potentially be entered in two possible positions,
i.e. e(P, Q) or e(Q,P ) where P is public and Q is private. We analyse
the core operations fundamental to pairings and propose how they can
be attacked in a computationally efficient way. Building on this we show
how each implementation may potentially succumb to a side channel at-
tack and demonstrate how one path is more susceptible than the other
in Tate and Ate. For those who wish to deploy pairing based systems we
make a simple suggestion to improve resistance to side channel attacks.
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1 Introduction

Pairings are a relatively new primitive in the world of cryptography. Pairings
are bilinear maps, which make them attractive for cryptographic constructions.
Since their introduction in the constructive sense1, a multitude of pairing based
protocols have been suggested and a handful of efficient pairing implementations
have been developed. We refer the reader to [1] for a comprehensive listing of
such papers.

Side Channel Analysis (SCA) has advanced immeasurably since its break-
through into the security community almost a decade ago [10]. Almost every
cryptographic construction, especially those intended for use in the smart card,
have been subject to some form of SCA or another. These powerful attacks,
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which do not play by the rules of traditional cryptanalysis, have proven success-
ful against many algorithms.

In this paper we perform passive differential side channel analysis (in the
form of correlation power analysis (CPA)) of three pairing algorithms, namely
the Tate [3], truncated Eta (ηT ) [2] and Ate pairing [9].

1.1 Related Work

The first mention of side channel analysis of pairings was in 2004 when Page and
Vercauteren [14] described a fault attack of Duursma-Lee algorithm [7] for char-
acteristic three and how the multiplication operation in general pairings could be
attacked using Simple Power Analysis (SPA) and a Messerges style Differential
Power Analysis (DPA) [13]. While this paper identified the vulnerable operation
in pairings (i.e. finite field multiplication), the method described to attack it
was computationally infeasible. The method extracted one bit at a time of one
of the coordinates of the secret parameter (for example, extracted one bit of x
of Q(x, y) at a time). Given that each coordinate is a element of the underlying
finite field and potentially n bits (where n is at least 160 bits), extracting one
bit at a time is unrealistic. This is without even considering the additional task
of data acquisition and data processing required for DPA to extract one bit.

1.2 Motivation

We choose three specific pairing algorithms to assess, namely the BKLS algo-
rithm for the Tate pairing [3], the Ate pairing [9], and the BGOhES algorithm for
a truncated version of the Eta pairing ηT [2]. Our reasoning for choosing these
implementations is that recently Scott et al. [16] presented the first timings
for the computation of these pairings which was comparable with contempo-
rary alternative cryptosystems on a 32 bit smart card. Since this contentious
aspect that has previously hindered the widespread adoption of pairings from a
commercial perspective is no longer an issue, the door is open for adoption of
pairings on these potentially side channel attackable devices. Therefore thorough
side channel evaluation of employable pairing implementations is necessary and
vital.

1.3 Contributions of This Work

In this paper we build on Page and Vercauterens work by describing a more
in depth approach to performing side channel analysis of three specific pairing
implementations. We solely concentrate on passive side channel attacks which
monitor the natural inescapable emanations of a device such as power analysis
[11], as opposed to determining the effects of purposely induced faults. We pro-
vide a computationally feasible method of attacking the finite field operations
fundamental to pairings. We describe this attack in terms of both finite field
multiplication and square root, since the square root operation is a potentially
attackable operation in the ηT pairing. However we approach our analysis from a
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different perspective. Instead of focusing on specific algorithms for specific oper-
ations, we focus on how operations are computed from a structural perspective.
We assess each candidate pairing algorithm based on the prospect of the secret
parameter being entered in either parameter position and show how some pairing
implementations are more susceptible to attack than others.

The paper is organised as follows. A brief overview of the candidate pair-
ing algorithms and correlation power analysis (CPA) is presented in section 2.
In section 3 we analyse the core pairing operations in terms of how they may
be attacked using side channels from a structural sense. We define a strategy
of attack for each pairing algorithm and consequently compare Tate, ηT and
Ate in section 4. We present possible countermeasures and address their ef-
fectiveness in deterring SCA in section 5. Finally we conclude and summarise
our findings in section 6. Note that the specific pairing algorithms themselves
can be found in appendix A.

2 Background

We briefly review relevant details on pairings and CPA.

2.1 Overview of Practical Pairings

Let E be an elliptic curve over a finite field Fq. Pairings are functions which map
a pair of elliptic curve points P, Q ∈ E(Fq), to an element of a multiplicative
group of an underlying finite field μ ∈ Fq. Algorithms A.1, A.2 and A.3 describe
implementations of Tate, Ate and ηT respectively. Each of these algorithms are
efficiently computable on a 32 bit smart card, executing in under half a second
[16]. Each of the algorithms we consider are optimised pairing algorithms.

The BKLS [3] algorithm is a particularly fast method for computing the Tate
Pairing e(P, Q), where P ∈ E(Fp) is a point on the base curve and Q ∈ E′(Fpk/d)
is a point on the d-th order twist with embedding degree k, where d is at
least 2 when k is even [4]. BKLS can be calculated over supersingular or non-
supersingular curves over finite fields of arbitrary characteristic.

The Ate pairing [9] a(P, Q) is the most recently discovered pairing algorithm,
and is potentially faster than BKLS for non-supersingular curves. Ate cleverly
observes that it is more efficient to make the first parameter P ∈ E′(Fpk/d) and
the second parameter Q ∈ E(Fp).

The BGOhES algorithm for the ηT pairing, is a generalisation of Duursma-
Lee pairing algorithm for the Tate pairing with a truncated loop. The pairing
ηT (P, Q) is calculated on a supersingular curve over small characteristic, where
both parameters P and Q are elements in E(Fpm) where p = 2 or 3.

Each pairing algorithm ultimately consists of an application of Millers algo-
rithm followed by a final exponentiation. The notable difference between the
three pairing is that Ate and Eta both have half length loops compared to Tate.
From a specific implementation standpoint, we will address the cases where the
Tate and Ate pairing is calculated over the large prime field Fpk and the ηT

pairing is calculated over the binary field F2km .
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2.2 Correlation Power Analysis

Our reasoning for using CPA is that it focuses on words of data at a time instead
of selection functions, and it overcomes some of the shortcomings of differential
power analysis (DPA) such as ghost peaks [6].

The basis for correlation power analysis (CPA) [6] and other forms of pas-
sive differential SCA is that there exists a relationship between the data being
processed during a computation and detectable physical manifestations such as
power consumption. This dependance is magnified by capturing numerous acqui-
sitions of the target in operation and then applying statistical analysis techniques
to differentiate the signal of interest from noise.

Specifically, CPA builds a hypothetical model based on assumptions made
about what constitutes energy dissipation. Then for key guesses, the correctness
of a guess is established by estimating what the consumption of such data would
be (based on the model) and then comparing it to actual data. This is generally
performed using a correlation test such as Pearson’s correlation coefficient:

ρX,Y =
E(XY ) − E(X)E(Y )

√
E(X2) − E2(X)

√
E(Y 2) − E2(Y )

(1)

where X relates to the actual data acquired from the attack such as the power
consumption and Y relates to the estimated power consumption derived from
the power model adopted (typical choices are the hamming weight or hamming
distance model).

CPA reveals words (or partial words) of data at a time. We aim to employ
CPA and recover the secret by iteratively extracting feasible portions of the
secret.

3 Side Channel Analysis of Naive Pairings

In a number of pairing based protocols, either the P or Q parameter is secret.
For example, in Boneh and Franklin’s identity based encryption [5] the critical
operation involving the secret key in a pairing is the decryption operation. Al-
though we are analysing pairings in isolation, the associated side channel security
of pairings have implications in the bigger picture.

In order to perform critical analysis of the candidate pairing algorithms, it
is necessary to analyse the core pairing operations in terms of how much infor-
mation they can potentially leak. In this section we will analyse the finite field
calculations central to pairings. Before we address these operations individually,
we make some observations about pairings.

3.1 Pairing Observations

We note the following possible opportunistic observations about pairings:

1. The secret parameter can potentially be entered as the first or second pa-
rameter in the pairing. If the curve is supersingular and a distortion map
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ψ(.) is used, as is the case with the Eta pairing, the parameters to the pairing
e(P, Q) can be switched, i.e. e(Q, P ) will yield the same result. In the case of
the Tate and Ate pairing, while the parameter can take either path, it must
hold for the entire protocol. Therefore this presents us with two avenues of
attack; the P path and the Q path. We note that depending on which path
is most vulnerable to SCA, such implications may lead to a simple method
of defence.

2. Due to point compression we only need to extract the x coordinate of the se-
cret point. Once this is found there are only two possibilities for y. Therefore
we restrict our attention to the secret x coordinate.

3. We will try to focus on operations which involve elements from the base
field Fq, where q = p or 2m since extension field elements Fqk are k bit times
larger than that of base field elements.

3.2 Structural Analysis of Core Pairing Operations

One of the key requirements in performing a differential side channel attack is to
identify an exploitable operation in the algorithm which involves some known (or
computable) data and the secret key. Since elliptic curve arithmetic ultimately
relies on the underlying finite field, we will restrict our analysis to multiplication,
squaring, square root and reduction over the binary field and multiplication and
reduction over the prime field. We refer the reader to appendix A to see when
and where such operations are used in the candidate pairings.

We briefly recap on binary field and prime field arithmetic, since the candidate
pairing implementations are over F2m and Fp.

Characteristic two finite fields F2m are constructed using polynomial basis
representation: a(z) = {aiz

m−1 + ai−1z
m−2 + . . .+ a2z

2 + a1z + a0 | ai ∈ {0, 1}}
where a(z) ∈ F2m has degree at most m − 1. Arithmetic over F2m is modulo the
irreducible polynomial f(z). We will represent a(z) ∈ F2m as the concatenation
of w bit blocks: a(z) = a(m/w)−1|a(m/w)−2| . . . |a0, where w is the underlying
processor’s word length.

Characteristic p finite fields, Fp, where p is a large prime, consist of the integers
0, 1, 2, . . . , p − 1 with arithmetic modulo p. Let n = �log2 p� be the bit length of
p. We will represent the elements a ∈ Fp as the concatenation of w bit blocks:
a = a(n/w)−1|a(n/w)−2| . . . |a0.

Since we only need to deterministically calculate partial output of target op-
erations, we revert back to the most basic methods for insight.

Multiplication. The most straightforward method for multiplication is the
shift and xor method for F2m and the operand scanning method for Fp. These
methods are very similar, and so will only describe the former.

The multiplication2 of two F2m elements a(z) =
∑m−1

i=0 aiz
i and b(z) =

∑m−1
i=0 biz

i will produce the binary polynomial c(z) =
∑2m−1

i=0 ciz
i, with degree

2 In the context of binary fields by multiplication we mean carry-free binary polyno-
mial multiplication.
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2m−1. The shift and xor method involves multiplying words of b(z) by words of
a(z) at a time. This process is depicted in figure 1. In the smart card system used
by Scott et al. [16] they used a special binary polynomial multiplication instruc-
tion. The main distinction between this method and the multiplication of two
Fp elements is that instead of xor-ing, addition (with carry bits) is performed.

×

0w+

20 w+

30 w+

40 w+

50 w+

60 w+

70 w+

80 w+

100 w+

90 w+

110 w+

A
B

C
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⎫

=⎬
⎭

Fig. 1. Multiplication of F(2m) elements: the shift and xor method

A simple power analysis (SPA) attack on the bitwise shift and xor method was
suggested by Page et al. in [14], which could easily be extended to apply to the
operand scanning method. However, since it is unlikely that this basic algorithm
will be favoured in a constrained embedded device, it is doubtful that SPA will
work. Other attacks on modular multiplication have also been suggested. Walter
[17] demonstrates how Montgomery multiplication can be attacked with SPA if
an extra reduction is included.

In reality a number of multiplication algorithms can be implemented. We sug-
gest that instead of focusing on the multiplication algorithm itself, we focus on
the result of the multiplication. Due to the structural evolution of multiplica-
tion, which the basic algorithms allow us to easily see (as in figure 1), we can
easily identify which data portions effect the resulting product value (or partial
product). A possible side channel attack of the multiplication operation is as
follows:

Let the target operation for a CPA attack be the multiplication of two finite
field elements. Note that we will deal with the act of multiplication and reduction
separately for the moment. Let x be an n-bit known (or computable) value
by the adversary and k be an n-bit unknown secret value. Let y = x · k be
the resulting 2n-bit product. We represent x, k and y as the concatenation of
w bit blocks: x = x(n/w)−1|x(n/w)−2| . . . |x0, k = k(n/w)−1|k(n/w)−2| . . . |k0 and
y = y(2n/w)−1|y(2n/w)−2| . . . |y0 accordingly.
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Since multiplication is not a suitable selection or partition function, and CPA
is the attack of choice, w-bit portions of k will be extracted at a time3. To
identify the target input block we denote xl and kl to be the lth w-bit block of x
and k respectively, where 0 ≤ l ≤ n/w − 1. To identify the hypothetical output
block we denote yr to be the r th w-bit block of y, where 0 ≤ r ≤ (2n/w) − 1.

If we are dealing with implementations over the binary field, there are two
possible positions from which the attack can commence, either the most or least
significant word of k, since all middle words of the product x·k are polluted by the
outermost words. If the implementation is over the prime field, we are restricted
to commencing from the least significant word only since carry propagation will
significantly effect all other words. We will describe the case where we begin
searching the least significant word of k, k0. First all the data for the correlation
test is produced.

Algorithm 1. Generate hypothetical output of the multiplication x0 · k0 for
all possible k0, where x0 is known. N is the number of times the algorithm is
executed and consequently relates to the number of acquisitions captured.
Input: x0

Output: H0

1: for 0 ≤ j < 2w do
2: for 1 ≤ i ≤ N do
3: k0 = j
4: y0 = k0 · x0

5: H0(i, j) = y0

6: end for
7: end for
8: return H0

This will produce a N × 2w matrix H0 detailing the hypothetical product of
all 2w possible k0’s and the N known x0’s. Note that the actual multiplication of
k0 · x0 will produce a 2w bit product y0, however only the least significant word
of this is required as entry in H0. The most significant word of y0 contributes to
the subsequent product word y1.

To identify which is the correct least significant word k0, the correlation is
calculated between the estimated power consumption of each row in H0 (this
contributes to Y in equation (1)) and a discrete time interval in the acquired
physical traces where the target operation is being executed (this contributes to
X in equation (1)). The hypothesis with the highest correlation, is identified as
the correct least significant word k0.

To extract the remaining interior words of k, the attack proceeds similar to
algorithm 1. It can be seen from figure 1 that in the 2n-bit product y, all middle
3 In the case of Scott et al. implementation, where w = 32 it will be a computationally

intensive task to extract one word. However it is possible to calculate the partial
correlation by just focusing on practical portions of w at a time.
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words are influenced by more than one word in k. Therefore k1 cannot be found
unless k0 is known, and k2 cannot be found unless k1 and k0 is known, etc.
Therefore, line 5 in algorithm 1 is replaced by yr = (kl ·x0)+ ( auxiliary words )
for 1 ≤ l ≤ n/w − 2. For instance y1 = (k1 · x0) + (k0 · x1) + (k0 · x0) and
y2 = (k2 · x0) + (k1 · x1) + (k0 · x2) + (k1 · x0).

The computational cost of such an attack is l ×2w. Note that we can improve
on this slightly when analysing binary field implementations. By observing the
fact that the most and least significant words of k can be independently calcu-
lated (i.e. no middle words of k influence the multiplied output), we can simulta-
neously calculate hypotheses for k0 and kn/w−1. Once both of these terms have
been extracted, then the search can step inwards, i.e. calculate hypotheses for k1
and kn/w−2 simultaneously, etc. This reduces the cost of extracting k to l

2 ×2w.

Squaring. A variety of fast multiplication algorithms exist for squaring finite
field elements. Here we will view squaring in its simplest form which is the
multiplication of x · k, where x = k, and so the attack just described can be
applied in the same way to the squaring operation.

Square Root. The square root method is only called on in the Eta pairing
implementation, and so only square root calculation over the binary field will be
discussed. An efficient method for calculating the square root can be obtained
from the observation that

√
a can be expressed in terms of the square root of

the element z [8]. Basically the value a is split into it’s odd and even coeffi-
cients, as depicted in figure 2, and then the odd portion is multiplied by

√
z and

subsequently added to the even portion. If the irreducible polynomial f(z) is a

Even Odd

0 1 2 3 4 5 876 109 11 15141312 181716 2119 20 2322 24 2625 2827 3029 31

0 2 4 86 10 1412 1816 20 22 24 26 28 30 25 27 29 311 3 5 7 9 11 1513 17 2119 23

Even Odd

0 1 2 3 4 5 876 109 11 15141312 181716 2119 20 2322 24 2625 2827 3029 31

0 2 4 86 10 1412 1816 20 22 24 26 28 30 25 27 29 311 3 5 7 9 11 1513 17 2119 23

Fig. 2. Square Root of F(2m) elements where w = 32

trinomial or pentanomial, then an efficient formula for calculating
√

z can be
used. For example,

√
z = x

m+1
2 + z

n+1
2 (mod f(z)) when f(z) is a trinomial and√

z = z
m+1

2 + z
n+1
2 + z

q+1
2 + z

r+1
2 (mod f(z)) when f(z) is a pentanomial.

Since the act of square root is a single operand operation, the only way the
act of calculating the square root of a secret value can be used in a side channel
attack is if, after a prediction about a (and the resulting

√
a) has been made,

this value is later used in an operation involving known data. The hypothetical
output of this following operation is then used to verify the hypotheses. This
is a form of second order attack and will be described later in more detail. For
now we will describe how a value entered into the square root function changes
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in a structural sense, so that by knowing a portion of a we can deterministically
calculate what a portion of

√
a will be.

Let k equal the unknown secret value as before. The
√

k is calculated as
follows: First k is split into left and right chunks. Given that we will be predicting
w bits of k at a time, this means that we will know w

2 bits of odd, and w
2 bits of

even. We will denote these half words by ko and ke respectively.
In the multiplication step, two m

2 bit quantities, ko ·
√

z, will be multiplied
to produce an m bit product. Since we know one of the multipliers

√
z we can

predict what a portion of the product will be as before. This portion will be w
2

bits. Since there will not be multiple reduction steps (there might not even be
one), we can calculate what the final output of the reduction will be.

The final step to the square root operation is the addition (xor) of the even
values from before ke and the product ko ·

√
z (mod f(z)). Since we know the w

2
bits of even, and w

2 bits of the product, we can calculate w
2 of the value

√
k. This

can be carried on to the next step in the algorithm, where we can determine
how these w

2 bits effect the result of the next operation. As before, we have two
possible positions from which this attack can commence; the most significant
word and the least significant word. Once either of these has been established
the middle neighbour words can be searched for.

Even though w
2 bit portions are used to verify w bit hypotheses of k, the

computational costs of extracting k is still l × 2w or l
2 × 2w if k is attacked

simultaneously from both ends.

Reduction. Almost all operations over finite fields are coupled with reduc-
tion. The protocol for modulo operations depends on the implementation, i.e.
reduction can be performed either concurrently or consecutively. If reduction is
performed consecutively, the attacks of the preceding operations can be applied
as described. If reduction is performed concurrently, we will have to revise our
attack strategy.

Over the binary field, the moduli chosen is of special form such that it permits
fast reduction, for example irreducible trinomials or pentanomials are preferred.

Straightforward reduction can be performed using the shift and subtract
method, where subtract over F2m is xor and subtract over Fp involves borrow
bits. a(z) ≡ b(z) (mod f(z)) or a ≡ b (mod p) basically involves lining the mod-
ulus up with the most significant bit of a (or a(z)) and subtracting to produce an
intermediate value t. The modulus is then repeatedly lined up with intermediate
t’s until the the bit length (or degree) of t is less than the bit length of p (or
degree of f(z)).

If repeated reduce is implemented, then it is more difficult to definitively
calculate the hypothetical output of interest. For example in the case of mul-
tiplication, if we are to predict partial output of c ≡ a · b (mod p), we must
be able to calculate all of the product a · b. Knowing only portions of a · b is
not sufficient since the waterfall effect of reduction will lose these portions in a
manner unpredictable by the adversary.

The implication of repeated reduce is that intermediate output of the cal-
culation of c ≡ a · b (mod p) must now be used for the hypothesis testing. A
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possible attack might proceed as follows: We will describe this attack for the
case where modular multiplication is the operation of interest, this technique
may be applied similarly to other methods. Let x equal the known data, and
k equal the unknown secret data as before. To extract k0, we can hypotheti-
cally calculate the intermediate output t ≡ x · k0, where t is the intermediate
(m + w)-bit result. t will then be reduced by p to once again produce a m-bit
value. Since the modulus is public, the resultant m-bit value (or even portions
of it) will be used to verify the correct k0. To extract k1, partial hypothetical
output of (t ≡ x · k1 (mod p)) + (t ≡ x · k0 (mod p)), where we assume k0 has
been found, is calculated. This process is repeated until no words of k remain
unknown.

4 Possible Attacks

So far we have described how individual operations may be attacked using side
channels. Now we will put these attacks into context as we describe when and
where in the three candidate pairing algorithms these operations are performed
and how they can be exploited to extract secret data. For each algorithm we will
assess both paths where the first scenario details the situation where Q is secret
(Case 1 ) and the second where P is secret (Case 2 ). Note that each case will
be addressed relating to the specific implementation details given in [16].

4.1 The Tate Pairing: BKLS

BKLS [3] (algorithm 2, A.1) implements the Tate pairing e(P, Q), where the first
input parameter P is a point of order r on the base curve E(Fp), and the second
parameter Q, is a point on the twist E′(Fpk/2). e(P, Q) evaluates to an element
in the finite field Fpk , where p is a large prime and k is the embedding degree. In
the specific implementation described in [16] k = 2 and so the points P and Q
have coordinates in Fp. This means the coordinates (x, y) will be approximately
the same length as the bit length of p.

Case 1. When P is public, since the order r will be a published parameter we can
generate all intermediate jP values where 1 ≤ j ≤ r (for the calculation of rP ).
Q on the other hand will remain static throughout the pairing computation. The
target operation in the algorithm involving the secret Q is: mj = yj − λj(xQ +
xj) − yQi where xj , yj and λj are known, i =

√
−1 and xQ and yQ are secret.

Since we only need extract xQ, we can focus on the operation λj(xQ +xj). As
we will know xj and λj , we can employ the attack of the multiplication operation
described in 3.2 and extract words of xQ at a time.

High order SCA can be applied here since we will know xj , yj , λj for all j,
and so can calculate the hypothetical output of λj(xQ + xj) at multiple points.

Case 2. Conversely in the scenario where P is secret and Q is public, our known
value remains static through the attack, and the secret parameter is constantly
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changing. Intuitively this makes this path more difficult to attack, as even if
intermediate values of P are recovered, the original P must be extracted re-
quiring point subtraction and knowledge of the number of previous additions
that have already been performed. On further inspection, based on our analysis
of finite field operations, this avenue of attack is actually not possible for the
following reason; In order to make an hypothesis, there must exist an opera-
tion where the adversary can deterministically calculate how the input effects
the output (even partially). However given a section of xj it is impossible to
deterministically calculate any of the subsequent xj+1, where xj+1 is the result
from either the doubling or addition of the previous jP , since calculation of
xj+1 requires knowledge of yj . So even if we make predictions for the value of
xj+1 in λj+1(xQ +xj+1), we have no way of determining what λj+1 is and more
importantly what the original xj is.

This natural property of the BKLS algorithm can actually act as a deterrent
by enforcing the secret parameter to be entered as the first parameter to the
pairing.

4.2 The Ate Pairing

The Ate pairing a(P, Q) [9] (algorithm 3, A.2) is also computed over the prime
field, where P is chosen as a point of order r over the twisted curve E′(Fpk/d)
with embedding degree k, and Q is chosen over the base field E(Fp). Here point
scalar multiplication (the accumulation of P to rP ) is calculated over the ex-
tension field E′(Fpk/d) (see [9] for details). This means that the underlying finite
field arithmetic fundamental to point addition and doubling is performed over
Fpk/d . However, the coordinates of Q will be over Fp. In the specific implemen-
tation described in [16] k = 4 and d = 2.

Case 1. As with BKLS when P is public and Q is private the target operation
is mj = i2yQ − i(i2yj/2 + λj(i2xj/2 + xQ)) where elements from the twist jP
are untwisted (hence the division by 2) and combined with Q to construct the
Miller variable mj ∈ Fpk . Note in this case i =

√
−2.

Isolating the operation λj(i2xj/2 + xQ) involving the secret coordinate xQ

involves addition of an element in Fp to an element in Fp2 and multiplication
over Fp2 . Note a+b where a = x1+y1i ∈ Fp where y1 = 0, and b = x2+y2i ∈ Fp2 ,
simply involves adding the real coefficient of a to the real coefficient of b.

To attack this operation, we once again utilise the observation about mul-
tiplication. Even though multiplication is now being performed over Fp2 , we
can still think in terms of multiplication over Fp. So say a = x1 + y1i and
b = x2 + y2i ∈ Fp2 , a · b is simply (x1 ·x2 − 2y1 · y2)+ (x1 · y2 + y1 ·x2)i where the
internal multiplications are over Fp. Relating to the our attack of λ(i2xj/2+xQ),
this means we will be able to calculate the partial output of x1 · x2 and y1 · x2
where x2 relates to the real coefficient of xj which is added to xQ. Note that we
will be able to calculate all other portions of a · b. Once again the attack of the
multiplication operation as described in 3.2 can be employed to extract xQ.
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Case 2. The case where P is secret is almost analogous to the BKLS case, and
hence appears to be impossible to attack. In Ate an attack would be even more
complex since the calculation of jP involving point addition and doubling is over
the extension field Fp2 and thus involves more complex arithmetic.

4.3 The ηT Pairing

The ηT algorithm (algorithm 4, A.3) is quite different from Tate and Ate. The
implementation [2] for consideration is applicable to supersingular elliptic curves
over the binary field E(F2m). The pairing ηT (P, Q) evaluates to an element in
F2km . Both parameters are points on the curve E(F2m). No distortion map is
explicitly used, as the map to the extension field is integrated into the algorithm.

Unlike BKLS and Ate, some preliminary computation takes place outside the
loop. Operations on points are also completely avoided. The paths for P and Q
are almost symmetric and so attack strategies for both paths are almost equiva-
lent. The only difference is that where the square root of xP and yP is calculated,
the squaring of xQ and yQ is performed.

Case 1. Here there are two main points of attack. The first point of attack is
outside the loop; f ← u · (xP + xQ + 1) + yP + yQ + b + 1 + (u + xQ)s + t where
the first value in F2km is constructed. This is enabled by the incorporation of
the public elements s and t ∈ F2km .

Assuming that xQ is secret and xP is known, the operation u · (xP + xQ +
1) where u = xP + 1, can be focused on. This operation basically involves
addition (xor) and multiplication modulo the known irreducible polynomial f(z).
Hypothetical partial output of u · (xP + xQ + 1) can be calculated by guessing
w-bit portions of xQ.

The second point of attack is the squaring operation, i.e. xQ ← x2
Q. This

squared value is subsequently used in the next round of the loop in g ← u ·(xP +
xQ) + yP + yQ + xP + (u + xQ)s + t where u in this calculation is xP . By purely
calculating what the hypothetical output of a portion of xQ ← x2

Q is, we can
analyse how this portion affects subsequent operations.

For example, assuming we have guessed what the least significant word of xQ

is, and calculated the least significant word of the resulting x2
Q. This means that

we can hypothetically calculate u · (xP +xQ +1) after the first and second round
of the for loop and still be able to easily trace back to the original Q.

Case 2. ηT is unique to Tate and Ate in that the two paths in the pairing are
almost symmetric and so are equally as vulnerable. Similar to the attack of Q
there are two main points of attack. The first point of attack is again outside
the loop, where the operation u · (xP + xQ + 1) can be attacked.

The second point of attack is the square root function inside the loop. Given
that we can deterministically calculate w

2 bits of hypothetical w bits of
√

xP ,
this means that we can test how this predicted output effects the output of a
number of subsequent operations to perform high order SCA. For example we
can calculate the hypothetical output u · (xP + xQ) and xP + (u + xQ)s + t.
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The only real obstacle that ηT provides is that regardless of whether the
secret takes the either path, it is dynamic. Therefore if the adversary extracts
an intermediate secret value they must work back to get the original point.
This is in contrast to Ate and Tate which can be attacked at any point in the
algorithm.

5 Possible Countermeasures and Their Implications

A number of countermeasures have already been anticipated to protect pairings
against SCA [15], [14]. Taking advantage of bilinearity, the secret point can
simply be blinded. A pairing can be calculated as e(P, Q) = e(aP, bQ)1/ab where
a and b are random values or e(P, Q) = e(P, Q+R)/e(P, R) where R is a random
point. While these may be effective in deterring SCA since a new random value
will be used every time the pairing is called, they are expensive, ultimately
requiring point scalar multiplication and calculation of two pairings respectively.

Another more subtle countermeasure proposed by [15] observes that repeated
multiplication of the Miller variable m in BKLS and Ate (or f in ηT ) by a
random element in Fp (or F2m) will have no effect on the final pairing value
since they will be eliminated in the final exponentiation. This is a less expensive
deterrent only requiring a field multiplication per iteration of the Miller loop.

In order for this countermeasure to be effective, we recommend that the ran-
dom value must not only be multiplied by the Miller variable, but must be
multiplied by all intermediate values that make up the Miller variable. For ex-
ample in the case of Tate; mj = r · yj − λj(r · xQ + r · xj) − r · yQi where r ∈ Fp.
If a new random value is multiplied at every iteration of the loop, the attacks
we have presented would no longer be possible.

6 Conclusion and Recommendations

We have presented the first passive differential side channel analysis of the Tate,
Ate and ηT pairing. We performed this investigation in an analytical sense, where
empirical knowledge of side channel attacks was used to determine where and
how operations in the candidate algorithms could be exploited. We presented
an attack of the multiplication, square root and reduction operations over finite
fields, from a slightly different perspective. Instead of focusing on how these
operations could be performed, we simply focus on trying to deterministically
calculate partial output based on the structural expansion of basic algorithms.

We assessed the three candidate pairing algorithms based on the attack on
both paths that a secret can take. From this we found that although none of the
algorithms assessed proved to be resistant to SCA, Tate and Ate if implemented
with the secret being stationed in the first parameter could withstand such at-
tacks. ηT however, which is the most efficient algorithm computationally, is open
to attack from either path proving that speed may not be the main consideration
when choosing the best implementation.
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From our findings we recommend two straightforward deterrents to protocol
designers implementing pairing based protocols to protect against SCA: 1. If
implementing the Tate or Ate pairing, ensure that the secret parameter is posi-
tioned in the first parameter (i.e. the secret takes the P path). 2. If implementing
any of the pairings (but more specifically ηT ), we recommend the adoption of
the simple countermeasure proposed by [15] where intermediate finite field mul-
tiplication by a random value will successfully mask sensitive data.
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A Practical Pairing Implementations

A.1 The Tate Pairing

Algorithm 2. Computation of e(P, Q) on E(Fp) : y2 = x3 +Ax+B, where P is
a point of prime order r on E(Fp) and Q is a point on the twisted curve E′(Fp)
Input: P = (xP , yP ), Q = (xQ, yQ)
Output: m ∈ Fp

1: m = 1
2: xA, yA ← xP , yP

3: n = r − 1
4: for i ← �lg(r)� − 2 to 0 do
5: if ni = 1 then
6: (λ, xT , yT ) ← double(A, A)
7: g = yA − λ(xQ + xA) − i.yQ

8: xA, yA ← xT , yT

9: m = m2 · g
10: (λ, xT , yT ) ← add(T, P )
11: g = yA − λ(xQ + xA) − i.yQ

12: xA, yA ← xT , yT

13: m = m · g
14: else
15: (λ, xT , yT ) ← double(A, A)
16: g = yA − λ(xQ + xA) − i.yQ

17: xA, yA ← xT , yT

18: m = m2 · g
19: end if
20: end for
21: m = m̄

m

22: return m(p+1)/r

The notation m̄ denotes the conjugate of m.
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A.2 The Ate Pairing

Algorithm 3. Computation of a(P, Q) on E(Fp) : y2 = x3 + Ax + B, where P
is a point of prime order r on the twisted curve E′(Fp2) and Q is a point on the
base curve E(Fp)
Input: P = (xP , yP ), Q = (xQ, yQ)
Output: m ∈ Fp2

1: m = 1
2: xA, yA ← xP , yP

3: n = t − 1
4: for i ← �lg(n)� − 2 to 0 do
5: if ni = 1 then
6: (λ, xT , yT ) ← double(A, A)
7: g = i2yQ − i(i2yA/2 + λ(i2xA/2 + xQ))
8: xA, yA ← xT , yT

9: m = m2 · g
10: (λ, xT , yT ) ← add(A, P )
11: g = i2yQ − i(i2yA/2 + λ(i2xA/2 + xQ))
12: xA, yA ← xT , yT

13: m = m · g
14: else
15: (λ, xT , yT ) ← double(A, A)
16: g = i2yQ − i(i2yA/2 + λ(i2xA/2 + xQ))
17: xA, yA ← xT , yT

18: m = m2 · g
19: end if
20: end for
21: m = m̄

m

22: return m(p2+1)/r

A.3 The ηT Pairing

Algorithm 4. Computation of ηT (P, Q) on E(F2m) : y2 + y = x3 + x + b

Input: P = (xP , yP ), Q = (xQ, yQ)
Output: f ∈ F2km

1: u ← xP + 1
2: f ← u · (xP + xQ + 1) + yP + yQ + b + 1 + (u + xQ)s + t
3: for i ← 1 to (m + 1)/2 do
4: u ← xP , xP ← √

xP , yP ← √
yP

5: g ← u · (xP + xQ) + yP + yQ + xP + (u + xQ)s + t
6: f ← f · g
7: xQ ← x2

Q, yQ ← y2
Q

8: end for
9: return f (22m−1)(2m−2(m+1)/2+1)(2(m+1/2)+1)
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