

Lecture Notes in Computer Science 4341
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Phong Q. Nguyen (Ed.)

Progress in Cryptology –
VIETCRYPT 2006

First International Conference on Cryptology in Vietnam
Hanoi, Vietnam, September 25-28, 2006
Revised Selected Papers

13

Volume Editor

Phong Q. Nguyen
Ecole Normale Supérieure
Département d’Informatique
45, rue d’Ulm, 75230 Paris Cedex 05, France
E-mail: Phong.Nguyen@ens.fr

Library of Congress Control Number: 2006938421

CR Subject Classification (1998): E.3, G.2.1, D.4.6, K.6.5, K.4, F.2.1-2, C.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-68799-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68799-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11958239 06/3142 5 4 3 2 1 0

Preface

These are the proceedings of VIETCRYPT 2006, the first international confer-
ence on cryptology hosted in Vietnam. The conference was organized by FPT
Software, in cooperation with Vietnam’s Institute of Mathematics. It was held
in the beautiful city of Hanoi, September 25–28, 2006. This conference would
certainly not have been possible without Phan Dinh Dieu, the General Chair.
I also wish to thank Nguyen Quoc Khanh, Nguyen Duy Lan and Phan Duong
Hieu for their invaluable help in organizing the conference.

The Program Committee, consisting of 36 members from 17 countries, consid-
ered 78 papers (from 19 countries) and selected 24 for presentation. These pro-
ceedings include the revised versions of the 24 papers accepted by the Program
Committee. These papers were selected from all the anonymous submissions to
the conference on the basis of originality, quality and relevance to cryptography.
Revisions were not checked and the authors bear full responsibility for the con-
tents of their papers. The conference program also included two invited talks: it
was a great honor to have Tatsuaki Okamoto and Jacques Stern as invited speak-
ers. Their talks were entitled, respectively, “On Pairing-Based Cryptosystems”
and “Cryptography in Financial Transactions: Current Practice and Future
Directions.”

The selection of papers was a difficult and challenging task. Each submission
was reviewed by at least three referees. I wish to thank the Program Committee
members, who did an excellent job, and devoted much effort and valuable time
to read and select the papers. In addition, I gratefully acknowledge the help of a
large number of colleagues who reviewed submissions in their areas of expertise.
They are all listed here and I apologize for any inadvertent omission. I also
wish to thank Springer for publishing the proceedings in the Lecture Notes in
Computer Science series.

All paper submissions to VIETCRYPT 2006 were handled electronically,
using the amazing iChair software developed at the École Polytechnique Fédérale
de Lausanne (EPFL) by Thomas Baignères and Matthieu Finiasz. I also wish to
thank Jacques Beigbeder for installing iChair at the ENS.

Finally, I would like to thank all the authors who submitted papers.

October 2006 Nguy˜̂en Phong Quang

VIETCRYPT 2006
International Conference on Cryptology in Vietnam

September 25 – 28, 2006, Hanoi, Vietnam
Organized by
FPT Software

in cooperation with
Vietnam’s Institute of Mathematics

Organization Committee

Nguyen Quoc Khanh . FPT Software, Vietnam
Nguyen Lam Phuong . FPT Software, Vietnam - Chair
Phan Van Hoa . FPT Software, Vietnam

General Chair

Phan Dinh Dieu, Vietnam National University, Vietnam

Program Chair

Nguyen Phong Quang, École Normale Supérieure and CNRS, France

Program Committee

Masayuki Abe NTT Information Sharing Platform Laboratories, Japan
Feng Bao . Institute for Infocomm Research, Singapore
Alex Biryukov . University of Luxembourg, Luxembourg
Daniel Bleichenbacher . Switzerland
Xavier Boyen .Voltage, USA
Jung Hee Cheon . Seoul National University, South Korea
Ed Dawson Queensland University of Technology, Australia
Marc Fischlin .Technische Universität Darmstadt, Germany
Craig Gentry . Stanford University, USA
Ha Huy Khoai .Institute of Mathematics, Vietnam
Shai Halevi . IBM Research, USA
Antoine Joux . DGA and University of Versailles, France
Pascal Junod .Nagravision, Switzerland
Jonathan Katz .University of Maryland, USA
Kwangjo Kim Information and Communications University, South Korea

VIII Organization

Lars Knudsen .Technical University of Denmark, Denmark
Neal Koblitz .University of Washington, USA
Kaoru Kurosawa . Ibaraki University, Japan
Arjen K. Lenstra .EPFL, Switzerland
Ilya Mironov .Microsoft Research, USA
Chanathip Namprempre . Thammasat University, Thailand
Mats Naslund .Ericsson, Sweden
Nguyen Duy Lan .CSIRO ICT Centre, Australia
Nguyen Quoc Khanh . FPT Corporation, Vietnam
Kazuo Ohta . University of Electro-Communications, Japan
Pascal Paillier . Gemalto, France
Kenny Paterson .Royal Holloway University of London, UK
Phan Duong Hieu .University College London, UK
Bart Preneel .Katholieke Universiteit Leuven, Belgium
C. Pandu Rangan . IIT Madras, India
Matt Robshaw .France Telecom R&D, France
Phil Rogaway UC Davis, USA and Chiang Mai University, Thailand
Nigel Smart .University of Bristol, UK
Mike Szydlo .RSA, USA
Tsuyoshi Takagi .Future University, Japan
Xiaoyun Wang .Tsinghua University, China

External Reviewers

Michel Abdalla
Joosang Baek
Colin Boyd
Reinier Broker
Michael Cheng
Sherman Chow
Yvonne Cliff
Matthez Dailey
Jintai Ding
Ratna Dutta
Jean-Charles Faugère
Rosario Gennaro
Rob Granger
Yoshikazu Hanatani
Matt Henricksen
Mattias Johansson
Yutaka Kawai
Phongsak

Keeratiwintakorn

Yuuichi Kokubun
Yuichi Komano
Nam-Seok Kwak
Reynald Lercier
Joseph Liu
Daegun Ma
Alexander May
Satoshi Miyagawa
Kunihiko Miyazaki
Sourav Mukhopadhyay
Dang Nguyen Duc
Karl Norrman
DaeHun Nyang
Miyako Ohkubo
Seiji Okuaki
Dag Arne Osvik
Dan Page
Kun Peng
Duong Quang Viet

Vincent Rijmen
Peter Ryan
Bagus Santoso
Dong-Gyu Seon
Ji Sun Shin
Masaaki Shirase
Isamu Teranishi
Soren Steffen Thomsen
Dongvu Tonien
Pim Tuyls
Frederik Vercauteren
Charlotte Vikkelsoe
Duc Liem Vo
David Woodruff
Yongdong Wu
Kazuki Yoneyama
Eun Sun Yoo
HyoJin Yoon

Table of Contents

Signatures and Lightweight Cryptography

Probabilistic Multivariate Cryptography . 1
Aline Gouget and Jacques Patarin

Short 2-Move Undeniable Signatures . 19
Jean Monnerat and Serge Vaudenay

Searching for Compact Algorithms: cgen . 37
M.J.B. Robshaw

Invited Talk

On Pairing-Based Cryptosystems . 50
Tatsuaki Okamoto

Pairing-Based Cryptography

A New Signature Scheme Without Random Oracles from Bilinear
Pairings . 67

Fangguo Zhang, Xiaofeng Chen, Willy Susilo, and Yi Mu

Efficient Dynamic k-Times Anonymous Authentication 81
Lan Nguyen

Side Channel Analysis of Practical Pairing Implementations:
Which Path Is More Secure? . 99

Claire Whelan and Mike Scott

Algorithmic Number Theory

Factorization of Square-Free Integers with High Bits Known 115
Bagus Santoso, Noboru Kunihiro, Naoki Kanayama, and
Kazuo Ohta

Scalar Multiplication on Koblitz Curves Using Double Bases 131
Roberto Avanzi and Francesco Sica

Compressed Jacobian Coordinates for OEF . 147
Fumitaka Hoshino, Tetsutaro Kobayashi, and Kazumaro Aoki

X Table of Contents

Ring Signatures and Group Signatures

On the Definition of Anonymity for Ring Signatures 157
Miyako Ohkubo and Masayuki Abe

Escrowed Linkability of Ring Signatures and Its Applications 175
Sherman S.M. Chow, Willy Susilo, and Tsz Hon Yuen

Dynamic Fully Anonymous Short Group Signatures 193
Cécile Delerablée and David Pointcheval

Hash Functions

Formalizing Human Ignorance: Collision-Resistant Hashing Without
the Keys . 211

Phillip Rogaway

Discrete Logarithm Variants of VSH . 229
Arjen K. Lenstra, Daniel Page, and Martijn Stam

How to Construct Sufficient Conditions for Hash Functions 243
Yu Sasaki, Yusuke Naito, Jun Yajima, Takeshi Shimoyama,
Noboru Kunihiro, and Kazuo Ohta

Cryptanalysis

Improved Fast Correlation Attack on the Shrinking and Self-shrinking
Generators . 260

Kitae Jeong, Jaechul Sung, Seokhie Hong, Sangjin Lee,
Jaeheon Kim, and Deukjo Hong

On the Internal Structure of Alpha-MAC . 271
Jianyong Huang, Jennifer Seberry, and Willy Susilo

A Weak Key Class of XTEA for a Related-Key Rectangle Attack 286
Eunjin Lee, Deukjo Hong, Donghoon Chang, Seokhie Hong, and
Jongin Lim

Key Agreement and Threshold Cryptography

Deniable Group Key Agreement . 298
Jens-Matthias Bohli and Rainer Steinwandt

An Ideal and Robust Threshold RSA . 312
Hossein Ghodosi and Josef Pieprzyk

Towards Provably Secure Group Key Agreement Building on Group
Theory . 322

Jens-Matthias Bohli, Benjamin Glas, and Rainer Steinwandt

Table of Contents XI

Public-Key Encryption

Universally Composable Identity-Based Encryption 337
Ryo Nishimaki, Yoshifumi Manabe, and Tatsuaki Okamoto

Traitor Tracing for Stateful Pirate Decoders with Constant Ciphertext
Rate . 354

Duong Hieu Phan

Reducing the Spread of Damage of Key Exposures in Key-Insulated
Encryption . 366

Thi Lan Anh Phan, Yumiko Hanaoka, Goichiro Hanaoka,
Kanta Matsuura, and Hideki Imai

Author Index . 385

Probabilistic Multivariate Cryptography�

Aline Gouget1 and Jacques Patarin2

1 Gemalto, 34 rue Guynemer, F-92447 Issy-les-Moulineaux, France
2 University of Versailles, 45 avenue des Etats-Unis, F-78035 Versailles, France

Abstract. In public key schemes based on multivariate cryptography,
the public key is a finite set of m (generally quadratic) polynomial equa-
tions and the private key is a trapdoor allowing the owner of the private
key to invert the public key. In existing schemes, a signature or an answer
to an authentication is valid if all the m equations of the public key are
satisfied. In this paper, we study the idea of probabilistic multivariate
cryptography, i.e., a signature or an authentication value is valid when
at least α equations of the m equations of the public key are satisfied,
where α is a fixed parameter of the scheme. We show that many new
public key signature and authentication schemes can be built using this
concept. We apply this concept on some known multivariate schemes and
we show how it can improve the security of the schemes.

1 Introduction

The security of most of the public key schemes relies on the difficulty of solv-
ing one of the two problems that are currently considered to be hard, i.e., the
problem of factoring large integers and the problem of computing discrete loga-
rithms. However, the techniques for solving these two famous problems improve
continually. Then, it becomes very important to find alternative problems and
to proceed further to the study of known candidates that are considered to be
minors until now. Furthermore, some new attractive properties may be achieved
by using alternative difficult problems.

One possibility for secure public key schemes is based on the problem of
solving multivariate nonlinear equations over small finite fields. In multivariate
cryptography, the public key is a set A of m polynomial equations in n variables
over a small finite field K. Public key schemes for encryption, signature or au-
thentication can be built with such public keys. Most of the time, the equations
are chosen quadratic since solving quadratic systems is already NP-complete
and also hard on average.

1.1 Related Work

Since the introduction of the first multivariate schemes [7,15,9] in 1985, many
schemes have been proposed. Most of these schemes have been broken but several
� This work has been partially financially supported by the European Commission

through the IST Program under Contract IST-2002-507932 ECRYPT.

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 1–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 A. Gouget and J. Patarin

schemes are still unbroken. Recently, C. Wolf and B. Preneel proposed a taxon-
omy [25] of public key schemes based on the problem of multivariate quadratic
equations. They grouped the known schemes into a taxonomy of only four
schemes: Matsumoto Imai (C∗) [15], Hidden Field Equations (HFE) [18], Step-
wise Triangular Systems (STS) [24] and Unbalanced Oil and Vinegar (UOV) [10].

Some of these schemes [15,24] are broken. However, from these four basic
schemes, it is possible to design more schemes by applying a perturbation in
order to improve the security of the basic scheme. For instance, the scheme
C∗−− which is a variant of the C* scheme using the perturbation minus (i.e., a
part of the public key is kept secret) is still unbroken.

The security of unbroken schemes is most of the time an open problem since
it consists in checking that all known attacks do not apply. However, multivari-
ate schemes have attractive properties that cannot be reached using classical
public key schemes based on factorization or discrete logarithm. For instance, it
becomes possible to get very short signatures or very fast computations. Further-
more, the study of multivariate schemes is interesting from a theoretical point
of view since it leads to the study of some new specific problems.

A notion close to the idea of probabilistic multivariate cryptography presented
in this paper is given in [1] but the context is different since it is the IP problem-
based traitor tracing.

1.2 Outline

In Section 2, we first present the general problem of multivariate polynomials
and the public key of multivariate schemes. Then, we compare how this public
key is used in classical (non-probabilistic) schemes and in probabilistic schemes.
In Section 3, we explain how a probabilistic scheme can be built from a classical
trapdoor. This construction will sometimes also hide the trapdoor in a much
better way than in a classical construction. In Sections 4 and 5, we present some
explicit probabilistic multivariate schemes: in Section 4, we present an adaptation
of the multivariate scheme C∗ in a probabilistic way (several variants of the
proposed scheme are discussed in Appendix D), and in Section 5, we present an
adaptation of the multivariate scheme UOV. In Section 6, we give some security
arguments for the proposed schemes. Finally, we conclude in Section 7.

2 Public Key of Multivariate Schemes

In this section, we first recall the general difficult problem underlying multivari-
ate cryptography. Next, we briefly describe public key schemes in the context
of classical multivariate cryptography (i.e. the multivariate cryptography of the
state of the art). Then, we describe the public key protocols in the context of
probabilistic multivariate cryptography.

2.1 Problem of Polynomial Equations in Finite Fields

Let K be a finite field. Let A = (a1, . . . , am) be a system of m ∈ N polynomials
in n ∈ N variables with degree d ∈ N. Given y = (y1, . . . , ym) ∈ Km, the

Probabilistic Multivariate Cryptography 3

problem is to find a solution x = (x1, . . . , xn) ∈ Kn of the equation system
yi = ai(x1, . . . , xn), 1 ≤ i ≤ m.

Most of the time, the polynomial equations of a multivariate cryptographic
scheme are quadratic (i.e. d = 2) since the problem of solving such system isNP -
complete and hard on average. In this case, the problem is called Multivariate
Quadratic Equations problem and for every i, 1 ≤ i ≤ m, the polynomial ai has
the form:

ai =
∑

1≤j≤n

∑
1≤k≤n

γi,j,kxjxk +
∑

1≤j≤n

δi,jxj + ξi ,

where the coefficients γi,j,k, δi,j and ξi are elements of K.

2.2 Classical Multivariate Schemes

A classical multivariate scheme relies on the knowledge of a trapdoor TA in
connection with a system A of m polynomial equations in n variables over a
finite field K.

The public key is the system A and the private key is the trapdoor TA that
allows to compute, for any given value y = (y1, . . . , ym), a value x = (x1, . . . , xn)
such that, yi = ai(x1, . . . , xn) for every i, 1 ≤ i ≤ m (or equivalently such that
y = A(x)).

On the one hand, the computation of x such that y = A(x) must be easy
using the trapdoor TA, and on the other hand, the computation of x without
the knowledge of the trapdoor TA must be computationally difficult (i.e. the
number of operations must be greater than 280).

Multivariate Signature. Given a message M , one can compute the hash value
y of the message M , i.e. y = H(M), where H is a collision resistant hash function.
Then, given a hash value y of a message M , a signature of the message M is
a value x such that y = A(x). Only the owner of the private key can compute
such a value x, and any verifier can check that y = A(x) for the hash value y of
a given message M , its signature x and the public key A.

Multivariate Authentication. An authentication between a prover and a
verifier works as follows. The verifier sends a challenge y to the prover. Then,
by using the trapdoor TA, the prover computes the value x such that y =
A(x), and he sends x to the verifier. At last, the verifier computes A(x) and
the authentication protocol is valid if and only if the equality y = A(x) holds.

Multivariate Public Key Encryption. For an encryption scheme, anybody
can encrypt a message x by using the public key A, that is, anybody can com-
putes the ciphertext y = A(x). Furthermore, only the owner of the private key
TA can decrypt the value y = A(x) and recovers the value x.

Then, in classical multivariate schemes, all the m equations of the system
y = A(x) must be satisfied in order to validate a protocol.

4 A. Gouget and J. Patarin

2.3 Probabilistic Multivariate Schemes

In this paper, we focus on authentication protocols and signature schemes (it may
also be possible to build probabilistic encryption scheme but this is a difficult
problem that we will not study here).

In a probabilistic multivariate scheme, the public key is a system A of m
polynomial equations in n variables. A signature (resp. a response to a challenge)
will be valid if at least α equations of the system A are satisfied where α is
a fixed parameter of the scheme (or more generally, if at least α1 of the m1
first equations of A are satisfied, and at least α2 equations of the m2 next
equations of A are satisfied etc., and at least α� of the m� last equations of A
are satisfied, where α1, . . . , α�, m1, . . . , m� and � are well chosen integers with
m1 + · · ·+ m� = m).

General Description When m1 = m. Let K be a finite field. The public
key A is a system of m polynomial equations of the form yi = ai(x1, . . . , xn)
where 1 ≤ i ≤ m, and x1, . . . , xn, y1, . . . , ym are variables defined over K and
a1, . . . , am are polynomials of degree d with coefficients in K.

The construction of a probabilistic multivariate scheme relies on the existence
of a trapdoor TA such that, given a value y, it is possible with a probability close
to 1, to find a value x such that at least α equations of the m equations of A
are satisfied. The parameter α is fixed (e.g. if K = GF (2) then we have α > m

2).
In exchange, the probability to find a value x (such that α equations of A are
satisfied) without the knowledge of TA must be very close to 0.

Assuming that such a trapdoor exists, one can construct a probabilistic mul-
tivariate scheme for signature or authentication. A value y is either generated
by the prover and called a challenge in an authentication protocol or the hash
value of the message M to be signed (i.e. y = H(M) where H is a hash function
assumed to be not only collision resistant but also near-collision resistant, i.e.,
we assume that it is difficult to find y and y′ such that H(y) ⊕ H(y′) has low
Hamming weight1) in a signature scheme. Then, a value x such that at least α
equations of the m equations of A are satisfied is a valid authentication value or
a valid signature.

In this paper, we only consider the construction of probabilistic multivariate
schemes based on known trapdoors. However, it would be very interesting (but
certainly very difficult) to find new basic trapdoors and it may be easier to
find a basic trapdoor for probabilistic multivariate schemes than for classical
multivariate schemes.

3 Probabilistic Schemes Using a Classical Trapdoor

3.1 General Construction

Let B denote the public key of a classical multivariate scheme and TB denote the
trapdoor associated to B. For simplicity, we set the finite field K to be GF (2).
1 Assuming this additional condition on H is one possibility to avoid existential

forgery; alternative techniques will be presented in the full version of this paper.

Probabilistic Multivariate Cryptography 5

Construction of the Public Key A. Recall that B = (b1, . . . , bm) is a system
of m ∈ N polynomial equations in n ∈ N variables with degree d ∈ N. Let
C = (c1, . . . , cm) be a system of m ∈ N polynomial equations in n ∈ N variables
such that ci(x1, . . . , xn) = 0 with probability κ, where κ > 1

2 (e.g. in Section 4,
the quadratic polynomials ci are chosen such that κ = 3

4). The public key A is
defined to be the set of m equations of the form:

yi = bi(x1, . . . , xn) + ci(x1 . . . , xn) = ai(x1, . . . , xn)

where 1 ≤ i ≤ m.

Remark 1. The system C can be used to mask the algebraic structure of any
classical system B. For instance, in Section 4, we use the C∗ scheme and in
Section 5, we use the Oil and Vinegar scheme. It is also possible to use for
example a FLASH scheme, i.e. the C∗−− scheme [20] or the HFE scheme [18].

Authentication Scheme

1. The verifier randomly chooses a challenge y = (y1, . . . , ym) in ∈ Km and
sends it to the prover.

2. The prover follows three steps:
(a) For every i ∈ [1; m], the value yi is replaced by yi ⊕ 1 with probability

β (where β �= 02 is a fixed parameter)). Then, the prover gets the value
y′ = (y′

1, . . . , y
′
m). In average, βm values of y are modified to get y′.

(b) Using the trapdoor TB, the prover computes the value x = (x1, . . . , xn)
such that for every i ∈ [1; m], we have y′

i = bi(x1, . . . , xn).
(c) The prover checks that for at least α integers i of [1; m], the equation

yi = bi(x1, . . . , xn) + ci(x1, . . . , xn)

is satisfied. If not, then the prover restart at the beginning of step 2, else
the prover sends x = (x1, . . . , xn) to the verifier.

3. Finally, the verifier checks that at least α among the m equations of the
form:

yi
?= ai(x1, . . . , xn)

where 1 ≤ i ≤ m are satisfied.

The general execution of a probabilistic scheme is summarized in Figure 1.

Remark 2. In practice, the indices i such that yi �= y′
i are chosen with a pseudo-

random algorithm that depends only of (y1, . . . , ym) such that for every i, 1 ≤
i ≤ m, we have yi �= y′

i with probability β and of the current run. Then, if the
challenge y = (y1, . . . , ym) is given twice, then the prover will always answer
with the same x = (x1, . . . , xn). Here the aim is to prevent the attacker from
replaying the same challenge several times in order to get information of the
system C.
2 The reason why β must be different from 0 will be explained in Section 3.2.

6 A. Gouget and J. Patarin

B

yes

no

yes

First perturbation:

Second perturbation:
testing of the solution x with
respect to the system A

modification of the vector y

Inversion of y’ with respect
to the system B from T

no

at least α integer i?

such that y’ = B(x)

Is yi =? a(x) for

y = (y1, y2, . . . , ym)

y′ = (y′
1, y

′
2, . . . , y

′
m)

Computation of x = (x1, x2, . . . , xn)

x = (x1, x2, . . . , xn)

Fig. 1. Example of a probabilistic scheme

Signature Scheme. One possibility to construct a probabilistic multivariate
scheme based on a known trapdoor is to assume the knowledge of a near-collision
hash function H and to replace the challenge y sent by the verifier into the
authentication protocol by the hash value y = H(M) of the message M to
be signed. This condition on H is to avoid the following attack. Assume that
(M, y = H(M), x) is a valid tuple such that there are α + a equations satisfied
with a > 0. Then, one can construct a new pair (y′, x) by changing up to a
component in y. Thus, if H is not near-collision resistant, then an attacker will
be able to construct a valid tuple (M ′, y′ = H(M ′), x).

Alternative solutions will be presented in the full version of this paper.

3.2 The Parameter β Must Be Different from 0

Recall that β is the probability that a bit yi of the received challenge y is modified
by the prover (before inverting the system). The role of the perturbation system
C is to mask the algebraic structure of the system B (the aim is to prevent the
attacker from accessing the system B). However, in order to prevent the attacker
to reconstruct the system C, and then, to retrieve the system B, the parameter
β must be chosen in a better way.

Suppose that β = 0. Then, for every pair (x, y) the attacker would know that
all the equations of B are satisfied by (x, y) with probability 1. If β = 0, then

Probabilistic Multivariate Cryptography 7

from O(n2) pairs (x, y), an attacker will be able to reconstruct the system B
with probability 1 by Gaussian reductions (on the quadratic coefficients of the
equations of B). In this case the difficulty of breaking the system is equivalent
to the difficulty of breaking the original trapdoor associated to the system B.
Thus C has no interest anymore since it can be removed. Thus, we have β �= 0.

When β is different from zero, the attacker has to deal with several cases:

– if a relation yi = a(x) is valid, then:
1. yi equals y′

i and ci(x) = 0 happens with probability (1 − β)(1 − κ) (on
average);

2. yi is different from y′
i and ci(x) = 1 happens with probability βκ (on

average);
– if a relation yi is different from a(x), then:

1. yi equals y′
i and ci(x) = 1 happens with probability (1−β)κ (on average);

2. yi is different from y′
i and ci(x) = 0 happens with probability β(1 − κ)

(on average).

Then, the value of the parameter β must be chosen in accordance with the
value of κ (recall that the value κ is fixed by choosing the polynomials ci, 1 ≤
i ≤ m).

3.3 Relation Between the Parameters α, β and κ

Recall that α is the number of equations of the public key that must be satisfied
to validate an authentication or a signature. The parameters β and κ concern
the two perturbations involved in a multivariate probabilistic scheme based on a
known trapdoor: the value β is the probability that a bit of the received challenge
y is modified by the prover before inverting the system, and the value κ is the
probability that a polynomial equation of the perturbation system C equals 1.

The value α depends on the probability that the equation yi
?= ai(x1, . . . , xn),

1 ≤ i ≤ m, is not satisfied, that is, α depends on the two values β and κ. There are
(on average) κm integers i ∈ [1; m] such that y′

i = bi(x1, . . . , xn)+ ci(x1, . . . , xn)
and the prover has changed βm values of y. Thus, the parameter α must be
chosen such that:

α � (κ− β)m .

Since the probability κ is fixed by choosing the polynomials ci, 1 ≤ i ≤ m,
the values of α and β must be chosen in accordance with the value of κ. Notice
that we must choose α such that α > m

2 in order to prevent that a random value
is valid with a probability 1

2 and β must be different from 0.

3.4 Size of the Public Key

Assume that the equations of the public key look as random equations of degree
d for an adversary who do not have the secret key. We have m

2 < α ≤ m. Let λ

8 A. Gouget and J. Patarin

be the value defined by α = λm. Then, in order to ensure a security in 280, the
number m of equations of a public key must be chosen such that:

m

(
1 + λ

ln λ

ln 2
+ (1− λ)

ln(1− λ)
ln 2

)
� 80 .

Details of this approximation are given in Appendix A.

Example 1. For λ = 3
4 , we get m � 423, and for λ = 9

10 , we get m � 150
equations.

Remark 3. As a consequence, the public key is larger in a probabilistic scheme
than in a non-probabilistic where at least about 80 equations are required.

4 The Probabilistic Multivariate Scheme C∗ + LL′

The Matsumoto-Imai scheme (also called C∗) was presented in [15] and crypt-
analysed in [17,3]; the description of the scheme C∗ is briefly recalled in Ap-
pendix C. We present a probabilistic variation of the C∗ scheme, called C∗+LL′

where no attack is known; another way to repair the C∗ scheme is for example
the FLASH scheme of [20].

In this section, we keep the notation of Section 3, the public key A = B + C
will be constructed such that B is a public key of a C∗ scheme and C is a set of
product of linear forms (B and C are kept secret).

4.1 Construction of the Public Key A
Let K = GF (2). Let B be the public key of a C∗ scheme, that is, B is a set of n
quadratic equations in n variables over GF (2) of the form

yi = bi(x1, . . . , xn)

where 1 ≤ i ≤ n and x1, . . . , xn, y1 . . . , yn are elements of K. The trapdoor
associated to B is denoted by TB. Notice that both B and TB are kept secret.

Let L1, . . . , Ln, L′
1, . . . , L

′
n be 2n secret linear forms in the variables x1, . . . , xn.

For every i, 1 ≤ i ≤ n, let ci = Li · L′
i. Then, the public key A of the scheme

C∗ + LL′ is the set of the n quadratic equations in n variables of the form:

yi = bi(x1, . . . , xn) + Li(x1, . . . , xn) · L′
i(x1, . . . , xn) = a1(x1, . . . , xn)

where 1 ≤ i ≤ n.

Remark 4. The classification of quadratic forms over GF (q) (for q odd or even)
is well-known; it is given for example in [13] pp. 278-289 and recalled in Ap-
pendix B. We are interested here in the case q even since q is generally a power
of two. Then, we have only one or two canonic forms when n is fixed and non
degenerated, so we have at least 2n possible canonic forms when q is fixed.

Probabilistic Multivariate Cryptography 9

4.2 The Scheme C∗ + LL′

As usual, y = (y1, . . . , yn) is the challenge of an authentication scheme or the
hash value of the message to be signed in a signature scheme. The value x =
(x1, . . . , xn) will be a successful authentication value or a valid signature if at
least α equations of A are satisfied. Recall that y′ = (y′

1, . . . , y
′
n) is the modified

challenge computed at the first step of the computation of the value x (see
Section 3).

We do not describe precisely the authentication protocol of the C∗+LL′ since
it is straightforward from Section 3 and the description above of the C∗ + LL′

public key. We only discuss the parameters of the scheme.
For every i, 1 ≤ i ≤ m, we have Li(x1, . . . , xn) ·L′

i(x1, . . . , xn) = 0 with prob-
ability κ = 3

4 . Then, we have y′
i = bi(x1, . . . , xn)+Li(x1, . . . , xn) ·L′

i(x1, . . . , xn)
with a probability 3

4 . Next, we have yi = y′
i with a probability (1− β). Thus, we

deduce that we have yi = fi(x1, . . . , xn) + Li(x1, . . . , xn) · L′
i(x1, . . . , xn) with a

probability greater than or equal to 3
4 − β.

Then, the expectation value of the number N of equations of A that are
satisfied is greater than or equal to

(3
4 − β

)
n � α. For a given (y1, . . . , yn),

if N is lower than α, then we can try again at step 1 by computing another
(y′

1, . . . , y
′
n) with again about βn values changed from (y1, . . . , yn) chosen with

a deterministic pseudo-random algorithm that depends only of (y1, . . . , yn) and
of the current run. After a few tries, we get a solution (x1, . . . , xn) with at least
α equations of B that are satisfied, i.e., a valid signature or a valid answer to a
challenge.

Remark 5. For a security greater than or equal to 280, we need n ≥ 423 when β
is small. For instance, with β = 1

10 and n � 500, no attack of this scheme exists
to the best of our knowledge.

Many variants of the scheme C∗ + LL′ are described in Appendix D.

5 The Probabilistic Multivariate Scheme UOV + LL′

The scheme Oil and Vinegar was introduced in [19] and it was broken in [12].
Next, a generalisation of the original scheme, called Unbalanced Oil and Vinegar
(UOV), was introduced in [10]; the scheme UOV is not broken for well-chosen
parameters. In this section, we will be able to use more possible parameters since
some attacks valid for UOV will not work any more for UOV+LL’. The scheme
UOV is briefly recalled in Appendix C.

The scheme UOV+LL’ proceeds exactly as the scheme C∗ + LL′ except that
the C∗ equations are changed with UOV equations. Since this UOV+LL’ scheme
looks particularly interesting, we describe the construction of the public key and
the scheme and we give some remarks on its efficiency.

5.1 Construction of the Public Key A
Let K = GF (2) and B be the public key of a UOV scheme, i.e., B is a set of m
quadratic equations in n variables (x1, . . . , xn) over GF (2). Each equation of B

10 A. Gouget and J. Patarin

is of the form yi = fi(x1, . . . , xn) where 1 ≤ i ≤ m, x1, . . . , xn, yi ∈ K, and fi is
a quadratic function.

There are n − p oil variables denoted by o1, . . . , on−p ∈ K and p vinegar
variables denoted by v1, . . . , vp ∈ K and there is a secret affine and invertible
transformation s such that (x1, . . . , xn) = s(o1, . . . , on−p, v1, . . . , vp) and such
that each yi of B written in the o1, . . . , on−p, v1, . . . , vp variables (instead of
x1, . . . , xn variables) is of the form:

yi =
n−p∑
j=1

p∑
k=1

γi,j,kojvk +
p∑

j=1

p∑
k=1

μi,j,kvjvk +
n−p∑
j=1

δi,joj +
p∑

j=1

νi,jvj + ξi

where 1 ≤ i ≤ m and γi,j,k, μi,j,k, δi,j , νi,j and ξi are elements of K. Notice that
we do not have any term in aiaj : we can have oil × vinegar, vinegar × vinegar
but never oil × oil.

Let L1, . . . , Lm, L′
1, . . . , L

′
m be 2m secret linear forms in x1, . . . , xn (or equiva-

lently in the variables a1, . . . , ah, b1, . . . , bv). Let A be the set of the m quadratic
equations of the form yi = fi(x1, . . . , xn) + Li(x1, . . . , xn) ·L′

i(x1, . . . , xn) . The
set A will be the public key of the scheme UOV+LL’ (while fi, B, Li, L′

i and s
are kept secret).

5.2 The Scheme UOV + LL′

Recall that y is the challenge in an authentication scheme, or the hash value of
the message to be signed in a signature scheme. The value x is a valid signature
or a successful authentication if at least α equations of A are satisfied, with α �(3

4 − β
)
m, where β is a fixed parameter (for example, we can choose β � 1

10).

Computation of the Value x. In order to compute x = (x1, . . . , xn) with the
secrets, the prover proceeds as follows.

1. For every i ∈ [1; m], the value yi is replaced by yi⊕1 with probability β and
then the value y′ = (y′

1, . . . , y
′
m) is obtained.

2. The prover randomly chooses the vinegar variables v1, . . . , vp.
3. The prover computes the values a1, . . . , am such that:

∀i, 1 ≤ i ≤ m, y′
i = fi(x1, . . . , xn) = fi(s(o1, . . . , on−p, v1, . . . , vp))

Here we have a linear system of m equations in the variables o1, . . . , on−p. If
we have no solution we try again with other random vinegar values v1, . . . , vp.

For all i, 1 ≤ i ≤ m, we have y′
i = fi(x1, . . . , xn)+Li(x1, . . . , xn)·L′

i(x1, . . . , xn) .
with a probability 3

4 . Moreover, with a probability (1−β), we have yi = y′
i. Thus,

with a probability greater than or equal to 3
4 − β we have yi = fi(x1, . . . , xn) +

Li(x1, . . . , xn) · L′
i(x1, . . . , xn). Then, the expectation value of the number N of

equations of A that are satisfied is greater than or equal to
(3

4 − β
)
� α. If we

have N < α, then we can try again with new random vinegar variables.

Probabilistic Multivariate Cryptography 11

Remark 6. The random variables vi, . . . , vp and the indices i such that yi �= y′
i

are chosen with a pseudo-random algorithm that depends only of y and of the
current run. Thus, if twice the same challenge (y1, . . . , ym) is given, the prover
will always answer with the same (x1, . . . , xn).

Remark 7. If we compare UOV and UOV + LL′, we can notice that in UOV +
LL′ we do not need any more to have v ≥ 2m in order to avoid the Shamir-
Kipnis attack of [12]. Moreover in the equations of UOV, we have oil × oil, oil ×
vinegar and vinegar × vinegar, so the scheme might be more secure for smaller
values of the parameters.

Notice that the variations given in Appendix D for C∗ + LL′ are also possible
variants for UOV + LL′.

6 Security Arguments

In this section, we discuss the three main techniques generally used to attack
multivariate schemes and we explain why our schemes should resist these attacks.

6.1 Gröbner Bases

Gröbner bases are used as a general attack method for any multivariate cryp-
tographic schemes. There are several algorithms for computing Gröbner basis
including Buchberger’s, F4[5] and F5[6].

When using the perturbation LL′ in a probabilistic multivariate scheme, we
involve 2n linear forms. That comes to add n additional momomials to the basic
set of monomials deduced from the public key of a basic multivariate scheme.
Then, the perturbation LL’ increases the complexity of the computation of the
Gröbner basis.

Moreover recall that for the proposed schemes (e.g. C∗ + LL′ or UOV+LL’),
nobody knows how to invert the system (the knowledge of the secret key does
not allow to inverse the system). Thus, we do not expect to be able to inverse
the system even with Gröbner basis.

6.2 Rank Attack on One Quadratic Equation

The idea of exploiting the rank to attack a multivariate scheme was first used
by T. Patarin [17] to separate branches in the Matsumoto-Imai scheme. Next,
C. Wolf et al. [24] used a similar idea to attack the STS scheme.

For example, in the C∗ scheme, the rank is near the maximum, i.e. near
n, and the effect of the perturbation LL′ when adding to a basic multivariate
scheme is that the rank is eiher increased by one, decreased by one or unchanged.
Therefore, the rank of C∗ + LL′ will be very near the maximum as for random
quadratic equations with high probability. Thus, we do not expect this attack
to work here.

12 A. Gouget and J. Patarin

6.3 Differential Cryptanalysis (i.e. Rank of the Polar Form Attack)

Differential cryptanalysis for multivariate schemes was recently introduced by
P.-A. Fouque, L. Granboulan and J. Stern in [8] to attack the scheme PMI (Per-
turbated Matsumoto-Imai) which is a variant of the scheme C∗ using the internal
perturbation of Ding [4]. The key point of the attack is that the dimension of
the kernel can be used to identify elements that cancel the perturbation. More
precisely, the attack consists first on the reconstruction of the linear space K
where there is no noise.

In the case of the probabilistic multivariate scheme C∗ + LL′, there is no set
equivalent to the set K. Indeed, in the PMI scheme, the perturbation is a set
of r quadratic equations where r is a small value and the set K is of dimension
n− r. In the scheme C∗ +LL′, the perturbation is a set of n quadratic equations
construct by using 2n random linear forms. The dimension of the perturbation
of the C∗ + LL′ scheme is n with high probability and then there is no set K to
recover. Thus the attack described in [8] does not directly apply on the scheme
C∗ + LL′.

Furthermore, it may be not possible to distinguish a public key of the scheme
C∗ + LL′ from a random set of quadratic equations by using the technique
proposed in [8] since the first part of the attack requires O(qr) computations and
in the PMI scheme, the value r must be small since the secret key computation
part costs O(qr) whereas in the C∗ + LL′ scheme, we have r = n and qr ≥ 280.

7 Conclusion

Probabilistic Multivariate Cryptography is a new concept in public key cryptog-
raphy with many possible schemes. It opens new opportunities and new questions
that we think are interesting, both from a practical and from a theoretical point
of view. In this paper we have presented some new public key schemes (C* + LL’
and UOV + LL’ for example) based on this idea of probabilistic Multivariate
Cryptography with some explicit examples for the parameters. These schemes
were built from the transformation of non-probabilistic multivariate schemes
to probabilistic multivariate schemes in order to get more security or more effi-
ciency. An interesting problem is to find a trapdoor for probabilistic multivariate
schemes which allows directly to find an approximation of the solution associated
to the challenge or the message to be signed. Another interesting problem is to
find probabilistic multivariate schemes for encryption (not only for signatures or
authentications).

References

1. J. Bringer, H. Chabanne, and E. Dottax. Perturbing and Protecting a Traceable
Block Cipher. Cryptology ePrint Archive, Report 2006/064., 2006.

2. N. Courtois. The Security of Hidden Field Equations (HFE). In Progress in
Cryptology - CT-RSA 2001, volume LNCS 2020, pages 266–281.

Probabilistic Multivariate Cryptography 13

3. P. Delsarte, Y. Desmedt, A.M. Odlyzko, and P. Piret. Fast Cryptanalysis of the
Matsumoto-Imai Public Key Scheme. In Advances in Cryptology - Eurocrypt’84,
volume LNCS 209, pages 142–149.

4. J. Ding. A New Variant of the Matsumoto-Imai Cryptosystem Through Perturba-
tion. In Public Key Cryptography PKC 2004, volume LNCS 2947, pages 305–318.

5. J.-C. Faugère. A new efficient algorithm for computing Grobner basis (F4). In
Journal of Pure and Applied Algebra, pages 61–88, 1999.

6. J.-C. Faugère. A new efficient algorithm for computing Grobner basis without
reduction to zero (F5). In Proceedings of ISSAC, ACM Press, pages 75–83, 2002.

7. H. Fell and W. Diffie. Analysis of a public key approach based on polynomial
substitution. In Advances in Cryptology - Crypto’85, volume 218, pages 340–349.

8. P-A. Fouque, L. Granboulan, and J. Stern. Differential Cryptanalysis for Multi-
variate Schemes. In Advances in Cryptology Eurocrypt’05, volume LNCS 3494,
pages 341–353.

9. H. Imai and T. Matsumoto. Algebraic Methods for Constructing Asymetric Cryp-
tosystems. In Algebraic Algorithms and Error-Correctings Codes – AAECC, pages
108–119, 1985.

10. A. Kipnis, J. Patarin, and L. Goubin. Unbalanced Oil and Vinegar Signature
Schemes. In Advances in Cryptology - Eurocrypt’99, volume LNCS 1592, pages
206–222.

11. A. Kipnis and A. Shamir. Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization. In Advances in Cryptology - Crypto’99, volume LNCS 1666, pages
19–30.

12. A. Kipnis and A. Shamir. Cryptanalysis of the Oil & Vinegar Signature Scheme.
In Advances in Cryptology - Crypto’98, volume LNCS 1462, pages 257–266.

13. R. Lidl and H. Niederreiter. Finite fields, volume 20 of Encyclopedia of Mathematics
and its applications. Cambridge University Press, 1997.

14. F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes.
Elsevier, North-Holl., 1977.

15. T. Matsumoto and H. Imai. Public quadratic polynomial-tuples for efficient
signature-verification and message-encryption. In Advances in Cryptology - Eu-
rocrypt’88, volume LNCS 330, pages 419–453.

16. J. Patarin. Asymmetric Cryptography with a Hidden Monomial. In Advances in
Cryptology - Crypto’96, volume LNCS 1109, pages 45–60.

17. J. Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Euro-
crypt’88. In Advances in Cryptology - Crypto’95, volume LNCS 963, pages 248–261.

18. J. Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms. In Advances in Cryptology -
Eurocrypt’96, volume LNCS 1070, pages 33–48.

19. J. Patarin. The Oil and Vinegar Signature Scheme. Presented at the Dagstuhl
Workshop on Cryptography, 1997.

20. J. Patarin, N. Courtois, and L. Goubin. FLASH, a Fast Multivariate Signature
Algorithm. In Progress in Cryptology - CT-RSA 2001, volume LNCS 2020, pages
298–307.

21. J. Patarin, N. Courtois, and L. Goubin. QUARTZ, 128-Bit Long Digital Signatures.
In Progress in Cryptology - CT-RSA 2001, volume LNCS 2020, pages 282–297.

22. J. Patarin, L. Goubin, and N. Courtois. C∗
−+ and HM: Variations around two

Schemes of T. Matsumoto and H. Imai. In Advances in Cryptology - Asiacrypt’98,
volume 1514, pages 35–49.

23. A. Shamir. Efficient Signature Schemes Based on Birational Permutations. In
Advances in Cryptology - Crypto’93, volume LNCS 773, pages 1–12.

14 A. Gouget and J. Patarin

24. C. Wolf, A. Braeken, and B. Preneel. Efficient cryptanalysis of RSE(2)PKC and
RSSE(2)PKC. In In Conference on Security in Communication Networks – SCN
2004, volume LNCS 3352, pages 145–151.

25. C. Wolf and B. Preneel. Taxonomy of Public Key Schemes based on the problem of
Multivariate Quadratic equations. Cryptology ePrint Archive, Report 2005/077.

A Size of the Public Key

Let K = GF (2). We want to evaluate the minimum number of equations of a
public key in order to ensure a security in 280. Notice that, we also assume that
the equations look as random equations of degree d for an adversary who do not
have the secret key.

Given a hash value of a message or a challenge y ∈ Km, an adversary can
choose a random value x ∈ Kn for the signature or the authentication value. For
each try, the attacker has a probability 1

2m

∑m
i=α

(
m
i

)
to have α or more satisfied

equations. Then, m must be chosen such that:

1
2m

m∑
i=α

(
m

i

)
≤ 1

280 .

We have m
2 < α ≤ m. Let λ be the value defined by α = λm. If λ is sufficiently

different from 1
2 , then the dominant term in

∑m
i=α

(
m
i

)
is
(
m
α

)
. More precisely,

we can overvalue
∑m

i=α

(
m
i

)
by a geometric sum with the first term

(
m
α

)
. Thus,

we want to evaluate:
1

2m

(
m

α

)
=

1
2m

· m!
α!(m− α)!

=
1

2m

m!
(λm)! (m(1− λ))!

.

From stirling formula n! ∼ nn exp−n
√

2πn, we get:

1
2m

(
m

α

)
≈ 1

2m

mm exp−m
√

2πm
(λm)λm exp−λm

√
2πλm · (m(1− λ))m(1−λ) exp−m(1−λ)

√
2πm(1− λ)

.

After simplifications, we get:

1
2m

(
m

α

)
≈ 1

2m(1+λ ln λ
ln 2 +(1−λ) ln(1−λ)

ln 2)√2πmλ(1 − λ)
.

In first approximation, this will be about 1
280 when m

(
1 + λ ln λ

ln 2 + (1− λ)
ln(1−λ)

ln 2

)
� 80.

B Classification of Quadratic Forms over GF (q)

The classification of quadratic forms over GF (q) (for q odd or even) is well-
known; it is given for example in [13] pp. 278-289. We are interested here in the
case q even since q is generally a power of two. Then, we recall here the two
main theorems for the case q even.

Probabilistic Multivariate Cryptography 15

Theorem 1 ([13] p.287). Let GF (q) be a finite field with q even. Let f ∈
GF (q)[x1, . . . , xn] be a non degenerate quadratic form. If n is odd, then f is
equivalent to:

x1x2 + x3x4 + . . . , xn−2xn−1 + x2
n .

If n is even, then f is equivalent to one of the two forms:

1. x1x2 + x3x4 + . . . , xn−1xn

2. x1x2 + x3x4 + . . . , xn−1xn + x2
n−1 + ax2

n

where a ∈ GF (q) satisfies TrGF (q)(a) = 1.

Theorem 2 ([13] p.288). Let GF (q) be a finite field with q even. Let b ∈
GF (q).

For odd n, the number of solutions of the equation

x1x2 + x3x4 + ...+ xn−2xn−1 + x2
n = b

in GF (q)n is qn−1.
For even n, the number of solutions of the equation

x1x2 + x3x4 + ...+ xn−1xn = b

in GF (q)n is qn−1 + ν(b)q
n−2

2 , with ν(b) = −1 if b �= 0 and ν(0) = q − 1.
For even n and a ∈ GF (q) with TrGF (q)(a) = 1, the number of solutions of

the equation
x1x2 + x3x4 + ...+ xn−1xn + x2

n−1 + ax2
n = b

in GF (q)n is qn−1 − ν(b)q n−2
2 , with ν(b) = −1 if b �= 0 and ν(0) = q − 1.

Then, we have only one or two canonic forms when n is fixed and non-degenerate,
so we have at most 2n possible canonic forms when q is fixed. This number is
generally too small to give any useful information in our schemes, for example
when the transformation LL′ is applied.

C Basic Trapdoors

C.1 Matsumoto-Imai Scheme (C∗)

Let K = Fq be a finite field and E be an extension field of dimension n over K.
Let Φ be an isomorphism from E to Kn. Let f be the function defined over E by

f : x �−→ x1+qθ

,

where θ ∈ N. If the finite field K has characteristic 2 and gcd(qn−1, qθ +1) = 1,
then f is a bijection. Furthermore, the restriction on θ allows an efficient inversion
of the function f . Indeed, f−1(y) = yh′

, where h′ is the inverse of 1+ qθ modulo
qn − 1.

The public key is the function A := x �→ T ◦Φ ◦ f ◦Φ ◦ S(x). The hardness of
the Matsumoto-Imai scheme is based on the IP-problem, that is, the difficulty
of finding transformations S and T for given polynomials equations P and P ′.

16 A. Gouget and J. Patarin

C.2 The Scheme UOV

Let K = Fq be a small finite field. Let m, n and p be three positive integers. The
hash value y of the message to be signed is an element of Km, and the signature
x is an element of Kn.

The public key is a set A of m polynomials in n variables of the form:

yi = fi(x1, . . . , xn), 1 ≤ i ≤ m .

There exists a bijective affine function s : Kn → Kn such that:

(x1, . . . , xn) = s(o1, . . . , on−p, v1, . . . , vp)

and such that for every i, 1 ≤ i ≤ m:

yi =
n−p∑
j=1

p∑
k=1

γi,j,kojvk +
p∑

j=1

p∑
k=1

μi,j,kvjvk +
n−p∑
j=1

δi,joj +
p∑

j=1

νi,jbj + ξi

Note that the vinegar variables vi’s are combined quadratically while the oil vari-
ables oi’s are only combined with vinegar variables in a quadratic way. There-
fore assigning random values to the vinegar variables results in a system of linear
equations in the oil variables which can be solved, for instance, by using gaussian
elimination.

D Variants of the Scheme C∗ + LL′

First Variant: C∗ + LL′ + L′′L′′′. The first variant consists in replacing the
linear product LL′ by the linear product LL′ + L′′L′′′ (as a consequence, the
value of the parameter κ is modified). We keep the same notations, that is, B is
a public key of a C∗ scheme and A is the set of n equations of the form:

yi = bi(x1, . . . , xn) + ci(x1, . . . , xn) = ai(x1, . . . , xn) ,

where ci, 1 ≤ i ≤ n, is a product a linear forms which is defines as follows.
Let Li, L′

i, L
′′
i and L′′′

i , 1 ≤ i ≤ n, be 4n secret linear forms in the n variables
x1, . . . , xn. The set C is defined by the set of n equations of the form:

yi =bi(x1, . . . , xn)+Li(x1, . . . , xn)L′
i(x1, . . . , xn)+L′′

i (x1, . . . , xn)L′′′
i (x1, . . . , xn)

where 1 ≤ i ≤ n.
The value of the parameter κ is the probability that the equation Li · L′

i +
L′′

i · L′′′
i

?= 0 is satisfied, that is, κ = 10
16 . according to the figure 2.

Since we have 1
2 < κ = 10

16 <
3
4 , the scheme C∗+LL′+L′′L′′′ will generally be

less efficient than the scheme C∗+LL′. However, it may be difficult to distinguish
the public key of C∗ + LL′ + L′′L′′′ from random quadratic equations than the
public key of C∗+LL′, and thus, for C∗ public key B, the scheme C∗+LL′+L′′L′′′

may be more secure than the scheme C∗ + LL′.
More generally, we know [13] the exact numbers of solutions x1, . . . , xn of any

quadratic form q(x1, . . . , xn) = 0. For instance, the number of (x1, . . . , xn) ∈ Fn
2

Probabilistic Multivariate Cryptography 17

Li L′
i L′′

i L′′′
i Li · L′

i + L′′
i · L′′′

i Li L′
i L′′

i L′′′
i Li · L′

i + L′′
i · L′′′

i

1 1 1 1 0 0 1 1 1 1
1 1 1 0 1 0 1 1 0 0
1 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 1 0 0 0
1 0 1 1 1 0 0 1 1 1
1 0 1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0

Fig. 2. Truth table of LiL
′
i + L′′

i L′′′
i

such that x1x2 + x3x4 + · · · + xn−1xn = 0 with n even is 2n−1 + 2
n−2

2 , i.e.
2n−1

(
1 + 1

2
n
2

)
instead of 2n−1 for an average quadratic form of n variables.

Second Variant: Decomposing A in Sets of Equations with Various
Probability. Instead of having about 423 equations C∗+LL′ in A, we can have,
for example, 40 equations that come from a C∗−− scheme (all these equations
will have to be satisfied) and 160 equations that come from a C∗+LL′ scheme (at
least 120 equations will have to be satisfied). Many other choices of parameters
are possible.

Third Variant: Public Key of Degree 3 Instead of 2. When using a
public key formed with quadratic polynomials, it is not possible to prevent the
attacker that observe an equation yi �= a(x) from distinguishing between the
first case [yi = y′i and Li(x) · L′

i(x) = 1] and the second case [yi �= y′i and
Li(x) · L′

i(x) = 0]. Indeed, we have yi = y′i with probability (1 − β) and we
have Li(x) · L′

i(x) = 0 with probability κ. Then, to prevent the attacker from
distinguishing between case 1 and case 2, we have to choose the values of β and
κ such that (1−β)(1−κ) = βκ. Furthermore, we have α ≈ (κ−β)n ≥ m

2 . That
comes to choose the values of κ and β such that κ+ β = 1 and κ− β > 1

2 .
These conditions imply that κ > 3

4 . When the public key has degree 2 then,
the higher value of κ is 3

4 (c.f. the weight distribution of quadratic forms). If
κ = 3

4 , then there is no solution β fulfilling both κ+ β = 1 and κ− β > 1
2 .

This property can be achieved by using public key of degree 3. In a C∗ scheme,
a monomial b = a1+qθ

is hidden by affine transformations. In [16], the possibility
of replacing b = a1+qθ

by b = a1+qθ+qϕ

is studied; the public key has degree 3
instead of 2. The attack of the scheme C∗ given in [17] does not apply directly
on the scheme “C∗ of degree 3”. However the scheme is insecure as it is shown
in [16]. We use the scheme “C∗ of degree 3” as a basic scheme to construct a
probabilistic multivariate scheme.

Let B be the public key of a scheme “C∗ of degree 3”, that is B is a set of n
equations in n variables of degree 3 over K of the form yi = bi(x1, . . . , xn) where
1 ≤ i ≤ n and x1, . . . , xn, y1, . . . , yn are elements of K. The trapdoor associated
to B is denoted by TB.

18 A. Gouget and J. Patarin

Let L1, . . . , Ln, L
′
1, . . . , L

′
n, L

′′
1 , . . . , L

′′
n be 3n secret linear forms in the vari-

ables x1, . . . , xn. Then, the public key A is the set of the n equations of degree
3 in n variables yi = bi(x1, . . . , xn)+Li(x1, . . . , xn)L′

i(x1, . . . , xn)L′
i(x1, . . . , xn),

1 ≤ i ≤ n.

Parameter κ. For all i, 1 ≤ i ≤ n, we have Li(x1, . . . , xn) = 0 with a prob-
ability 1

2 and we also have L′
i(x1, . . . , xn) = 0 and L′′

i (x1, . . . , xn) = 0 with a
probability 1

2 . Thus, we have L1(x1, . . . , xn)L′
1(x1, . . . , xn)L′

1(x1, . . . , xn) = 0
with probability κ = 7

8 .

Parameters α and β. Recall that α, β and κ must fulfill the relation α �
(κ−α)n = 3

4n ≥
n
2 . By choosing β = 1− κ = 1

8 , an attacker would not be able
to distinguish between the two possible cases when a relation of the public key
is not satisfied.

Short 2-Move Undeniable Signatures

Jean Monnerat� and Serge Vaudenay

EPFL, Switzerland
http://lasecwww.epfl.ch/

Abstract. Attempting to reach a minimal number of moves in cryp-
tographic protocols is a quite classical issue. Besides the theoretical in-
terests, minimizing the number of moves can clearly facilitate practical
implementations in environments with communication constraints. In
this paper, we offer a solution to this problem in the context of undeni-
able signatures with interactive verification protocols by proposing a way
to achieve these protocols in 2 moves. To this goal, we review a scheme
we proposed at Asiacrypt 2004 whose property is the full scalability of
the signature length against security. We slightly modify (to make it non-
transferable) a 2-move version of this scheme which was mentioned in the
original article without a proof of security. In the random oracle model,
we prove the security of the modified version against an active adversary
and precisely assess the security in terms of the signature length. To the
best of our knowledge, this scheme is the first 2-move undeniable signa-
ture scheme with a security proof.

Keywords: Undeniable signatures, 2-move protocols.

1 Introduction

The concept of undeniable signature was introduced by Chaum and van Antwer-
pen [6] in 1989. The difference between this kind of signature and a classical one
is that the verification of a signature cannot be achieved without the cooper-
ation of the signer (originally, for privacy motivations). Namely, by interacting
with a verifier in a so-called confirmation (resp. denial) protocol the signer is
able to prove the validity (resp. invalidity) of a given message-signature pair.
This property opposes to the universal verifiability of classical digital signatures
and allows the signer to have a control on the spread of his signatures. Further
applications of undeniable signatures such as licensing software or auctions were
proposed in the literature. Since then, lots of contributions and new schemes
have been published, among them are [3,5,8,9,13,14,17,18,19].

At Eurocrypt 2005, Kurosawa et al. [13] proposed a variant of the scheme of
Chaum [5] with 3-move confirmation and denial protocols in the random oracle
model. Although this scheme does not achieve non-transferability, it is the first
one presenting 3-move protocols with a security proof. Until this scheme pro-
posal, all provably secure interactive undeniable signature schemes were com-
posed of zero-knowledge confirmation and denial protocols which required at
� Supported by a grant of the Swiss National Science Foundation, 200020-109133.

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 19–36, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

20 J. Monnerat and S. Vaudenay

least 4 moves. Non-interactive variants of undeniable signatures can be obtained
as shown in [12,15] using a so-called designated verifier technique by using clas-
sical techniques for non-transferability. In this setting, the signature is only in-
tended to one designated recipient. To ensure that this one cannot convince an-
other party of the validity of the signature, it is required that the recipient could
have been able (with his secret key) to produce the signature. When this can
be done perfectly, we say that the scheme satisfies perfect non-transferability. In
this case, such (designated verifier) signatures cannot satisfy the non-repudiation
property.

The main contribution of this article is to show how to achieve a scheme with
interactive protocols having a minimal number of rounds. To this end, we revisit a
2-move variant of the MOVA undeniable signature we mentioned in [17] (without
any security proof). In order to achieve perfect non-transferability, we modify
the protocols of the MOVA scheme by adding a trapdoor one-way permutation
with a secret key associated to the verifier. This differs from the commonly
used techniques of trapdoor commitments which does not seem appropriate for
a 2-move protocol. In the random oracle model, we provide some formal security
proofs on the different required properties related to the confirmation and denial
protocols such as the soundness, zero-knowledge and non-transferability. We redo
the invisibility and unforgeability analysis in settings where the attacker has
access to signing, confirmation and denial oracles. This provides precise security
bounds and explain how to select MOVA parameters.

In the next section, we recall the definition of an undeniable signature. Sec-
tion 3 is devoted to the security model of an undeniable signature. Then, we
present the 4-move and modified 2-move versions of the MOVA scheme [17] in
Section 4. We prove security properties of the modified 2-move version in the
subsequent section. Finally, Section 6 concludes this paper.

2 Undeniable Signature

We consider two players who are the signer (S) and the verifier (V). Let k ∈ N
be a security parameter, M be the message space and Σ be the signature space.
An undeniable signature scheme is composed of the four following algorithms.

Setup. The setup is composed of two probabilistic polynomial time algorithms
SetupS and SetupV producing the signer’s key pair (KS

p ,KS
s) ← SetupS(1k)

and the verifier’s key pair (KV
p ,KV

s) ← SetupV(1k).
Sign. Let m ∈ M be a message to sign. On the input of the signer’s secret key

KS
s , the (probabilistic) polynomial time algorithm Sign generates a signature
σ ← Sign(m,KS

s) of m (which lies in Σ). We say that (m, σ) is valid if there
exists a random tape such that Sign(m,KS

s) outputs σ. Otherwise, we say
that (m, σ) is invalid.

Confirm. Let (m, σ) ∈ M × Σ be a supposedly valid message-signature pair.
Confirm is an interactive protocol between S and V i.e., a pair of interactive
probabilistic polynomial time algorithms ConfirmS and ConfirmV such that

Short 2-Move Undeniable Signatures 21

m, σ, KS
p , KV

p is input of both, KS
s is the auxiliary input of ConfirmS, KV

s is
the auxiliary input of ConfirmV. At the end of the protocol, ConfirmV outputs
a boolean value which tells whether σ is accepted as valid signature of m.

Deny. Let (m, σ′) ∈M×Σ be an alleged invalid message-signature pair. Deny
is an interactive protocol between S and V i.e., a pair of interactive proba-
bilistic polynomial time algorithms DenyS and DenyV such that m, σ′, KS

p ,
KV

p , is input of both, KS
s is the auxiliary input of DenyS, KV

s is the auxiliary
input of DenyV. At the end of the protocol, DenyV outputs a boolean value
which tells whether σ′ is accepted as invalid signature.

An execution of the confirmation (resp. denial) protocol will be denoted by
ConfirmS,V(�) (resp. DenyS,V(�)), where � is the common input of the players.

3 Security Model

This section is devoted to the different security notions which are required for
an undeniable signature to be secure. We consider four basic security notions
related to the confirmation and denial protocols which are the completeness,
the soundness, zero-knowledge, and the non-transferability. The last one ensures
that a malicious verifier is not able to convince any third party of the validity of
the statement (e.g., a given message signature is valid) proven in the protocol.
The non-transferability notion may be important in some applications where the
validity of the proof itself is valuable (like for licensing software).

Security notions about the undeniable signature are considered as well. We re-
quire non-repudiation by resisting adaptive existential forgery attacks. Further-
more, since the motivation of undeniable signature was to avoid the universal
verifiability (like for classical signatures), it is important that a scheme satisfies
the invisibility property. We will consider an active attacker who has access to
some oracles and who will have to distinguish a valid message-signature pair
from a randomly picked one.

We recall the definition of the statistical distance between two distributions.

Definition 1. The statistical distance Δ between two random variables X1 and
X2 with range X is Δ(X1, X1) := 1

2

∑
x∈X |Pr[X1 = x]− Pr[X2 = x]|.

Completeness. Given random key pairs (KS
p ,KS

s) ← SetupS(1k), (KV
p ,KV

s) ←
SetupV(1k), for any valid (resp. invalid) message-signature pair (m, σ) ∈
M × Σ, the confirmation (resp. denial) protocol ConfirmS,V(m, σ,KS

p ,KV
p)

(resp. DenyS,V(m, σ,KS
p ,KV

p)) outputs 1 with probability 1 when S and V
correctly follow all steps of the protocol.

Soundness. Given random key pairs (KS
p ,KS

s) ← SetupS(1k), (KV
p ,KV

s) ←
SetupV(1k), for any invalid (resp. valid) message-signature pair (m, σ) ∈
M× Σ and any cheating signer S∗ (modelled as a probabilistic polynomial
time interactive algorithm with access to KS

s), the probability that the pro-
tocol ConfirmS∗,V(m, σ,KS

p ,KV
p) (resp. DenyS∗,V(m, σ,KS

p ,KV
p)) succeeds is

negligible with respect to k.
The success probability of S∗ is denoted by Succsd-con

S∗ (resp. Succsd-den
S∗).

22 J. Monnerat and S. Vaudenay

Straight-Line Zero-Knowledge. Let us consider some random key pairs gen-
erated as follows

(KS
p ,KS

s) ← SetupS(1k), (KV
p ,KV

s) ← SetupV(1k).

The confirmation (resp. denial) protocol is zero-knowledge if there exists a
probabilistic polynomial time oracle machine B called simulator such that for
any probabilistic polynomial verifier V∗ (with or without KV

s) and any valid
(resp. invalid) pair (m, σ) ∈ M×Σ, BV∗

outputs a transcript which is in-
distinguishable from the transcript of the protocol ConfirmS,V∗(m, σ,KS

p ,KV
p)

(resp. DenyS,V∗(m, σ,KS
p ,KV

p)), where S is the honest signer. We assume
that B and V∗ share the same information (e.g., KV

s if any). Namely, when
V∗ has access to some random oracles, B can see the queries (and answers)
as well. Moreover, we say that the protocol is straight-line zero-knowledge if
B does not need to rewind V∗.

Non-Transferability. Let us consider some random key pairs generated as
follows

(KS
p ,KS

s) ← SetupS(1k), (KV
p ,KV

s) ← SetupV(1k).

The confirmation (resp. denial) protocol is said non-transferable if there ex-
ists a probabilistic polynomial time interactive machine B with input KV

s such
that for any computationally unbounded verifier Ṽ, any pair (m, σ) ∈ M×Σ,
the transcript of ConfirmB,Ṽ(m, σ,KS

p ,KV
p) (resp. DenyB,Ṽ(m, σ,KS

p ,KV
p)) is

indistinguishable from that of the protocol ConfirmS,Ṽ(m, σ,KS
p ,KV

p) (resp.
DenyS,Ṽ(m, σ,KS

p ,KV
p)). When Ṽ has access to some random oracles, B does

not see any queries (nor answers) made to them. However, B is assumed to
be given a bit telling whether (m, σ) is valid or not.

We consider here the two following notions of indistinguishability.

Perfect Zero-Knowledge (resp. Non-Transferability). Both transcript
distributions are identical.

Statistical Zero-Knowledge (resp. Non-Transferability). The statistical
distance between the two transcript distributions is negligible.

We note that the definition of non-transferability allows to avoid some attacks
in which the verifier V∗ identified with KV

p forwards messages to the honest
signer which were generated by a hidden verifier Ṽ. Namely, our definition as-
sures that V∗ with knowledge of KV

s could simulate the answer of S (without
any help from S) so that Ṽ does not have evidence of the proof validity.

Our definition of non-transferability is similar to that proposed by Camenisch
and Michels [4] with the main difference that our version assumes that Ṽ is
computationally unbounded. We can thus assume that Ṽ makes no queries to
the signing and confirmation/denial oracles. Therefore, the non-transferability
of the protocols presented below will also hold with respect to the Camenisch-
Michels definition.

Short 2-Move Undeniable Signatures 23

We note that the above definition of zero-knowledge is black-box which means
that we require the existence of one “universal” simulator having an oracle access
to the verifier which is able to produce an indistinguishable transcript for any
verifier. More details about the black-box zero-knowledge notion are given in [10].

In the standard model, Barak et al. [1] proved that zero-knowledge proofs of
an NP-complete language (possibly non-black-box) requires at least 3 moves.
To overcome this limitation, the notion of zero-knowledge was extended in the
random oracle model (for more details, see [2]) in which the queries to the ran-
dom oracles are controlled by the simulator, i.e., it can simulate the output of
the oracles provided that the output distribution is correct. Recently, Pass [21]
proposed the notion of deniable zero-knowledge in the random oracle. The differ-
ence with classical zero-knowledge in the random oracle is that the simulator is
no longer allowed to simulate the output of the random oracles, but is only able
to observe the queries made to the random oracles as well as the corresponding
answers. This actually means that the simulator’s transcript really corresponds
to the view of the verifier. In this model, Pass [21] showed that 2 moves are nec-
essary to achieve zero-knowledge for NP and proposed a general 2-move protocol
for NP which is not very convenient for practical purposes. In our results, proofs
of zero-knowledge in the random oracle will be deniable as well.

Existential Unforgeability. We consider the standard security notion of exis-
tential forgery under an adaptive chosen-message attack as defined by Gold-
wasser et al. [11] for classical digital signatures. This notion is similar to
Kurosawa-Heng [13] and is adapted as follows.

An undeniable signature scheme is secure against an existential forgery un-
der adaptive chosen-message attack if there exists no probabilistic polynomial
time algorithm F which wins the following game with a non-negligible prob-
ability.
Game: F receives a public key KS

p from (KS
p ,KS

s) ← SetupS(1k) and a
verifier’s key pair (KV

p ,KV
s) ← SetupV(1k). Then, F can query some cho-

sen messages to a signing oracle, some chosen pairs (m, σ) ∈ M× Σ to a
confirmation (and denial) protocol oracle and interact with it in a confirma-
tion (denial) protocol where the oracle plays the role of the signer. All these
queries must be polynomially bounded in k and can be sent adaptively. F
wins the game if it outputs a valid pair (m∗, σ∗) ∈M×Σ such that m∗ was
not queried to the signing oracle.
The success probability of F in this game is denoted by Succef-cma

F .

Invisibility. We use a similar definition as Kurosawa-Heng [13]. Consider first
a probabilistic polynomial time algorithm D called invisibility distinguisher
and the two following games with respect to a bit b.

Gameinv-cma-b : D receives KS
p from (KS

p ,KS
s) ← SetupS(1k) and a verifier’s

key pair (KV
p ,KV

s) ← SetupV(1k), it can query some chosen messages to a
signing oracle and some chosen message-signature pairs (m, σ) ∈ M × Σ
to some oracles running the confirmation and denial protocols. After a given

24 J. Monnerat and S. Vaudenay

time, D chooses one message m∗ ∈ M which was not queried to the signing
oracle and submits it to the challenger. If b = 0, he sets σ∗ = Sign(m∗,KS

s).
Otherwise, σ∗ is picked uniformly at random in Σ. D receives σ∗. After that,
the distinguisher can query the signing, confirmation, and denial oracles again
provided that m∗ is not a query of the signing oracle and (m∗, σ∗) is not a query
of the confirmation or denial protocols. Finally, D outputs a guess bit b′.

We define the advantage of the distinguisher as follows

Advinv-cma
D :=

∣∣∣Pr
[
b′ = 1 in Gameinv-cma-1

]
− Pr

[
b′ = 1 in Gameinv-cma-0

]∣∣∣ ,
where probabilities are over the random tapes of the involved algorithms. An
undeniable signature scheme is said to be invisible under a chosen-message
attack if there exists no probabilistic polynomial time algorithm D such that
the advantage Advinv-cma

D is non-negligible.

Note that this definition is similar to that of Galbraith et al. [8] except that the
distinguisher is not allowed to query m∗ to the signing oracle in our definition.
The invisibility notion of Galbraith et al. cannot be satisfied when the signature is
deterministic (which is the case for MOVA). This will be discussed in Remark 6.

4 MOVA Scheme

In this section, we present the scheme proposed in [17] as well as the underlying
principles. This scheme generalizes the MOVA scheme [18] proposed earlier in
2004 in a very natural way and therefore will be called MOVA as well.

4.1 Preliminaries

We first recall some definitions, useful lemmas, and mathematical problems
from [17] related to the interpolation of group homomorphisms.

Let G and H be two Abelian groups. Given S := {(x1, y1), . . . , (xs, ys)} ⊆
G ×H , we say that the set of points S interpolates in a group homomorphism
if there exists a group homomorphism f : G −→ H such that f(xi) = yi for
i = 1, . . . , s. We say that a set of points B ⊆ G × H interpolates in a group
homomorphism with another set of points A ⊆ G×H if A ∪B interpolates in a
group homomorphism.

Lemma 2 ([17]). Let G, H be two finite Abelian groups. We denote by d the
order of H and by p the smallest prime factor of d.

1. Let x1, . . . , xs ∈ G which span a subgroup denoted by G′. The following
properties are equivalent. In this case, we say that x1, . . . , xs H-generate G.
(a) For all y1, . . . , ys ∈ H, there exists at most one group homomorphism

f : G −→ H such that f(xi) = yi for i = 1, . . . , s.
(b) G′ + dG = G.

2. Let x1, . . . , xs ∈ G which H-generate G. The mapping g : G×Zs
d → G which

is defined by g(r, a1, . . . , as) := dr + a1x1 + · · ·+ asxs is balanced.

Short 2-Move Undeniable Signatures 25

3. Given a set of s points S = {(x1, y1), . . . , (xs, ys)}, such that x1, . . . , xs H-
generate G. We assume that there exists a function f : G −→ H such that

ρ := Pr
(r,a1,...,as)∈UG×Zs

d

[f(dr + a1x1 + · · ·+ asxs) = a1y1 + · · ·+ asys] >
1
p
.

The set of points S interpolates in a group homomorphism.

Although, our treatment uses arbitrary G, H , d, p, the implementation analysis
of [16] suggests that parametersG = Z∗

n (for n product of two primes), d = p = 2
lead to the most efficient protocols for the signer. The homomorphisms are the
Legendre symbols in G.

n-S-GHI Problem (Group Homomorphism Interpolation Prob. [17])
Parameters: Two Abelian groupsG andH , a set of s points S ⊆ G×H ,

and n ∈ N.
Instance Generation: n elements x1, . . . , xn ∈U G are picked uni-

formly at random.
Problem: Find y1, . . . , yn ∈ H such that {(x1, y1), . . . , (xn, yn)} inter-

polates with S in a group homomorphism.
The success probability of an n-S-GHIP solver A will be denoted by
Succn-S-GHIP

A .

n-S-GHID Problem (n-S-GHI Decisional Problem)
Parameters: Two Abelian groupsG and H , a set of s points S ⊆ G×H

and n ∈ N.
Instance Generation: The instance T is generated according to one

of the two following ways and is denoted T0 or T1 respectively. T0 is a
set of points {(x1, y1), . . . , (xn, yn)} ∈ (G×H)n picked uniformly at
random such that it interpolates with S in a group homomorphism.
T1 is picked uniformly at random in (G×H)n.

Problem: Decide whether the instance T is of type T0 or T1.
The advantage of an n-S-GHID distinguisher D is given by

Advn-S-GHID
D := |Pr[b = 0 | T is of type T0]− Pr[b = 0 | T is of type T1]| ,

where b denotes the output bit of D.

The S-GHI (resp. S-GHID) problem defined in [17] corresponds to the 1-S-GHI
(resp. 1-S-GHID) problem. We consider the n-S-GHI and n-S-GHID problems
for sets S which interpolate in a unique group homomorphism. Hence, S defines
a homomorphism. The n-S-GHI problem consists in computing it on n elements.
The n-S-GHID problem consists in deciding whether a set of points T is in its
graph.

4.2 Interactive Proofs

The original version of the MOVA scheme makes use of two 4-move interactive
proofs, namely one for the confirmation protocol and one for the denial protocol.

26 J. Monnerat and S. Vaudenay

In the first proof, a prover proves that a set of points interpolates in a group
homomorphism known by himself. In the second one, the prover knows a group
homomorphism which interpolates in a set of points S and proves that a sec-
ond set of points T does not interpolate in this group homomorphism. These
two proofs, taken from [17], are given below. Again, G, H denote two Abelian
groups and d := |H | is the order of H with smallest prime factor p. The group
homomorphism which is known by the prover is denoted by f . The security
parameter of the following proofs is an integer denoted by �.

GHIproof�(S)
Parameters: G,H, d
Input: �, S = {(g1, e1), . . . , (gs, es)} ⊆ G×H
1: The verifier picks ri ∈U G and ai,j ∈U Zd uniformly at random

for i = 1, . . . , � and j = 1, . . . , s. He computes ui = dri + ai,1g1 +
· · · + ai,sgs and wi = ai,1e1 + · · · + ai,ses for i = 1, . . . , �. He sends
u1, . . . , u� to the prover.

2: The prover computes vi = f(ui) for i = 1, . . . , �. He sends to the
verifier a commitment to v1, . . . , v�.

3: The verifier sends all ri’s and ai,j ’s to the prover.
4: The prover checks that the ui’s computations are correct. He then

opens his commitment.
5: The verifier checks that vi = wi for i = 1, . . . , �.

coGHIproof�(S, T)
Parameters: G,H, d, p
Input: �, S = {(g1, e1), . . . , (gs, es)}, T = {(x1, z1), . . . , (xt, zt)}
1: The verifier picks ri,k ∈U G, ai,j,k ∈U Zd, and λi ∈U Zp uniformly

at random for i = 1, . . . , �, j = 1, . . . , s, k = 1, . . . , t. He computes
ui,k := dri,k +

∑s
j=1 ai,j,kgj + λixk and wi,k :=

∑s
j=1 ai,j,kej + λizk.

Set u := (u1,1, . . . , u�,t) and w := (w1,1, . . . , w�,t). He sends u and w
to the prover.

2: The prover computes vi,k := f(ui,k) and yk := f(xk) for i = 1, . . . , �,
k = 1, . . . , t. Since wi,k − vi,k = λi(zk − yk), he should be able1

to find every λi if the verifier is honest since zk �= yk for at least
one k. Otherwise, he sets λi to a random value. He then sends a
commitment to λ = (λ1, . . . ,λ�) to the verifier.

3: The verifier sends all ri,k’s and ai,j,k’s to the prover.
4: The prover checks that u and w were correctly computed. He then

opens the commitment to λ.
5: The verifier checks that the prover could find the right λ.

In the original article [17], a 2-move variant for these two protocols was sug-
gested without a proof. The variant is achieved by removing the two messages
1 Note that this requires to select H in which one can extract discrete logarithms lying

in the restricted set {0, 1, . . . , p − 1}. In practice, this may not be a problem since
we prefer p = 2 as shown in [16].

Short 2-Move Undeniable Signatures 27

sent in the middle of the protocol for achieving the zero-knowledge property
through the commitment scheme. In order to maintain zero-knowledge, the ver-
ifier sends a kind of commitment on a seed which generates the challenges to the
prover. This commitment can only be opened by the prover after this one solved
the challenges. We notably modify the original 2-move protocols by adding a
trapdoor one-way permutation with associated secret key KV

s . Namely, we con-
sider the permutation TPOWKV

p
(·) and its inverse TPOWKV

s
(·)−1. We denote

Succinv-tp
A the probability that an adversary A can compute TPOW−1

KV
s
(y) given

a random y, without knowing KV
s . For the sake of simplicity, we use the same

notation for both protocols. The 2-move variant of GHIproof is given here.

2-GHIproof�(S)
Parameters: G,H, d
Input: �, S = {(g1, e1), . . . , (gs, es)} ⊆ G×H
1: The verifier picks seedC ∈U {0, 1}kc uniformly at random, and by

applying a pseudorandom generator GenC on this seed, generates
values ri ∈ G and ai,j ∈ Zd for i = 1, . . . , � and j = 1, . . . , s. He
computes ui = dri + ai,1g1 + · · · + ai,sgs, wi = ai,1e1 + · · · + ai,ses
for i = 1, . . . , �, and ϑc = TPOWKV

p
(seedC). Using a cryptographic

hash function Hc : {0, 1}∗ → {0, 1}kc , the verifier computes hc :=
Hc(w1, . . . , w�)⊕seedC. He sends u1, . . . , u�, hc and ϑc to the prover.

2: The prover computes the values vi = f(ui) for i = 1, . . . , � and
seedC′ = Hc(v1, . . . , v�)⊕ hc. He checks that ϑc = TPOWKV

p
(seedC′)

and that GenC(seedC′) generates values ai,j ’s and ri’s such that
ui := dri + ai,1g1 + · · ·+ ai,sgs for i = 1, . . . , �. He sends seedC′ to
the verifier.

3: The verifier checks that seedC′ = seedC.

The interactive proof coGHIproof can be transformed in a 2-move proto-
col in a similar way. Namely, the verifier picks seedD ∈ {0, 1}kd, and uses a
pseudorandom generator GenD to generate the ri,k’s, ai,j,k’s, and λi’s, and ϑd =
TPOWKV

p
(seedD). He then sends the corresponding u, w, hd := Hd(λ1, . . . ,λ�)⊕

seedD, and ϑd, where Hd : {0, 1}∗ → {0, 1}kd is a cryptographic hash func-
tion. In step 2 of the protocol, the prover retrieves seedD′, and checks whether
ϑd = TPOWKV

p
(seedD′) and GenD(seedD′) generates the right u, w. Then, he

sends seedD′.
Note that the complexity of both protocols are comparable to their 4-move

variants.

4.3 MOVA Description

Below, we briefly present the MOVA scheme. For a more detailed description,
we refer to [17].

Setup. The signer chooses two Abelian groups Xgroup and Ygroup and a se-
cret group homomorphism Hom : Xgroup → Ygroup. He picks seedK ∈

28 J. Monnerat and S. Vaudenay

{0, 1}ks and using a pseudorandom generator GenK generates Lkey values
Xkey1, . . . ,XkeyLkey ∈ Xgroup. Then, he computes Ykeyi := Hom(Xkeyi)
for i = 1, . . . ,Lkey.

Public Key. KS
p := (Xgroup,Ygroup, d, seedK, (Ykey1, . . . ,YkeyLkey), para),

where the set para = (Lkey,Lsig, Icon, Iden, kc, kd, ks) is composed of in-
teger parameters.

Secret Key. KS
s := Hom.

The main goal of the setup is to ensure that the points (Xkeyi,Ykeyi)’s
uniquely characterize Hom to avoid that several secret keys correspond to the
same public key. This is necessary to guarantee the non-repudiation of the sig-
nature scheme. For this, one can either put many enough points or produce
an interactive or non-interactive zero-knowledge proof of unique interpolation.
These additional setup variants are described in [17]. In fact, the different setup
variants ensure that Xkey1, . . . ,XkeyLkey Ygroup-generate Xgroup. In this case,
we say that the public key is valid.

Signature Generation. Let m ∈ {0, 1}∗ be a message. Applying a pseudo-
random generator GenS on the message m, the signer generates Lsig values
Xsig1, . . . ,XsigLsig ∈ Xgroup. He then computes Ysigi := Hom(Xsigi) for
i = 1, . . . ,Lsig. The signature σ is (Ysig1, . . . ,YsigLsig).

Confirmation Protocol. Given a message-signature pair (m, σ) as input and
an integer Icon a security parameter, the signer (prover) and the verifier
retrieve the values Xkeyi’s, Xsigj ’s from the message and the public key.
The signer checks the validity of the signature. If this one is valid, the signer
and the verifier run GHIproof Icon(S) on the set

S = {(Xkeyi,Ykeyi)|i = 1, . . . ,Lkey} ∪ {(Xsigj ,Ysigj)|j = 1, . . . ,Lsig}.

Otherwise, the signer aborts.
Denial Protocol. Given an alleged invalid message-signature pair (m, σ) as

input and an integer Iden a security parameter, we denote the signature
σ = (Zsig1, . . . ,ZsigLsig). The signer and the verifier retrieve the Xkeyi’s
and Xsigj ’s. The signer checks the invalidity of (m, σ). If this one is really
invalid, they run the protocol coGHIproof Iden(S, T) on the sets

S = {(Xkeyi,Ykeyi)|i = 1, . . . ,Lkey} T = {(Xsigj ,Zsigj)|j = 1, . . . ,Lsig}.

The 2-move version of MOVA is exactly as above except that GHIproof and
coGHIproof are replaced by 2-GHIproof and 2-coGHIproof respectively.

5 Security of the 2-Move MOVA Scheme

Here, we prove that the 2-move modified version of the MOVA scheme satisfies
the security properties mentioned in Section 3. The proofs of resistance against
forgery attacks and invisibility were inspired from [13].

Short 2-Move Undeniable Signatures 29

Theorem 3. Let S = {(Xkey1,Ykey1), . . . , (XkeyLkey,YkeyLkey)} and e denote
the natural logarithm base. Assuming that GenC, GenS, GenD, Hd, and Hc are
random oracles, that signer’s public key is valid, and that TPOW is a trapdoor
one-way permutation, the MOVA scheme with 2-move confirmation and denial
protocols satisfies the following security properties.

1. The confirmation (resp. denial) protocol is complete.
2. Let p be the smallest prime factor of d. The confirmation (resp. denial)

protocol is sound: for any invalid (valid) message-signature pair, any cheat-
ing signer S∗ limited to qHc (resp. qHd

) queries to Hc (resp. Hd), is such
that the probability Succsd-con

S∗ < Succinv-tp + qHcp
−Icon (resp. Succsd-den

S∗ <

Succinv-tp + qHd
p−Iden), where Succinv-tp is the maximum of Succinv-tp

A among
all adversaries A which have similar complexity as S∗.

3. The confirmation (resp. denial) protocol is perfect non-transferable.
4. The confirmation (resp. denial) protocol is statistical black-box straight-line

zero-knowledge.
5. Assume that for any solver B with a given complexity, we have

SuccLsig-S-GHIP
B ≤ ε.

Then, any forger F with similar complexity using qS signing queries and qV
queries to the confirmation/denial oracle wins the existential forgery game
under an adaptive chosen-message attack with a probability

Succef-cma
F ≤ e(1 + qS)(1 + qV)ε.

6. Assume that for any algorithm B with a given complexity, we have

AdvLsig-S-GHID
B ≤ ε and SuccLsig-S-GHIP

B ≤ ε′.

Then, any distinguisher D with similar complexity using qS signing queries
and qV queries to the confirmation/denial oracle wins the invisibility game
under a chosen-message attack with advantage

Advinv-cma
D ≤ e(1 + qS)(ε+ 2e(1 + qV)ε′).

Remark 4. The soundness and zero-knowledge of the confirmation and denial
protocols as well as the invisibility and the resistance to existential forgery at-
tacks hold in the random oracle model.

Remark 5. Similarly to [14], the efficiency of the security reduction for the ex-
istential forgery can be improved (factor (1 + qV)−1 is removed) by replacing
GHI problem by its gap variant [20]. This problem consists in solving the GHI
problem using an access to an oracle which solves the GHID problem. This one
helps to simulate the confirmation and denial oracles.

Proof. Below we prove Theorem 3. Completeness is omitted since it is obvious.

30 J. Monnerat and S. Vaudenay

Soundness of Confirmation. Let S∗ be a cheating prover who wants to confirm
the validity of an invalid signature σ = (Zsig1, . . . ,ZsigLsig). Note that S∗ is fed
with the signer secret key KS

s . Without loss of generality, we can assume that
S∗ always responds correctly to the verifier whenever he queries seedC to GenC.
Indeed, he can check that seedC is the preimage of ϑc by TPOW and answer
seedC to the challenge if correct. (With an honest verifier, there is no need to
check whether the challenge is valid.) Hence, the verifier always accepts when the
prover queries seedC to GenC. Similarly, we can assume that S∗ always responds
correctly to the verifier whenever he queries the right w to Hc because he can
deduce seedC from hc afterwards. Note that when S∗ interacts with an honest
verifier, the verifier only accepts if S∗ outputs seedC.

We transform S∗ into an algorithm to invert the trapdoor permutation as
follows.

1. We receive a random challenge ϑc, whose preimage by TPOW is denoted
seedC.

2. We generate the key material for the MOVA signature and generate some
random values ri’s and ai,j ’s. We deduce some ui’s and wi’s and pick a
random hc. Then (u, hc, ϑc) is a challenge for the prover. We simulate GenC
as follows: for any query except seedC (we can check whether a value is
seedC by checking that its image by TPOW is ϑc) we simulate a random
oracle as usual i.e., we maintain a list of elements queried to GenC with
corresponding answers and simulate according to this list. If the query is
new, we simply pick the answer at random and add the pair in the list.
For the query seedC we stop the overall simulation and yield seedC: the
inversion of ϑc succeeded. We simulate Hc as follows: for any query except
w = (w1, . . . , wIcon) we simulate a random oracle (like for GenC). For the
query w we stop: the inversion of ϑc failed.

3. We run S∗ according to our simulation rules. If S∗ outputs some value, we
check whether it is seedC. If it is, we output it, otherwise we fail.

The algorithm succeeds to invert the trapdoor permutation at the condition
that either (event A) S∗ succeeds without even querying seedC to GenC nor w
to Hc, or (event B) that S∗ queries seedC to GenC without querying w to Hc

beforehand. Let C be the event that S∗ queries w to Hc before querying seedC
to GenC. Since the simulation is perfect, Pr[A∪B]+Pr[C] is the probability that
S∗ passes the protocol with an honest verifier. We have Pr[A ∪ B] ≤ Succinv-tp.
Below we show an upper bound for Pr[C]. To this, we consider a simulator B
which plays with S∗ to win the following game:

Game: A challenger picks elements ri’s and ai,j ’s uniformly at random and
compute ui = dri +

∑Lkey
j=1 ai,jXkeyj +

∑Lkey+Lsig
j=Lkey+1 ai,jXsigj−Lkey and wi :=∑Lkey

j=1 ai,jYkeyj +
∑Lkey+Lsig

j=Lkey+1 ai,jZsigj−Lkey. The simulator B receives the ui’s
and wins the game if he finds all the values wi’s.
B simply forwards the received challenges ui’s and picks hc and ϑc uniformly at

random in {0, 1}kc . B simulates the oracle Hc as above, except that he guesses

Short 2-Move Undeniable Signatures 31

when the wi’s are queried. For this, he just picks an integer � ∈ {1, . . . , qHc}
uniformly and stops the simulation at the �th query made to Hc. The simulator
then answers the values wi’s. Note that S∗ cannot query seedC to GenC when
eventC occurs. The simulation is perfect in theC case provided that � is correctly
guessed. Thus, we have Pr[D] ≥ 1/qHc · Pr[C], where D denotes the event of
winning the above game. By the assertion 3 of Lemma 2, Pr[D] ≤ p−Icon. Thus,
Pr[C] ≤ qHcp

−Icon. So, the confirmation cannot succeed with probability larger
than Succinv-tp + qHcp

−Icon.

Soundness of Denial. This proof works in a very similar way as for the confir-
mation. The only difference is that we replace GenC by GenD, Hc by Hd, Icon
by Iden, kc by kd, seedC by seedD.

Non-transferability of Confirmation. We describe a simulator B interacting with
Ṽ. First, B launches Ṽ and receives the first message (which should be u =
(u1, . . . , uIcon), hc, and ϑc). If (m, σ) is valid, the simulator computes seedC′ =
TPOW−1

KV
s
(ϑc) and using GenC generates coefficients a′ij and r′i and correspond-

ing u′i and w′
i for i = 1, . . . , Icon and j = 1, . . . ,Lkey + Lsig. Then, B checks

whether u′i = ui for i = 1, . . . , Icon, seedC′ = Hc(w′
1, . . . , w

′
Icon) ⊕ hc. If it

is the case, B outputs the transcript (hc, w, ϑc, seedC′). Otherwise, it outputs
(hc, w, ϑc, abort). If (m, σ) is invalid, the simulator outputs abort. Note that an
honest signer would check exactly the same equalities (in a different way) and
would answer exactly in the same way. Hence, the non-transferability is perfect.

Non-transferability of Denial. This proof is similar.

Straight-Line Zero-Knowledge of Confirmation. If V∗ is given KV
s , the simula-

tion can be done perfectly as for the non-transferability. Now, we consider that
V∗ (and the simulator B) is not given KV

s . B runs the verifier V∗ and looks
at the queries made by V∗ to the oracle GenC. B puts these qGenC queries
seedCk for 1 ≤ k ≤ qGenC as well as the corresponding answers of GenC in
memory. The simulator then receives the first message M of V∗. If this one
has not a correct format, the simulator outputs the transcript (M, abort). Oth-
erwise, the simulator checks whether one answer among those queries seedCk’s
made to GenC generates the challenges ui’s correctly and the image of this
query by TPOW is equal to ϑc. If it is not the case, B outputs the transcript
(u1, . . . , uIcon, hc, ϑc, abort). Otherwise, the simulator is able to compute the right
wi’s from this answer (the right ri’s and ai,j ’s) using the homomorphic property
of Hom, namely wi = Hom(ui) =

∑Lkey
j=1 ai,jYkeyj +

∑Lkey+Lsig
j=Lkey+1 ai,jYsigj−Lkey

for i = 1, . . . , Icon. From the wi’s, B computes seedC∗ := hc⊕Hc(w1, . . . , wIcon)
and checks whether seedC∗ generates the right ri’s and ai,j ’s. In the positive case,
B outputs the transcript (u1, . . . , uIcon, hc, ϑc, seedC∗). In the negative case, it
outputs the following transcript (u1, . . . , uIcon, hc, ϑc, abort).

It remains to show that the two transcript distributions are statistically indis-
tinguishable. When the first message has not a correct format, the two transcripts
are clearly identical. Let consider the case where the verifier did not query any

32 J. Monnerat and S. Vaudenay

seedCk which produces the challenges ui’s and whose image by TPOW leads to
ϑc. In this case, the honest prover will not abort the protocol only if he retrieves
a seedC = H(w1, . . . , wIcon) ⊕ hc which generates the challenges ui’s and ϑc.
This occurs only if the verifier V∗ was able to guess that the output values of
the query seedC to the oracle GenC generate the right ri’s and aij ’s. Since GenC
is a random oracle, no polynomial time verifier V∗ can succeed to do that with
a non-negligible probability. We still have to consider the case where the verifier
queried a seedCk which produces the challenges ui’s and ϑc. We see that the two
transcripts are always identical, since the simulator clearly knows the answer of
the honest prover by learning the right wi’s. Therefore, we can conclude that
the two transcript distributions are statistically indistinguishable.

Straight-Line Zero-Knowledge of Denial. This proof is similar.

Unforgeability. Let F be a forger who succeeds to existentially forge a signature
under an adaptive chosen-message attack with a non-negligible probability ε.
We will construct an algorithm B which solves the Lsig-S-GHI problem with
S := {(Xkey1,Ykey1), . . . , (XkeyLkey,YkeyLkey)} using the forger F and KV

s .
At the beginning, B receives the challenges x1, . . . , xLsig ∈ Xgroup of the Lsig-
S-GHI problem. Then, B runs the forger and simulates the queries to the ran-
dom oracle GenS, qS queries to the signing oracle Sign and qV queries to the
denial/confirmation oracle Ver. We can assume that all messages sent to Sign
resp. Ver were previously queried to GenS (since the oracle Sign resp. Ver has to
make such queries anyway). B simulates the oracles GenS and Sign as follows:

GenS. For each message m queried to GenS, B maintains a list of each mes-
sage and corresponding answer (m,Xsig1, . . . ,XsigLsig). If the message was
already queried, B outputs the corresponding answer in the list. Otherwise,
he picks ai,j ∈U Zd and ri ∈U Xgroup uniformly at random for 1 ≤ i ≤ Lsig,
1 ≤ j ≤ Lkey. With probability q, he answers Xsigi := dri +

∑Lkey
j=1 ai,jXkeyj

for i = 1, . . . ,Lsig. We call it type-1 answer. With probability 1− q, the an-
swer is Xsigi := dri + xi +

∑Lkey
j=1 ai,jXkeyj for i = 1, . . . ,Lsig. We call it

type-2 answer. For each message, B keeps the coefficients ai,j ’s and ri’s and
answer type in memory. Note that the simulation is perfect by the assertion 2
of Lemma 2, since the public key is valid.

Sign. For a message m, if the answer to the GenS query of m was of type-1,
then B answers Ysigi :=

∑Lkey
j=1 ai,jYkeyj for i = 1, . . . ,Lsig. Otherwise, it

aborts the simulation.

Let (mi, σi) denote the ith query to Ver for 1 ≤ i ≤ qV and (mqV +1, σqV +1)
denote the F output. In order to simulate the answers of the queries made to
Ver, B guesses the smallest i such that (mi, σi) is a valid forged pair (i.e., m
was not queried to Sign). To this, B simply picks � uniformly at random in
{1, . . . qV + 1}. B deals with the ith query as follows:

i < �. To any query (mi, σi), B checks whether mi was submitted to Sign. If
it is the case, B is able to decide whether (mi, σi) is valid and simulates
the appropriate protocol. Otherwise, B guesses that (mi, σi) is invalid and

Short 2-Move Undeniable Signatures 33

simulate the appropriate protocol. The simulation is done as the simulator in
the proof of non-transferability of the confirmation (resp. denial) protocol.

i = �. Let (m�, σ�) := (m�,Ysig1, . . . ,YsigLsig). If the corresponding Xsigi’s were
of type-1, B aborts. Otherwise, when � was correctly guessed Ysigi = yi +∑Lkey

j=1 ai,jYkeyj and B is able to deduce the yi’s of the Lsig-S-GHI problem.

It remains to compute the probability that B retrieves the yi’s and did not abort.
This event occurs if B is able to simulate all Sign queries, guess the right � and
use the message m� to deduce the yi’s. Therefore, Pr[B succeeds|F succeeds] =
qqS (1− q)/(qV + 1). As for the full-domain hash technique [7] and as in [13], the
optimal qopt = qS/(qS + 1). Thus, the success probability is greater or equal to
(1/e(1 + qS)(1 + qV))ε.

Invisibility. Let D be a distinguisher which breaks the invisibility of the MOVA
scheme with an advantage ε. We construct an algorithm B which solves the Lsig-
S-GHID problem by using D and KV

s . At the beginning, B is challenged with
a tuple {(x1, y1), . . . , (xLsig, yLsig)} ∈ (Xgroup×Ygroup)Lsig for which it has to
decide whether Hom(xi) = yi for all 1 ≤ i ≤ Lsig or if this tuple was picked at
random. Like for the proof of the existential forgery, the simulator B runs D and
simulates the queries to the random oracle GenS, qS queries to the signing oracle
Sign and the queries to the denial/confirmation oracle Ver. We can assume that
each message queried to Sign or Ver was previously queried to the random oracle
GenS. We assume that no query m to Ver was submitted to Sign beforehand.
(Otherwise, we can just simulate them with KV

s .) Let Forge be the event in which
D sends a valid message-signature pair to Ver. We first remove all instances for
which the event Forge occurs. So, we can now assume that D never submits any
valid pair (m, σ) to Ver such that m was not previously submitted to Sign. B
simulates the oracles just like in the proof of unforgeability with � = qV + 1 (we
excluded valid forged pairs).

After a given time, the distinguisher D sends a message m∗ to the challenger
of the invisibility game which is simulated by B. We can assume that m∗ was
queried to GenS (otherwise B simulates a new query). If the answer of m∗ to
GenS was of type-1, B aborts the simulation. Otherwise, it sends the challenge
signature (Ysig∗1, . . . ,Ysig∗Lsig) where Ysig∗i := yi +

∑Lkey
j=1 ai,jYkeyj for 1 ≤ i ≤

Lsig. Then, D continues to query the oracles which are simulated by B as above.
Finally, D outputs a guess bit b′. The simulator B outputs the same bit b′ as

guess bit to the Lsig-S-GHID challenger or a random bit when B aborted.
Using the homomorphic property of Hom, we deduce that the set {(xi, yi)}Lsig

i=1
interpolates in a group homomorphism with the set of points S if and only if
(m∗,Ysig∗1, . . . ,Ysig∗Lsig) is a valid message-signature pair. Hence, when the sim-
ulator does not abort and the event Forge does not occur, B perfectly simulates
the invisibility games. It remains to compute the advantage of B.

For a bit b, we denote Ab the probability event that B does not abort when
the challenge to B was of the form Tb (thus, B simulates the game Gameinv-cma-b

to D). Note that the probability Pr[A1] = Pr[A0] can be bounded in an optimal
way as in the proof of existential forgery attacks, namely, by choosing q ade-

34 J. Monnerat and S. Vaudenay

quately we get Pr[A1] ≥ (1/e(1 + qS)). We now define the events Bb and Db

which occur when B and D respectively outputs the bit 0 when the challenge
was of the form Tb. Note that if Ab happens, both events Bb and Db occurs
simultaneously. Let us denote ε0 resp. ε1, the probability for D to output 0 in
the game Gameinv-cma-0 resp. Gameinv-cma-1. We now estimate Pr[B0|A0] and
Pr[B1|A1] with respect to ε0 and ε1. To this end, we notice that the event B0|A0
resp. B1|A1 occurs simultaneously with the event where D outputs 0 in the game
Gameinv-cma-0 resp. Gameinv-cma-1, provided that the event Forge does not occur.
Hence, applying the difference lemma of Shoup [22] leads to

|Pr[Bb|Ab]− εb| ≤ Pr[Forge]

for b = 0, 1. From this, we can deduce that Pr[B0|A0] ≥ ε0 − Pr[Forge] and
Pr[B1|A1] ≤ ε1 + Pr[Forge]. Without loss of generality, we can assume that
Pr[B0] ≥ Pr[B1]. The advantage of B is then equal to

Pr[B0]− Pr[B1] = Pr[¬A0] · (Pr[B0|¬A0]− Pr[B1|¬A1])
+ Pr[A0] · (Pr[B0|A0]− Pr[B1|A1]).

Since Pr[B0|¬A0] = Pr[B1|¬A1] = 1/2 and ε0− ε1 = Advinv−cma
D , we finally have

AdvLsig-S-GHID
B ≥ 1

(1 + qS)e

(
Advinv−cma

D − 2 Pr[Forge]
)
.

We can conclude by noting that Forge occurs with a probability bounded by
e(1 + qS)(1 + qV)ε′ by assertion 5. �

Remark 6. MOVA scheme can be made probabilistic so that the invisibility no-
tion defined in [8] is satisfied. To this, it suffices to append some randomness r
to the message to sign and to add r in the signature. The drawback is that the
signature enlarges.

Consequences for the Signature Parameters. One of the main advantage of
MOVA scheme as stated in [17] is the fully scalable signature size. It was argued
that one could potentially consider signatures of size of 20 bits, but the corre-
sponding security level was not precisely quantified. Namely, the efficiency of the
security reduction in [17] is not detailed and the security model did not consider
queries to the confirmation/denial oracle. Our security reduction provides a more
precise result. Assuming that any solver with same computational resource as a
given forger cannot solve Lsig-S-GHI problem with a probability significatively
greater than |Ygroup|−Lsig, the assertion 5 of Theorem 3 shows that we have
Succef-cma

F ≤ |Ygroup|−Lsige(qS + 1)(qV + 1). Note that the assumption can be
reached by scaling Xgroup adequately, namely without any modification of the
signature size. This is the case when Hom is the Legendre symbol (·/p) defined
on an RSA modulus n = pq. A signature size of Lsig ≥ 52 bits achieves a success
probability for the existential forgeability of at most 2−20 with qS = 210 and
qV = 220. Similarly, assuming that AdvLsig-S-GHID

B ≈ 0 for any B with similar

Short 2-Move Undeniable Signatures 35

complexity as the invisibility distinguisher D, assertion 6 of Theorem 3 shows
that Advinv-cma

D ≈ 2e2qSqV 2−Lsig, which leads to Advinv-cma
D ≈ 2−18. Results for

the soundness can be obtained with Succinv-tp ≈ 0. For the 2-move verification
protocols, we can achieve a soundness probability of 2−20 with Icon = Iden = 60,
qHc = qHd

= 240.

6 Conclusion

We revisited a 2-move variant of the MOVA undeniable signature scheme which
was proposed without any proof. By using a trapdoor one-way permutation
adequately, we were able to make the verification protocols non-transferable. All
the other required security properties are thoroughly analyzed in the random
oracle model, thereby allowing to quantify the security of the different properties
in terms of the signature parameters. So, as far as we know, this is the first time
a provably secure undeniable signature scheme with 2-move confirmation and
denial protocols is obtained. This result shows that minimal number of moves in
an undeniable signature with interactive protocols can be reached in practice.

References

1. B. Barak, Y. Lindell, and S. P. Vadhan. Lower Bounds for Non-Black-Box Zero
Knowledge. In 44th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS ’03, pages 384–393. IEEE Computer Society, 2003.

2. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In 1st ACM Conference on Computer and Communications
Security, pages 62–73. ACM Press, 1993.

3. J. Boyar, D. Chaum, I. Damg̊ard, and T. P. Pedersen. Convertible Undeniable
Signatures. In Advances in Cryptology – CRYPTO ’90, volume 537 of Lecture
Notes in Computer Science, pages 189–205. Springer-Verlag, 1991.

4. J. Camenisch and M. Michels. Confirmer Signature Schemes Secure against Adap-
tive Adversaries. In Advances in Cryptology – EUROCRYPT ’00, volume 1807 of
Lecture Notes in Computer Science, pages 243–258. Springer-Verlag, 2000.

5. D. Chaum. Zero-Knowledge Undeniable Signatures. In Advances in Cryptology
– EUROCRYPT ’90, volume 473 of Lecture Notes in Computer Science, pages
458–464. Springer-Verlag, 1990.

6. D. Chaum and H. van Antwerpen. Undeniable Signatures. In Advances in Cryp-
tology – CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages
212–217. Springer-Verlag, 1990.

7. J.-S. Coron. On the Exact Security of Full Domain Hash. In Advances in Cryptology
– CRYPTO ’00, volume 1880 of Lecture Notes in Computer Science, pages 229–235.
Springer-Verlag, 2000.

8. S. D. Galbraith and W. Mao. Invisibility and Anonymity of Undeniable and Con-
firmer Signatures. In Topics in Cryptology – CT–RSA ’03, volume 2612 of Lecture
Notes in Computer Science, pages 80–97. Springer-Verlag, 2003.

9. R. Gennaro, H. Krawczyk, and T. Rabin. RSA-Based Undeniable Signatures. In
Advances in Cryptology – CRYPTO ’97, volume 1294 of Lecture Notes in Computer
Science, pages 132–149. Springer-Verlag, 1997.

36 J. Monnerat and S. Vaudenay

10. O. Goldreich. Foundations of Cryptography, Volume I Basic Tools. Cambridge
University Press, 2001.

11. S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme Se-
cure Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

12. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier Proofs and Their
Applications. In Advances in Cryptology – EUROCRYPT ’96, volume 1070 of
Lecture Notes in Computer Science, pages 143–154. Springer-Verlag, 1996.

13. K. Kurosawa and S.-H. Heng. 3-Move Undeniable Signature Scheme. In Advances
in Cryptology – EUROCRYPT ’05, volume 3494 of Lecture Notes in Computer
Science, pages 181–197. Springer-Verlag, 2005.

14. F. Laguillaumie and D. Vergnaud. Short Undeniable Signatures Without Random
Oracles: the Missing Link. In Progress in Cryptology – INDOCRYPT ’05, volume
3797 of Lecture Notes in Computer Science, pages 283–296. Springer-Verlag, 2005.

15. H. Lipmaa, G. Wang, and F. Bao. Designated Verifier Signature Schemes: Attacks,
New Security Notions and a New Construction. In Automata, Languages and
Programming: 32nd International Colloquium, ICALP ’05, volume 3580 of Lecture
Notes in Computer Science, pages 459–471. Springer-Verlag, 2005.

16. J. Monnerat, Y. A. Oswald, and S. Vaudenay. Optimization of the MOVA Undeni-
able Signature Scheme. In Progress in Cryptology – MYCRYPT ’05, volume 3715
of Lecture Notes in Computer Science, pages 196–209. Springer-Verlag, 2005.

17. J. Monnerat and S. Vaudenay. Generic Homomorphic Undeniable Signatures. In
Advances in Cryptology – ASIACRYPT ’04, volume 3329 of Lecture Notes in Com-
puter Science, pages 354–371. Springer-Verlag, 2004.

18. J. Monnerat and S. Vaudenay. Undeniable Signatures Based on Characters: How
to Sign with One Bit. In Public Key Cryptography – PKC ’04, volume 2947 of
Lecture Notes in Computer Science, pages 69–85. Springer-Verlag, 2004.

19. W. Ogata, K. Kurosawa, and S.-H. Heng. The Security of the FDH Variant of
Chaum’s Undeniable Signature Scheme. In Public Key Cryptography – PKC ’05,
volume 3386 of Lecture Notes in Computer Science, pages 328–345. Springer-
Verlag, 2005. Extended version available on: Cryptology ePrint Archive, Report
2004/290, http://eprint.iacr.org/.

20. T. Okamoto and D. Pointcheval. The Gap-Problems: A New Class of Prob-
lems for the Security of Cryptographic Schemes. In Public Key Cryptography
– PKC ’01, volume 1992 of Lecture Notes in Computer Science, pages 104–118.
Springer-Verlag, 2001.

21. R. Pass. On Deniability in the Common Reference String and Random Oracle
Model. In Advances in Cryptology – CRYPTO ’03, volume 2729 of Lecture Notes
in Computer Science, pages 316–337. Springer-Verlag, 2003.

22. V. Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/.

Searching for Compact Algorithms: cgen

M.J.B. Robshaw

France Telecom Research and Development
38–40, rue du Général Leclerc

92794 Issy les Moulineaux, Cedex 9, France
matt.robshaw@orange-ft.com

Abstract. In this paper we describe an aes-like pseudo-random number
generator called cgen. Initial estimates suggest that the computational
resources required for its implementation are sufficiently modest for it
be suitable for use in RFID tags.

1 Introduction

There has been much recent interest in extending cryptographic techniques to
resource-constrained devices. Much of this work has centered around the design
of exotic primitives and protocols suitable for demanding environments such as
radio frequency identification (rfid) tags. There is, however, something unset-
tling about building a security infrastructure on entirely new design techniques
that might be vulnerable to innovative attack. However, at the same time, many
standardised algorithms are not suited to deployment on the cheapest tags. This
gap between extreme proposals and more conventional primitives has made the
design of lightweight, but trusted, algorithms an active topic of research.

In this paper we propose an algorithm that is designed to (partially) fill this
gap and we introduce a pseudo-random number generator (prng) that we call
cgen for “compact generator”. Some reasons for concentrating on this type of
primitive are provided in Section 1.1, but our goal is a prng that would occupy
1000-1500 gate equivalents (GE) in silicon, make modest power demands, and
yet fit this middle ground of dedicated-but-strong cryptography.

The properties we seek for a prng essentially coincide with those we expect for
a good stream or a block cipher in an appropriate mode. Unfortunately, however,
there are currently no widely-trusted stream ciphers that are suitable for com-
pact hardware implementation, though there are efforts to try and rectify this
with the eSTREAM initiative [11]. Two proposals in particular—the more tradi-
tional grain [16] and the innovative trivium [5]—appear to offer considerable
promise. By contrast, we do have a well-trusted block cipher—the aes [21]—
and, up to a number of encryptions dictated by birthday attacks, the output
from this block cipher in counter mode would be adequate for our purposes.
However, even when considering recent impressive implementation results [12],
the hardware requirements of the AES remain excessive.

In this paper we build on recent trends in block cipher design but, for the
application we have in mind, we observe that a block cipher offers more than we

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 37–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

38 M.J.B. Robshaw

need. In fact the restricted scope for attacks against the proposed prng, partic-
ularly when used in its intended environment, suggest that much of the usual
block cipher machinery can be removed. Our goal, therefore, is an algorithm
whose dedicated purpose1 is to act as a prng and our proposal is best viewed as
a complement to algorithms like grain and trivium, but one that uses typical
block cipher techniques in its design.

1.1 Why a (New) Compact Pseudo-random Number Generator?

The recent surge of interest in computationally-restricted devices has generated
many proposals for a wide range of protocols. Often, a hidden requirement is
that there be an efficient way to generate random bits, but it is not always clear
how this might be best achieved and a tag-specific prng may be more practical.
Another reason for looking at a prng can be found when considering public-
key schemes such as the GPS identification scheme [14,22]. A common optimi-
sation in many commitment-challenge-response schemes is the use of coupons.
These consist of pre-computed commitments that are stored securely on the tag
and used one-by-one. Depending on storage limitations and the specifics of the
scheme, a further optimisation can sometimes be attained by regenerating (parts
of) the coupon with an efficient and compact prng as specified in ISO-9798 [15].
Thus, a compact prng might be used to generate a modest number of coupons
for use within a larger scheme. More generally, for a variety of constrained ap-
plications, the ability to efficiently generate pseudorandom bits from a fixed,
per-device, secret seed could well be of great interest.

Block ciphers, or constructions built around block ciphers [17], can provide a
convenient solution and a benchmark is provided by the aes for which a com-
pact implementation requires around 3600 GE [12]. Despite the name, the Tiny
Encryption Algorithm tea, and extensions [25,26], require more resources than
we would like, and our attention shifts to two dedicated block cipher proposals
mCrypton [18], which has many design features in common with cgen and
will be discussed in Sections 2.2 and 3.2, and sea, the Scalable Encryption Al-
gorithm [24] which achieves a small implementation footprint at some cost to
performance. Other approaches to designing a prng might rely on the use of
dedicated hash functions such as MD5 [23] or SHA-1 [20]. But independently
of issues about the suitability of these primitives for new applications, the re-
source cost of implementing such algorithms is high. We therefore believe that a
prng that stays close to established design principles, but provides the necessary
functionality at a reduced cost, may be attractive.

In general terms there might be two approaches to the design of a new prng.
We might try and develop a “provably secure” scheme that would relate any ad-
vantage in predicting the output from the prng to an advantage in solving some
underlying hard problem. While such an approach has typically been viewed as
difficult in symmetric cryptography, particularly when reasonable performance

1 Since cgen is essentially built around a block cipher one could use it in this way
after some adjustments.

Searching for Compact Algorithms: cgen 39

is required, there has been much progress in this direction with the designs of
quad [2] and vsh [8]. This is a trend we might expect to develop in the coming
years. Here though, we design a scheme whose security depends on bit-level de-
sign and analysis. Just like the aes, however, its construction allows us to make
some (positive) claims about the security offered by the scheme.

1.2 The Intended Environment and Implications

The essential nature of an RFID application is of cheap tags being deployed
widely, used relatively infrequently, and then disposed. This characterisation
doesn’t apply to all RFID-based applications, but it is a reasonable description
of those that use cheaper tags.

We will see in what follows that cgen is essentially a block cipher in counter
mode. However, since the secret key is a fixed, per-device seed, cgen lacks a key
schedule. There is also no need to provide decryption, and cgen operates on a
restricted space of input plaintexts. All of these factors contribute to a reduced
hardware footprint, but what remains is still cryptographically strong.

The block size of the underlying cipher is 64 bits thus, as the number of
outputs approaches 232, the birthday paradox implies that cgen would be dis-
tinguishable from a perfect random number generator. However, cgen is only
intended to be used at most 216 times and this has implications on the capabil-
ities of the attacker and the attacks that can be mounted.

An attacker knows the inputs to at most 216 different invocations of cgen
since these are generated by a counter. This immediately limits the number
of plaintexts and plaintext pairs available for cryptanalysis. There will be no
opportunity for choosing the input, and the secret key is fixed so there are no
opportunities for some of the more sophisticated block cipher attacks such as
those that rely on related keys. And finally, depending on the application, it is
possible that the output from cgen might never leave the device. Despite these
limitations on the capabilities of the attacker, we do require cgen to offer a good
level of security and this is discussed at some length in Section 3.

We note that hardware-level attacks to recover the secret seed from the tag,
or denial of service attacks that consume all available iterations of cgen and
thereby exhaust the tag can always be attempted. However, these threats are
more relevant to the application than the algorithm. Thus they lie outside the
scope of this paper which will be solely concerned with cryptanalytic threats.

2 The Proposal: cgen

One approach to the design of a prng might be to use “very simple operations
very often”. The approach within cgen is to use slightly heavier components
more sparingly. In what follows, it is obvious that we stay very close to the
design principles embodied in the aes. These are techniques that work, and
ones with which we are familiar. Essentially cgen is a block cipher running in
counter mode. However, since the intended environment uses a fixed, per-device,

40 M.J.B. Robshaw

a30 a31 a32 a33

a20 a21 a22 a23

a10 a11 a12 a13

a00 a01 a02 a03

1. For counter value ci = [ci0||ci1||ci2||ci3], for 0 ≤ j ≤ 3, set a0j = a0j ⊕ cij .
2. Do one round of mixtable.
3. Combine state with seed: for 0 ≤ i, j ≤ 3 set aij = aij ⊕ s16+4i+j .
4. Do three rounds of mixtable.
5. Combine state with seed: for 0 ≤ i, j ≤ 3 set aij = aij ⊕ s4i+j .
6. Do two rounds of mixtable.
7. Combine state with seed: for 0 ≤ i, j ≤ 3 set aij = aij ⊕ s16+4i+j .
8. Do two rounds of mixtable.
9. Combine state with seed: for 0 ≤ i, j ≤ 3 set aij = aij ⊕ s4i+j .

10. Do two rounds of mixtable.
11. Combine state with seed: for 0 ≤ i, j ≤ 3 set aij = aij ⊕ s16+4i+j .
12. Output vi where vi = [a00|| · · · ||a03||a10|| · · · ||a13|| · · · · · · ||a33].
13. If ci = 216 − 1 the prng is no longer used. Otherwise increment ci by one.

Fig. 1. An overview of cgen where the counter is initialised to zero. The 64-bit state
is considered as a (4 × 4)-array which, for 0 ≤ i, j ≤ 3, is initialised with aij = s4i+j .

secret seed there is a much reduced (effectively non-existent) key schedule. One
significant deviation from the aes is the relative size of elements in the state
array and the s-box; in the aes these are the same but in cgen they are not.
This provides some advantages over other compact aes-like proposals.

Since the state is often the most space-consuming aspect, we adopt a state of
size 64 bits for cgen. Each tag using cgen possesses its own secret 128-bit seed
which need never be shared with any other entity. Compromise of the seed leads
to a compromise of cgen and the seed s is represented as s = s0 . . . s31 where
each si is four bits long. At each iteration of cgen (see Figure 1) a 64-bit value
vi is generated from some counter value ci = i and we have that vi = cgen(ci, s)
for 0 ≤ i < 216. The counter limit can be set to some other value if appropriate.

2.1 The mixtable Operation

Given the success of the elegant construction behind the aes, it is appealing
to consider similar approaches. While we will see considerable similarity to the
aes, our construction uses an s-box that spans two table entries instead of one.
This has numerous security advantages over the obvious alternative of using a
reduced 4-bit s-box that covers a single array element. Such reduced s-boxes
can be found in natural small-scale variants of the aes [7] and in the design
of the nibble-based block cipher mCrypton [18]. The primary observation is

Searching for Compact Algorithms: cgen 41

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -a -b -c -d -e -f

0- ba 54 2f 74 53 d3 d2 4d 50 ac 8d bf 70 52 9a 4c
1- ea d5 97 d1 33 51 5b a6 de 48 a8 99 db 32 b7 fc
2- e3 9e 91 9b e2 bb 41 6e a5 cb 6b 95 a1 f3 b1 02
3- cc c4 1d 14 c3 63 da 5d 5f dc 7d cd 7f 5a 6c 5c
4- f7 26 ff ed e8 9d 6f 8e 19 a0 f0 89 0f 07 af fb
5- 08 15 0d 04 01 64 df 76 79 dd 3d 16 3f 37 6d 38
6- b9 73 e9 35 55 71 7b 8c 72 88 f6 2a 3e 5e 27 46
7- 0c 65 68 61 03 c1 57 d6 d9 58 d8 66 d7 3a c8 3c
8- fa 96 a7 98 ec b8 c7 ae 69 4b ab a9 67 0a 47 f2
9- b5 22 e5 ee be 2b 81 12 83 1b 0e 23 f5 45 21 ce
a- 49 2c f9 e6 b6 28 17 82 1a 8b fe 8a 09 c9 87 4e
b- e1 2e e4 e0 eb 90 a4 1e 85 60 00 25 f4 f1 94 0b
c- e7 75 ef 34 31 d4 d0 86 7e ad fd 29 30 3b 9f f8
d- c6 13 06 05 c5 11 77 7c 7a 78 36 1c 39 59 18 56
e- b3 b0 24 20 b2 92 a3 c0 44 62 10 b4 84 43 93 c2
f- 4a bd 8f 2d bc 9c 6a 40 cf a2 80 4f 1f ca aa 42

Fig. 2. For a straw-man proposal of cgen we use the tweaked anubis s-box [1]

that small s-boxes (operating on nibbles) cannot offer the same level of local
resistance to differential and linear cryptanalysis as larger ones. A secondary
observation is that when using a larger s-box that spans multiple entries, the
s-box is not limited to providing confusion, but also contributes to diffusion
within the state since it provides some mixing across the cells of an array. This
can provide a faster avalanche of change, as measured (say) by the expected
weight of a differential trail starting with one active array element which, in the
case of our construction, is 6.75 active s-boxes over two rounds instead of five
as for the aes. We will explore this issue more in Section 3.2. We will also see,
in Section 3.3, that the conflict between the size of the array elements and the
s-boxes may help protect against structural attacks that are currently among
the most effective against aes-like structures.

Like the aes, the mixtable operation consists of s-box look-ups and column
mixes. In the substitution layer each s-box instantiates an 8-bit to 8-bit per-
mutation, with S-boxes in different rows of the arrays being offset against each
other.

a00||a01 = S[a00||a01], a02||a03 = S[a02||a03],
a13||a10 = S[a10||a13], a11||a12 = S[a11||a12],
a20||a21 = S[a20||a21], a22||a23 = S[a22||a23],
a33||a30 = S[a33||a30], a31||a32 = S[a31||(a32 ⊕ 0x1)].

The aes s-box is one option though an s-box that is less demanding in hardware
might be preferred (see Section 4). Given this latter consideration, we suggest to
use the tweaked s-box from the anubis block cipher [1] for a straw-man version of
cgen. While the construction of this s-box is nibble-based, something that might

42 M.J.B. Robshaw

s-boxes Columns Swap

a30 a31 a32 a33

a20 a21 a22 a23

a10 a11 a12 a13

a00 a01 a02 a03

�

a30 a31 a32 a33

a20 a21 a22 a23

a10 a11 a12 a13

a00 a01 a02 a03

�

a32 a33 a30 a31

a22 a23 a20 a21

a10 a11 a12 a13

a00 a01 a02 a03

Fig. 3. Pictorial representation of the mixtable operation used within cgen

be viewed as being too compatible with the cgen structure, its implementation
requirements help us to achieve our hardware goal. The s-box is given in Figure 2.

The column mix can be written as four parallel invocations of a (4×4) matrix
M over GF(24). To remain close to other proposals in the literature [7], we use
the field representation given by p(x) = x4 + x + 1 and the following array of
nibbles in hexadecimal notation;

M =

⎛⎜⎜⎝
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞⎟⎟⎠ .
We then swap a20||a21 with a22||a23 while we swap a30||a31 with a32||a33. Note
that decryption is not required in cgen and so the form of the inverse of the
matrix M is not of interest. The mixtable operation is illustrated in Figure 3.

2.2 Design Issues

The use of s-boxes that span two array elements will be discussed further in
Section 3. It will be noted that at each round 0x1 is exclusive-ored to array
position a32. This is motivated by considering the following array pattern that
would propagate across any number of rounds of mixtablewithout the exclusive-
or of 0x1, though the specific values to A and B would change between rounds.

B A B A

A B A B

B A B A

A B A B

Over the entirety of cgen such symmetries are not a concern since they would
be destroyed by the inclusion of the seed, particularly the second insertion of

Searching for Compact Algorithms: cgen 43

seed material whose form conflicts with the combination of seed and counter at
the start. Thus the value of breaking such potential symmetry is not clear, par-
ticularly given the subsequent impact on implementation. However, it may be
prudent to avoid giving even a few rounds of predictable behavior for free, par-
ticularly when something as simple as flipping one bit within the array seems to
suffice. While exclusive-oring a round counter would help to reduce round sym-
metries even further, it would consume more resources. Thus the ideal resolution
of this issue will likely depend on implementation requirements.

The length of the input counter ci can be increased at little additional compu-
tational cost. While this would give a greater operational lifetime to cgen, there
are advantages in not using cgen too often (see Section 1.2). Figure 1 illustrates
a straw-man proposal for cgen but the number of rounds of computation can
be adjusted up, or down, as dictated by future analysis.

3 Security Issues

Existing analysis identifies promising elements in the design of cgen with one
advantage lying in the interplay between the 8-bit s-box and the 4-bit state
mixing. In Section 1.2 we outlined some of the ways the cryptanalyst would
be constrained in practice; the output might not always be available, when it
is available the amount of output is small, and at the same time the inputs
to cgen have a restricted form. However, despite such practical limits on the
attacker, we consider a range of attacks inspired by conventional block cipher
cryptanalysis.

3.1 Brute-Force Attacks

We conjecture that there is no analytic attack on cgen, respecting the limit
of 216 inputs and the inability to change key, that is more effective than the
range of brute-force attacks that take no advantage of the internal structure.
Such attacks include the fact that when used a limited number of times the
output from cgen can always be guessed with probability that remains close
to 2−64 and an attacker can recover the seed in 2−128 operations. However, as
for other cryptographic algorithms, there are time-memory trade-offs. For ex-
ample [4] with a pre-computation of 296 operations and 256 memory, one seed
from a set of 232 cgen implementations can be recovered in 280 operations, pro-
vided the output for a specific counter value is available for every case. Other
trade-offs apply and the environment will often limit the application of such
attacks.

3.2 Differential and Linear Attacks

Differential [3] and linear cryptanalysis [19] are powerful techniques that are
applicable, at least in principle, to a wide-range of primitives including block

44 M.J.B. Robshaw

��

Δ 0

�

Δ

Δ

Δ

Δ

Δ

�

0 Δ

�

Δ

Δ

Δ

Δ

�� Δ Δ

�

Δ Δ

Δ Δ

Δ Δ

Δ Δ

Fig. 4. An illustration of one-round difference propagation in cgen starting from a
single active array position

ciphers, stream ciphers, message authentication codes, hash functions, and of
particular interest to us here, prngs. These attacks are often referred to as
statistical attacks and the cryptanalyst exploits multiple interactions with the
algorithm, often at the cost of large quantities of data, with the goal of identifying
statistical patterns that allow key information to be recovered.

As we have observed, the intended environment of use for cgen limits the
number of texts available to the adversary. Regarding differential attacks, for
example, the limited number of possible counter values constrains the amount
of data available. This is likely to hinder statistical attacks, particularly since
an adversary may be required to intercept many, if not all, the outputs from
cgen. Nevertheless, it is instructive to consider the cryptanalytic properties of
the proposed construction. To illustrate, Figure 4 demonstrates three different
possibilities for a differential trail over one round that starts with one active
array position.

For a good 8-bit s-box2, the first case occurs with a probability close to 1
16 ,

the second with a probability close to 1
16 , and the third with a probability close

2 For the particular case of the aes s-box, the experimentally-derived probabilities are
228
3840 , 222

3840 , and 3390
3840 respectively which are close to our estimates.

Searching for Compact Algorithms: cgen 45

Table 1. Lower bounds to the number of active s-boxes and upper bounds to the
probability of differential characteristics in cgen when using the aes or anubis s-box

Active Probabilty with Probabilty with
s-boxes aes s-box anubis s-box

2-round bounds: 5 2−30 2−25

3-round bounds: 8 2−48 2−40

Basic 4-round bounds: 10 2−60 2−50

Improved 4-round bounds: 15 2−90 2−75

to 7
8 . Using this, the expected number of active s-boxes over two rounds of cgen,

when starting with a single active array position, is

≈ 1 + 4
16

+
1 + 4
16

+
7(1 + 6)

8
≈ 6.75.

Thus, while five active s-boxes are guaranteed to be active over two successive
rounds, it may be as many as seven. Note that we are counting the number of
active s-boxes, not the number of active array positions.

The lower bound of five active s-boxes immediately yields a bound of 10 active
s-boxes over four rounds. This is sufficient for our purposes, but we now show
how to improve on this. The reasoning comes in two parts.

1. If any column of the array has two or less active nibbles at round i, then the
action of the matrices and the subsequent swap ensure that there must be
two columns with active nibbles in round i+1. The active nibbles that arise
in this way cannot both be assimilated within the same s-box look-up. Thus,
over rounds i+ 1 and i+ 2 these two columns must contribute at least five
active s-boxes each. Looking back from round i, we see that round i− 1 and
round i themselves must also contribute at least five active s-boxes. Thus,
in total, over rounds i− 1 to i+ 2 there must be at least 15 active s-boxes.

2. Now consider a column of the array at round i with three or more active
nibbles. Due to the swap at the end of round i − 1, there must have been
two columns with active nibbles in round i− 1. These active nibbles cannot
both be assimilated within the same s-box. Thus, over rounds i−2 and i−1
these two columns must contribute at least five active s-boxes each. Looking
forward, rounds i and i+ 1 must also contribute at least five active s-boxes.
Thus, over rounds i− 2 to i+ 1, there must be at least 15 active s-boxes.

The bounds on the evolution of a differential trail for the proposed prng are
given in Table 1. We also include the maximum probability of any specific xor-
differential characteristic over the stated number of rounds when using s-boxes
from the aes and anubis [1]. A more hardware-efficient s-box, such as that
proposed in anubis, might not offer the same level of resistance to differential
cryptanalysis as the aes s-box but it should still offer sufficient resistance to
differential cryptanalysis.

46 M.J.B. Robshaw

We note that the bound on the number of active s-boxes over four rounds is
not as good as the 25 attained for a scaled-down version of the aes. Nor does
it match the 16 active s-boxes guaranteed by four rounds of mCrypton [18].
However this is not as important as the resulting differential probability. Since
we are using an 8-bit s-box, we can attain better local resistance to differential
cryptanalysis than we would by using a 4-bit s-box. Thus, for any particular dif-
ferential characteristic, the probability of 2−90 over four rounds for the construc-
tion shown here using the 8-bit aes s-box should be compared to (2−2)25 = 2−50,
the probability that would be achieved over four rounds for an aes-style s-box
over GF(24) or to (2−2)16 = 2−64, the probability achieved over four rounds of
mCrypton. Even moving to an eight-bit s-box that is less resistant to differen-
tial and linear cryptanalysis than the aes s-box, such as the tweaked s-box used
in anubis, gives better bounds (2−75).

Note that the existence of differential characteristics of the form (Δ||0) →
(0||Δ) (or vice versa) across the s-box suggest there is little point using a specific
operation to offset array elements by a single column position. This is required
in the aes and is achieved using the ShiftRows operation. Instead we rely on
the action of the s-box to mix across adjacent columns.

In summary, if we use an s-box with good local resistance to differential crypt-
analysis, then weaknesses due to the poor evolution of an xor-differential char-
acteristic are not anticipated. Further research will likely consider the effective-
ness of differentials rather than characteristics. Duality with linear cryptanalysis
means that an exploitable bitwise correlation in cgen is unlikely.

3.3 Structural Attacks

For the aes a variety of structural attacks such as the square [10] and bot-
tleneck [13] attacks have been identified. Apart from brute-force time-memory
trade-offs, these provide the most effective attacks against reduced-round ver-
sions of the aes. Given the regular structure of cgen, similar attacks might
be anticipated. However, when using a good 8-bit s-box such structural attacks
appear to be hindered by the structure of cgen.

Informally, an s-box spanning two table elements means that nibble-based
properties are destroyed while byte-based properties are destroyed by the column
operations. For instance, after the first 16 counter values every value occurs once,
and only once, in position a03. All other table entries would have been constant.
This is the starting position for the classical form of the square attack. However
a single invocation of the s-boxes will destroy this structure and the strong
nibble-based structure of the input will not be evident in the output.

Alternatively, we might imagine a structure created by the first 256 counter
values for which every possible 256-bit value appears in two adjacent nibbles
[a02||a03]. Such a property would be preserved over an s-box invocation that
instantiates a permutation. However, the column operation on nibbles offers an
intrinsic conflict with the s-box operation on element-pairs. So, while analysis
shows that related structure can be preserved a few rounds into cgen, it is
quickly overwhelmed.

Searching for Compact Algorithms: cgen 47

3.4 Algebraic Attacks

Algebraic attacks on the aes have been conjectured [9] but, with the techniques
at hand today, are generally viewed to be unlikely [6]. With a smaller state
space, there might be some concerns that algebraic attacks could become a
threat, particularly if we were to use the aes s-box or to use smaller 4-bit s-
boxes. However, we resist the temptation to use smaller s-boxes and Section 4
proposes that low-cost implementations of cgen avoid the aes s-box. This helps
to avoid inversion over GF(28) in the aes s-box that lies at the root of conjectured
algebraic attacks.

4 Performance Estimates

While an accurate assessment of the hardware requirements for cgen is required,
we make some crude estimates. To begin to understand the anticipated hardware
performance profile, we turn to estimates for the full aes given in [12]. This aes
implementation is dominated by the s-box and RAM requirements which are
claimed to be 395 and 2337 gate equivalents (GE) respectively.

It is not clear how close to optimal the s-box requirements for the AES im-
plementation in [12] are, but other s-boxes are likely to be more attractive.
For instance, the tweaked s-box for anubis is claimed to require 100–120 GE
for a hardware implementation [1]. While even more compact s-boxes may be
available, it is worth observing that the four-bit s-box used in mCrypton still
requires 107 GE [18]. So while the systematic development of ultra-compact s-
boxes would be an interesting line of research, s-boxes of a similar size to that
proposed for anubis might be a reasonable expectation.

An estimate for the RAM requirements of cgen can be made by observing
that we have half the state of the aes and we dispense with a key-schedule (the
key in the tag is fixed). Following [12] we assume that key material is stored in
EEPROM and will not figure in the RAM estimates. This suggests, therefore,
that we can estimate the RAM requirements for cgen to be around one quarter
of those required for the aes, namely 600 GE. The column mixing in the aes
implementation is achieved using a byte-oriented architecture that requires 252
GE [12]. It would be interesting to consider the trade-offs in retaining a byte-
oriented approach in cgen, which may give a faster processing time, or to use a
nibble-based architecture which may consume roughly half the gates.

Thus, provided we choose a suitable s-box, a crude estimate for the hard-
ware requirements of the s-box, RAM, column operations, and key mixing of
cgen might be around 110 + 600 + 126 + 90 = 926 GE. Allowing 10% to 20%
for the inherent over-simplifications in such estimates and for overheads in the
implementation, we might crudely estimate a hardware requirement of around
1100–1200 GE. With all operational characteristics remaining unchanged, the
reduction in the number of gates will lead to an improved power consumption
profile. Likewise, the number of operations required for cgen when compared to
the aes, suggest that cgen will have reduced on-tag clocking requirements than
implementations of the aes [12]. So while our focus has been on the hardware

48 M.J.B. Robshaw

footprint required by cgen, when compared to the aes improvements to the
peak and average power consumption as well as the processing time for cgen
can be expected.

5 Conclusions

In this paper we have introduced cgen; a lightweight prng. The main goal of the
paper is to promote ongoing research into lightweight symmetric cryptography
and to consider alternative design approaches to those offered by stream ciphers.
While cgen is built closely around the principles underlying the aes, it is not
intended to offer the security of the aes. Instead it is intended to offer sufficient
security for a restricted range of applications. This allows us to make a trade-off
and even though we use block cipher design techniques, cgen appears to be far
less resource-demanding than trusted block cipher alternatives.

A full independent security and performance analysis is strongly encouraged.
Since this paper provides no more than a basic analysis, it is possible that closer
evaluation will reveal security or implementation oversights. It would then be
interesting to consider what changes might be made to cgen to help achieve our
goal. Nevertheless, it seems that the goal of a simultaneously strong and com-
pact prng is attainable and such a proposal would be of interest to application
developers working within constrained environments such as rfid tags.

References

1. P.S.L.M. Barreto and V. Rijmen. The Anubis Block Cipher (tweaked version).
Available via paginas.terra.com.br/informatica/paulobarreto/.

2. C. Berbain, H. Gilbert, and J. Patarin. QUAD: A Practical Stream Cipher with
Provable Security. In S. Vaudenay, editor, Proceedings of Eurocrypt 2006, LNCS,
volume 4004, pages 109–128, Springer-Verlag, 2006.

3. E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer Verlag, 1993.

4. A. Biryukov, S. Mukhopadhyay, and P. Sarkar. Improved Time-memory Trade-offs
with Multiple Data. In B. Preneel and S. Tavares, editors, Proceedings of SAC
2005, LNCS, volume 3897, pages 110-127, Springer Verlag.

5. C. de Cannière and B. Preneel. Trivium Specifications. Available via
www.ecrypt.eu.org.

6. C. Cid and G. Leurent. An Analysis of the XSL Algorithm. In B. Roy, editor, Pro-
ceedings of Asiacrypt 2005, LNCS, volume 3788, pages 333–352, Springer-Verlag,
2005.

7. C. Cid, S. Murphy, and M.J.B. Robshaw. Small Scale Variants of the AES. In
H. Gilbert and H. Handschuh, editors, Proceedings of FSE 2005, LNCS, volume
3557, pages 145–162, Springer-Verlag, 2005.

8. S. Contini, A.K. Lenstra, and R. Steinfeld. VSH, an Efficient and Provable
Collision-Resistant Hash Function. In S. Vaudenay, editor, Proceedings of Euro-
crypt 2006, LNCS, volume 4004, pages 165–182, Springer-Verlag, 2006.

Searching for Compact Algorithms: cgen 49

9. N. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In Y. Zheng, editor, Proceedings of Asiacrypt 2002, LNCS,
volume 2501, pages 267–287, Springer-Verlag, 2002.

10. J. Daemen, L. Knudsen, and V. Rijmen. The Block Cipher Square. In E. Biham, ed-
itor, Proceedings of FSE ’97, LNCS, volume 1267, pages 149–165, Springer-Verlag,
1997.

11. ECRYPT Network of Excellence. The Stream Cipher Project: eSTREAM. Avail-
able via www.ecrypt.eu.org/stream.

12. M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong Authentication for RFID
Systems Using the AES algorithm. In M. Joye and J.-J. Quisquater, editors, Pro-
ceedings of CHES 2004, LNCS, volume 3156, pages 357–370, Springer Verlag, 2004.

13. H. Gilbert and M. Minier. A Collision Attack on Seven Rounds of Rijndael. In
NIST, editors, Proceedings of the 3rd Advanced Encryption Standard Conference,
pages 230–241, April, 2000. Available via csrc.nist.gov.

14. M. Girault. An Identity-based Identification Scheme Based on Discrete Logarithms
Modulo a Composite Number. In I. Damg̊ard, editor, Proceedings of Eurocrypt ’90,
LNCS, volume 473, pages 481–486, Springer-Verlag, 1990.

15. ISO/CEI 9798-5:2004. Information Technology - Security techniques - Entity au-
thentication - Part 5: Mechanisms using zero-knowledge techniques. ISO/IEC 2004.

16. M. Hell, T. Johansson and W. Meier. Grain - A Stream Cipher for Constrained
Environments. Available via www.ecrypt.eu.org.

17. J. Kelsey, B. Schneier, and N. Ferguson. Yarrow-160: Notes on the Design and Anal-
ysis of the Yarrow Cryptographic Pseudorandom Number Generator. In H. Heyes
and C. Adams, editors, Proceedings of SAC 1999, LNCS, volume 1758, pages 13–33,
Springer-Verlag, 1999.

18. C. Lim and T. Korkishko. mCrypton - A Lightweight Block Cipher for Security
of Low-cost RFID Tags and Sensors. In J. Song, T. Kwon, and M. Yung, editors,
Workshop on Information Security Applications - WISA’05, LNCS, volume 3786,
pages 243-258, Springer-Verlag, 2005.

19. M. Matsui. First Experimental Cryptanalysis of the Data Encryption Standard.
In Y. Desmedt, editor, Proceedings of Crypto ’94, LNCS, volume 839, pages 1–11,
Springer-Verlag, 1994.

20. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Stan-
dard, August 2002. Available via csrc.nist.gov.

21. National Institute of Standards and Technology. FIPS 197: Advanced Encryption
Standard, November 2001. Available via csrc.nist.gov.

22. G. Poupard and J. Stern. Secuity Analysis of a Practical “on the fly” Authenti-
cation and Signature Generation. In K. Nyberg, editor, Proceedings of Eurocrypt
’98, LNCS, volume 1403, pages 422–436, Springer-Verlag, 1998.

23. R.L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm, April 1992. Available
via www.ietf.org/rfc/rfc1321.txt.

24. F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater. SEA: A Scalable
Encryption Algorithm for Small Embedded Applications. In J. Domingo-Ferrer,
J. Posegga, and D. Schreckling, editors, Smart Card Research and Applications,
Proceedings of CARDIS 2006, LNCS, volume 3928, pages 222–236, Springer-Verlag.

25. D. Wheeler and R. Needham. TEA, a Tiny Encryption Algorithm. In B. Preneel,
editor, Proceedings of FSE 1994, LNCS, volume 1008, pages 363–366, Springer-
Verlag, 1994.

26. D. Wheeler and R. Needham. TEA extensions. October, 1997. (Also Correction to
XTEA. October, 1998.) Available via www.ftp.cl.cam.ac.uk/ftp/users/djw3/.

On Pairing-Based Cryptosystems

Tatsuaki Okamoto

NTT Laboratories, Nippon Telegraph and Telephone Corporation
1-1 Hikarino-oka, Yokosuka, 239-0847 Japan

okamoto.tatsuaki@lab.ntt.co.jp

Abstract. The pairing technique that uses the (Weil and Tate) pairings
over elliptic (or hyperelliptic) curves represents a great breakthrough
in cryptography. This paper surveys this new trend in cryptography,
and emphasizes the design of efficient cryptographic primitives that are
provably secure in the standard model (i.e., without the random oracle
model).

1 Introduction

Elliptic curves have been applied to practical cryptographic designs for two
decades. The advantage of elliptic curve based cryptosystems, ECC, over other
public-key cryptosystems is their short key size, high processing throughput, and
low bandwidth. For example, the typical key size of ECC that guarantees the
security comparable to that of 1024 bit key size with the RSA cryptosystems is
considered to be just 160 bits. Therefore, several of the most efficient public-key
encryption schemes and digital signatures are ECC such as EC-ElGamal (the
elliptic curve version of ElGamal) and EC-DSA.

The reason why ECC has such short key lengths is that the index calculus
technique is considered to be ineffective for computing the discrete logarithm
(DL) of the elliptic curve group over finite fields, while it can effectively compute
integer factoring and DL of the multiplicative group of a finite field.

However, the mathematical features that are specific to elliptic curve groups
compared with multiplicative groups are not only the inapplicability of the index
calculus. The most characteristic property of an elliptic curve group is its group
structure, which is isomorphic to the product of two cyclic groups.

The pairing on an elliptic curve to be introduced in this paper employs this
group structure, and is specific to elliptic curve groups (and the generalizations
such as hyperelliptic curve groups). In this sense, two decades after we started
applying elliptic curves to cryptography, we have finally reached the application
of the pairing to cryptographic design, the most essential and natural application
of elliptic curves to cryptography.

2 Elliptic Curve Cryptosystems

The application of elliptic curves to cryptography uses elliptic curves defined
over finite fields.

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 50–66, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Pairing-Based Cryptosystems 51

We now introduce some notations. E(Fq) is a set of Fq-rational points of
elliptic curve E over finite field Fq. That is, E(Fq) is a set of points satisfying
y2 = x3 + ax+ b (other equations are used for finite field Fq with characteristic
2 and 3) and the special point O called the infinity point.

A group operation is defined over E(Fq) and O is the identity. We now express
the group operation by +. The discrete logarithm (DL) problem of E(Fq) is to
compute x ∈ N, given (G, Y), where G is a base point of E(Fq) and Y = xG,
which is G + · · · + G (G is added x times). (After Section 6, we will use the
multiplicative form for the group operations in place of the conventional additive
form here.)

Elliptic curve cryptosystems (ECC) are constructed on the group of E(Fq).
The security of ECC depends on the difficulty of computing the DL problem of
E(Fq). An ECC scheme can be designed in a manner similar to that of a scheme
based on the multiplicative DL problem. For example, EC-DH, EC-ElGamal
and EC-DSA are constructed over E(Fq) in a manner analogous to that of DH,
ElGamal and DSA.

Cryptosystems based on pairing (of elliptic curves) are a class of elliptic curve
cryptosystems, but have very different features than the conventional ECC.

3 Pairings

The Weil pairing is defined over elliptic curves as follows: Let E/Fq be an elliptic
curve defined over Fq and m be an integer coprime to q. Let E[m] be the set of
m torsion points of E/Fq (i.e., E[m] = {P | P ∈ Fq ∧ mP = O}). E[m] is
isomorphic to Z/mZ × Z/mZ. The Weil pairing, em(P,Q) ∈ F

∗
q , is defined for

two points, P and Q, in E[m], and has the following properties:

(1) For any P,Q ∈ E[m], (em(P,Q))m = 1.
(2) For all P ∈ E[m], em(P, P) = 1.
(3) Bilinear: for any P,Q, P1, P2, Q1, Q2 ∈ E[m],

em(P1 + P2, Q) = em(P1, Q)em(P2, Q),

em(P,Q1 +Q2) = em(P,Q1)em(P,Q2).

(4) Alternating: for any P,Q ∈ E[m], em(P,Q) = em(Q,P)−1.
(5) Non-degenerate: if em(P,Q) = 1 for any P ∈ E[m], then Q = O.

That is, em(P,Q) bilinearly maps two points, P and Q, in E[m] to an m-th
root of unity in F

∗
q .

Note that there exists an extension field, Fqk , such that E(Fqk) includes E[m].
Then em(P,Q) is an m-th root of unity in F∗

qk .
The Weil pairing can be efficiently calculated by Miller’s algorithm. The Tate

pairing also has similar properties, and is often employed in cryptographic ap-
plications, since it is faster to compute a Tate pairing than a Weil pairing in
typical implementations.

52 T. Okamoto

Historically, pairing was first used to attack elliptic curve cryptosystems on
supersingular curves in the early 1990’s [34] (the attack is often called the MOV
reduction). However, in the recent application of pairings to cryptography, they
are used not for a negative purposes (i.e., attacking cryptographic schemes) but
for positive purposes (i.e., designing cryptographic schemes).

4 Curves Suitable for Pairings

When we apply the Weil/Tate pairing to a general elliptic curve, we have to use
an extension field Fqk with huge extension degree k (in general k is exponentially
large in |q|) [2]. One of the most suitable curves for the application of Weil/Tate
pairing to cryptography is supersingular curves, since the extension degree is at
most 6 for supersingular curves.

In some applications, however, a generic curve (not a supersingular curve)
may be more suitable, since a generic curve offers more freedom in selecting
the extension degree and characteristics of the underlying finite field. It is not
however so easy to find a generic curve suitable for pairings. Some methods have
been proposed to efficiently select a generic curve that has a low extension degree
applicable to pairings (e.g., MNT curves) [33,36].

The security of a group with pairing over an elliptic curve should be investi-
gated from the following two viewpoints:

1. The intractability of the discrete logarithm over the elliptic curve (ECDL)
with the ground finite field, Fq (i.e., ECDL over E(Fq)).

2. The intractability of the discrete logarithm over the multiplicative group
(DL) of the extension finite field, Fqk (i.e., DL over F∗

qk).

To guarantee a certain level of security, these two conditions of security should
clear the level simultaneously. If we use a supersingular elliptic curve with exten-
sion degree k = 6, the characteristic is restricted to be only 3. We should then
consider the security of ECDL over E(F3n) and DL over F∗

36n . Note that the best
algorithm for solving the DL of F∗

36n is the function field sieve method whose run-
ning time is comparable to that of the special number field sieve method and is
faster than that of the general number field sieve method. So, when n > 100, the
security condition of DL over F∗

36n dominates over that of ECDL over E(F3n).
Roughly speaking, almost all generic curves are suitable for (conventional)

ECC (under some conditions), but are not suitable for pairing-based cryptogra-
phy. Only a limited class of curves such as supersingular and MNT curves are
suitable for pairing-based cryptography, but are not suitable for ECC.

5 Symmetric Pairings

There is another merit of supersingular curves when employing pairings for
cryptography. That is, a supersingular curve has (efficiently computable) iso-
morphism, φ, called the distortion map.

On Pairing-Based Cryptosystems 53

Let E be a supersingular curve over Fq and the order of point G1 ∈ E(Fq)
be m. Then, there exists an extension degree k(≤ 6) and G2 ∈ E(Fqk) such
that E[m] ∼= 〈G1〉 × 〈G2〉, and φ is the isomorphism from 〈G1〉 to 〈G2〉, where
G2 = φ(G1). We can then define a variant of the Weil pairing êm over two points,
P and Q, in E(Fq) as follows:

êm(P,Q) = em(P, φ(Q)) ∈ F∗
qk .

Here note that êm(P, P) �= 1 and êm(P,Q) = êm(Q,P), while em(P, P) = 1 and
em(P,Q) = em(Q,P)−1. So, this variant of Weil pairing êm is called a symmetric
pairing, while the original Weil pairing em is called an asymmetric pairing.

The advantage of this Weil pairing variant êm : 〈G1〉 × 〈G1〉 → F∗
qk is that it

is defined over two points in E(Fq) (two elements in 〈G1〉), while em is defined
over a point in E(Fq) and another point in E(Fqk). (For example, if the size
of an element of Fq is 300 bits and extension degree k is 6, then the size of an
element of Fqk and the size of êm(P,Q) and em(P,Q′) are 1800 bits.)

6 Pairing-Based Cryptography

6.1 Pairing Group

Hereafter, we will use only symmetric pairings (not asymmetric pairings) as
pairings, but almost all schemes that we will introduce in this paper can be also
realized with asymmetric pairings.

For simplicity of description, we express the symmetric pairing êm : 〈G1〉 ×
〈G1〉 → F∗

qk by bilinear map e from a multiplicative group, G, to another mul-
tiplicative group, GT , i.e., e : G×G → GT such that:

1. G is a cyclic group of prime order p,
2. g is a generator of G,
3. e is a non-degenerate bilinear map e : G× G → GT , where |G| = |GT | = p,

and
4. e and the group action in G and GT can be computed efficiently.

6.2 Brief Overview of Pairing-Based Cryptography

Around 2000, application of the pairings to cryptography was initiated by
Verheul [41], Joux [31], and Sakai, Ohgishi and Kasahara [39]. Verheul intro-
duced the above-mentioned symmetric pairings, and Joux proposed a key dis-
tribution system among three parties (three party version of the Diffie-Hellman
key distribution) by using the symmetric pairings. Sakai, Ohgishi and Kasahara
solved the problem on how to efficiently construct the identity-based encryption
(IBE) that had been open since 1984 when Shamir proposed the concept of IBE.

Following these pioneer works, Boneh and others drastically exploited the pos-
sibility of applying pairings to cryptography. Boneh and Franklin [12] formalized
the security of IBE as the IND-ID-CCA2 (indistinguishable against adaptively

54 T. Okamoto

chosen-ciphertext attacks under chosen identity attacks) security and proposed
an IND-ID-CCA2 secure IBE scheme in the random oracle model [5]. Boneh,
Lynn and Shacham [14] proposed a new signature scheme whose signatures are
short. The security proof is also based on the random oracle model.

Then, an enormous number of papers on pairing-based cryptography have
been published for the last several years, and they cover very broad areas of
cryptography [3].

One of the most interesting applications of pairings to cryptography is to
construct practical encryption/signature schemes that are proven to be secure
in the standard model (without the random oracle model). Previously only a
few such schemes (e.g., Cramer-Shoup schemes [23,24,25]) were proposed.

Interestingly IBE plays a key role of constructing practical secure schemes
in the standard model. That is, a secure IBE scheme in the standard model
can be used to construct secure public-key encryption/signature schemes in the
standard model. (In addition, hierarchical IBE (HIBE) [29] is used to construct
forward-secure public-key encryption schemes and CCA2 secure IBE schemes
[21,22].)

Hereafter we will introduce how pairings are applied to constructing secure
IBE/encryption/signature schemes in the standard model.

7 Computational Assumptions

Let G be a bilinear group of prime order p and g be a generator of G. Here
we review several computational assumptions on the bilinear maps, which are
assumed in the pairing-based cryptographic schemes to be introduced in this
paper.

7.1 Bilinear Diffie-Hellman Assumption

The Bilinear Diffie-Hellman (BDH) problem [12,31] in G is as follows: given a
tuple g, ga, gb, gc ∈ G as input, output e(g, g)abc ∈ GT . The advantage of
adversary A for the BDH problem is

Pr[A(g, ga, gb, gc) = e(g, g)abc].

Similarly, the advantage of adversary B for the Decisional BDH (DBDH)
problem is

|Pr[B(g, ga, gb, gc, e(g, g)abc) = 0]− Pr[B(g, ga, gb, gc, T) = 0]|,

where T is randomly selected from GT .

Definition 1. We say that the (Decisional) BDH assumption holds in G if any
probabilistic polynomial time adversary has negligible advantage for the (Deci-
sional) BDH problem.

On Pairing-Based Cryptosystems 55

7.2 Bilinear Diffie-Hellman Inversion Assumption

The q Bilinear Diffie-Hellman Inversion (q-BDHI) problem [8] is defined as fol-
lows: given the (q + 1)-tuple (g, gx, gx2

, . . . , gxq

) ∈ (G)q+1 as input, compute
e(g, g)1/x ∈ GT . The advantage of an adversary A for q-BDHI is

Pr[A(g, gx, gx2
, . . . , gxq

) = e(g, g)1/x].

Similarly, the advantage of adversary B for the Decisional q-BDHI (q-DBDHI)
problem is

|Pr[B(g, gx, gx2
, . . . , gxq

, e(g, g)1/x) = 0]− Pr[B(g, gx, gx2
, . . . , gxq

, T) = 0]|,

where T is randomly selected from GT .

Definition 2. We say that the (Decisional) q-BDHI assumption holds in G if
any probabilistic polynomial time adversary has negligible advantage for the (De-
cisional) q-BDHI problem.

It is not known if the q-BDHI assumption, for q > 1, is equivalent to BDH.
In this paper, we often drop the q and refer to the (Decisional) BDHI

assumption.

7.3 Strong Diffie-Hellman Assumption

The q Strong Diffie-Hellman (q-SDH) problem [9] is defined as follows: given
the (q + 1)-tuple (g, gx, gx2

, . . . , gxq

) ∈ (G)q+1 as input, compute (g1/(x+c), c) ∈
G× N. The advantage of an adversary A for q-SDH is

Pr[A(g, gx, gx2
, . . . , gxq

) = (g1/(x+c), c)].

Definition 3. We say that the q-SDH assumption holds in G if any probabilistic
polynomial time adversary has negligible advantage for the q-SDH problem.

In this paper, similarly to the BDHI assumption, we often drop the q and refer
to the SDH assumption.

Remark: Cheon shows some weakness of the q-SDH problem [18], and the
security parameter of the problem should be a bit longer to avoid Cheon’s attack.

8 Identity-Based Encryption (IBE)

Identity-based encryption (IBE) [40] is a variant of public-key encryption (PKE),
where the identity of a user is employed in place of the user’s public-key. In this
concept,

Setup: A trusted party (authority) generates a pair of secret-key x (master
secret key) and public-key y (system parameter).

Extract: The trusted party also generates A’s secret decryption key, sA, from
the identity of A and securely sends sA to A.

56 T. Okamoto

Encrypt: When B encrypts a message m to A, B utilizes A’s identity, IDA (in
place of A’s public-key in PKE). Let cA be a ciphertext of m encrypted by
IDA.

Decrypt: A can decrypt ciphertext cA by using A’s decryption key sA.

Although IBE itself is a very useful primitive in cryptography, here we will
review IBE as a building block of designing practical secure PKE/signature
schemes in the standard model.

8.1 Security of IBE

Boneh and Franklin [12] define the security, IND-ID-CCA2 (indistinguishable
against adaptively chosen-ciphertext attacks under chosen identity attacks), for
IBE systems. We now informally introduce the definition as follows:

Definition 4. (Security of IBE: IND-ID-CCA2) Let us consider the following
experiment between an adversary, A, and the challenger, C.
1. First, C generates a system parameter of IBE and sends it to A.
2. A is allowed to ask two types of queries, extraction queries and decryption

queries, to C. Here, an extraction query is an identity, IDi, to which C replies
the corresponding decryption key, di, and a decryption query is a ciphertext,
cj, along with an identity, IDj, to which C replies with the corresponding
plaintext, mj.

3. A is also allowed to adaptively choose an identity, ID∗, and two messages,
m0 and m1, that C wishes to attack, then C replies with a ciphertext, c∗, of
mb (b is randomly chosen from {0, 1}) with respect to identity ID∗.

4. Finally A outputs a bit, b∗. Let Advantage be |2 Pr[b = b∗]− 1|.
An IBE scheme is IND-ID-CCA2 if, for any probabilistic polynomial-time A,

Advantage is negligibly small.

In the above-mentioned definition of IND-ID-CCA2, A is allowed to adaptively
choose the challenge identity, ID∗, that it wishes to attack.

Canetti, Halevi, and Katz [21,22] define a weaker notion of security in which
the adversary A commits ahead of time to the challenge identity ID∗ it will
attack. We refer to this notion as selective identity adaptively chosen-ciphertext
secure IBE (IND-sID-CCA2). In addition, they also define a weaker security
notion of IBE, selective-identity chosen-plaintext secure IBE (IND-sID-CPA).

8.2 Boneh-Franklin IBE Scheme

The Boneh-Franklin IBE scheme [12] is proven to be secure in the random oracle
model (not in the standard model). We now introduce this scheme as a typical
example of pairing-based secure cryptosystems in the random oracle model (and
as a bench mark to evaluate the efficiency of secure IBE schemes in the standard
model).

Setup: Given (G,GT , p, k (k = |p|), a trusted party randomly selects a genera-
tor g in G as well as four hash functions, H1, . . . , H4. The trusted party also

On Pairing-Based Cryptosystems 57

randomly selects x ∈ (Z/pZ)∗, and computes y = gx. The system parameter
is (g, y,H1, . . . , H4) and the (secret) master key is x.

Extract: Given IDA of user A, IDA is mapped (through H1) to an element of
G, hA, and A’s secret key, sA = hx

A is computed.
Encrypt: To encrypt a message m ∈ {0, 1}k under IDA, randomly select σ ∈

{0, 1}k, and compute

C = (gr, σ ⊕H2(e(hA, y)r),m⊕H4(σ)),

where r = H3(σ,m).
Decrypt: Let C = (C1, C2, C3) be a ciphertext encrypted using IDA. To decrypt

C, compute

σ = C2 ⊕H2(e(sA, C1)), and m = C3 ⊕H4(σ).

Set r = H3(σ,m) and check whether C1 = gr holds. If not, rejects the
decryption. Otherwise, output m.

Security: The Boneh-Franklin IBE scheme is IND-ID-CCA2 in the random
oracle model (i.e., assuming H1, . . . , H4 are truly random functions) under the
BDH assumption.

Remark: The Sakai-Kasahara IBE scheme [38], whose security is proven in
the random oracle model [17], is more practical than the Boneh-Franklin IBE
scheme, since mapping of a bit string to an element of G is not necessary in the
Sakai-Kasahara IBE scheme.

8.3 Boneh-Boyen IBE Scheme

There are three Boneh-Boyen IBE schemes that are secure in the standard model
(two are in [8] and one is in [10]).

One of the two schemes in [8] is IND-sID-CPA secure, and the other is
IND-sID-CCA2 secure. The IND-sID-CCA2 secure scheme [8] is constructed
by converting from the IND-sID-CPA secure basic scheme through the conver-
sion technique of [22]. The scheme in [10] is fully secure (IND-ID-CCA2 secure)
(through the conversion technique of [22]).

The IND-sID-CPA secure scheme in [8] is much more efficient than the others.
Since an IND-sID-CPA secure IBE scheme is sufficient as a building block to
construct an IND-CCA2 PKE (Section 9.1), we now introduce the IND-sID-
CPA secure IBE scheme in [8] as follows (another reason why we introduce this
scheme is that it is closely related to the Boneh-Boyen signature scheme [9] in
Section 10.1):

Setup: Given (G,GT , p, k) (k = |p|), a trusted party randomly selects a gen-
erator g in G and x, y ∈ (Z/pZ)∗, and computes X = gx and Y = gy. The
system parameter is (g,X, Y) and the (secret) master key is (x, y).

Extract: Given v ∈ (Z/pZ)∗ as IDA of user A, pick a random r ∈ Z/pZ,
compute K = g1/(v+x+ry) ∈ G, and set A’s secret key dA = (r,K).

58 T. Okamoto

Encrypt: To encrypt a message m ∈ GT under IDA (i.e., v), pick a random
s ∈ Z/pZ and output the ciphertext

C = (gsvXs, Y s, e(g, g)sm).

Decrypt: Let C = (C1, C2, C3) be a ciphertext encrypted using IDA. To decrypt
C using dA = (r,K), compute

C3

e(C1Cr
2 ,K)

,

which is m when C is valid.

For a valid ciphertext we have

C3

e(C1Cr
2 ,K)

=
C3

e(gsvXsY sr , g1/(v+x+ry))

=
C3

e(gs(v+x+ry), g1/(v+x+ry))
=

C3

e(g, g)s
= m.

Security: The above-mentioned Boneh-Boyen IBE scheme is IND-sID-CPA
(selective-identity chosen-plaintext secure) under the Decisional BDHI (DBDHI)
assumption.

8.4 Waters IBE Scheme

The Waters IBE scheme [42] is an efficient IND-ID-CCA2 secure IBE in the
standard model. Similarly to the Boneh-Boyen IBE scheme [10], the Waters IBE
scheme is converted from the IND-ID-CPA secure basic scheme (the Waters
basic IBE scheme) through the conversion technique of [22].

Efficient secure (IND-CCA2) PKE and secure (EUF-CMA) signatures in the
standard model are constructed from the Waters basic IBE scheme (Sections 9.2
and 10.2). The Waters basic IBE scheme is as follows:

Setup: Given (G,GT , p, k) (k = |p|), a trusted party randomly selects genera-
tors, g and g2, in G and α ∈ Z/pZ, and computes g1 = gα. Additionally the
party randomly selects u′ ∈ G and k-length vector (u1, . . . , uk) ∈ Gk, The
public parameter is (g, g1, g2, u′, u1, . . . , uk). The master secret key is gα

2 .
Extract: Let v be an k bit string representing an identity IDA of user A, vi

denote the i-th bit of v, and V ⊆ {1, . . . , k} be the set of all i for which
vi = 1. A’s secret key, dA, for identity v is generated as follows. First, a
random r ∈ Z/pZ is chosen. Then the secret key is constructed as:

dA = (gα
2 (u′

∏
j∈V

uj)r, gr).

Encrypt: To encrypt a message m ∈ GT under IDA (i.e., v), pick a random
s ∈ (Z/pZ)∗ and output the ciphertext

C = ((u′
∏
j∈V

uj)s, gs, e(g1, g2)sm).

On Pairing-Based Cryptosystems 59

Decrypt: Let C = (C1, C2, C3) be a ciphertext encrypted using IDA (i.e., v).
To decrypt C using dA = (d1, d2), compute

C3
e(d2, C1)
e(d1, C2)

which is m when C is valid.

For a valid ciphertext we have

C3
e(d2, C1)
e(d1, C2)

= (e(g, g)sm)
e(gr, (u′

∏
j∈V uj)s)

e(gα
2 (u′

∏
j∈V uj)r, gs)

= (e(g, g)sm)
e(g, (u′

∏
j∈V uj))rs

e(g1, g2)se((u′
∏

j∈V uj), g)rs
= m.

Security: The Waters basic IBE scheme is IND-ID-CPA under the Decisional
BDH (DBDH) assumption.

Remark: Among IND-ID-CCA2 secure IBE schemes in the standard model,
the Gentry IBE scheme [28] and the Kiltz IBE scheme [32] are more efficient
than the Waters scheme.

9 Public-Key Encryption

The desirable security of a public-key encryption (PKE) scheme is formulated as
semantic security against adaptively chosen-ciphertext attacks (IND-CCA2) [4].
Although there are several ways to construct practical IND-CCA2 secure PKE
schemes in the random oracle model [5], only a few practical schemes such as
the Cramer-Shoup PKE scheme [23,25] were proven to be secure in the standard
model.

Pairings are exploiting a new methodology to design a practical IND-CCA2
secure PKE schemes in the standard model. The new methodology uses trans-
formation from an IBE scheme to a PKE scheme.

9.1 Canetti-Halevi-Katz Construction

Canetti, Halevi and Katz [22] have shown how to construct an IND-CCA2 secure
PKE scheme from any IND-sID-CPA secure IBE scheme. In the construction, a
one-time signature scheme is also employed. Since this construction is efficient,
we can construct an efficient IND-CCA2 secure PKE scheme in the standard
model using the Boneh-Boyen IBE scheme [8].

We now show the construction of a PKE scheme as follows:

Key Generation: Run the setup process of IBE to obtain a pair of system
parameter and master key. The public key, PK, is the system parameter
and the secret key, SK, is the master key.

60 T. Okamoto

Encrypt: To encrypt message m using public key PK (IBE’s system parame-
ter), the sender first generates a pair of verification key vk and signing key sk
of a one-time signature scheme. The sender then computes IBE’s ciphertext
C of message m with respect to identity vk, and signature σ of C by using
signing key sk. The ciphertext is (vk, C, σ).

Decrypt: To decrypt ciphertext (vk, C, σ) using secret key SK (IBE’s master
key), the receiver first checks whether σ is a valid signature of C with respect
verification key vk. If not, the receiver outputs ⊥. Otherwise, the receiver
computes IBE’s decryption key dvk for identity vk, and output m decrypted
from C by dvk.

Security: If the underlying IBE scheme is IND-sID-CPA and the one-time
signature scheme is strongly unforgeable (see [9] for the definition of strong
unforgeability) then the Canetti-Halevi-Katz construction of PKE is IND-CCA2.

If the underlying one-time signature scheme is efficient, the Canetti-Halevi-
Katz PKE scheme from the Boneh-Boyen IBE scheme [8] is relatively as effi-
cient as (but less efficient than) Cramer-Shoup. The major advantage of this
construction over Cramer-Shoup is that the validity of a ciphertext can be veri-
fied publicly, while a ciphertext should be verified secretly (i.e., the verification
requires the secret key) in Cramer-Shoup. This property is useful in constructing
a threshold PKE scheme like [11].

Boneh and Katz [13] improved the Canetti-Halevi-Katz construction by using
a message authentication code in place of a one-time signature. The Boneh-Katz
construction however is not publicly verifiable.

9.2 Boyen-Mei-Waters PKE Scheme

Boyen, Mei and Waters [15] presented a new way (inspired by [22]) of construct-
ing IND-CCA2 secure PKE schemes in the standard model. Their construction
is based on two efficient IBE schemes, the Boneh-Boyen and Waters basic IBE
schemes. Unlike the Canetti-Halevi-Katz and Boneh-Katz constructions that use
IBE as a black box, the Boyen-Mei-Waters construction directly uses the under-
lying IBE structure, and requires no cryptographic primitive other than the IBE
scheme itself. In addition, the validity of ciphertexts can be checked publicly.

We now introduce the Boyen-Mei-Waters PKE scheme based on the Waters
basic IBE scheme.

Key Generation: A user’s public/private key pair generation algorithm pro-
ceeds as follows. Given (G,GT , p, k) (k = |p|), randomly select a generator
g in G and α ∈ Z/pZ, and computes g1 = gα and z = e(g, g1) = e(g, g)α.
Next, choose a random y′ ∈ Z/pZ and a random k-length vector (y1, . . . , yn),
whose elements are chosen at random from Z/pZ. Then calculate u′ = gy′

and ui = gyi for i = 1 to k. Finally, a random seed δ for a collision resistant
hash function family H is chosen. The published public key is

(z = e(g, g1), u′ = gy′
, u1 = gy1 , . . . , uk = gyk , δ),

On Pairing-Based Cryptosystems 61

and the private key is

(g1 = gα, y′, y1, . . . , yk).

Encrypt: A message m ∈ GT is encrypted as follows. First, a value s ∈ Z/pZ
is randomly selected. Then compute C2 = gs and C3 = zsm = e(g, g1)sm =
e(g, g)αsm. Next, compute w = Hδ(C2, C3) and w1w2 . . . wk denote the bi-
nary expansion of w, where each bit wi ∈ {0, 1}. Let W ⊆ {1, . . . , k} be
the set of all i for which wi = 1. Finally compute C1 = (u′

∏k
i=1 u

wi

i)s. The
ciphertext is

C = (C1, C2, C3) = ((u′
∏

j∈W
uj)s, gs, e(g, g1)sm).

Decrypt: Given ciphertext C = (C1, C2, C3), first computew = Hδ(C2, C3), ex-
pressed in binary as w1w2 . . . wk. Next, compute w′ = y′+

∑k
i=1 yiwi mod p,

and check whether (C2)w′
= C1. If not, output ⊥. Otherwise, the ciphertext

is valid, and decrypt the message as

C3

e(C2, g1)
= m.

Although the Boyen-Mei-Waters PKE scheme is less efficient than the Cramer-
Shoup PKE scheme and the variants, the validity of a ciphertext is publicly
verifiable in the Boyen-Mei-Waters PKE scheme, while it is privately verifiable in
the Cramer-Shoup PKE scheme and the variants. Here, in the Boyen-Mei-Waters
PKE scheme, the check of (C2)w′

= C1 using private information w′ can be
replaced by the equivalent check with using the pairing and public information.
Due to the public verifiability, an efficient threshold PKE scheme in the standard
model can be constructed on this PKE scheme [11].

Security: Let H be a collision resistant hash function family. Then the Boyen-
Mei-Waters PKE scheme is IND-CCA2 under the Decisional BDH (DBDH)
assumption.

10 Digital Signatures

The current status on designing secure digital signatures in the standard model
is fairly similar to that on designing secure PKE schemes in the standard model.

The desirable security of a digital signature scheme is formulated as existen-
tial unforgeability against adaptively chosen-message attacks (EUF-CMA) [30].
Although there are several ways to construct practical EUF-CMA secure signa-
ture schemes in the random oracle models [6,7,14], only a few practical schemes
were proven to be secure in the standard model (the Cramer-Shoup signature
scheme etc. [19,24,27]).

Similarly to PKE, pairings are exploiting a new methodology to design prac-
tical EUF-CMA secure signature schemes in the standard model. There are two

62 T. Okamoto

ways in the new methodology; one is to directly design (and prove the security
of) a signature scheme from pairings (the Boneh-Boyen signature scheme etc.
[9,37,43]), and the other is to convert an IND-ID-CPA secure IBE scheme to a
signature scheme (e.g., the Waters signature scheme [42]).

The Boneh-Boyen signature scheme may be considered to be converted from
the Boneh-Boyen IBE scheme [8] in Section 8.3, but it is a bit different from
the case of the Waters signature scheme. Since the Waters basic IBE scheme is
IND-ID-CPA, the converted signature scheme is EUF-CMA under the same as-
sumption as that for the IBE scheme. On the other hand, since the Boneh-Boyen
IBE scheme is IND-sID-CPA, the converted signature scheme is not guaranteed
to be EUF-CMA under the same assumption. Actually, the assumption (SDH)
for the Boneh-Boyen signature scheme is different from that (DBDHI) for the
Boneh-Boyen IBE scheme.

10.1 Boneh-Boyen Signature Scheme

Boneh and Boyen presented a very practical signature scheme that is EUF-CMA
secure in the standard model. Signatures in their scheme are much shorter and
simpler than the previous secure signature schemes in the standard model.

The Boneh-Boyen signature scheme [9] is as follows:

Key Generation: Given (G,GT , p, k) (k = |p|), randomly select a generator g
in G and x, y ∈ (Z/pZ)∗, and computes u = gx and v = gy. The public key
is (g, u, v). The secret key is (x, y).

Sign: Given a secret key (x, y) and a message m ∈ (Z/pZ)∗, pick a random
r ∈ (Z/pZ)∗ and compute

σ = g1/(x+m+yr).

Here 1/(x+ m + yr) is computed modulo p. The signature is (σ, r).
Verify: Given a public key (g, u, v), a message m ∈ (Z/pZ)∗, and a signature

(σ, r), verify that
e(σ, ugmvr) = e(g, g).

If the equality holds the result is valid; otherwise the result is invalid.

Security: The Bone-Boyen signature scheme is EUF-CMA under the strong
DH (SDH) assumption.

10.2 Waters Signature Scheme

The Waters signature scheme is converted from the Waters basic IBE scheme.

Key Generation: Given (G,GT , p, k) (k = |p|), randomly select generators,
g and g2, in G and α ∈ Z/pZ, and compute g1 = gα. Randomly select u′ ∈ G

and k-length vector (u1, . . . , uk) ∈ Gk. The public key is (g, g1, g2, u′, u1, . . . ,
uk). The secret key is gα

2 .

On Pairing-Based Cryptosystems 63

Sign: Let m be an k-bit message to be signed and mi denotes the ith bit of
m, and M ⊆ {1, . . . , k} be the set of i for which mi = 1. A signature of m
is generated as follows. First, a random r is chosen. Then the signature is
constructed as:

σ = (gα
2 (u′

∏
j∈M

uj)r, gr).

Verify: Given a public-key (g, g1, g2, u′, u1, . . . , uk), a message m ∈ {0, 1}k, and
a signature σ = (σ1, σ2), check

e(σ1, g)
e(σ2, u′

∏
j∈M uj)

= e(g1, g2).

If it holds, the verification result is valid; otherwise the result is invalid.

Security: The Waters signature scheme is EUF-CMA under the Decisional
BDH (DBDH) assumption.

Remark: A signature scheme and its variant [37] are more suitable for many
cryptographic protocol applications such as blind signatures.

11 Concluding Remarks

This paper introduced how the pairing technique is used to design efficient
IBE/PKE/signatures that are provably secure in the standard model. The
methodology of using pairings will be applied to more wide areas of secure cryp-
tosystems and protocols. For example, it is applied to more protocol-oriented
primitives like group signatures [1,16], blind signatures [37], threshold PKE [11],
verifiable random functions [26] and broadcast encryption.

Acknowledgements

The author would like to thank Phong Nguyen, the Program Committee Chair
of VietCrypt, for inviting him to the conference and proceedings. He would also
like to thank Goichiro Hanaoka for his valuable comments on the preliminary
manuscript.

References

1. Ateniese, G., Camenisch, J., de Medeiros, B. and Hohenberger, S., Practical Group
Signatures without Random Oracles, IACR ePrint Archive, 2005/385,
http://eprint.iacr.org/2005/385 (2005)

2. Balasubramanian, R. and Koblitz, N., The Improbability that an Elliptic Curve
Has Subexponential Discrete Log Problem under the Menezes-Okamoto-Vanstone
Algorithm, J. Cryptology, 11, pp.141-145 (1998).

64 T. Okamoto

3. Barreto, P., The Pairing-Based Crypto Lounge,
http://paginas.terra.com.br/informatica/paulobarreto/pblounge.html.

4. Bellare, M., Desai, A., Pointcheval, D. and Rogaway, P., Relations Among Notions
of Security for Public-Key Encryption Schemes, Adv. in Cryptology – Crypto 1998,
LNCS 1462, Springer-Verlag, pp. 26-45 (1998).

5. Bellare, M. and Rogaway, P., Random Oracles are Practical: a Paradigm for De-
signing Efficient Protocols, Proceedings of the 1st ACM Conference on Computer
and Communications Security, CCS 1993, ACM, pp. 62–73 (1993).

6. Bellare, M. and Rogaway, P., The Exact Security of Digital Signatures: How to
Sign with RSA and Rabin, Adv. in Cryptology – Eurocrypt 1996, LNCS 1070,
Springer-Verlag, pp. 399-416 (1996).

7. Boldyreva, A., Threshold Signature, Multisignature and Blind Signature Schemes
Based on the Gap-Diffie-Hellman-Group Signature Scheme, Proceedings of PKC
2003, LNCS 2567, Springer-Verlag, pp.31-46 (2003).

8. Boneh, D. and Boyen, X., Efficient Selective-ID Secure Identity Based Encryption
Without Random Oracles, Adv. in Cryptology – Eurocrypt 2004, LNCS 3027,
Springer-Verlag, pp. 223-238 (2004).

9. Boneh, D. and Boyen, X., Short Signatures Without Random Oracles, Adv. in
Cryptology – Eurocrypt 2004, LNCS 3027, Springer-Verlag, pp. 56–73 (2004).

10. Boneh, D. and Boyen, X., Secure Identity Based Encryption Without Random
Oracles, Adv. In Cryptology – Crypto 2004, LNCS 3152, Springer-Verlag, pp. 443–
459 (2004).

11. Boneh, D., Boyen, X. and Halevi, S., Chosen Ciphertext Secure Public Key Thresh-
old Encryption Without Random Oracles, to appear in Proceedings of CT-RSA
2006, Springer-Verlag (2006).
Available at http://crypto.stanford.edu/ dabo/abstracts/threshold.html.

12. Boneh, D. and Franklin, M., Identity-Based Encryption from the Weil Pairing, Adv.
in Cryptology – Crypto 2001, LNCS 2139, Springer-Verlag, pp.213–229 (2001).
Journal version in SIAM Journal of Computing, 32(3), pp. 586–615 (2003).

13. Boneh, D. and Katz, J., Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity Based Encryption, Proceedings of CT-RSA 2005, LNCS 3376,
Springer-Verlag, pp.87-103 (2005).

14. Boneh, D., Lynn, B. and Shacham, H., Short Signatures from the Weil Pairing,
Adv. in Cryptology – Asiacrypt 2001, LNCS 2248, Springer-Verlag, pp.514–532
(2001).

15. Boyen, X., Mei, Q. and Waters, B., Direct Chosen Ciphertext Security from
Identity-Based Techniques, Proceedings of the 12th ACM Conference on Com-
puter and Communications Security, CCS 2005, ACM (2005).
Full version available at http://www.cs.stanford.edu/ xb/ccs05/.

16. Boyen, X. and Waters, B., Compact Group Signatures Without Random Oracles,
IACR ePrint Archive, 2005/381, http://eprint.iacr.org/2005/381 (2005)

17. Chen, L. and Cheng, Z., Security Proof of Sakai-Kasahara’s Identity-Based Encryp-
tion Scheme, IMA International Conference 2005, LNCS 3796, Springer-Verlag,
pp.442–459 (2005).

18. Cheon, J. H., Security Analysis of the Strong Diffie-Hellman Problem, Adv. in
Cryptology – EUROCRYPT 2006, LNCS 4004, Springer-Verlag, pp.1–11 (2006).

19. Camenisch, J. and Lysyanskaya, A., A Signature Scheme with Efficient Protocols,
Security in communication networks, LNCS 2576, Springer-Verlag, pp. 268-289
(2002).

On Pairing-Based Cryptosystems 65

20. Camenisch, J. and Lysyanskaya,A., Signature Schemes and Anonymous Credentials
from Bilinear Maps, Adv. In Cryptology – Crypto 2004, LNCS 3152, Springer-
Verlag, pp.56–72 (2004)

21. Canetti, R., Halevi, S. and Katz, J., A Forward-Secure Public-Key Encryption
Scheme, Adv. in Cryptology – Eurocrypt 2003, LNCS, Springer-Verlag, pp.255-
271 (2003).
Full version available at http://eprint.iacr.org/2003/083.

22. Canetti, R., Halevi, S. and Katz, J., Chosen-Ciphertext Security from Identity-
Based Encryption, Adv. in Cryptology – Eurocrypt 2004, LNCS 3027, Springer-
Verlag, pp. 207-222 (2004).
Full version available at http://eprint.iacr.org/2003/182.

23. Cramer, R. and Shoup, V., A Practical Public Key Cryptosystem Provably Secure
Against Chosen Ciphertext Attack, Adv. in Cryptology – Crypto 1998, LNCS 1462,
Springer-Verlag, pp. 13-25 (1998).

24. Cramer, R. and Shoup, V., Signature Schemes Based on the Strong RSA Assump-
tion, ACM TISSEC, 3(3), pp.161–185 (2000). Extended abstract in Proc. 6th ACM
CCS (1999).

25. Cramer, R. and Shoup, V., Universal Hash Proofs and a Paradigm for Adaptive
Chosen Ciphertext Secure Public-Key Encryption, Adv. in Cryptology – Eurocrypt
2002, LNCS 2332, Springer-Verlag, pp. 45-64 (2002).

26. Dodis, Y. and Yampolskiy, A., A Verifiable Random Function with Short Proofs
and Keys, Proceedings of PKC 2005, LNCS 3386, Springer-Verlag, pp.416–431
(2005).

27. Fischlin, M., The Cramer-Shoup Strong-RSA Signature Scheme Revisited, Pro-
ceedings of PKC 2003, LNCS 2567, Springer-Verlag, pp.116–129 (2003).

28. Gentry, C., Practical Identity-Based Encryption Without Random Oracles, Adv.
in Cryptology – Eurocrypt 2006, LNCS 4004, Springer-Verlag, pp. 445-464 (2006).

29. Gentry, C. and Silverberg, A., Hierarchical Identity-Based Cryptography, Adv. in
Cryptology – Asiacrypt 2002, LNCS 2501, Springer-Verlag, pp. 548-566 (2002).

30. Goldwasser, S., Micali, S. and Rivest, R., A Digital Signature Scheme Secure
against Adaptive Chosen-Message Attacks, SIAM J. Computing 17(2): 281-308
(1988).

31. Joux, A., A One Round Protocol for Tripartite Diffie-Hellman, Proceedings of
Algorithmic Number Theory Symposium IV, LNCS 1838, Springer-Verlag, pp.385–
394 (2000).
Journal version in Journal of Cryptology, 17(4), pp.263–276 (2004).

32. Kiltz, E., Direct Chosen-Ciphertext Secure Identity-Based Encryption in the
Standard Model with Short Ciphertexts, IACR ePrint Archive, 2006/122,
http://eprint.iacr.org/2006/122 (2006)

33. Koblitz, N. and Menezes, A., Pairing-Based Cryptography at High Security Levels,
IACR ePrint Archive, 2005/076, http://eprint.iacr.org/2005/076 (2005)

34. Menezes, A., Okamoto, T., and Vanstone, S., Reducing Elliptic Curve Logarithms
to Logarithms in a Finite Field, IEEE Transactions on Information Theory 39, pp.
1639–1646 (1993).

35. Miller, V., The Weil Pairing, and its Efficient Calculation, Journal of Cryptology,
17(4) (2004).

36. Miyaji, A., Nakabayashi, M. and Takano, S., New Explicit Conditions of Elliptic
Curve Traces for FR-reduction, IEICE Trans. Fundamentals, E84-A(5) (2001).

37. Okamoto,T., Efficient Blind and Partially Blind Signatures Witout Random Ora-
cles, to appear in Proceedings of TCC 2006, LNCS, Springer-Verlag (2006).

66 T. Okamoto

38. Sakai, R. and Kasahara, M., ID Based Cryptosystems with Pairing on Elliptic
Curve, IACR ePrint Archive, 2003/054, http://eprint.iacr.org/2003/054 (2003)

39. Sakai, R., Ohgishi, K. and Kasahara, M., Cryptosystems Based on Pairings, In
Symposium on Cryptography and Information Security, SCIS 2000, Japan (2000).

40. Shamir, A., Identity-Based Cryptosystems and Signature Schemes, Adv. in Cryp-
tology – Crypto 1984, LNCS 196, Springer-Verlag, pp. 47-53 (1984).

41. Verheul, E., Self-blindable Credential Certificates from the Weil Pairing, Adv. in
Cryptology – Asiacrypt 2001, LNCS 2248, pp. 533–551, Springer-Verlag (2002).

42. Waters, B., Efficient Identity-Based Encryption Without Random Oracles, Adv.
in Cryptology – Eurocrypt 2005, LNCS 3494, pp. 114-127, Springer-Verlag (2005).
Available at http: //eprint.iacr.org/2004/180

43. Zhang, F., Chen, X., Susilo, W. and Mu, Y., A New Short Signature Scheme
Without Random Oracles from Bilinear Pairings, IACR ePrint Archive, 2005/386,
http://eprint.iacr.org/2005/386 (2005)

A New Signature Scheme Without Random
Oracles from Bilinear Pairings

Fangguo Zhang1,3, Xiaofeng Chen2,3, Willy Susilo4, and Yi Mu4

1 Department of Electronics and Communication Engineering,
Sun Yat-Sen University, Guangzhou 510275, P.R. China

isszhfg@mail.sysu.edu.cn
2 Department of Computer Science,

Sun Yat-Sen University, Guangzhou 510275, P.R. China
isschxf@mail.sysu.edu.cn

3 Guangdong Key Laboratory of Information Security Technology
Guangzhou 510275, P.R. China

4 School of IT and Computer Science
University of Wollongong, Wollongong, NSW 2522, Australia

{wsusilo,ymu}@uow.edu.au

Abstract. In this paper, we propose a new signature scheme that is
existentially unforgeable under a chosen message attack without random
oracle. The security of the proposed scheme depends on a new complex-
ity assumption called the k+1 square roots assumption. Moreover, the
k+1 square roots assumption can be used to construct shorter signatures
under the random oracle model.

Keywords: Short signature, Bilinear pairings, Standard model, Random
oracle.

1 Introduction

Digital signatures are important and fundamental cryptographic primitives, they
not only provide basic signing functionality but also are building blocks in cryp-
tographic protocol design.

Short digital signatures are always desirable. They are necessary in some sit-
uation where people need to enter the signature manually, such as using a PDA
that is not equipped with a keyboard. Additionally, short digital signatures are
essential to ensure the authenticity of messages in low-bandwidth communication
channels. In general, short digital signatures are used to reduce the communi-
cation complexity of any transmission. As noted in [24], when one needs to sign
a postcard, it is desirable to minimize the total length of the original message
and the appended signature. In the early days, research in this area has been
mainly focusing on how to minimize the total length of the message and the
appended signature [25,1] and how to shorten the DSA signature scheme while
preserving the same level of security [24]. From Hidden Field Equation (HFE)

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 67–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

68 F. Zhang et al.

problem and Syndrome Decoding problem, a number of short signature schemes,
such as Quartz [26,14], McEliece-based signature [15], have been proposed.

Boneh, Lynn and Shacham [9] used a totally new approach to design short
digital signatures. The resulting signature scheme, referred to as the BLS signa-
ture scheme, is based on the Computational Diffie-Hellman (CDH) assumption
on elliptic curves with low embedding degree. In BLS signature scheme, with a
signature length � = 160 bits (which is approximately half the size of DSS signa-
tures with the same security level), it provides a security level of approximately
O(280) in the random oracle model. In [28,5], a more efficient approach to pro-
duce a signature of the same length as BLS scheme was proposed. Nonetheless,
its security is based on a stronger assumption.

Provable security is the basic requirement for signature schemes. Currently,
most of the practical secure signature schemes were proven in the random oracle
model [3]. Security in the random oracle model does not imply security in the
real world. The first provably secure signature scheme in the standard model
was proposed by Goldwasser et al. [21] in 1984. However, in this scheme, a sig-
nature is produced by signing the message bit-by-bit and hence, it is regarded
as impractical for some applications. Independently, Gennaro, Halevi and Ra-
bin [20] and Cramer and Shoup [16] proposed secure signature schemes under
the so-called Strong RSA assumption in the standard model and the efficiency
of which is suitable for practical use. Later, Camenisch and Lysyanskaya [11]
and Fischlin [18] constructed two provably secure signature schemes under the
strong RSA assumption in the standard model. In 2004, Boneh and Boyen [5]
proposed a short signature scheme (BB04) from bilinear groups which is existen-
tially unforgeable under a chosen message attack without using random oracles.
The security of the scheme depends on a new complexity assumption, called the
Strong Diffie-Hellman assumption. We note that Cheon [13] recently showed that
SDH and related problems are slightly easier than discrete logarithm problem.
However, his analysis is generic and does not violate the generic lower bounds
on the hardness of SDH given in [5]. Nevertheless, it is worthwhile to design
provably secure signature schemes using different hard problems.

In this paper, we construct a new, efficient and provably secure short signature
scheme in the standard model from bilinear pairings. The signature size of the
proposed scheme is the same as in the BB04 scheme. We note that our scheme is
the second short signature scheme without random oracles. The security of our
scheme depends on a new complexity assumption called the k+1 square roots
assumption. In the random oracle model, we present a signature scheme that
produces even shorter signature length. It produces a signature whose length is
approximately 160 bits.

The rest of the paper is organized as follows. The next section contains some
preliminaries required throughout the paper. We briefly review the bilinear pair-
ings and secure signature schemes, and propose the k+1 square roots problem
and k+1 square roots assumption. In Section 3, we propose our new short sig-
nature scheme and its security analysis without random oracles. In Section 4
we show that by employing random oracles, the k+1 square roots assumption

A New Signature Scheme Without Random Oracles from Bilinear Pairings 69

can be used to build even shorter signatures. In this section, we also provide a
security proof under the random oracle model. Section 5 concludes this paper.

2 Preliminaries

2.1 Bilinear Pairings

In recent years, the bilinear pairings have been found to be very useful in various
applications in cryptography and have allowed us to construct new cryptographic
primitives. We briefly review the bilinear pairings using the same notation as
in [7,9]:

Let G be (mutiplicative) cyclic groups of prime order q. Let g be a generator
of G.

Definition 1. A map e : G×G → GT (here GT is another mutiplicative cyclic
group such that |G| = |GT | = q) is called a bilinear pairing if it satisfies the
following properties:

1. Bilinearity: For all u, v ∈ G and a, b ∈ Zq, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1. In other words, if g is a generator of G, then
e(g, g) generates GT .

3. Computability: There is an efficient algorithm to compute e(u, v) for all
u, v ∈ G.

We say that G is a bilinear group if there exists a group GT , and a bilinear
pairing e : G × G → GT as above. Such groups can be found on supersingular
elliptic curves or hyperelliptic curves over finite fields, and the bilinear parings
can be derived from the Weil or Tate pairing.

2.2 The k + 1 Square Roots Assumption

In this subsection, we first introduce a new hard problem on which the new
signature scheme in this paper is based.

Definition 2 (k+ 1-SRP). The k+ 1 Square Roots Problem in (G,GT) is
as follows: For an integer k, and x ∈R Zq, g ∈ G, given

{g,α = gx, h1, . . . , hk ∈ Zq, g
(x+h1)

1
2 , . . . , g(x+hk)

1
2 },

compute g(x+h)
1
2 for some h /∈ {h1, . . . , hk}.

We say that the k + 1-SRP is (t, ε)-hard if for any t-time adversary A, we have

Pr

[
A(g,α = gx, g(x+h1)

1
2 , . . . , g(x+hk)

1
2 |x ∈R Zq, g ∈ G, h1, . . . , hk ∈ Zq)

= g(x+h)
1
2 , h /∈ {h1, . . . , hk}

]
< ε

where ε is negligible.

70 F. Zhang et al.

Definition 3 (k + 1-SR Assumption). We say that the (k + 1, t, ε)-SR as-
sumption holds in (G,GT) if no t-time algorithm has advantage at least ε in
solving the k+1-SRP in (G,GT), i.e., k + 1-SRP is (t, ε)-hard in (G,GT).

Remarks. k+ 1 Square Roots Problem is not a well studied problem and we are
uncertain of its difficulty. A simple observation is that when we obtain enough
values of hi (about log q) such that for each hi, x+hi is a quadratic residue mod-
ulo q, then there exists a unique x that satisfies these equations. The explanation
of this observation is as follows.

Given h1, h2, ..., hk, for each hi, there are many elements in G such that the
sum of each of these elements and hi is a quadratic residue. For convenience, we
denote by Si (wrt. hi) those elements such that for any element x ∈ Si, x + hi

is a quadratic residue. The solution of k + 1 Square Roots Problem is in the
intersection of {Si}, i = 1, · · · , k. Therefore, x is unique when k is large enough.
However, when q is large, there exists no efficient algorithm to find {Si} for each
hi. The fact that x is unique given the above sets also precludes lower bounds on
the hardness of our assumption in the generic group model. We note that this
property does not degrade the security of our schemes.

2.3 Secure Signature Schemes

A signature scheme consists of the following four algorithms: a parameter gen-
eration algorithm ParamGen, a key generation algorithm KeyGen, a signature
generation algorithm Sign and a signature verification algorithm Ver.

There are two types of attacks against signature schemes, namely the no-
message attack and the known-message attack. In the first case, the attacker
only knows the public key of the signer. In the second case, the attacker has
access to a list of message-signature pairs. The strongest type of chosen-message
attack is called the adaptively chosen-message attack, where the attacker has the
knowledge of the public key of the signer, and he can ask the signer to sign any
message that he wants. He can then adapt his queries according to the previous
message-signature pairs. The strongest notion of security for signature schemes
was defined by Goldwasser, Micali and Rivest [21,22] as follows:

Definition 4 (Secure signatures [21,22]). A signature scheme S =
〈ParamGen,KeyGen, Sign, Ver〉 is existentially unforgeable under an adaptive
chosen message attack if it is infeasible for a forger who only knows the public
key to produce a valid message-signature pair after obtaining polynomially many
signatures on messages of its choice from the signer.

Formally, for every probabilistic polynomial time forger algorithm F there
exist no non-negligible probability ε such that

Adv(F) = Pr

⎡⎢⎢⎢⎢⎣
〈pk, sk〉 ← 〈ParamGen,KeyGen〉(1l);
for i = 1, 2, . . . , k;
mi ← F(pk,m1, σ1, . . . ,mi−1, σi−1), σi ← Sign(sk,mi);
〈m, σ〉 ← F(pk,m1, σ1, . . . ,mk, σk);
m /∈ {m1, . . . ,mk} and Ver(pk,m, σ) = accept

⎤⎥⎥⎥⎥⎦ ≥ ε.

A New Signature Scheme Without Random Oracles from Bilinear Pairings 71

Goldwasser et al. also constructed a signature scheme that satisfies the above
security notion. Their scheme has an advantage that it does not use hash func-
tions for message formatting. It is the first secure signature scheme under the
standard model.

Here, we use the definition of [4] that takes into account the presence of an
ideal hash function (the cryptographic hash function is seen as an oracle that
produces a random value for each new query), and gives a concrete security
analysis of digital signatures.

Definition 5 (Exact security of signatures [4]). A forger F is said to
(t, qH , qS , ε)-break the signature scheme S = < ParamGen, KeyGen, Sign, Ver >
via an adaptive chosen message attack if after at most qH queries to the hash
oracle, qS signatures queries and t processing time, it outputs a valid forgery
with probability at least ε.

A signature scheme S is (t, qH , qS , ε)-secure if there is no forger who
(t, qH , qS , ε)-breaks the scheme.

3 New Short Signatures Without Random Oracles

3.1 Construction

We describe the new signature scheme as follows:
Let e : G × G → GT be the bilinear pairing where |G| = |GT | = q for some

prime q. We assume that |q| ≥ 160. As for the message space, if the signature
scheme is intended to be used directly for signing messages, then |m| = 160 is
good enough, since given a suitable collision resistant hash function, one can
first hash a message to 160 bits, and then sign the resulting value. Hence, the
messages m to be signed can be regarded as an element in Zq.

In order to give an exact security proof with a good bound for the new sig-
nature scheme, we assume that q ≡ 3 mod 4 (so that −1 is a non-quadratic
residue modulo q), and the message space is {1, ..., (q − 1)/2}. For any mes-
sage m ∈ {1, ..., (q − 1)/2}, if m is not a quadratic residue modulo q, then
q −m or −m will be a quadratic residue modulo q. The system parameters are
(G, GT , e, q, g), where g ∈ G is a random generator.

Key Generation. Randomly select x, y ∈R Z∗
q , and compute u = gx, v = gy.

The public key is (u, v). The secret key is (x, y).

Signing: Given a secret key x, y ∈R Z∗
q , and a message m ∈ {1, ..., (q − 1)/2},

pick a random r ∈R Z∗
q ,

– If m is a quadratic residue modulo q, then compute

σ = g(x+my+r)
1
2 ∈ G

– Otherwise, if m is a non-quadratic residue modulo q, then compute

σ = g(x+(−m)y+r)
1
2 ∈ G

72 F. Zhang et al.

Here (x+ my + r)
1
2 or (x + (−m)y + r)

1
2 is computed modulo q. When they

are not quadratic residues modulo q, we try again with a different random r.
The signature is (σ, r).

Verification: Given a public key (G, GT , q, g, u, v), a message m ∈ {1, ..., (q−
1)/2}, and a signature (σ, r), verify that

e(σ, σ) = e(uvmgr, g)

or
e(σ, σ) = e(uv−mgr, g)

The verification is correct due to the following equations:

e(σ, σ) = e(g(x±my+r)
1
2 , g(x±my+r)

1
2)

= e(g, g)(x±my+r)
1
2 ·(x±my+r)

1
2

= e(g, g)x±my+r

= e(uv±mgr, g)

3.2 Efficiency

To date, there exist three secure signature schemes without random oracles from
the bilinear groups, namely BB04 scheme [5], BMS03 scheme [10] and CL04
scheme [12]. BMS03 signature scheme is based on a signature authentication
tree with a large branching factor. Compared to BMS03 and CL04 schemes, our
scheme has the obvious advantages in all parameters, such as the public key,
signature lengths and performance.

The new signature scheme requires one computation of square root in Z∗
q and

one exponentiation in G to sign. For the verification, it requires two or three
pairings and two exponentiations in G.

We note that the computation of the pairing is the most time-consuming in
pairing based cryptosystems. Although there have been many papers discussing
the complexity of pairings and how to speed up the pairing computation [2,17,19],
the computation of the pairing still remains time-consuming. Similar to BB04
scheme, some pairings in the proposed signature scheme can be pre-computed
and published as part of the signer’s public key, such that there is only one
pairing operation in the verification. We pre-compute a = e(u, g), b = e(v, g)
and c = e(g, g), and publish them as part of the signer’s public key. Then, for a
message m ∈ Z∗

q , and a signature (σ, r), the verification can be done as follows:

e(σ, σ) ?= a · b±m · cr.

Hence, the verification requires only one pairing and two exponentiations in GT ,
and we note that the exponentiations in GT are significantly faster than pairing
operations.

A New Signature Scheme Without Random Oracles from Bilinear Pairings 73

Signature Length. A signature in the new scheme contains of two elements
(σ, r), where one element is in G and the other element is in Z∗

q . When using
a supersingular elliptic curve over finite field Fpn with embedding degree k = 6
and the modified Weil pairing or Tate pairing [9,23], the length of an element
in Z∗

q and G can be approximately log2 q bits, and therefore the total signature
length is approximately 2 log2 q bits. To be more precisely, let P ∈ E(Fpn),
ord(P) = q, G =< P >⊂ E[q] (E[q] is the group of q-torsion points of E). Let
φ be a distortion map, i.e., an efficiently computable automorphism of E[q] ∼=
Zq × Zq such that φ(P) /∈< P >= G. Actually, the map φ maps q -torsion
points defined over Fpn to q-torsion points defined over the extension field Fpnk

(For supersingular elliptic curve, such distortion map always exists). Consider
the bilinear pairing

ê : G×G → μq,

defined by
ê(P,Q) := ew(P, φ(Q)),

here ew denotes the Weil pairing and μq is the subgroup of order q in F ∗
pnk .

We can select the parameter such that the elements in G are 171-bits strings.
A possible choice of these parameters can be from Boneh et al.’s short signature
scheme [9] : G is derived from the curve E/GF (397) defined by y2 = x3 −
x+ 1, which has 923-bit discrete-log security. Therefore, at the current security
requirement, we can obtain a signature whose length is approximately the same
as a DSA signature with the same level of security, but which is provably secure
and existentially unforgeable under a chosen message attack without the random
oracle model, which is the same as BB04. Hence, this is the second short signature
scheme without random oracles.

However, the proposed signature scheme has a drawback, that is the scheme
requires a symmetric bilinear map, whereas BLS and BB04 can work with a
symmetric or an asymmetric map. Currently, the symmetric bilinear map with
short representation of group element can only be found on supersingular curves.
Since these curves have an embedding degree of at most 6, this will make the
new signatures bigger and harder to scale, compared to BB04 and BLS, at higher
security levels.

3.3 Proof of Security

The following theorem shows that the scheme above is existentially unforgeable
in the strong sense under chosen message attacks, provided that the k + 1-SR
assumption holds in (G, GT).

Theorem 1. Suppose the (k + 1, t′, ε′)-SR assumption holds in (G,GT). Then
the signature scheme above is (t, qS , ε)-secure against existential forgery under
an adaptive chosen message attack provided that

74 F. Zhang et al.

qS < k + 1, ε = 2ε′ + 4
qS
q
≈ 2ε′, t ≤ t′ −Θ(qST).

where T is the maximum time for computing a square root in Z∗
q and an expo-

nentiation in G.

Proof. To prove the theorem, we will prove the following: “If there exists a
(t, qS , ε)-forger F using adaptive chosen message attack for the proposed signa-
ture scheme, then there exists a (t′, ε′)-algorithm A solving qS-SRP (also k + 1-
SRP, if k + 1 > qS), where t′ ≥ t+Θ(qST), ε′ = ε

2 − 2 qS

q .”
Assume F is a forger that (t, qS , ε)-breaks the signature scheme. We construct

an algorithm A that, by interacting with F , solves the qS-SRP in time t′ with
advantage ε′.

Suppose A is given a challenge – a random instance of qS-SRP:

“ For an integer qS, and x ∈R Zq, g ∈ G, given

{g, α = gx, h1, . . . , hqS ∈ Zq, g
(x+h1)

1
2 , . . . , g(x+hqS

)
1
2 },

to compute g(x+h)
1
2 for some h /∈ {h1, . . . , hqS}.”

Next, we describe how the algorithm A to solve the qS-SRP by interacting
with F . The approach is similar to BB04 [5]. We distinguish between two types
of forgers that F can emulate. Let (G, GT , q, g, u, v) be the public key given to
forger F where u = gx and v = gy. Suppose F asks for signatures on messages
m1,m2, · · · ,mqS ∈ Z∗

q and is given signatures (ri, σi) on these messages for
i = 1, · · · , qS . Let hi = miy+ ri and let (m, r, σ) be the forgery produced by F .
Denote two types of forger F as:

Type-1 Forger which either makes query for mi = −x, or outputs a forgery
where my + r /∈ {h1, h2, · · · , hqS}.

Type-2 Forger which never makes any query for a message m = −x, and
outputs a forgery where my + r ∈ {h1, h2, · · · , hqS}.

A plays the role of the signer, it produces a forgery for the signature scheme
as follows:

Setup: A is given g, α = gx, with qS known solutions (hi ∈ Zq, si = g(x+hi)
1
2 ∈

G) for random hi (i = 1, · · · , qS). A picks random y ∈ Zq and a bit bmode ∈ {1, 2}
randomly. If bmode = 1, A publishes the public key PK1 = (G, GT , q, g, u, v),
here u = α, v = gy. If bmode = 2, A publishes the public key PK2 = (G, GT ,
q, g, u, v), here u = gy, v = α. In F ’s view, both PK1 and PK2 are valid
public keys for the signature scheme.

A New Signature Scheme Without Random Oracles from Bilinear Pairings 75

Simulation: The forger F can issue up to qS signature queries in an adaptive
fashion. To respond these signature queries, A maintains a list H-list of tuples
(mi, ri, hi) and a query counter l which is initially set to 0.

Upon receiving a signature query for mi, A increments l by one, and checks if
l > qS . If l > qS , it neglects further queries by F and terminates F . Otherwise, it
checks if g−mi = u. If so, then A just obtained the private key for the public key
PK = (G, GT , q, g, u, v) it was given, which allows it to forge the signature on
any message of its choice. At this point A successfully terminates the simulation.

Otherwise, if bmode = 1, set ri = hi − miy ∈ Zq. In the very unlikely event
that ri = 0, A reports failure and aborts. Otherwise, A gives F the signature
(ri, σi = si). This is a valid signature on mi under the public key PK1 =
(G, GT , q, g, u, v) since ri is uniform in Zq and

e(σi, σi)=e(g(x+hi)
1
2 , g(x+hi)

1
2)=e(ughi , g) = e(ugri+miy, g) = e(uvmigri , g).

If bmode = 2, set ri = mihi − y ∈ Zq. If ri = 0, A reports failure and aborts.
Otherwise, A returns (ri, σi = s

√
mi

i) (If mi is a quadratic residue modulo q) or
(ri, σi = s

√−mi

i) (If mi is a non-quadratic residue modulo q) as answer. This is
a valid signature on mi for PK2 because ri is uniform in Zq and

e(σi, σi) = e(g(x+hi)
1
2
√

mi , g(x+hi)
1
2
√

mi)
= e(gmihivmi , g)
= e(gy+rivmi , g)
= e(uvmigri, g)

A adds the tuple (mi, ri, v
migri) to H-list.

Reduction: Eventually, the forger F returns a forgery (m, r, σ), where (r, σ)
is a valid forgery distinct from any previously given signature on message m.
Note that by adding dummy queries as required, we may assume that F made
exactly qS signature queries. Let W ← vmgr. Algorithm A searches the H-list
for a tuple whose rightmost component is equal to W . Then according to two
types of forger F , we denote the following events as:

F1: (Type-1 forgery:) No tuple of the form (·, ·, W) appears on the H-list.
F2: (Type-2 forgery:) The H-list contains at least one tuple (mj , rj ,Wj) such

that Wj = W .

Denote E1 to be the event bmode = 1 (i.e., F produced a type-1 forgery, or
F made a signature query for a message mi such that g−mi = u.) and denote
E2 to be the event bmode = 2 . We claim that A can succeed in breaking the
signature scheme if (E1 ∧ F1) ∨ (E2 ∧ F2) happens.

Case 1. If u = g−mi , then A has already recovered the secret key of its chal-
lenger, A can forge a signature on any message of his choice. We assume

76 F. Zhang et al.

that F produced a type-1 forgery (m, r, σ). Since the forgery is valid,
we have

e(σ, σ) = e(uvmgr, g) = e(ugmy+r, g).

Let h = my + r. So, the forgery (m, r, σ) provides a new qS − SRP
solution (h, σ).

Case 2. Since v = α = gx, then we know that there exists a pair vmjgrj = vmgr.
Since (m, r) �= (mj , rj), otherwise it is not regarded as a forgery, so,
m �= mj , r �= rj . Therefore, A can compute x = rj−r

m−mj
which also

enables A to recover the secret key of its challenger. He can now forge
a signature on any message of its choice.

Any valid forgery (m, r, σ) will give a new qS − SRP solution under at least
one of the 2 above reductions.

This completes the description of Algorithm A. A standard argument shows
that if A does not abort, then, from the viewpoint of F , the simulation provided
by A is indistinguishable from a real attack scenario. Since the simulations are
perfect, F cannot guess which reduction the simulator is using. Therefore, F
produces a valid forgery in time t with probability at least ε.

Since E1 and F1 are independent with uniform distribution, Pr[E1∨E2] = 1
and Pr[F1 ∨ F2] = 1, the probability that A succeeds is Pr[(E1 ∧ F1) ∨ (E2 ∧
F2)] = 1

2 .
Next we bound the probability that A dos not abort. ¿From above description

of A we know that A aborts if

– At E1 ∧ F1, only if ri = 0, i.e., miy = hi. For given y, this happens with
probability at most qS

q .
– or at E2 ∧ F2, only if ri = 0, i.e., mihi = y. For given y, this happens with

probability at most qS

q .

So, A succeeds with probability at least ε
2 − 2 qS

q .
Let T be the maximum time for a computing square root in Z∗

q and an expo-
nentiation in G. The running time of A is t′ ≥ t + Θ(qST). This complete the
proof. �

4 Shorter Signature with Random Oracles

In this section, we present a more efficient short signature scheme based on
qS−SRP in the random oracle model. The proposed new short signature scheme
with random oracle is described as follows:

The system parameters are (G, GT , e, q, g, H), here g ∈ G is a random
generator and H : {0, 1}∗ → Z∗

q is a cryptographic hash function. We assume
that q ≡ 3 mod 4 (so that −1 is a non-quadratic residue modulo q).

Key Generation. Randomly select x ∈R Z∗
q , and compute u = gx. The public

key is u. The secret key is x.

A New Signature Scheme Without Random Oracles from Bilinear Pairings 77

Signing: Given a secret key x, and a message m, computes σ = g(H(m)+x)
1
2 . If

(H(m) + x) is a non-quadratic residue modulo q, compute σ = g(−(H(m)+x))
1
2 .

Verification: Given a public key (G, GT , e, q, g, u, H), a message m, and a
signature σ, verify that

e(σ, σ) = e(gH(m)u, g)

or
e(σ, σ) = e(gH(m)u, g)−1.

This signature scheme can provide the same signature length as BLS scheme.
We compare this signature scheme with the BLS scheme from the view point of
computation overhead. The key and signature generation times are comparable
to BLS signatures. The verification time is faster, since the verification requires
only one pairing and one exponentiation due to the pre-computation of a =
e(u, g) and c = e(g, g). This is comparable to the random-oracle version of the
BB signature, which also uses a single pairing. By contrast, the BLS signature
requires two pairings.

About the security of proposed signature scheme against an adaptive chosen
message attack, we obtain the following theorem:

Theorem 2. If there exists a (t, qH , qS , ε)-forger F using adaptive chosen mes-
sage attack for the proposed signature scheme, then there exists a
(t′, ε′)-algorithm A solving qH − k-SRP (for a constant k ∈ Z+), where

t = t′, ε′ ≥
qS−1∏
j=0

qH − k − j
qH − j · k

qH
· ε.

Especially, there exists a (t′ = t, ε′ ≥ qS

q2
H
· ε)-algorithm A solving qH − 1-SRP.

Proof. In the proposed signature scheme, before signing a message m, we need
to make a query H(m). Our proof is in the random oracle model (the hash
function is seen as a random oracle, i.e., the output of the hash function is
uniformly distributed).

Suppose that a forger F (t, qH , qS , ε)-break the signature scheme using an
adaptive chosen message attack. We will use F to construct an algorithm A to
solve qH − 1-SRP.

Suppose A is given a challenge:
“ For integer qH and k, and x ∈R Zq, g ∈ G, given

{g, α = gx, h1, . . . , hqH−k ∈ Zq, g
(x+h1)

1
2 , . . . , g(x+hqH −k)

1
2 },

to compute g(x+h)
1
2 for some h /∈ {h1, . . . , hqH−k}.”

Now A plays the role of the signer and sets the public key be u = α. A will
answer hash oracle queries and signing queries itself. We assume that F never
repeats a hash query or a signature query.

78 F. Zhang et al.

S1. A prepares qH responses {w1, w2, . . . , wqH} of the hash oracle queries, h1, . . . ,
hqH−k are distributed randomly in this response set.

S2. F makes a hash oracle query on mj for 1 ≤ j ≤ qH . A sends wj to F as the
response of the hash oracle query on mj .

S3. F makes a signature oracle query for wj . If wi = hj , A returns g(x+hj)
1
2 to

F as the response. Otherwise, A reports failure and aborts.
S4. Eventually, F halts and outputs a message-signature pair (m, σ). Here the

hash value of m is some wl and wl /∈ {h1, . . . , hqH−k}. Since (m, σ) is a valid
forgery and H(m) = wl, it satisfies:

e(σ, σ) = e(gH(m)u, g).

So, σ = g(x+wl)
1
2 . A outputs (wl, σ) as a solution to A’s challenge.

Algorithm A simulates the random oracles and signature oracle perfectly for F .
F cannot distinguish between A ’s simulation and real life because the hash
function behaves as a random oracle. Therefore F produces a valid forgery for
the signature scheme with probability at least ε.

Now, we bound the probability A dos not abort. In step S3, the success
probability of A is qH−k

qH
, and hence, for all signature oracle queries, A will not

fail with probability

ρ ≥
qS−1∏
j=0

qH − k − j
qH − j

(if F only makes s(≤ qS) signature oracle queries, the success probability of A
is
∏s−1

j=0
qH−k−j

qH−j). Hence, after the algorithm A finished the step S4, the success
probability of A is:

ε′ ≥
qS−1∏
j=0

qH − k − j
qH − j · k

qH
· ε.

In particular, if we let k = 1, then the success probability of A is:

ε′ ≥ qS
q2H

· ε.

The running time of A is equal to the running time of F , where t′ = t. �

5 Conclusion and Further Works

In this paper, we proposed the second short signature scheme from bilinear
pairing which is existentially unforgeable under a chosen message attack with-
out using random oracles. The security of our scheme depends on a new com-
plexity assumption called the k+1 square roots assumption. Furthermore, the
k+1 square roots assumption gives even shorter signatures in the random oracle
model, where a signature is only one element in a bilinear group.

A New Signature Scheme Without Random Oracles from Bilinear Pairings 79

As for applications of our signature schemes, we present a new chameleon
hash signature scheme, an on-line/off-line signature scheme and a new efficient
anonymous credential scheme based on the proposed signature scheme in the
earlier version of this paper [27]. These applications are omitted here due to
the page limitation. BLS[9], BB04 [5] and ZSS [28] short signature schemes play
an important role in many pairing-based cryptographic systems. The proposed
signature scheme is comparable to them and we expect to see many other schemes
based on it, such as group signatures [6], aggregate signatures [8] and others.

Acknowledgements

We would like to thank Xavier Boyen and the anonymous reviewers of VietCrypt
2006 for their helpful comments and suggestions. We would also like to thank
Serge Vaudenay for a constructive suggestion during the conference.

This work has been supported by the National Natural Science Foundation of
China (No. 60403007 and No. 60503006) and ARC Discovery Grant DP0557493
and the Project-sponsored by SRF for ROCS, SEM.

References

1. M. Abe and T. Okamoto. A signature scheme with message recovery as secure as
discrete logarithm. Advances in Cryptology -Asiacrypt 1999, LNCS 1716, pp.378-
389, Springer-Verlag, 1999.

2. P.S.L.M. Barreto, H.Y. Kim, B.Lynn, and M.Scott, Efficient algorithms for pairing-
based cryptosystems, Advances in Cryptology-Crypto 2002, LNCS 2442, pp.354-
368, Springer-Verlag, 2002.

3. M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for design-
ing effiient protocols, Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp.62-73, ACM press, 1993.

4. M. Bellare and P. Rogaway, The exact security of digital signatures - How to sign
with RSA and Rabin, Advances in Cryptology-Eurocrypt 1996, LNCS 1070, pp.
399-416, Springer- Verlag, 1996.

5. D. Boneh and X. Boyen, Short signatures without random oracles, Advances in
Cryptology-Eurocrypt 2004, LNCS 3027, pp.56-73, Springer-Verlag, 2004.

6. D. Boneh, X. Boyen and H. Shacham, Short group signatures, Advances in
Cryptology-Crypto 2004, LNCS 3152, pp.41-55, Springer-Verlag, 2004.

7. D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, Ad-
vances in Cryptology-Crypto 2001, LNCS 2139, pp.213-229, Springer-Verlag, 2001.

8. D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and verifiably encrypted
signatures from bilinear maps, Advances in Cryptology-Eurocrypt 2003, LNCS
2656, pp.272-293, Springer-Verlag, 2003.

9. D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairing,
Advances in Cryptology-Asiacrypt 2001, LNCS 2248, pp.514-532, Springer-Verlag,
2001.

10. D. Boneh, I. Mironov and V. Shoup, A secure signature scheme from bilinear maps,
CT-RSA 2003, LNCS 2612, pp.98-110, Springer-Verlag, 2003.

80 F. Zhang et al.

11. J. Camenisch and A. Lysyanskaya, A signature scheme with efficient protocols,
SCN 2002, LNCS 2576, pp.274-295, Springer- Verlag, 2003.

12. J. Camenisch and A. Lysyanskaya, Signature schemes and anonymous credentials
from bilinear maps, Advances in Cryptology-Crypto 2004, LNCS 3152, pp.56-72,
Springer- Verlag, 2004.

13. J.H. Cheon, Security analysis of the strong Diffie-Hellman problem, Advances in
Cryptology-Eurocrypt 2006, LNCS 4004, pp.1-11, Springer-Verlag, 2006.

14. N. Courtois, M. Daum and P. Felke, On the security of HFE, HFEv- and Quartz,
PKC 2003, LNCS 2567, pp.337-350. Springer- Verlag, 2003.

15. N.T. Courtois, M. Finiasz and N. Sendrier, How to achieve a McEliece-based Digital
Signature Schem, Advances in Cryptology-Asiacrypt 2001, LNCS 2248, pp.157-174,
Springer-Verlag, 2001.

16. R. Cramer and V. Shoup, Signature schemes based on the strong RSA assump-
tion, Proceedings of the 6th ACM Conference on Computer and Communications
Security, pp.46-52, ACM press, 1999.

17. I. M. Duursma and H.-S. Lee, Tate pairing implementation for hyperelliptic curves
y2 = xp −x+d, Advances in Cryptology -Asiacrypt 2003, LNCS 2894, pp.111-123,
Springer-Verlag, 2003.

18. M. Fischlin, The Cramer-Shoup strong-RSA signature scheme revisited, PKC 2003,
LNCS 2567, pp.116-129, Springer-Verlag, 2003.

19. S. D. Galbraith, K. Harrison, and D. Soldera, Implementing the Tate pairing, ANTS
2002, LNCS 2369, pp.324-337, Springer-Verlag, 2002.

20. R. Gennaro, S. Halevi and T. Rabin, Secure hash-and-sign signature without the
random oracle, Advances in Cryptology-Eurocrypt 1999, LNCS 1592, pp.123-139,
Springer-Verlag, 1999.

21. S. Goldwasser, S. Micali and R. Rivest, A ‘paradoxical’ solution to the signature
problem (extended abstract), Proc. of FOCS’84, pp.441-448, 1984.

22. S. Goldwasser, S. Micali and R. Rivest, A digital signature scheme secure against
adaptive chosen-message attacks, SIAM Journal of Computing, 17(2), pp. 281-308,
1988.

23. A. Joux, The Weil and Tate pairings as building blocks for public key cryptosystems,
ANTS 2002, LNCS 2369, pp. 20-32, Springer-Verlag, 2002

24. D. Naccache and J. Stern, Signing on a postcard, Financial Cryptography and Data
Security 2000, LNCS 1962, pp.121-135, Springer-Verlag, 2000.

25. K. Nyberg and R. Rueppel, A new signature scheme based on the DSA, giving
message recovery, Proceedings of the 1st ACM Conference on Communications
and Computer Security, pp. 58-61, 1993.

26. J. Patarin, N. Courtois and L. Goubin, QUARTZ, 128-bit long digital signatures,
CT-RSA 2001, LNCS 2020, pp. 282-297, Springer-Verlag, 2001.

27. F. Zhang, X. Chen, W. Susilo and Y. Mu, A New Signature Scheme without Ran-
dom Oracles and Its Applications, Cryptology ePrint Archive: Report 2005/386.

28. F. Zhang, R. Safavi-Naini and W. Susilo, An efficient signature scheme from bi-
linear pairings and its applications, PKC 2004, LNCS 2947, pp.277-290, Springer-
Verlag, 2004.

Efficient Dynamic k-Times Anonymous
Authentication

Lan Nguyen

CSIRO ICT Centre, Australia
WinMagic, Canada

Lan.Nguyen@winmagic.com

Abstract. In k-times anonymous authentication (k-TAA) schemes,
members of a group can be anonymously authenticated to access applica-
tions for a bounded number of times determined by application providers.
Dynamic k-TAA allows application providers to independently grant or
revoke group members from accessing their applications. Dynamic k-
TAA can be applied in several scenarios, such as k-show anonymous cre-
dentials, digital rights management, anonymous trial of Internet services,
e-voting, e-coupons etc. This paper proposes the first provably secure dy-
namic k-TAA scheme, where authentication costs do not depend on k.
This efficiency is achieved by using a technique called “efficient provable
e-tag”, which could be applicable to other e-tag systems.

Keywords: privacy, anonymity, dynamic k-times anonymous authenti-
cation, k-show anonymous credentials, e-tag.

1 Introduction

In a k-times anonymous authentication system [13], participants include a group
manager (GM), some application providers (AP) and many users. The GM reg-
isters users into the group and each AP independently announces the number
of times a group member can access her application. A group member can be
anonymously authenticated by APs within their allowed numbers of times and
without contacting the GM. No one, even the GM or APs, is able to identify
honest users or link two authentication executions of the same user while anyone
can trace dishonest users. No party, even the GM, can successfully impersonate
an honest user in an authentication execution.

However, k-TAA schemes are inflexible in the sense that the GM decides on
the group membership and APs do not have any control over giving users ac-
cess permission to their services. APs are passive and their role is limited to
announcing the number of times a user can access their applications. In prac-
tice, APs want to select their user groups and grant or revoke access to users
independently. For example, the AP may prefer to give access to users with good
profile, or the AP may need to put an expiry date on users’ access. Dynamic
k-TAA [12] was introduced to provide these properties. In dynamic k-TAA, APs
have more control over granting and revoking access to their services, and less

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 81–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

82 L. Nguyen

trust and computation from the GM is required. Dynamic k-TAA allows APs
to restrict access to their services based on not only the number of times but
also other factors such as expiry date and so can be used in much wider range
of realistic scenarios.

A primitive close to k-TAA is Privacy-Protecting Coupon (PPC) system
[6,11], which consists of an Initialisation algorithm and 2 protocols, Issue and
Redeem. There is a vendor and many users. The vendor can issue a k-redeemable
coupon to a user such that the user can unlinkably redeem the coupon for ex-
actly k times. There could be another algorithm, Terminate, which allows the
vendor to terminate coupons. Compared to k-TAA, PPC does not allow trace-
ability of malicious users and the vendor acts as the group manager and a single
application provider.

Applications of k-TAA can be found in digital rights management (DRM).
For example, k-TAA can be used to provide pay-per-use anonymous access to
online digital content, such as music, movies, interactive games, betting and
gambling, that are supplied by different application providers. A user can buy
credits to download hundreds of songs or movies over a year at a discount price.
Another example is trial browsing [13], where each provider allows members of
a group, such as XXX community, to anonymously and freely browse content
such as movies or music on trial. The provider also wants to limit the number
of times that a user can access the service on trial and users, who try to go over
the prescribed quota, must be identified. k-TAA can also be used to construct k-
show anonymous credential systems [15], where credential-issuing organizations
can limit the number of times a user can show her credentials.

In previous k-TAA schemes, the authentication procedure has computation
and communication costs linearly depending on the bound k. If an application
provider sets k to be a large number, the authentication procedure becomes
expensive. For example, a music web site may sell e-vouchers each of which can
be used to anonymously download 10000 songs within a year. Then each user
has to run the same expensive authentication protocol for each downloaded song.
If there are many users in the group, the authentication cost multiplies by the
number of users. So, the open problem is to construct k-TAA schemes where the
computation and communication costs in the authentication procedure do not
depend on k.

1.1 Our Contribution

We propose the first dynamic k-TAA scheme with constant authentication costs,
extended from the NS05 scheme [12], and prove its security. It can be used to
construct the first k-show anonymous credential system with constant costs. It
can be converted to a k-TAA scheme using the approach in [12]. It is also possible
to construct a combined scheme, where some of the APs have the dynamic
property and other APs do not. Section 4.3 details efficiency comparison with
previous k-TAA schemes [13,12].

Our scheme still uses tag as in the TFS04 [13] and NS05 [12] schemes. In
these schemes, the GM issues some secret key to each user. An AP with bound

Efficient Dynamic k-Times Anonymous Authentication 83

k provides a set of k tag bases. For each authentication, the user uses his secret
key and a tag base to computes a value, called a tag, and sends it to the verifier
with a zero-knowledge proof that the tag is correctly computed and the user is
a group member. If the user attempts to access more than k times, he has to
use a tag base twice and his identity will be revealed. The problem with these
constructions is that the proof that the tag is correctly computed from one of
the k tag bases requires a proof of knowledge of one of k elements and its cost
linearly depends on k. Our objective is to remove this dependency.

We use a methodology, called “efficient provable e-tag”, which was first pro-
posed in [11] for a PPC system. An ordinary k-TAA scheme with constant costs
[14] also uses this method.

In this method, each AP with bound k uses its secret key to issue k signatures
on k random messages and these message-signature tuples are used as tag bases.
Then the proof of knowledge of one of k elements is replaced by a proof of
knowledge of a message-signature tuple. However, using our message-signature
tuples with the function to compute tags from tag bases as in [13,12] will result
in a “cut and choose” zero-knowledge proof. So we use another function similar
to the verifiable random function proposed in [7] that is used for the efficient
compact e-cash scheme in [5]. We also need a different way for the GM to issue
member secret and public keys to users.

The organization of the paper is as follows. We give the background in
section 2 and present the model of dynamic k-TAA in section 3. Section 4 pro-
vides technical description of the proposed dynamic k-TAA scheme.

2 Preliminaries

We follow notation in [12,13] and use some complexity assumptions, including
Strong Diffie-Hellman (SDH), Decisional Bilinear Diffie-Hellman Inversion (DB-
DHI) and Computational Bilinear Diffie-Hellman Inversion 2 (CBDHI2). The
notation and assumptions are provided in Appendix A.

2.1 Bilinear Groups

Let G1, G2 and GT be multiplicative cyclic groups of prime order p. Suppose P1
and P2 are generators of G1 and G2 respectively, and there is an isomorphism
ψ : G2 → G1 such that ψ(P2) = P1. A function e : G1 ×G2 → GT is said to be
a bilinear pairing if it satisfies the following properties:

1. Bilinearity: e(P a, Qb) = e(P,Q)ab for all P ∈ G1, Q ∈ G2 and a, b ∈ Zp.
2. Non-degeneracy: e(P1, P2) �= 1.
3. Computability: e(P,Q) is efficiently computed, ∀P ∈ G1, Q ∈ G2.

For simplicity, hereafter, we set G1 = G2 = G and P1 = P2 but the proposed
scheme can be easily modified for G1 �= G2. We define a Bilinear Pairing Instance
Generator as a PPT algorithm G that takes 1κ and returns a random tuple
t = (p,G,GT , e, P) of bilinear pairing parameters where p is of size κ.

84 L. Nguyen

2.2 General BB Signatures

This is a generalization of the Boneh-Boyen signature scheme [1], which is un-
forgeable under a weak chosen message attack if the SDH assumption holds. It
allows generation of a single signature for two random messages and an efficient
knowledge proof of the signature and messages without revealing anything about
the signature and messages.
Key Generating. Suppose (p,G,GT , e, Q) is a bilinear pairing tuple. Generate
random H ′ ← G and s′ ← Z∗

p and obtain Q′
pub = Qs′

. The public key is
(Q,H ′, Q′

pub) and the secret key is s′.

Signing. For messages t ∈ Z∗
p and ť ∈ Zp \ {−s′}, output the signature R =

(QtH ′)1/(s′+ť).
Verifying. For a public key (Q,H ′, Q′

pub), messages t ∈ Z∗
p and ť ∈ Zp \ {−s′},

and a signature R ∈ G, verify that e(R,QťQ′
pub) = e(QtH ′, Q).

2.3 CL-SDH Signatures

This is a variant of the Camenisch-Lysyanskaya signature scheme [4] using the
SDH assumption. Note that, as shown in [11], there is an efficient protocol be-
tween a user and a signer to generate a CL-SDH signature for the user’s message
without the signer learning anything about the message; and there is an efficient
zero-knowledge proof of knowledge of a CL-SDH message-signature pair.
Key Generating. Suppose (p,G,GT , e, P) is a bilinear pairing tuple. Generate
random P0, H

′ ← G and γ ← Z∗
p and obtain Ppub = P γ . The public key is

(P, P0, H
′, Ppub) and the secret key is γ.

Signing. For message x ∈ Z∗
p, generate random v ← Zp and a ← Zp \ {−γ} and

compute S = (P xH ′vP0)1/(γ+a). The signature is (a, S, v).
Verifying. For a public key (P, P0, H

′, Ppub), a message x ∈ Z∗
p, and a signature

(a, S, v), verify that e(S, P aPpub) = e(P xH ′vP0, P).

3 Model

This section revises the formal model for dynamic k-TAA [13,12].

3.1 Procedures

A dynamic k-TAA system is specified as a tuple of PT algorithms (GKg, AKg,
JoinU , JoinM , Bound, Grant, Revoke, AuthenU , AuthenP , Trace), operated by a
group manager (GM), application providers (AP) and users. Each AP V has a
public authentication log LOGV , an access group AGV of users who are allowed
to access its application, and some public information PIV . The algorithms are
described as follows.
GKg: The GM runs this setup PPT algorithm on input 1l to obtain a group
public key gpk and the GM’s secret key gsk.

Efficient Dynamic k-Times Anonymous Authentication 85

AKg: An AP V runs this PPT algorithm on input a group public key gpk to
obtain a pair of AP public key and secret key (apkV , askV).
JoinU , JoinM : This joining protocol allows the GM to register a user into the
group. Both of the interactive algorithms JoinU (the user) and JoinM (the GM)
take as input the group public key gpk and JoinM is also given the GM’s secret
key gsk. JoinM returns either accept or reject. If it is accept, JoinU outputs a
pair of member public key and secret key (mpki,mski).
Bound: An AP V uses this bound announcement PPT algorithm to announce
the number of times a user in its access group can use its application. It takes as
input gpk, apkV and askV and outputs the upper bound k and some information
which is published with the AP’s identity IDV .
Grant: An AP V runs this algorithm to grant a group member access to its
application. The AP adds the member to its access group AGV and updates his
public information PIV . From PIV , the member can obtain an access key mak.
Revoke: This algorithm allows an AP to revoke a group member from accessing
its application. It removes the member from the AP’s access group and updates
its public information.
AuthenU , AuthenP : This authentication protocol, between a user (AuthenU) and
an AP V (AuthenP), allows the AP to authenticate the user for accessing its ap-
plication. The protocol input is all of the AP and group’s public information, and
AuthenU ’s private input includes the user’s keys mpk, msk and mak. AuthenP

returns accept, if the user is in the AP’s access group and has been authenticated
by the AP less than k times, or reject otherwise. The authentication transcript
is added to the log LOGV .
Trace: Anyone can run this public tracing PPT algorithm to trace a malicious
user. It takes as input all group public information and an authentication log
and outputs a user identity, GM or NONE, which respectively mean “the user
attempts to access more than the announced bound”, “the GM published infor-
mation maliciously”, and “there is no malicious entity recorded in this log”.

3.2 Correctness and Security Requirements

The adversary has access to a number of oracles and can query them accord-
ing to the brief description below, to learn about the system and increase his
success chance in the attacks. The oracles include OLIST , OQUERY , OJOIN−U ,
OAUTH−U , OJOIN−GM , OAUTH−AP ,OGRAN−AP ,OREV O−AP andOCORR−AP

whose descriptions are provided in the full version. The correctness condition and
security requirements for dynamic k-TAA are summarized as follows. Formal
definitions of oracles and requirements can be found in [13,12].
Correctness: It requires that an honest member who is in the access group of an
honest AP and has performed the authentication protocol with the AP for less
than the allowed number of times, is successfully authenticated by the AP.
Anonymity: Intuitively, it means that given two honest group members i0 and i1,
who are in the access group of an AP, it is computationally hard to distinguish

86 L. Nguyen

between authentication executions, which are performed by the AP and one of
the two members. In the experiment, the adversary is allowed to collude with
the GM, all APs, and all users except target users i0 and i1, and to query
oracles OLIST , OJOIN−U , OAUTH−U and OQUERY . The adversary is allowed
to make only one query to OQUERY on input i0, i1 and an AP whose access
group contains i0 and i1. On receiving such a query, OQUERY makes either i0 or
i1 to execute the authentication protocol with the AP and outputs the protocol
transcript. Each of the users i0 and i1 must be authenticated by the AP within k
times. The anonymity condition holds if the probability that the adversary can
correctly guess the user identity used in OQUERY ’s authentication execution is
negligibly better than a random guess.

This anonymity definition is general enough to capture desirable privacy prop-
erties. For example, if the adversary can link authentication executions of the
same user with different APs with non-negligible probability, then the adver-
sary can break the anonymity experiment with non-negligible probability. In the
experiment, the adversary can use OAUTH−U to trigger authentication execu-
tions between i0 or i1 with different APs. When OQUERY generates a challenged
authentication execution, the adversary can link it to the executions generated
by OAUTH−U with non-negligible probability. As the adversary knows the user
identity of each execution generated by OAUTH−U , it can tell the user identity
of the challenged authentication execution with non-negligible probability.

Detectability: It loosely means that if a subgroup of corrupted members have per-
formed the authentication procedure with the same honest AP for more than the
total allowed number of times, then the public tracing algorithm using the AP’s
authentication log outputs NONE with negligible probability. The experiment has
two stages and the adversary is allowed to corrupt all users. In the first stage, the
adversary can queryOLIST , OJOIN−GM , OAUTH−AP , OGRAN−AP , OREV O−AP

andOCORR−AP . Then all authentication logs of all APs are emptied. In the second
stage, the adversary continues the experiment, but without access to the revoking
oracleOREV O−AP . The adversary wins if he can be successfully authenticated by
an honest AP V with access bound k for more than k×#AGV times, where #AGV
is the number of members in the AP’s access group. The detectability condition
requires that the probability that the adversary wins is negligible.

Exculpability for users: It intuitively means that the tracing algorithm does not
output the identity of an honest user even if other users, the GM and all APs
are corrupted. In the experiment, the adversary, who wants to frame an hon-
est user i, is allowed to corrupt all entities except the user i and can access
OLIST , OJOIN−U , and OAUTH−U . The adversary must authenticate user i us-
ing OAUTH−U within the allowable numbers of times set by the APs. If the
adversary succeeds in computing an authentication log, with which the public
tracing algorithm outputs i, the adversary wins. The exculpability condition for
users requires that the probability that the adversary wins is negligible.

Exculpability for the GM: Loosely speaking, it means that the tracing algorithm
does not output the honest GM even if all users and all APs are corrupted. In
the experiment, the adversary wants to frame the honest GM and he is allowed

Efficient Dynamic k-Times Anonymous Authentication 87

to corrupt all users and all APs and access OLIST and OJOIN−GM . If the adver-
sary succeeds in computing an authentication log, with which the public tracing
algorithm outputs GM, the adversary wins. The exculpability condition for the
GM requires that the probability that the adversary wins is negligible.

4 Dynamic k-TAA with Constant Authentication Costs

4.1 Overview

Section 1.1 has already given the general intuition of the approach “efficient
provable e-tag”, which substantially improves efficiency of our scheme over the
NS05 and TFS04 schemes [12,13]. We now provide an outline of this scheme
and note where this scheme is similar to NS05. In the GKg algorithm, a bilinear
pairing tuple (p,G,GT , e, P) is generated, the GM’s secret key is a CL-SDH
secret key γ ← Z∗

p and the group public key includes the corresponding CL-SDH
public key (P, P0, H

′, Ppub) and a value Φ← GT .
As noted in section 2.3, there is an efficient protocol between a user and a

signer to generate a CL-SDH signature for the user’s secret message x without
the signer learning anything about the message. This protocol underlies the
joining protocol (JoinU , JoinM), where the user also has to publish his identity
and β = Φ1/x in the identification list LIST that allows tracing of malicious users
in the Trace algorithm. At the end of the joining protocol, the user obtains a
CL-SDH signature (a, S, v) for a message x, where v is also the user’s random
secret. The user’s member secret key is (x, v) and his member public key is
(a, S, β). As also noted in section 2.3, there is an efficient zero-knowledge proof
of knowledge of a CL-SDH message-signature pair (by proving the knowledge
of (a, S, v) and x such that e(S, P aPpub) = e(P xH ′vP0, P)). The user can be
anonymously authenticated as a group member by using this proof, as shown in
the authentication protocol.

In the AKg algorithm, an AP’s public-secret key pair includes a general BB
public key (Q,H ′, Q′

pub) and the corresponding BB secret key is s′. The Bound
algorithm, for a bound k, generates k random message couples (t1, ť1), ..., (tk, ťk)
and k corresponding general BB signatures R1, ..., Rk. The AP publishes k tag
bases (t1, ť1, R1), ..., (tk, ťk, Rk) to be used for up to k times user access to the
AP’s service (each tag base is a general BB message-signature triplet).

In the authentication protocol between the AP and a group member with
key pair ((x, v), (a, S, β)), the user obtains a random l from the AP, chooses a
tag base (ti, ťi, Ri) and sends back a tag (Γ, Γ̌) = (F (x, ti), F̌ (x, ťi, l)), where F
and F̌ are two functions. The user also shows the AP a zero-knowledge proof
Proof2 which proves four properties: (i) the user is a group member (by proving
knowledge of a CL-SDH message-signature pair (x, (a, S, v))); (ii) the user knows
a general BB message-signature triplet (ti, ťi, Ri) (without revealing the triplet);
(iii) (Γ, Γ̌) is correctly computed from l, x, (ti, ťi), F and F̌ (that means (Γ, Γ̌) =
(F (x, ti), F̌ (x, ťi, l))); and (iv) the AP has granted access to the user. Part (iv)
is the same as in NS05 and we will talk about it afterwards. This protocol differs

88 L. Nguyen

from NS05’s authentication protocol with the construction of F and F̌ and parts
(i), (ii) and (iii).

In the authentication protocols of TFS04 and NS05, the proof that one of
the k announced tag bases has been used to compute the tag requires a proof of
knowledge of one of k elements and its cost linearly depends on k. In our authen-
tication protocol, that proof of knowledge of one of k tag bases is replaced by
the proof of knowledge of a general BB message-signature triplet. Therefore, our
authentication cost does not depend on k. The general BB signatures prevents
the user from forging a new tag base without colluding the AP.

Similar to NS05, if the user uses the same tag base to compute another tag
(Γ ′, Γ̌ ′), anyone can find these from the AP’s authentication log (since Γ = Γ ′)
and use it to compute β = (Γ̌ /Γ̌ ′)1/(l−l′), which is part of the user’s public key
(F̌ must be designed to allow this computation). However, if the member does
not use the same tag base twice, his anonymity is protected (F and F̌ must
be designed to allow this anonymity). The cost of checking if Γ has already
appeared in the AP’s authentication log is the same as in TFS04 and NS05, and
is trivial if tags are orderly indexed by Γ , so we ignore that cost in claiming the
‘constant’ property.
F and F̌ must be designed so that: tags are not linkable; the property (iii) can

be efficiently proved; and if a user uses the same tag base twice, his public key
is computable from the two tags (β = (Γ̌ /Γ̌ ′)1/(l−l′)). We construct these two
functions as (Γ, Γ̌) = (Φ1/(x+ti), Φ(lx+lťi+x)/(x2+xťi)). This tag construction is
different from [13,12] and developed from a recently proposed verifiable random
function [7] using bilinear pairings. It possesses a precious feature of having both
key x and tag base ti, ťi in the exponents of Φ1/(x+ti) and Φ(lx+lťi+x)/(x2+xťi).
This feature allows the user’s zero-knowledge proof Proof2 in the authentication
protocol to avoid the cut-and-choose method.

Now, we talk about the property (iv) and the Grant and Revoke algorithms,
which are quite the same as in NS05. We also use dynamic accumulators to
provide the dynamic property, which means the AP grants access to or revokes
access from users. Each AP has a public key/secret key pair ((Q,Qpub), s), where
Qpub = Qs. To grant access to a member with a public key (a, S, β), the AP ac-
cumulates the value a of the public key into an accumulated value V ← V s+a,
and the member obtains the old accumulated value as the witness W . The mem-
ber shows that the AP has granted access to him by proving the knowledge of
(a,W) such that e(W,QaQpub) = e(V,Q). To revoke access from the member,
the AP computes a new accumulated value V ← V 1/(s+a).

As in NS05, there is a Public Inspection algorithm (presented in the full
version) executable by anyone to check if the APs perform the Bound, Grant
and Revoke algorithms correctly.

4.2 Description

GKg
On input 1κ, the Bilinear Pairing Instance Generator returns (p,G,GT , e, P).
Generate P0, P1, P2, H,H

′ ← G, γ ← Z∗
p and Φ ← GT , and let Ppub = P γ .

Efficient Dynamic k-Times Anonymous Authentication 89

The GM’s secret key is a CL-SDH secret key gsk = γ. The group public key
gpk consists of the corresponding CL-SDH group public key (P, P0, H

′, Ppub)
and values Φ,H, P1, P2. The identification list LIST of group members is initially
empty.

AKg
An AP V generates Q ← G, s, s′ ← Z∗

p and computes Qpub = Qs, Q′
pub = Qs′

.
The public and secret keys for the AP are apk = (Q,Qpub, Q

′
pub) and ask =

(s, s′), respectively. They form a general BB key pair ((Q,H ′, Q′
pub), s

′). Then,
same as NS05 [12], AP maintains an authentication log LOG, an accumulated
value, which is published and updated after granting or revoking a member, and
a public archive ARC (as the other public information PI in the formal model),
which is a list of 3-tuples. The first component of the tuple is an element in the
public key of a member, who was granted or revoked from accessing the AP. The
second component is a single bit indicating whether the member was granted
(1) or revoked (0). The third component is the accumulated value after granting
or revoking the member. Initially, the accumulated value is set to V0 ← G and
LOG and ARC are empty.

JoinU , JoinM

This protocol allows the GM to generate a CL-SDH signature (a, S, v) for the
user’s secret x without learning anything about (x, v). The user also publishes
β = Φ1/x. A user Ui can join the group as follows.

1. User Ui chooses x, v′ ← Z∗
p, computes β = Φ1/x and a commitment C =

P xH ′v′
of x and adds (i, β) to the identification list LIST. The user then

sends β and C to the GM with a standard non-interactive zero-knowledge
proof Proof1 = PK{(x, v′) : C = P xH ′v′ ∧ Φ = βx}.

2. The GM verifies that (i, β) is an element of LIST and the proof is valid.
The GM then generates a← Zp different from all corresponding previously
generated values and ṽ ← Z∗

p, computes S = (CH ′ṽP0)1/(γ+a), and sends
(S, a, ṽ) to user Ui.

3. User Ui computes v = v′ + ṽ and confirms that equation e(S, P aPpub) =
e(P xH ′vP0, P) is satisfied. The new member Ui’s secret key is msk = (x, v),
and his public key is mpk = (a, S, β).

Bound
An AP publishes his identity ID and a number k as the bound. Let (tj , ťj) =
HZ∗

p×Z∗
p
(ID, k, j) for j = 1, ..., k. The AP computes general BB signatures Rj =

(QtjH ′)1/(s′+ťj) for j = 1, ..., k and publishes (t1, ť1, R1), ..., (tk, ťk, Rk). We call
(tj , ťj , Rj) the jth tag base of the AP.

The Public Inspection algorithm (in the full version) can be run by anyone
to check if the APs perform the Bound, Grant and Revoke algorithms correctly.
So it is negligible that the APs can generate tag bases maliciously, for example,
two APs setting the same tj .

90 L. Nguyen

Grant
This is the same as in NS05. An AP grants access to a user Ui with public key
mpk = (a, ·, ·) as follows. Suppose there are j tuples in the AP’s ARC and the
AP’s current accumulated value is Vj . The AP computes a new accumulated
value Vj+1 = V s+a

j and adds (a, 1, Vj+1) to his ARC. From the AP’s ARC, the
user Ui forms his access key mak = (j + 1,W), where W = Vj , and keeps a
counter d, which is initially set to 0.

Revoke
This is the same as in NS05. An AP revokes access from a user Ui with public
key mpk = (a, ·, ·) as follows. Suppose there are j tuples in the AP’s ARC and
the AP’s current accumulated value is Vj . The AP computes a new accumulated
value Vj+1 = V

1/(s+a)
j , and adds (a, 0, Vj+1) to ARC.

AuthenU , AuthenP

The difference from NS05’s authentication protocol lies in the second step, which
is also the most important step of the protocol. In this step, the tag computation
and Proof2 are completely different from those in NS05. An AP (ID, k), whose
public key and current accumulated value are apk = (Q,Qpub, Q

′
pub) and V

respectively, authenticates a user U with public and secret keys mpk = (a, S, β)
and msk = (x, v), respectively, as follows.

1. U increases counter d. If d > k, then U sends ⊥ to the AP and stops.
Otherwise, U runs the algorithm Update (as in [12] and in the full version)
to update his access key mak = (j,W). The AP then sends a random integer
l← Z∗

p to U .
2. U chooses an unused tag base (tι, ťι, Rι), computes tag (Γ, Γ̌) = (Φ1/(x+tι),

Φ(lx+lťι+x)/(x2+xťι)), and sends (Γ, Γ̌) to the AP with a proof
Proof2 = PK{(tι, ťι, Rι, a, S, x, v,W) : Γ = Φ1/(x+tι) ∧
Γ̌ = Φ(lx+lťι+x)/(x2+xťι) ∧ e(S, P aPpub) = e(P xH ′vP0, P) ∧ e(W,QaQpub) =
e(V,Q) ∧ e(Rι, Q

ťιQ′
pub) = e(QtιH ′, Q)} (Proof2 is described below).

3. If the proof is valid and if Γ is different from all corresponding tags in the
AP’s LOG, the AP adds tuple (Γ, Γ̌ , l) and the proof to LOG, and outputs
accept. If the proof is valid and Γ is already written in LOG, the AP adds
tuple (Γ, Γ̌ , l) and the proof to the LOG, outputs (detect,LOG) and stops. If
the proof is invalid, the AP outputs reject and stops.

Proof2
Let U1 = SHr1 ; U2 = WHr2 ; U3 = RιH

r3 where r1, r2, r3 ← Zp, then Proof2
is equivalent to a proof of knowledge of (tι, ťι, a, x, v, r1, r2, r3) such that

Γ x+tι = Φ; Γ̌ (x+ťι)xΦ−lx−lťι−x = 1;
e(U1, P)ae(H,P)−r1ae(H,Ppub)−r1e(P, P)−xe(H ′, P)−v

= e(U1, Ppub)−1e(P0, P);
e(U2, Q)ae(H,Q)−r2ae(H,Qpub)−r2 = e(U2, Qpub)−1e(V,Q);

e(U3, Q)ťιe(H,Q)−r3ťιe(H,Q′
pub)

−r3e(Q,Q)−tι = e(U3, Q
′
pub)

−1e(H ′, Q)

Efficient Dynamic k-Times Anonymous Authentication 91

Most of the pairing operations in this proof can be pre-computed. The member
M computes the proof as follows.

1. Generate r1, r2, r3, k1, ..., k18 ← Zp and compute
U1 = SHr1; U2 = WHr2 ; U3 = RιH

r3 ;
U4 = P r1

1 P
r2
2 H

r4 ; U5 = P r3
1 H

r5 ; U6 = P x+ťι

1 Hr6 ;
T1 = P k1

1 P
k2
2 H

k4 ; T2 = P k7
1 P

k8
2 H

k9U−k10
4 ; T3 = P k3

1 H
k5 ;

T4 = P k11
1 Hk12U−k13

5 ; T5 = P k14+k13
1 Hk6 ; T6 = P k15

1 Hk16U−k14
6 ;

Π1 = Γ k14+k17 ; Π2 = Γ̌ k15Φ−lk14−lk13−k14 ;
Π3 = e(U1, P)k10e(H,P)−k7e(H,Ppub)−k1e(P, P)−k14e(H ′, P)−k18 ;
Π4 = e(U2, Q)k10e(H,Q)−k8e(H,Qpub)−k2 ;
Π5 = e(U3, Q)k13e(H,Q)−k11e(H,Q′

pub)
−k3e(Q,Q)−k17

2. Compute c = HZp(P ||Ppub||P0||H ||H ′||P1||P2||Φ||Q||Qpub||Q′
pub||ID||k||l||

V ||U1||...||U6||T1||...||T6||Π1||...||Π5)
3. Compute in Zp: s1 = k1 + cr1; s2 = k2 + cr2; s3 = k3 + cr3; s4 = k4 + cr4;
s5 = k5 + cr5; s6 = k6 + cr6; s7 = k7 + cr1a; s8 = k8 + cr2a; s9 = k9 + cr4a;
s10 = k10 + ca; s11 = k11 + cr3ťι; s12 = k12 + cr5 ťι; s13 = k13 + cťι; s14 =
k14+cx; s15 = k15+c(x+ ťι)x; s16 = k16+cr6x; s17 = k17+ctι; s18 = k18+cv

4. Output (U1, ..., U6, c, s1, ..., s18)

Verification of Proof2b. Checking the following equation
c

?= HZp(P ||Ppub||P0||H ||H ′||P1||P2||Φ||Q||Qpub||Q′
pub||ID||k||l||V ||U1||...||U6||

P s1
1 P

s2
2 H

s4U−c
4 ||P s7

1 P
s8
2 H

s9U−s10
4 ||P s3

1 H
s5U−c

5 ||P s11
1 Hs12U−s13

5 ||
P s14+s13

1 Hs6U−c
6 ||P s15

1 Hs16U−s14
6 ||Γ s14+s17Φ−c||Γ̌ s15Φ−ls14−ls13−s14 ||

e(U1, P)s10e(H,P)−s7e(H,Ppub)−s1e(P, P)−s14e(H ′, P)−s18e(U1, Ppub)c

e(P0, P)−c||e(U2, Q)s10e(H,Q)−s8e(H,Qpub)−s2e(U2, Qpub)ce(V,Q)−c||
e(U3, Q)s13e(H,Q)−s11e(H,Q′

pub)
−s3e(Q,Q)−s17e(U3, Q

′
pub)

ce(H ′, Q)−c.

Trace
This algorithm is almost the same as in NS05. The identity of a malicious user
can be traced from an AP’s LOG as follows.

1. Look for two entries (Γ, Γ̌ , l, P roof) and (Γ ′, Γ̌ ′, l′, P roof ′) in the LOG, such
that Γ = Γ ′ and l �= l′, and that Proof and Proof ′ are valid. If no such
entry can be found, output NONE.

2. Computeβ=(Γ̌ /Γ̌ ′)1/(l−l′)=(Φ(lx+lťι+x)/(x2+xťι)/Φ(l′x+l′ ť′
ι+x)/(x2+xť′

ι))1/(l−l′)=
Φ1/x, and look for a pair (i, β) from the LIST. Output member identity i, or
if no such (i, β) can be found conclude that the GM has deleted some data
from LIST, and output GM.

4.3 Comparison

Apart from providing the same desirable properties of the NS05 and TFS04
schemes, a significant advantage of our scheme is that its authentication costs do
not depend on k or any parameter. Its only tradeoff is that the Bound algorithm
needs to compute {R1, ..., Rk} for the tag bases. However, each AP needs to run
the Bound algorithm only once whereas the authentication protocol is executed

92 L. Nguyen

by all granted members for k times. So the tradeoff is very trivial compared to
the advantage.

We have the following comparison on the number of exponentiations (EX),
scalar multiplications (SM), pairings (PA) and transmitted bytes in the authen-
tication protocol. For the communication comparison, we use the parameters in
[12]. The TFS04 scheme has ν = 1024, ε = μ = κ = 160. For other schemes, p
is a 160-bit prime, GT is a subgroup of a finite field of size approximately 21024

and GT elements can be compressed by a factor of three using techniques in [9].
Most of the pairings can be pre-computed. The user can compute e(U1, P)k10 by
pre-computing e(S, P) and e(H,P) and computing e(S, P)k10e(H,P)k10r1 (this
way removes pairing computation but increases the number of exponentiations).
It is similar for e(U2, Q)k10 and e(U3, Q)k13 . Note that the TFS04 scheme does
not provide the dynamic property and does not have the Update algorithm. That
algorithm is the same for NS05 and our scheme. It is not needed if NS05 and
our scheme are modified to remove the dynamic property. So we do not count
the cost of the Update algorithm in the comparison table. Besides, the number
of bytes sent by a user in the NS05 scheme we computed (60 k+ 408) is different
from that in [12] (60 k+ 304).

TFS04 NS05 Our scheme
Computation by AP (17+8k)EXs (15+8k)EXs 21EXs+

+8SMs+4PAs 20SMs+6PAs
Computation by User (28+8k)EXs (21+8k)EXs 22EXs+

+12SMs 27SMs
Bytes sent by AP 40 20 20
Bytes sent by User 60 k+ 1617 60 k+ 408 585
Dynamic No Yes Yes

4.4 Security

Security of our scheme is stated in Theorem 1, which is proved in Appendix B.

Theorem 1. In the random oracle model, the dynamic k-TAA scheme provides:
(i) Correctness; (ii) Anonymity under the Decisional Bilinear Diffie-Hellman
Inversion assumption; (iii) Detectability under the Strong Diffie-Hellman as-
sumption; (iv) Exculpability for users under the Computational Bilinear Diffie-
Hellman Inversion 2 assumption; (v) Exculpability for the GM under the Strong
Diffie-Hellman assumption.

References

1. D. Boneh and X. Boyen. Short Signatures Without Random Oracles. EURO-
CRYPT 2004, Springer-Verlag, LNCS 3027, pp. 56-73.

2. D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. EUROCRYPT 2004, Springer-Verlag, LNCS 3027, pp.
223-238.

Efficient Dynamic k-Times Anonymous Authentication 93

3. J. Camenisch, and A. Lysyanskaya. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. CRYPTO 2002, Springer-Verlag,
LNCS 2442, pp. 61-76.

4. J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient Protocols.
SCN 2002, Springer-Verlag, LNCS 2576.

5. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact E-Cash. EURO-
CRYPT 2005, Springer-Verlag, LNCS 3494, pp. 302-321, 2005.

6. L. Chen, M. Enzmann, A. Sadeghi, M. Schneider, and M. Steiner. A Privacy-
Protecting Coupon System. Financial Cryptography 2005, Springer-Verlag, LNCS
3570, pp. 93-109.

7. Y. Dodis and A. Yampolskiy. A Verifiable Random Function with Short Proofs and
Keys. Public Key Cryptography 2005, Springer-Verlag, LNCS 3386, pp. 416-431.

8. A. Fiat, and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. CRYPTO 1986, Springer-Verlag, LNCS 263, pp. 186-194.

9. R. Granger, D. Page, and M. Stam. A Comparison of CEILIDH and XTR. Algo-
rithmic Number Theory, 6th International Symposium, ANTS-VI, pages 235-249.
Springer, June 2004.

10. A. Kiayias, and Moti Yung. Group Signatures: Provable Security, Efficient Con-
structions and Anonymity from Trapdoor-Holders. Cryptology ePrint Archive: Re-
port 2004/076.

11. Lan Nguyen. Privacy-Protecting Coupon System Revisited. Financial Cryptogra-
phy Conference (FC) 2006, LNCS, Springer, 2006.

12. L. Nguyen and R. Safavi-Naini. Dynamic k-Times Anonymous Authentication.
Applied Cryptography and Network Security (ACNS) 2005, Springer-Verlag, LNCS
3531, 2005.

13. I. Teranisi, J. Furukawa, and K. Sako. k-Times Anonymous Authentication. ASI-
ACRYPT 2004, Springer-Verlag, LNCS 3329, pp. 308-322, 2004.

14. I. Teranishi and K. Sako. k-Times Anonymous Authentication with a Constant
Proving Cost. Public Key Cryptography 2006, Springer-Verlag, LNCS 3958, pp.
525-542, 2006.

15. V. Wei. Tracing-by-Linking Group Signatures. Information Security Conference
(ISC) 2005, Springer-Verlag, LNCS 3650, pp. 149-163, 2005.

A Preliminaries

A.1 Notation

For a function f : N → R+, if for every positive number α, there exists a
positive integer κ0 such that for every integer κ > κ0, it holds that f(κ) < κ−α,
then f is said to be negligible. Let PT denote polynomial-time, PPT denote
probabilistic PT and DPT denote deterministic PT. For a PT algorithm A(·),
“x ← A(·)” denotes an output from the algorithm. For a set X, “x ← X”
denotes an element uniformly chosen from X, and #X denotes the number
of elements in X. Let “Pr[Procedures|Predicate]” denote the probability that
Predicate is true after executing the Procedures, HX denote a hash function
from the set of all finite binary strings {0, 1}∗ onto the set X, and PK{x : R(x)}
denote a proof of knowledge of x that satisfies the relation R(x). An adversary
is modelled by an interactive Turing machine, which interacts with some oracles.

94 L. Nguyen

Each oracle performs operations and produces outputs required by queries from
the adversary. An entity is corrupted if the adversary has the entity’s secret keys
and completely controls the entity’s actions. We define 1/0 to be 0.

A.2 Complexity Assumptions

q-Strong Diffie-Hellman (q-SDH) Assumption [1]. For every PPT algorithm A, the

following function Advq-SDH
A (κ) is negligible.

Adv
q-SDH
A (κ) = Pr[(A(t, P, P s, . . . , P (sq)) = (c, P 1/(s+c))) ∧ (c ∈ Zp)]

where t = (p,G,GT , e, P) ← G(1κ) and s← Z∗
p.

The assumption informally means that there is no PPT algorithm that can
compute a pair (c, P 1/(s+c)), where c ∈ Zp, from a tuple (P, P s, . . . , P (sq)), where
s← Z∗

p.
Decisional Bilinear Diffie-Hellman Inversion (DBDHI) Assumption [2]. For every
PPT algorithm A, the following function AdvDBDHI

A (κ) is negligible.

AdvDBDHI
A (κ) = |Pr[A(t, P, P s, . . . , P (sq), e(P, P)1/s) = 1]

−Pr[A(t, P, P s, . . . , P (sq), Γ) = 1]|

where t = (p,G,GT , e, P) ← G(1κ), Γ ← G∗
T and s← Z∗

p.
Intuitively the DBDHI assumption [2] states that there is no PPT algorithm

that can distinguish between a tuple (P, P s, . . . , P (sq), e(P, P)1/s) and a tuple
(P, P s, . . . , P (sq), Γ), where Γ ← G∗

T and s← Z∗
p. We define the Computational

Bilinear Diffie-Hellman Inversion 2 assumption, which holds if either DBDHI or
SDH holds.
Computational Bilinear Diffie-Hellman Inversion 2 (CBDHI2) Assumption. For every
PPT algorithm A, the following function AdvCBDHI2

A (κ) is negligible.

AdvCBDHI2
A (κ) = Pr[A(t, P, P s, . . . , P (sq), e(P, P)1/s) = s]

where t = (p,G,GT , e, P) ← G(1κ) and s← Z∗
p.

B Security Proofs

For Theorem 1, as part (i) can easily be proved by checking equations, we only
provide proofs for parts (ii), (iii), (iv) and (v). Due to space limitation, we omit
the proof that Proof2 is non-interactive zero-knowledge, which is standard.

B.1 Proof of Theorem 1 (ii)

Suppose there exists a PPT adversaryA breaking the Anonymity property of our
scheme, we show a PPT adversary B that can break the DBDHI assumption.

Efficient Dynamic k-Times Anonymous Authentication 95

Let t = (p,G,GT , e, P
′) ← G(1κ) and a tuple α = (P ′, P ′w, . . . , P ′(wq), Λ) be

uniformly chosen from either S0 = {(P ′, P ′w, . . . , P ′(wq), e(P ′, P ′)1/w)|w ← Z∗
p}

or S1 = {(P ′, P ′w, . . . , P ′(wq), Λ)|w ← Z∗
p, Λ ← G∗

T }. B’s challenge is to guess
whether α is chosen from S0 or S1. B interacts with A as follows.
B randomly chooses a bit b ← {0, 1} and let b′ be the other bit. B gener-

ates different δ0, δ̌0, δ1, δ̌1, ..., δq−1, δ̌q−1 ← Z∗
p and sets xb = w − δ0 (without

knowing xb). Let F = xb(xb + δ̌0)
∏q−1

i=1 (xb + δi)(xb + δ̌i), then it can be pre-
sented as a polynomial F =

∑2q
i=0 Aiw

i, where A0, ..., A2q are computable from
δ0, δ̌0, δ1, δ̌1, ..., δq−1, δ̌q−1 and A0 �= 0. Therefore, B can compute Φ = e(P ′, P ′)F ,
βb = Φ1/xb , Θ̌0 = Φ1/(xb+δ̌0), Θi = Φ1/(xb+δi) and Θ̌i = Φ1/(xb+δ̌i), i = 1, ..., q−1
from (P ′, P ′w, . . . , P ′(wq)). Given l, B can also compute
Φ(lxb+lδ̌i+xb)/(x2

b+xbδ̌i) = βl
bΘ̌i for i = 0, ..., q − 1. Let Θ0 = e(P ′, P ′)

∑ 2q
i=1 Aiw

i−1

ΛA0 , if Λ = e(P ′, P ′)1/w then Θ0 = Φ1/(xb+δ0).
B selects P, P0, P1, P2, H,H

′ ← G, γ ← Z∗
p, and computes Ppub = P γ . B

provides A the group public key gpk = (P, P0, H
′, Ppub, Φ,H, P1, P2) and the

group secret key gsk = γ. B creates a number of users including two target users
i0 and i1 that will be sent to OQUERY later.

At any time, A can create a new AP by generating apk, ask, an initial ac-
cumulated value, LOG and ARC as described in the AKg algorithm. Because
A determines the AP’s identity to be sent to OQUERY , it can create more APs
without detriment to its attack. Therefore, let ζ be the upper bound on the num-
ber of APs, we can assume A always creates ζ APs. B randomly picks m ← Z∗

ζ .
Suppose the mth AP IDm has bound km, B randomly picks jm ← Z∗

km
.

B simulates oracles accessible by A as follows.

– Random oracle HZ∗
p×Z∗

p
: This oracle is queried in the Bound algorithm. If the

query is (IDm, km, jm), the oracles returns (t = δ0, ť = δ̌0). Otherwise, on
the ith query, the oracle returns (t = δi, ť = δ̌i).

– OLIST : This oracle operates as in the definition of OLIST , with regard to
an identification list LIST of user identity/public-key pairs. A can query the
oracle to view a user’s public key. A can request the oracle to record the
identity and public key of a user, who is not i0 or i1, to LIST. A can request
the oracle to delete data from LIST.

– OJOIN−U : A just needs to query this oracle to register i0 and i1 to the
group, as A can collude other users and the GM.

If A asks the oracle to register ib, B chooses Cb ← G, computes βb = Φ1/xb

and adds (ib, βb) to LIST. B (the oracle) then returns βb and Cb to A (the
GM) with a simulation of the standard non-interactive zero-knowledge proof
Proof1 = PK{(xb, v

′
b) : Cb = P xbH ′v′

b ∧ Φ = βxb

b }. The GM follows the
Join protocol’s description and sends back (Sb, ab, ṽb). B then checks that
e(Sb, P

abPpub) = e(CbH
′ṽbP0, P) and sets ib’s public key as (ab, Sb, βb) (ib’s

secret key (xb, vb = v′b + ṽb) is unknown).
If A asks the oracle to register ib′ , B chooses xb′ , v′b′ ← Z∗

p, computes
βb′ = Φ1/xb′ and follows the Join protocol’s description so that (ib′ , βb′) is
added to LIST, ib′ ’s public key is (ab′ , Sb′ , βb′) and ib′ ’s secret key is (xb′ , vb′).

96 L. Nguyen

– OAUTH−U : A just needs to query this oracle to authenticate i0 and i1, as A
can collude other users, the APs and the GM.
If ib is queried to be authenticated by an AP (ID, k), whose public key and
current accumulated value are apk = (Q,Qpub, Q

′
pub) and V respectively, and

ib’s counter d for this AP is not greater than k, B runs the algorithm Update
to update his access key mak = (j,Wb). On receiving a random integer l ←
Z∗

p from the AP, B chooses a unused tag base (tι, ťι, Rι), where (tι, ťι) is differ-
ent from (δ0, δ̌0), computes tag (Γ, Γ̌) = (Φ1/(xb+tι), Φ(lxb+lťι+xb)/(x2

b+xbťι)),
and sends (Γ, Γ̌) to the AP with a simulation of the proof Proof2, which
can be done by using the simulator in the proof for Proof2’s zero-knowledge
property and resetting the random oracle. A and B perform the rest of the
authentication protocol as specified in Section 4.2.

If ib′ is queried to be authenticated by an AP, as B knows ib′ ’s secret key,
A and B can simulate the authentication protocol as specified in Section 4.2.

– OQUERY : If the queried AP is not IDm, B fails and exits. Otherwise, as m is
randomly chosen, the probability that the queried AP is IDm is at least 1/ζ.
In this case, suppose the AP IDm has public key apk = (Q,Qpub, Q

′
pub) and

current accumulated value V , and ib’s counter d for this AP is not greater
than k. B runs the algorithm Update to update his access key mak = (j,Wb).
On receiving a random integer l ← Z∗

p from the AP, B chooses the tag base
(tι = δ0, ťι = δ̌0, Rι), computes tag (Γ, Γ̌) = (Θ0, Φ

(lxb+lťι+xb)/(x2
b+xbťι)),

and sends (Γ, Γ̌) to the AP with a simulation of the proof Proof2, which
can be done by using the simulator in the proof for Proof2’s zero-knowledge
property and resetting the random oracle. The AP IDm and B perform the
rest of the authentication protocol as specified in Section 4.2. B then outputs
the transcript of the protocol.

From the transcript outputted by OQUERY , if A returns the bit b, then B
decides that the tuple α is chosen from S0. Otherwise, B decides that the tuple
α is chosen from S1. Then if A can break the Anonymity property of the k-TAA
scheme, then B can break the DBDHI assumption.

B.2 Proof of Theorem 1 (iii)

Suppose there exists a PPT adversary A breaking the Detectability property of
our scheme, we show a PPT adversary B that can break the SDH assumption.
Let challenge = (R,Rz, . . . , Rzq

) be a tuple of the SDH assumption, where
z ← Z∗

p, B’s challenge is to compute (c, R1/(z+c)), where c ∈ Zp.
As A can break Detectability, at the end of the experiment with non negli-

gible probability, A can be successfully authenticated by an honest AP V with
access bound k for more than k × #AGV times, where #AGV is the number
of members in the AP’s access group. As Proof2 is zero-knowledge, for each of
these successful authentication runs, A must have the knowledge of a tag base
(tι, ťι, Rι), a member public key (a, S), a member secret key (x, v) and a member
access key W . There are 3 possible cases:

Efficient Dynamic k-Times Anonymous Authentication 97

– A member secret key (x, v) in V ’s access group is used for authentication for
more than k times. As V provides only k tag bases, A must generate a new
valid tag base (t, ť, R) to use with (x, v). Following arguments (which can’t
be shown due to space limitation) similar to the proof of Lemma 2 in [12],
if A can generate a new valid tag base (t, ť, R), then the SDH assumption
does not hold.

– No member secret key in V ’s access group is used for authentication for more
than k times and A can generate a new member key pair ((a, S, β), (x, v))
different from any member key pair of the whole group. Following arguments
(which can’t be shown due to space limitation) similar to the proof of Lemma
2 in [12], if this can be done, then the SDH assumption does not hold.

– No member secret key in V ’s access group is used for authentication for
more than k times and A can generate a new member access key W for a
group member, who is not in V ’s access group and has a member key pair
((a, S, β), (x, v)). In this case, B simulates the GM, the users, the APs and
randomly chooses an AP V with bound k and provides them to A. B then
runs the GKg algorithm to generate gpk = (P, P0, H

′, Ppub, Φ,H, P1, P2) and
gsk = γ and runs the AKg algorithm for all APs, except V . For V , B selects
f, s′ ← Z∗

p, and set Q = R, Qpub = Rz, Q′
pub = Qs′

and V0 = Rf . The
initial accumulated value is V0 and V ’s keys are ((Q,Qpub, Q

′
pub), (z, s

′)),
where B does not know z. With these capabilities, B can easily provide A
access to simulations of the oracles OJOIN−GM , OAUTH−AP , OGRAN−AP ,
OREV O−AP and OCORR−AP , except when A uses OCORR−AP to corrupt V ,
B fails and stops. Note that when A uses OGRAN−AP or OREV O−AP to ask
V to grant access to or revoke access from a user, B can always use the tuple
challenge to compute the new accumulated value, as long as the number of
users is less than q. As B randomly chooses V , with non-negligible probability,
A can be successfully authenticated by V for more than k×#AGV times and
generate a new member access key W for a group member, who is not in V ’s
access group and has a member key pair ((a, S, β), (x, v)). Suppose the public
keys of all members in AGID are {(ai, ·, ·)}m

i=1, then the current accumulated
value of the AP is V = Rf

∏m
i=1(ai+z), therefore W = Rf

∏m
i=1(ai+z)/(a+z).

From W and the tuple challenge, B can compute R1/(a+z) and thereby
break the SDH assumption.

B.3 Proof of Theorem 1 (iv)

We show that if there exists a PPT adversary A breaking Exculpability for
users in our scheme, then there exists a PPT adversary B breaking the Computa-
tional Bilinear Diffie-Hellman Inversion 2 assumption. Let t = (p,G,GT , e, P

′)←
G(1κ) and suppose that B is given a challenge α = (P ′, P ′w, . . . , P ′(wq),
e(P ′, P ′)1/w) and B needs to compute w. B generates different δ0, δ̌0, δ1, δ̌1, ...,
δq−1, δ̌q−1 ← Z∗

p and sets x = w − δ0. B simulates an instance of the dynamic
k-TAA scheme and the oracles in the same way as simulations in the experiment
of Anonymity proof, except that there is only one target user i and e(P ′, P ′)1/w

is used instead of Λ. So we omit the description of simulations.

98 L. Nguyen

If A can break Exculpability for users, then Trace outputs i at the end
of the experiment. That means there exist (Γ1, Γ̌1, l1, P roof) and
(Γ2, Γ̌2, l2, P roof

′) in the log of an AP such that Γ1 = Γ2, (Γ̌1/Γ̌2)1/(l1−l2) = β(=
Φ1/x) and Proof and Proof ′ are valid. As A can only use OAUTH−U within the
allowable numbers of times, not both (Γ1, Γ̌1, l1, P roof) and (Γ2, Γ̌2, l2, P roof

′)
is created by B using the oracle.

In the case neither of them was created by B using the oracle, as Proof2
is zero-knowledge, A must have the knowledge of (x1, t1, ť1) and (x2, t2, ť2) such
that (Γ1, Γ̌1) = (Φ1/(x1+t1), Φ(l1x1+l1ť1+x1)/(x2

1+x1ť1)); (Γ2, Γ̌2) = (Φ1/(x2+t2),

Φ(l2x2+l2ť2+x2)/(x2
2+x2ť2)); Γ1 = Γ2 and Γ̌1/Γ̌2 = Φ(l1−l2)/x. By converting all

elements into exponents of Φ, one can compute x from x1, t1, ť1, l1, x2, t2, ť2, l2.
Therefore, w is computable. By similar arguments for the case when one of
(Γ1, Γ̌1, l1, P roof) or (Γ2, Γ̌2, l2, P roof

′) was created by B using the oracle, one
can also find w.

B.4 Proof of Theorem 1 (v)

Suppose a PPT adversary A can break Exculpability for the GM in our scheme,
we show that the SDH assumption does not hold. If Trace outputs GM at the end
of the experiment, there exist (Γ, Γ̌ , l, P roof) and (Γ ′, Γ̌ ′, l′, P roof ′) in the log
of an AP such that Γ = Γ ′, (Γ̌ /Γ̌ ′)1/(l−l′) /∈ LIST and Proof and Proof ′ are
valid. As Proof2 is zero-knowledge, A must have the knowledge of (t, ť, a, S, x, v)
and (t′, ť′, a′, S′, x′, v′) such that x+t = x′+t′. If t �= t′, then with non-negligible
probability, either x or x′ is not issued in the Join protocol with the GM; so
a new valid member public key/secret key pair has been created without the
GM. If t = t′, then x = x′. But Φ1/x /∈ LIST , so x is not issued in the Join
protocol with the GM; so a new valid member public key/secret key pair has
also been created without the GM. Following arguments (which can’t be shown
due to space limitation) similar to the proof of Lemma 2 in [12], if a new valid
member public key/secret key pair can be created without the GM, then the
SDH assumption does not hold.

Side Channel Analysis of Practical Pairing
Implementations: Which Path Is More Secure?

Claire Whelan� and Mike Scott

School of Computing, Dublin City University
Ballymun, Dublin 9. Ireland

{cwhelan, mike}@computing.dcu.ie

Abstract. We present an investigation into the security of three practi-
cal pairing algorithms; the Tate, truncated Eta (ηT) and Ate pairing, in
terms of side channel vulnerability. These three algorithms have recently
shown to be efficiently computable on the resource constrained smart
card, however no in depth side channel analysis of these specific pairing
implementations has yet appeared in the literature. We assess these al-
gorithms based on two main avenues of attack since the secret parameter
input to the pairing can potentially be entered in two possible positions,
i.e. e(P, Q) or e(Q,P) where P is public and Q is private. We analyse
the core operations fundamental to pairings and propose how they can
be attacked in a computationally efficient way. Building on this we show
how each implementation may potentially succumb to a side channel at-
tack and demonstrate how one path is more susceptible than the other
in Tate and Ate. For those who wish to deploy pairing based systems we
make a simple suggestion to improve resistance to side channel attacks.

Keywords: Side Channel Analysis (SCA), Pairing Based Cryptography,
Correlation Power Analysis (CPA), Tate Pairing, Ate Pairing, ηT Pairing.

1 Introduction

Pairings are a relatively new primitive in the world of cryptography. Pairings
are bilinear maps, which make them attractive for cryptographic constructions.
Since their introduction in the constructive sense1, a multitude of pairing based
protocols have been suggested and a handful of efficient pairing implementations
have been developed. We refer the reader to [1] for a comprehensive listing of
such papers.

Side Channel Analysis (SCA) has advanced immeasurably since its break-
through into the security community almost a decade ago [10]. Almost every
cryptographic construction, especially those intended for use in the smart card,
have been subject to some form of SCA or another. These powerful attacks,

� Supported by the Irish Research Council for Science, Engineering and Technology
(IRCSET).

1 Initially pairings were suggested for cryptanalytic purposes [12].

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 99–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

100 C. Whelan and M. Scott

which do not play by the rules of traditional cryptanalysis, have proven success-
ful against many algorithms.

In this paper we perform passive differential side channel analysis (in the
form of correlation power analysis (CPA)) of three pairing algorithms, namely
the Tate [3], truncated Eta (ηT) [2] and Ate pairing [9].

1.1 Related Work

The first mention of side channel analysis of pairings was in 2004 when Page and
Vercauteren [14] described a fault attack of Duursma-Lee algorithm [7] for char-
acteristic three and how the multiplication operation in general pairings could be
attacked using Simple Power Analysis (SPA) and a Messerges style Differential
Power Analysis (DPA) [13]. While this paper identified the vulnerable operation
in pairings (i.e. finite field multiplication), the method described to attack it
was computationally infeasible. The method extracted one bit at a time of one
of the coordinates of the secret parameter (for example, extracted one bit of x
of Q(x, y) at a time). Given that each coordinate is a element of the underlying
finite field and potentially n bits (where n is at least 160 bits), extracting one
bit at a time is unrealistic. This is without even considering the additional task
of data acquisition and data processing required for DPA to extract one bit.

1.2 Motivation

We choose three specific pairing algorithms to assess, namely the BKLS algo-
rithm for the Tate pairing [3], the Ate pairing [9], and the BGOhES algorithm for
a truncated version of the Eta pairing ηT [2]. Our reasoning for choosing these
implementations is that recently Scott et al. [16] presented the first timings
for the computation of these pairings which was comparable with contempo-
rary alternative cryptosystems on a 32 bit smart card. Since this contentious
aspect that has previously hindered the widespread adoption of pairings from a
commercial perspective is no longer an issue, the door is open for adoption of
pairings on these potentially side channel attackable devices. Therefore thorough
side channel evaluation of employable pairing implementations is necessary and
vital.

1.3 Contributions of This Work

In this paper we build on Page and Vercauterens work by describing a more
in depth approach to performing side channel analysis of three specific pairing
implementations. We solely concentrate on passive side channel attacks which
monitor the natural inescapable emanations of a device such as power analysis
[11], as opposed to determining the effects of purposely induced faults. We pro-
vide a computationally feasible method of attacking the finite field operations
fundamental to pairings. We describe this attack in terms of both finite field
multiplication and square root, since the square root operation is a potentially
attackable operation in the ηT pairing. However we approach our analysis from a

SCA of Practical Pairing Implementations: Which Path Is More Secure? 101

different perspective. Instead of focusing on specific algorithms for specific oper-
ations, we focus on how operations are computed from a structural perspective.
We assess each candidate pairing algorithm based on the prospect of the secret
parameter being entered in either parameter position and show how some pairing
implementations are more susceptible to attack than others.

The paper is organised as follows. A brief overview of the candidate pair-
ing algorithms and correlation power analysis (CPA) is presented in section 2.
In section 3 we analyse the core pairing operations in terms of how they may
be attacked using side channels from a structural sense. We define a strategy
of attack for each pairing algorithm and consequently compare Tate, ηT and
Ate in section 4. We present possible countermeasures and address their ef-
fectiveness in deterring SCA in section 5. Finally we conclude and summarise
our findings in section 6. Note that the specific pairing algorithms themselves
can be found in appendix A.

2 Background

We briefly review relevant details on pairings and CPA.

2.1 Overview of Practical Pairings

Let E be an elliptic curve over a finite field Fq. Pairings are functions which map
a pair of elliptic curve points P,Q ∈ E(Fq), to an element of a multiplicative
group of an underlying finite field μ ∈ Fq. Algorithms A.1, A.2 and A.3 describe
implementations of Tate, Ate and ηT respectively. Each of these algorithms are
efficiently computable on a 32 bit smart card, executing in under half a second
[16]. Each of the algorithms we consider are optimised pairing algorithms.

The BKLS [3] algorithm is a particularly fast method for computing the Tate
Pairing e(P,Q), where P ∈ E(Fp) is a point on the base curve and Q ∈ E′(Fpk/d)
is a point on the d-th order twist with embedding degree k, where d is at
least 2 when k is even [4]. BKLS can be calculated over supersingular or non-
supersingular curves over finite fields of arbitrary characteristic.

The Ate pairing [9] a(P,Q) is the most recently discovered pairing algorithm,
and is potentially faster than BKLS for non-supersingular curves. Ate cleverly
observes that it is more efficient to make the first parameter P ∈ E′(Fpk/d) and
the second parameter Q ∈ E(Fp).

The BGOhES algorithm for the ηT pairing, is a generalisation of Duursma-
Lee pairing algorithm for the Tate pairing with a truncated loop. The pairing
ηT (P,Q) is calculated on a supersingular curve over small characteristic, where
both parameters P and Q are elements in E(Fpm) where p = 2 or 3.

Each pairing algorithm ultimately consists of an application of Millers algo-
rithm followed by a final exponentiation. The notable difference between the
three pairing is that Ate and Eta both have half length loops compared to Tate.
From a specific implementation standpoint, we will address the cases where the
Tate and Ate pairing is calculated over the large prime field Fpk and the ηT

pairing is calculated over the binary field F2km .

102 C. Whelan and M. Scott

2.2 Correlation Power Analysis

Our reasoning for using CPA is that it focuses on words of data at a time instead
of selection functions, and it overcomes some of the shortcomings of differential
power analysis (DPA) such as ghost peaks [6].

The basis for correlation power analysis (CPA) [6] and other forms of pas-
sive differential SCA is that there exists a relationship between the data being
processed during a computation and detectable physical manifestations such as
power consumption. This dependance is magnified by capturing numerous acqui-
sitions of the target in operation and then applying statistical analysis techniques
to differentiate the signal of interest from noise.

Specifically, CPA builds a hypothetical model based on assumptions made
about what constitutes energy dissipation. Then for key guesses, the correctness
of a guess is established by estimating what the consumption of such data would
be (based on the model) and then comparing it to actual data. This is generally
performed using a correlation test such as Pearson’s correlation coefficient:

ρX,Y =
E(XY)− E(X)E(Y)√

E(X2)− E2(X)
√
E(Y 2)− E2(Y)

(1)

where X relates to the actual data acquired from the attack such as the power
consumption and Y relates to the estimated power consumption derived from
the power model adopted (typical choices are the hamming weight or hamming
distance model).

CPA reveals words (or partial words) of data at a time. We aim to employ
CPA and recover the secret by iteratively extracting feasible portions of the
secret.

3 Side Channel Analysis of Naive Pairings

In a number of pairing based protocols, either the P or Q parameter is secret.
For example, in Boneh and Franklin’s identity based encryption [5] the critical
operation involving the secret key in a pairing is the decryption operation. Al-
though we are analysing pairings in isolation, the associated side channel security
of pairings have implications in the bigger picture.

In order to perform critical analysis of the candidate pairing algorithms, it
is necessary to analyse the core pairing operations in terms of how much infor-
mation they can potentially leak. In this section we will analyse the finite field
calculations central to pairings. Before we address these operations individually,
we make some observations about pairings.

3.1 Pairing Observations

We note the following possible opportunistic observations about pairings:

1. The secret parameter can potentially be entered as the first or second pa-
rameter in the pairing. If the curve is supersingular and a distortion map

SCA of Practical Pairing Implementations: Which Path Is More Secure? 103

ψ(.) is used, as is the case with the Eta pairing, the parameters to the pairing
e(P,Q) can be switched, i.e. e(Q,P) will yield the same result. In the case of
the Tate and Ate pairing, while the parameter can take either path, it must
hold for the entire protocol. Therefore this presents us with two avenues of
attack; the P path and the Q path. We note that depending on which path
is most vulnerable to SCA, such implications may lead to a simple method
of defence.

2. Due to point compression we only need to extract the x coordinate of the se-
cret point. Once this is found there are only two possibilities for y. Therefore
we restrict our attention to the secret x coordinate.

3. We will try to focus on operations which involve elements from the base
field Fq, where q = p or 2m since extension field elements Fqk are k bit times
larger than that of base field elements.

3.2 Structural Analysis of Core Pairing Operations

One of the key requirements in performing a differential side channel attack is to
identify an exploitable operation in the algorithm which involves some known (or
computable) data and the secret key. Since elliptic curve arithmetic ultimately
relies on the underlying finite field, we will restrict our analysis to multiplication,
squaring, square root and reduction over the binary field and multiplication and
reduction over the prime field. We refer the reader to appendix A to see when
and where such operations are used in the candidate pairings.

We briefly recap on binary field and prime field arithmetic, since the candidate
pairing implementations are over F2m and Fp.

Characteristic two finite fields F2m are constructed using polynomial basis
representation: a(z) = {aiz

m−1 + ai−1z
m−2 + . . .+ a2z

2 + a1z+ a0 | ai ∈ {0, 1}}
where a(z) ∈ F2m has degree at most m− 1. Arithmetic over F2m is modulo the
irreducible polynomial f(z). We will represent a(z) ∈ F2m as the concatenation
of w bit blocks: a(z) = a(m/w)−1|a(m/w)−2| . . . |a0, where w is the underlying
processor’s word length.

Characteristic p finite fields, Fp, where p is a large prime, consist of the integers
0, 1, 2, . . . , p− 1 with arithmetic modulo p. Let n = �log2 p� be the bit length of
p. We will represent the elements a ∈ Fp as the concatenation of w bit blocks:
a = a(n/w)−1|a(n/w)−2| . . . |a0.

Since we only need to deterministically calculate partial output of target op-
erations, we revert back to the most basic methods for insight.

Multiplication. The most straightforward method for multiplication is the
shift and xor method for F2m and the operand scanning method for Fp. These
methods are very similar, and so will only describe the former.

The multiplication2 of two F2m elements a(z) =
∑m−1

i=0 aiz
i and b(z) =∑m−1

i=0 biz
i will produce the binary polynomial c(z) =

∑2m−1
i=0 ciz

i, with degree

2 In the context of binary fields by multiplication we mean carry-free binary polyno-
mial multiplication.

104 C. Whelan and M. Scott

2m−1. The shift and xor method involves multiplying words of b(z) by words of
a(z) at a time. This process is depicted in figure 1. In the smart card system used
by Scott et al. [16] they used a special binary polynomial multiplication instruc-
tion. The main distinction between this method and the multiplication of two
Fp elements is that instead of xor-ing, addition (with carry bits) is performed.

×

0w+

20 w+

30 w+

40 w+

50 w+

60 w+

70 w+

80 w+

100 w+

90 w+

110 w+

A
B

C

0's
⎫

=⎬
⎭

Fig. 1. Multiplication of F(2m) elements: the shift and xor method

A simple power analysis (SPA) attack on the bitwise shift and xor method was
suggested by Page et al. in [14], which could easily be extended to apply to the
operand scanning method. However, since it is unlikely that this basic algorithm
will be favoured in a constrained embedded device, it is doubtful that SPA will
work. Other attacks on modular multiplication have also been suggested. Walter
[17] demonstrates how Montgomery multiplication can be attacked with SPA if
an extra reduction is included.

In reality a number of multiplication algorithms can be implemented. We sug-
gest that instead of focusing on the multiplication algorithm itself, we focus on
the result of the multiplication. Due to the structural evolution of multiplica-
tion, which the basic algorithms allow us to easily see (as in figure 1), we can
easily identify which data portions effect the resulting product value (or partial
product). A possible side channel attack of the multiplication operation is as
follows:

Let the target operation for a CPA attack be the multiplication of two finite
field elements. Note that we will deal with the act of multiplication and reduction
separately for the moment. Let x be an n-bit known (or computable) value
by the adversary and k be an n-bit unknown secret value. Let y = x · k be
the resulting 2n-bit product. We represent x, k and y as the concatenation of
w bit blocks: x = x(n/w)−1|x(n/w)−2| . . . |x0, k = k(n/w)−1|k(n/w)−2| . . . |k0 and
y = y(2n/w)−1|y(2n/w)−2| . . . |y0 accordingly.

SCA of Practical Pairing Implementations: Which Path Is More Secure? 105

Since multiplication is not a suitable selection or partition function, and CPA
is the attack of choice, w-bit portions of k will be extracted at a time3. To
identify the target input block we denote xl and kl to be the lth w-bit block of x
and k respectively, where 0 ≤ l ≤ n/w − 1. To identify the hypothetical output
block we denote yr to be the r th w-bit block of y, where 0 ≤ r ≤ (2n/w)− 1.

If we are dealing with implementations over the binary field, there are two
possible positions from which the attack can commence, either the most or least
significant word of k, since all middle words of the product x·k are polluted by the
outermost words. If the implementation is over the prime field, we are restricted
to commencing from the least significant word only since carry propagation will
significantly effect all other words. We will describe the case where we begin
searching the least significant word of k, k0. First all the data for the correlation
test is produced.

Algorithm 1. Generate hypothetical output of the multiplication x0 · k0 for
all possible k0, where x0 is known. N is the number of times the algorithm is
executed and consequently relates to the number of acquisitions captured.
Input: x0

Output: H0

1: for 0 ≤ j < 2w do
2: for 1 ≤ i ≤ N do
3: k0 = j
4: y0 = k0 · x0

5: H0(i, j) = y0

6: end for
7: end for
8: return H0

This will produce a N × 2w matrix H0 detailing the hypothetical product of
all 2w possible k0’s and the N known x0’s. Note that the actual multiplication of
k0 · x0 will produce a 2w bit product y0, however only the least significant word
of this is required as entry in H0. The most significant word of y0 contributes to
the subsequent product word y1.

To identify which is the correct least significant word k0, the correlation is
calculated between the estimated power consumption of each row in H0 (this
contributes to Y in equation (1)) and a discrete time interval in the acquired
physical traces where the target operation is being executed (this contributes to
X in equation (1)). The hypothesis with the highest correlation, is identified as
the correct least significant word k0.

To extract the remaining interior words of k, the attack proceeds similar to
algorithm 1. It can be seen from figure 1 that in the 2n-bit product y, all middle
3 In the case of Scott et al. implementation, where w = 32 it will be a computationally

intensive task to extract one word. However it is possible to calculate the partial
correlation by just focusing on practical portions of w at a time.

106 C. Whelan and M. Scott

words are influenced by more than one word in k. Therefore k1 cannot be found
unless k0 is known, and k2 cannot be found unless k1 and k0 is known, etc.
Therefore, line 5 in algorithm 1 is replaced by yr = (kl ·x0)+ (auxiliary words)
for 1 ≤ l ≤ n/w − 2. For instance y1 = (k1 · x0) + (k0 · x1) + (k0 · x0) and
y2 = (k2 · x0) + (k1 · x1) + (k0 · x2) + (k1 · x0).

The computational cost of such an attack is l×2w. Note that we can improve
on this slightly when analysing binary field implementations. By observing the
fact that the most and least significant words of k can be independently calcu-
lated (i.e. no middle words of k influence the multiplied output), we can simulta-
neously calculate hypotheses for k0 and kn/w−1. Once both of these terms have
been extracted, then the search can step inwards, i.e. calculate hypotheses for k1
and kn/w−2 simultaneously, etc. This reduces the cost of extracting k to l

2 ×2w.

Squaring. A variety of fast multiplication algorithms exist for squaring finite
field elements. Here we will view squaring in its simplest form which is the
multiplication of x · k, where x = k, and so the attack just described can be
applied in the same way to the squaring operation.

Square Root. The square root method is only called on in the Eta pairing
implementation, and so only square root calculation over the binary field will be
discussed. An efficient method for calculating the square root can be obtained
from the observation that

√
a can be expressed in terms of the square root of

the element z [8]. Basically the value a is split into it’s odd and even coeffi-
cients, as depicted in figure 2, and then the odd portion is multiplied by

√
z and

subsequently added to the even portion. If the irreducible polynomial f(z) is a

Even Odd

0 1 2 3 4 5 876 109 11 15141312 181716 2119 20 2322 24 2625 2827 3029 31

0 2 4 86 10 1412 1816 20 22 24 26 28 30 25 27 29 311 3 5 7 9 11 1513 17 2119 23

Even Odd

0 1 2 3 4 5 876 109 11 15141312 181716 2119 20 2322 24 2625 2827 3029 31

0 2 4 86 10 1412 1816 20 22 24 26 28 30 25 27 29 311 3 5 7 9 11 1513 17 2119 23

Fig. 2. Square Root of F(2m) elements where w = 32

trinomial or pentanomial, then an efficient formula for calculating
√
z can be

used. For example,
√
z = x

m+1
2 + z

n+1
2 (mod f(z)) when f(z) is a trinomial and√

z = z
m+1

2 + z
n+1
2 + z

q+1
2 + z

r+1
2 (mod f(z)) when f(z) is a pentanomial.

Since the act of square root is a single operand operation, the only way the
act of calculating the square root of a secret value can be used in a side channel
attack is if, after a prediction about a (and the resulting

√
a) has been made,

this value is later used in an operation involving known data. The hypothetical
output of this following operation is then used to verify the hypotheses. This
is a form of second order attack and will be described later in more detail. For
now we will describe how a value entered into the square root function changes

SCA of Practical Pairing Implementations: Which Path Is More Secure? 107

in a structural sense, so that by knowing a portion of a we can deterministically
calculate what a portion of

√
a will be.

Let k equal the unknown secret value as before. The
√
k is calculated as

follows: First k is split into left and right chunks. Given that we will be predicting
w bits of k at a time, this means that we will know w

2 bits of odd, and w
2 bits of

even. We will denote these half words by ko and ke respectively.
In the multiplication step, two m

2 bit quantities, ko ·
√
z, will be multiplied

to produce an m bit product. Since we know one of the multipliers
√
z we can

predict what a portion of the product will be as before. This portion will be w
2

bits. Since there will not be multiple reduction steps (there might not even be
one), we can calculate what the final output of the reduction will be.

The final step to the square root operation is the addition (xor) of the even
values from before ke and the product ko ·

√
z (mod f(z)). Since we know the w

2
bits of even, and w

2 bits of the product, we can calculate w
2 of the value

√
k. This

can be carried on to the next step in the algorithm, where we can determine
how these w

2 bits effect the result of the next operation. As before, we have two
possible positions from which this attack can commence; the most significant
word and the least significant word. Once either of these has been established
the middle neighbour words can be searched for.

Even though w
2 bit portions are used to verify w bit hypotheses of k, the

computational costs of extracting k is still l × 2w or l
2 × 2w if k is attacked

simultaneously from both ends.

Reduction. Almost all operations over finite fields are coupled with reduc-
tion. The protocol for modulo operations depends on the implementation, i.e.
reduction can be performed either concurrently or consecutively. If reduction is
performed consecutively, the attacks of the preceding operations can be applied
as described. If reduction is performed concurrently, we will have to revise our
attack strategy.

Over the binary field, the moduli chosen is of special form such that it permits
fast reduction, for example irreducible trinomials or pentanomials are preferred.

Straightforward reduction can be performed using the shift and subtract
method, where subtract over F2m is xor and subtract over Fp involves borrow
bits. a(z) ≡ b(z) (mod f(z)) or a ≡ b (mod p) basically involves lining the mod-
ulus up with the most significant bit of a (or a(z)) and subtracting to produce an
intermediate value t. The modulus is then repeatedly lined up with intermediate
t’s until the the bit length (or degree) of t is less than the bit length of p (or
degree of f(z)).

If repeated reduce is implemented, then it is more difficult to definitively
calculate the hypothetical output of interest. For example in the case of mul-
tiplication, if we are to predict partial output of c ≡ a · b (mod p), we must
be able to calculate all of the product a · b. Knowing only portions of a · b is
not sufficient since the waterfall effect of reduction will lose these portions in a
manner unpredictable by the adversary.

The implication of repeated reduce is that intermediate output of the cal-
culation of c ≡ a · b (mod p) must now be used for the hypothesis testing. A

108 C. Whelan and M. Scott

possible attack might proceed as follows: We will describe this attack for the
case where modular multiplication is the operation of interest, this technique
may be applied similarly to other methods. Let x equal the known data, and
k equal the unknown secret data as before. To extract k0, we can hypotheti-
cally calculate the intermediate output t ≡ x · k0, where t is the intermediate
(m + w)-bit result. t will then be reduced by p to once again produce a m-bit
value. Since the modulus is public, the resultant m-bit value (or even portions
of it) will be used to verify the correct k0. To extract k1, partial hypothetical
output of (t ≡ x · k1 (mod p)) + (t ≡ x · k0 (mod p)), where we assume k0 has
been found, is calculated. This process is repeated until no words of k remain
unknown.

4 Possible Attacks

So far we have described how individual operations may be attacked using side
channels. Now we will put these attacks into context as we describe when and
where in the three candidate pairing algorithms these operations are performed
and how they can be exploited to extract secret data. For each algorithm we will
assess both paths where the first scenario details the situation where Q is secret
(Case 1) and the second where P is secret (Case 2). Note that each case will
be addressed relating to the specific implementation details given in [16].

4.1 The Tate Pairing: BKLS

BKLS [3] (algorithm 2, A.1) implements the Tate pairing e(P,Q), where the first
input parameter P is a point of order r on the base curve E(Fp), and the second
parameter Q, is a point on the twist E′(Fpk/2). e(P,Q) evaluates to an element
in the finite field Fpk , where p is a large prime and k is the embedding degree. In
the specific implementation described in [16] k = 2 and so the points P and Q
have coordinates in Fp. This means the coordinates (x, y) will be approximately
the same length as the bit length of p.

Case 1. When P is public, since the order r will be a published parameter we can
generate all intermediate jP values where 1 ≤ j ≤ r (for the calculation of rP).
Q on the other hand will remain static throughout the pairing computation. The
target operation in the algorithm involving the secret Q is: mj = yj − λj(xQ +
xj)− yQi where xj , yj and λj are known, i =

√
−1 and xQ and yQ are secret.

Since we only need extract xQ, we can focus on the operation λj(xQ +xj). As
we will know xj and λj , we can employ the attack of the multiplication operation
described in 3.2 and extract words of xQ at a time.

High order SCA can be applied here since we will know xj , yj ,λj for all j,
and so can calculate the hypothetical output of λj(xQ + xj) at multiple points.

Case 2. Conversely in the scenario where P is secret and Q is public, our known
value remains static through the attack, and the secret parameter is constantly

SCA of Practical Pairing Implementations: Which Path Is More Secure? 109

changing. Intuitively this makes this path more difficult to attack, as even if
intermediate values of P are recovered, the original P must be extracted re-
quiring point subtraction and knowledge of the number of previous additions
that have already been performed. On further inspection, based on our analysis
of finite field operations, this avenue of attack is actually not possible for the
following reason; In order to make an hypothesis, there must exist an opera-
tion where the adversary can deterministically calculate how the input effects
the output (even partially). However given a section of xj it is impossible to
deterministically calculate any of the subsequent xj+1, where xj+1 is the result
from either the doubling or addition of the previous jP , since calculation of
xj+1 requires knowledge of yj . So even if we make predictions for the value of
xj+1 in λj+1(xQ +xj+1), we have no way of determining what λj+1 is and more
importantly what the original xj is.

This natural property of the BKLS algorithm can actually act as a deterrent
by enforcing the secret parameter to be entered as the first parameter to the
pairing.

4.2 The Ate Pairing

The Ate pairing a(P,Q) [9] (algorithm 3, A.2) is also computed over the prime
field, where P is chosen as a point of order r over the twisted curve E′(Fpk/d)
with embedding degree k, and Q is chosen over the base field E(Fp). Here point
scalar multiplication (the accumulation of P to rP) is calculated over the ex-
tension field E′(Fpk/d) (see [9] for details). This means that the underlying finite
field arithmetic fundamental to point addition and doubling is performed over
Fpk/d . However, the coordinates of Q will be over Fp. In the specific implemen-
tation described in [16] k = 4 and d = 2.

Case 1. As with BKLS when P is public and Q is private the target operation
is mj = i2yQ − i(i2yj/2 + λj(i2xj/2 + xQ)) where elements from the twist jP
are untwisted (hence the division by 2) and combined with Q to construct the
Miller variable mj ∈ Fpk . Note in this case i =

√
−2.

Isolating the operation λj(i2xj/2 + xQ) involving the secret coordinate xQ

involves addition of an element in Fp to an element in Fp2 and multiplication
over Fp2 . Note a+b where a = x1+y1i ∈ Fp where y1 = 0, and b = x2+y2i ∈ Fp2 ,
simply involves adding the real coefficient of a to the real coefficient of b.

To attack this operation, we once again utilise the observation about mul-
tiplication. Even though multiplication is now being performed over Fp2 , we
can still think in terms of multiplication over Fp. So say a = x1 + y1i and
b = x2 + y2i ∈ Fp2 , a · b is simply (x1 ·x2− 2y1 · y2)+ (x1 · y2 + y1 ·x2)i where the
internal multiplications are over Fp. Relating to the our attack of λ(i2xj/2+xQ),
this means we will be able to calculate the partial output of x1 · x2 and y1 · x2
where x2 relates to the real coefficient of xj which is added to xQ. Note that we
will be able to calculate all other portions of a · b. Once again the attack of the
multiplication operation as described in 3.2 can be employed to extract xQ.

110 C. Whelan and M. Scott

Case 2. The case where P is secret is almost analogous to the BKLS case, and
hence appears to be impossible to attack. In Ate an attack would be even more
complex since the calculation of jP involving point addition and doubling is over
the extension field Fp2 and thus involves more complex arithmetic.

4.3 The ηT Pairing

The ηT algorithm (algorithm 4, A.3) is quite different from Tate and Ate. The
implementation [2] for consideration is applicable to supersingular elliptic curves
over the binary field E(F2m). The pairing ηT (P,Q) evaluates to an element in
F2km . Both parameters are points on the curve E(F2m). No distortion map is
explicitly used, as the map to the extension field is integrated into the algorithm.

Unlike BKLS and Ate, some preliminary computation takes place outside the
loop. Operations on points are also completely avoided. The paths for P and Q
are almost symmetric and so attack strategies for both paths are almost equiva-
lent. The only difference is that where the square root of xP and yP is calculated,
the squaring of xQ and yQ is performed.

Case 1. Here there are two main points of attack. The first point of attack is
outside the loop; f ← u · (xP + xQ + 1) + yP + yQ + b+ 1 + (u+ xQ)s+ t where
the first value in F2km is constructed. This is enabled by the incorporation of
the public elements s and t ∈ F2km .

Assuming that xQ is secret and xP is known, the operation u · (xP + xQ +
1) where u = xP + 1, can be focused on. This operation basically involves
addition (xor) and multiplication modulo the known irreducible polynomial f(z).
Hypothetical partial output of u · (xP + xQ + 1) can be calculated by guessing
w-bit portions of xQ.

The second point of attack is the squaring operation, i.e. xQ ← x2
Q. This

squared value is subsequently used in the next round of the loop in g ← u ·(xP +
xQ) + yP + yQ + xP + (u+ xQ)s+ t where u in this calculation is xP . By purely
calculating what the hypothetical output of a portion of xQ ← x2

Q is, we can
analyse how this portion affects subsequent operations.

For example, assuming we have guessed what the least significant word of xQ

is, and calculated the least significant word of the resulting x2
Q. This means that

we can hypothetically calculate u · (xP +xQ +1) after the first and second round
of the for loop and still be able to easily trace back to the original Q.

Case 2. ηT is unique to Tate and Ate in that the two paths in the pairing are
almost symmetric and so are equally as vulnerable. Similar to the attack of Q
there are two main points of attack. The first point of attack is again outside
the loop, where the operation u · (xP + xQ + 1) can be attacked.

The second point of attack is the square root function inside the loop. Given
that we can deterministically calculate w

2 bits of hypothetical w bits of
√
xP ,

this means that we can test how this predicted output effects the output of a
number of subsequent operations to perform high order SCA. For example we
can calculate the hypothetical output u · (xP + xQ) and xP + (u+ xQ)s+ t.

SCA of Practical Pairing Implementations: Which Path Is More Secure? 111

The only real obstacle that ηT provides is that regardless of whether the
secret takes the either path, it is dynamic. Therefore if the adversary extracts
an intermediate secret value they must work back to get the original point.
This is in contrast to Ate and Tate which can be attacked at any point in the
algorithm.

5 Possible Countermeasures and Their Implications

A number of countermeasures have already been anticipated to protect pairings
against SCA [15], [14]. Taking advantage of bilinearity, the secret point can
simply be blinded. A pairing can be calculated as e(P,Q) = e(aP, bQ)1/ab where
a and b are random values or e(P,Q) = e(P,Q+R)/e(P,R) where R is a random
point. While these may be effective in deterring SCA since a new random value
will be used every time the pairing is called, they are expensive, ultimately
requiring point scalar multiplication and calculation of two pairings respectively.

Another more subtle countermeasure proposed by [15] observes that repeated
multiplication of the Miller variable m in BKLS and Ate (or f in ηT) by a
random element in Fp (or F2m) will have no effect on the final pairing value
since they will be eliminated in the final exponentiation. This is a less expensive
deterrent only requiring a field multiplication per iteration of the Miller loop.

In order for this countermeasure to be effective, we recommend that the ran-
dom value must not only be multiplied by the Miller variable, but must be
multiplied by all intermediate values that make up the Miller variable. For ex-
ample in the case of Tate; mj = r · yj − λj(r · xQ + r · xj)− r · yQi where r ∈ Fp.
If a new random value is multiplied at every iteration of the loop, the attacks
we have presented would no longer be possible.

6 Conclusion and Recommendations

We have presented the first passive differential side channel analysis of the Tate,
Ate and ηT pairing. We performed this investigation in an analytical sense, where
empirical knowledge of side channel attacks was used to determine where and
how operations in the candidate algorithms could be exploited. We presented
an attack of the multiplication, square root and reduction operations over finite
fields, from a slightly different perspective. Instead of focusing on how these
operations could be performed, we simply focus on trying to deterministically
calculate partial output based on the structural expansion of basic algorithms.

We assessed the three candidate pairing algorithms based on the attack on
both paths that a secret can take. From this we found that although none of the
algorithms assessed proved to be resistant to SCA, Tate and Ate if implemented
with the secret being stationed in the first parameter could withstand such at-
tacks. ηT however, which is the most efficient algorithm computationally, is open
to attack from either path proving that speed may not be the main consideration
when choosing the best implementation.

112 C. Whelan and M. Scott

From our findings we recommend two straightforward deterrents to protocol
designers implementing pairing based protocols to protect against SCA: 1. If
implementing the Tate or Ate pairing, ensure that the secret parameter is posi-
tioned in the first parameter (i.e. the secret takes the P path). 2. If implementing
any of the pairings (but more specifically ηT), we recommend the adoption of
the simple countermeasure proposed by [15] where intermediate finite field mul-
tiplication by a random value will successfully mask sensitive data.

References

1. P. Barreto. Pairing based crypto lounge. URL: http://paginas.terra.com.br/
informatica/paulobarreto/pblounge.html.

2. P. Barreto, S. Galbraith, C. O’hEigeartaigh, and M. Scott. Efficient pairing com-
putation on supersingular abelian varieties. Cryptology ePrint Archive: Report
2004/375. URL: http://eprint.iacr.org/2004/375.

3. P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing based
cryptosystems. In Advances in Cryptology - CRYPTO 02, volume 2442 of Lecture
Notes in Computer Science, pages 354–368. Springer Verlag, 2002.

4. P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of pairing friendly
groups. In Selected Areas in Cryptography - SAC 2003, Lecture Notes in Computer
Science, Ottawa, Canada, 2003.

5. Dan Boneh and Matthew Franklin. Identity-based encryption from the weil pair-
ing. In Advances in Cryptology - CRYPTO 01, volume 2139 of Lecture Notes in
Computer Science, pages 213–229. Springer Verlag, 2001.

6. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage
model. In M. Joye and J.J. Quisquater, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 04, volume 3156 of Lecture Notes in Computer Science,
pages 16–29, 2004.

7. I. M. Duursma and H. S. Lee. Tate pairing implementation for hyperelliptic curves
y2 = xp − x + d. In Advances in Cryptology - Asiacrypt 2003, volume 2894 of
Lecture Notes in Computer Science, pages 111–123. Springer Verlag, 2003.

8. K. Fong, D. Hankerson, J. Lopez, and A. Menezes. Field inversion and point
halving revisited. CACR Technical Report, CORR 2003-18.
URL: http://www.cacr.math.waterloo.ca/, 2003.

9. F. Hess, N. Smart, and F. Vercauteren. The eta pairing revisited. Cryptology
ePrint Archive: Report 2006/110. URL: http://eprint.iacr.org/2006/110.

10. P. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss and other
systems. In Advances in Cryptology - CRYPTO 96, volume 1109 of Lecture Notes
in Computer Science, pages 104–113. Springer Verlag, 1996.

11. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO 99, volume 1666 of Lecture Notes in
Computer Science, pages 388–397. Springer Verlag, 1999.

12. A.J. Menezes, T. Okamoto, , and S. Vanstone. Reducing elliptic curve logarithms
to logarithms in a finite field. In IEEE Transactions on Information Theory, vol-
ume 39, pages 1639–1646, 1993.

13. T. Messerges, E. Dabbish, and R. Sloan. Examining smart-card security under the
threat of power analysis attacks. In IEEE Transactions on Computers, volume 51
of 4, April 2002.

SCA of Practical Pairing Implementations: Which Path Is More Secure? 113

14. D. Page and F. Vercauteren. Fault and side-channel attacks on pairing based
cryptography. Cryptology ePrint Archive, Report 2004/283.
URL: http://eprint.iacr.org/2004/283.

15. M. Scott. Computing the tate pairing. In CT-RSA, volume 3376 of Lecture Notes
in Computer Science, pages 293–304, 2005.

16. M. Scott, N. Costigan, and W. Abdulwahab. Implementing cryptographic
pairings on smart cards. Cryptology ePrint Archive: Report 2006/144, URL:
http://eprint.iacr.org/2006/144.

17. C. Walter. Simple power analysis of unified code for ecc double and add. In M. Joye
and J. J. Quisquater, editors, Cryptographic Hardware and Embedded Systems -
CHES 04, volume 3156 of Lecture Notes in Computer Science, pages 191–204,
2004.

A Practical Pairing Implementations

A.1 The Tate Pairing

Algorithm 2. Computation of e(P,Q) on E(Fp) : y2 = x3 +Ax+B, where P is
a point of prime order r on E(Fp) and Q is a point on the twisted curve E′(Fp)
Input: P = (xP , yP), Q = (xQ, yQ)
Output: m ∈ Fp

1: m = 1
2: xA, yA ← xP , yP

3: n = r − 1
4: for i ← �lg(r)� − 2 to 0 do
5: if ni = 1 then
6: (λ, xT , yT) ← double(A, A)
7: g = yA − λ(xQ + xA) − i.yQ

8: xA, yA ← xT , yT

9: m = m2 · g
10: (λ, xT , yT) ← add(T, P)
11: g = yA − λ(xQ + xA) − i.yQ

12: xA, yA ← xT , yT

13: m = m · g
14: else
15: (λ, xT , yT) ← double(A, A)
16: g = yA − λ(xQ + xA) − i.yQ

17: xA, yA ← xT , yT

18: m = m2 · g
19: end if
20: end for
21: m = m̄

m

22: return m(p+1)/r

The notation m̄ denotes the conjugate of m.

114 C. Whelan and M. Scott

A.2 The Ate Pairing

Algorithm 3. Computation of a(P,Q) on E(Fp) : y2 = x3 + Ax+B, where P
is a point of prime order r on the twisted curve E′(Fp2) and Q is a point on the
base curve E(Fp)
Input: P = (xP , yP), Q = (xQ, yQ)
Output: m ∈ Fp2

1: m = 1
2: xA, yA ← xP , yP

3: n = t − 1
4: for i ← �lg(n)� − 2 to 0 do
5: if ni = 1 then
6: (λ, xT , yT) ← double(A, A)
7: g = i2yQ − i(i2yA/2 + λ(i2xA/2 + xQ))
8: xA, yA ← xT , yT

9: m = m2 · g
10: (λ, xT , yT) ← add(A, P)
11: g = i2yQ − i(i2yA/2 + λ(i2xA/2 + xQ))
12: xA, yA ← xT , yT

13: m = m · g
14: else
15: (λ, xT , yT) ← double(A, A)
16: g = i2yQ − i(i2yA/2 + λ(i2xA/2 + xQ))
17: xA, yA ← xT , yT

18: m = m2 · g
19: end if
20: end for
21: m = m̄

m

22: return m(p2+1)/r

A.3 The ηT Pairing

Algorithm 4. Computation of ηT (P,Q) on E(F2m) : y2 + y = x3 + x+ b
Input: P = (xP , yP), Q = (xQ, yQ)
Output: f ∈ F2km

1: u ← xP + 1
2: f ← u · (xP + xQ + 1) + yP + yQ + b + 1 + (u + xQ)s + t
3: for i ← 1 to (m + 1)/2 do
4: u ← xP , xP ← √

xP , yP ← √
yP

5: g ← u · (xP + xQ) + yP + yQ + xP + (u + xQ)s + t
6: f ← f · g
7: xQ ← x2

Q, yQ ← y2
Q

8: end for
9: return f (22m−1)(2m−2(m+1)/2+1)(2(m+1/2)+1)

Factorization of Square-Free Integers with High
Bits Known

Bagus Santoso1, Noboru Kunihiro1, Naoki Kanayama2,�,
and Kazuo Ohta1

1 The University of Electro-Communications
1-5-1 Chofugaoka Chofu-shi, Tokyo 182-8585, Japan

2 University of Tsukuba
1-1-1 Tennohdai Tsukuba-shi, Ibaraki 305-8573, Japan

Abstract. In this paper we propose an algorithm of factoring any in-
teger N which has k different prime factors with the same bit-length,
when (1

k+2 + ε
k(k−1)) log N high-order bits of each prime factor are given.

For a fixed ε, the running time of our algorithm is heuristic polynomial
in (log N). Our factoring algorithm is based on a new lattice-based algo-
rithm of solving any k-variate polynomial equation over Z, which might
be an independent interest.

1 Introduction

In order to speed-up the exponent modulus computation in a cryptosystem which
its security is based on the intractability of integer factorization of the modulus,
e.g., RSA, the variants which use a multi-prime composite integer, combined
with Chinese Remainder Theorem (CRT) have been proposed[4,8,13,14,16]. We
call these variants as multi-prime variants. As an illustration, let N denote the
public modulus of a cryptosystem. If the original cryptosystem uses N which is
the product of two secret prime factors p1, p2, then the multi-prime variants use
a composite integer N which is the product of k secret prime factors p1, . . . , pk

for k � 3.

1.1 Motivation and Strategy

Several attacks on multi-prime RSA have been proposed [3,9]. However, as far
as our knowledge, there has been no investigation for the case of multi-prime
variant where N is the product of k different secret prime factors p1, . . . , pk for
k � 3, and several high order bits of the prime-factors are known to the attacker.
In this paper we propose a method of factoring N of the following case:

(1) N is the product of k different secret prime factors p1, . . . , pk, and
(2) we are given several high-order bits of the prime-factors p1, . . . , pk,
where k � 2.
� This work was done when the third author was at the University of Electro-

Communications as JSPS Research Fellow.

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 115–130, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 B. Santoso et al.

Our strategy is as follows. We extend the work of Coron[7], which originally
proposed a method of solving bivariate polynomial equations over integer, into
a new method of solving k-variate polynomial equations over integer for any
k � 2. Then, we apply our new method to solve polynomial p(x1, . . . , xk) =
(p̃1 + x1)(p̃2 + x2) · · · (p̃k + xk)−N where p̃i is the given part of pi.

1.2 Results and Contributions

This work gives some theoretical results as well as practical meaning.

1.2.1 Theoretical Results
First, our new method of solving k-variate polynomial equations is general and
usable for any k � 2. This method is featured through the following theorem.

Theorem 1. Let p be an irreducible k-variate integer polynomial of independent
degree δ for k � 2. Let X1, . . . , Xk be upper-bounds of x01 , . . . x0k

such that
p(x01 , . . . x0k

) = 0. Also let define W := ||p(x1X1, . . . , xkXk)||∞. If for some
ε > 0 such that

k∏
i=1

Xi < W
2

δ(k+1)−ε, (1)

holds, then there exists an algorithm such that within time heuristic polynomial
in (logW, 2δk−1

), can find all integer pairs x01 , . . . x0k
such that p(x01 , . . . x0k

) =
0, |x0i | � Xi for i ∈ [1, k].

The “heuristic” part in Theorem 1 is due to the possibility that a resultant
computation between two polynomials vanished to zero, while our algorithm
works only if all required resultant computations are not vanished. The algorithm
featured in Theorem 1 can be guaranteed to run in polynomial time if we assume
that the following assumption holds.

Assumption 2. The resultant computations of any two polynomials where nei-
ther is p, are not vanished.

Assumption 2 enables us to prove that the algorithm featured in Theorem 1
works within polynomial time. Note that this assumption is slightly weaker than
a more general assumption which might state: “the resultant computations for
any multivariate polynomials constructed yield non-zero polynomials”. We are
succeeded in weakening our assumption by extending Lemma 3 of Coron[7].
Originally, Lemma 3 in [7] only concerned about the bound of the norm of two
polynomials where one is a multiple of another in bivariate polynomial case. We
extend it into a new lemma (Lemma 2 in this paper) which concerns about that
in k-variate polynomial case. Additionally, we also prove an upper-bound of the
norm of basis in LLL-reduced basis (Lemma 3) which is tighter than the one
shown in [2].

Factorization of Square-Free Integers with High Bits Known 117

Finally, as application of Theorem 1, we construct a factoring algorithm of a
composite integer N which has k different square-free prime factors p1, . . . , pk,
given several bits of high-order bits of each p1, . . . , pks. The result is illustrated
informally as the following theorem.

Theorem 3. Let N be a composite integer with k different prime factors with
the same bit length. If for each prime factor, we are given the at least

(1
k+2 +

ε
k(k−1)

)
log2N high order bits for some ε > 0, then we have a (heuristic) poly-

nomial time algorithm to factor N .

1.2.2 Practical Meaning
Recently, some side-channel attacks on implementations of RSA where CRT and
Montgomery Reduction are used, have been proposed[1,5,15]. It was shown that
these attacks can reveal several high order bits of the prime factor of N where
N is the public modulus of RSA. Note that almost all the implementation of
multi-prime variants [4,8,13,14,16] also use CRT and Montgomery Reduction.
Although up to this moment these attacks have only been proven to work on
RSA where N is a product of only two primes yet, this kind of side-channel at-
tacks might also apply to these multi-prime variants. Hence, if such side-channel
attacks can reveal some high-order bits of the prime factors of N of a multi-
prime variant, then our result (Theorem 3) can be used to complete the attack,
i.e., full factoring of N .

1.3 Related Works

The use of lattice reduction to find small roots of low-degree polynomial equa-
tions is discovered by Coppersmith[6] in 1996. At Eurocrypt 1996, Coppersmith
showed that using LLL, we can find small roots of unimodular equations and
bivariate polynomial equations over integer in polynomial time. However, the
Coppersmith’s method is generally difficult to put into practice. Howgrave-
Graham[10] constructed a simplification of Coppersmith’s method of solving
unimodular equations such that it is easier to understand and more practical.
This simplification has been broadly used in some applications[3]. Later, at Euro-
crypt 2004, Coron[7] provided a simplification of Coppersmith’s method of solv-
ing bivariate polynomial equations, ala Howgrave-Graham. Coron’s algorithm
also runs in polynomial time.

Note that our main theorem (Theorem 1) can be seen as extension of Coron
[7], i.e., from a method of solving bivariate polynomial equations into that of
k-variate polynomial equations. Also, although our result has a drawback, i.e.,
our algorithm runs in heuristic polynomial time instead of strict polynomial
time as in the case of Coron’s, our result still inherits the following features from
Coron’s: (1)the simple approach of Howgrave-Graham and (2)a polynomial-time
proven running time until a certain step.

118 B. Santoso et al.

Organization of the paper. The next section is devoted to a brief introduc-
tion into lattice and LLL-reduced based related definitions. In section 3 we
prove the upper bound of the norm of vectors in LLL-reduced basis (Lemma 2),
and the upper bound of the factors of a k-variate polynomial (Lemma 3). Then,
in the section 4 we will prove the Theorem 1. Finally, in section 5 we show an
application of Theorem 1 to factor a composite integer N with k different prime
factors with the same bit length, given several bits of high order bits of each
prime factor. We present some discussion about our result in section 6. We close
this paper by a brief conclusion and some directions for further research.

2 Preliminaries

Unless otherwise noted, any vector in this paper is represented as a single col-
umn matrix. A k-variate integer polynomial p of independent degree δ is de-
noted by: p(x1, . . . , xk) =

∑
(i1,...,ik)∈[0,δ]k pi1,...,ik

∏k
j=1 x

ij

j where pi1,...,ik
∈ Z.

We define ||p||2 :=
∑

(i1,...,ik) |pi1,...,ik
|2 and ||p||∞ := max(i1,...,ik) |pi1,...,ik

|. For
a k-variate polynomial p(x1, . . . , xk), we will refer xi1

1 . . . x
ik

k as (i1, . . . , ik)-th
term, (i1, . . . , ik) as power sequence of xi1

1 . . . x
ik

k , and pi1,...,ik
as coefficient of

(i1, . . . , ik)-th term.

2.1 The LLL-Reduced Basis and LLL Algorithm

Definition 1 (Lattice). Let b1, . . . ,bω ∈ Zm be linearly independent vectors
with ω � n. The lattice spanned by them is defined as follows: L(b1, . . . ,bω) :={∑ω

i=1 cibi

∣∣∣ci ∈ Z
}

. Equivalently, we can define a m × ω matrix B whose
columns are b1, . . . ,bω, and the lattice generated by B as L(B) := {Bc|c ∈ Zω}.
Clearly, L(B) = L(b1, . . . ,bω) holds.

We refer to such a set of vectors bi’s or such a matrix B as a basis of the lattice
L(B). In this case, the lattice L(B) is said to have rank m and dimension ω. If
m = ω, then L(B) is a full-rank lattice. Note that all bases of a lattice have the
same rank and dimension. Let B′ be any basis of a lattice L′. The determinant
of lattice L′, denoted det(L′), is defined as det(L′) :=

√
det(B′TB′).

Definition 2 (LLL-reduced). Let L be a lattice spanned by matrix B =
(b1, . . . ,bω) ∈ Zm×ω. Let B∗ = (b∗

1 · · · b∗
ω) denote a result of Gram-Schmidt

orthogonalization process on B and μi,j := 〈bi,b∗
j 〉/〈b∗

j ,b
∗
j 〉. The basis B is

called a LLL-reduced basis if the following holds: (1) |μi,j | � 1/2 for j, i ∈ [1, ω]
where j < i, and (2) (3/4)||b∗

i−1||2 � ||b∗
i + μi,i−1b∗

i−1||2 for i ∈ (1, ω]. Note
that b1 = b∗

1 and bi = b∗
i +

∑i−1
j=1 μi,jb∗

j for i ∈ (1, ω] hold.

Theorem 4 (LLL[11]). Let L be a lattice spanned by V = (v1 · · · vω) ∈
Zm×ω. The LLL algorithm, given V , finds in polynomial time a LLL-reduced
basis B = (b1, . . . ,bω).

Factorization of Square-Free Integers with High Bits Known 119

2.2 Howgrave-Graham

The following lemma is introduced by Howgrave-Graham[10] to simplify the
Coppersmith method of solving polynomial equations[6].

Lemma 1 (Howgrave-Graham). Let p(x1, . . . , xk) ∈ Z[x1, . . . xk] have at
most ω monomials. If p(x01 , . . . x0k

) ≡ 0 (mod n) for some positive integer n
where |x0i | � Xi for any i ∈ [1, k] and ||p(x1X1, . . . , xkXk)||∞ < n/

√
ω holds,

then p(x01 , . . . x0k
) = 0 holds over Z.

3 Some Additional Tools

In this section we prove two lemmas (Lemma 2 and Lemma 3) which play im-
portant roles at proving Theorem 1. Lemma 2 gives the upper bound of norm of
each vector in an LLL-reduced basis. Lemma 2 is especially useful when we need
to get the upper bound of norm of the n-th shortest vector in an LLL reduced
basis. Lemma 3 gives the norm’s upper bound of the coefficients of the factors of
a polynomial. We use Lemma 3 to prove that a polynomial is not a factor of an-
other polynomial. As seen in the next section, this enables us to guarantee that
Assumption 2 is sufficient to prove that the algorithm featured in Theorem 1
runs within polynomial time.

3.1 Upper Bound of LLL-Reduced Basis

Lemma 2. Let L be a lattice spanned by B = (b1, . . . ,bω) ∈ Zm×ω. If B is
LLL-reduced basis, then the following holds:

||bi|| � 2
ω+i−2

4 det(L)
1

ω−i+1 (2)

for i ∈ [1, ω].

Proof. Let B∗ = (b∗
1 · · · b∗

ω) denote a result of Gram-Schmidt orthogonalization
process on B and μi,j := 〈bi,b∗

j 〉/〈b∗
j ,b

∗
j 〉. Also let bi := ||bi||2 and b∗i := ||b∗

i ||2.
From the definition of LLL-reduced basis (Definition 2), it is easy to see that
b∗i � (3/4− μ2

i,i−1)b
∗
i−1 � b∗i−1/2 holds since |μi,i−1| � 1/2. Then, by induction,

we can get b∗i � (1/2)i−jb∗j for any i, j ∈ [1, ω] where j � i.
Combining this with the fact that b1 = b∗

1 and bi = b∗
i +

∑i−1
j=1 μi,jb∗

j

for i ∈ (1, ω], we are able to derive the following relation: bi � b∗i + (1/2)2
∑i−1

j=1

b∗j � b∗i
(
1 + (1/2)2 ·

∑i−1
j=1 2i−j

)
= b∗i (2

−1 + 2i−2). Hence, for i, j ∈ [1, ω]
where 1 � j � i, we get bj � (2−1 + 2j−2) · 2i−j · b∗i � (2i−j−1 + 2i−2) ·
b∗i � 2i−1b∗i . Consequently, it shows that b(ω−j+1)

j � 2
∑ω

i=j(i−1) ∏ω
i=j b

∗
i . Finally,

since
∑ω

i=j(i − 1) = (ω − j + 1)(ω + j − 2)/2 and
∏ω

i=1 b
∗
i = det(L)2, we get

bj � 2
ω+j−2

2 det(L)
2

ω−j+1 . �

120 B. Santoso et al.

Remark 1. We give a tighter bound than the one shown by Blömer and May[2].
In [2], it is stated that ||bi|| � 2

ω+i−2+2(i−1)(i−2)/(ω−i+1)
4 det(L)

1
ω−i+1 .

3.2 Upper Bound of the Factors of Polynomial

Lemma 3. Let p and h be two k-variate integer polynomials of independent
degree δ. Let p0k �= 0 hold and h be divisible by a non-zero integer r such that
gcd(r, p0k) = 1. If h is a multiple of p in Z[x1, . . . , xk], then : ||h|| � 2−(δ+1)k ·
|r| · ||p||∞ holds.

Proof. Our proof is an extension of the proof given by Coron[7]. Since from the
assumption h is a multiple of p, then there exists a polynomial g ∈ Z[x1, . . . , xk],
such that p(x1, . . . , xk) · g(x1, . . . , xk) = h(x1, . . . , xk).

As the first step, we prove that r · p divides h by showing that r divides
g(x1, . . . , xk). Assume that r does not divide g(x1, . . . , xk). Thus, we can have
a non-empty set G:={(i11 , . . . , i1k

), . . . , (in1 , . . . , ink
)}, which contains all of k-

integer sequences (j1, . . . , jk) where gj1,...,jk
is not divisible by r. Let G be lexico-

graphically ordered. Notice that for (i11 , . . . , i1k
) we have bi11 ,...,i1k

= gi11 ,...,i1k
·

a0k+
∑

j1,...,jk
g(i11 -j1),...,(i1k

-jk)·aj1,...,jk
. Also note that any (i11-j1, . . . , i1k

-jk) for
any (j1, . . . jk) /∈ 0k can not be a member ofG, because (i11 , . . . , i1k

) is the “least”
member in G lexicographically. Thus, for any (j1, . . . jk) /∈ 0k, g(i11 -j1),...,(i1k

-jk)

must be divisible by r. Hence, we get bi11 ,...,i1k
≡ gi11 ,...,i1k

· a0k (mod r). How-
ever, this a contradiction, because: (1) bi11 ,...,i1k

≡ 0 (mod r) holds, (2) gi11 ,...,i1k

is not zero value, and (3) a0k has inverse in modulus r. Therefor, r must divide
g(x1, . . . , xk).

The next step is based on a well-known equation which is called Mignotte’s
bound : let f(x) and g(x) be two non-zero polynomials over Z, such that deg f �
δ, and f divides g in Z[x]; then: ||g|| � 2−δ||f ||∞ holds.

Now let the followings: f(x) := r·p(x, xδ+1 , x(δ+1)2 , . . . , x(δ+1)k−1
) and g(x) :=

h(x, xδ+1, x(δ+1)2 , . . . , x(δ+1)k−1
). Note that f and r ·p have the same list of non-

zero coefficients, and so do g and h. This gives ||f ||∞ = |r|·||p||∞ and ||g|| = ||h||.
Also, deg f, deg g � (δ + 1)k − 1. Since r · p divides h, we can apply Mignotte’s
bound on r · p and h. �

4 Proof of Theorem 1

Recall that p denotes a k-variate integer polynomial of independent degree
δ for k � 2, X1, . . . , Xk denote the upper-bounds of x01 , . . . x0k

such that
p(x01 , . . . x0k

) = 0, and W := ||p(xiXi, . . . , xkXk)||∞.
Our proof procedure follows the line of the proof of Theorem 4 in [7]. First, we

construct an algorithm SolveLLL
k,l(p,X1, . . .Xk). Then we prove that the algorithm

finds x01 , . . . , x0k
such that p(x01 , . . . x0k

) = 0 within polynomial time if the
equation (1) is satisfied, assuming that Assumption 2 holds.

We take here l � 1. We will show later how to determine the parameter l by
using the value of ε. For simplicity, we only discuss here the case where p0k �= 0
and gcd(p0k ,

∏k
i=1Xi) = 1. For the general case, see Appendix A in [7].

Factorization of Square-Free Integers with High Bits Known 121

Algorithm 1 SolveLLL
k,l(p,X1, . . . , Xk)

(1) Define ω
def= (δ + l + 1)k.

Find u such that
√

ω2−ωW � u < 2W and gcd(p0k , u) = 1 hold.
(2) Define n

def= u · (∏k
i=1 Xi)l, and set q(x1, . . . , xk) ← p−1

0k · p(x1, . . . , xk) mod n.
(3) For all (i1, . . . , ik) ∈ [0, l]k, do

q[i1···ik](x1, . . . , xk) ← ∏k
j=1 x

ij

j X
l−i

j

j q(x1, . . . , xk).
For all (i1, . . . , ik) ∈ [0, δ + l]k\[0, l]k, do

q[i1···ik](x1, . . . , xk) ← n ·∏k
j=1 x

ij

j .

Define q̃[i1···ik](x1, . . . , xk)def= q[i1···ik](x1X1, . . . ,xkXk) for all (i1, . . . , ik)∈ [0, δ + l]k,

(4) Generate a lattice basis B = (b1 · · ·bω) where each bi represents the coefficients
of q̃[ij1 ···ijk

](x1, . . . , xk) of some ij1 · · · ijk . Put the order of q̃[ij1 ···ijk
](x1, . . . , xk)

and the coefficients of its terms such that B forms a triangular matrix.
(5) Input B into LLL algorithm and obtain a LLL-reduced basis B′ = (b′

1 · · ·b′
ω).

Take the first (shortest) (k − 1) vectors of B′ and construct a k-variate
polynomial hi(x1, . . . , xk) from each b′

1, . . . ,b
′
k−1

(6) For i = 1 to k − 1 do
Compute h1,i(x2, . . . , xk) = Resx1(p, hi)

For t = 2 to k − 1, do
For j = 1 to +k − t,do

Compute ht,j(xt+1, . . . , xk) = Resxt(ht−1,j , ht−1,j+1)
Solve hk−1,1(xk) using standard root finding algorithms. And use the solution,
x0k , to find x01 , . . . , x0k−1 such that p(x01 , . . . , x0k−1 , x0k) = 0.

Two important notes about algorithm SolveLLL
k,l(p,X1, . . .Xk) above:

Note 1. q(x1, . . . , xk) is always in the form of 1+
∑
qt1,...,tk

∏k
j=1 x

tj

j . Therefore,

for (i1, . . . , ik) ∈ [0, l]k, the form of q̃[i1,...,ik](x1, . . . , xk) is
(∏k

j=1Xj

)l ∏k
j=1

x
ij

j +
(∏k

j=1Xj

)l ∑
qt1,...,tk

∏k
j=1 x

ij+tj

j .
Note 2. Any q̃[i1,...,ik](x1, . . . , xk) where (i1, . . . , ik) ∈ [0, δ+ l]k\[0, l]k is in the

form of n ·
∏k

j=1(xjXj)ij .

First, we will show a construction example of the triangular matrix B. Then,
by assuming that all resultant computations in step (6) are not vanished, we
derive the sufficient condition for algorithm SolveLLL

k,l(p,X1, . . . Xk) to work. We
show that Eq. (1) satisfies this sufficient condition. At the end, we will prove
that our previous assumption ,i.e., “all resultant computations in step (6) are
not vanished” can be weakened into Assumption 2 by proving that any resultant
computation involving p are not vanished, provided Eq. (1) holds.

We will show here one method of constructing B as follows. First we divide the
set of all sequence

{
(i1, . . . , ik) ∈ [0, δ + l]k

}
into two sets: SI := {(i1, . . . , ik) ∈

[0, l]k} and SII := {(i1, . . . , ik) ∈ [0, δ+ l]k\[0, l]k}. Note that SI ∩SII = ∅. Then
we arrange SI and SII in lexicographical order (x1 < x2 < · · · < xk) respectively,
and finally combine together SI and SII by putting SI before SII . We call this

122 B. Santoso et al.

arrangement SI+II . Finally, put {q̃[i1,··· ,ik]} and its coefficients of all terms in
the same arrangement according to SI+II as follows: {q̃[i1,··· ,ik]} is arranged in
horizontal direction from left to right depending on the index, and the coefficient
of terms is arranged in vertical direction start from top to bottom depending on
the power sequence of each term. For detail illustration, see Figure 1. The detail
proof that we can always get a triangular matrix with this arrangement (SI+II)
is in Appendix A.

*

* *

* * *

*

*

* *

* *

0 0
0

0

S
I

SI

S
I
I

SII

1

x
i1
1 ...x

ik
k

xl
1...xl

k

xl+1
1

x
i1
1 ...x

ik
k

xδ+l
1 ...xδ+l

k

q̃[0k] q̃[i1,...,ik] q̃[lk] q̃[l+1,0k−1] q̃[i1,...,ik] q̃[(δ+l)k]

(
∏k

j=1 Xj)l

(
∏k

j=1 Xj)l

(
∏k

j=1 Xj)l

nXl+1
1

n(
∏k

j=1 X
ij
j)

n(
∏k

j=1 Xj)δ+l

b1 b(l+1)l b(l+1)k+1 bω

The entries marked with “*” and “· · · ” represent possible non-zero off-diagonal
entries we may ignore.

Fig. 1. Matrix B

Now, we will derive the sufficient conditions in order to make algorithm
SolveLLL

k,l(p,X1, . . .Xk) work, by first assuming that all resultant computations
in step (6) are not vanished.

In step (2) of SolveLLL
k,l(p,X1, . . . Xk), one may set u := W + ((1 −W) mod

|p0k |). Clearly this u satisfies
√
ω2−ωW � u < 2W . Also, since 1 = u +

�(1−W)/|p0k |� · |p0k | holds, gcd(u, |p0k |) = 1 holds.
By the construction of hi(x1, . . . , xk), we know that p(x1, . . . , xk) and

hi(x1, . . . , xk) have the same solution over Zn. However, there is no explicit
guarantee that p(x1, . . . , xk) and hi(x1, . . . , xk) have the same solution over Z.
Thus, we need to assure that any solution of hi(x1, . . . , xk) ≡ 0 (mod n) is also a
solution of hi(x1, . . . , xk) = 0 over Z. Here we apply Howgrave-Graham lemma

Factorization of Square-Free Integers with High Bits Known 123

to all hi. Howgrave-Graham requires us that all hi satisfy ||hi||∞ < n/
√
ω.

Since n/
√
ω � 2−ω(

∏k
j=1Xj)lW holds and ||hi||∞ � ||hi|| for any i, con-

dition ||hi|| < 2−ω(
∏k

j=1Xj)lW is sufficient to guarantee that we can use
hi to solve the equation over Z (by Howgrave-Graham). Note that the up-
per bound of ||hi|| is ||hk−1||, which is upper-bounded by Lemma 2 as follows:
||hk−1|| � 2

ω+k−3
4 det(B)

1
ω−k+2 .

Combining all conditions: ∀i : ||hi|| < 2−ω(
∏k

j=1Xj)lW and ||hk−1|| �
2

ω+k−3
4 det(B)

1
ω−k+2 , we get our final sufficient condition as follows.

2
ω+k−3

4 det(B)
1

ω−k+2 < 2−ω(
k∏

j=1

Xj)lW. (3)

Now we will calculate det(B).
{
q̃[i1,...,ik](x1, . . . , xk)

∣∣∣(i1, . . . , ik) ∈ [0, l]k
}

gives contribution to det(B) as
∏

(i1,...,ik)∈[0,l]k(
∏k

j=1Xj)l = (
∏k

j=1Xj)(l+1)kl,

while
{
q̃[i1,...,ik](x1, . . . , xk)

∣∣∣(i1, . . . , ik) ∈ [0, δ + l]k\[0, l]k
}

gives:∏
(i1,...,ik)∈

[0,δ+l]k\[0,l]k

n
(
(

k∏
j=1

X
ij

j)
)

=n(δ+l+1)k−(l+1)k

×

(
(

k∏
j=1

Xj)(δ+l+1)k−1 ∑δ+l
t=0 t −(l+1)k−1 ∑k

t=0 t
)

=n(δ+l+1)k−(l+1)k
(
(

k∏
j=1

Xj)(δ+l+1)k(δ+l)/2 −(l+1)kl/2
)
.

Combine all the equations, we obtain:

det(B) = n(δ+l+1)k−(l+1)k
(
(

k∏
j=1

Xj)
(δ+l+1)k(δ+l)+(l+1)kl

2

)
.

Since n < 2W · (
∏k

j=1Xj)l, combining with det(B), we transform the final
condition (3) into:

2
ω+k−3

4

((
2W · (

k∏
j=1

Xj)l
)(δ+l+1)k−(l+1)k

(
k∏

j=1

Xj)
(δ+l+1)k(δ+l)+(l+1)kl

2

) 1
ω−k+2

< 2−ω(
k∏

j=1

Xj)lW. (4)

Further transformation of (4) results in the following. For detail, please refer
Appendix B. (k∏

j=1

Xj

)(k+1)δ(δ+l+1)k+2l(k−2)

< 2−2{ 5
4 ω2−(k− 11

4)ω− (k−2)(k−3)
4 −(l+1)k}W 2{(l+1)k−(k−2)}. (5)

Thus, the sufficient condition for algorithm SolveLLL
k,l(k, p,X1, . . . Xk) to

work is: (k∏
j=1

Xj

)
< 2−βWα, (6)

124 B. Santoso et al.

where
α =

2
δ(k + 1)(δ + l + 1)k

{ (l + 1)k − (k − 2)
1 + 2l(k − 2){δ(k + 1)(δ + l + 1)k}−1

}
β =

2
δ(k + 1)(δ + l + 1)k

×

{ 5
4 (δ + l+ 1)2k − (k − 11

4)(δ + l + 1)k − (k−2)(k−3)
4 − (l + 1)k

1 + 2l(k − 2){δ(k + 1)(δ + l + 1)k}−1

}
.

Using δ � 1, l � 1 and k � 2, we can calculate the lower-bound of α and the
upper-bound of β as follows:

α � 2
δ(k + 1)

− 2
l + 2

, (7)

β < δk−12k+1(l + 2)k +
8

k + 1
. (8)

Letting ε := 2
l+2 and taking from (6), (7), and (8), we obtain the following suf-

ficient condition for
∏k

j=1Xj in order to make algorithm SolveLLL(k,p,X1, . . . Xk)
works:

k∏
j=1

Xj < 2−
22k+1δk−1

εk − 8
k+1W

2
δ(k+1)−ε. (9)

Now, we will prove the following claim in order to weaken our assumption.
Namely, from the assumption that all resultant computations of two polynomials
in step (6) are not vanished, into Assumption 2, i.e., all resultant computations
of two polynomials in step (6) where neither is p are not vanished.

Claim. For any 1 � i � k − 1, h1,i(x2, . . . , xk) = Resx1(p, hi) in step (6) does
not vanished to zero.

Proof. We make use Lemma 3 to guarantee that all h1,i(x2, . . . , xk)=Resx1(p, hi)
are not vanished.

First, we will show that B has all its elements to be divisible by (
∏k

j=1Xj)l.
From Note 1, it is easy to see that for (i1, . . . , ik) ∈ [0, l]k any q̃[i1,...,ik](x1, . . . , xk)
is always divisible by (

∏k
j=1Xj)l. Also, since any q̃[i1,...,ik](x1, . . . , xk) where

(i1, . . . , ik) ∈ [0, δ + l]k\[0, l]k is in the form of n ·
∏k

j=1(xjXj)ij , from Note 2,
we can see that this is always divisible by (

∏k
j=1Xj)l. Thus, all coefficients of

hi(x1, . . . , xk) are also divisible by (
∏k

j=1Xj)l.
Now we will apply Lemma 3. Let r = (

∏k
j=1Xj)l and ||p||∞ =W . Note that

gcd(r, p0k) = 1 holds since p0k = 1. Also, since ||hi|| � ||hk−1|| � 2
ω+k−3

4

det(B)
1

ω−k+2 holds for any 1 � i � k − 1 (Lemma 2) and Eq. (9) implies
Eq. (3), then hi for any 1 � i � k − 1 satisfies ||hi|| < 2−ω(

∏k
j=1Xj)lW =

2−(δ+l+1)k

(
∏k

j=1Xj)lW . Thus, we can guarantee that hi is not a multiple of
p. And since p is irreducible, p and hi do not have common factor. Therefore,
Resx1(p, hi) is not vanished. �

Factorization of Square-Free Integers with High Bits Known 125

Therefore, for a fixed k � 2 , when a k-variate integer polynomial p(x1, . . . , xk)
satisfies (9), the algorithm SolveLLL

k,l(p,X1, . . .Xk) can find the root of p(x1, . . . , xk)
within polynomial time in (logW, δ, 1/ε). To get the weaker condition (1), ac-
cording to [7], we can exhaustively search total high order 22k+1δk−1

εk + 8
k+1 bits

of x10 , x20 , . . . , xk0 so that the condition (9) is satisfied, then apply the algo-
rithm SolveLLL

k,l(p,X1, . . . , Xk) with new bounds X1, . . . , Xk. For a fixed ε > 0,
the running time is polynomial in (logW, 2δk−1

). This terminates the proof of
Theorem 1. �

5 Factoring Square-Free Composite Integer with
Balanced Prime Factors

In this section we apply Theorem 1 to do factoring of a square-free composite
integer N which has k different prime factors with the same bit length, given
several most of significant bits of each prime factor. Here we use �(x) to denote
the bit-length of an integer x.

Theorem 5. Let N be a composite integer with k different prime factors, de-
noted by p1, . . . , pk. Assume that all pi have the same bit length. If for each prime
pi, we are given at least

(1
k+2 + ε

k(k−1)

)
�(N) most significant bits of pi for some

ε > 0, then we have an algorithm to factor N with running time polynomial in
(logN).

Proof. Let N ’s prime factors be p1, . . . , pk. Note that since �(p1) = �(p2) = . . . =
�(pk) = �p bits, we can put �(N) = k · �p. Assume that for each prime pi, we are
given the γ · �p most significant bits of pi (0 < γ < 1), denoted by p̃i/2(1−γ)lp .
Note that for each pi, �(pi) = �(p̃i) and pi − p̃i < 2(1−γ)�p hold. In order to find
the rest of unknown bits, we will solve the polynomial:

p(x1, . . . , xk) = (p̃1 + x1)(p̃2 + x2) · · · (p̃k + xk)−N, (10)

where pi = p̃i + xi holds for each pi, using algorithm SolveLLL
k,l(p,X1, . . .Xk) of

Theorem 1. Also, we will derive the lower bound of γ to satisfy the sufficient
condition for applying Theorem 1.

Since xi = pi − p̃i < 2(1−γ)�p = 2�p2−γ�p � 2p̃iN
−γ/k holds, we can set the

upper bound of xi, denoted by Xi, as follows:

Xi = 2p̃iN
−γ/k. (11)

And we also obtain:

W = ‖p(x1X1, x2X2, · · · , xkXk)‖∞
= ‖(X1x1 + p̃1)(X2x2 + p̃2) · · · (Xkxk + p̃k)−N‖∞
� p̃1p̃2 · · · ˜pk−1Xk. (12)

Since �(pi) = �(p̃i), we can assume that pi � p̃i � pi/2 holds. Thus:

p̃1p̃2 · · · ˜pk−1Xk � (
p1
2

)(
p2
2

) · · · (pk−1

2
)× (

pk

2
)2N−γ/k =

N1−(γ/k)

2k−1 . (13)

126 B. Santoso et al.

Hence, we can conclude that:

W � N1−(γ/k)

2k−1 (14)

holds. We also know that the following holds:

X1X2 · · ·Xk = 2kN−k(γ/k)p̃1 · · · p̃k � 2kN1−γ . (15)

Now we want to derive the sufficient condition such that X1X2 · · ·Xk <
W

2
k+1−ε, so that we can apply Theorem 1 (note that the maximum degree of

each variable xi in (10) is 1).
Defining α̃ := 2

k+1 − ε for some ε > 0, if we set N1−γ < (N1−(γ/k))α̃, we have:

1− γ < (1− γ
k

)α̃ ⇔ γ >
1− α̃

1− α̃
k

⇔ γ >
k − 2k

k+1 + ε

k − 2
(k+1) + ε

⇐ γ >
k(k + 1)− 2k
k(k + 1)− 2

+
ε

k − 2
(k+1)

⇐ γ >
k

k + 2
+

ε

k − 1
. (16)

Setting γ as above, combining with (14) and (15), we get:

2−k
k∏

j=1

Xj < 2(k−1)α̃W α̃ ⇔
k∏

j=1

Xj < 2(k−1)α̃+kW α̃

⇐
k∏

j=1

Xj < 2(k−1)(1+α̃)W α̃. (17)

In order to achieve the sufficient condition for
∏k

j=1Xj as shown in (1) of
Theorem 1, it is sufficient to have additional exhaustive search of �1 + α� most
significant bits for each pi. Since α < 1 , it is easy to see that this additional
exhaustive search is at most 2 bits for each pi. Finally, by Theorem 1, we can
conclude that the total running time to factor N , given

(
k

k+2 + ε
k−1

)
�p =

(1
k+2 +

ε
k(k−1)

)
�(N) most significant bits of each prime factor pi, is a polynomial in

(logN) for a fixed ε > 0. This terminates the proof of Theorem 5. �

Remark 2. Note that the upper-bound of
∏k

j=1Xj in (17) is larger than the up-
per bound of

∏k
j=1Xj in (9). This means that we also need to perform exhaustive

search of about (1/ε)k bits in order to solve p in (10).

6 Discussion

The total bits that has to be given in order to get our algorithm in Theorem 5
work is about k

k+2 �(N) bits. Thus, when k is getting larger, we need more given
bits in order to get our algorithm work. Thus, when k gets larger, the suc-
cess possibility of attacking the cryptosystem using our algorithm gets smaller.

Factorization of Square-Free Integers with High Bits Known 127

Therefore, from the point of view of our algorithm, we can say that it is more
secure to have a public modulus N with large number of different prime factors
than that with small number of different prime factors. For instance, in the case
of N with 2048 bits, when N only has two prime factors (k = 2) our algorithm
only needs 1024 bits to run, but when N has four prime factors (k = 4) our
algorithm needs 1365 bits to run. Thus, from the point of view of our algorithm,
it is more secure to have N = pqrs (4 different prime factors) than to have
N = pq (2 different prime factors). Of course one must remind that we can not
generalize this argument since if N has too much prime factors, the prime factors
will be mostly quite small, and thus it might be easy enough for ECM[12] to
factor N .

7 Conclusion and Further Research

We have presented a factoring algorithm of a composite integer N which has
k prime factors with the same bit-length, given several high-order bits of each
prime factor. Also, we have presented a general method of solving k-variate
polynomial equations. This method can be seen as a generalization of Coron [7].
In this paper we only deal with the case when each variable of the polynomial
has independent maximum degree. It might be interesting to investigate about
the other cases, e.g., the case when the total summation of the degree of all
variables is given.

Acknowledgment

This research was supported in part by the Grants-in-Aid No. 16500009 for
Scientific Research, JSPS.

References

1. Aciiçmez, O., Schindler, W., and Çetin Kaya Koç. Improving Brumley and Boneh
timing attack on unprotected SSL implementations. In ACM Conference on Com-
puter and Communications Security (2005), pp. 139–146.

2. Blömer, J., and May, A. New Partial Key Exposure Attacks on RSA. In Advances
in Cryptology (Crypto 2003), Lecture Notes in Computer Science Volume 2729,
pages 27-43, Springer Verlag (2003).

3. Boneh, D., and Durfee, G. Cryptanalysis of RSA with Private Key d Less than
N0.292. In Eurocrypt (1999), pp. 1–11.

4. Boneh, D., and Shacham, H. Fast Variants of RSA. CryptoBytes Volume 5 No. 1,
Winter/Spring 2002.

5. Brumley, D., and Boneh, D. Remote timing attacks are practical. Computer
Networks 48, 5 (2005), 701–716.

6. Coppersmith, D. Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known. In Eurocrypt (1996), pp. 178–189.

7. Coron, J.S. Finding Small Roots of Bivariate Integer Polynomial Equations Re-
visited. In Eurocrypt (2004), pp. 492–505.

128 B. Santoso et al.

8. Fouque, P.A., Poupard, G., and Stern, J. Sharing Decryption in the Context of
Voting or Lotteries. In Financial Cryptography (2000), pp. 90–104.

9. Hinek, M.J., Low, M.K., and Teske, E. On Some Attacks on Multi-prime RSA. In
Selected Areas in Cryptography (2002), pp. 385–404.

10. Howgrave-Graham, N. Finding Small Roots of Univariate Modular Equations Re-
visited. In IMA Int. Conf. (1997), pp. 131–142.

11. Lenstra, A.K., Lenstra, H.W., and Lovász, L. Factoring polynomials with rational
coefficients. Mathematische Annalen 261 (1982), 515–534.

12. Lenstra, H.W. Factoring integers with elliptic curves. Annals of Mathematics 126
(1987), 649–673.

13. Poupard, G., and Stern, J. Fair Encryption of RSA Keys. In Eurocrypt (2000),
pp. 172–189.

14. RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard. http://www.
rsasecurity.com/rsalabs/, June 2001.

15. Schindler, W. A Timing Attack against RSA with the Chinese Remainder Theo-
rem. In CHES (2000), pp. 109–124.

16. Takagi, T. Fast RSA-Type Cryptosystem Modulo pkq. In Crypto (1998),
pp. 318–326.

A Detail Proof of Construction of Triangular Matrix B
in Figure 1

Here we prove that we can get a triangular matrix by arranging {q̃[i1,··· ,ik]}
and their terms according to SI+II . We compare sequence (i1, . . . , ik) using lex-
icographical order (x1 < x2 < · · · < xk). Let bj be the column corresponding
to q̃[i1,...,ik] where (i1, . . . , ik) ∈ SI . Notice that from the form of q̃[i1,...,ik] in
this range (shown by Note 1), the least power sequence in q̃[i1,...,ik](x1, . . . , xk)
(lexicographically) is (i1, . . . , ik), which is exactly the same as the index of
q̃[i1,...,ik](x1, . . . , xk). Thus, it is clear that all coefficients of terms whose power
sequences are less than (i1, . . . , ik) are zero in q̃[i1,...,ik](x1, . . . , xk). Since the ver-
tical direction is also arranged lexicographically, the upper part of bj consists of
zero values, from power sequence (0, . . . , 0) until (i−1 , . . . , i

−
k), where (i−1 , . . . , i

−
k)

is one less than (i1, . . . , ik) lexicographically. Now let bj+1 be the column cor-
responding to the immediate next column on the right side of bj . Let bj+1 cor-
responds to q̃[i′

1,...,i′
k](x1, . . . , xk) where (i′1, . . . , i

′
k) ∈ SI . Note that (i′1, . . . , i

′
k)

is lexicographically greater than (i1, . . . , ik). Thus, the coefficient of the term
whose power sequence is (i1, . . . , ik) is zero in q̃[i′

1,...,i′
k](x1, . . . , xk). This means

that the number of zeroes in the upper part of bj+1 is at least one more than
bj . Since bj+1 is the immediate next column on the right of bj , (i′1, . . . , i

′
k) is

exactly the next of (i1, . . . , ik) in above lexicographical ordering. Thus, in ver-
tical direction, the power sequence (i′1, . . . , i

′
k) is exactly one below (i1, . . . , ik).

Hence, the number of zeroes in the upper part of bj+1 is exactly one more
than bj . Therefore, the columns which corresponds to

{
q̃[i1,...,ik](x1, . . . , xk)

}
where (i1, . . . , ik) ∈ SI , will make a stair-case shape such that the number of
zeroes in the upper part of the column increases one by one from the left to
the right.

Factorization of Square-Free Integers with High Bits Known 129

Next, for any column bj′ where bj′ corresponds to q̃[i1,...,ik](x1, . . . , xk),
(i1, . . . , ik) ∈ SII , there is only one non-zero coefficient, that is the coefficient of
term whose power sequence is (i1, . . . , ik), with the value of n ·

∏k
j=1X

ij

j . Since
both horizontal and vertical directions are in the same arrangement of SI+II

and SI ∩ SII = ∅, it is obvious that any two columns bj′ and bj′+1 will make
a stair-case shape, such that the location of non-zero coefficient in bj′+1 is one
step lower than bj′ .

Combining the observation of both cases SI and SII , we conclude that for
any two columns bj , bj+1 where bj+1 is on the right side of bj , the location of
first non-zero coefficient of bj+1 is one step lower than bj . This terminates the
proof that B is a triangular matrix. �

B Derivation of (17)

First we start from (4).

2
ω+k−3

4

((
2W · (

k∏
j=1

Xj)l
)(δ+l+1)k−(l+1)k

(
k∏

j=1

Xj)
(δ+l+1)k(δ+l)+(l+1)kl

2

) 1
ω−k+2

< 2−ω(
k∏

j=1

Xj)lW

⇔2
ω+k−3

4 (ω−k+2)+(δ+l+1)k−(l+1)k+ω(ω−k+2)
(
(

k∏
j=1

Xj)
(δ+l+1)k(δ+l)+(l+1)kl

2

)
×

(
(

k∏
j=1

Xj)(δ+l+1)k−(l+1)k
)
< (

k∏
j=1

Xj)l(ω−k+2)W (ω−k+2)+(l+1)k−(δ+l+1)k

⇔2(ω−k+2) 5ω+k−3
4 +ω−(l+1)k

(k∏
j=1

Xj

) (δ+l+1)k(δ+l)−(l+1)kl
2 +l(k−2)

< W (l+1)k−(k−2)

⇔2
5
4 ω2−(k− 11

4)ω− (k−2)(k−3)
4 −(l+1)k

(k∏
j=1

Xj

)
(δ+l+1)k(δ+l)−(l+1)kl

2 +l(k−2)<W (l+1)k−(k−2)

Since (δ+ l+1)k(δ+ l)− l(l+1)k < (k+1)δ(δ+ l+1)k holds for k � 2, l � 1,
δ � 1, it is sufficient to have:

(k∏
j=1

Xj

)(k+1)δ(δ+l+1)k+2l(k−2)

< 2−2{ 5
4 ω2−(k− 11

4)ω− (k−2)(k−3)
4 −(l+1)k}W 2{(l+1)k−(k−2)}. �

C Derivation of (7) and (8)

Note that � � 1, δ � 1, and k � 2.

130 B. Santoso et al.

α =
2

δ(k + 1)(δ + l + 1)k

{ (l + 1)k − (k − 2)
1 + 2l(k − 2){δ(k + 1)(δ + l + 1)k}−1

}
� 2
δ(k + 1)(δ + l + 1)k

{(l+ 1)k − (k − 2)}
(
1− 2l(k − 2)

δ(k + 1)(δ + l + 1)k

)
� 2

(k + 1)

{1
δ
−

k−1∑
j=0

(l + 1)j

(δ + l + 1)j+1 −
k − 2

(δ + l + 1)k

}(
1− 2l

(δ + l + 1)k

)
>

2
(k + 1)

{1
δ
− k

δ + l + 1
− k − 2

(δ + l+ 1)k

}(
1− 2

(δ + l + 1)k−1

)
>

2
(k + 1)

{1
δ
− k + 2
δ + l + 1

}
� 2

(k + 1)

{1
δ
− 2(k + 1)
δ + l + 1

}
� 2
δ(k + 1)

− 2
l + 2

β =
2

δ(k + 1)(δ + l + 1)k
×

{ 5
4 (δ + l + 1)2k − (k − 11

4)(δ + l + 1)k − (k−2)(k−3)
4 − (l + 1)k

1 + 2l(k − 2){δ(k + 1)(δ + l + 1)k}−1

}
� 2
δ(k + 1)

{5
4
(δ + l + 1)k − (k − 11

4
)− (k − 2)(k − 3)

4(δ + l + 1)k
−
(l + 1
δ + l + 1

)k
}
×(

1− 2l(k − 2)
δ(k + 1)(δ + l + 1)k

+
4l2(k − 2)2

δ2(k + 1)2(δ + l + 1)2k

)
� 2
δ(k + 1)

{5
4
(δ + l + 1)k − (k − 11

4
) +

1
16× (l + 2)k

− 2k

(l + 2)k

}
×(

1 +
(2l

(l + 2)k

)2)
� 2
δ(k + 1)

{5
4
(δ + l + 1)k − (k − 11

4
) +

3
64× 3k

}(
1 +

4
32k−2

)
� 2
δ(k + 1)

· 13
9

{5
4
(δ + l + 1)k +

11
4

+
1

64× 9

}
�4
δ
(1 +

3
k + 1

)(δ + l + 1)k +
1

(k + 1)16 · 9

� 4
3δ

(δ + l+ 1)k +
8

k + 1
< δk−12k+1(l + 2)k +

8
k + 1

Scalar Multiplication on Koblitz Curves
Using Double Bases

Roberto Avanzi1,� and Francesco Sica2,��

1 Institute for Cryptology and IT-Security
The Horst Görtz institute (HGI) of IT-Security

Ruhr-Universität Bochum
Universitätsstraße 150, D-44780 Bochum, Germany

roberto.avanzi@ruhr-uni-bochum.de
2 Mount Allison University – AceCrypt

Department of Mathematics and Computer Science
67 York Street, Sackville, NB, E4L 1E6, Canada

fsica@mta.ca
http://www.acecrypt.com

Abstract. The paper is an examination of double-base decompositions
of integers n, namely expansions loosely of the form n =

∑
i,j ±AiBj

for some base {A, B}. This was examined in previous works [5,6], in the
case when A, B lie in N.

We show here how to extend the results of [5] to Koblitz curves over
binary fields. Namely, we obtain a sublinear scalar algorithm to compute,
given a generic positive integer n and an elliptic curve point P , the point
nP in time O

(
log n

log log n

)
elliptic curve operations with essentially no stor-

age, thus making the method asymptotically faster than any know scalar
multiplication algorithm on Koblitz curves. In view of combinatorial re-
sults, this is the best type of estimate with two bases, apart from the
value of the constant in the O notation.

Keywords: Scalar Multiplication, Elliptic Curves, Koblitz Curves, Dou-
ble Base Number Systems, Sublinear Algorithms.

1 Introduction

In cryptographic protocols whose security relies on the hardness of the discrete
logarithm problem on elliptic curves [14,12], the computationally most expensive
part is the scalar multiplication nP , where P is a point on the curve and n is
an integer, called the scalar. In order to speed up this computation, special
types of curves where large multiples of P could be computed quickly have
been proposed already very early in the history of elliptic curve cryptography:

� Partially supported by the European Commission through the IST Programme under
Contract IST-2002-507932 ECRYPT.

�� This work was partially supported by a NSERC Discovery Grant.

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 131–146, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

132 R. Avanzi and F. Sica

Notable examples are Koblitz curves [13] and more general curves with efficiently
computable endomorphisms [9].

In this paper we will consider Koblitz curves. The coefficients of their defining
equations lie in F2, but the curve are considered over the field extension F2p/F2.
The Frobenius automorphism τ of the field extension, that sends each field
elements to its square, induces an endomorphism of the group of points Ea(F2p)
of the curve, called the Frobenius endomorphism and also denoted by τ . The
evaluation of τP takes time O(1) using normal bases or O(p) using polynomial
bases. The map τ is used to devise efficient scalar multiplication algorithms,
see Section 3. But, those algorithms that compute nP without relying on (a
variable amount of) precomputations require1 Ω(logn) groups operations (such
as doublings or additions). We call such algorithms linear.

We study the use of τ in double base number systems, which were introduced
in elliptic curve cryptography in [8]. We show how to find a decomposition

n =
�∑

i=1

(−1)eiτsi3ti

with si, ti nonnegative integers and ei ∈ {0, 1}. The length � of this expansion
is O(log n/ log logn). Starting from here, we design a scalar multiplication al-
gorithm with complexity O(log n/ log logn) group operations, similarly to [5].
Our algorithm does not make use of tables of precomputations (nor of tables of
accumulation registers as Yao’s method [21]). Such an algorithm is said to be
sublinear. The number of group operations over the bit size p of the field goes
to zero as p increases.

This is a first instance of a sublinear scalar multiplication algorithm with very
little precomputations (which depend only on p, not the curve or the point P)
or storage requirements (O(log p) bits).

Our algorithm has similar asymptotic complexity as windowed methods with
optimal parameters, but whereas the latter require storage for O(log n/ log logn)
points, we need only one additional variable.

The techniques presented here, in contrast to, for example [20,19], are not
based on computations with residue classes in number rings. Instead we use
analytic methods to find successive approximations of the input by numbers of
the form τs3t as in [5]. Approximation approaches are not entirely new: apart
from the already cited paper [5], also [15] recodes an integer with respect to a
single base by finding “close” elements that are representable with respect to
the base - but the use of a single base does not require analytic methods.

The “analytic” approach to double base number systems is presented here for
the first time with a complex base, and we hope to foster further research in this
hitherto little explored direction.

The paper is structured as follows. In Section 2 we recall the definitions and
make some assumptions that we shall need later. In Section 3 we recall the
fundamentals and some recent developments in scalar multiplication on Koblitz

1 We use the notation Ω(x) to mean > cx for some positive c.

Scalar Multiplication on Koblitz Curves Using Double Bases 133

curves. Our new expansion and its analysis are the subject of Section 4. Finally,
conclusions and a discussion of possible future research directions (Section 5)
round off our presentation.

2 Preliminaries

2.1 Koblitz Curves

A Koblitz curve Ea is an elliptic curve defined over F2p , with Weierstrass equa-
tion

Ea : y2 + xy = x3 + ax2 + 1 . (1)

Here a = 0 or 1, and p is prime number. The parameters a and p are chosen
in such a way that the order of the rational point group Ea(F2p) is a (large)
prime r times a cofactor equal to 2 or 4. A point P ∈ Ea(F2p) is then ran-
domly chosen with order equal to r. By Hasse’s theorem, which states that
|#Ea(F2p)− 2p − 1| < 2

p
2 +1, r = ordP is then very close to 2p−1 or 2p−2,

depending on the cofactor.
Being the coefficients of Ea in F2, the Frobenius map τ(x, y) = (x2, y2) is

an endomorphism of Ea(F2p). Now, squaring is a linear operation in even char-
acteristic and takes time O(p). Hence, τ on the curve is also linear and takes
time O(p). If normal bases are used to represent the field extension F2p/F2,
then computing τ on the curve is even faster, as it amounts to two bit-rotations,
which are essentially free operations.

For any P on the curve it is easily verified that τ2P+2P = (−1)1−aτP . Hence,
τ can be identified with a complex number of norm 2 satisfying the quadratic
equation τ2 − (−1)1−aτ + 2 = 0. Explicitly,

τ =
(−1)1−a +

√
−7

2
·

In what follows it does not matter which “determination” of the square root we
use, hence we fix Im

√
−7 > 0.

2.2 Continued Fractions

Continued fractions are a way to find very good rational approximations ps/qs
(in terms of the maximum of the absolute values of ps and qs) to arbitrary real
numbers, by an algorithmic process which generalizes the computation of the
greatest common divisor (gcd) of two integers.

We list the properties of ps/qs, called the s-th convergent to α, relevant to
this paper. There exists a sequence of positive integers (as)s≥1 with

ps = asps−1 + ps−2 and qs = asqs−1 + qs−2 for all s ≥ 1 .

Therefore qs ≥ qs−1 + qs−2 and similarly for ps. These two sequences have at
least a Fibonacci-like (exponential) growth. If α /∈ Q, we have the following
inequalities for all s ≥ 1

134 R. Avanzi and F. Sica

0 < α− p2s

q2s
<

1
q22s

and − 1
q22s−1

< α− p2s−1

q2s−1
< 0 .

In particular, note that lims→∞ ps/qs = α.

2.3 Measure of Irrationality

We begin with a famous result (usually proved with the “pigeon-hole” or box
principle).

Theorem 1 (Dirichlet-Legendre, cfr. [10, Ch. 11]). Let Q > 1 and α ∈ R.
There exist integers 0 < q < Q and p ∈ Z such that

|qα− p| < 1
Q

·

The irrationality measure μ(α) of α ∈ R−Q is defined as

μ(α) = sup
{
x ∈ R : ∃∞ (p, q) ∈ Z2 with

∣∣∣∣α− pq
∣∣∣∣ ≤ 1

qx

}
.

Notice that the convergents
p

q
of the continued fraction expansion of α satisfy

∣∣∣∣α− pq
∣∣∣∣ ≤ 1

q2
,

hence μ(α) ≥ 2. It is known that the set of reals with irrationality measure
greater than 2 has Lebesgue measure zero. Therefore, given α, we should con-
jecture that μ(α) = 2.

In the rest of the paper, we will then assume that the irrational numbers log2 3
and θ/π (see below for definition) have measure 2.

2.4 Double Bases

Following [6] we call a {A,B}-integer a number which can be written as AsBt

for some nonnegative integers s, t (±AsBt if signed numbers are allowed). We
extend the definition to algebraic integers, more precisely, integers in Z[τ]. We
will also allow A,B ∈ Z[τ]. We define a {A,B}-integer expansion of n as a
decomposition of n into a sum of (possibly signed) {A,B}-integers.

3 Scalar Multiplication on Koblitz Curves

In this section we are chiefly concerned with scalar multiplication techniques
that do not make use of point precomputations or storage for on-the-fly com-
puted tables of point multiples. Variants of these methods than can take advan-
tage of such devices exist and in many cases have been extensively treated in
the literature.

Scalar Multiplication on Koblitz Curves Using Double Bases 135

3.1 The τ -NAF

All facts used here are only stated. Proofs can be found in [20,19].
Let Ea denote the Koblitz curve defined over F2p by (1), and P a point

in the subgroup of large prime order r of E(F2p). Let τ denote the Frobenius
endomorphism. We can view τ(P) as multiplication of the point P by τ , and
thus the whole ring Z[τ] operates on the subgroup 〈P 〉 of E(F2p) generated by
P . In fact there exists an integer λ such that τ(P) = λP , and thus τ operates
on 〈P 〉 like multiplication by λ. (This λ satisfies λ2 + (−1)aλ + 2 ≡ 0 mod r.)

The τ -adic non-adjacent form (τ -NAF) of an integer z ∈ Z[τ] is an expression
z =

∑
i ziτ

i where zi ∈ {0,±1} and satisfying the non-adjacency property
zjzj+1 = 0 (similarly to the classical NAF [17]). The expected density (i.e. the
ratio of non-zero bits w.r.t. to the total number of bits) of a τ -NAF is 1/3. Each
z ∈ Z[τ] admits a unique τ -NAF.

The length of the τ -NAF of a randomly chosen scalar n is ≈ 2p, whereas the
bit length of n is ≈ p. For any point P ∈ Ea(F2p) � Ea(F2), it is τpP = P and
τP �= P . Hence, Z[τ] being an Euclidean ring, we can take the remainder ζ of
n mod (τp − 1)/(τ − 1) and use it in place of n. This ζ will have smaller norm
than that of (τp − 1)/(τ − 1), and thus its length will be at most p. Its τ -NAF
is called the reduced τ -NAF of n. We shall write

∑
i ziτ

i for the τ -NAF of ζ in
what follows.

Just as the classic double-and-add scalar multiplication algorithm is simply
a Horner scheme for evaluating nP as

∑�
i=0 ni2iP , it is possible to evaluate

zP =
∑

i ziτ
i(P) by a Horner scheme. The resulting method is called a τ -

and-add algorithm. Let n be a randomly chosen integer in [1 ..#E(F2p)]. Its
binary expansion and its reduced τ -NAF have roughly the same expected length
and density. This, and the fact that Frobenius evaluations are much faster than
doublings, explain why the τ -and-add algorithm is much faster than a double-
and-add scheme on Koblitz curves.

3.2 Inserting a Halving and Viewing It as a Second Base

Point halving [11,18] is the inverse operation to point doubling and applies to
all elliptic curves over binary fields, not only to Koblitz curves. Its evaluation is
2 to 3 times faster than that of a doubling and it is possible to rewrite the scalar
multiplication algorithm using halving instead of doubling. The resulting method
is very fast, but on Koblitz curves it is slower than the τ -and-add method,
because a halving is slower than a Frobenius evaluation.

In [1] a single point halving is inserted in the τ -and-add method.This allowed
to reduce the amount of group operations by 14% with respect to the τ -NAF. A
refinement in [4] brought the speed-up to 25%. The basic idea in both approaches
is to express nP as

∑
i eiτ

i(P) +
∑

i fiτ
i(Q) with Q = 1

2P and a smaller joint
Hamming weight of the ei, fi’s.

This approach can be viewed as a simple case of double base expansion, where
the second base (the first being τ) is 1

2 , but it only appears with exponent
at most 1. (For a different approach also based in part on the ideas of [1],

136 R. Avanzi and F. Sica

see also [16], where “windows of width 5” are used essentially without storing
precomputations. This cannot be formulated as a double base method.)

4 Scalar Multiplication with {τ, 3}-Expansions

The aim of this section is to produce an efficient decomposition of a scalar n as
a signed sum of {τ, 3}-integers

n =
�∑

i=1

(−1)eiτsi3ti

with si, ti nonnegative integers, (si, ti) �= (sj , tj) for i �= j and ei ∈ {0, 1}. Here
� = O(log n/ log logn).

As a first simplification we replace n its reduced τ -NAF, ζ, as defined in
Section 3. This allows to cut by half the representation of n, since nP = ζP on
the curve.

Using a lexicographic order on powers of 3 and τ one can rewrite such a {τ, 3}
expansion as

ζ =
I∑

i=1

3ti

Ji∑
j=1

(−1)ei,jτsi,j (2)

where ei,j ∈ {0, 1},

I∑
i=1

Ji∑
j=1

1 = � , ti > ti+1 and si,j > si,j+1 .

4.1 Preliminaries

Let ps/qs be the s-th convergent to log3 2/2 (this is a slight departure from [5]).
Let m = p2/5. Fix s as the first odd index such that ps > m. Then 0 <

2
m1+ε log 2 < ps

2 log 3
log 2 − qs < 1

m < 2
m log 2 . This shows the following lemma.

Lemma 1. Using the above notations we have, as p →∞

exp
(

1
m1+ε

)
<

3ps

2
qs
2
< exp

(
1
m

)
. (3)

The authors of [5] then use this lemma to prove the following “reduction” theo-
rem (which we cite after fixing the value of m).

Theorem 2 (Thm. 1 of [5]). Let n be a large integer. There exists a {2, 3}-
integer N satisfying

|n−N | < n

log
1
3 n

·

Repeated use of this theorem leads to an effective construction of a {2, 3}-integer
decomposition of n as in the following.

Scalar Multiplication on Koblitz Curves Using Double Bases 137

Theorem 3 (Thm. 2 of [5]). Every sufficiently large rational nonnegative in-
teger n can be written as a sum n =

∑k
i=1 2si3ti where si, ti ∈ N ∪ {0} satisfy

(si, ti) �= (sj , tj) for i �= j and k ≤ 3 log n
log log n + o

(
log n

log log n

)
. Furthermore, one

can ensure that maxi si ≤ log2/3+ε n.

This last theorem allows to build a sublinear scalar multiplication algorithm
(Algorithm 2 in [5]). That work forms the blueprint of our sublinear scalar mul-
tiplication algorithm for Koblitz curves.

4.2 The Expansion

We now generalize the algorithms of [5] to ordinary Koblitz curves defined over
F2p . The main difference is that we have to view τ as a complex number, which
requires controlling the argument of the numbers thus involved if we want to
find “close” {τ, 3}-numbers.

Let τ be the Frobenius endomorphism of Ea. Put θ = arg(τ). We first prove
the following easy result.

Lemma 2.
θ

π
/∈ Q.

Proof. We want to show that τa /∈ R for any a ∈ Z. Let there otherwise be some
such a. Let M = τa. Taking complex conjugates, we get M = τ̄a = τa, which
is impossible, since Z[τ] is a unique factorization domain (it is Euclidean) and τ
and τ̄ are two non-associated irreducibles. �

Theorem 4. Let ζ ∈ Z[τ] be large. There exists a {τ, 3}-number N satisfying
either

|ζ −N | ≤ |ζ|
log

2
25 |ζ|

or |ζ +N | ≤ |ζ|
log

2
25 |ζ|

·

Proof. In view of (3) we have2 ∣∣∣∣3ps

τqs

∣∣∣∣ & e 1
m .

We then take the largest power 2ν less than or equal to |ζ|. Define t as the largest
integer such that ∣∣∣∣3ps

τqs

∣∣∣∣t ≤ |ζ|
2ν

(4)

and
qst < 2ν . (5)

2 We write something is 	 f(m) for some function f to mean that it lies between
f(m1−ε) and f(m1+ε). Similarly with m instead of m. This will avoid notation clut-
tering, while giving enough indications for a complete technical proof.

138 R. Avanzi and F. Sica

Note that our choice of m will guarantee that (5) is automatically fulfilled, as
in [5]. Then Ñ := τ2ν−tqs3tps satisfies

1 ≤
∣∣∣∣ ζ
Ñ

∣∣∣∣ ≤ e 1
m .

Unlike in the supersingular case we cannot conclude that |ζ−Ñ | is small, because
we need to adjust the argument of Ñ . We will rely on the following result.

Lemma 3. Let ξ1, ξ2 be two nonzero complex numbers and m ≥ 3 such that
1 ≤ |ξ1/ξ2| ≤ e

1
m and cos arg(ξ1/ξ2) ≥ e−

1
m . Then

|ξ1 − ξ2| ≤
2|ξ2|√

m
·

Proof. See Appendix A.

We now find an integer u ≥ 0 such that there exists an integer v with

|uqsθ − 2vπ| < 1√
m

·

We can do this by looking at the continued fraction expansion of qsθ/2π which
is irrational by Lemma 2. The previous inequality becomes∣∣∣∣uqsθ2π

− v
∣∣∣∣ < 1

2π
√

m
·

By the Dirichlet-Legendre theorem, v/u can be chosen as the convergent to
qsθ/2π with u < 2π

√
m closest to this bound. By our assumption on irrationality

measures, actually

u &
√

m and |uqsθ − 2vπ| & 1√
m

· (6)

This u can actually be precomputed, as it will depend only on the size 2p of
the finite field (see below), not even on the curve. Define then

−k =
⌊

argπ ζ − (2ν − tqs)θ
uqsθ − 2vπ

⌉
≤ 0 ,

(here �x� denotes the closest integer to x) where −π < argπ ζ − (2ν − tqs)θ < π
is defined modulo π to make k non-negative. Then k = O(

√
m) and

|kuqsθ + argπ ζ − (2ν − tqs)θ − 2kvπ| < 1√
m

·

Define now

N = Ñ
(

3ps

τqs

)ku

= τ2ν−(t+ku)qs3(t+ku)ps . (7)

Scalar Multiplication on Koblitz Curves Using Double Bases 139

Note that, if m is small enough,N is a {τ, 3}-integer. Also, either | arg(N/ζ)| <
1√
m

or | arg(−N/ζ)| < 1√
m

and thus we get | cos arg(N/ζ)| > e− 1
m . Also,

1 ≤
∣∣∣∣Nζ

∣∣∣∣ ≤ ∣∣∣∣N
Ñ

∣∣∣∣ ≤ eO(m)
m = eO(m

m) .

Thus choosing m ≤ m1/2−ε, we can apply Lemma 3 to ξ1 = N or ξ1 = −N
and ξ2 = ζ to conclude that

|ζ −N | ≤ 2|ζ|
m1/4−ε

or |ζ +N | ≤ 2|ζ|
m1/4−ε

thus proving Theorem 4 once we fix m = m2/5 = p4/25. �

Repeated applications of this theorem will yield the next result, whose proof
follows, mutatis mutandis, that of Theorem 3.

Theorem 5. Every ζ ∈ Z[τ] with ζζ̄ < #Ea(F2p) can be written as a sum

ζ =
�∑

i=1

(−1)eiτsi3ti

with si, ti nonnegative integers, (si, ti) �= (sj , tj) for i �= j and ei ∈ {0, 1}.
Furthermore the length of the expansion is

� ≤ 12.5
p

log2 p
+ o

(
p

logp

)
and one can insure that maxi ti ≤ p4/5.

In view of the fact that, by Hasse’s theorem,

p = log2 #Ea(F2p) +O
(
#Ea(F2p)−1/2

)
= log2 n+O(1)

on average for n, this is the analogue of Theorem 3 in our context. It is this
constructive theorem which is responsible for the sublinear running time of a
scalar multiplication algorithm similar to Algorithm 2 in [5]. See also the next
subsection for details.

Remark 1. We should note that Theorem 5 also holds for unsigned expansions,
with the same constant.

4.3 Practical Estimates

Algorithms 1 and 2 describe respectively the initial precomputation and the
scalar recoding. We will draw some remarks concerning their application. Algo-
rithm 3, that perform the actual scalar multiplication, is reported in Appendix
D, as it is essentially identical to Algorithm 2 from [5].

140 R. Avanzi and F. Sica

Algorithm 1. Precomputations (depending on p)

Input: An integer p, the bit size of the ground field F2p .
Output: Three integers P CONV, Q CONV and U CONV, and two floating
point numbers MODULUS RATIO and ANGLE RATIO.

1. m ← p2/5

2. s ← min{2j + 1: p2j+1 > m}
3. P CONV ← ps

4. Q CONV ← qs

5. MODULUS RATIO ← 2ps log2 3 − qs

6. MODULUS RATIO ← 1/MODULUS RATIO
7. ANGLE RATIO ← uqsθ − 2vπ, as per (6)
8. ANGLE RATIO ← 1/ANGLE RATIO
9. U CONV ← u

Algorithm 2. Binumber Scalar Decomposition

Input: An integer ζ ∈ Z[τ] with 2p/4 < |ζ| < 2p, and constants P CONV,
Q CONV, U CONV and MODULUS RATIO, ANGLE RATIO.
Output: A set S = {(e1, s1, t1), . . . , (e�, s�, t�)} with si, ti nonnegative inte-
gers, ei ∈ {0, 1} and � = O(log n/ log log n) such that ζ =

∑�
i=1(−1)eiτ si3ti

1. S = ∅
2. while |ζ| > 2p4/5

do
3. ε ← 0
4. ν ← �log2 |ζ|�
5. t ← �2MODULUS RATIO(log2 |ζ| − ν)�
6. k0 ← Arg(ζ/τ 2ν−tQ CONV)
7. if k0ANGLE RATIO > 0 then
8. k0 ← k0 − sign(ANGLE RATIO)π
9. ε ← 1

10. k ← − �k0ANGLE RATIO�
11. c ← t + kU CONV
12. N ← τ 2ν−cQ CONV3cP CONV

13. S ← S ∪ {(ε, 2ν − cQ CONV, cP CONV)}
14. ζ ← ζ − (−1)εN

15. Find the τ -NAF of ζ, appending exponents and signs to S .
16. return S

Algorithm 2 differs somewhat from its counterpart, Algorithm 1 in [5], in that
we are always using the same MODULUS RATIO, until we reach a sufficiently low
stage, and then give up and use a τ -NAF. In fact, while |ζ| > 2p4/5

, on applying

Theorem 4 we keep dividing moduli by a quantity at least log
2
25
2 2p4/5

= p
8

125 .
Therefore we need less than

Scalar Multiplication on Koblitz Curves Using Double Bases 141

p

log2

(
p

8
125

) = 15.625
p

log2 p

iterations to get down to 2p4/5
. Below this threshold, a τ -NAF will have length ≤

p4/5. Altogether, this gives a new bound for � similar to the bound of Theorem 5
with 15.625 replacing 12.5.

A remark is now due about the precision of the floating point quantities
MODULUS RATIO and ANGLE RATIO. Note that even in the case of the curve
K-571, where p = 571, we have m = p2/5 ≈ 12.664... and ANGLE RATIO must
be precise enough to enable us to resolve differences smaller than 1

2
√

m
, which for

K-571 are around 0.3, in order to correctly compute k. in Algorithm 2. Therefore,
single precision floating point values are more than sufficient for our purposes,
and in fact we can even use low-precision fixed point numbers implemented
via “short” (i.e. 16 or 32-bit) long integers. This also shows that the runtime
of Algorithm 2 is negligible compared to a scalar multiplication algorithm like
Algorithm 3.

Practical simulations have shown that a greedy-type algorithm gives consid-
erably shorter expansions han the τ -NAF also for cryptographically relevant
curves, such as NIST curves K-163, K-233 etc. Heuristically, if we use a greedy
algorithm for the τ -NAF expansion then at each step the intermediate variable
is halved, whereas in our new algorithm we divide it by a power of log |ζ| (a
small one, true, but for small values of p we use ad-hoc look-up which should
at least find the smallest power of τ close to ζ). The constant in the bound of
the expansion in practice seems much smaller than 15 (in [5], this is about 1,
using only unsigned expansions, which means that the corresponding algorithm
is 60% faster than the τ -and-add).

5 Conclusions and Perspectives

We have analyzed double-base expansions to the extent that we could generalize
scalar multiplication algorithms to use some bases {A,B} where one of A, B
is complex. Our results are so far mainly of an asymptotic nature and rely on
the assumption that certain irrational numbers are “generically” approximable
by rationals. By combinatorial reasons, these algorithms cannot achieve a better
asymptotic running time than p/ logp elliptic curve additions (cf. Appendices B
and C).

In the aftermath of this article, two works are now about to be published
on the same topic. In [7], accepted at CHES 2006, the authors present practi-
cal measurements on FPGA and show that indeed one achieves a 50% speedup
already on the smallest Koblitz curve K-163 (although they don’t use our de-
composition). Also [2], accepted at Asiacrypt 2006, provides a unified description
of double base recoding which fills in a proof of the theoretical assumptions made

142 R. Avanzi and F. Sica

in the previously cited work. The recoding is right-to-left, that is in ascending
ordering of the powers of the fast endomorphism (in this case τ), as opposed to
greedy-type algorithms which are naturally left-to-right. Moreover, the authors
achieve the asymptotic lower bound described in Appendix C.

The paper [3], to appear in the proceedings of SAC 2006, is devoted to digit
sets for τ -adic expansions of integers. In particular, a classification of the digit
sets that allow a successful expansion of all inputs is given, and a scalar multi-
plication method of the same complexity as the one in [2] is proposed, but given
in terms of single bases and suitably chosen digit sets.

References

1. R. Avanzi, M. Ciet, and F. Sica. Faster Scalar Multiplication on Koblitz Curves
combining Point Halving with the Frobenius Endomorphism. In Proceedings of
PKC 2004, volume 2947 of Lecture Notes in Computer Science, pages 28–40.
Springer, 2004.

2. R. Avanzi, V. S. Dimitrov, C. Doche, and F. Sica. Extending Scalar Multiplication
using Double Bases. In Proceedings of Asiacrypt 2006, Lecture Notes in Computer
Science. Springer, 2006.

3. R. Avanzi, C. Heuberger, and H. Prodinger. On Redundant τ -adic Expansions
and Non-Adjacent Digit Sets. In Proceedings of SAC 2006 (Workshop on Selected
Areas in Cryptography), Lecture Notes in Computer Science. Springer.

4. R. Avanzi, C. Heuberger, and H. Prodinger. Minimality of the Hamming Weight
of the τ -NAF for Koblitz Curves and Improved Combination with Point Halving.
In Proceedings of SAC 2005, volume 3897 of Lecture Notes in Computer Science,
pages 332–344. Springer, 2006.

5. M. Ciet and F. Sica. An Analysis of Double Base Number Systems and a Sublinear
Scalar Multiplication Algorithm. In E. Dawson and S. Vaudenay, editors, Progress
in Cryptology - Proceedings of Mycrypt 2005, volume 3715 of Lecture Notes in
Computer Science, pages 171–182. Springer, 2005.

6. V. S. Dimitrov, L. Imbert, and P. K. Mishra. Efficient and secure elliptic curve point
multiplication using double-base chains. In Advances in Cryptology - ASIACRYPT
2005, volume 3788 of Lecture Notes in Computer Science, pages 59–78. Springer,
2005.

7. V. S. Dimitrov, K. Jarvinen, M. J. Jacobson Jr, W. F. Chan, and Z. Huang. FPGA
Implementation of Point Multiplication on Koblitz Curves Using Kleinian Inte-
gers. In Proceedings of CHES 2006, Lecture Notes in Computer Science. Springer,
2006.

8. V. S. Dimitrov, G. A. Jullien, and W. C. Miller. An algorithm for modular expo-
nentiation. Information Processing Letters, 66(3):155–159, 1998.

9. R. P. Gallant, J. L. Lambert, and S. A. Vanstone. Faster Point Multiplication
on Elliptic Curves with Efficient Endomorphisms. In J. Kilian, editor, Advances
in Cryptology - Proceedings of CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 190–200. Springer, 2001.

10. G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, fifth edition, 1979.

Scalar Multiplication on Koblitz Curves Using Double Bases 143

11. E. W. Knudsen. Elliptic Scalar Multiplication Using Point Halving. In K.-Y.Lam,
E. Okamoto, and C. Xing, editors, Advances in Cryptography - Proceedings of
ASIACRYPT 1999, volume 1716 of Lecture Notes in Computer Science, pages
135–149. Springer, 1999.

12. N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

13. N. Koblitz. CM-curves with good cryptographic properties. In Joan Feigenbaum,
editor, Advances in Cryptology - Proceedings of CRYPTO 1991, volume 576 of
Lecture Notes in Computer Science, pages 279–287, Berlin, 1991. Springer.

14. V.S. Miller. Use of Elliptic Curves in Cryptography. In H.C. Williams, editor,
Advances in Cryptology - Proceedings of CRYPTO 1985, volume 218 of Lecture
Notes in Computer Science, pages 417–426. Springer, 1986.

15. J.A. Muir and D.R. Stinson. New Minimal Weight Representations for Left-to-
Right Window Methods. In Topics in cryptology – CT-RSA 2005, volume 3376 of
Lecture Notes in Comput. Sci., pages 366–383. Springer-Verlag, Berlin, 2005.

16. K. Okeya, T. Takagi, and C. Vuillaume. Short Memory Scalar Multiplication on
Koblitz Curves. In Proceedings of CHES 2005, volume 3659 of Lecture Notes in
Computer Science, pages 91–105. Springer, 2005.

17. G.W. Reitwiesner. Binary arithmetic. Advances in Computers, 1:231–308, 1960.
18. R. Schroeppel. Elliptic curves: Twice as fast!, 2000. Presentation at the Crypto

2000 Rump Session.
19. J. A. Solinas. An Improved Algorithm for Arithmetic on a Family of Elliptic

Curves. In Burton S. Kaliski Jr., editor, Advances in Cryptology - Proceedings of
CRYPTO 1997, volume 1294 of Lecture Notes in Computer Science, pages 357–371.
Springer, 1997.

20. J. A. Solinas. Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptog-
raphy, 19:195–249, 2000.

21. A.C. Yao. On the evaluation of powers. SIAM Journal on Computing, 5:100–103,
1976.

Disclaimer: The information in this document reflects only the authors’ views, is
provided as is and no guarantee or warranty is given that the information is fit for
any particular purpose. The user thereof uses the information at its sole risk and
liability.

A Proof of Lemma 3

After rescaling, we may suppose that ξ2 = e−1/m and ξ1 = ξ has modulus
e−1/m ≤ |ξ| ≤ 1, with cos arg(ξ) ≥ e−1/m. This means that ξ is in the grayed out
sector in the figure. Let 0 < ψ < π/2 be the angle such that cosψ = e−1/m, as
shown in the figure. Then the maximum of the distance between ξ and e−1/m is
the dotted length. Analytically,

|ξ1 − ξ2| =
∣∣∣ξ − e− 1

m

∣∣∣ ≤ sinψ =
√

1− e−2/m ≤
√

2√
m

=
√

2 e1/m

√
m

|ξ2| .

Since
√

2 e1/m < 2 for m ≥ 3 this concludes the proof.

144 R. Avanzi and F. Sica

e−1/m

ξ

ψ

1−1

1

−1

B Why Double-Base Algorithms Are Sublinear
Exclusively on Curves with Fast Endomorphisms

We prove here that the maximum of the exponents in any {2, 3}-integer expan-
sion of n must be of order logn. As a corollary we have that no such expansion
can give rise to a sublinear scalar multiplication algorithm on a generic elliptic
curve, where we can only hope to improve the scalar multiplication timings by
a bounded factor.

Theorem 6. Let

n =
k∑

i=1

2si3ti , si, ti ∈ N ∪ {0}

with (si, ti) �= (sj , tj) for i �= j. Then, as n goes to infinity,

max
i

(si, ti) ≥ log6 n+O(log logn) .

Proof. Let s = maxi(si, ti). We have

n =
k∑

i=1

2si3ti ≤ k6s .

Since k ≤ log2 n/(log 2 log 3) we must have from log2 n
log 2 log 36s ≥ n that

Scalar Multiplication on Koblitz Curves Using Double Bases 145

s ≥ log n
log 6

− 2 log logn
log 2 log 3 log 6

.

�

Corollary 1. A double base expansion of a generic scalar n cannot be converted
into a sublinear scalar multiplication algorithm on a generic elliptic curve.

Proof. Indeed, there are at least Ω(logn) powers of 2 or 3, and on a generic ellip-
tic curve these two operations are costly, hence Algorithm 2 in [5] in computing
nP on the elliptic curve will have to perform Ω(log n) elliptic curve operations.

�

Remark 2. The same goes of course for the {τ, 3}-number algorithm described
in this paper.

C Limitations of Greedy-Type Algorithms

In this appendix, we take all logs to the base 2. We want to show the following
theorem.

Theorem 7. If we use a greedy algorithm to find a {τ, 3} expansion, then we
must have

� ≥ p
log p

+ o
(

p
logp

)
Remark 3. In particular, this shows that we cannot achieve a constant better
than 1 in Theorem 5, at least with our method.

Proof. Since we are using a greedy algorithm to find all our {τ, 3}-integers, we
are restricting our pool of {τ, 3}-integers to τs3t with s ≤ 2p and t ≤ p, hence
at most 2p2 numbers. We know that the number of integers of norm less than
2p which can be represented by at most � {τ, 3}-numbers is upper bounded by

�∑
i=1

2i

(
2p2

i

)
≤ � 2�

(
2p2

�

)
=

Γ(2p2 + 1)
Γ(� + 1)Γ(2p2 − �) � 2

� .

This is due to the fact that for any weight i, we can represent an integer by
choosing i {τ, 3}-integers among at most 2p2 and each of them can have a
positive or negative sign. The inequality follows from the ascertained fact that
� < p. Using Stirling’s formula for Γ(z), we arrive at the following asymptotic
formula (

1 +
�

2p2 − �

)2p2−�

· 2� · p2� · �
3/2

��
≤ (2e)� p2� �3/2

��
.

With � = c
p

logp
we transform the previous expression into

(2e)(c−c log c) p
log p · 2cp · 2c p log log p

log p

(
cp

logp

)3/2

< 2p−3

146 R. Avanzi and F. Sica

when p → ∞, as soon as c < 1. This contradicts the fact that we must find a
representation of all the integers of norm less than 2p, which are at least 2p−2

(at least all remainders ζ of all possible n mod (τp − 1)/(τ − 1)). �

Remark 4. The same theorem also holds for any unsigned {2, 3} expansion as
in [5,6], or for those signed {2, 3} expansion obtained with a greedy algorithm,
since the only ingredient we need to make this cardinality-type argument work is
an upper bound on the double exponents (a, b) in 2a3b, which we automatically
have in theses cases. It is not clear that the same holds in general (actually, it
seems more plausible to have o(p/ logp) in signed expansions).

D Sublinear Scalar Multiplication Algorithm

Algorithm 3. Sublinear Multiplication

Input: A point P on the Koblitz curve Ea and a sequence of triplets of exponents
(ei,j , si,j , ti) as in (2).
Output: The point Q on the elliptic curve such that Q = ζP .

1. Q ← O
2. for i = 1 to I − 1 do
3. R ← (−1)ei,1P

4. for j = 1 to Ji do
5. R ← τ si,j−si,j+1R + (−1)ei,j+1P

6. Q ← Q + R

7. Q ← 3ti−ti+1Q

8. R ← (−1)eI,1P

9. for j = 1 to JI do
10. R ← τ sI,j−sI,j+1R + (−1)eI,j+1P

11. Q ← Q + R

12. return Q

Compressed Jacobian Coordinates for OEF

Fumitaka Hoshino, Tetsutaro Kobayashi, and Kazumaro Aoki

NTT Information Sharing Platform Laboratories, NTT Corporation
{fhoshino,kotetsu,maro}@isl.ntt.co.jp

Abstract. This paper presents a new coordinate system for elliptic
curves that accelerates the elliptic curve addition and doubling over
an optimal extension field (OEF). Many coordinate systems for ellip-
tic curves have been proposed to accelerate elliptic curve cryptosystems.
This paper is a natural extension of these papers and the new coordi-
nates are much faster when the elliptic curve is defined over an OEF.
This paper also shows that the total computational cost is reduced by
28% when the elliptic curve is defined over IFqm , q = 261 − 1 for m = 5
and the speed of a scalar multiplication on an elliptic curve becomes 41.9
μsec per operation on a 2.82-GHz Athlon 64 FX PC.

Keywords: elliptic curve cryptosystem, coordinate system, OEF, fast
software implementation.

1 Introduction

Elliptic curve schemes such as EC-DSA and EC-ElGamal have been the focus
of much attention since they provide smaller key sizes and faster operations
compared to RSA. In particular, the use of an optimal extension field (OEF) [1]
for software implementation has determined that an elliptic curve cryptosystem
is faster than a public key cryptosystem based on modular exponentiations [1].
Moreover, elliptic curves over extension fields become much important because
they are used in pairing based cryptosystems.

Points on an elliptic curve can be represented using different coordinate sys-
tems. Many coordinate systems have been studied to find a way to accelerate
the computation of elliptic curve addition (ECADD) and doubling (ECDBL) cal-
culations because the computational costs of ECADD and ECDBL are mainly
determined by the coordinate systems. The most popular coordinates are affine
coordinates, Jacobian coordinates, and its variation as shown in [2] and Ap-
pendix B. The best coordinate for fast software implementation depends on the
computational environment. If an inversion is slower than 7.6 multiplications,
Jacobian coordinates are faster than affine coordinates, for example. Previous
implementations [1,3] used the Jacobian coordinates because multiplication al-
gorithms are more efficient than inversion algorithms in many environments for
an OEF.

Recently, there has been an increased availability of 64-bit word size proces-
sors. In OEF for these processors, inversion is slower than in the 32-bit envi-
ronment; however, pseudo-inversion can be computed at a low cost. The basic

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 147–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

148 F. Hoshino, T. Kobayashi, and K. Aoki

concept of pseudo-inversion over IFqm was first proposed in [4] to compute ef-
ficiently a pairing on elliptic curves. In order to apply the pseudo-inversion to
ECADD and ECDBL, we propose new coordinates suitable for OEFs. These new
coordinates, compressed Jacobian coordinates, represent an intermediate concept
of the affine and Jacobian coordinates and make the elliptic curve addition faster
than that for either type of coordinates.

The compressed Jacobian coordinates are a natural extension of conventional
coordinates because the coordinates over IFq become equivalent to Jacobian
coordinates and the coordinates over IF2m , where q is prime, become equivalent
to affine coordinates.

We also show the efficiency of the proposed algorithm based on theoretical
estimation and actual implementation using the assembly language on a PC. In
our implementation, the speed of random scalar multiplications over an elliptic
curve, which is almost equal to the speed of EC-DSA signature generation, is
41.9 μsec on a 2.82-GHz Athlon 64 FX PC.

This paper is organized as follows. Section 2 defines the concepts used in the
paper. Section 3 describes the proposed algorithm. Section 4 presents an effi-
ciency comparison of the proposed algorithm and the conventional one. Section
5 concludes this paper.

2 Preliminaries

2.1 OEF

Let an OEF [1] be finite field IFqm that satisfies the following:

– q is a prime less than but close to the maximum integer word of the processor,
– q = 2n ± c where log2 c ≤ n/2 and
– an irreducible binomial f(x) = xm − ω exists.

We consider the following polynomial based representation of element A ∈
IFqm ,

A = am−1α
m−1 + · · ·+ a1α + a0

where ai ∈ IFq and α ∈ IFqm is a primitive root of f(x). Since we choose q to be
less than the maximum integer word of the processor, we can represent A using
m registers.

2.2 Computational Cost

Here, we define the following notation.

M is the computational cost of multiplication in IFqm

S is the computational cost of squaring in IFqm

I is the computational cost of inversion in IFqm

P is the computational cost of pseudo-inversion in IFqm

A is the computational cost of addition/subtraction in IFqm

v is the computational cost of multiplication IFq × IFqm → IFqm

Compressed Jacobian Coordinates for OEF 149

m is the computational cost of multiplication in IFq

s is the computational cost of squaring in IFq

i is the computational cost of inversion in IFq

a is the computational cost of addition in IFq

f is the computational cost of the Frobenius map in IFqm/IFq

2.3 Representation of Extension Field Element

This section discusses the representations of extension field elements and the
cost of arithmetics using the representations.

Consider an algorithm that consists of a series of arithmetic operations, which
include inversion(s), in IFqm . For most implementations, inversion is a costly

operation. So, rational representation
N

D
(N,D ∈ IF×

qm) can be used. Using the
representation, division is free, (

N

D

)−1

=
D

N

On the other hand, multiplication and addition require additional multiplica-
tions,

N1

D1

N2

D2
=
N1N2

D1D2

N1

D1
+
N2

D2
=
N1D2 +N2D1

D1D2

That is, rational representation does not require an inversion in the algorithm,
except for the final inversion(s). If the inversion is a very costly operation, the
rational representation is an effective way to reduce the complexity of the algo-
rithm. In some IFqm , when adopting a rational representation in the context of
elliptic curve arithmetics, we observed that “complete inversion” is not always
necessary. We can use pseudo-inversion, which is easy to compute compared
to complete inversion, in some finite fields, IFqm . The definition of the pseudo-
inversion algorithm is given hereafter.

Definition 1 (Pseudo-Inversion Algorithm)

Input: X ∈ IFqm

Output: (ι(X),N(X)) ∈ IFqm × IF×
q such that ι(X)X = N(X)

Moreover, we call ι(X) a pseudo-inversion of X and N(X) a co-pseudo-inversion
of X . When the pseudo-inversion algorithm is light, the compressed rational rep-

resentation,
N

d
(N ∈ IFqm , d ∈ IF×

q), is superior to the common and the rational
representation. The arithmetics for the compressed rational representation are(

N

d

)−1

=
ι(N)d
N(N)

150 F. Hoshino, T. Kobayashi, and K. Aoki

N1

d1

N2

d2
=
N1N2

d1d2
N1

d1
+
N2

d2
=
N1d2 +N2d1

d1d2

When m > 1, the cost of multiplication between IFqm and IFq is less than the cost
of multiplication in IFqm . Utilizing the pseudo-inversion algorithm can reduce the
cost of an algorithm that consists of a series of arithmetics. This paper applies
this idea to elliptic curve scalar multiplication.

Two examples of pseudo-inversion algorithm implementations are given in
Sections 2.4 and 2.5.

2.4 Pseudo-inversion by Norm

To compute the pseudo-inversion, we can use exponentiation by qi.
Given X ∈ IFqm , we call

z =
m−1∏
i=0

Xqi

the norm. The norm, z, is known to be z ∈ IFq. By this definition,

z = X

(
m−1∏
i=1

Xqi

)
and

Y =
m−1∏
i=1

Xqi

.

Output Y can be considered as the pseudo-inversion and z is the co-pseudo-
inversion. We can reduce the computational cost of the above algorithm by using
the Ito-Tsujii algorithm [5].

For example when m = 5,

Y ← X ·Xq

Y ← Y · Y q2

Y ← Y q

z ← X · Y

The computational cost of the qi-th power in IFqm can be estimated as

f ≈ v · (m− 1)/m = 0.8v,

if we use the polynomial basis using a binomial as an irreducible polynomial.
In addition, the computational cost of the last multiplication, z ← X ·Y , can

be estimated as v because z ∈ IFq. Therefore, the total computational cost is
estimated as

P = 2M+ 3f + 1v ≈ 2M+ 3.4v.

Compressed Jacobian Coordinates for OEF 151

2.5 Pseudo-inversion by Euclidean Method

Let deg(X) be the degree of polynomial X, lead(X) be the coefficient of poly-
nomial X’s leading term, and swap(X,Y) be the procedure that exchanges the
values of X and Y. The following algorithm computes a pseudo-inversion.

A = f(x) ; // irreducible polynomial.
B = g(x) ; // input polynomial (where deg(A) > deg(B)) �= 0

C = 0 ;
D = 1 ;

while(deg(B) > 0){
b = lead(B) ; // coefficient of B’s leading term
while(deg(A) >= deg(B)){
a = lead(A) ; // coefficient of A’s leading term
n = deg(A) - deg(B) ; // difference between degrees A and B

A *= b ; C *= b ;
A -= a*B*xn ;
C -= a*D*xn ;

} ;
swap(A,B) ;
swap(C,D) ;

} ;

// output D as pseudo-inversion
// output B as co-pseudo-inversion

Roughly speeking, the computational cost of this algorithm is 4mv.

3 Compressed Jacobian Coordinates

In the Jacobian coordinate system, a point on an elliptic curve over an extension
field is represented as an element of IF3

qm . We can decrease the redundancy of
the Jacobian coordinates by using pseudo-inversion. In our new coordinates, a
point is represented as an element of IF2

qm × IFq. We call this the compressed
Jacobian coordinate system. The compressed Jacobian coordinates can be used
for both Koblitz curves1 and random curves over OEF. Addition formulas in the
compressed Jacobian coordinates are given hereafter.

Compressed Jacobian coordinates
(X,Y, z) ∈ IF2

qm × IFq, where Y 2 = X3 + az4X + bz6

1 Usually, Koblitz curve means elliptic curves over IF2m . In this paper, we use the
word “Koblitz curve” as a general elliptic curve over IFpm that the cofactor is in IFp.

152 F. Hoshino, T. Kobayashi, and K. Aoki

Addition formulas in compressed Jacobian coordinates
Input: (X1, Y1, z1), (X2, Y2, z2), Output: (X3, Y3, z3).

z′3 ← z1z2
(X ′

1, Y
′
1) ← (X1z

2
2 , Y1z

3
2)

(X ′
2, Y

′
2) ← (X2z

2
1 , Y2z

3
1)

Λn ← ι(X ′
2 −X ′

1) · (Y ′
2 − Y ′

1)
λd ← N(X ′

2 −X ′
1)

z3 ← λdz
′
3

(X ′′
1 , Y

′′
1) ← (X ′

1λ
2
d, Y

′
1λ3

d)
(X ′′

2 , Y
′′
2) ← (X ′

2λ
2
d, Y

′
2λ3

d)
X3 ← Λ2

n −X ′′
1 −X ′′

2
Y3 ← Λn(X ′′

1 −X3)− Y ′′
1

We don’t compute Y ′′
2 in real implementation because Y ′′

2 is not used to
compute X3, Y3 and z3. We estimate the computational cost of ECADD without
computing Y ′′

2 hereafter.

Doubling formulas in compressed Jacobian coordinates
Input: (X1, Y1, z1), Output: (X3, Y3, z3).

Λn ← ι(2Y1) · (3X2
1 + az41)

λd ← N(2Y1)
z3 ← λdz1

(X ′′
1 , Y

′′
1) ← (X1λ

2
d, Y1λ

3
d)

X3 ← Λ2
n − 2X ′′

1
Y3 ← Λn(X ′′

1 −X3)− Y ′′
1

4 Evaluation and Implementation

In this section, we evaluate the performance of addition and doubling in the
compressed Jacobian coordinates. For simplicity, we neglect the cost of addition
and subtraction in IFqm , and multiplication in IFq. In addition, if m = 5, we can
estimate that

v ≈ 0.2M.
P ≈ 2M+ 3.4v ≈ 2.68M.

See Section 2.4 for details.
If I > 3.68M and S = 0.8M, the compressed Jacobian coordinate system is the

fastest when m = 5.

Implementation Result
We chose the parameters in Table 3 and the environment as given in Table
4. We chose the cyclic window method [3] as the scalar multiplication algo-
rithm and the results are given in Table 7. In Table 8, we refer to the previously

Compressed Jacobian Coordinates for OEF 153

Table 1. Computational Cost of ECADD

Coordinate system Cost m = 5
Compressed Jacobian 2M + 1S + 1P + 7v ≈ 6.08M + 1S
Compressed Jacobian (z2 = 1) 2M + 1S + 1P + 5v ≈ 5.68M + 1S
Affine 2M + 1S + 1I
Jacobian 12M + 4S
Jacobian (Z2 = 1) 8M + 3S
Modified Jacobian 13M + 6S
Modified Jacobian (Z2 = 1) 9M + 5S
Modified Jacobian (Z2 = 1) (a = −3) 8M + 5S

Table 2. Computational Cost of ECDBL

Coordinate system Cost m = 5
Compressed Jacobian 2M + 2S + 1P + 3v ≈ 5.28M + 2S
Compressed Jacobian (a ∈ IFq) 2M + 2S + 1P + 2v ≈ 5.08M + 2S
Affine 2M + 2S + 1I
Jacobian 4M + 6S
Jacobian (a = −3) 4M + 4S
Modified Jacobian 4M + 4S

Table 3. Parameters

q 261 − 1 (prime)
IFqm IFq[α]/(α5 − 3) (polynomial basis)
Elliptic curve Y 2 = X3 − 3X + 2023176626027320614
Trace t = 2713676959

Generator
X = 1225397330577448427 α4 + 110313758532384199 α3

+ 1639881413522258503 α2 + 547643109538786165 α
+ 2214931762811684809

Y = 74533231004088031 α4 + 1705584686783011420 α3

+ 2159424991416008329 α2 + 509248187364731537 α
+ 570065311020511817

Order 28269553069723731963330948928353289444455373120300688657015697428589796171

(244-bit prime)

Table 4. Environment

CPU AMD Athlon 64 FX-57
Clock Frequency 2.82 GHz
OS FreeBSD 5.4R
Compiler gcc version 4.0.3 20051229 (prerelease)

reported fastest implementation results. We cannot find any previous work that
uses similar parameter we used. We decided to show the references:

1. The security parameter is similar to ours. (122 bit)
2. The field construction is similar to ours. (OEF)

154 F. Hoshino, T. Kobayashi, and K. Aoki

Table 5. Implementation Results of ECADD

Coordinate system Cycles μsec
Compressed Jacobian 939 0.33
Compressed Jacobian (z2 = 1) 889 0.32
Affine 2216 0.79
Jacobian 1996 0.71
Jacobian (Z2 = 1) 1481 0.53
Modified Jacobian (a = −3) 2213 0.79
Modified Jacobian (a = −3, Z2 = 1) 1702 0.60

Table 6. Implementation Results of ECDBL

Coordinate system (a = −3) Cycles μsec
Compressed Jacobian 942 0.33
Affine 2337 0.83
Jacobian 1086 0.39
Modified Jacobian 1031 0.37

Table 7. Implementation Results of EC Scalar Multiplication

Coordinate system (a = −3) kcycles μsec
Compressed Jacobian 118 41.9
Affine 276 97.9
Jacobian 165 58.6
Modified Jacobian 174 61.9

Table 8. Comparison to Known Results

Curve Security kcycles μsec CPU Clock
IFqm Koblitz (This paper) q = 261 − 1, m = 5 122 bits 118 41.9 Athlon 64 FX 2.82 GHz
IFq Montgomery form [6] q = 2255 − 19 126 bits 625 – Athlon –
IF2m Koblitz [7] m = 233 116 bits 897 2243 Pentium II 400 MHz
IFqm Koblitz [3] q = 229 − 3, m = 7 87 bits 127 254 21264 500 MHz
IFqm Koblitz, Hessian form [8] q = 229 − 3, m = 7 87 bits 213 66.6 Pentium 4 3.2 GHz

Our current results are faster than these both in terms of speed in CPU cycles and
μsec. These numbers were obtained using various parameters and/or platforms.
Please take note of the parameters when comparing these numbers.

5 Conclusion

In this paper, we proposed a new coordinate system, which we call the com-
pressed Jacobian coordinates, to accelerate elliptic curve cryptosystems over
extension fields. The main idea of the proposed coordinates is to utilize pseudo-
inversion, and the coordinates are a natural extension of traditional affine and
Jacobian coordinates. We estimated the computational cost of ECADD and
ECDBL for the coordinates. We also implemented scalar multiplication as soft-

Compressed Jacobian Coordinates for OEF 155

ware on the x86-64 platform and confirmed that 244-bit OEF scalar multiplica-
tion can be computed in 41.9 μsec on an Athlon 64 FX-57 (2.82 GHz) using the
compressed Jacobian coordinates. To the best knowledge of the authors, this is
the fastest software implementation of elliptic curve scalar multiplications for
the security level of 122 bits or higher. This means that we can exchange more
than 10,000 ECDH keys per second on an inexpensive personal computer (if the
communication cost is negligible).

The idea of the compressed Jacobian coordinates can be easily applied to the
other coordinates, e.g., projective coordinates and Montgomery coordinates, and
the other algebraic curves, e.g., the hyper-elliptic curves and Cab curves.

References

1. Bailey, D.V., Paar, C.: Optimal extension fields for fast arithmetic in public-key
algorithms. In Krawczyk, H., ed.: Advances in Cryptology — CRYPTO’98. Volume
1462 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg,
New York (1998) 472–485

2. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In Ohta, K., Pei, D., eds.: Advances in Cryptology — ASIACRYPT’98.
Volume 1514 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Hei-
delberg, New York (1998) 51–65

3. K.Aoki, F.Hoshino, T.: A cyclic window algorithm for ECC defined over extension
fields. In: ICICS 2001. Volume 2229 of Lecture Notes in Computer Science., Springer-
Verlag (2001) 62–73

4. Kobayashi, T., Aoki, K., Imai, H.: Efficient algorithms for Tate pairing. IEICE
Transactions Fundamentals of Electronics, Communications and Computer Sciences
(Japan) E89-A (2006) 134–143

5. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m)
using normal bases. In: Information and Computation. Volume 78. (1988) 171–177

6. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. Lecture Notes in
Computer Science 3958 (2006) 207–228

7. Hankerson, D., Hernandez, J.L., Menezes, A.: Software implementation of elliptic
curve cryptography over binary fields. Lecture Notes in Computer Science 1965
(2001) 1–24

8. Kumagai, M.: Efficient implementation of Hessian-form elliptic curve cryptosystem
with SIMD instructions. In: The 2005 Symposium on Cryptography and Information
Security (SCIS2005), Maiko, Kobe, Japan, The Institute of Electronics, Information
and Communication Engineers (2005) 1651–1656 (in Japanese).

A Appendix: Frobenius Map

In this section, we recall the Frobenius map. LetE/IFq denote a non-supersingular
elliptic curve defined over finite field IFq where q is a prime or any power of a
prime. P = (X,Y) is an IFqm -rational point of elliptic curve E defined over IFq.
The Frobenius map, φ, is defined as

φ : (X,Y) → (Xq, Y q).

156 F. Hoshino, T. Kobayashi, and K. Aoki

The Frobenius map is an endomorphism over E(IFqm). It satisfies the equation

φ2 − tφ+ q = 0, −2
√
q ≤ t ≤ 2

√
q (1)

It takes a negligible amount of time to compute the Frobenius map in an
endomorphism ring where t is the trace of E/IFq provided that element in IFqm

is represented using the polynomial basis of IFqm over IFq using a binomial as a
definition polynomial.

B Appendix: Coordinates

Let
E : Y 2 = X3 + aX + b (a, b ∈ IFqm , 4a3 + 27b2 �= 0)

be the equation of elliptic curve E over IFqm .
For Jacobian coordinates, with X = XJ/Z

2
J and Y = YJ/Z

3
J , a point on ellip-

tic curve P is represented as P = (XJ , YJ , ZJ) = (X,Y). In order to accelerate
ECADD, the Chudnovsky Jacobian coordinates [2] represent a Jacobian point
as the quintuple (XJ , YJ , ZJ , Z

2
J , Z

3
J). On the other hand, in order to accelerate

ECDBL, the modified Jacobian coordinates [2] represent a Jacobian point as the
quadruple (XJ , YJ , ZJ , aZ

4
J).

The number of operations required to compute ECDBL and ECADD is shown
in Table 9.

Table 9. Number of Operations for Each Coordinate Systems

Coordinates ECDBL ECADD ECADD with Z = 1
Affine 2 M+ 2 S+ I 2 M+ 1 S+ I —

Chudnovsky
Jacobian 5 M+ 6 S 12 M+ 4 S 8 M+ 3 S

Modified
Jacobian 4 M+ 4 S 13 M+ 6 S 9 M+ 5 S

On the Definition of Anonymity
for Ring Signatures

Miyako Ohkubo1 and Masayuki Abe2

1 Information-Technology Promotion Agency, Japan
2-28-8, Honkomagome, Bunkyo-ku, Tokyo 113-6591 Japan

2 NTT Laboratories
1-1 Hikari-no-oka, Yokosuka-shi, Kanagawa-ken, 239-0847 Japan

Abstract. This paper studies the relations among several definitions of
anonymity in the same attack environment. It is shown that one intuitive
and two technical definitions we consider are asymptotically equivalent,
and the indistinguishability-based technical definition is the strongest,
i.e., the most secure when achieved, when the exact reduction cost is
taken into account. We then extend our result to the threshold case where
a subset of members cooperate to create a signature. The threshold set-
ting makes the notion of anonymity more complex and yields a greater
variety of definitions. We explore several notions and observe certain
relation does not seem hold unlike the simple single-signer case. Never-
theless, we see that an indistinguishability-based definition is the most
favorable in the threshold case. We also present a notion of anonymity
with linkability and a simple generic construction.

1 Introduction

Background. Ring signatures feature unforgeability and anonymity in such a
sense that anyone can be sure that the signature is created by one of the group
members but cannot identify which member the real signer is. It can be seen as
a variant of group signatures [11] without the group manager who registers the
signing keys of legitimate group members. Without the group manager, a ring
signature scheme allows ad-hoc members to be bound to a signature without
any authorization of the members or preliminary setup.

The notion of ring signatures are introduced by Rivest, Shamir, and Tauman
in [18] with the first instantiation based on the RSA assumption. [1] extends
the result so that variety of public-keys can be involved in a signature. [10,2]
addresses the threshold case where a group of the real signers cooperate to create
a ring signature. [10] is the first threshold scheme with a group of logarithmic
size, and [2] achieves polynomial size groups. [22] presents an ID-based ring
signature scheme. A threshold variant is presented in [12] and more efficiency
and generality is pursued in [13]. While all these constructions analyzes the
security in the random oracle model [7] ([18] also relies on an ideal cipher), [9]
presents a generic scheme without random oracles. We refer to [19] for more
survey of ring signatures.

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 157–174, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

158 M. Ohkubo and M. Abe

The security (unforgeability and anonymity) of a ring signature scheme is
defined by the combination of an attack environment and an attack goal as
well as those for other cryptographic primitives. [9] studies the notion of se-
curity mainly from the viewpoint of the attack environment, and shows the
strongest case where all the private keys are exposed to the adversary during
the anonymity game. While existential unforgeability is widely accepted as the
strongest security goal for unforgeability, anonymity is defined in different ways
in the literature. For instance, in [18,1,13], the goal of an adversary is to identify
the real signer among the group of members bound to the challenge signature,
while in [9] adopts the idea of indistinguishability [15] like in the case of group
signatures formally addressed in recent papers, e.g., [6,16,8]. The situation be-
comes more involved for threshold case where many variations are available.

Somewhat contrary to anonymity, linkability is useful in a scenario of ring sig-
natures. Suppose that a whistle-blower publishes a ring signature for a message
such as “We are doing insider trading” that surprises other involved members.
Then someone in the involved members may issues “I’m just kidding” to dis-
claim the previous message. Therefore, it is important to allow anyone to verify
the link between the signatures to convince him/herself that they are issued by
the same signer and anyone else (even the involved members) cannot create the
linked signatures. Unfortunately, it is known that strong sense of anonymity im-
plies unlinkability [6]. However, extending the syntax of ring signature schemes
changes the situation. In [17,3], the notion of linkable anonymous signatures are
introduced. Their security, however, guarantees so limited sense of linkability
that it cannot accommodate with anonymity under chosen real-signer attacks.
[21] addresses the threshold case, but their security notion and instantiation al-
low any insider member involved in a signature can later create linked signatures.
Hence it cannot be available for the scenario given above. Another result is in
[20] but their security definition has ambiguity and unnecessarily complicated.
For instance, they do not consider the case where insiders attempt to create
linkable signatures. Furthermore, their scheme does not allow the real signer to
issue unlinkable signatures with the same members involved. (This is their design
goal, though. It may have other application.) Therefore, to our best knowledge,
sufficient instantiation and rigorous treatment of the notion of anonymity with
linkability is not known so far.

Our Contribution. We focus on the attack goals in the definitions of anonymity
and show their relations in the same attack environment. To see the relation be-
tween intuitive and technical definitions, we consider the following attack goals,
which will be defined formally in Sec 2. Given a challenge ring signature of an
arbitrary group, the attacker:

1. identifies the real signer (WHO),
2. decides which of two specific signers is the real signer (IND),
3. decides if it is created by a specific signer or not (ROR).

The third notion (ROR:real-or-random) has not been used in the context of ring
signatures but used to define secrecy in, for instance, symmetric encryption [4]

On the Definition of Anonymity for Ring Signatures 159

and key encapsulation [14]. We show that the most intuitive notion (WHO)
and other two technical definitions (IND, ROR) are asymptotically equivalent.
Namely, if a ring signature scheme is anonymous in the sense of WHO, it is also
anonymous in the sense of IND or ROR. Our detailed proof shows that IND is
the strongest, i.e. the most secure when achieved, when the exact reduction cost
is concerned. In [9], it is briefly pointed out that WHO is reducible to IND by
a hybrid argument, which usually yield polynomial cost and hence places these
two notions in a distance. We provide a direct reduction between these notions
and shows that they are actually close each other.

We then extend the argument to the threshold case, where it is not just
a simple replacement of the single real signer to a group of real signers. We
consider variants of WHO used in the literature and show that a natural exten-
sion of IND is reducible to these notions. It means that an indistinguishability-
based definition is the most favorable even in the threshold case. We do not
know whether the reverse relation is also true or not. We present a further
extended variant of WHO that is equivalent to the indistinguishability-based
definition.

Finally, we address the issue of linkability. We first extend the syntax of
ring signature schemes and show a suitable definition for link-unforgeability and
anonymity with linkability. Then we present a simple and generic construction
from a (non-linkable) ring signature scheme and ordinary signature scheme.

2 Definitions

Definition 1 (Ring Signature Scheme) [1]. A 1-out-of-n ring signature
scheme, Σ1,n, is a triple of polynomial-time algorithms, Σ1,n=(G1,n,S1,n,V1,n):

G1,n : (1λ) → (sk, vk). A probabilistic algorithm that takes security parameter λ
and outputs private signing key sk and public verification key vk.

S1,n : (sk,m, L) → σ. A (probabilistic) algorithm that takes message m, and
a list, say L, of verification-keys including the one that corresponds to sk,
outputs signature σ.

V1,n : (L,m, σ) → 1/0. An algorithm that takes message m and signature σ,
and outputs either 1 or 0 meaning accept and reject, respectively. We require
that V1,n(L,m,S1,n(sk,m, L)) = 1 for any message m, any (sk, vk) generated
by G1,n, and any L that includes vk.

It is assumed that each public-key is implicitly bound to the identity of its owner
and one can see the identity by seeing the public-key. In the following, we give
double-meaning to L as a set of public-key and a set of corresponding identity.
Hence we may allow description such as choosing an identity from L.

The signature generation and verification functions may be limited to work
only if L contains legitimate or legitimately-looking public-keys which are indis-
tinguishable from the legitimate ones.

To define anonymity, we define the attack resources as an oracle given to the
adversary. It accepts the following queries.

160 M. Ohkubo and M. Abe

key-gen(i). A key generation query. Given this query with a unique identity i, a
new public and private key pair is generated for that identity. The public-key
is appended to list L∗ and the private-key is kept secret from the adversary.
List L∗ is initially empty and available to the adversary.

add-pk(i, vk). A new member addition query. It allows the adversary to append
an arbitrary public-key vk bound to identity i to list L† which is empty at
the beginning. It is required that both i and vk are unique in L∗ ∪ L†.

get-sign(i, L,m). A signature generation query. It allows the adversary to obtain
a ring signature for arbitrary signer, group, and message. Oracle R returns
σ ← S1,n(ski,m, L) if i ∈ L ∩ L∗. It returns ⊥, otherwise.

key-expose(i). A key exposure query. It allows the adversary to obtain the pri-
vate key of an arbitrary public-key. If i ∈ L∗, oracle R returns corresponding
sk.

corrupt(i). A corruption query. It allows the adversary to obtain all the inputs
to signer i, which includes the private-key and all random choices. If i ∈ L∗,
oracle R returns corresponding sk and the random tape of i.

Remark 1. Requiring unique i and vk for making add-pk means that the adver-
sary is not allowed to register someone else’s public-key as his own. However, it
is just for a notational simplicity and does not lose generality. It can be handled
by separately treating identities and the public-keys if desired.

Remark 2. Through add-pk, the adversary is allowed to add a bogus public-key
whose secret-key may not exist and cannot generate signatures. This affects to
the anonymity issue as discussed in the sequel.

We next define anonymity in a various form. First we show the most intuitive
notion, which we denote WHO. The idea is that the adversary guesses who is
the actual signer when it is chosen randomly from the signature group specified
by the adversary.

Definition 2 (WHO-Anonimity). A ring signature scheme is WHO-
anonymous if for any polynomial-time adversary A playing the following game,
there exists a negligible function ε in λ such that Pr[ĩ = i∗] < 1/|L∗| + ε where
L∗ is L ∩ L∗ for L∗ observed in step 3.

[Attack Game: WHO]

1. Global : L∗ and L† (initially empty).
2. (L,m, ω) ← AR(1λ).
3. i∗ ← L ∩ L∗, σ ← S1,n(ski∗ ,m, L).
4. ĩ← AR(ω, σ).

It is required that L ∩ L∗ �= ∅ in step 2, and ĩ ∈ L ∩ L∗ in step 4.

Variable ω is an internal state of A.

Remark 3. When an honest signer, i, issues a signature with list L, she might
naturally expect that her identity is hidden among the identities in L. This

On the Definition of Anonymity for Ring Signatures 161

intuition is true if L ⊆ L∗ in the above definition. However, the adversary might
add fake public-keys that are indistinguishable from the legitimate ones but
never work for generating signatures. It may result in L ∩ L∗ only contains her
identity and the adversary can identify the real signer with probability 1. This
is a practical threat that is hard to avoid and not captured by the definition. A
possible solution is to choose L from the set of public-keys that are once used
to create signatures. Self-signature in a public-key certificate would be useful for
this purpose in practice.

We add two more technical definitions, IND and ROR, as mentioned in Sec. 1.

Definition 3 (IND-Anonimity). A ring signature scheme is IND-anonymous
if for any polynomial-time adversary A playing the following game, there exists
a negligible function ε in λ such that Pr[χ̃ = χ] < 1/2 + ε.

[Attack Game: IND]

1. Global : L∗ and L† (initially empty).
2. (i0, i1, L,m, ω) ← AR(1λ).
3. χ← {0, 1}, σ ← S1,n(skiχ ,m, L).
4. χ̃← AR(ω, σ).

It is required that {i0, i1} ⊆ L ∩ L∗ in step 2, and χ̃ ∈ {0, 1} in step 4.

Definition 4 (ROR-Anonymity). AringsignatureschemeisROR-anonymous
if for any polynomial-time adversary A playing the following game, there exists
a negligible function ε in λ such that Pr[ξ̃ = ξ] < 1/2 + ε.

[Attack Game: ROR]

1. Global : L∗ and L† (initially empty).
2. (i, L,m, ω) ← AR(1λ).
3. ξ ← {0, 1}, i1 ← i, i0 ← L ∩ L∗ \ {i}, i∗ = iξ, σ ← S1,n(ski∗ ,m, L).
4. ξ̃ ← AR(ω, σ).

It is required that i ∈ L∩L∗ and |L∩L∗| ≥ 2 in step 2, and ξ̃ ∈ {0, 1} in step 4.

3 Relation Among the Definitions

3.1 Theorems

For security notion A and B, we denote by A ⇒ B that if a scheme is secure
in A it is also secure in B with respect to the same attack resources. By (ε, t)-
adversary, we denote an adversary that stops within time t, and wins the attack
game with probability at least ε. Let L∗ denote the legitimate public-keys in L
appeared in step 3 of each attack game. Namely, L∗ = L ∩ L∗ for L and L∗

observed at step 3 of each attack game.

162 M. Ohkubo and M. Abe

Theorem 1. IND⇒WHO. In particular, if there exists an (εwho, twho)-adversary
in the sense of WHO, then there exists an (εind, tind)-adversary in the sense of
IND such that εind = |L∗|

2(|L∗|−1) εwho and tind ≈ twho.

It is interesting to see that εind ≥ 1
2εwho even for large L∗. Therefore, Theorem 1

says that an IND-secure scheme is also WHO-secure regardless of the size of the
group bound to the signatures.

Theorem 2. WHO ⇒ IND. In particular, if there exists an (εind, tind)-adversary
in the sense of IND, then there exists an (εwho, twho)-adversary in the sense of
WHO such that εwho = 2

|L∗| εind and twho ≈ tind.

Theorem 3. IND ⇒ ROR. In particular, if there exists an (εror, tror)-adversary
in the sense of ROR, then there exists an (εind, tind)-adversary in the sense of
IND such that εind = εror and running time is tind ≈ tror.

Theorem 4. ROR ⇒ IND. In particular, if there exists an (εind, tind)-adversary
in the sense of IND, then there exists an (εror, tror)-adversary in the sense of
ROR such that εror = |L∗|

2(|L∗|−1) εind and running time is tror ≈ tind.

From Theorem 1 and 2, we see that IND is a stronger notion than WHO. The
larger L∗ gets, the less secure WHO-security becomes than IND-security (unless
Theorem 2 finds better reduction). This relation is similar to the one between
indistinguishability and one-way for cryptosystems with poly-size message space.
Indeed, since the number of the signers is polynomially limited, a scheme that
hides the identity of the real signer can be seen as a cryptosystem with poly-size
message space. In Sec. 4, we will see that the situation changes in the threshold
case where the number of the real-signer group is exponential.

Looking at Theorem 3 and 4, one can see that IND and ROR are close together
but IND is slightly better. In conclusion, IND is the most preferable as a security
notion to achieve.

3.2 Proofs

(Proof of Theorem 1.) We construct adversary Aind for IND by using adversary
Awho for WHO as follows. First of all, Aind forwards all queries from Awho to R
to the corresponding R in IND and returns the answers to Awho. Aind simulates
the challenge oracle in WHO in the following way; Given (m, L) from Awho,
Aind chooses i0 and i1 randomly from L∗. It then send query (i0, i1, L,m) to the
challenge oracle of IND. Then return the obtained signature to Awho. Eventually,
Awho outputs ĩ ∈ L∗. If ĩ ∈ {i0, i1}, then Aind outputs χ̃ ∈ {0, 1} such that iχ̃ = ĩ.
Otherwise, Aind outputs randomly chosen χ̃← {0, 1}.

Since all the oracle queries are handled correctly, the attack environment for
Awho is simulated perfectly. (Note that the distribution of the challenge signa-
tures also perfect because the iχ is chosen uniformly from L∗ from the viewpoint
of Awho.) Next, there are two cases when Aind wins; 1) Awho wins, and 2) Awho

On the Definition of Anonymity for Ring Signatures 163

fails but ĩ is not in {i0, i1} and the succeeding random guess is true. Let χ̄ be
1 − χ. A crucial observation is that when Awho fails, iχ̄ is independent of the
view of Awho. Since iχ̄ is selected uniformly from L∗ \ {iχ}, the case ĩ = iχ̄
happens only with probability 1

|L∗|−1 . Now, the success probability of Aind is the
following.

Pr[Aind wins] = Pr[Awho wins] +
1
2
· Pr[Awho fails ∧ ĩ �= iχ̄]

= (
1
|L∗| + εwho) +

1
2
· {1− (

1
|L∗| + εwho)} ·

|L∗| − 2
|L∗| − 1

=
1
2

+
|L∗|

2(|L∗| − 1)
· εwho

Hence we have a bound εind = |L∗|
2(|L∗|−1) · εwho. It is obvious that tind ≈ twho from

the construction of Aind. �

(Proof of Theorem 2.) We construct adversaryAwho for WHO by using adversary
Aind for IND as follows. First of all, Awho forwards all queries from Aind to R to
the corresponding R in WHO and returns the answers to Aind. Awho simulates
the challenge oracle in IND in the following way; Given (i0, i1,m, L) from Aind,
Awho, then send query (m, L) to the challenge oracle of WHO. Then return the
obtained signature to Aind. If Aind stops and outputs χ̃ ∈ {0, 1}, Awho outputs
ĩ = iχ̃.

Now, observe that the view of Aind is simulated perfectly if challenge oracle
C coincidently chooses i∗ to i0 or i1. And it is clear by construction that Awho

wins only in this case. Therefore,

Pr[Awho wins] = Pr[Aind wins ∧ i∗ ← {i0, i1}]

= (
1
2

+ εind) ·
2
|L∗|

=
1
|L∗| +

2
|L∗| εind.

Thus we have εwho = 2
|L∗| εind. The running time is clearly almost the same. �

(Proof of Theorem 3.) We construct adversary Aind for IND by using adversary
Aror for ROR as follows. First of all, Aind forwards all queries from Aror to R
to the corresponding R in IND and returns the answers to Aror. Aind simulates
the challenge oracle in ROR in the following way; Given (i,m, L) from Aror,
adversaryAind sets i1 = i and choose i0 randomly from |L∗|\i. It then sends query
(i0, i1, L,m) to the challenge oracle of IND and returns the obtained signature
to Aror. Eventually, if Aror outputs ξ̃ ∈ {0, 1} then Aind outputs χ̃ = ξ̃.

Observe that the challenge oracle of IND essentially chooses the target signer
from i or randomly selected one because (i0, i1) is set to (i, random) by Aind.
Hence the view of Aror is perfectly simulated and it is clear that Aind wins

164 M. Ohkubo and M. Abe

whenever Aror wins. Thus we have εror = εind. The running time is clearly almost
the same. �

(Proof of Theorem 4.) We construct adversary Aror for ROR by using adversary
Aind for IND as follows. First of all, Aror forwards all queries from Aind to R
to the corresponding R in ROR and returns the answers to Aind. Aror simulates
the challenge oracle in IND in the following way; Given (i0, i1,m, L) from Aind,
adversary Aror flips coin b← {0, 1} and sets i = ib. It then sends query (i, L,m)
to the challenge oracle of ROR and returns the obtained signature to Aind. If
Aind stops and outputs χ̃ ∈ {0, 1}, adversary Aror outputs ξ̃ = 1 if χ̃ = b. It
outputs ξ̃ = 0, otherwise.

Observe that the view of Aind is perfectly simulated in two cases; 1) the
challenge oracle of ROR gets ξ = 1, i.e., it sets the real signer i∗ = ib, or 2)
the challenge oracle of ROR gets ξ = 0 and i1−b is coincidently selected as a
real signer, i∗ = i1−b. For these cases, Aror wins whenever Aind wins. Aror could
also win even when Aind does not get a correct challenge signature. It is the case
when the output χ̃ from Aind happens to χ̃ �= b. This happens with probability
1/2 because, in this case, randomly chosen b is independent from the view of
Aind. From these observation, the success probability of Aror is as follows.

Pr[Aror wins] = Pr[ξ = 1] · Pr[Aind wins] + Pr[ξ = 0] · Pr[i∗ = i1−b] · Pr[Aind wins]
+ Pr[ξ = 0] · Pr[i∗ �= i1−b] · Pr[χ̃ �= b]

=
1
2
(
1
2

+ εind) +
1
2
· 1
|L∗| − 1

· (1
2

+ εind) +
1
2
· |L

∗| − 2
|L∗| − 1

· 1
2

=
1
2

+
|L∗|

2(|L∗| − 1)
εind

Hence we have εror = |L∗|
2(|L∗|−1) εind. The running time is clearly almost the same

from the construction. �

4 Extension to Threshold Case

4.1 Definitions

Syntactical definition of threshold ring signature can be obtained by modifying
the signing function to take a set of private keys, say {ski}, of the real signer
group1. Then, the signing function is actually considered as a set of k or more
interactive machines each of which has corresponding private key and cooper-
atively compute a signature. The verification function is also modified to take
threshold k as an input.

We first consider a straightforward extension of WHO to the threshold case.
The idea is that the adversary has to guess all the members of the real signing
group. We denote it by WHOk

group. This notion is used in [2].

1 By {Xi}, we denote {X1, X2, · · · , }. This convention will be used in the rest of this
paper.

On the Definition of Anonymity for Ring Signatures 165

Definition 5 (WHOk
group-Anonimity). AringsignatureschemeisWHOk

group-
anonymous if for any polynomial-time adversary A playing the following game,
there exists a negligible function ε in λ such that Pr[{ĩ} = {i∗}] < 1/

(|L∗|
k

)
+ ε.

[Attack Game: WHOk
group]

1. Global : L∗ and L† (initially empty).
2. (k, L,m, ω) ← AR(1λ).
3. {i∗} ← {L ∩ L∗}(k), σ ← Sk,n({ski}i∈{i∗},m, L).
4. {ĩ} ← AR(ω, σ).

It is required that |L ∩ L∗| ≥ k in step 2, and {ĩ} ⊆ L ∩ L∗ and |{ĩ}| = k in
step 4.

Here, {L ∩ L∗}(k) denotes all subsets of L ∩ L∗ of size k. The same applies to
the definitions hereafter.

The above WHOk
group concerns the anonymity of the real signer group but

does not seem to capture the anonymity for each member of the real signer
group. The following one used in, e.g. [21], cares for this case. The idea is that
the adversary wins even if it identifies only one of the real signer in the group.
The Argument, Challenge, are the same as before. The wining condition and the
security bound is relaxed as follows.

Definition 6 (WHOk
single-Anonimity). AringsignatureschemeisWHOk

single-
anonymous if for any polynomial-time adversary A playing the following game,
there exists a negligible function ε in λ such that Pr[ĩ ∈ {i∗}] < k

|L∗| + ε.

[Attack Game: WHOk
single]

1. Global : L∗ and L† (initially empty).
2. (k, L,m, ω) ← AR(1λ).
3. {i∗} ← {L ∩ L∗}(k), σ ← Sk,n({ski}i∈{i∗},m, L).
4. ĩ← AR(ω, σ).

It is required that |L ∩ L∗| ≥ k in step 2, and ĩ∗ ∈ L ∩ L∗ in step 4.

The notions IND and ROR are extended straightforwardly to the threshold case.
Name them INDk and RORk, respectively. We put them here just for notation
and completeness.

Definition 7 (INDk -Anonymity). Aringsignatureschemeis IND-anonymous
if for any polynomial-time adversary A playing the following game, there exists
a negligible function ε in λ such that Pr[χ̃ = χ] < 1/2 + ε.

[Attack Game: INDk]

1. Global : L∗ and L† (initially empty).
2. ({i}0, {i}1, L,m, ω) ← AR(1λ).
3. χ← {0, 1}, σ ← Sk,n({ski}i∈{i}χ

,m, L).
4. χ̃← AR(ω, σ).

166 M. Ohkubo and M. Abe

It is required that both {i}0 and {i}1 are subsets of L∩L∗ and |{i}0| = |{i}1| in
step 2, and χ̃ ∈ {0, 1} in step 4.

Definition 8 (RORk -Anonimity). AringsignatureschemeisRORk-anonymous
if for any polynomial-time adversary A playing the following game, there exists
a negligible function ε in λ such that Pr[χ̃ = χ] < 1/2 + ε.

[Attack Game: RORk]

1. Global : L∗ and L† (initially empty).
2. ({i}, L,m, ω) ← AR(1λ).
3. ξ ← {0, 1}, {i}1 = {i}, {i}0 ← {L ∩ L∗}(|{i}|) \ {i}. {i∗} = {i}ξ, σ ←
Sk,n({ski}i∈{i∗},m, L).

4. ξ̃ ← AR(ω, σ).

It is required that {i} � L ∩ L∗ in step 2, and ξ̃ ∈ {0, 1} in step 4.

4.2 Relation Among the Definitions

Since WHOk
group, INDk, and RORk are straightforward extension of correspond-

ing notions in the single real signer case, their relation preserves naturally. Pre-
cise reduction cost can be given by replacing |L∗| in Theorem 2, 1, and 3 with(|L∗|

k

)
. However, the threshold version of Theorem 2 that will state reduction

from WHOk
group to INDk will suffer the factor of

(|L∗|
k

)−1
, which is exponentially

small when k and |L∗| are both polynomial in the security parameter. Hence
we are not sure whether WHOk

group ⇒ INDk holds or not. This situation bears
resemblance to the relation between IND and OW for cryptosystems with ex-
ponentially large message space. (Recall that WHOk

group demands to identify
all the real signers. Hence it can be translated to notion of OW with exp-size
message space.) We list the theorems among WHOk

group, INDk, and RORk as
follows. Proof can be derived from the non-threshold case and omitted.

Theorem 5. INDk ⇒ WHOk
group. In particular, if there exists an (εkind, t

k
ind)-

adversary in the sense of INDk, then there exists an (εkwho, t
k
who)-adversary in the

sense of WHOk
group where εkind =

(|L∗|
k

)
/2(

(|L∗|
k

)
− 1) εkwho and tkwho ≈ tkind.

Theorem 6. INDk⇒RORk. In particular, if there exists an (εkind, tkind)-adversary
in the sense of IND, then there exists an (εkror, tkror)-adversary in the sense of
ROR where εkind = εkror and running time is tkind ≈ tkror.

Theorem 7. RORk⇒INDk. In particular, if there exists an (εkror, tkror)-adversary
in the sense of RORk, then there exists an (εkind, tkind)-adversary in the sense of
IND where εkror =

(|L∗|
k

)
/2(

(|L∗|
k

)
− 1) εkind and running time is tkror ≈ tkind.

An interesting case would be the relation between WHOk
single and INDk. We

prove the following theorem holds.

On the Definition of Anonymity for Ring Signatures 167

Theorem 8. INDk ⇒ WHOk
single. In particular, if there exists an (εkwho, t

k
who)-

adversary in the sense of WHOk
single, then there exists an (εkind, t

k
ind)-adversary in

the sense of INDk where εkind = εkwho/2 and tkind ≈ tkwho.

One may notice that Theorem 8 with k = 1 gives slightly worse bound compared
to Theorem 1. This is nothing but a technical reason that we construct the
adversary in INDk in such a way that it may coincidently choose the same
candidates when it chooses two. Detailed proof is given in Appendix A.

From Theorem 5 to 8, we conclude that INDk is the most preferable as a
starting point for the notion of anonymity in the threshold case as well as the
single-signer case.

4.3 Discussion

It remains to consider the reverse relation from WHOk
group and/or WHOk

single

to INDk. Unfortunately, we are not aware of efficient reduction for this case.
Observe that WHOk

single has a resemblance to a special case of semantic secu-
rity for cryptosystems. Namely, the adversary of WHOk

single need to guess one
signer from a poly-size group of real signers while the adversary in the special
case of semantic security game guesses one bit of the polynomial length plain-
text. A particular problem in showing WHOk

single ⇒ INDk is that the adversary
in WHOk

single is not allowed to chose convenient distribution from which the
challenge oracle chooses the real signer. Therefore, we strengthen the notion
by giving more choice to the adversary. Concretely, the adversary is allowed to
specify an access structure, say Γ , from which the set of real signers is selected.
Formal description is as follows.

Definition 9 (WHOk
spec-Anonimity). A ring signature scheme is WHOk

spec-
anonymous if for any polynomial-time adversary A playing the following game,
there exists a negligible function ε in λ such that Pr[{̃i} = {i∗}] < 1

|Γ | + ε.

[Attack Game: WHOk
spec]

1. Global : L∗ and L† (initially empty).
2. (Γ, k, L,m, ω) ← AR(1λ).
3. {i∗} ← Γ , σ ← Sk,n({ski}i∈{i∗},m, L).
4. {̃i} ← AR(ω, σ).

It is required that Γ = {{i1, · · · , ik}| ij ⊆ L ∩ L∗} for some fixed k < |L ∩ L∗|.
Furthermore, for every {i1, · · · , ik}, {i′1, · · · , i′k} ∈ Γ , {i1, · · · , ik} �={i′1, · · · , i′k}.

With this relaxed definition, it is not hard to see that WHOk
spec and INDk can

be reduced each other. We state the following theorems without proofs that is
straightforward.

Theorem 9. WHOk
spec ⇒ INDk. In particular, if there exists an (εkind, tkind)-

adversary in the sense of INDk, then there exists an (εkwho, tkwho)-adversary in
the sense of WHOk

spec where εkwho = εkind and running time is tkwho ≈ tkind.

168 M. Ohkubo and M. Abe

Theorem 10. INDk ⇒ WHOk
spec. In particular, if there exists an (εkwho, tkwho)-

adversary in the sense of WHOk
spec, then there exists an (εkind, tkind)-adversary in

the sense of INDk where εkind = |Γ |
2(|Γ |−1) εkwho and running time is tkind ≈ tkwho.

Allowing the adversary to chose a set of sets of the target message space plays
an important role in showing relations among notions for cryptosystems. For
instance, showing the relation between indistinguishability and non-malleability
essentially uses this feature in [5].

Our conclusion is that WHOk
spec would be the strongest notion. INDk would

be the second one and close to WHOk
spec. INDk is easy to use in security proof,

so INDk would be the best to work with. Avoid other weak variants, WHOk
group

and WHOk
single.

5 On Unlinkability and Anonymity

5.1 Definitions

A linkable ring signature scheme would be formalized as a ring signature scheme
with an additional function for verifying the link between two signatures. But
such a simple extension does not really accommodate with anonymity when
the adversary can launch chosen-message attacks by making signature-request
queries get-sign. One can easily see that it is either the case where anonymity
is achieved and the link verification function does not exist, or, where the link
verification is possible and no anonymity is achieved.

To get around the situation, we first of all extend the syntax of ring signa-
ture so that the signing function takes additional parameter used for linking
signatures. In this paper, we consider stateful schemes where a signer must pri-
vately memorize a parameter, which we call link-key, to yield a link. A link-key
is used to tag signatures. So that anyone can see two signatures are related to
the same private link-key and thus the same signer created the signatures. For
this paradigm to work, private link-keys must be taken from an appropriately
large space. By LK we denote the space for the link-keys.

Definition 10 (Linkable Ring Signature Scheme). A linkable ring signa-
ture scheme, Σ lnk, is a set of polynomial-time algorithms, (G lnk,S lnk,V lnk, C lnk):

G lnk : (1λ) → (sk, vk). A probabilistic algorithm that takes security parameter λ
and outputs private signing key sk and public verification key vk.

S lnk : (sk,m, L, z) → (σ, z′). A probabilistic algorithm that takes link-key z, mes-
sage m, and list L of verification-keys that includes the one that corresponds
to sk, outputs signature σ and (possibly updated) link-key z′.

V lnk : (L,m, σ) → 1/0. An algorithm that takes message m and signature σ,
and outputs either 1 or 0 meaning accept and reject, respectively. We require
that V lnk(L,m,S lnk(sk,m, L, z)) = 1 for any link-key z ∈ LK, message m,
any (sk, vk) generated by G lnk, and any L that includes vk.

On the Definition of Anonymity for Ring Signatures 169

C lnk : (Σ0, Σ1) → 1/0. An algorithm that takes two signed messages, Σi =
(mi, σi, Li) for i = 0, 1, and outputs 1 if there exists a single link-key, say
z ∈ LK, such that σ0 ∈ S lnk(ski0 ,m0, L0, z) and σ1 ∈ S lnk(ski1 ,m1, L1, z) for
some i0 ∈ L0 and i1 ∈ L1. It outputs 0, otherwise.

Intuition behind the syntax of signature generation function S lnk is that it takes
empty link-key, denoted by “null”, when the signer first generate a signature.
S lnk then outputs a new private link-key for later use. The syntax allows S lnk to
update the link-key if needed.

On top of ordinary notion of existential unforgeability against chosen-message
attacks, it is generally expected that linkable signatures can be created only by
the same signer. For ring signatures, it is very important that it is also true
even for a members in a ring bind to a signature. This notion will formally be
captured by the following definition of link unforgeability. As well as the attack
game for anonymity, adversary A has access to R. Resource oracle R accepts
the queries listed in Section 2 with following modifications;

– Signature Request Query get-sign is modified to take arbitrary link-key z. It
however returns the generated signature only, i.e., updated or newly gener-
ated link-key is kept private unless otherwise requested.

– Linked Signature Request Query linked-sign is newly allowed. It takes a
reference signature Σ = (m, σ, L) and target (m, L, i). If Σ is once ap-
peared in the history of get-sign, get the corresponding link-key z and call
get-sign(m, L, i, z). If no such z is found, call get-sign(m, L, i, null). Then re-
turn the obtained signature.

– Link-Key Exposure Query link-key is newly allowed. It takes a signed message
(m, σ, L) and return corresponding z if (m, σ, L) once appeared among the
input/output of get-sign. Otherwise, it returns nothing.

By using these queries, the signer can obtain arbitrary linked signatures and
have full information about the link-keys if desired. On the contrary, the chal-
lenge oracle does not take a link-key from the adversary. In fact, the goal of
the adversary is to generate a new signature linked to the challenge signature.
Formally, the link unforgeability is described as follows.

Definition 11 (Link Unforgeability). A linkable ring signature scheme is
link unforgeable if, for any polynomial-time adversary A playing the following
game, there exists a negligible function ε in λ such that Pr[A wins.] < ε.

[Link Forgery Attack]

1. Global : L∗ and L† (initially empty).
2. (m0, L0, i

∗, ω) ← AR(1λ).
3. (σ0, z

∗) ← S lnk(ski∗ ,m0, L0, null).
4. (m1, L1, σ1) ← AR(ω, σ0).

It is required that i∗ ∈ L0∩L∗ Let Σ0 = (m0, σ0, L0) and Σ1 = (m1, σ1, L1). The
adversary is restricted not to make link-key query with regard to Σ0. (It means
that z∗ is not available to the adversary. But the adversary can obtain signatures
linked to Σ0 through linked-sign queries.) The adversary wins if

170 M. Ohkubo and M. Abe

– Σ0 is fresh, i.e., not observed in the input-output history of get-sign (includ-
ing the ones internally called from linked-sign),

– 1 ← V lnk(L1,m1, σ1), and
– 1 ← C lnk(Σ0, Σ1).

Now we addresses the definition of anonymity with linkability. Intuition is that
the real signer is indistinguishable even if the adversary is free to make any link
and/or even to obtain the link-keys.

Definition 12 (Anonymity with Linkability). A ring signature scheme is
anonymous with linkability if, for any polynomial-time adversary A playing the
following game, there exists a negligible function ε in λ such that Pr[χ̃ = χ] <
1/2 + ε.

[Attack Game: INDwithLINK]

1. Global : L∗ and L† (initially empty).
2. (i0, i1,m, L, ω) ← AR(1λ).
3. χ← {0, 1}, (σ, z) ← S lnk

skiχ
(m, L, null).

4. χ̃← AR(ω, σ).

It is required that {i0, i1} ⊆ L ∩ L∗ in step 2, and χ̃ ∈ {0, 1} in step 4.

Note that there is no restriction on the access to the resource oracle. For instance,
the adversary can obtain link-key z of the target signature σ through a link-key
query. This implies that link-keys have to be independent of the identity of the
signer.

5.2 Instantiation

We present a generic construction of linkable ring signature schemes from any
ordinary ring signature scheme and an ordinary signature scheme. The idea is
simple; To create a signature, first generate an ordinary ring signature and sign
it by ordinary signature with a newly generated random public-key. Then, to
create a linked signature, do the same but use the same random public-key.
One can see the link by observing the same random public-key included in the
signatures. Anonymity and unforgeability are preserved by the underlying ring
signature and the independence of the random public-key. Link-unforgeability
is achieved if the underlying ordinary signature scheme is existentially unforge-
able against adaptive chosen message attacks. We show detailed description as
follows.

Let Σ = (G,S,V) and Σ1,n = (G1,n,S1,n,V1,n) be an ordinary signature
scheme and a ring signature scheme, respectively. We construct a linkable ring
signature scheme Σ lnk = (G lnk,S lnk,V lnk, C lnk) as follows.

On the Definition of Anonymity for Ring Signatures 171

Function: G lnk(1λ)

(sk, vk) ← G1,n(1λ)
Output (sk, vk).

Function: S lnk
ski

(m, L, z)

σ′ ← S1,n
ski

(m, L)
If z is empty, (sk, vk) ← G(1λ).
Otherwise, parse z → (sk, vk).
σ′′ ← Ssk(σ′||m||L)
Set σ = (σ′, σ′′, vk), z′ = (sk, vk).
Output (σ, z′).

Function: V lnk
L (m, σ)

Parse σ → (σ′, σ′′, vk).
v′ ← V1,n

L (m, σ′)
v′′ ← Vvk(m, σ′′)
Set v = v′ ∗ v′′.
Output v.

Function: C lnk(Σ0, Σ1)

Parse Σ0 → (σ′0, σ
′′
0 , vk0).

Parse Σ1 → (σ′1, σ
′′
1 , vk1).

Set u = 1 if vk0 = vk1.
Otherwise, u = 0.
Output u.

The security parameter given to the key generation function G in S lnk will be
decided from the longest public-key in L (assuming that the size of public-key
allows one to compute λ).

The following theorem holds. The proof is rather straightforward and hence
omitted for this version of the paper.

Theorem 11. If Σ is unforgeable and Σ1,n is unforgeable and anonymous, then
the above signature scheme Σ lnk is unforgeable and anonymous in the same sense,
and it is link-unforgeable, too.

The use of random public-key is also found in [20], though their scheme requires
simulation-sound non-interactive zero-knowledge proofs without common refer-
ence string, which is not possible in the standard model. Furthermore, their
scheme does not allow the signer to issue two or more unlinkable signatures for
the same group because the scheme generates one random public-key for each
group to be involved. So the signatures are always linkable for the same group.

Finally we remark that this generic construction requires the signer to securely
store the random private link-key, which has high entropy. As mentioned above,
it is impossible to achieve linkable anonymity with stateless schemes. It is an
open question if one can achieve linkable anonymity with memorable low-entropy
status.

References

1. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from variety of keys. In
Y. Zheng, editor, Advances in Cryptology — ASIACRYPT 2002, volume 2501 of
Lecture Notes in Computer Science, pages 415–432. Springer-Verlag, 2002.

2. M. Abe, M. Ohkubo, and K. Suzuki. Efficient threshold signer-ambiguous signa-
tures from variety of keys. IEICE Trans. Fundamentals, E87-A(3):471–479, March
2004.

172 M. Ohkubo and M. Abe

3. M. Au, S. Chow, W. Susilo, and P. Tsang. Short linkable ring signatures revisited.
In A. Atzeni and A. Lioy, editors, EuroPKI 2006, volume 4043 of Lecture Notes in
Computer Science, pages 101–115. Springer-Verlag, 2006.

4. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In Proceedings of the 38th IEEE Annual Symposium on
Foundations of Computer Science, pages 394–403. IEEE Computer Society, Oc-
tober 1997. Full version available from http://www-cse.ucsd.edu/users/mihir/
papers/sym-enc.html.

5. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of
security for public-key encryption schemes. In H. Krawczyk, editor, Advances in
Cryptology — CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science,
pages 26–45. Springer-Verlag, 1998.

6. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements and a construction based on general as-
sumptions. In E. Biham, editor, Advances in Cryptology - EUROCRPYT 2003, vol-
ume 2656 of Lecture Notes in Computer Science, pages 614–629. Springer-Verlag,
2003.

7. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols. In First ACM Conference on Computer and Communication
Security, pages 62–73. Association for Computing Machinery, 1993.

8. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In A. Menezes, editor, Topics in Cryptology – CT-RSA 2005, vol-
ume 3376 of Lecture Notes in Computer Science, pages 136–154. Springer-Verlag,
2005. Full version available at IACR e-print 2004/077.

9. A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. In S. Halevi and T. Rabin, editors, Theory
of Cryptography – TCC 2006, volume 3876 of Lecture Notes in Computer Science,
pages 60–79. Springer-Verlag, 2006.

10. E. Bresson, J. Stern, and M. Szydlo. Threshold ring signatures and applications to
ad-hoc groups. In M. Yung, editor, Advances in Cryptology — CRYPTO 2002, vol-
ume 2442 of Lecture Notes in Computer Science, pages 465–480. Springer-Verlag,
2002.

11. D. Chaum and E. V. Heyst. Group signatures. In D. W. Davies, editor, Advances
in Cryptology — EUROCRYPT ’91, volume 547 of Lecture Notes in Computer
Science, pages 257–265. Springer-Verlag, 1991.

12. S. S. M. Chow, S. Yiu, and L. C. K. Hui. Identity based threshold ring signature.
In C. Park and S. Chee, editors, Information Security and Cryptology – ICISC
2004, volume 3506 of Lecture Notes in Computer Science, pages 218–232. Springer-
Verlag, 2004.

13. S. S. M. Chow, S. Yiu, and L. C. K. Hui. Efficient identity based ring signature. In
J. Ioannidis, A. Keromytis, and M. Yung, editors, Applied Cryptography and Net-
work Security – ACNS 2005, volume 3531 of Lecture Notes in Computer Science,
pages 499–512. Springer-Verlag, 2005. Also available at IACR e-print 2004/327.

14. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

15. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28:270–299, 1984.

16. A. Kiayias and M. Yung. Group signatures: Provable security, efficient construc-
tions and anonymity from trapdoor-holders. IACR e-print 2004/076, 2004.

On the Definition of Anonymity for Ring Signatures 173

17. J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous group
signature for ad hoc groups (extended abstract). In H. W. et al., editor, Information
Security and Privacy: 9th Australasian Conference, ACISP 2004, volume 3108 of
Lecture Notes in Computer Science, pages 325–335. Springer-Verlag, 2004.

18. R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In C. Boyd, ed-
itor, Advances in Cryptology – Asiacrypt 2001, volume 2248 of Lecture Notes in
Computer Science, pages 552–565. Springer-Verlag, 2001.

19. R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret: Theory and applica-
tions of ring signatures. In O. Goldreich, A. Rosenberg, and A. Selman, editors,
Theoretical Computer Science – Essays in Memory of Shimon Even, volume 3895
of Lecture Notes in Computer Science, pages 164–186. Springer-Verlag, 2006.

20. P. P. Tsang and V. K. Wei. Short linkable ring signatures for e-voting e-cash and
attestation. In R. H. D. et al., editor, IPSEC 2005, volume 3439 of Lecture Notes
in Computer Science, pages 48–60. Springer-Verlag, 2005.

21. P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu, and D. S. Wong.
Separable linkable threshold ring signatures. In A. Canteaut and K. Viswanathan,
editors, Indocrypt 2004, volume 3348 of Lecture Notes in Computer Science, pages
384–398. Springer-Verlag, 2004.

22. F. Zhang and K. Kim. ID-based blind signature and ring signature from pairings.
In Y. Zheng, editor, Advances in Cryptology – Asiacrypt 2002, volume 2501 of
Lecture Notes in Computer Science, pages 533–547. Springer-Verlag, 2002.

A Proof of Theorem 8

We construct adversary Ak
ind for INDk by using adversary Ak

who for WHOk
single as

follows. First of all, Ak
ind forwards all queries from Ak

who to R to the correspond-
ing R in INDk and returns the answers to Ak

who. Ak
ind simulates the challenge

oracle in WHOk
single in the following way; Given argument (k,m, L) from Ak

who,
Ak

ind chooses {i}0 and {i}1 of size k randomly and independently from L∗. (Note
that it might be the case that they are coincidently identical. Such a case will
anyway be handled in our success probability assessment.) It then sends query
({i}0, {i}1, L,m) to the challenge oracle of INDk. Then return the obtained sig-
nature to Ak

who. Eventually, Ak
who outputs ĩ ∈ L∗. Then, Ak

who sets χ̃ as follows;

– For b = 0, 1, if ĩ is in {i}b \ {i}1−b, set χ̃ = b. (Namely, if ĩ is an exclusive
member in one of the specified signer groups, identify the group as the real
signer group.)

– If ĩ ∈ {i}0 ∩ {i}1, then randomly select χ̃← {0, 1}. (That is, if ĩ is common
in the specified signer groups, just make a random guess.)

– If ĩ �∈ {i}0∪{i}1, then randomly select χ̃← {0, 1}. (That is, if Ak
who obviously

fails, just make a random guess.)

Note that the attack environment for Ak
who is simulated perfectly since the

candidate signer group {i}0 and {i}1 are randomly and independently chosen.
Next we consider when Ak

ind wins. From the way how Ak
ind sets χ̃, there are

three cases; 1) Ak
who wins and ĩ is an exclusive member, or 2) Ak

who wins but
ĩ is a common member, but the random guess succeeds anyways, or 3) Ak

who

174 M. Ohkubo and M. Abe

fails and it is clearly known since ĩ does not belong to either {i}0 or {i}1,
and the random guess succeeds eventually. A crucial observation is that unused
{i}1−χ is independent from the view ofAk

who. Therefore, we can give the following
probabilities;

Pr[ĩ is an exclusive member. | Ak
who wins.] = Pr[ĩ �∈ {i}1−χ] =

(
|L∗| − 1

k

)
/

(
|L∗|
k

)
.

Pr[ĩ is a common member. | Ak
who wins.] = Pr[ĩ ∈ {i}1−χ] =

(
|L∗| − 1
k − 1

)
/

(
|L∗|
k

)
.

Pr[ĩ is not in {i}1−χ. | Ak
who fails.] =

(
|L∗| − 1

k

)
/

(
|L∗|
k

)
.

From these observation, the success probability of Ak
ind is the following.

Pr[Ak
ind wins.] = Pr[Ak

who wins. ∧ ĩ is an exclusive member.]

+
1
2

Pr[Ak
who wins. ∧ ĩ is a common member.]

+
1
2

Pr[Ak
who fails. ∧ ĩ �∈ {i}0 ∪ {i}1]

= (
k

|L∗| + εkwho) ·
(
|L∗| − 1
k

)
/

(
|L∗|
k

)
+

1
2
· (k

|L∗| + εkwho) ·
(
|L∗| − 1
k − 1

)
/

(
|L∗|
k

)
+

1
2
· (1− (

k

|L∗| + εkwho)) ·
(
|L∗| − 1
k

)
/

(
|L∗|
k

)
=

1
2

+
εkwho

2

Hence we have a bound εkind = εkwho/2. It is obvious that tkind ≈ tkwho from the
construction. �

Escrowed Linkability of Ring Signatures
and Its Applications

Sherman S.M. Chow1, Willy Susilo2, and Tsz Hon Yuen3

1 Department of Computer Science
Courant Institute of Mathematical Sciences

New York University, NY 10012, USA
schow@cs.nyu.edu

2 Center for Information Security Research
School of Information Technology and Computer Science

University of Wollongong, Australia
wsusilo@uow.edu.au

3 Department of Information Engineering
The Chinese University of Hong Kong

thyuen4@ie.cuhk.edu.hk

Abstract. Ring signatures allow a user to sign anonymously on behalf
of a group of spontaneously conscripted members. Two ring signatures
are linked if they are issued by the same signer. We introduce the notion
of Escrowed Linkability of ring signatures, such that only a Linking Au-
thority can link two ring signatures; otherwise two ring signatures remain
unlinkable to anyone. We give an efficient instantiation, and discuss the
applications of escrowed linkability, like spontaneous traceable signature
and anonymous verifiably encrypted signature. Moreover, we propose the
first short identity-based linkable ring signatures from bilinear pairings.
All proposals are provably secure under the random oracle model.

Keywords: ring signature, identity-based, linkability, pairings.

1 Introduction

Ring signature schemes allow a user to sign anonymously on behalf of a group
of spontaneously conscripted members. They offer simple group formation pro-
cedures that can be executed by any user individually. In contrast to group
signatures [11], where each of the group members is required to join the group
before giving a signature; the group formation of ring signature can happen in
an ad-hoc manner and does not need the help of a group manager. Traditional
ring signatures offer unconditional anonymity. It is impossible to identify the
signer beyond the very fact that the signer belongs to the group in question.

Consider the situation where one of the parliamentarians wants to leak a secret
to the public. He wants to remain anonymous. On the other hand, he wants the
public to be convinced that the secret is actually leaked from the parliament,
to make sure the secret is reliable. A ring signature scheme is a cryptographic
primitive specially designed for this purpose.

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 175–192, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

176 S.S.M. Chow, W. Susilo, and T.H. Yuen

The idea of ring signature scheme seems to be a “malicious” one that protects
whistleblower’s privacy while leaking secrets. However, its evolution may be be-
yond the imagination of those proposed it. Apart from whistle blowing [22], ring
signature schemes can be used for ad-hoc groups anonymous authentication [10]
or identification [18], non-interactive deniable ring authentication [24], and many
other applications that do not want complicated group formation stage but re-
quire anonymity. Ring signature schemes can be used to derive other signature
schemes with privacy concerns as well, such as concurrent signature [12,17] and
multi-designated verifiers signature [13]. Short ring signatures were proposed
by Dodis et al. [18]. The term “short” means that the sub-linear dependency
between the signature size and the number of diversion group members.

Ring signatures may also be used in fighting phishing attacks [1]. Digital
identity thefts are prevalent nowadays, it often take place via email due to the
widespread use of email. The attacker masquerades as a trustworthy person of an
established organization, and sends a deceptive email to the victims. The email
often looks like an official electronic notification, which tricks the victims to re-
veal their sensitive information, such as passwords and credit card details. This
social engineering technique is known as email phishing, carding or spoofing at-
tacks. Digitally signed emails could mitigate these attacks. However, traditional
email system is repudiable and does not assume a widespread adoption of a
public key infrastructure (PKI). Identity-based (ID-based) ring signature is best
suited for the above application. Moreover, in the scenario where all signers have
a published identity, such as a MAC address or an IP address (which is a typical
scenario in a mobile ad-hoc system), ID-based ring signatures are more applica-
ble. All users can enjoy the benefits brought by the cryptographic applications
made possible by ring signatures, without having a PKI setup.

Linkable ring signature schemes allow anyone to identify the linkage between
two ring signatures if they are issued by the same signer. This special property
prohibits all group members from signing more than once, otherwise, his/her
identity will be linked. Short ring signature scheme with linkability is studied
in [2] and [25], which can be applied in e-voting, e-cash and attestation. We
briefly describe the case for e-voting here. Three obvious security requirements
of an e-voting system are anonymity, verifiability and double voting detection. If
the voters use ring signatures to cast votes, their anonymity is preserved by the
anonymity property of ring signatures. The vote can be verified by the verifica-
tion of ring signatures. Linkability comes into play in double voting detection as
it makes two votes cast by the same voter linked. Note that using signature as
a vote supports write-in votes in a more straightforward way.

Our Contributions
We present a number of contributions to the ring signature paradigm. Firstly,
to avoid the public linkability that restricts everyone from issuing more than
one ring signature without being linked, we introduce the notion of Escrowed
Linkability – a ring signature will remain anonymous until a Linking Authority
performs its action to “link” the signatures, and the signatures will become

Escrowed Linkability of Ring Signatures and Its Applications 177

linkable. A signer can use the ring to sign more than once normally, but it
ensures that there is no abuse in the ring signature used. In the case where such
minimum level of revocability is needed, the escrowed linkability is very useful.

Spontaneity is a key property of ring signatures; with identity-based cryp-
tography, the signer can involve members by just knowing their identities. We
instantiate Escrowed Linkability of ring signature in identity-based setting; the
signer can involve members who do not have public keys in traditional PKI.

Our scheme supports identity escrow, and other options like threshold ex-
tension naturally. We also suggest applications of escrowed linkability, including
spontaneous traceable signature and anonymous verifiably encrypted signature.

Finally, we propose the first short identity-based linkable ring signatures from
bilinear pairings. The signature size is independent of the size of diversion group.

2 Related Works

Ring signature schemes were first formalized by Rivest et al. in [22]. Bresson et
al. [10] extended [22] in threshold setting – any group of t entities spontaneously
conscript arbitrarily n − t entities to generate a publicly verifiable t-out-of-n
signature. Liu et al. [20] proposed the notion of a linkable ring signature. They
also provided a trivial threshold version by concatenating a threshold number of
linkable ring signatures. Tsang et al. [26] provided a better solution to linkable
threshold ring signature. The linkability is based on each signing member, so
two ring signatures are linked if they are signed with the help of the same
signer. Dodis et al. [18] firstly proposed the short ring signature. Tsang and
Wei [25] incorporated linkability into Dodis et al.’s work, while Wu et al. [29]
provided an improvement and an extension of the notion to blind ring signature.
A comprehensive survey of ring signatures can be found in [23].

There are many pairing-based ring signature schemes like [8,15]. Utilizing
pairings, ID-based ring signature and threshold ring signature were introduced in
[30] and in [14] respectively. Chow et al.’s survey [16] summarized the study of ID-
based ring signature. Recently, Bender et al. [5] proposed a ring signature scheme
without random oracles based on general assumptions, and efficient constructions
for two users. Chow et al. [15] proposed an efficient construction for n users.

2.1 Different Levels of Anonymity

We make a comparison on the levels of anonymity provided by different notions.
Ring signature provides the strongest sense of anonymity. Linkable ring signa-
ture scheme [20] allows anyone to link signatures from the same signer. Such a
linkage cannot revoke the signer’s anonymity. Tracing-by-linking group signature
schemes [27] revoke the anonymity when a signer double signs. In group signa-
ture schemes, there exists an open authority that can revoke the anonymity at
anytime, even the signer has only given one group signature. Our “Escrow Link-
ability” introduces a minimum level to revoke the anonymity in case of dispute,
by employing the idea of a linking authority. This idea can be seen as originated

178 S.S.M. Chow, W. Susilo, and T.H. Yuen

from the open authority in the group signature paradigm. Another key difference
between group signatures and “Escrow Linkability” is that a group signature is
related to a group of users registered with the same group manager; while in the
latter case, the formation of a group is as dynamic as ring signatures.

2.2 Ring Signatures Using ID-Based Keys or Certified Keys

Ring signatures differ from group signatures in that no group manager is required
to handle the joining and leaving of group members. For ring signature schemes
under a traditional public key infrastructure (PKI), it is assumed that all the
diversion members have registered for a certificate. In an ID-based cryptosystem,
the public key is derived from any string that can act as an identifier of the user.
Each user is already implicitly associated with a public key, hence ID-based
ring signature effectively removes the above assumption [16]. All diversion group
members can be totally unaware of being conscripted into the group.

Notice the subtle difference of “ID-based key” between a normal ring signature
scheme and one with escrowed linkability and/or escrowed identity. Apart from
the master private key held by the trusted authority, the only kind of private
key in a normal ring signature scheme is the user’s signing key. For schemes
supporting escrow, the revocation can only be done by the knowledge of some
private keys. We describe a scheme as “truly-ID-based” if these private keys are
also ID-based, i.e. a trusted authority generates the corresponding private key
when given an identity as the public key. A similar idea is previously considered
in [28], which studied group signature schemes with ID-based group manager,
ID-based group members and ID-based open authority.

3 Preliminaries

3.1 Bilinear Pairing

Let G1 and G2 be two (multiplicative) cyclic groups of prime order p. Let g1 be
a generator of G1 and g2 be a generator of G2. We also let ψ be an efficiently
computable isomorphism from G2 to G1, with ψ(g2) = g1, and ê be a bilinear
map such that ê : G1 ×G2 → GT with the following properties:

1. Bilinearity: For all u ∈ G1, v ∈ G2 and a, b ∈ Z, ê(ua, vb) = ê(u, v)ab.
2. Non-degeneracy: ê(g1, g2) �= 1.
3. Computability: It is efficient to compute ê(u, v) for all u ∈ G1, v ∈ G2.

3.2 Diffie-Hellman Problems

A few problems are assumed to be intractable for the security our constructions.
The following q-SDH problem is proven secure in the generic group model in
[6]. We introduce a new decisional problem which is the variant of the q-SDH
problem in (G1,G2,GT), and review the decisional BDH problem.

Escrowed Linkability of Ring Signatures and Its Applications 179

Definition 1 (q-SDH). The q-Strong Diffie-Hellman Problem in (G1, G2) is
defined as follows: Given a (q + 2)-tuple (g1, g2, gx

2 , g
x2

2 , · · · , gxq

2) ∈ G1 × G
q+1
2 ,

output a pair (A, c) such that A(x+c) = g1 ∈ G1 where c ∈ Z∗
p. We say that the

(q, τ, ε)-SDH assumption holds in (G1,G2) if no τ-time algorithm has advantage
at least ε in solving the q-SDH problem.

Definition 2 (q-DSDH). The q-Decisional Strong Diffie-Hellman Problem in
(G1,G2,GT) is defined as follows: Given a (q + 4)-tuple follows the form of
(g1, g2, gx

2 , g
x2

2 , · · · , gxq

2 , R, γ) ∈G1×G
q+1
2 ×GT×Zp, decide if R= ê(g1, g2)1/(γ+x).

We say that the (q, τ, ε)-DSDH assumption holds in (G1,G2,GT) if no τ-time
algorithm has advantage at least ε in solving the q-DSDH problem.

Definition 3 (DBDH). The Decisional Bilinear Diffie-Hellman Problem in
(G1,G2,GT) is defined as follow: Given a sextuple (g1, g2, gα

2 , g
β
2 , g

γ
2 , R) ∈ G1 ×

G4
2 × GT , decide if R = ê(g1, g2)αβγ. We say that the (τ, ε)-DBDH assumption

holds in (G1,G2,GT) if no τ-time algorithm has advantage at least ε in solving
the DBDH problem.

4 Security Definition

4.1 Ring Signature

Definition 4 (Ring Signature Scheme). A ring signature scheme is a quadru-
ple (Init, UKg, Sign, Vfy) where:

– param ← Init(1k) is a probabilistic polynomial time (PPT) algorithm that
takes as input a security parameter and produces public parameters param.

– (pk, sk) ← UKg(param) is a PPT algorithm that takes as input param and
produces the user public key pk and private key sk.

– σ ← Sign(param, X, sk,M) is a PPT algorithm that accepts as inputs param,
a set of public keys X including the one that corresponds to the private key
sk and a message M ∈ {0, 1}∗ and produces a signature σ.

– 1/0 ← Vfy(param, X,M, σ) is a PPT algorithm that accepts as inputs param,
a set of public keys X, a message M ∈ {0, 1}∗ and a signature σ and returns
1 or 0 for accept or reject, respectively.

We say that a ring signature scheme is secure if it satisfies Correctness,
Anonymity and Unforgeability. Our security definition is similar to the
strongest security level of [5].

Definition 5 ((Verification) Correctness). Vfy(param, X, M , σ) = 1 with
probability 1 for arbitrary param, X, sk,M such that σ ← Sign(param, X, sk,M).

We have the following oracles for an adversary to query:

– Random Oracle RO: simulate the random oracle normally.
– Corruption Oracle CO: (param, pk) → sk. Upon input pk ∈ X , the set of

public keys given by simulator, output the private key sk.

180 S.S.M. Chow, W. Susilo, and T.H. Yuen

– Signing Oracle SO: (param, X̂, pk,M) → σ. Upon input any public keys set
X̂, a designated signer pk ∈ X̂ and a message M , output a valid signature
σ ← Sign(param, X̂, sk,M), where sk is the private key of pk.

Definition 6 (Anonymity). Experiment Anon is defined as:

1. A simulator S invokes Init and UKg, gives param and a set of public keys X
to an adversary A.

2. A queries RO, CO,SO in arbitrary interleaf.
3. A selects a set of public keys X ′, two users pk0, pk1 ∈ X ′∩X, and a message
M and gives them to S. Then S randomly chooses b ∈ {0, 1} and returns the
challenge signature σ ← SO(param, X ′, skb,M).

4. A queries RO, CO,SO in an arbitrary sequence.
5. A delivers an estimate b̂ ∈ {0, 1} of b.

A wins the Experiment Anon if b̂ = b. A’s advantage is its probability of
winning Experiment Anon minus half. A ring signature scheme is anonymous if
no PPT adversary has a non-negligible advantage in Experiment Anon.

Definition 7 (Unforgeability). Experiment Unf is defined as:

1. A simulator S invokes Init and UKg, gives param and a set of public keys X
to an adversary A.

2. A queries RO, CO,SO in an arbitrary sequence.
3. A delivers (σ,M,X ′) with X ′ ⊆ X.

A wins the Experiment Unf if Vfy(param, X ′,M, σ) = 1, the public keys in X ′

have never been queried to CO and σ is not the output from SO(param, X ′, pk,M)
for all pk ∈X ′. A ring signature scheme is unforgeable if no PPT adversary has
a non-negligible probability of winning in Experiment Unf.

4.2 Linkable Ring Signature

Definition 8 (Linkable Ring Signature Scheme). A linkable ring signature
scheme is a quintuple (Init, UKg, Sign, Vfy, Link) where

– Init, UKg, Sign, Vfy are the same as in the ring signature scheme, except that
an event identity e is included as part of the message.

– 1/0/⊥ ← Link(param, σ0, σ1, e) is a PPT algorithm which takes as inputs
param, two signatures σ0, σ1 for the same event identity e, returns 1, 0 or ⊥
for linked, unlinked or invalid, respectively.

The definition for correctness includes the linking correctness: suppose σi ←
Sign(param, Xi, sk, Mi, e) where i = 0, 1 for arbitrary param, X0, X1, sk, M0,
M1 e, then Link(param, σ0, σ1, e) = 1 with probability 1.

The definition for the Experiment Anon is the same as above, except that A
cannot query id0, id1 to the CO, and to the SO as the designated signer with the
event identity e∗ in the challenge ciphertext.

The definition for the Experiment Unf is the same as above.

Escrowed Linkability of Ring Signatures and Its Applications 181

Definition 9 (Linkability). Experiment Link is defined as:

1. A simulator S invokes Init and UKg, gives param and a set of public keys X
to an adversary A.

2. A queries RO, CO,SO in an arbitrary sequence.
3. A delivers (σ0,M0, X0, e), (σ1,M1, X1, e), with X0, X1 ⊆ X.

A wins the Experiment Link if Vfy(param, Xb,Mb, σb) = 1 for b = 0, 1,
Link(param, σ0, σ1) = 0, not both message-signature pairs from A are the SO’s
output, and

– if one message-signature pair from A is the SO output for a signer id in Xb,
then no identity in X1−b should have been queried to CO.

– otherwise at most one public key in X0 ∪X1 has been queried to CO.

A ring signature scheme is linkable if no PPT adversary has a non-negligible
probability of winning in Experiment Link.

We say that a linkable ring signature scheme is secure if it satisfies Correctness,
Anonymity, Unforgeability and Linkability.

4.3 Ring Signature with Escrowed Linkability

Definition 10 (Ring Signature Scheme with Escrowed Linkability). A
ring signature scheme with escrowed linkability is a sextuple (Init, UKg, LAKg,
Sign, Vfy, Link) where

– Init, UKg are the same as ring signature scheme.
– (pk′, sk′) ← LAKg(param) is a PPT algorithm which takes as input param,

produces the Linking Authority (LA) public key pk′ and private key sk′.
– Sign, Vfy are similar to that in the linkable ring signature scheme, with extra

input LA public key pk′.
– Link are similar to that in the linkable ring signature scheme, with extra input

LA private key sk′.

The definition for anonymity is the same as that of the ring signature scheme.
The definitions for correctness, unforgeability and linkability are basically the
same as those for the linkable ring signature scheme, with some extra oracles. A
can query an extra “Linking Oracle” LO which takes as inputs two signatures,
outputs whether or not the two signatures are linked. We also allow the adversary
to query a “LA Corruption Oracle” LCO, such that the oracle returns the private
key of LA with particular identity. Then A can also query LO in Experiment
Anon, except that the challenge LA identity has never been queried to LCO.

We say that a ring signature scheme with escrowed linkability is secure if it
satisfies Correctness, Anonymity, Unforgeability and Linkability.

In some applications, the linking authority may be required to convince an-
other one about the linkability of two signatures. In this case, we need an extra
algorithm Judge that takes (param, σ0, σ1, sk

′) as input. Judge will produce a
signature from the proof of knowledge of sk′ in the linkability tag of σ0 and σ1.
For simplicity of the paper, we omit the protocol here.

182 S.S.M. Chow, W. Susilo, and T.H. Yuen

4.4 Identity-Based Version

To add identity-based key for users and authority for the above three schemes,
we incorporate the following addition and modification.

– Addition: TAKg: (x, y) ← TAKg(param) is a PPT algorithm which takes as
input param, outputs the TA public key y and private key x.

– Modification: sk ← UKg(param, x, id) is a PPT algorithm which takes as
input param, TA private key x and user identity id, outputs the user private
key sk. (LAKg is also modified as above for escrowed linkability).

The definitions for the Experiments Anon, Unf, Link are the same as those in
the original scheme, except in the first step S invokes Init and TAKg, and gives
param, y to A. Notice that the corruption oracle CO returns all user’s private
keys derived from the TA’s private key x, but not x itself.

5 Identity-Based Linkable Ring Signature

In this section, we construct a secure ID-based linkable ring signature scheme.
We use the pairing accumulator in [21] to accumulate the public keys into the
ring and produce the witness proving that the signer’s public key is included in
the accumulator. We use the concept of “event identity” [26] to link signatures
in the same event. For example, in a voting scenario we can use “Vote #2:
01/01/2005” as the event identity; so that voting in a different day or other
events held in the same day by a same signer cannot be linked.

Let (G1,G2) be bilinear groups where |G1| = |G2| = p for some prime p. For
simplicity, we suppose id ∈ Zp below, which refers to the identity. In the security
proof, we define id = H(identity) where H : {0, 1}∗ → Zp is a cryptographic
hash function. The signing algorithm will be described using the notation of “a
signature based on a proof of knowledge” (SPK) with concrete instantiation.

Init. Select a pairing ê : G1 × G2 → GT . Let g1 be a generator of G1, g2
be a generator of G2 and ψ(g2) = g1. Randomly pick s, u ∈ Z∗

p and compute
gs
2, g

s2

2 , . . . , g
sq

2 , where q is the maximum number of members in a ring signature.
The auxiliary information s can be safely deleted. Randomly pick g3, g4 ∈ G1. Set
hash function H : G3

1×G2×GT ×G2
1×G3

T ×{0, 1}∗ → Zp and H0 : ({0, 1}∗)2 →
G2. The public parameters param are (ê, ψ, g1, g2, gs

2, . . . , g
sq

2 , g3, g4, u,H,H0).
For efficiency reasons, ê(g1, g2) and ê(g1, gs

2) can be included in the public
parameters.

TAKg. The TA picks x ∈R Z∗
p as the master key, the public key is y = gx

2 .

UKg. On input an identity id, the TA computes the private key Sid = g
1/(id+x)
1 .

The user can verify the private key by checking if ê(Sid, g
id
2 y) = ê(g1, g2).

Sign. The user with identity id1 and private key Sid1 who wants to sign a
ring signature for message M with users id2, . . . , idn firstly computes W =

Escrowed Linkability of Ring Signatures and Its Applications 183

g
u(id2+s)···(idn+s)
1 and V = g

u(id1+s)(id2+s)···(idn+s)
1 . (W and V can be computed

efficiently like the pairing accumulator in [21]). Let h = H0(param, e) where e is
the event identity, he/she then computes the signature:

SPK{ (id1, Sid1 ,W) : ê(V, g2) = ê(W, gid1+s
2)

∧ ê(Sid1 , g
id1
2 y) = ê(g1, g2) ∧ ỹ = ê(Sid1 , h)}(M)

Detailed scheme of the SPK:

1. Randomly generate t1, t2, t3 ∈ Z∗
p and compute:

T1 = Sid1g
t1
1 , T2 = Wgt2

1 , T3 = gt1
3 g

t2
4 g

t3
1 , ỹ = ê(Sid1 , h)

2. Randomly generate r1, r2, . . . , r7 ∈ Z∗
p and compute:

R1 = gr2
3 g

r4
4 g

r6
1 , R2 = gr3

3 g
r5
4 g

r7
1 T

−r1
3 , R5 = ê(g1, h)−r2 ,

R3 = e(T1, g2)r1e(g1, g2)−r3e(g1, y)−r2 ,

R4 = ê(T2, g2)r1 ê(g1, g2)−r5 ê(g1, gs
2)

−r4

3. Compute c = H(T1, T2, T3, h, ỹ, R1, . . . , R5,M)
4. Compute s1 = r1 + cid1, s2 = r2 + ct1, s3 = r3 + ct1id1, s4 = r4 + ct2, s5 =
r5 + ct2id1, s6 = r6 + ct3, s7 = r7 + ct3id1.

5. Output the signature σ = (T1, T2, T3, e, ỹ, c, s1, . . . , s7) and the group public
key V (or the set of identities id1, id2, . . . , idn).

Vfy. Given a signature σ = (T1, T2, T3, e, ỹ, c, s1, . . . , s7), the group public key V
(or the identity set {id1, . . . , idn}) and a message M , the verification is
done by:

1. Compute:

h = H0(param, e), R1 = gs2
3 g

s4
4 g

s6
1 T

−c
3 , R2 = gs3

3 g
s5
4 g

s7
1 T

−s1
3

R3 = e(T1, g2)s1e(g1, g2)−s3e(g1, y)−s2
(
e(T1, y)/e(g1, g2)

)c

R4 = ê(T2, g2)s1 ê(g1, g2)−s5 ê(g1, gs
2)

−s4(ê(T2, g
s
2)/ê(V, g2))

c

R5 = ê(g1, h)−s2(ê(T1, h)/ỹ)c

2. Accept the message iff c = H(T1, T2, T3, h, ỹ, R1, . . . , R5,M).

Link. On input σ1, σ2, output ⊥ if one or both of the signatures do not pass
Vfy. Output 1 if their corresponding values of ỹ, e are the same, 0 otherwise.

Theorem 1. Our proposed scheme is anonymous if the q-DSDH assumption
holds in (G1, G2, GT) in the random oracle model.

Theorem 2. Our proposed scheme is unforgeable if the q-SDH assumption holds
in (G1,G2) in the random oracle model.

Theorem 3. Our proposed scheme is linkable if the q-SDH assumption holds in
(G1,G2) in the random oracle model.

Correctness of our scheme is easy to show. Proofs are in the appendix.

184 S.S.M. Chow, W. Susilo, and T.H. Yuen

6 Escrowed Linkability, Identity Escrow, and Extensions

6.1 Escrowed Linkability

For “escrowed linkability”, only a linking authority has the power to link signa-
tures from the same signer. To illustrate this idea, we give similar instantiation
for ID-based ring signature. We remark that our technique can be integrated
with non-ID-based ring signature scheme from pairing [21], too.

Init, UKg. Same as above.

TAKg. The TA randomly picks x, x′ ∈R Z∗
p as the master key, the correspond-

ing public key is (y = gx
2 , y

′ = gx′
2).

LAKg. On input the Linking Authority (LA) with identity �a, the TA computes
the private key S�a = H1(�a)x′ ∈ G1. Notice that the linking authority is also
equipped with an ID-based key, making our scheme a truly-ID-based solution.

Sign. The user with identity id1 with private key Sid1 who wants to sign a
ring signature for message M with users id2, . . . , idn firstly computes W =
g

u(id2+s)···(idn+s)
1 , V = g

u(id1+s)(id2+s)···(idn+s)
1 , and h = H0(param, e) where e

is the event identity. Then he/she computes the signature by:

SPK{ (id1, Sid1 ,W, d) : ê(V, g2) = ê(W, gid1+s
2) ∧ ê(Sid1 , g

id1
2 y) = ê(g1, g2)

∧ ỹ = ê(Sid1 , h)ê(H1(�a), y′)d ∧ U = gd
2}(M)

Detailed scheme of the SPK:

1. Randomly generate t1, t2, t3, d ∈ Z∗
p and compute:

T1 = Sid1g
t1
1 , T2 = Wgt2

1 , T3 = gt1
3 g

t2
4 g

t3
1 ,

ỹ = ê(Sid1 , h)ê(H1(�a), y′)d, U = gd
2

2. Randomly generate r1, r2, . . . , r8 ∈ Z∗
p and compute:

R1 = gr2
3 g

r4
4 g

r6
1 , R2 = gr3

3 g
r5
4 g

r7
1 T

−r1
3 ,

R3 = e(T1, g2)r1e(g1, g2)−r3e(g1, y)−r2 , R5 = ê(H1(�a), y′)r8 ê(g1, h)−r2

R4 = ê(T2, g2)r1 ê(g1, g2)−r5 ê(g1, gs
2)

−r4 , R6 = gr8
2

3. Compute c = H(T1, T2, T3, h, ỹ, U,R1, . . . , R6,M)
4. Compute s1 = r1 + cid1, s2 = r2 + ct1, s3 = r3 + ct1id1, s4 = r4 + ct2, s5 =
r5 + ct2id1, s6 = r6 + ct3, s7 = r7 + ct3id1, s8 = r8 + cd.

5. Output the signature σ = (T1, T2, T3, e, ỹ, c, s1, . . . , s8, U) and the group pub-
lic key V or the set of identity {id1, id2, . . . , idn}.

Vfy. Given a signature σ = (T1, T2, T3, e, ỹ, c, s1, . . . , s8, U) and the group public
key V and a message M , the verification can be done by:

Escrowed Linkability of Ring Signatures and Its Applications 185

1. Compute h = H0(param, e) and:

R1 = gs2
3 g

s4
4 g

s6
1 T

−c
3 , R2 = gs3

3 g
s5
4 g

s7
1 T

−s1
3 ,

R3 = e(T1, g2)s1e(g1, g2)−s3e(g1, y)−s2
(
e(T1, y)/e(g1, g2)

)c

R4 = ê(T2, g2)s1 ê(g1, g2)−s5 ê(g1, gs
2)

−s4(ê(T2, g
s
2)/ê(V, g2))

c,

R5 = ê(H1(�a), y′)s8 ê(g1, h)−s2(ê(T1, h)/ỹ)c, R6 = gs8
2 U

−c

2. Accept the message if c = H(T1, T2, T3, h, ỹ, U,R1, . . . , R6,M).

Link. On input signatures σb for b = 0, 1, output ⊥ if they do not pass Vfy. Else
compute yb = ỹ/ê(S�a, Ub). Output 1 if y0 = y1 with the same e, 0 otherwise.
Note that the correctness of ê(S�a, Ub) can be easily proven the linking authority
can thus convince any other parties about the linkage between the signatures.

Theorem 4. Our proposed extension is anonymous if the DBDH assumption
holds in (G1, G2) in the random oracle model.

Theorem 5. Our proposed extension is unforgeable if the q-SDH assumption
holds in (G1, G2) in the random oracle model.

Theorem 6. Our proposed extension is linkable if the q-SDH assumption holds
in (G1,G2) in the random oracle model.

Correctness of our scheme is easy to show. Proofs are in the appendix.

6.2 Ring Signatures with Identity Escrow

Identity escrow means a certain party can revoke the anonymity of the signer of
a ring signature. Since our SPK includes the proof of signer’s identity, it can be
done easily by attaching a verifiably encrypted ciphertext, similar to the way we
escrow the linkability. Our scheme is “truly-ID-based”, which offers flexibility
in the sense that any user of the system (i.e. with an ID-based key) can be
designated as the revocation manager for identity escrow; in contrast with other
solutions like [3], where a single revocation manager is assumed.

On the other hand, our scheme can naturally support a single system-wide
revocation manager. The linkability tag in our construction is always a determin-
istic function of the private key of the signer (such that it can be used to link).
There is a trusted authority to generate user private keys in ID-based paradigm.
Identity escrow can simply be achieved by asking the trusted authority to com-
pare the linkability tags of the given signature with all possible linkability tags,
generated according to the list of purported diversion group members.

6.3 Extensions

In our instantiation, the linking authority’s ID-based keys come from the Boneh-
Franklin paradigm [7]. It is easy to integrate extensions of identity-based encryp-
tion [7] to our scheme, such as the threshold decryption [4].

186 S.S.M. Chow, W. Susilo, and T.H. Yuen

7 Applications of Escrowed Linkability

7.1 Spontaneous Traceable Signatures

The notion of traceable signatures was introduced in [19], as an added feature
to the group signature schemes. This notion allows tracing of all signatures,
produced by group signatures, by a single misbehaving party without opening
the signatures and revealing identities of any other user in the system. In contrast
to group signatures, which requires the opening of signatures of all users.

The concept of escrowed linkability in our scheme allows us to obtain spon-
taneous traceable signatures. The main difference between this concept and the
traceable signatures due to Kiayias et al. is that the traceable signatures require
all users to join the group prior to producing the traceable signatures. In con-
trast to traceable signatures, in our spontaneous traceable signatures, the users
can be conscripted in an ad-hoc manner, and the resulting signatures satisfy
the requirements of traceable signatures, namely the signatures can be traced
whenever required, by a designated party namely the Linking Authority.

7.2 Anonymous Verifiably Encrypted Signatures

Verifiably encrypted signature (VES) [8] enables a signer to give a signature on
a message M , where the signature is encrypted using a third party’s public key.
The recipient cannot do the decryption, but can make sure that a third party
can decrypt the VES and recover the original signature on M . This class of
signature schemes provides a solution for fair exchange of signature as follows.
Alice creates a VES encrypting the signature on messages MA and sends it
to Bob. After verification, Bob returns a VES of MB that Alice wants. Alice
performs the verification as Bob does. If the verification passes, Alice sends Bob
the original signature, and expects Bob will return the unencrypted version of
the signature she wants. In case any signer does not reveal the original signature
finally, the recipient can seek help from the third party to do the decryption.

Notice that even only a single designated party can decrypt the VES and get
back the signature, anyone can use the VES’s verification algorithm to check
whether the VES encrypts a signature by a certain signer on a certain message.

Our schemes can be applied to give a variant of anonymous verifiably en-
crypted signature, for fair exchange of signature in an anonymous way (or “how
to exchange a secret”, under the original motivation in [22]).

In this variant, the signature is not encrypted, but the linkability tag. From
the property of ring signature, no one can be convinced whether the sender or
the recipient is the real signer of a particular message given two ring signatures.
So even the signature is not encrypted, it is not convincing as the case of VES.

The exchange protocol is as follows. Alice gives a ring signature on message
MA, with both Alice and Bob in the diversion group, using e as the event identity.
Bob, after verification, returns a ring signature on message MB using the same
event identity e. In case of dispute, the designated party can reveal the linkability
and the real signer of any signature, such that both signatures are binding to
the real signer, providing non-repudiation property as normal signatures.

Escrowed Linkability of Ring Signatures and Its Applications 187

8 Conclusion

We close the open problem in [16] asking for a linkable identity-based ring sig-
nature scheme from bilinear pairings. Our proposed scheme produces signature
of small size, which is independent of the diversion group size. Furthermore, we
introduce the idea of escrowed linkability and linking authority that provides the
minimum level of anonymity-revocability in the literature. We also show how
to incorporate identity escrow into our scheme. All escrow can be decrypted by
identity-based key. Supported by a number of applications, we believe that our
new consideration of anonymity is an important contribution to the literature.

References

1. Ben Adida, Susan Hohenberger, and Ronald L. Rivest. Separable Identity-Based
Ring Signatures: Theoretical Foundations for Fighting Phishing Attacks. In DI-
MACS Workshop on Theft in E-Commerce: Content, Identity, and Service, 2005.

2. Man Ho Au, Sherman S. M. Chow, Willy Susilo, and Patrick P. Tsang. Short
Linkable Ring Signatures Revisited. In EuroPKI 2006, Proceedings, volume 4043
of Lecture Notes in Computer Science, pages 110–115. Springer, 2006.

3. Man Ho Au, Joseph K. Liu, Patrick P. Tsang, and Duncan S. Wong. A Suite of
ID-Based Threshold Ring Signature Schemes with Different Levels of Anonymity.
Cryptology ePrint Archive, Report 2005/326, 2005.

4. Joonsang Baek and Yuliang Zheng. Identity-based Threshold Decryption. In PKC
2004, volume 2947 of Lecture Notes in Computer Science, pages 262–276. Springer.

5. Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring Signatures: Stronger
Definitions, and Constructions without Random Oracles. In TCC 2006, Proceed-
ings, volume 3876 of Lecture Notes in Computer Science, pages 60–79. Springer.

6. Dan Boneh and Xavier Boyen. Short Signatures Without Random Oracles. In EU-
ROCRYPT 2004, Proceedings, volume 3027 of Lecture Notes in Computer Science,
pages 56–73. Springer, 2004.

7. Dan Boneh and Matt Franklin. Identity-Based Encryption from the Weil Pairing.
SIAM J. Comput, 32(3):586–615, 2003.

8. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and Verifi-
ably Encrypted Signatures from Bilinear Maps. In EUROCRYPT 2003, Proceed-
ings, volume 2656 of Lecture Notes in Computer Science, pages 416–432. Springer.

9. Stefan Brands. Untraceable Off-line Cash in Wallets with Observers (Extended
Abstract). In CRYPTO ’93, Proceedings, volume 773 of Lecture Notes in Computer
Science, pages 302–318. Springer, 1993.

10. Emmanuel Bresson, Jacques Stern, and Michael Szydlo. Threshold Ring Signatures
and Applications to Ad-hoc Groups. In CRYPTO 2002, Proceedings, volume 2442
of Lecture Notes in Computer Science, pages 465–480. Springer, 2002.

11. David Chaum and Eugène van Heyst. Group Signatures. In EUROCRYPT ’91,
Proceedings, volume 547 of Lecture Notes in Computer Science, pages 257–265.

12. Liqun Chen, Caroline Kudla, and Kenneth G. Paterson. Concurrent Signatures.
In EUROCRYPT 2004, Proceedings, volume 3027 of Lecture Notes in Computer
Science, pages 287–305. Springer, 2004.

188 S.S.M. Chow, W. Susilo, and T.H. Yuen

13. Sherman S.M. Chow. Identity-based Strong Multi-Designated Verifiers Signatures.
In EuroPKI ’06, volume 4043 of Lecture Notes in Computer Science, pages 257–9.

14. Sherman S.M. Chow, Lucas C.K. Hui, and S.M. Yiu. Identity Based Threshold
Ring Signature. In ICISC 2004, volume 3506 of Lecture Notes in Computer Science,
pages 218–232. Springer-Verlag, 2004.

15. Sherman S.M. Chow, Joseph K. Liu, Victor K. Wei, and Tsz Hon Yuen. Ring
Signatures without Random Oracles. In ASIACCS 2006, pages 297–302.

16. Sherman S.M. Chow, Richard W.C. Lui, Lucas C.K. Hui, and S.M. Yiu. Identity
Based Ring Signature: Why, How and What Next. In EuroPKI 2005, Proceedings,
volume 3545 of Lecture Notes in Computer Science, pages 144–161. Springer, 2005.

17. Sherman S.M. Chow and Willy Susilo. Generic Construction of (Identity-based)
Perfect Concurrent Signatures. In ICICS 2005, volume 3783 of Lecture Notes in
Computer Science, pages 194–206. Springer, 2005.

18. Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous
Identification in Ad Hoc Groups. In EUROCRYPT 2004, Proceedings, volume 3027
of Lecture Notes in Computer Science, pages 609–626. Springer, 2004.

19. Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable Signatures. In Eu-
rocrypt ’04, volume 3027 of Lecture Notes in Computer Science, pages 571–589.

20. Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable Spontaneous Anony-
mous Group Signature for Ad Hoc Groups. In ACISP 2004, Proceedings, volume
3108 of Lecture Notes in Computer Science, pages 325–335. Springer, 2004.

21. Lan Nguyen. Accumulators from Bilinear Pairings and Applications. In CT-RSA
2005, volume 3376 of Lecture Notes in Computer Science, pages 275–292.

22. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to Leak a Secret. In ASI-
ACRYPT 2001, Proceedings, volume 2248 of Lecture Notes in Computer Science,
pages 552–565. Springer, 2001.

23. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to Leak a Secret: Theory
and Applications of Ring Signatures. In Theoretical Computer Science, Essays in
Memory of Shimon Even, pages 164–186. Springer, 2006.

24. Willy Susilo and Yi Mu. Non-Interactive Deniable Ring Authentication. In ICISC
2003, volume 2971 of Lecture Notes in Computer Science, pages 386–401.

25. Patrick P. Tsang and Victor K. Wei. Short Linkable Ring Signatures for E-Voting,
E-Cash and Attestation. In ISPEC 2005, Proceedings, volume 3439 of Lecture
Notes in Computer Science, pages 48–60. Springer, 2005.

26. Patrick P. Tsang, Victor K. Wei, Tony K. Chan, Man Ho Au, Joseph K. Liu, and
Duncan S. Wong. Separable Linkable Threshold Ring Signatures. In INDOCRYPT
2004, Proceedings, Lecture Notes in Computer Science, pages 384–398. Springer.

27. Victor K. Wei. Tracing-by-Linking Group Signatures. In ISC 2005, Proceedings,
volume 3650 of Lecture Notes in Computer Science, pages 149–163. Springer, 2005.

28. Victor K. Wei, Tsz Hon Yuen, and Fangguo Zhang. Group Signature Where Group
Manager, Members and Open Authority Are Identity-Based. In ACISP 2005,
Proceedings, volume 3574 of Lecture Notes in Computer Science, pages 468–480.

29. Qianhong Wu, Fangguo Zhang, Willy Susilo, and Yi Mu. An Efficient Static Blind
Ring Signature Scheme. In ICISC 2005, Revised Selected Papers, volume 3935 of
Lecture Notes in Computer Science, pages 410–423. Springer, 2005.

30. Fangguo Zhang and Kwangjo Kim. ID-Based Blind Signature and Ring Signature
from Pairings. In ASIACRYPT 2002, Proceedings, volume 2501 of Lecture Notes
in Computer Science, pages 533–547. Springer, 2002.

Escrowed Linkability of Ring Signatures and Its Applications 189

A Security Proofs

Lemma 1. The detailed SPK protocol in Section 5 is an honest verifier zero
knowledge proof of knowledge, provided that the discrete logarithm assumption
holds in G1 in the random oracle model.

Proof. The completeness is straightforward. For soundness, suppose the protocol
accepts two signatures (c, s1, . . . , s7) and (c′, s′1, . . . , s

′
7) for the same commitment

(T1, T2, T3, R1, . . ., R5). Let δsi = (si − s′i)/(c− c′) for i = 1, . . . , 7. We have:

T3 = gδs2
3 gδs4

4 gδs6
1

T δs1
3 = gδs3

3 gδs5
4 gδs7

1

ê(g1, g2)/ê(T1, g
x
2) = ê(T1, g2)δs1 ê(g1, g2)−δs3 ê(g1, gx

2)−δs2

ê(V, g2)/ê(T2, g
s
2) = ê(T2, g2)δs1 ê(g1, g2)−δs5 ê(g1, gs

2)
−δs4

ỹ/ê(T1, h) = ê(g1, h)−δs2

From the first two equations, we have δs3 = δs1δs2, δs5 = δs1δs4, δs7 = δs1δs6
by the discrete logarithm assumption in G1.

Let id = δs1, Sid = T1g
−δs2
1 and W = T2g

−δs4
1 . Then ê(V, g2) = ê(W, gid+s

2),
ê(Sid, g

id
2 y) = ê(g1, g2) and ỹ = ê(Sid, h). Hence, the soundness is proved.

For zero-knowledge, the simulator randomly chooses c, s1, . . . , s7 ∈ Zp, T1, T2,
T3, ỹ ∈ G1. Then he computes R1, . . . , R5 as in Vfy. He sets c = H(T1, T2, T3, h,
ỹ, R1, . . . , R5, M). We can obviously see that it is zero-knowledge. �

A.1 Proof of Theorem 1

Proof. By the above lemma, we can see that the SPK itself provides uncondi-
tional anonymity for (T1, T2, T3, R1, . . . , R5). Only the linkability tag (h, ỹ) may
affect the anonymity of the scheme. The proof is as follows.

Now suppose A can break the anonymity of the proposed scheme. We con-
struct an algorithm B that uses A to solve the q-DSDH problem. The sim-
ulator B is given the q-DSDH instance (g1, g2, gx

2 , . . . , g
xq

2 , R, γ). B randomly
picks id1, . . . , idq−1 ∈ Zp and sets id∗ = γ. Let f(y) be the polynomial f(z) =∏q−1

i=1 (z+idi). Expand f(z) and write f(z) =
∑q−1

i=0 αiz
i where α0, . . . ,αq−1 ∈ Zp

are the coefficients of the polynomial f(z). Then B computes:

g′2 =
q−1∏
i=0

(gxi

2)αi = g
f(x)
2 and y =

q∏
i=1

(gxi

2)αi−1 = gxf(x)
2 = (g′2)

x

Let g′1 = ψ(g′2). We assume that f(x) �= 0, otherwise x = −idi for some i which
means that B obtained the private key x for the q-DSDH problem. B randomly
picks u, s,∈ Zp and g3, g4 ∈ G1. B gives A param = (ê, ψ, g′1, g

′
2, g

′
2
s
, . . . , g′2

sq

, u,
g3, g4, H,H0), y, and the set of public keys X = {id1, . . . , idq−1, id∗}.

For the RO query, simulate as random oracles.

190 S.S.M. Chow, W. Susilo, and T.H. Yuen

For the CO query for idi, B computes S = g′1
1/(x+idi) = ψ(gf(x)/(x+idi)

2). If
the query is for id∗, B declares failure and exits. B can compute gf(x)/(x+idi)

2 by
using g2, gx

2 , . . . , g
xq

2 . The private key S satisfies ê(S, g′2
idiy) = ê(g′1, g

′
2).

Replies to SO query are simulated as the zero-knowledge proof in Lemma 1.
At some pointA gives a set of public keysX ′, two users id0, id1 ∈ X∩X ′, and a

messageM to B. If both id0, id1 �= id∗, B declares failure and exits. Suppose idb =
id∗ for b = 0/1. B randomly picks α ∈ Zp and patches h = g2

α = H0(param, e).
He has to compute ỹ = ê(g′1

1/(x+idb), h) = ê(g1, g2)αf(x)/(x+idb). As f(x) is not

divisible by (x + idb), we can write ỹ = ê(g1, g
∑q−1

i=0 βix
i+β−1/(x+idb)

2) for some

βi ∈ Zp, β−1 �= 0. Therefore ỹ = ê(g1, g
∑q−1

i=0 βix
i

2)·Rβ−1, and the signature can be
computed using idb as in the zero-knowledge proof in Lemma 1. B then returns
the signature to A and A returns a guess b̂. If b̂ = b, B returns true for the
q-DSDH problem. Otherwise, he returns false. For this simulation to succeed, it
suffices that A never asks CO query on id∗, which holds with probability 1/q;
and for the challenge users, not both id0, id1 �= id∗, which holds with probability
at least 2/q. If A has probability ε of breaking the anonymity, B has probability
at least 2ε/q2 of breaking the q-DSDH assumption. �

A.2 Proof of Theorem 2

Proof. The security proof is similar as above. The oracle simulations are similar.
Finally A returns a signature σ for message M and public keys set X ′ ⊆ X .
B rewinds and extract (id, Sid) as in Lemma 1. If Sid is not the output from
CO(id), then B returns the new key pairs (id, Sid) as the solution of the q-SDH
problem. If Sid is the output from CO(id), it means id /∈ X ′, which breaks the
collision resistance property of the pairing accumulator, and hence the q-SDH
assumption by theorem 2 of [21]. If we simulate each of the above two cases with
probability 1/2, and A has probability ε of breaking the unforgeability, B has
probability ε of breaking the q-SDH assumption. �

A.3 Proof of Theorem 3

Proof. The security proof is similar as above. The oracle simulations are sim-
ilar. A returns signatures σ0, σ1, such that the value h is the same while they
are not linked. B rewinds two signatures to obtain S0, S1 respectively. Therefore
ê(S0, h) �= ê(S1, h) and hence S0 �= S1. For b = 0/1, at least one valid key pairs
(idb, Sb) has never been queried to CO for some idb ∈ Xb. Then B returns the
new key pairs (idb, Sb) as the solution of the q-SDH problem. If A has proba-
bility ε of breaking the linkability, B has probability ε of breaking the q-SDH
assumption. �

A.4 Proof of Theorem 4

Proof. Similar to Lemma 1, we can see that the SPK itself provides uncondi-
tional anonymity for (T1, T2, T3, R1, . . . , R6). Only the linkability tag (h, ỹ, U)

Escrowed Linkability of Ring Signatures and Its Applications 191

may affect the anonymity of the scheme. Suppose A can break the anonymity of
the proposed extension. We construct an algorithm B that uses A to solve the
DBDH problem for (g1, g2, gα

2 , g
β
2 , g

γ
2 , R).

B randomly picks s, x ∈ Zp and computes param and y as in Init and TAKg.
B sets y′ = gα

2 . B randomly picks id1, . . . , idqC ∈ Zp, where qC is the number
of query to the CO. B gives A param, y, y′ and the set of public keys X =
{id1, . . . , idqC}. B randomly picks μ ∈ {1, . . . , qR}, where qR is the maximum
number of query to the random oracle H1.

For the RO query to H1, B randomly picks λ ∈ Zp and returns gλ
1 , except

the μ-th query returns ψ(gβ
2). Record the (id,λ) on tape L1. Other hash queries

are simulated as random oracles.
For the CO query, B computes the private key using x.
For the T CO query for id, B computes H1(id). If (id,λ) is in L1, he returns

ψ(gα
2)λ. If (id, ψ(gβ

2)) is in L1, B declares failure and exits.
Replies to SO query are simulated as the zero-knowledge proof in Lemma 1.
For the LO query for LA id, if (id, ψ(gβ

2)) is in L1, B declares failure and
exits. Otherwise, B extracts the private key as in T CO and runs as in Link.

At some point A selects a set of public keys X ′, two users id0, id1 ∈ X ′ ∩X ,
a LA id� and a message M and gives them to B. If (id�, ψ(gβ

2)) /∈ L1, B declares
failure and exits. Otherwise, he randomly picks b ∈ {0, 1} and extracts the
private key of idb as in CO. Then B computes as in Sign with U = gγ

2 and
ỹ = ê(Sidb

, h) · R. Then B returns the signature to A.
Finally, A returns a guess b̂. If b̂ = b, B returns true, otherwise false. We

can easily see that if A has non-negligible probability ε of winning the game, B
solves the DBDH problem if A never ask T CO for ψ(gβ

2) with probability 1/qR;
A never asks LO for ψ(gβ

2) with probability 1/qL (qL is the maximum number
of query to LO); and the challenge LA is ψ(gβ

2) with probability 1/qR. B can
decide if R = ê(g1, g2)αβγ with probability at least ε/qLq2R. �

A.5 Proof of Theorem 5

Proof. Now suppose A can forge in the proposed extension. We construct an
algorithm B that uses A to solve the q-SDH problem. The simulator B is given
the q-SDH instance (g1, g2, gx

2 , . . . , g
xq

2).
B randomly picks id1, . . . , idq−1 ∈ Zp. Let f(y) be the polynomial f(z) =∏q−1
i=1 (z+idi). Expand f(z) and write f(z) =

∑q−1
i=0 αiz

i where α0, . . . ,αq−1 ∈ Zp

are the coefficients of the polynomial f(z). Then B computes:

g′2 =
q−1∏
i=0

(gxi

2)αi = g
f(x)
2 and y =

q∏
i=1

(gxi

2)αi−1 = gxf(x)
2 = (g′2)

x

Let g′1 = ψ(g′2). We assume that f(x) �= 0, otherwise x = −idi for some i which
means that B obtained the private key x for the q-SDH problem. B randomly
picks u, s, x′ ∈ Zp and g3, g4 ∈ G1. B gives A param = (ê, ψ, g′1, g

′
2, g

′
2
s, . . . , g′2

sq

,
u, g3, g4, H,H0, H1), y, y′ = g′2

x′
, and the set of public keysX = {id1, . . . , idq−1}.

192 S.S.M. Chow, W. Susilo, and T.H. Yuen

For the RO query, simulate as random oracles.
For the CO query for idi, B computes S = g′1

1/(x+idi) = ψ(gf(x)/(x+idi)
2) by

using g2, gx
2 , . . . , g

xq

2 . The private key S satisfies ê(S, g′2
idiy) = ê(g′1, g

′
2).

Replies to SO query are simulated as the zero-knowledge proof in Lemma 1.
The T CO and LO queries can be answered using the private key x′.
Finally A returns (σ,M,X). B rewinds and extracts (id, Sid) as in Lemma 1.

If Sid is not the output from CO(id), then B returns the new key pairs (id, Sid)
as the solution of the q-SDH problem. If Sid is the output from CO(id), it means
id /∈ X , which breaks the collision resistance property of the pairing accumulator
and hence the q-SDH assumption by theorem 2 of [21]. If we simulate each of
the above two cases with probability 1/2, and A has probability ε of breaking
the unforgeability, B has probability ε of breaking the q-SDH assumption. �

A.6 Proof of Theorem 6

Proof. The security proof is similar as above. The oracle simulations are similar.
Finally A returns signatures σ0, σ1, such that the value h is the same while they
are not linked. B rewinds two signatures to obtain S0, S1 respectively. Therefore
ê(S0, h) �= ê(S1, h) and hence S0 �= S1. For b = 0/1, at least one valid key pairs
(idb, Sb) has never been queried to CO for some idb ∈ Xb. Then B returns the
new key pairs (idb, Sb) as the solution of the q-SDH problem. If A has proba-
bility ε of breaking the linkability, B has probability ε of breaking the q-SDH
assumption. �

B Au et al.’s Construction

Independent of our work, Au et al. [3] proposed an ID-based linkable threshold
ring signature scheme with extensions supporting revocable-iff-linked and iden-
tity escrow. The former idea originates from an e-cash system [9], which is also
similar to the tracing-by-linking concept in some group signature schemes [27].

Their scheme goes a step further than ours in the sense that a threshold num-
ber of signers (which is greater than one) is supported. However, the signature
size is not short: the signature size is proportional to the number of signers. The
choice of RSA-based construction instead of elliptic curve based contributes to
a larger constant factor. These shortcomings make their scheme unsuitable for
ring signature enabled applications involving a larger number of possible signers
like e-cash. It is true that pairing computation is still rather expensive. All our
schemes use a constant number of pairing operation in signing and verification.

Regarding identity escrow, their RSA-based design makes it difficult to veri-
fiably encrypt the signer’s identity using ID-based encryption; so the revocation
manager (the party revoking the identity of a ring signature) is not using an
ID-based key (i.e. not “fully ID-based”). Moreover, the discrete logarithm of an
element of the system parameters, that is not supposed to be known to any
body, is given. Consequently, a high level of trust is placed that the revocation
manager will not abuse this knowledge to do any other things except revocation.

Dynamic Fully Anonymous
Short Group Signatures

Cécile Delerablée1 and David Pointcheval2

1 France Telecom Division R&D, Issy-les-Moulineaux, France
cecile.delerablee@orange-ftgroup.com

2 CNRS-ENS, Paris, France
david.pointcheval@ens.fr

Abstract. Group signatures allow members to sign on behalf of a group.
Recently, several schemes have been proposed, in order to provide more
efficient and shorter group signatures. However, this should be per-
formed achieving a strong security level. To this aim, a formal security
model has been proposed by Bellare, Shi and Zang, including both dy-
namic groups and concurrent join. Unfortunately, very few schemes sat-
isfy all the requirements, and namely the shortest ones needed to weaken
the anonymity notion.

We present an extremely short dynamic group signature scheme, with
concurrent join, provably secure in this model. It achieves stronger secu-
rity notions than BBS, and namely the full anonymity, while still shorter.
The proofs hold under the q-SDH and the XDH assumptions, in the ran-
dom oracle model.

1 Introduction

Group signature schemes (thereafter denoted GSS) have been introduced by
Chaum and van Heyst [12], in order to provide revocable anonymity to the
signer, who is allowed to sign on behalf of a group. In such a scheme, an author-
ity is able, in exceptional cases, to “open” any group signature, and thus recover
the actual signer. Properties of group signature schemes make them very impor-
tant cryptographic tools, with lots of applications (voting, bidding, anonymous
attestation).

For many years, several GSS have been introduced, and namely the famous
ACJT [1], which was the first provably secure coalition-resistant scheme, un-
der the Strong RSA and DDH assumptions. More recently, Boneh, Boyen and
Shacham (BBS) [6], and Camenisch and Lysyanskaya [11], proposed very effi-
cient group signature schemes using bilinear maps. The former provides very
short group signatures. Independently, Nguyen and Safavi-Naini (NS) [19] also
proposed another group signature scheme using bilinear maps. Note that all
these schemes were analyzed in the random oracle model [3].

Bellare, Micciancio and Warinschi (BMW) [2] gave formal definitions of the
security properties of group signatures, and proposed the first scheme provably
secure in the standard model (while totally unpractical). Independently, Kiayias

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 193–210, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

194 C. Delerablée and D. Pointcheval

and Yung [16] (and later [17]), also defined a security model. Bellare, Shi and
Zhang (BSZ) [4] extended the BMW model to the case of dynamic groups. Un-
forgeability and anonymity are indeed crucial security notions, but they should
be guaranteed even if the adversary is allowed to play various attack games:
adaptively open signatures, join any user of his choice (dynamic group [4]), pos-
sibly concurrently (concurrent join [17]).

However, in several schemes, this model has been “weakened”, to obtain better
efficiency, or to fit with the actually achieved security notions, as done in BBS
with CPA-full-anonymity, a weaker version of anonymity where the adversary is
not allowed to open signatures when trying to break the anonymity notion. Very
recently, Boyen and Waters [8] proposed the first efficient GSS that is provably
secure without random oracles, but with an important loss of efficiency. Indeed,
the length of group signatures grows according to the number of users, and the
group public key too.

1.1 Motivations and Related Work

Recently, several schemes have been proposed, in order to reduce the computa-
tional cost and the size of group signatures. In particular, BBS [6] is the most
efficient one, and provides the shortest signatures so far. But they are still quite
large if one compares to short classical signatures [7], and very short group sig-
natures would be of great interest too.

Furthermore, the security level provided by BBS signatures does not fit in
the security models proposed by Bellare et al. [2,4]. Namely, anonymity is no
longer formally guaranteed as soon as one signature is open. However, such an
opening process is expected to happen, hence the importance of anonymity as
defined in [2]: it must be guaranteed, even if the adversary can see/ask for sev-
eral openings. Moreover, non-frameability, as defined in BSZ is not guaranteed,
because the group manager is able to sign on behalf of any group member. How-
ever, the authors suggest a possible way to fix this security problem, what we
exploited, as explained below. In NS [19], the (full) anonymity is guaranteed,
but the computational cost and the size of the group signatures are larger, com-
pared to BBS. Furthermore, while NS claims to be in the BSZ security model,
an adaptive access to the join oracle is not properly dealt in the security proofs,
and namely for the traceability.

Adaptive, together with concurrent join is specifically considered by Kiayias
and Yung [17]. It is indeed a very attractive property since it allows for several
users to register at the same time, which could not be avoided (without a dras-
tic efficiency reduction) in many applications (Internet-based for example) How-
ever, their scheme provides quite long signatures, with quite high computational
cost.

A weakness in the BSZ model is the lack of revocation procedure. They gave
some reasons for that, however, revocation of group members is usually a major
issue in practice, one has to deal with for an actual scheme.

Dynamic Fully Anonymous Short Group Signatures 195

1.2 Contribution

In this paper, we deal with all the above problems together (therefore in the full
BSZ security model, and we even address revocation in the full version [13]).
We thus present a new GSS, which provides the strongest security level (under
by now classical computational assumptions) in the random oracle model, with
quite practical features: concurrent join, very efficient signing and verification
procedures, and eXtremely Short (XS) signatures. The short size is also due
to an original application of the Forking Lemma [21], which is of independent
interest.

Our signature scheme, named XSGS (eXtremely Short Group Signatures),
provides anonymity (which is a better security level than BBS [6], and most of
the other schemes, except NS [19] and KY [17]), with still very short signatures:
1444 bits, that is almost 70% shorter than a NS-Signature. Furthermore, it is
more efficient than NS [19], which provides the same security level (and even
better than BBS for verification.) Concurrent join and revocation are possible,
which make our schemes very attractive for dynamic groups.

2 Group Signature Schemes

According to the BSZ security model [4], group signature schemes involve distinct
authorities, with various rights, and should satisfy several security notions. Even
if in many GSS, there is a single authority, holding both Issuing and Opening
capacities, it is preferable to separate those two capabilities. One reason is the
fact that for security proofs, we can consider one of the authority corrupted, or
partially corrupted, and the other not corrupted (we detail this point later).

2.1 Entities

A group signature scheme involves several entities: the group manager GM,
which can add new members to the group, by issuing new certificates (we could
extend the model to include the revocation of certificates, but here we only
consider the group manager as a certificate issuer. In the full version [13] we
briefly deal with the revocation process); the opening manager OM, which
can revoke the anonymity of any group signature; users U ’s which are group
members; and outsiders, which do not belong to the group, but just have access
to the group public key.

2.2 PKI Environment

We assume that each user Ui, before joining the group, obtains a personal secret
key usk[i], associated to a personal certified public key upk[i] (in a PKI). The
group manager will also have a certified pair of keys (gmpk, gmsk). This PKI
environment is separated from the group environment, and thus the certification
authority will be assumed fully trusted (the only one). Indeed, this PKI will
provide the non-repudiation, but also the non-frameability property: even if the

196 C. Delerablée and D. Pointcheval

group authorities are corrupted, they cannot frame a group member. Such a PKI
can be formalized by a user-key generation algorithm which generates a personal
public and private key pair (upk[i], usk[i]) for a user Ui.

2.3 Algorithms

In this section we recall the definitions regarding group signature algorithms,
according to [4]:

– GKg– the key generation algorithm GKg generates, according to a security
parameter, the group manager’s secret key ik, the opening manager’s secret
key ok, and the group public key gpk.

– Join– running the join or issue algorithm Join(Ui,GM), the group manager
provides the member Ui with his secret key gsk[i]. The group manager makes
an entry reg[i] in the registration table reg, with the entire transcript of the
process (unless explicitly stated).

– GSig– the group signing algorithm GSig(gsk[i],m) generates a signature σ on
a message m, in the name of the group, using the user’s secret key gsk[i].

– GVf– the group signature verification algorithm GVf(gpk,m, σ): takes as in-
put the group public key, a group signature σ on message m. It decides
whether the signature has been generated by a member of the group (this is
a deterministic algorithm).

– Open– the opening algorithm Open(ok,m, σ) revokes the anonymity of a
signature, granted the opening manager’s secret key. More precisely, with
read-access to the registration table reg, the opening manager is able to
recover the identity of the actual signer (this is a deterministic algorithm).
The algorithm outputs an identity Ui, and a proof τ of this claim (which will
be used by the Judge algorithm).

– Judge– the judge algorithm takes as input the group public key gpk, the
public key upk[i] of the user Ui, a message m, a valid signature σ of m, and a
proof τ . It is used to check that Ui produced the signature σ on the message
m. This algorithm does not require any private information, and thus, the
verification of the opening process is public.

2.4 Security Notions

The Oracles. In [4], the correctness and security definitions are formulated via
experiments, which involve oracle access to the adversary. We briefly describe
the oracles provided to adversaries in the security experiments.

– AddU(·) – add user oracle, which on input an identity Ui of a new user runs
the Join algorithm. This user Ui is added to the list HU of the Honest Users;

– CrptU(·, ·) – corrupt user oracle, which on input an identity Ui of a new user
and a string upk sets upk as the public key upk[i] of Ui. This user is added
to the list CU of the Corrupted Users;

– SndToI(·, ·) – send to issuer (group manager) oracle, which allows a corrupted
user to run the Join algorithm with the issuer;

Dynamic Fully Anonymous Short Group Signatures 197

– SndToU(·, ·) – send to user oracle, which allows a corrupted group manager
to run the Join algorithm with an honest user (which is important for the
non-frameability);

– USK(·) – user secret key oracle, which converts an honest user (in HU) into
a corrupted user (in CU) by leaking the private keys upk[i] and gsk[i];

– RReg(·) – read registration table oracle, which gives a read access to the
registration table reg;

– WReg(·, ·) – write registration table oracle, which gives a write access to the
registration table reg;

– GSig(·, ·) – signing oracle, which on input the identity i of an honest user
and a message outputs the signature the user would produce;

– Chb(·, ·, ·) – challenge oracle, which on input the identities Ui0 and Ui1 of two
honest users and a message m, outputs the signature the user Uib

would pro-
duce on m. The message–signature pair generated by this oracle is appended
to the list Gset (initially set to empty);

– Open(·, ·) – opening oracle, which on input a message–signature pair, not
generated by the challenge oracle, and thus not in Gset, runs the Open algo-
rithm to get the identity of the actual signer.

Security Notions. We review, in the full version [13], the formal experi-
ments [4] which model the security notions of a dynamic group signature scheme
GSS:

Correctness. Signatures generated by a honest member should be accepted, and
the open algorithm should correctly identify the signer (and the judge should
accept the proof returned by the opening algorithm).

Anonymity. Given signatures produced by a user (among two of his choice –
left-or-right) the adversary should not be able to have a significant advantage in
guessing which users (the left or the right) provided the signatures. The adver-
sary has a full and adaptive access to the Open oracle, except on the signatures
produced by the left-or-right signing oracle.

Traceability. It must be impossible to produce a valid signature such that either
the honest opener is unable to identify the signer, or the opener believes it has
identified the origin but is unable to produce a correct proof of its claim.

Non-frameability. Even the authorities (group manager and opener) are not able
to wrongly accuse someone for having signed a message. For this security level,
we assume a colluding subset of users and both authorities to be corrupted.

3 Preliminaries

Since our schemes use classical assumptions and notations, let us introduce them,
and review the most famous pairing-based group signature scheme, proposed by
Boneh, Boyen, and Shacham [6].

198 C. Delerablée and D. Pointcheval

3.1 Computational Assumptions

All the protocols below will apply in three isomorphic cyclic groups of prime
order p: G1, G2 and GT . We furthermore assume that there exists an admissible
bilinear map e : G1 × G2 → GT , which can be evaluated efficiently. We denote
by ψ the isomorphism from G2 onto G1, that we assume to be one-way (easy to
compute, but hard to invert).

The Decisional Diffie-Hellman Problem (DDH)

Definition 1. Let us consider any group G of prime order p, the decisional
Diffie-Hellman problem is defined as follows: given a random generator G ∈ G,
two random elements aG, bG in G, and a candidate X ∈ G, one has to decide
whether X = abG or not.

We denote by Advddh
G (A) the advantage of any adversary A in distinguishing

the two distributions: (G, aG, bG, abG) and (G, aG, bG, cG). As usual, we also
denote by Advddh

G (t) the maximal advantage that any adversary can get within
time t.

In our context, because of the efficient bilinear map e : G1 × G2 → GT , and
the isomorphism ψ : G2 → G1, the DDH problem is easy in G2: given a tuple
(G, aG, bG, cG) ∈ G4

2, one simply checks whether e(ψ(aG), bG) = e(ψ(G), cG).

The eXternal Diffie-Hellman Assumption (XDH). Note that we further-
more assumed this isomorphism to be one-way. This gives the chance for the
following XDH assumption to be true. Such an assumption has been introduced
by Camenisch, Hohenberger and Lysyanskaya in the full version of [9], and sug-
gested in the full version of [6].

Definition 2. Given three groups G1, G2 and GT , as well as a bilinear map
e : G1 ×G2 → GT , while the DDH problem is easy in G2, the XDH assumption
states that the DDH problem is hard in G1.

Note that the above assumption does not only imply the one-wayness of ψ, but
also that there is not efficiently computable isomorphism from G1 onto G2. For
supersingular curves, such an assumption is known to be false [15], however, it
is conjectured to hold, using the Weil or Tate pairing on MNT curves (choosing
curves with embedded degree > 1 and G1 to be the points defined over the
ground field. In this case, one can use the Trace map to go from G2 to G1). This
is reason why it has already been used in recent works [9], and the full version
of [6].

The Strong Diffie-Hellman Assumption (SDH). A new assumption, simi-
lar to the Strong-RSA one, has been recently introduced by Boneh and Boyen [5]:
the Strong Diffie-Hellman Assumption.

Definition 3. Let us be given two isomorphic groups G1 and G2 (together with
the isomorphism ψ : G2 → G1.) The q-Strong Diffie-Hellman problem consists,
on input a (q + 2)-tuple (G1, G2, γG2, γ2G2,. . .,γqG2), for a random element

Dynamic Fully Anonymous Short Group Signatures 199

γ ∈ Zp and a random generator G2 of G2, and G1 = ψ(G2), in outputting a pair(
x, 1

γ+xG1

)
, with x ∈ Z�

p.

We denote by Succsdh
(G1,G2)(q,A) the success of any adversary A in outputting

such a solution on a random input instance. We also denote by Succsdh
(G1,G2)(q, t)

the maximal success that any adversary can get within time t.

Definition 4. The q-SDH assumption states that this problem is intractable for
a given q.

3.2 Common Parameters

One chooses a random generator G2 in G2, and we denote by G1 its transforma-
tion by ψ: therefore, G1 = ψ(G2) is a generator of G1. We also need additional,
and independent generators G, H and K in G1, whose relative discrete loga-
rithms as well as discrete logarithms in basis G1 are unknown (unless something
else is made more precise). We will denote by W = γG2 the public key of the
group (with all the above public informations: the groups and the generators).
The value γ ∈ Zp is kept secret by the group manager. It will be used to issue
membership certificates.

3.3 BBS: Short Group Signatures

The idea of the BBS group signature [6] consists in providing a signature of
knowledge of a solution to the SDH problem: (A, x) such that (x + γ)A = G1.
The latter is generated granted the help of the group manager who knows γ.
However, in order to allow the anonymity revocation (the opening operation by
the group manager), the proof must not be totally zero-knowledge but partially
only: the group manager should be able to recover A.

Therefore, in order to sign a message m, the user first encrypts A with the
encryption key of the group manager; he then provides a zero-knowledge proof
that the plaintext actually contains an A for which he knows the corresponding
x. The security analysis didnot follow the above BSZ model [4], because of some
restrictions:

– the unforgeability of the certificates directly comes from the q-SDH assump-
tion. However, the proposed format of the membership certificate does not
make any value private to the group manager. Therefore, he can sign on
behalf of any user: the non-frameability cannot be guaranteed.

– with a semantically secure encryption scheme, anonymity is guaranteed.
However, since one works in groups subject to efficiently computable bi-
linear maps, the DDH problem may not be hard. Therefore, they prefer to
use a new encryption scheme (linear encryption) instead of the classical El-
Gamal encryption (the ciphertext is larger: 3 group elements, instead of 2).
Furthermore, it is semantically secure against chosen-plaintext attacks only:
the semantic security (and even the one-wayness) can be broken if the adver-
sary has access to the decryption oracle: the above definition of anonymity

200 C. Delerablée and D. Pointcheval

does not hold if the adversary has access to the Open-oracle. This is the
reason why they defined a weaker notion of anonymity, the so-called CPA-
full-anonymity, or weak anonymity.

On the other hand, the main goal was a short signature, which indeed consists
of three elements of G1 (the encryption) and six elements of Zp (the proof of
knowledge). Hence, the size is just 1533 bits.

3.4 Improvements

In order to improve the security (anonymity and non-frameability), it seems
natural that we have to enhance the scheme, and thus to degrade the size:

– make the encryption scheme IND-CCA2 [22], by adding a proof to ensure
security against chosen-ciphertext attacks;

– involve an extra parameter in the membership certificate, known to the user
only.

Actually, it is possible to make these security improvements without loosing
anything from the efficiency point of view (and even improving it too), making
the XDH assumption.

4 XS Group Signatures

Note that for simplicity, we will use “certificate” to designate (Ai, gsk[i]) in
general, and just Ai at some specific time. In our scheme, we exploit and study
two suggestions from [6], also used in [19], together with new tricks:

– First, we make the assumption that the DDH holds in the group G1, which is
true under the XDH assumption. This will then allow a compact IND-CCA2
ElGamal-based encryption scheme;

– Then, we enhance the membership certificate with an additional secret y,
known to the user only: (A, x, y), with A ∈ G1, x, y ∈ Zp, such that (x +
γ)A = G1 + yH . Applying e(·, G2) on both sides, one gets that a triple
(A, x, y) is a valid certificate if and only it satisfies the relation:

e(A,G2)x · e(A,W) · e(H,G2)−y = e(G1, G2).

– Finally, we revisit the forking lemma [21] in order to even shorten the sig-
natures.

4.1 Concurrent Join Protocol and Revocation

In order to guarantee the non-frameability, one needs a specific Join procedure
which provides a group member with a certificate such that the group manager
does not know the private key. During the Join protocol, a future group member
interacts with the group manager, in order to obtain a valid group certificate
(A, x, y), with a private y. This Join protocol is presented on figure 1, where

Dynamic Fully Anonymous Short Group Signatures 201

U (upk, usk) GM (γ, gmsk)

y
R← Zp, C ← yH

U ←
(

c = Ext-Commit(y),

NIZKPEqDL(c, C, H)

)
C,U−−−−−−−−−−→ Verifies C ∈ G1, checks U

x
R← Zp, A ← (1

γ+x
)(G1 + C)

B ← e(G1 + C, G2)/e(A,W)
D ← e(A, G2)

A,V←−−−−−−−−−− V ← NIZKPoKDL(B, D)
B ← e(G1 + C, G2)/e(A,W)
D ← e(A, G2)
Verifies A ∈ G1, checks V

S ← Signusk(A) S−−−−−−−−−−→ Checks S w.r.t. upk and A

Checks that (x + γ)A ?= G1 + yH
x←−−−−−−−−−− adds (upk, A, x, S)

i.e. e(A,G2)x · e(A,W) · e(H,G2)−y = e(G1, G2)

Fig. 1. Join Protocol

– Ext-Commit is an extractable commitment, that is a commitment which is
perfectly binding, and computationally hidding, and a trapdoor allows to
open it. Actually, the trapdoor will not be known to anybody, except to
our simulator in the security proofs of the traceability and non-frameability.
A good example, well-suited to our situation, is the Paillier’s encryption
scheme [20]: as any encryption scheme, injectivity implies the unconditional
binding property, while the computational hiding relies on the semantic se-
curity, the high-residuosity assumption. The decryption key allows the ex-
traction;

– NIZKPEqDL(c, C,H) denotes a zero-knowledge proof of equality of the dis-
crete logarithm of C in basisH with the committed value in c, non-interactive
in the random oracle model. We won’t detail such a proof, but it can be ef-
ficiently done with the Paillier’s encryption scheme, since it is an equality of
discrete logarithms (in different groups). Note that such a proof of member-
ship together with an extractable commitment becomes a proof of knowledge:
the user necessarily built C knowing y.

– NIZKPoKDL(B,D) denotes a zero-knowledge proof of knowledge of the dis-
crete logarithm of B in basis D, non-interactive in the random oracle model.

Let us explain the steps in this protocol: This protocol is concurrently secure
since all the proofs are non-interactive (NIZKPEqDL, NIZKPoKDL, and the sig-
nature), and everything is defined in the first move (the 2 first flows), while the
second move (the 2 last flows) involves a signature before revealing the certifi-
cate to the user. It ensures the non-frameability property. Indeed, the signature
Signusk(A) ensures that U owns the certificate A, in a non-repudiable way. But
such a signature is provided by U only after having checked V : GM actually
knows x, and thus used the C chosen by U . Therefore, he cannot know the
associated y.

202 C. Delerablée and D. Pointcheval

The revocation, which allows the group manager to remove a member from
the group, works almost exactly as in [6] (inspired by [10]). We describe it in
more details in the full version [13].

4.2 XSGS: An eXtremely Short Group Signature Scheme

Since we make the XDH assumption, it is reasonable to apply a classical ElGamal
encryption, to hide the certificate, in a revocable way. In order to reach the
(full) anonymity property, we enhance the encryption scheme with the IND-
CCA2 security, using the Naor-Yung methodology [18], but in the random-oracle
model [14]. In order not to increase too much the size of the signature, the above
H (involved in the certificate) will be used as one of the opening manager’s
public keys. Actually, the secret key of the opening manager is the pair (ξ1, ξ2)
such that H = ξ1K and G = ξ2K.

Parameters. We thus have:

– group public key: gpk = (G1,G2,GT , e, ψ; G1,K,H = ξ1K,G = ξ2K;
G2,W = γG2);

– group manager’s secret key: ik = γ, which helps to generate the certificate
triples (A, x, y), with A ∈ G1, x, y ∈ Zp, such that (x + γ)A = G1 + yH ;

– opening manager’s secret key: ok = (ξ1, ξ2), which will help to decrypt El-
Gamal ciphertexts;

– an extractable commitment scheme. In the case of the Paillier’s encryption
scheme [20], one has to choose an RSA modulus n, and an element g of
maximal order in Z�

n2 , without knowing/keeping the factorization.

Double ElGamal Encryption. The signer who owns a certificate (A, x, y),
randomly chooses α, β ∈ Zp and computes: T1 = αK T2 = A + αH T3 =
βK T4 = A+ βG.

First, in order to make the encryption scheme resistant to chosen-ciphertext
attacks, one has to prove that (T1, T2) and (T3, T4), which are two ciphertexts
with independent keys and independent random coins, encrypt the same plain-
text: there exist α and β such that

T1 = αK T3 = βK T2 − T4 = αH − βG.

Secondly, as before, (T1, T2) is the encryption of a valid certificate (A, x, y) if
and only if there exists an α such that (with z = xα + y)

T1 = αK and e(T2, G2)x · e(H,W)−α · e(H,G2)−z = e(G1, G2)/e(T2,W).

Signature. The signer has thus to prove the knowledge of (α, β, x, z) which
satisfies the 4 above relations. Such a proof of knowledge clearly shows that,
both there exist convenient α and β values, and the prover knows a certificate.
It can be performed with classical techniques, and the non-interactive version
uses the Fiat-Shamir paradigm, in the random-oracle model: in order to sign m,
U randomly chooses 4 elements rα, rβ , rx and rz in Zp and computes

Dynamic Fully Anonymous Short Group Signatures 203

– R1 = rαK R2 = e(T2, G2)rx · e(H,W)−rα · e(H,G2)−rz

R3 = rβK R4 = rαH − rβG.
– c = H(m, T1, T2, T3, T4, R1, R2, R3, R4), where H outputs k-bit long ele-

ments;
– sα = rα + cα mod p sβ = rβ + cβ mod p
sx = rx + cx mod p sz = rz + cz mod p.

A signature therefore consists of the tuple (T1, T2, T3, T4, c, sα, sβ , sx, sz), and
the verifier finally checks whether the following relations are satisfied or not:

sαK = R1 + cT1 sβK = R3 + cT3 sαH − sβG = R4 + c(T2 − T4)
e(T2, G2)sx · e(H,W)−sα · e(H,G2)−sz = R2 · (e(G1, G2)/e(T2,W))c

Open. To open a signature, OM uses the decryption key ok to recover A (and
provides a publicly-verifiable proof τ that he did it well —which is a simple proof
of equality of discrete logarithms in G1)—, and then the actual signer, using his
read-access to the registration table reg (to prove, in τ , that the designated user
Ui has not be framed, OM uses S = Signusk[i](A)).

4.3 Properties

Such a signature contains 4 elements from G1 (over 171 bits) and 4 scalars
(modulo p) of 170 bits. The challenge can just be on 80 bits: the signature can
thus be encoded on 1444 bits (less than 181 bytes). From the effiency point of
view:

– for the signature, one can compute

R2 = e(A,G2)rx · e(H,W)−rα · e(H,G2)αrx−rz .

Since all the pairing values can be precomputed, the signature globally re-
quires 7 multi-exponentiations in G1 and 1 multi-exponentiation in GT .

– to verify a signature one has to compute

R2 = e(T2, sxG2 + cW)·e(H,W)−sα ·e(H,G2)−sz ·e(G1, G2)−c.

Most of the pairing values can be precomputed: the verification requires 3
multi-exponentiations in G1, 1 multi-exponentiation in G2, 1 pairing com-
putation and 1 multi-exponentiation in GT .

4.4 Without the XDH Assumption

One should note that the XDH assumption helps to get the very short signature,
but is not crucial for our construction: if the XDH assumption does not hold, one
can use a double variant of the Linear Encryption (the Linear Encryption has
been introduced in [6], and is secure assuming the Decision Linear Diffie-Hellman
Assumption). Thus we can obtain group signatures of 2126 bits (6 elements from
G1, 6 scalars (modulo p) of 170 bits, and the challenge).

204 C. Delerablée and D. Pointcheval

4.5 Security Analysis of XSGS

In order to prove the correctness of the group signature scheme, we first need to
show that the interactive proof of knowledge is complete, then, the correctness
of the Open algorithm immediately leads to the result. Actually, in order to
prove the traceability, we furthermore need to show that the interactive proof
of knowledge is an honest-verifier zero-knowledge and sound proof of knowledge.
Thereafter, a simple application of the forking lemma 7 leads to the expected
result. This means that we first need the following lemma, which proof can be
found in the full version [13].

Lemma 5 (Honest-Verifier Zero-Knowledge Proof of Knowledge). The
interactive proof is a honest-verifier zero-knowledge proof of knowledge.

From the correctness of the proof of knowledge and the use of a correct encryp-
tion scheme, one gets the correctness of the group signature scheme:

Theorem 6 (Correctness). The group signature scheme XSGS is correct.

If one gets a closer look at the proof of the forking lemma [21], with a random
oracle H which outputs k-bit elements, one can claim the following lemma:

Lemma 7 (Forking Lemma). Let A be a probabilistic polynomial time Turing
machine whose input only consists of public data and which can ask qH queries
to the random oracle, with qH > 0. We assume that, within the time bound T , A
produces a valid signature (m, σ1, h, σ2), with probability ε ≥ 1/2k + η for some
η > 240qH/2k. Then, within time T ′ ≤ 9qHT/ε, and with probability ε′ ≥ 1

6 , a re-
play of this machine outputs two valid signatures (m, σ1, h, σ2) and (m, σ1, h

′, σ′2)
such that h �= h′.

Proof. First, with probability greater than η, A outputs a signature (m, σ1, h, σ2)
that is valid, such that h has been obtained as anH answer on (m, σ1). Therefore,
if we run the attacker 2/η times with different random tapes, we get a success
with probability greater than 1− e−2 ≥ 6

7 , such that the query H(m, σ1) has
been asked, and answered by h: the crucial query.

By applying the Splitting-Lemma [21], we know that with probability of 1/4,
for each replay, we have a new success with probability greater than η/4qH : we
thus replay the attack 8qH/η times with a new random oracle (but the same
answers until the crucial query). With probability greater than 6

7 , we get an-
other success. The challenge is different from the previous one with probability
8qH/η2k.

Finally, after less than 2(1 + 4qH)/η replays of the attack, with probability
greater 1/5− 8qH/η2k, which is greater than 1/6 as soon as η ≥ 240qH/2k, we
get two valid signatures (m, σ1, h, σ2) and (m′, σ′1, h

′, σ′2) with h′ �= h. �

The following lemma shows that the signature is unforgeable without the knowl-
edge of a certificate, even if the hash function outputs 80-bit values:

Dynamic Fully Anonymous Short Group Signatures 205

Lemma 8 (Unforgeability). It is computationally impossible to produce a
valid signature, without the knowledge of a membership certificate, even un-
der chosen-message attacks, in the random oracle model: if there exists an ad-
versary A able to build a valid signature within time t, with probability ε ≤
1/2k + η + qS(qH + qS)/p4, for some η > 240qH/2k, after qH queries to the
random oracle H and qS queries to the signing oracle, then one can build a
membership certificate in expecting time O(qH t/η).

Proof. We remind the signature consists of ((m, T1, T2, T3, T4), c, (sα, sβ, sx, sz)),
which is not exactly the framework used in the above Forking Lemma. Anyway,
with a few extra computation (but no new hash-query), one can make such a
signature of the more classical form ((m, T1, T2, T3, T4), (R1, R2, R3, R4), c, (sα,
sβ , sx, sz)), where c = H(m, T1, T2, T3, T4, R1, R2, R3, R4).

Furthermore, one can efficiently simulate the signing algorithm, in the name
of any user (with a statistically negligible probability of failure when setting a
random oracle value: less than (qH + qS)/p4 for each signature simulation.) If
the adversary succeeds with probability ε ≤ 1/2k + η + qS(qH + qS)/p4, then
including the signature simulation, we build a no-message adversary that makes
a forgery with probability greater than 1/2k + η. According to the above forking
lemma, one can extract two related signatures, with the same hash-query but
different challenges

(m, T1, T2, T3, T4), (R1, R2, R3, R4), c, (sα, sβ , sx, sz) c′, (s′α, s
′
β , s

′
x, s

′
z)

in expected time O(qH t/η). Thereafter, simply applying the same technique as
the one used to prove the soundness, one gets a valid certificate (A, x, y). �

Theorem 9 (Traceability). The group signature scheme XSGS is traceable.

Proof. Suppose there is an adversary A that wins with probability ε the trace-
ability game against our scheme. We describe an algorithm B that can break
the SDH problem, with the help of the adversary A. Let {(Ai, xi, yi)}q

i=1, with
q = q1 + q2 be the set of certificates generated during the whole attack. More
precisely, {(Ai, xi, yi)}q1

i=1 is any set of certificates corresponding to honest users,
who can be (all) corrupted by the adversary during the attack (using USK ora-
cle). Furthermore, the adversary is allowed to add new (and possibly corrupted)
members, which certificates are denoted {(Ai, xi, yi)}q2

i=q1+1.
If the adversary can generate a signature which opens to a new A� (not asso-

ciated to an existing user), using the “unforgeability” technique (see lemma 8),
one can find a new certificate (A�, x�, y�) in reasonable expected time. ¿From the
success of the adversary in the attack game, we know that A� does not belong
to {Ai}q

i=1. Let B be given a q-SDH instance (G,G′, ΘG′, . . . , ΘqG′). It

– randomly chooses α
R← Zp and xi

R← Zp, for i = 1, . . . , q, such that the xi’s
are pairwise distinct

– randomly chooses yi
R← Zp, for i, . . . , q1, and k R← {1, ..., q1}

(lets us formally define γ ← Θ − xk, which is unknown)

206 C. Delerablée and D. Pointcheval

– computes from the challenge q-SDH instance (since all the formula involve
polynomials in Θ of degree at most q times G′ or G, and G = ψ(G′)),

G2 ← α [
∏q

i=1(Θ + xi − xk)]G′ − yk

[∏q
i=1
i�=k

(Θ + xi − xk)
]
G′; G1 ← ψ(G2)

H ←
[∏q

i=1
i�=k

(Θ + xi − xk)
]
G; W ← γG2

– randomly generates ok and compute the corresponding encryption keys
– generates the extractable commitment, but knowing the trapdoor,
– simulates the first set of users {(Ai, xi, yi)}q1

i=1, computing Ai = 1
xi+γ (G1 +

yiH) according to i:

• if i = k, Ak =
1

xk + γ
(αΘH) ← α

⎡⎣ q∏
i=1,i�=k

(Θ + xi − xk)

⎤⎦G
• if i �= k, since

yi = (yi− yk)+ yk and (yi− yk)H = (yi− yk)

⎡⎣ q∏
j=1,i�=k

(Θ + xi − xk)

⎤⎦G,

Ai ← (yi−yk)

⎡⎣ q∏
j=1,j �=i,k

(Θ + xj − xk)

⎤⎦G+α

⎡⎣ q∏
j=1,j �=i

(Θ + xj − xk)

⎤⎦G.
– simulates oracles that A needs to access (AddU, Open, GSig...). To simulate

the Join protocol (engaged with A via the SndToI-oracle to add a (corrupted)
user Ui with i ∈ {q1 + 1, . . . , q2}), B uses the trapdoor to extract the value
yi committed by the adversary at the beginning of the join, and computes
Ai as described before: i �= k, and all the xi have been chosen ahead)

Finally, the certificate satisfies

A� =
1

x� + γ
(G1+y�H) =

1
x� +Θ − xk

(αΘ+y�−yk)

⎡⎣ q∏
i=1,i�=k

(Θ + xi − xk)

⎤⎦G.
Since A� /∈ {Ai}q

i=1, and namely A� �= Ak, y� − yk �= α(x� − xk). When we
extract A� /∈ {Ai}q

i=1 (in reasonable expected time), two cases may happen:

1. x� ∈ {x1, . . . , xq} with probability greater than 1/2. Since no information
leaks about k, x� = xj with j �= k with probability greater than (q1− 1)/2q,
and then

1
yj − y�

(yjA
� − y�Aj) =

1
xj +Θ − xk

G,

and B has obtained (1
x+ΘG, x), solution to the q-SDH problem (with x =

xj − xk).

Dynamic Fully Anonymous Short Group Signatures 207

2. x� �∈ {x1, . . . , xq} with probability greater than 1/2. By an Euclidean divi-
sion, one can express A� = (C/(Θ + x� − xk) + P (Θ))G, with

C = (α(xk − x�) + y� − yk)

⎡⎣ q∏
i=1,i�=k

(xi − x�)

⎤⎦ �= 0

and P a polynomial of degree q−1. And thus, B can compute C and P (Θ)G
from the initial instance, and therefore (1

x+ΘG, x), a solution to the q-SDH
problem (with x = x� − xk).

�

The anonymity property (not only CPA-full-anonymity [6]) is achieved granted
the Double ElGamal encryption scheme, which is IND-CCA [14].

Theorem 10 (Anonymity). Under the XDH assumption, the group signature
scheme XSGS is anonymous: if there exists an adversary A able to break the
anonymity game, with advantage ε, and within time t (in the random oracle
model), after qH queries to the random oracle H and qS queries to the challenge
oracle, then one can break the DDH problem in G1 with advantage ε/4− (qH +
qS)/p4, within time t′ ≤ t+ 4qSTpairing + (2 + 8qS)Texp, where Tpairing is the time
of a pairing computation, and Texp is the time of a (multi)-exponentiation.

Proof. We are given a quadruple (K,T, U = uK, V = vT) in G1 such that
either u = v (DDH quadruple) or v is random (random quadruple). ¿From
such a tuple, using the classical random self-reducibility, one can derive many
independent tuples: (K,T, Ui = uiU + viK,Vi = uiV + viK). We will choose the
group manager’s secret key γ, and computeW = γG2. Then, we flip a coin d, and
define, either H = ξ1K and G = T (if d = 0), or H = T and G = ξ2K (if d = 1),
to set the group public key as (G1,G2,GT , e, ψ;G1,K,H,G;G2,W = γG2).
Actually, we only know half of the opening manager’s key. We will show it
is enough to simulate the decryption process (while still allowing to extract
something from the adversary). All the other queries can be perfectly answered
since using γ, we can build certificates (Join-queries), and thus answer GSig-
queries too. Hash-queries can be simulated as usual with a new random value
in {0, 1}k for any new query. For the challenge queries, the simulator B chooses
two independent random bits b and d′, and will try to simulate the signature
from Ab: the i-th request is answered, given a message m, and two certificates
(A0, x0, y0) and (A1, x1, y1)

– the encryption: according to d, by choosing an additional random bit d′:
• if d = 0, T1 ← αK, T2 ← Ad′ + αH , T3 ← Ui and T4 ← Ab + Vi, for a

random α;
• if d = 1, T1 ← Ui, T2 ← Ab + Vi, T3 ← βK and T4 ← Ad′ + βG, for a

random β.
– the proof of validity can be simulated (see the simulator for the zero-know-

ledge property in the full version [13]). The latter may fail only with a
negligible probability when setting the random oracle value, but less than
(qH + qS)/p4.

208 C. Delerablée and D. Pointcheval

In case of failure, B exits, otherwise, (T1, T2, T3, T4, c, sα, sβ , sx, sz) is the signa-
ture of m given back to A. Eventually, the latter returns its guess b′ for b. Our
algorithm B answers β = (b′ = b) as its guess about the tuple (K,T, U, V).

If this is a DDH tuple, and d′ = b, the 2 ElGamal encryptions always encrypt
Ab, this is a valid signature (the advantage of A in guessing b is ε.) However, if
d′ �= b, both certificates are encrypted,A has thus no advantage in guessing b (we
will indeed show below that decryption queries do not reveal any information
about d.) If this is a random tuple, the signature is independent of b, thus the
adversary’s advantage is 0. As a consequence, our algorithm B has an advantage
ε/4 in distinguishing DDH quadruples (in a group subject to bilinear maps,
hence breaking XDH.)

Now, since we know half of the opening manager’s key, as soon as a signature
is valid (with identical plaintexts), the decryption of half of the ciphertext is
enough. The soundness of the proof of validity (see in the full version [13])
showed that incorrect proofs are very unlikely. �

The final property is the non-frameability, which is important for honest users:
it guarantees that neither the group manager or the opening manager can cheat,
and frame him.

Theorem 11 (Non-Frameability). The group signature scheme XSGS is non-
frameable.

Proof. First, it is clear, from the Open protocol is publicly verifiable, that a
wrong open procedure is statistically negligible (even for a powerful adversary).

Second, suppose there is an adversary A that breaks the non-frameability of
our scheme. We describe an algorithm B that can break the DL problem. Let
{(Ai, xi, yi)}q+q′

i=1 be the set of certificates generated during the attack. γ and
all the (Ai, xi) are given to the adversary (so the adversary has access to all
yiH), but only {yi}q

i=1, for the insider colluders. If the adversary can generate
a signature which opens to a A� ∈ {Ai}q+q′

i=q+1 (outside the collusion), using the
“unforgeability” technique (replay attack and soundness), one can find the whole
certificate (A�, x�, y�), and two cases may happen:

Case 1: A� ∈ {Ai}q+q′
i=q+1 and (A�, x�) /∈ {(Ai, xi)}q+q′

i=q+1 more than half of
the time. We show that given a discrete logarithm instance (G,G′) in G2, B
can compute Θ = logGG

′. In this case, B computes the group public key:
(G1,G2,GT , e, ψ;G1 = ψ(G),K = ξH,H = ψ(G′);G2 = G,W = γG) with
(γ, ξ) R← Z�

p
2, randomly chosen by B. It can furthermore simulate any kind of

join procedure using γ. We then have H = ΘG1. Since A� = Aj ∈ {Ai}q+q′
i=q+1

(with x� �= xj , and thus y� �= yj), we have

A� =
1

x� + γ
(G1 + y�H) = v

1
x� + γ

(G1 + y�ΘG1)

=
1

xj + γ
(G1 + yjH) =

1
xj + γ

(G1 + yjΘG1).

Dynamic Fully Anonymous Short Group Signatures 209

Therefore, (xj +γ)(1+y�Θ) = (x� +γ)(1+yjΘ) and y� �= yj , which easily leads
to Θ.

Case 2: (A�, x�) ∈ {(Ai, xi)}q+q′
i=q+1 more than half of the time. We show that

given a discrete logarithm instance (G,G′) in G1, B can compute Θ = logGG
′.

In this case, B computes the group public key: (G1,G2,GT , e, ψ;G2
R← G1,K =

ξH,H = G;G1 = ψ(G2),W = γG) with (γ, ξ) R← Z�
p
2, randomly chosen by B.

It can simulate any join procedure as above, with γ, but also chooses a random
j ∈ {q+ 1, ..., q+ q′}, for which honest user it makes Aj = 1

xj+γ (G1 +G′). Since

(A�, x�) ∈ {(Ai, xi)}q+q′
i=q+1, we have (A�, x�) = (Aj , xj) whith probability 1/q′,

and thus:

A� =
1

x� + γ
(G1 + y�G) = Aj =

1
xj + γ

(G1 +G′)

=
1

xj + γ
(G1 +ΘG) =

1
x� + γ

(G1 +ΘG)

which easily leads to Θ (Θ = y�.) �

Acknowledgements

The authors would like to thank the anonymous referees for their helpful com-
ments. This work has been done thanks to the French RNRT Crypto++ contract.

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A Practical and Provably
Secure Coalition-Resistant Group Signature Scheme. In Crypto ’00, LNCS 1880,
pages 255–270. Springer-Verlag, Berlin, 2000.

2. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of Group Signatures:
Formal Definitions, Simplified Requirements, and a Construction Based on Gen-
eral Assumptions. In Eurocrypt ’03, LNCS 2656, pages 614–629. Springer-Verlag,
Berlin, 2003.

3. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for De-
signing Efficient Protocols. In Proc. of the 1st CCS, pages 62–73. ACM Press, New
York, 1993.

4. M. Bellare, H. Shi, and C. Zang. Foundations of Group Signatures: The Case of
Dynamic Groups. In CT – RSA ’05, LNCS 3376, pages 136–153. Springer-Verlag,
Berlin, 2005.

5. D. Boneh and X. Boyen. Short Signatures without Random Oracles. In Eurocrypt
’04, LNCS 3027, pages 56–73. Springer-Verlag, Berlin, 2004.

6. D. Boneh, X. Boyen, and H.Shacham. Short Group Signatures. In Crypto ’04,
LNCS 3152, pages 41–55. Springer-Verlag, Berlin, 2004.

7. D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing. In
Asiacrypt ’01, LNCS 2248, pages 514–532. Springer-Verlag, Berlin, 2001.

8. D. Boneh and B. Waters. Compact group signatures without random oracles. In
Eurocrypt ’06, LNCS 4004, pages 427–444. Springer-Verlag, Berlin, 2006.

210 C. Delerablée and D. Pointcheval

9. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact E-cash. In Eurocrypt
’05, LNCS 3494, pages 302–321. Springer-Verlag, Berlin, 2005.

10. J. Camenisch and A. Lysyanskaya. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. In Crypto ’02, LNCS 2442, pages
61–67. Springer-Verlag, Berlin, 2002.

11. J. Camenisch and A. Lysyanskaya. Signature Schemes and Anonymous Credentials
from Bilinear Maps. In Crypto ’04, LNCS 3152, pages 52–72. Springer-Verlag,
Berlin, 2004.

12. D. Chaum and E. van Heyst. Group Signatures. In Eurocrypt ’91, LNCS 547,
pages 257–265. Springer-Verlag, Berlin, 1992.

13. C. Delerablée and D. Pointcheval. Dynamic Fully Anonymous Short Group
Signatures. In P. Q. Nguyen, editor, Vietcrypt ’06, LNCS, Hanoi, Vietnam,
2006. Springer-Verlag, Berlin. Full version available from http://www.di.ens.fr/
users/pointche/.

14. P. A. Fouque and D. Pointcheval. Threshold Cryptosystems Secure against Chosen-
Ciphertext Attacks. In Asiacrypt ’01, LNCS 2248. Springer-Verlag, Berlin, 2001.

15. S. Galbraith and V. Rotger. Easy Decision-Diffie-Hellman Groups. LMS Journal
of Computation and Mathematics, 7:201–218, 2004.

16. A. Kiayias and M. Yung. Extracting Group Signatures from Traitor Tracing
Schemes. In Eurocrypt ’03, LNCS 2656, pages 630–648. Springer-Verlag, Berlin,
2003.

17. A. Kiayias and M. Yung. Group Signatures with Efficient Concurrent Join. In
Eurocrypt ’05, LNCS 3494, pages 198–214. Springer-Verlag, Berlin, 2005.

18. M. Naor and M. Yung. Universal One-Way Hash Functions and Their Crypto-
graphic Applications. In Proc. of the 21st STOC, pages 33–43. ACM Press, New
York, 1989.

19. L. Nguyen and R. Safavi-Naini. Efficient and Provably Secure Trapdoor-free Group
Signature Schemes from Bilinear Pairings. In Asiacrypt ’04, LNCS 3329, pages
372–386. Springer-Verlag, Berlin, 2004.

20. P. Paillier. Public-Key Cryptosystems Based on Discrete Logarithms Residues. In
Eurocrypt ’99, LNCS 1592, pages 223–238. Springer-Verlag, Berlin, 1999.

21. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology, 13(3):361–396, 2000.

22. C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In Crypto ’91, LNCS 576, pages 433–444. Springer-
Verlag, Berlin, 1992.

Formalizing Human Ignorance
Collision-Resistant Hashing Without the Keys

Phillip Rogaway1,2

1 Dept. of Computer Science, University of California, Davis, California 95616, USA
2 Dept. of Computer Science, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract. There is a rarely mentioned foundational problem involving
collision-resistant hash-functions: common constructions are keyless, but
formal definitions are keyed. The discrepancy stems from the fact that a
function H : {0, 1}∗ → {0, 1}n always admits an efficient collision-finding
algorithm, it’s just that us human beings might be unable to write the
program down. We explain a simple way to sidestep this difficulty that
avoids having to key our hash functions. The idea is to state theorems in a
way that prescribes an explicitly-given reduction, normally a black-box
one. We illustrate this approach using well-known examples involving
digital signatures, pseudorandom functions, and the Merkle-Damg̊ard
construction.

1 Introduction

Foundations-of-hashing dilemma. In cryptographic practice, a collision-
resistant hash-function (an object like SHA-1) maps arbitrary-length strings to
fixed-length ones; it’s an algorithm H : {0, 1}∗ → {0, 1}n for some fixed n. But
in cryptographic theory, a collision-resistant hash-function is always keyed ; now
H : K×{0, 1}∗ → {0, 1}n where each K ∈ K names a function HK(·) = H(K, ·).
In this case H can be thought of as a collection or family of hash functions
H = {HK : K ∈ K}, each key (or index) K ∈ K, naming one.1

Why should theoretical treatments be keyed when practical constructions are
not? The traditional answer is that a rigorous treatment of collision resistance
for unkeyed hash-functions just doesn’t work. At issue is the fact that for any
function H : {0, 1}∗ → {0, 1}n there is always a simple and compact algorithm
that outputs a collision: the algorithm that has one “hardwired in.” That is, by
the pigeonhole principle there must be distinct strings X and X ′ of length at
most n such that H(X) = H(X ′), and so there’s a short and fast program that
outputs such an X,X ′. The difficulty, of course, is that us human beings might
not know any such pair X,X ′, so no one can actually write the program down.

Because of the above, what is meant when someone says that a hash function
H : {0, 1}∗ → {0, 1}n is collision resistant cannot be that there is no efficient
1 (a) We call K a key, but it is not secret; one chooses K from K and then makes it

public. (b) Writing H : K ×{0, 1}∗ → {0, 1}n assumes a concrete-security formaliza-
tion; early formalizations were instead asymptotic. We’ll discuss both. (c) Alternative
terms for collision-resistant are collision-free and collision-intractable.

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 211–228, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

212 P. Rogaway

adversary that outputs a collision inH . What is meant is that there is no efficient
algorithm known to man that outputs a collision in H . But such a statement
would seem to be unformalizable—outside the realm of mathematics. One can’t
hope to construct a meaningful theory based on what Xiaoyun Wang [28,29] does
or doesn’t know. Regarding a hash function like SHA-1 as a random element from
a family of hash functions has been the traditional way out of this quandary.

Let us call the problem we’ve been discussing the foundations-of-hashing
dilemma. The question is how to state definitions and theorems dealing with
collision-resistant hashing in a way that makes sense mathematically, yet ac-
curately reflects cryptographic practice. The treatment should respect our un-
derstanding that what makes a hash function collision resistant is humanity’s
inability to find a collision, not the computational complexity of printing one.

Our contributions. First, we bring the foundations-of-hashing dilemma out
into the open. To the best of our knowledge, the problem has never received
more than passing mention in any paper. Second, we resolve the dilemma. We
claim that an answer has always been sitting right in front of us, that there’s
never been any real difficulty with providing a rigorous treatment of unkeyed
collision-resistant hash-functions. Finally, we reformulate in a significantly new
way three fundamental results dealing with collision-resistant hashing.

Suppose a protocol Π uses a collision-resistant hash-function H . Convention-
ally, a theorem would be given to capture the idea that the existence of an
effective adversary A against Π implies the existence of an effective adversary C
against H . But this won’t work when we have an unkeyed H : {0, 1}∗ → {0, 1}n

because such an adversary C will always exist. So, instead, the theorem state-
ment will say that there is an explicitly given reduction: given an adversary A
against Π there is a corresponding, explicitly-specified adversary C, as efficient
as A, for finding collisions in H . So if someone knows how to break the higher-
level protocol Π then they know how to find collisions in H ; and if nobody
can find collisions in H then nobody can break Π . In brief, our solution to the
foundations-of-hashing dilemma is to recast results so as to assert the existence
of an explicitly given reduction. We call this the human-ignorance approach (or,
less colorfully, the explicit-reduction approach).

We illustrate the approach with three well-known examples. The first is the
hash-then-sign paradigm, where a signature scheme is constructed by hashing a
message and then applying an “inner” signature to the result. Our second ex-
ample is the construction of an arbitrary-input-length PRF by hashing and then
applying a fixed-input-length PRF. Our third example is the Merkle-Damg̊ard
construction, where a collision-resistant compression-function is turned into a
collision-resistant hash-function. In all cases we will give a simple theorem that
captures the security of the construction despite the use of an unkeyed formal-
ization for the underlying hash function.

We provide a concrete-security treatment for all the above.Giving ourhash func-
tions a security parameter and then looking at things asymptotically would only
distance us, we feel, from widely-deployed, real-world hash-functions. That said,
we will also point out that unkeyed hash-functions work fine in the asymptotic

Formalizing Human Ignorance 213

setting for the case of uniform adversaries.One eliminates keys but not the security
parameter, making it the length of the hash-function’s output.

Related work. The rigorous treatment of collision-resistant hash-functions be-
gins with Damg̊ard [7]. A concrete-security treatment of these objects is given by
Bellare, Rogaway, and Shrimpton [3,26]. Practical and widely-deployed crypto-
graphic hash-functions were first developed by Rivest [25] and later construc-
tions, like SHA-1 [21], have followed his approach. Bellare et al.’s [1, The-
orem 4.2] is an early example of an explicitly constructive provable-security
theorem-statement. Using a simulator to model what an adversary must know
or be able to do is from Goldwasser, Micali, and Rackoff [14], while black-box
reductions come from Goldreich, Krawczyk, and Oren [22,12,11]. Brown [5, see
footnote 10] and Devanbu et al. [10] prove the security of a protocol that employs
an unkeyed hash-function by constructively transforming a successful adversary
against it into a successful collision-finding one. Using such a transformation to
evidence a hash-function-based protocol’s security goes back to Merkle [19,17].
The option of speaking about reductions as a way of not having to key a hash
function is hinted at in footnote 5 of Halevi and Krawczyk [16]. In general, it
is well understood that one can rephrase provable-security results as assertions
about explicitly given reductions, and probably a few researchers have under-
stood, at some level, that this can be used to make formal sense of unkeyed
hash-functions. What we do in this paper is to raise these ideas beyond the level
of footnotes, offhand comments, and undocumented folklore.

2 Keyed Hash-Functions

We first give a conventional definition, in the concrete-security setting, for a
(keyed) collision-resistant hash-function. Beginning with the syntax, a keyed
hash-function is a pair of algorithms (K, H), the first probabilistic and the sec-
ond deterministic. Algorithm K, the key-generation algorithm, takes no input
and produces a string K, the key. As a special case, K uniformly samples from a
finite set, the key space, also denoted K. Algorithm H takes as input a string K,
the key, and a string X , the message, and it outputs a string of some fixed
length n, the output length, or the distinguished value ⊥. We write HK(X) for
H(K,X). We assume there is a set X , the message space, such that HK(X) = ⊥
iff X �∈ X . We assume that X contains some string of length greater than n and
that X ∈ X implies every string of length |X | is in X . We write a hash function
as H : K ×X → {0, 1}n instead of saying “the keyed hash-function (K, H) with
message space X and output length n.” Hash functions and all other algorithms
in this paper are given by code relative to some fixed and reasonable encoding.

We define hash functions as algorithms, not functions, to enable providing
them as input to other algorithms and speaking of their computational com-
plexity. But a hash function H : K × X → {0, 1}n induces a function H from
K × X to {0, 1}n, where K is now the support of the key-generation algorithm,
and usually it is fine to regard the hash function as being this function.

214 P. Rogaway

To measure the collision-resistance of hash function H : K × X → {0, 1}n

let C (for collision-finder) be an adversary, meaning, in this case, an algorithm
that takes in one string (the key) and outputs a pair of strings (the purported
collision). We let the advantage of C in finding collisions in H be the real number

Advcoll
H (C) = Pr[K $←K; (X,X ′) $←C(K) : X �=X ′ and HK(X)=HK(X ′)]

that measures the chance that C finds a collision in HK = H(K, ·) if a random
key K is provided to it. Above and henceforth we assume that an adversary will
never output a string outside the message space X of the hash function it is
attacking (that is, HK(X) = HK(X ′) = ⊥ never counts as a collision).

As usual, an advantage of 1 means that C does a great job (it always finds
a collision) while an advantage of 0 means that C does a terrible job (it never
finds a collision). Since we are in the concrete-security setting we do not define
any absolute (yes-or-no) notion for H being coll-secure; instead, we regard a
hash function H as good only to the extent that reasonable adversaries C can
obtain only small advantage Advcoll

H (C). In order to obtain a useful theory,
“reasonable” and “small” need never be defined.

Trying to regard functions like SHA-1 as keyed. How can a real-world
hash-function like SHA-1 be seen as fitting into the framework above? One
possibility is that the intended key is the initial chaining vector; the constant
K = 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0 can be regarded
as the key. In this case the key space is K = {0, 1}160 and what NIST did in
choosing SHA-1 was to randomly sample from this set. The problem with this
viewpoint is that, first of all, NIST never indicated that they did any such thing.
Indeed the constant K above does not “look” random (whatever that might
mean), and it seems as though the specific constant should hardly matter: likely
any method that would let one construct collisions in SHA-1 with respect to the
actual K-value would work for other K-values, too.

A second way one might regard SHA-1 as keyed is to say that NIST, in
designing SHA-1, considered some universe of hash functions {HK : K ∈ K}
and randomly selected this one hash function, SHA-1, from it. But, once again,
NIST never indicated that they did any such thing; all we know is that they
selected this one hash function. And it’s not clear what K would even be in this
case, or what HK would be for “other” functions in the family.

Fundamentally, both explanations seem disingenuous. They make random
sampling a crucial element to a definition when no random sampling ostensibly
took place. They disregard the basic intuition about what SHA-1 is supposed to
be: a fixed map that people shouldn’t be able to find collisions in. And they dis-
tance the definition from the elegantly simple goal of the cryptanalyst: publish
a collision for the (one) function specified by NIST.

3 Unkeyed Hash-Functions

An unkeyed hash-function is a deterministic algorithm H that takes as input a
string X , the message, and outputs a string of some fixed length n, the output

Formalizing Human Ignorance 215

length, or the distinguished value ⊥. The message space of H is the set X =
{X ∈ {0, 1}∗ : H(X) �= ⊥}. We assume that X contains some string of length
greater than n and that X ∈ X implies every string of length |X | is in X . We
will write a hash function as H : X → {0, 1}n, or simply H , instead of saying
“the unkeyed hash-function H with message space X and output length n.”

Let C be an adversary for attacking H : X → {0, 1}n, meaning an algorithm
that, with no input, outputs a pair of stringsX andX ′ in X . We let the advantage
of C in finding collisions in H be the real number

Advcol
H (C) = Pr[(X,X ′) $← C : X �= X ′ and H(X) = H(X ′)]

that measure the chance that C finds a collision. Note the spelling of superscript
col verses the earlier coll (the number of l ’s is the number of arguments to H).

Following the discussion in the Introduction, we observe that for any unkeyed
hash-function H there is an efficient algorithm C (it runs in cn time and takes cn
bits to write down, for some small c) for which Advcol

H (C) = 1. We’re not going
to let that bother us.

4 Three Styles of Provable-Security Statements

Provable-security formulations. Let Π be a cryptographic protocol that
employs a (keyed or unkeyed) hash function H . Imagine, for now, that H is the
only cryptographic primitive that Π employs. To prove security of Π using a
reduction-based approach and assuming the collision-resistance of H one would
typically make a theorem statement that could be paraphrased like this:

existential form (C0): If there’s an effective algorithm A for attacking protocol
Π then there’s an effective algorithm C for finding collisions in H .

When cryptographic reductions were first introduced [13], theorems were stated
with this kind of existential-only guarantee. To this day, people almost always
state their provable-security results in such a manner.

Formalizing statement C0 works fine in the keyed setting but not in the un-
keyed one, because, there, the conclusion vacuously holds. But in the unkeyed
setting we can switch to a theorem statement that could be paraphrased as:

code-constructive form (C1): If you know an effective algorithm A for attacking
protocol Π then you know an effective algorithm C for finding collisions in H .

We are asserting the existence of a known “compiler” that turns A into C. Now
your belief in the security of Π stems from the fact that if some human being
can break Π then he can exhibit collisions in H . Statement C1 can be regarded
as a constructive version of C0. Continuing on this trajectory, we could say that
it’s enough to have access to A’s functionality, you don’t actually need the code:

blackbox-constructive form (C2): If you possess effective means A for attacking
protocol Π then you possess effective means C for finding collisions in H .

216 P. Rogaway

Here, “possessing effective means” might mean owning a tamper-resistant device,
or being able to run some big executable program, or it might even mean having
a brain in your head that does some task well. Possessing effective means does
not imply knowing the internal structure of those means; I might not know what
happens within the tamper-resistant device, the big program, or in my own brain.
Statement C2 is stronger than C1 because knowledge of an algorithm implies
access to its functionality, but having access to an algorithm’s functionality does
not imply knowing how it works.

The main observation in this paper is that, in the concrete-security setting, it’s
easy to give provable-security results involving unkeyed hash-functions as long
as you state your results in the code-constructive (C1) or blackbox-constructive
(C2) format. In the asymptotic setting, all three formats work fine as long as
you stick to uniform adversaries.

In high-level expositions, provable-security results are often summarized in
what would appear to be a code-constructive or blackbox-constructive manner;
people say things like “our result shows that if someone could break this signature
scheme then he could factor large composite numbers.” But when we write out
our theorem statements, it has been traditional to adopt the existential format.
Usually the proof is constructive but the theorem statement is not.

Formalizing C1 and C2. In the next section we’ll formalize C1, in an example
setting, by asking for an explicitly given algorithm C that, given the code for A
(and also H and Π) provides us our collision finder C. We likewise formalize C2,
in three example settings, by asking for an explicitly given algorithm C that,
given black-box access to A (and also H and Π) is itself our collision finder.

When an algorithm C has black-box access to an algorithm F we write the
latter as a subscriptor superscript, CF or CF . We do not allow for C to see or
control the internal coins of F ; when C runs F , the latter’s coins are random
and externally provided. We do not object to C resetting F , so long as fresh
(secret) coins are issued to it each time that it is run.

Resource accounting. Let F be an algorithm (possibly stateful, probabilis-
tic, and itself oracle-querying). The algorithm F might be provided as an oracle
to some other algorithm. Let tF (�) be the maximum amount of time (in a con-
ventional, non-blackbox model) to compute F on strings that total � or fewer
bits (but count the empty string ε as having length 1). We simplify to tF for an
overall maximum. Let �F be the maximum of the total number of bits read or
written by F (over F ’s input, output, oracle queries, and their responses) (but
regard ε as having length 1). Let qF be the maximum number of queries made
by F before it halts (but no less than 2, to simplify theorem statements). We
assume that all algorithms halt after some bounded amount of time. When an
algorithm A calls out to an oracle for F , we charge to A the time to compute F
(even though the internal computation of F seems, to the caller, unit time).

As an example of the above, for a keyless hash-function H : {0, 1}∗ → {0, 1}n

we have that tH(�) is the maximal amount of time to computeH on any sequence
of inputs X1, . . . , Xq comprising � total bits (where Xi = ε counts as 1-bit). As a
second example, for an adversary A attacking a signature scheme, the number �A

Formalizing Human Ignorance 217

includes the length of the public-key provided to A, the length of the signing
queries that A asks, the length of the signatures A gets in response, and the
length A’s forgery attempt. Since we insisted that A is bounded-time, if it is
provided an overly-long input or oracle response, it should only read (and is
only charged for) a bounded-length prefix.

5 Hash-Then-Sign Signatures

The usual approach for digital signatures, going back to Rabin [23], is to sign a
message by first hashing it and then calling an underlying signature scheme. The
purpose of this hash-then-sign approach is two-fold. First, it extends the domain
of the “inner” signature scheme from {0, 1}n to {0, 1}∗ (where the hash-function’s
output is n bits). Second, it may improve security by obscuring the algebraic
structure of the inner signature scheme. We focus only on the first of these
intents, establishing the folklore result that the hash-then-sign paradigm securely
extends the domain of a signature scheme from {0, 1}n to {0, 1}∗. Our purpose
is not only to prove this (admittedly simple) result, but also to illustrate the
human-ignorance approach for dealing with collision-resistant hash-functions.

First we establish the notation, using concrete-security definitions. A signature
scheme is a three-tuple of algorithmsΠ = (Gen ,Sign,Verify). Algorithm Gen is
a probabilistic algorithm that, with no input, outputs a pair of strings (PK ,SK).
(One could, alternatively, assume that Gen takes input of a security param-
eter k.) Algorithm Sign is a probabilistic algorithm that, on input (SK , X),
outputs either a string σ $← Sign(SK , X) or the distinguished value ⊥. We re-
quire the existence of a message space X ⊆ {0, 1}∗ such that, for any SK , we
have that σ $← Sign(SK , X) is a string exactly when X ∈ X . We insist that X
contain all strings of a given length if it contains any string of that length. Al-
gorithm Verify is a deterministic algorithm that, on input (PK , X, σ), outputs
a bit. We require that if (PK ,SK) $←Gen and X ∈ X and σ $← Sign(SK , X)
then Verify(PK , X, σ) = 1. We sometimes write SignSK (X) and VerifyPK (X,σ)
instead of Sign(SK , X) and Verify(PK , X, σ).

LetB be an adversary andΠ = (Gen ,Sign,Verify) a signature scheme. Define
Advsig

Π (B) = Pr[(PK ,SK) $←Gen : BSignSK (·)(PK) forges] where B is said to
forge if it outputs a pair (X,σ) such that VerifyPK (X,σ) = 1 and B never asked
a query X during its attack.

We now define the hash-then-sign construction. Let H : {0, 1}∗ → {0, 1}n be
an unkeyed hash-function and letΠ = (Gen ,Sign,Verify) be a signature scheme
with message space of at least {0, 1}n. Define from these primitives the signature
scheme ΠH = (Gen ,SignH ,VerifyH) by setting SignH

SK (X) = SignSK (H(X))
and VerifyH

PK (X,σ) = VerifyPK (H(X), σ). The message space forΠH is {0, 1}∗.
We are now ready to state a first theorem that describes the security of the

hash-then-sign paradigm.

218 P. Rogaway

Theorem 1 (hash-then-sign, unkeyed, concrete, C1-form). There ex-
ist algorithms B and C, explicitly given in the proof of this theorem, such
that for any unkeyed hash-function H : {0, 1}∗ → {0, 1}n, signature scheme
Π = (Gen ,Sign,Verify) with message space at least {0, 1}n, and adversary A,
adversaries B = B(〈A,H〉) and C = C(〈A,H,Π〉) satisfy

Advsig
Π (B) + Advcol

H (C) ≥ Advsig
ΠH (A) .

Adversary B runs in time at most tA + tH(�A) + tSign(nqA) + c(�A + nqA) and
asks at most qA queries entailing at most �A +n bits. Adversary C runs in time
at most tA + tGen + tH(�A) + tSign(nqA+n) + c(�A + nqA) lg(qA). Functions B
and C run in time c times the length of their input. The value c is an absolute
constant implicit in the proof of this theorem. ♦

The theorem says that if you know the code for A, H , and Π then you know the
code for B and C. You know that code because it’s given by reduction functions
B and C. These reduction functions are explicitly specified in the proof of the
theorem. Reduction function B takes in an encoding of A and H and outputs
the code for adversary B. Reduction function C takes in an encoding of A, H ,
and Π = (Gen,Sign ,Verify) and outputs the code for adversary C.

One might argue that we don’t really care that B is constructively given—we
might have demanded only that it exist whenever A does. But it seems simpler
and more natural to demand that both adversaries B and C be constructively
given when we are demanding that one adversary be. Besides, it is nicer to
conclude you know a good algorithm to break Π than to conclude there exists
a good algorithm to break Π ; it would, in fact, be an unsatisfying proof that
actually gave rise to a nonconstructive attack on the inner signature scheme Π .

Theorem 1 does not capture statement C2 because access to the functionality
of adversary A might be more limited than possessing its code. To capture the
intent of statement C2, we can strengthen our theorem as follows:

Theorem 2 (hash-then-sign, unkeyed, concrete, C2-form). There exist
adversaries B and C, explicitly given in the proof of this theorem, such that
for any unkeyed hash-function H : {0, 1}∗ → {0, 1}n, signature scheme Π =
(Gen ,Sign,Verify) with message space at least {0, 1}n, and adversary A, we
have that

Advsig
Π (BA,H) + Advcol

H (CA,H,Π) ≥ Advsig
ΠH (A) . (1)

Adversary B runs in time at most tA + tH(�A) + tSign(nqA) + c(�A + nqA) and
asks at most qA queries entailing at most �A +n bits. Adversary C runs in time
at most tA + tGen + tH(�A) + tSign(nqA+n) + c(�A + nqA) lg(qA). The value c is
an absolute constant implicit in the proof of this theorem. ♦

The theorem asserts the existence of an explicitly known forging adversary B
(for attacking Π) and an explicitly known collision-finding adversary C (for
attacking H), at least one of which must do well if the original adversary A does

Formalizing Human Ignorance 219

well (in attacking ΠH). Algorithm C employs A, as well as H , Gen, Sign , and
Verify , in a black-box manner. (Writing Π = (Gen ,Sign,Verify) as a subscript
to C means giving each component algorithm as an oracle.) We may not care that
the dependency onH , Gen, Sign, and Verify is black-box, for there is no question
there about having access to the code, but it seems simpler to demand that
all dependencies be black-box when we require one to be. As with Theorem 1,
the final set of lines in Theorem 2 explain that the time and communications
complexity of algorithms B and C is insignificantly more than that of A.

Proof (of Theorem 2 and then Theorem 1). In the following exposition, compu-
tations of A, H , Gen , Sign , and Verify are done via oracle queries.

Construct collision-finding adversary CA,H,Π as follows. It calls Gen to deter-
mine output (PK ,SK) $←Gen. Then it calls adversary A on input PK . When A
makes its ith query, Xi, a request to sign the string Xi, algorithm C calls H
to compute xi = H(Xi), it calls Sign on input xi to compute σi

$← SignSK (xi),
and it returns σi in answer to A’s query. When A halts with output (X∗, σ∗)
algorithm C invokes H to compute x∗ = H(X∗). If x∗ is equal to xi for some
prior i, and X∗ �= Xi, then algorithm C outputs the collision (xi, x∗) and halts.
Otherwise, algorithm C fails; it outputs an arbitrary pair of strings. The reader
can check that C has the claimed time complexity. The log-term accounts for
using a binary search tree, say, to lookup if x∗ is equal to some prior xi.

Construct forging-adversary BSign
A,H (PK) as follows. Algorithm B, which is

provided a string PK , runs black-box adversary A on input of PK . When A
makes its ith query, Xi, a request for a signature of Xi, algorithm B uses its
oracle H to compute xi = H(Xi). It then uses its Sign-oracle to compute σi ←
Sign(xi). It returns σi in answer to the adversary A. When A halts with output
(X∗, σ∗) algorithm B uses its H-oracle to compute x∗ = H(X∗). Algorithm B
halts with output (x∗, σ∗). The reader can check that B has the claimed time
and communications complexity. (The tSign term is because of our convention
to consistently charge algorithms for their oracle calls.)

We must show (1). Let a be the probability that A, in carrying out its attack
in the experiment defining Advsig

ΠH (A), outputs a valid forgery (X∗, σ∗) where
H(X∗) = H(Xi) for some i. Let b be the probability that A, in carrying out its
attack in the experiment defining Advsig

ΠH (A), outputs a valid forgery (X∗, σ∗)
where H(X∗) �= H(Xi) for all i. Then a + b = Advsig

ΠH (A). We also have that
Advcol

H (CA,H,Π) ≥ a and Advsig
Π (BA,H) ≥ b, establishing Theorem 2.

As for Theorem 1, the reduction functions B and C are what is spelled out
in the definition of B and C, above, except that computation by code replaces
oracle invocations. (One can now see why we have selected our earlier conventions
about how to charge-out oracle calls: it is convenient that it has no impact on
the running time if one imagines calling an oracle for H , say, verses running that
code oneself.) It is a simple, linear-time algorithm that takes in A and H (which
are code) and outputs B (which is also code), or that produces C from A, H
and each component of Π .

220 P. Rogaway

For the remainder of our examples we will use the stronger, black-box style of
theorem statement corresponding to Statement C2 and Theorem 2.

6 Hash-Then-PRF

As a second example of using our framework we consider a symmetric-key
analog of hash-then-sign, where now we aim to extend the domain of a pseu-
dorandom function (PRF) from {0, 1}n to {0, 1}∗. The algorithm, which we
consider to be folklore, is to hash the message X and then apply a PRF, set-
ting FH

K (X) = FK(H(X)) where H : {0, 1}∗ → {0, 1}n is the hash function and
F : K × {0, 1}n → {0, 1}m is the PRF. A special case of this construction is
using a hash function H : {0, 1}∗ → {0, 1}n and an n-bit blockcipher to make an
arbitrary-input-length message authentication code (MAC). A second special-
case is using a hash function H : {0, 1}∗ → {0, 1}2n and the two-fold CBC MAC
of an n-bit blockcipher to make an arbitrary-input-length MAC.

First the definitions, following works like [2]. An (m-bit output) pseudorandom
function (PRF) is an algorithm F : K × X → {0, 1}m where K and X are sets
of strings. We assume that there is an algorithm associated to F , which we also
call K, that outputs a random element of K. For X ,Y ⊆ {0, 1}∗ and Y finite,
let Func(X ,Y) be the set of all functions from X to Y. Endow this set with the
uniform probability distribution for each input. For a PRF F : K×X → {0, 1}m

let Advprf
F (B) = Pr[K $←K : BFK(·)⇒1]−Pr[f $← Func(X , {0, 1}m) : Bf(·)⇒1].

The following quantifies the security of the hash-then-PRF construction FH .

Theorem 3 (hash-then-PRF, unkeyed, concrete, C2-form). There exist
adversaries B and C, explicitly given in the proof of this theorem, such that
for any unkeyed hash-function H : {0, 1}∗ → {0, 1}n, pseudorandom function
F : K × {0, 1}n → {0, 1}m, and adversary A,

Advprf
F (BA,H) + Advcol

H (CA,H,F) ≥ Advprf
F H (A) . (2)

Adversary B runs in time at most tA + tH(�A) + tF (nqA) + c(�A + nqA + mqA)
and asks at most qA queries entailing at most �A bits. Adversary C runs in time
at most tA + tH(�A)+ c(�A +nqA +mqA + tK) lg(qA). The value c is an absolute
constant implicit in the proof of this theorem. ♦

Proof. Construct collision-finding algorithm CA,H,F as follows. The algorithm
runs adversary A, which is given by an oracle. When A makes its ith oracle
query, Xi, algorithm C uses its H oracle to compute xi = H(Xi) and then, if
xi �= xj for all j < i, adversary C returns a random yi

$←{0, 1}m in response
to A’s query. If xi = xj for some j < i, adversary C returns yi = yj . When A
finally halts, outputting a bit a, algorithm C ignores a and looks to see if there
were distinct queries Xi and Xj made by A such that xi = xj . If there is such a
pair, algorithm C outputs an arbitrary such pair (Xi, Xj) and halts. Otherwise,
algorithm C fails and outputs an arbitrary pair of strings. The time of C is at

Formalizing Human Ignorance 221

most that which is stated in the theorem. Note that C does not actually depend
on F beyond employing the values n and m.

Construct distinguishing algorithm Bf
A,H as follows. It begins by running al-

gorithm A, which is given by an oracle. When A makes its ith query, Xi, algo-
rithm B computes xi = H(Xi) and then asks its f oracle xi, obtaining return
value yi = f(xi). Algorithm B returns yi to A. When A finally halts, outputting
a bit a, algorithm B halts without output a. The resources of B are as given by
the theorem statement.

We have that Advprf
F H (A) −Advprf

F (BA,H) = Pr[AF H
K ⇒ 1] − Pr[AR ⇒ 1] −

Pr[BFK

A,H ⇒ 1] + Pr[Bρ
A,H ⇒ 1] where ρ $← Func(n,m) and R $← Func({0, 1}∗,m)

and K
$←K. Now, from our definition of B, the first and third addend are

equal, Pr[AF H
K ⇒ 1] = Pr[BFK

A,H ⇒ 1], and so Advprf
F H (A) − Advprf

F (BA,H) =
Pr[Bρ

A,H ⇒ 1]− Pr[AR ⇒ 1].
Let C be the event that, during B’s attack, there are distinct queries Xi

and Xj made by B such that H(Xi) = H(Xj). Let c = Pr[C] where the proba-
bility is taken over B’s oracle being a random function ρ $← Func(n,m). Observe
that, from C’s definition, c = Advcol

H (CA,H,F). Now note that Pr[Bρ
A,H ⇒ 1]−

Pr[AR ⇒ 1] ≤ c because in the second experiment a random m-bit value is
returned for each new Xi and in the first experiment a random m-bit value
is returned for each new Xi except when xi = H(Xi) is identical to a prior
xj = H(Xj). This establishes Equation (2).

A result similar to Theorem 3, but for MACs instead of PRFs, can easily be
established. That is, if H : {0, 1}∗ → {0, 1}n is an unkeyed hash-function and
MAC: {0, 1}n → {0, 1}m is a good MAC [2] then MACH is a good MAC. Here,
as before, MACH is defined by MACH

K(M) = MACK(H(M)). The weaker as-
sumption (F is a good MAC instead of a good PRF) suffices to get the weaker
conclusion (FH is a good MAC).

7 Merkle-Damg̊ard Without the Keys

We adapt the Merkle-Damg̊ard paradigm [8,18] to the unkeyed hash-function
setting. To get a message space of {0, 1}∗ and keep things simple we adopt the
length-annotation technique known as Merkle-Damg̊ard strengthening.

First we define the mechanism. Let H : {0, 1}b+n → {0, 1}n be an unkeyed
hash-function, called a compression function, and define from it the unkeyed
hash-function H∗: {0, 1}∗ → {0, 1}n as follows. On input X ∈ {0, 1}∗, algorithm
H∗ partitions pad(X) = X ‖ 0p ‖ [|X |]b into b-bit strings X1 · · ·Xm where p ≥ 0
is the least nonnegative number such that |X |+ p is a multiple of b and where
[|X |]b is |X | mod 2b encoded as a b-bit binary number. Then, letting Y0 = 0n,
say, define Yi = H(Xi ‖Yi−1) for each i ∈ [1 ..m] and let H∗(X) return Ym. Note
that Advcol

H (C) = Pr[(X,X ′) $← C : X �= X ′ and H(X) = H(X ′)] where C
must output X,X ′ ∈ {0, 1}b+n. We now show that if H is a collision-resistant
compression-function then H∗ is a collision-resistant hash-function.

222 P. Rogaway

Theorem 4 (Merkle-Damg̊ard, unkeyed, concrete, C2-form). Fix posi-
tive numbers b and n. There exists an adversary C, explicitly given in the proof
of this theorem, such that for any unkeyed hash-functionH : {0, 1}b+n → {0, 1}n

and any adversary A that outputs a pair of strings each of length less than 2b,

Advcol
H (CA,H) ≥ Advcol

H∗(A) . (3)

Adversary C runs in time at most tA +(�A/b+4)tH + c(�A + b+n). The value c
is an absolute constant implicit in the proof of this theorem. ♦

Proof. Construct the collision-finding adversary CA,H as follows. It runs the
adversary A, which requires no inputs and halts with and output X,X ′, each
string having fewer than 2b bits. Swap X and X ′, if necessary, so that X is
at least as long as X ′. Adversary C then computes X1 · · ·Xm = pad(X) and
X ′

1 · · ·X ′
m′ = pad(X ′) where each Xi and X ′

j is b-bits long. Using its H-oracle,
adversary C computes Yi-values by way of Y0 = 0n and, for each i ∈ [1 ..m],
Yi = H(Xi ‖ Yi−1). It similarly computes Y ′

j -values, defining Y ′
0 = 0n and Y ′

j =
H(X ′

j ‖Y ′
j−1) for each j ∈ [1..m′]. Now if X = X ′ or Ym �= Y ′

m′ then adversary C
fails, outputting an arbitrary pair of strings. Otherwise, adversary C computes
the largest value i ∈ [1 ..m] such that Yi = Y ′

i−Δ but Xi ‖Yi−1 �= X ′
i−Δ ‖Y ′

i−1−Δ

where Δ = m−m′. (We prove in a moment that such an i exists.) Adversary C
outputs the pair of strings (Xi ‖ Yi−1, X

′
i−Δ ‖ Y ′

i−1−Δ), which collide under H .
We must show that this value of i, above, is well defined. To do so, distinguish

two cases in which the adversary might succeed in finding a collision. For the first
case, |X | �= |X ′|. In this case the definition of pad (together with the requirement
that |X |, |X ′| < 2b) ensures that Xm �= X ′

m and so we will have i = m as the
index for a collision. In the second case, |X | = |X ′| and so, in particular, m = m′

and Δ = 0. Because X �= X ′ there is a largest value j ∈ [1 ..m] such that
Xj �= X ′

j . It must be the case that Yj = Y ′
j because the messages X and X ′,

being identical on later blocks, would otherwise yield Ym = Y ′
m. But Xj �= X ′

j

and Yj = Y ′
j and so j = i satisfies the definition above.

We have shown that whenever A outputs a collision of H∗, adversary CA,H

outputs a collision ofH . The running time of CA,H is as claimed (the +4 accounts
for 0-padding and length annotation in the scheme), so we are done.

8 Asymptotic Treatment of Unkeyed Hash Functions

Definition. The traditional treatment of cryptographic hash-functions [7] is
asymptotic. In this section we show that as long as one is willing to ask for secu-
rity only against uniform adversaries, we don’t need the keys in the asymptotic
formalization of collision-resistant hash-functions either.

An asymptotic-and-unkeyed hash-function is a deterministic, polynomial-time
algorithm H that takes as input an integer n, the output length, encoded in
unary, and a string X , the message. It outputs either a string of length n or the
distinguished value ⊥. When we say that H is polynomial-time we mean that
it is polynomial-time in its first input. We write Hn for the induced function

Formalizing Human Ignorance 223

H(1n, ·). Define the message space of Hn as Xn = {X ∈ {0, 1}∗ : Hn(X) �= ⊥}
and that of H as the indexed family of sets 〈Xn : n ∈ N〉. We assume X ∈ Xn

implies every string of length |X | is in Xn, and we assume that Xn contains a
string of length exceeding n.

Let C be an adversary for attacking asymptotic-and-unkeyed hash-function
H , meaning that C is an algorithm (not a family of circuits; we are in the
uniform setting) that, on input 1n, outputs a pair of strings X,X ′ ∈ Xn. We let
the advantage of C in finding collisions in H be the function (of n) defined by

Advcol
H (C, n) = Pr[(X,X ′) $← C(1n) : X �= X ′ and Hn(X) = Hn(X ′)]

measuring, for each n, the probability that C(1n) finds a collision in Hn. We
say that H is collision-resistant if for every polynomial-time adversary C, the
function Advcol

H (C, n) is negligible. As usual, function ε(n) is negligible if for all
c > 0 there exists an N such that ε(n) < n−c for all n ≥ N .

An asymptotic treatment of hash-then-sign. With a definition in hand it
is easy to give an asymptotic counterpart for hash-then-sign, say. The existential
(C0-style) statement would say that if Π is a secure signature scheme with
message space 〈{0, 1}n : n ∈ N〉 and H is a collision-resistant asymptotic-and-
unkeyed hash-function with message space 〈Xn〉 then ΠH , the hash-then-sign
construction using H and Π , is a secure signature scheme with message space
〈Xn〉. Details follow, beginning with the requisite definitions.

Now in the asymptotic setting [15], a signature scheme is a three-tuple of al-
gorithms Π = (Gen ,Sign,Verify). Algorithm Gen is a probabilistic polynomial-
time (PPT) algorithm that, on input 1n, outputs a pair of strings (PK ,SK). Al-
gorithm Sign is a PPT algorithm that, on input (SK , X), outputs either a string
σ

$← Sign(SK , X) or the distinguished value ⊥. For each n ∈ N we require the ex-
istence of a message spaces Xn ⊆ {0, 1}∗ such that, for any SK that may be out-
put by Gen(1n), we have that σ $← Sign(SK , X) is a string exactly when X ∈ Xn.
We insist that Xn contains all strings of a given length if it contains any string of
that length. Algorithm Verify is a deterministic polynomial-time algorithm that,
on input (PK , X, σ), outputs a bit. We require that if (PK ,SK) $←Gen(1n) and
X ∈ Xn and σ $← Sign(SK , X) then Verify(PK , X, σ) = 1. We sometimes write
SignSK (X) and VerifyPK (X,σ) instead of Sign(SK , X) and Verify(PK , X, σ).
The message space of Π is the collection 〈Xn : n ∈ N〉. Throughout, an algorithm
is polynomial time if it is polynomial time in the length of its first input. Now
let B be an adversary for a signature scheme Π = (Gen ,Sign,Verify) as above.
Then define Advsig

Π (B, n)) = Pr[(PK ,SK) $←Gen(1n) : BSignSK (·)(PK) forges]
where B is said to forge if it outputs a pair (X,σ) such that VerifyPK (X,σ) = 1
and B never asked a query X during its attack. We say that Π is secure (in the
sense of existential unforgeability under an adaptive chosen-message attack) if
for any polynomial-time adversary B the function Advsig

Π (B, n) is negligible.
Let Π = (Gen,Sign ,Verify) be a signature scheme (for the asymptotic set-

ting) with message space 〈Mn〉 where Mn ⊇ {0, 1}n. In this case we say that the
message space of Π is “at least” 〈{0, 1}n〉. Let H be an asymptotic-and-unkeyed

224 P. Rogaway

hash-function with message space 〈Xn〉. Then define the hash-then-sign construc-
tion ΠH = (Gen ,SignH ,VerifyH) by setting SignH

SK (X) = SignSK (H(X)) and
VerifyH

PK (X,σ) = VerifyPK (H(X), σ). The message space for ΠH is the mes-
sage space for H . The security of the construction is captured by the following
theorem. We omit a proof because it only involves writing down the asymptotic
counterpart to the proof of Theorem 2.

Theorem 5 (hash-then-sign, unkeyed, asymptotic, C0-form). If Π is
a secure signature scheme with message space at least 〈{0, 1}n〉 and H is a
collision-resistant asymptotic-and-unkeyed hash-function having message space
〈Xn〉 then ΠH is a secure signature scheme with message space 〈Xn〉. ♦

Comparing Theorem 5 with Theorem 1 or 2, note that in stepping back to the
asymptotic setting we also reverted to the existential style of theorem statement.
But these choices are independent; one can given explicitly constructive (C1- or
C2-style) theorem statements for the asymptotic setting.

Existence and constructions. We do not investigate the complexity as-
sumption necessary to construct a collision-resistant asymptotic-and-unkeyed
hash-function, but we do regard this as an interesting question. Natural con-
structions and cryptographic assumptions would seem to present themselves by
adapting prior work like that in [7,27].

9 Discussion

Using unkeyed hash-functions is no more complex than using keyed ones. For
ease of comparison, we recall Damg̊ard’s definition of a collection of collision-free
hash-functions [7] in Appendix A, and we provide a keyed treatment of hash-
then-sign, in the concrete-security setting, in Appendix B.

Some readers may instinctively feel that there is something fishy about the
approach advocated in this paper. One possible source of uneasiness is that,
under our concrete-security treatment, no actual definition was offered for when
an unkeyed hash-function is collision-resistant. But concrete-security treatments
of cryptographic goals never define an absolute notion for when a cryptographic
object is secure. Similarly, it might seem fishy that, in the asymptotic setting, we
restricted attention to uniform adversaries. We proffer that collision-resistance
of an unkeyed output-length-parameterized hash-function makes intuitive sense,
but only in the uniform setting. Regardless, we suspect that the greater part
of any sense of unease stems from our community having internalized the belief
that an unkeyed treatment of collision-resistance just cannot work. In Damg̊ard’s
words, Instead of considering just one hash function, we will consider families of
them, in order to make a complexity theoretic treatment possible [7]. This refrain
has been repeated often enough to have become undisputed fact. But Damg̊ard
was thinking in terms of asymptotic complexity and nonuniform adversaries;
when one moves away from this, and makes a modest shift in viewpoint about
what our theorem statements should say, what was formerly impossible becomes
not just possible, but easy.

Formalizing Human Ignorance 225

Going further, one could make the argument that it is historical tradition
that has made our hash functions keyed more than the specious argument from
Section 1 about the infeasibility of formalizing what human beings do not know.
When Damg̊ard defined collision-resistance [7] we already had well-entrenched
traditions favoring asymptotic notions, non-uniform security, number-theoretic
constructions, assumptions like claw-free pairs, and existential-format (C0-style)
theorem statements. These traditions point away from the human-ignorance ap-
proach. Besides, it was never Damg̊ard’s goal to demonstrate how to do provable-
security cryptography with an unkeyed hash-function H : {0, 1}∗ → {0, 1}n.
While such hash functions were known (eg, [23,20,30]), they probably were not
looked upon as suitable starting points for doing rigorous cryptographic work.

Protocols that use cryptographic hash-functions are often proved secure in
the random-oracle (RO) model [4]. In such a case, when one replaces the RO-
modeled hash-function H by some concrete function one would like to preserve
the function’s domain and range, H : X → Y for X ,Y ⊆ {0, 1}∗. So replacing
a RO by a concrete hash-function always takes you away from the keyed-hash-
function setting. Concretely, one can prove security for hash-then-sign in the
RO model but one can’t instantiate the RO with a keyed hash-function without
changing the protocol first.

One could argue that mandating an explicitly-specified reduction is a sensible
way to state provable-security results in general. After all, if a reduction actually
were nonconstructive it would provide a less useful guarantee. That’s because a
constructive reduction says something meaningful about cryptographic practice
now, independent of mathematical truth. A constructive statement along the
lines of “if you know how to break this signature scheme then you know how to
factor huge numbers” tells us that, right now, he who can do the one task can
already do the other. If it takes 100 years until anyone can factor huge numbers
then signature schemes that enjoy the constructive provable-security guarantee
are guaranteed to protect against forgeries for all those intervening years.

The human-ignorance approach can be used for cryptographic goals beyond
collision resistance. For example, one might assume of a blockcipher E: {0, 1}k×
{0, 1}n → {0, 1}n that nobody can find distinct (K,X) and (K ′, X ′) such that
EK(X)⊕X = EK′(X ′)⊕X ′. Unlike the ideal-cipher model, the assumption is
meaningful for a concretely instantiated blockcipher.

The topic of this paper is largely about language: how, exactly, to express
provable-security results. Some may interpret this to mean that the topic is
insignificant, being only an issue of language. But language is key. In a case like
this, language shapes our basic ideas, their development, and their utility.

In recent years, MD4-family hash functions (MD4, MD5, SHA-0, SHA-1,
RIPEMD) have suffered an onslaught of successful attacks. This paper pro-
vides no guidance in how to recognize or build unkeyed hash-functions for which
mankind will not find collisions. It only illustrates how, when you do have such a
hash function in hand, you can formulate the security of a higher-level protocol
that uses it, obtaining the usual benefits of provable-security cryptography.

226 P. Rogaway

Acknowledgments

Some ideas in this paper go back to long-ago discussions with Mihir Bellare. Well
over a decade ago we talked about the significance of making theorem statements
explicitly constructive, which we did, for example, in [1, Theorem 4.2]. Mihir also
provided his typically astute comments on this paper’s first draft. I also received
good comments from Dan Brown and Tom Shrimpton. Jesse Walker, and others
later on, asked me about the foundations-of-hashing dilemma (of course not in
this language), motivating me to produce this writeup. Andy Okun pointed me
to the work of Carlo Cipolla, who considers human ignorance from a rather
different perspective [6]. This work was supported by NSF grant CCR-0208842
and a generous gift from Intel Corporation.

References

1. M. Bellare, R. Guérin, and P. Rogaway. XOR MACs: New methods for message
authentication using finite pseudorandom functions. Full version of CRYPTO ’95
paper. Available on-line from the author’s web page.

2. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining
message authentication code. J. of Computer and System Sciences (JCSS), vol. 61,
no. 3, pp. 362–399, 2000.

3. M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs
practical. Advances in Cryptology – CRYPTO ’97, LNCS, Springer, 1997.

4. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for design-
ing efficient protocols. First ACM Conference on Computer and Communications
Security (CCS ’93), ACM Press, pp. 62–73, 1993.

5. D. Brown. Generic groups, collision resistance, and ECDSA. Designs, Codes and
Cryptography, vol. 35, no. 1, pp. 119–152, 2005.

6. C. Cipolla. Le leggi fondamentali della stupidità (The fundamental laws of human
stupidity). In Allegro ma non troppo con Le leggi fondamentali della stupidità,
Società editrice il Malino, Bologna, 1988.

7. I. Damg̊ard. Collision free hash functions and public key signature schemes. Ad-
vance in Cryptology – EUROCRYPT ’87, LNCS vol. 304, Springer, pp. 203–216,
1987.

8. I. Damg̊ard. A design principle for hash functions. Advances in Cryptology –
CRYPTO ’89, LNCS vol. 435, Springer, 1990.

9. A. De Santis and M. Yung. On the design of provably secure cryptographic hash
functions. Advance in Cryptology – EUROCRYPT ’90, LNCS vol. 473, Springer,
pp. 412–431, 1991.

10. P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. Stubblebine.
Flexible authentication of XML documents. J. of Computer Security, vol. 12, no. 6,
pp. 841–864, 2004.

11. O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof sys-
tems. SIAM Journal on Computing, vol. 25, no. 1, pp. 169–192, Feb 1997.

12. O. Goldreich and Y. Oren. Definitions and properties of zero-knowledge proof sys-
tems. J. of Cryptology, vol. 7, no. 1, pp. 1–32, 1994.

13. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., vol. 28,
no. 2, pp. 270–299, 1984. Earlier version in STOC 82.

Formalizing Human Ignorance 227

14. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, vol. 18, no. 1, pp. 186–208, 1989.

15. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. on Comp., vol. 17, pp. 281–308, 1988.

16. S. Halevi and H. Krawczyk. Strengthening digital signatures by randomized hash-
ing. Manuscript dated 6 June 2006. Proceedings version in Advances in Cryptol-
ogy – CRYPTO 06, LNCS, Springer, 2006.

17. R. Merkle. Method of providing digital signatures. US Patent #4,309,569, 1982.
18. R. Merkle. One way hash functions and DES. Advances in Cryptology –

CRYPTO 89, LNCS vol. 435, Springer, pp. 428–446, 1990.
19. R. Merkle. Protocols for public key cryptosystems. Proceedings of the 1980 IEEE

Symposium on Security and Privacy, IEEE Press, pp. 122–134, 1980.
20. S. Matyas, C. Meyer, and J. Oseas. Generating strong one-way functions with

cryptographic algorithm. IBM Tech. Disclosure Bulletin, 27, pp. 5658–5659, 1985.
21. National Institute of Standards and Technology. FIPS PUB 180-2, Secure Hash

Standard, Aug 1, 2002.
22. Y. Oren. On the cunning power of cheating verifiers: some observations about

zero-knowledge proofs. 28th Annual Symposium on the Foundations of Computer
Science (FOCS 87), IEEE Press, pp. 462–471, 1987.

23. M. Rabin. Digital signatures. In Foundations of secure computation, R. DeMillo,
D. Dobkin, A. Jones, and R. Lipton, editors, Academic Press, pp. 155–168, 1978.

24. O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between cryp-
tographic primitives. Theory of Cryptography Conference, TCC 2004, LNCS
vol. 2951, Springer, pp. 1–20, 2004.

25. R. Rivest. The MD4 message digest algorithm. Advance in Cryptology –
CRYPTO ’90, LNCS vol. 537, Springer, pp. 303–311, 1991.

26. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. Fast Software Encryption (FSE 2004), LNCS vol. 3017,
Springer, pp. 371–388, 2004.

27. A. Russell. Necessary and sufficient conditions for collision-free hashing. J. of Cryp-
tology, vol. 8, no. 2, pp. 87–99, 1995.

28. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash functions
MD4 and RIPEMD. Advances in Cryptology – EUROCRYPT ’05, LNCS vol. 3494,
Springer, pp. 1–18, 2005.

29. X. Wang, Y. Yin, and H. Yu. Finding Collisions in the Full SHA-1. Advances in
Cryptology – CRYPTO ’05, LNCS vol. 3621, Springer, pp. 17–36, 2005.

30. R. Winternitz. A secure one-way hash function built from DES. Proceedings of the
IEEE Symposium on Inf. Security and Privacy, pp. 88–90, IEEE Press, 1984.

A The Traditional Definition of Collision Resistance

In this section we recall, for comparison, the traditional definition for a collision-
resistant hash function, as given by Damg̊ard [7]. The notion is keyed (meaning
that the hash functions have an index) and asymptotic. Our wording and low-
level choices are basically from [27].

A collection of collision-free hash-functions is a set of maps {hK : K ∈ I}
where I ⊆ {0, 1}∗ and hK : {0, 1}|K|+1 → {0, 1}|K| and where:

228 P. Rogaway

1. There is an EPT algorithm K that, on input 1n, outputs an n-bit string
K

$←K(1n) in I.
2. There is an EPT algorithm H that, on input K ∈ I and X ∈ {0, 1}|K|+1,

computes H(K,X) = hK(X).
3. For any EPT adversary A, ε(n) = Pr[K $←K(1n); (X,X ′) $←A(K) : X �=
X ′ and HK(X) = HK(X ′)] is negligible.

Above, EPT stands for expected polynomial time, and a function ε(n) is negligible
if for every c > 0 there exists an N such that ε(n) < n−c for all n ≥ N . For
simplicity, we assumed that the domain of each hK is {0, 1}|K|+1. This can be
relaxed in various ways.

B Hash-Then-Sign with a Keyed Hash-Function

In this section we provide a concrete-security treatment of the hash-then-sign
paradigm using a keyed hash-function instead of an unkeyed one. Our purpose is
to facilitate easy comparison between the keyed and unkeyed form of a theorem.

First we must modify our formalization of the hash-then-sign construction
to account for the differing syntax of a keyed and unkeyed hash function. Let
H : K×{0, 1}∗ → {0, 1}n be a keyed hash-function. Let Π = (Gen ,Sign,Verify)
be a signature scheme with message space of at least {0, 1}n. Define from these
the signature scheme ΠH = (GenH ,SignH ,VerifyH) by saying that GenH

samples K $←K and (PK ,SK) $←Gen and then outputs (〈PK ,K〉, 〈SK ,K〉);
define SignH

〈SK ,K〉(M) = SignSK (HK(M)); and define VerifyH
〈PK ,K〉(M,σ) =

VerifyPK (HK(M), σ). The message space for ΠH is {0, 1}∗. We have reused the
notation ΠH and SignH and VerifyH because the “type” of the hash function H
makes unambiguous what construction is intended.

The proof of the following, little changed from Theorem 2, is omitted.

Theorem 6 (hash-then-sign, keyed, concrete, C0). Let H : K×{0, 1}∗ →
{0, 1}n be a keyed hash-function, let Π = (Gen ,Sign,Verify) be a signature
scheme with message space at least {0, 1}n, and let A be an adversary. Then
there exist adversaries B and C such that

Advsig
Π (B) + Advcol

H (C) ≥ Advsig
ΠH (A) .

Adversary B runs in time at most tA + tK + tH(�A) + tSign(nqA) + c(�A + nqA)
and asks at most qA queries entailing at most �A + n bits. Adversary C runs in
time at most tA + tGen + tK + tH(�A) + tSign(nqA+n) + c(�A +nqA) lg(qA). The
value c is an absolute constant implicit in the proof of this theorem. ♦

Discrete Logarithm Variants of VSH

Arjen K. Lenstra1,2, Daniel Page3, and Martijn Stam1

1 EPFL / IC - LACAL, INJ3.33,
Station 14, CH-1015 Lausanne, Switzerland

martijn.stam@epfl.ch
2 Bell Laboratories

3 Dept. Computer Science, University of Bristol, Merchant Venturers Building,
Woodland Road, Bristol, BS8 1UB, United Kingdom

page@cs.bris.ac.uk

Abstract. Recent attacks on standardised hash functions such as SHA1 have
reawakened interest in design strategies based on techniques common in prov-
able security. In presenting the VSH hash function, a design based on RSA-like
modular exponentiation, the authors introduce VSH-DL, a design based on expo-
nentiation in DLP-based groups. In this article we explore a variant of VSH-DL
that is based on cyclotomic subgroups of finite fields; we show that one can trade-
off performance against bandwidth by using known techniques in such groups.
Further, we investigate a variant of VSH-DL based on elliptic curves and extract
a tighter reduction to the underlying DLP in comparison to the original VSH-DL
proposal.

Keywords: Hash Functions, Cyclotomic Subgroup, Collision Resistance.

1 Introduction

Hash function design. Hash functions can be considered, together with block ciphers,
to be the core primitives on which modern applied cryptography is based. The design
of block ciphers is guided by a fairly mature and well understood background, see for
example linear [14] and differential [3] cryptanalysis and the wide-trail design strategy
of the AES [7]. In contrast, standardised hash functions such as SHA1 are constructed
using somewhat ad-hoc techniques and they are essentially derived from the same fam-
ily. This fact has, in part, contributed to a number of recent collision attacks against
designs including SHA1 [20,21].

Ideally, a hash function with output length n is a parameterised, deterministic func-
tion H : {0, 1}∗ → {0, 1}n that takes an arbitrary length bitstring and maps it to a
bitstring of length n. A good hash function satisfies several properties, the three most
important of which are stated informally below.

1st-Preimage resistance. Given a random image x ∈ {0, 1}n, it should take time≈ 2n

to find m ∈ {0, 1}∗ such that H(m) = x.
2nd-Preimage resistance. Given a ‘random’ m ∈ {0, 1}∗, it should take time ≈ 2n to

find m′ ∈ {0, 1}∗ such that H(m) = H(m′) and m �= m′.

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 229–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

230 A.K. Lenstra, D. Page, and M. Stam

Collision resistance. It should take time ≈ 2n/2 to find m,m′ ∈ {0, 1}∗ such that
H(m) = H(m′), yet m �= m′.

Since generic black box attacks are known that find collisions in time≈ 2n/2 or preim-
ages in time ≈ 2n, the above requirements are very strong. In many scenarios it suffices
to achieve a relaxed notion of collision resistance, in the sense that attackers who can
invest only time 2k cannot find collisions, where possibly the output length n is larger
than 2k. Thus, these hash functions might not strictly satisfy the standard security no-
tion, even though collision resistance may provably be linked to a well studied hard
problem, using the type of exact reduction also known from provable security. The
tightness of the reduction and our belief or current understanding of the hardness of
the underlying problem then lead to a parameter choice for which the resulting hash
function has the desired collision resistance.

Hash functions based on modular exponentiation. One of the first provably secure
collision resistant hash functions is based on exponentiation modulo an RSA modulus,
that is H(m) = xm mod N where m is the message, N is the RSA modulus and x is
some predefined value in Z∗

N . If m and m′ form a collision such that H(m) = H(m′),
then xm−m′

= 1 mod N which implies that (m −m′) is a multiple of the order of x.
This order will necessarily be a divisor of φ(N) and if certain conditions hold, knowing
any (nonzero) multiple of the order of x suffices to factorN in deterministic polynomial
time. Note that there is no restriction on the length of m which means that there is no
need for Merkle-Damgård [15,8] type constructions.

This scheme was recently extended by Contini et al. [6] who essentially propose to
use multi-exponentiation for the compression function instead of single exponentiation,
thus obtaining an improvement in performance by processing more message bits at the
same time. Let pi be the i-th prime number, for i = 1, . . . , k, where the product of
the k primes should be smaller than the RSA modulus. A message m is then split up
into l blocksMi of equal length and the hash is computed as the multi-exponentiation
H(m) =

∏
i p

Mi

i mod N . An additional requirement is that the total bitlength of the
message m is smaller than 2k.

One of the disadvantages of VSH is the need for a secret RSA-modulusN . Someone
who knows how to factor N can construct collisions easily. A side-effect of this trap-
door against collision resistance is that the modified Cramer-Shoup signature scheme [6]
based on VSH does not provide non-repudiation as one might expect (cf. ‘Creating Col-
lisions’ [6, p. 171]). Another disadvantage is the relatively large output length, namely
the size of the RSA modulus. This means that to provide 80-bit security, one needs
to use a hash function outputting approximately 1024 bits, rather than the desired 160
bits needed to thwart generic birthday attacks. To address these problems, Contini et
al. mentioned the possibility of building VSH-DL, a hash function based on multi-
exponentiation in DLP-based groups allowing short representations, such as elliptic
curves or cyclotomic subgroups (allowing trace or torus-based methods). This design
extends the corpus of previous work on DLP based hash functions, see [1,2] for example.

Computation in finite field extensions. The possibility to use finite fields with exten-
sion degree higher than one for public key cryptography has been known since the birth
of public-key cryptography. However, for a long time nobody paid much attention to

Discrete Logarithm Variants of VSH 231

the subject since it was unclear whether the higher extension degree would offer any
significant advantage over prime fields. It was not until Lenstra and Verheul showed
the potential of working in a smaller subgroup of a larger field using their trace-based
method called XTR [13] that interest increased.

Since then, Stam and Lenstra [19] showed how to efficiently work in the cyclo-
tomic subgroup of a degree six extension field (provided that the characteristic satisfies
a mild congruency relation), and Rubin and Silverberg [16] showed how to compress
and decompress elements in this same subgroup using the theory of algebraic tori. The
method of Rubin and Silverberg, called CEILIDH, differs from XTR in that compres-
sion is injective allowing full and exact decompression (in XTR conjugates are mapped
to the same element). The downside of CEILIDH is that it is only a compression and
decompression mechanism: it does not support direct computation on the compressed
elements. Efficient arithmetic is still possible though, for instance by the method devel-
oped by Stam and Lenstra or the more involved hybrid methods by Granger et al. [10].

Main contributions. Since methods known from the study of arithmetic and schemes
using cyclotomic subgroups can provide computational efficiency and reduced band-
width due to their compression properties, it is a natural question to ask to what extent
they can be used to implement VSH-DL. To address this question, in this paper we in-
vestigate VSH-DL type schemes based on the cyclotomic subgroup of a sixth degree
extension field and on elliptic curves.

Such schemes provide natural efficiency in terms of bandwidth which leads to a
smaller hash-output without compromising security against collision attacks; through
an experimental implementation we reason that this benefit is balanced against de-
creased performance compared to the original VSH-DL proposal. We do not make any
claims about other security properties of our proposed hash functions, although it is
easy to see that finding preimages is at least as hard as finding a collision. Thus it is
possible to pick a (longer) output length of the hash function such that one also has the
desired level of security against these two attacks. We believe that in many applications
the level of security against collision attacks and preimage attacks can be set the same.
Because our hash functions essentially depend on n > 2k, it is not recommended to
truncate the output of the hash function (cf. [17]).

The paper is organised as follows. After our introduction of VSH in Section 2, we
explore the possibility to base a hash function on a problem related to the discrete
logarithm problem in the cyclotomic subgroup of a sixth degree extension field in Sec-
tion 3, where we achieve a compression by a factor of three which represents a trade-off
against decreased performance versus the original VSH-DL under a similar assumption.
In Section 4 we discuss the possibility to use elliptic curves over prime fields. In that
case the collision resistance of the hash function can be based directly on ECDLP. Fi-
nally we present some experimental results and analysis in Section 5 before concluding
in Section 6.

2 VSH and VSH-DL

Contini et al. [6] define and analyse a hash function called Very Smooth Hash (VSH),
which is a multi-exponentiation generalisation of the well known RSA-based hash.

232 A.K. Lenstra, D. Page, and M. Stam

They write down the multi-exponentiation as a square-and-repeated-multiply algorithm,
where they consider the processing of k bits (Step 5 in Algorithm 1 below) as a com-
pression primitive and view the full compression function as repeated application of
this compression primitive, which allows the computation of the hash function in a
streaming fashion. Recall that for i ∈ Z>0, we let pi is the i-th prime number.

Algorithm 1. VSH compression function [6].

LetN be an RSA modulus, let the block length k be the largest k for which
∏k

i=1 pi <

N . The VSH compression function HV SH : {0, 1}<2k → Z∗
N is defined as follows for

an �-bit message m consisting of bits m1,m2, . . . ,m�, where � < 2k.

1. [Initialise] Set x0 ← 1, L ← � �
k� and j ← 0.

2. [Padding] Set mi ← 0 for � < i ≤ Lk.
3. [Merkle-Damgård Strengthening] Let � =

∑k
i=1 �i2

i−1 with �i ∈ {0, 1} be the
binary representation of the message length �. Set mLk+i ← �i for 0 < i ≤ k.

4. [Finished] If j = L+ 1 terminate with output xL+1.
5. [Hash next block] Set xj+1 ← x2

j ×
∏k

i=1 p
mj·k+i

i (mod N).
6. [Increase j] Increase j by one. Go back to Step 4.

It is not too hard to see that if we defineMi =
∑L

j=0 2L−jmjk+i, taking into account the
padding and the strengthening, then the hash is computed as the multi-exponentiation
H(m) =

∏
i p

Mi

i mod N . In particular this means that one might be able to achieve
some speedups by using techniques known from the theory of addition chains.

Contini et al. mention precomputing products of primes: indeed, if k primes (or
bases) are given and a small positive integer b divides k, we can partition the bases
in k/b sets of b primes each and for each set precompute all 2b products of the different
primes in that set. During the actual hashing bits are processed in chunks of b bits so that
only k/bmultiplications will be needed to process k bits of message (this is essentially
a simplified version of Pippenger’s algorithm). Contini et al. observe that instead of
using precomputed products of primes for chunks of bits, one can also use fresh primes
instead. Although this leads to a different hash function, called Fast VSH, it is based on
the same hardness assumption as standard VSH but, as the name suggests, considerably
faster (also compared to VSH with precomputation). A full description can be found in
Appendix A.

The collision resistance of VSH can be reduced to the VSSR problem.

Definition 2. (VSSR: Very Smooth number nontrivial modular Square Root [6, Def. 3])
Let N be the product of two unknown primes of approximately the same size and let
k ≤ (logN)c. VSSR is the following problem: Given N , find x ∈ Z∗

N such that x2 =∏k
i=1 p

ei

i and at least one of e1, . . . , ek is odd.

Contini et al. note that, given the existing known factoring algorithms, it seems as hard
to solve the VSSR problem as it is to factor N (though they base their analysis on a
more conservative relation). They also define a discrete log analogue to VSSR leading
to VSH-DL. An important advantage of VSH-DL over VSH is the lack of a trapdoor.

Discrete Logarithm Variants of VSH 233

Definition 3. (VSDL: Very Smooth number Discrete Log [6, Def. 4]) Let p, q be primes
with p = 2q + 1 and let k ≤ (log p)c. VSDL is the following problem: given p, find in-
tegers e1, e2, . . . , ek such that 2e1 ≡

∏k
i=2 p

ei

i mod p with |ei| < q for i = 1, 2, . . . , k,
and at least one of e1, e2, . . . , ek is non-zero (where pi is to be understood to be the i-th
prime number).

Algorithm 4. VSH-DL compression function.

Let p be an S-bit prime of form 2q + 1 for prime q, let k be a fixed integer length,
typically k ≈ S/ logS. The VSH-DL compression function HDL : {0, 1}<(S−2)k →
Z∗

p is defined as follows for an �-bit message m consisting of bits m1,m2, . . . ,m�, with
� < (S − 2)k.

1. [Initialise] Set x0 ← 1, L ← � �
k� and j ← 0.

2. [Padding] Set mi ← 0 for � < i ≤ Lk.
3. [Merkle-Damgård Strengthening] Let � =

∑k
i=1 �i2

i−1 with �i ∈ {0, 1} be the
binary representation of the message length �. Set mLk+i ← �i for 0 < i ≤ k.

4. [Finished] If j = L+ 1 terminate with output xL+1.
5. [Hash next block] Set xj+1 ← x2

j ×
∏k

i=1 p
mj·k+i

i (mod p).
6. [Increase j] Increase j by one. Go back to Step 4.

3 A Cyclotomic Subgroup Variant of VSH-DL

We begin with a brief overview of the mathematics underlying CEILIDH and XTR. This
overview is specifically tailored to our needs, for a more general introduction see [9]
and the references contained therein.

Let p be a prime and let Fp denote a finite field of order p and Fp6 a sixth degree
extension thereof. The multiplicative group F∗

p6 is cyclic of order p6 − 1, which factors
as (p2−p+1)(p2+p+1)(p+1)(p−1). Let G be the unique subgroup of order p2−p+1
in F∗

p6 . We call G the cyclotomic subgroup of F∗
p6 . Alternatively, it can be regarded as a

specific algebraic torus of dimension 2 over Fp. It is argued [12] that the computational
complexity of the discrete logarithm problem in F∗

p6 resides in this subgroup G of order
p2 − p + 1, since the subgroups of order dividing (p2 + p + 1)(p + 1)(p − 1) can be
efficiently embedded in proper subfields of F∗

p6 , thus allowing to run a sub-exponential
algorithm in the smaller field.

Using a standard representation in Fp6 consumes≈ 6 log p bits which seems wasteful
given that there are only ≈ p2 elements in G. This problem can be solved using either
XTR [13] or CEILIDH [16]. With XTR, the trace map

Tr : Fp6 → Fp2 : x→ xp4
+ xp2

+ x

is used to compress an element in G to an element in Fp2 . This map is not injective;
since conjugates over Fp2 map to the same value in Fp2 it is essentially 3-to-1. One of
the significant advantages of XTR is that it is possible to work directly with compressed
elements when performing an exponentiation. Unfortunately, this method does not gen-
eralise very well to multi-exponentiation on more than two bases which makes XTR
unsuitable for direct use in a VSH-DL variant.

234 A.K. Lenstra, D. Page, and M. Stam

CEILIDH is an alternative to XTR that offers only compression; that is, one cannot
compute directly with compressed elements. Formally, CEILIDH is a bijection between
G\{a} and (Fp)2\V (f), where a is some particular element of G and V (f) is a well-
defined subset of (Fp)2 (the notation V (f) stems from the fact that it is a variety defined
by a single polynomial). It is straightforward to extend CEILIDH into an injection from
G to (Fp)2. Clearly, given any collision-resistant hash function, applying an injection to
the result is not going to reduce its collision resistance.

One of the advantages of VSH-DL as described by Contini et al. is its use of small
elements pi. When we work directly with elements in G, there do not seem to be ele-
ments that are as efficient to work with. Since each group element is represented by six
base field elements and the order of the group is p2 − p+ 1 one can prescribe at most
two base field elements to be small, the other four will follow and be of normal size.
However, an alternative presents itself by not working with elements in G, but rather
elements in the full field Fp6 and only map to G at the very end through powering by
(p3 − 1)(p+ 1), i.e. the cofactor of G in F∗

p6). Thus our hash function will be

Ceilidh((
∏

i

hMi

i)(p
3−1)(p+1))

for suitably chosen hi ∈ F∗
p6 .

In the following we will motivate this approach by showing that, when the elements
hi are chosen uniformly at random and then somehow replaced by a smaller sibling
in the same coset (under exponentiation with the cofactor of G), the hash function is
collision-resistant if the discrete logarithm problem in (a subgroup of) G is hard. Thus,
contrary to the original VSH-DL, we reduce from a standard discrete logarithm as-
sumption. Our proof uses a slightly more general notation than as above. We note that
the order of G itself need not be prime, although to provide collision resistance the
size of G’s largest DLP-hard subgroup of prime order will be relevant for determining
the maximal allowable message length. Our reduction is similar to that of Bellare and
Micciancio [2], but tighter because we reduce from the DLP in a prime order subgroup.

Definition 5. (DLP) Let Gq be a finite cyclic group of known prime order q and with
generator f . The discrete logarithm problem in Gq is to find, given y drawn uniformly
at random from Gq , the unique value 0 ≤ x < q such that y = fx.

Definition 6. (k-modified DLP) Let H be a finite cyclic group with generator h. Let G
be a subgroup of H with generator g = h|H|/|G|. Let ψ : H → H be a map such that
ψ(hi)|H|/|G| = (hi)|H|/|G| for all hi ∈ H. The k-modified discrete logarithm problem
for (H,G, ψ) is to find, given hi drawn uniformly at random from H for i = 1, . . . , k, a
nonzero solution (e1, . . . , ek) ∈ [0, q)k of

(
k∏

i=1

ψ(hi)ei)|H|/|G| = 1

Theorem 7. Assume q divides |G|, but q2 does not divide |H| and that k > 1. An
attacker that solves the k-modified discrete logarithm problem for (H,G, ψ) in time t
with probability ε can be used to solve the discrete logarithm problem in Gq ⊆ G in

Discrete Logarithm Variants of VSH 235

time t+ t′ with probability ε− 1/q, where t′ is essentially the time to perform a k-fold
double exponentiation in H.

Proof: Given y ∈ Gq , we need to find x such that fx = y with the help of an attacker
that solves the k-modified discrete logarithm problem. Let h1 = ybihai for i = 1, . . . , k,
where the ai and bi are drawn uniform at random from [0, |H|). As a result the hi are
distributed uniformly as expected by the k-modified DLP attacker, so on input of these
hi the attacker will, with probability ε, return (e1, . . . , ek) such that

(
k∏

i=1

ψ(ybihai)ei)|H|/|G| = 1

hence
g
∑k

i=1 aiei = y−(|H|/|G|)∑k
i=1 biei .

Note that y = fx for some (yet unkown) value of 0 ≤ x < q and that, w.l.o.g.,
f = g|G|/q. Since g is a generator of |G|, this implies that

k∑
i=1

aiei = −x(|H|/q)
k∑

i=1

biei mod |G|

and because q divides |G| also

k∑
i=1

aiei = −x(|H|/q)
k∑

i=1

biei mod q .

Now we can compute x if (|H|/q)
∑k

i=1 biei �= 0 mod q. Since q2 does not divide
|H|, we know that |H|/q is invertible modulo q, so we need to show that

∑k
i=1 biei �=

0 mod q with probability at most 1/q.
Because, given any hi ∈ H and 0 ≤ bi < q, there is exactly one ai such that

hi = haiybi , it follows that the adversary given the hi has no Shannon information on
bi when announcing the ei. Consequently, unless all ei are congruent to 0 modulo q
(which is not allowed by the restrictions on the ei),

∑k
i=1 biei is uniformly randomly

distributed modulo q, so the probability of it being 0 mod q is 1/q.
Q.E.D.

Algorithm 8. Modified VSH-DL compression function.

Let H be a finite cyclic group of known, factored order and generator h. Let G be a
subgroup of H with generator g = h|H|/|G|. Let q be a prime dividing |G| but not |H|/q.
Let ψ : H → H be a map such that ψ(hi)|H|/|G| = (hi)|H|/|G| for all hi ∈ H. Let
Compress : G → R be an efficiently computable injection. Let k be a fixed integer
length such that (�log2 q� − 1)k < 2k. The modified VSH-DL compression function
HMDL : {0, 1}≤(�log2 q�−1)k → R is defined for an �-bit message m consisting of bits
m1,m2, . . . ,m� with � ≤ (�log2 q� − 1)k as follows.

236 A.K. Lenstra, D. Page, and M. Stam

1. [Initialise] Set x0 ← 1, L ← � �
k� and j ← 0.

2. [Padding] Set mi ← 0 for � < i ≤ Lk.
3. [Merkle-Damgård Strengthening] Let � =

∑k
i=1 �i2

i−1 with �i ∈ {0, 1} be the
binary representation of the message length �. Set mLk+i ← �i for 0 < i ≤ k.

4. [Finished?] If j = L+ 1 terminate with output Compress(x|H|/|G|
L).

5. [Hash next block] Set xj+1 ← x2
j ×

∏k
i=1 ψ(hi)mj·k+i .

6. [Increase j] Increase j by one. Go back to Step 4.

For completeness, we note that the collision resistance of the hash function above can
be related to k-modified DLP by observing that the (implicit) map turning messages into
the relevant exponents for hi is injective on its domain (this is the reason for the length
restrictions on the message).

As mentioned before, we will instantiate Algorithm 8 with H = F∗
p6 and G a sub-

group of order p2− p+ 1 which has cofactor (p3− 1)(p+ 1). Moreover for Compress
we will substitute Ceilidh. For efficient field arithmetic we restrict ourselves to p ≡
2 mod 9. In this case p will generate Z∗

9 and Φ9(x) = x6 + x3 + 1 is irreducible in Fp.
Hence if γ is a root of Φ9(x) (i.e., a ninth root of unity), then (γ, γ2, γ3, γ4, γ5, γ6) is
a basis for the extension field Fp6 = Fp[γ]. The arithmetic based on this extension also
lies at the basis of the fast implementation [10] of XTR and CEILIDH.

Let a =
∑5

j=0 ajγ
j+1 ∈ Fp6 . We are interested in finding a small representation

ψ(a) of a such that multiplication of an arbitrary field element byψ(a) will be relatively
cheap. We do this implicitly. Instead of giving a straightforward definition ofψ we show
how to sample efficiently and (almost) uniformly fromψ(F∗

p6). This is done by ensuring

that ψ(F∗
p6)(p

3−1)(p+1) gives rise to the (almost) uniform distribution over G.
We sample from ψ(F∗

p6) as follows. Draw a0 and a5 uniformly and independently
at random from Fp. Let ψ(a) = a0γ + γ2 + a5γ

6. That this works follows from the
following observation:

Lemma 9. The mapψ′ : F2
p → G defined byψ′(a0, a5)=(a0γ+γ2+a5γ

6)(p
3−1)(p+1)

has a range of at least p2/3 elements.

Proof: To prove the statement we will upper bound the number of collisions, that is, sets
of distinct pairs (a0, a5) and (b0, b5) such that ψ′(a0, a5) = ψ′(b0, b5). Equivalently,
we are counting the sets a and b of prescribed form a = a0γ + γ2 + a5γ

6 and b =
b0γ + γ2 + b5γ

6 such that a(p3−1)(p+1) = b(p
3−1)(p+1). The latter equation can be

rewritten as (ap3
b)p+1 − (abp

3
)p+1) = 0. This can be computed algebraically, giving

rise to initially six equations (one for each coordinate), but that can be simplified to

(a0 − b0)(1 + a0b0 + a5b5) = 0
(a5 − b5 + 2(a0 − b0) + a0b5 − a5b0)(1 + a0b0 + a5b5) = 0

plus a third condition. Simultaneously satisfying the above two equations can only be
done if either (a0, a5) = (b0, b5) or if (1+a0b0+a5b5) = 0. Unless (b0, b5) = (0, 0) the
latter solution allows us substitution of either a0 or a5 in the third and final equation to
be satisfied (and note that only (0, 0) is in the preimage of ψ′(0, 0)). This third equation
will then yield a quadratic equation in either a0 or a5 that is only degenerate (i.e. equal

Discrete Logarithm Variants of VSH 237

to zero) if both b0 = 0 and b5 = 0. Since a quadratic equation over a finite field has
at most two solutions, we have shown that any preimage of ψ′ has cardinality at most
three, from which the claim follows. Q.E.D.

One can improve performance considerably by picking small a0 and a5. The caveat is
that the security is no longer directly related to a clean DLP assumption. Our choice
will be to set (a5)i equal to 1 and let (a0)i depend on i, i.e. simply range through a
number of a0 values that are easy to multiply with. In particular, we use (a0)i = i+ 1
for a given i.

For completeness we note that the preimage under ψ′ of 1 ∈ G in this case is re-
stricted to a0 = 0 or a0 = 1, which can be seen by using that a(p3−1)(p+1) = 1 is equiv-
alent to a(p2+p+1)(p+1) ∈ F∗

p. Moreover, if a = a0γ+ γ2 + γ6 and b = b0γ + γ2 + γ6,

then a(p3−1)(p+1) = b(p
3−1)(p+1) iff a = b or a, b are in the preimage of 1.

Thus we are insured that as long as we pick the a0 distinct and unequal to 0 or 1 our
system is not obviously flawed and there is no reason to assume that the choice of our
ψ(hi) is weak. The resulting hash function can be proven secure assuming that solving
the following, admittedly tailor-made, problem is hard:

Definition 10. (Small Element DLP) Let p be a prime congruent to 2 mod 9 such that
p2 − p + 1 has at least one big prime factor q. Let γ be a ninth-root of unity and let
hi = (i+ 1)γ + γ2 + γ6 ∈ F∗

p6 for i = 1, . . . , k. The small element discrete logarithm

problem is to find, given p, a nonzero solution (e1, . . . , ek) ∈ [0, q)k of

(
k∏

i=1

ψ(hi)ei)(p
3−1)(p+1) = 1 .

4 An Elliptic Curve Variant of VSH-DL

Since their introduction to cryptography by Koblitz and Miller, elliptic curves have
become ever more popular as a replacement for finite fields to base DLP-based schemes
on. This is mainly due to the fact that there is no known algorithm to solve the DLP on
a general elliptic curve faster than the generic Pollard-ρmethod. This allows one to use
curves with group sizes quadratic in the security one wishes to offer.

An immediate result of this is that to obtain 2k bit security against collision-finding,
one can actually use a hash function based on VSH-DL that outputs just over 2k bits
(by using affine representation and standard point compression, where the Y -coordinate
is replaced by a single bit to resolve any square root ambiguity). Moreover, the com-
putations are relatively fast. In this article we concentrate on curves over prime fields,
though similar results are expected to hold for curves over binary or ternary fields.

An elliptic curve over a prime field Fp with p > 3 can be represented using the short
Weierstrass form

Y 2 = X3 + a4X + a6

where it is common to use a4 = −3, for example in the NIST standard curves, in
order to extract some performance benefits. The set of points (X,Y) ∈ F2

p satisfying
the equation above together with a point at infinity form an abelian group under the

238 A.K. Lenstra, D. Page, and M. Stam

addition operation also known as the chord-tangent process. The point at infinity serves
as group identity and the negation of a point (X,Y) is (X,−Y).

Optimising elliptic curve arithmetic has been the focus of a large number of articles.
Excellent overviews are given by Brown et al.[5] and Hankerson et al.[11]. One of the
most efficient methods is the use of mixed coordinates, where the fixed multiplicands
are kept in affine representation but where computations are done using the Jacobian
representation. Point doubling with the Jacobian representation costs 4 field multiplica-
tions and 4 field squarings. Adding an affinely represented point to a point in Jacobian
representation costs 8 field multiplications and 3 field squarings. The result again is in
the Jacobian representation.

One could consider the use of small points Pi. However, it seems that only one of
the coordinates of Pi can be picked small, since the other coordinate typically follows
from the curve equation (indeed, if a4 = −3 and a6 has full size, it is impossible for
both the X and the Y -coordinate of a point on the curve to be small). It is easy to see
from [11, Algorithm 3.22] that both coordinates are used only once during the point
addition, so picking small Pi’s will reduce the cost of a point addition by at most one
field multiplication.

A possible solution to this problem is the use of a Montgomery representation. Re-
cently Brown [4] showed how to perform a multi-exponentiation efficiently in this
setting.

5 Experimental Results

Strategy. The crucial operation in the implementation of VSH is

xj+1 ← x2
j

k∏
i=1

p
mj·k+1
i (mod n).

This product can be computed in several ways by reshuffling the order in which the
multiplications take place. One option is to start with x2

j and then multiply by the rele-
vant pi terms one by one, reducing each time. The option recommended by Contini et
al. is to first compute the product

P =
k∏

i=1

p
mj·k+1
i

and then multiply by x2
j . Due to the choice of parameters, the productP will be smaller

than the modulus N when computed over the integers, so modular reductions are not
necessary. VSH relies on this feature of the pi, or small element values to enable the
construction of high performance implementations. It also acts as the bottleneck for
our compressed VSH-DL variants. Specifically, it is much harder to reason about how
one would delay reductions in either the cyclotomic subgroup or elliptic curve cases:
although one can attempt to construct some notion of small elements, it is difficult to
imagine how performing computation with such elements will be as efficient as in the
original VSH case.

Discrete Logarithm Variants of VSH 239

Table 1. A comparison between the original VSH design and three variants of VSH-DL. Results
are given in clock cycles per byte of input.

slow fast b = 2 fast b = 4 fast b = 8
SHA1-160 26.29 (or 16.89 with SIMD)
VSH 632.36 622.11 370.37 277.60
VSH-DL-A 715.71 676.04 382.68 274.75
VSH-DL-B 5507.54 6244.37 3126.34 1338.18
VSH-DL-C 16080.26 11777.89 7542.05 4105.31

Results. In order to evaluate the relative performance characteristics of our VSH-DL
designs versus the original proposal by Contini et al. [6], we produced some experi-
mental results using an implementation in C. Our platform for these experiments was
a 2.8Ghz Intel Pentium 4; we used GCC 4.0.1 to compile our implementation which
relied on NTL [18] for the underlying arithmetic. We produced an implementation of
the original VSH scheme and three variants of the VSH-DL scheme as detailed below:

VSH. The original VSH scheme operates modulo an RSA numberN = pq for primes
p and q. The parameters p and q were selected such that log2(N) = 1024.

VSH-DL-A. The first variant represents the original VSH-DL scheme of Contini et al.
by working in the group of integers modulo a prime p such that p = 2q + 1 for
some prime q. The parameters p and q were selected such that log2(p) = 1152.

VSH-DL-B. The second variant represents the cyclotomic subgroup based VSH-DL
design as described in Section 3. It works in a group G which is a subgroup of F∗

p6 .
The parameter p was selected such that log2(p) = 192. In this implementation we
were careful to use delayed reduction techniques to improve arithmetic in G, and to
construct a dedicated multiplication function for multiplication by small elements
which have a special, sparse form.

VSH-DL-C. The final variant represents the elliptic curve based VSH-DL design as
described in Section 4. It works in a prime subgroup of a curveE(Fp). The param-
eter p was selected such that log2(p) = 192. We considered only random curves of
the form

E : Y 2 = X3 − 3X + a6

such that special reduction techniques such as those for Mersenne primes were not
available; one might expect an incremental improvement in performance by using
such a parameterisation. We used Jacobian projective coordinates and a mixed-
addition strategy as is common in many point multiplication methods. The form of
arithmetic on the curve meant that a dedicated point addition function for addition
of small elements did not give any significant benefit.

For each variant, our parameter selection is such that the security of the resulting hash
functions is roughly equal. However, we make no attempt to to select values of k that
are sensible for the different variants; we use k = 131 in all cases. The results in Table 1
detail the performance of our variants; the figures quoted are clock cycles per byte of
input measured using the rdtsc instruction. They do not include the cost of initialising

240 A.K. Lenstra, D. Page, and M. Stam

the hash function, for example pre-computation of any tables of small elements. We
include results, following the nomenclature of Contini et al., for both slow and fast
versions: the fast version blocks the input and uses some pre-computation to improve
performance.

Analysis. Even considering incremental performance improvements by using, for ex-
ample, Mersenne primes in the elliptic curve case, our VSH-DL variants perform at
least an order or magnitude worse than either the original VSH or VSH-DL proposals
by Contini et al. In this respect, their worth in terms of pure performance is untenable.
This is exacerbated when one considers that hardware acceleration for modular multi-
plication as used in VSH is commonplace as a result of use in RSA; one might expect
significant performance improvements in a practical setting as a result.

However, one area of advantage which our cyclotomic subgroup variant of VSH-DL
gives is memory footprint. That is, the computation of small field elements is essentially
free in comparison with the computation of the small primes used in VSH. For the
figures in [6][Section 5] one can see that VSH pays a hefty price in terms of memory
real-estate to achieve the levels of performance indicated in our results. Although the
performance is lower, our cyclotomic subgroup variant of VSH-DL requires far less
memory.

A more subtle issue is the selection of the k parameter. By increasing k, which
roughly speaking is the block size of the hash function, one can decrease the num-
ber of squaring operations in the compression function; the number of multiplications
stays the same. The choice of k for VSH is motivated by the need to avoid modular
reductions in computing the product P from above. In our schemes we have already
highlighted the fact that it is not easy to avoid such reductions; as such we can be more
flexible in our choice of k.

6 Conclusion

In this article we have examined in depth the possibility to base VSH-DL on either
cyclotomic subgroups of finite fields of extension degree six or on elliptic curves of
large prime characteristic. We concluded that for cyclotomic subgroups using CEILIDH
we can get a hash function that is about an order of magnitude slower than the original
VSH-DL proposal, secure under a slightly different assumption (due to an inevitable
redefining of what constitutes a small element), but has a compression factor that is
three times as high. Using elliptic curves, we derive a hash function that is significantly
slower than the original VSH-DL proposal, but whose compression factor is six times as
high and its security can be directly linked to that of the standard ECDLP. In both cases
the poor performance is balanced by a potential saving in terms of memory footprint.

We reiterate that our main concern was provable collision resistance under a discrete
logarithm-like assumption. Like VSH and VSH-DL on which our constructions are
based, our scheme provides only collision resistance and may not be suitable to replace
a random oracle in all situations.

Discrete Logarithm Variants of VSH 241

References

1. M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography: The Case of Hash-
ing and Signing. In Advances in Cryptology (CRYPTO), Springer-Verlag LNCS 839, 216–
233, 1994.

2. M. Bellare and, D. Micciancio. A New Paradigm for Collision-Free Hashing: Incrementality
at Reduced Cost. In Advances in Cryptology (EUROCRYPT), Springer-Verlag LNCS 1233,
163–192, 1997.

3. E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In Advances
in Cryptology (CRYPTO), Springer-Verlag LNCS 537, 2–21, 1990.

4. D. R. L. Brown. Multi-Dimensional Montgomery Ladders for Elliptic Curves. IACR eprint,
2006/220, 2006.

5. M. Brown, D. Hankerson, J. López, and A. Menezes. Software implementation of the NIST
elliptic curves over prime fields. In D. Naccache, editor, CT-RSA’01, volume 2020 of Lecture
Notes in Computer Science, pages 250–265. Springer-Verlag, 2001.

6. S. Contini, A. K. Lenstra, and R. Steinfeld. VSH, an efficient and provable collision resistant
hash function. In S. Vaudenay, editor, Advances in Cryptography—Euro’06, volume 4004 of
Lecture Notes in Computer Science, pages 165–182. Springer-Verlag, 2006.

7. J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, 2002.
8. I.B. Damgård. Collision Free Hash Functions and Public Key Signature Schemes. In Ad-

vances in Cryptology (EUROCRYPT), Springer-Verlag LNCS 304, 203–216, 1987.
9. R. Granger. On Small Degree Extension Fields in Cryptology. PhD thesis, University of

Bristol, 2005.
10. R. Granger, D. Page, and M. Stam. A comparison of ceilidh and xtr. In D. Buell, editor,

ANTS-VI, volume 3076 of Lecture Notes in Computer Science, pages 235–249. Springer-
Verlag, 2004.

11. D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.
Springer-Verlag, 2004.

12. A. K. Lenstra. Using cyclotomic polynomials to construct efficient discrete logarithm cryp-
tosystems over finite fields. In V. Varadharajan, J. Pieprzyk, and Y. Mu, editors, ACISP’97,
volume 1270 of Lecture Notes in Computer Science, pages 127–138. Springer-Verlag, 1997.

13. A. K. Lenstra and E. R. Verheul. The XTR public key system. In M. Bellare, editor, Advances
in Cryptography—Crypto’00, volume 1880 of Lecture Notes in Computer Science, pages 1–
19. Springer-Verlag, 2000.

14. M. Matsui Linear Cryptanalysis Method for DES Cipher. In Advances in Cryptology (EU-
ROCRYPT), Springer-Verlag LNCS 765, 386–397, 1993.

15. R.C. Merkle. A Fast Software One-way Hash Function. Journal of Cryptology, 3, 43–58,
1990.

16. K. Rubin and A. Silverberg. Torus-based cryptography. Technical Report 39, IACR’s ePrint
Archive, 2003.

17. M.-J. O. Saarinen. Security of VSH in the real world. Technical Report 103, IACR’s ePrint
Archive, 2006.

18. V. Shoup. NTL: A Library for doing Number Theory. Available from: http://www.
shoup.net/ntl/

19. M. Stam and A. K. Lenstra. Efficient subgroup exponentiation in quadratic and sixth degree
extensions. In J. Burton S. Kaliski, Ç. Koç, and C. Paar, editors, CHES’02, volume 2523 of
Lecture Notes in Computer Science, pages 318–332. Springer-Verlag, 2003.

20. X. Wang, H. Yu, and Y. L. Yin. Efficient Collision Search Attacks on SHA-0. In Advances
in Cryptology (CRYPTO), Springer-Verlag LNCS 3621, 1–16, 2005.

21. X. Wang, Y. Yin, H. Yu. Finding Collisions in the Full SHA-1. In Advances in Cryptology
(CRYPTO), Springer-Verlag LNCS 3621, 7–36, 2005.

242 A.K. Lenstra, D. Page, and M. Stam

A Fast VSH

Recall that for i ∈ Z>0, we let pi be the i-th prime number. Let N be an RSA mod-
ulus, let k be the block length and let b be the chunking factor. To avoid intermediate
reductions, one should ensure that

∏k
i=1 p(2b−1)i < N . Note that the Merkle-Damgård

strengthening listed below might allow collisions on messages of length greater than
2bk, but for reasonable parameter choices of b and k this will not be an issue.

Algorithm 11. VSH compression function [6].

The VSH compression function HV SH : {0, 1}∗ → Z∗
N is defined as follows for an

�-bit message m consisting of bits m1,m2, . . . ,m�.

1. [Padding] Set L ← � �
bk � and mi ← 0 for � < i ≤ Lbk.

2. [Radix Conversion] SetMi =
∑b−1

j=0 mb(i−1)+j+12j for 0 < i ≤ k.

3. [Merkle-Damgård Strengthening] Let � =
∑k

i=1 �i2
(i−1)b with �i ∈ {0, 2b − 1}

be the 2b-ary representation of the message length �. Set MLk+i ← �i for 0 <
i ≤ k.

4. [Initialise Loop] Set x0 ← 1 and j ← 0.
5. [Padding] Set mi ← 0 for � < i ≤ Lbk.
6. [Finished] If j = L+ 1 terminate with output xL+1.
7. [Prepare product] Set P ←

∏k
i=1 pMi+(i−1)(2b−1) skipping those i for which

M − i = 0.
8. [Hash next block] Set xj+1 ← x2

j × P (mod N).
9. [Increase j] Increase j by one. Go back to Step 6.

How to Construct Sufficient Conditions for Hash
Functions

Yu Sasaki1, Yusuke Naito1, Jun Yajima2, Takeshi Shimoyama2,
Noboru Kunihiro1, and Kazuo Ohta1

1 The University of Electro-Communications
Chofugaoka 1-5-1, Chofu-shi, Tokyo, 182-8585, Japan

{yu339,tolucky,kunihiro,ota}@ice.uec.ac.jp
2 Fujitsu Laboratories Ltd

4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8585, Japan
{jyajima,shimo}@labs.fujitsu.com

Abstract. Wang et al. have proposed collision attacks for various hash
functions. Their approach is to first construct a differential path, and
then determine the conditions (sufficient conditions) that maintain the
differential path. If a message that satisfies all sufficient conditions is
found, a collision can be generated. Therefore, in order to apply the
attack of Wang et al., we need techniques for constructing differential
paths and for determining sufficient conditions.

In this paper, we propose the “SC algorithm”, an algorithm that can
automatically determine the sufficient conditions. The input of the SC
algorithm is a differential path, that is, all message differentials and dif-
ferentials of the chaining variables. The SC algorithm then outputs the
sufficient conditions. The computation time of the SC algorithm is within
few seconds. In applying the method of Wang et al. to MD5, there are 3
types of sufficient conditions: conditions for controlling the carry length
when differentials appear in the chaining variables, conditions for con-
trolling the output differentials of the Boolean function when the input
variables of the function have differentials and conditions for control-
ling the relationship between the carry effect and left rotation operation.
Sufficient conditions for SHA-1, SHA-0 and MD4 consist of only Type 1
and Type 2. Type 3 is unique to MD5. The SC algorithm can construct
Type 1 and Type 2 conditions; we use the method of Liang et al. to
construct Type 3 conditions.

The complexity of the collision attack depends on the number of suffi-
cient conditions needed. The SC algorithm constructs the fewest possible
sufficient conditions. To check the feasibility of the SC algorithm, we ap-
ply it to the differential path of MD5 given by Wang et al. It is shown
to yield 12 fewer conditions than the latest work on MD5. The SC al-
gorithm is applicable to the MD-family and the SHA-family. This paper
focuses on the sufficient conditions of MD5, but only as an example.

Keywords: Hash Function, Collision Attack, Differential Path, Suffi-
cient Condition.

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 243–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

244 Y. Sasaki et al.

1 Introduction

MD4, MD5, SHA-0 and SHA-1 are hash functions that are in wide use [6,7,4,5].
Since the operations of these hash functions are light, they can be calculated
quickly. A hash function H(·) must hold the following 3 properties:

Pre-image Resistance. When y is given, it must be difficult to find M s.t.
H(M) = y.

Second Pre-image Resistance. When M is given, it must be difficult to find
M ′ s.t. H(M) = H(M ′) and M �= M ′.

Collision Resistance. It must be difficult to find M,M ′ s.t. H(M) = H(M ′)
and M �= M ′

Collision Resistance is more difficult to keep than any other property. This paper
uses the term Collision Attack to refer to attacks that break Collision Resistance.
Since many collision attacks have been proposed recently, more attention has
been paid to the analysis of collision attacks.

Wang et al. proposed collision attacks against various hash functions such
as MD5 and SHA-1 [9,10,11,12,13]. We can say that their method is a form of
differential attack. Since hash functions perform only numerical addition on the
input message, Wang et al. used numerical subtraction as the differential. On
the other hand, chaining variables are used for calculating not only numerical
addition but also Boolean functions. Therefore, Wang et al. used both numer-
ical subtraction and XOR to express the differentials of chaining variables. In
this paper, we call the differentials of numerical subtraction “numerical differ-
entials” and the differentials of XOR “bit differentials”. The method of Wang
et al. can be divided into 2 phases: pre-computation and collision search. In the
pre-computation phase, a differential path is constructed and the conditions for
maintaining the differential path are determined. In this paper, we call these con-
ditions “sufficient conditions”. The sufficient conditions are constructed to suit
the differential path. In the collision search phase, they, together with message
modification, enable a message that satisfies all sufficient conditions to be effi-
ciently found. If such a message is found, a collision can be generated. Therefore,
in order to apply the attack of Wang et al., we need the following 2 techniques:

1. method of constructing a differential path that can lead to a collision,
2. method of determining the sufficient conditions.

To ensure practicality, these techniques should be automated. This would allow
many differential paths that have high probability in terms of generating collision
to be automatically constructed by technique #1, and the sufficient conditions of
those differential paths to be automatically constructed by technique #2. These
techniques also should minimize the number of conditions since the complexity
of the collision attack depends on the number of sufficient conditions.

The paper of Wang et al. describes a differential path and the sufficient con-
ditions for maintaining the path. Unfortunately, they did not explain how to
construct the sufficient conditions. Furthermore, there was no guarantee that the

How to Construct Sufficient Conditions for Hash Functions 245

proposed sufficient conditions were correct. Many researchers have attempted to
rectify these omissions. P. Hawkes, M. Paddon and G. G. Rose analyzed how
sufficient conditions worked to generate a collision [2], J. Black, M. Cochran
and T. Highland studied how to determine the message differential of MD5 [1].
However, these papers did not describe an algorithm for determining the suf-
ficient conditions. M. Schlaffer and E. Oswald analyzed how to construct the
differential path and the sufficient conditions, but only for MD4 [8]. These anal-
yses targeted specific hash functions, MD4 or MD5. Therefore, it is unknown
whether these analyses can be applied to the SHA-family. In this paper, we
propose an algorithm that can automatically determine the sufficient conditions
when a differential path is given. For any given differential path, the correspond-
ing sufficient condition sets are not unique. Our algorithm determines the fewest
possible sufficient conditions in order to reduce attack complexity. This algo-
rithm is applicable to the SHA-family and the MD-family. In this paper, we
explain how to determine the sufficient conditions of MD5 as an example.

Outline of Constructing Sufficient Condition Algorithm. The input of
our algorithm is a differential path, that is, all message differentials and the
differentials of chaining variables. Our algorithm then outputs the sufficient con-
ditions. In this paper, we call this algorithm “The SC algorithm”. In the attack
of Wang et al. for MD5, there are 3 types of sufficient conditions.

Type 1: Conditions for controlling the carry length when differentials appear
in the chaining variables

Type 2: Conditions for controlling the output differentials of the Boolean func-
tion when input variables of the function have differentials

Type 3: Conditions for controlling the relationship between the carry effect and
left rotation operation

Sufficient conditions for SHA-1, SHA-0 and MD4 consist of only Type 1 and
Type 2. Type 3 is unique to MD5. The SC algorithm can construct Type 1 and
Type 2 conditions, so all sufficient conditions for SHA-1, SHA-0 and MD4 can be
constructed. However, the SC algorithm cannot, by itself, construct all sufficient
conditions for MD5. Although Wang et al. did not describe Type 3 conditions,
other research groups have. J. Yajima and T. Shimoyama experimentally found
conditions for rotation and carry [14]. J. Liang and X. Lai proposed a method
of constructing conditions for rotation and carry, and described the construction
of all Type 3 conditions [3].

We need to construct conditions for controlling the carry length for all dif-
ferentials in the chaining variables. For example, when a chaining variable has
a differential of +2i, the number of bits that are changed by the differential is
dependent on the value of the chaining variable. If the value of the chaining
variable in bit position i + 1 is 0, it is changed into 1 by the differential, and
the other bits remain unchanged. However, if the value of the chaining variable
in bit position i+ 1 is 1, a carry is triggered in bit position i+ 1 and the value
in bit position i+ 2 is also changed. Therefore, if we want to stop the carry, we
must fix the value in bit position i + 1 to 0 by setting a sufficient condition. If

246 Y. Sasaki et al.

we need to trigger a carry, we must fix the value in bit position i + 1 to 1. If
the carry is long, the number of bit differentials used to calculate the Boolean
function becomes big. Therefore, the number of sufficient conditions for control-
ling the Boolean function increases. The SC algorithm minimizes the sufficient
conditions, therefore, the number of bit differentials triggered by a carry must be
as small as possible. The SC algorithm, first, sets differentials to prevent carries.
If it needs to expand a carry, the SC algorithm tries to make carry length as
short as possible.

Conditions for controlling the output differentials of the Boolean function are
constructed by bit differentials of input variables of the function. For each bit
differential of an input variables we decide whether it should be reflected in the
output. The following situation is considered as an example.

- Boolean function φ is defined as φ(x, y, z) = (x ∧ y) ∨ (¬x ∧ z)1.
- The chaining variable z has a differential in bit position i.

In this example, if the value of x in bit position i is 0, the value of φ becomes
φ(0, y, z) = (0 ∧ y) ∨ (1 ∧ z) = z. Therefore, the output of the φ has the same
differential as z in bit position i. On the other hand, if the value of x in bit
position i is 1, the value of φ becomes φ(1, y, z) = (1∧y)∨(0∧z) = y. Therefore,
the output of φ doesn’t have a differential.

To check the feasibility of the proposed algorithm, we applied it to the differ-
ential path of MD5 given by Wang et al. [11]. The latest result on the sufficient
conditions of the path of Wang et al. was provided by Liang et al. [3]. Although
Liang et al. pointed out and corrected some mistakes of the original sufficient
conditions of Wang et al., we newly found that the corrected conditions described
by Liang et al. still contained unnecessary conditions. Since collision attack com-
plexity depends on the number of sufficient conditions, the SC algorithm yields
a more efficient attack. Our sufficient conditions are used to generate an actual
collision.

Section 2 explains the structure of the hash functions and notations used in
this paper. Section 3 introduces our algorithm for constructing sufficient condi-
tions. This is the main content of this paper. In Section 4, we explain the results
of applying the proposed algorithm to the differential path of MD5 given by
Wang et al. In Section 5, we explain the application of the proposed algorithm
to other hash functions such as MD4, SHA-0, SHA-1. Finally, we summarize this
paper.

2 Preliminaries

2.1 Description of Hash Functions: The MD-Family and the
SHA-Family

All hash functions attacked by Wang et al. have the Merkle-Damg̊ard structure.
They calculate the hash value by repeatedly calculating a compression function.
1 This Boolean function is used in the first round of MD4, MD5, SHA-0 and SHA-1.

How to Construct Sufficient Conditions for Hash Functions 247

In MD4,MD5,SHA-0 and SHA-1, the input message is padded to yield a multiple
of 512 bits. Since the padding procedure is not related to the collision attack, we
omit an explanation of the padding procedure. Padded messageM is divided into
512-bit messages (M = M1,M2, · · · ,Mn, |Mi| = 512). These divided messages
are input to the compression function.

h1 =compress(M1, IV)→h2 =compress(M2, h1) → · · · → hn =compress(Mn, hn−1)

H(M) = hn

In the above expression, IV is a constant defined by the specification of the
compression function. In this paper, we call the calculation performed in a single
run of the compression function “1 block”.

We next explain the structure of the compression function. Although the com-
pression function depends on the hash function, MD4,MD5,SHA-0 and SHA-1
share many similar structures. All calculations in these hash functions are 32-bit.
In this paper, we exclude the description of “mod 232”. A message input to com-
pression function Mi is divided into 32 bit messages (Mi = m0,m1, · · · ,m15). In
SHA-0 and SHA-1, m16 to m79 are calculated by message expansion. However,
since the proposed algorithm assumes that message differentials after message
expansion are given, we omit details of message expansion. The chaining vari-
ables are updated by a certain calculation. In this paper, we call the calculation
for updating the chaining variables 1 time the “Step Function”. We use the
notation Qi to describe the chaining variable calculated in the i-th step. The
step function also differs depending on the hash function used. Since we focus
on MD5 in this paper, we explain the step function of MD5. In MD5, the step
function is repeated 64 times. Chaining variables Qi, 0 ≤ i ≤ 63 are calculated
as follows:

Qi = Qi−1 + (Qi−4 + φ(Qi−1, Qi−2, Qi−3) + mi + ti) ≪ j

Here, ti is a constant defined in each step, ≪ j denotes left rotation by j bits.
mi is a message. Q−1, Q−2, Q−3 and Q−4 are the initial values defined by the
specification of MD5. Steps 0-15 are called the first round. Steps 16-31, 32-47 and
48-63 are the second, third and fourth rounds, respectively. φ(Qi−1, Qi−2, Qi−3)
is a Boolean function defined in each round. Details are as follows:

1st round: φ(X,Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)
2nd round: φ(X,Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z)
3rd round: φ(X,Y, Z) = X ⊕ Y ⊕ Z
4th round: φ(X,Y, Z) = (X ∨ ¬Z)⊕ Y

At the last, the compression function outputs (Q−4 +Q60)||(Q−3 +Q61)||(Q−2 +
Q62)||(Q−1 +Q63).

2.2 List of Notations

In this section, we define the notations used in this paper.

248 Y. Sasaki et al.

- mi, 0 ≤ i ≤ 63 denotes a message used in step i.
- Qi, 0 ≤ i ≤ 63 denotes a chaining variable calculated in step i. Qi,−4 ≤ i ≤
−1 are the initial values.

Qi = Qi−1 + (Qi−4 + φ(Qi−1, Qi−2, Qi−3) + mi + ti) ≪ j

- φi, 0 ≤ i ≤ 63 denotes a Boolean function used in step i.
- xi,j , 0 ≤ i ≤ 63, 1 ≤ j ≤ 32 (x is one of m, Q, φ) denotes a value of x in the

bit position j in step i.
- Δx (x is one of m, Q, φ) denotes the differentials of x. Regarding mi, φi,

we consider only numerical differentials since they are used only to calcu-
late addition. We describe numerical differential by using the exponentiation
of 2.

- Qi[±j] denotes the bit differentials of Qi. Regarding Qi, we need to consider
not only numerical differentials but also bit differentials since they are used
to calculate both addition and Boolean functions. Qi[j] means that there
exists a bit differential whose sign is + in bit position j. Qi[−j] means that
there exists a bit differential whose sign is − in bit position j. For example,
the description Q3[6, 7,−8,−20,−21,−22, 23] means that Q3 has positive
differentials in bit positions 6,7,23 and negative differentials in bit positions
8,20,21,22. If we describe these bit differentials by using numerical differ-
entials, we have ΔQ3 = −25 + 219. On the other hand, when numerical
differentials are given to a chaining variable, we cannot determine the cor-
responding bit differentials. Unless the values of Q3 are fixed by sufficient
conditions, we cannot determine the bit differentials from numerical differ-
entials. For example, the numerical differential ΔQ3 = −25 can be Q3[−6],
Q3[6,−7], Q3[6, 7,−8] and so on.

3 Algorithm for Constructing Sufficient Conditions
(The SC Algorithm)

If our algorithm is provided with a differential path, that is, all message dif-
ferentials and numerical differentials of chaining variables, it outputs the cor-
responding sufficient conditions. In this paper, we call this algorithm “The SC
algorithm”. The step function for step i is as follows:

Qi = Qi−1 + (Qi−4 + φ(Qi−1, Qi−2, Qi−3) + mi + ti) ≪ j

In the above expression, ΔQi, ΔQi−1, ΔQi−2, ΔQi−3, ΔQi−4 and Δmi are given
in the SC algorithm. Since φ is a Boolean function, φ is calculated in each bit po-
sition. Therefore, we need to construct sufficient conditions that determine which
bits of ΔQi−1, ΔQi−2 and ΔQi−3 have differentials. We need to construct such
conditions for all differentials of the chaining variables. All operations except for
Boolean function φ consist of addition and rotation. Therefore, we cannot con-
trol the impact of differentials except for φ. However, regarding the differentials
of chaining variables that are used as input of φ, we can control whether we

How to Construct Sufficient Conditions for Hash Functions 249

reflect the differentials of input to the output of φ or not by using the property
of φ. Therefore, we construct sufficient conditions for controlling the output of φ
for all bits that have differentials. Finally, the SC algorithm constructs 2 types
of sufficient conditions.

- Conditions for controlling the carry length when differentials appear in the
chaining variables

- Conditions for controlling the output differentials of φ when input variables
of φ have differentials

The SC algorithm goes backward when it constructs sufficient conditions.
That is, the SC algorithm constructs conditions from the last step of the last
message block to the first step of the first message block. In each step, the SC
algorithm uses the following procedure to construct the sufficient conditions.

Process 1: Calculate Δφ. We will find some candidates of Δφ. We choose the
one that has the highest probability in terms of maintaining the differential
path (Discussed in Section 3.1).

Process 2: Set the differentials of the chaining variables to prevent carries.
Process 3: Construct sufficient conditions for controlling the output of Δφ from

the first bit to the last bit (Discussed in Section 3.2). If the SC algorithm can
construct conditions for all bit differentials of all chaining variables, output
those sufficient conditions, and stop the algorithm. If a sufficient condition
we need contradicts a sufficient condition constructed in a previous step, we
run the following procedures to eliminate the contradiction.
Process 3-1: If we can avoid contradiction within that step, do it. Otherwise,

go to process 3-2 (Discussed in Section 3.3).
Process 3-2: Let the previous step in which the contradicted condition was

constructed be step A. First, algorithm resets the conditions which were
constructed after step A. After that, algorithm goes back to step A,
and choose another sufficient condition that avoids the contradiction.
Then, algorithm restarts from step A. If contradiction is not solved, go
to process 3-3.

Process 3-3: We calculate Δφ of this step, and then choose the Δφ that has
the next highest probability as Δφ in this step. If we try all Δφ and the
contradiction remains, it means that there is no sufficient condition which
can hold the given differential path. Therefore, we stop the algorithm.

To show how the SC algorithm works, we offer the following example:

- ΔQi−1 = 0, ΔQi−2 = 0, ΔQi−3 = 25, Δφ(Qi−1, Qi−2, Qi−3) = 27,
- φ(Qi−1, Qi−2, Qi−3) = (Qi−1 ∧Qi−2) ∨ (¬Qi−1 ∧Qi−3).

At first, Procedure 1 is executed, so Δφ is calculated. Δφ(Qi−1, Qi−2, Qi−3)
can be calculated by the following equation (We explain the strict method used
to calculate Δφ in Section 3.1):

Δφ(Qi−1, Qi−2, Qi−3) = ((ΔQi −ΔQi−1) ≫ j)−ΔQi−4 −Δmi −Δti

250 Y. Sasaki et al.

Then in Process 2, all differentials of the chaining variables are set so as to
prevent carries. After that, in Process 3, we construct sufficient conditions for
controlling Δφ. In this example, since no input variable of φ has a differential
in bit position 8, it is impossible to make Δφ(Qi−1, Qi−2, Qi−3) = 27. This is a
contradiction in Process 3. This contradiction can be resolved in Process 3-1 by
expanding the carry of differentials in Qi−3. We make the bit differential in bit
position 8 by expanding the carry of 25 in ΔQi−3. If the value of Qi−3 in bit
position 8 changes, we can make the differential 27 in the output of φ. In order to
transmit the carry up to bit position 8, we construct “Qi−3,6 = 1”, “Qi−3,7 = 1”
and “Qi−3,8 = 0” as sufficient conditions for controlling the carry length. By
these conditions, the bit differentials of ΔQi−3 become Qi−3[−6,−7, 8], and we
can make Δφ = 27. Conditions for controlling the carry length are constructed
in the same way.

Since the bit differentials of ΔQi−3 change into Qi−3[−6,−7, 8], we have to
control all of them in Boolean function φ. Regarding bit positions 6 and 7,
though Qi−3 has differentials, Δφ doesn’t have output differentials in those bits.
Therefore, we need to construct conditions to guarantee that the bit differentials
of Qi−3 in bit positions 6 and 7 don’t impact the output of Δφ. From the
property of φ, if we fix the value of Qi−1,6 and Qi−1,7 to be 1, the output
of φ doesn’t have differentials in those bits. Therefore, we construct sufficient
conditions “Qi−1,6 = 1” and “Qi−1,7 = 1”. Then in bit position 8, we make
the differential Δφ(Qi−1, Qi−2, Qi−3) = 27 by using the bit differential of Qi−3.
From the property of φ, if we fix the value of Qi−1,8 to be 0, we can make 27

in Δφ. This yields sufficient conditions “Qi−1,8 = 0”. Conditions for controlling
Δφ are constructed in the same way.

In the SC algorithm, we focus on the input differentials and output differen-
tials of φ, and construct sufficient conditions as shown in the example. The SC
algorithm goes backward, that is, it constructs conditions from the last step of
the last message block to the first step of the first message block. In this section,
we give the details of each procedure. In Section 3.1, we explain how to strictly
calculate Δφ. In Section 3.2, we explain how to construct conditions for control-
ling the carry length of the chaining variables. In Section 3.3, we explain how to
construct conditions for controlling the output of Δφ. In Section 3.4, we explain
methods that avoid contradictions.

3.1 Calculating Δφ

We explain how to calculate Δφi when ΔQi, ΔQi−1, ΔQi−2, ΔQi−3, ΔQi−4 and
Δmi are given. φi is the Boolean function in step i. It is used to calculate Qi.
The expression for Qi is as follows:

Qi = Qi−1 + (Qi−4 + φ(Qi−1, Qi−2, Qi−3) + mi + ti) ≪ j.

For convenience, in this paper, we introduce notations ui and vi.

vi = (Qi−4 + φ(Qi−1, Qi−2, Qi−3) + mi + ti)
ui = (Qi−4 + φ(Qi−1, Qi−2, Qi−3) + mi + ti) ≪ j

How to Construct Sufficient Conditions for Hash Functions 251

ui and vi are also described as ui = Qi −Qi−1 and vi = ui ≫ j. We calculate
Δφi by the following procedure:

Step 1: Calculate Δui by using Δui = ΔQi −ΔQi−1.
Step 2: Calculate Δvi = ((ui +Δui) ≫ j)−(ui ≫ j) for all ui. The value of ui

is a 32-bit number. Therefore, we need to repeat this calculation 232 times
for each step. As a result of this computation, we will get at most four kinds
of Δvi. In order to raise the probability that a random value that satisfies
Δvi also satisfies Δui in this step, we choose the most frequently appearing
value as Δvi. However, if sufficient conditions cannot be constructed for such
Δv, it is possible to choose a differential that has smaller probability. The
influence of this reduction in probability in the first round can be ignored
with regard to overall attack complexity. However, if such a selection must
be made in the second or later rounds, it may have a significant influence.
In this case, choosing another differential path is required.

Step 3: Calculate Δφi by using Δφi = Δvi −Δmi−1 −ΔQi−4. Δti is always 0
since ti is a constant. Therefore, we don’t have to consider it.

3.2 Sufficient Conditions for Controlling the Carry of Chaining
Variables

When a differential appears in a chaining variable, we have to decide whether
we make a carry or not. In order to control the carry of a differential, we fix the
value of the chaining variable where the differential exists by setting a sufficient
condition. We construct such conditions by the following branches:

Let chaining variable Qi have a differential of either +2j−1 or −2j−1.

Case 1: The sign of the differential is “+”.
Case 1-1: If we stop the carry, we can construct sufficient condition Qi,j =

0. By this condition, the value of Qi,j changes from 0 to 1. No carry
is triggered by this differential and no other bits are changed by this
differential.

Case 1-2: If we expand the carry, we can construct sufficient condition
Qi,j = 1. By this condition, the carry is expanded to the upper bits of
Qi,j , and Qi,j+1 is also changed by this differential.

Case 2: If the sign of the differential is “-”
Case 2-1: If we stop the carry, we can construct sufficient condition Qi,j = 1.
Case 2-2: If we expand the carry, we can construct sufficient condition
Qi,j = 0.

If we decide to expand the carry from the i-th bit to the i+1-th bit, we need to
decide whether the carry should be expanded to i+2-th bit or not. Therefore, we
also need to construct a sufficient condition for the expanded carry. By repeating
this process, we can make the carry expand in arbitrary length (up to MSB).

We explain this algorithm by using the following example. For example, we
assume that a differential of Q4 is 26. In this case, the sign of the differential is

252 Y. Sasaki et al.

“+”, therefore, Case 1 is executed. If we stop the carry, Case 1-1 is executed.
Thus, “Q4,7 = 0” is generated as a sufficient condition. If we expand the carry,
Case 1-2 is executed. Thus, “Q4,7 = 1” is generated as a sufficient condition,
and we then decide a condition for Q4,8.

If the length of the carry is different, the result of modular integer addition
is not changed but the output of the Boolean function φ is changed. Generally
speaking, if the number of bits that change by differentials increases, the number
of sufficient conditions we need also increases (both conditions for controlling
carry and conditions for controlling the output of φ). Therefore, at first, we
construct conditions which stop the carry of differentials. If these conditions
raise contradictions when we construct other conditions, we choose the other
condition created by expanding the carry of the differential.

3.3 Sufficient Conditions for Controlling the Output of Boolean
Function φ

The output differentials of Boolean function φ can be controlled by construct-
ing sufficient conditions. After we calculate Δφ and decide the carry length of
chaining variables, we construct sufficient conditions for controlling Δφ.

In order to construct such conditions in step i in bit position j, we apply the
following algorithm.

Process 1: If all differentials of the input and output of Δφi in bit position j
are 0, we don’t generate sufficient conditions since the output differential al-
ways holds (sufficient conditions are not needed). Otherwise, go to Process 2.

Process 2: For all possible input values, calculate the value of φi and φ′i, that
is, the value of φi after the differentials are applied.

Process 3: Calculate Δφi = φ′i − φi for all possible input values.
Process 4: Choose input values whose Δφi are the same as the Δφi in this step.
Process 5: Extract the smallest common characteristics of the input values

chosen in Process 4.Extracted conditions are the sufficient conditions.

By applying this algorithm from i = 63 to i = 0 and j = 1 to j = 32, we can
construct all sufficient conditions for controlling Δφ. To show how the above
algorithm works, we give a small example. We assume the following situation.

- We construct sufficient conditions for controlling Δφ63. (Input of φ63 are
Q62, Q61 and Q60.)

- Differential of φ63 is ±231.
- Bit differential of Q62 is Q62[−26,±32].
- Bit differential of Q61 is Q61[−26,±32].
- Bit differential of Q60 is Q60[±32].

We set sufficient conditions for controlling φ from the first bit to the last bit.

- Bit positions 1-25: In this example, the input and output of φ63 don’t have any
differentials in these bit positions. Therefore, we don’t generate any sufficient
condition as defined in Process 1.

How to Construct Sufficient Conditions for Hash Functions 253

- Bit position 26: Q62 and Q61 have differentials in bit position 26, whereas,
Δφ63 does not have. Therefore, Processes 2-5 are executed. In Process 2,
we simulate the value of φ63,26 and Δφ′63,26 for all possible input values
Q62,26, Q61,26 and Q60,26. This result is shown in the second and third col-
umn of Table 1. In Table 1, x, y, z represents the value of Q62,26, Q61,26 and
Q60,26, respectively. In Process 3, we calculate the value of Δφi = φ′i − φi

for all possible input values. This result is shown in the fourth column of
Table 1. In Process 4, we choose (x, y, z) = (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)
as possible input values since their Δφi are the same as the φ63,26. In Pro-
cess 5, we extract the smallest common characteristics of the input values
chosen in Process 4. We can easily find that “z = 1”, that is, “Q60,26 = 1”
is the smallest common characteristic of the input values chosen in Pro-
cess 4. Finally, we construct “Q60,26 = 1” as a sufficient condition for
“Δφ63,26 = 0”.

Table 1. Constructing Sufficient Conditions for “Δφ63,26 = 0”

x, y, z φ(x, y, z) φ′ = φ(¬x, ¬y, z) Δφ(= φ′ − φ)
0,0,0 1 0 -1
0,0,1 0 0 0
0,1,0 0 1 1
0,1,1 1 1 0
1,0,0 1 0 -1
1,0,1 1 1 0
1,1,0 0 1 1
1,1,1 0 0 0

- Bit positions 27-31: There are no input and output differentials for φ63, so we
don’t generate any sufficient condition as defined in Process 1.

- Bit position 32: Q62, Q61 and Q60 have differentials in bit 32, and Δφ63,32 =
±231. Therefore, Processes 2-5 are executed. In Process 2, we simulate the
value of φ63,32 and Δφ′63,32 for all possible input values Q62,32, Q61,32 and
Q60,32. This result is shown in the second and third column of Table 2.
In Table 2, x, y, z represents the value of Q62,32, Q61,32 and Q60,32, respec-
tively. In Process 3, we calculate the value of Δφi = φ′i − φi for all pos-
sible input values. This result is shown in the fourth column of Table 2.
In Process 4, we choose (x, y, z) = (0, 0, 0), (0, 1, 0), (1, 0, 1), (1, 1, 1) as pos-
sible input values since their Δφi are one of the φ63,32. In Process 5, we
extract the smallest common characteristics of the input values chosen in
Process 4. We can easily find that “x = z”, that is, “Q62,32 = Q60,32”
is the smallest common characteristic of the input values chosen in Pro-
cess 4. Finally, we construct “Q62,32 = Q60,32” as a sufficient condition for
“Δφ63,32 = ±1”.

254 Y. Sasaki et al.

Table 2. Constructing Sufficient Conditions for “Δφ63,32 = ±1”

x, y, z φ(x, y, z) φ′ = φ(¬x,¬y, ¬z) Δφ(= φ′ − φ)
0,0,0 1 0 -1
0,0,1 0 0 0
0,1,0 0 1 1
0,1,1 1 1 0
1,0,0 1 1 0
1,0,1 1 0 -1
1,1,0 0 0 0
1,1,1 0 1 1

Since we now have constructed all sufficient conditions for all bits of φ63,
the desired differentials of φ63 can be calculated with probability of 1. By ap-
plying this procedure to all steps, we can construct all sufficient conditions for
controlling Δφ.

3.4 Techniques for Avoiding the Contradiction of Sufficient
Condition

The contradiction of a sufficient condition means that a sufficient condition that
we need to construct in a certain step is contradicted by a sufficient condition
constructed in a previous step. For example, assume that we construct condition
“Q30,5 = 0” to stop the carry of Q30, and then, construct condition “Q30,5 = 1”
for controlling Δφ31. In this example, the sufficient condition for Q30 is contra-
dicted. When we execute the SC algorithm, such contradictions are frequent, so
techniques for avoiding them are very important. This is possible by executing
the next procedure.

Process 1: If we can avoid contradiction within that step, do it. Otherwise, go
to process 2.

Process 2: Algorithm goes back to the previous step in which the contradicted
condition was constructed, and then choose another sufficient condition in
order to avoid contradiction. The algorithm restarts from this step. If the
contradiction is not resolved, go to process 3.

Process 3: We calculate Δφ of this step, then choose another Δφ that has
the next highest probability as the Δφ of this step. (Discussed in 3.1). If
we try all Δφ but the contradiction remains, it means there is no sufficient
condition that can maintain the given differential path. Therefore, we stop
the algorithm.

In this section, we explain the 2 techniques of Process 1.

Expanding Carry
We sometimes need to expand the effect of the chaining variable carry. This
situation occurs when Δφi in bit position j is not 0, but differentials of all input

How to Construct Sufficient Conditions for Hash Functions 255

chaining variables to φi in bit position j are 0. As long as the differentials of all
input chaining variables are 0, it is impossible to make differentials in the output
of φ. Therefore, we expand the carry of a differential from the next lowest bit
position to bit position j. We give an example to explain this technique.

We assume that the value of Δφi is 2−19, and bit differentials of chain-
ing variables Qi−1, Qi−2, Qi−3 which are inputs of φi are Qi−1[5], Qi−2[−16],
Qi−3[10, 11,−12]. Since Δφi in bit position 20 is not 0, at least one of the in-
put variables Qi−1, Qi−2 and Qi−3 need to have a differential in bit position 20.
However, no input variable has a differential in bit position 20. Therefore, we
need to expand the carry of a chaining variable up to bit position 20. Since the
bit differential nearest to 20 is Qi−2[−16], we expand the effect of Qi−2[−16]
up to bit position 20 by using the carry. To do this, we use the technique
of constructing sufficient conditions for controlling carry length (Discussed in
Section 3.2). Finally, we get sufficient conditions Qi−2,16 = 0, Qi−2,17 = 0,
Qi−2,18 = 0, Qi−2,19 = 0, Qi−2,20 = 1.

Changing the Representative of Δφ
The representative ofΔφ can be changed. For example,Δφ = 220 can be changed
to Δφ = −220 + 221, or Δφ = −220 − 221 + 222 and so on. This technique is
useful when Δφi in bit position j and input chaining variables of φi in bit
position j and subsequent bit have differentials, but the sign of Δφi and the sign
of differentials that can be created by input chaining variables in bit position j
are opposite. If this situation occurs, we change the expression of Δφi = ±2j−1

to Δφi = ∓2j−1 ± 2j (the order of the sign must be same). By this change,
we can avoid a contradiction in bit position j. Therefore, if sufficient conditions
for controlling Δφi in bit position j+1 are constructed without contradiction,
we can solve all problems with regard to Δφi.

We show the usefulness of this transformation by considering the following
situation.

Input chaining variables for φi are x, y and z.

- The expression of φi is φi(x, y, z) = (x ∧ y) ∨ (¬x ∧ z)
- The value of Δφi is 214.
- Differential of x is 0.
- Differential of y is y[20].
- Differentials of z are z[−15,−16,−17,−18,−19,−20, 21].

In this case, from the property of φ, it is impossible to make Δφi = 214 by
setting sufficient conditions. However, it is possible to make Δφi = −214. There-
fore, we replace the value of Δφi = 214 with Δφi = −214 + 215. This allows the
construction of sufficient conditions for controlling Δφ in bit position 15. How-
ever, there is another problem in bit 16. Since it is impossible to makeΔφi = 215,
we need to further transform the expression of Δφ. We continue this discussion
until the contradiction of Δφi is resolved. In the end, we transform Δφi = −214

256 Y. Sasaki et al.

into Δφi = −214 − 215 − 216 − 217 − 218 + 219, and we get sufficient conditions
x15 = 0, . . . , x19 = 0, x20 = 1 in order to control the differential of Δφi.

By using the techniques explained in this section, we can find all sufficient
conditions for maintaining the differential path. In the next section, we show
the result of applying the SC algorithm to the differential path of MD5 given by
Wang et al.

4 Results of Applying the SC Algorithm to the
Differential Path of MD5 Given by Wang et al.

To check the feasibility of the SC algorithm, we apply it to the differential
path of MD5 given by Wang et al. [11]. Liang et al. corrected some of the
mistakes in the original sufficient conditions of Wang et al. in their paper [3]. Our
research showed that it was possible to further reduce the number of sufficient
conditions. We found that the result of Liang et al. included 11 unnecessary
sufficient conditions in the 1st round of the 1st block, and 1 condition in the 4th
round of the 2nd block.

Liang et al. pointed out several of the mistakes in the sufficient conditions [3].
For the 1st block, they added the conditions “Q61,26 = 0” and “Q62,26 = 0”,
corrected the condition of Q62,32 from “Q62,32 = Q61,32” to “Q62,32 = Q60,32”
and deleted the condition “Q60,27 = 0”. For the 2nd block, they added the
condition “Q59,26 = 0”. In their paper, they showed only these results. They
failed to mention how they identified the mistakes of Wang et al. In our research,
as a result of applying the SC algorithm to the differential path, we could find
the same mistakes and several new ones.

First, the SC algorithm deletes the condition “Q63,26 = 1” from the 2nd
block. This claim can be confirmed by running the SC algorithm for step 63
of the 2nd block. Deleting “Q63,26 = 1” means that we don’t have to wait
until “Q63,26 = 1” is satisfied by random search in the collision search phase.
Therefore, the complexity of the 2nd block is reduced by a factor 1/2.

Second, we found that 11 conditions in the 1st round of the 1st block could be
deleted. These conditions are “Q3,21 = Q2,21”, “Q3,22 = Q2,22”, “Q3,23 = Q2,23”,
“Q4,21 = 0”, “Q4,22 = 0”, “Q4,23 = 1”, “Q5,21 = 1”, “Q5,22 = 1”, “Q5,23 = 1”,
“Q6,22 = 1”, “Q6,23 = 1”. These conditions are related to the carry length of
the differential in Q4. The method of Wang et al. expands the carry of −26

in Q4 to bit position 23. However, the SC algorithm found that the collision
paths could hold even if we shorten the carry length to bit position 20. In order
to stop the carry in bit position 20, we need to change the condition of Q4,20
from “Q4,20 = 0” to “Q4,20 = 1”. This allows us to delete the conditions for
controlling carry length from bit position 21 to 23 and conditions for controlling
Δφ5, Δφ6 and Δφ7 that includes Q4 as input.

We show a collision that was generated, without the above unnecessary con-
ditions, in Table 3. This collision cannot be generated by using the sufficient
conditions given by Wang et al.

How to Construct Sufficient Conditions for Hash Functions 257

Table 3. Generated Collision Messages without Unnecessary Sufficient Conditions

M0 0x8b075d00f54501bce81f9cab86312f9d3a8bdca58446d56583e9e8365f99ddba
069badd582343c027f16e96793f95b7bdcdbe711c0dc183a6966bb7243c35a00

M1 0x6c434ce72b9c78834e6f32b8ddfeb19025dc928a2cfc643df71f7512ee2de7d2
117670796628d0b098571b460d91348085075cc9ff33ceb5d8f871a1971f1fe0

M ′
0 0x8b075d00f54501bce81f9cab86312f9dba8bdca58446d56583e9e8365f99ddba

069badd582343c027f16e96793f9db7bdcdbe711c0dc183ae966bb7243c35a00
M ′

1 0x6c434ce72b9c78834e6f32b8ddfeb190a5dc928a2cfc643df71f7512ee2de7d2
117670796628d0b098571b460d90b48085075cc9ff33ceb558f871a1971f1fe0

Hash value 0x94db011516925a92cb0af8dd07992804

5 Application to Other Hash Functions

The SC algorithm is applicable to not only MD5 but also SHA-1, SHA-0, and
MD4. Even if the considered hash function is changed, the input and the output
of the SC algorithm does not change. That is, the input of the SC algorithm is
all message differentials and the differentials of chaining variables.

In this section, we apply the SC algorithm to SHA-1, and explain how to
construct sufficient conditions of SHA-1. In SHA-1, the number of chaining vari-
ables is 5 (ai, bi, ci, di, ei). These chaining variables are updated in every step.
The number of steps is 80. The step function in step i is as follows:

ai = (ai−1 ≪ 5) + φ(bi−1, ci−1, di−1) + ei−1 + mi−1 + ki−1,

bi = ai−1,

ci = bi−1 ≪ 30,
di = ci−1,

ei = di−1.

Here, ki−1 is a constant. In the case of SHA-1, the method used to calculate
Δφ is different from that for MD5. Δφ can be calculated by transforming the
expression for ai.

Δφ = Δai − (Δai−1 ≪ 5)−Δei−1 −Δmi−1 −Δki−1

Since the expression for Δφ of SHA-1 doesn’t include a rotation operation, which
exists in the case of MD5, the number of candidates of Δφ for SHA-1 is 1.
Therefore, we don’t need to search for candidates of Δφ by trying all possible
values. The procedure after getting Δφ is the same as that in the case of MD5.
However, the SC algorithm cannot execute Procedure 3.3 of MD5, which tries
to apply several Δφ. Since the structure of the compression functions of SHA-0
and MD4 are similar to that of MD5, the SC algorithm can construct sufficient
conditions for SHA-0 and MD4 by using similar procedures.

258 Y. Sasaki et al.

6 Conclusion

In this paper, we proposed an algorithm, the SC algorithm, that can automati-
cally construct sufficient conditions. The input of the SC algorithm is a differen-
tial path, that is, all message differentials and numerical differentials of chaining
variables. The SC algorithm outputs the sufficient conditions. In the attack of
Wang et al. for MD5, there are 3 types of sufficient conditions.

Type 1: Conditions for controlling the carry length when differentials appear
in the chaining variables

Type 2: Conditions for controlling the output differentials of the Boolean func-
tion when input variables of the function have differentials

Type 3: Conditions for controlling the relationship between the carry effect and
left rotation operation

Sufficient conditions for SHA-1, SHA-0 and MD4 consist of only Type 1 and
Type 2. Type 3 is unique to MD5. The SC algorithm can construct Type 1 and
Type 2 conditions, so all sufficient conditions for SHA-1, SHA-0 and MD4 can be
constructed. However, regarding MD5, it is impossible to construct all sufficient
conditions by using only the SC algorithm. Liang et al. proposed a method that
constructs Type 3 conditions [3]. Therefore, by running the SC algorithm and
the method of Liang et al., all sufficient conditions of MD5 can be constructed.

In this research, in order to show the feasibility of the SC algorithm, we ap-
plied it to the differential path of MD5 given by Wang et al. As a result, we
could construct more efficient sufficient conditions (11 fewer necessary condi-
tions) compared to the latest work on the same subject.

Acknowledgement

We would like to thank The Telecommunications Advancement Foundation for
supporting our research.

References

1. J. Black, M. Cochran and T. Highland. A Study of the MD5 Attacks. FSE 2006,
Springer-Verlag, 2006.

2. P. Hawkes, M. Paddon and G. G. Rose. Musings on the Wang et al. MD5 Collision.
Cryptology ePrint Archive, Report 2004/264.

3. J. Liang and X. Lai. Improved Collision Attack on Hash Function MD5. Cryptology
ePrint Archive, Report 2005/425.

4. NIST. Secure hash standard. Federal Information Processing Standard, FIPS-180,
May 1993.

5. NIST. Secure hash standard. Federal Information Processing Standard, FIPS-180-1,
April 1995.

6. R. Rivest. The MD4 Message Digest Algorithm. CRYPTO’90 Proceedings, 1992,
http://theory.lcs.mit.edu/˜rivest/Rivest-MD4.txt

How to Construct Sufficient Conditions for Hash Functions 259

7. R. Rivest. The MD5 Message Digest Algorithm. CRYPTO’90 Proceedings, 1992,
http://theory.lcs.mit.edu/˜rivest/Rivest-MD5.txt

8. M. Schlaffer and E. Oswald. Searching for Differential Paths in MD4. FSE 2006,
Springer-Verlag, 2006.

9. X. Wang, D. Feng, H. Chen, X. Lai and X. Yu. Collision for Hash Functions
MD4, MD5, HAVAL-128 and RIPEMD. In Rump Session of CRYPTO 2004 and
Cryptology ePrint Archive, Report 2004/199.

10. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu. Cryptanalysis of the Hash Functions
MD4 and RIPEMD. EUROCRYPT 2005, LNCS 3494, pp1–18, Springer-Verlag,
2005.

11. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. EUROCRYPT
2005, LNCS 3494, pp19–35, Springer-Verlag, 2005.

12. X. Wang, H. Yu and Y. Lisa Yin. Efficient Collision Search Attack on SHA-0.
CRYPTO 2005, LNCS 3621, pp1–16, Springer-Verlag, 2005.

13. X. Wang, Y. Lisa Yin and H. Yu. Finding Collisions in the Full SHA-1. CRYPTO
2005, LNCS 3621, pp17–36, Springer-Verlag, 2005.

14. J. Yajima, T. Shimoyama: On the collision search and the sufficient conditions of
MD5, ISEC 2005-78, pp.15-22, 2005.

Improved Fast Correlation Attack
on the Shrinking and Self-shrinking Generators�

Kitae Jeong1, Jaechul Sung2, Seokhie Hong1, Sangjin Lee1,
Jaeheon Kim3, and Deukjo Hong1

1 Center for Information Security Technologies (CIST),
Korea University, Seoul, Korea

{kite,hsh,sangjin,hongdj}@cist.korea.ac.kr
2 Department of Mathematics, University of Seoul, Seoul, Korea

jcsung@uos.ac.kr
3 National Security Research Institute (NSRI),

161 Gajeong-dong, Yuseong-gu, Daejeon 305-350, Korea
jaeheon@etri.re.kr

Abstract. The fast correlation attack on the shrinking generator pro-
posed by Zhang et al. in [8] has a room for improvement that the prob-
ability that the guessing bit is incorrect increases in certain case. In
this paper, we propose a method to improve Zhang et al.’s attack. Re-
flecting our idea, the fast correlation attack on the shrinking and self-
shrinking generator is more efficient than Zhang et al.’s attack in both
data and computational complexities. For the shrinking generator, re-
quired keystream bits and computational complexity are reduced about
69% and 27%, respectively; For the self-shrinking generator, required
keystream bits and computational complexity are reduced about 46%
and 22%, respectively.

Keywords: Clock-controlled generator, Shrinking generator, Self-
Shrinking generator, Fast correlation attack.

1 Introduction

The shrinking generator is a clock-controlled generator proposed in [3]. It consists
of the generating LFSR and the control LFSR. Both LFSRs are clocked regularly
and simultaneously. If a current output bit of the control LFSR is 1, then the
corresponding output bit of the generating LFSR is taken as a keystream bit.
Otherwise it is discarded. In [8], Zhang et al. showed that a fast correlation
attack can be applied to the shrinking generator. They guess the sequence of
the generating LFSR by computing the probability that an output bit of the
generating LFSR appears in a particular interval of keystream bits and then
� “This research was supported by the MIC(Ministry of Information and Communi-

cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Advancement)”
(IITA-2006-(C1090-0603-0025)).

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 260–270, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improved Fast Correlation Attack on Clock-Controlled Generators 261

recover the initial state of the generating LFSR by applying the fast correlation
attack proposed by Chose et al. in [1]. So far, the most efficient attack on the
shrinking generator is Zhang et al.’s attack.

The main idea in their guessing the sequence of the generating LFSR is to
choose the major bit value between 0 and 1 in an intended interval of the
keystream bits. However, their method has a room for improvement that the
probability that the guessing bit is incorrect increases as the difference between
the number of the 0 bits and 1 bits becomes small.

In this paper, we propose a method to improve Zhang et al.’s attack. We
set a threshold of the difference between the number of the 0 bits and 1 bits,
and reduce the error probability by guessing the sequence of the generating
LFSR only in the interval where the difference between the number of the 0 bits
and 1 bits is greater than the threshold. Reflecting our idea, our attack on the
shrinking generator is more efficient than Zhang et al.’s attack in both data and
computational complexities. The reason is as follows. In the first place, Zhang
et al. only consider an interval that includes odd number of integers. We only
consider an interval where the difference between the number of the 0 bits and 1
bits is greater than the threshold. Because Zhang et al.’s attack and our attack
use refined intervals, the length of the guessed sequence is almost same in two
attacks. Secondly, the probability that the guessing bit is correct in our attack is
larger than that in Zhang et al.’s attack. So the correlation in our attack is larger
than that in Zhang et al.’s attack. Hence our attack is more efficient than Zhang
et al.’s attack. Table 1 shows the comparison of Zhang et al.’s attack and our
attack on the shrinking generator (the length of the generating LFSR and the
control LFSR is respectively 61 and 60) with success probability 99.9%. Zhang
et al.’s attack requires 217.1 keystream bits and computational complexity of
256.7786; Our attack requires 215.43 keystream bits and computational complexity
of 256.3314. In our attack, required keystream bits and computational complexity
are reduced about 69% and 27%, respectively.

We also show that our attack works well on the self-shrinking generator. The
self-shrinking generator is a modified version of the shrinking generator which is
proposed by Meier and Staffelbach in [5]. It requires a single LFSR, whose length
will be denoted by L. The selection rule is the same as for the shrinking generator,
using even bits as output sequences generated by the control LFSR and odd bits
as output sequences generated by the generating LFSR. Thus the selection rule
of self-shrinking generator requires a tuple (even bit, odd bit) as input and
outputs a odd bit if and only if a even bit is 1. In [5], the initial state of the
generator from a short keystream sequence is reconstructed requiring O(20.75L)
steps. In [7], Zenner et al. proposed an attack that reconstructs the initial state
of the generator from a short keystream sequence, requiring O(20.694L) steps.
On the other hand, Mihaljevic presented a faster attack that needs a longer part
of keystream sequence in [6].

As a simulation, we applied Zhang et al.’s attack and our attack to the
self-shrinking generator with the 240-bit internal state. Zhang et al.’s attack

262 K. Jeong et al.

requires 246.77 keystream bits and computational complexity of 2112.768. This
result is better than previous attacks; Meier et al.’s attack requires O(2180)
steps; Zenner et al.’s attack requires O(2166.56) steps; Mihaljevic’s attack that
is the fastest attack requires 2126.91 keystream bits and computational complex-
ity of 2120. Complexities of our attack are less than Zhang et al.’s attack in
both data and computation. Our attack requires 245.89 keystream bits and com-
putational complexity of 2112.424. In our attack, required keystream bits and
computational complexity are reduced about 46% and 22%, respectively. See
Table 1.

Table 1. Comparisons of Zhang et al.’s attack and Our attack

Zhang et al. Our attack

The Correlation 0.5098 0.523

shrinking Data Complexity 217.1 215.43

generator Computational Complexity 256.7786 256.3314

The Correlation 0.5098 0.523

self-shrinking Data Complexity 246.77 245.89

generator Computational Complexity 2112.768 2112.424

This paper is organized as follows. Section 2 presents the shrinking and self-
shrinking generator. Section 3 provides Zhang et al.’s attack. Section 4 presents
our attack. Finally, Section 5 summarizes this paper.

2 The Shrinking and Self-shrinking Generators

The shrinking generator is a clock-controlled generator proposed in [3]. It consists
of two LFSRs, say the generating LFSR A and the control LFSR S as shown in
the Fig. 1. Both LFSRs are clocked regularly and simultaneously.

LFSR A

LFSR S

Selection
Rule

ia

is

jz

Fig. 1. The shrinking generator

Improved Fast Correlation Attack on Clock-Controlled Generators 263

Through this paper, we use notations as follows.

– a = (a0, a1, · · ·): the output sequence of LFSR A of which length is L
– s = (s0, s1, · · ·): the output sequence of LFSR S
– z = (z0, z1, · · ·): the keystream sequence of the shrinking generator
– â = (âm0 , âm1 , · · ·): a guessed sequence associated with sequence a by the

relation P (âi = ai) = 1
2 + ε (ε > 0) where mj denote indices of a sequence a

If a current output bit of the control LFSR S is 1, then the corresponding
output bit of the generating LFSR A is taken as a keystream bit. For simplic-
ity, assume that both LFSR sequences generated by LFSR A and LFSR S are
uniformly distributed. The probability that ar appears as zk in the shrinking
generator is as follows.

P (ar appears as zk) =
(
r

k

)(
1
2

)r+1

(k ≤ r). (1)

On the other hand, if ar (r ≥ 1) appears in the keystream z, we get

ar = z∑r−1
i=0 si

. (2)

When r grows large, the distribution of
∑r−1

i=0 si approximates the normal dis-
tribution such as (3). ∑r−1

i=0 si − r
2√

r
4

∼ N(0, 1). (3)

This generator obtains a kind of implicit non-linearity from the shrinking
process, i.e. the exact positions of the remaining bits in the generated keystream
become uncertain. It is proved that the generated keystream has many merits
in cryptographic sense such as a long period, a desirably high linear complexity
and good statistical properties.

The self-shrinking generator is a modified version of the shrinking generator
and it is proposed by Meier and Staffelbach in [5]. The self-shrinking generator
only requires a single LFSR A, whose length will be denoted by L, as shown in
the Fig. 2.

LFSR A Selection
Rule

2 1ia +

2ia

jz

Fig. 2. The self-shrinking generator

264 K. Jeong et al.

LFSR A generates an (ai)i≥0 in the usual way. The selection rule is the same
as for the shrinking generator, using even bits (a0, a2, · · ·) as output sequences
generated by LFSR S in the shrinking generator and odd bits (a1, a3, · · ·) as
output sequences generated by LFSR A in it. Thus the selection rule of the self-
shrinking generator requires a tuple (a2i, a2i+1) as input and outputs a2i+1 if
and only if a2i = 1.

It is known that the shrinking generator with registers of lengths |A| and
|S| has the same security as the self-shrinking generator of length L =
2 · (|A|+ |S|) [5].

3 Zhang et al.’s Attack on the Shrinking Generator

In this section, we present Zhang et al.’s attack on the shrinking generator.
The way to construct a sequence â is as follows. An interval Ir/2 is defined

as (4). For arbitrary probability p, there exist α such that whenever ar appears
in keystream z, (5) holds.

Ir/2 =
[
r

2
− α

√
r

4
,
r

2
+ α

√
r

4

]
. (4)

P

(
r−1∑
i=0

si ∈ Ir/2

)
=

1√
2π

∫ α

−α

e−x2/2 = p. (5)

Definition 1. W.l.o.g, we assume the interval Ir/2 includes odd number of in-
tegers. Let S0 = {zi | i ∈ Ir/2, zi = 0}, S1 = {zi | i ∈ Ir/2, zi = 1}, the first kind
of imbalance of the interval Ir/2, Imb1(Ir/2), is defined as |S1|−|S0|, where | · | is
the cardinality of a set. If Imb1(Ir/2) �= 0, this interval is said to be imbalanced.
See the Fig. 3.

Definition 2. S0 and S1 are the same as those in Definition 1. Let P (r)
0 =∑

zi∈S0
P (ar = zi), P

(r)
1 =

∑
zi∈S1

P (ar = zi), the second kind of imbalance of

the interval Ir/2, Imb2(Ir/2), is defined as P (r)
1 − P (r)

0 . If Imb2(Ir/2) �= 0, this
interval is also said to be imbalanced. See the Fig. 3.

Using Imb1(Ir/2), Imb2(Ir/2) of Definition 1 and 2, the method to construct a
sequence â is as follows.

Method 1. Following Definition 1, if Imb1(Ir/2) > 0, let âr = 1. Otherwise,
let âr = 0.

Method 2. Following Definition 2, if Imb2(Ir/2) ≥ 0, let âr = 1. Otherwise,
let âr = 0.

Next, we present a brief description of the fast correlation attack proposed by
Chose et al. [1]. This attack consists of two stages: pre-processing stage aiming
at the construction of parity-check equations of weight k and processing stage in

Improved Fast Correlation Attack on Clock-Controlled Generators 265

Fig. 3. The interval that ar probably lies in

which a majority poll is conducted for D(D > L−B) considered bits other than
the first B bits (a0, a1, · · · , aB−1) of the initial state (a0, a1, · · · , aL−1). In pre-
processing stage, a match-and-sort algorithm is used to construct parity-check
equations of the following form with respect to a given considered bit ai,

ai = am1 ⊕ · · · ⊕ amk−1 ⊕
B−1∑
j=0

cjaj , (6)

where mj(1 ≤ j ≤ k−1) denote indices of output bits and the last sum represents
a partial exhaustive search over (a0, · · · , aB−1) of the initial state (a0, · · · , aL−1).
After regrouping parity-check equations that contain the same pattern of B−B1
initial bits, an application of Walsh transform is suggested to evaluate parity-
check equations in processing stage for a given guessed bit âi, i.e. when ω =
[aB1 , aB1+1, · · · , aB−1], Fi(ω) =

∑
(−1)t1i⊕t2i is just the difference between the

number of predicted 0 and the number of predicted 1, where t1i = âm1 ⊕ · · · ⊕
âmk−1⊕

∑B1−1
j=0 cjaj and t2i =

∑B−1
j=B1

cjaj . Then for each of D considered bits, if
Fi(ω) > θ, let ai = 0. If Fi(ω) < −θ, let ai = 1, where θ is the decision threshold.
In order to have at least L−B correctly recovered bits among D considered bits,
a check procedure is used which requires an exhaustive search on all subsets of
size L − B among L − B + δ bits. The total computational complexity of the
processing stage is as follows :

O
(

2BD log2 ω +
(
1 + perr(2B − 1)

)(L−B + δ
δ

)
1
ε2

)
, (7)

where perr is the probability that a wrong guess results in at least L − B + δ
predicted bits and ω is the expected number of parity-check equations of weight
k for each considered bit. For details of these formulae and notations, see [1].

A summary of Zhang et al.’s attack is as follows. Here, an interval Ir/2
includes odd number of integers. So the number of intervals which they can

266 K. Jeong et al.

construct is about N − α·√N
2 and the length N ′ of sequence â is also about

N − α·√N
2 .

1. Input: a segment of keystream z0, z1, · · · , zN−1.
2. Construct a sequence â = âm0 , · · · , âmN′−1

according to Method 1 or Method
2 from keystream z0, z1, · · · , zN−1, where mj (0 ≤ j ≤ N ′−1) denote indices
of a sequence a.

3. Construct parity check equations such as (6).
4. For each guess of (a0, · · · , aB−1) and each bit position i (i = B + 1, B +

2, · · · , D), evaluate parity-check equations using the Walsh transform tech-
nique. Select those bits passing the majority poll to recover the initial state
of LFSR A using the check procedure.

4 Improved Fast Correlation Attack

In Zhang et al.’s attack, the main idea in their guessing the sequence of the
generating LFSR A is to choose the major bit value between 0 and 1 in the
keystream bits corresponding to Ir/2. However, their method has a room for
improvement that the probability that the guessing bit is incorrect increases as
the difference between the number of the 0 bits and 1 bits becomes small.

Now we propose a method to improve Zhang et al.’s attack. We set a threshold
ε′ of the difference between the number of the 0 bits and 1 bits, and reduce the
error probability by guessing the sequence of the generating LFSR A only in
the interval where the ratio of the 0 bits or the 1 bits is greater than 1

2 + ε′.
Reflecting our idea, our attack on the shrinking generator is more efficient than
Zhang et al.’s attack in both data and computational complexities. The reason
is as follows. In the first place, Zhang et al. only consider Ir/2 that includes odd
number of integers. We only consider Ir/2 where the ratio of the 0 bits or the
1 bits is greater than 1

2 + ε′. Because Zhang et al.’s attack and our attack use
refined intervals, the length of the guessed sequence â is almost same in two
attacks. Secondly, the probability that ar is equal to âr in our attack is larger
than that in Zhang et al.’s attack. So the correlation in our attack is larger
than that in Zhang et al.’s attack. Hence our attack is more efficient than Zhang
et al.’s attack.

4.1 Improved Fast Correlation Attack on the Shrinking Generator

An interval Ir/2 of length t = �1 + α
√
r� is defined as (8). Here for arbitrary

probability p, there exist α such that whenever ar appears in keystream z, (9)
holds.

Ir/2 =
[
r

2
− α

√
r

4
,
r

2
+ α

√
r

4

]
. (8)

P

(
r−1∑
i=0

si ∈ Ir/2

)
=

1√
2π

∫ α

−α

e−x2/2 = p. (9)

Improved Fast Correlation Attack on Clock-Controlled Generators 267

The method to construct a sequence â is as follows.

Method 3. If an interval Ir/2 in which the ratio of 0 (resp. 1) is more than
1
2 + ε′ exists, then let âr = 0 (resp. 1).

A summary of our attack on the shrinking generator is as follows. Here ε′ =
0.02, 0.03 and 0.04.

1. Input: a segment of keystream z0, z1, · · · , zN−1.
2. Construct a guessed sequence â = âm0 , · · · , âmN′−1

according to Method 3
from keystream z0, z1, · · · , zN−1, where mj (0 ≤ j ≤ N ′ − 1) denote indices
of a sequence a.

3. Construct parity check equations such as (6).
4. For each guess of (a0, · · · , aB−1) and each bit position i (i = B + 1, B +

2, · · · , D), evaluate parity-check equations using the Walsh transform tech-
nique. Select those bits passing the majority poll to recover the initial state
of LFSR A using the check procedure.

Theorem 1. The probability that ar is equal to âr is (10). Here, δ means the
expected value of the probability of 1 in Ir/2.

P (ar = âr) =
1
2

+
p

2

(
δ

t
− 1

2

)
. (10)

Proof.

P (ar = âr) = P (âr = 1)P (ar = 1| âr = 1) + P (âr = 0)P (ar = 0| âr = 0)
= P (âr = 1)P (ar = 1| âr = 1)

+ (1− P (âr = 1))P (ar = 1| âr = 1)
= P (ar = 1| âr = 1)

= P

(
sr = 1,

r−1∑
i=0

si ∈ Ir/2, zsr = 1

)
+ P (sr = 0, ar = 1)

+ P

(
sr = 1,

r−1∑
i=0

si /∈ Ir/2, ar = 1

)

= P (sr = 1)P

(
r−1∑
i=0

si ∈ Ir/2

)
P (zsr = 1) + P (sr = 0)P (ar = 1)

+ P (sr = 1)P

(
r−1∑
i=0

si /∈ Ir/2

)
P (ar = 1)

=
1
2
· p · δ

t
+

1
2
· (1− p) · 1

2
+

1
2
· 1
2

=
1
2

+
p

2

(
δ

t
− 1

2

)
.

�

268 K. Jeong et al.

Since we only consider the interval in which the ratio of 0 or 1 is more than
1
2 + ε′, δ is computed as (11). Here | · |1 means the number of 1 in Ir/2 .

δ =
t∑

i=�(1
2+ε′)·t�

i · P
(
| · |1 = i

∣∣∣ | · |1 ≥ ⌈(
1
2

+ ε′
)
· t
⌉)
. (11)

The length N ′ of a guessed sequence â guessed is β · (2N − α ·
√
N) where

2N−α·
√
N is the number of intervals which we can construct and β is computed

as follows :

β =
1

2t−1

⎛⎝ t∑
i=�(1

2 +ε′)·t�

(
t

i

)⎞⎠ .
To compare Zhang et al.’s attack and our attack on the shrinking generator,

we use the same parameters as parameters used in [8]. The length of LFSR A
is 61 and the length of LFSR S is 60. And D = 36, δ = 3, B = 46 and k = 5.
α = 1.376395 corresponds to p = 0.8313. Table 2 shows the comparison of Zhang
et al.’s attack and our attack where ε′ = 0.02, 0.03 and 0.04 on the shrinking
generator and success probability 99.9%. For ε′ = 0.04, required keystream bits
and computational complexity are reduced about 69% and 27%, respectively.

Table 2. Comparison of Zhang et al.’s attack and our attack on the shrinking generator

Zhang et al. our attack

ε′ = 0.02 ε′ = 0.03 ε′ = 0.04

Correlation 0.5098 0.5164 0.5197 0.523

Data Complexity 217.1 214.89 215.09 215.43

Computational Complexity 256.7786 256.4815 256.4036 256.3314

4.2 Improved Fast Correlation Attack on the Self-shrinking
Generator

The method to construct a guessed sequence â on the self-shrinking generator
is very similar to the method on the shrinking generator. The difference is only
that we construct a guessed sequence â of the following form from keystream z.
That is a guessed sequence â consists of a tuple (â2i, â2i+1) = (1, â2i+1).

â = (âm0 , âm1 , · · ·) = (1, âm1 , 1, âm3 , · · · , 1, âm2i+1 , · · ·). (12)

An interval Ir is defined as (13). Here for arbitrary probability p, there exist
α such that whenever a2r appears in keystream z, (14) holds.

Improved Fast Correlation Attack on Clock-Controlled Generators 269

Ir =
[
r − α

√
r

2
, r + α

√
r

2

]
. (13)

P

(
r−1∑
i=0

a2i ∈ Ir

)
=

1√
2π

∫ α

−α

e−x2/2 = p. (14)

Theorem 2. The probability that â2r+1 is equal to a2r+1 is as follows. Here, δ
means the expected value of the probability of 1 in Ir and computed as (11).

P (a2r+1 = â2r+1) =
1
2

+
p

2

(
δ

t
− 1

2

)
.

Proof. It’s similar to proof of Theorem 1. �

As a simulation, we applied Zhang et al.’s attack and our attack to the self-
shrinking generator with the 240-bit internal state. Zhang et al.’s attack re-
quires 246.77 keystream bits, computational complexity of 2112.768 and success
probability 99.9%. This result is better than previous attacks; Meier et al.’s
attack requires O(2180) steps; Zenner et al.’s attack requires O(2166.56) steps;
Mihaljevic’s attack that is the fastest attack requires 2126.91 keystream bits and
computational complexity of 2120. Complexities of our attack are less than them
of Zhang et al.’s attack. Table 3 shows the comparison of Zhang et al.’s attack
and our attack where ε′ = 0.02, 0.03 and 0.04 on the self-shrinking generator and
success probability 99.9%. Here the length of LFSR A is 240 and D = 150, δ = 3,
B = 100 and k = 5. α = 1.376395 corresponds to p = 0.8313. For ε′ = 0.04, Our
attack requires 245.89 keystream bits and computational complexity of 2112.424.
In this case, required keystream bits and computational complexity are reduced
about 46% and 22%, respectively.

Table 3. Comparison of Zhang et al.’s attack and our attack on the self-shrinking
generator

Zhang et al. our attack

ε′ = 0.02 ε′ = 0.03 ε′ = 0.04

Correlation 0.5098 0.5164 0.5197 0.523

Data Complexity 246.77 245.36 245.56 245.89

Computational Complexity 2112.768 2112.571 2112.495 2112.424

5 Conclusion

In Zhang et al.’s attack, the main idea in their guessing the sequence of the
generating LFSR A is to choose the major bit value between 0 and 1 in the
keystream bits corresponding to Ir/2. However, their method has a room for

270 K. Jeong et al.

improvement that the probability that the guessing bit is incorrect increases as
the difference between the number of the 0 bits and 1 bits becomes small.

We propose a method to improve Zhang et al.’s attack. We set a threshold ε′

of the difference between the number of the 0 bits and 1 bits, and reduce the
error probability by guessing the sequence of the generating LFSR A only in
the interval where the ratio of the 0 bits or the 1 bits is greater than 1

2 + ε′.
Reflecting our idea, our attack on the shrinking and self-shrinking generator is
more efficient than Zhang et al.’s attack in both data and computational com-
plexities. Using our attack on the shrinking generator, required keystream bits
and computational complexity are reduced about 69% and 27%, respectively.
Using Zhang et al.’s attack, we checked that the initial state of generating LFSR
(its length is 240) of the self-shrinking generator is recovered faster than pre-
vious attacks. Complexities of our attack are less than them of Zhang et al.’s
attack in both data and computation. In detail, required keystream bits and
computational complexity are reduced about 46% and 22%, respectively using
our attack.

References

1. P. Chose, A. Joux, and M. Mitton, Fast correlation attacks: an algorithmic point of
view, Advances in Cryptology - EUROCRYPT 2002, LNCS 2332, Springer-Verlag,
pp. 209–221, 2002.

2. V. V. Chepyzhov, T. Johansson, and B. Smeets, A simple algorithm for fast corre-
lation attacks on stream ciphers, Fast Software Encryption - FSE 2000, LNCS 1978,
Springer-Verlag, pp. 181–195, 2000.

3. D. Coppersmith, H. Krawczyk, and Y. Mansour, The Shrinking Generator, Advances
in Cryptologty - CRYPTO 1993, LNCS 773, Springer-Verlag, pp. 22–39, 1994.

4. Ali. A. Kanso, Clock-Controlled Genrators, Thesis submitted to the University of
London for the degree of Doctor of Philosophy, www.isg.rhul.ac.uk/alumni/thesis/
kanso a.pdf , 1999.

5. W. Meier, and O. Staffelbach, The Self-Shrinking generator, Advances in Cryptology
- EUROCRYPT 1994, LNCS 950, Springer-Verlag, pp. 205–214, 1995.

6. M. J. Mihaljevic, A faster cryptanalysis of the self-shrinking generator, Advances in
Cryptology - ACISP 1996, LNCS 1172, Springer-Verlag, pp. 182–189, 1996.

7. E. Zenner, M. Krause and S. Lucks, Improved Cryptanalysis of the Self-Shrinking
Generator, ACISP 2001, LNCS 2119, Springer-Verlag, pp. 21–35, 2001.

8. B. Zhang, H. Wu, D. Feng and F. Bao, A Fast Correlation Attack on the Shrinking
Generator, CT-RSA 2005, LNCS 3376, Springer-Verlag, pp. 72–86, 2005.

On the Internal Structure of ALPHA-MAC

Jianyong Huang, Jennifer Seberry, and Willy Susilo

School of Information Technology and Computer Science,
University of Wollongong, Wollongong NSW 2522, Australia

{jyh33, jennie, wsusilo}@uow.edu.au

Abstract. ALPHA-MAC is a MAC function which uses the building
blocks of AES. This paper studies the internal structure of this new
design. First, we provide a method to find second preimages based on the
assumption that a key or an intermediate value is known. The proposed
searching algorithm exploits the algebraic properties of the underlying
block cipher and needs to solve eight groups of linear functions to find
a second preimage. Second, we show that our idea can also be used to
find internal collisions under the same assumption. We do not make any
claims that those findings in any way endanger the security of this MAC
function. Our contribution is showing how algebraic properties of AES
can be used for analysis of this MAC function.

1 Introduction

Hash functions play an important role in many areas of cryptography. The build-
ing of hash functions has received extensive work over the years, for example, the
design of MD4 [17], MD5 [18], SHA-0 [3] and SHA-1 [2]. On the other hand, the
cryptanalysis of hash functions has been carried out by many researchers, for in-
stance, recent attacks on MD4, MD5, SHA-0 and SHA-1 [6,7,10,14,19,20,21,22].

Message Authentication Codes (MACs) are keyed hash functions that provide
message integrity by appending a cryptographic checksum to a message which is
verifiable only by the intended recipient of the message. Message authentication
is one of the most important ways of ensuring the integrity of information, and
it has been used in many practical applications. MAC functions take a secret
key and a message as input and generate a short digest as output. Many re-
search groups have presented various approaches to construct MAC functions,
for example, MAA [13], CBC-MAC [15], UMAC [9], MDx-MAC [16] and HMAC
[4,5].

The ALRED [11] construction is a new MAC design approach presented at
FSE 2005. ALPHA-MAC [11] is a specific instance of the ALRED construction
with AES [1] as the underlying block cipher. The reason why AES was chosen
as the underlying block cipher of the ALPHA-MAC is because AES is efficient
in hardware and software and it has withstood intense public scrutiny since its
publication as Rijndael [12].

In this paper, we study the internal structure of the ALPHA-MAC by employing
the algebraic properties of AES and the structural features of the ALPHA-MAC.

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 271–285, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

272 J. Huang, J. Seberry, and W. Susilo

First, we present a method to find second preimages of the ALPHA-MAC by
solving eight groups of linear functions, based on the assumption that an au-
thentication key or an intermediate value of this MAC is known. Each of these
eight groups of linear functions contains two equations. We divide the second-
preimage search algorithm into two steps: the Backwards-aNd-Forwards (BNF)
search and the Backwards-aNd-Backwards (BNB) search. The BNF search pro-
vides an idea for extending 32-bit collisions to 128-bit collisions1 by solving four
groups of linear functions. Given a key (or an intermediate value) and one four-
block message, the BNB search can generate another four-block message such
that these two messages produce 32-bit collisions, which are a prerequisite for
the BNF search. To do the BNB search, we need to solve another four groups of
linear functions. By combining the BNB search with the BNF search, we can find
second preimages of ALPHA-MAC. Second, we show that the second-preimage
finding method can also be used to generate internal collisions. The proposed
collision search method can find two five-block messages such that they produce
128-bit collisions under a selected key (or a selected intermediate value).

This paper is organized as follows: Section 2 provides a description of the
ALPHA-MAC, and Section 3 presents the second-preimage search algorithm. Sec-
tion 4 shows how to generate internal collisions and finally, Section 5 concludes
this paper. Appendix A includes our experimental results.

2 A Brief Description of ALPHA-MAC

ALPHA-MAC [11] is a MAC function which uses the building blocks of AES.
Similarly to AES, the ALPHA-MAC supports keys of 128, 192 and 256 bits. The
word length is 32 bits, and the injection layout places the 4 bytes of each message
word [m0, m1, m2, m3] into a 4 × 4 array. The format of the injection layout is
shown as follows: ⎡⎢⎢⎢⎣

m0 0 m1 0
0 0 0 0

m2 0 m3 0
0 0 0 0

⎤⎥⎥⎥⎦ .

Like AES, the ALPHA-MAC round function contains SubBytes (SB), ShiftRows
(SR), MixColumns (MC) and AddRoundKey (ARK) , and the output of each in-
jection layout acts as the corresponding 128-bit round key. The message padding
method appends a single 1 followed by the minimum number of 0 bits such that
the length of the result is a multiple of 32. In the initialization, the state is set to
all zeros and AES is applied to the state. For every message word, the chaining
method carries out an iteration, and each iteration maps the bits of the message
word to an injection input. After that, a sequence of AES round functions are
applied to the state, with the round keys replaced by the injection input. In the
final transformation, AES is applied to the state. The MAC tag is the first lm
bits of the resulting final state. The length of lm may have any value less than
or equal to 128. The ALPHA-MAC function is depicted in Figure 1.
1 Here and in the rest of this paper “collisions” stands for “internal collisions”.

On the Internal Structure of Alpha-MAC 273

0

�
AES

�
Round

��
�

Round
��
�

· · ·
�

Round
��
�

AES

�
Truncation

�
Tag

key �

�

� Injection Layout� M1

� Injection Layout� M2

� Injection Layout� Msize

· · · · · ·

Fig. 1. ALPHA-MAC construction

3 The Second-Preimage Search Algorithm

The proposed second-preimage search algorithm aims to find a five-block second-
preimage M̃ for a selected five-block message M , under a selected key (or a
selected intermediate value). The assumption of this search is that we know two
values: a selected key (or a selected intermediate value) and a selected five-block
messageM . The result of the search is that M and M̃ generate the same 128-bit
value after five rounds of ALPHA-MAC iterations, under the selected key (or the
selected intermediate value).

We use Figure 2 to illustrate the second-preimage search. Figure 2 depicts five
consecutive rounds of the ALPHA-MAC for two different five-block messages M
and M̃ . We assume that we are able to select an intermediate value2, 3 of the
Round functions in some round (e.g., in Round y − 3), and select five consecutive

2 The intermediate value is: ⎡⎢⎢⎢⎣
a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

⎤⎥⎥⎥⎦ .

3 In the case of a selected key, for the sake of simplicity, we assume that (My−3,
My−2, My−1, My , My+1) are the first five blocks of the selected message. Our search
algorithm works without assuming that (My−3, My−2, My−1, My , My+1) are the
first five blocks of the selected message.

274 J. Huang, J. Seberry, and W. Susilo

message blocks M(My−3, My−2, My−1, My, My+1). Then we can find another
five-block message M̃(M̃y−3, M̃y−2, M̃y−1, M̃y, M̃y+1) such that these two five-
block messages collide on 128 bits in Round y + 1 after ARK.

The second-preimage search algorithm has the following form:

Known: 1. a selected key or a selected intermediate value.
2. a selected five-block message M(My−3, My−2, My−1, My, My+1).

Find: another five-block message M̃(M̃y−3, M̃y−2, M̃y−1, M̃y, M̃y+1) such
that M and M̃ collide on 128 bits after ARK in Round y + 1.

Method: solve eight groups of linear functions. These eight groups of functions
are named as (1), (2), (3), (4), (5), (6), (7) and (8) in this section.

The second-preimage search algorithm consists of two steps: the Backwards-
aNd-Forwards search and the Backwards-aNd-Backwards search. The BNF
search can extend 32-bit collisions to 128-bit collisions, given two messages M
and M̃ which collide on 32 bits, namely Bytes s4, s12, s6 and s14, after MC in
round y (see Figure 2). Given a key (or an intermediate value) and one four-block
message, the BNB search is able to find another four-block message such that
these two messages collide on Bytes s4, s12, s6 and s14 after MC in Round y.
The BNB search generates those 32-bit collisions which are required for the BNF
search. By merging the BNB search with the BNF search, we can find second
preimages of the ALPHA-MAC.

3.1 The Backwards-aNd-Forwards Search

The Backwards-aNd-Forwards search has the following form:

Known: 1. a selected key or a selected intermediate value.
2. two four-block messages M(My−3, My−2, My−1, My) and M̃(M̃y−3,
M̃y−2, M̃y−1, M̃y) colliding on 32 bits (Bytes s4, s12, s6 and s14) after
MC in Round y.

Extend: 32-bit collisions to 128-bit collisions in Round y + 1.
Method: solve four groups of linear functions. These four groups of functions are

numbered as (1), (2), (3) and (4) in this subsection.

The BNF search assumes that we are able to find two messagesM and M̃ , which
collide on Bytes s4, s12, s6 and s14 after MC in round y. Based on the algebraic
property of the MixColumns transformation and the structure of ALPHA-MAC,
we can extend these 32-bit collisions to 128-bit collisions within three rounds by
solving four groups of linear equations.

3.1.1 Extending 32-Bit Collisions to 64-Bit Collisions
We use the differential XOR property [8] before and after the MixColumns trans-
formation. In Round y before MC, by XORing those two intermediate values,
we get the following result:

On the Internal Structure of Alpha-MAC 275

Round y − 3:

a3

a2

a1

a0

a7

a6

a5

a4

a11

a10

a9

a8

a15

a14

a13

a12

SB◦SR−→
b3

b2

b1

b0

b7

b6

b5

b4

b11

b10

b9

b8

b15

b14

b13

b12

MC−→
d3

d2

d1

d0

d7

d6

d5

d4

d11

d10

d9

d8

d15

d14

d13

d12 (My−3)
ARK−→

d3

d∗
2

d1

d∗
0

d7

d6

d5

d4

d11

d∗
10

d9

d∗
8

d15

d14

d13

d12

ã3

ã2

ã1

ã0

ã7

ã6

ã5

ã4

ã11

ã10

ã9

ã8

ã15

ã14

ã13

ã12

SB◦SR−→
b̃3

b̃2

b̃1

b̃0

b̃7

b̃6

b̃5

b̃4

b̃11

b̃10

b̃9

b̃8

b̃15

b̃14

b̃13

b̃12

MC−→
d̃3

d̃2

d̃1

d̃0

d̃7

d̃6

d̃5

d̃4

d̃11

d̃10

d̃9

d̃8

d̃15

d̃14

d̃13

d̃12 (M̃y−3)
ARK−→

d̃3

d̃∗
2

d̃1

d̃∗
0

d̃7

d̃6

d̃5

d̃4

d̃11

d̃∗
10

d̃9

d̃∗
8

d̃15

d̃14

d̃13

d̃12

Round y − 2:

d3

d∗
2

d1

d∗
0

d7

d6

d5

d4

d11

d∗
10

d9

d∗
8

d15

d14

d13

d12

SB◦SR−→
f3

f2

f1

f0

f7

f6

f5

f4

f11

f10

f9

f8

f15

f14

f13

f12

MC−→
g3

g2

g1

g0

g7

g6

g5

g4

g11

g10

g9

g8

g15

g14

g13

g12 (My−2)
ARK−→

g3

g∗
2

g1

g∗
0

g7

g6

g5

g4

g11

g∗
10

g9

g∗
8

g15

g14

g13

g12

d̃3

d̃∗
2

d̃1

d̃∗
0

d̃7

d̃6

d̃5

d̃4

d̃11

d̃∗
10

d̃9

d̃∗
8

d̃15

d̃14

d̃13

d̃12

SB◦SR−→
f̃3

f̃2

f̃1

f̃0

f̃7

f̃6

f̃5

f̃4

f̃11

f̃10

f̃9

f̃8

f̃15

f̃14

f̃13

f̃12

MC−→
g̃3

g̃2

g̃1

g̃0

g̃7

g̃6

g̃5

g̃4

g̃11

g̃10

g̃9

g̃8

g̃15

g̃14

g̃13

g̃12 (M̃y−2)
ARK−→

g̃3

g̃∗
2

g̃1

g̃∗
0

g̃7

g̃6

g̃5

g̃4

g̃11

g̃∗
10

g̃9

g̃∗
8

g̃15

g̃14

g̃13

g̃12

Round y − 1:

g3

g∗
2

g1

g∗
0

g7

g6

g5

g4

g11

g∗
10

g9

g∗
8

g15

g14

g13

g12

SB◦SR−→
h3

h2

h1

h0

h7

h6

h5

h4

h11

h10

h9

h8

h15

h14

h13

h12

MC−→
i3

i2

i1

i0

i7

i6

i5

i4

i11

i10

i9

i8

i15

i14

i13

i12 (My−1)
ARK−→

i3

i∗2

i1

i∗0

i7

i6

i5

i4

i11

i∗10

i9

i∗8

i15

i14

i13

i12

g̃3

g̃∗
2

g̃1

g̃∗
0

g̃7

g̃6

g̃5

g̃4

g̃11

g̃∗
10

g̃9

g̃∗
8

g̃15

g̃14

g̃13

g̃12

SB◦SR−→
h̃3

h̃2

h̃1

h̃0

h̃7

h̃6

h̃5

h̃4

h̃11

h̃10

h̃9

h̃8

h̃15

h̃14

h̃13

h̃12

MC−→
ĩ3

ĩ2

ĩ1

ĩ0

ĩ7

ĩ6

ĩ5

ĩ4

ĩ11

ĩ10

ĩ9

ĩ8

ĩ15

ĩ14

ĩ13

ĩ12 (M̃y−1)
ARK−→

ĩ3

ĩ∗2

ĩ1

ĩ∗0

ĩ7

ĩ6

ĩ5

ĩ4

ĩ11

ĩ∗10

ĩ9

ĩ∗8

ĩ15

ĩ14

ĩ13

ĩ12

Round y:

i3

i∗2

i1

i∗0

i7

i6

i5

i4

i11

i∗10

i9

i∗8

i15

i14

i13

i12

SB◦SR−→
j3

j2

j1

j0

j7

j6

j5

j4

j11

j10

j9

j8

j15

j14

j13

j12

MC−→
s3

s2

s1

s0

s7

s6

s5

s4

s11

s10

s9

s8

s15

s14

s13

s12
(My)
ARK−→

s3

s∗
2

s1

s∗
0

s7

s6

s5

s4

s11

s∗
10

s9

s∗
8

s15

s14

s13

s12

ĩ3

ĩ∗2

ĩ1

ĩ∗0

ĩ7

ĩ6

ĩ5

ĩ4

ĩ11

ĩ∗10

ĩ9

ĩ∗8

ĩ15

ĩ14

ĩ13

ĩ12

SB◦SR−→
j̃3

j̃2

j̃1

j̃0

j̃7

j̃6

j̃5

j̃4

j̃11

j̃10

j̃9

j̃8

j̃15

j̃14

j̃13

j̃12

MC−→
s̃3

s̃2

s̃1

s̃0

s̃7

s̃6

s̃5

s̃4

s̃11

s̃10

s̃9

s̃8

s̃15

s̃14

s̃13

s̃12 (M̃y)
ARK−→

s̃3

s̃∗
2

s̃1

s̃∗
0

s̃7

s̃6

s̃5

s̃4

s̃11

s̃∗
10

s̃9

s̃∗
8

s̃15

s̃14

s̃13

s̃12

Round y + 1:

s3

s∗
2

s1

s∗
0

s7

s6

s5

s4

s11

s∗
10

s9

s∗
8

s15

s14

s13

s12

SB◦SR−→
n3

n2

n1

n0

n7

n6

n5

n4

n11

n10

n9

n8

n15

n14

n13

n12

MC−→
w3

w2

w1

w0

w7

w6

w5

w4

w11

w10

w9

w8

w15

w14

w13

w12
(My+1)
ARK−→

w3

w∗
2

w1

w∗
0

w7

w6

w5

w4

w11

w∗
10

w9

w∗
8

w15

w14

w13

w12

s̃3

s̃∗
2

s̃1

s̃∗
0

s̃7

s̃6

s̃5

s̃4

s̃11

s̃∗
10

s̃9

s̃∗
8

s̃15

s̃14

s̃13

s̃12

SB◦SR−→
ñ3

ñ2

ñ1

ñ0

ñ7

ñ6

ñ5

ñ4

ñ11

ñ10

ñ9

ñ8

ñ15

ñ14

ñ13

ñ12

MC−→
w̃3

w̃2

w̃1

w̃0

w̃7

w̃6

w̃5

w̃4

w̃11

w̃10

w̃9

w̃8

w̃15

w̃14

w̃13

w̃12 (M̃y+1)
ARK−→

w̃3

w̃∗
2

w̃1

w̃∗
0

w̃7

w̃6

w̃5

w̃4

w̃11

w̃∗
10

w̃9

w̃∗
8

w̃15

w̃14

w̃13

w̃12

Fig. 2. The five-block collisions

276 J. Huang, J. Seberry, and W. Susilo

⎡⎢⎢⎢⎢⎢⎢⎣
j̃0 ⊕ j0 j̃4 ⊕ j4 j̃8 ⊕ j8 j̃12 ⊕ j12

j̃1 ⊕ j1 j̃5 ⊕ j5 j̃9 ⊕ j9 j̃13 ⊕ j13

j̃2 ⊕ j2 j̃6 ⊕ j6 j̃10 ⊕ j10 j̃14 ⊕ j14

j̃3 ⊕ j3 j̃7 ⊕ j7 j̃11 ⊕ j11 j̃15 ⊕ j15

⎤⎥⎥⎥⎥⎥⎥⎦
MC−→

⎡⎢⎢⎢⎢⎢⎢⎣
? 0 ? 0

0 s̃5 ⊕ s5 0 s̃13 ⊕ s13

? 0 ? 0

0 s̃7 ⊕ s7 0 s̃15 ⊕ s15

⎤⎥⎥⎥⎥⎥⎥⎦ .

Here, we use R (to replace j̃0⊕ j0), S (to replace j̃8⊕ j8), T (to replace j̃2⊕ j2)
and U (to replace j̃10 ⊕ j10) so that after the MC transformation in Round y,
Bytes s̃1 ⊕ s1, s̃3 ⊕ s3, s̃9 ⊕ s9 and s̃11 ⊕ s11 become zero. Now the question is
“how to decide R, S, T and U”. The answer is:

– There exists one and only one pair of (R, T) such that after MC, Bytes
s̃1 ⊕ s1 and s̃3 ⊕ s3 are both zero.

– There exists one and only one pair of (S, U) such that after MC, Bytes
s̃9 ⊕ s9 and s̃11 ⊕ s11 are both zero.

According to the MC transformation, we have the following formula:⎡⎢⎢⎢⎢⎢⎢⎣
? 0 ? 0

0 s̃5 ⊕ s5 0 s̃13 ⊕ s13

? 0 ? 0

0 s̃7 ⊕ s7 0 s̃15 ⊕ s15

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
R j̃4 ⊕ j4 S j̃12 ⊕ j12

j̃1 ⊕ j1 j̃5 ⊕ j5 j̃9 ⊕ j9 j̃13 ⊕ j13

T j̃6 ⊕ j6 U j̃14 ⊕ j14

j̃3 ⊕ j3 j̃7 ⊕ j7 j̃11 ⊕ j11 j̃15 ⊕ j15

⎤⎥⎥⎥⎥⎥⎥⎦ .

To find out the values of (R, T) and (S, U), we need to solve the following two
groups of equations.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
01 02 03 01

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R

j̃1 ⊕ j1

T

j̃3 ⊕ j3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

[
03 01 01 02

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R

j̃1 ⊕ j1

T

j̃3 ⊕ j3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
01 02 03 01

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

S

j̃9 ⊕ j9

U

j̃11 ⊕ j11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

[
03 01 01 02

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

S

j̃9 ⊕ j9

U

j̃11 ⊕ j11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

(2)

In the two equations in (1), there are two variables R and T , and therefore
there exists one and only one pair of (R, T) to make these two equations hold
simultaneously. Similarly, we can decide the values of S and U by solving the
two equations in (2).

Once we get the values of R, S, T and U , message block M̃y−1 can be con-
structed as follows:

1. Set the values of j̃new
0 , j̃new

8 , j̃new
2 and j̃new

10 as follows: j̃new
0 = j0 ⊕ R,

j̃new
8 = j8 ⊕ S, j̃new

2 = j2 ⊕ T , and j̃new
10 = j10 ⊕ U . Use j̃new

0 to replace j̃0,
j̃new
8 to replace j̃8, j̃new

2 to replace j̃2, and j̃new
10 to replace j̃10.

On the Internal Structure of Alpha-MAC 277

2. Perform SR−1 (inverse ShiftRows) and SB−1 (inverse SubBytes). As SR−1

and SB−1 are permutation and substitution, they do not change the prop-
erties we have found. Now we have the outputs of ARK in Round y − 1.

3. Compute the value of M̃new
y−1 as follows:

M̃new
y−1 = (j̃new

0 ⊕ ĩ0)||(j̃new
8 ⊕ ĩ8)||(j̃new

10 ⊕ ĩ2)||(j̃new
2 ⊕ ĩ10).

Use M̃new
y−1 to replace M̃y−1.

At this stage, two messages (My−3, My−2, My−1) and (M̃y−3, M̃y−2, M̃new
y−1)

collide on 64 bits (Bytes s4, s12, s6, s14, s1, s9, s3 and s11) in Round y after
MC.

3.1.2 Extending 64-Bit Collisions to 96-Bit Collisions
We only need to focus on Round y and Round y + 1 to extend 64-bit collisions
to 96-bit collisions. The idea is to choose message block M̃y to cancel out the
differences between Bytes (s5, s13, s7, s15) and Bytes (s̃5, s̃13, s̃7, s̃15) in Round
y. The method of choosing M̃y is exactly same as the method for constructing
M̃y−1 in Section 3.1.1.

By taking the outputs of ARK in Round y, we perform the SB and SR
operations, and then XOR the results after SB and SR:⎡⎢⎢⎢⎢⎢⎢⎣

n0 n4 n8 n12

n1 n5 n9 n13

n2 n6 n10 n14

n3 n7 n11 n15

⎤⎥⎥⎥⎥⎥⎥⎦ ⊕

⎡⎢⎢⎢⎢⎢⎢⎣

ñ0 n4 ñ8 n12

ñ1 n5 ñ9 n13

ñ2 n6 ñ10 n14

ñ3 n7 ñ11 n15

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

n0 ⊕ ñ0 0 n8 ⊕ ñ8 0

n1 ⊕ ñ1 0 n9 ⊕ ñ9 0

n2 ⊕ ñ2 0 n10 ⊕ ñ10 0

n3 ⊕ ñ3 0 n11 ⊕ ñ11 0

⎤⎥⎥⎥⎥⎥⎥⎦
MC−→

⎡⎢⎢⎢⎢⎢⎢⎣

? 0 ? 0

0 0 0 0

? 0 ? 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Here we use π to replace n0⊕ ñ0, ρ to replace n8⊕ ñ8, φ to replace n2⊕ ñ2 and
ω to replace n10⊕ ñ10 so that after MixColumns in Round y+1, Bytes w1⊕ w̃1,
w9 ⊕ w̃9, w3 ⊕ w̃3 and w11 ⊕ w̃11 are zero:⎡⎢⎢⎢⎢⎢⎢⎣

π 0 ρ 0

n1 ⊕ ñ1 0 n9 ⊕ ñ9 0

φ 0 ω 0

n3 ⊕ ñ3 0 n11 ⊕ ñ11 0

⎤⎥⎥⎥⎥⎥⎥⎦
MC−→

⎡⎢⎢⎢⎢⎢⎢⎣
? 0 ? 0

0 0 0 0

? 0 ? 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Now the question is “how to decide π, ρ, φ and ω”. The answer is:

– There exists one and only one pair of (π, φ) such that after MC, Bytes
w1 ⊕ w̃1 and w3 ⊕ w̃3 are both zero. The values of (π, φ) can be decided by
solving (3).

– There exists one and only one pair of (ρ, ω) such that after MC, Bytes
w9 ⊕ w̃9 and w11 ⊕ w̃11 are both zero. By solving (4), we get the values of
(ρ, ω).

278 J. Huang, J. Seberry, and W. Susilo

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
01 02 03 01

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

π

n1 ⊕ ñ1

φ

n3 ⊕ ñ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

[
03 01 01 02

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

π

n1 ⊕ ñ1

φ

n3 ⊕ ñ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

(3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
01 02 03 01

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

n9 ⊕ ñ9

ω

n11 ⊕ ñ11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

[
03 01 01 02

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

n9 ⊕ ñ9

ω

n11 ⊕ ñ11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

(4)

Once we know the values of π, φ, ρ and ω, message block M̃y can be chosen
as follows:

1. Set the values of ñnew
0 , ñnew

8 , ñnew
2 and ñnew

10 as follows: ñnew
0 = n0 ⊕ π,

ñnew
8 = n8⊕ ρ, ñnew

2 = n2⊕φ, and ñnew
10 = n10⊕ω. Use ñnew

0 to replace ñ0,
ñnew

8 to replace ñ8, ñnew
2 to replace ñ2, and ñnew

10 to replace ñ10.
2. Perform SR−1 and SB−1. Since SR−1 and SB−1 are permutation and sub-

stitution, they do not affect the properties we have found. Now we have the
outputs of ARK in Round y.

3. Compute the value of M̃y as follows:

M̃y = (ñnew
0 ⊕ s̃0)||(ñnew

8 ⊕ s̃8)||(ñnew
10 ⊕ s̃2)||(ñnew

2 ⊕ s̃10).

So far, two messages (My−3, My−2, My−1, My) and (M̃y−3, M̃y−2, M̃new
y−1 , M̃y)

collide on 96 bits (i.e., Bytes w1, w3, w4, w5, w6, w7, w9, w11, w12, w13, w14 and
w15) in Round y + 1 after MC transformation.

3.1.3 Extending 96-Bit Collisions to 128-Bit Collisions
This step is straightforward as we can select message My+1 arbitrarily, and
construct message M̃y+1 to cancel the differences between Bytes w0, w8, w2 and
w10. The construction is provided as follows:

M̃y+1 = ((w0 ⊕ w̃0)||(w8 ⊕ w̃8)||(w2 ⊕ w̃2)||(w10 ⊕ w̃10))⊕My+1.

3.2 The Backwards-aNd-Backwards Search

The Backwards-aNd-Backwards search has the following form:

Known: 1. a selected key or a selected intermediate value.
2. one selected four-block message M(My−3, My−2, My−1, My).

Find: another four-block message M̃(M̃y−3, M̃y−2, M̃y−1, M̃y) such that
these two messages collide on 32 bits (Bytes s4, s12, s6 and s14) after
MC in Round y.

Method: solve four groups of linear functions. These four groups of functions are
named as (5), (6), (7) and (8) in this subsection.

On the Internal Structure of Alpha-MAC 279

We propose a method to find 32-bit collisions on Bytes s4, s12, s6 and s14 (see
Figure 2) by solving four groups of linear functions. This search assumes that
for a selected key (or a selected intermediate value) and a selected four-block
message (My−3, My−2, My−1, My), we can generate another four-block message
(M̃y−3, M̃y−2, M̃y−1, M̃y) such that these two messages collide on Bytes s4, s12,
s6 and s14 after MC in Round y. The method used by the BNB search is similar
to the idea employed by the BNF search, but works in only one direction (i.e.,
only backwards).

3.2.1 Deciding Four Values (j̃5, j̃7, j̃13 and j̃15)
In the beginning, we choose (M̃y−3, M̃y−2, M̃y−1, M̃y) randomly. Assume that
the input and the output of MC in Round y are listed as follows:⎡⎢⎢⎢⎢⎢⎢⎣

j̃0 j̃4 j̃8 j̃12

j̃1 j̃old
5 j̃9 j̃old

13

j̃2 j̃6 j̃10 j̃14

j̃3 j̃old
7 j̃11 j̃old

15

⎤⎥⎥⎥⎥⎥⎥⎦
MC−→

⎡⎢⎢⎢⎢⎢⎢⎣
s̃0 s̃4 s̃8 s̃12

s̃1 s̃5 s̃9 s̃13

s̃2 s̃6 s̃10 s̃14

s̃3 s̃7 s̃11 s̃15

⎤⎥⎥⎥⎥⎥⎥⎦ .

Now we do not use the values of j̃old
5 , j̃old

7 , j̃old
13 or j̃old

15 . Instead, we use j̃5
(to replace j̃old

5), j̃7 (to replace j̃old
7), j̃13 (to replace j̃old

13), and j̃15 (to replace
j̃old
15) such that we get values s4, s12, s6, and s14 on Bytes s̃4, s̃12, s̃6, and s̃14,

respectively (illustrated as follows):⎡⎢⎢⎢⎢⎢⎢⎣
j̃0 j̃4 j̃8 j̃12

j̃1 j̃5 j̃9 j̃13

j̃2 j̃6 j̃10 j̃14

j̃3 j̃7 j̃11 j̃15

⎤⎥⎥⎥⎥⎥⎥⎦
MC−→

⎡⎢⎢⎢⎢⎢⎢⎣
s̃0 s4 s̃8 s12

s̃1 s̃5 s̃9 s̃13

s̃2 s6 s̃10 s14

s̃3 s̃7 s̃11 s̃15

⎤⎥⎥⎥⎥⎥⎥⎦ .

Now the question is “how can we make this happen”. Our answer is to solve
two groups of linear functions. For the values of s4 and s6, we have two linear
equations in (5) with only two unknown variables (j̃5 and j̃7). Therefore, we can
solve (5) to obtain the values of j̃5 and j̃7.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
02 03 01 01

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

j̃4

j̃5

j̃6

j̃7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= s4

[
01 01 02 03

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

j̃4

j̃5

j̃6

j̃7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= s6

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
02 03 01 01

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

j̃12

j̃13

j̃14

j̃15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= s12

[
01 01 02 03

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

j̃12

j̃13

j̃14

j̃15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= s14

(6)

280 J. Huang, J. Seberry, and W. Susilo

Similarly, for the values of s12 and s14, we have two linear functions in (6) with
two unknown variables (j̃13 and j̃15). We can solve (6) to decide the values of
j̃13 and j̃15. After getting four values (j̃5, j̃7, j̃13, and j̃15) decided, we perform
the SR−1 and SB−1 transformations. As SR−1 is permutation and SB−1 is
substitution, j̃5, j̃7, j̃13, and j̃15 are first relocated then substituted by another
four values ĩ9, ĩ3, ĩ1, and ĩ11, respectively. As the message injection layout does
not change the values of ĩ9, ĩ3, ĩ1, and ĩ11, these four values are not changed
after we do ARK. So, we get four known values (̃i9, ĩ3, ĩ1, and ĩ11) after MC in
Round y − 1. Our next target is to modify message block M̃y−2 so that we get
those four values ĩ9, ĩ3, ĩ1, and ĩ11 after MC in Round y − 1.

3.2.2 Modifying Message Block M̃y−2

Suppose by using the original message block M̃y−2, we have the following states
in Round y − 1:⎡⎢⎢⎢⎢⎢⎢⎣

g̃∗old
0 g̃4 g̃∗old

8 g̃12

g̃1 g̃5 g̃9 g̃13

g̃∗old
2 g̃6 g̃∗old

10 g̃14

g̃3 g̃7 g̃11 g̃15

⎤⎥⎥⎥⎥⎥⎥⎦
SB◦SR−→

⎡⎢⎢⎢⎢⎢⎢⎣

h̃old
0 h̃4 h̃old

8 h̃12

h̃1 h̃5 h̃9 h̃13

h̃old
2 h̃6 h̃old

10 h̃14

h̃3 h̃7 h̃11 h̃15

⎤⎥⎥⎥⎥⎥⎥⎦
MC−→

⎡⎢⎢⎢⎢⎢⎢⎣

? ĩ4 ? ĩ12

? ĩ5 ? ĩ13

? ĩ6 ? ĩ14

? ĩ7 ? ĩ15

⎤⎥⎥⎥⎥⎥⎥⎦ .

Now we replace values (h̃old
0 , h̃old

2 , h̃old
8 , h̃old

10) with (h̃0, h̃2, h̃8, h̃10) and then we
get those four values (̃i9, ĩ3, ĩ1, and ĩ11) located as follows:⎡⎢⎢⎢⎢⎢⎢⎣

g̃∗
0 g̃4 g̃∗

8 g̃12

g̃1 g̃5 g̃9 g̃13

g̃∗
2 g̃6 g̃∗

10 g̃14

g̃3 g̃7 g̃11 g̃15

⎤⎥⎥⎥⎥⎥⎥⎦
SB◦SR−→

⎡⎢⎢⎢⎢⎢⎢⎣

h̃0 h̃4 h̃8 h̃12

h̃1 h̃5 h̃9 h̃13

h̃2 h̃6 h̃10 h̃14

h̃3 h̃7 h̃11 h̃15

⎤⎥⎥⎥⎥⎥⎥⎦
MC−→

⎡⎢⎢⎢⎢⎢⎢⎣

? ĩ4 ? ĩ12

ĩ1 ĩ5 ĩ9 ĩ13

? ĩ6 ? ĩ14

ĩ3 ĩ7 ĩ11 ĩ15

⎤⎥⎥⎥⎥⎥⎥⎦ .

Based on the property of MC transformation, we can form the following two
groups of linear functions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
01 02 03 01

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̃0

h̃1

h̃2

h̃3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ĩ1

[
03 01 01 02

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̃0

h̃1

h̃2

h̃3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ĩ3

(7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
01 02 03 01

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̃8

h̃9

h̃10

h̃11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ĩ9

[
03 01 01 02

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̃8

h̃9

h̃10

h̃11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ĩ11

(8)

We know the values of h̃1, h̃3, h̃9 and h̃11 from the original message block
M̃y−2. We can get the values of (h̃0, h̃2) by solving (7), and get the values of

On the Internal Structure of Alpha-MAC 281

(h̃8, h̃10) by solving (8). After finding the values of (h̃0, h̃2, h̃8, h̃10), we perform
SR−1 and SB−1, and obtain the corresponding four values (g̃∗0 , g̃∗2 , g̃∗8 , g̃∗10). Once
we know the values of (g̃∗0 , g̃∗2 , g̃∗8 , g̃∗10), we replace M̃y−2 with M̃new

y−2 . M̃new
y−2 is

constructed as follows (note that g̃0, g̃8, g̃2 and g̃10 are known from the message
block M̃y−3 in Round y − 3):

M̃new
y−2 = (g̃∗0 ⊕ g̃0)||(g̃∗8 ⊕ g̃8)||(g̃∗2 ⊕ g̃2)||(g̃∗10 ⊕ g̃10).

3.3 Combining the BNB Search with the BNF Search

The second-preimage search algorithm combines the BNB search with the BNF
search. To search for a second preimage of the ALPHA-MAC, we perform the
following steps:

1. Select a key or an intermediate value.
2. Select a five-block message M(My−3,My−2,My−1,My,My+1).
3. Generate the second preimage M̃(M̃y−3, M̃y−2, M̃y−1, M̃y, M̃y+1) randomly.

We need to guarantee that M̃y−3 is not equal to My−3.
4. Perform the BNB search to generate 32-bit collisions. The BNB search is

done by modifying message block M̃y−2.
5. Use the BNF search to extend those 32-bit collisions to 128-bit collisions.

The BNF search is carried out by modifying the values of M̃y−1, M̃y, and
M̃y+1. Message M̃(M̃y−3, M̃y−2, M̃y−1, M̃y, M̃y+1) is a second preimage of
message M(My−3, My−2, My−1, My, My+1) under the selected key (or the
selected intermediate value).

The routine of finding second preimages is shown in Table 1, and Figure 3
depicts this finding. The name of the BNB search comes from the fact that

Table 1. Second-preimage search = BNB search + BNF search

Search R Round y − 2 Di Round y − 1 Di Round y

BNB 1 ⇐ s̃4 ⇀ s4, s̃12 ⇀ s12, s̃6

⇀ s6, s̃14 ⇀ s14

2 ⇐ h̃old
0 ⇀ h̃0, h̃old

2 ⇀ h̃2,
h̃old

8 ⇀ h̃8, h̃old
10 ⇀ h̃10

3 M̃y−2 ⇀ M̃new
y−2

Round y − 1 Di Round y Di Round y + 1
BNF 4 modify M̃y−1 ⇐ collisions on s4, s12, s6

and s14

5 ⇒ collisions on s4, s12, s6,
s14, s1, s9, s3 and s11

6 modify M̃y ⇒ 96-bit collisions
7 modify M̃y+1 → 128-bit

collisions
Di - Direction
R - Routine

282 J. Huang, J. Seberry, and W. Susilo

· · ·
�

Intermediate value

�
Round

��
�

Round
��
�

Round
��
�

Round
��
�

Round
��
�

Collisions
�· · ·

� Injection Layout� My−3 (M̃y−3)

� Injection Layout� My−2 (M̃y−2)

� Injection Layout� My−1 (M̃y−1)

� Injection Layout� My (M̃y)

� Injection Layout� My+1 (M̃y+1)

Fig. 3. The second-preimage search

searching for M̃y−2 is carried out by moving backwards and then backwards,
and the name of the BNF search comes from the fact that searching for M̃y−1,
M̃y and M̃y+1 is performed by moving backwards and then forwards (see Table
1). A personal computer takes about 1 second to find a second preimage of the
ALPHA-MAC. In Appendix A, we provide a second preimage of a selected key
and a selected five-block message.

4 The Collision Search Algorithm

Known: a selected key or a selected intermediate value.
Find: two five-block messages M and M̃ such that they collide under the

selected key or the intermediate value.
Method: employ the second-preimage search.

In the second-preimage search, we choose the first five-block message arbitrar-
ily, and once it is decided, we do not modify it. All we need to do is modify
the second five-block message so that 128-bit collisions happen. Therefore, the
second-preimage search can also be used to find two colliding five-block messages
under a selected key (or a selected intermediate value).

On the Internal Structure of Alpha-MAC 283

5 Conclusions

In this paper, we have presented our analysis on the internal structure of ALPHA-
MAC. We proposed a method to find second preimages of the ALPHA-MAC
by combining the Backwards-aNd-Forwards search and the Backwards-aNd-
Backwards search, based on the assumption that a key or an intermediate value
is known. Our method employs the algebraic properties of AES and the struc-
tural features of the ALPHA-MAC. To find a second preimage of the ALPHA-
MAC, our idea needs to solve eight groups of linear functions. We also showed
that the second-preimage finding method can be used to generate internal
collisions.

References

1. National Institute of Standards and Technology, U.S. Department of Commerce.
Advanced Encryption Standard (AES). Federal Information Processing Standard
197, 2001.

2. National Institute of Standards and Technology, U.S. Department of Commerce.
Secure hash standard. Federal Information Processing Standard, FIPS-180-1,
1995.

3. National Institute of Standards and Technology, U.S. Department of Com-
merce. Secure hash standard. Federal Information Processing Standard, FIPS-180,
1993.

4. National Institute of Standards and Technology, U.S. Department of Commerce.
The Keyed-Hash Message Authentication Code (HMAC). Federal Information Pro-
cessing Standard 198, 2002.

5. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for Mes-
sage Authentication. Advances in Cryptology - CRYPTO’96, 16th Annual Interna-
tional Cryptology Conference, Lecture Notes in Computer Science 1109, pp. 1-15,
Springer-Verlag, 1996.

6. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. Advances in Cryptology -
CRYPTO 2004, 24th Annual International Cryptology Conference, Lecture Notes
in Computer Science 3152, pp. 290-305, Springer-Verlag, 2004.

7. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and Reduced SHA-1. Advances in Cryptology
- EUROCRYPT 2005, 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Lecture Notes in Computer Science
3494, pp. 36-57, Springer-Verlag, 2005.

8. Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer-Verlag, 1993.

9. John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway.
UMAC: Fast and Secure Message Authentication. Advances in Cryptology -
CRYPTO’99, 19th Annual International Cryptology Conference, Lecture Notes
in Computer Science 1666, pp. 216-233, Springer-Verlag, 1999.

10. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. Advances
in Cryptology - CRYPTO’98, 18th Annual International Cryptology Conference,
Lecture Notes in Computer Science 1462, pp. 56-71, Springer-Verlag, 1998.

284 J. Huang, J. Seberry, and W. Susilo

11. Joan Daemen and Vincent Rijmen. A New MAC Construction ALRED and a
Specific Instance ALPHA-MAC. Fast Software Encryption: 12th International
Workshop, FSE 2005, Lecture Notes in Computer Science 3557, pp. 1-17, Springer-
Verlag, 2005.

12. Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael, AES Round 1 Tech-
nical Evaluation CD-1: Documentation, National Institute of Standards and Tech-
nology, 1998.

13. Donald Davies. A Message Authenticator Algorithm Suitable for A Mainframe
Computer. Advances in Cryptology, Proceedings of CRYPTO’84, Lecture Notes
in Computer Science 196, pp. 393-400, Springer-Verlag, 1985.

14. Hans Dobbertin. Cryptanalysis of MD4. Fast Software Encryption: Third Interna-
tional Workshop, FSE 1996, Lecture Notes in Computer Science 1039, pp. 53-69,
Springer-Verlag, 1996.

15. International Organization for Standardization. ISO/IEC 9797-1, Information
technology – Security techniques – Message Authentication Codes (MACs) – Part
1: Mechanisms using a block cipher . 1999.

16. Bart Preneel and Paul C. van Oorschot. MDx-MAC and Building Fast MACs from
Hash Functions. Advances in Cryptology - CRYPTO’95, 15th Annual International
Cryptology Conference, Lecture Notes in Computer Science 963, pp. 1-14, Springer-
Verlag, 1995.

17. Ronald Rivest. The MD4 message-digest algorithm, Request for Comments (RFC)
1320, Internet Activities Board, Internet Privacy Task Force, 1992.

18. Ronald Rivest. The MD5 message-digest algorithm, Request for Comments (RFC
1320), Internet Activities Board, Internet Privacy Task Force, 1992.

19. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the Hash Functions MD4 and RIPEMD. Advances in Cryptology -
EUROCRYPT 2005, 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Lecture Notes in Computer Science
3494, pp. 1-18, Springer-Verlag, 2005.

20. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryp-
tology Conference, Lecture Notes in Computer Science 3621, pp. 17-36, Springer-
Verlag, 2005.

21. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Lecture Notes
in Computer Science 3494, pp. 19-35, Springer-Verlag, 2005.

22. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search At-
tacks on SHA-0. Advances in Cryptology - CRYPTO 2005: 25th Annual Interna-
tional Cryptology Conference, Lecture Notes in Computer Science 3621, pp. 1-16,
Springer-Verlag, 2005.

A A Found Second Preimage

For a selected key K (see Table 3) and a selected five-block message M (see
Table 2), a second preimage found by our algorithm is M̃ (shown in Table 2).
The 128-bit colliding value is listed in Table 4. Note that these two messages are
listed after injection layout.

On the Internal Structure of Alpha-MAC 285

Table 2. Two five-block messages

M (the selected message)
My−3 My−2 My−1 My My+1

c4 0 8c 0 e6 0 2a 0 77 0 fd 0 ef 0 a1 0 81 0 9f 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
94 0 f3 0 95 0 04 0 4c 0 37 0 68 0 09 0 25 0 2c 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M̃ (the found second preimage)
M̃y−3 M̃y−2 M̃y−1 M̃y M̃y+1

1d 0 43 0 22 0 04 0 e4 0 83 0 2f 0 e5 0 69 0 06 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1c 0 0d 0 2f 0 30 0 2f 0 9b 0 d4 0 30 0 f4 0 3a 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3. The selected key K

83 55 2d 81
88 2c 05 67
c1 63 be c2
2a a2 52 a4

Table 4. The 128-bit collisions

7d 69 88 d7
02 cb 1f af
b9 d8 7b 5e
0e 10 79 21

A Weak Key Class of XTEA for a Related-Key
Rectangle Attack�

Eunjin Lee, Deukjo Hong, Donghoon Chang, Seokhie Hong, and Jongin Lim

Center for Information Security Technologies (CIST),
Korea University, Seoul, Korea

{walgadak,hongdj,pointchang,hsh,jilim}@cist.korea.ac.kr

Abstract. XTEA is a block cipher with a very simple structure but
there has not been found attack even for half of full round version i.e
32-round version. In this paper we introduce a class of weak keys which
makes a 34-round reduced version of XTEA vulnerable to the related-
key rectangle attack. The number of such weak keys is about 2108.21.
Our attack on a 34-round reduced version of XTEA under weak key
assumption requires 262 chosen plaintexts and 231.94 34-round XTEA
encryptions.

Keywords: XTEA algorithm, related-key rectangle attack, weak key
class of XTEA.

1 Introduction

In 1994, Wheeler and Needham proposed a simple block cipher TEA [14] that
uses exclusive-or, addition, and shift operation. It had a simple round function
which looked too weak to give sufficient security, but TEA had large number of
rounds of 64 enough to make itself secure against current attacks. Furthermore,
since it had a simple structure, its implementation and performance were not
bad.

However, Kelsey, Schneier and Wagner proposed a related-key attack on full-
round TEA in [9]. They used a differential characteristic for addition mod 232

with probability 1 that can be constructed under a pair of keys with a particular
difference. Wheeler and Needham proposed XTEA which was an improved ver-
sion of TEA [13]. XTEA is 64-bit block cipher using a 128-bit secret key. Until
now, the best attack is the related-key truncated differential attack on 27-round
XTEA proposed in [11]. Table 1 depicts recent results on XTEA.

In 1993, Biham [2] introduced the related-key attack in which the attacker
can choose the relationship between two unknown keys. It depends on a key

� This research was supported by the MIC(Ministry of Information and Com-
munication), Korea, under the ITRC(Information Technology Research Center)
support program supervised by the IITA(Institute of Information Technology
Advancement)(IITA-2006-(C1090-0603-0025)).

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 286–297, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Weak Key Class of XTEA for a Related-Key Rectangle Attack 287

scheduling algorithm and shows that a block cipher with a weak key schedul-
ing algorithm may be vulnerable to this kind of attack. In 1999, Wagner [15]
proposed the boomerang attack using chosen plaintexts and adaptively chosen
ciphertexts. For a block cipher, it may be that finding a long differential with
high probability is difficult but finding a short differential with high probability
is easy. In such a block cipher, the boomerang attack is useful since it uses two
short differentials with high probability to construct a long-round distinguisher.
The boomerang attack was developed into a chosen plaintext attack called the
amplified boomerang attack [8]. The transformation to a chosen plaintext at-
tack has price in a much larger data complexity for the identification of the right
quartets. After its introduction, Biham, Dunkelman, Keller [3] improved it into
the rectangle attack. In 2004, Kim et al. [10] and Biham et al. [5] introduced a
combination of the related-key and the rectangle attacks, called the related-key
rectangle attack. Recently, Hong et al. [6] and Biham et al. [5] considered four
related keys to suggest related-key rectangle attack.

In this paper, we apply the related-key rectangle attack with four related
keys to reduced version of XTEA and introduce a class of weak keys for the
attack. Although XTEA is an improved version of TEA, it is very interesting
that XTEA still has weakness of related-key attack. We show that there exist
about 2108.21 keys which make XTEA not secure against the related-key rect-
angle attack. Under the assumption of such weak key, we construct a rectangle
distinguisher to break a 34-round reduced version of XTEA. This attack requires
262 chosen plaintexts and 231.94 34-round XTEA encryptions.

This paper is organized as follows. In Section 2, we present the XTEA algo-
rithm. In Section 3, we describe a related-key rectangle distinguisher of XTEA
with weak key quartets. In Section 4, we present a related-key rectangle at-
tack under weak key assumption on a 34-round reduced version of XTEA. We
conclude in Section 5.

Table 1. Various attacks on reduced-round XTEA

Attack method paper Rounds Data complexity Time Complexity
Impossible Diff. [12] 14 262.5 285

Diff. [7] 15 259 2120

Truncated Diff. [7] 23 223 2120.65

R·K Truncated Diff. [11] 27 220.5 2115.15

R·K Rectangle
(weak key assumption) this paper 34 262 231.94

2 XTEA Algorithm

In this section, we describe several notations used in this paper and briefly
describe XTEA.

288 E. Lee et al.

– � : addition modulo 232

– ⊕ : exclusive-or
– · : multiplication modulo 232

– , (or -) : left (or right) shift
– || : concatenation of two binary strings

2.1 Description of XTEA

XTEA is a 64-round block cipher with 64-bit block size and 128-bit key K
which is split into four 32-bit words K = K0||K1||K2||K3. Let (Ln, Rn) and
(Ln+1, Rn+1) be the input and the output of the n-th round function, respec-
tively. For an n-th round key Sn, (Ln+1, Rn+1) is defined as follows.

Ln+1 = Rn,

Rn+1 = Ln � F (Rn, Sn)
= Ln � ((G(Rn) �Rn)⊕ Sn),

where G(x) = (x, 4)⊕ (x- 5) for any 32-bit value x. For δ = 9e3779b9x and
1 ≤ n ≤ 64, the n-th round key Sn is generated from K as follows.

Sn =
{

(i− 1) · δ �K((i−1)·δ�11)&3 if n = 2i− 1,
i · δ �K(i·δ�11)&3 if n = 2i

G 4<<

5>>

nL

1nL + 1nR +

nS

nRF

Fig. 1. n-th round function of XTEA

3 Related-Key Rectangle Distinguisher of XTEA Under
Weak Key Assumption

In this section we show how to construct a 33-round related-key rectangle dis-
tinguisher of XTEA under weak key assumption.

A Weak Key Class of XTEA for a Related-Key Rectangle Attack 289

3.1 3-Round Related-Key Differential Characteristic of XTEA

Let α1 = 80402010x and α2 = 80c02010x. We assume two equations x1�x2 = x3
and y1 � y2 = y3. Δ1 � Δ2 → Δ3 means x1 ⊕ y1 = Δ1(or x1 ⊕ y2 = Δ1),
x2⊕y2 = Δ2(or x2⊕y1 = Δ2) and x3⊕y3 = Δ3. The probability of α1 �0 → α1
and the probability of α1 � α1 → 0 are 2−3 over the random distribution of
(x1, x2, y1, y2).

We will explain three differential characteristics used in our attack. First, we
consider the probability of the 2-round differential characteristic in the case that
the input difference is zero and two consecutive round key differences are α1,
namely ΔSn = ΔSn+1 = α1. See Fig 2. In the n-th round, the output difference
of F is α1 becauseΔRn = 0 andΔSn = α1. The probability of 0�α1 → α1 is 2−3,
so ΔRn+1 = α1 with the probability 2−3. In the (n+1)-th round, since G(α1) =
0, the probability of 0 � α1 → α1 is 2−3 and ΔSn+1 = α1, the output difference
of F is zero with the probability 2−3. So, ΔRn+2 = 0 when the output difference
of F is zero, because ΔLn+1 = 0. Consequently, when ΔSn = ΔSn+1 = α1, the
probability of the differential characteristic (ΔLn, ΔRn) → (ΔLn+2, ΔRn+2)
with (ΔLn, ΔRn) = (0, 0) and (ΔLn+2, ΔRn+2) = (α1, 0) is 2−6. We denote
this differential characteristic with ψ1.

<<4

>>5

1nS αΔ =

G
F

1α

<<4

>>5

1 1nS α+Δ =
G
F

0

0

1α

0nLΔ = 0nRΔ =

1 0nL +Δ =

2 1nL α+Δ =

1 1nR α+Δ =

2 0nR +Δ =

3
1 2p −=

3
2 2p −=

Fig. 2. ψ1, 2-round related-key differential characteristic of XTEA

ψ1 can be extended to a 3-round differential characteristic with the probabil-
ity 2−9 by concatenating it to the one-round differential characteristic (ΔLn+2,
ΔRn+2) → (ΔLn+3, ΔRn+3) with ΔLn+2 = α1, ΔRn+2 = ΔLn+3 = ΔRn+3 =
0, and ΔSn+2 = α1. The additionally concatenated one-round differential char-
acteristic has the probability 2−3 because the probability of α1 � α1 → 0 is 2−3.
We denote this 3-round differential characteristic ψ2.

290 E. Lee et al.

<<4

>>5

1nS αΔ =
G

F

1α

<<4

>>5

1 1nS α+Δ =
G

F

<<4

>>5

2 1nS α+Δ =
G

F

0

0

1α

0nLΔ = 0nRΔ =

1 0nL +Δ =

2 1nL α+Δ =

1 1nR α+Δ =

2 0nR +Δ =

3 0nL +Δ = 3 0nR +Δ =

3
1 2p −=

3
2 2p −=

0

3
3 2p −=

Fig. 3. ψ2, 3-round related-key differential characteristic of XTEA

ψ1 can be extended to a 3-round differential characteristic with the probabil-
ity 2−10 by concatenating it to the one-round differential characteristic (ΔLn+2,
ΔRn+2) → (ΔLn+3, ΔRn+3) with ΔLn+2 = α1, ΔRn+2 = ΔLn+3 = ΔRn+3 =
0, and ΔSn+2 = α2. The additionally concatenated one-round differential char-
acteristic has the probability 2−4 because the probability of α1 � α2 → 0 is 2−4.
We denote this 3-round differential characteristic ψ3.

3.2 Related-Key Rectangle Distinguisher of XTEA Under Weak
Key Assumption

We use the weakness of the XTEA key schedule to build a 33-round related-key
rectangle distinguisher in this subsection. We are interested in the property that
round keys inherit the difference from four words of the 128-bit master key. Table
2 shows us the order of four words K0,K1,K2, and K3 in the master key K of
XTEA in generating round keys.

According to Table 2, we can see that K0 is used from the 8th round to the
10th round and from the 17th round to the 18th round and that K1 is used from
the 26th round to the 28th round. We use this fact and the differential charac-
teristics ψ1, ψ2, and ψ3 to build a 33-round related-key rectangle distinguisher
of XTEA.

A Weak Key Class of XTEA for a Related-Key Rectangle Attack 291

<<4

>>5

1nS αΔ =
G

F

1α

<<4

>>5

1 1nS α+Δ =
G

F

<<4

>>5

2 2nS α+Δ =
G

F

2α

0

0

1α

0nLΔ = 0nRΔ =

1 0nL +Δ =

2 1nL α+Δ =

1 1nR α+Δ =

2 0nR +Δ =

3 0nL +Δ = 3 0nR +Δ =

3
1 2p −=

3
2 2p −=

4
3 2p −=

Fig. 4. ψ3, 3-round related-key differential characteristic of XTEA

Table 2. The order of four words K0, K1, K2, and K3 in the master key K of XTEA
in generating round keys

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Key K0 K3 K1 K2 K2 K1 K3 K0 K0 K0 K1 K3 K2 K2 K3 K1

Round 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Key K0 K0 K1 K0 K2 K3 K3 K2 K0 K1 K1 K1 K2 K0 K3 K3

Round 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Key K0 K2 K1 K1 K2 K1 K3 K0 K0 K3 K1 K2 K2 K1 K3 K1

Round 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Key K0 K0 K1 K3 K2 K2 K3 K2 K0 K1 K1 K0 K2 K3 K3 K2

Let K1,K2,K3, and K4 be 128-bit keys. We consider the following quartet
of related keys.

K1 = K0||K1||K2||K3, K2 = K ′
0||K1||K2||K3,

K3 = K0||K ′
1||K2||K3, K4 = K ′

0||K ′
1||K2||K3.

We assume that following conditions are satisfied.

(δ · 4 �K0)⊕ (δ · 4 �K ′
0) = α1, (1)

(δ · 8 �K0)⊕ (δ · 8 �K ′
0) = α1, (2)

292 E. Lee et al.

(δ · 9 �K0)⊕ (δ · 9 �K ′
0) = α1, (3)

(δ · 13 �K1)⊕ (δ · 13 �K ′
1) = α1, (4)

(δ · 14 �K1)⊕ (δ · 14 �K ′
1) = α1, (5)

(δ · 5 �K0)⊕ (δ · 5 �K ′
0) = α2. (6)

Let E0 be the XTEA encryption from the 2nd round to the 19th round and
E1 be the XTEA encryption from the 20th round to the 34th round, and let P1,
and P2 be 64-bit plaintexts. For E0(K1, P1) and E0(K2, P1), we can construct
a 18-round differential characteristic ψ4 using the differential characteristics ψ3
and ψ1, which is described Table 3. The probability of ψ4 is 2−10 ·2−6 = 2−16. Let
Y1 = E0(K1, P1), Y2 = E0(K2, P1), Y3 = E0(K3, P2) and Y4 = E0(K4, P2). We
also apply ψ4 to E0(K3, P2) andE0(K4, P2) such that Y1⊕Y2 = Y3⊕Y4. Then the
probability of both Y1⊕Y2 = Y3⊕Y4 and ψ4 are happened is

∑
β Pr((Δ0, Δ0) →

(Δβ,Δ0))2 = (2−18.38)2 where Δβ is a possible value of Δα1 �Δ0.
We assume that Y1 ⊕ Y3 = Y2 ⊕ Y4 = (0, 0). Then for E1(K1, Y1) and

E1(K3, Y3), we can construct a 15-round differential characteristic ψ5 using
the differential characteristic ψ2, which is described Table 4. Then the prob-
ability of ψ5 is 2−9. Let Z1 = E1(K1, Y1), Z2 = E1(K2, Y2), Z3 = E1(K3, Y3)
and Z4 = E1(K4, Y4). We also apply ψ5 to E1(K3, Y2) and E1(K4, Y4) such
that Z1 ⊕ Z3 = Z2 ⊕ Z4 = (0, 0). Then Z1 ⊕ Z3 = Z2 ⊕ Z4 = (0, 0) with the
probability (2−9)2.

If a quartet (P1, P1, P2, P2) satisfies above related-key differential charac-
teristics then we call (P1, P1, P2, P2) a right quartet. That is, right quartet
(P1, P1, P2, P2) satisfies following conditions.

Y1 ⊕ Y2 = Y3 ⊕ Y4 = (β, 0), (7)
Y1 ⊕ Y3 = (0, 0), (8)

Z1 ⊕ Z3 = Z2 ⊕ Z4 = (0, 0). (9)

Let m be the number of plaintext pairs with input difference (0,0). Then
we have about m2 · (2−18.38)2 quartets satisfying (7). If we assume that the
intermediate encryption values are distributed uniformly over all possible values,
we get Y1⊕Y3 = (0, 0) with the probability 2−64. This assumption enables us to
obtain m2 · 2−64 · (2−18.38)2 quartets satisfying (7) and (8). As stated above, (7)
and (8) allow us to get Y2⊕Y4 = (0, 0) with probability 1. Moreover, each of Y 1⊕
Y 3 and Y 2⊕Y 4 satisfies the related-key differential ψ5 with the probability 2−9.
Therefore, the expected number of right quartets is m2 · (2−18.38)2 ·2−64 · (2−9)2.
For a random permutation the expected number of Z1 ⊕ Z3 = Z2 ⊕ Z4 = (0, 0)
is m2 · (2−64)2 since there are m2 possible quartets and each of the Z1 ⊕ Z3
and Z2 ⊕ Z4 satisfies the (0,0) with the probability 2−64. Consequently, our
related-key differential characteristics can form a 33-round related-key rectangle
distinguisher of XTEA since m2 · (2−18.38)2 · 2−64 · (2−9)2 is greater than m2 ·
(2−64)2.

A Weak Key Class of XTEA for a Related-Key Rectangle Attack 293

Table 3. 18-round differential characteristic ψ4

Round characteristic probability
2 ∼7 input differences and ΔSn are all zero 1
8 ∼10 This is same to ψ3 2−10

11∼16 input differences and ΔSn are all zero 1
17∼18 This is same to ψ1 2−6

19 Δinput : (0,0), Δoutput : (β(= α1 � 0),0), ΔS19 = 0

Table 4. 15-round differential characteristic ψ5

Round characteristic probability
20 ∼25 input differences and ΔSn are all zero 1
26 ∼28 This is same to ψ2 2−9

29∼34 input differences and ΔSn are all zero 1

4 Related-Key Rectangle Attack on 34 Rounds of XTEA
Under Weak Key Assumption

We are now ready to show how to exploit the 33-round distinguisher to attack
34-round of XTEA under weak key assumptions. We assume that the 34 round
XTEA cipher uses the master key K1 as well as related keys K2,K3,K4. The
following is an attack procedure of 34 rounds of XTEA.
=======================================

1. Choose 260 plaintext pairs (P1, P1) and 260 plaintext pairs (P2, P2). (P1, P1,
P2, P2) are encrypted using the keys (K1,K2,K3,K4), respectively, relating
the ciphertexts C1, C2, C3, C4.

2. Check that C1 ⊕ C3 = C2 ⊕ C4 = Δ(L36, R36) = (ξ, 0) where (ξ, 0) is a
possible output difference when the input difference is (0, 0). See Table 5 for
description of ξ. There are 1080 possible values of ξ.

3. Guess a 32-bit round key quartet (K1,K1,K
′
1,K

′
1) of the 35th round under

weak key assumptions.
(a) For all ciphertext quartets (C1, C2, C3, C4) passing Step 2, check that

E−1
K1(C1)⊕ E−1

K3(C3) = (0, 0) and E−1
K2(C2)⊕ E−1

K4(C4) = (0, 0)
(b) If the number of ciphertext quartets passing Step 3(a) is greater than or

equal to 2, output the guessed key quartet as the right key quartet of
round 35. Otherwise, go to Step 3.

=======================================

This attack requires two pools of 260 plaintext pairs and thus data complexity
of attack is 262. Using two pools of 260 plaintext pairs we can make 2120 plaintext
quartets. Here, 212.15(≈ 2120 · (2−37 · 10

29 · 12
210 · 9

28)2) quartets pass Step 2. The

294 E. Lee et al.

1Y

4Y2Y

3Y

4Z2Z

3Z1Z

0E

0E

0E

0E

1E

1E 1E

1E

1E

0E

1, 2P K 2 , 4P K

2 , 3P K1, 1P K

4ψ4ψ

5ψ

5ψ

Fig. 5. 33-round related-key rectangle distinguisher of XTEA

4<<

5>>

0000 0000 0000 0000 0000 0000 0000 00000000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 00000()i nKδΔ

()i nKδΔ

()ξ=

Fig. 6. Description of the 35th round operation

expected number of right quartets is about 2 (≈ 2120 · 2−64 · (2−18.38 · 2−9)2).
Thus in case that the right key of the 35th round is guessed, the expected
number of ciphertext quartets is 2 in Step 3(a). Next, we consider the case that
wrong key is guessed. Let ξ′i, ξ

′
j for 1 ≤ i, j ≤ 1080 be any possible values of

ξ′. Then the probability that there exist C1, C2, C3, C4 such that C1 ⊕ C3 =
(ξ′i, 0) and C2 ⊕ C4 = (ξ′j , 0) is 212.15

220.15 where 220.15 (≈ 1080 · 1080). Let Ti,j

for 1 ≤ i, j ≤ 1080 be the probability that E−1
K1(C1) ⊕ E−1

K3(C3) = (0, 0) and
E−1

K2(C2) ⊕ E−1
K4(C4) = (0, 0) where C1 ⊕ C3 = (ξ′i, 0) and C2 ⊕ C4 = (ξ′j , 0).

A Weak Key Class of XTEA for a Related-Key Rectangle Attack 295

Table 5. (Possible values of ξ)

i-th bit∼j-th bit possible values of ξ number of cases
4 ∼ 0 10000 1
13 ∼ 5 100000000, 100000001, 100000011,

· · · , 111111111, 011111111 10
23 ∼ 14 1100000000, 1100000001,1100000011,

· · · ,1111111111,1011111111,0011111111,0111111111 12
31 ∼ 24 10000000,10000001,10000011,

· · · ,11111111,01111111 9

Thus for each wrong key quartet the number of ciphertext quartets passing the
Step 3(a) is (212.15

220.15 · T1,1 · 223.87+ 212.15

220.15 · T1,2 · 223.87+ 212.15

220.15 · T1,3 · 223.87+ · · ·
212.15

220.15 · T1080,1080 · 223.87)/223.87 = (212.15

220.15 · 223.87 · (
∑
Ti,j))/223.87 ≈ 2−10 where

the number of weak keys, K11’s, is 223.87 and
∑
Ti,j is about 2−2. Therefore we

can get the right key used in the 35th round with the above attack procedure.
The time complexity of this attack is 212.15 · 223.87 · 1

34 ·
1
2 · 4 ≈ 231.94.

5 Conclusion

XTEA is a block cipher with a very simple structure but there was no known
attack even for half the total number of rounds version although it has 64 rounds.
In this paper, we have presented a related-key rectangle attack on XTEA under
weak key assumption. There are 2108.21 (= 220.35 ·223.87 ·264)(a fraction 2−19.79 of
all keys) weak keys which make it possible to construct the above distinguishers.
See appendix A for description of weak key quartets. The attack on 34 rounds
of XTEA under weak key assumptions requires 262 chosen plaintexts and 231.94

34-round XTEA encryptions.

References

1. E. Biham, A. Shamir, “Differential cryptanalysis of DES-like cryptosystems”,
Crypto 1990, LNCS 537, Springer-Verlag, pp. 2–21, 1991.

2. E. Biham, “ New Types of Cryptanalytic Attacks Using Related Keys”, Journal
of Cryptology, LNCS 7, Springer-Verlag, pp. 229–246, 1994

3. E. Biham, O. Dunkelman, N. Keller, “Rectangle Attack-Rectangling the Serpent”,
Eurocrypt 2001, LNCS 2045, Springer-Verlag, pp. 340–357, 2001.

4. E. Biham, O. Dunkelman, N. Keller, “New Results on Boomerang and Rectangle
Attacks,” FSE 2002, LNCS 2365, Springer-Verlag, pp. 1–16, 2002.

5. E. Biham, O. Dunkelman, N. Keller, “Related-Key Boomerang and Rectangle At-
tacks,” Eurocrypt 2005, LNCS 3494, Springer-Verlag, pp. 507–525, 2005.

6. S. Hong, J. Kim, S. Lee, B. Preneel, “Related-Key Rectangle Attacks on Reduced
Versions of SHACAL-1 and AES-192,” FSE 2005, LNCS 3557, Springer-Verlag,
pp. 368–383, 2005.

296 E. Lee et al.

7. S. Hong, D. Hong, Y. Ko, D. Chang, W. Lee, S. Lee, “Differential Cryptanalysis of
TEA and XTEA,” ICISC 2003, LNCS 2971, Springer-Verlag, pp. 413–428, 2003.

8. J. Kelsey, T. Kohno, B. Schneier, “Amplified Boomerang Attacks Against Reduced-
Round MARS and Serpent,” FSE 2000, LNCS 1978, Springer-Verlag, pp. 75–93,
2001.

9. J. Kelsey, B. Schneier, D. Wagner, “Related-Key Cryptanalysis of 3-Way, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA,” ICICS 1997, LNCS 1334,
Springer-Verlag, pp. 203–207, 1997.

10. J. Kim, G. Kim, S. Hong, S. Lee and D. Hong, “The Related-key Rectangle At-
tack Application to SHACAL-1,” ACISP 2004, LNCS 3108, Springer-Verlag, pp.
123–136, 2005.

11. Y. Ko, S. Hong, W. Lee, S. Lee, J. Kang, “Related Key Differential Attacks on 27
Rounds of XTEA and Full-Round GOST,” FSE 2004, LNCS 3017, Springer-Verlag,
pp. 299–316, 2005.

12. D. Moon, K. Hwang, W. Lee, S. Lee, J. Lim, “Impossible Differential Cryptanalysis
of Reduced Round XTEA and TEA,” FSE 2002, LNCS 2365, Springer-Verlag, pp.
49–60, 2003.

13. R. M. Needham, D. J. Wheeler, “eXtended Tiny Encryption Algorithm,” October
1997, Available on http://vader.brad.ac.uk/tea/tea.shtml.

14. D. Wheeler, R. Needham, “TEA,a Tiny Encryption Algorithm,” FSE 1994, LNCS
1008, Springer-Verlag, pp. 97–110, 1995.

15. D. Wagner, “The Boomerang Attack,” FSE 1998, LNCS 1636, Springer-Verlag,
pp. 156–170, 1999.

A Description of Weak Key Quartet of XTEA

We describe the form of weak key quartets of XTEA more in detail than (1)∼(6).
LetK1 = (K0||K1||K2||K3), K2 = (K ′

0||K1||K2||K3), K3=(K0||K ′
1||K2||K3),

K4 = (K ′
0||K ′

1||K2||K3) and let Kj = (K31
j ,K

30
j ,K

29
j , · · · ,K1

j ,K
0
j) for 0 ≤ j ≤

3 be 32-bit strings. IfK1, K2, K3, K4 satisfy (1.1)∼(2.7) then (K1,K2,K3,K4)
satisfies all conditions of (1)∼(6).
Xj

i (K0,K
′
0) ∈ {a, b, c} means that Kk

0 = K ′k
0 have the same value as a or b

or c for i ≤ k ≤ j. NXi(K0,K
′
0) means that Ki

0 = 0 and K ′i
0 = 1. Similarly,

NXj
i (K0,K

′
0) means that Kk

0 = 0 and K ′k
0 = 1 for i ≤ k ≤ j.

– Let (K1, K2) and (K3, K4) satisfy following (1.1)∼(1.8) :
(1.1) K3

0 = K′3
0 = 0, X2

0 (K0, K
′
0) ∈ {011, 100, 101, 110, 111}.

(1.2) K4
0 �= K′4

0 i.e if K4
0 = 1 then K′4

0 = 0.
(1.3) X12

5 (K0, K
′
0) ∈ {11000100, 11000101, 11000110, 11000111, 11001000}

(1.4) K13
0 �= K′13

0

(1.5) If K13
0 = 0, K′13

0 = 1 then Ki
0, K′i

0 for 14 ≤ i ≤ 19 have the same value
as follows :

· X19
15 (K0, K

′
0) ∈ {01000, 01001, 01010, · · · , 11000}, NX14 (K0, K

′
0) or

· X19
16 (K0, K

′
0) ∈ {0100, 0101, 0110, 0111, 1000}, NX15(K′

0, K0), NX14

(K0, K
′
0) or

· X19
17 (K0, K

′
0) ∈ {010, 011}, NX16(K′

0, K0), NX15
14 (K0, K′

0) or
· X19

18 (K0, K
′
0) ∈ {01}, NX17(K′

0, K0), NX16
14 (K0, K

′
0) or

· K19
0 = K′19

0 = 0, NX18(K′
0, K0), NX17

14 (K0, K
′
0)

A Weak Key Class of XTEA for a Related-Key Rectangle Attack 297

If K13
0 = 1, K13

0 = 0′ then Ki
0, K′i

0 change the value each other.
(1.6) K22

0 �= K′22
0 , K23

0 �= K′23
0 , K22

0 �= K′23
0 , K22

0 �= K′23
0 i.e if K22

0 = 0 then
K′22

0 = 1, K23
0 = 1, K′23

0 = 0
(1.7) Ki

0 = K′i
0 for 24 ≤ i ≤ 30 and K31

0 �= K′31
0

– Let (K1, K3) and (K2, K4) satisfy following (2.1)∼(2.7) :
(2.1) X3

0 (K1, K
′
1) ∈ {0010, 0011, 0100, 0110}

(2.2) K4
1 �= K′4

1

(2.3) Ki
1, K

′i
1 for 5 ≤ i ≤ 12 have the value same as follows :

· X8
5 (K1, K

′
1)∈{0000, 0001, 0010, · · ·, 1010, 1100, }, X12

9 (K1, K
′
1)∈{1000}

or
· X10

5 (K1, K
′
1) ∈ {010110, 010111, 011000, 011001, 011010, · · · , 011111,

100000, 100001, · · · , 111111}, K11
1 = K′11

1 = 1, K12
1 = K′12

1 = 0
(2.4) K13

1 �= K′13
1

(2.5) If K13
1 = 0, K′13

1 = 1 then Ki
1, K′i

1 for 14 ≤ i ≤ 21 have the same value as
follows :

· X20
15 (K1, K

′
1) ∈ {011110, 01111, 100000, 100001, · · · , 101111},

NX14(K′
1, K1)

· X20
16 (K1, K

′
1) ∈ {01111, 10000, 10001, · · · , 10110},

NX15(K′
1, K1), NX14(K1, K

′
1)

· X20
17 (K1, K

′
1) ∈ {0111, 1000, 1001, · · · , 1011},

NX16(K′
1, K1), NX15(K1, K

′
1), NX14(K1, K

′
1)

· X20
18 (K1, K

′
1) ∈ {100, 101},

NX17(K′
1, K1), NX16(K1, K

′
1) , NX15(K1, K

′
1), NX14(K1, K

′
1)

· X20
19 (K1, K

′
1) ∈ {10},

NX18(K′
1, K1), NX17(K1, K

′
1), NX16(K1, K

′
1) , NX15(K1, K

′
1),

NX14(K1, K
′
1)

· K21
1 = K′21

1 = 1
If K13

1 = 1, K′13
1 = 0 then Ki

1, K′i
1 for 14 ≤ i ≤ 21 change above values

each other.
(2.6) K22

1 �= K′22
1 , K23

1 = K′23
1 = 1

(2.7) Ki
1 = K′i

1 for 24 ≤ i ≤ 30 and K31
1 �= K′31

1

Assume that K1, K2 satisfy (1.1)∼(1.7) and K1, K3 satisfy (2.1)∼(2.7). If
K3, K4 satisfy (1.1)∼(1.7) then K1, K2, K3, K4 satisfy all conditions of
(1)∼(6). The weak key quartets are computed as follows :

– the number of K10, K20 satisfying (1.1)∼(1.7)

211 · 5 · 5 · 26 = 220.34

– the number of K11, K31 satisfying (2.1)∼(2.7)

34 · 55 · 213 ≈ 223.87

– Thus the total number of weak key quartets is (220.34)·(223.87)·(264) = 2108.21

Deniable Group Key Agreement

Jens-Matthias Bohli1 and Rainer Steinwandt2

1 Institut für Algorithmen und Kognitive Systeme, Fakultät für Informatik,
Am Fasanengarten 5, 76128 Karlsruhe, Germany

bohli@ira.uka.de
2 Department of Mathematical Sciences, Florida Atlantic University,

777 Glades Road, Boca Raton, FL 33431, USA
rsteinwa@fau.edu

Abstract. Especially for key establishment protocols to be used in in-
ternet applications, the (privacy) concern of deniability arises: Can a
protocol transcript be used—possibly by a participant—to prove the in-
volvement of another party in the protocol? For two party key estab-
lishment protocols, a common technique for achieving deniability is the
replacement of signature-based message authentication with authentica-
tion based on symmetric keys. We explore the question of deniability in
the context of group key establishment: Taking into account malicious
insiders, using a common symmetric key for authentication is critical,
and the question of how to achieve deniability arises.

Building on a model of Bresson et al., we offer a formalization of de-
niability and present a group key agreement offering provable security
in the usual sense, deniability, and security guarantees against malicious
insiders. Our approach for achieving deniability through a suitably dis-
tributed Schnorr-signature might also be of independent interest.

Keywords: group key agreement, plausible deniability.

1 Introduction

In addition to standard requirements like key secrecy or perfect forward secrecy,
often additional conditions are imposed on key establishment protocols. In par-
ticular for key establishment protocols geared towards internet applications, e. g.,
IKEv2 [11] or JFK [1], further issues like DoS resistance and protection of pri-
vacy become relevant. One of these (privacy) requirements that has, e. g., been
explicitly addressed in a memo on “Features of Proposed Successors to IKE”
[12] is the question of plausible deniability: Assume we run a key establishment
between two principals U1 and U2. Then it can be desirable that a transcript
of the communication does not allow to prove that indeed U1 and U2 have es-
tablished a key in this session. Going one step further, even for each of the two
protocol participants it should be infeasible to prove to a third party that its
communication partner has been involved in the key establishment.

In [15] Mao and Paterson put forward (informal) definitions for various degrees
of plausible deniability and also key establishment protocols achieving deniabil-
ity by using identity-based techniques. In joint work with Boyd [5], Mao and

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 298–311, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Deniable Group Key Agreement 299

Paterson discuss how to integrate the design goal of deniability in a two party
key establishment with a construction method of Canetti and Krawczyk [8]. A
key technique in [5] is the use of public information to derive a shared secret
between two principals U1, U2 aiming at the establishment of a common key.
The general question of deniability, and the question of deniable authentication
in particular, has received significant attention in the literature—a very partial
list including [10,16,9,18,19]. Nevertheless, for the deniability of key establish-
ment protocols a satisfying formal treatment that integrates with the existing
proof frameworks seems to be lacking. The authors of [15] refer to the develop-
ment of more formal security models and security proofs for deniability as an
important avenue of future research and raise the question for building proofs
for deniability from proofs for the underlying key establishment primitives.

Our contribution. We suggest a definition of deniability in a group key estab-
lishment framework along the lines of Bresson et al. [6]. Passing from two parties
to a group setting adds qualitatively new problems, e. g., a single malicious par-
ticipant may be able to impersonate other protocol participants (cf. [7]). While
for the two-party case a shared secret seems well-suited for enabling deniability,
the group case appears to be more involved. Building on protocols in [13,4], we
present an efficient group key agreement protocol with a security analysis in the
random oracle model. In addition to provably offering key secrecy and deniabil-
ity, the suggested protocol offers perfect forward secrecy and security guarantees
against malicious insiders.

Organization. After recalling and establishing some theoretical tools for model-
ing group key establishment in Section 2, we suggest a definition of deniability for
group key establishment schemes. Thereafter, we describe a protocol that prov-
ably achieves deniability. In addition, we prove the usual key secrecy and perfect
forward secrecy requirements as well as security guarantees against malicious
insiders. For the proofs, a Computational Diffie Hellman assumption and the
random oracle model are used. Our main technical tool for establishing deniabil-
ity can be interpreted as a Schnorr signature whose computation is distributed
to different rounds of the protocol. This construction for achieving deniability
might be of independent interest outside the specific protocol discussed here.

2 Group Key Establishment: Modeling Security and
Deniability

In this section we summarize the basic components of the framework we use for
analyzing the group key establishment protocol proposed in Section 3. We start
by recalling a security model of Bresson et al. [6], more precisely we adopt a
variant of this framework already used in [4]. For the clarity of exposition, in the
formulation of the Send-oracle we introduce an additional role-flag that allows to
make explicit different roles taken by protocol participants: While some protocols
require all participants to perform identical computations, others exhibit a more
asymmetric structure, e.g. in a two-party key establishment, the two participants

300 J.-M. Bohli and R. Steinwandt

can play the roles of initiator and responder. Or in a group key transport protocol
we may encounter the roles of client and server.

2.1 Modeling Security of a Key Establishment

The modeling of participants, the communication network and adversarial capa-
bilities is fairly standard and—with exception of the indicated modification of
the Send-oracle—basically identical to the model in [4]. Because of all adversaries
considered being active, we did not include the Execute-oracle in the model: An
active adversary can simulate a query to Execute by means of his Send-oracle.

Participants. The set of potential protocol participants is a finite set U with each
Ui being represented as a probabilistic polynomial time (ppt) Turing machine.
We allow U to be of polynomial size in the security parameter k. Each protocol
participant Ui ∈ P (where P ⊆ U) is allowed to execute a polynomial number
of protocol instances in parallel. We will denote an instance si of principal Ui

by Πsi

i (i ∈ N). Each such instance can be interpreted as a process executed by
Ui and has assigned seven variables statesi

i , sidsi

i , pidsi

i , sksi

i , termsi

i , usedsi

i and
accsi

i :

usedsi

i indicates whether this instance is or has been used for a protocol run.
The usedsi

i flag can only be set through a protocol message received by the
oracle due to a call to the Send-oracle (see below);

statesi

i keeps the state information during the protocol execution;
termsi

i shows if the execution has terminated;
sidsi

i denotes a non-secret session identifier that can serve as identifier for the
session key sksi

i —the attacker learns all session identifiers;
pidsi

i stores the set of identities of those principals that Πsi

i aims at establishing
a key with—including Ui himself;

accsi

i indicates if the protocol instance was successful, i. e., the instance Πsi

i

accepted the session key;
sksi

i stores the session key once it is accepted by Πsi

i . Before acceptance, it
stores a distinguished null value.

For more details on the usage of the variables we refer to [2]. We assume that
an instance Πsi

i has to accept the session key constructed at the end of the
corresponding protocol instance if no deviation from the protocol specification
occurs.

Communication network. Arbitrary point-to-point connections among the prin-
cipals are assumed to be available. The network is considered to be non-private
and fully asynchronous. It is controlled by the adversary.

Adversarial model. As just mentioned, the adversary A has full control of the
communication network and may delay, suppress and insert messages at will.
To make the adversary’s capabilities explicit, the subsequently listed oracles are
used, and A is taken for a ppt Turing machine which may execute any of these.

Deniable Group Key Agreement 301

Send(Ui, si,M) This sends the message M to the instance Πsi

i and outputs the
reply generated by this instance. If the adversary calls this oracle with an
unused instance Πsi

i and M = ({U1, . . . , Ur}, role), then Πsi

i ’s pidsi

i -value is
initialized to the value pidsi

i := {U1, . . . , Ur} ∪ {Ui}, the usedsi

i -flag is set,
and Πsi

i will act according to the role specified in role. At this, role is just a
string over some fixed alphabet to specify a particular function, like initiator,
to be played by the instance Πsi

i .
If the instance Πsi

i sends a message in the protocol right after receiving M ,
then Send returns this message to the adversary.

Reveal(Ui, si) returns the session key sksi

i .
Corrupt(Ui) reveals the long term secret key SKi of Ui to the adversary. Given

a concrete protocol run, involving instances Πsi

i of principals U1, . . . , Uk we
say that principal Ui0 ∈ {U1, . . . , Uk} is honest if and only if no query of the
form Corrupt(Ui0) has been made by the adversary.

Test(Ui, si) Only one query of this form is allowed for an active adversary
A. Provided that sksi

i is defined, (i. e. accsi

i = true and sksi

i �= null), A
can execute this oracle query at any time when being activated. Then with
probability 1/2 the session key sksi

i and with probability 1/2 a uniformly
chosen random session key is returned.

Initialization. Before the actual key establishment protocol is executed for the
first time, an initialization phase takes place where for each principal Ui ∈ P a
public key/secret key pair (SKi, PKi) is generated. The value SKi is revealed
to Ui only, and PKi is given to all principals. In the protocol below, (SKi, PKi)
will just be a pair (αi, g

αi) with g a generator of a suitable cyclic group.
For the sake of simplicity, we assume all key pairs (SKi, PKi) to be generated

by a trusted party which also takes care of distributing the PKi-values. We do
not address the issue of malicious principals who try to generate incorrect key
pairs or adversaries that can influence the initialization phase.

Correctness. This property basically expresses that the protocol will establish a
good key without adversarial interference and allows us to exclude “useless” pro-
tocols. We take a group key establishment protocol for correct if in the absence
of attacks indeed a common key along with a common identifier is established:

Definition 1. A group key establishment protocol P is called correct if upon
honest delivery of all messages a single execution of the protocol for establishing
a key among U1, . . . , Ur involves r instances Πs1

1 , . . . , Π
sr
r and ensures that with

overwhelming probability all instances:

– accept, i. e., accs1
1 = · · · = accsr

r = true.
– obtain a common session identifier sids1

1 = · · · = sidsr
r which is globally

unique.
– have accepted the same session key sks1

1 = · · · = sksr
r �=null associated with

the common session identifier sids1
1 .

– know their partners pids1
1 = pids2

2 = · · · = pidsr
r and it is pids1

1 = {U1, . . . Ur}.

302 J.-M. Bohli and R. Steinwandt

Partnering. For detailing the security definition, we will have to specify under
which conditions a Test-query may be executed. To do so, we follow the same
idea as in [4].

Definition 2. Two instances Πsi

i , Πsj

j are partnered if sidsi

i = sidsj

j , accsi

i =
accsj

j = true and pidsi

i = pidsj

j .

Freshness. A Test-query should only be allowed to those instances holding a key
that is not for trivial reasons known to the adversary. To this aim, an instance
Πsi

i is called fresh if none of the following two conditions hold:

– For some Uj ∈ pidsi

i a Corrupt(Uj) query was executed before a query of the
form Send(Uk, sk, ∗) has taken place where Uk ∈ pidsi

i .
– The adversary queried Reveal(Uj , sj) with Πsi

i and Πsj

j being partnered.

The idea here is that revealing a session key from an instance Πsi

i trivially
yields the session key of all instances partnered with Πsi

i , and hence this kind
of “attack” will be excluded in the security definition.

Security (key secrecy). The security definition of [6] can be summarized as fol-
lows. As a function of the security parameter k we define the advantage AdvA(k)
of a ppt adversary A in attacking protocol P as

AdvA := |2 · Succ− 1|

where Succ is the probability that the adversary queries Test on a fresh instance
Πsi

i and guesses correctly the bit b used by the Test oracle in a moment when
Πsi

i is still fresh.

Definition 3. We call the group key establishment protocol P secure if for any
ppt adversary A the function AdvA = AdvA(k) is negligible.

2.2 Modeling Deniability in a Group Key Establishment Protocol

To introduce a definition of deniability for group key establishment schemes, we
build on the model outlined in the previous section. Before stating the definition,
we quickly review the notion of plausible deniability for the SIGMA protocol [14]
which serves as example for plausible deniability in [15,5].

The SIGMA protocol. In the SIGMA protocol, both participants sign the pair
of ephemeral public keys of a Diffie-Hellman key exchange (gx, gy) instead of
a message including identities of the participants. However, that two principals
A and B signed a message that includes (gx, gy) and did not establish the key
with each other certainly would only happen with a negligible probability for
honest participants. The plausible explanation for A, being confronted with a
transcript as above, is to argue that a corrupted B could have intentionally
signed the tuple (gx, gy) she caught from one of A’s former protocol runs with
a different partner.

Deniable Group Key Agreement 303

For a group key establishment, which in general involves more than two par-
ticipants, new questions come up:

– One may argue to what extent a plausible explanation of protocol data may
impose a maliciously acting collusion of several other protocol participants.
A straightforward application of SIGMA’s method to a group key establish-
ment protocol—not signing identities, but rather nonces and ephemeral keys
of the participants—would require the denying party to argue that all of his
presumable partners actually colluded to produce the transcript, this could
be seen no longer to be plausible.

– One may argue which former protocol runs are accepted as an excuse. If A
wants to deny a key establishment with, say, B and C. Would an actual pro-
tocol run between A,B,C and D (a strict superset of {A,B,C}) be accepted
as a plausible excuse? Depending on the application context, different views
can be adopted here.

Another weakness of plausible deniability as in SIGMA certainly is the undenia-
bility of a protocol execution itself. If n different tuples (gx, gy) signed by A are
found, there is no plausible way for A to deny that he executed n protocol runs.
He might only repudiate his respective partners. To overcome these problems
we directly aim at a stronger form of deniability for group key establishment,
following the goals of complete deniability in [15]. Principals should be able to
deny involvement in any protocol run. This should also hold in a situation where
the adversary is even willing to disclose internal state information, possibly in-
cluding long term keys, in order to provide evidence for the involvement of some
principal in a key establishment.

Deniability for group key establishment. We consider an adversary Ad that tries
to break deniability in a group key establishment protocol. More specifically, we
take Ad for a ppt algorithm expecting as input the security parameter k and
the initial public keys PKi of all potential protocol participants Ui ∈ U as well
as a bound qc ∈ N0 on the number of possibly dishonest (corrupted) principals.
Having received this input, Ad interacts with the instances Πsi

i of the principals
Ui by querying the oracles Corrupt, Send and Reveal. Access to the Test oracle
is not granted and the Corrupt oracle may be queried at most qc times. Finally,
Ad outputs a protocol transcript TAd(k, qc, {PKi}i), which from a formal point
of view can be an arbitrary bitstring, and intuitively represents evidence for the
involvement of a certain principal in a particular key establishment.

Let TAd(k, qc) be the random variable that describes TAd(k, qc, {PKi}i) with
uniformly chosen randomness for the adversary, the oracles and the key genera-
tion in the initialization phase.

The idea is now to introduce a simulator Sd that accepts the same input and
can impose the same number of corrupted principles as Ad does, but must not
invoke any uncorrupted principal. This means, Sd may execute up to qc queries to
the Corrupt-oracle, but has no access to Send and Reveal. Analogously as above,
we define a transcript TSd(k, qc, {PKi}i) and a random variable TSd(k, qc).

304 J.-M. Bohli and R. Steinwandt

Definition 4. We call a group key establishment protocol deniable if for each
adversary Ad as specified above and for all inputs k ∈ IN, qc ∈ N0 a ppt simu-
lator Sd as specified above exists such that TAd(k, qc) and TSd(k, qc) are compu-
tationally indistinguishable, i. e. no ppt algorithm D can distinguish them with
non-negligible probability.

In the next section we present a four round group key agreement protocol that,
under a Computational Diffie Hellman assumption and in the random oracle
model, offers deniability along with other security guarantees that are common
in group key establishment.

3 A Deniable Group Key Agreement Protocol

We present a group key establishment protocol that achieves deniability in the
sense of Definition 4. Our protocol builds on protocols in [13,4] and from these
inherits features like being contributory, perfect forward secrecy and offering re-
sistance against malicious insiders. The system parameters are a cyclic group G
of prime order q with generator g, such that the Computational Diffie Hellman
problem in G is hard. Also, we make use of the random oracle model. In the
initialization phase, all principals Ui obtain a secret key SKi := αi chosen uni-
formly at random from ZZq, and the corresponding public keys PKi := gαi are
distributed to all principals.

3.1 Protocol Description and Design Rationale

For authentication we will use a protocol which lies in-between Schnorr’s zero-
knowledge identification scheme and signature scheme [20]. Unlike as in the
signature scheme, the verifiers’ challenge will not depend on the prover’s first
random value—only on the message to be authenticated. This means that also
the message may not depend on the prover’s random value, thus must be de-
termined before. For the protocol to be sound, the verifiers must be convinced,
that the message to be authenticated is not known to the prover at the time he
sends the first random value. This fact, that a message is determined but not yet
known, restricts the usability of the deniable authentication protocol for general
use. Key establishment protocols, however, will lead to a fresh and previously
unknown key so that the authentication scheme is particularly well-suited for
key establishment protocols.

The proposed protocol is summarized in Figure 1 withH(·) denoting a random
oracle. All protocol participants perform identical computations, i. e., play an
identical role participant. So we can restrict to specifying the computations of
an instance Πsi

i initialized with pidsi

i = {U1, . . . , Un}. As there is no risk of
confusion, for the sake of readability, we omitted the upper index si in the
protocol description for instance Πsi

i . Also, we note that in Figure 1, for the
computation of ci in Round 4, the bitstring output by H(·) is interpreted as
binary representation of a non-negative integer, and when writing yi+1 resp.
yi−1, indices are to be understood mod n, i. e., yn+1 = y1 and y0 = yn. Finally,

Deniable Group Key Agreement 305

as usual · R←· denotes a random choice with uniform distribution. Before proving
properties of the protocol, some comments on the underlying basic ideas are in
order:

– The first round is essentially the same as in [13,4]. In our protocol all prin-
cipals will broadcast H(ki), which acts as a commitment to their nonce ki.
Thus, after the first round, the session identifier and also the session key are
determined, though the session key is not yet known to any participant.

– The second round prepares the deniable authentication. Each principal Ui

chooses a value zi = gri. It is important, that the session key was fixed
beforehand and does not depend on gri to obtain deniability. Choosing his
value kj after knowing gri would allow a malicious participant Uj to obtain
an undeniable Schnorr signature of Ui. Further on, the value zi has to be
fixed before Ui learns the the session key (and therewith the key confirma-
tion message that is to be authenticated). Otherwise the authentication is
not convincing. Hence, only in the third round the participants reveal their
nonces ki. Deviating from the previous protocols, for the sake of symmetry,
in the protocol below all participants do this encrypted.

– Finally, in the fourth round all principals know the session key and can pro-
vide an “a posteriori authentication” for the session. If the final verification
in Round 4 succeeds, too, an instance accepts the session key.

Verifying Correctness of this protocol is straightforward—the only possibly
non-obvious step is the decryption of the kj-values in Round 3. One easily checks,
however, that the Tj-values received in Round 2 enable Ui to iteratively recover
all needed tRj -values, starting with a neighbor in the “circle of protocol partici-
pants”.

3.2 Security Analysis

Deniability. We start by an analysis of the deniability feature. As the authen-
tication is based on Schnorr’s zero-knowledge identification scheme, anyone can
simulate a transcript of the authentication protocol. This fulfills our definition
of complete deniability.

Proposition 1. The protocol in Figure 1 is deniable in the sense of Definition 4.

Proof. For constructing the required simulator Sd, we use the adversary Ad as
black-box. Namely, Sd will initiate Ad with (k, qc, {PKi}i) and will simulate
the instances of all protocol participants and the oracles Send and Reveal. If Ad
queries Corrupt(Uj), Sd will do likewise, learn the secret key SKj and hand it
over to Ad.

Once Sd needs to access the secret key SKi = αi of any uncorrupted protocol
participant to compute M4

i = di = ri − ciαi mod q, the simulator stops the
execution and rewinds Ad such that Sd can choose a different zi for Ui in this
session in Round 2. The simulator chooses first at random a value d R←ZZq for
use in this session and computes then zi = gd(PKi)ci with ci = H(sidi‖sconfi).

306 J.-M. Bohli and R. Steinwandt

Protocol for instance Πi of principal Ui

Round 1: Compute ki
R←{0, 1}k, xi

R←ZZq, yi = gxi

Broadcast M1
i = (H(ki), yi, Ui)

Round 2: Compute sidi = H(pidi‖H(k1)‖ . . . ‖H(kn)), ri
R←ZZq , zi = gri

Broadcast M2
i = (sidi, zi, Ui).

Round 3: Compute tL
i = H(yxi

i−1), tR
i = H(yxi

i+1), Ti = tL
i ⊕ tR

i

Broadcast M3
i = (ki ⊕ tR

i , Ti, Ui)
Round 4: Verify T1 ⊕ · · · ⊕ Tn = 0, and for all decrypted kj , H(kj) equals

the 1st component of M1
j (j ∈ {1, . . . , n} \ {i})

Session Key ski = H(pidi‖k1‖ . . . ‖kn)
Session Confirmation sconfi = H((y1, k1)‖ . . . ‖(yn, kn))

Compute ci = H(sidi‖sconfi) mod q, di = ri − ciαi mod q
Broadcast M4

i = (di, Ui)
Verify gdj (PKj)ci = zj for all j ∈ {1, . . . , n} \ {i}

Fig. 1. A deniable group key agreement protocol

The element zi will be uniformly distributed in G, perfectly indistinguishable
from the honest choice as gri with ri

R←ZZq.
From this point, the adversary received a different message than in the former

protocol run and will generally deviate. However, unless Ad finds a collision of
the hash function being able to reveal another value ki, Ad cannot anymore
influence the values sid and sconf and therewith ci from that moment. Thus, Sd
will be able to return d as a valid authentication in Round 4 of this session.

Once Ad outputs a transcript, Sd uses it as its output. Because Ad was used
with an indistinguishable simulation of the instances it interacted with, the out-
put of Ad in this experiment—thus the output of Sd—must be indistinguishable
from Ad’s output in interaction with real instances. �

Key secrecy. For proving key secrecy, it is important that the confirmation
messages are authenticated to all participants. Thus, the proof of security begins
by understanding that the value d computed in Round 4 indeed authenticates
the session key to the protocol participants.

Lemma 1. Suppose the discrete logarithm problem in G = 〈g〉 is hard. Then,
with message M4

a , a principal Ua ∈ P unforgeably authenticates the session
identifier sida and the key confirmation message sconfa to all participants.

Proof. An adversary A who is able to produce with non-negligible probability a
valid message M4

a for an uncorrupted protocol participant Ua can be used as a
black-box to solve the dlog-problem in G. A given instance of the dlog problem
y ∈ G is assigned to Ua as his public key PKa. Signing queries of A, i. e., a
Send-query to an instance of Ua requiring to compute a message of Round 4,
can be answered as before by rewinding the adversary.

Assume now that A outputs with non-negligible probability a message M4
a =

(da, Ua) such that for a certain instance with ci = H(sidi‖sconfi) the verification
za = gda(PKa)ci holds. The confirmation message sconf includes the nonces ki

Deniable Group Key Agreement 307

that will be released in the third round after za is already fixed. For any honest
participant who does not publish his nonce ki before he knows za, the signature
of Ua can only be computed in the order (za, sconf, H(sid‖sconf), da). Then, by
the forking lemma [17], A can be restarted given the same random tape and
the same inputs, except that the random oracle H will deviate from the old
answers from a certain point such that now c′i = H ′(sidi‖sconfi). The adversary
A will now with non-negligible probability output a message M4

a
′ = (d′a, Ua) for

the same instance, and it holds that za = gd′
a(PKa)c′

i . Then one can compute
SKa = logg PKa = (da − d′a)/(c′i − ci) mod q. �

Proposition 2. If the CDH problem in G is hard, the protocol in Figure 1 is a
secure authenticated key establishment protocol.

Proof. Intuitively the secrecy follows from the secrecy of the original protocol:
The message of the first round is authenticated, the messages of Rounds 2 and 4
constitute the authentication. Moreover, modifying the message of the third
round cannot give any information to the adversary: The partnering bases on
the session identifier, that is already defined after Round 1—thus, Reveal is of
no use—and no participant would accept a weak key, because the correctness of
the key can be checked via the commitments given in Round 1—the Test-session
cannot be influenced. A more detailed proof is given in the appendix. �

Perfect forward secrecy. Perfect forward secrecy is implied by the standard ar-
gument that the long term secret keys are used for message authentication ex-
clusively.

Agreement property and protection against malicious insiders. Due to the com-
putation of the session key with the random oracle involving a nonce from each
participant, the protocol is certainly contributory. For the same reason, if at least
one participant is honest, the resulting session key will be chosen uniformly at
random and cannot be predicted by malicious insiders.

Due to the construction of the session identifier that allows to verify the session
key, the proof for integrity and entity authentication is analogous to [3,4].

4 Conclusions

The above discussion illustrates that the concept of deniable key establishment
becomes qualitatively more involved, when passing from the two party case to
a group setting. On the constructive side, the suggested protocol shows that
a rather strong form of deniability can provably be achieved with reasonabe
efficiency and without having to sacrifice other security features offered by a
group key establishment protocol. The chosen approach to enable deniability
through a suitably distributed Schnorr signature might be of independent in-
terest, when trying to augment other group key establishment protocols with
deniability.

308 J.-M. Bohli and R. Steinwandt

References

1. William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ioannidis,
Angelos D. Keromytis, and Omer Reingold. Just Fast Keying: Key Agreement
In A Hostile Internet. ACM Transactions on Information and System Security,
7(2):1–30, 2004.

2. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Ex-
change Secure Against Dictionary Attacks. In Bart Preneel, editor, Advances in
Cryptology — EUROCRYPT’00, volume 1807 of Lecture Notes in Computer Sci-
ence, pages 139–155. Springer, 2000.

3. Jens-Matthias Bohli. A Framework for Robust Group Key Agreement. In Compu-
tational Science and Its Applications – ICCSA 2006, volume 3982 of Lecture Notes
in Computer Science, pages 355–364. Springer, 2006.

4. Jens-Matthias Bohli, Maŕıa Isabel González Vasco, and Rainer Steinwandt. Secure
Group Key Establishment Revisited. Cryptology ePrint Archive, Report 2005/395,
2005. http://eprint.iacr.org/2005/395/ .

5. Colin Boyd, Wenbo Mao, and Kenneth G. Paterson. Deniable Authenticated
Key Establishment for Internet Protocols. In Bruce Christianson, Bruno Crispo,
James A. Malcolm, and Michael Roe, editors, Security Protocols: 11th International
Workshop, volume 3364 of Lecture Notes in Computer Science, pages 255–271.
Springer, 2003.

6. Emmanuel Bresson, Olivier Chevassut, David Pointcheval, and Jean-Jacques
Quisquater. Provably Authenticated Group Diffie-Hellman Key Exchange. In
Pierangela Samarati, editor, Proceedings of the 8th ACM Conference on Computer
and Communications Security (CCS-8), pages 255–264. ACM, 2001.

7. Daniel R. L. Brown. Deniable Authentication with RSA and Multicasting. Cryp-
tology ePrint Archive, Report 2005/056/, 2005. http://eprint.iacr.org/2005/
056/.

8. Ran Canetti and Hugo Krawczyk. Analysis of Key-Exchange Protocols and Their
Use for Building Secure Channels. In Advances in Cryptology – EUROCRYPT
2001, volume 2045 of Lecture Notes in Computer Science, pages 453–474. Springer,
2001.

9. Tianjie Cao, Dongdai Lin, and Rui Xue. An Efficient ID-Based Deniable Authen-
tication Protocol from Pairings. In 19th International Conference on Advanced
Information Networking and Applications (AINA ’05), volume 1 (AINA papers),
pages 388–391. IEEE, 2005.

10. Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent Zero-Knowledge. In
Proceedings of the 30th ACM Symposium on Theory of Computing, STOC 98,
pages 409–418. ACM, 1998.

11. Charlie Kaufman (editor). Internet Key Exchange (IKEv2) Protocol. Network
Working Group Request for Comments: 4306, December 2005. See http://www.
ietf.org/rfc/rfc4306.txt.

12. Paul Hoffman (editor). Internet Draft draft-ietf-ipsec-soi-features-01.txt, May
2002. See http://www3.ietf.org/proceedings/03mar/I-D/draft-ietf-ipsec-
soi-feature%s-01.txt

13. Hyun-Jeong Kim, Su-Mi Lee, and Dong Hoon Lee. Constant-Round Authenticated
Group Key Exchange for Dynamic Groups. In Pil Joong Lee, editor, Advances
in Cryptology – ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer
Science, pages 245–259. Springer, 2004.

Deniable Group Key Agreement 309

14. Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols. In Dan Boneh, editor, Advances in
Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 400–425. Springer, 2003.

15. Wenbo Mao and Kenneth G. Paterson. On The Plausible Deniability Feature of
Internet Protocols. See http://isg.rhul.ac.uk/∼kp/IKE.ps.

16. Moni Naor. Deniable Ring Authentication. In Moti Yung, editor, Advances in
Cryptology – CRYPTO 2002, volume 2442, pages 481–498. Springer, 2002.

17. David Pointcheval and Jacques Stern. Security Proofs for Signature Schemes. In
Ueli Maurer, editor, Advances in Cryptology – EUROCRYPT ’96, volume 1070 of
Lecture Notes in Computer Science, pages 387–399. Springer, 1996.

18. Haifeng Qian, Zhenfu Cao, Lichen Wang, and Qingshui Xue. Efficient Non-
interactive Deniable Authentication Protocols. In The Fifth International Con-
ference on Computer and Information Technology (CIT’05), pages 673–679. IEEE,
2005.

19. Mario Di Raimondo and Rosario Gennaro. New Approaches for Deniable Authen-
tication. In Vijay Atluri, Catherine Meadows, and Ari Juels, editors, Proceedings
of the 12th ACM Conference on Computer and Communications Security, CCS
2005, pages 112–121. ACM, 2005.

20. Claus P. Schnorr. Efficient Identification and Signatures for Smart Cards. In Gilles
Brassard, editor, Advances in Cryptology – CRYPTO ’89, volume 435 of Lecture
Notes in Computer Science. Springer, 1990.

A Proof of Proposition 2

Proof. Let A be an adversary that is allowed at most qs, qro queries to the
Send respectively random oracle. Moreover, let AdvCDH , AdvAuth be the by
assumption negligible probabilities to solve the CDH-problem in G respectively
break the authentication scheme.

Let Forge be the event that the adversary succeeds in forging the message
of Round 4 for an uncorrupted participant Ui such that it is accepted by an
instance of any honest user Uj. Lemma 1 guarantees that Forge only occurs with
negligible probability.

Let Collision be the event that the random oracle produces a collision. The
random oracle can be queried from one Send-query at most (n + 2) times in
Round 4 or directly by the adversary. The number of queries to the random
oracle is bounded by (n + 2) · qs + qro, the probability that a collision of the
random oracle occurs is then

P (Collision) ≤ ((n+ 2) · qs + qro)2

2k
.

Let Repeat be the event that an instance chooses a nonce ki that was pre-
viously used by any other instance of any principal. There are at most qs used
oracles that may have chosen a nonce ki and thus Repeat can only happen with
a probability

P (Repeat) ≤ (qs)2

2k
.

310 J.-M. Bohli and R. Steinwandt

Let Succ := (AdvA + 1)/2 be the success probability of adversary A to win
the Test-experiment. Now we connect A to a simulator Sim that simulates the
oracles and instances. We consider a sequence of games and bound the difference
of the success probability for the adversary between the games.

In Game 0 the simulator Sim simulates the oracles and principals’ instances
faithfully. Thus, there is no difference for the adversary and denoting A’s success
probability in Game i by SuccGame i, we have SuccGame 0 = Succ.

In Game 1 the simulator stops the simulation as soon as one of the events Forge,
Collision or Repeat occurs.

|SuccGame 1 − SuccGame 0| ≤ P (Forge) + P (Collision) + P (Repeat).

In Game 2 the simulation of the Send oracle is modified. On a Send(Ui, si,M
1
j)

query, which delivers the last message of Round 1 to Πsi

i and executes Round 2
for this oracle starting with computing the session identifier sidsi

i , the simulator
checks if all users in pidsi

i are uncorrupted and all messages (H(kj), yj , Uj) were
unmodified delivered to Πsi

i , i. e. the simulator itself generated the messages
in the name of an instance of principal Uj . In this case, instead of querying
the random oracle, the simulator simulates an own random oracle and chooses
random values tLi , t

R
i ∈ {0, 1}k. The simulator keeps a list of the mappings

yxi

i±1 → t
L/R
i for consistency in the protocol and will in further rounds first

check if the value exists already in the list.
If the condition on corrupted users is not fulfilled the simulator checks his

list and returns the corresponding value if available. However, if the value is not
available the simulator queries the random oracle H(·) and inserts the result in
his list. The simulator does not generate an own random element, because it
could be known to the adversary. This procedure guarantees consistency if some
users get the messages delivered honestly but others in the same session do not.
We will see later that such a session does not qualify as Test-session.

The success probabilities can only differ, if A queries one of the Diffie-Hellman
keys yxi

i−1, y
xi

i+1 to the random oracle and detects the difference. Denoting this
event by Random, we have

|SuccGame 2 − SuccGame 1| ≤ Pr(Random).

Lemma 2. The probability Pr(Random) of the event Random to occur is negli-
gible if CDH in G is hard.

Proof. Given a Diffie-Hellman challenge (ga, gb) the adversary that reaches Ran-
dom can be used to obtain gab. The simulator will use the challenge in the first
message of two instances randomly selected from the set {Πsi

i |i ∈ {1, . . . , n}, si ∈
{1, . . . , qs}}. Then the simulator will pick a random element from the adversary’s
Random Oracle queries and give it as answer to the CDH instance. The proba-
bility to be right is

Deniable Group Key Agreement 311

AdvCDH ≥ 1
q2sqro

Pr(Random),

thus
Pr(Random) ≤ q2sqroAdvCDH .

�

Because all users authenticate in sconfi all Round 1 messages it follows that if
any participant would have received a different message, the verification of this
user’s authentication message fails for all participants. Therefore the Test-session
must only consist of instances among which all Round 1 messages were delivered
honestly.

Now it is clear, having random values XORed on the nonces ki, that the
transcript provides no information about the key and the adversary’s success
probability is 1

2 . In the Test-session, the adversary cannot modify any Round 1
message.

Putting it all together we obtain

AdvA = |Succ− 1/2| ≤ (qs)2

2k
+

((n+ 2) · qs + qro)2

2k
+ AdvAuth + q2sqroAdvCDH

�

An Ideal and Robust Threshold RSA

Hossein Ghodosi1 and Josef Pieprzyk2

1 School of Mathematics, Physics and Information Technology
James Cook University, Townsville, Qld 4811, Australia

hossein@cs.jcu.edu.au
2 Department of Computing

Center for Advanced Computing – Algorithms and Cryptography
Macquarie University, Sydney, NSW 2109 Australia

josef@ics.mq.edu.au

Abstract. We present a novel implementation of the threshold RSA.
Our solution is conceptually simple, and leads to an easy design of the
system. The signing key is shared in additive form, which is desirable for
collaboratively performing cryptographic transformations, and its size,
at all times, is log n, where n is the RSA modulus. That is, the system
is ideal.

Keywords: Threshold RSA, Robust Systems, Ideal Secret Sharing
Schemes.

1 Introduction

Society-oriented cryptography [4] requires that cryptographic transformations
to be performed by a group of users, rather than just an individual. A par-
ticularly interesting class of society-oriented cryptographic transformations is
threshold cryptosystems. In a threshold cryptosystem, the power to perform a
cryptographic operation is distributed among � users, such that the following
conditions are satisfied:

– any set of more than k (k < �) users can successfully perform the required
cryptographic operation;

– any set of k or fewer users fail to perform the required cryptographic oper-
ation successfully;

– neither the group secret key nor the shares of users from the group secret
key can be derived from the partial cryptographic results.

An early implementation of a proper threshold cryptosystem is due to Desmedt
and Frankel [6]. Their proposed threshold decryption is based on the ElGamal [8]
cryptosystem. The main concern in implementing the threshold RSA cryptosys-
tem is how to distribute the secret key over Zφ(n), when φ(n) is kept secret
(here n is the RSA modulus). In [7], Desmedt and Frankel have demonstrated
a method which solves this problem. The drawback of their solution, however,

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 312–321, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Ideal and Robust Threshold RSA 313

is that the key associated with each user increases in size with respect to the
number of users who take part in the cryptographic transformation.

Implementation of an efficient threshold RSA system has been the subject
of extensive investigation [5,11,1,12,15,2]. Due to large size of the keys associ-
ated to each signatories in signature generation phase, some implementations of
the threshold RSA systems are not practical. For example, in [3], for a (4, 10)
threshold RSA system, the size of the key associated to each user for signature
generation is � logn, and in [9], it is 106 logn. In [12], the authors claim that the
size of the key in their scheme is comparable to that of [10], and is 2 log (�n)1.
The most efficient threshold RSA system was invented by Shoup [15], in which
the key size of each shareholder is bound by a constant multiplied by the size
of the RSA module. Shoup’s scheme also requires that primes p and q have a
special form. Although this assumption is removed by Damg̊ard and Dupont [2],
the sise of the key still is bound by a constant multiplied by the size of the RSA
module. That is, no ideal threshold RSA signatures has ever been presented in
the literature2.

In this paper, we present a novel technique for implementing an ideal threshold
RSA signature. The size of the key for each user is equivalent to the size of the
secret itself (i.e., logn), at all times. Furthermore, our solution is conceptually
simple that leads to an easy implementation. The organization of this paper
is as follows. In Section 2, we will give an overview of our scheme. In Section
3, we will give an implementation of our basic system, in which the adversary
is passive. In Section 4, we will discuss the robustness of our system in the
presence of active adversary. Section 5 is devoted to the security and efficiency
consideration. Finally, the paper concludes in Section 6.

2 Overview of Our System

The RSA system [13] uses a composite integer n, which is the product of two large
primes p and q, i.e., n = pq. The public key e is chosen such that gcd(e, φ(n)) = 1,
where φ(n) = (p − 1)(q − 1). The secret key is an integer d that satisfies the
equation e× d ≡ 1 mod φ(n). The signature on a message m is σ = md mod n.
The signature is accepted to be genuine, if m = σe mod n is satisfied.

A common technique in the design of a (k, �) threshold RSA signature is to
distribute the secret key, d, among a set of � users in such a way that for any
authorized set, A, (|A| > k) the set of modified shares, di, corresponding to user
ui, satisfies the following equation:∑

ui∈A
di = d (mod φ(n)).

1 Considering their backup shares description, the memory requirement for each user
is 2� log(�n).

2 A threshold signature scheme is ideal if the length of the modified shares that each
participant uses, for generating its partial signature, is the same as the group’s secret
key.

314 H. Ghodosi and J. Pieprzyk

An authorized set of users, A, can generate the signature on a message m, since
each user generates its partial signature on message m (i.e., σi = mdi), and the
signature on m can be calculated by multiplication of these partial signatures,

σ =
∏

ui∈A
σi = m

∑
ui∈A di = md (mod n).

The problem with this design is that the computation of modified shares, di

cannot be done over modulo φ(n), since φ(n) is unknown to the participants. In
order to overcome this problem, computations are performed over integers. This
solution, however, yields to schemes in which the size of the modified shares di

is larger than the secret.

2.1 A Novel Implementation of Threshold RSA

Our implementation utilizes the RSA modulus n for all computations (i.e., in
the underlying secret sharing scheme and/or in the performance of cryptographic
operations). That is, we distribute the secret key, d, among a set of � users in
such a way that for any authorized set, A, (|A| > k) the set of modified shares,
di, corresponding to users ui ∈ A, satisfies the following equation∑

ui∈A
di = d (mod n).

An advantage of this technique is that each user can compute their modified
share in modular arithmetic environment, since the modulus n is public. Hence,
the size of each modified share, di is bound by logn, which is the sise of the
secret.

In the signature generation phase, each participant of an authorized set, A,
generates its partial signature on message m, i.e., σi = mdi . Multiplication
of these partial signatures is not a correct signature. However, as will will see
shortly, the correct signature can be obtained easily.

3 Basic Scheme

In this scheme we assume that the adversary is passive. That is, it can corrupt
up to k users, and thus, learns all the information held by the corrupted users.
However, it has no control on the behavior of users and/or on their information
(i.e., all users follow the protocol appropriately).

Let U = {u1, . . . , u	} be the set of users and k (k < �) be the threshold pa-
rameter –the maximum number of users that can be corrupted by the adversary.

3.1 Initialization

This is a one-time protocol, and can be run by a trusted dealer or any of the
known distributed RSA key generation protocols. It accepts system parameters
as input, and generates the RSA modulus n = pq, where p and q are distinct

An Ideal and Robust Threshold RSA 315

primes of requested size. It also chooses the public key e, such that gcd(e, φ(n)) =
1, and computes the secret key d = 1/e (mod φ(n)). It utilizes the following
secret sharing scheme, in order to distribute the secret key among all users:

1. Secretly chooses, independently at random, k elements of Zn, denoted a1, . . . ,
ak and forms a polynomial

f(x) = d+ a1x+ a2x
2 + · · ·+ akx

k.

Note that, ak �= 0, i.e., f(x) is a polynomial of degree k.
2. Computes si = f(xi), for 1 ≤ i ≤ �. Since xis are public, without loss of

generality, we let xi = i and thus, si = f(i) (mod n).
3. Gives (in private) share si to user ui.

This threshold secret sharing scheme is due to Shamir [14] and it has been proven
to be information theoretically secure, i.e., any subset of up to k shareholders,
collaboratively, cannot get any useful information about the secret. On the other
hand, any subset A (|A| > k) is an authorized subset and they can collabora-
tively reconstruct the associated polynomial, f(x), using Lagrange interpolation
formula,

f(x) = Σxi∈Af(xi)Π xi∈A
xi �=xj

(x− xj)
(xi − xj)

, (1)

and thus, uniquely determine the secret.

3.2 Signature Generation

Let m (0 ≤ m < n) be the hash value of the message that is requesting a
signature. Given a message m, the signature of the message is σ = md mod n.
The verification of the signature utilizes the public key, e, and the signature is
accepted as genuine if it satisfies the equation m = σe mod n.

In threshold signatures, the group’s secret key is not known to any user.
The generation of the signature, however, can be carried out by collaboration of
every authorized setA, which can reconstruct the group’s secret. In our proposed
threshold RSA system, the secret key d can be obtained according to the formula
given in equation (1), since d = f(0):

d = Σxi∈Af(xi)Π xi∈A
xi �=xj

(0− xj)
(xi − xj)

.

That is, each user ui, of an authorized subset,A, (|A| > k) calculates its modified
share, using

di = si
∏

uj ∈A
j �=i

j

j − i (mod n) (2)

such that,
d =

∑
ui∈A

di (mod n). (3)

316 H. Ghodosi and J. Pieprzyk

For security reasons, however, the participants do not recover the secret key d,
otherwise the secret key will be known to single participants. This would then
enable them to sign any messages individually. Instead, the participants take
part in a protocol that outputs the group’s signature on the message, without
compromising the group’s secret key. Our signing protocol works as follows.

1. Each user, ui ∈ A computes his partial signature σi = mdi .
2. After collecting all partial signatures from participants of the active group
A, the combiner computes

σ′ =
∏

ui∈A
σi = m

∑
ui∈A di mod n = md+IA×n = σ ×mIA×n (mod n).

The required signature σ, can be obtained if the above result is multiplied by
m−IA×n. We call IA the index of the active subset A. It is not difficult to see that
IA is approximately |A|/2, since each di is an element of Zn. A naive algorithm
requires one exponentiation to compute m−n, and approximately |A|/2 multi-
plications, in order to obtain the required result. In Section 4, we will provide
a direct and efficient method for deriving the correct signature from collected
partial signatures.

4 Robust Scheme

Up to this stage we have assumed that adversary is passive. i.e, all users ap-
propriately follow the signing procedure. In this section we consider an active
adversary. That is, the adversary not only learns all the information held by the
corrupted users, it also controls the behavior of all corrupted users. So, it may
force corrupted users to not follow the protocol.

A desirable characteristic of a threshold signature is that the participants must
be able to generate the signature, even if unauthorized subsets want to prevent
the signing protocol. That is, the system must, to an extent, tolerate deceptive
users who do not cooperate properly in the signature generation protocol. We will
show that in our scheme, a signature generation can be carried out successfully if
majority of participants follow the protocol appropriately. We set the threshold
parameter k < �/2. Hence, the system tolerates up to k corrupted or deceptive
users, who do not cooperate properly in the signature generation protocol.

In order to prevent deceptive users from interfering with the signature gen-
eration protocol, the system must possess a facility to distinguish faulty partial
results from correct results. This requires the normal protocols to be armed with
verification facilities.

4.1 Initialization

1. Secretly chooses, independently at random, k elements of Zn, denoted
a1, . . . , ak and forms a polynomial f(x) = d + a1x + a2x

2 + · · · + akx
k,

where ak �= 0. That is, f(x) is a polynomial of degree k.

An Ideal and Robust Threshold RSA 317

2. Computes si = f(i), for 1 ≤ i ≤ �.
3. Gives (in private) share si to user ui, and broadcast g0 = gd, g1 = ga1 ,
g2 = ga2 , . . . , gk = gak (mod n), where g is an element of high order in Z∗

n.
4. User ui verifies that gsi = Πk

j=0g
ij

j (mod n). If the equality does not hold,
ui publishes si. If more than k users complain, the dealer fails.

5. All users can check that the set of following public values,

w0 = g0×n = 1, w1 = g1×n, w2 = g2×n, . . . , w	 = g	×n

are computed correctly.

Note that giving away the signature of g is not a security problem, because
finding a message that its hash value (with proper padding) is equal to g is
an intractable problem –assuming that the underlying hash function is collision
resistant.

4.2 Signature Generation

Signing a message m (0 ≤ m < n) is more or less the same as in the basic
scheme, but armed with partial signatures verification that eliminates corrupted
users.

1. Each user ui ∈ A (|A| > k), computes their modified share di, according to
equation (2).

2. Each user ui ∈ A computes their partial signature σi = mdi and a verification
value gdi . Our partial signature verification is similar to that of [11], and
works as follows:

3. After combiner received all verified pairs (σi, g
di) from all active participants,

it computes

wIA =

∏
ui∈A g

di

gd
, (4)

and obtains IA, which is the index of an element in the set of public values
w0, w1, . . . , w	.

Input
Secret: modified shares di ∈ Zn

Common: g, n, m, partial signatures σi, and verification values gdi

1. The verifier, V , chooses a, b ∈R Zn and computes x = gamb mod n,
which is sent to the prover, ui ∈ A.

2. ui computes y = xdi mod n and sends it to the verifier, V .
3. V verifies that y = (gdi)aσb

i mod n.
If equality holds, then the verifier accepts the partial result, σi,
as a genuine partial signature; otherwise, it is rejected.

Fig. 1. Verification of partial signatures

318 H. Ghodosi and J. Pieprzyk

4. The combiner computes the signature of m using

σ =

∏
ui∈A σi

mIAn
. (5)

Theorem 1. The above protocol generates a correct RSA signature.

Proof. Since each di is an integer smaller than n, equation (3) can be rewritten
as

∑
ui∈A di = d+ IAn for some integer 0 ≤ IA < |A|. Therefore,∏

ui∈A g
di

gd
=
gd+IAn

gd
= gIAn = wIA

That is, wIA must be one of the elements w0, w1, . . . , w|A|. Knowing IA, the
signature on the message m can be obtained from equation (5).

5 Evaluation

5.1 Security

The underlying secret sharing scheme employed for the share distribution proto-
col is Shamir’s threshold scheme, which is believed to be information-theoretically
secure. In signature generation protocol, however, one might be able to learn the
constant integer IA, associated to the active signing group A, where

Σi∈Adi = Σi∈Asi
∏

uj ∈A
j �=i

j

j − i = IA × n+ d.

From the point of view of an honest but curious user no information (neither
about the shares si, nor about the group secret d) leaks from the index IA. So,
let us consider the scenario in which an adversary has corrupted k users, and has
thus learnt k shares si (w.l.o.g. let the set of corrupted users is u1, u2, . . . , uk).
We want to see whether or not this adversary can learn any useful information
about other shares and/or the group secret d.

We assume that the adversary (who knows k shares s1, s2, . . . , sk) participates
(along with all k corrupted signatories) in a signature generation. That is, in a
signature generation there is only one user ux (k < x ≤ �), in which the adversary
does not know the respective secret value. In this setting, the adversary easily
can determine whether Σk

i=1di (mod n) is smaller or larger than the group
secret, d (obviously if the number of non-corrupted users participating in the
signature generation is more than one, the adversary cannot determine whether
Σk

i=1di (mod n) is larger or smaller than d). Furthermore, if the system is
made one-time system or the number of users is small, then the adversary will
cannot get any useful information that enables him a successful attack to the
system.

Considering the fact that all shares in the Shamir scheme are indistinguishable
from random values, the modified shares di, and thus their summation, are

An Ideal and Robust Threshold RSA 319

random values in the interval [0, n[. That is, after signing p messages (with the
assumption that each message is signed by a group, consisting of all corrupted
users and a honest user) the adversary has a list of p values, some of them
which are smaller than d, and the rest which are larger than d. In order to see
how likely/unlikely it is that the adversary can learn any useful information
about the group secret d, let the RSA module have a moderate size (e.g., n
is a 1024-bit integer). After signing 224 messages3, which will never happens in
practice, the average distance between any two of these numbers is approximately
21000 (due to uniform distribution of random values). Although this provides
some extra information to the adversary, we are not aware of any method in
which this information enables the adversary to launch a successful attack to
the system.

5.2 Efficiency

The proposed threshold RSA signature scheme requires each signatories to sign
the message using their modified shares, which is of size logn. This is the most
efficient way that a shared generation signature can be designed (note that in
a secret sharing scheme, if shares are smaller than the secret, it leaks some
information about the secret). It is worth mentioning that in the most efficient
existing schemes the size of the share of each participants is log (2�!n).

In order to calculated the correct signature, however, we need to know the
index of the active group (which is an integer smaller than the number of co-
signers). Considering the facts that:

– The index of each group of collaborating servers/users is a constant integer,
and therefore does not need to be calculated more than once.

– In order to increase the speed of the signature generation protocol, groups
of users who prefer to work together can calculate their group’s index prior
to signing procedure.

The cost of our threshold RSA signature scheme is just one exponentiation by
each user and the combiner, where the size of the exponent is the same as the
secret key.

6 Conclusions

We have presented a novel technique for implementing the first ideal threshold
RSA system. The proposed scheme has the following advantage:

– The share of each user from the group’s secret key, at all times, is not larger
than the size of the group’s secret key itself.

– In the signature generation phase, each user performs only one exponentia-
tion, where the exponent is not larger than the size of the secret key of the
underlying RSA system.

3 This implies that there must be at least 224 honest users in the system.

320 H. Ghodosi and J. Pieprzyk

– The combining process requires only one exponentiation and a few multipli-
cations.

– The scheme is robust, i.e., the signature generation process cannot be pre-
vented by k or less corrupted users.

Acknowledgment. The authors would like to thank Yvo Desmedt for a pro-
ductive discussion and unanimous referees for their helpful comments.

References

1. D. Boneh and M. Franklin, “Efficient Generation of Shared RSA Keys,” in Ad-
vances in Cryptology - Proceedings of CRYPTO ’97 (S. Burton and J. Kaliski, eds.),
vol. 1294 of Lecture Notes in Computer Science, pp. 425–439, Springer-Verlag, 1997.

2. I. Damg̊ard and K. Dupont, “Efficient Threshold RSA Signatures with General
Moduli and No Extra Assumptions,” in Proceedings of the 8th International Work-
shop on Practice and Theory in Public Key cryptography (PKC 2005) (S. Vaudeny,
ed.), vol. 3386 of Lecture Notes in Computer Science, pp. 346–361, Springer-Verlag,
2005.

3. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung, “How to Share a Function
Securely,” in 26th Annual ACM Symp. on the Theory of Computing, pp. 522–533,
1994.

4. Y. Desmedt, “Society and group oriented cryptography: A new concept,” in Ad-
vances in Cryptology - Proceedings of CRYPTO ’87 (C. Pomerance, ed.), vol. 293
of Lecture Notes in Computer Science, pp. 120–127, Springer-Verlag, 1988.

5. Y. Desmedt, “Threshold Cryptosystems,” in Advances in Cryptology - Proceedings
of AUSCRYPT ’92 (J. Seberry and Y. Zheng, eds.), vol. 718 of Lecture Notes in
Computer Science, pp. 3–14, Springer-Verlag, 1993.

6. Y. Desmedt and Y. Frankel, “Threshold cryptosystems,” in Advances in Cryptology
- Proceedings of CRYPTO ’89 (G. Brassard, ed.), vol. 435 of Lecture Notes in
Computer Science, pp. 307–315, Springer-Verlag, 1990.

7. Y. Desmedt and Y. Frankel, “Shared generation of authenticators and signatures,”
in Advances in Cryptology - Proceedings of CRYPTO ’91 (J. Feigenbaum, ed.),
vol. 576 of Lecture Notes in Computer Science, pp. 457–469, Springer-Verlag, 1992.

8. T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms,” IEEE Trans. on Inform. Theory, vol. IT-31, pp. 469–472, July
1985.

9. Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung, “Proactive RSA,” in Ad-
vances in Cryptology - Proceedings of CRYPTO ’97 (S. Burton and J. Kaliski, eds.),
vol. 1294 of Lecture Notes in Computer Science, pp. 440–454, Springer-Verlag, 1997.

10. Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung, “Optimal Resilience Proactive
Public-key Cryptosystems,” in 38th Annual Symp. on Foundations of Computer
Science (FOCS), pp. 384–393, IEEE, 1997.

11. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust and Efficient Shar-
ing of RSA Functions,” in Advances in Cryptology - Proceedings of CRYPTO ’96
(S. Burton and J. Kaliski, eds.), vol. 1109 of Lecture Notes in Computer Science,
pp. 157–172, Springer-Verlag, 1996.

12. T. Rabin, “A Simplified Approach to Threshold and Proactive RSA,” in Advances
in Cryptology - Proceedings of CRYPTO ’98 (H. Krawczyk, ed.), vol. 1462 of Lec-
ture Notes in Computer Science, pp. 89–104, Springer-Verlag, 1998.

An Ideal and Robust Threshold RSA 321

13. R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems,” Communications of the ACM, vol. 21, pp. 120–
126, Feb 1978.

14. A. Shamir, “How to Share a Secret,” Communications of the ACM, vol. 22, pp. 612–
613, Nov. 1979.

15. V. Shoup, “Practical Threshold Signatures,” in Advances in Cryptology - Pro-
ceedings of EUROCRYPT 2000 (B. Preneel, ed.), vol. 1807 of Lecture Notes in
Computer Science, pp. 207–220, Springer-Verlag, 2000.

Towards Provably Secure Group Key Agreement
Building on Group Theory

Jens-Matthias Bohli1, Benjamin Glas2, and Rainer Steinwandt3

1 Institut für Algorithmen und Kognitive Systeme, Fakultät für Informatik,
Am Fasanengarten 5, 76128 Karlsruhe, Germany

bohli@ira.uka.de
2 Institut für Technik der Informationsverarbeitung,
Fakultät für Elektrotechnik & Informationstechnik,

Engesserstraße 5, 76128 Karlsruhe, Germany
glas@itiv.uka.de

3 Department of Mathematical Sciences, Florida Atlantic University,
777 Glades Road, Boca Raton, FL 33431, USA

rsteinwa@fau.edu

Abstract. Known proposals for key establishment schemes based on
combinatorial group theory are often formulated in a rather informal
manner. Typically, issues like the choice of a session identifier and parallel
protocol executions are not addressed, and no security proof in an estab-
lished model is provided. Successful attacks against proposed parameter
sets for braid groups further decreased the attractivity of combinatorial
group theory as a candidate platform for cryptography.

We present a 2-round group key agreement protocol that can be
proven secure in the random oracle model if a certain group-theoretical
problem is hard. The security proof builds on a framework of Bresson
et al., and explicitly addresses some issues concerning malicious insid-
ers and also forward secrecy. While being designed as a tool for basing
group key agreement on non-abelian groups, our framework also yields a
2-round group key agreement basing on a Computational Diffie-Hellman
assumption.

Keywords: group key establishment, provable security, conjugacy prob-
lem, automorphisms of groups.

1 Introduction

While in recent years cryptographic proposals building on combinatorial group
theory, in particular braid groups, proliferated, repeated cryptanalytic success
also diminished the initial optimism on the subject significantly. Dehornoy’s pa-
per [15] gives a good survey on the state of the subject, and evidently significant
research is still needed to reach a definite conclusion on the cryptographic poten-
tial of braid groups. As far as key establishment is concerned, especially an idea
of Anshel et al. [2,1] received a lot of attention (e. g., [16,19,27]). Several further

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 322–336, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards Provably Secure Group Key Agreement Building on Group Theory 323

ideas for deriving a key establishment scheme from combinatorial group theory
have been put forward, including the work in [22,23,26,28,25]. Unfortunately, to
the best of our knowledge for none of these proposals a modern security analysis
in an established cryptographic framework like [5,3,24,4,11,12] has been carried
out. It should be mentioned, however, that the 2-party construction considered
by Catalano et al. in [13] seems suitable for a non-abelian setting, but no further
exploration in this direction is known to us.

One approach to build a key establishment protocol on non-abelian groups
is to prove a scheme secure against passive adversaries, followed by applying
a generic compiler that establishes stronger security guarantees (cf. [21], for
instance). In this contribution we focus on group1 key establishment. So far,
the only known proposals for basing a group key establishment on non-abelian
groups we are aware of are due to Lee et al. [23] and Grigoriev and Ponomarenko
[18]. Unfortunately the former builds on ideas from a two-party protocol pre-
sented in [22], so Cheon and Jun’s polynomial time solution to the Braid Diffie-
Hellman conjugacy problem [14] impairs the attractivity of Lee et al.’s scheme.
Grigoriev and Ponomarenko use a different approach to build a group key es-
tablishment. They build on ideas from [2,1] and make repeated use of a 2-party
protocol.

As an intermediate step, we build a key encapsulation mechanism from a group
theoretic problem and then construct a group key establishment protocol on top.
We do not follow the indicated 2-step approach (proving security in the passive
case, followed by, say, applying the compiler of Katz and Yung [21])—aiming at
a 2-round solution, a direct design approach appears to be no less attractive.
While we cannot give a concrete non-abelian instance of our scheme, a concrete
protocol can be derived from a Computational Diffie-Hellman (CDH) assump-
tion in a cyclic group. In a sense, our approach can be seen in the spirit of [17],
which takes a similar effort to identify requirements on finite non-abelian groups
that allow to implement a provably IND-CCA secure public key encryption
scheme.

Our security proof makes use of an existentially unforgeable signature scheme
and the random oracle, and it is fair to ask whether there is really a need for
another protocol in such a setting. For instance, in terms of communication
complexity Boyd and Nieto’s 1-round protocol from [9] certainly can be seen
as superior to the 2-round proposal below. However, the latter protocol lacks
forward secrecy, and to our knowledge it is not known whether a one-round
protocol achieving forward secrecy can be constructed at all [8]. Moreover, we
aim at a 2-round protocol offering security guarantees in the presence of malicious
insiders. Currently the treatment of malicious insiders in group key establishment
receives increasing attention—including the work in [7,20,6]. At the current state
of the art, to design a 2-round protocol with security guarantees against malicious
insiders and offering forward secrecy, a “one step” design strategy building on a
random oracle and a signature scheme still appears to be fair.

1 Unfortunately, in this paper the term group has to express two different meanings;
here it refers to a set of principals.

324 J.-M. Bohli, B. Glas, and R. Steinwandt

2 Preliminaries

Giving a general introduction to the existing models for group key establishment
is beyond the scope of this paper, and we refer to the standard reference [10]
for this. Moreover, the background in group theory needed for describing our
protocol is extremely modest. Hence, we restrict to recalling some details of the
cryptographic proof model used for the security proof below. A more detailed
discussion of this model can be found in [4,11,7].

2.1 Security Model

Participants. A finite set P of probabilistic polynomial time (ppt) Turing ma-
chines Ui models the users that constitute the (potential) protocol participants.
Each user Ui ∈ P may execute a polynomial number of protocol instances in
parallel. We denote the instance s ∈ N of principal Ui ∈ P by Πs

i . Each instance
Πs

i may be taken for a process executed by Ui and has assigned seven variables
states

i , sids
i , pids

i , sks
i , terms

i , useds
i and accs

i :

useds
i is initialized with false and set to true as soon as the instance begins a

protocol run triggered by a call to the Execute-oracle or a call to the Send-
oracle (see below);

states
i stores the state information during the protocol execution;

terms
i is initialized with false and set to true when the execution has terminated;

sids
i holds the (non-secret) session identifier that serves as identifier for the ses-
sion key sks

i and is initialized with a distinguished null value—the adversary
has access to all sids

i -values;
pids

i stores the set of user identities that Πs
i aims at establishing a key with—it

also includes Ui itself;
accs

i is initialized with false and set to true if the protocol execution terminated
successfully (i. e., the principal accepted the session key for use with users
pids

i in session sids
i);

sks
i contains the session key after the execution is accepted by instance Πs

i .
Before acceptance, it stores a distinguished null value.

Initialization. In a one-time initialization phase, before the first execution of
the key establishment protocol, for each user Ui ∈ P a secret key/public key
pair (SKi, PKi) is generated. The secret key SKi is only revealed to Ui, the
corresponding public key PKi is given to all users2.

Communication network. We assume arbitrary point-to-point connections to
be available between the users. However, the connections are insecure and fully
asynchronous, modeled by an active adversary with full control over the network
(cf. the adversarial model below).

2 We assume these keys to be generated and distributed honestly by a trusted party.

Towards Provably Secure Group Key Agreement Building on Group Theory 325

Adversarial model. The adversary A interacts with the user instances via a set
of oracles Execute, Send, Reveal, Corrupt and Test. We call the adversary passive
if no access to the Send- and Corrupt-oracle is granted.

Execute({U1, U2, . . . , Ur}) This query executes a protocol run between unused
instances Πs

i of the specified users and returns a transcript of all messages
sent during the protocol execution.

Send(Ui, s,M) This query sends the messageM to instance Πs
i and returns the

reply generated by this instance. A special message M = {U1, . . . , Ur} sent
to an unused instance will set pids

i := M , useds
i := true and provoke Πs

i to
begin with the protocol execution.

Reveal(Ui, s) returns the session key sks
i .

Corrupt(Ui) returns the long-term secret key SKi that Ui holds. We will refer
to a user Ui as honest if no query of the form Corrupt(Ui) was made.

Test(Ui, s) The adversary is allowed to use this query only once. Provided that
sks

i �= null, a random bit b is drawn and depending on b with probability
1/2 the session key sks

i and with probability 1/2 a uniformly chosen random
session key is returned. The adversary is allowed to query other oracles after
its Test-query, but no query that would repeal the freshness of Πs

i is allowed.

Correctness. To exclude “useless” protocols, we take a group key establishment
protocol P for correct if in the presence of a passive adversary a single execution
of P among arbitrary participants U1, . . . , Ur involves r instances Πs1

1 , . . . , Π
sr
r

and ensures that with overwhelming probability all instances accept a matching
session key with a common partner identifier and a common and unique session
identifier. More formally, with overwhelming probability the following conditions
have to hold:

– useds1
1 = · · · = usedsr

r = true;
– accs1

1 = · · · = accsr
r = true;

– sks1
1 = · · · = sksr

r ;
– sids1

1 = · · · = sidsr
r globally unique;

– pids1
1 = pids2

2 = · · · = pidsr
r = {U1, . . . , Ur}.

Freshness. For the security definition, we have to specify which instances are
fresh, i. e., hold a session key that should be unknown to the adversary. As a
first step we define the notion of partnering.

Definition 1 (Partnering). Two instances Πsi

i , Πsj

j are partnered if sidsi

i =
sidsj

j , pidsi

i = pidsj

j and accsi

i = accsj

j = true.

Now the freshness of an instance is defined as follows.

Definition 2. We call a user instance Πsi

i that has accepted, i. e., accsi

i = true,
fresh if none of the following two conditions holds:

– For a Uj ∈ pidsi

i a Corrupt(Uj) query was executed before a query of the form
Send(U	, s	,M) with U	 ∈ pids

i has taken place.
– A Reveal(Uj , sj) was executed where Πsi

i and Πsj

j are partnered.

326 J.-M. Bohli, B. Glas, and R. Steinwandt

We say that an adversaryA was successful if A, after interacting with the oracles
including one Test(Πsi

i) query for a fresh oracle Πsi

i , outputs a bit d and it holds
that d = b for the bit b used by the Test-oracle. We denote this probability by
Succ and define A’s advantage to be

AdvA := |2 · Succ− 1|.

Definition 3 (Key secrecy/(basic) security). We call the group key estab-
lishment protocol P secure if for all ppt adversaries A the function AdvA =
AdvA(k) is negligible in the security parameter k.

Forward secrecy is addressed in the usual manner:

Definition 4 (Forward secrecy). We say the group key establishment protocol
P fulfills forward secrecy, if the disclosure of the private long-term keys used in
the protocol execution does not compromise earlier derived session keys.

The following extended security properties aim at avoiding further attacks im-
posed by malicious participants:

Definition 5 (Strong entity authentication). Strong entity authentication
to an oracle Πsi

i is provided if both accsi

i = true and for all honest Uj ∈ pidsi

i

with overwhelming probability there exists an oracle Πsj

j with sidsj

j = sidsi

i and
Ui ∈ pidsj

j .

Definition 6 (Integrity). We say a correct group key establishment protocol
fulfills integrity if with overwhelming probability all oracles of honest principals
that have accepted with the same session identifier sidsj

j hold identical session
keys sksj

j , and associate this key with the same principals pidsj

j .

2.2 Assumptions on the Underlying Group

For the security proof of our protocol, the underlying group G (resp. family
of groups G = G(k), indexed by the security parameter) has to satisfy certain
requirements. In particular, we assume products and inverses of group elements
to be computable by ppt algorithms. For the sake of simplicity, we also assume
that G allows a ppt computable canonical representation of elements, so that
we can identify group elements with their canonical representation. To generate
the group elements needed in a protocol execution, we rely on the existence of
three algorithms, that capture the problem of creating “good instances”:

– DomPar denotes a (stateless) ppt domain parameter generation algorithm
that upon input of the security parameter 1k outputs a finite sequence S of
elements in G. The subgroup 〈S〉 of G spanned by S will be publicly known.
For the special case of applying our framework to a CDH-assumption, S
specifies a public generator of a cyclic group.

Towards Provably Secure Group Key Agreement Building on Group Theory 327

– SamAut denotes a (stateless) ppt automorphism group sampling algorithm
that upon input of the security parameter 1k and a sequence S output by
DomPar returns a description of an automorphism φ on the subgroup 〈S〉, so
that both φ and φ−1 can be evaluated efficiently. E. g., for a cyclic group, φ
could be given as an exponent, or for an inner automorphism the conjugating
group element could be specified.

– SamSub denotes a (stateless) ppt subgroup sampling algorithm that upon
input of the security parameter 1k and a sequence S output by DomPar
returns a word x(S) in the generators S (and their inverses) representing an
element x ∈ 〈S〉. Intuitively, SamSub chooses a random x ∈ 〈S〉, so that it
is hard to recognize x if we know elements of x’s orbit under Aut(G). Our
protocol needs an explicit representation of x in terms of the generators S.

With this notation, we can define a computational problem of parallel automor-
phism application, where o ← A(i) denotes that algorithm A outputs o upon
receiving input i:

Definition 7 (Parallel automorphism application). Let r ∈ N>0 be a natu-
ral number. By the problem of r-fold parallel automorphism application (r-PAA)
w. r. t. the quadruple (G,DomPar, SamAut, SamSub) we mean the task of finding
an algorithm A which on input of S, φi(S) := (φi(s))s∈S for i = 1, . . . , r and
φ1(x), . . . , φr(x) outputs the group element x represented by the word x(S), where

– S ← DomGen(1k),
– x(S) ← SamSub(1k, S),
– (φi, φ

−1
i) ← SamAut(1k, S) (i = 1, . . . , r).

To capture the assumption needed in the security proof below, we also define
the advantage of an adversary in solving the above problem:

Definition 8 (r-PAA advantage). For an algorithm A trying to solve r-PAA,
we denote its advantage as a function in the security parameter k and its runtime
t by Advr−PAA

A = Advr−PAA
A (k, t) =

Pr
(
x← A(S, (φi(S), φi(x))1≤i≤r)

∣∣∣∣S ← DomGen(1k), x(S) ← SamSub(1k, S),
(φi, φ

−1
i) ← SamAut(1k, S) (i = 1, . . . , r)

)
.

Our security proof builds on the assumption that for any ppt adversary A the
advantage Advr−PAA

A is negligible. For the case of φ being an inner automor-
phism, r-PAA expresses a kind of parallel conjugacy problem. Note however,
that instead of looking for concrete instances building on a non-abelian group,
we may apply our framework to an “ordinary” Computational Diffie-Hellman
(CDH) setting, too:

Example 1 (Basing on CDH). Let G be a cyclic group and choose for S := (g)
an element g ∈ G of prime order q. Now let SamSub choose uniformly at random
an exponent x ∈ {1, . . . , q}. Similarly, we specify SamAut to choose uniformly
at random an exponent φ ∈ {1, . . . , q − 1}. Then r-PAA is polynomial time
equivalent to the CDH-problem in 〈g〉:

328 J.-M. Bohli, B. Glas, and R. Steinwandt

“CDH solution ⇒ r-PAA solution”: A CDH-oracle allows to find gx from
a single pair (gφ, gxφ) as follows. First compute gφ−1 mod q by using the CDH-

oracle to multiply the exponents of (g, g) with g =
(
gφ
)φ−1

taken for a power
of the group generator gφ. Next we can obtain gx by applying the CDH-oracle
to gφ−1 mod q and gxφ.

“CDH solution ⇐ r-PAA solution”: Given gφ1 , gv (φ1, v ∈ {1, . . . , q− 1}),
we can use an oracle solving r-PAA to compute gvφ−1

1 : We can interpret v
as having the form v = x · φ1 mod q, and by raising gφ1 and gv to uniformly
at random chosen powers φ−1

1 φi ∈ {1, . . . , q − 1} (i = 2, . . . , r), we obtain
the input needed by an oracle solving r-PAA to compute gx = gvφ−1

1 . Hence,
given a pair (gu, gv) we can compute guv as follows:

1. Apply the above method to (gu, gv), yielding gvu−1
.

2. Apply the above method to (gv, gvu−1
), yielding gu−1

.
3. Apply the above method to (gu−1

, gv), yielding guv.

2.3 Groundwork of the Protocol

The r-PAA assumption is in quintessence a variant of a key encapsulation mech-
anism (KEM). A KEM provides the public key algorithm that is needed for
constructing a hybrid encryption system. In contrast to public key encryption
it is not necessary to be able to encrypt arbitrary messages, but only random
messages, which don’t need to be given as input to the algorithm.

Smart [29] extends KEM to mKEM which captures key encapsulation to mul-
tiple parties. An mKEM consists of Algorithms Gen, Enc and Dec. At this Gen
will take the domain parameters as input and output a public/private key pair
(pk, sk). The algorithm Enc takes as input a list of public keys (pk1, . . . , pkn)
and outputs a pair consisting of a key K and a ciphertext C. Finally, Dec takes
as input a ciphertext C and a private key ski and outputs the key K.

The assumption about the group in Section 2.2 resembles an mKEM. However,
for a KEM, the key space will consist of a finite set, such that K is indistinguish-
able from an element chosen uniformly at random. The value x, sampled by the
algorithm SamSub will generally not offer this property, so a randomness extrac-
tion has to be applied on x to build a KEM. We now give the interpretation
of the PAA as an mKEM, using a random oracle H as a randomness extractor.
Note that the protocol in Section 3 will not need the randomness extraction for
an individual x, but only for the collection of the x-values of all participants.

After having generated domain parameters with DomPar, SamAut produces
the automorphism φ on the subgroup 〈S〉. The images (φi(t))t∈S of the gen-
erators S will act as public key and φ−1

i as private key. This will provide the
algorithm Gen. Given the subgroup generators S, SamSub returns a word x(S)
in the generators S. Then, given any number of public keys φi(S) for the subset
S, the ciphertext φi(x(S)) can be computed. Thus, the combination of SamSub
and application of φi can be seen as providing Enc. Again, Dec is only given
implicitly, as the application of φ−1 to φi(x(S)) is straightforward.

Towards Provably Secure Group Key Agreement Building on Group Theory 329

Domain parameter D : S ← DomGen(1k)

(pk, sk) ← Gen(D) : (φ, φ−1) ← SamAut(1k, S)
pk = (φ(t))t∈S

sk = φ−1

(K,C) ← Enc(pk1, . . . , pkn) : x(S) ← SamSub(1k, S)
K = H(x(S))
C = (φ1(x(S)), . . . , φn(x(S)))

K ← Dec(C, ski, (pk1, . . . , pkn)) : K = H(φ−1
i (φi(x(S)))

Security of r-PAA as an mKEM. With the interpretation as above, intuitively
r-PAA is secure as an mKEM. Using the random oracle to derive the key K,
transforms the indistinguishability of keys in the mKEM into the problem to
compute the preimage, as the r-PAA advantage. However, Smart [29] defines an
r out of n security where the adversary is offered n public keys and can chose
a set of r on which he will mount his attack. In this respect, the above r-PAA
problem yields an r out of r secure mKEM. Though, the weaker requirements
for a secure r-PAA might help the construction of concrete instances.

On Burmester-Desmedt style key agreements. The Burmester-Desmedt principle
constructs a group key by arranging the participants in a circle, establishing keys
between neighbors and broadcasting information, that allows anyone who knows
one key in the circle, to compute all other keys. Having in mind the construction
of a 2-round protocol, the key establishment should be possible in one round.
However, forward secrecy requires ephemeral public keys, such that in order to
establish a key, first Ui has to execute Gen and send the result to Uj who has to
execute Enc and return the ciphertext to Ui. As this requires already 2 rounds, we
have chosen a different approach, which is similar to [9] but guarantees forward
secrecy in addition.

Protocol idea. The idea for the protocol is now as follows: In the first round, all
participants will generate an ephemeral key, what will be necessary to achieve
forward secrecy. In the next round, each participant Ui will use the encryption
algorithm of the KEM to obtain a key contribution Ki and a ciphertext C, and
broadcast the ciphertext C. Finally, the participants compute a group key from
the contributions Uj, j = 1, . . . , n.

3 A 2-Round Protocol for Group Key Agreement

To discuss our group key agreement protocol we adopt the common assump-
tion that, from some protocol-external context, the set of protocol participants
U ⊆ P is known to all Ui ∈ U . To simplify notation, w. l. o. g. we assume
U = {U1, . . . , Ur}. Moreover, we assume that an asymmetric signature scheme
is available that is existentially unforgeable under adaptive chosen message at-
tacks. The respective signing and verification keys are to be fixed and distributed
throughout the initialization phase mentioned in Section 2.1, and we denote a
signature of a protocol participant Ui on a message M by Sigi(M).

330 J.-M. Bohli, B. Glas, and R. Steinwandt

3.1 Description of the Protocol

Having fixed the security parameter k, first we have to run DomGen(1k) to gener-
ate the public subgroup generators S. Hereafter, for an instanceΠsi

i of a protocol
participant Ui a single protocol run can be described as shown in Figure 1. At
this, Broadcast: M means that messageM is sent to all other participants Uj ∈ U
over point-to-point connections, i. e., the adversary is allowed to delay, suppress
or modify some or all of the transmitted messages. In contrast to the idea in the
last section, it is possible to separate portions for each participant φi(x(S)) and
instead of broadcasting all ciphertexts, every participant gets only the necessary
part. Moreover, the randomness extraction is only applied on the list x1, . . . , xn,
instead on every xi. Finally, H denotes a cryptographic hash function which will
be modeled as a random oracle.

Round 1: Initialization Set pidsi
i := U , usedsi

i := true.
Choose (φsi

i , (φsi
i)−1) ← SamAut(1k), xsi

i (S) ← SamSub(1k, S), and compute
the message msi

1 (Ui) := (Ui, (φsi
i (t))t∈S, H(xsi

i)).
Broadcast: msi

1 (Ui).
Round 2: Key Exchange Set sidsi

i := H (ms1
1 (U1), . . . , msr

1 (Ur), pidsi
i).

Compute and send msi
2 (Ui, Uj) :=

(
Ui, φ

sj

j (xsi
i), Sigi(sid

si
i)

)
to each partic-

ipant Uj ∈ pidsi
i , j �= i. (To compute φ

sj

j (xsi
i) use the representation of

xsi
i = xsi

i (S) in terms of the generators S.)
Key Generation Compute from φsi

i (xsj

j) the original x
sj

j for all j �= i by apply-
ing the inverse of φsi

i .
Compute the common session key K := H (xs1

1 , . . . , xsr
r , pidsi

i).
Verification Check for all Uj ∈ pidsi

i if Sigj(sid
sj

j) is a valid signature for sidsi
i

and if for x
sj

j the received hash value H(xsj

j) in m
sj

1 (Uj) was correct.
If true, set accsi

i := termsi
i := true, and sksi

i := K.
Else set accsi

i := false, termsi
i := true.

Fig. 1. A 2-round group key agreement protocol basing on r-PAA

At first glance, Round 1 of the protocol may look suspicious: The message is
not signed and hence an attacker may tamper with this message. The underlying
idea here is, that any tampering with the message in Round 1 will result in
a failed signature verification in Round 2, because the session identifier sidsi

i

computed and signed by Πsi

i involves the correct message from Round 1. Further
on, one may wonder whether one shouldn’t simply fix the φsi

i (S)-values and
include them in the public key of user Ui. Effectively, the latter would render
φsi

i a long-term secret and the protocol would no longer achieve forward secrecy.

Remark 1. Having in mind instances of the protocol in Figure 1 where the φi

are inner automorphisms, it is worth noting that the protocol is symmetric in
the sense that all participants perform the same steps: Differing from Anshel et
al.’s 2-party construction, the key computation for the initiator is the same as
for the other protocol participants.

Towards Provably Secure Group Key Agreement Building on Group Theory 331

3.2 Security Analysis

Correctness of the protocol in Figure 1 is immediate. To prove its security, we first
observe that the constructed session identifier is with overwhelming probability
globally unique:

Lemma 1. If for all ppt adversaries A the advantage AdvA in solving r-PAA
is negligible, then the session identifier sidsi

i constructed in the above protocol is
with overwhelming probability globally unique.

Proof. The assumption of the lemma implies in particular that the probability
of SamSub outputting twice the same value in a ppt number of executions is
negligible. Thus the collision-freeness of H yields the desired uniqueness of the
session identifier. �

Next, before looking at (basic) security, we note that the above protocol also
offers strong entity authentication and integrity:

Proposition 1. The protocol provides strong entity authentication according to
Definition 5 and integrity according to Definition 6.

Proof. Strong entity authentication. Consider an arbitrary instance Πsi

i of an
uncorrupted participant Ui that has accepted with session identifier sidsi

i . Let
Uj ∈ pidsi

i be some other uncorrupted participant. Instance Πsi

i must have
received a message of Uj with a signature on Uj’s session identifier sidsj

j . By
unforgeability of the signature scheme, uniqueness of the session identifier sidsj

j =
sidsi

i , and the collision resistance of the hash function we obtain pidsj

j = pidsi

i

with overwhelming probability.
Integrity. Consider any two instances Πsi

i and Πsj

j that both have accepted
with sid = sidsi

i = sidsj

j and where the participants Ui and Uj are honest. By
unforgeability of the signature scheme, uniqueness of the session identifier sid,
and the collision resistance of the hash function, with overwhelming probability
we get pidsi

i = pidsj

j and the equivalence of the messages ms�
1 (U) they received

in Round 1. Those messages include hash values H(xs�

) from all protocol par-
ticipants and before accepting, all participants check if the computed values xs�

	

in Round 2 are consistent with the H(xs�

). Unless a collision of H occurs they
compute the same key. �

For the ease of presentation, in the proof of the basic security property we imag-
ine the protocol without the hash value H(xsi

i) in Round 1. This simplification
can be justified with a standard random oracle argument as in the proof of
Lemma 3.

Proposition 2. Denote the maximal number of protocol participants by n = |P|,
and let A be an adversary that is allowed at most qs, qex, qH queries to the Send,
Execute and random oracle H, respectively. Moreover, let Adv(n−1)−PAA resp.
AdvSig be the maximum advantage of a ppt algorithm solving (n− 1)-PAA resp.
achieving an existential forgery in running time t. Then

332 J.-M. Bohli, B. Glas, and R. Steinwandt

AdvA = |Succ− 1/2| ≤ n · (qs + qex)n · qH · Adv(n−1)−PAA + n · AdvSig + negl(k)

where negl(k) is negligible in k.

Proof. Let Succ := (AdvA + 1)/2 be the success probability of adversary A to
win the experiment. Imagine A now to be connected to a simulator Sim that
simulates the oracles. We consider a sequence of games and bound the difference
of the adversary’s success probability between subsequent games.

In Game 0 the simulator Sim simulates the oracles and principals’ instances
faithfully. Thus, there is no difference for the adversary and denoting A’s success
probability in Game i by SuccGame i, we have SuccGame 0 = Succ.

In Game 1 the simulator will keep a list with an entry (i, sidsi

i) for every session
identifier sidsi

i the simulator signs with the secret key of user Ui and returns
it in a Round 2 message to A following an Execute-query or on a Send-query.
We define the event Forge to occur, if A comes up with a query Send(∗, ∗,M)
where M includes a signature Sig(sidsi

i), signed by an uncorrupted principal Ui

and (i, sidsi

i), does not appear in the simulator’s list. In this case we abort the
experiment and count it as success for the adversary. Thus we have:

|SuccGame 1 − SuccGame 0| ≤ Pr(Forge).

Lemma 2. If the signature scheme is existentially unforgeable, the probability
of Forge is negligible. Formally:

Pr(Forge) ≤ n · AdvSig

Proof. The simulator can use an adversary that can reach Forge with a non-
negligible probability as black box to forge a signature from the underlying
signature scheme.

The simulator is given a public key PK and a signing oracle. In the initial-
ization it will uniformly choose one user Ui and assign the key PK as PKi to
Ui. If in the following simulation Sim has to generate a signed message for Ui it
will use the signing oracle to sign the message. If A will send a message (∗, σ),
where σ is a signature of a session identifier sidsi

i that is not in the simulator’s
list, the simulator will return (sidsi

i , σ) as existential forgery. Otherwise the sim-
ulator returns ⊥. As i was chosen uniformly the simulator will succeed with a
probability of 1/n · Pr(Forge), thus Pr(Forge) ≤ n · AdvSig. �

In Game 2 the simulator will keep a list with entries

(ms1
1 (U1), . . . ,msn

1 (Un), H(ms1
1 (U1), . . . ,msn

1 (Un)))

for every computation of a session identifier invoked by an Execute-query or Send-
query and all entries (M,H(M)) where A queried the random oracle directly.
We define the event Collision to occur, if the simulator computes a session identi-
fier H(ms1

1 (U1), . . . ,msn
1 (Un)) which equals a session identifier that A obtained

previously with non-identical messages. In this case we abort the experiment
and count it as success for the adversary. From H being a random oracle, we
conclude that |SuccGame 2 − SuccGame 1| is negligible.

Towards Provably Secure Group Key Agreement Building on Group Theory 333

In Game 3 the simulation of the Test oracle is modified. On a query Test(Ui, si),
the simulator checks if Πsi

i is fresh. If so, then Sim will not query the random
oracle, but return a random value in any case. As now no information about
the Test-oracle’s secret bit b is given to A in Game 3, the success probability is
SuccGame 3 = 1/2.

Now we have to determine the difference in the adversary’s success proba-
bility between Game 2 and Game 3. For A, a random value and the random
oracle’s answer are indistinguishable as long as A does not know the actual
query to the random oracle. The success probabilities can only differ, if A queries
H(xs1

1 , . . . ,x
sr
r , pidsi

i) to the random oracle. Denoting this event by Random, we
have

|SuccGame 3 − SuccGame 2| ≤ Pr(Random).

Lemma 3. The probability Pr(Random) of the event Random to occur is negli-
gible if n is constant and Adv(n−1)−PAA is negligible.

Proof. The simulator is given an instance (S, (φi(S), φi(x))1≤i≤n−1)) of the (n−
1)-PAA problem. In the initialization phase, the simulator will give S as parame-
ter to A and uniformly choose n random numbers αi ∈ {1, qs+qex} (i = 1, . . . , n)
to point to the instances Παi

i . The simulator will choose uniformly at random
β ∈ {1, . . . , n} to select one distinguished instance Παβ

β among them.
When the simulator has to process Round 1 for one instance Παi

i , i = 1, . . . , n,
i �= β, Sim will use the given φi(S) instead of computing a new φi with SamAut.
For instance Παβ

β the simulator will use the given x(S). If instance Παβ

β does not
only get messages containing φi(S), (i = 1, . . . , n, i �= β) the simulator aborts and
outputs ⊥. Also, if the simulator ever has to apply a φ−1

i it aborts and outputs
⊥ (this will only happen from a Reveal-query).

Because Παβ

β is uniformly selected out of a set of n · (qs + qex) potential
instances, it will be used in the Test-query with a probability of (n · (qs +qex))−1.
To be able to apply the Test-query the adversary has to let Παβ

β accept. All
Ui ∈ pidαβ

β have to be uncorrupted. Then by uniqueness of the session identifier
(Lemma 1) the messages Παβ

β must have got in Round 1 were generated by the
same instances as the messages Παβ

β received in Round 2. These have to be the
distinguished oracles Παi

i for Ui ∈ pidαβ

β . For the principals Uj /∈ pidαβ

β , Παj

j

must be an oracle that was not revealed. There must be at least one potential
instance that is not used for each Uj /∈ pidαβ

β . Consequently, with a probability
of 1/n · (qs + qex)n the principals are distributed as needed.

If A halts, the simulator chooses uniformly one of the at most qH queries to
the random oracle, extracts xβ (assuming it is of the form H(xs1

1 , . . . , x
sr
r , pidsi

i))
and answers this to the (n−1)-PAA challenge. The probability to pick the correct
query is 1/qH · Pr(Random). With a probability of at least

Pr((n− 1)−PAAsolved) ≥ 1
n · (qs + qex)n · qH

· Pr(Random)

the simulator solves the challenge. �

334 J.-M. Bohli, B. Glas, and R. Steinwandt

Putting it all together we see that AdvA = |Succ− 1/2| is smaller or equal than

n · (qs + qex)n · qH · Adv(n−1)−PAA + n · AdvSig + negl(k) .

�

Remark 2. If instead of a constant number n of potential protocol participants,
we want to allow a size P of polynomial size, the bound in Proposition 2 is
in general no longer negligible. However, if we base on a CDH-assumption as
in Example 1, we can allow for a set P of polynomial size: With the argument
given in Example 1 we see that in this case solving 1-PAA is equivalent to solving
r-PAA for an arbitrary r of polynomial size. In the security proof, this reduction
allows us to replace the exponent n by the constant 2.

Also, an r-PAA that is secure even if the adversary can choose the r public
keys out of a polynomial sized set will help. Because the definition of an mKEM
takes such a choice into account, the protocol allows a polynomial sized set of
users, if it bases on such an mKEM.

Finally, forward secrecy follows with the standard argument that the long-term
keys are used for message authentication exclusively, and we obtain:

Proposition 3. The protocol in Figure 1 fulfills forward secrecy in the sense of
Definition 4.

4 Conclusion

In this contribution we have described a 2-round group key agreement and
showed it to be secure under the assumption that certain group-theoretical tools
are available. In addition to the “standard” security requirement, the proposed
protocol also offers strong entity authentication and integrity. While our frame-
work is primarily geared towards building a provably secure group key agreement
on non-abelian groups, it also allows to derive a 2-round group key agreement
from a CDH assumption.

Acknowledgment

We are indebted to Dennis Hofheinz and Jonathan Katz for valuable discussions
and comments.

References

1. Iris Anshel, Michael Anshel, Benji Fisher, and Dorian Goldfeld. New Key Agree-
ment Protocols in Braid Group Cryptography. In David Naccache, editor, Topics
in Cryptology, Proceedings of CT-RSA 2001, number 2020 in Lecture Notes in
Computer Science, pages 13–27. Springer-Verlag, 2001.

Towards Provably Secure Group Key Agreement Building on Group Theory 335

2. Iris Anshel, Michael Anshel, and Dorian Goldfeld. An Algebraic Method for Public-
Key Cryptography. Mathematical Research Letters, 6:287–291, 1999.

3. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A Modular Approach to the
Design and Analysis of Authentication and Key Exchange Protocols. In Proceedings
of the 30th Annual ACM Symposium on Theory of Computing STOC, pages 319–
428, 1998.

4. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Ex-
change Secure Against Dictionary Attacks. In Bart Preneel, editor, Advances in
Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Sci-
ence, pages 139–155. Springer, 2000.

5. Mihir Bellare and Phillip Rogaway. Entitiy Authentication and Key Distribution.
In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO ’93, volume 773
of Lecture Notes in Computer Science, pages 232–249. Springer, 1994.

6. Jens-Matthias Bohli. A Framework for Robust Group Key Agreement. In Marina L.
Gavrilova, Osvaldo Gervasi, Vipin Kumar, Chih Jeng Kenneth Tan, Antonio La-
ganà David Taniar, Youngsong Mun, and Hyunseung Choo, editors, Computational
Science and Its Applications – ICCSA 2006, volume 3982 of Lecture Notes in Com-
puter Science, pages 355–364. Springer, 2006.

7. Jens-Matthias Bohli, Maŕıa Isabel González Vasco, and Rainer Steinwandt. Secure
Group Key Establishment Revisited. Cryptology ePrint Archive, Report 2005/395,
2005. http://eprint.iacr.org/2005/395/ .

8. Dan Boneh and Alice Silverberg. Applications of Multilinear Forms to Cryptogra-
phy. Contemporary Mathematics, 324:71–90, 2003.

9. Colin Boyd and Juan Manuel González Nieto. Round-Optimal Contributory Con-
ference Key Agreement. In Yvo Desmedt, editor, Public Key Cryptography, Pro-
ceedings of PKC 2003, volume 2567 of Lecture Notes in Computer Science, pages
161–174. Springer, 2002.

10. Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Establish-
ment. Information Security and Cryptography; Texts and Monographs. Springer,
2003.

11. Emmanuel Bresson, Olivier Chevassut, David Pointcheval, and Jean-Jacques
Quisquater. Provably Authenticated Group Diffie-Hellman Key Exchange. In
Pierangela Samarati, editor, Proceedings of the 8th ACM Conference on Computer
and Communications Security, pages 255–264. ACM Press, 2001.

12. Ran Canetti and Hugo Krawczyk. Analysis of Key-Exchange Protocols and Their
Use for Building Secure Channels. In Advances in Cryptology – EUROCRYPT
2001, volume 2045 of Lecture Notes in Computer Science, pages 453–474. Springer,
2001.

13. Dario Catalano, David Pointcheval, and Thomas Pornin. IPAKE: Isomorphisms
for Password-based Authenticated Key Exchange. In Matthew K. Franklin, ed-
itor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 477–493. Springer, 2004.

14. Jung Hee Cheon and Byungheup Jun. A Polynomial Time Algorithm for the Braid
Diffie-Hellman Conjugacy Problem. In Dan Boneh, editor, Advances in Cryptology
– CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 212–
225. Springer, 2003.

15. Patrick Dehornoy. Braid-based cryptography. In Alexei G. Myasnikov, editor,
Group Theory, Statistics, and Cryptography, number 360 in Contemporary Math-
ematics, pages 5–33. ACM Press, 2004. Online available at http://www.math.
unicaen.fr/ dehornoy/Surveys/Dgw.ps.

336 J.-M. Bohli, B. Glas, and R. Steinwandt

16. David Gerber, Shmuel Kaplan, Mina Teicher, Boaz Tsaban, and Uzi Vishne. Proba-
bilistic solutions of equations in the braid group. Advances in Applied Mathematics,
35(3):323–334, 2005.

17. Maŕıa Isabel González Vasco, Consuelo Mart́ınez, Rainer Steinwandt, and Jorge L.
Villar. A new Cramer-Shoup like methodology for group based provably secure
schemes. In Joe Kilian, editor, Proceedings of the 2nd Theory of Cryptography
Conference TCC 2005, volume 3378 of Lecture Notes in Computer Science, pages
495–509. Springer, 2005.

18. Dimitri Grigoriev and Ilia Ponomarenko. Constructions in public-key cryptography
over matrix groups. arXiv preprint, 2005. Online available at http://arxiv.org/
abs/math.GR/0506180.

19. Dennis Hofheinz and Rainer Steinwandt. A Practical Attack on Some Braid Group
Based Cryptographic Primitives. In Yvo Desmedt, editor, Public Key Cryptogra-
phy, Proceedings of PKC 2003, number 2567 in Lecture Notes in Computer Science,
pages 187–198. Springer-Verlag, 2002.

20. Jonathan Katz and Ji Sun Shin. Modeling Insider Attacks on Group Key-Exchange
Protocols. In 12th ACM Conference on Computer and Communications Security,
pages 180–189. ACM Press, 2005.

21. Jonathan Katz and Moti Yung. Scalable Protocols for Authenticated Group Key
Exchange. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 110–125. Springer, 2003.

22. Ki Hyoung Ko, Sang Jin Lee, Jung Hee Cheon, Jae Woo Han, Ju sung Kang, and
Choonsik Park. New Public-Key Cryptosystem Using Braid Groups. In Mihir
Bellare, editor, Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture
Notes in Computer Science, pages 166–183. Springer, 2000.

23. Ho-Kyu Lee, Hyang-Sook Lee, and Young-Ran Lee. Cryptology ePrint Archive:
Report 2003/018, 2003. http://eprint.iacr.org/2003/018.

24. Victor Shoup. On Formal Models for Secure Key Exchange (version 4). Revision
of IBM Research Report RZ 3120 (April 1999), November 1999. Online available
at http://www.shoup.net/papers/skey.pdf.

25. Vladimir Shpilrain and Alexander Ushakov. A new key exchange protocol based
on the decomposition problem. Cryptology ePrint Archive: Report 2005/447, 2005.
http://eprint.iacr.org/2005/447.

26. Vladimir Shpilrain and Alexander Ushakov. Thompson’s Group and Public Key
Cryptography. In John Ioannidis, Angelos Keromytis, and Moti Yung, editors, Ap-
plied Cryptography and Network Security: Third International Conference, ACNS
2005, volume 3531 of Lecture Notes in Computer Science, pages 151–163, 2005.

27. Vladimir Shpilrain and Alexander Ushakov. The conjugacy search problem in
public key cryptography: unnecessary and insufficient. Applicable Algebra in
Engineering, Communication and Computing, to appear. Online available at
http://www.sci.ccny.cuny.edu/∼shpil/csp.pdf.

28. Vladimir Shpilrain and Gabriel Zapata. Combinatorial group theory and public key
cryptography. Applicable Algebra in Engineering, Communication and Computing,
to appear. Online available at http://www.sci.ccny.cuny.edu/∼shpil/pkc.pdf.

29. Nigel Smart. Efficient Key Encapsulation to Multiple Parties. In Carlo Blundo
and Stelvio Cimato, editors, Security in Communication Networks – SCN 2004,
volume 3352 of Lecture Notes in Computer Science, pages 208–219. Springer, 2005.

Universally Composable
Identity-Based Encryption

Ryo Nishimaki1, Yoshifumi Manabe1,2, and Tatsuaki Okamoto1,2

1 Graduate School of Infomatics, Kyoto University,
Yoshida-honmachi, Kyoto, 606-8501 Japan

nisimaki@ai.soc.i.kyoto-u.ac.jp
2 NTT Laboratories, Nippon Telegraph and Telephone Corporation,

1-1 Hikari-no-oka, Yokosuka, 239-0847 Japan
{manabe.yoshifumi, okamoto.tatsuaki}@lab.ntt.co.jp

Abstract. Identity-based encryption (IBE) is one of the most impor-
tant primitives in cryptography, and various security notions of IBE
(e.g., IND-ID-CCA2, NM-ID-CCA2, IND-sID-CPA etc.) have been in-
troduced. The relations among them have been clarified recently. This
paper, for the first time, investigates the security of IBE in the universally
composable (UC) framework. This paper first defines the UC-security
of IBE, i.e., we define the ideal functionality of IBE, FIBE. We then
show that UC-secure IBE is equivalent to conventionally-secure (IND-
ID-CCA2-secure) IBE.

Keywords: identity-based encryption, IND-ID-CCA2, universal compo-
sition.

1 Introduction

1.1 Background

The concept of identity-based encryption (IBE), introduced by Shamir [22], is a
variant of public-key encryption (PKE), where the identity of a user is employed
in place of the user’s public-key.

Boneh and Franklin [6] defined IND-ID-CCA2 (indistinguishability against
adaptive chosen-ciphertext attacks under chosen identity attacks) as the de-
sirable security of IBE schemes. Canetti, Halevi, and Katz [11,12] defined a
weaker notion of security in which the adversary, ahead of time, commits to
the challenge identity it will attack. We refer to this notion as selective identity
(sID) adaptive chosen-ciphertext secure IBE (IND-sID-CCA2). In addition, they
also defined a weaker security notion of IBE, selective-identity chosen-plaintext
(CPA) secure IBE (IND-sID-CPA). Attrapadung, Cui, Galindo, Hanaoka, Ha-
suo, Imai, Matsuura, Yang and Zhang [1] introduced non-malleability (NM) and
semantic security (SS) to the set of security notions of IBE. Thus, the secu-
rity definitions considered up to now in the literature are: G-A1-A2, where
G ∈ {IND, NM, SS}, A1 ∈ {ID, sID}, ID denotes chosen identity attacks, and
A2 ∈ {CPA, CCA1, CCA2}.

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 337–353, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

338 R. Nishimaki, Y. Manabe, and T. Okamoto

Attrapadung, Cui, Galindo, Hanaoka, Hasuo, Imai, Matsuura, Yang and
Zhang [1] clarified the relationship among these notions, and showed that IND-
ID-CCA2 is equivalent to the strongest security notion among them, NM-ID-
CCA2.

Since Canetti introduced universal composability (UC) as a framework for an-
alyzing the security of cryptographic primitives/protocols [8], investigating the
relation between UC-secure primitives/protocols and conventionally-secure prim-
itives/protocols has been a significant topic in cryptography [2,3,9,10,13,14,17,21].
Since UC represents stronger security requirements, a lot of conventionally-secure
protocols fail to meet UC security requirements. For example, we cannot design
secure two party protocols in the UC framework with no setup assumption
[8,10,15,16,18,19], while there are conventionally-secure two party protocols (e.g.,
commitment and zero-knowledge proofs) with no setup assumption.

We do know, however, that the conventional security notions are equivalent
to UC security notions for a few cryptographic primitives. For example, UC-
secure PKE is equivalent to conventionally-secure (IND-CCA2-secure) PKE [8],
UC-secure signatures are equivalent to conventionally-secure (existentially un-
forgeable against chosen message attacks: EUF-CMA-secure) signatures [9] and
UC-secure Key Encapsulation Mechanism (KEM) is equivalent to conventionally-
secure (IND-CCA2-KEM-secure) KEM [20].

IBE is a more complex cryptographic primitive than PKE or signatures, so
it is not clear whether conventionally-secure (i.e., IND-ID-CCA2-secure) IBE is
equivalent to UC-secure IBE or not. Since IBE is one of the most significant
primitives [4,5,6,7,23] like PKE and signatures in cryptography, it is important
to clarify the relationship between UC security and the conventional security
notions of IBE. The UC security of IBE, however, has not been investigated.

That is, we have the following problems:

1. What is the security definition of IBE in the UC framework (i.e., how to
define an ideal functionality of IBE)?

2. Is UC-secure IBE equivalent to IND-ID-CCA2-secure IBE?

1.2 Our Results

This paper answers the above problems:

1. This paper defines the UC-security of IBE, i.e., we define the ideal function-
ality of IBE, FIBE.

2. We show that UC-secure IBE is equivalent to conventionally-secure (IND-
ID-CCA2-secure) IBE.

2 Preliminaries

2.1 Notations

We describe probabilistic algorithms and experiments using standard notations
and conventions. For probabilistic algorithm A, A(x1, x2, ...; r) denotes the ran-
dom variable ofA’s output on inputs x1, x2, ... and coins r. We let y R← A(x1, x2, ...)

Universally Composable Identity-Based Encryption 339

denote that y is randomly selected from A(x1, x2, ...; r) according to its distribu-
tion. If S is a finite set, then x U← S denotes that x is uniformly selected from S.
If α is neither an algorithm nor a set, then x← α indicates that we assign α to x.

We say that function f : N → R is negligible in security parameter k if for
every constant c ∈ N, there exists kc ∈ N such that f(k) < k−c for any k > kc.
Hereafter, we often use f < ε(k) to mean that f is negligible in k. On the
other hand, we use f > ν(k) to mean that f is non-negligible in k. i.e., function
f : N → R is non-negligible in k, if there exists a constant c ∈ N such that for
every kc ∈ N, there exists k > kc such that f(k) > k−c. A distribution ensemble
X = {X(k, z)}k∈N,z∈{0,1}∗ is an infinite set of probability distributions, where a
distributionX(k, z) is associated with each k ∈ N and z ∈ {0, 1}∗. The ensembles
considered in this paper describe outputs of computations where the parameter
z represents input, and the parameter k is taken to be the security parameter.
Two binary distribution ensembles X and Y are statistically indistinguishable
(written X ≈ Y) if for any c, d ∈ N there exists kc ∈ N such that for any k > kc

and any z ∈ ∪κ≤kd{0, 1}κ we have:

|Pr[X(k, z) = 1]− Pr[Y (k, z) = 1]| < k−c

2.2 Identity-Based Encryption

Identity-based encryption scheme Σ is specified by four algorithms: S, X , E , D:

Setup: S takes security parameter k and returns PK (system parameters) and
MK (master-key). The system parameters include a description of a finite
message spaceM, and a description of a finite ciphertext space C. Intuitively,
the system parameters should be publicly known, while MK is known only
by the setup party.

Extract: X takes as input PK, MK, and an arbitrary ID ∈ {0, 1}∗, and re-
turns private key dk. Here ID is an arbitrary string that will be used as a
public key, and dk is the corresponding private decryption key. The extract
algorithm extracts a private key from the given public key.

Encrypt: E takes as input PK, ID, and m ∈ M. It returns ciphertext c ∈ C.
Decrypt: D takes as input PK, c ∈ C, and private key dk. It returns m ∈ M.
These algorithms must satisfy the standard consistency constraint, namely,
∀m ∈M : D(PK, c, dk)=m where c=E(PK, ID,m), dk=X (PK,MK, ID)

2.3 Definitions of Security Notions for IBE Schemes

Let A = (A1,A2) be an adversary; we say A is polynomial time if both proba-
bilistic algorithms A1 and A2 are polynomial time. In the first stage, given the
system parameters, the adversary computes and outputs challenge template τ .
A1 can output some information, s, which will be transferred to A2. In the sec-
ond stage, the adversary is challenged with target ciphertext c∗ generated from τ
by a probabilistic function, in a manner depending on the goal. We say adversary
A successfully breaks the scheme if she achieves her goal. We consider a security

340 R. Nishimaki, Y. Manabe, and T. Okamoto

goal, IND [1], and three attack models, ID-CPA, ID-CCA, ID-CCA2, listed in
order of increasing strength. The difference among the models is whether or not
A1 or A2 is granted access to decryption oracles.

We describe in Table 1 and Table 2 the ability with which the adversary can,
in the different attack models, access the Extraction Oracle X (PK,MK, ·), the
Encryption Oracle E(PK, ID, ·) and the Decryption Oracle D(PK, ·, dk). When
we say Oi = {XOi, EOi,DOi} = {X (PK,MK, ·), E(PK, ID, ·),⊥}, where i ∈
{1, 2}, we mean that no decryption oracle can be used.

Table 1. Oracle Set O1 in the Definitions of the Notions for IBE

O1 = {XO1, EO1, DO1}
ID-CPA {X (PK, MK, ·), E(PK, ID, ·), ⊥}
ID-CCA {X (PK, MK, ·), E(PK, ID, ·), D(PK, ·, dk)}
ID-CCA2 {X (PK, MK, ·), E(PK, ID, ·), D(PK, ·, dk)}

Table 2. Oracle Set O2 in the Definitions of the Notions for IBE

O2 = {XO2, EO2, DO2}
ID-CPA {X (PK, MK, ·), E(PK, ID, ·), ⊥}
ID-CCA {X (PK, MK, ·), E(PK, ID, ·), ⊥}
ID-CCA2 {X (PK, MK, ·), E(PK, ID, ·), D(PK, ·, dk)}

Let Σ = (S,X , E ,D) be an identity based encryption scheme and let A =
(A1,A2) be an adversary. For atk ∈ {id-cpa, id-cca, id-cca2} and k ∈ N let,

Advind-atk
Σ,A (k) = Pr[Expind-atk-1

Σ,A (k) = 1]− Pr[Expind-atk-0
Σ,A (k) = 1]

where for b, d ∈ {0, 1} and |m0| = |m1|,

Experiment Expind-atk-b
Σ,A (k)

(PK,MK) R← S(k);
(m0,m1, s, ID) R← AO1

1 (PK);
c∗ R← E(PK, ID,mb);

d
R← AO2

2 (m0,m1, s, c
∗, ID);

return d

We say that Σ is secure in the sense of IND-ATK, if Advind-atk
Σ,A (k) is negligible

for any A.

2.4 Universal Composability

The universally composable security framework allows the security properties of
cryptographic tasks to be defined such that security is maintained under a gen-
eral composition with an unbounded number of instances of arbitrary protocols

Universally Composable Identity-Based Encryption 341

running concurrently. Security in this framework is called universally compos-
able (UC) security. Informally, we describe this framework as follows: (See [8]
for more details.)

We consider the real life world, the ideal process world, and environment Z
that tries to distinguish these two worlds.

The real life world. In this world, there are adversary A and protocol π
which realizes a functionality among some parties. Let REALπ,A,Z(k, z, r) denote
the output of environment Z when interacting with adversary A and parties
P1, ..., Pn running protocol π (hereafter denoted as (A,π)) on security parameter
k, auxiliary input z and random input r = (rZ , rA, r1, ..., rn) (z and rZ for Z, rA
forA, ri for party Pi). Let REALπ,A,Z(k, z) denote the random variable describing
REALπ,A,Z(k, z, r) when r is uniformly chosen.

The ideal process world. In this world, there are a simulator S that sim-
ulates the real life world, an ideal functionality F , and dummy parties. Let
IDEALF ,S,Z(k, z, r) denote the output of environment Z when interacting with
adversary S and ideal functionality F (hereafter denoted as (S,F)) on security
parameter k, auxiliary input z and random input r = (rZ , rS , rF) (z and rZ for
Z, rS for S, rF for party F). Let IDEALF ,S,Z(k, z) denote the random variable
describing IDEALF ,S,Z(k, z, r) when r is uniformly chosen.

Let F be an ideal functionality and let π be a protocol. We say that π UC-
realizes F , if for any adversary A, there exists simulator S, such that for any
environment Z we have: (See Section 2.1 for ≈.)

IDEALF ,S,Z ≈ REALπ,A,Z

whereA, S and Z are probabilistic polynomial-time interactive Turing machines.

3 UC-Secure IBE Is Equivalent to IND-ID-CCA2-Secure
IBE

3.1 The Identity-Based Encryption Functionality FIBE

We define IBE functionality FIBE in Fig.1. Our definition of FIBE follows the
one for FPKE of regular public-key encryption schemes given by Canetti [8]. The
idea of FIBE is to allow parties to obtain idealized (information theoretically
secure) ciphertexts for messages by using their IDs, such that private keys do
not appear in the interface, but at the same time the designated decryptor can
retrieve the plaintexts. There may be multiple designated decryptors who let the
setup party extract their private keys from their IDs.
FIBE should be defined as follows: If no party is corrupted, setup, extract, en-

crypt and decrypt are information theoretically securely executed. FIBE realizes
such idealized setup, extract, encrypt and decrypt by recording IDs, ciphertexts
and plaintexts. (i.e., FIBE plays the role of the centralized database of encrypted
messages and the corresponding ciphertexts and IDs used to encrypt.) FIBE is

342 R. Nishimaki, Y. Manabe, and T. Okamoto

Functionality FIBE

FIBE proceeds as follows, given domain M of plaintexts and domain N of ID. Let
μ ∈ M be a fixed message.
Setup
In the first activation, expect to receive a value (Setup, sid, T) from some party T .
Then do:

1. Hand (Setup, sid, T) to adversary S .
2. Upon receiving value (Algorithms, sid, x, e, d) from the adversary, where x, e,

d are descriptions of PPT ITMs, output (Encryption Algorithm, sid, e) to T .
3. Record (T, x, e, d).

Extract
Upon receiving value (Extract, sid, ID, D, e′) from party T , proceed as follows:

1. If ID /∈ N or (ID, P) is recorded in ID-Reg for some P (�= D), then output an
error message to T .

2. If e′ is not recorded, ignore the request. Else, record (ID, D) in ID-Reg and
output (Extracted, sid, D) to T .

Encrypt
Upon receiving value (Encrypt, sid, m, ID, e′) from some party E, proceed as fol-
lows:

1. If m /∈ M or ID /∈ N then output an error message to E. Else, if e′ = e,
the setup party is uncorrupted, (ID, P) is recorded in ID-Reg for some P and
decryptor P is uncorrupted, then let c = e′(ID, μ) and record (m, c, ID) in
Plain-Cipher. Else, let c = e′(ID,m).

2. Output (Ciphertext, sid, c) to E

Decrypt
Upon receiving value (Decrypt, sid, c, ID) from D, proceed as follows:

1. If the following two conditions are satisfied then hand (Plaintext, sid, m) to
D.
(a) (ID, D) is recorded in ID-Reg.
(b) (m, c, ID) is stored in Plain-Cipher.

2. If (ID, D) is not recorded in ID-Reg then hand not-recorded to D.
3. Otherwise, return (Plaintext, sid, d(c, x(ID))) to D.

Fig. 1. The ideal identity-based encryption functionality, FIBE

written in a way that can be realized by protocols that have only local operations
(setup, extract, encrypt, decrypt). All communication is left to the protocols that
call FIBE. The important difference between PKE and IBE is that IBE schemes
have the extract algorithm. Users need to extract private keys corresponding to
their IDs to decrypt ciphertexts. They cannot locally generate private keys. The

Universally Composable Identity-Based Encryption 343

setup party generates user’s private keys. FIBE takes four types of input: setup,
extract, encrypt, and decrypt.

Upon receiving a setup request from party T (the setup party), FIBE asks the
adversary to provide three descriptions of PPT algorithms: Extract algorithm x,
encryption algorithm e, and decryption algorithm d. (Note that x, e, and d can
be probabilistic.) It then outputs to T the description of encryption algorithm
e. While the encryption algorithm is public and given to the environment (via
T), the extract algorithm and decryption algorithm do not appear in the inter-
face between FIBE and T . Encryption algorithm e also plays the role of system
parameters.

Upon receiving a request from setup party T to extract a private key with
an ID, D (party ID) and encryption algorithm e′ (as system parameters), FIBE
proceeds as follows. If ID is not in domain N or (ID, P) is recorded in ID-
Reg for some P , then FIBE outputs an error message to T . If e′ is not recorded,
FIBE ignores the request. Else, FIBE records pair (ID,D) in ID-Reg and outputs
message “extracted” to T . (Notice that one party may extract multiple private
keys.) FIBE only records the correspondence between parties and IDs. Z may
obtain private keys of some parties only when Z corrupts them. Thus FIBE need
not output private keys in the interface of extract.

Upon receiving a request from some arbitrary party E to encrypt message
m with ID and encryption algorithm e′, FIBE proceeds as follows. If m is not
in domain M or ID is not in domain N , FIBE outputs an error message to E.
Else, FIBE outputs formal ciphertext c to E, where c is computed as follows. If
e′ = e, the setup party is uncorrupted, (ID, P) is recorded in ID-Reg for some
P and decryptor P is uncorrupted, then c = e(ID, μ), where μ ∈ M is some
fixed message. In this case, (m, c, ID) is recorded for future decryption. Else,
c = e′(ID,m). In this case, no secrecy is guaranteed, since c may depend on
m in arbitrary ways. Notice that if FIBE receives (Encrypt, sid,m, ID, e) before
receiving (Extract, sid, ID, Ph, e) for any party Ph, then c is not information
theoretically secure, (c = e(ID,m)) even if (Extract, sid, ID, Ph, e) arrives later
for uncorrupted party Ph. However, this does not influence the UC security of
IBE, because c = e(ID,m) in the ideal world is the same as c = e(ID,m) in the
real world. (i.e., Z cannot distinguish two worlds.)

Upon receiving a request from party D to decrypt ciphertext c encrypted for
ID ID, FIBE first checks if there are records (ID,D) in ID-Reg (i.e., D is the
decryptor) and (m, c, ID) in Plain-Cipher for some m. If so, then it returns m as
the decrypted value. This guarantees perfectly correct decryption for messages
that were encrypted via this instance of FIBE. If (ID,D) is not recorded in ID-
Reg, this means that D has not extracted a private key for ID. Accordingly,
FIBE returns an error message. If no (m, c, ID) record exists for any m, this
means that c was not generated legitimately via this instance of FIBE, so no
correctness guarantee is provided, and FIBE returns the value d(c, x(ID)). In
IBE, multiple users may extract their private keys from a single master key, so
single instance of FIBE should deal with multiple decryptors.

344 R. Nishimaki, Y. Manabe, and T. Okamoto

3.2 UC-Secure IBE Is Equivalent to IND-ID-CCA2-Secure IBE

Next, we present a protocol that UC-realizes FIBE.
Let Σ = (S,X , E ,D) be an identity based encryption scheme. We define

protocol πΣ that is constructed from Σ and has the same interface with the
environment as FIBE.

protocol πΣ

Setup: Upon input (Setup, sid, T) within some setup party T , T obtains the
system parameters PK and master-key MK by running algorithm S() and
sets x = X (PK,MK, ·), e = E(PK, ·, ·), d = D(PK, ·, ·). It then outputs
(Encryption Algorithm, sid, e).

Extract: Upon input (Extract, sid, ID,D, e′) within setup party T , if ID /∈ N
or T has already obtained dkID = x(ID), then T outputs an error message.
Else if e′ �= e, T ignores the request. Else, T obtains private key dkID =
x(ID). T outputs (Extracted, sid,D) and pair (ID, dkID) is immediately
transferred to D. (See the remark below for how to transfer.)

Encrypt: Upon input (Encrypt, sid,m, ID, e′) within some party E, if m /∈M
or ID /∈ N , E outputs an error message. Else, E obtains ciphertext c =
e′(ID,m) and outputs (Ciphertext, sid, c). (Note that it does not necessar-
ily hold that ID is E’s)

Decrypt: Upon input (Decrypt, sid, c, ID′) within D, if ID′ �= ID or D does
not have correct private key dkID yet, outputs not-recorded. (Notice that
D received her ID when she received her private key.) Else, D obtains m =
d(c, dkID) and outputs (Plaintext, sid,m).

Remark (On the communication between the setup party and the
decryptor). IBE is specified by four algorithms which are locally executed.
The procedure to send and receive keys is outside of the definition of the IBE
scheme. In order to realize a secure communication mechanism based on IBE,
some transmission protocol must be used with IBE. The security of the commu-
nication mechanism depends also on the security of the transmission protocol.
Our FIBE and Σ definitions do not describe procedures to transfer keys, because
the aim of our paper is investigating the security of IBE, not the communication
mechanism. When (Extracted, sid,D) is output, the private key is immediately
transferred from the setup party to D.

Security against adaptive adversaries. Recall that, even in the case of
FPKE, when the adversary is allowed to corrupt parties during the course of
the computation, and obtain their internal state, realizing FPKE is a very hard
problem [8]. The reason is as follows: If Z is allowed to corrupt adaptively, Z
makes uncorrupted party E generate ciphertext c of message m for ID ID whose
decryptor D is uncorrupted. Z then corrupts D and can distinguish whether
c = e(ID, μ) or c = e(ID,m) ((S,FIBE) or (A,πΣ)) by obtaining corrupted D’s
internal states.

Theorem 1. πΣ UC-realizes FIBE with respect to non-adaptive adversaries if
and only if IBE scheme Σ is IND-ID-CCA2-secure.

Universally Composable Identity-Based Encryption 345

Proof
(“only if” part). We prove that if Σ is not IND-ID-CCA2-secure, then πΣ

does not UC-realize FIBE. In more detail, assuming that there exists adversary
G that can breakΣ in the sense of IND-ID-CCA2 with non-negligible probability
(i.e., Advind-id-cca2

Σ,G > ν(k)), we prove that we can construct environment Z and
real life adversary A such that for any ideal process adversary (simulator) S, Z
can tell with non-negligible probability whether (S,FIBE) or (A,πΣ) by using
adversary G. Z proceeds as follows:

1. Activates party T with (Setup, sid, T) and obtains encryption algorithm
(and system parameters) e.

2. Hands e to G and plays the role of XO1 (the extraction oracle as in Pre-
liminaries) and DO1 (the decryption oracle) for adversary G in the IND-ID-
CCA2 game.

3. Obtains (ID∗,m0,m1) from G. ID∗ is the ID G attacks.
4. If Z has not activated T with (Extract, sid, ID∗, D, e) yet, it does so and

obtains (Extracted, sid,D).
5. Chooses random bit b U← {0, 1}, selects an arbitrary party E(�= D), activates
E with (Encrypt, sid,mb, ID

∗, e) and obtains c∗.
6. Hands c∗ to G as the target ciphertext.
7. Plays the role of XO2 and DO2 for adversary G in the IND-ID-CCA2 game,

and obtains guess b′ ∈ {0, 1}.
8. Outputs 1 if b = b′, otherwise outputs 0 and halts.

Notice that we consider non-adaptive adversary case. The corrupted parties
are denoted P̃1, ..., P̃t.

In step 3, the adversary issues queries q1, ..., qm where query ql is one of:

1. Extraction query 〈IDl〉 . If this is the x-th extraction, Z activates T with
(Extract, sid, IDl, P̃x, e) to obtain private key dkIDl

corresponding to public
key IDl from corrupted P̃x. When (Extracted, sid, P̃x) is output, private
key dkIDl

is transferred to P̃x in the real world. So Z can obtain dkIDl
from

corrupted P̃x. In the ideal world, Z can do so as in the real world, because
simulator S generates master-key and extraction algorithm x when T is
activated with (Setup, sid, T) and uses simulated copy of real life adversary
A. In both cases, Z can hand correct private key dkIDl

to G.
2. Decryption query 〈IDl, cl〉. If this is the first decryption query for IDl, Z se-

lects a new uncorrupted party, Py, and activates T with (Extract, sid, IDl,
Py, e) and then activates Py with (Decrypt, sid, cl, IDl). Otherwise Z acti-
vates P ′

y with (Decrypt, sid, cl, IDl), where P ′
y is the process Z activated

T with (Extract, sid, IDl, P
′
y , e). When Z receives (Plaintext, sid, vl), it

hands vl to G.

These queries may be asked adaptively, that is, each query ql may depend on
the replies to q1, ..., ql−1.

346 R. Nishimaki, Y. Manabe, and T. Okamoto

In step 8, the adversary issues more queries qm+1, ..., qn where query ql is one
of:

1. Extraction query 〈IDl〉 where IDl �= ID∗. Z responds as in step 3.
2. Decryption query 〈IDl, cl〉 �= 〈ID∗, c∗〉. Z responds as in step 3.

These queries may be asked adaptively as in step 3.
When Z interacts withA and πΣ ,Z obtains c∗ = E(PK, ID∗,mb) in Step 6.G

can break IND-ID-CCA2 security with non-negligible advantage Advind-id-cca2
Σ,G >

ν(k). Pr[Z → 1|Z ↔ REAL] denotes the probability that Z outputs 1 when Z
interacts with A and πΣ .

Pr[Z → 1|Z ↔ REAL] = Pr[mb = m0] Pr[b′ = 0|c∗ = E(PK,ID∗, m0)]

+ Pr[mb = m1] Pr[b′ = 1|c∗ = E(PK, ID∗, m1)]

=
1
2
(1 − Pr[b′ = 1|c∗ = E(PK,ID∗, m0)])

+
1
2

Pr[b′ = 1|c∗ = E(PK, ID∗, m1)]

=
1
2

+
1
2
(Pr[Expind-id-cca2-1

Σ,G (k)=1] − Pr[Expind-id-cca2-0
Σ,G (k)=1])

>
1
2

+
1
2
ν(k)

In contrast, when Z interacts with the ideal process for FIBE and any adver-
sary, the view of the instance of G within Z is statistically independent of b,
thus in this case b = b′ with probability exactly one half. To see why G’s view
is independent of b, recall that the view of G consists of the target ciphertext c∗

and the decryptions of all ciphertexts generated by G (except for the decryption
of c∗). However, c∗ = e(ID∗, μ) for fixed message μ is independent of b. Further-
more, all ciphertexts cl generated by G are independent of b, thus decryption
d(cl, dkIDl

) is independent of b.
Pr[Z → 1|Z ↔ IDEAL] denotes the probability that Z outputs 1 when Z

interacts with S in the ideal process for FIBE.

Pr[Z → 1|Z ↔ IDEAL] = Pr[mb = m0] Pr[b′ = 0|c∗ = e(ID∗, μ)]

+ Pr[mb = m1] Pr[b′ = 1|c∗ = e(ID∗, μ)]

=
1
2
(1 − Pr[b′ = 1|c∗ = e(ID∗, μ)] + Pr[b′ = 1|c∗ = e(ID∗, μ)])

=
1
2

Thus, Pr[Z → 1|Z ↔ REAL] − Pr[Z → 1|Z ↔ IDEAL] > 1
2ν(k). Therefore, Z

can tell whether (S,FIBE) or (A,πΣ) with non-negligible probability.

(“if” part). We show that if πΣ does not UC-realize FIBE, then Σ is not
IND-ID-CCA2-secure. In more detail, we assume for contradiction that there is
real life adversary A such that for any ideal process adversary S there exists

Universally Composable Identity-Based Encryption 347

environment Z that can tell whether (S,FIBE) or (A,πΣ). We then show that
there exists an IND-ID-CCA2 attacker G against Σ using Z.

First, we show that Z can distinguish whether (S,FIBE) or (A,πΣ) only when
setup party T , some encryptor E and some decryptor D are not corrupted. Since
we are dealing with non-adaptive adversaries, there are seven cases; Case 1: setup
party T is corrupted (throughout the protocol), Case 2: EncryptorE is corrupted
(throughout the protocol), Case 3: Decryptor D is corrupted (throughout the
protocol), Case 4: T and E are corrupted (throughout the protocol), Case 5: T
and D are corrupted (throughout the protocol), Case 6: D and E are corrupted
(throughout the protocol), Case 7: T , E and D are uncorrupted.

In Case 1, we can construct simulator S such that no Z can distinguish
whether(S,FIBE) or (A,πΣ) as follows:

1. When Z sends (Setup, sid, T) to corrupted party T (i.e., S), S receives the
message and sends it to FIBE on behalf of T and the simulated copy of A,
which returns a reply message (which may be ⊥) to S. When S receives
(Setup, sid, T) from FIBE, S sends A’s reply to FIBE. S sends A’s reply to
Z.

2. When Z sends (Extract, sid, ID,D, e) to corrupted party T (i.e., S), S
receives the message and sends it to the simulated copy of A, which returns
a reply message (which may be ⊥) to S. If A’s reply is the correct private
key, S sends (Extract, sid, ID,D, e) to FIBE on behalf of T . Lastly, S sends
A’s reply to Z.

3. When Z sends (Encrypt, sid,m, ID, e) to E, E forwards it to FIBE. FIBE
generates c = e(ID,m) and returns (Ciphertext, sid, c) to E, since T is
corrupted.

4. When Z sends (Decrypt, sid, c, ID) toD,D forwards it to FIBE. If (Extract,
sid, ID,D, e) was sent to T and the simulated copy of A output the correct
key in step 2, FIBE returns (Plaintext, sid, d(c, x(ID))). Otherwise, FIBE
outputs not-recorded, because (ID,D) is not recorded in ID-Reg.

In this case, Z cannot distinguish whether (S,FIBE) or (A,πΣ), because the
message returned by S (using A) as T in the ideal world is the same as that
returned by A as T in the real world, and (Ciphertext, sid, c) returned by FIBE
is exactly the same as that returned by E in the real world, and not-recorded
or (Plaintext, sid, d(c, x(ID))) returned by FIBE is exactly the same as that
returned by D in the real world.

In Case 2, we can construct simulator S such that no Z can distinguish
whether (S,FIBE) or (A,πΣ) as follows:

1. When Z sends (Setup, sid, T) to T , T forwards it to FIBE. FIBE sends
(Setup, sid, T) to S, S computes (PK,MK) by running algorithm S(),
and generates x, e and d, where x = X (PK,MK, ·), e = E(PK, ·, ·) and
d = D(PK, ·, ·). S returns (Algorithms, sid, x, e, d) to FIBE.

2. When Z sends (Extract, sid, ID,D, e) to T , T forwards it to FIBE. FIBE
records (ID,D) and returns (Extracted, sid,D).

348 R. Nishimaki, Y. Manabe, and T. Okamoto

3. When Z sends (Encrypt, sid,m, ID, e) to corrupted party E (i.e., S), S
receives the message and sends it to the simulated copy of A, which replies
to S. S then returns A’s reply (which may be ⊥) to Z.

4. When Z sends (Decrypt, sid, c, ID) to D, D forwards it to FIBE. FIBE then
returns (Plaintext, sid, d(c, x(ID))), since E (i.e., S) sent no (Encrypt, sid,
m, ID, e) to FIBE, which records nothing as (m, c, ID).

In this case, Z cannot distinguish whether (S,FIBE) or (A,πΣ), because the
message returned by S (using A) as E in the ideal world is the same as that
returned by A as E in the real world, and (Encryption Algorithm, sid, e) re-
turned by FIBE is exactly the same as that returned by T in the real world,
(Extracted, sid,D) returned by FIBE is exactly the same as that returned by T
in the real world, and (Plaintext, sid, d(c, x(ID))) returned by FIBE is exactly
the same as that returned by D in the real world.

In Case 3, we can construct simulator S such that no Z can distinguish
whether (S,FIBE) or (A,πΣ) as follows:

1. When Z sends (Setup, sid, T) to T , T forwards it to FIBE. FIBE sends
(Setup, sid, T) to S, S computes (PK,MK) by running algorithm S(),
and generates x, e and d, where x = X (PK,MK, ·), e = E(PK, ·, ·) and
d = D(PK, ·, ·). S returns (Algorithms, sid, x, e, d) to FIBE.

2. When Z sends (Extract, sid, ID,D, e) to T , T forwards it to FIBE. FIBE
records (ID,D) and returns (Extracted, sid,D).

3. When Z sends (Encrypt, sid,m, ID, e) to E, E forwards it to FIBE. FIBE
generates c = e(ID,m) and returns (Ciphertext, sid, c) to E, since D is
corrupted.

4. When Z sends (Decrypt, sid, c, ID) to corrupted party D (i.e., S), S sends
(Decrypt, sid, c, ID) to A. A returns a reply (which may be ⊥) to S, which
forwards A’s reply to Z.

In this case, Z cannot distinguish whether (S,FIBE) or (A,πΣ), because
the message returned by S (using A) as D in the ideal world is the same as
that returned by A as D in the real world, (Encryption Algorithm, sid, e) re-
turned by FIBE is exactly the same as that returned by T in the real world, and
(Extracted, sid,D) returned by FIBE is exactly the same as that returned by T
in the real world, and (Ciphertext, sid, c) returned by FIBE is exactly the same
as that returned by E in the real world.

In Case 4, we can construct simulator S such that no Z can distinguish
whether (S,FIBE) or (A,πΣ) as follows:

1. When Z sends (Setup, sid, T) to corrupted party T (i.e., S), S receives the
message and sends it to FIBE on behalf of T and the simulated copy of A,
which returns a reply message (which may be ⊥) to S. When S receives
(Setup, sid, T) from FIBE, S sends A’s reply to FIBE. S sends A’s reply to
Z.

2. When Z sends (Extract, sid, ID,D, e) to corrupted party T (i.e., S), S
receives the message and sends it to the simulated copy of A, which returns

Universally Composable Identity-Based Encryption 349

a reply message (which may be ⊥) to S. If A’s reply is the correct private
key, S sends (Extract, sid, ID,D, e) to FIBE on behalf of T . Lastly, S sends
A’s reply to Z.

3. When Z sends (Encrypt, sid,m, ID, e) to corrupted party E (i.e., S), S
receives the message and sends it to the simulated copy of A, which replies
to S. S then returns A’s reply (which may be ⊥) to Z.

4. When Z sends (Decrypt, sid, c, ID) toD,D forwards it to FIBE. If (Extract,
sid, ID,D, e) was sent to T and the simulated copy of A output the correct
key in step 2, FIBE returns (Plaintext, sid, d(c, x(ID))). Otherwise, FIBE
outputs not-recorded, because (ID,D) is not recorded in ID-Reg.

In this case, Z cannot distinguish whether (S,FIBE) or (A,πΣ), because the
message returned by S (using A) as T and E in the ideal world is the same
as that returned by A as T and E in the real world, and not-recorded or
(Plaintext, sid, d(c, x(ID))) returned by FIBE is exactly the same as that re-
turned by D in the real world.

In Case 5, we can construct simulator S such that no Z can distinguish
whether (S,FIBE) or (A,πΣ) as follows:

1. When Z sends (Setup, sid, T) to corrupted party T (i.e., S), S receives the
message and sends it to the simulated copy of A, which returns a reply
message (which may be ⊥) to S. S sends it to Z.

2. When Z sends (Extract, sid, ID,D, e) to corrupted party T (i.e., S), S
receives the message and sends it to the simulated copy of A, which returns
a reply message (which may be ⊥) to S. S sends it to Z.

3. When Z sends (Encrypt, sid,m, ID, e) to E, E forwards it to FIBE. FIBE
generates c = e(ID,m) and returns (Ciphertext, sid, c) to E, since T (i.e.,
S) sent no (Setup, sid, T) to FIBE, which records nothing as encryption
algorithm e.

4. When Z sends (Decrypt, sid, c, ID) to corrupted party D (i.e., S), S sends
(Decrypt, sid, c, ID) to A. A returns a reply (which may be ⊥) to S, which
forwards A’s reply to Z.

In this case, Z cannot distinguish whether (S,FIBE) or (A,πΣ), because the
message returned by S (using A) as T and D in the ideal world is the same
as that returned by A as T and D in the real world, and (Ciphertext, sid, c)
returned by FIBE is exactly the same as that returned by E in the real world.

In Case 6, we can construct simulator S such that no Z can distinguish
whether (S,FIBE) or (A,πΣ) as follows:

1. When Z sends (Setup, sid, T) to T , T forwards it to FIBE. FIBE sends
(Setup, sid, T) to S, S computes (PK,MK) by running algorithm S, and
generates x, e and d, where x = X (PK,MK, ·), e = E(PK, ·, ·) and d =
D(PK, ·, ·). S returns (Algorithms, sid, x, e, d) to FIBE.

2. When Z sends (Extract, sid, ID,D, e) to T , T forwards it to FIBE. FIBE
records (ID,D) and returns (Extracted, sid,D).

350 R. Nishimaki, Y. Manabe, and T. Okamoto

3. When Z sends (Encrypt, sid,m, ID, e) to corrupted party E (i.e., S), S
receives the message and sends it to the simulated copy of A, which replies
to S. S then returns A’s reply (which may be ⊥) to Z.

4. When Z sends (Decrypt, sid, c, ID) to corrupted party D (i.e., S), S sends
(Decrypt, sid, c, ID) to A. A returns a reply (which may be ⊥) to S, which
forwards A’s reply to Z.

In this case, Z cannot distinguish whether (S,FIBE) or (A,πΣ), because the
message returned by S (usingA) asE andD in the ideal world is the same as that
returned by A as E and D in the real world, (Encryption Algorithm, sid, e)
returned by FIBE is exactly the same as that returned by T in the real world,
and (Extracted, sid,D) returned by FIBE is exactly the same as that returned
by T in the real world.

Thus, Z cannot distinguish (S,FIBE) or (A,πΣ) in Cases 1, 2, 3, 4, 5, and 6.
Hereafter, we consider only Case 7.

Recall that A takes three types of messages from Z: either to corrupt parties,
or to report on messages sent in the protocol, or to deliver some messages. There
are no party corruption instructions, since we are dealing with non-adaptive ad-
versaries. However, Z may request some corrupted parties to reveal their private
keys, so A need report private keys to Z.

Thus, the activity of S is to provide the algorithms to FIBE and to report
private keys. Since Z succeeds in distinguishing for any S, it also succeeds for
the following specific S. Simulator S acts as follows:

When S receives message (Setup, sid, T) from FIBE, it runs setup algorithm
S, obtains system parameters PK and master-keyMK, and returns x = X (PK,
MK, ·), e = E(PK, ·, ·) and d = D(PK, ·, ·) to FIBE.

When Z requests private keys, S relays the request to simulated copy of
A and returns the message from A to Z by using extraction algorithm x =
X (PK,MK, ·).

We consider the case where setup party T , encryptor E and decryptor D are
uncorrupted and assume for contradiction that there is environment Z that can
distinguish whether (S,FIBE) or (A,πΣ). We now prove that we can construct
adversary G that breaks IND-ID-CCA2 security by using environment Z. More
precisely, we assume that there is real life adversary A such that for any ideal
process adversary S, there exists environment Z such that for fixed value k of
security parameter and fixed input z for Z,

|IDEALFIBE,S,Z(k, z)− REALπΣ,A,Z(k, z)| > ν(k)

We then show that there exists Gh whose advantage Advind-id-cca2
Σ,Gh

(k) > ν(k)/l
in the IND-ID-CCA2 game, where l is the total number of messages that were
encrypted by uncorrupted party’s ID (Extract has already executed) through-
out the running of the system and h ∈ {1, ..., l}. Gh is given system parameters
PK, and is allowed to query XOi, EOi and DOi (as in Preliminaries). Gh runs
Z on the following simulated interaction with a system running πΣ/FIBE. Let

Universally Composable Identity-Based Encryption 351

(mj , IDj) denote the jth pair of message and ID that Z activates some party
with (Encrypt, sid,mj , IDj, e) in this simulation.

1. When Z activates some party T with input (Setup, sid, T), Gh lets T output
value e calculated from PK.

2. When Z activates some party T with input (Extract, sid, ID, P, e), Gh lets
T output message (Extracted, sid, P) from Gh’s input. If P is corrupted
and Z requests P ’s private key, then Gh queries XOi on ID, obtains value u
and lets P return u to Z. This is perfect simulation, so Z cannot distinguish
(S,FIBE) or (A,πΣ) in this step.

3. For the first h− 1 times that Z asks encryptor E to encrypt some message,
mj , Gh lets E return cj = e(IDj,mj).

4. The h-th time that Z asks E to encrypt message, mh by ID∗, Gh queries
encryption oracle EOi with the pair of messages (mh, μ), where μ ∈ M
is the fixed message, and obtains target ciphertext ch. It then hands ch
to Z as the encryption of mh. That is, ch = E(PK, ID∗,mh) (b = 0) or
ch = E(PK, ID∗, μ) (b = 1).

5. For the remaining l − h times that Z asks E to encrypt some message, mj ,
Gh lets E return cj = E(PK, IDj , μ).

6. Whenever decryptor D is activated with input (Decrypt, sid, c, ID) where
c = cj and ID = IDj for some j, Gh lets D return the corresponding
plaintext mj . If c is different from all cj’s and IDj is extracted, Gh queries
DOi on (ID, c), obtains value v, and lets D return v to Z. If c is different
from all cj ’s and IDj is not extracted, Gh lets D output not-recorded. This
is perfect simulation, so Z cannot distinguish (S,FIBE) or (A,πΣ) in this
step.

7. When Z halts, Gh outputs whatever Z outputs and halts.

Notice that Z cannot distinguish (S,FIBE) or (A,πΣ) by activating E with
(Encrypt, sid,m, ID, e) before activating T with (Extract, sid, ID, Ph, e), be-
cause in this case, c = e(ID,m) in both the real and the ideal world.

We apply a standard hybrid argument for analyzing the success probability
of Gh. For j ∈ {0, ..., l}, let Envj be an event that Z interacts with S in the
ideal process, with the exception that the first j ciphertexts are computed as an
encryption of the real plaintexts, rather than encryptions of μ. The replies to Z
from setup party T and decryptor D are the same as those shown in step 1, 2
and 6 above. Let Hj be Pr[Z → 1|Envj].

Notice that in steps 2 and 6, Z cannot tell whether it is interacting with A and
πΣ or with S in the ideal process for FIBE, because Gh offers perfect simulation.

It is easy to see that H0 is identical to the probability that Z outputs 1 in
the ideal process, and that Hl is identical to the probability that Z outputs 1
in the real life model. Furthermore, in a run of Gh, if value ch that Gh obtains
from its encryption oracle is encryption mh, the probability that Z outputs 1 is
identical to Hh−1. If ch is an encryption of μ, the probability that Z outputs 1
is identical to Hh. Details follow:

352 R. Nishimaki, Y. Manabe, and T. Okamoto

H0 = IDEALFIBE,S,Z(k, z)
H1 = REALπΣ,A,Z(k, z)
Hh = Pr[Gh → 1|ch = E(PK, ID∗, μ)]

Hh−1 = Pr[Gh → 1|ch = E(PK, ID∗,mh)]

l∑
i=1

|Hi−1 −Hi| ≥ |
l∑

i=1

(Hi−1 −Hi)|

= |H0 −Hl|
= |IDEALFIBE,S,Z(k, z)− REALπΣ ,A,Z(k, z)|
> ν(k)

Therefore, there exists some h ∈ {1, ..., l} such that |Hh−1−Hh| > ν(k)/l. Here,
w.l.o.g, letHh−1−Hh > ν(k)/l, since ifHh−Hh−1 > ν(k)/l for Z, we can obtain
Hh−1 −Hh > ν(k)/l for Z∗, where Z∗ outputs the opposite of Z’s output bit.

We have the advantage of adversary Gh as follows:

Advind-id-cca2
Σ,Gh

(k) = Pr[Expind-id-cca2-1
Σ,A (k) = 1] − Pr[Expind-id-cca2-0

Σ,A (k) = 1]

= Pr[Gh → 1|ch =E(PK,ID∗, μ)]−Pr[Gh → 1|ch =E(PK,ID∗, mh)]

= Hh − Hh−1 > ν(k)/l

That is, G has non-negligible advantage in k since l is polynomially bounded in
k. �

Acknowledgements

The authors would like to thank anonymous reviewers of VietCrypt 2006 for
their invaluable comments and suggestions.

References

1. N. Attrapadung, Y. Cui, D. Galindo, G. Hanaoka, I. Hasuo, H. Imai, K. Matsuura,
P. Yang, and R. Zhang. Relations Among Notions of Security for Identity Based
Encryption Schemes. In proceedings of LATIN’06, 3887 of LNCS, 2006.

2. B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin. Secure Computation
Without Authentication. In proceedings of CRYPTO’05, 2005.

3. B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally Composable Protocols
with Relaxed Set-up Assumptions. In proceedings of FOCS’04, 2004.

4. D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity Based Encryption
Without Random Oracles. In proceedings of EUROCRYPT’04, 3027 of LNCS,
2004.

5. D. Boneh and X. Boyen. Secure Identity Based Encryption Without Random
Oracles. In proceedings of CRYPTO’04, 3152 of LNCS, 2004.

6. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
proceedings of CRYPTO’01, 2139 of LNCS, 2001.

Universally Composable Identity-Based Encryption 353

7. D. Boneh and J. Katz. Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity Based Encryption. In proceedings of RSA-CT’05, 2005.

8. R. Canetti. Universally Composable Security: A New Paradigm for Cryptograpic
Protocols. In proceedings of FOCS’01, 2001. Current Full Version Available at
Cryptology ePrint Archive, Report 2000/067 http://eprint.iacr.org/.

9. R. Canetti. Universally Composable Signatures, Certification, and Authenticated
Communication. In proceedings of 17th Computer Security Foundations Workshop,
2004.

10. R. Canetti and M. Fischlin. Universally Composable Commitments. In proceedings
of CRYPTO’01, 2139 of LNCS, 2001.

11. R. Canetti, S. Halevi, and J. Katz. A Forward-Secure Public-Key Encryption
Scheme. In proceedings of EUROCRYPT’03, 2656 of LNCS, 2003.

12. R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-based
Encryption. In proceedings of EUROCRYPT’04, 3027 of LNCS, 2004.

13. R. Canetti and H. Krawczyk. Universally Composable Key Exchange and Secure
Channels. In proceedings of EUROCRYPT’02, 2332 of LNCS, 2002.

14. R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing Chosen-Ciphertext Security.
In proceedings of CRYPTO’03, 2729 of LNCS, 2003.

15. R. Canetti, E. Kushilevitz, and Y. Lindell. On the Limitations of Universally
Composable Two-Party Computation Without Set-up Assumptions. In proceedings
of EUROCRYPT’03, 2656 of LNCS, 2003.

16. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-
Party and Multi-Party Secure Computaion. In proceedings of STOC’02, 2002.

17. R. Canetti and T. Rabin. Universal Composition with Joint State. In proceedings
of CRYPTO’03, 2729 of LNCS, 2003.

18. I. Damg̊ard and J. B. Nielsen. Perfect Hiding and Perfect Binding Universally Com-
posable Commitment Schemes with Constant Expansion Factor. In proceedings of
CRYPTO’02, 2442 of LNCS, 2002.

19. A. Datta, A. Derek, J. C. Mitchell, A. Ramanathan, and A. Scedrov. Games and
the Impossibility of Realizable Ideal Functionality. In proceedings of TCC’06, 3876
of LNCS, 2006.

20. W. Nagao, Y. Manabe, and T. Okamoto. On the Equivalence of Several Security
Notions of Key Encapsulation Mechanism. Cryptology ePrint Archive, Report
2006/268, 2006. http://eprint.iacr.org/.

21. M. Prabhakaran and A. Sahai. New Notions of Security: Achieving Universal
Composability without Trusted Setup. In proceedings of STOC’04, 2004.

22. A. Shamir. Identity-based Cryptosystems and Signature Schemes. In proceedings
of CRYPTO’84, 196 of LNCS, 1984.

23. B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In
proceedings of EUROCRYPT’05, 3494 of LNCS, 2005.

Traitor Tracing for Stateful Pirate Decoders
with Constant Ciphertext Rate

Duong Hieu Phan

University College London
h.phan@adastral.ucl.ac.uk

Abstract. Stateful pirate decoders are history recording and abrupt
pirate decoders. These decoders can keep states between decryptions to
detect whether they are being traced and are then able to take some
counter-actions against the tracing process, such as “shutting down” or
erasing all internal information. We propose the first constant ciphertext
rate scheme which copes with such pirate decoders. Our scheme moreover
supports black-box public traceability.

1 Introduction

In the secure distribution of digital content, there are two main types of schemes:
broadcast encryption schemes, which enable a center to prevent a set of users
from recovering the broadcasted information; and traitor tracing schemes, which
enable the center to trace users who collude to produce pirate decoders. This
paper focuses on the traceability property for pirate decoders in the strongest
model (according to the hierarchy established by Kiayias and Yung [7]). In [7],
the authors described various categories of pirate decoders which are resumed
below:

Stateless pirate decoders. These decoders are resettable and available. A re-
settable decoder can be reset to its initial state by the tracer at any time.
This gives the tracer the advantage of making independent tests during the
tracing process. An available pirate decoder is a device that does not take
any counter-action against the tracing process and thus is always available
for the tracer.

Stateful pirate decoders. In contrast to stateless pirate decoders, these are
history recording and abrupt pirate decoders. A history recording pirate de-
coder can remember previous queries made by the tracer in order to detect
if it is being traced. Abrupt pirate decoders can take some counter-actions
against the tracing process such as the “shutting down” mechanism, a pro-
cess by which pirate decoders erase all internal key information and thus de-
feat the tracing process. The history recording capability along with abrupt
capability can be used by pirate decoders to evade tracing.

Kiayias and Yung [7] also showed an interesting method to convert some types
of tracing systems for stateless pirate decoders into tracing systems for stateful
ones by embedding robust watermarks in the content. However, previous tracing
systems for stateful decoders are inefficient in terms of ciphertext rate.

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 354–365, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Traitor Tracing for Stateful Pirate Decoders with Constant Ciphertext Rate 355

Schemes with constant transmission rate. These schemes are well-suited
to encrypt large messages. An interesting property of these scheme is the efficient
black-box traceability, i.e. the tracing procedure does not have to open the pirate
decoder, but only interacts with it. However, the constant transmission rate is
asymptotically achieved and for large plaintexts (due to the use of collision-secure
codes and codes with identifiable parent property). We note that the constant
ciphertext rate schemes [7,5,10] were only designed for stateless pirate decoders.

Public Traceability. Chabanne et al. [5] introduced the notion of public trace-
ability where tracing is a black-box and publicly computable procedure which
allows an untrusted party to trace pirate decoders. Phan et al. [10] introduced
the first constant ciphertext rate traitor tracing scheme with public-traceability.

1.1 Contribution

We propose the first traitor tracing scheme for stateful decoders with constant
ciphertext rate. Furthermore, our scheme still keeps the desirable properties of
previous traitor tracing with constant ciphertext rate, namely black-box trace-
ability and public traceability.

We first propose a basic scheme for stateful pirate decoders by employing
watermarking technique [7] in the Phan, et al.’s basic scheme [10]. We then
introduce an efficient generalization of the basic scheme to obtain an efficient
general scheme. Although our basic scheme is significantly less efficient than
Phan et al.’s basic scheme, the general scheme is almost as efficient as theirs.
We moreover point out that the latter cannot deal with stateful pirate decoders.

2 Preliminaries

In this section, we first recall definitions of Public Key Encryption (PKE) and of
Data Encapsulation Mechanism (DEM) which will be used in our constructions.
We then review the definition of traitor tracing systems with public traceability.

2.1 Public-Key Encryption

A public-key encryption scheme PKE is defined by the three following algorithms:

– The key generation algorithm Gen. On input 1λ, where λ is the security
parameter, the algorithm Gen produces a pair (pk, sk) of matching public
and private keys.

– The encryption algorithm Enc. Given a message m (in the space of plaintexts
M) and a public key pk, Encpk(m) produces a ciphertext c (in the space of
ciphertexts C) of m. This algorithm may be probabilistic (involving random
coins r ∈ R), it is then denoted Encpk(m; r).

– The decryption algorithm Dec. Given a ciphertext c ∈ C and the secret key
sk, Decsk(c) gives back the plaintext m ∈M.

356 D.H. Phan

2.2 Data Encapsulation Mechanism (DEM)

A DEM is a symmetric encryption scheme that consists of the following algo-
rithms:

– Setup algorithm DEM.Setup(1λ) → KD: an algorithm that specifies the sym-
metric key space KD.

– Encryption algorithm DEM.Encdk(m) → τ : a deterministic, polynomial-time
algorithm that encrypts m into τ , using a symmetric-key dk ∈ KD.

– Decryption algorithm DEM.Decdk(τ) → m: a deterministic, polynomial-time
algorithm that decrypts τ to m, using a symmetric-key dk ∈ KD.

2.3 Traitor Tracing System with Public Traceability

Definition 1 (Pirate Decoder). A pirate decoder D is defined as a proba-
bilistic circuit that takes as input a ciphertext C and outputs some message M
or ⊥.

Definition 2 (Traitor Tracing System with Public Traceability). A
Traitor Tracing system with public traceability consists of the following four al-
gorithms:

Setup(N,λ) akes as input N , the number of users in the system, and λ, the
security parameter. The algorithm runs in polynomial time in λ and outputs
a public key pk and private keys K1, ...,KN , where Ku is given to user u.

Encrypt(pk,M) encrypts M using the public broadcasting key pk and outputs
ciphertext C.

Decrypt(j,Kj , C, pk) decrypts C using the private key Kj of user j. The algo-
rithm outputs a message M or ⊥.

Trace(D, pk) is an oracle algorithm that is only given as input the public key pk
and a pirate decoder D. The tracing algorithm queries the pirate decoder D as
a black-box oracle, as defined above. It outputs at least a user in 1, 2, . . . , N

The system, called a (N, t)−TTS, must satisfy the following properties:

Correctness property: for all user i ∈ {1, . . . , N}, and all messages M :

Decrypt(j,Kj ,Encrypt(pk,M), pk) = M

Traceability property: from a pirate decoder D produced from a collusion of
up to t users, the above tracing algorithm should be able to correctly return
at least a user in the collusion producing D.

3 PST Basic Scheme [10]

Below, we briefly review the basic scheme of Phan, Safavi-Naini, Tonien [10]
(called PST scheme) which will take part in our construction of general scheme.
Their basic scheme, called PSTBasic(N,λ), is described as follows.

Traitor Tracing for Stateful Pirate Decoders with Constant Ciphertext Rate 357

Primitives: a public-key encryption PKE and a data encapsulation mechanism
DEM.

Setup(N,λ): Algorithm PSTBasic.Gen(1λ, N) → (pk, sk1, . . . , skN).
The algorithm PSTBasic.Gen(.) takes as input the number of users N and a
security parameter λ. It simply runs the setup algorithm of the public key
encryption to define its public key pk and its private keys sk1, . . . , skN :
– For each i = 1, . . . , N , call PKE.Gen(1λ) → (pki, ski).
– Set pk = (pk1, . . . , pkN).

Encrypt(pk,m): Algorithm PSTBasic.Enc(pk,m) → c.
The algorithm PSTBasic.Enc(.) takes as input the public key pk, a message
m and outputs a ciphertext c. It uses DEM to encrypt the message m and
PKE to encrypt the key used in DEM:
– Choose a random dk
– Call DEM.Encdk(m) → τ
– Compute h = H(τ) and for each i = 1, . . . , N , call PKE.Encpki(dk||h) →
σi.

– Define c = (σ1, . . . , σN , τ).
Decrypt(i, ski, c, pk): Algorithm PSTBasic.Dec(ski, c) → m or ⊥.

The algorithm PSTBasic.Dec(.) takes as input a secret key ski and a cipher-
text c = (σ1, . . . , σN , τ) and outputs a message m ot ⊥:
– Call PKE.Decski(σi) → dk||h
– If h �= H(τ), return ⊥
– Otherwise, call DEM.Decdk(τ) → m and output m

Trace(D, pk):
Algorithm PSTBasic.Public-Trace(pk,D) → t.

The algorithm PSTBasic.Public-Trace(.) takes as input the public key pk and
a pirate decoder D and outputs a traitor t as follows:
– Choose randoms dk, m, then call PSTBasic.Encpk(m) → (σ1, . . . , σN , τ).
– For each i = 1, . . . , N , choose random d′i �= dk||h such that d′i has the

same length as dk||h.
– Call PKE.Encpki(d′i) → σ′i.
– Calculate the following probabilities:

• p0 = Pr[D(σ1, σ2, . . . , σN , τ) = m]
• p1 = Pr[D(σ′1, σ2, . . . , σN , τ) = m]
• . . .
• pn = Pr[D(σ′1, σ

′
2, . . . , σ

′
N , τ) = m].

– If |pi − pi−1| is not negligible, output t = i as a traitor.

We first show that the above scheme can not be used for stateful pirate de-
coders.

Proposition 3. A stateful pirate decoder can defeat the above tracing algorithm.

Proof. Assume that user 1 and user N collude to produce a pirate decoder D,
whenever D receives a ciphertext (σ′1, σ2, . . . , σN , τ), it can detect whether a
tracing procedure has been applied. Therefore, by applying a standard delaying
technique (such as the one used in [7]), the stateful pirate decoder can defeat the

358 D.H. Phan

tracing algorithm: upon detecting tracing, the decoder might continue to work by
returning the message m (by decrypting the ciphertext σN) for a random number
of trials and then start returning a random message m. By this strategy, any
user 2, . . . , N can be claimed to be guilty.

4 Basic Scheme Against Stateful Pirate Decoders

We now transform the PSTBasic scheme for stateless decoders to a scheme for
stateful decoders. In our construction, inspired by Kiayias and Yung’s method,
we employ a watermarking scheme. The basic scheme is therefore quite ineffi-
cient. However, in the next section, we will show how to use this basic scheme
to construct an efficient general scheme.

Adequate presentation of a message. In almost all applications of traitor
tracing, a slight modification of data does not affect the user. For example, users
are not affected by a slight modification of a pixel in a figure or small changes
in spaces between words in text display. For a data M , we call “adequate”
presentations of M varied copies which can replace M without affecting the
users. A decoder is usable if, from a ciphertext of M , it returns an adequate
presentation of M .

Formally, as in [7], we restrict ourselves to plaintext spaces for which the
following watermarking assumption is true:

Assumption 4 (Watermarking Assumption). For some t, h, there is a
probabilistic algorithm (t, h)-W such that, given any M ∈ M, it produces h
“versions” of M , M1,M2, ...,Mh, such that the following are true:

(i) Mi are “adequate” presentations of M
(ii) there is an algorithm W ′ such that for any algorithm A that generates a M ′

given Mj1 , . . . ,Mjk
, W ′ given M ′ traces back to one of the Mjl

, provided
that M ′ is an adequate presentation of M , and that k is below a certain
threshold t.

This assumption has been used in [6,7] and can be achieved in most audio or
video streams. We can thus make use of watermarking techniques as those of
[9,2] to support the tracing process.

We remark that a (t, h)−watermarking scheme is also a (t′, h′)− watermark-
ing scheme, for all t′ ≤ t, h′ ≤ h. Therefore, possessing a (t, h)−watermarking
scheme, we can use it as a (N,N)−watermarking scheme, for N ≤ t and N ≤ h.
Basic scheme. Our basic scheme, called StatefulBasic(N,λ) is described as
follows:

Primitives: a public-key encryption PKE, a data encapsulation mechanism
DEM and a watermarking algorithm (N,N)-W .

Setup(N,λ): It simply runs PSTBasic(N,λ) with the same parameters, and
outputs pk as the public encryption key and sk1, . . . , skN as private keys.

Traitor Tracing for Stateful Pirate Decoders with Constant Ciphertext Rate 359

Encrypt(pk,M): Algorithm StatefulBasic.Enc(pk,m) → c.
The algorithm StatefulBasic.Enc(.) takes as input the public key pk, a mes-
sage m and outputs a ciphertext c. It uses W to produce “adequate” presen-
tations of m, DEM to encrypt the messages and PKE to encrypt the keys
used in DEM:
– Call W(m) → m1, . . . ,mN .
– Choose random keys dk1, . . . , dkN

– For each i = 1, . . . , N , call DEM.Encdki(mi) → τi
– Compute hi =H(τi) and for each i=1, . . . , N , call PKE.Encpki(dki||hi) →
σi.

– Define c = (σ1, . . . , σN , τ1, . . . , τN).
Decrypt(j,Kj , C, pk): Algorithm StatefulBasic.Dec(ski, c) → mi or ⊥.

The algorithm StatefulBasic.Dec(.) takes as input a secret key ski and a
ciphertext
c = (σ1, . . . , σN , τ1, . . . , τN), it outputs a message mi or ⊥:
– Call PKE.Decski(σi) → dki||hi

– If hi �= H(τi), return ⊥
– Otherwise, call DEM.Decdki(τi) → mi and output mi

Trace(D, pk):
Algorithm StatefulBasic.Public-Trace(pk,D) → t.

The algorithm StatefulBasic.Public-Trace(.) takes as input the public key pk
and a pirate decoder D and outputs a traitor t as follows:
– Choose random dk, m, and call PSTBasic.Enc(pk,m) → (σ1, . . . , σN , τ1,
. . . , τN). Recall that τi = DEM.Encdki(mi) and m1, . . . ,mN are out-
putted by W(m).

– Give (σ1, . . . , σN , τ1, . . . , τN) to D.
– Suppose that D(σ1, . . . , σN , τ1, . . . , τN) → m

– Call W ′(m) → mt and output t as a traitor.

Traceability. We first consider the traceability of the above system.

Theorem 5. If W is a (N,N)−watermarking scheme, PKE and DEM are se-
mantically secure, the above scheme is a fully collusion resistant traitor tracing
scheme against stateful pirate decoders.

Proof. We remark that the above tracing only makes one query to the pirate
decoder. Moreover, this query is a valid ciphertext. Therefore, if a pirate decoder
is usable, it should return an “adequate” presentation m of the original message
m.

Let (σ1, . . . , σN , τ1, . . . , τN) be the query to the pirate decoder and m1, . . . ,mN

be the N underlying messages of σ1, . . . , σN . We note that m1, . . . ,mN are out-
putted by W(m).

Suppose that the pirate decoder D is produced from a collusion of k users
uj1 , . . . , ujk

, we show that all the information the pirate decoder knows from the
unique query (σ1, . . . , σN , τ1, . . . , τN) are the k messages mj1 , . . . ,mjk

. For this,
we use a hybrid argument as follows.

360 D.H. Phan

Denote by i1, . . . , iN−k the N − k indexes that are not in {j1 . . . jk}. At each
qth step (q runs from 1 toN−K), we replace σiq by σiq = PKE.Encpkiq

(dk′iq
||hiq),

where dk′iq
is randomly chosen in the key space, and τiq by τiq = DEMdk′

iq
(m′

iq
),

where m′
iq

is randomly chosen in the message space. The pirate decoder has
thus, after the qth step, no information about miq . Because PKE and DEM are
semantically secure, the pirate decoder has a negligible advantage to distinguish
between two successive steps.

The message m is thus produced from mj1 , . . . ,mjk
. At this stage, we can

use the algorithm W ′ to reveal one of mjt ∈ {mj1 . . .mjk
} and can correctly

return the user jt as a traitor. �

Security of Encryption. The PSTBasic scheme can be considered as a particular
case of our StatefulBasic scheme with dk1 = . . . = dkN = dk and m1 = . . . =
mN = m. Using the argument in the security proof of PSTBasic [10], our scheme
achieves the same security level, i.e. semantic security against “Replayable” CCA
adversaries.

Remarks. The above basic scheme is inefficient in comparison with PSTBasic
scheme because of its linear ciphertext rate. However, its main advantage is that
it can be used for stateful pirate decoders and that the tracing procedure is
very efficient with only one query to each pirate decoder. More interestingly,
this basic scheme, although inefficient, helps us to construct an efficient general
scheme which is almost as efficient as the PST general scheme [10].

The construction of the general scheme is described in the next section.

5 General Scheme for Stateful Pirate Decoders

5.1 IPP Codes

Let Q be an alphabet containing q symbols. If C = {w1, w2, . . . , wN} ⊂ Q	,
then C is called a q-ary code of size N and length �. Each wi ∈ C is called a
codeword and we write wi = (wi,1, wi,2, . . . , wi,) where wi,j ∈ Q is called the
jth component of the codeword wi.

We define descendants of a subset of codewords as follows. LetX ⊂ C and u =
(u1, u2, . . . , u) ∈ Q	. The word u is called a descendant ofX if for any 1 ≤ j ≤ �,
the jth component uj of u is equal to a jth component of a codeword in X . In this
case, codewords in X are called parent codewords of u. For example, (3, 2, 1, 3)
is a descendant of the three codewords (3, 1, 1, 2), (1, 2, 1, 3) and (2, 2, 2, 2).

3 1 1 2
1 2 1 3 ←− parent codewords
2 2 2 2
3 2 1 3 ←− a descendant

We denote by Desc(X) the set of all descendants of X . For a positive integer c,
denote by Descc(C) the set of all descendants of subsets of up to c codewords.
Codes with identifiable parent property (IPP codes) are defined as follows.

Traitor Tracing for Stateful Pirate Decoders with Constant Ciphertext Rate 361

Definition 6. A code C is called c-IPP if, for any u ∈ Descc(C), there exists a
w ∈ C such that for any X ⊂ C, if |X | ≤ c and u ∈ Desc(X), then w ∈ X.

In a c-IPP code, given a descendant u ∈ Descc(C), we can always identify at least
one of its parent codewords. Binary c-IPP codes (with more than two codewords)
do not exists, thus in any c-IPP code, the alphabet size q ≥ 3. Some typical
constructions are in [12]. The best known algorithms construct c-IPP codes and
c-collusion secure codes [2] with logarithmic length in number of codewords.

5.2 Framework for Combination of Basic Schemes

In [8,5,10], the authors constructed general schemes from combinations of basic
schemes by using collusion secure codes or IPP codes. We resume this framework,
in the case of using IPP codes, as follows:

Primitives: BasicSch1, . . . , BasicSch	 are basic schemes of q users. C is a q-ary
c-IPP code of length �.

Step 1: Each user is associated to a codeword w = w1 . . . w	 (wi ∈ {1, . . . , q})
of C. This codeword determines the user key which contains � sub-keys cor-
responding to � basic schemes BasicSch1, . . . , BasicSch	: the wth

i key in
scheme BasicSchi, for each i = 1, 2, . . . , n.

Step 2: The general scheme is combined from � basic schemes:

GeneralSch = (BasicSch1, . . . , BasicSch)

Step 3: For tracing, we first find out the codeword w associated to the pirate
decoder D by finding out each w

i as follows:
– create valid ciphertexts in BasicSch1, . . . , BasicSchi−1, BasicSchi+1,
. . . , BasicSch	:
c1, . . . , ci−1, ci+1, . . . , c	

– create probe ciphertext (ciphertext for tracing) in BasicSchi: ci
– give the combined ciphertext c = (c1, . . . , ci−1, c

i , ci+ 1, . . . , c) to the

pirate decoder D. On feedback of D, by using the tracing algorithm in
BasicSchi, find out w

i .
Step 4: from w = w

1 . . . w

	 , the codeword associated to the pirate decoder,

thanks to the identifiable parent property of codes, we can trace back one
traitor.

In the PST general scheme, in Step 2, BasicSch1, . . . , BasicSch	 are inde-
pendent instances of the PSTBasic. We can replace BasicSch1, . . . , BasicSch	

by our basic schemes StatefulBasic. However, in this case, we lost a q factor of ef-
ficiency in comparison with the PST general scheme, as each of our StatefulBasic
scheme loses a linear factor in comparison with PSTBasic scheme.

By using 3-ary IPP codes (q = 3), we only loose a small constant factor of
3. We would like nevertheless to improve the efficiency to make it comparable
to the PST scheme. The idea is to include a StatefulBasic scheme in a sequence
of PSTBasic schemes. More precisely, in Step 2, we replace one of � PSTBasic

362 D.H. Phan

schemes by one StatefulBasic scheme. Due to the independency between basic
schemes, such a combination works well for encryption and decryption. We are
only worrying about the tracing capability. Below, we present such a combination
with traceability. We note however that this technique of combination cannot be
used for constructions where basic schemes share common data. In [5], in order
to improve the efficiency, the general scheme combines basic schemes which share
some common data. Our technique is thus not suitable to make the scheme in [5]
resistant against stateful pirate decoders.

5.3 General Scheme

Let C = {ω1, . . . , ωN} be a q-ary c-IPP code that allows collusion of up to c
users. The N -user general scheme is a combination of � basic schemes PSTBasic
S1, S2, . . . , S	 and a basic scheme StatefulBasic, each basic scheme supports q
users:

Setup: Given security parameters λ and c, the algorithm works as follows:
– For each j = 1, . . . , �, call the algorithm PSTBasic.Gen(1λ, q) to generate

an encryption key pkj and q decryption keys skj,1, . . . , skj,q for the q-user
system Sj .

– For each j = 1, . . . , �, call the algorithm StatefulBasic.Gen(1λ, q) to gen-
erate an encryption key pkj and q decryption keys skj,1, . . . , skj,q for the
q-user system Sj .

– Public key pk is defined by the tuple (pki)i=1,...,	, (pki)i=1,...,	 and the
code C.

– Private key Ki of each user i (for i = 1, . . . , N) contains a codeword
wi ∈ C, ski, the �-tuple key sk1,wi,1 , sk2,wi,2 , . . . , sk	,wi,�

and the �-tuple
key sk1,wi,1 , sk2,wi,2 , . . . , sk	,wi,�

, where wi,j ∈ Q = {1, 2, . . . , q} is the
symbol at the jth position of the codeword wi.

Ki
.= (wi, sk1,wi,1 , sk2,wi,2 , . . . , sk	,wi,�

, sk1,wi,1 , sk2,wi,2 , . . . , sk	,wi,�
)

Encrypt(pk,m): The plaintext space of the �-key system is M	. On input
m = (m1,m2, . . . ,m), the encryption algorithm works as follows:

– an index k is randomly chosen k R← i = 1, . . . , �.
– the kth component ck is encrypted by StatefulBasic Sk:

ck = StatefulBasic.Encpkk
(mk) = (σk,1, . . . , σk,q, τk,1, . . . , τk,q)

– for j = 1, . . . , �, j �= k, the jth component ck is encrypted by PSTBasic
Sj :

cj = PSTBasic.Encpkj (mj) = (σj,1, . . . , σj,q, τj)

– the ciphertext c .= (k, c1, c2, . . . , c)

Traitor Tracing for Stateful Pirate Decoders with Constant Ciphertext Rate 363

Decrypt(j,Kj , c, pk): On the ciphertext (k, c1, c2, . . . , c), user i uses his secret
key to compute:

mk = StatefulBasic.Decskk,wi,k
(ck)

mj = PSTBasicskj,wi,j
(cj), for j = 1, . . . , �, j �= k

Trace(D, pk): Let E = {1, . . . �}. Repeat the following steps until E = ∅.

– randomly choose an index k R← i = 1, . . . , �, E = E\{k}
– choose a message m = (m1,m2, . . . ,m)
– create components: cj = PSTBasic.Encpkj (mj), for j = 1, . . . , �, j �= k
– create component ck = StatefulBasic.Encpkk

(mk)
– define c = (k, c1, c2, . . . , c) and give c to the pirate decoder D
– on feedback m′ = (m′

1,m
′
2, . . . ,m

′
), extract the component m′

k and use
the same argument used in the tracing algorithm of StatefulBasic scheme
to get wk.

– from the descendant codeword w = (w1|| . . . ||w) ∈ Q	, identify one of
its parent codewords. The user associated with this codeword is a traitor.

Traceability. We first consider the traceability of the above system.

Proposition 7. Suppose that D is a stateful pirate decoder, the above tracing
algorithm can correctly trace back a traitor.

Proof. We remark that, in the above tracing algorithm, query ciphertexts are
identical to valid ciphertexts. Therefore, a pirate decoder cannot detect whether
it is being traced. Consequently, a stateful pirate decoder always decrypts cor-
rectly as it would do. In this case, a stateful pirate decoder is not more powerful
than a stateless one.

Using the same arguments from Theorem 5, the tracing procedure can re-
veals each wk as the tracing procedure in StatefulBasic can correctly reveal a
traitor. Therefore, the tracing can correctly associate a descendent codeword
w = (w1|| . . . ||w) of the set of codewords corresponding to the users in the col-
lusion. By the property of IPP codes, the tracing algorithm can thus identify at
least one traitor.

Security of Encryption. We now consider the security of the encryption. For
this, one could use the following assumption, used in [8,5,10]:

Assumption 8 (threshold assumption). A pirate-decoder that only returns
correctly a fraction p of a plaintext of length λ where 1 − p is a non-negligible
function in λ, is useless.

We emphasis that, as already mentioned in [8], by employing an all-or-nothing
transform [11,4], this assumption is not necessary.

Proposition 9. In the general scheme, a collusion of users in the (�− 1) basic
schemes does not affect the security of the remaining basic scheme.

364 D.H. Phan

Proof. The proof follows the one in [5]. Assume there is an adversary A that,
having information I of the targeted system, called Basic1, and also all the infor-
mation for � remained systems, called Basic2, . . . , Basicn can get an advantage
ε for breaking the system Basic1 (for some goal G). We can then construct
an algorithm B that, having only the information I of the system Basic1, can
break the system Basic1 (for the goal G) with advantage ε. Indeed, the algo-
rithm B can perfectly simulate all the information about Basic2, . . . , Basicn
systems by generating itself all parameters for Basic2, . . . , Basicn. Because the
Basic1, . . . , Basicn systems are totally independent that they do not have any
common information, this simulation of B is perfect. �
This proposition shows that the security of the general scheme is at least the
same as the security of each basic scheme. Therefore, the encryption in the above
general system is secure.

Efficiency. The ciphertext contains two parts: ciphertext body (τ1, . . . , τ) and
ciphertext header (σj,1, . . . , σj,q)j=1,...,	. Between � sub-ciphertext bodies
(τ1, . . . , τ), �−1 sub-ciphertext bodies correspond to the basic schemes PSTBasic
and only one sub-ciphertext bodie corresponds to the basic scheme StatefulBasic.
As in PSTBasic scheme, the ciphertext body approximately has the same size
as the plaintext, and as � is large, the ciphertext body in our general scheme
approximately has the same size as the original message. Concerning the cipher-
text header, as we use the hybrid framework, each σj,k is significantly smaller
than τj . Therefore, the header’s size is small compared to the message size and
the ciphertext rate is almost optimal (rate =1). Without the hybrid argument,
the header rate is also small (this rate = q = 3) and therefore, the ciphertext
rate still remains constant.

6 Conclusion

We proposed the first constant ciphertext rate traitor tracing for stateful pirate
decoders. Our scheme moreover supports black-box public traceability. However,
due to the use of IPP codes, our scheme does not support full collusion as
schemes for stateless pirate decoders in [1,3]. We raise thus the open question of
constructing a fully collusion resistant scheme for stateful pirate decoders with
constant ciphertext rate.

Acknowledgments

We would like to thank Antoine Joux and Louis Goubin for helpful discussions
and suggestions.

References
1. Dan Boneh, Amit Sahai, and Brent Waters. Fully Collusion Resistant Traitor

Tracing with Short Ciphertexts and Private Keys. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 573–592, St. Petersburg, Russia,
May 2006. Springer-Verlag, Berlin, Germany.

Traitor Tracing for Stateful Pirate Decoders with Constant Ciphertext Rate 365

2. Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data. In
Don Coppersmith, editor, CRYPTO’95, volume 963 of LNCS, pages 452–465, Santa
Barbara, CA, USA, August 27–31, 1995. Springer-Verlag, Berlin, Germany.

3. Dan Boneh and Brent Waters. A Fully Collusion Resistant Broadcast, Trace
and Revoke System, 2006. (To Appear in) Proceedings of 13th ACM Confer-
ence on Computer and Communications Security (ACM CCS 2006). http://
crypto.stanford.edu/ dabo/papers/tr.pdf.

4. Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz and Amit Sahai.
Exposure-Resilient Functions and All-or-Nothing Transforms. In Bart Preneel, ed-
itor, EUROCRYPT 2000, volume 1807 of LNCS, pages 453–469, Bruges, Belgium,
May 14–18, 2000. Springer-Verlag, Berlin, Germany.

5. Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public Traceability
in Traitor Tracing Schemes. In Ronald Cramer, editor, EUROCRYPT 2005, vol-
ume 3494 of LNCS, pages 542–558, Aarhus, Denmark, May 22–26, 2005. Springer-
Verlag, Berlin, Germany.

6. Amos Fiat and Tamir Tassa. Dynamic Traitor Traicing. In Michael J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages 354–371, Santa Barbara, CA,
USA, August 15–19, 1999. Springer-Verlag, Berlin, Germany.

7. Aggelos Kiayias and Moti Yung. On Crafty Pirates and Foxy Tracers. In T. Sander,
editor, ACM Workshop in Digital Rights Management – DRM 2001, volume LNCS
2320, pages 22–39. Springer, 2001.

8. Aggelos Kiayias and Moti Yung. Traitor Tracing with Constant Transmission Rate.
In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 450–
465, Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer-Verlag, Berlin,
Germany.

9. Joe Kilian, F. Thompson Leighton, Lesley R. Matheson, Talal G. Shamoon,
Robert E. Tarjan, and Francis Zane. Resistance of digital watermarks to collusive
attacks. In Proceedings of the 1998 IEEE International Symposium on Information
Theory, page 271, 1998.

10. Duong Hieu Phan, Reihaneh Safavi-Naini, and Dongvu Tonien. Generic Con-
struction of Hybrid Public Key Traitor Tracing with Full-Public-Traceability. In
M. Bugliesi, editor, 33rd ICALP, volume 4052 of LNCS, pages 630–648, Venice -
Italy, July 9–16, 2006. Springer-Verlag, Berlin, Germany.

11. Ronald L. Rivest. All-or-Nothing Encryption and the Package Transform. In
Proceedings of the 4th FSE, LNCS 1267. Springer-Verlag, Berlin, 1997.

12. Tran Van Trung and Sosina Martirosyan. New Constructions for IPP Codes. Des.
Codes Cryptography, 35(2):227–239, 2005.

Reducing the Spread of Damage of Key
Exposures in Key-Insulated Encryption

Thi Lan Anh Phan1, Yumiko Hanaoka2, Goichiro Hanaoka3, Kanta Matsuura1,
and Hideki Imai3

1 The University of Tokyo, Japan
{phananh,kanta}@iis.u-tokyo.ac.jp

2 NTT DoCoMo, Inc.
claudia@nttdocomo.co.jp

3 National Institute of Advanced Industrial Science and Technology, Japan
{hanaoka-goichiro,h-imai}@aist.go.jp

Abstract. A proposal for key exposure resilient cryptography called,
key-insulated public key encryption (KIPE), has been proposed by Dodis,
Katz, Xu, and Yung [6] in which the secret key is changed over time so
that the exposure of current key minimizes the damage overall. We take
this idea further toward betterment by introducing new schemes with
improved helper key security: in our schemes, we introduce an auxiliary
helper key to update the secret key less frequently than the main helper
key (and only one of these keys is used at each key updates,) as a result,
this gives added protection to the system, by occasional auxiliary key
updates, reducing the spread of further harm that may be caused by key
exposure when compared to the original KIPE. Our proposed schemes
are proven to be semantically secure in the random oracle model.

1 Introduction

Background. Advances in mobile and wireless technology are getting more
and more complex each day and so are the information handling and processing,
which are also becoming more mobile and diversified than ever, creating higher
risks than in the past for security breaches to occur. Mobile devices are especially
vulnerable to data loss and secret key exposure, and such incidents are said to be
one of the most serious attacks in real life. Laptops are the obvious examples of
these devices, but PDAs, cell phones, USB drives, and even iPods can store large
amounts of data, making them tempting targets for thieves. Some incidents are
malicious, some are accidents, and some are the result of sloppy management of
personal information by the users, but whatever the cause may be, protecting
our assets, nevertheless, is essential. Also, security is becoming much more under
the control of end users than before, and most end users aren’t aware of the risks
or how to properly protect against privacy and security incidents.

Dodis et al.[6] proposed a new paradigm called key-insulated public key cryp-
tosystem (KIPE) which gives “resilience” to key exposure by changing (or “evolv-
ing”) the secret key over time so that exposure of current key mitigates the

P.Q. Nguyen (Ed.): VIETCRYPT 2006, LNCS 4341, pp. 366–384, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reducing the Spread of Damage of Key Exposures 367

overall damage: even if the current key is exposed, all the rest of (unexposed)
keys remain unaffected, and both future and past security are guaranteed. KIPE
performs key updates with the aid of a “helper key”. Helper key is stored inside
an external device which is connected to the user device (therefore, the network,)
only at occasions the secret key needs to be updated. Hence, the chance of helper
key exposure to occur is quite small, although, it is not to say definitely that
such event will never occur: for instance, if we try to enhance the security of the
secret key by updating the key frequently, the helper key will in turn be more
vulnerable to the network hackers (as it will be connected to the network more
often).

Our Contribution. In this paper, we propose new KIPE schemes with im-
proved helper key security. More specifically, in our schemes, we introduce an
auxiliary helper key which is used to update a secret key less frequently than the
main helper key. Suppose if you update the secret key once each day: basically,
you only need to pay attention to the main helper key which you will use to
update the secret key just like in the original KIPE, and use the auxiliary helper
key only occasionally, at an interval longer, e.g. the first day of each month,
on which the auxiliary key is used instead of the main key (and the main key
will not be used at all on that day). It turns out that the auxiliary key updates
reduce further spread of harm that may be caused by key exposure, i.e. by one
month, if ever a secret key and the main helper key are compromised. Also,
since the auxiliary key is used less frequently than the main helper key, it can be
stored at some place much safer and managed differently than the main key, as
an effect, further decreases the likelihood of both helper keys to be compromised
at the same time, increasing the overall security of the system considerably. The
encryption procedure in our schemes is carried out using public key and time,
and exposure of secret key(s) will still guarantee the security of all unexposed
time periods, just like in the original KIPE. Our proposed schemes are proven
to be semantically secure in the random oracle model.

Initialization in our scheme involves providing main helper device Hmain and
auxiliary helper device Haux with a main helper key mk and an auxiliary helper
key ak, respectively, and the user’s terminal with a stage 0 user secret key usk0.
Similarly to the original KIPE, user’s public encryption key pk is treated like that
of an ordinary encryption scheme with regard to certification, but its lifetime is
divided into stages i = 1, 2, ..., N(= n ·�) with encryption in stage i performed as
a function of pk, i and the plaintext, and decryption in stage i performed by the
user using a stage i user secret key uski obtained by the following key-update
process performed at the beginning of stage i:

– If i �= k · � for k ∈ {1, 2, ..., n}, Hmain sends to the user’s terminal over a
secure channel a stage i helper key hski computed as a function of mk and i

– If i = k · � for k ∈ {1, 2, ..., n}, similarly to the above, Haux sends hski

computed as a function of ak and i,

the user computes uski as a function of uski−1 and hski, and erases uski−1.
Like the original KIPE, our schemes also address random access key update [6]

368 T.L.A. Phan et al.

in which the user can compute an arbitrary stage user secret key (that could
also be a past key). Note that it is reasonable to assume that mk and ak will
not be exposed simultaneously as they can be managed separately.

The security intentions are:

1. Similarly to the original KIPE, if none of the helpers is compromised, then
exposure of any of user secret keys does not compromise the security of the
non-exposed stages,

2. even if one of Hmain and Haux is compromised, security is still guaranteed
unless other secret information is exposed as well,

3. if mk and uski are compromised for some i (k · � ≤ i ≤ (k + 1) · �− 1), then
security of stages k · �, ..., (k + 1) · �− 1 are compromised,

4. if ak and uski are compromised for some i (k · � + 1 ≤ i ≤ (k + 1) · � − 2),
then security of stage i is compromised, and

5. if ak and uski are compromised for some i(= k · �− 1 or k · �), then security
of stages k · �− 1 and k · � are compromised.

Similar to the original KIPE, we can further address the case when all of the
helper keys are exposed:

6. Even if both helpers Hmain and Haux are compromised, security of all stages
remain secure as long as user secret key (of any one stage) is not compromised
as well.

Application. Many of us are familiar with the following setting: a user with
his portable device, such a device can be a laptop computer or a cell phone,
either way, a portable device which he carries around with him daily where
all his secret transactions such as decryption take place; needless to say, risk
of leakage of sensitive data inside his device whether by accident or malicious
intent is always an issue to him. As an application of our schemes, we can let
the laptop be the main helper Hmain where he stores the main helper key mk,
and a dedicated smart card or the auxiliary helper Haux in which the auxiliary
helper key ak is stored and also managed securely (preferably at somewhere
reasonably safe like home) when it is not in use. Laptop, i.e. Hmain, is the one
mainly being used to update his secret key just like in the original KIPE, and
only occasionally, his smart card, i.e. Haux, and by doing so can prevent further
spreading of the damage that may be caused by key exposure even if Hmain is
ever compromised. To make things more clear, let us consider the next example:
daily key updating is carried out on his laptop PC, and “safety guard” updates
with his smart card at the first day of each month. As you can see, even if both
the master helper key mk and a user secret key (let say, 6/12 user secret key)
are exposed at the same time, still, the damage is kept to the minimum by losing
only the security of a month of June and the rest remain secure. Also, even if the
auxiliary key ak is exposed, the harm cause is merely for a day. End users are
ultimately responsible for securing information more than ever before and this
is a simple and effective way for the users to give added proof to their system.

Reducing the Spread of Damage of Key Exposures 369

Related Works. With the aim of enhancing the security of KIPE against helper
key exposure, Dodis, Katz, Xu and Yung also proposed schemes called, strongly
key insulated public key encryption (sKIPE) [6], here, exposure of the helper
key will not compromise the security of the system right away, but this only
holds if not one of secret keys is exposed at the same time. The work here was
followed by Dodis, Franklin, Katz, Miyaji and Yung. In their scheme, intrusion-
resilient public key encryption (IRPKE) [7], forward security is strengthened,
so even if both the helper key and the secret key are exposed simultaneously,
it compromises future periods but will protect the past periods. The security
for IRPKE is improved from sKIPE, only, it became less convenient, as it no
longer allow random access key update. Hanaoka, Hanaoka, Shikata, and Imai
[12] proposed a scheme that also enhances the security of sKIPE by hierarchically
structuring the helper key with added identity-based property. Also, in another
work, Hanaoka, Hanaoka, and Imai [11] increased the security against helper key
exposure by alternatively using two helper keys to update a secret key. [11] can
be viewed as a special case of our proposing scheme. On the other hand, as an
encryption scheme that allows key update, we have the KIPE, and also, forward
secure public key encryption (FSPKE). FSPKE was introduced by Anderson
[1] and the first efficient construction, by Canetti, Halevi and Katz [5]. Dodis,
Franklin, Katz, Miyaji and Yung showed that by using FSPKE with certain
homomorphic property, gives a generic IRPKE [8].

2 Definitions

First, we give the model of KIPE with an auxiliary helper key (KwAH) and
the security notion. We follow by showing some of the characteristics of bilinear
maps. We then briefly review the related computational assumptions.

2.1 Model: KIPE with an Auxiliary Helper Key

A KwAH scheme E consists of five efficient algorithms (KeyGen, Δ-Gen, Up-
date, Encrypt, Decrypt).

KeyGen: Takes a security parameter k and returns mk, ak, usk0 and pk. Public
key pk includes a description of finite message space M, and description of
finite ciphertext space C.

Δ-Gen: Takes as inputs, mk and i, and returns stage i helper key hski if � � |i,
or ⊥ otherwise, and takes as inputs, ak and i, and returns stage i helper key
hski if �|i, or ⊥ otherwise

Update: Takes as inputs, uski−1, hski and i, and returns stage i user secret
key uski.

Encrypt: Takes as inputs, pk, i and M ∈ M, and returns ciphertext C ∈ C.
Decrypt: Takes as inputs, pk, uski and C ∈ C, and returns M ∈ M or ⊥.

These algorithms must satisfy the standard consistency constraint, namely,

∀i ∈ {1, 2, ..., N}, ∀M ∈M : Decrypt(pk, uski, C) = M

where C = Encrypt(pk, i,M).

370 T.L.A. Phan et al.

2.2 Security Notion

Here, we define the notion of semantic security for KwAH. This is based on
the security definition in the original KIPE [6,4]. It should be noticed that the
definition in [4] looks simpler than in [6] but they are essentially the same.

We say that a KwAH scheme E is semantically secure against an adaptive
chosen ciphertext attack under an adaptive chosen key exposure attack (IND-KE-
CCA) if no polynomially bounded adversary A has a non-negligible advantage
against the challenger in the following IND-KE-CCA game:

Setup: The challenger takes a security parameter k and runs the KeyGen
algorithm. He gives the adversary the public key pk and keeps usk0, mk and
ak to himself.

Phase 1: The adversary issues several queries q1, · · · , qm where each of the
queries qi is one of:
– Exposure query 〈j, class〉: If class = “user”, the challenger responds by

running the algorithms Δ-Gen and Update to generate uskj and sends
it to the adversary. If class = “main helper” or “auxiliary helper”, the
challenger sends mk or ak to the adversary, respectively.

– Decryption query 〈j, C〉: The challenger responds by running the algo-
rithms Δ-Gen and Update to generate uskj . He then runs Decrypt
to decrypt the ciphertext C using uskj and sends the result to the ad-
versary.

These queries may be asked adaptively, that is, each query qi may depend
on the replies to q1, · · · , qi−1.

Challenge: Once the adversary decides that Phase 1 is over, she outputs two
equal length plaintexts M0,M1 ∈ M and j∗ ∈ {1, 2, ..., N} on which she
wishes to be challenged. The challenger picks a random bit β ∈ {0, 1} and
sets C∗ = Encrypt(pk, j∗,Mβ). The challenger sends C∗ as the challenge
to the adversary.

Phase 2: The adversary issues additional queries qm+1, · · · , qmax where each of
the queries is one of:
– Exposure query 〈j, class〉: Challenger responds as in Phase 1.
– Decryption query 〈j, C〉: Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.
Guess: Finally, the adversary outputs her guess β′ ∈ {0, 1}. She wins the game

if β′ = β and
1. 〈j∗, C∗〉 does not appear in Decryption queries,
2. 〈j∗, “user”〉 does not appear in Exposure queries,
3. both 〈j, “user”〉, such that m · � ≤ j∗ ≤ (m + 1) · �− 1 and m · � ≤ j ≤

(m + 1) · � − 1 for some m (0 ≤ m ≤ n − 1), and 〈·, “main helper”〉 do
not simultaneously appear in Exposure queries,

4. both 〈j, “user”〉, such that j∗ = (m+1)·�−1 or (m+1)·� and j = (m+1)·
�−1 or (m+1) ·� for some m (0 ≤ m ≤ n−1), and 〈·, “auxiliary helper”〉
do not simultaneously appear in Exposure queries,

5. both 〈·, “main helper”〉 and 〈·, “auxiliary helper”〉 do not simultaneously
appear in Exposure queries.

Reducing the Spread of Damage of Key Exposures 371

We refer to such an adversary A as an IND-KE-CCA adversary. We define
adversary A’s advantage in attacking the scheme E as:

AdvE,A = Pr[β′ = β]− 1/2.

The probability is over the random bits used by the challenger and the adversary.

Definition 1. We say that a KwAH system E is (t, ε)-adaptive chosen ciphertext
secure under adaptive chosen key exposure attacks if for any t-time IND-KE-CCA
adversary A, we have AdvE,A < ε. As shorthand, we say that E is IND-KE-CCA
secure.

As usual, we can define chosen plaintext security similarly to the game above
except that the adversary is not allowed to issue any Decryption queries. The
adversary still can adaptively issue Exposure queries. We call this adversary
IND-KE-CPA adversary.

Definition 2. We say that a KwAH system E is (t, ε)-adaptive chosen plaintext
secure under adaptive chosen key exposure attacks if for any t-time IND-KE-CPA
adversary A, we have AdvE,A < ε. As shorthand, we say that E is IND-KE-CPA
secure.

IND-KE-CCA is already a strong security notion, but its security can be en-
hanced further to cover the compromise of both the helper keys. Concretely, as
a constraint on the above adversary’s Exposure query, we can modify 5. so that:

5′. 〈·, “main helper”〉, 〈·, “auxiliary helper”〉, and 〈j, “user”〉 do not si-
multaneously appear in Exposure queries for any j ∈ {1, 2, ..., N}.

Such modification allows the adversaryA to obtain both mk and ak if A doesn’t
ask any of user secret keys. Let this adversary be a strong IND-KE-CCA adversary.

Definition 3. We say that a KwAH system E is (t, ε)-adaptive chosen cipher-
text secure under strongly adaptive chosen key exposure attacks if for any t-time
strong IND-KE-CCA adversary A, we have AdvE,A < ε. As shorthand, we say
that E is strongly IND-KE-CCA secure.

Similarly, we can define strong IND-KE-CPA adversary, and here as well, she is
not allowed to issue any Decryption queries.

Definition 4. We say that a KwAH system E is (t, ε)-adaptive chosen plain-
text secure under strongly adaptive chosen key exposure attacks if for any t-time
strong IND-KE-CPA adversary A, we have AdvE,A < ε. As shorthand, we say
that E is strongly IND-KE-CPA secure.

A Remark on the Security Notion: Exposure of the Helper Keys. In the discussion
we had so far, it may seem like we may have overlooked the exposure of stage i
helper key, but actually, we haven’t. It is obvious that if hski can be computed
from uski−1 and uski for any stage i, then exposure of hski can be emulated

372 T.L.A. Phan et al.

by using the responses to the Exposure queries. So, the security definition so far
given is sufficient as it is even against exposure of stage i helper keys for any i, if
we assume that such property holds. As a matter of fact, all of our constructions
satisfy this property.

2.3 Bilinear Maps

We give brief review of the bilinear maps. Throughout this paper, we let G1 and
G2 be two multiplicative cyclic groups of prime order q, and g be a generator of
G1. A bilinear map e : G1 ×G1 → G2 satisfies the following properties:

1. Bilinearity: For all u, v ∈ G1 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.
3. Computability: There is an efficient algorithm to compute e(u, v) for all
u, v ∈ G1.

Note that a bilinear map is symmetric since e(ga, gb) = e(gb, ga) = e(g, g)ab.

2.4 Complexity Assumptions

Here, we consider two complexity assumptions related to bilinear maps: the
Computational Bilinear Diffie-Hellman (CBDH) assumption and the Gap Bilin-
ear Diffie-Hellman (GBDH) assumption.

CBDH Assumption. The CBDH problem [2] in 〈G1,G2, e〉 is as follows: given
a tuple (g, ga, gb, gc) ∈ (G1)4 as input, output e(g, g)abc ∈ G2. An algorithm
Acbdh solves CBDH problem in 〈G1,G2, e〉 with the probability εcbdh if

Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc] ≥ εcbdh,

where the probability is over the random choice of generator g ∈ G1\{1}, the
random choice of a, b, c ∈ Zq and random coins consumed by Acbdh.

Definition 5. We say that the (tcbdh, εcbdh)-CBDH assumption holds in 〈G1,
G2, e〉 if no tcbdh-time algorithm has advantage of at least εcbdh in solving the
CBDH problem in 〈G1,G2, e〉.

GBDH Assumption. The GBDH problem in 〈G1,G2, e〉 is as follows: given a
tuple (g, ga, gb, gc) ∈ (G1)4 as input, output e(g, g)abc ∈ G2 with the help of a
decision BDH oracle O which for given (g, ga, gb, gc, T) ∈ (G1)4 × G2, answers
“true” if T = e(g, g)abc, or “false” otherwise [13]. An algorithm Agbdh solves
GBDH problem in 〈G1,G2, e〉 with the probability εgbdh if

Pr[AO
gbdh(g, ga, gb, gc) = e(g, g)abc] ≥ εgbdh,

where the probability is over the random choice of generator g ∈ G1\{1}, the
random choice of a, b, c ∈ Zq and random coins consumed by Agbdh.

Definition 6. We say that the (tgbdh, εgbdh)-GBDH assumption holds in 〈G1,
G2, e〉 if no tgbdh-time algorithm has advantage at least εgbdh in solving the
GBDH problem in 〈G1,G2, e〉.

Reducing the Spread of Damage of Key Exposures 373

3 Proposed Schemes

In this section, we propose our KwAH schemes and prove its security under
CBDH assumption in the random oracle model. Our schemes are reasonably
efficient since efficiency of our KwAH schemes can said to be comparable to [2].
In our schemes, we let N = O(poly(k)).

3.1 IND-ID-CPA Scheme

Let G1 and G2 be two groups of order q of size k, and g be a generator of G1. Let
e : G1 ×G1 → G2 be a bilinear map. Let G,H be cryptographic hash functions
G : G2 → {0, 1}n for some n, H : {0, 1}∗ → G1, respectively. The message space
is M = {0, 1}n. The KwAH1 scheme consists of the following algorithms:

KwAH1: IND-KE-CPA Construction

KeyGen: Given a security parameter k, KeyGen algorithm:
1. generates G1, G2, g and e.
2. picks s1, s2 ∈ Z∗

q uniformly at random, and sets h1 = gs1 and h2 = gs2 ,
3. chooses cryptographic hash functions G and H ,
4. computes d−1 = H(−1)s1 and d0 = H(0)s2 ,
5. outputs pk = 〈q,G1,G2, e, n, g, h1, h2, G,H〉, mk = s1, ak = s2 and
usk0 = d−1 · d0.

Δ-Gen: For given mk and i ∈ {1, 2, ..., N}, Δ-Gen algorithm:
1. outputs ⊥ if i = 0 mod �,
2. outputs hski = H(i− 1)−s1 ·H(i)s1 if i �= m · �+1 for some m (0 ≤ m ≤
n− 1),

3. outputs hski = H(i− 2)−s1 ·H(i)s1 if i = m · �+1 for some m (0 ≤ m ≤
n− 1).

For given ak and i ∈ {1, 2, ..., N}, Δ-Gen algorithm:
1. outputs ⊥ if i �= 0 mod �,
2. outputs hski = H(i− �)−s2 ·H(i)s2 otherwise.

Update: For given uski−1, hski and i, Update algorithm:
1. computes uski = uski−1 · hski,
2. deletes uski−1 and hski,
3. outputs uski.

Encrypt: For given pk, i, and a messageM ∈ {0, 1}n, assuming that m ·�+1 ≤
i ≤ (m + 1) · � for some m (0 ≤ m ≤ n− 1), Encrypt algorithm:
1. chooses random r ∈ Z∗

q ,
2. computes W = (e(h1, H(i)) · e(h2, H(m · �)))r if i �= (m + 1) · �,
3. computes W = (e(h1, H(i− 1)) · e(h2, H((m + 1) · �)))r if i = (m + 1) · �,
4. sets C = 〈i, gr, G(W)⊕M〉,
5. outputs C as a ciphertext.

Decrypt: For given pk, uski and C = 〈i, c0, c1〉, Decrypt algorithm:
1. computes W ′ = e(c0, uski),
2. computes M ′ = c1 ⊕G(W ′),
3. outputs M ′ as a plaintext.

374 T.L.A. Phan et al.

3.2 Security

Now, we prove that KwAH1 is IND-KE-CPA under the CBDH assumption. Here,
we briefly mention the technical hurdle for the security proof. Since we consider
adaptively chosen key exposure adversary, the simulator has to deal with var-
ious types of key exposures, i.e. mixture of mk, ak, and user secret keys, and
moreover, it does not know the adversary’s strategy before the simulation. Nev-
ertheless, the simulator must provide successful simulation. This makes the proof
complicated.

Theorem 1. Suppose (tcbdh, εcbdh)-CBDH assumption holds in 〈G1,G2, e〉 and
hash functions G and H are random oracles. Then, KwAH1 is (tkwah, εkwah)-
IND-KE-CPA secure as long as:

εkwah ≤
3qGN

2
εcbdh

tkwah ≤ tcbdh +Θ(τ(2qH + 3qE)),

where IND-KE-CPA adversary Akwah issues at most qH H-queries and qE Expo-
sure queries. Here, τ is the maximum time for computing an exponentiation in
G1,G2, and pairing e.

The proof of Theorem 1 is given in Appendix. Security of KwAH1 can also be
proven under GBDH assumption with a tighter security reduction.

Theorem 2. Suppose (tgbdh, εgbdh)-GBDH assumption holds in 〈G1,G2, e〉 and
hash functions G and H are random oracles. Then, KwAH1 is (tkwah, εkwah)-
IND-KE-CPA secure as long as

εkwah ≤
3N
2
εgbdh

tkwah ≤ tgbdh +Θ(τ(2qH + 3qE)),

where IND-KE-CPA adversary Akwah issues at most qH H-queries and qE Expo-
sure queries. Here, τ is the maximum time for computing an exponentiation in
G1,G2, and pairing e.

The proof of the theorem is similar to Theorem 1.

3.3 Strongly IND-KE-CPA Scheme

We can build a construction of a strongly IND-KE-CPA scheme KwAH2 by
only slightly modifying KwAH1. The KwAH2 scheme consists of the following
algorithms:

Reducing the Spread of Damage of Key Exposures 375

KwAH2: Strongly IND-KE-CPA Construction

KeyGen: Given a security parameter k, KeyGen algorithm does the same as
that of KwAH1 except that it:

2. picks random, s1, s2, s3 ∈ Z∗
q , and sets h1 = gs1s3 and h2 = gs2s3 ,

6. outputs pk = 〈q,G1,G2, e, n, g, h1, h2, G,H〉, mk = s1, ak = s2 and
usk0 = 〈ds3

−1 · ds3
0 , s3〉.

Δ-Gen: Same as in KwAH1.
Update: For given uski−1 = 〈usk′i−1, s3〉, hski and i, Update algorithm:

1. computes usk′i = usk′i−1 · hsks3
i ,

2. deletes usk′i−1 and hski,
3. outputs uski = 〈usk′i, s3〉.

Encrypt: Same as in KwAH1.
Decrypt: For given uski = 〈usk′i, s3〉 and C = 〈i, c0, c1〉, Decrypt algorithm

does the same as that of KwAH1 except that it:
1. computes W ′ = e(c0, usk′i).

The security proof of KwAH2 can be done similarly to KwAH1. Here we briefly
explain why both master keys, mk and ak, can be exposed and still guarantee
security. Since the plaintext M is perfectly hidden by G(e(gr, usk′i)), it is nec-
essary to compute e(gr, usk′i) to compromise the semantic security of KwAH2.
However, this is almost as difficult as the CBDH problem without knowing s3
even if the adversary knows both mk and ak. Hence, KwAH2 is more secure than
KwAH1 against exposure of master helper keys.

3.4 Chosen Ciphertext Secure Schemes

We can also construct chosen ciphertext secure KwAH schemes by extending
KwAH1 and KwAH2 with Fujisaki-Okamoto padding [9,10]. Especially, by apply-
ing it to KwAH2, we have a strongly IND-KE-CCA scheme which is the strongest
scheme amongst all our proposed KwAH schemes.

4 Conclusion

We presented in this paper a new KIPE schemes with improved helper key
security. Our schemes use two helper keys: the auxiliary helper key and the main
helper key. The auxiliary helper key is used to update less frequently while it is
stored safer than the main helper key. By using these two kinds of helper keys, the
system can be added more careful protection and the damage can be reduced
when the key exposure happens. Our schemes are proven to be semantically
secure in the random oracle model.

376 T.L.A. Phan et al.

References

1. R. Anderson, “Two remarks on public key cryptology,” Invited Lecture, ACM
CCCS’97, available at http://www.cl.cam.ac.uk/users/rja14/.

2. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
Proc. of Crypto’01, LNCS 2139, Springer-Verlag, pp.213-229, 2001.

3. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
SIAM J. of Computing, vol. 32, no. 3, pp.586-615, 2003 (full version of [2]).

4. M. Bellare and A. Palacio, “Protecting against key exposure: strongly key-
insulated encryption with optimal threshold,” available at http://eprint.iacr.
org/2002/064/.

5. R. Canetti, S. Halevi and J. Katz, “A forward secure public key encryption
scheme,” Proc. of Eurocrypt’03, LNCS 2656, Springer-Verlag, pp.255-271, 2003.

6. Y. Dodis, J. Katz, S. Xu and M. Yung, “Key-insulated public key cryptosystems,”
Proc. of Eurocrypt’02, LNCS 2332, Springer-Verlag, pp.65-82, 2002.

7. Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung, “Intrusion-resilient public-
key encryption,” Proc. of CT-RSA’03, LNCS 2612, Springer-Verlag, pp.19-32, 2003.

8. Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung, “A generic construction
for intrusion-resilient public-key encryption,” Proc. of CT-RSA’04, LNCS 2964,
Springer-Verlag, pp.81-98, 2004.

9. E. Fujisaki and T. Okamoto, “How to enhance the security of public-key encryption
at minimum cost,” Proc. of PKC’99, LNCS 1560, Springer-Verlag, pp.53-68, 1999.

10. E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric
encryption schemes,” Proc. of Crypto’99, LNCS 1666, Springer-Verlag, pp.537-554,
1999.

11. G. Hanaoka, Y. Hanaoka and H. Imai, “Parallel key-insulated public key encryp-
tion,” Proc. of PKC’06, LNCS 3958, Springer-Verlag, pp.105-122, 2006.

12. Y. Hanaoka, G. Hanaoka, J. Shikata and H. Imai, “Identity-based hierarchical
strongly key-insulated encryption and its application” Proc. of Asiacrypt’05, LNCS
3958, Springer-Verlag, pp.495-514, 2005.

13. T. Okamoto and D. Pointcheval, “The gap-problems: a new class of problems for
the security of cryptographic schemes,” Proc. of PKC’01, LNCS 1992, Springer-
Verlag, pp.104-118, 2001.

Appendix: Proof of Theorem 1

We show that we can construct an algorithm Acbdh that can solve the CBDH
problem in 〈G1,G2, e〉 by using an adversary Akwah that breaks IND-KE-CPA
security of our scheme. The algorithm Acbdh is given an instance 〈g, ga, gb, gc〉
in G1 from the challenger and tries to output e(g, g)abc using Akwah. Let g1 =
ga, g2 = gb, g3 = gc. The algorithm Acbdh works by interacting with Akwah in an
IND-KE-CPA game as follows:

Before we start the simulation, we let Acbdh flip a coin COIN ∈ {0, 1} such
that we have Pr[COIN = 0] = δ for some δ which we will determine later. If
COIN = 0, Acbdh simulates the responses to Akwah’s queries expecting that
Akwah will never submit 〈·, “main helper”〉 nor 〈·, “auxiliary helper”〉 as Expo-
sure query. If COIN = 1, Acbdh carries out the simulation expecting that Akwah

will submit 〈·, “main helper”〉 or 〈·, “auxiliary helper”〉.

Reducing the Spread of Damage of Key Exposures 377

If COIN = 0, Acbdh responses to Akwah’s queries will be as follows:

Setup: Acbdh picks a random s ∈ Z∗
q . Also, Acbdh gives Akwah the system

parameter

pk = 〈q,G1,G2, e, n, g, h1, h2, G,H〉,

where h1 = g1 and h2 = gs
1, and random oracles G,H are controlled by

Acbdh as described below.
G-queries: Akwah issues up to qG queries to the random oracle G. To respond

to these queries algorithm, Acbdh forms a list of tuples 〈W,x〉 as explained
below. We call this list Glist. The list is initially empty. When Akwah gives
Acbdh a query W to the oracle G, Acbdh responds as follows:
1. If the query W already appears on the Glist in a tuple 〈W,x〉, then

outputs G(W) = x.
2. Acbdh chooses a random x ∈ {0, 1}n.
3. Acbdh adds the tuple 〈W,x〉 to the Glist and outputs G(W) = x.

H-queries: Acbdh picks a random α ∈ {1, ..., N} in advance. Akwah issues up to
qH queries to the random oracle H . To respond to these queries algorithm,
Acbdh forms a list of tuples 〈i, ui, ri〉 as explained below. We call the list
Hlist. The list is initially empty. When Akwah gives Acbdh a query i to the
oracle H , Acbdh responds as follows:
1. If the query i already appears on the Hlist in a tuple 〈i, ui, ri〉, then

outputs H(i) = ui.
2. If i = α, Acbdh sets ui = g2 and rα = 0.
3. If i < α, Acbdh chooses a random ri ∈ Z∗

q and sets ui = gri .
4. If i > α, Acbdh chooses a random ri ∈ Z∗

q and sets ui = gz
2 · gri , where

– z = 1 if α = 0 mod � and i = 0 mod �,
– z = −s if α = 0 mod � and i �= 0 mod �,
– z = 1 if α = −1 mod � and i �= 0 mod �,
– z = −s−1 (s−1 is the inverse of s mod q) if α = −1 mod � and
i = 0 mod �,

– z = 0 otherwise,
5. Acbdh adds the tuple 〈i, ui, ri〉 to the Hlist and outputs H(i) = ui.

Challenge: Once algorithm Akwah decides that Phase 1 is over, it outputs a
target stage i∗ and two messagesM0,M1 on which it wishes to be challenged.
Algorithm Acbdh responds as follows:
1. Acbdh sets C∗ = 〈i∗, c∗0, c∗1〉 as c∗0 = g3 and c∗1 = μ where μ ∈R {0, 1}n.
2. Acbdh gives C∗ = 〈i∗, c∗0, c∗1〉 as the challenge ciphertext to Akwah.

Exposure queries: Akwah issues up to qE Exposure queries. WhenAkwah gives
a query 〈i, class〉, Acbdh responds as follows:
1. If class = “main helper” or “auxiliary helper”, Acbdh aborts the simu-

lation.
2. If i = α, Acbdh aborts the simulation.
3. Acbdh runs the algorithm for responding to H-queries to obtain 〈i, ui, ri〉

and 〈j, uj , rj〉, where j = i − 1 if i = 0 mod �, or j = L such that
i− � < L < i, L = 0 mod � otherwise.

378 T.L.A. Phan et al.

4. Acbdh sets uski = h
ri−1
1 ·hri

2 if i = 0 mod �, or uski = hri
1 ·hrL

2 otherwise.
Observe that uski is the user secret key corresponding to the stage i.
Especially, when i > α,

u
logg h1
i−1 · u

logg h2
i = (g−s

2 · gri−1)a · (g2 · gri)s·a = ga·ri−1 · gri·s·a = h
ri−1
1 hri

2

(if i = 0 mod �, α = 0 mod �)

= (g2 · gri−1)a · (g−s−1

2 · gri)s·a = ga·ri−1 · gri·s·a = h
ri−1
1 hri

2

(if i = 0 mod �, α = −1 mod �)

u
logg h2
L · u

logg h1
i = (g2 · grL)s·a · (g−s

2 · gri)a = gs·a·rL · gri·a = hrL
2 hri

1

(if i �= 0 mod �, α = 0 mod �)

= (g−s−1

2 · grL)s·a · (g2 · gri)a = gs·a·rL · gri·a = hrL
2 hri

1

(if i �= 0 mod �, α = −1 mod �)

5. Acbdh outputs uski to Akwah.
Guess: When Akwah decides that Phase 2 is over, Akwah outputs its guess bit

β′ ∈ {0, 1}. At the same time, algorithm Acbdh terminates the simulation.
Then, Acbdh picks a tuple 〈W,x〉 uniformly at random from the Glist, and
computes

T = (
W

e(g1, g3)rα−1
)s−1

if α = 0 mod �,

= (
W

e(g1, g3)s·rA
), (α− � < A < α, A = 0 mod �) otherwise.

Finally, Acbdh outputs T .

Claim 1. If i∗ = α and Acbdh does not abort, then Akwah’s view is identical to
its view in the real attack until Akwah submits W ∗ as a G-query, where

W ∗ = e(g1, g3)rα−1 · e(g, g)s·abc if α = 0 mod �,
= e(g1, g3)s·rA · e(g, g)abc otherwise.

We note that if i∗ = α,

e(g, g)abc = (
W ∗

e(g1, g3)rα−1
)s−1

if α = 0 mod �,

= (
W ∗

e(g1, g3)s·rA
) otherwise.

Proof. It is obvious that the responses to G are perfect. The responses to H
are also as in the real attack since each response is uniformly and indepen-
dently distributed in G1. Interestingly, the responses to Exposure queries are
perfect if Acbdh does not abort. Finally, we show that the response to Chal-
lenge is indistinguishable from the real attack until Akwah submits W ∗. Let the
response to Challenge be C∗ = 〈α, c∗0, c∗1〉. Then, c∗0 is uniformly distributed in
G1 due to random logg g3(= c), and therefore are as in the real attack. Also, since

Reducing the Spread of Damage of Key Exposures 379

c∗1 = Mβ ⊕ G(W ∗), it is information-theoretically impossible to obtain any in-
formation on Mβ unless Akwah asks G(W ∗).

Next, let us define by E1, an event assigned to be true if and only if i∗ = α.
Similarly, let us define by E2, an event assigned to be true if and only if a G-
query coincides with W ∗, and by Emsk, an event assigned to be true if and only
if an Exposure query coincides with 〈·, “main helper”〉 or 〈·, “auxiliary helper”〉.

Claim 2. We have that Pr[β′ = β|E1,¬Emsk] ≥ Pr[β′ = β|¬Emsk].

Proof. It is clear that∑
i∈{1,...,N}

Pr[β′ = β|i∗ = i,¬Emsk] Pr[i∗ = i|¬Emsk] = Pr[β′ = β|¬Emsk].

Since α is uniformly chosen from {1, ..., N} at random, we have

Pr[β′ = β|i∗ = α,¬Emsk]] Pr[i∗ = α|¬Emsk] ≥ 1
N

Pr[β′ = β|¬Emsk].

Therefore, we have Pr[β′ = β|E1,¬Emsk] ≥ Pr[β′ = β|¬Emsk], which proves the
claim.

Claim 3. We have that Pr[β′ = β|E1,¬E2,¬Emsk] = 1/2.

Proof. Let the response to Challenge be C∗ = 〈α, c∗0, c∗1〉. Since c∗1 = Mβ ⊕
G(W ∗), it is information-theoretically impossible to obtain any information on
Mβ without submittingW ∗ as aG-query. This implies thatAkwah’s best strategy
becomes a random guess if E2 is false. Hence, the claim is proven.

Claim 4. We have that

Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 0]

≥ 1
qGN

· Pr[E2|E1,¬Emsk] Pr[¬Emsk].

Proof. If i∗ = α, then e(g, g)abc can easily be calculated from W ∗, and W ∗ ap-
pears in Glist with probability Pr[E2]. Obviously, Pr[E2] ≥ Pr[E2, E1,¬Emsk] =
Pr[E2|E1,¬Emsk] Pr[E1|¬Emsk] Pr[¬Emsk] and Pr[E1|¬Emsk] = 1/N . Hence,
by choosing a tuple from Glist uniformly at random, Acbdh can correctly output
e(g, g)abc with probability of at least 1/qG · 1/N · Pr[E2|E1,¬Emsk] Pr[¬Emsk].

Finally, we calculate p0 := Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 0] from
the above claims. Letting γ := Pr[β′ = β|Emsk] − 1/2, from Claims 1, 2 and 3,
we have

380 T.L.A. Phan et al.

Pr[β′ = β] − 1
2

= Pr[β′ = β|¬Emsk] Pr[¬Emsk] + Pr[β′ = β|Emsk] Pr[Emsk] − 1
2

= Pr[β′ = β|¬Emsk](1 − Pr[Emsk]) + (
1
2

+ γ)Pr[Emsk] − 1
2

≤ Pr[β′ = β|E1, ¬Emsk](1 − Pr[Emsk]) + (
1
2

+ γ)Pr[Emsk] − 1
2

= (Pr[β′ = β|E1, E2, ¬Emsk] Pr[E2|E1, ¬Emsk]

+ Pr[β′ = β|E1, ¬E2, ¬Emsk] Pr[¬E2|E1, ¬Emsk])

·(1 − Pr[Emsk]) + (
1
2

+ γ) Pr[Emsk] − 1
2

≤ (Pr[E2|E1, ¬Emsk] +
1
2
(1 − Pr[E2|E1, ¬Emsk])) · (1 − Pr[Emsk])

+(
1
2

+ γ)Pr[Emsk] − 1
2

=
1
2

Pr[E2|E1, ¬Emsk] Pr[¬Emsk] + γ Pr[Emsk].

From Claim 4, we have

p0 ≥
2
qGN

(εkwah − γ Pr[Emsk]).

Next, we discuss for the COIN = 1 case. If COIN = 1, Acbdh responses to

Akwah’s queries as follows:

Setup: Acbdh picks random s ∈ Z∗
q and b ∈ {1, 2}. Let b̄ be 1 (resp. 2) if b = 2

(resp. 1). Also, Acbdh gives Akwah the system parameter

pk = 〈q,G1,G2, e, n, g, h1, h2, G,H〉,

where hb = g1 and hb̄ = gs (we expect that Akwah asks ak if b = 1, or mk
otherwise), and random oracles G,H are controlled by Acbdh as described
below.

G-queries: Akwah issues up to qG queries to the random oracle G. To respond
to these queries algorithm Acbdh forms a list of tuples 〈W,x〉 as explained
below. We call this list Glist. The list is initially empty. When Akwah gives
Acbdh a query W to the oracle G, Acbdh responds as follows:
1. If the query W already appears on the Glist in a tuple 〈W,x〉, then

outputs G(W) = x.
2. Acbdh chooses a random x ∈ {0, 1}n.
3. Acbdh adds the tuple 〈W,x〉 to the Glist and outputs G(W) = x.

H-queries: Acbdh picks a random α ∈ {1, ..., N} in advance. Akwah issues up to
qH queries to the random oracle H . To respond to these queries algorithm
Acbdh forms a list of tuples 〈i, ui, ri〉 as explained below. We call the list
Hlist. The list is initially empty. When Akwah gives Acbdh a query i to the
oracle H , Acbdh responds as follows:
1. If the query i already appears on the Hlist in a tuple 〈i, ui, ri〉, then

outputs H(i) = ui.

Reducing the Spread of Damage of Key Exposures 381

2. If i = α− 1, b = 1, and α = 0 mod �, Acbdh sets ui = g2 and ri = 0.
3. If i = α, b = 1, and α = −1 mod �, Acbdh sets ui = g2 and ri = 0.
4. If i = α, b = 1, α �= 0 mod �, and α �= −1 mod �, Acbdh sets ui = g2 and
ri = 0.

5. If i = α, and b = 2, Acbdh sets ui = g2 and ri = 0.
6. Else, Acbdh chooses a random ri ∈ Z∗

q and sets ui = gri .
7. Acbdh adds the tuple 〈i, ui, ri〉 to the Hlist and outputs H(i) = ui.

Challenge: Once algorithm Akwah decides that Phase 1 is over, it outputs a
target stage i∗ and two messagesM0,M1 on which it wishes to be challenged.
Algorithm Acbdh responds as follows:
1. Acbdh sets C∗ = 〈i∗, c∗0, c∗1〉 as c∗0 = g3 and c∗1 = μ where μ ∈R {0, 1}n.
2. Acbdh gives C∗ = 〈i∗, c∗0, c∗1〉 as the challenge ciphertext to Akwah.

Exposure queries: Akwah issues up to qE Exposure queries. WhenAkwah gives
a query 〈i, class〉, Acbdh responds as follows:
1. If b = 1 and class = “main helper”, Acbdh aborts the simulation.
2. If b = 1 and class = “auxiliary helper”, Acbdh returns s to Akwah.
3. If b = 2 and class = “main helper”, Acbdh returns s to Akwah.
4. If b = 2 and class = “auxiliary helper”, Acbdh aborts the simulation.
5. If i = α and class = “user”, Acbdh aborts the simulation.
6. If i = α− 1, class = “user”, b = 1 and α = 0 mod �, Acbdh aborts the

simulation.
7. If A ≤ i < A+ �, class = “user”, and b = 2, where A ≤ α < A+ � and
A = 0 mod �, Acbdh aborts the simulation.

8. Else1, Acbdh runs the algorithm for responding to H-queries to obtain
〈i, ui, ri〉 and 〈j, uj , rj〉, where j = i − 1 if i = 0 mod �, or j = L such
that i− � < L < i, L = 0 mod � otherwise.

9. Acbdh sets uski = h
ri−1
1 ·hri

2 if i = 0 mod �, or uski = hri
1 ·hrL

2 otherwise.
10. Acbdh outputs uski to Akwah.

Guess: When Akwah decides that Phase 2 is over, Akwah outputs the guess bit
β′ ∈ {0, 1}. At the same time, algorithm Acbdh terminates the simulation.
Then, Acbdh picks a tuple 〈W,x〉 uniformly at random from the Glist, and
computes

T = W · e(g, g3)−s·rα if b = 1 and α = 0 mod �,
= W · e(g, g3)−s·rα−1 if b = 2 and α = 0 mod �,
= W · e(g, g3)−s·rA otherwise.

Finally, Acbdh outputs T .

Claim 5. If i∗ = α and Acbdh does not abort, then Akwah’s view is identical to
its view in the real attack until Akwah submits W ∗ as a G-query, where

W ∗ = e(g, g3)s·rα · e(g, g)abc if b = 1 and α = 0 mod �,
= e(g, g3)s·rα−1 · e(g, g)abc if b = 2 and α = 0 mod �,
= e(g, g3)s·rA · e(g, g)abc otherwise.

1 Notice that in this case, class is always “user”.

382 T.L.A. Phan et al.

We note that if i∗ = α,

e(g, g)abc = W ∗ · e(g, g3)−s·rα if b = 1 and α = 0 mod �,
= W ∗ · e(g, g3)−s·rα−1 if b = 2 and α = 0 mod �,
= W ∗ · e(g, g3)−s·rA otherwise.

Proof. It is obvious that the responses to G are perfect. The responses to H are
also as in the real attack since each response is uniformly and independently
distributed in G1. The responses to Exposure queries are perfect if Acbdh does
not abort. Finally, we show that the response to Challenge is indistinguishable
from the real attack until Akwah submits W ∗. Let the response to Challenge
be C∗ = 〈α, c∗0, c∗1〉. Then, c∗0 is uniformly distributed in G1 due to random
logg g3(= c), and therefore are as in the real attack. Also, since c∗1 =Mβ⊕G(W ∗),
it is information-theoretically impossible to obtain any information onMβ unless
Akwah asks G(W ∗).

Next, let us define by E3, an event assigned to be true if and only if i∗ = α.
Similarly, let us define by E4, an event assigned to be true if and only if a G-query
coincides withW ∗, by E5, an event assigned to be true if and only if an Exposure
query coincides with 〈·, “main helper”〉 if b = 1 or 〈·, “auxiliary helper”〉 if b = 2,
and by Emsk, an event assigned to be true if and only if an Exposure query
coincides with 〈·, “main helper”〉 or 〈·, “auxiliary helper”〉. Notice that Emsk is
identical to that in the case of COIN = 0.

Claim 6. We have that Pr[β′ = β|E3,¬E5, Emsk] ≥ Pr[β′ = β|Emsk].

Proof. It is clear that∑
i∈{1,...,N}

Pr[β′ = β|i∗ = i, ¬E5, Emsk] Pr[i∗ = i|¬E5, Emsk] = Pr[β′ = β|¬E5, Emsk].

Since α is uniformly chosen from {1, ..., N} at random, we have

Pr[β′ = β|i∗ = α,¬E5, Emsk] Pr[i∗ = α|¬E5, Emsk] ≥ 1
N

Pr[β′ = β|¬E5, Emsk].

Therefore, we have Pr[β′ = β|E3,¬E5, Emsk] ≥ Pr[β′ = β|¬E5, Emsk].
Due to Pr[β′ = β|¬E5, Emsk] = Pr[β′ = β|E5, Emsk], we finally have

Pr[β′ = β|E3,¬E5, Emsk] ≥ Pr[β′ = β|Emsk].

Claim 7. We have that Pr[β′ = β|E3,¬E4,¬E5, Emsk] = 1/2.

Proof. Let the response to Challenge be C∗ = 〈α, c∗0, c∗1〉. Since c∗1 = Mβ ⊕
G(W ∗), it is information-theoretically impossible to obtain any information on
Mβ without submittingW ∗ as aG-query. This implies thatAkwah’s best strategy
becomes a random guess if E4 is false. Hence, we have the claim proven.

Reducing the Spread of Damage of Key Exposures 383

Claim 8. We have that

Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 1]

≥ 1
2qGN

· Pr[E4|E3,¬E5, Emsk] Pr[Emsk].

Proof. If i∗ = α, then e(g, g)abc can easily be calculated from W ∗, and W ∗

appears in Glist with probability Pr[E4]. Obviously, we have

Pr [E4] ≥ Pr[E4, E3,¬E5, Emsk]
= Pr[E4|E3,¬E5, Emsk] Pr[E3|¬E5, Emsk] Pr[¬E5, Emsk]

Furthermore, Pr[E3|¬E5, Emsk] = 1/N , and Pr[¬E5, Emsk] = 1/2 · Pr[Emsk].
Hence, by choosing a tuple from Glist uniformly at random, Acbdh can correctly
output e(g, g)abc with probability of at least

1/qG · 1/N · 1/2 · Pr[E4|E3,¬E5, Emsk] Pr[Emsk]

Finally, we calculate p1 := Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc|COIN = 1] from
the above claims. Letting η := Pr[β′ = β|¬Emsk]− 1/2, from Claims 5, 6 and 7,
we have

Pr [β′ = β] − 1
2

= Pr[β′ = β|¬Emsk] Pr[¬Emsk] + Pr[β′ = β|Emsk] Pr[Emsk] − 1
2

= (
1
2

+ η)Pr[¬Emsk] + Pr[β′ = β|Emsk](1 − Pr[¬Emsk]) − 1
2

≤ (
1
2

+ η)Pr[¬Emsk] + Pr[β′ = β|E3, ¬E5, Emsk](1 − Pr[¬Emsk]) − 1
2

= (
1
2

+ η)Pr[¬Emsk] + (Pr[β′ = β|E3, E4, ¬E5, Emsk] Pr[E4|E3, ¬E5, Emsk]

+Pr[β′ = β|E3, ¬E4, ¬E5, Emsk] Pr[¬E4|E3, ¬E5, Emsk]) · (1 − Pr[¬Emsk]) − 1
2

≤ (
1
2

+ η)Pr[¬Emsk] +

(Pr[E4|E3, ¬E5, Emsk] +
1
2
(1 − Pr[E4|E3, ¬E5, Emsk])) · (1 − Pr[¬Emsk]) − 1

2

=
1
2

Pr[E4|E3, ¬E5, Emsk] Pr[Emsk] + η Pr[¬Emsk].

From Claim 8, we have

p1 ≥
1
qGN

(εkwah − ηPr[¬Emsk]).

Claim 9. We have that εkwah ≥ γ Pr[Emsk] + ηPr[¬Emsk].

Proof. By the definitions of γ and η, we have γ + 1/2 = Pr[β′ = β|Emsk] and
η + 1/2 = Pr[β′ = β|¬Emsk], and consequently,

384 T.L.A. Phan et al.

εkwah +
1
2
≥ Pr[β′ = β] = (γ +

1
2
) Pr[Emsk] + (η +

1
2
) Pr[¬Emsk].

Hence, we have εkwah ≥ γ Pr[Emsk] + η Pr[¬Emsk], which proves the claim.

Now, we calculate εcbdh := Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc]. From Claim 9,
we have

εcbdh = δ · p0 + (1− δ) · p1

≥ δ(2
qGN

(εkwah − γ Pr[Emsk])) + (1 − δ)(1
qGN

(εkwah − ηPr[¬Emsk]))

≥ δ(2
qGN

(εkwah − γ Pr[Emsk])) + (1 − δ)(1
qGN

γ Pr[Emsk])

≥ 1
qGN

(2δεkwah + (1− 3δ)γ Pr[Emsk])

By letting δ = 1/3, we finally have εcbdh ≥ 2
3qGN εkwah.

From the above discussions, we can see that the claimed bound of the running-
time of Acbdh holds. This completes the proof of the theorem. �

Author Index

Abe, Masayuki 157
Aoki, Kazumaro 147
Avanzi, Roberto 131

Bohli, Jens-Matthias 298, 322

Chang, Donghoon 286
Chen, Xiaofeng 67
Chow, Sherman S.M. 175

Delerablée, Cécile 193

Ghodosi, Hossein 312
Glas, Benjamin 322
Gouget, Aline 1

Hanaoka, Goichiro 366
Hanaoka, Yumiko 366
Hong, Deukjo 260, 286
Hong, Seokhie 260, 286
Hoshino, Fumitaka 147
Huang, Jianyong 271

Imai, Hideki 366

Jeong, Kitae 260

Kanayama, Naoki 115
Kim, Jaeheon 260
Kobayashi, Tetsutaro 147
Kunihiro, Noboru 115, 243

Lee, Eunjin 286
Lee, Sangjin 260
Lenstra, Arjen K. 229
Lim, Jongin 286

Manabe, Yoshifumi 337
Matsuura, Kanta 366

Monnerat, Jean 19
Mu, Yi 67

Naito, Yusuke 243
Nguyen, Lan 81
Nishimaki, Ryo 337

Ohkubo, Miyako 157
Ohta, Kazuo 115, 243
Okamoto, Tatsuaki 50, 337

Page, Daniel 229
Patarin, Jacques 1
Phan, Duong Hieu 354
Phan, Thi Lan Anh 366
Pieprzyk, Josef 312
Pointcheval, David 193

Robshaw, M.J.B. 37
Rogaway, Phillip 211

Santoso, Bagus 115
Sasaki, Yu 243
Scott, Mike 99
Seberry, Jennifer 271
Shimoyama, Takeshi 243
Sica, Francesco 131
Stam, Martijn 229
Steinwandt, Rainer 298, 322
Sung, Jaechul 260
Susilo, Willy 67, 175, 271

Vaudenay, Serge 19

Whelan, Claire 99

Yajima, Jun 243
Yuen, Tsz Hon 175

Zhang, Fangguo 67

	Frontmatter
	Signatures and Lightweight Cryptography
	Probabilistic Multivariate Cryptography
	Short 2-Move Undeniable Signatures
	Searching for Compact Algorithms: {\sc cgen}

	Invited Talk
	On Pairing-Based Cryptosystems

	Pairing-Based Cryptography
	A New Signature Scheme Without Random Oracles from Bilinear Pairings
	Efficient Dynamic {\itshape k}-Times Anonymous Authentication
	Side Channel Analysis of Practical Pairing Implementations: Which Path Is More Secure?

	Algorithmic Number Theory
	Factorization of Square-Free Integers with High Bits Known
	Scalar Multiplication on Koblitz Curves Using Double Bases
	Compressed Jacobian Coordinates for OEF

	Ring Signatures and Group Signatures
	On the Definition of Anonymity for Ring Signatures
	Escrowed Linkability of Ring Signatures and Its Applications
	Dynamic Fully Anonymous Short Group Signatures

	Hash Functions
	Formalizing Human Ignorance
	Discrete Logarithm Variants of VSH
	How to Construct Sufficient Conditions for Hash Functions

	Cryptanalysis
	Improved Fast Correlation Attack on the Shrinking and Self-shrinking Generators
	On the Internal Structure of {\sc Alpha}-MAC
	A Weak Key Class of XTEA for a Related-Key Rectangle Attack

	Key Agreement and Threshold Cryptography
	Deniable Group Key Agreement
	An Ideal and Robust Threshold RSA
	Towards Provably Secure Group Key Agreement Building on Group Theory

	Public-Key Encryption
	Universally Composable Identity-Based Encryption
	Traitor Tracing for Stateful Pirate Decoders with Constant Ciphertext Rate
	Reducing the Spread of Damage of Key Exposures in Key-Insulated Encryption

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

