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Preface

Object recognition —or, in a broader sense, scene understanding— is the ulti-
mate scientific challenge of computer vision: After 40 years of research, robustly
identifying the familiar objects (chair, person, pet), scene categories (beach, for-
est, office), and activity patterns (conversation, dance, picnic) depicted in family
pictures, news segments, or feature films is still far beyond the capabilities of to-
day’s vision systems. On the other hand, truly successful object recognition and
scene understanding technology will have a broad impact in application domains
as varied as defense, entertainment, health care, human–computer interaction,
image retrieval and data mining, industrial and personal robotics, manufactur-
ing, scientific image analysis, surveillance and security, and transportation.

Although research in computer vision for recognizing 3D objects in pho-
tographs dates back to the 1960s, progress has been relatively slow and only
now do we see the emergence of effective techniques for recognizing object cate-
gories with different appearances under large variations in the observation con-
ditions. While much of the early work relied almost exclusively on geometric
methods, modern recognition techniques are appearance-based, in which meth-
ods from standard statistical pattern recognition are applied to image descrip-
tors. Tremendous progress has been achieved in the past five years, thanks in
large part to the integration of new data representations, such as invariant semi-
local features, developed in the computer vision community with the effective
models of data distribution and classification procedures developed in the sta-
tistical machine-learning community.

This book exemplifies this progress. It is the outcome of two workshops that
were held in Taormina in 2003 and 2004, and brought together about 40 promi-
nent vision and machine-learning researchers interested in the fundamental and
applicative aspects of object recognition, as well as representatives of industry.
The main goals of these two workshops were (1) to promote the creation of an
international object recognition community, with common datasets and evalu-
ation procedures, (2) to map the state of the art and identify the main open
problems and opportunities for synergistic research, and (3) to articulate the
industrial and societal needs and opportunities for object recognition research
worldwide.

These concerns are reflected in this book. Collecting all the workshops’ con-
tributions into a single book would have been impossible. We chose instead to
select a relatively small number of papers that illustrate the breadth of today’s
object recognition research and the arsenal of techniques at its disposal and that
discuss current achievements and outstanding challenges.

The book is divided into five parts. Each part includes a series of chapters
written by contributors to the workshops. Most of the chapters are descriptions
of technical approaches, intended to capture the current state of the art. Some
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of the chapters are of a tutorial nature. They cover fundamental building blocks
for object recognition techniques.

Part I of the book introduces general background material on the state of
object recognition research. We begin with a review of the history of the field,
which sets the stage for the more recent developments reported later in the book.
We then discuss the need for consistent evaluation procedures and common, chal-
lenging, datasets. This is a crucial aspect since, as the field matures, systematic
evaluation of the different approaches becomes increasingly important. We con-
clude Part I with a discussion of the industrial needs and opportunities. As we
shall see, the technology has matured to a point at which exciting applications
are becoming possible.

Part II focuses on recognizing specific objects, an area where significant
progress has occurred over the past five years. This is in part due to the ad-
vent of effective techniques for detecting and describing image patches with a
controlled degree of invariance, together with efficient matching and indexing
algorithms that exploit both local appearance models and powerful global geo-
metric constraints arising from perspective imaging. As demonstrated by the five
chapters making up this part of the book, reliable methods for localizing specific
objects in photographs and video clips despite occlusion, clutter, and changes in
viewpoint are now available.

Part III of the book attacks the difficult problem of category-level object
recognition. In the methods described in these chapters, object categories are
represented by collections of image patches (fixed image windows or invariant
patches such as those used in Part II), potentially augmented with weak spatial
layout constraints. The emphasis is on the generative or discriminative tech-
niques used to learn the distribution of these features and their relationships,
and subsequently used to classify the image instances.

Part IV investigates part-based object models that incorporate stronger struc-
tural components in the form of explicit geometric constraints, or tree-structured
part assemblies, for example. The emphasis there is on the definition and identi-
fication of parts as well as on efficient algorithms for detecting object instances
as part assemblies in images.

Finally, Part V of the book is concerned with classifying the image pixels
into object foreground vs background (as opposed to simply detecting an object
instance). As shown in the chapters making up this part, this process leads to a
new, well-posed view of image segmentation incorporating both bottom-up and
top-down interpretation processes.

This book is a testimony to the amazing progress achieved in object recognition
research in the past five years. But much remains to be done: We can now recognize
a limited number of categories in constrained settings (e.g., from particular view-
points). However, understanding an image or video still remains an open problem.
We must also improve current datasets and evaluation criteria to avoid toy prob-
lems and to allow meaningful comparisons (see the chapter on “Datasets” in Part
I, for more on this issue). Further, category-level object recognition is today essen-
tially viewed as a statistical pattern matching problem. The emphasis is in general
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on the features defining the patterns and the machine-learning techniques used to
learn and recognize them, rather than on the representation of object, scene, and
activity categories or the integrated interpretation of the various scene elements.
Future progress will require explicitly addressing the representational issues in-
volved in object recognition and, more generally, scene understanding. Contextual
issues and hierarchical, incremental learning of a large number of categories must
also be addressed. Exciting times lie ahead.

Acknowledgments. The two workshops were supported in part by the National
Science Foundation under grant IIS-0335780, DARPA, the Institut National de la
Recherche en Informatique et Automatique, the PASCAL European Network of
Excellence IST-2002-506778, France Telecom, General Electric, Intel, Lockheed
Martin, Microsoft Research, Toyota, and Xerox.

October 2006 Jean Ponce
Martial Hebert

Cordelia Schmid
Andrew Zisserman
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Object Recognition in the Geometric Era:
A Retrospective

Joseph L. Mundy

Division of Engineering,
Brown University

Providence, Rhode Island
mundy@lems.brown.edu

Abstract. Recent advances in object recognition have emphasized the
integration of intensity-derived features such as affine patches with asso-
ciated geometric constraints leading to impressive performance in com-
plex scenes. Over the four previous decades, the central paradigm of
recognition was based on formal geometric object descriptions with a
focus on the properties of such descriptions under perspective image for-
mation. This paper will review the key advances of the geometric era
and investigate the underlying causes of the movement away from for-
mal geometry and prior models towards the use of statistical learning
methods based on appearance features.

1 Introduction

Object recognition by computer has been an active area of research for nearly
five decades. For much of that time, the approach has been dominated by the
discovery of analytic representations ( models ) of objects that can be used to
predict the appearance of an object under any viewpoint and under any condi-
tions of illumination and partial occlusion. The expectation is that ultimately a
representation will be discovered that can model the appearance of broad object
categories and in accordance with the human conceptual framework so that the
computer can “tell” what it is seeing.

Advantages of Geometric Description. From the earliest attempts at recog-
nition, geometric representations have dominated the development of the theory
and resulting algorithms and systems. There are a number of reasons why geom-
etry has played such a central role.

– Invariance to viewpoint - Geometric object descriptions allow the projected
shape of an object to be accurately predicted under perspective projection.

– Invariance to illumination - recognizing geometric descriptions from images
can be achieved using edge detection and geometric boundary segmentation.
Such descriptions are reasonably invariant to illumination variations.

– Well developed theory - geometryhas been under active investigationby math-
ematicians for thousands of years. The geometric framework has achieved
a high degree of maturity and effective algorithms exist for analyzing and
manipulating geometric structures.

J. Ponce et al. (Eds.): Toward Category-Level Object Recognition, LNCS 4170, pp. 3–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



4 J.L. Mundy

– Man-made objects - a large fraction of manufactured objects are designed
using computer-aided design (CAD) models and therefore are naturally de-
scribed by primitive geometric elements, such as planes and spheres. More
complex shapes are also represented with simple geometric descriptions, such
as a triangular mesh or polynomial patches.

There are, of course, deficiencies of the geometric approach to recognition, but
the discussion of such limitations will be postponed until after a review of the
broad sweep of geometric recognition research over the last four decades.

2 The Beginning

In the 1950s and early 1960s ideas from signal processing and detection the-
ory, such as autocorrelation and template matching, were exploited to form the
first object recognition systems. Much of the research focus was on 2-d pattern
classification applications such as character recognition, fingerprint analysis and
microscopic cell classification. These early decades were dominated by methods
of statistical pattern recognition and perception classifiers based on parametric
learning. Even so, the features used in these classification schemes were often
derived from geometric descriptions. For example, an early approach [34] (1962)
to the definition of features for character recognition was based on geometric
invariance using moments. Geometric invariance will re-appear as a major re-
search thrust in the early 1990s, three decades later. This example illustrates
that recognition ideas are continually re-visited as computational power and
feature segmentation methods advance.

2.1 The Blocks World

The dependence on statistics and signal methods rapidly gave way to the theme
of artificial intelligence, coined by Marvin Minsky and John McCarthy around
1956. The new approach focussed on establishing a theoretical framework for
cognitive tasks, such as vision, where computers could carry out the necessary
reasoning using formal logic and other mathematical tools. The plan was to
start with a simplification of the world so that the mathematical models can
apply rigorously and to solve the resulting recognition problem completely before
proceeding to more difficult situations.

For the computer vision problem, this simplification is called the blocks world
where objects are restricted to polyhedral shapes on a uniform background.
Polyhedra have simple and easily represented geometry and the projection of
polyhedra into images under perspective can be straightforwardly modeled with
a projective transformation. Under this projection, lines in 3-d map to lines in
2-d and polyhedral faces project to polygons. The goal is to be able to recog-
nize general polyhedral shapes in an arbitrary spatial arrangement including
significant occlusion of one object by itself or others.

The blocks world framework dominated the vision research agenda for over
a decade before it was abandoned to tackle more realistic scenes. It is not that
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all the problems of recognizing polyhedral objects and structures made up of
polyhedra were definitively and completely solved. Instead it became clear that
too many assumptions were being made in recognition strategies that could not
be expected to hold in real world scenes. This tension between the desire for
a sound theoretical basis for recognition and the ability to confront the com-
plexities of recognizing complex objects such as trees and the human form, will
re-immerge repeatedly during the geometric era.

2.2 Roberts and the Blocks World

Perhaps the most complete and powerful recognition system of the blocks world
was that of L. G. Roberts [64]. Roberts’ recognition algorithm exhibited most of

Fig. 1. A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b)A blocks
world scene. c)Detected edges using a 2x2 gradient operator. d) A 3-d polyhedral
description of the scene, formed automatically from the single image. e) The 3-d scene
displayed with a viewpoint different from the original image to demonstrate its accuracy
and completeness. (b) - e) are taken from [64] with permission MIT Press.)

the steps that are still followed today, some four decades later. He carefully con-
sidered how polyhedra project into perspective images and established a generic
library of polyhedral components that could be assembled into a composite struc-
ture. His philosophy towards recognition is defined by the quote, ‘... we shall
assume that the objects seen could be constructed out of parts with which we



6 J.L. Mundy

are familiar. That is, either the whole object is a transformation (projection 1)
of a preconceived model, or else it can be broken into parts that are. ... The only
requirement is that we have a complete description of the three-dimensional
structure of each model.’

Roberts developed his own edge detector and line fitting algorithms along with
feature grouping heuristics appropriate for polyhedral projections. The feature
grouping formed hypotheses for 3-d polyhedral vertices and edges that were
validated by solving for the associated projective camera model parameters.
Interestingly, his linear resection algorithm is still used to initialize non-linear
solvers in modern camera calibration methods. The result of these steps is shown
in Figure 1 where the final extracted scene is displayed from a different viewpoint
in order to demonstrate the accuracy and completeness of the recognition result.

The constraints of polyhedral scenes were exploited in many different ways in-
cluding the powerful approach of constraint labeling initiated by Adolfo Guzmán
[30] and fully exploited by David Waltz [81] and others [20,35,47]. In this work,
the local constraints of the polyhedral vertices and edges can be propagated to
neighboring vertices while ruling out multiple interpretations of the convexity
and occluding state of projected boundaries. These ideas were later put on a
fully algebraic basis by Kokichi Sugihara [76].

The culmination of the blocks world effort was the MIT copy demo [84]. The
demo consisted of a robot observing a designed structure of polyhedral blocks
and then recreating a copy of the structure from a pile of unordered blocks.
This task required recognition as well as an analysis of stability and hand-eye
coordination. A similar achievement for a recognition system of the modern era
does not come readily to mind.

What the Blocks World Didn’t Confront. The blocks world avoided nu-
merous difficulties such as:

– curved surfaces and boundaries;
– articulated and moving objects;
– occlusion by unknown shapes;
– complex background and 3-d texture such as foliage;
– specular or mutually illuminating surfaces;
– multiple light sources and remote shadowing;
– transparent or translucent surfaces.

The blocks world was extended in various ways to begin coping with these con-
ditions. An early exploration of the issues that arise in the recognition of generic
curved objects was carried out by Guzmán [31]. His approach is illustrated in
Figure 2. This work can be seen as an extension of the blocks world philoso-
phy. By restricting the problem to line drawings, many of the difficult scene
rendering issues can be avoided and research can focus on what happens when
curved surfaces intersect and occlude and where generic objects categories can
exhibit a wide range of composite parts. For example, in Figure 2 c) there can be

1 Added for clarification within the quoted context.
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Fig. 2. A system for recognizing 2-d curved objects in line drawings. a) A. Guzmán in
1964. b) The feature analysis of a line drawing. c) A set of parts that can be used to
describe generic curved objects. (b) and c) are taken from [31] with permission.)

many types of pants legs, with and without creases and highly variable geometric
relations between such parts.

In spite of this innovative use of parts and constraint relations to enable the
recognition of objects in more real-world scenes, the restriction to ideal line
drawings seemed too far away from the real vision problem to build to a major
focus of the recognition community. Instead, a new geometric representation was
discovered that offered a way to extend the blocks world to composite curved
shapes in 3-d - the generalized cylinder.

3 Binford and the World of Generalized Cylinders

The next major advance in representations for recognition was the generalized
cylinder (GC) originated by Thomas Binford [8]. The key insight is that many
curved shapes can be expressed as a sweep of a variable cross section along a
curved axis. Issues such as self-intersection and surface singularities do arise but
shapes like a coffee pot or cup are easily handled. An example of automatically
extracting an object description using generalized cylinders is shown in Figure 3.
This example was taken from the work of Gerald Agin [2], a Binford student at
Stanford. Agin developed a structured light range camera and used generalized
cylinders to model various curved shapes, such as dolls.

The recognition of simple curved 3-d objects, such as a hammer, based on
the Agin range camera and generalized cylinder components was carried out at
the same time by another Binford student, Ram Nevatia [56,57]. Nevatia has
maintained a long-term commitment to the generalized cylinder representation
and has pursued recovery and recognition of GC objects from intensity images
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as a major research goal. An example of Nevatia’s later work some two decades
later on GC part decomposition for object recognition is shown in Figure 4 [85].
This result is quite an achievement given the relatively weak evidence for GC
part boundaries and interfaces in the image.

Fig. 3. The representation of objects by assemblies of generalized cylinders. a) Thomas
Binford. b) A range image of a doll. c) The resulting set of generalized cylinders. ( b)
and c) are taken from Agin [1] with permission.)

3.1 ACRONYM

Another Binford student, Rodney Brooks, developed a recognition system based
on symbolic geometric constraints on objects composed of GC parts [13]. The sys-
tem could essentially prove theorems concerning the existence of a parameterized
GC configuration with associated tolerances. The system was called ACRONYM
to avoid deriving a contrived name for the system, since ACRONYM is cleverly
self-referential 2. The Defense Advanced Projects Agency (DARPA) and the Cen-
tral Intelligence Agency (CIA) established a classified project to use ACRONYM
to recognize targets such as submarines as illustrated in Figure 5. The goal was
to assist strategic intelligence analysts that monitor military installations using
aerial photography. The project, called SCORPIUS, was designed to exploit var-
ious parallel computing architectures developed by DARPA in conjunction with
the Strategic Computing Program (1983-1993) [65]. Since the SCORPIUS pro-
gram was classified, it is not clear how effectively the ACRONYM recognition
2 Binford’s next generation system was called SUCCESSOR [9], thus eliminating the

need for any future acronyms.
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Fig. 4. Recognition by generalized cylinder parts. a) Ram Nevatia. b) An intensity
image of a coffee pot. c) Automatically grouped and classified GC parts. (b) and c) are
taken from [85] with permision.)

Fig. 5. The SCORPIUS project. a) A submarine at dock. b)An ACRONYM generalized
cylinder model for the scene in a).

system performed. The results must have been encouraging enough since a new
project, called RADIUS, was launched in 1993 with similar application goals [25].
However, the emphasis of RADIUS was on change detection and automated 3-d
modeling from imagery rather than recognition.

4 Aspects

The early period of object recognition research was based solidly on the premise
that objects live in 3-d space and the 3-d structure can account for all the changes
in appearance that arise from viewpoint changes. There was not much interest
in explaining image intensity variations except for the early work by Horn [33].
The rationale was that objects can be recognized from their outlines and inte-
rior intensity discontinuity boundaries and that these features can be reliably
recovered without requiring an in-depth understanding of reflectance and image
intensity formation. This framework is known as object-centered representation.
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An alternative representational scheme arose in the 1970s based on a network
of the distinct 2-d views of an object, called an aspect graph. The pioneering work
in this area was by Stephen Underwood and Clarence Coates [80], Jan Koen-
derink and Andrea Van Doorn [39] and Indranil Chakravarty [17]. A graphical
representation of a set of 2-d views of a polyhedral shape is shown in Figure 6, as
described in [80]. The idea of pre-compiling 2-d views into an efficient recognition
plan was also developed by Chris Goad [27], who viewed recognition planning as
a form of automatic computer programming. Repeated view calculations should
be pre-compiled off-line to achieve high performance during recognition runtime
processing. Later the computation of aspect graphs was extended to general-
ized cylinders by Jean Ponce and David Kriegman [41]. In general, the graph of

Aspect 2

Aspect 1

1

5

3

2

4

5

7

4

6

3

1

2

4

7

5

6

Fig. 6. Two views of a polyhedral solid. The adjacency of projected polygonal faces
forms a graph. The view-based description is learned by associating new view structures
with the existing graph. The figure is similar to one from [80].

related object views is called an aspect graph. The nodes of the graph represent
object views that are adjacent to each other on the unit sphere of viewing di-
rections but differ in some significant way. The most common view relationship
in aspect graphs is based on the topological structure of the view, i.e., edges in
the aspect graph arise from transitions in the graph structure relating vertices,
edges and faces of the projected object.

The aspect graph representation gained a lot of momentum with resonance
from the psycho-physics community where some researchers embraced the no-
tion that human vision is view-based rather than object centered [77]. The hope
was that visual aspects, compiled from 3-d models, or learned from example
images could enable an efficient recognition strategy by guiding the search for
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image features. The family of deformable generalized cylinder parts called geons
were introduced by Irving Biederman [7] who demonstrated that human object
recognition can be characterized by the presence or absence of geons in the 3-d
scene. Sven Dickinson, Sandy Pentland and Azriel Rosenfeld developed an aspect
graph formulation of geon primitives for the recognition of 3-d objects [22].

The formal goal of precise computation of aspect graphs encountered some
major difficulties in the 1990s. It was shown by Harry Plantinga and Charles
Dyer [60] that under perspective viewing that the size of polyhedral aspect
graphs can grow as rapidly as n9. For curved surfaces, the complexity is dra-
matically greater. Sylvain Petitjean [59] found that the complexity of the aspect
graph of algebraic surfaces is on the order of d18, where d is the degree of the
surface. This complexity arises since there are many small scale transitions that
are topologically significant but may not be relevant for object recognition. Since
the viewing distance is not known in advance, it is difficult to say what topo-
logical events are important and therefore the aspect graph enterprise becomes
application specific.

The example of Figure 7 provides a clear illustration of this issue and was
used in a debate heralding the end of substantial research on the formal aspect
graph [23]. The dimples on the golf ball introduce intractable complexity to
the graph representation but are not of individual significance in an effective
description of the object class. More recently, Ben Kimia has formulated an

Fig. 7. The problem of scale for the aspect graph representation. a) A golf ball seen
from a large viewing distance. b) The same ball from a close viewpoint. Each dim-
ple generates a combinatorial explosion of occlusion events with respect to the other
dimples.

aspect graph based on the geometric similarity of object views as measured by
elastic deformation [21]. While this approach avoids the polynomial explosion of
views based on topological details, the problem of scale still persists.
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5 The Era of Pessimism

The early geometric period was founded on the notion that bottom-up bound-
ary descriptions could be formed from single intensity views of an object. This
process, later to be called perceptual grouping [48,45,69] presented some difficult
problems such as:

– low contrast image intensity at boundaries;
– background clutter with high edge density;
– occlusion by objects with complex texture.

As an example of the first point, an image of a polyhedral edge will exhibit no
intensity discontinuity at all if the illumination is directed along the direction of
the mean surface normal of the intersecting planar faces (assuming Lambertian
reflectance). This condition can be easily observed for polyhedral surfaces of
modest complexity and thus reliable boundary detection cannot be practically
achieved. The missing edges must be hypothesized based on reasoning about
the object shape, which dictates that bottom-up grouping cannot be done in
advance of considering a model hypothesis.

These difficulties generated a period of pessimism concerning the complete-
ness and stability of bottom-up segmentation processes. Instead, a number of
researchers implemented recognition systems based on fragmentary feature seg-
mentations in terms of 2-d point and line or curve segments. The organization
of these features is based on a specific individual object model rather than the
generic descriptions that dominated the early period.

Some early examples of this approach can be seen in the 1970s [3] and [58].
A system for the recognition of 3-d parts with planar surfaces was developed
by Walter Perkins at General Motors. The goal was the so-called “bin-picking”
problem where the recognition process determined the pose (rotation and trans-
lation) of the object in a world coordinate frame so that the object could be
placed by a robot into a fixture for subsequent manufacturing operations. An
example of part recognition is shown in Figure 8.

As mentioned earlier, Goad initiated the idea that an object model could be
used to plan the search for features. The plan is based on selecting features that
are likely to be segmented reliably and that provide strong constraints on the
projection of the model into the image. Given this plan, it is not necessary to
carry out extensive feature grouping and linking in advance of the recognition
stage. Instead the model constraints are imposed on the image during recognition
and provide the required organization.

Perhaps the first research to carry out this approach in the implementation of
a complete recognition system was David Lowe [45]. An example of his recogni-
tion system, called SCERPO 3, is shown in Figure 9. The basic approach is that
a consistent interpretation of a set of image features will constrain the viewing
hypotheses to a single perspective viewpoint of the model. This philosophy of
minimal feature organization and strong model constraints quickly became a
3 Spatial Correspondence, Evidential Reasoning, and Perceptual Organization.
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Fig. 8. Recognition of manufactured parts using a planar model. a) Walter Perkins.
b) A set of point and curve features, extracted by bottom-up processing. c) The part
model matched to the features in b).(From [58] with permission.)

compelling research focus during the early half of the 1980s [10,29,4]. An ex-
ample of recognition with essentially ungrouped features is shown in Figure 10.
This work by Eric Grimson and Tomas Lozano-Perez generated considerable
enthusiasm for complete reliance on prior object models for the organization of
features and the detection of objects under high degrees of occlusion and shad-
owing. Indeed, it became kind of an academic contest to see how occluded an
object could be and still achieve successful recognition.

The emphasis in the early 1980s was mainly on 2-d planar shapes or 3-d
objects as imaged by 3-d range cameras [11]. This restriction reduced the number
of degrees of freedom for the image projection transformation relative to the
number of constraints provided by each feature-to-model assignment. There was
the sense that it is important to solve 2-d planar object recognition robustly
and completely before re-attacking the harder problem of 3-d object recognition
from a single intensity image.

The 2-d recognition approaches were driven by a search for model-to image-
transformations based on the a small number of un-grouped features. Eric Grim-
son exploited the interpretation tree that is a pre-compiled search plan for match-
ing features. This approach is similar to the recognition plan ideas of Goad [27].
Katsu Ikeuchi and Takeo Kanade also developed an extensive recognition plan-
ning system that took into account both projected 3-d shape and self-occlusion
in a tree-like plan structure [37]. Their object representation included 3-d ori-
entation constraints based on photometric stereo and so might be called a 2.5-d
representation.

Another 2-d approach of the period is based on the data indexing method of
hashing on a minimum number of features,e.g., three points or lines for planar
affine matching [43]. The minimum feature set is used to retrieve from a hash
table the set of confirming features that would be visible and placed in the
image according to the transform computed from the search features. A match
is declared if the hashed features are sufficiently confirmed in the image.
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Fig. 9. Recognition based on viewpoint consistency. a) David Lowe. b)An example of
recognizing plastic razors under conditions of high occlusion. (b) is taken from [42]
with permission.)

It would be fair to say that the 2-d problem is now solved for many cases of
practical interest such as industrial inspection and robotic placement. However,
high background complexity along with expected significant occlusion can still
confound existing 2-d methods by producing a large number of false hypotheses.
These recognition error statistics were studied extensively by Grimson [28].

By the mid 1980s, attention refocused on the recognition of 3-d objects from
2-d intensity images. These approaches exploited viewpoint consistency (equiva-
lent to object pose consistency) where the pose was computed from a minimal set
of features. The constraint of full-perspective image formation was abandoned
for the use of affine image projection models where the camera parameters can
be determined from a small number of features such as three points or a point
and two intersecting lines or two lines each with a fixed point. The affine cam-
era model, called weak perspective has only six parameters: tip and tilt angles,
image rotation, image x-y translation and scale. Unlike full perspective camera
models, the weak perspective parameters can be determined uniquely without
prior camera calibration.

Again, the feature grouping problem is avoided and model hypotheses are
generated directly from a match of the minimal feature set. The hypotheses
can be confirmed in various ways, such as projecting the model onto the im-
age and checking that the expected features are present (the Goad philosophy).
One of the first attacks on the 3-d problem in this era was by Dan Hutten-
locher and Shimon Ullman [36]. They called the recognition process alignment
since the image feature ( in their case, a point triple) is sufficient to align the
3-d model with the image. The point triples are formed exhaustively so that the
algorithm has a complexity of Mn3, where M is the number of model triples
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Fig. 10. The use of sparse, unorganized features for recognition. a) Eric Grimson. b)
Tomas Lozano-Perez. c) Steps in forming a model recognition hypothesis based on
oriented edge segments. (c) used by permission of Eric Grimson.)

and n is the number of feature points in the 2-d image. At the same time a
similar approach was taken by the author and Dan Thompson[78]. In their sys-
tem, the model hypothesis was determined by pose clustering. The idea is that
a correct object hypothesis will have all features projected into the image with
the same pose. The most consistent pose is found by voting into a space of affine
transformations, similar to the generalized Hough transform [5,75]. They used a
single image feature called a vertex-pair that required that two line segments be
grouped around a common vertex. Two such vertices are sufficient to determine
and over-constrain the object pose. In this approach, the complexity is Mn2,
where M is the number of model vertex-pairs and n is the number of vertex
pairs in the 2-d image. Reduction in matching complexity is being traded off
against modest feature grouping risk. Their system was applied to the problem
of aerial surveillance and achieved a respectable recognition performance for the
problem of detecting aircraft at airfields with 99% accuracy. The performance
result was based on extensive testing and is reported in [52].

While these viewpoint consistency approaches can overcome the lack of fea-
ture grouping, there are still limitations fundamentally caused by the absence of
object features resulting from the effects itemized at the beginning of this sec-
tion. The vertex-pair system, shown in Figure 12 could hallucinate the presence
of models when the number of features or the tolerance on viewpoint consistency
is reduced. Figure 12 d) shows numerous false positive hypotheses where support
for the model is found by accident. For example the bright sidewalk region in the
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Fig. 11. Three-dimensional object recognition using alignment. a) Dan Huttenlocher.
b) Shimon Ullman. c) A cluttered image. d) The aligned model, shown near the middle
of the image. (c) and d) provided by Dan Huttenlocher, with permission.)

upper middle of the image provides strong support for the edges of the aircraft
wings.

These approaches based on a manually constructed 3-d object model with
extra attributes to express the reliability of segmented features can be quite
successful under reasonably bland backgrounds and limited amounts of occlusion.
The airfield problem is particularly well-suited to these limitations. However, the
approach is encumbered with the need to construct a detailed 3-d model for each
specific object. In spite of this drawback, there has been extensive use of detailed
3-d models to enable target recognition. Figure 13 has thousands of polygonal
surface facets and is used to recognize this specific tank in synthetic aperture
radar imagery (SAR). The rationale here is that there are only a finite number
of military weapons and vehicles so that a concerted effort could “model the
world” in this limited domain.
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Fig. 12. The vertex-pair recognition system. a) The author. b) Dan Thompson. c) An
example of aircraft recognition. d) Hallucination is possible. The same scene as c) with
a relaxed tolerance to pose consistency.

Fig. 13. A highly detailed 3-d geometric model for a tank

6 The Era of Geometric Invariance

By the end of the 1980s there was a rising interest in the object recognition
community to move beyond the manual modeling approach and to try to auto-
mate the acquisition of models for recognition. Ideally a single view or at worst
a small number of views of the object would be sufficient to construct a recogni-
tion model. A promising avenue was the concept of geometric invariance where
properties of an object are determined that do not vary with viewpoint. For
example under affine viewing conditions the ratio of collinear segment lengths
is independent of viewpoint. That is, the length ratio in the image will be the
same as in the 3-d object, regardless of affine camera parameters.

The formation of recognition models is reduced to measuring the invariant
values for feature constructions that have sufficient geometric constraints to
enable the formation of invariants. Objects seen under perspective are described
by projective invariants such as the cross ratio and the ratio of area ratios [54].
These constructions require four collinear points and five points or five lines
respectively. The configurations must not be degenerate, so that no four of the
five points are collinear, for example.
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The research focus was initially on planar shapes because the theory of geo-
metric invariance for perspective and affine image formation is complete. Plane
to image mappings form a transformation group and the full machinery of group
invariance developed by Felix Klein and other 19th century mathematicians can
be brought to bear on the recognition task. The role of projective geometry was
also elevated from a minor interest, mainly relevant to the field of graphics, to
a central object of study and adaptation to computer vision. Again, the results
of 18th and 19th century mathematics could be readily mined for ideas to solve
the recognition task. Some of the main researchers in the geometric invariance
movement are shown in Figure 14.

Fig. 14. A meeting of researchers central to the geometric invariance movement at
Schenectady, New York during the month of July, 1992. Top row, left to right: Andrew
Zisserman, Charles Rothwell, Luc VanGool, Joseph Mundy, Stephen Maybank and
Daniel Huttenlocher. Bottom row, left to right: Thomas Binford, Richard Hartley,
David Forsyth and Jon Kleinberg.

This hope of a complete theory for modeling and recognition created consid-
erable interest in the late 1980s and early 1990s. However, the enthusiasm was
tempered by two key drawbacks of representation by geometric invariance:

– it was proved independently by several researchers that no viewpoint invari-
ants exist for general 3-d shapes [18,14,51];

– the grouping problem re-emerges; it is necessary to associate a rather large
number of features (e.g. five lines) across views in order to check for consis-
tent invariant values and thus a correct model hypothesis.

Nevertheless, keen interest in recognition based on invariants continued through
the middle of the 1990s. It was felt that a sufficient number of classes of 3-d
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structures do possess invariants, such as surfaces of rotation and polyhedra,
so that the lack of invariance in general does not pose a major defeat for the
program. The grouping problem was sidestepped for the moment by focusing
on the discovery of new invariants and integrating the representations into a
complete recognition system [68,67]. Two systems for recognition by invariants
are shown in Figure 15. The recognition systems were named after characters in
the Oxford-based detective stories by Colin Dexter.

Fig. 15. Two recognition systems based on geometric invariance. a) A cluttered image
with machine parts. b) Recognition of several objects by the LEWIS system using
various invariant descriptions, such as five lines. c) A second image. d) Recognition by
LEWIS using the invariant construction on bi-tangent cavities shown in f). Recognition
of a surface of rotational symmetry by the MORSE system. The axis of rotation is
recovered as well as invariants of the bi-tangent cavities.

6.1 Multiview Geometry

A complementary thread of research was intitated in 1992 by Richard Hartley
and Oliver Faugueras with the goal to apply the theory of projective geometry
to the relationship between multiple perspective views. An emphasis of this work
was the reconstruction of 3-d geometry without the need for camera calibration.
The resulting reconstruction was ambiguous up to a 3-d projective transforma-
tion and thus the central role of projective geometry in the analysis of camera
configurations and reconstructed geometry.

It was quickly realized that the lack of general viewpoint invariants for a single
view could be overcome if an object is seen in two or more views. Of course, one
approach would be to reconstruct the 3-d geometry and then use direct 3-d
recognition methods developed earlier for model-based recognition. A different
approach, more in keeping with the invariance philosophy, is to derive invariants
of a structure from correspondences across views. This approach is particularly
attractive if the features can be easily tracked as would be the case in video
image sequences. This concept was realized in recognition systems by Daphna
Weinshall [82] and Stephan Carlsson [16].
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From a slightly different approach one can take the position that invariants
change with viewpoint but according to a set of 1-dimensional spaces. If there are
sufficient constraints such as independent features on a model, it is possible to
constraint the viewpoint and thus determine all the invariants for the object. In
essence, the camera projection is being recovered in the invariant construction.
This approach was initiated by David Jacobs [19] and extended to projective
invariance by Isaac Weiss [83].

6.2 Practical Issues

Feature segmentation methods had advanced little since the early 1980s [15] and
the problems of missing features and noisy geometry remained. Geometric invari-
ants are noise-prone since a minimum number of image features are used for the
invariant construction. There is no redundancy to smooth out errors in feature
geometry recovery. The resulting invariant values can have significant random
noise variance, even within a single view [49]. In spite of these limitations, by 1995
it was possible to reliably recognize a half-dozen or so 3-d objects in somewhat
cluttered scenes [86], by exploiting class-based invariance such as of surfaces of
revolution and canal surfaces. However, there was the growing realization that
recognition performance was not going to significantly improve. Progress would
depend on better image segmentation methods, not on extensions of the lexicon
of invariant structures.

In retrospect, given recent advances in video feature tracking, it would have
been a much better strategy for planar object recognition to compute the plane-
to-plane projective transformation using all the features in a consistent statistical
optimization strategy such as RANSAC [12,26]. With the transform known,
all feature coordinates and parameters become, in effect, invariants. This same
strategy could be employed for 3-d invariant calculations using mutual pose
constraints among objects. This approach was not taken at the time since it
was considered bad form for an invariance researcher to want to know anything
about the transform parameters

7 The Rise of Appearance Methods

At the same time as the geometric invariance program was reaching the end of its
active period, new recognition approaches strongly rooted in intensity appear-
ance were discovered: appearance manifolds [55] and affine invariant intensity
features[71]. Shree Nayar’s system was based on SLAM 4 which is a C library of
tools for processing images taken over a large number of viewpoints and lighting
conditions. The input image set is compiled into a continuous eigen-space of the
image intensity covariance, treating the entire image as a 1-d vector.

Recognition is achieved by finding the appearance space closest to the
input image. In SLAM, distance is computed as Euclidean distance on a

4 Software Library for Appearance Modeling.
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low-dimensional subspace representing the largest eigenvalues. The SLAM al-
gorithm produced very impressive results with high recognition rates on a large
library of objects. Remarkably, no model assumptions or image segmentation
is required and the recognition hypothesis carries with it an estimate of the
object’s 3-d pose. Nayar’s work generated tremendous interest, overshadowing
ongoing recognition research based on geometry. There was renewed interest in
understanding intensity appearance phenomena [6] and in the development of
invariance to illumination changes [72].

The geometry recognition community remained somewhat skeptical of the
power of global appearance methods, such as SLAM, particularly with respect
to the ability to withstand occlusion. In conjunction with a representation work-
shop in 1996 it was decided to carry out a comparison between SLAM and
MORSE [53]. The experiments focused on surfaces of revolution (SOR). A set
of images of SORs at different tilt angles was collected under varying degrees
of occlusion. Recognition by SLAM was carried out using the standard nearest
point algorithm while recognition in MORSE was based on invariants of the
bi-tangent cavities formed on the outline of the SOR. The appearance manifold
for example SORs and the MORSE results are shown in Figure 16. The result

Fig. 16. SLAM vs MORSE. a)Example surfaces of revolution from the experiment. b)
The SLAM appearance manifolds for the SORs.

of the comparison was very surprising – there was no clear winner. The presence
of limited amounts of occlusion could be handled by SLAM as well as MORSE.
Both systems faired badly under heavy occlusion. It is not well-understood why
the global appearance manifold is somewhat immune to occlusion. Perhaps elim-
inating the higher order eigenvectors smears out the perturbations of occlusion
so that the final manifold distance value is not much affected. In any case, the
ability of SLAM to learn an effective 3-d recognition model for any object fully
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automatically without any explicit geometric representation was a compelling
paradigm that set the stage for recognition research over the next decade.

The problem of occlusion in appearance methods can be solved by using more
local intensity features such as planar regions about interest points. The suc-
cessful application of this idea by Cordelia Schmid and Roger Mohr [72] in-
spired an intensive search for other intensity and affine projection invariant fea-
tures [46,70,79,38,50]. The basic assumption is that intensity regions are derived
from locally planar surface patches and viewed by an affine camera. Thus, local
affine constructions such as ratios of areas can be used to determine consistent
feature matches. A more global 3-d viewpoint consistency constraint can be in-
voked by deriving the fundamental matrix from hypothesized matches. Any cor-
rect match would be consistent with the epipolar geometry of the two views [32].
The recognition strategy is to generate hundreds of affine patch features and then
sift them into object hypotheses by geometric match consistency.

In this approach object models are learned directly from a set of images with-
out geometric segmentation, except for the detection of local corners or other
interest operators. The models can be acquired at the video frame rate and
recognition can also be carried out in real time 5.

Another impressive achievement using affine patches is the Video Google sys-
tem by Josef Sivic and Andrew Zisserman [73]. Affine patch features are derived
and their geometric relations pre-compiled for each frame of a feature length
film (100,000 frames). This preprocessing step is similar to Goad’s strategy, de-
scribed in Section 4, to divert expensive combinatorial operation to an off-line
compilation process. After compilation process, an object can be designated in
one frame and matches found in any other frame of the movie in seconds by
exploiting the pre-compiled relations between the extracted features.

More recently, the affine patch features have been integrated into a 3-d repre-
sentation [66]. A 3-d model is constructed from a set of affine patches arranged
to tessellate the surface of the object. The patch arrangement is derived from a
dense set of multiple views of the object. Instead of purely geometric features
such as the polygonal facets used by Roberts, a 3-d object is represented by fea-
tures that are easy to find over a wide range of camera viewpoints. Full feature
coverage over the viewsphere is obtained by a combination of manual selection
and automated feature refinement. Issues such as self-occlusion are handled nat-
urally by the 3-d structure as has always been the case for purely geometric
methods. The constraint of viewpoint consistency is also exploited during the
recognition process to rule out false matches.

Affine patches have also been exploited as parts in a new attack on the prob-
lem of generic object recognition [24,44]. The rationale is that invariant regions
provide a stable description of objects and that a degree of flexibility in the geo-
metric relationships between patches can account for in-class variations. One is
guaranteed that parts defined in this way can be reliably segmented, an essential
requirement for generic object recognition.

5 The author viewed an impressive live demonstration of the SIFT recognition system
by David Lowe in 2003 [61].
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8 Coming Full Circle?

One way to look at the current state of object recognition research is that the four
decade dependence on step edge detection for the construction of object features
has been broken. Step edge boundaries are still useful in forming an object descrip-
tion where the object surface is bland and free of surface markings. But, for a large
fraction of object surfaces and textures, affine patch features can be reliably de-
tected without having to confront the difficult perceptual grouping problems that
are required to form purely geometric boundary descriptions from edges.

Some revisiting of the earlier themes of geometry-based object recognition
can be expected as the affine patch feature vocabulary is woven into the edge-
based prior art. For example, one can envision affine-patch aspect graphs where
the aspect cells are based on continuous measures of the variability of the affine
properties of a patch. In this case, the cell boundary represents the removal and
insertion of patches required to maintain good recognition performance. The
problem of aspect scale is mitigated since the patch segmentation automatically
adapts to the granularity of visible features 6

The use of viewpoint consistency has been an integral part of the geomet-
ric recognition strategy since the beginning and is essential in filtering match
hypotheses. General 3-d relations among patches are enforced by the epipolar
constraint and local planarity relations can be tested by affine invariant relations
among patches. However, if patches are treated as isolated features, it quickly
becomes combinatorially impractical to rely on large degree n-ary patch rela-
tions to constrain match integrity. This combinatorial problem can be solved by
re-introducing the classic role of generic shape models such as polyhedra and
generalized cylinders.

The constraints that must exist between faces for a connected polyhedral
surface [76] can be exploited to confirm feature matches and at the same time
define the 3-d polyhedral shape 7. A similar idea could be applied to generalized
cylinder parts where the local “flow” of individual patch-to-image transforms can
define the axis and boundaries of the cylinders. This extended representation can
bridge the gap between the relatively local, but reliably detected, affine regions
and more meaningful GC object components (parts) that are difficult to segment
from step edge boundary information alone.

Global shape recovery from local estimates of affine properties was exploited
by Jan Koenderink in his study of the capability of the human visual system to
estimate surfaces from local orientation [40]. In this work, local surface normals
were integrated to form a 3-d surface. The combination of local orientations from
6 This kind of aspect graph was implemented for the vertex-pair matcher, based on

the expected variance in the affine transformation computed from a given model
vertex-pair as a function of viewpoint [52]. Also, the system by Art Pope and David
Lowe [63] used a kind of aspect graph based on the probability of feature detection
with respect to viewpoint.

7 The polyhedral faces must have at least four sides to generate constraints, but for
complex enough shapes, patch arrangements can be designed to satisfy Sugihara’s
constraint system.
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affine patches could also be used to enable the recovery of surface geometry as
a first step to recover generic shape descriptions.

In summary, it is certain that the role of geometric representations of objects
in recognition will not be displaced for long. Beyond mere statistical depen-
dence,there seem to be only two avenues to a theory of object class: geometry
and function. Moreover, the characterization of function is itself largely couched
in geometry along with the laws of physics [74]. Such models are essential to
fuse statistical class correlations across scene contexts and to arrive at a formal
understanding of categories. To quote Larry Roberts from four decades ago, ‘The
perception of solid objects is a process which can be based on the properties of
three-dimensional transformations and the laws of nature.’
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Abstract. Appropriate datasets are required at all stages of object
recognition research, including learning visual models of object and scene
categories, detecting and localizing instances of these models in im-
ages, and evaluating the performance of recognition algorithms. Current
datasets are lacking in several respects, and this paper discusses some
of the lessons learned from existing efforts, as well as innovative ways to
obtain very large and diverse annotated datasets. It also suggests a few
criteria for gathering future datasets.

1 Introduction

Image databases are an essential element of object recognition research. They
are required for learning visual object models and for testing the performance of
classification, detection, and localization algorithms. In fact, publicly available
image collections such as UIUC [1], Caltech 4 [10], and Caltech 101 [9] have
played a key role in the recent resurgence of category-level recognition research,
driving the field by providing a common ground for algorithm development and
evaluation. Current datasets, however, offer a somewhat limited range of image
variability: Although the appearance (and to some extent, the shape) of objects
does indeed vary within each class (e.g., among the airplanes, cars, faces, and
motorbikes of Caltech 4), the viewpoints and orientations of different instances
in each category tend to be similar (e.g., side views of cars taken by a horizontal
camera in UIUC); their sizes and image positions are normalized (e.g., the objects
of interest take up most of the image and are approximately centered in Caltech
101); there is only one instance of an object per image; finally, there is little or
no occlusion and background clutter. This is illustrated by Figures 1 and 3 for
the Caltech 101 database, but remains true of most datasets available today.

The problems with such restrictions are two fold: (i) some algorithms may
exploit them (for example near-global descriptors with no scale or rotation in-
variance may perform well on such images), yet will fail when the restrictions
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Fig. 1. Sample images from the Caltech 101 dataset [9], courtesy of Fei-Fei Li
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Fig. 2. Image examples with ground truth object annotation for different cat-
egories of the PASCAL 2005 challenge. The dataset may be obtained from
http://www.pascal-network.org/challenges/VOC.

do not apply; and, related to this, (ii) the images are not sufficiently challeng-
ing for the benefits of more sophisticated algorithms (e.g., scale invariance) to
make a difference. This means that progress in algorithm capability cannot be
assessed. For example, multiple algorithms currently achieve close to 100% ob-
ject vs. background classification accuracy on Caltech 4. There is a clear need
for new datasets with more realistic and less restrictive image conditions: mul-
tiple object class instances within a single image, with partial occlusion (e.g.,
by other objects) and truncation (e.g., by the image edge), with size and ori-
entation variations, etc. A first step in that direction has been taken with the
datasets gathered for the PASCAL challenge, as illustrated by Figure 2. The rest
of this chapter discusses some of the lessons learned from existing datasets such
as Caltech 101 and those available under the PASCAL challenge. It also presents
innovative ways to gather very large, annotated datasets from the World Wide
Web, and concludes with some recommendations for future datasets, including
a brief discussion of evaluation procedures.

2 Lessons Learned from Existing Datasets

2.1 The Caltech 101 Dataset

Most of the currently available datasets only contain a small number of classes,
such as faces, pedestrians, and cars. A notable exception is the Caltech 101 data-
base [9], with 101 object classes (Figure 1), which has become a de facto standard
for evaluating algorithms for multi-class category-level recognition, and can be
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Fig. 3. The Caltech 101 average image

credited for a recent increase in efforts in this fundamental area of computer
vision. Even though Caltech 101 is one of the most diverse datasets available
today in terms of the amount of inter-class variability that it encompasses, it
is unfortunately lacking in several important sources of intra-class variability.
Namely, most Caltech 101 objects are of uniform size and orientation within
their class, and lack rich backgrounds: This is demonstrated by the composite
image shown in Figure 3, which was constructed by A. Torralba by averaging
the RGB values of all the images for 100 of the object classes in the Caltech 101
dataset. The averaged images are computed by first resizing all the images to be
150× 128 pixels and the intensity values of the final average are scaled to cover
the range [0, 255]. They reveal regularities in the intensity patterns among all
the images for each object category. If the images had a wide range of variations
in object pose and object location, the resulting averages (before scaling the in-
tensity values) would result in a (roughly) homogeneous field. This is clearly not
the case, and many of the object classes are still easily recognizable by a human.
Some of the characteristics of the dataset that are revealed by this experiment
are that most images have little or no clutter, the objects tend to be centered in
each image, and most objects are presented in a stereotypical pose.
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Fig. 4. A comparison of several algorithms on the Caltech 101 dataset [33], courtesy
of H. Zhang

As noted earlier, despite its limitations, the Caltech 101 dataset has essentially
become a de facto standard for multi-class recognition algorithms. Figure 4 shows
the results of a comparative evaluation of several recent recognition algorithms on
the Caltech 101 dataset [33], including those proposed by Fei-Fei et al. [9], Berg
et al. [4], Grauman and Darrell [14], Holub et al. [17], Serre et al. [26] in 2005, and
Berg [5], Lazebnik et al. [18], Mutch and Lowe [21], Ommer and Buhmann [22],
Wang et al. [31], H. Zhang et al. [33] in 2006. The comparison also includes a
baseline method comparing size-normalized greyscale images using correlation
and nearest-neighbor classification [4].

We will not try to assess the merits of the different algorithms here. Instead,
it is worth discussing what this comparison reveals about Caltech 101 as an
evaluation tool. There are three clear trends: First, performance improves, as
expected, with the number of training samples. Second, algorithms using SVMs
as classifiers tend to do well, and include the two top performers [18,33]. Third,
the classification rate steadily improves with time, from 17% in 2004 [9]1 to
about 60% in 2006 [18,31,33]. None of these conclusions is very surprising, nor
very telling about object recognition technology: The three methods achieving
the best (and very close) performances for 30 training sample use totally different

1 Very close to the 16% achieved by the baseline method — a reminder of the constant
need for baseline comparisons.
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models for image categories: a bag of features [33], a spatial pyramid [18], and
a Bayesian model encoding both the appearance of individual features and the
co-occurrence of feature pairs [31].

The steady improvement of classification rates over time apparent in this
study is probably a sign that computer vision researchers are more and more
adept at using and perhaps improving upon methods borrowed from statistical
machine learning. It is not quite clear, however, that this performance increase
by itself is a sign of progress toward better models for object categories and
the recognition process. The (relatively) long-time public availability of image
databases makes it possible for researchers to fine-tune the parameters of their
recognition algorithms to improve their performance. Caltech 101 may, like any
other dataset, be reaching the end of its useful shelf life.

2.2 The PASCAL Visual Object Classes Challenge

The first PASCAL2 VOC (visual object classes) challenge ran from February to
March 2005. The goal of the challenge was to recognize objects from a number
of visual object classes in realistic scenes (i.e., not pre-segmented objects). Four
object classes were selected: motorbikes, bicycles, cars, and people.

Both classification (where for each of the classes, the presence or absence of
an object is predicted in the test image) and localization (where the algorithm
must predict the bounding box and class of each object in the test image) were
evaluated. A particular feature of the challenge was that two test sets were
provided. For the first, images were assembled from a number of standard sources
(e.g., the Caltech sets) and split randomly into training and test subsets with
the same distribution of variability. Many algorithms already achieve very good
performance on images of this difficulty; they have almost reached their peak
performance. The second test set was designed to address this problem. It was
assembled from new sources (Google image search, local photographs, etc.) with
the intention of providing a harder test set with greater variability of scale, pose,
background clutter and degree of occlusion, and assess the generalization ability
of current algorithms. Needless to say, performance was inferior on the second
test set. Twelve teams entered the challenge. Participants were provided with a
development kit consisting of training and validation images, baseline algorithms,
and evaluation software.3 Figure 5 shows ROC curves for classification on the
first and second test sets. The difference in performance is evident.

For the classification task, most participants used “global” methods in which
a descriptor of the overall image content is extracted (such as a bag of words
representation and a SVM classifier), which leaves the task of deciding which
elements of the descriptor are relevant to the object of interest to the classifier.

2 PASCAL stands for pattern analysis, statistical modelling and computational learn-
ing. It is the name of an EU Network of Excellence funded under the IST Program
of the European Union.

3 The development kit and test images are available from http://www.pascal-
network.org/challenges/VOC/
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Fig. 5. PASCAL 2005 results. Top: ROC curves for classifying motorbikes images for
test set 1 (where images taken from the same distribution of images as the training
data). The best result in terms of EER (equal error rate) from each participant is
shown, with curves ranked by decreasing EER. The axes cover a range equal to two
times the maximum EER of the submitted results. Bottom: ROC curves for classifying
motorbikes images for test set 2 (where images had more variability than the training
data). The performance is inferior to that for test set 1.

All of these participants used only the class label attached to an image for
training, ignoring additional annotation such as the bounding boxes of objects
in the image. One possible advantage of “global” methods is that the image
description captures information not only about the object of interest, e.g.,
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a car, but also its context, e.g., the road. This contextual information might
prove useful in recognizing some object classes; however, the risk is that the
system may fail to distinguish the object from the context and thus show poor
generalization to other environments, for example recognizing a car in a street
vs. in a field. We return to this issue in the next section. In contrast, one partic-
ipant (Technical University of Darmstadt) used a “classification by detection”
approach which explicitly ignores all but the object, using bounding boxes or
segmentation masks for training, and looking at local evidence for testing; this
ensures that the method is modelling the object class of interest rather than sta-
tistical regularities in the image background, but may also fail to take advantage
of contextual information.

Further details on the challenge, the tested algorithms, and the results of
the evaluation can be found in [8].4 The challenge is running again in 2006
with more classes (10) and a greater number and variability (in pose, partial
occlusion) of images for each class. In the 2006 challenge, the classes are: bicycle,
bus, car, motorbike cat, cow, dog, horse, sheep and people.5 Figure 6 shows an
average image for the 10 classes constructed in a similar manner to that shown
for the Caltech 101 database in Figure 3. The color patterns are much more
homogeneous in this case and the categories barely visible – providing some
evidence of a greater image variability within each category of this set.

Images are obtained from three main sources: flickr.com, Microsoft Research
Cambridge, and personal photographs. In the case of the flickr images the exam-
ples for each class are obtained by text search on the annotations, followed by
manual inspection and annotation. In total there are 5,304 images, containing
9,507 annotated objects – each image may contain multiple objects from multiple
classes, but all instances of the 10 classes are annotated. The data has been split
into 50% for training/validation and 50% for testing. The distributions of images
and objects by class are approximately equal across the training/validation and
test sets. However, the level of difficulty is closer to that of test set 2 in the 2005
challenge.

2.3 The Importance of Context in Object Recognition Databases

In the PASCAL VOC challenge, several of the competing teams did quite well on
full-image classification tasks. On the other hand, localization results were poor.
As noted earlier, this suggests that background and contextual information may
have played an important role in detection results. In other words, is it the object,
or its background, which is recognized? J. Zhang et al. [34] have conducted a
detailed study of this issue on the PASCAL dataset. We present in the rest of
this section a summary of their findings.

A bag-of-features algorithm is used in the study. Like most modern approaches
to category-level object detection, this algorithm does not attempt segmentation,
4 Available at http://www.pascal-network.org/challenges/VOC/voc2005/chapter.
pdf

5 See http://www.pascal-network.org/challenges/VOC/voc2006/ for additional
details.
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Fig. 6. The PASCAL 2006 average image. Each cell is an average over all images
containing a particular object category (of 10). Figure courtesy of T. Malisiewicz and
A. Efros. Other averages are available at http://www.cs.cmu.edu/~tmalisie/pascal/
means trainval.html

and uses both foreground and background features as input in both training
and testing tasks. Briefly, an image is characterized by its scale-invariant Harris
and Laplacian regions, along with their SIFT descriptors. Clustering is used
to construct the image’s signature formed by the centers of its clusters and
their relative sizes. Support vector machines (SVMs) using the Earth Mover’s
Distance [24] as a kernel are then trained on each object category, and used for
image classification [34].

PASCAL images are annotated with ground truth object regions, as shown
in Figure 2. Foreground features (FF) can thus be identified as those located
within the object region, while background features (BF) are those located out-
side. Many object categories have fairly characteristic backgrounds. For example,
most of the car images contain a street, a parking lot, or a building. To deter-
mine whether this information provides additional cues for classification, let us
examine the change in classification performance when the original background
features from an image are replaced by two specially constructed alternative sets:
random and constant natural scene backgrounds (referred to as BF-RAND and
BF-CONST, respectively). BF-RAND samples are obtained by randomly shuf-
fling background features among all of the images in the PASCAL dataset. For
example, the background of a face image may be replaced by the background of
a car image. Note that the total number of features and the relative amount of
clutter in an image may be altered as a result of this procedure. BF-CONST ex-
amples consist of background features extracted from images captured by a fixed
camera observing a natural scene over an extended period of time, so they include
continuous lighting changes and the movement of trees and clouds (Figure 7).

Figure 8 (a)–(b) shows ROC curves obtained by training and testing on only
the background features (BF) for test sets 1 and 2. In the case of test 1, it is clear
that background features alone are often sufficient to determine the category of
the image. This is not quite the case for test set 2. For example, BF features
perform close to chance level for bicycles. Thus, one of the reasons why test set
2 is considered more difficult than test set 1, is the fact that its background
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Fig. 7. Image examples of the constant natural scene background. They are captured
with lighting changes and the movement of clouds and trees.

features are much less correlated with the foreground. The performance of the
BF-RAND and BF-CONST feature sets (not shown on the figure) is at chance
level as one would expect, since they do not contain any information about the
foreground object class by construction.

Figure 8 (c)–(e) evaluates combinations of foreground features with different
types of background features. Due to space limitations only results for the people
test set 1 are presented. Results for the other test sets are similar. AF denotes
all the features extracted from the original image, AF-RAND denotes the com-
bination of FF and BF-RAND and AF-CONST denotes the combination of FF
and BF-CONST. Figure 8 (c) shows ROC curves for a situation where train-
ing and testing are performed on the same feature combination. FF gives the
highest results, indicating that object features play the key role for recognition,
and recognition with segmented images achieves better performance than with-
out segmentation. Mixing background features with foreground features does not
give higher recognition rates than FF alone. For images with roughly constant
backgrounds (AF-CONST), the performance is almost the same as for images
with foreground features only. It is intuitively obvious that classifying images
with fixed backgrounds is as easy as classifying images with no background clut-
ter at all. Finally, the ROC curves for AF-RAND are the lowest, which shows
that objects with uncorrelated backgrounds are harder to recognize.

Figure 8 (d) shows ROC curves for a setup where the training set has different
types of backgrounds and the test set has its original background (AF). We can
observe that training on AF or AF-RAND while testing on AF gives the highest
results. Thus, even under randomly changed training backgrounds, the SVM
can find decision boundaries that generalize well to the original training set.
Training on FF or AF-CONST and testing on AF gives lower results, most
likely because the lack of clutter in FF set and the monotonous backgrounds in
AF-CONST cause the SVM to overfit the training set. By contrast, varying the
object background during training, even by random shuffling, tends to increase
the robustness of the learned classifier.

Finally, Figure 8 (e) shows ROC curves for a situation where the training set
has the original backgrounds and the test set has different types of backgrounds.
When the test set is “easier” than the training one, performance improves, and
when it is “harder,” the performance drastically drops. This is consistent with
the results of Figure 8 (d), where training on the “harder” sets AF or AF-RAND
gave much better results than training on the “easier” sets FF and AF-CONST.
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Fig. 8. ROC curves for the bag-of-features method of Zhang et al. [34] trained and
tested on the PASCAL 2005 challenge dataset for different combinations of foreground
and background features. (a)–(b): Training and testing on background features only.
The left part of the figure corresponds to test set 1, and the right one to test set 2. (c)–
(e): Training and testing using four combinations of foreground features with different
types of background.
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In conclusion, the evaluation of the role of background features in bag-of-
keypoints classification highlights two important facts: First, while the back-
grounds in most available datasets have non-negligible correlations with the
foreground objects, using both foreground and background features for learn-
ing and recognition does not result in better performance, at least for the basic
bag-of-features method evaluated by J. Zhang et al. This illustrates the limi-
tations as evaluation platforms of datasets with simple backgrounds, such as
CogVis [35], COIL-100 [36], and to some extent, Caltech 101 [9]: Based on the
evaluation presented in this section, high performance on these datasets do not
necessarily mean high performance on real images with varying backgrounds.
Second, when the training set has different image statistics than the test set, it
is usually beneficial to train on the most difficult dataset available, since the pres-
ence of varied backgrounds during training improves the generalization ability
of the classifier. Note that these conclusions have been reached for the particular
classifier used in the experiments, but similar trends are expected to hold for
other bag-of-features methods that do not explicitly separate foreground from
background features but use both for recognition at the same time. However, it
is probable that such methods do not make the most effective use of the context
provided by background features. The presence of background correlations may
well improve the performance of methods that use contextual information to
prime subsequent object detection and recognition stages [16,28].

3 Innovative Methods for Acquiring New Datasets

3.1 Web-Based Annotation

Web-based annotation tools provide a new way of building large annotated
databases by relying on the collaborative effort of a large population of users
[25,27,29,37]. Two examples are the ESP and Peekaboom internet games. ESP
is an online game in which players enter labels describing the content of im-
ages [29]. ESP has been used with over 10 million labels for images collected
from the Web. In a similar vein, the Internet game Peekaboom is designed to
use “bored human intelligence” to label large image datasets with object, mater-
ial, and geometry labels [30]. Peekaboom has been released to a general audience
and it has already collected millions of data points. Its first task will be to label
entire databases, such as Corel, which will be an enormous help to the object
recognition community.

LabelMe is another online annotation tool that allows sharing of images and
annotations [25]. The tool provides many functionalities such as drawing poly-
gons, querying images, and browsing the database. Both the image database
and all of the annotations are freely available. The tool runs on almost any Web
browser, and includes a standard Javascript drawing interface that is easy to
use (see Figure 9 for a screenshot). The resulting labels are stored in XML file
format, which makes the annotations portable and easy to extend. A Matlab
toolbox is available that provides functionalities for manipulating the database
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Fig. 9. Screenshot from the LabelMe labeling tool in use [25]. The user is presented
with an image, possibly with one or more existing annotations in the image. The user
has the option of annotating a new object, by clicking around the boundary of the
object, or editing an existing annotation. The user can annotate an arbitrary number
of objects in the image. Once finished, the user then clicks the “Show New Image”
button to see a new image.

(database queries, communication with the online tool, image transformations,
etc.). The database is also searchable online.

Currently the database contains more than 36,000 objects labeled within 6,000
images covering a large range of environments and several hundred object cate-
gories (Figure 10, left). The images are high resolution and cover a wide field of
view, providing rich contextual information. Pose information is also available
for a large number of objects. Since the annotation tool has been made available
online there has been a constant increase in the size of the database, with about
5,000 new labels added every month, on average.

One important concern when data is collected using Web-based tools is quality
control. Currently quality control is provided by the users themselves. Polygons
can be deleted and object names can be corrected using the annotation tool
online. Despite the lack of a more direct mechanism of control, the annotations
are of quite good quality (Figure 10). Another issue is the complexity of the
polygons provided by the users – do users provide simple or complex polygon
boundaries? Figure 10 (right) illustrates the average number of points used to
define each polygon for four object classes that were introduced using the Web
annotation tool. These object classes are among the most complicated. These
polygons provide a good idea of the outline of the object, which is sufficient for
most object detection and segmentation algorithms.
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Fig. 10. Left: Examples of annotated images in the LabelMe database. The images
cover a large range of scenes and object categories. Right: These polygons correspond
to the average quality of the annotations for four object categories.

Another issue is what to label. For example, should you label a whole pedes-
trian, just the head, or just the face? What about a crowd of people – should you
label all of them? Currently such decisions are left to each user, with the hope
that the annotations will reflect what various people think are “natural” ways
to segment an image. A third issue is the label itself. For example, should you
call this object a “person”, “pedestrian”, or “man/woman”? An obvious solution
is to provide a drop-down menu of standard object category names. Currently,
however, people use their own descriptions, since these may capture some nu-
ances that will be useful in the future. The Matlab toolbox allows querying the
database using a list of possible synonyms.

3.2 Data Collection as Recognition

There is a plentiful supply of images available at the typing of a single word
using Internet image search engines such as Google, and we discuss now two
methods for obtaining object class images from this source. The first method
uses Google image search as its source, the second uses web pages directly.

Starting from Image Search. Internet image search engines currently do not
search directly on image visual content but instead use the image name and
surrounding text. Consequently, this is not a source of pure images without fil-
tering: for example, a Google image search for “monkey” yields only 30 actual
monkey pictures in the first 100 results. Many of the returned images are visually
unrelated to the intended category, perhaps arising from polysemes (e.g. “kite”
can be kite-bird or kite-flying-toy). Even the small proportion of retrieved im-
ages that do correspond to the category are substantially more demanding than
images in typical training sets (such as Caltech) – the number of objects in
each image is unknown and variable, and the pose (visual aspect) and scale are
uncontrolled.
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Fergus et al [12] have proposed an unsupervised clustering method for extract-
ing the “good” images from raw Google output. Each image is first described by a
bag of keypoints/visual words. The clustering into visually coherent components
is then achieved by applying probabilistic Latent Semantic Analysis (pLSA) [15]
– a technique from the field of textual analysis originally developed for topic
discovery in text corpus.

There then remains the problem of determining which of the clusters cor-
responds to the true object images. This problem could be solved by manual
intervention, but Fergus et al [12] instead build a validation set automatically
by noting that the first few images returned by Google tend to contain more
good images than those returned later on. Using Google’s automatic transla-
tion, the user’s keyword is translated into a number of languages; the first few
images are automatically downloaded, and combined to give a validation set of
a reasonable size without degradation in quality.

In this manner, starting with Google image search, followed by clustering of vi-
sual words and automatic selection of the correct cluster using a generated valida-
tion set, image datasets can be generated using just the object’s name. The main
limitation of this approach is the effectiveness of the original image search engine.
This limitation can be overcome by a semi-automatic method, as presented next.

Starting from Text Search. There are currently more than 8,168,684,336 Web
pages on the Internet.6 A search for the term “monkey” yields 36,800,000 results
using Google text search. There must be a large number of images portraying
“monkeys” within these pages, but retrieving them using Google image search
is not successful, as described above. It has been known for a while that textual
and visual information could effectively be combined in tasks such as clustering
art [2], labeling images [3,13,19], or identifying faces in news photographs [6].
In these cases, an explicit relationship between words and pictures is given by
image annotations, or photograph and video captions. On Web pages, however,
the link between words and pictures is less clear. Berg and Forsyth consider
in [7] the problem of combining the text and image information stored on Web
pages to re-rank Google search results for a set of queries (see [11,32] for related
work). They focus on animal categories because these provide rich and difficult
data, often taking on a wide variety of appearances, depictions, and aspects,
thus providing a good yardstick for demonstrating the benefits of exploiting the
visual and textual information contained in Web pages.

In the method described in [7], a set of images is first obtained by text search.
For example, 9,320 Web pages are collected using Google text search on 13 queries
related to monkeys. From these pages, 12,866 distinct images of sufficiently large
size (at least 120× 120 pixels) are selected for further consideration. Of these im-
ages 2,569 are actual monkey images. The algorithm proceeds in two stages: first
a set of visual exemplars (exemplars for short) is selected using only text-based
information. Then, in the second stage, visual and textual cues are combined to
rank the downloaded images, with monkey images being highly ranked.

6 Google’s last released number of indexed Web pages.
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In the first stage Latent Dirichlet Allocation (LDA) is applied to the words
contained in the Web pages to discover a set of latent topics for each category.
These latent topics provide a distribution over words and are used to select highly
likely words for each topic. Images are ranked according to their nearby word
likelihoods and a set of 30 exemplars selected for each topic. As mentioned earlier,
words and images can be ambiguous (e.g. “alligator” could refer to “alligator
boots” or “alligator clips” as well as the animal). Currently there is no known
method for breaking this polysemy-like phenomenon automatically. Therefore,
at this point the user is asked to label each topic as relevant or background,
depending on whether the associated images and words illustrate the category
well. Using this labeling all selected topics are merged into a relevant topic and
all unselected topics are merged into a background topic (and their exemplars
and likely words are similarly pooled).

In the second stage, each image in the downloaded dataset is ranked according
to a voting method using the knowledge base collected in the training stage.
Voting uses image information in the form of shape, texture and color features
as well as word information based on words on the associated pages that are
located near the image.

Because exemplar-based voting incorporates multiple templates per category,
it allows image retrieval across different poses, aspects, and even species. The
top results returned by the composite classifier are in general quite good [7]: 81%
of the top 500 images, and 69% of the top 1000 are correct (Figure 11). Most
importantly, the images classified using both textual and visual features make
up a very large, high-quality dataset for further object recognition research.

4 Recommendations

Research on object detection and recognition in cluttered scenes requires large
image and video collections with ground truth labels. The labels should pro-
vide information about the object classes present in each image, as well as their
shape and locations, and possibly other attributes such as pose. Such data is use-
ful for testing, as well as for supervised learning. Even algorithms that require
little supervision need large databases with ground truth to validate the re-
sults.7 New algorithms that exploit context for object recognition [16,28] require
databases with many labeled object classes embedded in complex scenes. Such
databases should contain a wide variety of environments with annotated objects
that co-occur in the same images. Future databases should exercise the ability
of recognition systems to handle intra-class variability, varying size and pose,
partial occlusion, and contextual cues. They should also display different levels
of difficulty, including restricted viewpoints (e.g., cars will only be seen more or
less from the side), reasonable levels of occlusion and viewpoint variation (e.g.,
cars from all viewing angles), a higher degree of intra-class variability (chairs,
7 This is not to say that the annotations of future databases will be perfect: We

expect that segmentations may be inaccurate, and labellings questionable, but scale
will probably rescue us.
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Fig. 11. Example of a “monkey” dataset generated semi-automatically, starting from
a keyword search [7]. False positives are shown with a heavy border (dark red). The
first 10 rows are sampled every 4th image from the top 560 results, while the last two
rows are sampled every 250th image from the last 5,000-12,866 results. The dataset
is quite accurate, with a precision of 81% for the top 500 images, and a precision of
69% for the top 1000 images. Deciding what images are relevant to a query doesn’t
have a single interpretation. Here, primates like apes, lemurs, chimps and gibbons have
been included, but monkey figurines, people, monkey masks and monkey drawings
have been excluded. The results include a huge range of aspects and poses as well as
a depictions in different settings (e.g. trees, cages and indoor settings). The animal
image classifiers inherently take advantage of the fact that objects are often correlated
with their backgrounds (“monkeys” are often in trees and other greenery).
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churches, clocks, etc.), and classes which share “parts” and might thus be con-
fused (e.g., bikes/motorbikes, cars/lorries, etc.). Constructing large, annotated
datasets featuring this type of variability will be a difficult and time-consuming
task. It should also be one of the priorities of the object recognition commu-
nity. We believe that innovative approaches to data collection such as those dis-
cussed in the previous section will play a major role in fulfilling this objective.
A serious notion of object and/or scene category would help the data collec-
tion/organization process, since good/bad choices make problems easier/harder,
and we do not know how to model this effect.

A very important issue that has not not been addressed in this chapter is
the need of rigorous evaluation protocols for recognition algorithms on standard
datasets. Standard performance measures for information retrieval, such as in-
terpolated average precision, have been defined by the Text REtrieval Conference
(TREC), and the object recognition community would probably be well advised
to follow that example.8 Further, the (rather typical) restriction of experiments
to selected parts (e.g., “easy” or “hard” pictures) of the training and/or test set
may bias the evaluation of a given method. See Müller, Marchand-Maillet, and
Pun [20] for a discussion of this problem in the context of image retrieval.9 In
multi-class recognition tasks, gathering statistics over all test images instead of
averaging them over categories may also bias the results when there are many
more pictures for some “easy” classes than for some “hard” ones (this is the
case for the Caltech 101 dataset for example). As discussed by Philips and New-
ton [23] in the face recognition domain, it is actually possible for some datasets
to predict the performance of new algorithms from that of simple baseline meth-
ods (e.g., PCA plus nearest-neighbor classification, a.k.a. “eigenfaces”). This
indicates that face recognition experiments often test the difficulty of a dataset
instead of the effectiveness of new techniques. Conducting such a meta-analysis
of category-level object recognition algorithms could prove to be fruitful. In
this context, the “hardness” of different datasets is not well understood, and a
good pool of baseline methods would help. Designing and implementing tools
for testing specific aspects of recognition algorithms (e.g., robustness to view-
point or illumination changes, or to within-class shape or texture variations),
and correlating evaluation results across different standard datasets would also
be extremely useful.
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Abstract. Object recognition technology has matured to a point at
which exciting applications are becoming possible. Indeed, industry has
created a variety of computer vision products and services from the tra-
ditional area of machine inspection to more recent applications such as
video surveillance, or face recognition. In this chapter, several represen-
tatives from industry present their views on the use of computer vi-
sion in industry. Current research conducted in industry is summarized
and prospects for future applications and developments in industry are
discussed.

1 Introduction

As visual recognition and computer vision in general have become more mature,
industry has created an ever-increasing variety of computer vision products and
services. From the traditional area of machine inspection, commercial vision ap-
plications have expanded into video surveillance, medical image analysis, face
detection and recognition, and many others.

Significant challenges remain before generic, categorical object recognition can
attain widespread commercial use. The major barriers include:
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– Robustness w.r.t. variation in viewpoint, illumination, scale and imaging
conditions.

– Scaling up to thousands of object classes. While some applications may only
require class libraries of dozens of objects, many require much larger class
diversity requiring human-level performance.

In this chapter, the visual recognition needs, challenges and current research
of four industrial labs are described. These corporations – Intel, Toyota, General
Electric, and France Telecom – are some of the largest technology and engi-
neering firms in the world. Additional corporations and organizations sponsored
the workshop, including Northup Grumman, Xerox, Lockheed Martin, Microsoft
and DARPA.

2 Visual Recognition at France Telecom Research and
Development

In the last decade, we have entered the digital era, with the convergence of
telecommunication, video and informatics. Our society (press agencies, television
channels, customers) is producing daily extremely large and increasing amounts
of digital images and videos, making it more and more difficult to track and
access this content via database search engines that rely mostly on manually an-
notated information. Content-based indexing via automatic object detection and
recognition techniques has become one of most important and challenging issues
for the years to come, in order to face the limitation of traditional information
systems. Some expected applications include [34]: information and entertain-
ment video production and distribution; professional video archive management
including legacy footages; teaching, training, enterprise or institutional commu-
nication; TV program monitoring; self-produced content management; internet
search engines; video surveillance and video conference archiving and manage-
ment; and advanced object-based image coding.

There has been much research over the last decade to develop image and
video content-based indexing systems [43,35]. Most existing commercial prod-
ucts rely on searching images ”looking like” others, using global descriptions, by
extracting feature vectors that summarize the content of the images in terms
of luminance, color or texture. These feature vectors are traditionally statistical
summaries of color distribution in different color spaces, textures in the form of
histograms of gradient directions or Gabor coefficient statistics. These descrip-
tors offer the advantage of being invariant to global image transformations such
as warping or object motion. On the other hand, structural information in the
image is not captured and different images can have very similar global feature
descriptors. In order to take into account the heterogeneous nature of an image
and somehow its structure, more advanced systems are based on the detection
of patches or salient points (local contrast, edges, corners and junctions,etc.)
where local signatures are computed around each patch to characterize the more
visually discriminant parts of the image. Image comparison is then performed
by matching patches.
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Both approaches, using no a priori knowledge on the image content, allow
treating images regardless of their specific semantic content. But, one can won-
der what global similarity between images means, which is extremely subjective
and application-dependent. For a large range of applications, accessing the se-
mantic content and identifying high-level indices is a pre-requisite, regardless of
the global context of the image. This is the goal of object detection and recog-
nition techniques that aim at locating faces, human bodies, cars, buildings, etc.
They can be successfully applied to adult content filtering in the web, traffic
surveillance, security access control, visual geo-localization, visio-conferences or
intelligent man-machine communication. More generally, key object detection in
collections of images or video sequences may provide easy, accurate and more
natural ways of indexing and retrieving information (”find my photos in front of
the Eiffel tower”, ”find the photos of Barbara”, etc.). Given the growing volume
of personal digital pictures, and the rapid development of Peer-to-Peer applica-
tions, one of the key applications is the management of self-produced content,
where collections of personal digital pictures have to be stored, shared, sorted
and retrieved according to the presence of specific persons, of specific objects
or buildings. They may be tagged with meta-data when recorded, or indexed a
posteriori when users formulate a specific request, like finding photos of friends,
family, etc.

If object detection and recognition methods have long been limited to the
“world of cubes”, using low-level image analysis and heuristics, new supervised
learning-based appearance methods have appeared recently and proved to be
very efficient for several specific applications. For instance, human face detec-
tion can be considered as a mature tool, even though progress must be made
for full-profile view detection and accurate facial feature detection, for allowing
efficient face recognition. The method proposed by Viola and Jones [44], rely-
ing on a boosted cascade of simple classifiers based on Haar low level features
seems very appealing given its speed and its good detection rate. More recently,
Garcia and Delakis [7] proposed a near-real time neural-based face detection
scheme, named ”Convolutional Face Finder” (CFF) that has been designed to
precisely locate multiple faces of 20x20 pixel minimum size and variable appear-
ance, rotated up to ±30 degrees in image plane and turned up to ±60 degrees, in
complex real world images. As a generic object detection method, the proposed
system automatically synthesizes simple problem specific feature extractors and
classifiers from a training set of faces, without making any assumptions or using
any hand-made design concerning the features to extract or the areas of the face
pattern to analyze. Moreover, global constraints encoding the face model are
automatically learnt and used implicitly and directly in the detection process.
After training, the face detection procedure acts like a pipeline of simple convo-
lution and subsampling modules that treat the raw input face image as a whole
in order to locate faces, without requiring any local contrast preprocessing in the
input image. Experiments have shown high detection rates with a particularly
low number of false positives, on difficult test sets, without requiring the use
of multiple networks for handling difficult cases. For instance, a good detection
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rate of 90.3% with 8 false positives have been reported on the CMU test set,
which are the best results published so far on this test set (Figure 1).

Fig. 1. Some results of CFF on the CMU test set and a CFF-based face recognition
system at France Telecom

One can notice that, for the time being, most approaches tackle detection of
single objects with stable 2D appearances. There is still much to be done in the
case of deformable 3D object detection. Moreover, most state-of-the-art success-
ful methods rely on large training data sets, in order to infer the object class
boundaries in discriminant feature space. Generative methods requiring fewer
object examples must be investigated and combined with these discriminative
methods, in order to ease the development of the pattern classifiers. More than
single object detection, more general object category recognition techniques (like
vehicles, buildings, etc.) have also to be considered in order to reduce the number
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of specific object detection methods and allow more powerful and natural user
queries.

Beyond the development of specific algorithms, performance evaluation of ob-
ject recognition techniques for content-based image and video indexing is still a
critical issue. A few specific frameworks have been organized, for specific recogni-
tion tasks such as face recognition [1] or for more global video indexing [2], where
measures such as good detection/false alarm rates, or accuracy/recall rates are
estimated using test data with ground truth. Some challenges tend to be orga-
nized like the “Pascal Visual Object Classes Challenge” (VOCC), organized by
Mark Everingham, Luc Van Gool, Chris Williams and Andrew Zisserman, in
March 2005 [3]. The goal of this challenge was to assess different object recogni-
tion approaches for different visual object classes (motorbikes, bicycles, people
and cars) in images of realistic scenes. A training set of labelled images and
various test sets were provided to assess the generalization capabilities of super-
vised algorithms trained with a reduced and unique set of examples. Among the
competing methods, a modified version of the CFF system [7] has been applied
to the detection and localization of cars and motorbikes, showing good general-
ization capabilities, given the small number of examples and the variability of
the objects to detect.

But, in general, given the very large number of possible applications and the
very specific research projects, most approaches are tested on ”home-made” re-
duced data sets, where the proposed techniques perform reasonably and that
are not easily shared among the research groups. Evaluating each approach and
comparing it with others is therefore difficult. Moreover, developers of industrial
applications obviously require successful techniques, but also clearer insight re-
garding the limits of the approaches, i.e. when and why they fail, in order to
offer reliable solutions.

3 Visual Recognition at Intel

Intel Research engages in a variety of research projects that address real-world
problems using techniques from object recognition. In addition to conducting
work that relates directly to its product roadmaps, Intel is also active in ex-
ploratory research, particularly in the context of open collaborative projects
pursued with faculty and students in academia. These projects typically gen-
erate implementations that are released as open source. This section presents
an overview of three selected projects: efficient sub-image retrieval using local
descriptors; object-based image retrieval; and computational nanovision.

3.1 Efficient Sub-image Retrieval Using Local Descriptors

The goal of sub-image retrieval is to find all of the images in a database that
have features in common with a query image. Applications include content-
based image retrieval (CBIR), identifying copyright violations on the web and
detecting image forgeries. However, unlike traditional CBIR, the query image
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cannot be matched against the database using global features. Our system [19]
builds a parts-based representation of images using distinctive local descrip-
tors which give high quality matches even under severe transformations. To
cope with the large number of features extracted from the images, we employ
locality-sensitive hashing [10] to index the local descriptors. This allows us to
make approximate similarity queries that only examine a small fraction of the
database. Although locality-sensitive hashing has excellent theoretical perfor-
mance properties, a standard implementation would still be unacceptably slow
for this application. By optimizing layout and access to the index data on disk,
we can efficiently query indices containing millions of keypoints.

Figure 2 illustrates the system architecture. As images are added to the data-
base, we perform feature extraction using the SIFT [25] detector and PCA-SIFT
descriptor [20]. These keypoints are stored in a collection of LSH hashtables on
disk. In typical experiments on a fine art collection, there are approximately
15 million keypoints for a set of 12,000 images. During retrieval, keypoints are
extracted from the query image and the set of matching keypoints is efficiently
retrieved from the database. The system employs a RANSAC-based geometric
verification step (using an affine transform model) to eliminate false positives.
Figure 3 shows a query generated by compositing patches from two images. The
system correctly identifies both source images from a large collection of fine
art images without finding any false positives. Our system achieves near-perfect
accuracy (100% precision at 99.85% recall) on the tests presented in Meng et
al. [28], and consistently strong results on our own, significantly more challenging
experiments [19]. Query times are interactive even for collections of thousands
of images.

3.2 Object-Based Image Retrieval

Object-based Image Retrieval is a collaborative effort between Intel Research
Pittsburgh and Carnegie Mellon University, in the context of the Diamond
project [13]. The goal is to create image retrieval systems based on the ob-
jects that appear in the images by learning the target concept on-line from a
small set of examples provided by the user.

Unlike most existing systems that discriminate based on a histogram or clus-
tering of color or texture features computed over the entire region, our system
performs a windowed search over location and scale for each image in the data-
base. This approach allows the retrieval of an image based on the presence of
objects that may occupy only a small portion of the image. Also, we do not as-
sume that a feature’s value is independent of location within the window. This
allows our system to retrieve images based on objects composed of colors and
textures that are distinctive only when location within the window is considered,
as is common with many man-made objects.

The system consists of two stages. An exhaustive windowed scan over scale
and position generates a set of subimages. The first stage classifies and ranks
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Fig. 2. System diagram: sub-
image retrieval relies on efficient
near-neighbor searches of PCA-
SIFT descriptors

Query image

210x174
Retrieved images

500x800 510x650

Fig. 3. Given a composite query, the sys-
tem correctly retrieves the two source im-
ages, without false matches from a database
containing over 6000 similar paintings

subimages using the posterior probability, computed from the estimated
unconditional density and the object class conditional density. The second stage,
trained using relevance feedback, reduces false positives by classifying subimages
that are labeled as positive by the first stage. If a subimage passes both stages,
the image is returned to the user.

3.3 Computational Nanovision

Silicon manufacturing technology is now able to shrink critical dimensions of
structures down to scales well below 100 nm. These nanostructures are too small
to see, even with the most sophisticated imaging equipment. This presents a chal-
lenge for Intel engineers who examine microprocessors to identify which nanos-
tructures are defective, so repairs can be made. The Computational Nanovision
research project addresses the challenge posed by the low resolution and the low
signal-to-noise ratio of nano-imaging tools. Researchers apply computer vision
techniques based on sophisticated mathematical models to measure and cre-
ate visual representations of these structures, and to automate image and data
analysis.

Computational nanovision exploits the availability of detailed models of mi-
croprocessor layouts and manufacturing processes. By integrating this informa-
tion with knowledge of the physics underlying image formation, one can develop
new model-based techniques for analyzing nanostructures in images. This has
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Fig. 4. Results of object-based image retrieval search for stop signs. The system was
trained on a total of only 12 stop sign images after 1 round of feedback.

led to tools for image reconstruction, feature detection and classification in noisy
images.

Image and Surface Reconstruction. The smaller the structure, the noisier
the image. Researchers have developed probabilistic techniques for real-time re-
construction of noisy images of nano-structures. This enables a user to observe
features that are otherwise not visible through the noise, as shown in Figure 5.

To do this, researchers first create statistical models of the noise distribution
of specific tools and incorporate them into a Bayesian de-noising framework. This
allows them separate the real image structure from the noise, and provides the
user with a significantly enhanced image. In some cases, users wish to see the real
3D structure of an object instead of a scanning beam image. To enable this, the
research group has recently developed a novel technique for rapidly generating
three-dimensional structures from two-dimensional images of scanning electron
microscopes, which was computationally intractable in the past. Using this new
technique, 3-D reconstructions of nano-structures visible in an SEM image can
be obtained within minutes.

Nanofeature Detection and Classification. Some applications, such as
nano-machining, require real-time capability to allow for fast visual feedback
from manufacturing tools. Even if a nanostructure image can be perfectly recon-
structed, currently the tool operator must make a decision, such as determining
when a structure of interest is visible in the noisy image. Researchers use prob-
abilistic techniques to automatically detect and classify nano-features, to assist
users and reduce the risk of human error. The eventual goal is to fully automate
the process, removing humans from the loop.
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Fig. 5. Computational nanovision can perform image reconstruction on noisy input
images (left), enable users to observe nanostructures through the noise (right)

4 Visual Recognition at General Electric Global Research

The Visualization and Computer Vision Lab within General Electric Global
Research is currently engaged in the development of computer vision tech-
nology in video surveillance, medical image analysis, biological image analy-
sis, industrial inspection, and broadcast media. In all of these applications,
visual recognition is a critical enabling technology. For video surveillance, we
are conducting research in a variety of areas, including: tracking people and
vehicles [29,16,22]; segmenting moving crowds into individuals [32]; person re-
identification [9]; detecting events and behaviors of interest [5,4]; camera cali-
bration [21,41]; scene understanding [18,14]; and face analysis and recognition
[24,40].

For broadcast video, we have developed methods for semantic object recogni-
tion using context established by the transcript [15,36,33]. For industrial inspec-
tion, we have focused on the problem of curved surfaces with complex reflectance
[37]. In medical imaging, we have developed algorithms to automatically screen
diagnostic images for early cancer detection [17,27]. We have also conducted re-
search in recognizing partial or low-quality fingerprints [38,39], which has been
used by the FBI.

In all of these areas, significant progress in visual recognition has been essential
for developing prototypes and for transitioning algorithms into operations and
products. As recognition technology improves, we envision significantly enhanced
applications in many of the GE businesses.

Our recent efforts in scene content classification and person re-identification
are perhaps the most relevant to this workshop, and are summarized briefly here.
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4.1 Scene Content Classification

The goal of scene content classification is to label every pixel in an image with
its category. We define this problem using a small number of broad categories,
such that every pixel can be correctly classified into some category.

In our approach, we perform an initial, dense region segmentation on the
image to form “superpixels”, which are then attributed with a feature vector.
We have explored and compared two formulations of this feature vector. First,
following the work of [14,18,31], which we will call perceptual features, we include
superpixel contrast, parallelism and continuity features derived from the region
graph using adjacent regions. Second, following [42,?], which we will call texton-
based features, a texture filter bank is computed at each pixel, quantized into
textons, and histogrammed over the region.

Fig. 6. Example results of our segmentation and classification methods, compared to
image block classification. Top left: an image (not used in training); top middle: man-
ual segmentation and labeling. The six classes are: dark gray=road, orange=vehicle,
brown=building, dark green=tree, light green=grass, black=shadow. Four classifica-
tion results from: perceptual features with AdaBoost.MV, with 75.2% pixel-wise cor-
rect classification (top right); texton features 66.0% (bottom left); 8x8 image blocks
62.6% (bottom middle); 20x20 image blocks 63.8% (bottom right).

Each attributed region is classified using a novel, generic extension of boost-
ing for a multiclass problem, AdaBoost.MV. We treat the output of an ensemble
of binary classifiers as a derived “vote” feature vector, performing MAP clas-
sification in this more discriminating space using a Gaussian distribution over
classes.

Comparative results are shown in Figure 6. We compared our region-based
methods to block-based methods, where each block is characterized by its texton
histogram. On a set of 25 images, with 10 training and 15 test, AdaBoost.MV
with perceptual features outperforms texton features 75.2% to 66% in pixel-wise
classification accuracy. Textons on 20x20 image blocks scored 64%.
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These scene classification methods have been applied to broadcast news con-
tent annotation [15] and tracking vehicles [16]. In the latter, knowledge of scene
content is used to improve stabilization, moving object detection and track loss
due to occlusion.

4.2 Person Re-identification Using Spatio-temporal Appearance

In many surveillance applications it is desirable to determine if a given individ-
ual has been previously observed over a network of cameras. This is the person

Fig. 7. Top ten person matches using the model-based algorithm. The query image is
shown in the left column, and the remaining columns are the top matches ordered from
left to right. The query and matching images are taken from different cameras. A box
is used to highlight when a match corresponds to query. Third row shows an example
where the correct match is not present in the top ten matches.
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reidentification problem. Our approach focuses on reidentification algorithms
that use the overall appearance of an individual as opposed to passive biomet-
rics such as face and gait [9]. Person reidentification approaches have two aspects:
(i) establish correspondence between parts, and (ii) generate signatures that are
invariant to variations in illumination, pose, and the dynamic appearance of
clothing. A novel spatiotemporal segmentation algorithm is employed to gen-
erate salient edgels that are robust to changes in appearance of clothing. The
invariant signatures are generated by combining normalized color and salient
edgel histograms. Two approaches are proposed to generate correspondences:
(i) a model based approach that fits an articulated model to each individual
to establish a correspondence map, and (ii) an interest point operator approach
that nominates a large number of potential correspondences which are evaluated
using a region growing scheme. These approaches were evaluated on a 44 person
database across 3 disparate views.

5 Visual Recognition at Toyota

Recently the application of object recognition to real-world systems for cars and
also to autonomous robots is rapidly growing. For cars, there already are some
systems utilizing visual recognition as follows:

– A lane departure warning and lane-keeping assist system using white line
detection.

– Detection of obstacles in front of the vehicle using stereo images.
– A pedestrian detection and warning system using infrared images.

Many more applications for future intelligent vehicles to prevent potential traffic
accidents and also to assist driving are expected. For the realization of those fu-
ture systems, recognition and prediction of the motion of pedestrians, other cars,
other bikes etc. will be necessary. Also for autonomous and semi-autonomous
driving, as well as for driving support, recognition of traffic signs, signals etc.
and also segmentation and categorization of road area, sidewalks, guardrails,
crosswalks, crossroads etc. will be necessary. Furthermore, to predict future pos-
sible dangers and prevent them, scene understanding considering the context of
the scene will become important. However, there still are many difficulties for
these tasks such as large occlusions, very large variations in weather, lighting
conditions, shape of the objects, and so on.

One of the most challenging applications of visual recognition is pedestrian
detection, because of 1) large appearance change with changes in posture and
viewpoint; 2) large self occlusions and overlap between multiple people; 3) large
variation of appearance due to clothes, age, gender, etc. By the recent devel-
opment of many kinds of local feature descriptors and also combining those
technologies with statistical learning technologies, some of these difficulties are
gradually being addressed. [8] showed excellent performance of an Adaboost-
based algorithm for this problem. [6] showed the potential of combining affine
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invariant local features and statistical learning. Recently [23] gave a more robust
solution for pedestrian detection in cluttered scenes. But these methods still fall
short of what is required for commercial systems.

On the other hand, for autonomous robots such as future service robots, ob-
ject recognition in outdoor and indoor scenes is very important. One necessary
capability of these robots is recognition of objects to be handled and also of ob-
stacles and the 3D environment for autonomous navigation in cluttered scenes.
Also categorization of floor, wall, furniture, moving human and so on is necessary
for simultaneous localization and mapping. If shape and specific local descriptors
for a 2D[30] or 3D[11] image are extracted, it is possible to detect and recognize
objects by matching those descriptors between the input camera image and a
database. It is also possible to estimate position and orientation of the known
objects by the same way as camera pose estimation using corresponding fea-
ture points between the input image and the database image. For non-textured
objects, a descriptor using the contour information can be used. On the other
hand, if there is no such database but most of the objects can be fitted to simply
shaped primitives, only separating each object and estimating the position and
orientation make sense for grasping those objects by robot hand. We at first de-
veloped a technology based on 3D reconstruction of the object shape and then
separate each object using 3D shape information [12]. For separating objects, an
algorithm using graph-cut [26] was developed. And to fit the shape of the each
object to primitives, clustering of normalized vectors of each surface is used. We
plan to recognize objects with more complex shapes in cluttered environments
by combining two approaches mentioned above.

There still are problems to be solved for these methods when applying them
to operational systems. One is how to improve the accuracy of matching de-
scriptors especially for low resolution images. Speedup and improvement of 3D
reconstruction is also a big problem for the actual implementation. Sensor fu-
sion of range sensor and multi-view vision is one possibility for addressing this
problem.

Recently, thanks to the rapid growth of computation power and also to the
development of mathematical theories, statistical methods are becoming more
useful in all of the related engineering areas, including computer vision. Appli-
cation of object classification as pedestrian detection owes much success to this
trend. However there still are many unresolved problems such as error by over
learning, how to construct a proper learning dataset, etc. On the other hand, the
robustness and speed of local feature detectors and descriptors are still hot top-
ics. Also for the matching problem, there still needs to be improvement in outlier
rejection. There also remains the problem of how to speed up the matching for
huge object databases. Now that computer vision is becoming useful for various
real applications, the expectation of industry for academia to solve remaining
problems is very strong. To accelerate this movement, frank and deep discus-
sion about the matching of technical needs with academic research is becoming
increasingly important.



62 Y. Hirano et al.

Acknowledgments

Section 4 of this report was prepared by GE GRC as an account of work spon-
sored by Lockheed Martin Corporation. Information contained in this report
constitutes technical information which is the property of Lockheed Martin Cor-
poration. Neither GE nor Lockheed Martin Corporation, nor any person acting
on behalf of either; a. Makes any warranty or representation, expressed or im-
plied, with respect to the use of any information contained in this report, or
that the use of any information, apparatus, method, or process disclosed in this
report may not infringe privately owned rights; or b. Assume any liabilities with
respect to the use of, or for damages resulting from the use of, any information,
apparatus, method or process disclosed in this report.

References

1. The NIST humanid evaluation framework. www.frvt.org (2003)
2. The TREC video retrieval evaluation. www-nlpir.nist.gov/projects/trecvid

(2003)
3. The Pascal visual object classes challenge.

www.pascal-network.org/challenges/VOC (2005)
4. M. Chan, A. Hoogs, J. Schmiederer, M. Petersen. Detecting rare events in video

using semantic primitives with HMM. In: Proc. ICPR. Volume 4. (2004) 150–154
5. M. Chan, A. Hoogs, A. Perera, R. Bhotika, J. Schmiederer, G. Doretto. Joint recog-

nition of complex events and track matching. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition. (2006)

6. R. Fergus, A. Zisserman, and P. Perona. Object class recognition by unsuper-
vised scale-invariant learning, in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR2003).

7. C. Garcia, M. Delakis. Convolutional face finder: A neural architecture for fast
and robust face detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence 25 (2004) 1408–1423

8. D. Gavrila. Pedestrian detection from a moving vehicle, in Sixth European Con-
ference on Computer Vision (ECCV2000), Springer, pp. 37-49.

9. N. Gheissari, T.B. Sebatian, P.H. Tu, J. Rittscher, R. Hartley. A novel approach
to person reidentification. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, 2006.

10. A. Gionis, P. Indyk, R. Motwani. Similarity search in high dimensions via hashing.
In: Proc. Conference on Very Large Databases. (1999)

11. A. Johnson and M. Hebert: Using spin images for efficient object recognition in
cluttered 3D scenes, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 21, No. 5, May, 1999, pp. 433 - 449.

12. Y. Hirano, K. Kitahama, and S. Yoshizawa. Image-based Object Recognition and
Dexterous Hand/Arm Motion Planning Using RRTs for Grasping in Cluttered
Scene, in IEEE/RSJ Conference on Intelligent Robots and Systems (IROS2005),
Edmonton, Canada.

13. D. Hoiem, R. Sukthankar, H. Schneiderman, L. Huston. Object-based image re-
trieval using the statistics of images. In: Proc. Computer Vision and Pattern
Recognition. (2004)



Industry and Object Recognition 63

14. A. Hoogs, R. Collins, R. Kaucic, J. Mundy. A common set of perceptual observables
for grouping, figure-ground discrimination and texture classification. T. PAMI 25
(2003) 458–475

15. A. Hoogs, J. Rittscher, G. Stein, J. Schmiederer. Video content annotation using
visual analysis and large semantic knowledgebase. In: Proc. CVPR, IEEE (2003)

16. R. Kaucic, A.G.A. Perera, G. Brooksby, J. Kaufhold, A. Hoogs. A unified frame-
work for tracking through occlusions and across sensor gaps. In: Proc. CVPR.
(2005) 990–997

17. R.A. Kaucic, C.C. McCulloch, P.R.S. Mendonça, D.J. Walter, R.S. Avila, J.L.
Mundy. Model-based detection of lung nodules in CT exams. In Lemke, H.U., Van-
nier, M.W., Inamura, K., Farman, A.G., Doi, K., Reiber, J.H.C., eds.: Computer
Assisted Radiology and Surgery. Volume 1256 of International Congress Series.,
London, UK, Elsevier 990–997, 2003.

18. J. Kaufhold, A. Hoogs. Learning to segment images using region-based percep-
tual features. In: Proceedings of the Conference on Computer Vision and Pattern
Recognition, IEEE (2004)

19. Y. Ke, R. Sukthankar, L. Huston. Efficient near-duplicate and sub-image retrieval.
In: Proc. ACM Multimedia. (2004)

20. Y. Ke, R. Sukthankar. PCA-SIFT: A more distinctive representation for local
image descriptors. In: Proc Computer Vision and Pattern Recognition. (2004)

21. N. Krahnstoever, P. Mendonca. Bayesian autocalibration for surveillance. In: Proc.
ICCV, IEEE (2005)

22. N. Krahnstoever, T. Kelliher, J. Rittscher. Obtaining pareto optimal performance
of visual surveillance algorithms. In: Proc. of IEEE International Workshop on
Performance Evaluation of Tracking and Surveillance, 2005.

23. B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded scenes, in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR2005), San
Diego, CA.

24. X. Liu, T. Chen, J. Rittscher. Optimal pose for face recognition. In: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, 2006.

25. D.G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision (2004)

26. J. Shi and J. Malik: Normalized Cuts and Image Segmentation, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8), pp. 888-905, August 2000.

27. C.C. McCulloch, R.A. Kaucic, P.R.S. Mendonça, D.J. Walter, R.S. Avila. Model-
based detection of lung nodules in computed tomography exams. Academic Radi-
ology 11 (2004) 258–266

28. Y. Meng, E. Chang, B. Li. Enhancing DPF for near-replica image recognition. In:
Proc. Computer Vision and Pattern Recognition. (2003)

29. A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, W. Hu. Multi-object tracking
through simultaneous long occlusions and split-merge conditions. In: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, 2006.

30. F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce: 3D Object Modeling and
Recognition Using Affine-Invariant Patches and Multi-View Spatial Constraints,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR2003), Madison, WI, June 2003, Vol. II, pp. 272-277.

31. X. Ren, J. Malik. Learning a classification model for segmentation. In: Proc. IEEE
International Conference on Computer Vision, 2003.

32. J. Rittscher, P. Tu, N. Krahnstoever. Simultaneous estimation of segmentation
and shape. In: Proc. CVPR, IEEE, 2005.



64 Y. Hirano et al.

33. J. Rittscher, A. Blake, A. Hoogs, G. Stein. Mathematical modeling of animate and
intentional motion. Philosophical Transactions of the Royal Society of London:
Biological Sciences 358 475–490, 2003.

34. H. Sanson. Video indexing: Myth and reality. In: Fourth International Workshop
on Content-Based Multimedia Indexing, Riga, Latvia (2005)

35. C. Snoek, M. Worring. Multimodal video indexing: A review of the state-of-the-art.
Multimedia Tools and Applications 25 (2005) 5–35

36. G. Stein, J. Rittscher, A. Hoogs. Enabling video annotation using a semantic
database extended with visual knowledge. In: Proceedings of the International
Conference on Multimedia and Expo, IEEE, 2003.

37. P. Tu, P. Mendonca. Surface reconstruction via helmholtz reciprocity with a single
image pair. In: Proc. CVPR. (2003)

38. P. Tu, J. Rittscher, T. Kelliher. In: Challenges to Fingerprints, 2005.
39. P. Tu, R. Hartley. Statistical significance as an aid to system performance evalua-

tion. In: European Conference On Computer Vision. Volume II, 366–378, 2000.
40. P. Tu, R. Hartley, A. Allyassin, W. Lorensen, R. Gupta, L. Heier. Face reconstruc-

tions using flesh deformation modes. In: International Association for Craniofacial
Identification, 2000.

41. P. Tu, J. Rittscher, T. Kelliher. Site calibration for large indoor scenes. In: Proceed-
ings of the IEEE Conference on Advanced Video and Signal Based Surveillance,
IEEE (2003)

42. M. Varma, A. Zisserman. Classifying images of materials: Achieving viewpoint and
illumination independence. In: Proc. European Conference on Computer Vision.
Volume 3, 255–271, 2002.

43. R.C. Veltkamp, M. Tanase. Content-based image retrieval systems: A survey. IEEE
Image Processing 1 (2001) 100–148

44. P. Viola, M. Jones. Rapid object detection using a boosted cascade of simple
features. In: Proceedings of IEEE Int. Conf. on Computer Vision and Patttern
Recognition, Hawaii, US, 511–518, 2001.





What and Where: 3D Object Recognition
with Accurate Pose

Iryna Gordon and David G. Lowe

Computer Science Department,
University of British Columbia

Vancouver, BC, Canada
lowe@cs.ubc.ca

Abstract. Many applications of 3D object recognition, such as aug-
mented reality or robotic manipulation, require an accurate solution for
the 3D pose of the recognized objects. This is best accomplished by
building a metrically accurate 3D model of the object and all its fea-
ture locations, and then fitting this model to features detected in new
images. In this chapter, we describe a system for constructing 3D met-
ric models from multiple images taken with an uncalibrated handheld
camera, recognizing these models in new images, and precisely solving
for object pose. This is demonstrated in an augmented reality applica-
tion where objects must be recognized, tracked, and superimposed on
new images taken from arbitrary viewpoints without perceptible jitter.
This approach not only provides for accurate pose, but also allows for
integration of features from multiple training images into a single model
that provides for more reliable recognition1.

1 Introduction

Many existing approaches to object recognition match new images to a data-
base of individual 2D training images, and thereby determine the best matching
object without any precise notion of their 3D pose. However, some common
applications, such as augmented reality or robotic manipulation, require that
recognition also include a precise 3D pose solution. In this chapter, we address
the problem of augmented reality, in which synthetic graphics must be super-
imposed on real images to a high degree of accuracy. Human vision is highly
sensitive to misregistration errors, so the accuracy must be sub-pixel and mini-
mize any jitter due to sensor noise.

Our solution is based on using invariant local features to obtain point matches
between multiple 2D images of a rigid 3D object or scene. These are then used
as input to bundle adjustment to obtain a metrically accurate 3D solution for
the locations of the features and cameras. This follows a similar approach to
building 3D models from local feature matches that was previously developed

1 The research in this chapter was first presented at the International Symposium on
Mixed and Augmented Reality, 2004 [8].
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by Schaffalitzky and Zisserman [20]. In recent work, Rothganger et al. [18] have
built 3D models from multiple affine-invariant feature correspondences and used
these models for recognition. They demonstrate that the 3D models are particu-
larly valuable for recognition as they integrate features from multiple views and
are therefore more complete and robust than any single view representation. In
this chapter we describe a number of improvements to previous methods that we
have found useful, including a simple approach to initializing bundle adjustment,
methods for filtering subsets of the most useful features, and a novel approach
to jitter reduction in augmented reality. We are able to reliably build models
of complex objects and scenes from multiple hand-held images using an uncal-
ibrated camera. The models can then be recognized and tracked in long video
sequences while maintaining minimal jitter.

1.1 System Overview

Our system operates in two stages. During the first, offline stage, SIFT features
are extracted from the reference images and pair-wise correspondences are es-
tablished. The process remains linear in the number of images by using fast
approximate indexing and only linking image pairs forming a spanning tree.
These correspondences are used to build a metric model of the real world to
be augmented (which could be an individual object or a general scene). At the
same time, camera calibration parameters and camera poses corresponding to
image viewpoints are computed. Structure and motion recovery is performed
with bundle adjustment using a simple initialization procedure.

Once the real world model has been obtained, the position, orientation and
size of the virtual object must be specified relative to this model. For this purpose
we provide an interactive procedure, which allows the user to determine the pose
of the virtual object in the reference images.

Fig. 1. The coffee mug is recognized in each frame and its pose computed. The virtual
teapot is superimposed to appear on top of the coffee mug. The last two frames demon-
strate recognition of the partially occluded mug in cluttered scenes, without tracking
from previous frames.

The second stage of the system involves recognition and accurate solution
of the model pose for live video augmentation. Features detected in the current
video frame are matched to those of the world model, and these matches are used
to compute the current pose of the model. Jitter is minimized by regularizing the
solution using the pose computed for the previous frame. The influence of the
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previous solution on the current one is weighted without imposing constraints
on the overall camera motion. The tracker is very stable in practice (Figure 1
demonstrates some of its capabilities), and it performs online scene recognition
and recovery from failure of tracking. Unlike previous systems for augmented
reality, our method performs automatic recognition of any of a library of objects
using natural features, making it suitable for a variety of mobile applications
which involve augmentation of recognized scenes, such as computerized museum
tour guides and augmentation of individual objects.

2 Related Research

In most previous research on marker-free systems for augmented reality, nat-
ural features are used only for establishing correspondences between consecutive
frames in a video sequence. Some of the most common choices are the Har-
ris corner detector [9], applied in [3,4], and the Kanade-Lucas-Tomasi (KLT)
tracker [16], used in [23,7,19]. To automate the initialization and failure recovery
of a tracker, reliable wide baseline matching is desired, which in turn imposes a
demand for a higher degree of feature invariance.

A recent approach [5] proposes tracking of parallelogram-shaped and ellip-
tical image regions, extracted in an affinely invariant way, which can be used
for scene recognition. Impressive results are presented, but the tracker relies on
the presence of planar structures in the viewed scene. In [13] viewpoint invari-
ance is achieved by applying an eigen-image approach to a set of local image
patches, which capture the appearance of a real-world point in several views.
Their method relies on the pre-built CAD model of the object to be augmented,
and requires manual matching of model points to their 2D projections in refer-
ence keyframes. In [11] edges of a CAD model are matched to detected image
edges. Their visual tracking system is combined with rate gyroscopes in order
to handle rapid movements of a head-mounted camera.

Various other techniques have been suggested in augmented reality for acquir-
ing a reference representation of the real world. In [3] two or more reference views
are used to compute current camera pose from epipolar geometry constraints on
natural feature correspondences. Markers are still used to pre-calibrate the refer-
ence frames with standard calibration tools. The initial camera pose must be very
close to one of the reference images, due to wide baseline matching limitations.
A learning-based strategy is proposed in [7], where the scene is represented by
a set of natural features, detected and calibrated during an initial marker-based
tracking phase. The system presented in [12] uses fiducial detection to represent
the environment and its virtual contents in an affine frame of reference, with
an aim to avoid metric camera calibration. This innovative approach achieves
comparable results with minimum initialization effort, however it does not allow
the modeling of perspective projection effects at close camera distances. In [21]
the coordinate frame of the real world is manually inserted into reference views,
by specifying image locations of control points. Line intersections on fiducials
are tracked to estimate the motion of the camera. Completely markerless and
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general techniques are presented in [4] and [19], where virtual object registra-
tion is achieved based on the results of a global bundle adjustment and self-
calibration, leading to metric camera motion and scene structure recovery. Both
of these methods perform offline batch processing of the entire video sequence,
with no support for online scene recognition or tracking.

3 Learning Scene Geometry

The preliminary stage of the system takes as input an unordered set of images
of the real world scene or object to modeled. The images are acquired from un-
known, spatially separated viewpoints by a handheld camera, which does not
need to be pre-calibrated. At least two snapshots are required; using more al-
lows the capture of more scene features and thus enables a wider-range and
more reliable tracking. In our experiments, we have used 5 to 20 images which
were gathered from up to a full 360◦ range of viewpoints, separated by at most
about 45◦. The scene is assumed to be mostly rigid, with no special markers or
known structures present. The system uses these input images to build a sparse
3D model of the viewed scene and to simultaneously recover camera poses and
calibration parameters. The virtual object can then be inserted into the modeled
environment. The problem is divided into the following steps:

1. Local invariant features are extracted from the input images.
2. A robust wide baseline matching technique is applied to find two-view feature

correspondences, leading to the construction of multi-view matches.
3. A subset of multi-view matches is chosen as an input to an iterative algorithm

for structure and motion recovery.
4. The remaining matches are triangulated using computed camera parameters,

and outliers are removed.
5. The position, orientation and size of the virtual object are defined relative

to the coordinate frame of the recovered model.

3.1 Feature Extraction and Matching

We extract SIFT features [14,15] from each input image for matching. The main
attractions of SIFT features are their distinctiveness, invariance, and efficiency,
resulting in a high probability of correct matches across a wide range of image
variations. In addition, large numbers of these features can be found in a typical
image (see Figure 2), making them suitable for recognition and tracking in the
presence of occlusions, and generally increasing the robustness of recognition.

The best candidate match for a SIFT feature is its nearest neighbour, de-
fined as the feature with the minimum Euclidean distance between descriptor
vectors. The reliability of the nearest neighbour match can be tested by com-
paring its Euclidean distance to that of the second nearest neighbour from that
image. If these distances are too similar, the nearest neighbour match is discarded
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Fig. 2. SIFT keypoints extracted from a 640×480 image of a sneaker. The algorithm
found 1533 features shown as white arrows, with size and direction corresponding to
feature scale and orientation, respectively.

as unreliable. This simple method works well in practice, since incorrect matches
are much more likely to have close neighbours with similar distances than correct
ones, due in part to the high dimensionality of the feature space.

The large numbers of features generated from images, as well as the high
dimensionality of their descriptors, make an exhaustive search for closest matches
extremely inefficient. Therefore we employ an approximate Best-Bin-First (BBF)
algorithm, based on a k-d tree search [2]. A k-d tree is constructed from all
SIFT features which have been extracted from the reference images. The search
examines tree leaves, each containing a feature, in the order of their closest
distance from the current query location. Search order is determined with a
heap-based priority queue. An approximate answer is returned after examining
a predetermined number of nearest leaves. This technique finds the closest match
with a high probability, and enables feature matching to run in real time.

For each feature in a reference image, the BBF search finds its nearest and
second nearest neighbour pair in each of the remaining images. Putative two-view
matches are then selected based on the nearest-to-second-nearest distance ratio
(with the threshold value of 0.8). We improve this set of matches by applying
an epipolar geometry constraint to remove remaining outliers. For each selected
image pair, this constraint can be expressed as

xT
i Fijxj = 0 (1)

where xi = [ui vi 1]T and xj = [uj vj 1]T are homogeneous image coordinates of
the matched features in images i and j, respectively, and Fij is a fundamental
matrix of rank 2. The computation of F between each pair of N images has

(
N
2

)
complexity, thus quickly becoming prohibitively expensive with increasing N .
Therefore we apply a selective approach, similar to [20], which is linear in the
number of images. Image pairs are selected based on a greedy algorithm, which
constructs a spanning tree on the image set. Starting with the two images that
have the most putative matches, we compute F consistent with the majority of
matches using the RANSAC algorithm [6], discard outliers and join these images
with an edge. This process is repeated for the image pair with the next highest
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Fig. 3. Building a model of a coffee mug placed on top of a magazine from 20 reference
images. Cameras are shown as wire cones and image features as points: (a) initialization
places all cameras at the same location and all points at the same distance from the
cameras (average reprojection error = 62.5 pixels); (b) results after 10 iterations (error
= 4.2 pixels); (c) results after 20 iterations (error = 1.7 pixels); (d) final results after
50 iterations (error = 0.2 pixels).

number of matches, subject to the constraint that joining these images does not
create a cycle. In this manner, the expensive cleanup operation is applied only
to the more promising candidates.

The entire image set is considered processed when the addition of any remain-
ing candidate image pair would create a cycle in the tree. At this point we es-
tablish multi-view 2D point correspondences by traversing the tree and stitching
together two-view feature matches. Because the tree structure is free of cycles,
the generation of multi-view matches is straightforward and unambiguous.
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3.2 Motion and Structure Recovery

Once the multi-view matches have been established, we seek to compute world
coordinates of the corresponding 3D points, calibration parameters and camera
poses for each reference view. Formally, a 2D projection xij = [uij vij 1]T of a
3D point Xj = [xj yj zj 1]T in an image i is expressed as

xij ∼ PiXj (2)

where ∼ denotes equality up to a scale factor, and Pi is a 3 × 4 camera matrix
of the form

Pi = K[Ri ti] (3)

In the above equation, matrix K contains camera calibration parameters, such
as focal length, aspect ratio and principal point coordinates; Ri and ti are the
rotation and translation of the world frame relative to the camera frame for
image i.

A classical approach to this problem begins with an algebraic initialization of
projective structure and motion, using two- or three-view epipolar constraints.
This is followed by an upgrade to a metric framework with self-calibration tech-
niques, as well as a solution refinement via an iterative bundle adjustment op-
timization [10]. We employ an alternative technique suggested by Szeliski and
Kang [22], which omits the linear initialization step and solves for all of the un-
known parameters iteratively, using a general-purpose optimization algorithm,
such as Levenberg-Marquardt [17]. The problem is formulated as the minimiza-
tion of the reprojection errors over all camera parameters and world point coor-
dinates, given image projections of the world points:

min
aij

∑
i

∑
j

‖wj(Π(aij)− xij)‖2 (4)

where Π is the non-linear projection function and the vector aij = [XT
j pT

i cT ]T

contains the unknown parameters: 3D coordinates Xj of a world point j, camera
pose parameters pi for an image i, and global calibration parameters c (or ci, in
case of varying calibration parameters). After 15 iterations to establish an initial
solution estimate, the confidence weight wj associated with Xj is lowered for
world points with high reprojection errors using the Huber norm, thus reducing
the contribution of outliers to the final solution.

To initialize the algorithm, we back-project the 2D points from an arbitrary
view to an xy-plane of the world frame, place all cameras at the same default
distance along the z-axis directly facing the plane, and use default values for
the calibration parameters. It is possible that bundle adjustment will converge
to a false local minimum due to depth reversal (as illustrated in the Necker
cube illusion). As suggested by [22], this can be avoided by reflecting the depth
of the first model solution about the xy-plane, restarting the bundle adjust-
ment, and selecting the solution with the best final reprojection error. This
simple initialization allows us to achieve proper convergence with the cameras
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Fig. 4. The placement of the virtual frame origin V in 3D is achieved by anchoring its
projection vi in image i and adjusting its projection vj in image j along the epipolar
line Li

as far as 90◦ apart, in a few dozen iterations. Figure 3 shows the sequence
of convergence for even a large set of 20 images of a typical scene, although
in practice, for efficiency, we only start with 5 images and then add others
incrementally.

To reduce problem size, as an input to the Levenberg-Marquardt algorithm
we select a limited number (at most 100) of the points with the most corre-
spondences. Coordinates of the remaining points can be easily computed using
standard triangulation techniques [10], once the camera parameters have been
recovered. Lastly, we remove any model point outliers with large reprojection
errors. The latter are usually a result of infrequent feature mismatches which
have survived the epipolar constraint test.

3.3 Virtual Object Placement

For augmented reality, the insertion of the virtual object into the real world
is achieved by adjusting its projection in the reference images until it appears
correctly rendered. First, the 3D coordinates of the virtual frame origin V are
established via triangulation, as follows. The projection of V is specified in one
of the reference images with a click of a mouse button (the virtual frame is “an-
chored” in 2D). Afterwards, the relative depth of V is adjusted by switching to
a different view and moving the corresponding projection of V along an epipolar
line imposed by the anchoring view. This is equivalent to moving V along a line
connecting the camera centre and the projection of V in the anchoring image
(see Figure 4).

Next, the user is able to fine-tune the position, orientation and size of the vir-
tual object in variable-size increments. Figure 5 shows an example of the virtual
frame insertion and pose adjustment. The virtual object is rendered onto the
reference images using previously recovered camera parameters. At any time the
user can switch between the images to view the corresponding projection of the
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virtual contents. Note that the geometric relationships between the real world,
its virtual contents and the cameras are defined in the same generic units, so
that there is no need to recover the absolute scale of the real world model. If
a metric object scale is required, this parameter can be provided by user input
of a single known dimension or by presence of a calibrated object in one of the
views.

4 Model Recognition and Camera Tracking

The online computations of the system are summarized in the following steps:

1. SIFT features are extracted from the current frame of the video sequence.
2. The new features are matched to the image features of the world model using

the BBF algorithm, resulting in a set of 2D-to-3D correspondences.
3. The correspondences are used to compute the current camera pose, via a ro-

bust approach which combines RANSAC and Levenberg-Marquardt
algorithms.

Fig. 5. Insertion of the virtual frame into a desk scene: a) initial placement into one
of the reference images by specifying the desired location of the frame’s origin; b) the
frame’s trajectory along the epipolar line in another image; c) subsequent orientation
adjustment

To initialize the tracker, a k-d tree is constructed from the image features
of the world model. Each image feature is a 2D projection with links to its 3D
world coordinates, a reference image in which it was found and the corresponding
recovered camera pose. During tracking, this structure is used to efficiently detect
model point projections in each new frame. A nearest and a second nearest
neighbour pair is found for each feature from the current frame via a BBF search,
with the two neighbours belonging to different model points. As in Section 3.1,
the reliability of the best match is tested by comparing its Euclidean distance
to that of the second best match.

Tracking failure is assumed if the number of reliable best matches falls below
a predefined threshold (set to 15 in our experiments, although a much lower
threshold could be used with more careful verification). This occurs when all
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or most of the model disappears out of sight, or the frame contains too much
motion blur. In such cases the rendering of virtual contents is postponed until
enough model points are detected.

Given a set of putative 2D-to-3D matches (xtj ,Xj) for the frame t, we can com-
pute the corresponding camera pose parameters by minimizing the residual sum:

min
pt

∑
j

‖wtj(Π(atj)− xtj)‖2 (5)

where the weight wtj describes the confidence in the measurement xtj and is set
to the reciprocal of its estimated standard deviation in the image. Since SIFT
features with larger scales are computed from more blurred versions of the image,
they have lower location accuracy. Therefore, we set wtj inversely proportional
to the scale of each feature. This time the camera pose parameters pt are the
only unknowns in the vector atj (assuming unchanging calibration parameters).
We initialize pt to pt−1, computed for the previous frame. For the first frame
of the video sequence or the one immediately after tracking failure, as an initial
guess we use the camera pose of the reference image contributing the most 2D
feature matches from the BBF search.

We apply RANSAC to compute the camera pose consistent with the most
matches. The minimization given by (5) is performed for each RANSAC sam-
ple, and the final solution is computed using all of the inliers as input. Despite
its iterative nature, this approach has proven to be sufficiently fast for online
use. The small number of unknown parameters results in a rapid execution of
Levenberg-Marquardt iterations. Very few RANSAC samples are needed, since
the non-linear computation of 6 elements of pt, corresponding to the 6 degrees-
of-freedom of the camera pose, requires the minimum of only 3 matches. Fur-
thermore, the input set of matches usually contains a very small fraction of
outliers due to the fact that ambiguous matches have already been removed by
the distance ratio check.

4.1 Jitter Reduction

The solution to (5) provides a reasonable estimate of the camera pose, yet typ-
ically leads to a “jitter” of the virtual projection in the video sequence, partic-
ularly noticeable when the camera is fully or nearly stationary. This inaccuracy
can be a result of image noise, as well as too few or unevenly distributed feature
matches. In addition, the surface of the error function may be flat near its mini-
mum, as it may be difficult to distinguish between slight changes in rotation and
translation parameters for near-planar objects.

To stabilize the solution, we modify (5) by adding a regularization term which
favours minimum camera motion between consecutive video frames:

min
pt

∑
j

‖wtj(Π(atj)− xtj)‖2 + α2‖W (pt − pt−1)‖2 (6)
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where W is a 6 × 6 diagonal matrix of prior weights on the camera pose pa-
rameters, and α is a scalar which controls the tradeoff between the current
measurements and the stable solution. Each diagonal entry of W is set to the
inverse of the standard deviation of the corresponding parameter, reflecting the
relative range of expected frame-to-frame change in the camera pose (e.g., a few
degrees for a change in rotation).

feature extraction (SIFT algorithm) 150 ms
feature matching (BBF algorithm) 40 ms
camera pose computation 25 ms
frames per second 4

Fig. 6. Average computation times for a video sequence with 640 × 480 frame size.
The real world model contains about 5000 3D points.

Instead of adopting the usual approach of setting α to a constant value, we
adjust it separately for each video frame. We would like high levels of smoothing
for slow motions while avoiding over-smoothing of large camera motions which
would result in a virtual object “drifting” behind a faster moving scene. The
amount of smoothing is determined by controlling its contribution to the total
reprojection error: the contribution is required to be no higher than that of the
image feature noise. This can be expressed by the inequality

α2‖W (pt − pt−1)‖2 ≤ σ2N (7)

Fig. 7. Examples of tracking within a complex scene: a) a virtual teapot is placed in
the modeled desk scene; b) the scene does not have to be fully static; c,d) recognition
is robust to changes in lighting and viewpoint; e) moderate amounts of motion blur
are acceptable; f) a partial view of the scene is correctly recognized
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Fig. 8. The augmentation of the entrance to the university library with a new sign

Fig. 9. A virtual robotic dog in the modeled corner of the lab room. Successful results
were achieved with people freely moving around the room.

where N is the number of matching image points, pt is the final new camera
solution, and σ is the estimated uncertainty of an image measurement (e.g., 0.5
pixels). It follows that the maximum allowable amount of smoothing is

α2 =
σ2N

‖W (pt − pt−1)‖2
(8)

Because pt is unknown, α cannot be computed in advance; instead, it is
gradually adjusted during LM iterations, as follows.

At first, pt is computed using α = 0. Once a local minimum has been reached,
the search explores its immediate neighbourhood, looking for a regularized solu-
tion. This is done by executing a few additional LM iterations, this time solving
(6) with α recomputed at each iteration as per (8), using the most recent esti-
mate of pt to approximate pt. The search for a regularized solution terminates
when pt−pt−1 becomes very small (which would occur for a camera that appears
stationary within measurement noise) or no longer changes significantly.

Intuitively, as much smoothing as possible is applied while still trying to agree
with the measured data, within the bounds of its uncertainty. As a result, larger
values of α are used for slower frame-to-frame motions, significantly reducing
jitter, while fast and abrupt camera motions are handled without drift. This
method has worked very well in practice to almost eliminate perceived jitter, and
experiments described below show that it leads to a large reduction in measured
jitter (Figure 11).
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5 Experiments

The system prototype has been implemented in C using OpenGL and GLUT
libraries, on an IBM ThinkPad with a Pentium 4-M processor (1.8 GHz) and a
Logitech QuickCam Pro 4000 video camera. An example of current computation
times for the tracker is given in Figure 6. Current speed of recognition and
tracking is about 4 frames/sec.

Fig. 10. ARToolkit marker in the scene (left). Virtual square, superimposed onto the
marker during tracking (right).

To demonstrate the capabilities of the system, we have tested its performance
on a variety of scenes and tracking scenarios. Some of the augmented video
frames are shown in Figures 7 through 9. Video examples are available on the
authors’ web pages.

In order to test the accuracy of registration, we aligned a virtual square with
an ARToolKit marker [1], which was present in a modeled scene (Figure 10).

While tracking the scene, the corners of the marker were detected using the
ARToolKit library, and their image coordinates were used as the ground truth
for the registration of the virtual square. Figures 11 and 12 compare the results
for one of the corners.

Fig. 11. Stationary camera results for 300 frames. Jitter of the virtual square is
significantly reduced by camera pose regularization.
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Fig. 12. Moving camera results for 300 frames (top) and the first 30 frames (bottom).
The trajectories of the real and virtual corners are in close correspondence, with varying
camera motion handled without noticeable drift.

6 Conclusions and Future Work

In this chapter we presented an approach to augmented reality that performs
registration of virtual objects into a live video sequence using local image fea-
tures. The system consists of two parts. The offline part involves recovery of
metric scene structure and camera parameters from a set of reference images.
The online part performs camera pose tracking and virtual object registration
using models resulting from the offline processing. Some of the novel aspects of
this work include a simple approach to initializing bundle adjustment, an effi-
cient incremental method for 3D structure recovery that starts with subsets of
images and features, and a successful method for jitter reduction.

Our system has been able to achieve successful modeling and recognition
of scenes of varying size and complexity, from handheld objects to buildings
(Figures 7 through 9). The next step in performance testing will focus on the
system scalability for operation in large environments, such as a campus or a
museum. A potential enhancement involves modeling many buildings, rooms or
objects, and providing database management to switch between models as the
user travels around his or her surroundings.
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Object Recognition Using Local Affine Frames
on Maximally Stable Extremal Regions

Štěpán Obdržálek and Jiřı́ Matas
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Abstract. Methods based on distinguished regions (transformation covariant
detectable regions) have achieved considerable success in object recognition,
retrieval and matching problems in both still images and videos. The chapter
focuses on a method exploiting local coordinate systems (local affine frames)
established on maximally stable extremal regions. We provide a taxonomy of
affine-covariant constructions of local coordinate systems, prove their affine
covariance and present algorithmic details on their computation. Exploiting
processes proposed for computation of affine-invariant local frames of reference,
tentative region-to-region correspondences are established. Object recognition is
formulated as a problem of finding a maximal set of geometrically consistent
matches.

State of the art results are reported on standard, publicly available, object
recognition tests (COIL-100, ZuBuD, FOCUS). Change of scale, illumination
conditions, out-of-plane rotation, occlusion , locally anisotropic scale change and
3D translation of the viewpoint are all present in the test problems.

1 Introduction

Viewpoint-independent recognition of objects is a fundamental problem in computer
vision. Recently, considerable success in addressing the problem has been achieved by
approaches based on matching of regions detected by processes that are quasi-invariant
to viewpoint changes [16,20,19,30,28]. Such methods represent objects by sets of re-
gions described by invariants computed from local measurements. The representation
is learned from training images without manual intervention. During recognition, the
same representation is built for the test image. The recognition problem is then formu-
lated as a search for a geometrically consistent set of correspondences of regions in the
test image and in one of the training (database) images. The search proceeds in two
steps. First, a tentative set of correspondence is selected on the basis of similarity of
local invariants. In a seconds step, a subset of the tentative correspondences that satis-
fies a certain geometric constraint, e.g. epipolar geometry, is sought. The confidence in
the presence of an object is expressed as a function of the matched correspondences.
Since it is not required that all local features match, the approaches are robust to oc-
clusion and cluttered background. Since the framework is based on region-to-region
correspondences, recognition also achieves localisation.

This chapter describes a method which represents objects by sets of measurements
defined in local coordinate systems (local affine frames, LAFs) that are established on
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affine-covariant regions [21]. The LAFs are constructed by exploiting multiple affine-
covariant procedures that take the detected regions as an input. Assuming local pla-
narity and adequacy of the affine approximation of the geometric changes induced by
a movement of a perspective camera, any photometrically normalized image measure-
ment expressed in local affine frame coordinates is viewpoint-invariant. Appearance
of the objects is thus represented by local patches with shapes and locations given by
the object-centred affine coordinate systems. The need for further processing of local
image measurements to obtain invariant description, such as rotational or differential
invariants, is eliminated. The structure of the proposed object recognition method is
summarised in Algorithm 1 (the first four steps are visualised in Figure 1).

Affine coordinate systems cannot be constructed directly from interest points
(e.g. [10,14,19]), or elliptical regions [29,20], since neither resolves all six degrees of
freedom which an affine transformation possesses. A detector of more complex image
regions is required. Such regions are e.g. obtained by various segmentation techniques
[9,1] or the maximally stable extremal region (MSER) detector [18], which we exploit.
MSER regions are of general, data-dependent shape, i.e. complex enough to provide
sufficient constraints to define affine frames. They are connected, arbitrarily shaped,
possibly nested, and do not cover the entire image, i.e. they do not form a partitioning.
The formal definition of MSERs and a detailed description of the extraction algorithm
is given in [18]. MSER performance evaluation and comparison to other detectors can
be found in [21].

Algorithm 1. Structure of the proposed MSER-LAF method

1. For every database and query image, compute affine-covariant regions of data-
dependent shape.

2. Construct local affine frames (LAFs) on the regions using several affine-covariant
constructions.

3. Generate intensity representations of local image patches normalised according
to the local affine frames. Photometrically normalise the patches.

4. Establish tentative correspondences between frames of query and database im-
ages. Compute similarity between the patches, select most similar pairs.

5. Find a globally consistent subset of the correspondences. Infer the presence and
location of the objects.

The rest of the chapter is structured as follows. In Section 2, an overview and a
taxonomy of affine-covariant constructions of local coordinate systems (frames) are
presented, the affine covariance of the constructions is proven, and computation issues
discussed. Section 3 describes the process of geometric and photometric normalisation
of local appearance. A method for forming local region-to-region correspondences is
described in Section 4. In Section 5, state of the art results are reported on publicly
available object recognition tests (COIL-100, ZuBuD, FOCUS). Changes of scale and
illumination conditions, out-of-plane rotation, occlusion, local anisotropic scaling, and
3D translation of the viewpoint are all present in the test problems.
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Fig. 1. Structure of the proposed MSER-LAF object recognition method

2 Local Affine Frames

2.1 Geometric Primitives Covariant with Affine Transformations

A two-dimensional affine transformation possesses six degrees of freedom. Thus, to
determine an affine transformation, six independent constraints, e.g. given by a corre-
spondence of three non-collinear points, have to be found. The constraints are derived
from various affine-covariant geometric primitives detected on image regions of suffi-
ciently complex shape. In particular, we use directions (providing a single constraint),
2D positions (providing two constraints), and the covariance matrix of a 2D shape (pro-
viding three constraints).
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Table 1. Definition of terms

planar region Ω is a contiguous subset of R
2.

affine transformation is a map F : R
n → R

n of the form F (x) = ATx + t, for all
x ∈ R

n, where A is a linear transformation of R
n, assumed non-

singular.
centre of gravity μ of a region Ω is μ = 1

|Ω|
∫

Ω
xdΩ, where |Ω| is the area of the

region.
covariance matrix (matrix of second-order central algebraic moments) of a region Ω is

a 2 × 2 matrix defined as Σ = 1
|Ω|
∫

Ω
(x − μ)(x − μ)T dΩ.

convex hull of a geometric object (such as a point set or a polygonal region) is
the smallest convex set S containing that object. A set S is convex
if whenever two points P and Q are inside S, then the whole line
segment PQ is also in S, or, equivalently, a set S is convex if it is
exactly equal to the intersection of all the half planes containing it.

bitangent is a line that is tangent to a curve at two distinct points. Bitangents
contain segments of the convex hull that bridge concavities.

curvature κ of a planar curve is defined by κ = dΦ
ds

where Φ is the tangential
(or turning) angle, and s is segment length. The curve is called con-
vex in areas of positive curvature and concave in areas of negative
curvature.

inflection point is a point on a curve at which the sign of the curvature κ (i.e. the
convexity of the curve) changes.

Figure 2 presents an overview of the affine-covariant primitives. From regions output
by a detector (left top corner), other regions are affine-invariantly derived (rectangular
boxes). Individual primitives (elliptical boxes) are then computed, the flow of the com-
putation is indicated by arrows. We divide the primitives into three categories:

Constructions derived from region shape only. The centre of gravity μ (Figure 2 i)
of a region (the vector of first order algebraic moments) provides two constraints, i.e.
resolves translation. The symmetric 2 × 2 covariance matrix Σ (ii), the matrix of sec-
ond central algebraic moments, gives 3 constraints. Together, the centre of gravity and
the covariance matrix fix the affine transformation up to an unknown rotation. Nor-
malisation by the covariance matrix (see Figure 4) therefore allows for affine-invariant
measurement of distances, angles and curvatures. From these we derive the points of
extremal distance to the centre of gravity (iii) (2 constraints) and the points of curvature
extrema (iv) (2 constraints).

Another group of shape-derived primitives is obtained on concavities (v) (4 con-
straints for the two tangent points). Given a bitangent, the point on the region boundary
farthest from the bitangent line (vi) is defined affine-covariantly (2 constraints). A sig-
nificant property of bitangents is their locality, i.e. they do not depend on correct detec-
tion of the whole region. If, for example, two regions get connected due to discretisation
in one of the images, constructions based on integral characteristics, as is the centre of
gravity or the covariance matrix, are incorrect, while concavities may be unaffected.
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Fig. 2. Overview of affine-covariant primitives. Rectangular blocks represent regions, detected or
derived, and elliptical blocks represent the primitives. The numbering refers to Sections 2.1, 2.2,
and to Figure 3. Local affine frames are constructed by combining the primitives.

Finally, we exploit points of curvature inflections (vii), i.e. points where the shape
changes from concave to convex or vice-versa (2 constraints), straight line segments
(viii) of the region boundary, and third order algebraic moments [12] (ix).

Constructions derived from image intensities. Several constraints can be derived
from pixel values inside a region or in its neighbourhood. After normalisation by the
covariance matrix, directions based on orientations of gradients (x), obtained for exam-
ple as peaks of gradient histogram [16], or the direction of dominant texture periodicity
(xi), determine the unknown rotation. Extrema of R, G, B components (xii), or of any
scalar function of RGB values provide 2 constraints.

Constructions derived from topology of regions. Finally, mutual configurations of
regions are considered, i.e. nested regions, neighbouring regions, holes and incident
regions. Region concavities and holes can be considered as distinguished regions of
their own, and the computation of all of the constructions can be recursively applied.
On the other hand, neither holes nor concavities have to be considered as part of the
region, i.e. a convex hull can be substituted for the region, without loosing the affine
invariance.
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2.2 Details on Detection of the Geometric Primitives

A region is a connected sets of image pixels. A polygonal representation is constructed
from its outer boundary. To reduce effects of discretisation, the polygons are smoothed
by applying a Gaussian kernel to individual coordinates [22]. The regions are hence-
forth treated as simple (non-intersecting) polygons with non-integral coordinates, region
holes are treated separately.

Computation of region characteristics. Let us have a polygon Ω with n vertices.
Let us denote xi and yi the ith vertex. The polygon is closed, so x0 = xn, y0 = yn.
The algorithms for computation of region area (zero order algebraic moment), centre
of gravity (first order algebraic moments) and covariance matrix (second order central
algebraic moments) follow the standard algorithm for computation of the area of a non-
intersecting polygon, where the area is incrementally updated for vertical strips bounded
by x coordinates of two neighbouring vertices:

μpq =
n∑

i=1

∫ xi

xi−1

∫ yi−1+(yi−yi−1)
x−xi−1
xi−xi−1

0
xpyq dy dx, resp. (1)

μ′
pq =

n∑
i=1

∫ xi

xi−1

∫ yi−1+(yi−yi−1)
x−xi−1
xi−xi−1

0
(x− μ10)p(y − μ01)q dy dx. (2)

The region area is |Ω| = μ00, the centre of gravity (i) is μ = (μ10, μ01)T, and the

covariance matrix (ii) is Σ =
(
μ′

20 μ
′
11

μ′
11 μ

′
02

)
.

Once the covariance matrix is computed, the region shape is normalised so that the
covariance matrix of the resulting shape equals to the identity matrix. This is achieved
by transforming every polygon vertex by the inverse of Cholesky decomposition of the
covariance matrix, i.e. by A = (chol(Σ))−1. The effect is illustrated in Figure 4, a
detected region (a) is transformed into its normalised shape (b).

Shape normalisation, together with the position of the centre of gravity of the region,
fixes the affine transformation up to an unknown rotation. The rotation is determined
from local extrema of curvature (iv) or from contour points of extremal distance to the
centre of gravity (iii). The computation of the curvature proceeds as follows: For each
vertex X, two segments l = XL and r = XR of length a are spanned in opposite
directions along the polygon boundary (see Figure 4 (c). The Cosine of the angle φ is
cosφ = lxrx+lyry

|l||r| , and the curvature κ is estimated as

curvature κ = s
1 + cosφ

2
, where s =

{
1 if lxry − lyrx > 0

−1 otherwise
(3)

which ranges from −1 to 1, equals to 0 for straight segments, and is negative for con-
cave and positive for convex curvatures. An example of the curvature values is shown
in Figure 4 (d). The segment length a controls the scale at which is the curvature com-
puted. Since the regions are shape and scale normalised, a is of a fixed value and need
not be adapted to individual regions. Figure 4 (d) shows curvatures computed for two
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Fig. 3. Examples of local affine frames of different types. The table indicates which affine-
covariant primitives were combined to obtain the frames.
∗ Affine-covariant localisation of curvature extrema requires prior shape normalisation by covari-
ance matrix.

different values of a, a = 0.5 (thick line) and a = 0.2 (thin dashed line). In the ex-
periments we use a = 0.5. Figure 4 (e) shows distances of vertices on the normalised
contour to the centre of gravity of the region.
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(a) (b) (c) (d) (e)

Fig. 4. Shape normalisation by the covariance matrix. (a) detected region, (b) the region shape-
normalised to have an identity covariance matrix, (c) curvature estimation, (d) curvature of the
normalised shape, (e) distances to the centre of gravity.

Inflection points (vii) are detected by an approach similar to that of computation
of the local curvature. Two segments of the length a are spanned from every poly-
gon vertex. An inflection point is identified if all vertices under one of the segments
have positive curvature and all vertices under the another one have negative curvature.
Third algebraic moments (ix) of the region shape provide another way to determine the
unknown rotation. Following the method described in [12], the third moments of the
shape-normalised region form a complex number c = μ′

x3 + μ′
xy2 + i(μ′

x2y + μ′
y3),

whose phase angle α = tan−1(
μ′

x2y
+μ′

y3

μ′
x3+μ′

xy2
) changes covariantly with rotation. The

last approach used to fix the rotation exploits straight linear segments on the region
boundary (viii). A standard Douglas-Peucker algorithm [5,25] is executed on the shape-
normalised region.

(a) (b)

Fig. 5. Example of region concavities. (a) A detected non-convex region with identified concavi-
ties and their covariance matrices (b) The largest concavity: the bitangent line and farthest points
on the concavity and on the region.

Concavities (v) are identified with segments of the region boundary that depart from
the convex hull of the region. For each concavity, two points are found locally max-
imising distance to the corresponding bi-tangent line (vi). One of them is located on
the contour segment that forms the concavity, the other one on the rest of the contour.
Figure 5 illustrates a complex, non-convex region with six concavities. Figure 5 (a)
shows the centre of gravity and the covariance matrix for each concavity. Figure 5 (b)
demonstrates, for one of the concavities, the two points of locally maximal distance.
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2.3 LAF Construction

A frame is constructed by combining affine-covariant primitives which, in correspon-
dence, constrain all of the six degrees of freedom. The combinations we used in the
experiments are illustrated in Figure 3. The images show basis vectors of the frames
along with the primitives – points (e.g. inflection points), linear segments (e.g. bitan-
gents), and ellipses representing covariance matrices. Figure 3 includes a table listing,
for each of the frame types, the combination of primitives that define it.

3 Normalisation of Measurement Region

Object recognition from a single training view requires an object representation that
does not change (is invariant) if the object is seen from different viewpoints and under
different conditions, such as illumination. The previous section detailed constructions
of local affine-covariant coordinate systems that are fully defined by image measure-
ments. As such, they “stick” to the objects in the image if the viewpoint changes, and
serve as object-centred frames of reference. Invariance of the object representation to
geometric variations is thus achieved by normalising local appearance according to the
detected frames. Image neighbourhood of every LAF is transformed into a canonical
coordinate system, and a geometrically normalised patch is constructed. The patch is
then normalised photometrically.

Geometric normalisation. The affine transformation between the canonical frame with
origin O = (0, 0)T and basis vectors e1 = (1, 0)T and e2 = (0, 1)T and a frame
established in the image is described in homogenous coordinates by a 3 by 3 matrix

A =

⎛
⎝a1 a2 a3
a4 a5 a6
0 0 1

⎞
⎠ .

Measurement region (MR) is the part of the image, defined in terms of the affine
frame, whose appearance, after appropriate encoding (see Section 4), is used to deter-
mine local correspondences. Each local affine frame is associated with one, or possibly
multiple, MRs. The choice of MR shape and size is arbitrary. Larger MRs have higher
discriminative potential, but are more likely to cover part of an object that is not locally
planar. Based on experimental evaluation, our choice is to use a square MR centred
around a detected LAF, specifically a region spanning 〈−2, 3〉 × 〈−2, 3〉 in the frame
coordinate system. In image coordinate system, the measurement region of a frame A
becomes a parallelogram with corners at (in homogenous coordinates):

c1 = A

⎛
⎝−2
−2
1

⎞
⎠ , c2 = A

⎛
⎝−2

3
1

⎞
⎠ , c3 = A

⎛
⎝ 3
−2
1

⎞
⎠ , c4 = A

⎛
⎝3

3
1

⎞
⎠ ,

Photometric Normalisation. A linear camera (i.e. a camera without gamma-correct-
ion) is assumed and specular reflections and shadows are ignored. The combined effect
of different scene illumination and camera and digitiser settings (gain, shutter speed,
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aperture) is modelled by affine transformations of individual colour channels, leading to
the photometric transformation between two corresponding patches I and I ′ in the form:⎛

⎝ r′

g′

b′

⎞
⎠ =

⎛
⎝mr 0 0

0 mg 0
0 0 mb

⎞
⎠
⎛
⎝ r
g
b

⎞
⎠+

⎛
⎝nr

ng

nb

⎞
⎠

The parameters mr, nr, mg , ng, mb, nb differ for individual correspondences. This
model agrees with the monochromatic reflectance model [11] in the case of narrow-
band sensor. It can be viewed as an affine extension of the diagonal model that has
been shown by Finlayson to be sufficient in common circumstances [7], at least in
conjunction with sensor sharpening [8]. To represent a patch invariantly to photometric
transformations, intensities are transformed into a canonical form. The intensities of
individual colour channels are affinely transformed to have zero mean and unit variance.
The normalisation procedure of a local patch is summarised in algorithm 2.

Algorithm 2. Normalisation of a Local Representation

1. Establish a local affine frame, form the affine transformation A between a canon-
ical coordinate system and the detected system.

2. Express the intensities of the A’s measurement region in the canonical coordinate
system I ′(x) = I(Ax), x ∈ MR with some discretisation.

3. Apply the photometric normalisation Î ′(x) = (I ′(x) − μ)/σ, x ∈ MR,
where μ is the mean and σ is the standard deviation of I ′ over the MR.

Fig. 6. Normalised local image patches. (a), (f): Query and Database images, (b), (e): Examples
of geometrically normalised MRs (measurement regions), (c), (d): Photometrically normalised
MRs.

The twelve normalisation parameters (a1 . . . a6 for geometric normalisation,mr, nr,
mg, ng, mb and nb for photometric normalisation) are stored along with the descriptor
of the normalised local patch. When considering a pair of patches for a correspondence,
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Fig. 7. Example of coverage of images by local patches. (a) original query and database im-
ages, (b) image coverage by local patches, whiter area – more overlapping patches, (c) image
patches where correspondences between the images were found, (d) image area covered by the
corresponding patches.

these twelve parameters are combined to provide the local transformations (both geo-
metric and photometric) between the images. The transformations are exploited later
during the matching step, as described in Section 4.1.

Figure 6 illustrates the normalisation procedure.On query (a) and database (f) images,
MSERs are detected and LAFs constructed, independently on each image. Geometric
normalisation according to the transformation between detected LAFs and the canonical
coordinate system yields patches depicted in columns (b) and (e). Finally, the result of
photometric normalisation of individual patches is shown in columns (c) and (d).

4 Descriptors of Local Appearance

A descriptor is a suitable data representation of a local image patch. It is associated
with a similarity measure, often Euclidean distance. Because of the normalisation, any
representation of the normalised patches (shown in Figure 6 (c) and (d)) is theoretically
invariant to affine geometric and diagonal photometric transformations. There is there-
fore no need for e.g. rotation invariance of the representation. Obviously, directly the
intensities of the normalised regions can be stored, but such a representation is sensitive
to image noise and to imprecise alignment.

The following summarises the desirable properties of a descriptor. A descriptor has
to be discriminative, to be able to distinguish between a large number of image regions.
The similarity measure should well separate corresponding and not-corresponding re-
gions. The ratio of similarities of matching and mismatched frames (discussed e.g. in
Lowe’s work [16]) should be maximised. The descriptor should be robust or invariant
(i) to localisation errors of the detector, i.e. to misalignment of corresponding represen-
tations, and (ii) to image transformations not covered by the detector covariance. If the
detector, for example, does not resolve rotation (as various feature point detectors do
not) rotational invariants have to be used as descriptors. In our case, local affine frames
provide covariance with affine transformations of the image. Our descriptor should thus
be insensitive to small perspective distortion and to distortions caused by non-planarity
of the surfaces. Finally, the descriptor should be efficient from the computational point
of view. The data representation should be compact, to be memory efficient, and fast
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(a) (b)

Fig. 8. Examples of correspondences established between frames of query (left columns) and
database (right columns), for the image pair from Figure 7. (a) geometrically and photometrically
normalised image patches, (b) the same patches reconstructed from 10 DCT coefficients per
colour channel.

to construct. More importantly, efficient evaluation of similarity of two descriptors is
required.

Discrete Cosine Transformation. We represent the local appearance by low-frequency
coefficients of the discrete cosine transformation (DCT). For uniformly distributed data,
the DCT approximates the Karhunen-Loeve transformation (KLT) [13], which is widely
used in pattern recognition to reduce data dimensionality without significant deteriora-
tion of recognition rate. DCT has the desirable properties of a descriptor. It is com-
putationally efficient, fast algorithms exist that computes DCT with O(n logn) time
complexity. Hardware implementations of DCT are widely available due to its wide-
spread use in image and video compression (JPEG, MPEG, etc.). Robustness to frame
misalignment is achieved by storing only low-frequency coefficients, which are less
sensitive to the misalignment than higher frequencies. Discriminativity of the DCT rep-
resentation depends on the number of coefficients stored. In Section 5, it is experimen-
tally shown how the number of coefficients affect the recognition performance, and that
DCT representation outperforms descriptor composed of directly the normalised pixels.
Our experiments showed that the DCT representation has about the same discriminative
potential as the widely used SIFT descriptor [16].

In Figure 8 (b) an example is shown of what information is preserved if 10 DCT
coefficients per colour channel are used. The image patches are the same as in
Figure 8 (a).

4.1 Matching, Tentative Correspondences of Local Regions

Let us have a set SD of frames FD detected on a single database image, and a set SQ

of frames FQ detected on a query image. Let each frame be associated with a descrip-
tor of normalised local appearance. The set of tentative correspondences T is a subset
of SD × SQ where × denotes the cartesian product. Frame pairs {FD, FQ} ∈ T iff
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FD and FQ are considered potentially corresponding on the basis of local measure-
ments (described later). The correspondences in T include many outliers as they are
based solely on the properties of the two frames in question, regardless of other corre-
spondences on the objects. At a later stage, the correspondences are verified and pruned
according to consistency with a global model. Different strategies can be employed to
obtain the set T :

Nearest match. This is the most commonly used strategy, used in all the experiments
described in Section 5: For each frame FQ ∈ SQ find closest frame FD ∈ SD:
FD = argmini(d(FQ,SD

i )). {FQ, FD} ∈ T iff d(FQ, FD) < Θd, where d is a
“similarity” function discussed later.

Mutually nearest match. This strategy is suitable for symmetric matching problems,
e.g. for wide-baseline stereo matching. The fraction of correct correspondences
(inliers) in T is increased, causing the successive global consistency check execute
faster. But the absolute number of inliers is typically reduced. For each frameFQ ∈
SQ find closest frame FD ∈ SD: FD = argmini(d(F

Q,SD
i )): For the FD find

closest frame FQ ∈ SQ: FQ = argmini(d(F
D,SQ

i )). {FQ, FD} ∈ T iff FQ =
FQ ∧ d(FQ, FD) < Θd.

All (or N most) similar. This strategy is used when repetitive structures are expected
on the objects of interest. Repetitive structures induce ambiguous correspondences,
which cannot be resolved at the time of forming of T . Here, each query frame is
associated with a set of possibly corresponding frames – of which at most one is
correct. The resolution about which of the correspondences is the correct one (if
any) is left to the phase of verification of the global consistency. The drawback
is in higher number of false correspondences (outliers), leading to increase of the
computational load of the consistency check, or even to its failure due to small
fraction of inliers: For each frame FQ ∈ SQ find all near frames (or N closest
frames) FD ∈ SD . {FQ,SD

i } ∈ T iff d(FQ,SD
i ) < Θd.

The function d is a scalar function expressing similarity of two frames. Besides re-
flecting the similarity of the descriptors of the normalised patches, it might include
terms related to the probability of the geometric and photometric transformations be-
tween the two frames.

Fig. 9. Illustration of query to model transformations estimated from individual frame
correspondences
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LetFD andFQ denote the frames on query resp. database images. Let AD and AQ be
the affine geometric transformations which transform the canonical coordinate system
into image coordinates of the respective frames. Finally, let PD and PQ be the photo-
metric transformations of the RGB values transforming the normalised intensities to the
corresponding intensities in the images. Then the transformations AQD = AD ∗(AQ)−1

and PQD = PD ∗ (PQ)−1 are the geometric resp. photometric transformations between
the images – if the framesFD andFQ correspond. The situation is illustrated in Figure 9.

Generally, the probability distributions of the transformations AQD and PQD should
be estimated from training scenes, and the frame similarity d should be penalised for
unlikely transformations. In our experiments the probability distributions are approx-
imated by a step function. If the transformations are out of allowed, problem-specific
limits, the frame pair will not match, i.e. d evaluates to infinity. If they are within the
limits, no penalty is imposed, and d evaluates directly to the similarity of the descrip-
tors. It allows the function d to be implemented as a fast sequence of thresholdings.

4.2 Globally Consistent Subset of Tentative Correspondences

The process of obtaining tentative correspondences by pair-wise matching of local
frames and their descriptors does not take into account the mutual relation between
frames. It might for example happen that one of the tentative correspondences implies
that the object is larger in the query image than in the model image, while another
correspondence suggests that it is smaller and perhaps rotated. Such correspondences,
although perfectly possible on their own, are not mutually consistent (assuming the ob-
ject is rigid). A subset of the obtained tentative correspondences is therefore sought
where all correspondences would be consistent with some global object model.

The first issue is the choice of the type of the global model. For general rigid 3D
objects the obvious pick is a 3D model imposed through epipolar geometry. A method
for estimating epipolar geometry from frame correspondences is described in [3]. The
method takes advantage of the fact that a frame correspondence provides an affine trans-
formation between the images, and consequently only three correspondences suffice to
obtain the epipolar geometry. For deformable non-rigid (but not articulated) objects, an
iterative method described in [6] can be used, although it is rather slow for practical
exploitation.

For the purpose of object recognition, simpler models are employed. Unless we are
recognising whole complex scenes (e.g. interior of a building), the depth of the visible
part of an objects is typically too small to allow for reliable epipolar geometry estima-
tion. We found it sufficient to model the object either as a single planar surface, or as a
set of planar surfaces.

Let us have two tentative correspondences, between frames FQ
1 and FD

1 , and be-
tween FQ

2 and FD
2 respectively. Each correspondence suggest geometric AQD

1 resp.
AQD

2 and photometric PQD
1 resp. PQD

2 transformation between the images. Would the
frames lie on the same planar surface, the geometric transformations would be identical
up to perspective distortion and an imprecision in frame localisation. Assuming light
sources at infinity and no shadows nor specular reflections across the planar surface,
the two photometric transformations would be also identical.
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The set of tentative correspondences T is decomposed to subsets of consistent corre-
spondences, i.e. subsets in which all correspondences imply identical image-to-image
transformation. Each subset represents single plane in the scene. Subsets of low cardi-
nalities are rejected as outliers, and the decision about the presence of an object in the
scene relies only on the correspondences in subsets of high cardinality.

5 Experimental Validation

The performance of the proposed method was evaluated on several datasets. The COIL-
100 dataset has been widely used in object recognition literature [31,24,15,2,32], and
the experiment is included to compare the recognition rate with other state-of-the-art
methods. The ZuBuD dataset represents a larger, real-world problem, with images taken
outdoor, with occluded objects, varying background, and illumination changes. Finally,
FOCUS database represents a retrieval problem, where product logos are sought in
scanned advertising material. Typically, the logos occupy only a small portion (e.g.
1%) of the image.

(a) (b)

Fig. 10. COIL-100: (a) Objects from the database, (b) Query images for the occlusion experiment

(a) (b)

Fig. 11. ZuBuD dataset [27]: Examples of (a) query and (b) the corresponding database images

COIL-100. The Columbia Object Image Library (COIL-100)1 is a database of colour
images of 100 different objects; 72 images of each object placed on a turntable were
acquired at pose intervals of 5◦. Neither occlusion, background clutter, nor illumination
changes are present. Several images from the database are shown in Figure 10(a). Two
experiments were performed, differing in the number of images used for training. The
achieved recognition rate was 98.2% for 4 training views per object (90◦ apart, 68 test
views per object) and 99.7% for 8 training views (45◦ apart, 64 test views). Table 2
summarises the results and provides comparison to other published results.

1 http://www.cs.columbia.edu/CAVE
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In another experiment, occlusion of the objects was simulated by blanking one half
of the test images (see Figure 10 (b)). Four full (unoccluded) training views per object
were used in training. The recognition rate was 87%, which is comparable to pub-
lished results on unoccluded images. Table 3 provides detailed information about the
experiments.

Table 2. COIL-100 experiment: Comparison with published results

Method Recognition rate
8 training views/object 4 training views/object

MSER+LAF 99.8% 98.2 %
Spectral representation [15] 96.3% –
Kullback-Leibler SVM [31] 95.2% 84.3%
SNoW / edges [32] 89.2% 88.3%
Spin-Glass MRF [2] 88.2% 69.4%
SNoW / intensity [32] 85.1% 81.5%
Linear SVM [32] 84.8% 78.5%
Nearest Neighbour [32] 79.5% 74.6%

Table 3. Experimental results on COIL-100 and ZuBuD datasets

MSER+LAF COIL-100 ZuBuD
1. Occluded queries no no yes n/a
2. Training view dist 90◦ 45◦ 90◦ n/a
3. Number of DB images 400 800 400 1005
4. Number of DB frames 186346 385197 186346 251633
5. Number of query images 6800 6400 6800 115
6. Avg number of query frames 494 494 269 1594
7. avg time to build representation 520 ms 522 ms 251 ms 1255 ms
8. avg recall time 493 ms 3471 ms 277 ms 27234 ms
10. recognition rate 98.24% 99.77% 87.01% 100%

The ZuBuD dataset. The experiment was conducted on a set of images of 201 build-
ings in Zurich, Switzerland, which is publicly available [27]. The database consists of
five photographs of the 201 buildings. A separate set of 115 query images is provided.
For every query image, there are exactly five matching images of the same building in
the database. Not all the database buildings have corresponding queries, the number of
queries per building ranges from 0 to 5. Query and database images differ in viewpoint;
variations in the illumination are present, but rare. Examples of corresponding query
and database images are shown in Figure 11.

In the experiment, 115 query images were matched against 1005 database images, ie.
115575 matches were evaluated in total. For every query image, the R closest database
images were retrieved. The recall rate rR was evaluated, which is defined as rR =
nR

N , where nR is the number of correct answers in the first R retrieved images, and
N the number of all possible correct answers. In our case, when every query has 5
corresponding images in the database, N = min(R, 5).
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Two local patch representations (see Sect. 4) are compared, the directly stored in-
tensities versus the DCT coefficients. The results are summarised in Table 4. For both
methods, recall rR is shown for R = 1 . . . 5. The recall r1 is equivalent to the percent-
age of correct images retrieved in rank 1. The last column shows the memory required to
store the representation of the whole database of 1005 images. The last lines in Table 4
show other results.

The proposed retrieval system performed well, the retrieval performance was, or was
close to, 100% in the first rank. The DCT representation performed slightly better than
the direct intensity representation, due to the insensitivity to image noise and small
frame misalignments. Regarding the memory requirements, the DCT representation is
much more compact. The memory usage is reduced to circa 20–30% depending on the
number of DCT coefficients stored.

Table 4. ZuBuD: Summary of experimental results

Method Average recall rR Memory
r1 r2 r3 r4 r5 usage

direct intensity 98.3% 96.6% 93.6% 89.1% 81.9% 1300 MB
DCT 6 coeffs 99.1% 98.3% 95.7% 91.1% 84.0% 290 MB
DCT 10 coeffs 99.1% 98.7% 96.8% 92.2% 85.0% 370 MB
DCT 15 coeffs 100.0% 99.1% 97.4% 92.8% 85.4% 470 MB
HPAT [26] 86.1%
Random subwindows [17] 95.7%

The FOCUS database contains 360 colour high-resolution images of commercials
scanned from miscellaneous magazines. Figure 13 illustrates example queries and iden-
tified commercials from the database. For comparison purposes, we run an experiment
with an identical setup as the SEDL system introduced by Cohen [4]. The quality of the
retrieval is assessed by the same two quantities as defined by Cohen, the recall rate rR

and the precision ρR:

rR =
n

N
ρR =

∑n
i=1(R+ 1− ri)∑n
i=1(R + 1− i)

(4)

where n is the number of correct answers in the first R retrieved images, N the number
of all correct answers contained in the database, and ri the rank of the i-th correctly
retrieved answer.

In Table 5, average recall rate r20 and average precision ρ20 are given for the number
of retrieved images R = 20. For each of the 25 queries used by Cohen, the database
images were sorted according to the matching score (similarity measure) m, and the
recall r20 and the precision ρ20 were computed according to formula (4). Each of the
25 queries has 2 to 9 correct answers in the database, with the total number of all correct
answers equal to 90. The local affine frame (LAF) method achieves a 83% recall, which
is approximately 5% better than results reported by Cohen. Note that the LAF method is
not attempting to generalise the query (i.e. to categorise). Most database images missed
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Fig. 12. FOCUS: Examples of query (left) and database images (right) not retrieved

Fig. 13. FOCUS: Query localisation examples. Query images, database images, and query
localisations.

Table 5. FOCUS: Retrieval performance compared to the SEDL system

SEDL LAFs
recall r20 avg precision ρ20 recall r20 avg precision ρ20

70/90 = 77.8% 88% 75/90 = 83.3% 93.5%

depict objects different from the query. Figure 12 shows three such examples. The “fail-
ure” in such cases might be viewed as a strength, demonstrating the very high selec-
tivity of the method, distinguishing items that superficially look identical, while being
immune to severe affine deformations.

6 Conclusions

An object recognition method representing object appearance by a set of local mea-
surements was described. Invariance to affine transformations is achieved by expressing
local appearance in terms of affine-covariantly detected local coordinate systems.

An overview and classification of affine covariant constructions was presented, co-
variance of the constructions was proven, and computational issues were discussed. The
choice of suitable representation of the local appearance, and the problem of formation
of tentative region-to-region correspondences were investigated.

It was shown experimentally that the method achieves state-of-the-art results on
publicly available object recognition tests (COIL-100, ZuBuD, FOCUS). Change of
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scale, illumination conditions, out-of-plane rotation, occlusion, locally anisotropic scale
change and 3D translation of the viewpoint were all present in the test problems.
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Appendix A. Proofs of Affine Covariance of LAF Primitives

Bellow we show that the construction used to establish local affine frames are indeed co-
variant with affine transformation. In particular, we show how the area, centre of gravity,
and covariance matrix of a region changes under affine transformations of the region, and
that the properties of tangent points and of the farthest-from-a-linepoints are maintained.

Area. Consider a regionΩ1, and its transformed imageΩ2 = AΩ1, i.e.Ω2 = {x2|x2 =
ATx1 + t;x1 ∈ Ω1} The area of Ω2 is given as

|Ω2| =
∫

Ω2

dΩ2 =
∫

Ω1

|A| dΩ1 = |A||Ω1|, (5)

where |A| is the determinant of A, and |Ω| is the area of region Ω. The area of a trans-
formed region equals |A| times the area of the original region.
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Centre of gravity. The centre of gravity of region Ω is μ = 1
|Ω|
∫

Ω
xdΩ. The relation

between the centres of gravity of transformed regions is:

μ2 =
1
|Ω2|

∫
Ω2

x2 dΩ2

=
1

|A||Ω1|

∫
Ω1

(ATx1 + t)|A| dΩ1

= AT 1
|Ω1|

∫
Ω1

x1 dΩ1 +
1
|Ω1|

∫
Ω1

t dΩ1

= ATμ1 + t, (6)

the centre of gravity changes covariantly with the affine transform.

Covariance matrix. The covariance matrix Σ of a region Ω is a 2x2 matrix defined
as Σ = 1

|Ω|
∫

Ω
(x − μ)(x − μ)T dΩ. Covariance matrix of a transformed region Ω2 is

then:

Σ2 =
1
|Ω2|

∫
Ω2

(x2 − μ2)(x2 − μ2)T dΩ2

=
1

|A||Ω1|

∫
Ω1

(ATx1 + t− (ATμ1 + t))(ATx1 + t− (ATμ1 + t))T|A| dΩ1

=
1
|Ω1|

∫
Ω1

(AT(x1 − μ1))(AT(x1 − μ1))T dΩ1

= AT
(

1
|Ω1|

∫
Ω1

(x1 − μ1)(x1 − μ1)T dΩ1

)
A

= ATΣ1A (7)

Cholesky decomposition of a symmetric and positive-definite matrix Σ is a factori-
sation Σ = UTU , where U is an upper triangular matrix. Cholesky decomposition
is defined up to a rotation, since UTU = UTRTRU for any orthonormal R. For the
decomposition of covariance matrix of a transformed region we write

Σ2 = UT
2 R

T
2R2U2 = ATUT

1 R
T
1R1U1A = ATΣ1A, thus UT

2 = ATUT
1 R (8)

Hence the triangular matrix U obtained as the Cholesky-decomposition of a covariance
matrixΣ is covariant, up to an arbitrary orthonormal matrixR, with the affine transform
applied to the region.

Line parallelism. Let us consider two lines, determined by points p and q, and r and s
respectively. The lines are parallel, iff

(p− q) = k(r− s), k ∈ R \ {0}

Affinely transformed lines are then parallel iff

(ATp + t− ATq− t) = k(ATr + t− ATs− t)
AT(p− q) = kAT(r− s)

(p− q) = k(r− s) (9)



104 Š. Obdržálek and J. Matas

which is true if and only if the lines were parallel before the transformation. Thus, affine
transformation preserves line parallelism.

Ordering of distances to a line: Let us have a line determined by two points p and q.
For a point x, its distance d1 to the line pq is d1 = 2S

|p−q| , where S is the area of the
pqx triangle. Using eq. 5, it follows that the transformed distance d2 is given by

d2 =
2|A|S

|ATp + t− ATq− t| =
|A||p− q|
|ATp−ATq|d1 = kd1

where k is a scalar constant for given line pq and transformationA. Affine transforma-
tion thus preserves ordering of distances of points from a line. It directly follows that a
point x ∈ X with the property of being of all the points in X the one farthest from a
line pq, retains the property under affine transformations.

Incidence of points and lines: Under affine transformations, points incident with a line
will remain on the line, and, vice-versa, distinct points will not be brought to the line
unless the transformation is singular. The property is again easily shown exploiting the
covariance of region area, from Equation. 5. Considering a line defined by two distinct
points p and q, and a point x, the area S1 of the pqx triangle equals to zero if x is on
pq and nonzero otherwise. After affine transformation, the area of the triangle becomes
S2 = |A|S1, where |A| is the determinant of the transformation matrix (S2 is the area
of triangle given by points defining the transformed line, i.e. ATp+ t and ATq+ t, and
the transformed point ATx + t). Assuming nonsingular transformation, i.e. |A| 
= 0,
the transformed triangle has area S2 = 0 if and only if S1 = 0. Thus the incidence is
maintained.

Tangent and bitangent lines: Tangent line is a line incident with region boundary (in a
tangent point p), which does not pass through any of the region interior points. Since the
incidence property between the tangent line and the boundary, respective interior points,
is maintained, the line transformed by an affine transformation remains tangent to the
transformed region, and the tangency occur in the transformed point p2 = ATp+ t. An
analogy holds for the bitangent lines, where both tangent points are maintained.

An affine transformation is either orientation-preserving or orientation-reversing, if
determinant |A| is positive or negative respectively [23]. Therefore the sign of the curva-
ture κ = dΦ

ds of a transformed region is either reversed or preserved. It follows that lin-
ear segments of the contour (segments of zero curvature) and inflection points (points
where the curvature changes its sign, without specifying whether from positive to neg-
ative or vice versa) are maintained.
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Abstract. This chapter proposes a representation of rigid three-
dimensional (3D) objects in terms of local affine-invariant descriptors
of their images and the spatial relationships between the corresponding
surface patches. Geometric constraints associated with different views of
the same patches under affine projection are combined with a normalized
representation of their appearance to guide the matching process involved
in object modeling and recognition tasks. The proposed approach is ap-
plied in two domains: (1) Photographs — models of rigid objects are
constructed from small sets of images and recognized in highly cluttered
shots taken from arbitrary viewpoints. (2) Video — dynamic scenes con-
taining multiple moving objects are segmented into rigid components,
and the resulting 3D models are directly matched to each other, giving
a novel approach to video indexing and retrieval.

1 Introduction

Traditional feature-based geometric approaches to three-dimensional (3D) object
recognition — such as alignment [13,19] or geometric hashing [15] — enumerate
various subsets of geometric image features before using pose consistency con-
straints to confirm or discard competing match hypotheses. They largely ignore
the rich source of information contained in the image brightness and/or color
pattern, and thus typically lack an effective mechanism for selecting promis-
ing matches. Appearance-based methods, as originally proposed in the context
of face recognition [43] and 3D object recognition [28], prefer a classical pattern
recognition framework that exploits the discriminatory power of (relatively) low-
dimensional, empirical models of global object appearance in classification tasks.
However, they typically de-emphasize the combinatorial aspects of the search in-
volved in any matching task, which limits their ability to handle occlusion and
clutter.

Viewpoint and/or illumination invariants provide a natural indexing mecha-
nism for object recognition tasks. Unfortunately, although planar objects and
certain simple shapes—such as bilateral symmetries or various types of gener-
alized cylinders—admit invariants, general 3D shapes do not [4], which is the
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main reason why invariants have fallen out of favor after an intense flurry of
activity in the early 1990s [26,27]. In this chapter, we revisit invariants as a
local description of truly three-dimensional objects: Indeed, although smooth
surfaces are almost never planar in the large, they are always planar in the small
—that is, sufficiently small patches can be treated as being comprised of copla-
nar points. Concretely, we propose to capture the appearance of salient surface
patches using local image descriptors that are invariant under affine transfor-
mations of the spatial domain [18,24] and of the brightness signal [20], and to
capture their spatial relationships using multi-view geometric constraints related
to those studied in the structure from motion literature [39]. This representation
is directly related to a number of recent schemes for combining the local surface
appearance at “interest points” [12] with geometric constraints in tasks such
as wide-baseline stereo matching [44], image retrieval [36], and object recogni-
tion [20]. These methods normally either require storing a large number of views
for each object, or limiting the range of admissible viewpoints. In contrast, our
approach supports the automatic acquisition of explicit 3D object models from
multiple unregistered images, and their recognition in photographs and videos
taken from arbitrary viewpoints.

Section 2 presents the main elements of our object representation frame-
work. It is applied in Sections 3 and 4 to the automated acquisition of 3D
object models from small sets of unregistered images and to the identifica-
tion and localization of these models in cluttered photographs taken from arbi-
trary and unknown viewpoints. Section 5 briefly discusses further applications
to the video indexing and retrieval domain, including a method for segment-
ing dynamic scenes observed by a moving camera into rigid components and
matching the 3D models recovered from different shots. We conclude in Sec-
tion 6 with a short discussion of the promise and limitations of the proposed
approach.

2 Approach

2.1 Affine Regions and Their Description

The construction of local invariant models of object appearance involves two
steps, the detection of salient image regions, and their description. Ideally, the
regions found in two images of the same object should be the projections of the
same surface patches. Therefore, they must be covariant, with regions detected
in the first picture mapping onto those found in the second one via the geometric
and photometric transformations induced by the corresponding viewpoint and
illumination changes. In turn, detection must be followed by a description stage
that constructs a region representation invariant under these changes. For small
patches of smooth Lambertian surfaces, the transformations are (to first order)
affine, and we use the approach recently proposed by Mikolajczyk and Schmid
to find the corresponding affine regions: Briefly, the algorithm iterates over steps
where (1) an elliptical image region is deformed to maximize the isotropy of the
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corresponding brightness pattern (shape adaptation [10]); (2) its characteristic
scale is determined as a local extremum of the normalized Laplacian in scale
space (scale selection [17]); and (3) the Harris operator [12] is used to refine the
position of the the ellipse’s center (localization [24]). The scale-invariant interest
point detector proposed in [23] provides an initial guess for this procedure, and
the elliptical region obtained at convergence can be shown to be covariant under
affine transformations. The affine region detection process used in this chapter
implements both this algorithm and a variant where a difference-of-Gaussians
(DoG) operator replaces the Harris interest point detector. Note that this oper-
ator tends to find corners and points where significant intensity changes occur,
while the DoG detector is (in general) attracted to the centers of roughly uniform
regions (blobs): Intuitively, the two operators provide complementary kinds of
information (see Figure 1 for examples).

Fig. 1. Affine regions found by Harris-Laplacian (left) and DoG (right) detectors

The affine regions output by our detection process are ellipses that can be
mapped onto a unit circle centered at the origin using a one-parameter family
of affine transformations. This ambiguity can be resolved by determining the
dominant gradient orientation of the image region, turning the corresponding
ellipse into a parallelogram and the unit circle into a square (Figure 2). Thus,
the output of the detection process is a set of image regions in the shape of
parallelograms, together with affine rectifying transformations that map each
parallelogram onto a “unit” square centered at the origin (Figure 3).

A rectified affine region is a normalized representation of the local surface
appearance. For distant observers (affine projection), it is invariant under ar-
bitrary viewpoint changes. For Lambertian patches and distant light sources,
it can also be made invariant to changes in illumination (ignoring shadows) by
subtracting the mean patch intensity from each pixel value and normalizing
the Frobenius norm of the corresponding image array to one. The Euclidean dis-
tance between feature vectors associated with their pixel values can thus be used
to compare rectified patches, irrespective of viewpoint and (affine) illumination
changes. Other feature spaces may of course be used as well. As many others,
we have found the Lowe’s SIFT descriptor [20] —a histogram over both spatial
dimensions and gradient orientations— to perform well in our experiments, along
with a 10× 10 color histogram drawn from the UV portion of YUV space when
color is available.



108 F. Rothganger et al.

Fig. 2. Normalizing patches. The left two columns show a patch from image 1 of
Krystian Mikolajczyk’s graffiti dataset (available from the INRIA LEAR group’s web
page: http://lear.inrialpes.fr/software). The right two columns show the match-
ing patch from image 4. The first row shows the ellipse determined by affine adaptation.
This normalizes the shape, but leaves a rotation ambiguity, as illustrated by the nor-
malized circles in the center. The second row shows the same patches with orientation
determined by the gradient at about twice the characteristic scale.

2.2 Geometric Constraints

Given an affine region, let us denote by R the affine transformation from the
image patch to its rectified (normalized) form, and by S = R−1 the affine trans-
formation from the rectified form back to the image patch (Figure 3). The 3× 3
matrix S has the form

S =
[

h v c
0 0 1

]
,

and its columns enjoy the following geometric interpretation: The third column
gives the homogeneous coordinates of the center c of the corresponding image
parallelogram, while h and v are the vectors joining c to the midpoints of the
parallelogram’s sides (Figure 3). The matrix S effectively contains the locations
of three points in the image, so a match between m ≥ 2 images of the same patch
contains exactly the same information as a match between m triples of points.
It is thus clear that all the machinery of structure from motion [39] and pose
estimation [13,19] from point matches can be exploited in modeling and object
recognition tasks. Reasoning in terms of multi-view constraints associated with
the matrix S provides a unified and convenient representation for all stages of
both tasks.

Suppose there are n surface patches observed in m images, and that we are
given a complete set of measurements Sij as defined above for image indices
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Fig. 3. Geometric structure. Top left: A rectified patch and the original image region.
Bottom left: Interpretation of the rectification matrix R and its inverse S . Right:
Interpretation of the decomposition of the mapping Sij into the product of a projection
matrix Mi and an inverse projection matrix Nj .

i = 1, . . . ,m and patch indices j = 1, . . . , n. (Later, we will show how to handle
the “missing data” problem that results when not all patches are visible in all
views.) A rectified patch can be thought of as a fictitious view of the original
surface patch (Figure 3), and the mapping Sij can thus be decomposed into
an inverse projection Nj [5] that maps the rectified patch onto the correspond-
ing surface patch, followed by a projection Mi that maps that patch onto its
projection in image number i. In particular, we can write

Ŝ def=

⎡
⎣ S11 . . . S1n

...
. . .

...
Sm1 . . . Smn

⎤
⎦ =

⎡
⎣M1

...
Mm

⎤
⎦ [N1 . . . Nn ] .

The inverse projection matrix can be written as

Nj =
[

H V C
0 0 1

]
j

,

and its columns admit a geometric interpretation similar to that of Sij : the first
two contain the “horizontal” and “vertical” axes of the surface patch, and the
third one is the homogeneous coordinate vector of its center.

To extract the matrices Nj (and thus the corresponding patches’ geometry)
from a set of image measurements, we construct a reduced factorization of Ŝ
by picking, as in [39], the center of mass of the surface patches’ centers as the
origin of the world coordinate system, and the center of mass of these points’
projections as the origin in each image. In this case, the projection equation
Sij =MiNj becomes
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[
Dij

0 0 1

]
=
[
Ai 0
0T 1

] [
Bj

0 0 1

]
, or Dij = AiBj,

where Ai is a 2×3 matrix, Dij = [h v c]ij is a 2×3 matrix, and Bj = [H V C]j
is a 3× 3 matrix. It follows that the reduced 2m× 3n matrix

D̂= ÂB̂, where D̂ def=

⎡
⎢⎣ D11 . . . D1n

...
. . .

...
Dm1 . . . Dmn

⎤
⎥⎦, Â def=

⎡
⎢⎣ A1

...
Am

⎤
⎥⎦, B̂ def= [ B1 . . . Bn ] , (1)

has at most rank 3. Following [39] we use singular value decomposition to fac-
torize D̂ and compute estimates of the matrices Â and B̂ that minimize the
squared Frobenius norm of the matrix D̂ − ÂB̂. Geometrically, the (normalized)
Frobenius norm d = |D̂ − ÂB̂|/

√
3mn of the residual can be interpreted as the

root-mean-squared reprojection error, that is, the distance (in pixels) between
the center and side points of the patches observed in the image and those pre-
dicted from the recovered matrices Â and B̂. Given n matches established across
m images (a match is an m-tuple of image patches), the residual error d can
thus be used as a measure of inconsistency between the matches.

2.3 Matching

Matching is a fundamental process in both modeling and recognition. An image
can be viewed as a collection of 2D patches, and likewise a 3D model is a collec-
tion of 3D patches. There are three steps in our general procedure for matching
between two such patch sets A and B:

Step 1 – Appearance based selection of potential matches. For each patch in
set A, this step selects one or more patches in set B with similar appearance,
as measured by the descriptors presented in Section 2.1. Mismatches might oc-
cur due to measurement noise or confusion of similar (for example, repetitive)
structures.

Step 2 – Robust estimation. Using RANSAC, alignment, or other related tech-
niques, this step selects a geometrically consistent subset of the match hypothe-
ses. Our assumption is that the largest consistent set will contain mostly true
matches. This establishes the geometric relationship between the two sets of
patches A and B.

Step 3 – Geometry-based addition of matches. This step seeks a fixed-point
in the space (A × B) of matches by iteratively estimating a geometric model
based on the current set of matches and then selecting all match hypotheses
that are consistent with the model. At the same time it adds new match hy-
potheses guided by the model. Generally, the geometric model will not change
significiantly during this process. Rather, the resulting maximal set of matches
benefits recognition, where the number of matches acts as a confidence measure,
and modeling, where it produces better coverage of the object.
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3 3D Object Modeling from Images

There are several combinatorial and geometric problems to solve in order to
convert a set of images into a 3D model. The overall process is divided into
four steps: (1) matching: match regions between pairs of images; (2) chaining: link
matches across multiple images; (3) stitching: solve for the affine structure and
motion while coping with missing data; (4) Euclidean upgrade: use constraints
associated with the intrinsic parameters of the camera to turn the affine recon-
struction into a Euclidean one. In the following we describe each of these steps.
We will use a teddy bear to illustrate some of the steps of the modeling process.
Additional modeling experiments will also be presented.

Matching. The first step is to match the regions found in a pair of images. This
is an instance of the wide-baseline stereo matching problem which has been well
studied in the literature [3,22,24,31,35,38,44]. Any technique that generates a set
of matches between affine regions in a pair of images is appropriate, including
the general matching procedure (Section 2.3). This algorithm appears in three
different contexts in this work, so we have chosen to give the details of its ap-
plication only in the object recognition case (Section 4). Here we give a very
brief sketch of its application to 2D matching. For the appearance-based match-
ing (Step 1) we compare SIFT descriptors. For robust estimation (Step 2) we
take advantage of the normalized residual d = |D̂ − ÂB̂|/

√
3mn to measure the

consistency of subsets of the matches. Finally, in Step 3 we use an estimate of
the epipolar geometry between the two images to find additional hypothetical
matches, which are again filtered using the consistency measure. For details on
the 2D matching procedure, see [33].

Chaining. The matching process described in the previous section outputs affine
regions matched across pairs of views. It is convenient to represent these matches
by a single (sparse) patch-view matrix whose columns represent surface patches,
and rows represent the images in which they appear (Figure 5).

There are two challenges to overcome in the chaining process. One is to ensure
that the image measurements Sij are self-consistent for all projections of a given
patch j. To solve this, we choose one member of the corresponding column as
reference patch, and refine the parameters of the other patches to maximize
their texture correlation with it (Figure 6). The second challenge is to cope with
mismatches, which can cause two patches in one image to be associated with
the same column in the patch-view matrix. In order to properly construct the
matrix, we choose the one patch in the image whose texture is closest to the
reference patch mentioned above.

Stitching. The patch-view matrix is comparable to the data matrix used in
factorization approaches to affine structure from motion [39]. If all patches ap-
peared in all views, we could indeed factorize the matrix directly to recover the
patches’ 3D configurations as well as the camera positions. In general, however,
the matrix is sparse. To cope with this, we find dense blocks (sub-matrices with
complete data) to factorize and then register (“stitch”) the resulting sub-models
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Fig. 4. Some of the matches found in two images of the bear (for readability, only 20
out of hundreds of matches are shown here). Note that the lines drawn in this diagram
are not epipolar lines. Instead they indicate pairs of matched affine regions.

Fig. 5. A (subsampled) patch-view matrix for the teddy bear. The full patch-view
matrix has 4,212 columns. Each black square indicates the presence of a given patch
in a given image.

into a global one. The problem of finding maximal dense blocks within the patch-
view matrix reduces to the NP-complete problem of finding maximal cliques
in a graph. In our implementation, we use a simple heuristic strategy which,
while not guaranteed to be optimal or complete, generally produces an adequate
solution: Briefly, we find a dense block for each patch—that is, for each column
in the patch-view matrix—by searching for all other patches that are visible in
at least the same views. In practice, this strategy provides both a good coverage
of the data by dense blocks and an adequate overlap between blocks.

The factorization technique described in Section 2.2 can of course be ap-
plied to each dense block to estimate the corresponding projection matrices and
patch configurations in some local affine coordinate system. The next step is to
combine the individual reconstructions into a coherent global model, or equiv-
alently register them in a single coordinate system. With a proper set of con-
straints on the affine registration parameters, this can easily be expressed as an
eigenvalue problem. In our experiments, however, we have found this linear ap-
proach to be numerically ill behaved (this is related to the inherent affine gauge
ambiguity of our problem). Thus, in practice, we pick an arbitrary block as root,
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Fig. 6. Refining patch parameters across multiple views: rectified patches associated
with a match in four views before (top) and after (bottom) applying the refinement
process. The patch in the rightmost column is used as a reference for the other three
patches. The errors shown in the top row are exaggerated for the sake of illustration.

and iteratively register all others with this one using linear least squares, before
using a non-linear bundle adjustment method to refine the global registration
parameters.

Euclidean Upgrade. It is not possible to go from affine to Euclidean structure and
motion from two views only [14]. When three or more views are available, on the
other hand, it is a simple matter to compute the corresponding Euclidean weak-
perspective projection matrices (assuming zero skew and known aspect ratios)
and recover the Euclidean structure [39,30]: Briefly, we find the 3 × 3 matrix
Q such that AiQ is part of a scaled rotation matrix for i = 1, . . . ,m. This
provides linear constraints on QQT , and allows the estimation of this symmetric
matrix via linear least-squares. The matrixQ can then be computed via Cholesky
decomposition [29,45].

Modeling results. Figure 7 shows a complete model of the teddy bear, along with
the directions of the affine cameras. Figure 8 shows the models (but not the
cameras) for seven other objects. The current implementation of our modeling
approach is quite reliable, but rather slow: The teddy bear shown in Figure 7
is our largest model, with 4014 model patches computed from 20 images (24
image pairs). Image matching takes about 75 minutes per pair using the general
matching procedure (Section 2.3), for a total of 29.9 hours. (All computing times
in this presentation are given for C++ programs executed on a 3Ghz Pentium
4 running Linux.) The remaining steps to assemble the model run in 1.5 hours.
The greatest single expense in our modeling procedure is patch refinement, and
this can be sped up by loosening convergence criteria and reducing the number
of pixels processed, at the cost of a small loss in the number of matches.
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Fig. 7. The bear model, along with the recovered affine viewing directions. These
cameras are shown at an arbitrary constant distance from the origin.

4 3D Object Recognition

We now address the problem of identifying instances of 3D models in a test
image. This is essentially a matching process, and we apply again the general
matching procedure (Section 2.3). The rest of this section describes the specifics
of each step of the procedure.

Step 1 – Appearance based selection of potential matches. When patches have
high contrast (that is, high variance in the intensity gradient) the SIFT de-
scriptor selects promising matches well. However, in the case of low contrast
SIFT becomes less reliable, since the intensity gradient field forms the basis for
both the characteristic orientation and the histogram entries. In some situations,
SIFT will even place the correct match in the bottom half of the list of candi-
dates (Figure 9). For better reliability, we pre-filter the matches using a color
descriptor: a 10× 10 histogram of the UV portion of YUV space. We compare
the color descriptors using χ2 distance and eliminate those below a threshold.
A contrast measure guides the choice between tight and loose thresholds in the
color filtering step. This effectively shifts credence between the color and SIFT
descriptors on an individual patch basis.

Step 2 – Robust Estimation. This step finds the largest geometrically consistent
set of matches. First, we apply neighborhood constraints to discard obviously
inconsistent matches (Figure 10): For each match we construct the projection
matrix (since a Euclidean model is available and a match contains three points)
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Apple Bear Rubble Salt Shoe Spidey Truck Vase
Input images 29 20 16 16 16 16 16 20
Model patches 759 4014 737 866 488 526 518 1085

Fig. 8. Object gallery. Left column: One of several input pictures for each object.
Right column: Renderings of each model, not necessarily in the same pose as the input
picture. Top to bottom: An apple, rubble (Spiderman base), a salt can, a shoe, Spidey,
a toy truck, and a vase.
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Fig. 9. Comparing SIFT and color descriptors on low-contrast patches. The center
column is the model patch. The left column is the correct match in the image. The
right column is the match in the image ranked first by SIFT (but that is in fact
an incorrect match). The top row shows the patch, the middle row shows the color
histogram, and the bottom row shows the SIFT descriptor. The incorrect match has a
Euclidean distance of 0.52 between SIFT descriptors and a χ2 distance of 1.99 between
the corresponding color histograms; and the correct match has a SIFT distance of 0.67
and a color distance of 0.03. The two patches on the left are red and green, while the
patch on the right is aqua.

and use it to project the surrounding patches. If they lie close, the match is
kept. Second, we refine the matched image regions with non-linear least squares
to maximize their correlation with the corresponding model patches. This is the
most expensive step, so we apply it after the neighborhood constraint.

Various methods for finding matching features consistent with a given set of
geometric constraints have been proposed in the past, including interpretation
tree or alignment techniques [2,6,11,13,19], geometric hashing [15,16], and robust
statistical methods such as RANSAC [8] and its variants [40]. Both alignment and
RANSAC can easily be implemented in the context of the general matching proce-
dure (Section 2.3). We used several alternatives in our experiments, and found that
the following “greedy” variant performed best: Let M be the number of matches
(typically limited to 12,000). For each match, we construct a “seed” model by it-
eratively adding the next most compatible match, just as in alignment, until the
total matches in the seed reach a limit N (typically set to 20). Then we use the
model constructed from this seed to collect a consensus set, just as in RANSAC.
Thus, the “greedy” variant is a hybrid between alignment and RANSAC.
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Fig. 10. An illustration of the neighborhood constraint. The small parallelogram in
the upper center is the one used to estimate the projection matrix. The white paral-
lelograms are projections of other forward-facing patches in the 3D model. The “×”
surrounded by a circle is the projected center of one of the matches being tested, and
the other “×” within the circle is its match in the image.

Step 3 – Geometry-Based Addition of Matches. The matches found by the esti-
mation step provide a projection matrix that places the model into the image.
All forward-facing patches in the model could potentially be present in the im-
age. Therefore, we project each such model patch and select the K (typically 5
or 10) closest image patches as new match hypotheses.

Object Detection. Once an object model has been matched to an image, some cri-
terion is needed to decide whether it is present or not. We use the following one:

(number of matches≥m OR matched area/total area≥a) AND distortion≤d,

where nominal values for the parameters are m = 10, a = 0.1, and d = 0.15.
Here, the measure of distortion is

aT
1 a2

|a1||a2|
+

(
1−

min(|a1|, |a2|)
max(|a1|, |a2|)

)
,

where aT
i is the ith row of the leftmost 2×3 portion A of the projection matrix,

and it reflects how close this matrix is to the top part of a scaled rotation matrix.
The matched surface area of the model is measured in terms of the patches whose
normalized correlation is above the usual thresholds, and it is compared to the
total surface area actually visible from the predicted viewpoint.

Recognition results. Our recognition experiments match all eight of our object
models against a set of 51 images. Each image contains instances of up to five ob-
ject models, though the typical image only contains one or two. Using the nominal
values for the detection parameters given above, the method gives no false posi-
tives and a recognition rate (averaged over the eight object models) of 94%.
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Fig. 11. True positive rate plotted against number of false positives for several different
recognition methods

Figure 11 shows a comparison study including our method and several other
state-of-the-art object recognition systems. Our dataset is publicly available
at http://www-cvr.ai.uiuc.edu/ponce_grp/data, and several other research
groups graciously provided test results on it using their systems. The specific
algorithms tested were the ones proposed by Ferrari, Tuytelaars & Van Gool [7],
Lowe [20], Mahamud & Hebert [21], and Moreels, Maire & Perona [25]. In addi-
tion, we performed a test using our wide-baseline matching procedure between
a database of training images and the test set, without using 3D models. For
details of the comparative study, see [33].

Figure 12 shows sample results of some challenging (yet successful) recognition
experiments, with a large degree of occlusion and clutter. Figure 13 shows the
images where recognition fails. Note the views where the shoe fails. These are
separated by about 60◦ from the views used during modeling. The surface of the
shoe has a very sparse texture, so it is difficult to reconstruct some of the shape
details. These details become more significant when the viewpoint moves from
nearly parallel to the surface normal to nearly perpendicular.

5 Video

Modeling from video (contiguous image sequences) is similar in many respects
to modeling from still images. In particular, we can use the same methods for
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Fig. 12. Some challenging but successful recognition results. The recognized models
are rendered in the poses estimated by our program, and bounding boxes for the
reprojections are shown as rectangles.

describing the appearance and the geometric structure of affine-covariant patches.
Establishing correspondence between multiple views of the same patch is actually
easier in video sequences, since successive frames are close to each other in space
and time, and it is sufficient to use tracking rather than wide-baseline matching.
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Fig. 13. Images where recognition fails

On the other hand, the problem of modeling from video is made much more dif-
ficult by the presence of multiple independently moving objects. To cope with
this, we take advantage of the factorization and error measure presented in Sec-
tion 2.2 to simultaneously segment the moving components and build their 3D
models. The resulting piecewise-rigid 3D models can be directly compared using
the general matching procedure (Section 2.3), promising a method for video shot
matching [1,34,37,46].

The modeling process for video starts by extracting affine regions from the
first frame and tracking them through subsequent frames. It continues to add
new affine regions in each subsequent frame as old ones move out of view or die
off for various reasons. The collection of all the tracked patches again forms a
patch-view matrix. This matrix will in general contain more than one rigid com-
ponent. Each rigid component has a different motion, producing a different set of
projection matrices. If we attempt to construct a 3D patch for a track (column)
using a set of cameras from a different rigid component, the reprojection error
will be high, while constructing a 3D patch using cameras from the same rigid
component will produce a low error. This fact leads to a motion segmentation
technique based on RANSAC [9,41]. The basic procedure is to locate a section
of the video with a large number of overlapping tracks (that is, a large number
of visible patches), select a random pair of them to reconstruct a set of cameras,
and then construct a consensus set by measuring the reprojection error asso-
ciated with each of the remaining tracks and adding those below a threshold.
The largest consensus set becomes the basis of a new rigid component. The new
model is propagated forward and backward through time, adding all compatible
tracks. Finally, we remove the entire set of tracks, and repeat the procedure until
all components of reasonable size have been found.

Rigid motion consistency may not be measured directly if two patches are
not visible at the same time in the video. It is therefore necessary to extend
the range of frames in the video covered by the working model as more con-
sistent patches are found. The stitching method described in Section 3, while
very accurate, is too expensive and not suited for building a model incremen-
tally. Instead, we use a method called “bilinear incremental SFM” to add sparse
measurements from the patch-view matrix to an existing model. Essentially, the
method adds one row or column at a time from the patch-view matrix to a model,
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Fig. 14. Segmentation and modeling of shots from “Run Lola Run” and “Groundhog
Day”

reconstructing one camera or patch respectively. It reconstructs patches using
known cameras associated with the sparse set of image measurements in the new
column, and similarly it reconstructs cameras using known patches associated
with the image measurements in a row. At each step it always selects the next row
or column that has the most image measurements overlapping the current model.
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Fig. 15. Recognition rate versus false positives for a shot-matching test

In order to propagate the effects of new data, it periodically re-estimates all
the cameras and patches currently in the model, exactly as in the resection-
intersection method of bundle adjustment [42].

Experimental results. Figure 14 shows results of segmenting and modeling shots
from the movies “Run Lola Run” and “Groundhog Day”. These movies contain
significant perspective effects, so we have used a more general projection model
that is beyond the scope of this chapter, see [32] for details. The first row of the
figure shows a scene from “Run Lola Run” where a train passes overhead. The
detected components are the train and the background. The second row shows
a corner scene from the same movie. The two rigid components are the car and
the background. The third row of Figure 14 shows a scene from “Groundhog
Day”. The rigid components are the van and the background. Later, another
vehicle turns off the highway and is also found as a component. The last row of
the figure is a reprojection of the 3D model of the van. Note that the viewpoint
of the reprojection is significantly different than any in the original scene.

Figure 15 shows the results of a recognition test over a set of 27 video shots
collected from various sources: the movies “Run, Lola, Run” and “Groundhog
Day”, as well as several videos taken in the laboratory. Each scene appeared in
2 or 3 of the shots. We selected 10 different 3D components in turn to act as
queries, and used the general matching procedure (Section 2.3) between each
query model and the rest of the set, see [32] for details.
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Fig. 16. Some correctly matched shots. The left image is the original frame of the test
shot. The right image shows the query model reprojected into the test video.

Figure 16 shows some of the correctly matched models. It shows a video
frame from the recognized shot and a projection of the 3D model of the query
shot. This demonstrates how well the two models are registered in 3D. These
results are best viewed in motion, and sample videos appear on our web site:
http://www-cvr.ai.uiuc.edu/ponce_grp/research/3d.

6 Discussion

We have proposed in this article to revisit invariants as a local object descrip-
tion that exploits the fact that smooth surfaces are always planar in the small.
Combining this idea with the affine regions of Mikolajczyk and Schmid [24] has
allowed us to construct a normalized representation of local surface appearance
that can be used to select promising matches in 3D object modeling and recogni-
tion tasks. We have used multi-view geometric constraints to represent the larger
3D surface structure, retain groups of consistent matches, and reject incorrect
ones. Our experiments demonstrate the promise of the proposed approach to 3D
object recognition.

We have extended our approach to automatically perform simultaneous mo-
tion segmentation and 3D modeling in video sequences containing multiple inde-
pendently moving objects. Multi-view geometric constraints guide the selection
of patches that move together rigidly and again represent their 3D surface struc-
ture, resulting in a set of rigid 3D components.

We have reduced 2D images, 3D models, image sequences and video scenes to
a simple representation: a collection of affine patches. Any such collection may
be matched to any other, aided by a representation of the geometric relationship
between the two. We have presented three examples of such matching: between
a pair of images (wide-baseline matching), between a 3D model and an image
(object recognition), and between two 3D models (shot matching). In all cases,
we first select match hypotheses based on appearance similarity and then find a
subset that are geometrically consistent; and finally expand this set guided by
both geometry and appearance.
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Let us close by sketching several directions for improvement of the existing
method. One such direction is increasing the computational efficiency of our
current implementation. Two key changes would be to use a voting or indexing
scheme rather than naive all-to-all matching, and to avoid patch refinement
by developing more robustness to noise in the image measurements. Next, we
plan to pursue various improvements to the feature extraction method. The
current scheme depends in large part on corner-like Harris interest points, which
often fall across object boundaries, and therefore cannot be matched or tracked
reliably. To help overcome this problem, we could use maximally stable extremal
regions [22], which tend to be detected on relatively “flat” regions of an object’s
surface. More generally, some 3D objects, such as bicycles and lamp-posts, are
not amenable to representation by planar patches at all. In such cases, a hybrid
system that models point, edge, and planar features would be more suitable.
Finally, many interesting objects are non-rigid, the prime example being human
actors. Thus, an important future research direction is extending our approach
to deal with non-rigid, articulated objects.
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Abstract. We describe an approach to object retrieval which searches
for and localizes all the occurrences of an object in a video, given a query
image of the object. The object is represented by a set of viewpoint
invariant region descriptors so that recognition can proceed successfully
despite changes in viewpoint, illumination and partial occlusion. The
temporal continuity of the video within a shot is used to track the regions
in order to reject those that are unstable.

Efficient retrieval is achieved by employing methods from statistical
text retrieval, including inverted file systems, and text and document
frequency weightings. This requires a visual analogy of a word which
is provided here by vector quantizing the region descriptors. The final
ranking also depends on the spatial layout of the regions. The result is
that retrieval is immediate, returning a ranked list of shots in the manner
of Google.

We report results for object retrieval on the full length feature films
‘Groundhog Day’ and ‘Casablanca’.

1 Introduction

The aim of this work is to retrieve those key frames and shots of a video con-
taining a particular object with the ease, speed and accuracy with which Google
retrieves text documents (web pages) containing particular words. This chapter
investigates whether a text retrieval approach can be successfully employed for
this task.

Identifying an (identical) object in a database of images is now reaching some
maturity. It is still a challenging problem because an object’s visual appearance
may be very different due to viewpoint and lighting, and it may be partially
occluded, but successful methods now exist [7,8,9,11,13,14,15,16,20,21]. Typi-
cally an object is represented by a set of overlapping regions each represented
by a vector computed from the region’s appearance. The region extraction and
descriptors are built with a controlled degree of invariance to viewpoint and illu-
mination conditions. Similar descriptors are computed for all images in the data-
base. Recognition of a particular object proceeds by nearest neighbour matching
of the descriptor vectors, followed by disambiguating using local spatial coher-
ence (such as common neighbours, or angular ordering), or global relationships
(such as epipolar geometry or a planar homography).

J. Ponce et al. (Eds.): Toward Category-Level Object Recognition, LNCS 4170, pp. 127–144, 2006.
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We explore whether this type of approach to recognition can be recast as text
retrieval. In essence this requires a visual analogy of a word, and here we provide
this by vector quantizing the descriptor vectors. However, it will be seen that
pursuing the analogy with text retrieval is more than a simple optimization over
different vector quantizations. There are many lessons and rules of thumb that
have been learnt and developed in the text retrieval literature and it is worth
ascertaining if these also can be employed in visual retrieval.

The benefits of this approach is that matches are effectively pre-computed
so that at run-time frames and shots containing any particular object can be
retrieved with no-delay. This means that any object occurring in the video (and
conjunctions of objects) can be retrieved even though there was no explicit inter-
est in these objects when descriptors were built for the video. However, we must
also determine whether this vector quantized retrieval misses any matches that
would have been obtained if the former method of nearest neighbour matching
had been used.

Review of text retrieval: Text retrieval systems generally employ a number of
standard steps [2]: the documents are first parsed into words, and the words are
represented by their stems, for example ‘walk’, ‘walking’ and ‘walks’ would be
represented by the stem ‘walk’. A stop list is then used to reject very common
words, such as ‘the’ and ‘an’, which occur in most documents and are therefore
not discriminating for a particular document. The remaining words are then
assigned a unique identifier, and each document is represented by a vector with
components given by the frequency of occurrence of the words the document
contains. In addition the components are weighted in various ways (described
in more detail in section 4), and in the case of Google the weighting of a web
page depends on the number of web pages linking to that particular page [4]. All
of the above steps are carried out in advance of actual retrieval, and the set of
vectors representing all the documents in a corpus are organized as an inverted
file [22] to facilitate efficient retrieval. An inverted file is structured like an ideal
book index. It has an entry for each word in the corpus followed by a list of all
the documents (and position in that document) in which the word occurs.

A text is retrieved by computing its vector of word frequencies and returning
the documents with the closest (measured by angles) vectors. In addition the
degree of match on the ordering and separation of the words may be used to
rank the returned documents.

Chapter outline: Here we explore visual analogies of each of these steps. Sec-
tion 2 describes the visual descriptors used. Section 3 then describes their vector
quantization into visual ‘words’, and sections 4 and 5 weighting and indexing
for the vector model. These ideas are then evaluated on a ground truth set of
six object queries in section 6. Object retrieval results are shown on two feature
films: ‘Groundhog Day’ [Ramis, 1993] and ‘Casablanca’ [Curtiz, 1942].

Although previous work has borrowed ideas from the text retrieval literature
for image retrieval from databases (e.g. [19] used the weighting and inverted file
schemes) to the best of our knowledge this is the first systematic application of
these ideas to object retrieval in videos.
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(a) (b)

Fig. 1. Object query example I. (a) Top row: (left) a frame from the movie ‘Ground-
hog Day’ with an outlined query region and (right) a close-up of the query region de-
lineating the object of interest. Bottom row: (left) all 1039 detected affine covariant
regions superimposed and (right) close-up of the query region. (b) (left) two retrieved
frames with detected regions of interest and (right) a close-up of the images with affine
covariant regions superimposed. These regions match to a subset of the regions shown
in (a). Note the significant change in foreshortening and scale between the query image
of the object, and the object in the retrieved frames. For this query there are four
correctly retrieved shots ranked 1, 2, 3 and 9. Querying all the 5,640 keyframes of the
entire movie took 0.36 seconds on a 2GHz Pentium.

2 Viewpoint Invariant Description

Two types of viewpoint covariant regions are computed for each frame. The first
is constructed by elliptical shape adaptation about a Harris [5] interest point. The
method involves iteratively determining the ellipse centre, scale and shape. The
scale is determined by the local extremum (across scale) of a Laplacian, and the
shape by maximizing intensity gradient isotropy over the elliptical region [3,6].
The implementation details are given in [11,15]. This region type is referred to
as Shape Adapted (SA).

The second type of region is constructed by selecting areas from an intensity
watershed image segmentation. The regions are those for which the area is ap-
proximately stationary as the intensity threshold is varied. The implementation
details are given in [10]. This region type is referred to as Maximally Stable (MS).

Two types of regions are employed because they detect different image areas
and thus provide complementary representations of a frame. The SA regions tend
to be centred on corner like features, and the MS regions correspond to blobs
of high contrast with respect to their surroundings such as a dark window on a
grey wall. Both types of regions are represented by ellipses. These are computed
at twice the originally detected region size in order for the image appearance to
be more discriminating. For a 720×576 pixel video frame the number of regions
computed is typically 1,200. An example is shown in Figure 1.

Each elliptical affine invariant region is represented by a 128-dimensional vec-
tor using the SIFT descriptor developed by Lowe [7]. In [12] this descriptor was
shown to be superior to others used in the literature, such as the response of a set
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of steerable filters [11] or orthogonal filters [15], and we have also found SIFT to
be superior (by comparing scene retrieval results against ground truth [18]). One
reason for this superior performance is that SIFT, unlike the other descriptors,
is designed to be invariant to a shift of a few pixels in the region position, and
this localization error is one that often occurs. Combining the SIFT descriptor
with affine covariant regions gives region description vectors which are invariant
to affine transformations of the image. Note, both region detection and the de-
scription is computed on monochrome versions of the frames, colour information
is not currently used in this work.

To reduce noise and reject unstable regions, information is aggregated over a
sequence of frames. The regions detected in each frame of the video are tracked
using a simple constant velocity dynamical model and correlation. Any region
which does not survive for more than three frames is rejected. This ‘stability
check’ significantly reduces the number of regions to about 600 per frame.

3 Building a Visual Vocabulary

The objective here is to vector quantize the descriptors into clusters which will be
the visual ‘words’ for text retrieval. The vocabulary is constructed from a subpart
of the movie, and its matching accuracy and expressive power are evaluated on
the entire movie, as described in the following sections. The running example is
for the movie ‘Groundhog Day’.

The vector quantization is carried out here by K-means clustering, though
other methods (K-medoids, histogram binning, etc) are certainly possible.

3.1 Implementation

Each descriptor is a 128-vector, and to simultaneously cluster all the descriptors
of the movie would be a gargantuan task. Instead a random subset of 437 frames
is selected. Even with this reduction there are still 200K descriptors that must
be clustered.

The Mahalanobis distance is used as the distance function for the K-means
clustering. The distance between two descriptors x1, x2, is then given by

d(x1,x2) =
√

(x1 − x2)�Σ−1(x1 − x2).

The covariance matrix Σ is determined by (i) computing covariances for descrip-
tors throughout tracks within several shots, and (ii) assuming Σ is the same for
all tracks (i.e. independent of the region) so that covariances for tracks can be
aggregated. In this manner sufficient measurements are available to estimate all
elements of Σ. Details are given in [18]. The Mahalanobis distance enables the
more noisy components of the 128–vector to be weighted down, and also decor-
relates the components. Empirically there is a small degree of correlation. As is
standard, the descriptor space is affine transformed by the square root of Σ so
that Euclidean distance may be used.
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(a) (b)

(c) (d)

Fig. 2. Samples of normalized affine covariant regions from clusters corresponding to a
single visual word: (a,c,d) Shape Adapted regions; (b) Maximally Stable regions. Note
that some visual words represent generic image structures, e.g. corners (a) or blobs (b),
and some visual words are rather specific, e.g. an eye (c) or a letter (d).

About 6K clusters are used for Shape Adapted regions, and about 10K clusters
for Maximally Stable regions. The ratio of the number of clusters for each type
is chosen to be approximately the same as the ratio of detected descriptors of
each type. The number of clusters was chosen empirically to maximize matching
performance on a ground truth set for scene retrieval [18]. The K-means algo-
rithm is run several times with random initial assignments of points as cluster
centres, and the lowest cost result used.

Figure 2 shows examples of regions belonging to particular clusters, i.e. which
will be treated as the same visual word. The clustered regions reflect the proper-
ties of the SIFT descriptors which penalize intensity variations amongst regions
less than cross-correlation. This is because SIFT emphasizes orientation of gra-
dients, rather than the position of a particular intensity within the region.

The reason that SA and MS regions are clustered separately is that they
cover different and largely independent regions of the scene. Consequently, they
may be thought of as different vocabularies for describing the same scene, and
thus should have their own word sets, in the same way as one vocabulary might
describe architectural features and another the material quality (e.g. defects,
weathering) of a building.

4 Visual Indexing Using Text Retrieval Methods

In text retrieval each document is represented by a vector of word frequencies.
However, it is usual to apply a weighting to the components of this vector [2],
rather than use the frequency vector directly for indexing. Here we describe the
standard weighting that is employed, and then the visual analogy of document
retrieval to frame retrieval.
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The standard weighting is known as ‘term frequency–inverse document fre-
quency’, tf-idf, and is computed as follows. Suppose there is a vocabulary of V
words, then each document is represented by a vector

vd = (t1, ..., ti, ..., tV )�

of weighted word frequencies with components

ti =
nid

nd
log

N

ni

where nid is the number of occurrences of word i in document d, nd is the total
number of words in the document d, ni is the number of documents containing
term i and N is the number of documents in the whole database. The weighting
is a product of two terms: the word frequency nid/nd, and the inverse document
frequency logN/ni. The intuition is that word frequency weights words occurring
often in a particular document, and thus describes it well, whilst the inverse
document frequency downweights words that appear often in the database.

At the retrieval stage documents are ranked by their normalized scalar product
(cosine of angle)

fd =
vq

�vd√
vq

�vq

√
vd

�vd

(1)

between the query vector vq and all document vectors vd in the database.
In our case the query vector is given by the visual words contained in a

user specified sub-part of an image, and the frames are ranked according to the
similarity of their weighted vectors to this query vector.

4.1 Stop List

Using a stop list analogy the most frequent visual words that occur in almost
all images are suppressed. The top 5% and bottom 5% are stopped. In our
case the very common words are due to large clusters of over 3K points. These
might correspond to small specularities (highlights), for example, which occur
throughout many scenes. The stop list boundaries were determined empirically
to reduce the number of mismatches and size of the inverted file while keeping
sufficient visual vocabulary.

Figure 4 shows the benefit of imposing a stop list – the very common visual
words occur at many places in the image and are responsible for mis-matches.
Most of these are removed once the stop list is applied. The removal of the
remaining mis-matches is described next.

4.2 Spatial Consistency

Google increases the ranking for documents where the searched for words appear
close together in the retrieved texts (measured by word order). This analogy is
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Frame1 Frame2 

A B

Fig. 3. Illustration of spatial consistency voting. To verify a pair of matching regions
(A,B) a circular search area is defined by the k (=5 in this example) spatial nearest
neighbours in both frames. Each match which lies within the search areas in both frames
casts a vote in support of match (A,B). In this example three supporting matches are
found. Matches with no support are rejected.

especially relevant for querying objects by an image, where matched covariant
regions in the retrieved frames should have a similar spatial arrangement [14,16]
to those of the outlined region in the query image. The idea is implemented here
by first retrieving frames using the weighted frequency vector alone, and then
re-ranking them based on a measure of spatial consistency.

Spatial consistency can be measured quite loosely simply by requiring that
neighbouring matches in the query region lie in a surrounding area in the re-
trieved frame. It can also be measured very strictly by requiring that neighbour-
ing matches have the same spatial layout in the query region and retrieved frame.
In our case the matched regions provide the affine transformation between the
query and retrieved image so a point to point map is available for this strict
measure.

We have found that the best performance is obtained in the middle of this
possible range of measures. A search area is defined by the 15 nearest spatial
neighbours of each match, and each region which also matches within this area
casts a vote for that frame. Matches with no support are rejected. The final score
of the frame is determined by summing the spatial consistency votes, and adding
the frequency score fd given by (1). Including the frequency score (which ranges
between 0 and 1) disambiguates ranking amongst frames which receive the same
number of spatial consistency votes. The object bounding box in the retrieved
frame is determined as the rectangular bounding box of the matched regions
after the spatial consistency test. The spatial consistency voting is illustrated
in figure 3. This works very well as is demonstrated in the last row of figure 4,
which shows the spatial consistency rejection of incorrect matches. The object
retrieval examples presented in this chapter employ this ranking measure and
amply demonstrate its usefulness.
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Fig. 4. Matching stages. Top row: (left) Query region and (right) its close-up. Second
row: Original matches based on visual words. Third row: matches after using the stop-
list. Last row: Final set of matches after filtering on spatial consistency.
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1. Pre-processing (off-line)

– Detect affine covariant regions in each keyframe of the video. Represent each
region by a SIFT descriptor (section 2).

– Track the regions through the video and reject unstable regions (section 2).

– Build a visual dictionary by clustering stable regions from a subset of the
video. Assign each region descriptor in each keyframe to the nearest cluster
centre (section 3).

– Remove stop-listed visual words (section 4.1).

– Compute tf-idf weighted document frequency vectors (section 4).

– Build the inverted file indexing structure (section 5).

2. At run-time (given a user selected query region)

– Determine the set of visual words within the query region.

– Retrieve keyframes based on visual word frequencies (section 4).

– Re-rank the top Ns(= 500) retrieved keyframes using the spatial consistency
check (section 4.2).

Fig. 5. The Video Google object retrieval algorithm

Other measures which take account of the affine mapping between images
may be required in some situations, but this involves a greater computational
expense.

5 Object Retrieval Using Visual Words

We first describe the off-line processing. A feature length film typically has 100K-
150K frames. To reduce complexity one keyframe is used per second of the
video. Descriptors are computed for stable regions in each keyframe (stability
is determined by tracking as described in section 2). The descriptors are vector
quantized using the centres clustered from the training set, i.e. each descriptor
is assigned to a visual word. The visual words over all frames are assembled into
an inverted file structure where for each word all occurrences and the position
of the word in all frames are stored.

At run-time a user selects a query region. This specifies a set of visual words
and their spatial layout. Retrieval then proceeds in two steps: first frames are re-
trieved based on their tf-idf weighted frequency vectors (the bag of words model),
then they are re-ranked using spatial consistency voting. The frequency based
ranking is implemented using the Matlab sparse matrix engine. The spatial con-
sistency re-ranking is implemented using the inverted file structure. The entire
process is summarized in figure 5.

It is worth examining the time complexity of this retrieval architecture and
comparing it to that of a method that does not vector quantize the descriptors.
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The huge advantage of the quantization is that all descriptors assigned to the
same visual word are considered matched. This means that the burden on the
run-time matching is substantially reduced as descriptors have effectively been
pre-matched off-line.

In detail, suppose there areN frames, a vocabulary of V visual words, and each
frame contains R regions and M distinct visual words.M < R if some regions are
represented by the same visual word. Each frame is equivalent to a vector in R

V

with M non-zero entries. Typical values are N = 10, 000, V = 20, 000 and M =
500. At run time the task is to compute the score of (1) between the query frame
vector vq and each frame vector vd in the database (another situation might be
to only return the n closest frame vectors). The current implementation exploits
sparse coding for efficient search as follows. The vectors are pre-normalized (so
that the denominator of (1) is unity), and the computation reduces to one dot
product for each of the N frames. Moreover, only the m ≤ M entries which
are non-zero in both vq and vd need to be examined during each dot product
computation (and typically there are far less than R regions in vq as only a
subpart of a frame specifies the object search). In the worst case if m = M for
all documents the time complexity is O(MN).

If vector quantization is not used, then two architectures are possible. In the
first, the query frame is matched to each frame in turn. In the second, descriptors
over all frames are combined into a single search space. As SIFT is used the
dimension D of the search space will be 128. In the first case the object search
requires finding matches for each of the R descriptors of the query frame, and
there are R regions in each frame, so there are R searches through R points of
dimension D for N frames, a worst case cost of O(NR2D). In the second case,
over all frames there are NR descriptors. Again, to search for the object requires
finding matches for each of the R descriptors in the query image, i.e. R searches
through NR points, again resulting in time complexity O(NR2D).

Consequently, even in the worst case, the vector quantizing architecture is
a factor of RD times faster than not quantizing. These worst case complex-
ity results can, of course, be improved by using efficient nearest neighbour or
approximate nearest neighbour search [9].

6 Experiments

In this section we evaluate object retrieval performance over the entire movie.
The object of interest is specified by the user as a sub-part of any keyframe.
In part this retrieval performance assesses the expressiveness of the visual vo-
cabulary, since invariant descriptors from the test objects (and the frames they
appear in) may not have been included when clustering to form the vocabulary.

Baseline method: The performance is compared to a baseline method implement-
ing standard frame to frame matching. The goal is to evaluate the potential loss
of performance due to the descriptor quantization. The same detected regions
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(1) (2) (3)

(4) (5) (6)

Object # of keyframes # of shots # of query regions
1 Red Clock 138 15 31
2 Black Clock 120 13 29
3 Frames sign 92 14 123
4 Digital clock 208 23 97
5 Phil sign 153 29 26
6 Microphone 118 15 19

Fig. 6. Query frames with outlined query regions for the six test queries with manually
obtained ground truth occurrences in the movie Groundhog Day. The table shows the
number of ground truth occurrences (keyframes and shots) and the number of affine
covariant regions lying within the query rectangle for each query.

and descriptors (after the stability check) in each keyframe are used. The de-
tected affine covariant regions within the query area in the query keyframe are
sequentially matched to all 5,640 keyframes in the movie. For each keyframe,
matches are obtained based on the descriptor values using nearest neighbour
matching with a threshold on the distance. Euclidean distance is used here.
Keyframes are ranked by the number of matches and shots are ranked by their
best scoring keyframes.

Comparison on ground truth: The performance of the proposed method is eval-
uated on six object queries in the movie Groundhog Day. Figure 6 shows the
query frames and corresponding query regions. Ground truth occurrences were
manually labelled in all the 5,640 keyframes (752 shots). Retrieval is performed
on keyframes as outlined in section 4 and each shot of the video is scored by its
best scoring keyframe. Performance is measured using a precision-recall plot for
each query. Precision is the number of retrieved ground truth shots relative to the
total number of shots retrieved. Recall is the number of retrieved ground truth
shots relative to the total number of ground truth shots in the movie. Precision-
recall plots are shown in figure 7. Results are summarized using Average
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(4) (5) (6)

Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Average
AP freq+spat (a) 0.70 0.75 0.93 0.50 0.75 0.68 0.72
AP freq only (b) 0.49 0.46 0.91 0.40 0.74 0.41 0.57
AP baseline (c) 0.44 0.62 0.72 0.20 0.76 0.62 0.56

Average precision (AP) for the six object queries.

Fig. 7. Precision-recall graphs (at the shot level) for the six ground truth queries on the
movie Groundhog Day. Each graph shows three curves corresponding to (a) frequency
ranking followed by spatial consensus (circles), (b) frequency ranking only (squares),
and (c) baseline matching (stars). Note the significantly improved precision at lower
recalls after spatial consensus re-ranking (a) is applied to the frequency based ranking
(b). The table shows average precision (AP) for each ground truth object query for
the three different methods. The last column shows mean average precision over all six
queries.

Precision (AP) in the table in figure 7. Average Precision is a single valued
measure computed as the area under the precision-recall graph and reflects per-
formance over all recall levels.

It is evident that for all queries the average precision of the proposed method
exceeds that of using frequency vectors alone – showing the benefits of the spatial
consistency in improving the ranking.On average (across all queries) the frequency
ranking method performs comparably to the baseline method. This demonstrates
that using visual word matching does not result in a significant loss in performance
against the standard frame to frame matching.

Figures 1, 8 and 9 show example retrieval results for three object queries
for the movie ‘Groundhog Day’, and figure 10 shows example retrieval results
for black and white film ‘Casablanca’. For the ‘Casablanca’ retrievals, the film



Video Google: Efficient Visual Search of Videos 139

a b c

d e f g

Fig. 8. Object query example II: Groundhog Day. (a) Keyframe with user speci-
fied query region in yellow (phil sign), (b) close-up of the query region and (c) close-up
with affine covariant regions superimposed. (d-g) (first row) keyframes from the 1st,
4th, 10th, and 19th retrieved shots with the identified region of interest shown in yel-
low, (second row) a close-up of the image, and (third row) a close-up of the image with
matched elliptical regions superimposed. The first false positive is ranked 21st. The
precision-recall graph for this query is shown in figure 7 (object 5). Querying 5,640
keyframes took 0.64 seconds.

is represented by 5,749 keyframes, and a new visual vocabulary was built as
described in section 3.

Processing time: The region detection, description and visual word assignment
takes about 20 seconds per frame (720 × 576 pixels) but can be done off-line.
The average query time for the six ground truth queries on the database of 5,640
keyframes is 0.82 seconds with a Matlab implementation on a 2GHz pentium.
This includes the frequency ranking and spatial consistency re-ranking. The spa-
tial consistency re-ranking is applied only to the top Ns = 500 keyframes ranked
by the frequency based score. This restriction results in no loss of performance
(measured on the set of ground truth queries).

The query time of the baseline matching method on the same database of
5,640 keyframes is about 500 seconds. This timing includes only the nearest
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a b c

d e f g

Fig. 9. Object query example III: Groundhog Day. (a) Keyframe with user
specified query region in yellow (tie), (b) close-up of the query region and (c) close-
up with affine covariant regions superimposed. (d-g) (first row) keyframes from the
1st, 2nd, 4th, and 19th retrieved shots with the identified region of interest shown in
yellow, (second row) a close-up of the image, and (third row) a close-up of the image
with matched elliptical regions superimposed. The first false positive is ranked 25th.
Querying 5,640 keyframes took 0.38 seconds.

neighbour matching performed using linear search. The region detection and
description is also done off-line. Note that on this set of queries our proposed
method has achieved about 600-fold speed-up.

Limitations of the current method: Examples of frames from low ranked shots
are shown in figure 11. Appearance changes due to extreme viewing angles, large
scale changes and significant motion blur affect the process of extracting and
matching affine covariant regions. The examples shown represent a significant
challenge to the current object matching method.

Searching for objects from outside the movie: Figure 12 shows an example of
searching for an object outside the ‘closed world’ of the film. The object (a Sony
logo) is specified by a query image downloaded from the internet. The image was
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a b c

d e f g

Fig. 10. Object query example IV: Casablanca. (a) Keyframe with user specified
query region in yellow (hat), (b) close-up of the query region and (c) close-up with affine
covariant regions superimposed. (d-g) (first row) keyframes from the 4th, 5th, 11th,
and 19th retrieved shots with the identified region of interest shown in yellow, (second
row) a close-up of the image, and (third row) a close-up of the image with matched
elliptical regions superimposed. The first false positive is ranked 25th. Querying 5,749
keyframes took 0.83 seconds.

(1,2) (4)

Fig. 11. Examples of missed (low ranked) detections for objects 1,2 and 4. In the left
image the two clocks (object 1 and 2) are imaged from an extreme viewing angle and
are barely visible – the red clock (object 2) is partially out of view. In the right image
the digital clock (object 4) is imaged at a small scale and significantly motion blurred.
Examples shown here were also low ranked by the baseline method.
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Fig. 12. Searching for a Sony logo. First column: (top) Sony Discman image (640×
422 pixels) with the query region outlined in yellow and (bottom) close-up with detected
elliptical regions superimposed. Second and third column: (top) retrieved frames from
two different shots of ‘Groundhog Day’ with detected Sony logo outlined in yellow and
(bottom) close-up of the image. The retrieved shots were ranked 1 and 4.

preprocessed as outlined in section 2. Searching for images from other sources
opens up the possibility for product placement queries, or searching movies for
company logos, or particular types of vehicles or buildings.

7 Conclusions

We have demonstrated a scalable object retrieval architecture by the use of a
visual vocabulary based on vector quantized viewpoint invariant descriptors. The
vector quantization does not appear to introduce a significant loss in retrieval
performance (precision or recall) compared to nearest neighbour matching.

The method in this chapter allows retrieval for a particular visual aspect of
an object. However, temporal information within a shot may be used to group
visual aspects, and enable object level retrieval [17].

A live demonstration of the ‘Video Google’ system on a publicly available
movie (Dressed to Kill) is available on-line at [1].
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Abstract. Methods based on local, viewpoint invariant features have
proven capable of recognizing objects in spite of viewpoint changes, oc-
clusion and clutter. However, these approaches fail when these factors are
too strong, due to the limited repeatability and discriminative power of
the features. As additional shortcomings, the objects need to be rigid and
only their approximate location is found. We present an object recogni-
tion approach which overcomes these limitations. An initial set of feature
correspondences is first generated. The method anchors on it and then
gradually explores the surrounding area, trying to construct more and
more matching features, increasingly farther from the initial ones. The
resulting process covers the object with matches, and simultaneously sep-
arates the correct matches from the wrong ones. Hence, recognition and
segmentation are achieved at the same time. Only very few correct initial
matches suffice for reliable recognition. Experimental results on still im-
ages and television news broadcasts demonstrate the stronger power of
the presented method in dealing with extensive clutter, dominant occlu-
sion, large scale and viewpoint changes. Moreover non-rigid deformations
are explicitly taken into account, and the approximative contours of the
object are produced. The approach can extend any viewpoint invariant
feature extractor.

1 Introduction

The modern trend in object recognition has abandoned model-based approaches
(e.g. [2]), which require a 3D model of the object as input, in favor of appearance-
based ones, where some example images suffice. Two kinds of appearance-based
methods exist: global and local. Global methods build an object representation by
integrating information over an entire image (e.g [4,17,27]), and are therefore very
sensitive to background clutter and partial occlusion. Hence, global methods only
consider test images without background, or necessitate a prior segmentation, a
task which has proven extremely difficult. Additionally, robustness to large view-
point changes is hard to achieve, because the global object appearance varies in a
complex and unpredictable way (the object’s geometry is unknown). Local meth-
ods counter problems due to clutter and occlusion by representing images as a
� This research was supported by EC project VIBES, the Fund for Scientific Research
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collection of features extracted based on local information only (e.g. [25]). After
the influential work of Schmid [24], who proposed the use of rotation-invariant
features, there has been important evolution. Feature extractors have appeared
[12,14] which are invariant also under scale changes, and more recently recog-
nition under general viewpoint changes has become possible, thanks to extrac-
tors adapting the complete affine shape of the feature to the viewing conditions
[1,13,15,23,31,30]. These affine invariant features are particularly significant: even
though the global appearance variation of 3D objects is very complex under view-
point changes, it can be approximated by simple affine transformations on a lo-
cal scale, where each feature is approximately planar (a region). Local invariant
features are used in many recent works, and provide the currently most success-
ful paradigm for object recognition (e.g. [12,15,18,21,30]). In the basic common
scheme a number of features are extracted independently from both a model and
a test image, then characterized by invariant descriptors and finally matched.

In spite of their success, the robustness and generality of these approaches
are limited by the repeatability of the feature extraction, and the difficulty of
matching correctly, in the presence of large amounts of clutter and challeng-
ing viewing conditions. Indeed, large scale or viewpoint changes considerably
lower the probability that any given model feature is re-extracted in the test
image. Simultaneously, occlusion reduces the number of visible model features.
The combined effect is that only a small fraction of model features has a cor-
respondence in the test image. This fraction represents the maximal number of
features that can be correctly matched. Unfortunately, at the same time exten-
sive clutter gives rise to a large number of non-object features, which disturb the
matching process. As a final outcome of these combined difficulties, only a few,
if any, correct matches are produced. Because these often come together with
many mismatches, recognition tends to fail.

Even in easier cases, to suit the needs for repeatability in spite of viewpoint
changes, only a sparse set of distinguished features [18] are extracted. As a result,
only a small portion of the object is typically covered with matches. Densely
covering the visible part of the object is desirable, as it increases the evidence
for its presence, which results in higher detection power. Moreover, it would
allow to find the contours of the object, rather than just its location.

The image exploration approach. In this chapter we tackle these problems with
a new, powerful technique to match a model view to the test image which no
longer relies solely on matching viewpoint invariant features. We start by pro-
ducing an initial large set of unreliable region correspondences, so as to maximize
the number of correct matches, at the cost of introducing many mismatches. Ad-
ditionally, we generate a grid of regions densely covering the model image. The
core of the method then iteratively alternates between expansion phases and con-
traction phases. Each expansion phase tries to construct regions corresponding
to the coverage ones, based on the geometric transformation of nearby existing
matches. Contraction phases try to remove incorrect matches, using filters that
tolerate non-rigid deformations.
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This scheme anchors on the initial matches and then looks around them try-
ing to construct more. As new matches arise, they are exploited to construct
even more, in a process which gradually explores the test image, recursively con-
structing more and more matches, increasingly farther from the initial ones. At
each iteration, the presence of the new matches helps the filter taking better
removal decisions. In turn, the cleaner set of matches makes the next expansion
more effective. As a result, the number, percentage and extent of correct matches
grow with every iteration. The two closely cooperating processes of expansion
and contraction gather more evidence about the presence of the object and sep-
arate correct matches from wrong ones at the same time. Hence, they achieve
simultaneous recognition and segmentation of the object.

By constructing matches for the coverage regions, the system succeeds in
covering also image areas which are not interesting for the feature extractor
or not discriminative enough to be correctly matched by traditional techniques.
During the expansion phases, the shape of each new region is adapted to the local
surface orientation, allowing the exploration process to follow curved surfaces
and deformations (e.g. a folded magazine).

The basic advantage of our approach is that each single correct initial match
can expand to cover a smooth surface with many correct matches, even when
starting from a large number of mismatches. This leads to filling the visible
portion of the object with matches. Some interesting direct advantages derive
from it. First, robustness to scale, viewpoint, occlusion and clutter are greatly
enhanced, because most cases where traditional approaches generate only a few
correct matches are now solvable. Secondly, discriminative power is increased,
because decisions about the object’s identity are based on information densely
distributed over the entire portion of the object visible in the test image. Thirdly,
the approximate boundary of the object in the test image is suggested by the
final set of matches. Fourthly, non-rigid deformations are explicitly taken into
account.

Chapter organization. Sections 2 to 8 explain the image exploration technique. A
discussion of related work can be found in section 10, while experimental results
are given in section 9. Finally, section 11 closes the chapter with conclusions
and possible directions for future research. A preliminary version of this work
appeared in [8,9].

2 Overview of the Method

Figure 2-left shows a challenging example, which is used as case-study through-
out the chapter. There is a large scale change (factor 3.3), out-of-plane rotation,
extensive clutter and partial occlusion. All these factors make the life of the
feature extraction and matching algorithms hard.

A scheme of the approach is illustrated in figure 1. We build upon a multi-
scale extension of the extractor of [30]. However, the method works in conjunc-
tion with any affine invariant region extractor [1,13,15]. In the first phase (soft
matching), we form a large set of initial region correspondences. The goal is to
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obtain some correct matches also in difficult cases, even at the price of includ-
ing a large majority of mismatches. Next, a grid of circular regions covering the
model image is generated (coined coverage regions). The early expansion phase
tries to propagate these coverage regions based on the geometric transformation
of nearby initial matches. By propagating a region, we mean constructing the cor-
responding one in the test image. The propagated matches and the initial ones
are then passed through a local filter, during the early contraction phase, which
removes some of the mismatches. The processing continues by alternating faster
expansion phases (main expansion), where coverage regions are propagated over
a larger area, with contraction phases based on a global filter (main contraction).
This filter exploits both topological arrangements and appearance information,
and tolerates non-rigid deformations. The ‘early’ phases differ from the ‘main’
phases in that they are specialized to deal with the extremely low percentage of
correct matches given by the initial matcher in particularly difficult cases.

model image

test image
matching

Soft
expansion

Early
contraction

Early
expansion

Main
contraction

Main

Fig. 1. Phases of the image exploration technique

3 Soft Matching

The first stage is to compute an initial set of region matches between a model
image Im and a test image It. The region extraction algorithm [30] is applied to
both images independently, producing two sets of regions Φm, Φt, and a vector
of invariants describing each region [30]. Test regions Φt are matched to model
regions Φm in two steps, explained in the next two subsections. The matching
procedure allows for soft matches, i.e. more than one model region is matched
to the same test region, or vice versa.

3.1 Tentative Matches

For each test region T ∈ Φt we first compute the Mahalanobis distance of the
descriptors to all model regions M ∈ Φm. Next, the following appearance simi-
larity measure is computed between T and each of the 10 closest model regions:

sim(M,T ) = NCC(M,T ) + (1− dRGB(M,T )
100

) (1)

where NCC is the normalized cross-correlation between the regions’ greylevel
patterns, while dRGB is the average pixel-wise Euclidean distance in RGB color-
space after independent normalization of the 3 colorbands (necessary to achieve
photometric invariance). Before computation, the two regions are aligned by the
affine transformation mapping T to M .
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Fig. 2. Left: case-study, with model image (top), and test image (bottom). Middle: a
close-up with 3 initial matches. The two model regions on the left are both matched to
the same region in the test image. Note the small occluding rubber on the spoon. Right-
top: the homogeneous coverage Ω. Right-bottom: a support region (dark), associated
sectors (lines) and candidates (bright).

Each of the 3 test regions most similar to T above a low threshold t1 are
considered tentatively matched to T . Repeating this operation for all regions
T ∈ Φt, yields a first set of tentative matches. At this point, every test region
could be matched to either none, 1, 2 or 3 model regions.

3.2 Refinement and Re-thresholding

Since all regions are independently extracted from the two images, the geometric
registration of a correct match is often not optimal. Two matching regions often
do not cover exactly the same physical surface, which lowers their similarity.
The registration of the tentative matches is now refined using our algorithm [6],
that efficiently looks for the affine transformation that maximizes the similarity.
This results in adjusting the region’s location and shape in one of the images.
Besides raising the similarity of correct matches, this improves the quality of the
forthcoming expansion stage, where new matches are constructed based on the
affine transformation of the initial ones.

After refinement, the similarity is re-evaluated and only matches scoring above
a second, higher threshold t2 are kept1 . Refinement tends to raise the similarity
of correct matches much more than that of mismatches. The increased separa-
tion between the similarity distributions makes the second thresholding more
effective. At this point, about 1/3 to 1/2 of the tentative matches are left.

1 The R,G, B colorbands range in [0, 255], so sim is within [−4.41, 2]. A value of 1.0 indi-
cates good similarity. In all experiments the matching thresholds are t1 = 0.6, t2 = 1.0.
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3.3 Motivation

The obtained set of matches usually still contains soft matches, i.e. more than
one region in Φm is matched to the same region in Φt, or vice versa. This con-
trasts with previous works [1,12,15,18,30], but there are two good reasons for it.
First, the scene might contain repeated, or visually similar elements. Secondly,
large viewpoint and scale changes cause loss of resolution which results in a less
accurate geometric correspondence and a lower similarity. When there is also
extensive clutter, it might be impossible, based purely on local appearance [22],
to decide which of the best 3 matches is correct, as several competing regions
might appear very similar, and score higher than the correct match. A classic
1-to-1 approach may easily be distracted and fail to produce the correct match.

The proposed process outputs a large set of plausible matches, all with a rea-
sonably high similarity. The goal is to maximize the number of correct matches,
even at the cost of accepting a substantial fraction of mismatches. This is im-
portant in difficult cases, when only a few model regions are re-extracted in the
test image, because each correct match can start an expansion which will cover
significant parts of the object.

Figure 2-left shows the case-study, for which 3 correct matches out of 217
are found (a correct-ratio of 3/217). The large scale change, combined with the
modest resolution (720x576), causes heavy image degradation which corrupts
edges and texture. In such conditions only a few model regions are re-extracted
in the test image and many mismatches are inevitable. In the rest of the chapter,
we refer to the current set of matches as the configuration Γ .

How to proceed ? Global, robust geometry filtering methods, like detecting
outliers to the epipolar geometry through RANSAC [29] fail, as they need a min-
imal portion of inliers of about 1/3 [3,12]. Initially, this may very well not be the
case. Even if we could separate out the few correct matches, they would probably
not be sufficient to draw reliable conclusions about the presence of the object.
In the following sections, we explain how to gradually increment the number of
correct matches and simultaneously decrease the number of mismatches.

4 Early Expansion

4.1 Coverage of the Model Image

We generate a grid Ω of overlapping circular regions densely covering the model
image Im (figure 2-top-right). In our implementation the grid is composed of a
first layer of regions of radius 25 pixels, spaced 25 pixels, and a second layer with
radius 13 pixels and spaced 25 pixels 2. No regions are generated on the black
background. According to various experiments, this choice of the parameters
is not crucial for the overall recognition performance. The choice of the exact
grid pattern, and consequently the number of regions in Ω, trades segmentation
quality for computational cost, and could be selected based on the user’s desires.
2 These values are for an image of 720x576 pixels, and are proportionally adapted for

images of other sizes.
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At this point, none of the regions in Ω is matched to the test image It. The
expansion phases will try to construct in It as many regions corresponding to
them as possible.

4.2 Propagation Attempt

We now define the concept of propagation attempt which is the basic building-
block of the expansion phases and will be used later. Consider a region Cm

in model image Im without match in the test image It and a nearby region
Sm, matched to St. If Cm and Sm lie on the same physical facet of the object,
they will be mapped to It by similar affine transformations. The support match
(Sm, St) attempts to propagate the candidate region Cm to It as follows:

1. Compute the affine transformation A mapping Sm to St.
2. Project Cm to It via A : Ct = ACm.

The benefits of exploiting previously established geometric transformations
was also noted by [23].

4.3 Early Expansion

Propagation attempts are used as a basis for the first expansion phase as follows.
Consider as supports {Si = (Si

m, S
i
t)} the soft-matches configuration Γ , and as

candidates Λ the coverage regions Ω. For each support region Si
m we partition

Im into 6 circular sectors centered on the center of Si
m (figure 2-bottom-right).

Each Si
m attempts to propagate the closest candidate region in each sector. As

a consequence, each candidate Cm has an associated subset ΓCm ⊂ Γ of supports
that will compete to propagate it. For a candidate Cm and each support Si in
ΓCm do:

1. Generate Ci
t by attempting to propagate Cm via Si.

2. Refine Ci
t . If Ci

t correctly matches Cm, this adapts it to the local surface
orientation (handles curved and deformable objects) and perspective effects
(the affine approximation is only valid on a local scale).

3. Compute the color transformation T i
RGB = {sR, sG, sB} between Si

m and
Si

t. This is specified by the scale factors on the three colorbands.
4. Evaluate the quality of the refined propagation attempt, after applying the

color transformation T i
RGB

simi = sim(Cm, Ci
t , T

i
RGB) =

NCC(T i
RGBCm, Ci

t) + (1 − dRGB(T i
RGBCm,Ci

t)
100 )

Applying T i
RGB allows to use the unnormalized similarity measure sim, be-

cause color changes are now compensated for. This provides more discrimi-
native power over using sim.
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We retain Cbest
t , with best = argmaxi simi, the best refined propagation at-

tempt. Cm is considered successfully propagated to Cbest
t if simbest > t2 (the

matching threshold). This procedure is applied for all candidates Cm ∈ Λ.
Most support matches may actually be mismatches, and many of them typi-

cally lie around each of the few correct ones (e.g. several matches in a single
soft-match, figure 2-middle). In order to cope with this situation, each support
concentrates its efforts on the nearest candidate in each direction, as it has the
highest chance to undergo a similar geometric transformation. Additionally, every
propagation attempt is refined before evaluation. Refinement raises the similarity
of correctly propagated matches much more than the similarity of mispropagated
ones, thereby helping correct supports to win. This results in a limited, but con-
trolled growth, maximizing the chance that each correct match propagates, and
limiting the proliferation of mispropagations. The process also restricts the num-
ber of refinements to at most 6 per support (contains computational cost).

For the case-study, 113 new matches are generated and added to the configu-
ration Γ . 17 of them are correct and located around the initial 3 (figure 5, middle
of top row). The correct-ratio of Γ improves to 20/330, but it is still very low.

5 Early Contraction

The early expansion guarantees good chances that each initial correct match
propagates. As initial filter, we discard all matches that did not succeed in prop-
agating any region. The correct-ratio of the case-study improves to 20/175 (no
correct match is lost), but it is still too low for applying a global filter. Hence,
we developed the following local filter.

A local group of regions in the model image have uniform shape, are arranged
on a grid and intersect each other with a specific pattern. If all these regions are
correctly matched, the same regularities also appear in the test image, because
the surface is contiguous and smooth (regions at depth discontinuities cannot be
correctly matched anyway). This holds for curved or deformed objects as well,
because the affine transformation varies slowly and smoothly across neighboring
regions (figure 3-left). On the other hand, mismatches tend to be randomly
located over the image and to have different shapes.

We propose a local filter based on this observation. Let {N i
m} be the neighbors

of a region Rm in the model image. Two regions A,B are considered neighbors if
they intersect, i.e. if Area(A

⋂
B) > 0. Only neighbors which are actually matched

to the test image are considered. Any match (Rm, Rt) is removed from Γ if

∑
{Ni

m}

∣∣∣∣Area(Rm

⋂
N i

m)
Area(Rm)

− Area(Rt

⋂
N i

t )
Area(Rt)

∣∣∣∣ > ts (2)

with ts some threshold3. The filter, illustrated in figure 3-middle, tests the preser-
vation of the pattern of intersections between R and its neighbors (the ratio
of areas is affine invariant). Hence, a removal decision is based solely on local
3 This is set to 1.3 in all our experiments.
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Fig. 3. Left: the pattern of intersection between neighboring correct region matches
is preserved by transformations between the model and the test images, because the
surface is contiguous and smooth. Middle: the surface contiguity filter evaluates this
property by testing the conservation of the area ratios. Right: top: a candidate (thin)
and 2 of 20 supports within the large circular area; bottom: the candidate is propagated
to the test image using the affine transformation A of the support on the right (thick).
Refinement adapts the shape to the perspective effects (brighter). The other support
is mismatched to a region not visible in this close-up.

information. As a consequence, this filter is unaffected by the current, low overall
ratio of correct matches.

Shape information is integrated in the filter, making it capable of spotting in-
sidious mismatches which are roughly correctly located, yet have a wrong shape.
This is an advantage over the (semi-) local filter proposed by [24], and later also
used by others [22,26], which verifies if a minimal amount of regions in an area
around Rm in the model image also match near Rt in the test image.

The input regions need not be arranged in a regular grid, the filter applies
to a general set of (intersecting) regions. Note that isolated mismatches, which
have no neighbors in the model image, will not be detected. The algorithm can
be implemented to run in O((|Γ | + x) log(|Γ |)), with x � |Γ |2 the number of
region intersections [5, pp 202-203].

Applying this filter to the case-study brings the correct-ratio of Γ to 13/58,
thereby greatly reducing the number of mismatches.

6 Main Expansion

The first early expansion and contraction phases brought several additional cor-
rect matches and removed many mismatches, especially those that concentrated
around the correct ones. Since Γ is cleaner, we can now try a faster expansion.
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All matches in the current configuration Γ are removed from the candidate
set Λ ← Λ\Γ , and are used as supports. All support regions Si

m in a circular
area4 around a candidate Cm compete to propagate it:

1. Generate Ci
t by attempting to propagate Cm via Si.

2. Compute the color transformation T i
RGB of Si.

3. Evaluate simi = sim(Cm, C
i
t , T

i
RGB).

We retain Cbest
t , with best = arg maxi simi and refine it, yielding Cref

t . Cm is
considered successfully propagated to Cref

t if sim(Cm, C
ref
t ) > t2 (figure 3-right).

This scheme is applied for each candidate.
In contrast to the early expansion, many more supports compete for the same

candidate, and no refinement is applied before choosing the winner. However,
the presence of more correct supports, now tending to be grouped, and fewer
mismatches, typically spread out, provides good chances that a correct support
will win a competition. In this process each support has the chance to propagate
many more candidates, spread over a larger area, because it offers help to all
candidates within a wide circular radius. This allows the system to grow a mass
of correct matches. Moreover, the process can jump over small occlusions or
degraded areas, and costs only one refinement per candidate. For the case-study,
185 new matches, 61 correct, are produced, thus lifting the correct-ratio of Γ up
to 74/243 (31%, figure 5, second row).

7 Main Contraction

At this point the chances of having a sufficient number of correct matches for
applying a global filter are much better. We propose here a global filter based
on a topological constraint for triples of region matches. In contrast to the local
filter of section 5, this filter is capable of finding also isolated mismatches. The
next subsection introduces the constraint on which the filter is based, while the
following two subsections explain the filter itself and discuss its qualities.

7.1 The Sidedness Constraint

Consider a triple (R1
m, R

2
m, R

3
m) of regions in the model image and their matching

regions (R1
t , R

2
t , R

3
t ) in the test image. Let cj

v be the center of region Rj
v (v ∈

{m, t}). The function

side(R1
v, R

2
v, R

3
v) = sign((c2

v × c3
v)c1

v) (3)

takes value −1 if c1v is on the right side of the directed line c2
v × c3

v, going from
c2v to c3v, or value 1 if it’s on the left side. The equation

side(R1
m, R

2
m, R

3
m) = side(R1

t , R
2
t , R

3
t ) (4)

4 In all experiments the radius is set to 1/6 of the image size.
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states that c1 should be on the same side of the line in both views (figure 4-
left). This sidedness constraint holds for all correctly matched triples of coplanar
regions, because in this case property (3) is viewpoint invariant. The constraint
is valid also for most non-coplanar triples. A triple violates the constraint if at
least one of the three regions is mismatched, or if they are not coplanar and
there is important camera translation in the direction perpendicular to the 3D
plane containing their centers (parallax-violation). This can create a parallax
effect strong enough to move c1 to the other side of the line. Nevertheless, this
phenomenon typically affects only a small minority of triples. Since the camera
can only translate in one direction between two views, the resulting parallax can
only corrupt few triples, because those on planes oriented differently will not be
affected.

The region matches violate or respect equation (4) independently of the order
in which they appear in the triple. The three points should be cyclically ordered
in the same orientation (clockwise or anti-clockwise) in the two images in order
to satisfy (4).

Topological configurations of points and lines were also used by Tell and Carls-
son [28] in the wide-baseline stereo context, as a mean for guiding the matching
process.

7.2 Topological Filter

A triple including a mismatched region has higher chances to violate the sid-
edness constraint. When this happens, it indicates that probably at least one
of the matches is incorrect, but it does not tell which one(s). While one triple
is not enough to decide, this information can be recovered by considering all
triples simultaneously. By integrating the weak information each triple provides,
it is possible to robustly discover mismatches. The key idea is that we expect
incorrectly located regions to be involved in a higher share of violations.

The constraint is checked for all unordered triples (Ri, Rj , Rk), Ri, Rj, Rk ∈
Γ . The share of violations for a region match Ri is

errtopo(Ri) =
1
v

∑
Rj ,Rk∈Γ\Ri,j>k

|side(Ri
m, Rj

m, Rk
m) − side(Ri

t, R
j
t , R

k
t )| (5)

with v = (n− 1)(n − 2)/2, n = |Γ |. errtopo(Ri) ∈ [0, 1] because it is normalized
w.r.t. the maximum number of violations v any region can be involved in.

The topological error share (5) is combined with an appearance term, giving
the total error

errtot(Ri) = errtopo(Ri) + (t2 − sim(Ri
m, R

i
t))

The filtering algorithm starts from the current set of matches Γ , and then iter-
atively removes one match at a time as follows:

1. (Re-)compute errtot(Ri) for all Ri ∈ Γ .
2. Find the worst match Rw, with w = arg maxi errtot(Ri)
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3. If errtot(Rw) > 0, remove Rw from Γ . Rw will not be used for the computa-
tion of errtopo in the next iteration. Iterate to 1.
If errtot(Rw) ≤ 0, or if all matches have been removed, then stop.

2

3

t

t
1
tc

c

c

1
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m
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c
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D

Fig. 4. Sidedness constraints. Left: c1 should be on the same side of the di-
rected line from c2 to c3 in both images. Right: the constraints hold also for
deformed objects. The small arrows indicate ’to the right’ of the directed lines
A → B, B → C, C → D, D → A.

At each iteration the most probable mismatch Rw is removed. During the first it-
erations many mismatches might still be present. Therefore, even correct matches
might have a moderately large error, as they take part in triples including mis-
matches. However, mismatches are likely to have an even larger error, because
they are involved in the very same triples, plus other violating ones. Hence, the
worst mismatch Rw, the region located in It farthest from where it should be,
is expected to have the largest error. After removing Rw all errors decrease,
including the errors of correct matches, because they are involved in less triples
containing a mismatch. After several iterations, ideally only correct matches are
left. Since these have only a low error, due to occasional parallax-violations, the
algorithm stops.

The second term of errtot decreases with increasing appearance similarity,
and it vanishes when sim(Ri

m, R
i
t) = t2, the matches acceptance threshold. The

removal criterion errtot > 0 expresses the idea that topological violations are
accepted up to the degree to which they are compensated by high similarity.
This helps finding mismatches which can hardly be judged by only one cue.
A typical mismatch with similarity just above t2, will be removed unless it is
perfectly topologically located. Conversely, correct matches with errtopo > 0
due to parallax-violations are in little danger, because they typically have good
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similarity. Including appearance makes the filter more robust to low correct-
ratios, and remedies the potential drawback (parallax-violations) of a purely
topological filter [6].

In order to achieve good computational performance, we store the terms of
the sum in function (5) during the first iteration. In the following iterations, the
sum is quickly recomputed by retrieving and adding up the necessary terms. This
makes the computational cost almost independent of the number of iterations.
The algorithm can be implemented to run in O(n2 log(n)), based on the idea of
constructing, for each point, a list with a cyclic ordering of all other points (a
complete explanation is given in [5, pp. 208-211]).

7.3 Properties and Advantages

The proposed filter has various attractive properties, and offers several advan-
tages over detecting outliers to the epipolar geometry through RANSAC [29],
which is traditionally used in the matching literature [13,15,22,23,30]. In the
following, we refer to it as RANSAC-EG. The main two advantages are (more
discussion in [5, pp. 75-77]):

It allows for non-rigid deformations. The filter allows for non-rigid deformations,
like the bending of paper of cloth, because the structure of the spatial arrange-
ments, captured by the sidedness constraints, is stable under these transforma-
tions. As figure 4-right shows, sidedness constraints are still respected even in the
presence of substantial deformations. Other filters, which measure a geometrical
distance error from an estimated model (e.g. homography, fundamental matrix)
would fail in this situation. In the best case, several correct matches would be
lost. Worse yet, in many cases the deformations would disturb the estimation
of the model parameters, resulting in a largely random behavior. The proposed
filter does not try to capture the transformations of all matches in a single, over-
all model, but it relies instead on simpler, weak properties, involving only three
matches each. The discriminative power is then obtained by integrating over all
measurements, revealing their strong, collective information.

It is insensitive to inaccurate locations. The regions’ centers need not be exactly
localized, because errtopo varies slowly and smoothly for a region departing from
its ideal location. Hence, the algorithm is not affected by perturbations of the
region’s locations. This is precious in the presence of large scale changes, not com-
pletely planar regions, or with all kinds of image degradation (motion blur, etc.),
where localization errors become more important. In RANSAC-EG instead, the
point must lie within a tight band around the epipolar line. Worse yet, inaccurate
localization of some regions might compromise the quality of the fundamental
matrix, and therefore even cause rejection of many accurate regions [33]. In [5,
pp. 84-85] we report experiments supporting this point, where the topological
filter could withstand large random shifts on the regions’ locations (about 25
pixels, in a 720x576 image).
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7.4 Main Contraction on the Case-Study

After main expansion, the correct-ratio of the case-study was of 74/243. Ap-
plying the filter presented in this section brings it to 54/74, which is a major
improvement (figure 5 second row). 20 correct matches are lost, but many more
mismatches are removed (149). The further processing will recover the correct
matches lost and generate even more.

8 Exploring the Test Image

The processing continues by iteratively alternating main expansion and main
contraction phases.

1. Do a main expansion phase. All current matches Γ are used as supports.
This produces a set of propagated region matches Υ , which are added to the
configuration: Γ ← (Γ

⋃
Υ ).

2. Do a main contraction phase on Γ . This removes matches from Γ .
3. If at least one newly propagated region survives the contraction, i.e. if
|Υ
⋂
Γ | > 0, then iterate to point 1, after updating the candidate set to

contain Λ ← (Ω\Γ ), all original candidate regions Ω which are not yet in
the configuration. Stop if no newly propagated regions survived, or if all
regions Ω have been propagated.

In the first iteration, the expansion phase generates some correct matches,
along with some mismatches. Because a correct match tends to propagate more
than a mismatch, the correct ratio increases. The first main contraction phase
removes mostly mismatches, but might also lose several correct matches: the
amount of noise (percentage of mismatches) could still be high and limit the
filter’s performance. In the next iteration, this cleaner configuration is fed into
the expansion phase again which, less distracted, generates more correct matches
and fewer mismatches. The new correct matches in turn help the next contraction
stage in taking better removal decisions, and so on. As a result, the number,
percentage and spatial extent of correct matches increase at every iteration,
reinforcing the confidence about the object’s presence and location (figure 6).
The two goals of separating correct matches and gathering more information
about the object are achieved at the same time.

Correct matches erroneously killed by the contraction step in an iteration get
another chance during the next expansion phase. With even fewer mismatches
present, they are probably regenerated, and this time have higher chances to
survive the contraction (higher correct-ratio, more positive evidence present).

Thanks to the refinement, each expansion phase adapts the shape of the
newly created regions to the local surface orientation. Thus the whole explo-
ration process follows curved surfaces and deformations.

The exploration procedure tends to ‘implode’ when the object is not in the
test image, typically returning only a few matches. Conversely, when the object
is present, the approach fills the visible portion of the object with many high
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soft matching  3/217 early contraction  13/58

first main expansion  74/243

early expansion  20/330

first main contraction  54/74 second main expansion  171/215

second main contraction 150/174 contours of the final set of matches

Fig. 5. Evolution of Γ for the case-study. Top rows: correct matches; bottom rows:
mismatches.
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Fig. 6. The number of correct matches for the case-study increases at every iteration
(compare the points after each contraction phase)

confidence matches. This yields high discriminative power and the qualitative
shift from only detecting the object to knowing its extent in the image and which
parts are occluded. Recognition and segmentation are two aspects of the same
process.

In the case-study, the second main expansion propagates 141 matches, 117
correct, which is better than the previous 61/185. The second main contraction
starts from 171/215 and returns 150/174, killing a lower percentage of correct
matches than in the first iteration. After the 11th iteration 220 matches cover the
whole visible part of the object (202 are correct). Figure 5 depicts the evolution
of the set of matches Γ . The correct matches gradually cover more and more
of the object, while mismatches decrease in number. The system reversed the
situation, by going from only very few correct matches in a large majority of
mismatches, to hundreds of correct matches with only a few mismatches. Notice
the accuracy of the final segmentation, and in particular how the small occluding
rubber has been correctly left out (figure 5 bottom-right).

9 Results

9.1 Recognition from Still Images

The dataset in this subsection5 consists of 9 model objects and 23 test images. In
total, the objects appear 43 times, as some test images contain several objects.
To facilitate the discussion, the images are referred to by their coordinates as
in figure 7, where the arrangement is chosen so that a test image is adjacent to
the model object(s) it contains. There are 3 planar objects, each modeled by a
single view, including a Kellogs box6 and two magazines, Michelle (figure c2)
and Blonde (analog model view). Two objects with curved shapes, Xmas (b1)
and Ovo (e2), have 6 model views. Leo (d3), Car (a2), Suchard (d1) feature more
complex 3D shapes and have 8 model views. Finally, one frontal view models
the last 3D object, Guard (b3). Multiple model views are taken equally spaced
around the object. The contributions from all model views of a single object
are combined by superimposing the area covered by the final set of matched
regions (to find the contour), and by summing their number (detection criterion).
5 The dataset is available at www.vision.ee.ethz.ch/∼ferrari.
6 The kellogs box is used throughout the chapter as a case-study.
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Fig. 7. Recognition results (see text)
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All images are shot at a modest resolution (720x576) and all experiments are
conducted with the same set of parameters. In general, in the test cases there
is considerable clutter and the objects appear smaller than in the models (all
model images have the same resolution as the test images and they are shown
at the same size).

Tolerance to non-rigid deformations is shown in c1, where Michelle is simul-
taneously strongly folded and occluded. The contours are found with a good
accuracy, extending to the left until the edge of the object. Note the extensive
clutter. High robustness to viewpoint changes is demonstrated in c3, where Leo
is only half visible and captured in a considerably different pose than any of
the model views, while Michelle undergoes a very large out-of-plane rotation
of about 80 degrees. Guard, occluding Michelle, is also detected in the image,
despite a scale change of factor 3. In d2, Leo and Ovo exhibit significant view-
point changes, while Suchard is simultaneously scaled by factor 2.2 and 89%
occluded. This very high occlusion level makes this case challenging even for a
human observer. A scale change of factor 4 affecting Suchard is illustrated in e1.
In figure a1, Xmas is divided in two by a large occluder. Both visible parts are
correctly detected by the presented method. On the right side of the image, Car
is found even if half occluded and very small. Car is also detected in spite of a
considerable viewpoint change in a3. The combined effects of strong occlusion,
scale change and clutter make b2 an interesting case. Note how the boundaries
of Xmas are accurately found, and in particular the detection of the part behind
the glass. As a final example, 8 objects are detected at the same time in e3 (for
clarity, only 3 contours are shown). Note the correct segmentation of the two
deformed magazines and the simultaneous presence of all the aforementioned
difficulties.

Figure 8-bottom-left presents a close-up on one of 93 matches produced be-
tween a model view of Xmas (left) and test case b2 (right). This exemplifies
the great appearance variation resulting from combined viewpoint, scale and il-
lumination changes, and other sources of image degradation (here a glass). In
these cases, it is very unlikely for the region to be detected by the initial region
extractor, and hence traditional methods fail.

As a proof of the method’s capability to follow deformations, we processed the
case in figure 8-bottom-right starting with only one match (dark). 356 regions,
covering the whole object, were produced. Each region’s shape fits the local
surface orientation (for clarity, only 3 regions are shown).

The performance of the system was quantified by processing all pairs of model-
object and test images, and counting the resulting number of region matches.
The highest ROC curve in figure 8-top-left depicts the detection rate versus
false-positive rate, while varying the detection threshold from 0 to 200 matches.
An object is detected if the number of produced matches, summed over all its
model views, exceeds this threshold. The method performs very well, and can
achieve 98% detection with 6% false-positives. For comparison, we processed
the dataset also with 4 state-of-the-art affine region extractors [1,15,18,30], and
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Fig. 8. Top: left: ROC plot. False-positives on the X-axis, detection rate on the Y-axis;
middle: distribution of scores for our method (percentage; bright = positive cases; dark
= negative cases); right: for the traditional matching of the regions of Matas et al.
Bottom: left: close-up on one match of case b2; right: starting from the black region
only, the method covers the magazine with 365 regions (3 shown).

described the regions with the SIFT [12] descriptor7 , which has recently been
demonstrated to perform best [4]. The matching is carried out by the ’unambigu-
ous nearest-neighbor’ approach8 advocated in [1,12]: a model region is matched
to the region of the test image with the closest descriptor if it is closer than 0.7
times the distance to the second-closest descriptor (the threshold 0.7 has been
empirically determined to optimize results). Each of the central curves illustrates
the behavior of a different extractor. As can be seen, none is satisfactory, which
demonstrates the higher level of challenge posed by the dataset and therefore
suggests that our approach can broaden the range of solvable object recognition
cases. Closer inspection reveals the source of failure: typically only very few, if
any, correct matches are produced when the object is present, which in turn is
due to the lack of repeatability and the inadequacy of a simple matcher under
such difficult conditions. The important improvement brought by the proposed
method is best quantified by the difference between the highest curve and the
central thick curve, representing the system we started from [30] (’TVG00 org’
in the plot).

7 All region extractors and the SIFT descriptor are implementations of the respective
authors. We are grateful to J. Matas, K. Mikolajczyk, A. Zisserman, C. Schmid and
D. Lowe.

8 We have also tried the standard approach, used in [15,4,18,30], which simply matches
two nearest-neighbors if their distance is below a threshold, but it produced slightly
worse results.
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Figure 8-top-middle shows a histogram of the number of final matches (recog-
nition score) output by our system. The scores assigned when the object is in the
test image (positive cases) are much higher than when the object is absent (neg-
ative cases), resulting in very good discriminative power. As a comparison with
the traditional methods, the standard matching of regions of [18], based on the
SIFT descriptor, yields two hardly separable distributions (figure 8-top-right),
and hence the unsatisfactory performance in the ROC plot. Similar histograms
are produced based on the other feature extractors [1,15,30].
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b
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Fig. 9. Video retrieval results. The parts of the model-images not delineated by the
user are blanked out.

As last comparison, we consider the recent system [21], which constructs a 3D
model of each object prior to recognition. We asked the authors to process our
dataset. As they reported, because of the low number of model views, their sys-
tem couldn’t produce meaningful models, and therefore couldn’t perform recog-
nition. Conversely, we have processed the dataset of [21] with our complete
system (including multi-view integration [7]). It performed well, and achieved
95% detection rate for 6% false-positives (see [21] for more details).

9.2 Video Retrieval

In this experiment, the goal is to find a specific object or scene in a test video.
The object is only given as delineated by the user in one model image. In [26]
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another region-based system for video object retrieval is presented. However, it
focuses on different aspects of the problem, namely the organization of regions
coming from several shots, and weighting their individual relevance in the wider
context of the video. At the feature level, their work still relies solely on regions
from standard extractors.

Because of the different nature of the data, the system differs in a few points
from the object recognition one. At recognition time the test video is segmented
into shots, and a few representative keyframes are selected in each shot by the
algorithm of [19]. The object is then searched in each keyframe separately, by
a simplified version of the image exploration technique. Specifically, it has a
simple one-to-one nearest neighbor approach for the initial matching instead of
the soft-matching phase, there are no ‘early’ phases, and there is only one layer
of coverage regions. This simpler version runs faster (about twice as fast), though
it is not as powerful. It takes about 2 minutes to process a (object,keyframe)
pair on a common workstation (2.4 Ghz PC).

We present results on challenging, real-world video material, namely news
broadcast provided by the RTBF Belgian television. The data comes from 4
videos, captured on different days, each of about 20 minutes. The keyframes
have low resolution (672x528) and many of them are visibly affected by com-
pression artifacts, motion blur and interlacing effects. We selected 13 diverse
objects, including locations, advertising products, logos and football shirts, and
delineated each in one keyframe. Each object is searched in the keyframes of the
video containing its model-image. On average, a video has 325 keyframes, and
an object occurs 7.4 times. The number of keyframes not containing an object
(negatives), is therefore much greater than the number of positives, allowing to
collect relevant statistics. A total of 4236 (object,keyframe) image pairs have
been processed.

Figure 9.1 show some example detections. A large piece of quilt decorated
with various flags (a2) is found in a3 in spite of non-rigid deformation, occlusion
and extensive clutter. An interesting application is depicted in b1-b2-b3. The
shirts of two football teams are picked out as query objects (b2), and the system
is asked to find the keyframes where each team is playing. In b1 the Fortis shirt
is successfully found in spite of important motion blur (close-up in a1). Both
teams are identified in b3, where the shirts appear much smaller and the Dexia
player is turned 45 degrees (viewpoint change on the shirt). The keyframe in
c1 instead, has not been detected. Due to the intense blur, the initial matcher
does not return any correct correspondence. Robustness to large scale changes
and occlusion is demonstrated in a4, where the UN council, modeled in b4, is
recognized while enlarged by a scale factor 2.7, and heavily occluded (only 10%
visible). Equally intriguing is the image of figure c4, where the UN council is
seen from an opposite viewpoint. The large painting on the left of b4 is about
the only thing still visible in the test keyframe, where it appears on the right
side. The system matched the whole area of the painting, which suffers from
out-of-plane rotation. As a last example, a room with Saddam Hussein is found
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in figure c3 (model in c2). The keyframe is taken under a different viewpoint
and substantially corrupted by motion blur.

The retrieval performance is quantified by the detection rate and false-positive
rate, averaged over all objects. An object is detected if the number of final
matches, divided by the number of model coverage regions, exceeds 10% (de-
tections of model-keyframes are not counted). The system performs well, by
achieving an average detection rate of 82.4%, for a false-positive rate of 3.6%.
As a comparison, we repeated the experiment with [30], the method we started
from. It only managed a 33.3% detection rate, for a false-positive rate of 4.6%,
showing that our approach can substantially boost the performance of standard
affine invariant matching procedures.

10 Related Work

The presented technique belongs to the category of appearance-based object
recognition. Since it can extend any approach which matches affine invariant re-
gions between images, it is tightly related to this class of methods. The novelties
and improvements brought by our approach are enumerated in the introduction
section and demonstrated in the result section 9.

Beyond the realm of local invariant features, there are a few works which are
related to ours, in that they also combine recognition with segmentation. Leibe
and Schiele [10] present a method to detect an unknown object instance of a
given category and segment it from a test image. The category (e.g. cows) is
learnt from example instances (images of particular cows). However, the method
does not support changes in camera viewpoint or orientation. In [32], low-level
grouping cues based on edge responses, high-level cues from a part detector
and spatial consistency of detected parts, are combined in a graph partitioning
framework. The scheme is shown to recognize and segment a human body in
a cluttered image. However, the part detectors need a considerable number of
training examples, and the very parts to be learned are manually indicated (head,
left arm, etc.). Moreover, there is no viewpoint, orientation or scale invariance.
Both methods are suited for categorization, and not specialized in the recognition
of a particular objects.

While we believe our approach to be essentially original, some components are
clearly related to earlier research. The filter in section 7 is constructed around the
sidedness constraint. A similar constraint, testing the cyclic ordering of points,
was used for wide-baseline matching in [28]. Moreover, the ‘propagation attempt’
at the heart of the expansion phases is an evolution of the idea of ‘growing
matches’ proposed by [20,23,22]. While they use existing affine transformations
only to guide the search for further matches, our approach actively generates new
regions, which have not been originally extracted. This is crucial to counter the
repeatability problems stated in the introduction. Finally, a different, pixel-by-
pixel propagation strategy was previously proposed in [11], but it is applicable
only in case of small differences between the images.
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11 Conclusion and Outlook

We have presented an approach to object recognition capable of solving partic-
ularly challenging cases. Its power roots in the ‘image exploration’ technique.
Every single correct match can lead to the generation of many correct matches
covering the smooth surface on which it lies, even when starting from an over-
whelming majority of mismatches. Hence, the method can boost the performance
of any algorithm which provides affine regions correspondences, because very few
correct initial matches suffice for reliable recognition. Moreover, the approximate
boundaries of the object are found during the recognition process, and non-rigid
deformations are explicitly taken into account, two features lacking in competing
approaches (e.g. [1,12,15,18,21,22,30]).

Some individual components of the scheme, like the topological filter and
GAMs, are useful in their own right, and can be used profitably beyond the
scope of this chapter.

In spite of the positive points expressed above, our approach is not without
limitations. One of them is the computational expense: in the current imple-
mentation, a 2.4 Ghz computer takes about 4-5 minutes, on average, to process
a pair of model and test images. Although we plan a number of speedups, the
method is unlikely to reach the speed of the fastest other systems (the system
of Lowe [12] is reported to perform recognition within seconds). As another lim-
itation, our method is best suited for objects which have some texture, much
like the other recognition schemes based on invariant regions. Uniform objects
(e.g. a balloon) cannot be dealt with and seem out of the reach of this kind of
approaches. They should be addressed by techniques based on contours [4,25].
Hence, a useful extension would be to combine some sort of ‘local edge regions’
with the current textured regions. An important evolution is the systematic ex-
ploitation of the relationships between multiple overlapping model views. We
have tackled this issue in a separate publication [7]. Finally, using several types
of affine invariant regions simultaneously, rather than only those of [30], would
push the performance further upwards.
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Abstract. Many approaches to object recognition are founded on prob-
ability theory, and can be broadly characterized as either generative or
discriminative according to whether or not the distribution of the image
features is modelled. Generative and discriminative methods have very
different characteristics, as well as complementary strengths and weak-
nesses. In this chapter we introduce new generative and discriminative
models for object detection and classification based on weakly labelled
training data. We use these models to illustrate the relative merits of the
two approaches in the context of a data set of widely varying images of
non-rigid objects (animals). Our results support the assertion that nei-
ther approach alone will be sufficient for large scale object recognition,
and we discuss techniques for combining the strengths of generative and
discriminative approaches.

1 Introduction

In recent years many studies, both in machine learning and computer vision
areas, have focussed on the problem of object recognition. The key challenge is
to be able to recognize any member of a category of objects in spite of wide
variations in visual appearance due to changes in the form and colour of the
object, occlusions, geometrical transformations (such as scaling and rotation),
changes in illumination, and potentially non-rigid deformations of the object
itself. Since detailed hand-segmentation and labelling of images is very labour
intensive, learning object categories from ‘weakly labelled’ data has been studied
in recent years. Weakly labelled data means that training images are labelled
only according to the presence or absence of each category of object. A major
challenge presented by this problem is that the foreground object is accompanied
by widely varying background clutter, and the system must learn to distinguish
the foreground from the background without the aid of labelled data.
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Many of the current approaches to this problem rely on the use of local fea-
tures obtained from small patches of the image. One motivation for this is that
local patches can give information about an object even it is occluded. An other
motivation is that the variability of small patches is much less than that of whole
images and so there are much better prospects for generalization, in other words
for recognizing that a patch from a test image is similar to patches in the training
images. However, the patches must be sufficiently variable, and therefore suffi-
ciently large, to be able to discriminate between the different object categories
and also between objects and background clutter. A good way to balance these
two conflicting requirements is to determine the object categories present in an
image by fusing together partial ambiguous information from multiple patches.
Probability theory provides a powerful framework for combining such uncertain
information in a principled manner, and will form the basis for our research. We
will also focus on the detection of objects within images by combining informa-
tion from a large number of patches of the image.

Local features are obtained from small patches which are extracted from the
local neighbourhood of interest points obtained in the image. Some of the in-
terest point operators such as saliency [8], Difference of Gaussian (DoG) [11]
and Harris-Laplace (HL) [12] are invariant to location, scale and orientation,
and some are also affine invariant [12] to some extent. For the purposes of this
chapter we shall consider the use of such generic operators. We will use some
very common operators (Section 2) and feature description methods and will
compare their effect in learning performance (Section 5).

Also, the locations of the patches which provide strong evidence for an object
can give an indication of the location and spatial extent of that object. The
probabilistic model of Fergus et al. [5] performed the localization of the object
in an image by learning jointly the appearances and relative locations of a small
set of parts whose potential locations are determined by the saliency detector
[8]. Since their algorithm is computationally complex, the number of parts has to
be kept small. In [10] a discriminative framework for the classification of image
regions by incorporating neighborhood interactions is presented. But for two
class classification only. In [4], the spatial relationship between patches was not
considered but informative features (i.e. object features) were selected based on
information criteria such as likelihood ratio and mutual information. However, in
this supervised approach, hundreds of images were hand segmented. Finally, [19]
extended the Gaussian Mixture Model (GMM) based approach of [4] to a semi-
supervised case where a multi-modal GMM was trained to model foreground
and background feature together. In their study, some uncluttered images of
foreground were also used for the purpose of training their model. In this chapter,
we do not attempt to model the spatial relationship between patches but instead
focus on the comparison of generative with discriminative methods in the context
of local patch labelling.

The object recognition problem is basically a classification problem and there
are many different modelling approaches for the solution. These approaches can
be classified into two main categories such as generative and discriminative. To
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understand the distinction between discriminative and generative approaches,
consider a scenario in which an image described by a vector X (which might
comprise raw pixel intensities, or some set of features extracted from the image)
is to be assigned to one of K classes k = 1, . . . ,K. From basic decision theory [2]
we know that the most complete characterization of the solution is expressed in
terms of the set of posterior probabilities p(k|X). Once we know these probabil-
ities it is straightforward to assign the image X to a particular class to minimize
the expected loss (for instance, if we wish to minimize the number of misclassi-
fications we assign X to the class having the largest posterior probability).

In a discriminative approach we introduce a parametric model for the posterior
probabilities, p(k|X), and infer the values of the parameters from a set of labelled
training data. This may be done by making point estimates of the parameters
using maximum likelihood, or by computing distributions over the parameters
in a Bayesian setting (for example by using variational inference).

By contrast, in a generative approach we model the joint distribution p(k,X)
of images and labels. This can be done, for instance, by learning the class prior
probabilities p(k) and the class-conditional densities p(X|k) separately. The re-
quired posterior probabilities are then obtained using Bayes’ theorem

p(k|X) =
p(X|k)p(k)∑
j p(X|j)p(j)

(1)

where the sum in the denominator is taken over all classes.
Each modelling approach has some advantages as well as disadvantages. There

are many recent studies dealing with the comparison of these two approaches
with the final goal of combining the two in the best way. In [14] it was concluded
that although the discriminative learning has lower asymptotic error, a genera-
tive classifier approaches its higher asymptotic error much faster. Very similar
results were also obtained by [3] but they showed on a simulated data that this
is only true when the models are appropriate for the data, i.e. the generative
model models the data distribution correctly. Otherwise, if a mis-matched model
was selected then generative and discriminative models behaved similarly, even
with a small number of data points. In both [3] and [14] it was observed that
as the number of data points is increased the discriminative model performs
better. In [3] and [7] discriminative and generative learning were combined in
an ad-hoc manner using a weighting parameter and the value of this parameter
defines the extend to which discriminative learning is effective over generative
learning. In [18] discriminative learning was performed on a generative model
where background posterior probability was modelled with a constant.

In this chapter we will provide two different models, one from each approach,
which are able to provide labels for the individual patches, as well as for the
image as a whole, so that each patch is identified as belonging to one of the
object categories or to the background class. This provides a rough indication
of the location of the object or objects within the image. Again these individual
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patch labels must be learned on the basis only of overall image class labels. Our
training set is weakly labelled where each image is labelled only according to the
presence or absence of each category of object. Our goal in this chapter is not
to find optimal object recognition system, but to compare alternative learning
methodologies. For this purpose, we shall use a fixed data set. In particular,
we consider the task of detecting and distinguishing cows and sheep in natural
images. This set is chosen for the wide variability of the objects in order to
present a non-trivial classification problem. We do not have any data set for
background only. Various features used in this study are explained in Section
2. Our discriminative and generative models are introduced in Sections 3 and 4
respectively.

We use tn to denote the image label vector for image n with independent
components tnk ∈ {0, 1} in which k = 1, . . .K labels the class. In our case
K = 3 where the classes are cow, sheep and background. Each class can be
present or absent independently in an image, and we make no distinction be-
tween foreground and background classes within the model itself. Xn denotes
the observation for image n and this comprises as set of Jn patch vectors {xnj}
where j = 1, . . . , Jn. Note that the number Jn of detected interest points will in
general vary from image to image.

We shall compare the two models in various aspects. First we will investigate
how the models behave with weakly labelled data and then we will test how
strongly labelled (i.e. images are segmented as foreground and background) and
weakly labelled data can be used together in training the models. Experiments
and results for this is given in Section 5.1. Secondly, we will test the models with
various types of feature as inputs to see how feature type effects the models.
Experiments and results for this is given in Section 5.2. Finally, as many previous
studies did, we will see how training data quantity affects learning in the two
different model types. Experiments and results for this is given in Section 5.3.

2 Feature Extraction

Due to the reasons that we have mentioned in the previous section,we will follow
several recent approaches and use interest point detectors to focus attention on
a small number of local patches in each image. This is followed by invariant
feature extraction from a neighbourhood around each interest point.

We choose to work with Harris-Laplace (HL) [12] and Difference of Gaussian
(DoG) [11] interest point operators because they are invariant to orientation and
scale changes. In our earlier study [16] we have used DoG interest point detector
with SIFT (Scale Invariant Feature Transform) descriptor. SIFT is invariant
to illumination and affine (to some degree) changes and very suitable for DoG
interest point detectors. However SIFT, being a 128 dimentional vector, brings
a high computational load for model learning. Thus, in this chapter we will use
15 dimensional Local Jet (LJ) descriptor instead [9,6].

For the purpose of comparison, we will train our models using different feature
types and see how they are effected by these choices. The two feature point
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operators, HL and DoG, will be used with the same feature descriptor (LJ). In
Figure 1 a cow image is shown together with with HL and DoG feature point
detectors in order to give more insight into these two types of operators. Here
only feature points which have scale grater than 5 pixels are shown. As can be
observed from the images, the DoG operator extracts uniform regions (leftmost
image in Figure 1) and HL extracts corners (middle image in the figure) where
the number of features extracted by HL is usually less than DoG.

The feature descriptor may be concatenated with colour information. The
colour information is extracted from each patch based on [1]. Averages and stan-
dard deviations of (R,G,B), (L, a, b) and (r = R/(R+G+B), g = G/(R+G+B))
constitute the colour part of the feature vector. Lab is a device-independent
colour space that attempts to uniformly represent colour as we perceive it. L is
the lightness value, a is the red/green opponency and blue/yellow is represented
on the b axis. As a result, if colour is also used as a feature descriptor then we
will have a 31 dimensional feature vector.

Just for comparison purposes, we will also use square random patches as
interest regions which are selected at random sizes and random positions all
over the image. Since the size of a patch can vary between 1 pixel to the full
size of the image, the patches will be scaled to 16 by 16 size. If each pixel’s
colour information is used directly to form a feature vector, this makes a feature
vector of size 768 (16 × 16 × 3) and it is impossible to use this directly in our
models (especially in the generative model). Thus, we compute first 15 Principle
Component Analysis (PCA) coefficients for the gray scale patch and we obtain
the colour feature as described in the previous paragraph. Again this makes a
31 dimensional feature vector. The number of random patches is selected to be
approximately the same as the number of patches found by other interest point
operators, which is around 100 for each image. In the rightmost image in Figure 1
the cow image with some of the random patches is also shown. We only show
10 random patches here. In Section 5.2, comparison of the two models when
used with different features will be given in terms of patch labelling and image
labelling. We will compare HL and DoG operators with LJ and colour feature,
and random patches with PCA coefficients and colour feature.

, ,

Fig. 1. Different interest point operators. Feature point locations are the centers of the
squares and the size of a square shows the scale of that feature point. The three images
show (left to right) DoG interest points, HL interest points and random patches.
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3 The Discriminative Model with Patch Labelling

In a discriminative setting, the purpose is to learn the posterior probabilities.
Since our goal is to determine the class membership of individual patches also, we
associate with each patch j in an image n a binary label τnjk ∈ {0, 1} denoting
the class k of the patch. For the models developed in this chapter we shall
consider these labels to be mutually exclusive, so that

∑K
k=1 τnjk = 1, in other

words each patch is assumed to be either cow, sheep or background. Note that
this assumption is not essential, and other formulations could also be considered.
These components can be grouped together into vectors τnj . If the values of
these labels were available during training (corresponding to strongly labelled
images) then the development of recognition models would be greatly simplified.
For weakly labelled data, however, the {τnj} labels are hidden (latent) variables,
which of course makes the training problem much harder.

We now introduce a discriminative model, which corresponds to the directed
graph shown in Figure 2.

JnJn

xnjxnj

w

tntn

N

�nj�nj

Fig. 2. Graphical representation of the discriminative model for object recognition

Consider for a moment a particular image n (and omit the index n to keep the
notation uncluttered). We build a parametric model yk(xj ,w) for the probability
that patch xj belongs to class k. For example we might use a simple linear-
softmax model with outputs

yk(xj ,w) =
exp(wT

k xj)∑
l exp(wT

l xj)
(2)

which satisfy 0 � yk � 1 and
∑

k yk = 1. More generally we can use a multi-layer
neural network, a relevance vector machine, or any other parametric model that
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gives probabilistic outputs and which can be optimized using gradient-based
methods. The probability of a patch label τ j is then given by

p(τ j |xj) =
K∏

k=1

yk(xj ,w)τjk (3)

where the binary exponent τjk simply pulls out the required term (since y0
k = 1

and y1
k = yk).

Next we assume that if one, or more, of the patches carries the label for a
particular class, then the whole image will. For instance, if there is at least one
local patch in the image which is labelled ‘cow’ then the whole image will carry a
‘cow’ label (recall that an image can carry more than one class label at a time).
Thus the conditional distribution of the image label, given the patch labels, is
given by

p(t|τ ) =
K∏

k=1

⎡
⎣1−

J∏
j=1

[1− τjk]

⎤
⎦tk
⎡
⎣ J∏

j=1

[1− τjk]

⎤
⎦1−tk

. (4)

In order to obtain the conditional distribution p(t|X) we have to marginalize
over the latent patch labels. Although there are exponentially many terms in
this sum, it can be performed analytically for our model due to the factorization
implied by the graph in Figure 2 to give

p(t|X) =
∑
τ

⎧⎨
⎩p(t|τ )

J∏
j=1

p(τ j |xj)

⎫⎬
⎭

=
K∏

k=1

⎡
⎣1−

J∏
j=1

[1− yk(xj ,w)]

⎤
⎦tk
⎡
⎣ J∏

j=1

[1− yk(xj ,w)]

⎤
⎦1−tk

. (5)

This can be viewed as a probabilistic version of the ‘noisy OR’ function [15].
Given a training set of N images, which are assumed to be independent, we

can construct the likelihood function from the product of such distributions, one
for each data point. Taking the negative logarithm then gives the following error
function

E (w) = −
N∑

n=1

C∑
k=1

{tnk ln [1− Znk] + (1− tnk) lnZnk} (6)

where we have defined

Znk =
Jn∏
j=1

[1− yk (xnj ,w)] . (7)

The parameter vector w can be determined by minimizing this error (which cor-
responds to maximizing the likelihood function) using a standard optimization
algorithm such as scaled conjugate gradients [2]. More generally the likelihood
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function could be used as the basis of a Bayesian treatment, although we do not
consider this here.

Once the optimal value wML is found, the corresponding functions yk(x,wML)
for k = 1, . . . ,K will give the posterior class probabilities for a new patch feature
vector x. Thus the model has learned to label the patches even though the
training data contained only image labels. Note, however, that as a consequence
of the ‘noisy OR’ assumption, the model only needs to label one foreground
patch correctly in order to predict the image label. It will therefore learn to pick
out a small number of highly discriminative foreground patches, and will classify
the remaining foreground patches, as well as those falling on the background, as
‘background’ meaning non-discriminative for the foreground class. This will be
illustrated in Section 5.1.

3.1 Soft Discriminative Model

In our discriminative model with probabilistic noisy OR assumption, if only
one patch is labelled as belonging to a class, then the whole image is labelled as
belonging to that class. We can soften this assumption by modelling the posterior
probability of the image label using the logistic sigmoid function

p (tk = 1|X) =
1

1 + e−Zk
(8)

where Zk is the sum over all patches

Zk =
J∑

j=1

yk (xj ,w) (9)

where
yk(xj ,w) = wT

k xj (10)

so that we are adding the log odds. It follows that the conditional distribution
of target labels is given by

p (tk|X) =
(

1
1 + e−Zk

)tnk (
1− 1

1 + e−Zk

)1−tk

. (11)

The distribution for the vector of target variables is then given by

p (t|X) =
K∏

k=1

p (tk|X) . (12)

However outputs of this model can not be directly used as patch label probabil-
ities because they are not normalized and they don’t satisfy

∑
k yk = 1. This does

not cause a problem in finding the most probable patch label. We can directly use
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the model outputs and choose the biggest one as patch label. However, when we
need patch label probabilities then we need to normalize the model outputs over
all possible patches and labels.

The error function for this soft discriminative model is given by the negative
log likelihood, and takes the form

E (w) = −
N∑

n=1

K∑
k=1

{
Znk (tnk − 1)− ln

(
1 + e−Znk

)}
. (13)

With this soft version, an improvement in both patch labelling and image la-
belling is obtained. Comparative results for the two discriminative models (prob-
abilistic noisy OR and soft) are given in Section 5.1.

4 The Generative Model with Patch Labelling

Next we turn to a description of our generative model, whose graphical repre-
sentation is shown in Figure 3. The structure of this model mirrors closely that

JnJn

xnjxnj

tntn

�

�

�

N

�nj�nj

Fig. 3. Graphical representation of the generative model for object recognition

of the discriminative model. In particular, the same class-label variables τnj are
associated with the patches in each image, and again these are unobserved and
must be marginalized out in order to obtain maximum likelihood solutions.

In the discriminative model we represented the conditional distribution p(t|X)
directly as a parametric model. By contrast in the generative approach we model
p(t,X), which we decompose into p(t,X) = p(X|t)p(t) and then model the two
factors separately. This decomposition would allow us, for instance, to employ
large numbers of ‘background’ images (those containing no instances of the ob-
ject classes) during training to determine p(X|t) without concluding that the
prior probabilities p(t) of objects is small.
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Again, we begin by considering a single image n. The prior p(t) is specified
in terms of K parameters ψk where 0 � ψk � 1 and k = 1, . . . ,K, so that

p(t) =
K∏

k=1

ψtk

k (1 − ψk)1−tk . (14)

In general we do not need to learn these from the training data since the prior
occurrences of different classes is more a property of the way the data was
collected than of the real world frequencies. (Similarly in the discriminative
model we will typically wish to correct for different priors between the training
set and test data using Bayes’ theorem.)

The remainder of the model is specified in terms of the conditional probabili-
ties p(τ |t) and p(X|τ ). The probability of generating a patch from a particular
class is governed by a set of parameters πk, one for each class, such that πk � 0,
constrained by the subset of classes actually present in the image. Thus

p(τ j |t) =

(
K∑

l=1

tlπl

)−1 K∏
k=1

(tkπk)τjk . (15)

Note that there is an overall undetermined scale to these parameters, which may
be removed by fixing one of them, e.g. π1 = 1.

For each class k, the distribution of the patch feature vector x is governed by
a separate mixture of Gaussians which we denote by φk(x; θk), so that

p(xj |τ j) =
K∏

k=1

φk(xj ; θk)τjk (16)

where θk denotes the set of parameters (means, covariances and mixing coeffi-
cients) associated with this mixture model, and again the binary exponent τjk

simply picks out the required class.
If we assume N independent images, and for image n we have Jn patches

drawn independently, then the joint distribution of all random variables is
N∏

n=1

p(tn)
Jn∏
j=1

[p(xnj |τnj)p(τ nj |tn)] . (17)

Since we wish to maximize likelihood in the presence of latent variables,
namely the {τnj}, we use the EM algorithm. The expected complete-data log
likelihood is given by

N∑
n=1

Jn∑
j=1

{
K∑

k=1

〈τnjk〉 ln [tnkπkφk(xnj)]− ln

(
K∑

l=1

tnlπl

)}
. (18)

In the E-step the expected values of τnkj are computed using

〈τnjk〉 =
∑

{τ nj}
τnjkp(τ nj |xnj , tn) =

tnkπkφk(xnj)
K∑

l=1

tnlπlφl(xnj)

. (19)
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Notice that the first factor on the right hand side of (15) has cancelled in the
evaluation of 〈τnjk〉.

For the M-step we first set the derivative with respect to one of the parameters
πk equal to zero (no Lagrange multiplier is required since there is no summation
constraint on the {πk}) and then re-arrange to give the following re-estimation
equations

πk =

⎡
⎣ N∑

n=1

Jntnk

(
K∑

l=1

tnlπl

)−1
⎤
⎦−1

N∑
n=1

Jn∑
j=1

〈τnjk〉. (20)

Since these represent coupled equations we perform several (fast) iterations of
these equations before proceeding with the next EM cycle (note that for this
purpose the sums over j can be pre-computed since they do not depend on the
{πk}).

Now consider the optimization with respect to the parameters θk governing
the distribution φk(x; θk). The dependence of the expected complete-data log
likelihood on θk takes the form

N∑
n=1

Jn∑
j=1

〈τnjk〉 lnφk(xnj ; θk) + const. (21)

This is easily maximized for each class k separately using the EM algorithm
(in an inner loop), since (21) simply represents a log likelihood function for a
weighted data set in which patch (n, j) is weighted with 〈τnjk〉. Specifically, we
use a model in which φk(x; θk) is given by a Gaussian mixture distribution of
the form

φk(x; θk) =
M∑

m=1

ρkmN (x|μkm,Σkm). (22)

The E-step is given by

γnjkm =
ρkmN (xnj |μkm,Σkm)∑

m′ ρkm′N (xnj |μkm′ ,Σkm′)
(23)

while the M-step equations are weighted by the coefficients 〈τnjk〉 to give

μnew
km =

∑
n

∑
j〈τnjk〉γnjkmxnj∑

n

∑
j〈τnjk〉γnjkm

Σnew
km =

∑
n

∑
j〈τnjk〉γnjkm(xnj − μnew

km )(xnj − μnew
km )T∑

n

∑
j〈τnjk〉γnjkm

ρnew
km =

∑
n

∑
j〈τnjk〉γnjkm∑

n

∑
j〈τnjk〉

.

If one EM cycle is performed for each mixture model φk(x; θk) this is equiva-
lent to a global EM algorithm for the whole model. However, it is also possible
to perform several EM cycle for each mixture model φk(x; θk) within the outer
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EM algorithm. Such variants yield valid EM algorithms in which the likelihood
never decreases.

The incomplete-data log likelihood can be evaluated after each iteration to
ensure that it is correctly increasing. It is given by

N∑
n=1

Jn∑
j=1

{
ln

(
K∑

k=1

tnkπkφk(xnj)

)
− ln

(
K∑

l=1

tnlπl

)}
.

Note that, for a data set in which all tnk = 1, the model simply reduces to
fitting a flat mixture to all observations, and the standard EM is recovered as a
special case of the above equations.

This model can be viewed as a generalization of that presented in [19] in which
a parameter is learned for each mixture component representing the probability
of that component being foreground. This parameter is then used to select the
most informative N components in a similar approach to [4] and [17] where the
number N is chosen heuristically. In our case, however, the probability of each
feature belonging to one of the K classes is learned directly.

Inference in the generativemodel is more complicated than in the discriminative
model. Given all patches X = {xj} from an image, the posterior probability of the
label τ j for patch j can be found by marginalizing out all other hidden variables

p (τ j |X) =
∑
t

∑
τ /τ j

p (τ ,X, t)

=
∑
t

p (t)
1(∑K

l=1 πltl

)J

K∏
k=1

(πktkφk (xj))
τjk
∏
i�=j

[
K∑

k=1

πktkφk (xi)

]
(24)

where τ = {τ j} denotes the set of all patch labels, and τ/τ j denotes this set
with τ j omitted. Note that the summation over all possible t values, which must
be done explicitly, is computationally expensive.

For the inference of image label we require the posterior probability of image
label t, which can be computed using

p (t|X) ∝ p (X|t) p (t) (25)

in p(t) is computed from the coefficients {ψk} for each setting of t in turn, and
p (X|t) is found by summing out patch labels

p (X|t) =
∑
τ

J∏
j=1

p (X, τ j |t) =
Jn∏
j=1

∑K
k=1 tkπkφk (xj)∑K

l=1 tlπl

. (26)

5 Experiments and Results

In this chapter, we have used a test bed of weakly labelled images each contain-
ing either cows or sheep, in which the animals vary widely in terms of number,
pose, size, colour and texture. There are 167 images in each class, and 10-fold
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cross-validation is used to measure performance. For the discriminative model we
used a two-layer nonlinear network having 10 hidden units with ‘tanh’ activation
functions. The network had 31 inputs, corresponding to the LJ or PCA coefficient
with colour feature as discussed in Section 2 and 3 outputs (cow, sheep, back-
ground). For the generative model we used a separate Gaussian mixture for cow,
sheep and background, each of which has 10 components with diagonal covariance
matrices. In our earlier study [16] we used input vector of size 144 which consists
of SIFT and colour features. Using a smaller feature vector this time brings com-
putational benefit such as speed and computable covariance matrixes.

In the test phase of both discriminative and generative models, we input
the patch features to the models and obtain the posterior probabilities of the
patch labels as the outputs using (2) for probabilistic noisy OR discriminative
model or (10) with normalization for soft discriminative model and (24) for the
generative model. The posterior probability of the image label is computed as
in (5) for probabilistic noisy OR model or (12) for the soft discriminative model
and (25) for the generative case. We can therefore investigate the ability of the
models both to predict the class labels of whole images and of their constituent
patches. The latter is important for object localization.

5.1 Combining Strongly Labelled and Weakly Labelled Data for
Training

Initial results with the generative model showed that with random initialization
of the mixture model parameters it is incapable of learning a satisfactory solution
[16]. We conjectured that this is due to the problem of multiple local maxima in
the likelihood function (a similar effect was found by [19]). To test this, we used
some segmented images for initialization purposes (but not for optimization) in
our earlier study [16]. 30 cow and 30 sheep images were hand-segmented, and
a patch which has any foreground pixel was labelled as foreground and a patch
which has no foreground pixel was labelled as background. Features obtained
from the patches belonging to each class were clustered using the K-means al-
gorithm and the component centers of a class mixture model were assigned to
the cluster centers of the respective class. The mixing coefficients were set to
the number of points in the corresponding cluster divided by the total number
of points in that class. Similarly, covariance matrices were computed using the
data points assigned to the respective center.

In this chapter, we use these segmented images also for training optimization
in order to give both models the same chance. In the generative case, including
the segmented data into learning requires only a slight change in the expected
complete-data log likelihood which becomes partially expected in this case:

∑
n∈US

Jn∑
j=1

{
K∑

k=1

〈τnjk〉 ln [tnkπkφk(xnj)]− ln

(
K∑

l=1

tnlπl

)}

+
∑
n∈S

Jn∑
j=1

{
K∑

k=1

τnjk ln [tnkπkφk(xnj)]− ln

(
K∑

l=1

tnlπl

)}
(27)
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where S and US denote segmented and unsegmented image sets respectively. For
segmented images n ∈ S, τnkj values are already known. Including the segmented
data to the generative model is very easy where we only need to assign known
patch labels instead of their expected labels in the outer E step (19) mentioned
in Section 4.

For the probabilistic noisy OR discriminative model, the error function be-
comes

E (w) = −
∑

n∈US

K∑
k=1

{tnk ln [1− Znk] + (1− tnk) lnZnk}

−
∑
n∈S

Jn∑
j=1

K∑
k=1

τnjk ln(yk(xnj ,w)) (28)

where the first term on the right hand side of the error function includes unseg-
mented images and is the image labelling error, while the second term includes
segmented images and is the patch labelling error.

Similarly, for the soft discriminative model, the error function (29) consists
of two parts: one with unlabelled data and the other with labelled data. These
two parts need to be treated differently during all optimization steps.

E (w) = −
∑

n∈US

K∑
k=1

{
Znk (tnk − 1)− ln

(
1 + e−Znk

)}

−
∑
n∈S

Jn∑
j=1

K∑
k=1

(yk(xnj ,w)− τnjk) (29)

To test the effect of labelled data on the generative model, we train the same
generative model with and without labelled data and compared the results.
When only unlabelled data is used (i.e. no initialization is performed) overall
correct rate (ocr) for image labelling is obtained to be 46.50% which is worse
than random labelling. When segmented data is used for initialization only then
there is a significant increase in the performance where ocr becomes 59.37%.
When the segmented data is used for training as well the performance is not
effected much where ocr stays at 59.37%. In Figure 4 examples for generative
model patch labelling are given for different situations where most probable label
is assigned for each patch. Patch centers are shown by coloured dots where colour
denotes the class (red, white, green for cow, sheep and background respectively).
As can be observed from the image, without initialization patch labelling is as
random (top image of the figure). Image labelling result for this particular sheep
image is t = [1 0 1] for this sample run which means that this is a cow image.
With initialization, most of the patches are labelled correctly (middle image in
the figure). Image label for the same sheep is t = [1 1 1] this time which means
there are both cow and sheep (as well as background) present in the image.
When segmented data is also used for training (bottom image) patch labelling
performance becomes better and sheep image is labelled correctly as t = [0 1 1].
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Using segmented data for the probabilistic noisy OR discriminative model
brings some problems. When labelled data is also used for training, although the
patch labelling performance increases significantly image labelling performance
degrades. For example, in Figure 4 patch labelling results during a sample run are
given where the most probable label is assigned to each patch. Top image is an
example which is obtained when segmented data is not used in training and ocr
for this case is 62.50%. Image labelling result is correct for this particular cow with
t = [0.99 0.50 1] which becomes t = [1 0 1] when 0.5 is used as a threshold for image
label probability. Middle image is obtained when segmented data is used for train-
ing the model and ocr for this case is very low, 30%. In this case patch labelling is
better but image label for this particular cow image is t = [1 0.83 1] which means
that there is a high probability of sheep also. This is caused by a white (sheep)
patch in the cow image. The bottom image is when the soft discriminative model is
trained with segmented data where ocr becomes 78.1%. Patch labelling is as good
as the previous case but this time image labelling is also correct t = [1 0 1] for this
particular cow image although there are two white (sheep) patches. This shows
that when we use segmented data and force the probabilistic noisy OR discrim-
inative model to learn those patches as they are labelled then the discriminative
power decreases because those patches may not be that discriminative. However
this is not the case for soft discriminative model.

As we mentioned in Section 3.1 outputs are linear for our soft discriminative
model and this means that outputs can take any real value. Thus, normalization
is required for this model when we need patch label probabilities.

5.2 Comparison with Different Feature Types

In this section we will provide comparative results between our generative (G)
and soft discriminative (D) model when they are used with different types of fea-
tures such as HL operator with LJ and colour feature (HL-LJ+C), DoG opera-
tor with LJ and colour (DoG-LJ+C) and random patches with PCA coefficients
and colour feature (R-PCA+C). Usually DoG feature point operator finds more
points than HL operator does when applied on the same image. In the random
selection case we define the number of feature points and their local extension.
In order to eliminate the effect of data quantity in the comparison, we arranged
the feature point extraction algorithms so that they produce roughly the same
amount of feature points (around 100) for each image. Means and standard de-
viations of overall correct rate results over 10 fold runs are given in Table 1.
Columns are for different feature types and rows are for different models.

As can be observed from the table, ocr for discriminative model is not effected
much when different feature types are used. The best overall correct rate for the
discriminative model is obtained by DoG-LJ+C feature and R-PCA+C feature
causes the worst performance. The generative model produces highly different
overall correct rates with different feature types. The best performance for the
generative model is obtained by the random patches. With DoG-LJ+C and HL-
LJ+C the performance is worse than the random patches.
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Fig. 4. Patch labelling results (red, white, green for cow, sheep and background re-
spectively). Left column: Labelling results for the generative model where the most
probable label is assigned to each patch. Patch labelling result in the top image is
obtained when the generative model is trained without initialization. The middle im-
age is when labelled data is used only for initializing the model. The bottom image
is when the segmented images are used for both initializing and training the model.
Right column: Labelling results for discriminative models where the most probable
label is assigned to each patch. Top image is obtained when segmented data is not
used in training of probabilistic noisy OR discriminative model. Middle row is when
segmented data is used for training the same model. The bottom row is when the soft
discriminative model is trained with segmented data.

It is also interesting to investigate the extent to which the discriminative and
generative models correctly label the individual patches. In order to make a
comparison in terms of patch labelling we use 12 hand segmented test images
for each class. These segmented images are different from those we have used for
initializing and training the models. Patch labels are obtained by (24) for the
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Table 1. Means (M) and standard deviations (SD) of overall correct image label rate
for different feature types: HL with LJ and colour (HL-LJ+C), DoG with LJ and colour
(DoG-LJ+C) and random patches with PCA coefficients and colour (R-PCA+C)

HL-LJ+C DoG-LJ+C R-PCA+C
D (M)(%) 80.63 89.38 78.13
D (SD)(%) 7.13 4.74 3.83
G (M)(%) 56.25 56.25 75.62
G (SD)(%) 6.25 9.88 2.61

generative model and by (10) for the soft discriminative model. Normalization is
required for the discriminative model in order to obtain patch label probabilities.
Various thresholds are used on patch label probabilities in order to produce ROC
curves for the generative model and the soft discriminative model, as shown in
Figure 5.

As can be observed from the plots the generative model patch labelling is
better than the discriminative model patch labelling for all types of features and
patch labelling with DoG operator with LJ and colour feature is better than
other feature types.

Some examples of patch labelling for test images are given in Figure 6 for
random patches and for DoG patches, and in Figure 7 for HL patches. In these
figures each patch is assigned to the most probable class and patch centers are
given with coloured dots where colour denotes the patch label.

5.3 Comparison for Training Data Quantity

We trained our models with various number of training data. We used 50 to
150 images with 25 intervals from each class for training and plot overall correct
rate versus number of images used in training for both models in Figure 8.
The left figure corresponds to the use of random patches, while the right figure
corresponds to the use of DoG patches.

Similar results as [14] and [3] are obtained in this chapter also. Since the
generative model performs the best with random patches (Section 5.2) we were
expecting that with less data the generative model performance should be better
than discriminative model. As can be observed from the left plots in Figure 8 the
generative model performance is much better than the discriminative one for less
data and as the quantity of data is increased discriminative model performance
increases much faster than the generative model’s performance. When DoG-
LJ+C features are used, since the generative model does not perform well with
this feature type, we were not expecting same type of behaviour. As can be seen
in the right hand plots in Figure 8, the generative and the discriminative models
behave nearly the same as we increase the data quantity but the discriminative
model performs better than the generative model all the time.
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Fig. 5. ROC curves of patch labelling. Each figure contains two curves. One for the
generative model and the other one for the discriminative model. Upper figure is for
R-PCA+C patches. Center one is for DoG-LJ+C. Bottom one is for HL-LJ+C.
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Fig. 6. Patch labelling examples for random patches (a) and for DoG patches (b).
Results are shown for discriminative model (top row) and generative model (bottom
row) for cow (left column) and sheep (right column) image. Red, white, green dots
denote cow, sheep and background patches respectively and patch labels are obtained
by assigning each patch to the most probable class.
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Fig. 7. Patch labelling examples for HL patches. Results for discriminative model (top
row) nd generative model (bottom row) for cow (left column) and sheep (right column)
image. Red, white, green dots denote cow, sheep and background patches respectively
and patch labels are obtained by assigning each patch to the most probable class.
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Fig. 8. Overall correct rate versus data number plots to show how the models behave
as the data quantity is increased. Left figure is when random patches are used and the
right figure is when DoG features are used.
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6 Discussion

In our earlier study [16], we introduced novel discriminative (probabilistic noisy
OR) and generative models. We used SIFT features only and showed that the
probabilistic noisy OR discriminative model and the generative model have com-
plementary strengths and limitations. The discriminative model is able to focus
on highly informative features, while the generative model gives high classifica-
tion accuracy, and also has some ability to localize the objects within the image.
However, the generative model required careful initialization in order to achieve
good results. Also, inference in such a generative model can be very complex. A
discriminative model, on the other hand, is typically very fast once trained.

In this chapter, we have introduced a soft version of our previous probabilistic
noisy OR discriminative model [16]. The soft discriminative model introduced
here has a better patch labelling capability than probabilistic noisy OR one.

We have compared our soft discriminative and generative models in terms of
using strongly labelled and weakly labelled data together in training. Combining
these two data types is very easy in the generative model training but needs
lots of variations in the discriminative case. The generative model, unlike the
discriminative ones, could also benefit from the use of completely unlabelled
images, although we have not conducted any experiments on this so far.

We have used several different feature point operators and feature extractors,
and experimented with the effect of different feature types on the learning capac-
ity of the models. First, we have compared the models in terms of image labelling
performance. We have observed that the discriminative model is not effected very
much when different feature types are used and the model performs the best with
DoG-LJ+C (DoG operator with local jet and colour features). Random patches
with PCA coefficients and colour features caused the worst performance for the
discriminative model, while the opposite results are observed for the generative
model. The performance of the generative model depends significantly on the
choice of feature types, and the best performance is obtained with random fea-
tures. We also compared the models in terms of patch labelling. In all cases the
generative model outperforms the discriminative model in patch labelling. But
the best patch labelling performance is obtained with DoG-LJ+C feature for
both models. This is a very reasonable result because DoG operator extracts
uniform regions as patches and in most cases a patch is either fully background
or fully foreground. However in other cases most of the time, a patch may con-
tain some foreground pixels as well as background pixels. In randomly selected
patches this is more serious.

We have also compared the two models when different number of images
are used for training. When this comparative experiment is performed using
random patches as features, we have observed that with small number of data the
generative model performs better than the discriminative model and as the data
quantity increases the performances for both models increase but this increase
is more marked for the discriminative model, so that the performance of the two
approaches is similar for large data sets. When this comparative experiment is
performed using DoG-LJ+C features, both models behaved nearly the same for
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all data quantities but the discriminative model performs better all the time as
we increase the data quantity.

Our investigations suggest that the most fruitful approaches will involve some
combination of generative and discriminative models. Indeed, this is already
found to be the case in speech recognition where generative hidden Markov
models are used to express invariance to non-linear time warping, and are then
trained discriminatively by maximizing mutual information in order to achieve
high predictive performance.

One promising avenue for investigation is to use a fast discriminative model to
locate regions of high probability in the parameter space of a generative model,
which can subsequently refine the inferences. Indeed, such coupled generative
and discriminative models can mutually train each other, as has already been
demonstrated in a simple context in [13].

One of the limitations of the techniques discussed here is the use of interest
point detectors that are not tuned to the problem being solved (since they are
hand-crafted rather than learned) and which are therefore unlikely in general to
focus on the most discriminative regions of the image. Similarly, the invariant
features used in our study were hand-selected. We expect that robust recognition
of a large class of object categories will require that local features be learned from
data.

Classifying individual patches is very hard because patches from different
classes may seem similar due to the effects of illumination, pose, noise or similar-
ity. This ambiguity can be solved by modeling the interactions between patches.
The contextual information can be used in the form of spatial dependencies in
the images. Markov Random Field models are traditional interaction models
used in vision because they can incorporate spatial relationship constraints in a
principled manner. For the purposes of this study we have ignored spatial infor-
mation regarding the relative locations of feature patches in the image. However,
most of our conclusions remain valid if a spatial model is combined with the local
information provided by the patch features.
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Abstract. We describe a novel method for real-time, simultaneous
multi-view face detection and facial pose estimation. The method em-
ploys a convolutional network to map face images to points on a mani-
fold, parametrized by pose, and non-face images to points far from that
manifold. This network is trained by optimizing a loss function of three
variables: image, pose, and face/non-face label. We test the resulting
system, in a single configuration, on three standard data sets – one for
frontal pose, one for rotated faces, and one for profiles – and find that
its performance on each set is comparable to previous multi-view face
detectors that can only handle one form of pose variation. We also show
experimentally that the system’s accuracy on both face detection and
pose estimation is improved by training for the two tasks together.

1 Introduction

The detection of human faces in natural images and videos is a key component
in a wide variety of applications of human-computer interaction, search and
indexing, security, and surveillance. Many real-world applications would profit
from multi-view detectors that can detect faces under a wide range of poses:
looking left or right (yaw axis), up or down (pitch axis), or tilting left or right
(roll axis).

In this paper we describe a novel method that not only detects faces indepen-
dently of their poses, but simultaneously estimates those poses. The system is
highly-reliable, runs at near real time (5 frames per second on standard hardware),
and is robust against variations in yaw (±90◦), roll (±45◦), and pitch (±60◦).

The method is motivated by the idea that multi-view face detection and pose
estimation are so closely related that they should not be performed separately.

J. Ponce et al. (Eds.): Toward Category-Level Object Recognition, LNCS 4170, pp. 196–206, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The tasks are related in the sense that they must be robust against the same sorts
of variation: skin color, glasses, facial hair, lighting, scale, expressions, etc. We
suspect that, when trained together, each task can serve as an inductive bias for
the other, yielding better generalization or requiring fewer training examples [2].

To exploit the synergy between these two tasks, we train a convolutional net-
work to map face images to points on a face manifold, and non-face images to
points far away from that manifold. The manifold is parameterized by facial pose.
Conceptually, we can view the pose parameter as a latent variable that can be in-
ferred through an energy-minimization process [4]. To train the machine we derive
a new type of discriminative loss function that is tailored to such detection tasks.

PreviousWork: Learning-based approaches to face detection abound, including
real-time methods [16], and approaches based on convolutional networks [15,3].
Most multi-view systems take a view-based approach, which involves building sep-
arate detectors for different views and either applying them in parallel [10,14,13,7]
or using a pose estimator to select a detector [5]. Another approach is to estimate
and correct in-plane rotations before applying a single pose-specific detector [12].
Closer to our approach is that of [8], in which a number of Support Vector Regres-
sors are trained to approximate smooth functions, each of which has a maximum
for a face at a particular pose. Another machine is trained to convert the result-
ing values to estimates of poses, and a third is trained to convert the values into
a face/non-face score. The resulting system is very slow.

2 Integrating Face Detection and Pose Estimation

To exploit the posited synergy between face detection and pose estimation, we
must design a system that integrates the solutions to the two problems. We hope
to obtain better results on both tasks, so this should not be a mere cascaded
system in which the answer to one problem is used to assist in solving the other.
Both answers must be derived from one underlying analysis of the input, and
both tasks must be trained together.

Our approach is to build a trainable system that can map raw images X to
points in a low-dimensional space. In that space, we pre-define a face manifold
F (Z) that we parameterize by the pose Z. We train the system to map face
images with known poses to the corresponding points on the manifold. We also
train it to map non-face images to points far away from the manifold. Proximity
to the manifold then tells us whether or not an image is a face, and projection
to the manifold yields an estimate of the pose.

Parameterizing the Face Manifold: We will now describe the details of the
parameterizations of the face manifold. Let’s start with the simplest case of one
pose parameter Z = θ, representing, say, yaw. If we want to preserve the natural
topology and geometry of the problem, the face manifold under yaw variations
in the interval [−90◦, 90◦] should be a half circle (with constant curvature). We
embed this half-circle in a three-dimensional space using three equally-spaced
shifted cosines.
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Fi(θ) = cos(θ − αi); i = 1, 2, 3; θ = [−π
2
,
π

2
]; α = {−π

3
, 0,

π

3
} (1)

A point on the face manifold parameterized by the yaw angle θ is F (θ) =
[F1(θ), F2(θ), F3(θ)]. When we run the network on an image X , it outputs a
vector G(X). The yaw angle θ corresponding to the point on the manifold that
is closest to G(X) can be expressed analytically as:

θ = arctan
∑3

i=1 Gi(X) cos(αi)∑3
i=1 Gi(X) sin(αi)

(2)

The point on the manifold closest to G(X) is just F (θ).

Fij(θ, φ) = cos(θ − αi) cos(φ− βj); i, j = 1, 2, 3; (3)

For convenience, we rescale the roll angles to the range [−90, 90] which allows us
to set βi = αi. With this parameterization, the manifold has constant curvature,
which ensures that the effect of errors will be the same regardless of pose. Given a
9-dimensional output vector from the convolutional networkGij(X), we compute
the corresponding yaw and roll angles θ, φ as follows:

cc =
∑

ij Gij(X) cos(αi) cos(βj); cs =
∑

ij Gij(X) cos(αi) sin(βj)
sc =

∑
ij Gij(X) sin(αi) cos(βj); ss =

∑
ij Gij(X) sin(αi) sin(βj)

θ = 0.5(atan2(cs+ sc, cc− ss) + atan2(sc− cs, cc+ ss))
φ = 0.5(atan2(cs+ sc, cc− ss)− atan2(sc− cs, cc+ ss))

(4)

The process can easily be extended to include pitch in addition to yaw and roll,
as well as other parameters if necessary.

Note that the dimension of the face manifold is much lower than that of
the embedding space. This gives ample space to represent non-faces away from
the manifold. Having lots of free space to represent non-face images may be
necessary, due to the considerable amount of variability in non-face images.

3 Learning Machine

To build a learning machine for the proposed approach we refer to the Minimum
Energy Machine framework described in [4].

Energy Minimization Framework: We can view our system as a scalar-value
function EW (Y, Z,X), where X and Z are as defined above, Y is a binary label
(Y = 1 for face, Y = 0 for a non-face), and W is a parameter vector subject to
learning.EW (Y, Z,X) can be interpreted as an energy function that measures the
degree of compatibility betweenX,Z, Y . If X is a face with pose Z, then we want:
EW (1, Z,X)� EW (0, Z ′, X) for any pose Z ′, and EW (1, Z ′, X)� EW (1, Z,X)
for any pose Z ′ 
= Z.

Operating the machine consists in clamping X to the observed value (the
image), and finding the values of Z and Y that minimize EW (Y, Z,X):

(Y ,Z) = argminY ∈{Y }, Z∈{Z}EW (Y, Z,X) (5)
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Fig. 1. Architecture of the Minimum Energy Machine

where {Y } = {0, 1} and {Z} = [−90, 90]× [−45, 45] for yaw and roll variables.
Although this inference process can be viewed probabilistically as finding the
most likely configuration of Y and Z according to a model that attributes high
probabilities to low-energy configurations (e.g. a Gibbs distribution), we view
it as a non probabilistic decision making process. In other words, we make no
assumption as to the finiteness of integrals over {Y }and {Z}that would be nec-
essary for a properly normalized probabilistic model. This gives us considerable
flexibility in the choice of the internal architecture of EW (Y, Z,X).

Our energy function for a face EW (1, Z,X) is defined as the distance between
the point produced by the network GW (X) and the point with pose Z on the
manifold F (Z):

EW (1, Z,X) = ‖GW (X)− F (Z)‖ (6)

The energy function for a non-face EW (0, Z,X) is equal to a constant T that
we can interpret as a threshold (it is independent of Z and X). The complete
energy function is:

EW (Y, Z,X) = Y ‖GW (X)− F (Z)‖+ (1 − Y )T (7)

The architecture of the machine is depicted in Figure 1. Operating this machine
(finding the output label and pose with the smallest energy) comes down to first
finding: Z = argminZ∈{Z}||GW (X)− F (Z)||, and then comparing this minimum
distance, ‖GW (X) − F (Z)‖, to the threshold T . If it smaller than T , then X is
classified as a face, otherwise X is classified as a non-face. This decision is imple-
mented in the architecture as a switch, that depends upon the binary variable Y .

Convolutional Network: We employ a Convolutional Network as the basic ar-
chitecture for the GW (X) image-to-face-space mapping function. Convolutional
networks [6] are “end-to-end” trainable system that can operate on raw pixel im-
ages and learn low-level features and high-level representation in an integrated



200 M. Osadchy, Y. Le Cun, and M.L. Miller

fashion. Convolutional nets are advantageous because they easily learn the types
of shift-invariant local features that are relevant to image recognition; and more
importantly, they can be replicated over large images (swept over every location)
at a fraction of the cost of replicating more traditional classifiers [6]. This is a
considerable advantage for building real-time systems.

We employ a network architecture similar to LeNet5 [6]. The difference is in
the number of maps. In our architecture we have 8 feature maps in the bottom
convolutional and subsampling layers and 20 maps in the next two layers. The
last layer has 9 outputs to encode two pose parameters.

Training with a Discriminative Loss Function for Detection: We define
the loss function as follows:

L(W ) =
1
|S1|

∑
i∈S1

L1(W,Zi, X i) +
1
|S0|

∑
i∈S0

L0(W,X i) (8)

where S1is the set of training faces, S0the set of non-faces, L1(W,Zi, X i) and
L0(W,X i) are loss functions for a face sample (with a known pose) and non-face,
respectively1.

The loss L(W ) should be designed so that its minimization for a particular
positive training sample (X i, Zi, 1), will make EW (1, Zi, X i) < EW (Y, Z,X i)
for Y 
= Y i or Z 
= Zi. To satisfy this, it is sufficient to make EW (1, Zi, X i) <
EW (0, Z,X i). For a particular negative training sample (X i, 0), minimizing the
loss should make EW (1, Z,X i) > EW (0, Z,X i) = T for any Z. To satisfy this,
it is sufficient to make EW (1, Z,X i) > T .

Let W be the current parameter value, and W ′ be the parameter value after
an update caused by a single sample. To cause the machine to achieve the desired
behavior, we need the parameter update to decrease the difference between the
energy of the desired label and the energy of the undesired label. In our case,
since EW (0, Z,X) = T is constant, the following condition on the update is
sufficient to ensure the desired behavior:

Condition 1. For a face example (X,Z, 1), we must have:

EW ′ (1, Z,X) < EW (1, Z,X)

For a non-face example (X, 1), we must have:

EW ′(1, Z,X) > EW (1, Z,X)

We choose the following forms for L1 and L0:

L1(W, 1, Z,X) = EW (1, Z,X)2; L0(W, 0, X) = K exp[−E(1, Z,X)] (9)

where K is a positive constant.

1 Although face samples whose pose is unknown can easily be accommodated, we will
not discuss this possibility here.
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Next we show that minimizing (9) with an incremental gradient-based algo-
rithm will satisfy condition 1. With gradient-based optimization algorithms, the
parameter update formula is of the form: δW = W ′ −W = −ηA ∂L

∂W . where A
is a judiciously chosen symmetric positive semi-definite matrix, and η is a small
positive constant.

For Y = 1 (face): An update step will change the parameter by

δW = −ηA∂EW (1, Z,X)2

∂W
= −2ηEW (1, Z,X)A

∂EW (1, Z,X)
∂W

To first order (for small values of η), the resulting change in EW (1, Z,X) is given
by: (

∂EW (1, Z,X)
∂W

)T

δW =

−2ηEW (1, Z,X)
(
∂EW (1, Z,X)

∂W

)T

A
∂EW (1, Z,X)

∂W
< 0

because EW (1, Z,X) > 0 (it’s a distance), and the quadratic form is positive.
Therefore EW ′ (1, Z,X) < EW (1, Z,X).

For Y = 0 (non-face): An update step will change the parameter by

δW = −ηA∂K exp[−E(1, Z,X)]
∂W

= ηK exp[−EW (1, Z,X)]
∂EW (1, Z,X)

∂W

To first order (for small values of η), the resulting change in EW (1, Z,X) is given
by:

∂EW (1, Z, X)
∂W

T

δW =

ηK exp[−EW (1, Z, X)]
∂EW (1, Z, X)

∂W

T

A
∂EW (1, Z, X)

∂W
> 0

Therefore EW ′(1, Z, X) > EW (1, Z, X).

Running the Machine: Our detection system works on grayscale images and
it applies the network to each image at a range of scales, stepping by a factor
of

√
2. The network is replicated over the image at each scale, stepping by 4

pixels in x and y (this step size is a consequence of having two, 2x2 subsampling
layers). At each scale and location, the network outputs are compared to the
closest point on the manifold, and the system collects a list of all instances closer
than our detection threshold. Finally, after examining all scales, the system
identifies groups of overlapping detections in the list and discards all but the
strongest (closest to the manifold) from each group. No attempt is made to
combine detections or apply any voting scheme. We have implemented the system
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Fig. 2. Synergy test. Left: ROC curves for the pose-plus-detection and detection-only
networks. Right: frequency with which the pose-plus-detection and pose-only networks
correctly estimated the yaws within various error tolerances.

in C. The system can detect, locate, and estimate the pose of faces that are
between 40 and 250 pixels high in a 640 × 480 image at roughly 5 frames per
second on a 2.4GHz Pentium 4.

4 Experiments and Results

Using the above architecture, we built a detector to locate faces and estimate
two pose parameters: yaw from left to right profile, and in-plane rotation from
−45 to 45 degrees. The machine was trained to be robust against pitch variation.

In this section, we first describe the training regimen for this network, and then
give the results of two sets of experiments.Thefirst set of experiments testswhether
training for the two tasks together improves performance on both. The second set
allows comparisons between our system and other published multi-view detectors.

Training: Our training set consisted of 52, 850, 32x32-pixel faces from natural
images collected at NEC Labs and hand annotated with appropriate facial poses
(see [9] for a description of how the annotation was done). These faces were
selected from a much larger annotated set to yield a roughly uniform distribution
of poses from left profile to right profile, with as much variation in pitch as we
could obtain. Our initial negative training data consisted of 52, 850 image patches
chosen randomly from non-face areas of a variety of images. For our second
set of tests, we replaced half of these with image patches obtained by running
the initial version of the detector on our training images and collecting false
detections. Each training image was used 5 times during training, with random
variations in scale (from x

√
2 to x(1 +

√
2)), in-plane rotation (±45◦), brightness

(±20), contrast (from 0.8 to 1.3).
To train the network, we made 9 passes through this data, though it mostly

converged after about the first 6 passes. Training was performed using LUSH [1],
and the total training time was about 26 hours on a 2Ghz Pentium 4. At the
end of training, the network had converged to an equal error rate of 5% on the
training data and 6% on a separate test set of 90,000 images.
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Fig. 3. Results on standard data sets. Left: ROC curves for our detector on the three
data sets. The x axis is the average number of false positives per image over all three
sets, so each point corresponds to a single detection threshold. Right: frequency with
which yaw and roll are estimated within various error tolerances.

Synergy tests: The goal of the synergy test was to verify that both face de-
tection and pose estimation benefit from learning and running in parallel. To
test this claim we built three networks with almost identical architectures, but
trained to perform different tasks. The first one was trained for simultaneous face
detection and pose estimation (combined), the second was trained for detection
only and the third for pose estimation only. The “detection only” network had
only one output for indicating whether or not its input was a face. The “pose
only” network was identical to the combined network, but trained on faces only
(no negative examples). Figure 2 shows the results of running these networks on
our 10,000 test images. In both these graphs, we see that the pose-plus-detection
network had better performance, confirming that training for each task benefits
the other.

Standard data sets: There is no standard data set that tests all the poses our
system is designed to detect. There are, however, data sets that have been used
to test more restricted face detectors, each set focusing on a particular variation
in pose. By testing a single detector with all of these sets, we can compare our
performance against published systems. As far as we know, we are the first to
publish results for a single detector on all these data sets. The details of these
sets are described below:

• MIT+CMU [14,11] – 130 images for testing frontal face detectors. We count
517 faces in this set, but the standard tests only use a subset of 507 faces, because
10 faces are in the wrong pose or otherwise not suitable for the test. (Note: about
2% of the faces in the standard subset are badly-drawn cartoons, which we do
not intend our system to detect. Nevertheless, we include them in the results we
report.)
• TILTED [12] – 50 images of frontal faces with in-plane rotations. 223 faces out
of 225 are in the standard subset. (Note: about 20% of the faces in the standard
subset are outside of the ±45◦ rotation range for which our system is designed.
Again, we still include these in our results.)
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Fig. 4. Some example face detections. Each white box shows the location of a de-
tected face. The angle of each box indicates the estimated in-plane rotation. The black
crosshairs within each box indicate the estimated yaw.

• PROFILE [13] – 208 images of faces in profile. There seems to be some
disagreement about the number of faces in the standard set of annotations: [13]
reports using 347 faces of the 462 that we found, [5] reports using 355, and
we found 353 annotations. However, these discrepencies should not significantly
effect the reported results.

We counted a face as being detected if 1) at least one detection lay within
a circle centered on the midpoint between the eyes, with a radius equal to 1.25
times the distance from that point to the midpoint of the mouth, and 2) that
detection came at a scale within a factor of two of the correct scale for the face’s
size. We counted a detection as a false positive if it did not lie within this range
for any of the faces in the image, including those faces not in the standard subset.

The left graph in Figure 3 shows ROC curves for our detector on the three
data sets. Figure 4 shows a few results on various poses. Table 1 shows our
detection rates compared against other systems for which results were given on
these data sets. The table shows that our results on the TILTED and PROFILE
sets are similar to those of the two Jones & Viola detectors, and even approach
those of the Rowley et al and Schneiderman & Kanade non-real-time detectors.
Those detectors, however, are not designed to handle all variations in pose, and
do not yield pose estimates.

The right side of Figure 3 shows our performance at pose estimation. To make
this graph, we fixed the detection threshold at a value that resulted in about 0.5
false positives per image over all three data sets. We then compared the pose
estimates for all detected faces (including those not in the standard subsets)
against our manual pose annotations. Note that this test is more difficult than
typical tests of pose estimation systems, where faces are first localized by hand.
When we hand-localize these faces, 89% of yaws and 100% of in-plane rotations
are correctly estimated to within 15◦.
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Table 1. Comparisons of our results with other multi-view detectors. Each column
shows the detection rates for a given average number of false positives per image (these
rates correspond to those for which other authors have reported results). Results for
real-time detectors are shown in bold. Note that ours is the only single detector that
can be tested on all data sets simultaneously.

Data set → TILTED PROFILE MIT+CMU
False positives per image → 4.42 26.90 .47 3.36 .50 1.28

Our detector 90% 97% 67% 83% 83% 88%
Jones & Viola [5] (tilted) 90% 95% x x
Jones & Viola [5] (profile) x 70% 83% x
Rowley et al [11] 89% 96% x x
Schneiderman & Kanade [13] x 86% 93% x

5 Conclusion

The system we have presented here integrates detection and pose estimation by
training a convolutional network to map faces to points on a manifold, para-
meterized by pose, and non-faces to points far from the manifold. The network
is trained by optimizing a loss function of three variables – image, pose, and
face/non-face label. When the three variables match, the energy function is
trained to have a small value, when they do not match, it is trained to have
a large value.

This system has several desirable properties:

– The use of a convolutional network makes it fast. At typical webcam reso-
lutions, it can process 5 frames per second on a 2.4Ghz Pentium 4.

– It is robust to a wide range of poses, including variations in yaw up to ±90◦,
in-plane rotation up to ±45◦, and pitch up to ±60◦. This has been verified
with tests on three standard data sets, each designed to test robustness
against a single dimension of pose variation.

– At the same time that it detects faces, it produces estimates of their pose.
On the standard data sets, the estimates of yaw and in-plane rotation are
within 15◦ of manual estimates over 80% and 95% of the time, respectively.

We have shown experimentally that our system’s accuracy at both pose esti-
mation and face detection is increased by training for the two tasks together.
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Abstract. In the first part of this chapter we make a general presenta-
tion of the bag-of-keypatches approach to generic visual categorization
(GVC). Our approach is inspired by the bag-of-words approach to text
categorization. This method is able to identify the object content of nat-
ural images while generalizing across variations inherent to the object
class. To obtain a visual vocabulary insensitive to viewpoint and illu-
mination, rotation or affine invariant orientation histogram descriptors
of image patches are vector quantized. Each image is then represented
by one visual word occurrence histogram. To classify the images we use
one-against-all SVM classifiers and choose the best ranked category. The
main advantages of the method are that it is simple, computationally
efficient and intrinsically invariant. We obtained excellent results as well
for multi-class categorization as for object detection.

In the second part we improve the categorizer by incorporating geomet-
ric information. Based on scale, orientation or closeness of the keypatches
we can consider a large number of simple geometrical relationships, each
of which can be considered as a simplistic classifier. We select from this
multitude of classifiers (several millions in our case) and combine them
effectively with the original classifier. Results are shown on a new chal-
lenging 10 class dataset.

1 Introduction

The proliferation of digital imaging sensors in mobile phones and consumer-
level cameras is producing a growing number of large digital image collections
and increasing the pervasiveness of images on the web and in other documents.
To search and manage such collections it is useful to have access to high-level
information about objects contained in the images. We are therefore interested in
recognizing several objects or image categories within a multi-class categorization
system, but not in the localization of the objects which is unnecessary for most
applications involving tagging and search. In this chapter we describe a generic
visual categorization (GVC) system which is sufficiently generic to cope with
many object types simultaneously and which can readily be extended to new
categories. It can handle variations in view, background clutter, lighting and
occlusion as well as intra-class variations.

J. Ponce et al. (Eds.): Toward Category-Level Object Recognition, LNCS 4170, pp. 207–224, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Before describing the approach we underline the distinction of visual catego-
rization from three related problems:

– Recognition: This concerns the identification of particular object instances.
For instance, recognition would distinguish between images of two struc-
turally distinct cups, while categorization would place them in the same
class.

– Content Based Image Retrieval: This refers to the process of retrieving im-
ages on the basis of low-level image features, given a query image or man-
ually constructed description of these low-level features. Such descriptions
frequently have little relation to the semantic content of the image.

– Detection: This refers to deciding whether or not a member of one visual
category is present in a given image. While it would be possible to perform
generic categorization by applying a detector for each class of interest to
a given image, this approach becomes inefficient given a large number of
classes. In contrast to the technique proposed in this paper, most existing
detection techniques require precise manual alignment of the training images
and the segregation of these images into different views, neither of which is
necessary in our case.

Our generic visual categorization system is a bag-of-keypatches approach which
was motivated by an analogy to learning methods using the bag-of-words represen-
tation for text categorization [9,24,13]. In the bag-of-words representation, a text
document is encoded as a histogram of the number of occurrences of each word.
Similarly, one can characterize an image by a histogram of visual word counts.
The visual vocabulary provides a ”mid-level” representation which helps to bridge
the semantic gap between the low-level features extracted from an image and the
high-level concepts to be categorized [1]. However, the main difference from text
categorization is that there is no given vocabulary for images. Instead we generate
a visual vocabulary automatically from a training set.

The idea of adapting text categorization approaches to visual categorization
is not new. Zhu et al [27] investigated the vector quantization of small square
image windows, which they called keyblocks. They showed that these features
produced more ”semantics-oriented” results than color and texture based ap-
proaches, when combined with analogues of the well-known vector-, histogram-,
and n-gram-models of text retrieval. In contrast to our approach, their keyblocks
do not possess any invariance properties. Our visual vocabulary [4] is obtained
by clustering rotation or affine invariant orientation histogram descriptors using
the K-means algorithm. In a similar way Sivic and Zisserman [23] used vec-
tor quantized SIFT descriptors of shape adapted regions and maximally stable
regions to localize all the occurrences of a given object in a video sequence.

In these cases each centroid corresponds to a visual word and, to build a
histogram, each feature vector is assigned to its closest centroid. In [8], Hsu
and Chang argue that the clusters obtained with K-means have a high correla-
tion with the low-level features but a weak correlation with the concepts. They
devised a visual cue cluster construction based on the information bottleneck
principle. More recently soft clustering using Gaussian Mixture Model (GMM)
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was proposed as an alternative to K-means [5,19]. In this case, a low-level feature
is not assigned to one visual word but to all words probabilistically, resulting in
a continuous histogram representation.

Others have explored the post-processing of K-means clustering. For instance
Sivic et al [22] use Probabilistic Latent Semantic Analysis (PLSA) to discover
topics in a corpus of unlabelled images. Test images were then categorized based
on the most relevant topic.

In order to improve the accuracy of our system we further exploit a boost-
ing approach based on keypatches and simple geometrical relationships (simi-
lar scales, similar orientation, closeness) between them. We chose to adopt the
boosting approach because there are many possible geometric relationships and
boosting offers an effective way to select from this multitude of possible features.
Boosting was used with success in [16] to detect the presence of bikes, persons,
cars or airplanes against background. However their approach differs from ours
as they do not include any geometry and consider every appearance descriptor
without considering a vocabulary.

The main advantage of our approach is that geometric constraints are intro-
duced as weak conditions in contrast to others such as [6,11], where due to the
use of relatively strong geometric models, such previous methods requires the
alignment and segregation of different views of objects in the dataset.

Several other categorization approaches have recently been developed that
are based on image segmentation [2,12,17,3], rather than the interest point de-
scriptors. In [2] geometry has been included through generative MRF models of
neighboring relations between segmented regions. In contrast we prefer to take
a discriminative classifier approach in order to optimize overall accuracy.

The remainder of this paper is organized as follows: section 2 describes the
original bag of keypatches approach; in section 3 we introduce an alternative
based on the boosting framework; in section 4 we then describe how to incorpo-
rate weak geometry in the boosting approach; we present experimental results
in section 5 and conclude in section 6.

2 The Bag-of-Keypatch Approach

The main steps of the bag-of-keypatches approach introduced in [4] are as follows
(see also Figure 1):

– Detect image patches and assign each of them to one of a set of predetermined
clusters (a visual vocabulary) on the basis of their appearance descriptors.

– Construct a bag-of-keypatches by counting the number of patches assigned
to each cluster.

– Apply a multi-class classifier, treating the bag-of-keypatches as the feature
vector, and thus determine which categories to assign to the image. The
multi-class classifier is built from a combination of one-against-all classifiers.

The extracted descriptors of image patches should be invariant to the varia-
tions that are irrelevant to the categorization task (viewpoint change, lighting
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Fig. 1. The main steps of the bag-of-keypatches approach

variations and occlusions) but rich enough to carry all necessary information to
be discriminative at the category level. We used Lowe’s SIFT approach [14] to
detect and describe image patches. This produces scale-invariant circular patches
that are associated with 128-dimensional feature vectors of Gaussian derivatives.
While in [4] we used affine invariant elliptical patches [15], similar performance
was obtained with circular patches. Moreover, the use of circular patches makes
it simpler to deal with geometric issues.

The visual vocabulary was constructed using the K-means algorithm applied
to a set of over 10000 patches obtained from a set of images that was completely
independent from the images used to train or test the classifier. We are not in-
terested in a correct clustering in the sense of feature distributions, but rather
in an accurate categorization. Therefore, to overcome the initialization depen-
dence of K-means, we run it several times with different initial cluster centers
and select the final clustering giving the highest categorization accuracy using
an SVM classifier (without any geometric properties) on a subset of the dataset.

For categorization we use the SVM which finds the hyperplane that separates
two-class data with maximal margin [26]. The margin is defined as the distance
of the closest training point to the separating hyperplane. The SVM decision
function can be expressed as:

f(x) = sign(
∑

i

yiαiK(x,xi) + b)

where xi are the training features from data space and yi ∈ {−1, 1} is the label
of xi. The parameters αi are zero for most i, so the sum is taken only over a
selected set of xi known as support vectors. It can be shown that the support
vectors are those feature vectors lying nearest to the separating hyperplane.

In this chapter, the input features xi are the binned histograms formed by the
number of occurrences of keypatches in the input image. K is a kernel function
corresponding to an inner product between two transformed feature vectors,
usually in a high and possibly infinite dimensional space. In the experiments
described here we used a linear kernel, which is the dot product of x and xi.

In order to apply the SVM to multi-class problems we took the one-against-
all approach. Given an m-class problem, we trained m SVM’s, each of which
distinguishes images from some category i from images from all the other m− 1
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categories j not equal to i. Given a query image, we assigned it to the class with
the largest SVM output.

3 The Boosting Approach

An alternative to the SVM classifier is the boosting approach. Here we exploit
the generalized version of the AdaBoost algorithm described in [21]. Boosting is a
method of finding an accurate classifierH by combiningM simpler classifiers hm:

H(x) =
( M∑

m=1

αmhm(x)
)
/
( M∑

m=1

αm

)
. (1)

Each simpler classifier hm(x) ∈ [−1, 1] needs only to be moderately accurate and
is therefore known as a weak classifier. They are chosen from a classifier space
to maximize correlation1 of the predictions and labels:

rm =
∑

i

Dm(i)hm(xi)yi,

where Dm(i) is a set of weights (distribution) over the training set. At each step
the weights are updated by increasing the weights of the incorrectly predicted
training examples:

Dm+1(i) = Dm(i) exp{−αmyihm(xi)}/Zm (2)

where

αm =
1
2

log
1 + rm

1− rm
(3)

and Zm is a normalization constant, such that
∑

i D
m+1(i) = 1.

To define the weak classifiers we consider the same inputs as for the SVM,
i.e. the binned histograms xi. The simplest keypatch-based weak classifier hk,T

counts the number of patches whose SIFT features belong to cluster k, which is
equivalent to comparing xk

i to some threshold T . If this number is at least T ,
then the classifier output is 1, otherwise -1:

hk,T (xi) =
{

1 if xk
i ≥ T

−1 otherwise .

We may build similar weak classifiers hkl,T from a pair of keypatch types k, l. If
at least T keypatches of both types are observed, then the classifier output is 1:

hkl,T (xi) =
{

1 if xk
i ≥ T and xl

i ≥ T
−1 otherwise .

1 This is equivalent to minimizing the weighted training error which is equal to
(1 − rm)/2.
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In practice we select weak classifiers by searching over a predefined set of
thresholds such as {1, 5, 10}. The opposite weak classifier hk,T̄ can also be defined
by inverting the inequality (xk < T ). Four such definitions are possible for pairs
of keypatches hkl,T , hkl,T̄ , hkl,T T̄ and hkl,T̄ T , e.g:

hkl,T T̄ (xi) =
{

1 if xk
i ≥ T and xl

i < T
−1 otherwise .

In practice, we search over the full set of different possibilities when working
with weak classifiers and refer to them collectively as hk and hkl. Obviously,
it would be possible to further extend the definition for pairs to applying a
different threshold to each keypatch type (Tk and Tl). In practice, we avoid this
as it results in a prohibitively large number of possible weak classifiers.

4 Incorporating Geometric Information

In this section we describe some ways to construct geometric weak classifiers.
As input, we assume each patch i in a query image has been labeled according
to its appearance via the index of the cluster centre ki to which it is assigned.
Each patch is associated with its orientation θi and a ball (circular patch) Bi

which has center position pi and scale σi.
A simple way to incorporate geometrical information in weak classifiers de-

pending on one keypatch is to threshold the number of interest points belonging
to a cluster k and having a particular orientation:

hk,T
θ (I) =

{
1 if ∃ θ such that

∣∣{i ∈ PI : ki = k, θi = θ}
∣∣ ≥ T

−1 otherwise

where
∣∣A∣∣ denotes the cardinality of the set A and PI denotes the set of patches

in image I.
Note that a large number of different orientations are produced by the interest

point detectors. Therefore we exploit a coarse quantization of the orientations
into eight bins. Two keypatches are considered to have the same orientation
if they fall into the same bin2. This does not constitute exact orientation in-
variance, as a small rotation could cause two keypatches in one bin to move
to different bins. However, this approach is more efficient than directly measur-
ing and thresholding the difference in orientations ‖θi − θj‖ between pairs of
keypatches.

Likewise, we define sets of weak classifiers that count the number of key-
patches with the same scale or a set that count patches with both the same scale
and orientation. The scale bins are selected with logarithmic spacing, in order
to approximate scale invariance. Collectively3 these classifiers are denoted by
hk

θ , h
k
σ, h

k
σ,θ.

2 The equality in the notation θi = θ should be interpreted in this way.
3 Considering similar threshold reversals as for hk and hkl, e.g. hk,T̄

θ and hkl,T̄ T
σ,θ .
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hy,5
σ , hy,4

σθ , hry,2
σ , hry,5

θ , hry,2
σθ , h1

y∩r and h1
y∈r = 1

hr,6, hy,6
θ , hry,6, hry,1

σ= , hry,1
θ= , h1

σθ= and h1
r⊂r = −1

Fig. 2. Examples of weak classifiers on a typical image for keypatches of type r, y (red
or yellow). For clarity, only the patches of type r and y are shown. In these examples,
the threshold T on which the weak classifiers depend has been chosen as large as
possible for output 1 (first row) and as small as possible for output -1 (second row).

Another way to incorporate geometry is to count the number of interest points
in the ball around a keypatch of a given type. This count is made irrespective
of the type of keypatches in the ball. As with the other weak classifiers, this
property is invariant to shift, scaling and rotation. In a given image, there may
be multiple keypatches of a given type containing different numbers of points.
We define hk

B in terms of the keypatch of type k with the maximum number of
points in its ball:

hk,T
B (I) =

{
1 if ∃ i such that ki = k and

∣∣{j ∈ PI : pj ∈ Bi}
∣∣ ≥ T

−1 otherwise

where pj ∈ Bi means that the center of the patch j is inside of the ball Bi

defined by the patch i.
Taking two types of keypatches k and l into consideration, there are more ways

to introduce geometry. Classifiers based on common scale or orientation can be
extended in two obvious ways. Firstly we can require that the patches of type k
and those of type l have identical scale and/or orientation, giving hkl

σ=, h
kl
θ=, h

kl
σθ=.

Alternatively we can allow each type to have their own independent scales or
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Table 1. Complete list of weak classifiers investigated. p ∝ q indicates that p is the
closest point to q and ℵN

pj
is the set of the N closest neighbors of pj .

h h =
{

1 if this quantity ≥ T
−1 otherwise h h =

{
1 if this quantity ≥ T

−1 otherwise

hk,T
σ max

σ

∣∣{i : ki = k, σi = σ}∣∣ hk,T
σθ max

σ,θ

∣∣{i : ki = k, σi = σ, θi = θ}∣∣
hkl,T

σ min
u∈{k,l}

max
σ

∣∣{i : ki = u, σi = σ}∣∣ hkl,T
σθ min

u∈{k,l}
max
σ,θ

∣∣{i : ki = u, σi = σ, θi = θ}∣∣
hk,T

θ max
θ

∣∣{i : ki = k, θi = θ}∣∣ hkl,T
σθ= max

σ,θ
min

u∈{k,l}

∣∣{i : ki = u, σi = σ, θi = θ}∣∣
hkl,T

θ min
u∈{k,l}

max
θ

∣∣{i : ki = u, θi = θ}∣∣ hT
k∈l

∣∣{j : kj = l, ∃ki = k, pi ∈ Bj}
∣∣

hkl,T
σ= max

σ
min

u∈{k,l}

∣∣{i : ki = u, σi = σ}∣∣ hT
k⊂l

∣∣{j : kj = l, ∃ki = k, Bi ⊂ Bj}
∣∣

hkl,T
θ= max

θ
min

u∈{k,l}

∣∣{i : ki = u, θi = θ}∣∣ hT
k∩l

∣∣{j : ki = l, ∃ki = k, Bi ∩ Bj �= ∅}∣∣
hk,T

B max
i

∣∣{j : ki = k, pj ∈ Bi}
∣∣ hT

k∝l

∣∣{j : kj = l, ∃ki = k, pi ∝ pj}
∣∣

hkl,T
B max

i
min

u∈{k,l}

∣∣{j : ki = u, pj ∈ Bi}
∣∣ hT

k∈ℵN
l

∣∣{j : kj = l, ∃ki = k, pi ∈ ℵN
pj

}∣∣

orientations, giving hkl
σ , h

kl
θ , h

kl
σθ. The latter corresponds to a Boolean combina-

tion of single point classifiers, e.g. hk
σ and hl

σ.
A weak classifier hkl

B can be constructed similarly to hk
B that checks for the

existence of a pair of interest points labeled k, l such that both of them have at
least T interest points inside their balls.

We additionally consider five other ways of exploiting the position information
associated with patches:

– hk∈l tests if there are at least T keypatches labeled l which contain an interest
point labeled k within their ball.

– hk⊂l tests if there are at least T keypatches labeled l whose balls contain the
whole ball of an interest point labeled k.

– hk∩l tests if there are at least T keypatches labeled l whose balls intersect
with the ball of at least one interest point labeled k.

– hk∝l tests if there are at least T keypatches labeled l such that their closest
neighboring interest points in the image are labeled k.

– hk∈ℵN
l

tests if there are at least T keypatch labeled l such that there exist a
keypatch labeled k among its N closest neighbors.
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Fig. 3. Examples from our 10 class dataset

The set of weak classifiers we considered is summarized in Table 1 and Figure 2
illustrates some of them. Of course there are a lot of other possibilities that could
be experimented with.

5 Results

This section presents some results from our experiments. First we compare our
bag-of-keypatch approach with the method described in [6]. Therefore we used
the object classes from their FPZ dataset that are freely available, i.e. five object
classes - 1074 airplane side images, 651 car rear images, 720 car side images, 450
frontal face images, and 826 motorbike side images - and a set of 451 background
images.

The second set of experiments were done on a more challenging in-house
dataset. This test was made to test larger number of classes, more variable poses
and intra-class variations and significant amounts of background clutter. The
images have resolutions between 0.3 and 2 mega-pixels and were acquired with a
diverse set of cameras. The images are color but only the luminance component
is used in our method. They were gathered by XRCE and Graz University. This
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dataset4 contains 3084 images from 10 categories. The number of images per
class are: bikes (237), boats (434), books (270), cars (307), chairs (346), flowers
(242), phones (250), road signs (211), shoes (525) and soft toys (262). Figure 3
shows some images from this database.

We used the confusion matrix (4) to evaluate the multi-class classifiers and
the overall correct rate (5) for the object detection:

Mij =

∣∣{I ∈ Cj : Hi(I) ≥ Hm(I), ∀m}
∣∣∣∣Cj

∣∣ , (4)

and

R = 1−
∑Nc

j=1

∣∣Cj

∣∣Mjj∑Nc

j=1

∣∣Cj

∣∣ (5)

where Nc is the number of considered classes, i, j ∈ {1, · · · , Nc}, Cj is the set
of test images from category j and Hm(I) is the real output of the classifier Hm

which was trained to distinguish class m from the rest of the classes.

Vocabulary size. There exist methods allowing to automatically select the num-
ber of clusters for K-means. For example, Pelleg et al [18] use cluster splitting,
where the splitting decision depend on the Bayesian Information Criterion. How-
ever, in the present case we do not really know anything about the density or the
compactness of our clusters. Moreover, we are not even interested in a ”correct
clustering” in the sense of feature distributions, but rather in accurate catego-
rization. We therefore simply compare error rates for different values of K.

Figure 4 presents the overall error rates using the bag-of-keypatches approach
on our in-house dataset as a function of the number of clusters K. Each point
in Figure 4 is the “best”5 of 10 random trials of K-means. We can notice that
the error rate only improves slightly as we move from k = 1000 to k = 2500.
We therefore assert that k = 1000 presents a good trade-off between accuracy
and speed and in all of our experiments we worked with the “best” vocabulary
of size 1000.

Object Detection. Table 2 compares our results with the ones obtained by
Fergus et al as far as they are available from their paper [6] on the FPZ dataset.
They were obtained using 2-fold cross-validation and the correct rates reported
correspond to the equal error operating point. As they did, we train our classifiers
to recognize foreground images, i.e. images belonging to the considered class, and
reject background images. The difference between SVM1 and SVM2 is that to
build the visual vocabulary (K-means) in the former case we used a subset of
images from the FPZ database and in the latter case a completely independent
image set. We can observe only a slight difference between the performances of
SVM1 and SVM2, showing a low influence of the initial sample feature set on
the classification results.
4 The dataset is publicly available on ftp://ftp.xrce.xerox.com/pub/ftp-ipc
5 Best in the sense of lowest empirical risk in categorization [26].
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Fig. 4. The lowest overall error rate (percentage) found for different choices of k

Table 2. Correct rates for all classes obtained in 2-fold cross-validation at the equal
error rate point by Fergus et al (FPZ) with our bag-of-keypatches method (SV Mi)
and a PLSA based approach (PLSA) described in [22]. The best results for each class
are shown in bold face.

method Airplanes Cars(rear) Cars(side) Faces Motorbikes
FPZ 90.2 N/A 88.5 96.4 92.5
SV M1 97.1 98.6 87.3 99.3 98
SV M2 96.4 97.9 86.1 98.9 97.3
PLSA 96.6 88.1 N/A 94.7 84.6

Except for cars (side) all the classifiers trained with our method perform much
better, no matter which set of keypatches we use. The small difference on the
cars (side) dataset is probably not significant. One possible reason why we do
not perform so well on this category is that the cars (side) images are small and
contain few keypatches (only about 50 keypatches compared with 500-1000 for
the other classes).

Figure 5 shows the ROC curves for the classifiers obtained for SVM1 with the
different classes using 2-fold cross-validation. It shows that even for classifiers
with a very small false positive rate the recall is very high.

Multi-class Classifier. Tables 3 and 4 report the results we obtain using our
method for training a multi-class classifier on the above mentioned five-class
dataset. Table 3 shows the results with 2-fold cross-validation. This allows to
compare the results with those from the object detection case (Table 2). It shows
that in all cases except cars (side) the correct rates observed in the multi-class
case are inferior to those obtained in the object detection case. Again this might
be linked to the small number of keypatches present in the images belonging to
this category.
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Fig. 5. Zoomed-in view of the ROC curves obtained with keypatch set 2. The x-axis
corresponds to false positive rate (1-precision), while the y-axis corresponds to the true
positive rate (recall). The diagonal indicates the equal error rate (false negative rate
= false positive rate).

Table 3. Overall correct rates for all classes obtained with 2-fold cross-validation with
the different keypatch sets

method Airplanes Cars(rear) Cars(side) Faces Motorbikes
SV M1 96.4 97.1 97.1 92.4 92.4
SV M2 94.4 94.6 97.3 89.8 90.5
SREZF1 95.2 98.1 N/A 94 83.6
SREZF2 97.5 99.3 N/A 99.5 96.5

In two last rows of Table 3 (SREZF1 and SREZF2) we show the recent
results obtained by Sivic et al [22] on this dataset using PLSA. They do not
used cars (side) images. The inclusion of cars (side) is belived to confuse the
classifier and significantly increase error rates.

They first used the training images (one fold) plus about 200 background images
without their label and searched for 7 topics. In this way the PLSA discovered 3
topics related to background content and 4 topics corresponding to the 4 categories.
In SREZF1 the test images were assigned to the most probable of the 7 topics.
In SREZF2 test images were assigned only to the most probable of the 4 topics
corresponding to categories (excluding the background topic from the ranking).

The results shows that using PLSA for automatic topic detection is promising
and has the advantage that it do not need individual labeling of images. However
it is difficult to judge how it scales with the number of categories and as shown
in Table 2 it works less well for binary classification against background.
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Table 4. Confusion matrix for SV M1 with 10-fold cross validation using a linear kernel

True classes → Airplanes Cars(rear) Cars(side) Faces Motorbikes
Airplanes 96.7 0.2 0.6 2 3.4
Cars(rear) 0.4 98.2 1 1.1 2.4
Cars(side) 0.2 0 97.6 0.2 0.3
Faces 1 0.6 0.1 94.2 0.6
Motorbikes 1.8 1.1 0.8 2.4 93.4
Mean ranks 1.04 1.03 1.06 1.06 1.09

Table 4 shows the confusion matrix and the mean ranks6 for SVM1 with
10-fold cross-validation for comparison. The results obtained with 10-fold cross-
validation outperform those obtained with 2-fold cross-validation. This is nat-
ural, as the number of training images increases.

10 Class Dataset. For the experiments with our 10 class database we only
used the independently built visual vocabulary. Therefore in the following we
ignore the subscript 2 from SVM2. Table 5 shows the confusion matrix and the
mean ranks obtained for this dataset using a 5-fold cross-validation.

Table 5. Confusion matrix and mean ranks for SV M

classes bikes boats books cars chairs flowers phones r. signs shoes s. toys
bikes 69.2 1.7 1.9 1 5.3 1.2 0.4 3.2 1.2 1.3
boats 3.7 79.3 5.2 4.6 7.7 1.7 1.2 1.3 1.8 1.7
books 1.3 2.2 70.3 2.4 2.7 0.6 4.6 4.5 0.6 1.7
cars 4.2 3.7 2.4 72.1 8.3 0.3 3.1 3.1 1.5 0.8
chairs 10.8 3.9 5.3 5.4 58.8 2.2 2.7 5.8 1.3 1.1
flowers 1.2 1.2 1.3 1.6 1.2 86.7 1.6 1.6 0.7 0.8
phones 1.9 0.7 4.1 3.7 2.8 1.4 70.4 1.7 1.3 1.4
road signs 1.7 1.9 2.4 1.9 4.9 1.1 2.7 69 1.4 1.2
shoes 3.6 5.2 4.5 6.4 6.7 1.6 11.6 8.3 86.3 10.8
soft toys 2.4 0.2 2.6 0.9 1.6 3.2 1.7 1.5 3.9 79.2
mean ranks 1.5 1.3 1.5 1.3 1.9 1.3 1.9 1.7 1.3 1.2

Incorporating Geometry Information. Table 6 shows the correct classifi-
cation rates (Mii) for each class obtained with the boosting approach without
adding geometric information. The first row corresponds to the approach hk

where only single keypatch based weak classifiers were selected, and the second
row shows results of the hk,l approach corresponding to weak classifiers based
on pair of keypatches. In the third row we show the results of the SVM (the
diagonal of the confusion matrix shown in Table 5) for comparison. All results
were obtained by 5-fold cross-validation.
6 These are the mean position of the correct labels when labels output by the multi-

class classifier are sorted by the classifiers’ scores.
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Table 6. Correct classification rates for: boosting without geometry (hk, hk,l); SVM
with a linear kernel; boosting all types of weak classifiers hall and boosting SVM with
all types of weak classifiers (SV Mall). The standard error on the correct rate for each
category is about 0.4%.

classes bikes boats books cars chairs flowers phones r. signs shoes s. toys mean
hk 61.7 74.5 67.0 55.6 50.7 82.5 67.6 61.4 73.9 68.9 66.4
hk,l 64.6 76.1 68.5 61.0 50.7 84.6 69.6 64.8 76.6 69.2 68.6
SV M 69.2 79.3 70.3 72.1 58.8 86.7 70.4 69.0 86.3 79.2 74.1
hall 70.0 73.8 68.2 64.1 57.4 82.9 68.0 61.9 75.2 76.2 69.8
SV Mall 74.6 81.8 78.2 77.5 65.2 89.6 76.0 76.2 83.8 83.8 78.7

We can see that hk,l outperforms hk, but both boosting approaches have much
lower performance than the linear SVM . We also tested the quadratic kernel for
SVM as it implicitly considers keypatch pairs but the results were very similar
to those of the linear kernel.

Furthermore, we investigated how well each weak classifier type performed
when it was used exclusively for boosting. Results are given in Table 7 and
selected weak classifier examples are shown in Figure 6.

Table 7. Mean correct rates when boosting individual weak classifier types (first row)
and their percentage of being chosen when combined with SVM

hk
σ hkl

σ hkl
σ= hk

θ hkl
θ hkl

θ= hk
σθ hkl

σθ hkl
σθ= hk

B hkl
B hk∩l hk∈l hk⊂l hk∝l hk∈ℵ5

l
hk∈ℵ10

l

63.6 66.5 46.2 62.1 62.6 48.8 61.6 64.5 48.8 62.8 63.8 63.3 64.1 53.8 58.5 62.4 64.5

2 21.2 2.8 0.4 13.5 3.2 0.4 9 1.6 3.8 35.7 2.7 0.8 0.1 0.3 0.9 1.6

Table 8. Confusion matrix and mean ranks for SV Mall

classes bikes boats books cars chairs flowers phones r. signs shoes s. toys
bikes 74.6 1.6 1.5 0.6 5.5 1.2 0 1 0.6 0.8
boats 3.3 81.8 4.1 4.7 4.6 1.2 0.4 1 2.1 0.8
books 0 2.1 78.2 1.3 2.3 0 4.8 3.3 0.7 1.1
cars 3.8 3.7 2.2 77.5 7 0.4 2 3.3 1.3 0.4
chairs 10.4 2.8 4.4 4.8 65.2 2.1 2.8 4.3 2.5 0
flowers 1.2 0.9 0 0.6 1.8 89.6 0 1.4 0.6 0.8
phones 0.8 0.7 3 2.9 2.3 0.4 76 1 2.1 0.4
road signs 1.3 0.9 2.2 1.6 4.6 1.3 2.4 76.2 1.3 0
shoes 2.9 5.3 3.7 6 5.5 1.3 10.4 7.6 83.8 11.9
soft toys 0.4 0.2 0.7 0 1.2 2.5 1.2 0.9 5 83.8
mean ranks 1.4 1.3 1.4 1.3 1.8 1.2 1.9 1.5 1.5 1.1
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(a) (b)

(c) (d)

Fig. 6. The three most relevant single keypatches hk for the “chair” classifier are shown
in (a). The following images show the single most relevant weak classifier based on pairs
of patches for types (b) hkl

σ , (c) hk⊂l and (d) hk∩l respectively in the case of “road
sign”, “flowers” and “boat” classifiers. In each case we show all patches of type k (in
blue) and all patches of type l (in green). Not all of these patches verify the respective
geometric condition. For (d) hk∩l it happends that the most relevant weak classifier
hk⊂l for the “boat” classifier was obtained for k = l hence only blue circles are shown.

We then combined the 17 types of geometric weak classifiers with hypotheses
hk and hk,l. This (see fourth row of Table 6) slightly improved on the boosting
results without geometry (first two rows) but gave still lower performance than
the SVM.

Finally, we combined the SVM outputs with the weak classifiers using gen-
eralized AdaBoost. First the SVM outputs were normalized to [−1, 1] using a
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sigmoid fit7 [20]. This classifier was considered as first “weak” classifier h1 of the
boosting approach (see Eqn (1)) and the corresponding α1 and D2(i) were ac-
cordingly computed (see Eqn’s (3) and (2)). Other weak classifiers were selected
from the full set of 19’s h’s. The second row of Table 7 shows how often each
classifier type was used. Clearly hkl

B and hkl
σ are importnat complements to the

SVM.
The SVM performance was significantly improved (see Table 6 fifth row). Ta-

ble 8 shows the confusion matrix and the mean ranks for this combined classifier.

6 Conclusions

In this chapter we have presented a simple approach to generic visual catego-
rization using feature vectors constructed from clustered descriptors of image
patches. This approach can easily handle variations in view and lighting. Fur-
thermore it is robust to background clutter, occlusion as well as intra-class vari-
ations. It was tested on different datasets which showed the strength and the
weaknesses of the method. Using an easy dataset (FPZ) we obtained excellent
results both for object detection and for multi-class categorization. However our
in-house dataset which is much more challenging showed that further improve-
ments are necessary.

We explored the possibility of improving the accuracy using geometric infor-
mation. In contrast to approaches such as [6,11], where due to relatively strong
geometrical (shape) constraints the method requires the alignment and segre-
gation of different views of objects in the dataset, we proposed to incorporate
geometric constraints as weak conditions. We defined and selected from a mul-
titude of geometry based weak classifiers (several millions) and combine them
effectively with the original SVM classifier using generalized AdaBoost. Results
have been given on a challenging 10-class dataset which is publicly available. The
benefits of the proposed method are its invariance and good accuracy. Overall
improvement in error rate has been demonstrated through the use of geometric
information, relative to results obtained in the absence of geometric information.

While we have explored 19 types (17 with geometry) of weak classifier, many
more can be envisaged for future work. Geometric properties are of course widely
used in matching. It will be interesting to explore how recent progress in this
domain such as techniques in [7,10] can be exploited for categorization. It will
also be interesting to evaluate other approaches to boosting in the multi-class
case such as the joint-boosting proposed in [25], which promises improved gen-
eralization performance and the need for fewer weak classifiers.

However, one of the main inconveniences of the proposed approach is the cost
of the training which does not scale well with the number of images and number
of classes (all weak classifiers must be tested on the whole training set at each step
of the boosting). One way to reduce the search is to build a vocabulary of doublets
(pair of keypatches) using only the most relevant visual words as in [22].
7 This transformation of SVM outputs to confidence was also applied when we ranked

the outputs from different classes.
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More recently, in [19] we have shown that approaches based on soft clustering
using GMM rather than K-means can enable substantial improvements in accu-
racy. It was also shown that when combined with adaptation techniques drawn
from speech recognition, such approaches can scale well with the number of
classes. It will be an interesting challenge to incorporate geometric information
with such soft clustering approaches.
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Abstract. We present a component-based system for object detection
and identification. From a set of training images of a given object we
extract a large number of components which are clustered based on the
similarity of their image features and their locations within the object
image. The cluster centers build an initial set of component templates
from which we select a subset for the final recognizer. The localization
of the components is performed by normalized cross-correlation. Two
types of components are used, gray value components and components
consisting of the magnitudes of the gray value gradient.

In experiments we investigate how the component size, the number
of the components, and the feature type affects the recognition perfor-
mance. The system is compared to several state-of-the-art classifiers on
three different data sets for object identification and detection.

1 Introduction

Object detection and identification systems in which classification is based on
local object features have become increasingly common in the computer vision
community over the last couple of years, see e.g. [24,8,11,26,4]. These systems
have the following two processing steps in common: In a first step, the image
is scanned for a set of characteristic features of the object. For example, in a
car detection system a canonical gray-value template of a wheel might be cross-
correlated with the input image to localize the wheels of a car. We will refer
to these local object features as the components of an object, other authors
use different denotations such as parts, patches or fragments. Accordingly, the
feature detectors will be called component detectors or component classifiers.
In a second step, the results of the component detector stage are combined to
determine whether the input image contains an object of the given class. We will
refer to this classifier as the combination classifier.

An alternative approach to object classification is to search for the object as
a whole, for example by computing the cross-correlation between a template of
the object and the input image. In contrast to the component-based approach, a
single classifier takes as input a feature vector containing information about the

J. Ponce et al. (Eds.): Toward Category-Level Object Recognition, LNCS 4170, pp. 225–237, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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whole object. We will refer to this category of techniques as the global approach;
examples of global face detection systems are described in [23,13,18,14,7]. There
are systems which fall in between the component-based and the global approach.
The face detection system in [25], for example, performs classification with an
ensemble of simple classifiers, each one operating on locally computed image
features, similar to component detectors. However, each of these simple classi-
fiers is only applied to a fixed x-y-position within the object window. In the
component-based approach described above, the locations of the components
relative to each other are not fixed: each component detector performs a search
over some part of the image to find the best matching component.

In the following we briefly motivate the component-based approach:
(a) A major problem in detection is the variation in the appearance of objects

belonging to the same class. For example, a car detector should be able to detect
SUVs as well as sports cars, even though they significantly differ in their shapes.
Building a detector based on components which are visually similar across all
objects of the class might solve this problem. In the case of cars, these indicator
components could be the wheels, the headlights or the taillights.

(b) Components usually vary less under pose changes than the image pattern
of the whole object. Assuming that sufficiently small components correspond to
planar patches on the 3D surface of the object, changes in the viewpoint of an
object can be modeled as affine transformations on the component level. Under
this assumption, view invariance can be achieved by using affine invariant image
features in the component detector stage as proposed in [4]. A possibility to
achieve view invariance in the global approach is to train a set of view-tuned,
global classifiers as suggested in [15].

(c) Another source of variations in an objects appearance is partial occlu-
sion. In general it is difficult to collect a training set of images which covers the
spectrum of possible variations caused by occlusion. In the component-based
approach, partial occlusion will only affect the outputs of a few component de-
tectors at a time. Therefore, a solution to the occlusion problem might be a
combination classifier which is robust against changes in a small number of its
input features, e.g. a voting-based classifier. Another possibility is to add artifi-
cial examples of partially occluded objects to the training data of the combina-
tion classifier, e.g. by decreasing the component detector outputs computed on
occlusion-free examples. Experiments on detecting partially occluded pedestri-
ans with a component-based system similar to the one describe in our chapter
have been reported in [11].

One of the main problems that has to be addressed in the component-based
approach is how to choose a suitable set of components. A manually selected set
of five components containing the head, the upper body, both arms, and the lower
body has been used in [11] for person detection. Although there are intuitively
obvious choices of components for many types of objects, such as the eyes, the
nose and the mouth for faces, a more systematic approach is to automatically
select the components based on their discriminative power. In [24] components
of various sizes were cropped at random locations in the training images of
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an object. The mutual information between the occurrence of a component in
a training image and the class label of the image was used as a measure to
rank and select components. Another strategy to automatically determine an
initial set of components is to apply a generic interest operator to the training
images and to select components located in the vicinity of the detected points
of interest [5,4,10]. In [4], this initial set was subsequently reduced by selecting
components based on mutual information and likelihood ratio. Using interest
operators has the advantage of providing a quick and reliable way to locate
component candidates in a given input image. However, forcing the locations
of the components to coincide with the points detected by the interest operator
considerably restricts the choice of possible components—important components
might be lost. Furthermore, interest operators have a tendency to fail for objects
with little texture and objects at a low pixel resolution.

How to include information about the spatial relationship between components
is another important question. In the following we assume that scale and trans-
lation invariance are achieved by sliding an object window of fixed size over the
input image at different resolutions—the detection task is then reduced to classi-
fying the pattern within the current object window. Intuitively, information about
the location of the components is important in cases where the number of compo-
nents is small and each component carries only little class-specific information.

We adopt the component-based classification architecture similar to the one
suggested in [8,12]. It consists of two levels of classifiers; component classifiers at
the first level and a single combination classifier at the second level. The compo-
nent classifiers are trained to locate the components and the combination classifier
performs the final detection based on the outputs of the component classifiers. In
contrast to [8], where support vector machines (SVM) were used at both levels,
we use component templates and normalized cross-correlation for detecting the
components and a linear classifier to combine the correlation values.

2 System Description

2.1 Overview

An overview of our two-level component-based classifier is shown in Fig. 1. At
the first level, component classifiers independently detect components of the
object. Each component classifier consists of a single component template which
is matched against the image within a given search region using normalized cross-
correlation. We pass the maximum correlation value of each component to the
combination classifier at the second level. The combination classifier produces a
binary recognition result which classifies the input image as either belonging to
the background class or to the object class.

2.2 Features

The applicability of a certain feature type depends on the recognition task
at hand–some objects are best described by texture features, others by shape
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Fig. 1. The component-based architecture: At the first level, the component templates
are matched against the input image within predefined search regions using normalized
cross-correlation. Each component’s maximum correlation value is propagated to the
combination classifier at the second level.

features. The range of variations in the pose of an object might also influence
the choice of features. For example, the recognition of cars and pedestrians from
a car-mounted camera does not require the system to be invariant to in-plane
rotation; the recognition of office objects on a desk, on the other hand, re-
quires invariance to in-plane rotation. Invariance to in-plane rotation and to
arbitrary rotation of planar objects can be dealt with on a feature level by
computing rotation-invariant or affine invariant features, e.g. see [10,4]. In the
general case, however, pose invariance requires an altogether different classifi-
cation architecture such as a set of view-tuned classifiers [15]. Looking at bi-
ological visual systems for clues about useful types of features is certainly a
legitimate strategy. Recently, a biologically motivated system which uses Gabor
wavelet features at the lowest level has shown good results on a wide variety
of computer vision databases [21]. With broad applicability and computational
efficiency in mind, we chose gray values and the magnitudes of the gradient as
feature types.1

2.3 Geometrical Model

Omitting any spatial information leads to a detection system similar to the
biologically plausible object recognition models proposed in [16,24,21]. In [16],

1 We computed the gradient by convolving the image with the derivatives of a 2D-
Gaussian with σ = 1.
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the components were located by searching for the maximum outputs of the
detectors across the full image. The only data propagated to the higher level
classifiers were the outputs of the component detectors.

A framework in which the geometry is modeled as a prior on the locations of
the components by a graphical model has been proposed in [3]. The complexity
of the graphical model could be varied between the simple näıve Bayesian model
and the full joint Gaussian model. The experimental results were inconclusive
since the number of components was small and the advantages of the two imple-
mented models over the näıve Bayesian model were in the range a few percent.
In cases where the number of components and the number of detections per com-
ponent are large, complex models might become computationally too expensive.
A standard technique to keep the number of detections small is to apply interest
operators to the image. The initial detections are then solely appearance-based
which has the disadvantage that configurations with a high geometrical prior
might be discarded early in the recognition process. A technique in which both
appearance and geometry are used at an early stage has been proposed in [2].

We introduce geometrical constraints by restricting the location of each com-
ponent to be within a pre-defined search region inside the object window. The
search regions can be interpreted as a simple geometrical model in which the
prior for finding a component within its search region is uniform and the prior
of finding it outside is zero.

2.4 Selecting Components

As shown in Fig. 1 we divided the image into non-overlapping search regions.
For each of the object images in the training set and for each search region we
extracted 100 squared patches of fixed size whose centers were randomly placed
within the corresponding search region. We then performed a data reduction step
by applying k-means clustering to all components belonging to the same search
region. The k-means clustering algorithm has been applied before the context
of computing features for object recognition [17,20]. The resulting cluster cen-
ters built our initial set of component templates. For each component template
we built a corresponding component classifier which returned a single output
value for every training image. This value was computed as the maximum of
the correlation between the component template and the input image within the
search region. The next step was to select a subset of components from the pool
of available component templates. We added a negative training set contain-
ing non-object images which had the same size as the object images and either
used Adaboost [19] or Gentle-boost [6] to select the component templates. In a
previous study [12] we evaluated two other feature selection techniques on an
object identification database: a method based on the individual performance
(ROC area) of the component templates and forward stepwise regression [27].
The technique based on the ROC area performed about the same as Adaboost,
forward stepwise regression did worse.
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3 Experiments

3.1 The MIT Office Object Database

In this identification task, the positive training and test data consisted of im-
ages of four objects, a telephone, a coffee machine, a fax machine, and a small
bird figurine.2 The object images were manually cropped from high resolution
color images recorded with a digital camera. The aspect ratio of the cropping
window was kept constant for each object but varied between the four objects.
After cropping we scaled the object images to a fixed size. For all objects we
used randomly selected 4,000 non-object training images and 9,000 non-object
test images. Some examples of training and test images of the four objects are
shown in Fig. 2. We kept the illumination and the distance to the object fixed
when we took the training images and only changed the azimuthal orientation
of the camera. When we took the test pictures, we changed the illumination,
the distance to the object, and the background for the small objects. We freely
moved the hand-held camera around the objects allowing all three degrees of
freedom in the orientation of the camera.

Fig. 2. Examples of training and test images for the four objects. The first four images
in each row show training examples, the last four were taken from the test set.

Before we trained the final recognition systems we performed a couple of quick
tests on one of the four objects (telephone) to get an idea of how to choose the
size the components and the number of components for further experiments. We
also verified the usefulness of search regions:3

– We compared a system using search regions to a system in which the max-
imum output of the component classifiers was computed across the whole
object window. Using search regions improved the recognition rate by more

2 Fax machine: 44 training images and 157 test images of size 89 × 40. Phone: 34
training images and 114 test images of size 69×40 pixels. Coffee machine: 54 training
and 87 test images of size 51 × 40. Bird: 32 training images and 131 test images of
size 49 × 40.

3 The ROC curves for the experiments can be found in [12].
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than 20% up to a false positive (FP) rate of 0.1. Search regions were used
in all following experiments.

– We trained four classifiers on gray value components of size 3×3, 5×5, 10×10
and 15 × 15. All four classifiers used 30 components selected by Adaboost.
The classifiers for sizes 5× 5, 10× 10 and 15× 15 performed about the same
while the 3× 3 classifier was significantly worse. We eliminated components
of size 3× 3 from all further experiments.

– We trained a classifiers on gray value components of size 5 × 5 with the
number of components ranging between 10 and 400. For more than 100
components the performance of the classifier did not improve significantly.

– We evaluated the two feature types by selecting 100 components from a set of
gray value components, a set of gradient components, and the combination
of both sets. The gray values outperformed the combination slightly, the
gradient components performed worst. The differences, however, were subtle
(in the 2% range) and did not justify the exclusion of gradient features from
further experiments.

In the final experiment we trained a separate classifier for each of the four
objects. We randomly cropped gray value and gradient components from the
positive training images at sizes 5× 5, 10× 10, and 15× 15. Components of the
same size and the same feature type, belonging to the same search region were
grouped into 30 clusters of which only the components at the cluster centers
entered the following selection process. Of the 3,600 components we selected a
subsets of 100 and 400 components. As as baseline system we trained four SVMs
with on the raw gray values of the objects.4 Fig. 3 shows the ROC curves for
the four different objects for the component-based system and the global SVM
classifier. Except for the fax machine, where both systems were on par, the com-
ponent based system performed better. Both systems had problems recognizing
the bird. This can be explained by the strong changes in the silhouette of the
figure under rotation. Since we extracted the object images with a fixed aspect
ratio, some of the training images of the bird contained a significant amount of
background. Considering the fact that the background was the same on all train-
ing images but was different on the test images, the relatively poor performance
is not surprising.

3.2 The MIT Face Database

In this set of experiments we applied the system with a 4× 4 search region grid
to a face detection database. The positive training set consisted of about 9,000
synthetic face images of size 58× 58, the negative training set contained about
13,700 background patches of the same size. The test set included 5,000 non-
face patterns which were selected by a 19× 19 low-resolution LDA classifier as
the most similar to faces out of 112 background images. The positive test set
4 We did experiments with Gaussian and linear kernels and also applied histogram-

equalization in the preprocessing stage. Fig. 3 shows the best results achieved with
global systems.
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Fig. 3. Final identification results for the four different objects using a combination
of gray value and gradient components in comparison to the performance of a global
classifier

consisted of a subset of the CMU PIE database [22] that we randomly sampled
across the individuals, illumination and expressions. The faces were extracted
based on the coordinates of facial feature points given in the CMU PIE database.
We resized these images to 70 × 70 such that the faces in test and training set
were at about the same scale. Some examples from the training and test sets
are shown in Fig. 4. When testing on the 70× 70 images we applied the shifting
object window technique.

Fig. 4. Examples from the face database. The images on the left half show training
examples, the images on the right test examples taken from the CMU PIE database.
Note that the test images show a slightly larger part of the face than the training
images.

In the following we summarize the experiments on the face database:

– We compared Adaboost, previously used on the office database, with Gentle-
boost. Gentle-boost produced consistently better results. The improvements
were subtle, the largest increase in ROC area achieved in any of the com-
parisons was 0.01. In all of the following experiments we used Gentle-boost
to select the components.
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– We compared systems using gray value components of size 5 × 5, 10 × 10,
and 15× 15. The systems performed about the same.

– When increasing the number of gray value components of size 5 × 5 from
10 up to 80 the ROC area increased by 0.016. Adding more components did
not improve the results.

– Gradient components performed poorly on this database. In a direct com-
parison using 100 5 × 5 components the ROC area of the gradient system
was about 0.2 smaller than that of the gray value system.

In conclusion, systems with 80 gray value components of size 5× 5 or 10× 10
selected by Gentle-boost gave best results for face detection. Gradient compo-
nents were not useful for this database, adding them to the pool of gray value
components lead to a decrease in the system’s performance. A comparison to
the 14 component system using SVMs [8]5 and the biologically inspired model
in [21] is given in Table I.

Table 1. Comparison between our system with 80 gray value components and two
baseline systems. Given are the ROC area and the recognition rate at the point of
equal error rates (EER).

Our system 14 components SVM [8] Biological model [21]
ROC area 0.995 0.960 0.993
1− EER 0.962 0.904 0.956

3.3 The MIT Car Database

This database was collected at MIT as part of a larger project on the analysis of
street scenes [1]. It includes around 800 positive images of cars of size 128× 128
and around 9,000 negative background patterns of the same size. Since no explicit
separation of training and testing images was given, we followed the procedure
in [1] and randomly selected two thirds of the images for training and the rest for
testing. As for faces, we used a 4×4 search region grid. As the samples in Fig. 5
show, the set included different types of cars, strong variations the viewpoint
(side, front and rear views), partial occlusions, and large background parts.

Fig. 5. Examples from the car database. Note the large variations in pose and illumi-
nation.

It turned out thats small components performed the best on this database.
The ROC area for gray value components of a fixed size decreased by 0.12 when
5 A different training set of faces was used in this paper.
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increasing the size of the components from 5×5 to 15×15. The appearance of the
cars in this database varied strongly making it unlikely to find large components
which are shared amongst the car images. Since the shadow below the car was a
salient feature across most of the car images, it did not surprise that the gradient
components outperformed the gray components on this task.

In Fig. 6 we compare the ROC curves published in [1] with our system using
100 gradient components of size 5×5 selected by Gentle-boost. We did not train
the systems on the same data since the database did not specify exactly how
to split into training and test sets. However, we implemented a global classifier
similar to the one used in [1] and applied it to our training and test sets. The right
diagram shows two wavelet-based systems labeled “C1” and “C2”, the latter
is similar to [21], a global gray value classifier using an SVM, labeled “global
grayscale”, a part-based system according to [9], and a patch-based approach in
which 150 out of a pool of 1024 12× 12 patches were selected for classification.
In a direct comparison, our system performs similar to the “C2” system and
slightly worse than the “C1” system. This comparison should be taken with a
grain of salt since the global gray value classifier performed very differently on
the two tests (compare the two curves labeled “global grayscale”).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

Car Detection

Gradient, Gentleboost, 100 components

Global Grayscale, SVM, 2nd−degree polynomial kernel

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

Car Detection

Standard Model (C1)

Standard Model (C2)

Part−Based System

Gloabl Grayscale

Local Patch Correlation

Fig. 6. The ROC curves on the left compare the component system to a global system,
the curves on the right are taken from [1]. The curves in both diagrams have been
computed on the MIT car detection database, however, the splits into training and
test sets were different.

4 Conclusion

We presented a component-based system for detecting and identifying objects.
From a set of training images of a given object we extracted a large number

of gray value and gradient components which were split into clusters using the
k-means algorithm. The cluster centers built an initial set of component tem-
plates. We localized the components in the image by finding the maxima of the
normalized cross-correlation inside search regions. The final classifier was built
by selecting components with Adaboost or Gentle-boost.
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In most of our experiments, selecting around 100 components from a pool of
several thousands seemed to be sufficient. The proper choice of the size of the
components proved to be task-dependent. Intermediate component sizes between
5×5 and 15×15 pixels led to good results on the objects in our databases, which
varied in resolution between 50× 50 and 130× 130 pixels. We also noticed that
the optimal choice of the feature type depends on the task. While the gray value
components outperformed the gradient components in the office object and face
experiments, the gradient components proved to be better for detecting cars.

We showed that our system can compete with state-of-the-art detection and
identification systems. Only on one of the databases our system was outper-
formed by a detection system using wavelet-type features. We see the main
advantages of our approach in its conceptual simplicity and its broad applica-
bility. Since both the computation of the features and the matching algorithm
are computationally simple, the system has the potential of being implemented
in real-time.
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Abstract. We consider strategies for reducing ambiguity in multi-modal
data, particularly in the domain of images and text. Large data sets con-
taining images with associated text (and vice versa) are readily available,
and recent work has exploited such data to learn models for linking vi-
sual elements to semantics. This requires addressing a correspondence
ambiguity because it is generally not known which parts of the images
connect with which language elements. In this paper we first discuss us-
ing language processing to reduce correspondence ambiguity in loosely
labeled image data. We then consider a similar problem of using visual
correlates to reduce ambiguity in text with associated images. Only rudi-
mentary image understanding is needed for this task because the image
only needs to help differentiate between a limited set of choices, namely
the senses of a particular word.

1 Introduction

Recent work suggests that the semantics of images and associated text can be
better learned from data if they are considered together. For example, to build
a system for searching and browsing large data sets, one should take advantage
of available textual information. However, text alone cannot capture all that
is of interest in an image. Furthermore, images with detailed text descriptions
are rare. Thus there has been recent interest in integrating available text with
visual information. This includes providing methods for searching and browsing
which use both image features and text [21,22], and learning links between visual
representations and words from loosely labeled training data [13,25,10,20]. In this
paradigm, the models learned can be used to add labels to new images (auto-
annotate), or even image regions (region-labeling). Alternatively, the links can
be implicit, and simply help queries based on visual descriptors to return more
semantically meaningful results [13,46].

J. Ponce et al. (Eds.): Toward Category-Level Object Recognition, LNCS 4170, pp. 238–257, 2006.
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The underlying key idea in these methods is the observation that images with
associated text have substantive supervisory information that can be exploited.
The main confound is ambiguity. For example, in an image labeled with the
words “tiger”, “water”, and “grass”, it is not known which parts of the image
correspond to which of these words. The work cited above addresses this cor-
respondence ambiguity by building models for the various visual concepts that
are consistent over a number of images. In our example, the single image does
not have sufficient information to determine which words go with which fea-
tures. However, additional images with, for example, tigers without water, and
water without tigers, the ambiguity can be reduced. The process of reducing
the ambiguity by using large training sets is analogous to statistical machine
translation.

Now consider a program for automatically labeling our example image based
on a learned model. Labeling images is clearly a difficult task. However, it be-
comes easier if we assume that the labels must come from the associated words.
In our example, this means that instead of choosing among potentially hundreds,
or thousands of words, we only need to choose between three of them.

This constrained labeling of the training data is implicit in some of the learn-
ing approaches mentioned above. However, we find it useful to consider it more
explicitly. Doing so emphasizes that there are two parts of the problem. First,
we wish to migrate semi-supervised data towards supervised data. This is im-
portant if we are to use large, loosely labeled data sets in a more supervisory
fashion. Second, we need to develop algorithms and models that are targeted for
inference on new data. As mentioned above, current approaches deal with the
dependence between these two problems by iteratively solving one and then the
other. However, as the required models and inference become more complex, it
may be beneficial to consider the tasks separately. For example, a simple model
may be able to give a reasonable approximate labeling of training data. This
labeling can then be used to develop inference approaches which might be diffi-
cult to integrate into the initial labeling method. Further, augmenting strategies,
such as integrating supervisory data and language modeling, can be simplified
if we explicitly reduce correspondence ambiguity in the training data first, and
then build models for inference.

In this paper, we will suggest how language models can be used to reduce cor-
respondence ambiguity. In the work reported so far, language models have been
limited to a “bag of words” model. Further, the words are generally assumed
to be nouns. However, different parts of speech such as nouns, adjectives, and
prepositions relate to visual attributes differently. Further, since modern parts of
speech tagging [16,17] is relatively effective, there is opportunity to better exploit
associated text through language tools. For example, certain (visual) adjectives
embody specific image region features, and this is assumed to be consistent over
multiple objects. If this relationship is known, it can help resolve the correspon-
dence between words and image regions. Thus one can simultaneously learn the
meaning of words such as “red”, and use natural language analysis to exploit
the occurrence of the modifier “red” to help learn the meaning of “ball” from
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an image annotated with ”red ball”. Similarly, if we assume that certain simple
prepositions reflect spatial relations, we should be able to simultaneously learn
the meaning of those prepositions, and exploit that meaning to help learn the
visual representation of nouns being spatially related.

Reciprocally, images can also help disambiguate language meaning. In par-
ticular, words in natural language are ambiguous because they have multiple
meanings (senses). For example, the word “bank” has a number of meanings
including “financial institution” and that suggested by “river bank”. Intuitively,
an image could help determine the senses in a sentence like: “He ate his lunch
by the bank”. All that is required is that we have an image that is more corre-
lated with the correct sense. The image need not even contain a bank, nor do
we need to identify banks; the image features only need to correlate better with
the correct sense as compared with the incorrect sense.

It is important that a complete understanding of the image is not required,
as this would make the approach impractical given the current state of auto-
mated and image understanding. Notice that the disambiguation task is made
much easier because we only need to select among a limited number of choices;
namely the senses of the word being considered. Again, the disambiguation task
is simpler than a complete understanding, but reducing the ambiguity can help
move towards an understanding.

In what follows we first review recently developed approaches for dealing
with multi-modal data with correspondence ambiguity. We then consider two
instances of cross modality disambiguation in further detail. Here we discuss
how adjectives can reduce correspondence ambiguity in images with associated
text. We also propose a method to prune adjectives that are not visual, relative
to our features. Finally, we outline a method for using images to disambiguate
words in natural language.

2 Matching Words and Pictures

A number of methods have been recently developed for predicting words from
image data, based on a large training data of images with associated text. Crit-
ically, the correspondence between particular words and particular visual ele-
ments is not required, as large quantities of such data is not readily available
and expensive to obtain. Current approaches include:

– Simultaneously learning a model and reducing ambiguity, with latent en-
tities (concepts) competing with each other for image elements and words
[13,25,10,20]. This competition means that an image element that is more
likely to be associated with one word (e.g. “tiger”) is less likely to be as-
sociated with another one (e.g. “water”). Included here are translation ap-
proaches which constructs a model for words conditioned on image elements.

– Cross-media relevance models which predict words for entire images (auto-
annotation) based on a statistical match of the image with components in
the training data [35,28].
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– Multiple instance learning which builds a separate classifier for the presence
or absence of each word in the vocabulary in the face of multiple possibilities
of which image element is relevant [38,39,4,52,53,5,6]. While not explicitly
developed to do so, these methods support region labeling, and have recently
been evaluated on this task [12].

– Object category recognition efforts [15,29,27,48], which are focused on identi-
fying the existence of an object category, are related to the task of predicting
words for images, and could be evaluated in the same way. Here the data is
typically of an instance of an object category, with non-trivial clutter.

Here we review one method from the first approach which we build on below.
Specifically we will consider the dependent model ([8]) with linear topology (no
document clustering). This model owes much to previous work in the text domain
[34] and statistical machine translation [18,19,40].

The general idea, common with many models in this genre, is that image are
generated from latent factors (concepts) which contribute both visual entities
and words. The fact that visual entities and words come from the same source
is what enables the model to link them. Because we train the models with-
out knowing the correspondence, we need an assumption of how multiple draws
from the pool of factors lead to the observed data with ambiguity. The depen-
dent model is distinguished by assuming that multiple draws are first made to
produce the observed image entities. The same group of factors is then sampled
to produced the image words. Because words are generated conditioned on the
observed image, we consider this to be a translation approach.

This approach will work with any characterization of image entities (e.g. re-
gions with features). However, a key assumption is that image semantics is com-
positional, and thus each image typically needs to be described by multiple visual
entities. Without compositionally, we would need to model all possible combi-
nations of entities. For example, we would have to model tigers on grass, tigers
in water, tigers on sand, and so on. Clearly, one tiger model should be reused
when possible.

In what follows, we use feature vectors associated with image regions obtained
using normalized cuts [45]. For each image region we compute a feature vector
representing color, texture, size, position, shape [8], and color context [11]. As in
earlier work, we will refer to region, together with its feature vector, as a blob.
Our segmentations are limited to grouping pixels together with coherent color
and texture, and thus should be considered very low level.

2.1 An Exemplar Multi-modal Translation Model

We model the joint probability of a particular blob, b, and a word w, as

P (w, b) =
∑

l

P (w|l)P (b|l)P (l) (1)

where l indexes over concepts, P (l) is the concept prior, P (w|l) is a frequency
table, and P (b|l) is a Gaussian distribution over features. We further assume a
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diagonal covariance matrix (independent features) because fitting a full covari-
ance is generally too difficult for a large number of features. This independence
assumption is less troublesome because we only require conditional indepen-
dence, given the concept. Intuitively, each concept generates some image regions
according to the particular Gaussian distribution for that concept. Similarly,
it generates one ore more words for the image according to a learned table of
probabilities.

To go from the blob oriented expression (1) to one for an entire image, we
assume that the observed blobs, B, yield a posterior probability, P (l|B), which
is proportional to the sum of P (l|b). Words are then generated conditioned on
the blobs from:

P (w|B) ∝
∑

l

P (w|l)P (l|B) (2)

where by assumption
P (l|B) ∝

∑
b

P (l|b) (3)

and Bayes rule is used to compute P (l|b) ∝ P (b|l)P (l).
Some manipulation [9] shows that this is equivalent to assuming that the word

posterior for the image is proportional to the sum of the word posteriors for the
regions:

P (w|B) ∝
N∑
b

P (w|b) (4)

We limit the sum over blobs to the largest N blobs (in this work N is sixteen).
While training, we also normalize the contributions of blobs and words to miti-
gate the effects of differing numbers of blobs and words in the various training
images. The probability of the observed data, W ∪B, given the model, is thus:

P (W ∪B) =
∏
b∈B

(∑
l

P (b|l)P (l)

)max(Nb)
Nb ∏

w∈W

(∑
l

P (w|l)P (l|B)

)max(Nw)
Nw

(5)
where max(Nb) (similarly max(Nw)) is the maximum number of blobs (words)
for any training set image, Nb (similarly Nw)is the number of blobs (words) for
the particular image, and P (l|B) is computed from (3).

Since we do not know which concept is responsible for which observed blobs
and words in the training data, determining the maximum likelihood values
for the model parameters (P (w|l), P (b|l), and P (l)) is not tractable. We thus
estimate values for the parameters using expectation maximization (EM) [23],
treating the hidden factors (concepts) responsible for the blobs and words as
missing data.

The model generalizes well because it learns about image components. These
components can occur in different configurations and still be recognized. For
example, it is possible to learn about “sky” regions in images of tigers, and then
predict “sky” in giraffe images. Of course, predicting the word giraffe requires
having giraffes in the training set.
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3 Reducing Correspondence Ambiguity with Adjectives

We assume that descriptive text of an image can be parsed into parts of speech
with reasonable accuracy [16,17]. We further assume that the nouns that ad-
jectives bind to can be identified. Finally, in order to be useful, adjectives need
to be visual relative to a set of features. Examples of visual adjectives include
color words (e.g. “red”), and texture words (e.g. “furry”). We address pruning
non-visual adjectives from our vocabulary in the next section (§4).

Under these assumptions, it should be clear that adjectives have the potential
to help with correspondence disambiguation. If we are not (yet) able to link a
red ball to a circular red region, but we have the binding “red ball”, and we
have a model for red, then we have evidence that “ball” should link to red image
regions, and not other ones. We assume that if an adjective, a, binds to a noun,
n, then:

P (n|b) ∝ P (b|n) ∝ P (b|a) ∝ Padj(a|b) (6)

where Padj indicates that we use an adjective model. It is conceivable to construct
a process to jointly learns an adjective model and a noun model. However, it is
simpler to compute an adjective model first, using (for example) (5) restricted
to adjectives, and then use (6) as a prior probability for the nouns (6). That
prior is than used with a noun model, such as(5) applied to nouns.

To test the hypothesis that visual adjectives can help reduce correspondence
ambiguity in training data, we constructed a small data by labeling many of
the nouns associated with 1900 Corel TM images with one of fifteen adjectives
which were expected to have good visual properties (11 were color words). We
then built a prediction model for the adjectives alone using the model reviewed
above (§2.1). Thus we learned a model that could predict, to a certain extent,
“red” for a red region. We then applied the adjective based posterior to get a
noun prior via the linking of nouns with adjectives. We assumed that most of
the probability mass for this prior should be distributed among the associated
words for that image, but since the annotations often do not cover all blobs, we
allowed 10% of the probability mass for words not in the annotation. We also
build an instance of the same model (§2.1) for nouns. We then combined the
evidence from the noun model and adjective model used to predict the nouns
that they modify.

The results are much as one would expect. Some difficult to characterize
nouns are relatively easy to label given this kind of additional, semi-supervisory,
information. Almost invariably the labeling of the training data was improved
by including the adjective information. Often it was a more reliable source of
information than the noun model. This is likely partly due to the nature of our
“toy” data set, which has more nouns associated with visual adjectives than
would commonly be the case.

A main use of adjective information is to help label data that is not strongly
correlated with simple visual features. A good example is the car image (Fig-
ure 1). Since cars come in all colors, learning to recognize cars as an object
class by color is not possible. However, color can be used to identify a particular
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instance of a car. Several examples can further ensure that that cars are dissoci-
ated from a narrow range of colors. Given the identified examples, we are then
in a better position to construct a car model.

The fact that we chose to learn the meaning of the adjectives from a small,
weakly labeled data set, means that there were some labeling errors due to
the imperfect adjective model. This could be improved by more data, or by
adding some truly supervisory information. A second problem with our current
system is that good labellings based on adjectives are often better than the
combined result. We are currently pursuing better integration of the two sources
of information.

4 Identifying Visual Words

The above proof of concept relied on having nouns associated with adjectives that
had a good chance of being linked with our features. When we apply the methods
discussed above to larger data sets with free form text, our vocabularies will gain
many entries that have no chance to be linked with visual properties measured
by a given feature set. It is thus reasonable to attempt to prune vocabularies
in advance, removing words that do not have significant correlations with our
features. While is is conceivable that our models can simply absorb these words
without any ill effect, it is more likely that the noise created by words with no
visual properties will be detrimental. At a minimum, the computation cost can
be reduced by excluding such words.

We consider determining the visualness of a word based on a large external
data set that is not necessarily the target data set. While the visualness of a
word is somewhat relative to the data set, many words may not occur frequently
enough in a particular data set that a clear distinction can be made. We want
to keep words that might be subtly visual in our data set, and prune as many
as we can that have little chance of being visual at all.

Thus our approach is to actively seek many images that might be relevant to
each word under consideration, and determine how visual that word is in general.
Fortunately, with web image search engines such as Google Image Search, finding
a large number of images that have a fair chance of being relevant to a given
word is relatively straightforward.

Having selected the images, we face a familiar problem. Even if a word is
relevant to an image in general, it likely correlates with the features of only
a small part of the image. We expect the bulk of any image to be irrelevant
to the word. Hence to estimate whether a word correlates with image features,
we need to estimate which parts of the image are relevant. Not surprisingly,
this requires an iterative algorithm which alternates between determining an
appropriate characterization for the word, and determining which regions are
relevant.

To implement this we prepare a large Gaussian mixture model for the regions
of a large number of images. A concept is characterized as probability distribu-
tion over the mixture components. We iteratively estimate that distribution and
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Fig. 1. Example of using adjectives to reduce correspondence ambiguity in training
data. The upper left image is the original image containing a red car with a green veg-
etation backdrop. It is annotated with “red:automobile red:vehicle red:car exotic drago
ferrari”. The upper right image shows the nouns with maximal posterior probability
for each region, based on the adjective model. Specifically, the red regions in the image
are labeled by one of the nouns linked to “red”. Regions that have low posterior given
“red” are labeled by one of the words not linked to red (e.g. “exotic”). In this example,
all words also refer to the car but this is not known at this point, and by exclusion, the
non red regions get labeled with these other words. The bottom left image shows the
labeling using the noun model alone, but with a strong prior (90%) on choosing among
the associated words. This ensures that most of the words are good words for the image,
but correspondence can be a problem, as is quite noticeable with “automobile” in a tree
region. The bottom right image image shows the combined result. The correspondence
has been enhanced by the adjective, promoting “car” to be the label for the body of
the car. Several other words are reasonable, such as two instances of “trees”. These
words are not in the annotation, but they have sufficiently high posterior to overcome
the prior that tends to restrict words to the ones from the annotation. Finally, it is
clear that the word “exotic” is still ambiguous, due to being in the annotation of many
car images with many backdrops, but having no clear visual properties.

the whether or not each image region is relevant to the concept. After sufficient
iterations we compute the entropy of the distribution. If that distribution has
low entropy, then we designate the word as visual. Otherwise, the process sug-
gests that it is hard to distinguish the regions linked to the word with from a
random selection of regions. In that case we consider that word not sufficiently
visual, and prune it from the words that we try to link to image features. Some
details follow.
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4.1 Data Gathering and Pre-processing

For each concept (e.g. adjective) we use GoogleTM image search to find several
hundred images. As in the previous section, we simplify the data using low level
segmentation. However, due to the volume of data, we segment images with
JSEG [24] instead of normalized cuts, which is more expensive. For all processing
that follows we used the same feature set described above.

4.2 Detecting Regions Associated with a Concept

We process each concept in sequence. For each concept “X” we process the
regions from the associated images, as well as an equal number of randomly
selected other images, providing “non-X” regions. To obtain P (X |ri), which
represents the probability that a region is associated with the concept “X” we
use the following iterative process.

At first, we select “X” regions from the “X” images, and some “non-X” regions
from the “non-X” images at random. We then fit a Gaussian mixture model for
the image region features for both “X” and “non-X”, and assign components of
the mixture model according to the following formula:

pX
j =

nX∑
i=1

P (cj |rX
i , X) (7)

=
nX∑
i=1

P (X |cj , rX
i )P (cj) (8)

where cj is the j-th component of the mixture model, nX is the number of “X”
regions, and rX

i is the i-th “X” region.
The top m components in terms of pX

j are regarded as the model of “X” and
the rest are the model of “non-X”. With these models of “X” and “non-X”, we
can compute P (X |ri) for all the regions which come from “X” images. Assuming
that p1(X |ri) is the output of the model of “X” and p2(nonX |ri) is the output
of the model of “non-X”, given ri, we can obtain P (X |ri) as follows:

P (X |ri) =
p1(X |ri)

p1(X |ri) + p2(nonX |ri)
(9)

For the next iteration, we select the top n regions regarding P (X |ri) as “X”
regions and the top n/2 regions regarding P (nonX |ri) as “non-X” regions. Add
n/2 regions randomly selected from “non-X” images to “non-X” regions. In this
way, we mix newly estimated “non-X” regions and randomly selected regions
from “non-X” images after the second iteration. We adopt mixing rather than
using only newly estimated “non-X” regions based on the results of the prelim-
inary experiments. After computing the entropy, we repeat estimation of the
model of “X” and “non-X”, and computation of P (X |ri).
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4.3 Computing the Entropy of Concepts

We estimate the entropy of the image features of all the regions weighted by
P (X |xi) with respect to a generic model for image regions. For this model we
use a Gaussian mixture model (GMM) for fifty thousand randomly selected
regions from all the images. To reduce the impact of initialization in the EM
process, we average the results over k GMM’s fit with different starting points.

The average probability of image features of “X” weighted by P (X |xi) with
respect to the j-th component of the l-th generic base represented by the GMM
is given by

P (X |cj, l) =
wj,l

∑NX

i=1 P (fX,i; θj,l)P (X |ri)∑NX

i=1 P (X |ri)
(10)

where fX,i is the image feature of the i-th region of “X”, P (fX,i; θj,l) is the
generative probability of fX,i from the j-th component, wj,l is the weight of the
j-th component of the l-th base, and NX is the number of all the regions which
come from “X” images,

The entropy for “X” is given by

E(X) =
1
k

k∑
l=1

Nbase∑
j=1

−P (X |cj, l) log2 P (X |cj , l) (11)

where Nbase is the number of the components of the base (250 in our exper-
iments), and k is number of GMM’s with different starting points (5 in our
experiments). We use this entropy as a measure of the visualness of a concept.

4.4 Experiments

We experimented with 150 adjectives which are the 150 most common adjectives
used for indexing images in the Hemera Photo-Object collection. We used each
of these adjectives as the search term for Google Image search. We used the first
250 web images returned. Thus the entire experiment considered nearly forty
thousand images associated with adjectives.

We used 15 mixture components in (7). Because we expect adjectives to be
associated with visual properties more directly than nouns, we simply use a
single mixture component to model “X” (i.e., m=1).

Figure 2 shows “yellow” images after one iteration. In the figure, the regions
with high probability P (yellow|ri) are labeled as “yellow”, while the regions with
high probability P (non yellow|ri) are labeled as “non-yellow”. Figure 3 shows
“yellow” images after five iterations. This indicates the iterative region selection
worked well in case of “yellow”.

Table 1 shows the 15 top adjectives and their image entropy. In this case, the
entropy of “dark” is the lowest, so in this sense “dark” is the most “visual” ad-
jective among the 150 adjectives under the condition we set in this experiment.
Figure 4 shows some of the “dark” images. Most of the region labeled with “dark”



248 K. Barnard et al.

are uniform black ones. Other highly-ranked adjectives, “senior” and “beautiful”
include many human faces, and “visual”, which, interestingly, are not photos but
graphical images such as screen shots of Windows or Visual C. This suggests that
addressing biases due to what images are common on the web may be helpful.

We provide the ranking of color adjectives in Table 1. They are relatively
high, even though images from the Web included many irrelevant images. This
suggests that our pruning approach is promising.

Notice that the method identifies many words which, at first glance, do not
appear to be truly visual. A good example in our results is “professional” which is
ranked relatively high. The connection is through the sampling bias for “profes-
sional sports” which yields low entropy because of a limited number of textures
and backgrounds (e.g. fields and courts) that go with those images. It would seem
to depend on the application as to whether these words are a liability. If the goal
is to help image search, then such associations can be helpful. However, we have
clearly not captured the essence of “professional”, and thus for recognition we
would hope that the ambiguity can be resolved in subsequent steps.

This is conceivable in many cases. In the “professional sports” case, if we
assume relatively rich descriptions and sufficient data, then in the generative
model above, words like “field” and “court” would compete with “professional”
for probability. This can promote “professional” as a more general term that is
less directly associated with local features.

Table 2 lists the 15 adjectives with lowest entropy among the 150 tested. In
case of “religious” (Figure 5), which is ranked as 145-th, the region-adjective
linking did not work well, and the entropy is thus relatively large. This reflects
the fact that the image features of the regions included in “religious” images
have no prominent tendency. Thus we can say that “religious” has no or only a
few visual properties.

5 Using Pictures to Understand Language

Links between visual features and words can also be exploited for understanding
text and other documents. The idea is very simple and very familiar — illustra-
tions can help clarify and enhance the meaning of documents. As an initial step
in making this operational in an automatic setting, we have studied the problem
of using images to help disambiguate word senses [14].

Words used in natural language are often ambiguous because language has
evolved so that many words have several distinct meanings (senses). For example,
the word “bank” can mean a financial institution or a step or edge as in “snow
bank” or “river bank”. Words which are spelled the same but have different
meanings (polysemes) confound attempts to automatically understand natural
language.

Because such words are very prevalent, determining the correct sense (word
sense disambiguation) has been identified as an important problem in natural
language processing research. As such, it has been studied by many researchers
leading to a large body of work [7,37,51,50,32,3,2,42,43,49].
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Fig. 2. “Yellow” regions after one iteration. At this stage many of the images do not
have much yellow in them, and there are many labeling errors. For example, the flower
in the top right image is green-blue, as is the region in the third image in the top row.
The region marked yellow in the second image of the second row is white, whereas the
two smaller, un-labeled, regions to either side are in fact yellow.

Fig. 3. “Yellow” regions after five iterations. These images all have significant yellow
regions, and they are generally correctly labeled.

Fig. 4. “Dark” regions after five iterations
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Fig. 5. “Religious” regions after five iterations

Table 1. Words with the top 15 entropy
rankings

rank adjective entropy

1 dark 0.0118
2 senior 0.0166
3 beautiful 0.0178
4 visual 0.0222
5 rusted 0.0254
6 musical 0.0321
7 purple 0.0412
8 black 0.0443
9 ancient 0.0593

10 cute 0.0607
11 shiny 0.0643
12 scary 0.0653
13 professional 0.0785
14 stationary 0.1201
15 electric 0.1411

Table 2. Words with the bottom 15
entropy rankings

rank adjective entropy

136 medical 2.5246
137 assorted 2.5279
138 large 2.5488
139 playful 2.5541
140 acoustic 2.5627
141 elderly 2.5677
142 angry 2.5942
143 sexy 2.6015
144 open 2.6122
145 religious 2.7242
146 dry 2.8531
147 male 2.8835
148 patriotic 3.0840
149 vintage 3.1296
150 mature 3.2265

Table 3. Rankings of color adjectives

(color adjectives)
7 purple 0.0412
8 black 0.0443

36 red 0.9762
39 blue 1.1289
46 yellow 1.2827

Since the words are spelled the same, resolving their sense requires considering
their context. A purely natural language based approach considers words near the
one in question. Thus in the bank example, words like “financial” or “money” are
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strong hints that the financial institution sense is meant. Interestingly, despite
much work, and a number of innovative ideas, doing significantly better than
choosing the most common sense remains difficult [49].

To use our word prediction model for word sense disambiguation, we constrain
the predicted words to be from the set of senses for the word being analyzed.
In general, when word prediction is constrained to a narrow set of choices (such
as possible senses), reasonable performance is possible. This is the key point. A
very limited understanding of what is in the image can be helpful for sense dis-
ambiguation. All that is required is that the image is more likely to be associated
with the correct sense, compared to a handful of others.

Associated images can help improve document retrieval. Invariably the senses
of the words available in unstructured data are not sense disambiguated. Being
able to automatically reduce the ambiguity should improve the quality of results.

Notice that in this scenario, we assume that the user is willing to indicate
the query term sense. However, the general thrust of the method can take an
implicit role. Specifically, even without sense information, retrieved documents
can be organized on semantic lines for searching, browsing and relevance feedback
based on a combination of words and visual features of associated images. To
the extent that the later are linked to semantics based on training data, the
associated images can help specify text semantics.

5.1 Predicting Senses Based on Visual Information

In the context of word sense disambiguation, our vocabulary is assumed to be
sense disambiguated. Formally, we use an extended vocabulary S, which con-
tains the senses of the words in a vocabulary W . Notationally, if the word bank
∈ W then {bank 1, bank 2, . . .} ∈ S. Thus, every sense s ∈ S is the sense of
only one word w ∈ W . Once a model has been trained on S, we can use the
annotation process to compute P (s|B). Different than annotation, word sense
disambiguation has the additional characteristic that we are trying to only dis-
tinguish between the senses, s, for a particular word, w, rather than produce a
number of good choices from all of S, which is clearly more difficult.

Thus given a word, w, we assume that senses for all other words should not
be predicted. Operationally we simply take the posterior probability over all
the senses in our vocabulary, and set those not corresponding to w to zero. We
then rescale the posterior so that it sums to one. This computation yields the
probability of a word sense, s, given w, and the visual context, B, which we
denote as P (s|w,B).

5.2 Combining Word Prediction with Text Based Word Sense
Disambiguation

The quantity P (s|w,B) can be used as is for word sense disambiguation, and we
provide results for this strategy. It is also natural to combine it with text based
methods, as it seems to provide an orthogonal source of information. Here we
assume that a text based method can provide a second estimate of the probability
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P (s|w,W ) for the sense, s, for w, based on the observed words, W (the senses
are not known a priori). We discuss our choice of P (s|w,W ) below (§5.3).

We assume that these two estimates are relatively independent, which gives
the following simple expression for combining them:

P (s|w,B,W ) ∝ P (s|w,B)P (s|w,W ). (12)

5.3 Text Based Word Sense Disambiguation

The probability P (s|w,W ) in (12) is assumed to come from a traditional text
based word sense disambiguation algorithm. We report results using the state of
the art SMUaw algorithm [43]. This algorithm, and a recent derivative, Sense-
Learner [41]), have performed very well in word sense disambiguation challenges
[26,1]. We modified the SMUaw algorithm to give softer output so that it would
work better with our approach ([14]).

5.4 ImCor

To develop and test methods for using images to disambiguate text, one requires
a data set that has images linked to sense disambiguated text. As no such data
was readily available, we developed a new corpus, ImCor with these properties.
This data is available for research purposes [36].

To construct ImCor we linked images from the CorelTM data set to pas-
sages from the already sense-attributed corpus, SemCor [43,47,33,44]. SemCor,
short for the WordNet Semantic Concordance [31], consists of 25% of the Brown
corpus [30] files which have been fully tagged with part-of-speech and is sense
disambiguated. Since the SemCor files contain sizable text passages, we selected
the relevant subset of a file to link with each image. Two participants carefully
linked 1633 images with an overlap of 1/6 to verify consistency. We then au-
tomatically expanded the set to 20,153 image/text pairings by exploiting the
semantic redundancy in the CorelTM data, by linking images that shared two
or more keywords with the manually linked images.

5.5 Experiments

To test our approach we created twenty different splits of ImCor into training
and testing sets (90% training, 10% testing). Since there are a number of images
which are used multiple times, we took care to ensure that all duplicate images
were considered to be in either the training or testing sets for a given run. For
each split, we then determined the vocabulary from the training data. First we
removed stop words from the corpus. Then we eliminated word senses which
occurred less than 20 times. If this produced images without words, they were
removed, and the vocabulary was recomputed, iteratively, if needed. Typical
vocabulary sizes were 3800 senses from about 3100 sense blind words.

We trained the word prediction model (§2) on the combined image sense data.
We used the features described above for the 16 largest regions. If there were
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fewer than 16 regions, the we used all of them. We then applied the model to
the test data to predict senses according to (4), by restricting word prediction to
the sense for each word being processed as described above. We them combined
visual and textual cues as described in §5.2.

We computed performance using only documents which have at least one
ambiguous word. We used the performance of the empirical distribution of the
training set for a baseline. Baseline performance on sense prediction was roughly
60%. This baseline provides a harsher standard than the simple “most common
sense” method, as the empirical distribution gives the common sense for the em
particular corpus.

In Table 4 provides the average absolute sense prediction scores over the 20
samples. More detailed results have been reported elsewhere [14]. The results of

Table 4. Word sense prediction results. The first row is for the extended ImCor data
set (20,153 text passages paired with images). The second row shows the result using
the manually produced seed data set (1,633 pairs), even though the data is a bit sparse
for our learning method. The numbers tabulated are the fraction of times the sense
was correctly chosen. Every document processed has at least one ambiguous word.
Some unambiguous can accompany those, and all algorithms score correctly on them
by construction. All results are the average of 20 different splits of training and testing.
The error, as estimated from the variance over the 20 test/training splits, is about 0.003
for the first row, and about 0.01 for the second row. tests.

Data set Minimum
sense count

Baseline Text only us-
ing [43]

Image only Combined
(using (12))

Full 20 0.615 0.683 0.791 0.817
Seed 20 0.571 0.693 0.687 0.741

combining the two sources of information are very promising. The performance
exceeds that of either method alone, which was what we were trying to achieve.
On the large data set we were able to increase performance over the baseline by
nearly 20% yielding nearly 80% absolute performance. In the small data set, the
performance increase was more modest, yielding 5% improvement. We emphasize
that our domain was constructed somewhat artificially to test our ideas, and that
some of the improvement going from the small (seed) data set to the larger one is
likely due to the system taking advantage of the structure of the CorelTM data.
However, even in the seed data case, where there was only limited training data
(but the corpus was more pure), including image data produced a statistically
significant improvement in word sense disambiguation performance.

6 Conclusion

Data with multiple modalities present great opportunities to learn semantics
beyond what is possible considering the modes separately. In general, we will be
more successful if we combine information from all available sources. We have
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presented several examples for doing this in the case of images with associated
text and vice versa.

We have demonstrated how language structure can help reduce correspon-
dence ambiguities in loosely labeled data. In particular, adjectives extracted
from text can be help push loosely labeled data towards labeled data. Such an
approach is important because many current methods for learning recognition
rely on non-negligible quantities of data. Since labeled data is rare, but loosely
labeled data is relatively easy to acquire, strategies for reducing the ambiguity
of the labeling are clearly useful. Because these efforts are on a large scale, we
have also studied the problem of how to prune words that are not visual given
a feature set. Such pre-processing will be helpful for developing systems that
learn for large scale data with free form text. In particular, the method ad-
dresses the problem that noise from non-visual words can overwhelm attempts
to automatically learn the meaning of others that have more substantive links
to features.

We have also summarized recent work on using images to help the understand-
ing of natural language. In particular, correlations with visual attributes can help
disambiguate word senses. Because the word prediction machinery is applied to
merely choosing among the various senses of one word, visual information can
be quite helpful, despite current limitations in image understanding.

We remark that it is also the limited number of choices that makes obtaining
reasonable labeled data from loosely labeled image data reasonable. Here we only
need to differentiate among the visual words associated with the images, which
is generally a relatively small set compared to the entire vocabulary. Once the
correspondence ambiguity has been reduced, we are then in a better position to
learn more sophisticated processes and models which are necessary for inference
on novel data.
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Abstract. We present a new approach to the object recognition prob-
lem, motivated by the recent availability of large annotated image and
video collections. This approach considers object recognition as the trans-
lation of visual elements to words, similar to the translation of text from
one language to another. The visual elements represented in feature space
are categorized into a finite set of blobs. The correspondences between
the blobs and the words are learned, using a method adapted from Sta-
tistical Machine Translation. Once learned, these correspondences can
be used to predict words corresponding to particular image regions (re-
gion naming), to predict words associated with the entire images (auto-
annotation), or to associate the speech transcript text with the correct
video frames (video alignment). We present our results on the Corel data
set which consists of annotated images and on the TRECVID 2004 data
set which consists of video frames associated with speech transcript text
and manual annotations.

1 Introduction

Object recognition is one of the major problems in computer vision and there
have been many efforts to solve this problem (see [13] for a detailed review of
recent approaches). However, recognition on the large scale is still a challenge.
We consider the object recognition problem as translating the visual elements
to semantic labels. This view of object recognition allows us to recognize large
number of objects in the large image and video collections.

Classical object recognition systems require supervised data where regions
corresponding to objects are manually labeled. However, creation of such data
is labor intensive and error-prone. Recently, many annotated image and video
collections have become available. Examples include stock photographs anno-
tated with keywords, museum image collections with metadata, captioned news
photographs on the web, and news videos associated with captions or speech
recognition transcripts (Figure 1). These annotated data sets, provide labels
not on the region level but on the image level. Although, that is only loosely
labeled data, it is available in large quantities. By making use of this data, the
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plane jet su-27 sky tiger cat grass water diver fish ocean memorial flags grass

Forest Snow Sky WaterBody Music Car StudioSetting
FemaleSpeech Beach Building SpaceVehicleLaunch MaleNewsPerson
TextOverlay MaleSpeech People Monologue

Fig. 1. Examples of annotated images. Top: Corel data set. Bottom: TRECVID news
videos data set.

object recognition problem can be transformed into finding the correspondences
between image structures and annotation words.

Recent studies show that, with careful use of these large annotated data sets,
it is possible to predict words for the images by integrating visual and textual
data [22,30,19,24,27]. More recently, probabilistic models are proposed to cap-
ture the joint statistics between images and words, including the hierarchical
aspect model [5,4], relevance based models [16,18,12], mixture of multi-modal
latent Dirichlet allocation model [3], and a method based on Hidden Markov
Model [15].

Predicting words for the images, which is referred as auto-annotation, is
helpful since considerable amount of work for manually annotating the images
can be eliminated. However, that is not a solution to the recognition problem,
since the correspondences between image structures and words are unknown. For
example, an image with the keyword tiger is likely to contain a tiger object,
but we don’t know which part of the image corresponds to tiger (Figure 2).

The correspondence problem is very similar to the correspondence problem
faced in statistical machine translation literature (Figure 3). There is one form
of data (image structures or English words) and we want to transform it into
another form of data (keywords or French words). Learning a lexicon (a device
that can predict one representation given the other representation) from large
data sets (referred as aligned bitext) is a standard problem in the statistical
machine translation literature [8,23,17,21]. Aligned bitexts consist of many small
blocks of text in both languages, corresponding to each other at paragraph or
sentence level, but not at the word level. Using the aligned bitexts the problem of
lexicon learning is transformed into the problem of finding the correspondences
between words of different languages, which can then be tackled by machine
learning methods.

Due to the similarity of the problems, correspondence problem between image
structures and keywords can be attacked as a problem of translating visual
features into words, as first proposed in [10]. Given a set of training images, the
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Fig. 2. The correspondence problem between image regions and words. The keywords
tiger, cat and grass are associated with the image, but the word-to-region corre-
spondences are unknown. If there are other images, the correct correspondences can be
learned and used to automatically label each region in the image with correct words
or to auto-annotate a given image.

Fig. 3. The analogy with the statistical machine translation. We want to transform one
form of data (image structures or English words) to another form of data (keywords
or French words).

problem is to create a probability table that associates words and visual elements.
This translation table can then be used to find the corresponding words for the
given test images (auto-annotation) or to label the image components with
words as a novel approach to recognition (region labeling).

A similar correspondence problem occurs in video data. There are sets of
video frames and transcripts extracted from the audio speech narrative, but the
semantic correspondences between them are not fixed because they may not
be co-occurring in time. If there is no direct association between text and video
frames, a query based on text may produce incorrect visual results. For example,
in most news videos (see Figure 4) the anchorperson talks about an event, place
or person, but the images related to the event, place, or person appear later in
the video. Therefore, a query based only on text related to a person, place, or
event, and showing the frames at the matching narrative, may yield incorrect
frames of the anchorperson as the result.

The goal is to determine the correspondences between the video frames and
speech transcript text in order to associate the video frames with more reliable
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... (1) so today it was an energized president CLINTON who formally presented
his one point seven three trillion dollar budget to the congress and told them there’d
be money left over first of the white house a.b.c’s sam donaldson (2) ready this (3)
morning here at the whitehouse and why not (4) next year’s projected budget deficit
zero where they’ve presidential shelf and tell this (5) budget marks the hand of an era
and ended decades of deficits that have shackled our economy paralyzed our politics
and held our people back ..... (6) [empty] (7) [empty] (8) administration officials say
this balanced budget are the results of the president’s sound policies he’s critics
say it’s merely a matter of benefiting from a strong economy that other forces are
driving for the matter why it couldn’t come at a better time just another upward
push for mr CLINTON’s new sudden sky high job approval rating peter thanks very ...

Fig. 4. Keyframes and corresponding speech transcripts for a sample sequence of shots
for a story related to Clinton. Italic text shows Clinton’s speech, and capitalized letters
show when Clinton’s name appears in the transcript. Note that, Clinton’s name is men-
tioned when an anchorperson or reporter is speaking, but not when he is in the picture.

labels and descriptions, which we refer as video alignment. This enables a
textual query to return more accurate semantically corresponding images. We
will show that, a modified version of the translation model can be used to solve
the correspondence problem faced in video data.

Other models proposed to attack the correspondence problem include the
simple co-occurrence model [25], Correlation Latent Dirichlet Allocation (LDA)
model [6] and an extension of translation approach using MRFs [9].

2 Translation Approach

Brown et al. [8] propose a set of models for statistical machine translation. These
models aim to maximize the conditional probability density p(f | e), which is
called as the likelihood of translation (f , e), where f is a set of French words,
and e is a set of English words.

In machine translation, a lexicon links a set of discrete objects (words in one
language) onto another set of discrete objects (words in the other language). In
our case, the data consist of visual elements associated with words. The words
are in discrete form. In order to exploit the analogy with machine translation,
the visual data, represented as a set of feature vectors also need to be broken
up into discrete items. For this purpose, the features are grouped by vector
quantization techniques such as k-means and the labels of the classes, which we
call as blobs, are used as the discrete items for the visual data. Then, an aligned
bitext, consisting of the blobs and the words for each image is obtained and used
to construct a probability table linking blobs with words.

In our case, the goal is to maximize p(w | b), where b is a set of blobs and w is
a set of words. Each word is aligned with the blobs in the image. The alignments
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(referred as a) provide a correspondence between each word and all the blobs.
The model requires the sum over all possible assignments for each pair of aligned
sentences, so that p(w | b) can be written in terms of the conditional probability
density p(w, a | b) as

p(w | b) =
∑
a

p(w,a | b) (1)

The simplest model (Model-1), assumes that all connections for each French
position are equally likely. This model is adapted to translate blobs into words,
since there is no order relation among the blobs or the words in the data [29]. In
Model-1 it is assumed that each word is aligned exactly with a single blob. If the
image has l blobs and m words, the alignment is determined by specifying the
values of aj such that if the jth word is connected to the ith blob, then aj = i,
and if it is not connected to any blob aj = 0. Assuming a uniform alignment
probability (each alignment is equally probable), given a blob the joint likelihood
of a word and an alignment is then can be written as:

p(w, a | b) =
ε

(l + 1)m

m∏
j=1

t(wj | baj ) (2)

where t(wj | baj ) is the translation probability of the word wj given the blob
baj , and ε is a fixed small number.

The alignment is determined by specifying the values of aj for j from 1 to m
each of which can take a value from 0 to l. Then, p(w | b) can be written as:

p(w | b) =
ε

(l + 1)m

l∑
a1=0

. . .
l∑

am=0

m∏
j=1

t(wj | baj ) (3)

Our goal is to maximize p(w | b) subject to the constraint that for each b∑
w

t(w | b) = 1 (4)

This maximization problem can be solved with the EM (Expectation Maxi-
mization) formulation [8,10]. In this study, we use the Giza++ tool [1,26] -which
is a part of the Statistical Machine Translation toolkit developed during summer
1999 at CLSP at Johns Hopkins University- to learn the probabilities. Note that,
we use the direct translation model throughout the study.

The learned association probabilities are kept in a translation probability
table, and then used to predict words for the test data.

3 Associating Visual Elements with Words

In this study, we attack two types of correspondence problems between visual
elements and words. The first problem is between the image regions and words
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in annotated image collections. The second problem is between the frames of a
video sequence and the corresponding speech transcript text.

In the annotated image and video collections, the images are usually anno-
tated with a few keywords which describe the images. However, correspondences
between image regions and words are unknown. In order to solve this corre-
spondence problem, first we segment the images into regions and represent each
region with a set of visual features. A vector quantization technique, such as
k-means, is used to transform the visual features into labels which are called as
blobs. The words are in the form of keywords, therefore no further processing is
required. The blobs and words are associated with certain probabilities using the
translation approach. The translation table can then be used for two purposes:
region naming and auto-annotation.

Fig. 5. Left: Region naming. Right: Auto-annotation. For region naming, the word
with the highest probability is used to label the region. For auto-annotation the word
posterior probabilities of the image regions are marginalized to obtain the probabilities
for the entire image and then the top N words with the highest probabilities are used
to annotate the image.

Region naming refers to predicting the labels for the regions, which is clearly
recognition. For region naming, given a blob b corresponding to the region, the
word w with the highest probability (p(w | b)) is chosen and used to label the
region (Figure 5).

In order to automatically annotate the images, the word posterior proba-
bilities for the entire image are obtained by marginalizing the word posterior
probabilities of all the blobs in the image as:
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p(w|Ib) = 1/|Ib|
∑
b∈Ib

p(w|b) (5)

where b is a blob, Ib is the set of all blobs of the image and w is a word. Then, the
word posterior probabilities are normalized. The first N words with the highest
posterior probabilities are used as the annotation words (Figure 5).

The other correspondence problem that we attack is the video alignment
problem. Specifically, we will concentrate on the video alignment problem in the
news videos. In these videos, the speech transcript text is temporally aligned with
the video frames and each shot is associated with a portion of the transcript that
falls within its boundary. Most of the retrieval systems use the speech recognition
text aligned with the shots to search for persons, places or events. However, the
frames of the resulting shots may not visually correspond to the query (Figure 4).
For example, in [31], it is shown that for person queries the name appears in a
close proximity to the shot including the face of the person in the corresponding
keyframe, but it can be a few seconds before or after.

We modify the translation approach to solve the correspondence problem
between video frames and speech transcript text. For this purpose, we select
the keyframes as the representative images for the shots and process the speech
transcript text -which is in free text form- to obtain the descriptive words aligned
with a given shot. The correspondence problem appears, since the words related
to the visual content of the shot may be aligned not with the current shot but also
with the neighboring shots. One solution is to use also the words aligned with

Story 1: (1-3) he says the u.s. may use force in a matter of weeks to try to compelling
rock to allow u.n. weapons inspectors unrestricted access to suspected weapons sites
russian news agencies reports iraqi president saddam was saying he’s ready to allow
inspectors to monitor eight new sites must the ground joining the sides of the latest
u.s. defense secretary william cohen says that he’s not an appropriate solution
Story 2: (4-5) darkness has led air transportation officials in the philippines to tem-
porarily call of the helicopter searched for a missing passenger plane bound teams are
continuing to look for the cebu pacific and d.c. nine it was carrying one hundred four
people when it disappeared on its way from manila tuned and other parts of the south-
ern philippines the pilot last contacted the airport tower minutes before that plane was
supposed to land he made no mention of any trouble with the plane
Story 3: (6-7) the sarbes extending to unbeaten streak to five games we’ll fight to win
over the panthers final singer with the bow ahead goal detroit rallied with three goals
in the final period
Story 4: (8) this is orelon sidney with your headline news weather update a low pres-
sure storm moving out of the james bay region will mean a chance of snow flurries for
the upper peninsula if michigan cold temperatures are due in the forecast for the north
as the cold front moves into the mississippi and ohio river valleys

Fig. 6. Keyframes and speech transcripts for some stories from TRECVID2004 news
videos. Numbers in parenthesis correspond to the keyframes of the stories.
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the preceding and the following shots during the learning phase [11]. However,
this strategy may use incorrect annotation words, since the speech transcript
text a few shots before or after may correspond to other stories that are not
related with the current shot.

News videos consist of story segments each corresponding to different topics
(Figure 6). Using this characteristics of news videos, we use a story based ap-
proach. Each story is taken as the basic unit, and the correspondence problem is
turned into finding the associations between the keyframes and the speech tran-
script words of the story segments. To make the analogy with the correspondence
problem between image regions and annotation keywords, the story corresponds
to the image, the keyframes correspond to the regions and the speech transcript
text corresponds to the annotation keywords. The features extracted from the
entire images of the keyframes are vector quantized to represent each image with
a single label which is again referred as blob. Then, the translation tables are
constructed similar to the one constructed for annotated images. The associa-
tions can then be used either to align the keyframes with the correct words or
for predicting words for the entire story.

4 Data Sets and Input Representation

In this study, we use the annotated images from Corel stock photograph data
set and the news videos from TRECVID2004 corpus.

The Corel data set consists of images annotated with 3-5 keywords. We seg-
ment the images using the Normalized Cuts algorithm [28] and represent the 8
largest regions in each image with 30 features including the region size, position,
color, texture and shape features. Regions are then clustered into blobs using
k-means.

The TRECVID 2004 corpus [2] provided by NIST consists of over 150 hours of
CNN and ABC broadcast news videos. The shot boundaries, and the keyframes
extracted from each shot are provided by NIST. The keyframes are represented
by a set of features including global color histogram, and mean and standard
deviation of color, edge and texture features extracted from 5x7 grids. Videos
are manually annotated with a collaborative effort of the TRECVID participants
with a few keywords [20]. The automatic speech recognition (ASR) transcripts
provided by LIMSI are aligned with the shots on the time basis [14]. The speech
transcripts are in the free text form and requires preprocessing. First, we use
Brill’s part of speech tagger [7] to extract nouns which are expected to correspond
to object names. Then, we apply a stemmer and remove the stop words and also
the least frequent words appearing less than 300 times to obtain the descriptive
words.

5 Measuring the Performance

The trivial way to measure the performance of region naming is to check the
labels of each region visually. However, considering the huge size of the data
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sets, this is not a practical solution. One alternative is to label the regions of a
small set of images manually and then compare the predictions with the manual
labels. Then, the performance can be measured in terms of recall and precision
where recall is defined as the number of correct predictions of the word over the
number of times that the word is a label word, and precision is defined as the
number of correct predictions of the word over the number of times that the
word is predicted.

Another solution, applicable to large number of images, is to predict the words
for the entire images and use the annotation performance as a proxy. If the
image has N annotation keywords, the system will also predict N words. A
word prediction measure (WP) [3] can then be defined as:

WP = c/N (6)

where c is the number of words predicted correctly. Thus, if there are three
keywords, sky, water, and sun, then N=3, and we allow the model to predict 3
words for that image. The range of this score is clearly from 0 to 1.

Recall and precision can also be used to measure the annotation performance.
In this case, the word is defined to be predicted correctly, if it is predicted
as one of the best N words (where N is the number of words in the manual
annotation) and it matches with one of the annotation keywords. Then, recall
is defined as the number of times that the word is predicted correctly over the
number of times that the word is used as an annotation keyword throughout the
entire data set, and precision is defined as the number of times that the word is
predicted correctly over the total number of times that the word is predicted.

The performance of video alignment can be measured similarly. We predict
N words with the highest probability for a given story and compare them with
the actual speech transcript words.

6 Results on Corel Data Set

For the experiments, we used 160 CD’s, each consisting of 100 images on a
relatively specific topic. The words occurring less than 20 times are excluded,
resulting in vocabularies in the order of 155 words. As the visual features, color
is represented by the average and standard deviation of (R,G,B) and (L,a,b)
over the region; texture is represented using the average of 12 oriented energy
filters aligned in 30 degree increments; and shape is represented by the ratio of
the area to the perimeter squared, the moment of inertia and the region of the
area to that of its convex hull. The features are quantized into 500 blobs using
k-means.

Figure 7 shows some examples of region labeling. The label words are the
words predicted with the highest probability for the corresponding blobs. We
are generally successful in predicting words like sky and buildings. Rare words
such as plane and fish are also predicted correctly in these examples.



Translating Images to Words for Recognizing Objects 267

plane sky people pillars ruins stone

horizon sunset tree water fish reefs water

Fig. 7. Sample images and the word prediction results for the Corel data set. Manual
annotations are shown for comparison.

In order to test the performance of region labeling, 450 images are manually
labeled with a set of 117 words. Table 1 shows the region labeling performances
in the form of recall and precision for a set of words.

Table 1. Region labeling performance for some words on the Corel data set

word recall precision word recall precision word recall precision
sea 0.67 0.50 sky 0.31 0.34 windows 0.33 0.25
snake 0.20 0.33 water 0.40 0.20 buildings 0.16 0.17
tree 0.28 0.15 pillars 0.17 0.11 clouds 0.19 0.06
people 0.32 0.04 grass 0.09 0.19 flowers 0.08 0.16
car 0.10 0.12 coral 0.05 0.20 lion 0.05 0.17

Figure 8 shows some auto-annotation examples. Most of the words are pre-
dicted correctly and most of the incorrect matches are due to the missing manual
annotations. For instance, although tree appears at the top left image, the word
tree it is not in the manual annotations.

In order to measure the performance of auto-annotation, we create ten experi-
mental data set each consisting of 80 CDs which are randomly chosen. Each exper-
imental data set is further split up into training and standard test sets, containing
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field foals horses mare flowers leaf petals stems
tree horses foals mare field flowers leaf petals grass tulip

people pool swimmers water jet plane sky
swimmers pool people water sky sky plane jet tree clouds

Fig. 8. Auto-annotation examples for Corel data set. The manual annotations are
shown at the top, and the top 5 predicted words are shown at the bottom. Italic words
correspond to incorrect matches.

75% and 25% of the images respectively. The images from the remaining CD’s are
used to form a more difficult novel test set.

Table 2 shows the word prediction results for each of the ten data sets on
training, standard test and novel test sets. The average number of annotation
words per image is three. The prediction performances show that on the average
we are predicting one of the three words correctly.

Table 2. Word prediction measures for each of the ten experimental data sets

set training standard test novel test
001 0.2708 0.2171 0.2236
002 0.2799 0.2262 0.2173
003 0.2763 0.2288 0.2095
004 0.2592 0.1925 0.2172
005 0.2853 0.2370 0.2059
006 0.2776 0.2198 0.2163
007 0.2632 0.2036 0.2217
008 0.2799 0.2363 0.2102
009 0.2659 0.2223 0.2114
010 0.2815 0.2297 0.1991

7 Results on TRECVID Data Set

In the TRECVID 2004 corpus, there are 229 videos in the training set and 128
videos in the test set. On the average, there are around 300 keyframes for each
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shot. 114 videos from the training set are manually annotated by the TRECVID
participants. We only use the annotations for the keyframes, and therefore elim-
inate the videos where the annotations are provided for the frames which are
not keyframes, resulting in 92 videos. The original annotations consisting of
614 words have many spelling and format errors. After correcting the errors
and removing the least frequent words we pruned the vocabulary down to 76
words.

StudioSetting Graphics People Basketball WaterBody Boat
FemaleNewsPerson

MaleNewsSubject Person
FemaleNewsPerson People Graphics Sky Graphics

StudioSetting People Basketball FemaleNewsPerson WaterBody Building
MaleFace Graphics SceneText MaleNewsSubject Boat Person
Person SceneText StudioSetting MaleNewsPerson

Sky Building Road Tree Snow People Forest MaleNewsSubject
Car Graphics FemaleFace Person

Graphics
Road ManMadeObject Graphics People Person People Person Graphics
People Sky Building MaleFace MaleNewsSubject MaleFace Greenery
Car ManMadeScene Tree Snow SceneText FemaleFace

Fig. 9. Auto-annotation examples for the TRECVID data set. The manual annotations
are shown at the top, and the predicted words (top 7 words with the highest probability)
are shown at the bottom.

We use the manually annotated data set for learning the correspondences be-
tween image regions (which are in the form of fixed sized grids) and the keywords
for region labeling and for auto-annotation similar to the Corel data set. The
grids are represented by the mean and standard deviation of HSV values. The
features are clustered into 500 blobs. On the test data, we obtain word prediction
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performance as 0.27, and average recall and precision values for the words that
are predicted at least once as 0.15 and 0.21 respectively.

Figure 9 shows the auto-annotation results for some sample shots. The results
show that when the annotations are not available the predicted words can be
used for a better retrieval. Figure 10 shows some region labeling results. Note
that words like female-news-person, female-face, studio-setting, sky and
building are correctly predicted.

For video alignment, 114 videos are used for training and 39 videos are used for
testing. The story boundaries provided by NIST are used. Speech transcript text

43 429 429 202 225 346 429

317 300 300 61 299 319 79

437 468 359 320 167 167 46

104 404 43 475 213 223 213

81 81 443 272 443 443 443

300,225: female-news-person
468,359,213: female-face
202,429,320,43,46,79: studio-setting
167,272,346,443: graphics
81,299: scene-text
104,404: person
223,475,317: male-face
437: people
61: flag
319: basketball

studio-setting female-news-person

490 32 32 32 32 32 88

51 349 211 339 378 378 403

152 245 445 245 245 445 481

399 282 445 245 99 160 350

497 155 443 155 497 23 31

445,245: building
32: sky
403: man-made-object
350: greenery
152: tree
23,31,443: graphics
378: water-body
99: road, 349: snow
497,490: scene-text
51,88,339: person
282,481: male-news-subject
155: female-news-person
160: people
399: male-face
211: female-face

tree greenery sky building graphics

Fig. 10. Region labeling results for the TRECVID dataset. Manual annotations are
shown for comparison.
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(ASR) is processed by applying tagging, stemming and stop word elimination
steps and only the nouns having frequencies more than 300 are used in the final
vocabulary. We remove the stories associated with less than 4 words, and use the
remaining 2165 stories consisting of 30801 keyframes for training and 1050 stories
consisting of 10326 keyframes for testing. The number of words corresponding to
the stories vary between 4 and 105, and the average number of words per story is
15. Each keyframe is represented with a blob obtained by vector quantization of
the global HSV color histogram values and also with another blob corresponding
to the number of faces in the keyframe. Color feature is represented with 1000
blobs and face count is represented with 4 blobs.

The translation probabilities are used to predict words for the individual shots
(Figure 11) and for the stories (Figure 12). The results show that especially for
the stories related to weather, sports or economy, which frequently appear in
the broadcast news, the system can predict the correct words. Note that, the
system can predict words which are better than the original speech transcript
words. This characteristic is important for a better retrieval. The prediction
performance obtained by comparing the predicted words for a given story with
the original ASR words is 0.15 and the average recall and precision values are
0.13 and 0.16 respectively.

An important aspect of predicting words for the video segments is to retrieve
the related shots when speech transcript is not available or include unrelated
words. In such cases it would not be possible to retrieve such shots with a text
based retrieval system if the predicted words were not available. Figure 13 shows
that the proposed system is able to detect the associations between the sport
word and different types of sport scenes, and therefore can be used in retrieving
sport shots even when the ASR is not available. Similarly, the system is successful
in capturing the relationships between the visual features and words for scenes
such as snow, night or office as in Figure 14 or objects such as plane, house,
water or car as in Figure 15. Note that, these examples include objects and
scenes which can be described by color information.

One of the main goals of solving the video alignment problem is to associate
the words with the correct shots. Figure 16 shows an example to the solution
of video alignment problem. Originally the word clinton was aligned with the
anchorperson shot. After correcting the association problem, the shot which
predicts clinton inside the story corresponds to the shot where Clinton appears.
We should mention here that, this is not a solution to face recognition. In this
example, the goal is to find the shot which has the highest probability to be
associated with the clinton word inside the story segment. The third shot has
the highest probability to be associated with clinton since it includes faces and
also the black suits which can be described by color information. The second
shot is probably eliminated since there were no faces detected, and the first
shot is eliminated since the anchorperson shots having the studio setting at the
background are associated with many words.
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temperature weather point nasdaq sport time jenning people
forecast stock game evening

Fig. 11. Top three words predicted for some shots using the ASR outputs

ASR : center headline thunderstorm morning line move state area pressure chance
shower lake head monday west end weekend percent temperature gulf coast
tuesday
PREDICTED : weather thunderstorm rain temperature system shower west coast
snow pressure

ASR : check peace york morning charge dollar share nasdaq market issue percent
consumer month
PREDICTED : market stock york nasdaq street check point yesterday record share

ASR : night game sery story
PREDICTED : game headline sport goal team product business record time shot

Fig. 12. For sample stories corresponding ASR outputs and top 10 words predicted
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Fig. 13. Shots having no attached ASR output but including sport keyword in their
top 2 predicted words

Fig. 14. Shots having no related ASR output but including snow, night and office
keywords in their top 7 predicted words respectively

Fig. 15. Example shots predicting plane, house, water and car as their top 7th, 1st,
3rd and 7th words respectively
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ASR outputs : (1) home washington president clinton (2) office president state
department (3) deal

Fig. 16. For a story about Clinton with three shots, the keyframes and the ASR outputs
associated with each of the shots on the time basis are shown. Note that, clinton is
associated with the first shot where the anchorperson appears. When we search over the
predicted words, the shot corresponding to clinton word with the highest probability
is the third shot where Clinton actually appears.

8 Conclusion and Future Work

We associate visual features with words using the translation approach. The pro-
posed method allows novel applications on image and video databases including
region naming as a way of recognizing objects, auto-annotation for better access
to image databases and video alignment which is a crucial process for effective
retrieval of video data.

In video data, motion information also plays an important role. Usually, mov-
ing objects have more importance than still objects. The regions corresponding
to these objects can be extracted using the motion information rather than us-
ing any segmentation algorithm. Also, besides associating the visual features
such as color, texture and shape with nouns for naming the objects, the motion
information can be associated with verbs for naming the actions.

Translation approach can also be used as a novel method for face recognition.
The correspondence problem that appears between the face of a person and
his/her name can be attacked similarly for naming the people. The example
about Clinton story promises that such an approach is possible for naming large
number of faces.
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Abstract. This chapter presents a principled way of formulating mod-
els for automatic local feature selection in object class recognition when
there is little supervised data. Moreover, it discusses how one could for-
mulate sensible spatial image context models using a conditional ran-
dom field for integrating local features and segmentation cues (superpix-
els). By adopting sparse kernel methods and Bayesian model selection
and data association, the proposed model identifies the most relevant
sets of local features for recognizing object classes, achieves performance
comparable to the fully supervised setting, and consistently outperforms
existing methods for image classification.

1 Introduction

Over the past few years, researchers in high-level vision have shifted their focus
from matching specific objects to the significantly more challenging problem
of recognizing visual categories of objects. Since solutions exists to some image
classification problems, there is a push to address more difficult problems such as
object localization (segmenting an object from the background). There has also
been success in learning robust representations of specific classes in constrained
situations, notably frontal faces [33] and pedestrians in street scenes [17,22], but
models that can be trained to recognize generic object categories remain elusive.

A wealth of complementary developments in vision and machine learning have
lead to improvements in general representations of object classes [1,9,26,11]. This
paper furthers the state-of-the-art by adopting a principled probabilistic model
for data association and model selection in object recognition. Our approach
consists of the following three steps:

1. Extract a sparse set of a priori informative regions of the scene [9,21], also
called keypoints [7,19]. Local interest regions bring tolerance to clutter, oc-
clusion and deformable objects, and their sparsity reduces the complexity
of subsequent learning and inference. Good detectors extract a sparse set
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of interest regions without sacrificing information content, and select the
same regions when observed at different viewpoints and scales. There exist
many definitions as to what constitutes a good interest region, predicated
on maximizing disparate criteria. Therefore, we expect that using multiple
detectors will provide complementary information, and hence improve recog-
nition. Sec. 6.1 describes how interest regions are extracted and represented
as feature vectors.

2. Train the Bayesian classification model developed in [15] with an efficient
Markov Chain Monte Carlo (MCMC) algorithm for Bayesian learning. The
algorithm learns a sparse object class representation from the interest region
descriptors, and does so with little supervision by explicitly modeling data
association. See Sections 2-4 for more details.

3. For localization of objects, integrate two types of visual cues: interest regions
and low-level segmentation using superpixels [27]. On their own, independent,
local interest regions do not contain enough information to segment the
object from the background, so we propose a simple conditional random
field [16] that propagates information across neighbouring superpixels and
weights the superpixel labels by the scores of overlapping interest regions. It
is described in detail in Sec. 5.

The resulting representations accurately detect and locate objects in a wide
variety of scenes at different poses and scales, even when training under very
little supervision from the user.

We start with an example that illustrates the need for a model of data as-
sociation in object recognition. After that, we motivate our proposed Bayesian
hierarchical model for data association and object recognition.

1.1 A Case for Data Association in Object Recognition

Consider the toy training set in Fig. 1. It consists of three images, each with a
caption indicating the presence or absence of cars in the scene. The circles depict
some of the extracted features at their characteristic scale. The first image does
not contain a car, so we can justifiably say that none of the circles are car
features. In the second and third training images, however, we cannot conclude
with certainty which features belong to a car. The conventional approach to this
problem is to treat unlabeled features in the background as noise [1,9,11], an
approach which degrades significantly when the object in question occupies only
a small part of the unlabeled image, as in the second image. A more sensible
strategy is to explicitly model the feature labels, allowing the learning algorithm
to exploit the unlabeled background features instead of being hindered by them.
This is precisely the solution we propose in this paper.

Each feature label is a binary variable indicating whether it belongs to a car
(positive) or to the background (negative). In this setting, data association is
closely related to the multiple instance learning problem [2,8]. In the classical
multiple instance formulation, a positive group label (the images are the groups)
indicates that at least one of the individuals in the group has a positive label (this
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Fig. 1. Three annotated images from the INRIA car training set. The circles represent
some of the extracted features. The feature labels y1 to y3 in the first image are known.
In the second and third images, we don’t know the correspondence between the features
and the labels, hence the question marks on the yi’s. Notice there is no image that
contains only car features, and the size of the cars varies considerably. The correct
correspondence is likely y4 =−1, y5 =1, y6 =−1, y7 =1, y8 =1, y9 =−1 (1 means “car”
and −1 signifies “not car”).

corresponds to a “contains cars” caption), while a negative group label implies
that all individuals in the group have a negative label. For our purposes, this
formulation is not sufficiently informative for learning the correct association,
since an image may contain hundreds of unlabeled points and in the multiple
instance setting only one of them is enforced to have a positive label.1 We propose
two alternatives. In the first, we introduce image-level constraints enforcing a
certain number of the features to belong to the positive class.

The problem is that it may be hard to identify appropriate constraints. Refer-
ring back to Fig. 1, the cars in the third image occupy much more space than in
the second, so the third image is likely to contain more features associated with
the car class. The best we can do with hard constraints to set a conservative
lower bound on the number of positives per image. We suggest a better route:
specify a ratio that indicates the expected fraction of individuals with a positive
label, along with a level of confidence in such an expectation. When objects vary
widely in size, a low confidence on the expected fraction allows the model to
adapt the number of positive labels to each image. We call this approach data
association with group statistics. It was first proposed in [13].

One might be skeptical that it is possible to achieve recognition in this setting,
given the wide variability exhibited in the training images, the high dimension
of the features, and the fact that there are hundreds of unlabeled points per im-
age. However, the alternative, complete supervision, is not only unappealing but
also unrealistic for general object recognition problems. Complete supervision
requires the user to annotate and segment objects from the background. This
is not only a time-consuming task, but also poorly defined since people tend to
segment scenes differently. It also inhibits exploitation of the vast quantities of

1 Data association is also commonly studied as a case of semi-supervised learning [34].
This formulation is less compatible since it has no notion of groups.
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Fig. 2. Two sample images from the MIT-CSAIL database [32]. Yellow lines indicate
car annotations. The annotations are incomplete in both images, so learning from data
association is still appropriate in the presence of annotated data.

captioned images available on the Internet (in the form of news photos, for ex-
ample [25]). The experiments in Sec. 6.3 show that our data association scheme
largely compensates for the lack of annotation data.

Even when annotations are provided, a recognition system might still benefit
from multiple instance learning. Consider images from the MIT-CSAIL database
[32], pain-stakingly annotated with more than 30 object classes, including cars, fire
hydrants and coffee machines. Despite the effort in producing the scene labelings,
the annotations shown in Fig. 2 are still far from complete. By learning the labels
in the unannotated areas, the model can better exploit such training data.

There have been several previous attempts in tackling the problem of data
association in object recognition, but they failed to extend to realistic domains.
Duygulu et al. [10] studied the problem from the perspective of statistical ma-
chine translation. They formulated data association as a mixture model, using
expectation maximization (EM) to learn the parameters and the unknown la-
bels. Later, the translation model was extended to handle continuous image
features [4] and spatial relations [5]. The problem with their approach is that
the posterior over the parameters of the mixture model is highly multimodal, so
EM tends to get stuck in local minima. The situation is no better when applying
MCMC simulation techniques to mixture models, due to a factorial explosion in
the number of modes [6]. More complex representations only exacerbate the issue,
so mixture models are limited to simple, unimodal object classes. While [5,4,10]
tackle multi-category classification, we can do likewise by combining responses
from multiple binary classifiers [31]. Others have extended the multiple instance
learning paradigm. We refer the reader to [13] for further references.

1.2 A Case for Bayesian Learning in Object Recognition

We employ the augmented Bayesian classification model developed in [15] with
an efficient Markov Chain Monte Carlo (MCMC) algorithm for Bayesian learn-
ing. The algorithm accomplishes two things simultaneously: 1.) it learns the
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unobserved labels, and 2.) it selects a sparse object class representation from
the high-dimensional feature vectors of the interest regions. We introduce a gen-
eralized Gibbs sampler to explore the space of labels that satisfy the constraints
or group statistics.

Bayesian learning comprehends approximation of the posterior distribution
through integration of multiple hypotheses. This is a crucial ingredient for robust
performance in noisy environments, and helps resolve sensitivity to initialization.
In the presence of uncertainty about the labels, Bayesian learning allows us
to be open about multiple possible interpretations, and is honest regarding its
confidence in a hypothesis. The latter is of particular importance for integrating
multiple visual cues for recognition (see Sec. 5), since it helps weigh the decisions
of multiple models. The same cannot be said for learning through optimization
of the model posterior, using EM for example.

Another advantage over other methods is that we do not need to reduce
the dimension of the features through unsupervised techniques which may purge
valuable information. Monte Carlo methods have received little attention in high-
level vision, but our results show that they can be both effective and efficient in
solving difficult problems.

In effect,whatwedescribe is a bag of keypointsmodel [7] that chooses the features
that best identify an object (e.g. the car model should select features that describe
wheels or rear-viewmirrors). It iswidely appreciated thatbag of keypointsmethods
— which treat individual features as being independent — are inadequate for iden-
tifying and locating objects in scenes (a person is not just an elbow!), and there has
beenmuch success in learning relations betweenparts [11] and global context [5,32].
Despite these objections, independent parts models are not only efficient and sim-
ple to implement, but also remain the state-of-the-art in detection systems [7,28]
and, as we show, can function as a basis for more complex localization systems.

2 Bayesian Kernel Machine for Classification

We start by assuming complete supervision. In other words, each data point xi

has a known label yk
i ∈ {−1, 1}. The next section considers the case when some

of the labels are unknown.
The training data consists of a set of D labeled images, and each image j, for

j = 1, 2, . . . , D, contains a set of exemplars or feature vectors {xi | i ∈ dj}. The
set of exemplars for all the images used during training is x = {x1, x2, . . . , xN},
where N is the total number of training exemplars. Sec. 6.1 describes how to
obtain the feature vectors beginning with the raw pixel data.

We use a sparse kernel machine to classify the interest region descriptors. The
classification output depends on the feature being classified, xi, and its relation
to a subset of relevant exemplars. The outputs of the classifier are then mapped
to the probability of the discrete labels using the probit link function. Following
Tham, Doucet and Kotagiri [30], we have

p(yi =1 |xi,β,γ) = Φ (f(xi,β,γ)) , (1)

where the unknown regression function f is given by
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f(xi,β,γ) =
N∑

k=1

γkβkψ(xi, xk).

The probit link Φ(·) is the cumulative density function of the standard Normal
distribution. By convention, researchers tend to adopt a logistic (sigmoidal) link
function, but from a Bayesian computational point of view, the probit link has
many advantages and is equally valid.

The kernel function is denoted by ψ. We use the Gaussian kernel ψ(xi, xk) =
exp(−(xi−xk)2/σ) since it worked well in our experiments, but other choices are
possible. We denote the vector of regression coefficients by β � [β1 β2 · · · βN ]T .
Our model is discriminative because it is specified as a conditional probability
distribution of labels given observations, and not the other way around as in a
generative mixture model.

We introduce sparsity through a set of feature selection parameters γ �
[γ1 γ2 · · · γN ], where γk ∈ {0, 1}. Most of these binary variables will be zero
and so the classification probability for feature vector xi will only depend on a
small subset of exemplars. By learning γ, we learn the relevant set of feature
vectors, or prototypes, for each class.

It is convenient to express (1) in matrix notation,

p(yi =1 |xi,β,γ) = Φ (Ψi,γβγ) , (2)

where Ψ ∈ R
N×N is the kernel matrix with entries Ψi,k = ψ(xi, xk), Ψi,γ is

the ith row of the kernel matrix with zeroed columns corresponding to inactive
entries of γ, and βγ is the reduced version of β containing only the coefficients
of the active kernels. Thus, the vector product in (2) is shorthand for

Ψi,γβγ =
[
ψ(xi, x1)β1 ψ(xi, x2)β2 · · · ψ(xi, xN )βN

]
.

We follow a hierarchical Bayesian strategy [3], where the unknown parameters
{γ,β} are drawn from appropriate prior distributions. The intuition behind this
hierarchical approach is that by increasing the levels of inference, we can make
the higher level priors increasingly more diffuse. That is, we avoid having to
specify sensitive parameters and therefore are more likely to obtain results that
are independent of parameter tuning.

We place a regularized maximum entropy g-prior on the regression coefficients
p(β | δ,γ) = N (0, δ2Sγ), where Sγ = (ΨT

γ Ψγ + εIN )−1) and ε is a small value
that helps maintain a prior covariance with full rank. The regularization term
δ2 is in turn assigned an inverse Gamma prior with two hyperparameters μ

2 , ν
2

specified by the user. One could argue that this is worse than the single parameter
δ2. However, the parameters of this hyperprior have much less direct influence
than δ2 itself, and therefore are less critical in determining the performance of
the model [3]. Typically, we set μ and ν to near-uninformative values.

Following [15], each γk follows a Bernoulli distribution with success rate
τ ∈ [0, 1], which in turn follows a Beta distribution with parameters a, b ≥ 1.
This allows the data to automatically determine the complexity of the model
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Fig. 3. The directed graphical representation of the fully-supervised classification
model. Shaded nodes are observed during training, and square nodes are fixed hy-
perparameters.

according to the principle of Occam’s razor, while allowing the user some con-
trol over the prior. Setting b � a on large data sets initializes the learning
algorithm to a reasonable number of active kernels.

The model is highly intractable. In particular, it is non-linear and the poste-
rior of the coefficients β ∈ R

N is a correlated, hard to sample, high-dimensional
distribution. However, we can simplify the problem enormously by introducing
easy to sample low-dimensional variables z. Then, by conditioning on the sam-
ples of these latent variables, we can solve for the posterior of β analytically.
This is accomplished by ensuring that the variables z � {z1, z2, . . . , zN} have
distribution

p(zi |γ,β, xi) = N (Ψi,γβγ , 1). (3)

It then follows that, conditioned on z, the posterior of the high-dimensional
coefficients β is a Gaussian distribution that can be obtained analytically. This
simple trick, first introduced by Nobel Laureate Daniel McFadden, is important
to Bayesian data analysis since it reduces a difficult high-dimensional inference
problem to a much simpler problem of sampling independent low-dimensional
variables [20]. To recover the binary labels, we have

yi =
{

1 if f(xi,β,γ) > 0,
−1 otherwise.

The directed graphical model in Fig. 3 summarizes the Bayesian kernel ma-
chine for classification.

3 Two Augmented Models for Data Association

The model presented up to this point is nearly identical to the one proposed
in [30]. It assumes all the labels in the training data are known. In this section, we
augment the model with either constraints (Sec. 3.1) or group statistics (Sec. 3.2)
in order to handle weak supervision.
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3.1 Constrained Multiple Instance Learning

When the image caption says that no object is present, all the labels are observed
to be negative, and we can recover the latent regression variables zi following
(3), as in [20,30]. We denote observed labels by yk

i .
When the image contains an instance of the object, the unknown labels yu

i

must satisfy constraints on the minimum number of features of each class. We
define n(+) to be the constraint on the minimum number of positive points in
an image, and n(−) to be the minimum number of negatively classified points.
The prior on the regression coefficients is

p({zu
i }|γ,β, {xi}) ∝

∏
i

N (zu
i |Ψγ,iβ, 1) IC(−)({zu

i })IC(+)({zu
i }),

where i ranges over the set of exemplars in the image, C(−) is the set of assign-
ments to yu

i (and accordingly zu
i ) that obey the negative labels constraint n(−),

C(+) is the set of assignments to yu
i that satisfy the constraint n(+), and IΩ(ω) is

the set indicator: 1 if ω ∈ Ω, and 0 otherwise. Discrete constraints in non-convex
continuous optimization problems can be highly problematic. However, they can
be realistically handled by MCMC algorithms [15].

3.2 Learning with Group Statistics

An alternative to constrained data association is to augment the training data
with two user-defined statistics: an estimate of the fraction of positive instances
for each image j, mj ∈ [0, 1], and a global parameter χ quantifying the confidence
in these guesses. Higher values indicate higher confidence, while χ = 0 is a
complete lack of confidence, resulting in unsupervised learning.

The observed valuemj is an estimate of the true fraction of positives, λj , which
in turn is deterministically computed from the labels in the image according to

λj =
1
Nj

∑
i∈dj

I(0,+∞)(zu
i ), (4)

Fig. 4. The directed graphical representation of the classification model with group
statistics. Shaded nodes are observed during training, and square nodes are fixed hy-
perparameters.
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where Nj is the total number of extracted feature vectors in image j. Note that
we implicitly integrate out yu

i in (4). We use the Beta distribution to model this
noisy measurement process, so the prior on mj is

p(mj |λj , χ) = Beta (χλj + 1, χ(1− λj) + 1) ∝ m
χλj

j (1 −mj)χ(1−λj).

The augmented classification model with group statistics is summarized in
Fig. 4.

4 Model Computation

The classification objective is to estimate the density

p(yN+1 =1|xN+1,x,y
k)=
∫
p(yN+1 =1|xN+1, θ)p(θ|x,yk)dθ

for an unseen point xN+1, given the training data {x,yk}, where θ = {γ,β} is
the set of parameters that directly influence prediction. Obtaining this probabil-
ity requires a solution to an intractable integral, so we approximate it with the
Monte Carlo point-mass estimate

p(yN+1 =1 |xN+1,x,y
k) ≈ 1

ns

ns∑
s=1

p(yN+1 =1 |xN+1, θ
(s))

≈ 1− 1
ns

ns∑
s=1

Φ
(
−ΨN+1,γ(s)β(s)

γ

)
,

where ns is the number of samples, and each sample θ(s) = {γ(s),β(s)} is dis-
tributed according to the posterior p(γ,β |x,yk). Kück et al. [15] develop an
MCMC algorithm for sampling from the posterior by augmenting the original
blocked Gibbs sampler [30] to the data association scenario. We follow their
strategy for sampling these variables efficiently using Rao-Blackwellisation for
variance reduction and the Morrison-Sherman lemma for fast matrix updates.
One key difference is that [15] uses rejection sampling to sample the unknown la-
bels subject to the constraints or group statistics, while we adopt a more efficient
MCMC scheme and sample from the full conditionals in each document.

5 Conditional Random Field for Integration of Multiple
Cues

Even though positively classified local features often lie on the object (see the ex-
perimental results of Sec. 6.3), they are inadequate for separating the object from
the background. Interest regions have been used successfully as a basis for im-
age classification, but there are few positive results extending to the localization
of objects. Here, we add an additional layer to localize the objects in an image.
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The basic intuition behind our approach is that labels on nearby interest regions
and neighbouring segments should be useful in predicting a segment label. We
propose a simple conditional random field that incorporates segmentation cues
and the interest region labels predicted by our Bayesian kernel machine. Spatial
integration is achieved in a generic fashion, so we expect our localization scheme
applies to a variety of object classes.

The first step is to learn a classifier using the Bayesian learning algorithm
described in Sections 2-4. Next, the image is decomposed into superpixels —
small segments which induce a low compression [27]. We use the Normalized
Cuts algorithm [29] to segment images, but other (less expensive) methods could
possibly be used with similar returns. The extracted features of small segments
are hardly sufficient for locating object classes in cluttered scenes, so the novel
step is the construction of a conditional random field [16] (CRF) that propagates
information across an image’s neighbouring superpixels and interest regions.

Interest region labels influence the segment labels through CRF potentials.
The strength of a potential is determined according to the overlap between the
interest region and the segment. Defining ai to be the area occupied by interest
region i, and aik to be the overlap between segment k and interest region i, the
potential on the kth segment label ys

k is defined to be

φk(ys
k) =

∑
i

aik

ai
δ(ys

k = yi), (5)

where yi is the interest region label predicted by the sparse kernel machine
classifier (1), i ranges over the set of interest regions in the image, and δ(x=y)
is the delta-Dirac indicator which returns 1 when x is equal to y, and 0 otherwise.

Next, we define the potential between two adjacent segments k and l to be

μkl(ys
k, y

s
l ) = θμ +

(
bkl

2bk
+
bkl

2bl

)
δ(ys

k = ys
l ), (6)

where bk is the contour length of segment k and bkl is the length of the border
shared by segments k and l. The pairwise potential (6) is the prior compatibility
of the labels of neighbouring segments.

Putting the potentials (5,6) together, the joint probability of the segment
labels ys is given by

p(ys |y) =
1

Z(y)

∏
k

φk(ys
k)
∏

l

μkl(ys
k, y

s
l ), (7)

where the partition function Z(y) =
∑

ys

∏
k φk(ys

k)
∏

l μkl(ys
k, y

s
l ) ensures that

the probabilities sum to unity. There is only a single free parameter, θμ, which
controls the strength of the potential. At this point, there is no learning; we
tune the parameter by hand. In our experiments, we set θμ to a relatively strong
prior, 0.1, which encourages neighbouring segments to have the same labels.
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Even though equation (7) contains a product over all pairs (k, l) of segments
in the image, the adjacency graph is sparse since only a few superpixels will
share a border, so it is reasonable to run an inference algorithm suitable for
sparse graphs. We use the tree sampling algorithm of [12] to infer the hidden
labels ys.

6 Experiments

We conduct three sets of experiments. First, we measure the model’s ability to
detect the presence or absence of objects in scenes, comparing performance with
previously proposed models. Second, we assess the model’s capacity for learning
the correct associations between local features and class labels by training the
model with varying levels of supervision. Third, by integrating local feature and
segmentation cues in a principled manner, we demonstrate reliable localization
of objects. We start by describing the setup used in our experiments.

6.1 Experiment Setup

We use interest region detectors which select informative or stable regions of the
image. We use three different scale-invariant detectors: the Harris-Laplace de-
tector [24] which finds corner-like features, the Kadir-Brady detector [14] which
proposes circular regions with maximum grey-level entropy, and the Laplacian
method [18] which detects blob-like structures. Based on earlier studies [23],
we chose the Scale Invariant Feature Transform (SIFT) [19] to describe the
normalized regions extracted by the detectors. We compute each SIFT descrip-
tion using 8 orientations and a 4 × 4 grid, resulting in a 128-dimension feature
vector.

For fair comparison, we adjust the thresholds of all the detectors in order to
obtain an average of 100 interest regions per training image. The combination
scenario has an average of 300 detections per image. Note Fergus et al. [11]
extract only 20 features per image on average, owing in part to the expense of
training, while Opelt et al. [26] learn from several hundred regions per image.

For all our experiments using the constrained data association model (Sec. 3.1),
we fix the label constraint n0 to 0 and set n1 between 15 and 30, depending on the
object in question. Our constraints tend to be conservative, the advantage being
that they do not force too many points to belong to objects that occupy only a
small portion of the scene. When employing the group statistics model (Sec. 3.2),
we set the parameters to be approximately m = 0.3 and χ = 400. We set a = 1
and b according to a feature selection prior of approximately 200 active kernel cen-
tres, and we bestow near uninformative priors on the rest of the model parameters.
In all our experiments, we set σ to 1/100 because our MCMC algorithm reliably
converged to a good solution. (Scale selection is an unsolved problem.) We found
that 2000 MCMC samples with a burn-in period of 100 was sufficient for a stable
approximation of the model posterior. Prediction by integrating the samples is
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fast: it takes about 1 second per image on a 2 GHz Pentium machine. The code
and data for our experiments are available at http://lear.inrialpes.fr/objrecls.

6.2 Image Classification

The experiments in this section quantify our model’s capacity for identifying
the presence or absence of objects in images. We refer to this task as image
classification. One should take caution, however, in generalizing the results to
recognition: unless the image data is well-constructed, one cannot legitimately
make the case that image classification is equivalent to object recognition. It is
important to ensure the model learns to recognize cars, not objects associated
with cars, such as stop signs. We address these concerns by proposing new ex-
periment data consisting of images arising from the same environment: parking
lots with and without cars. The outdoor scenes exhibit a significant amount of
variation in scale, pose and lighting conditions. In addition, the new data set
poses a challenge to learning with weak supervision, since the cars often occupy
a small portion of the scene. See Fig. 1 for some example images. For purposes of
comparison with other methods, we also present results on some existing data-
bases of airplanes, motorbikes, wildcats, bicycles and people. The experiment
data is summarized in Table 1.

Table 1. Summary of experiment data. The sources are the Caltech motorbikes (side)
and airplanes (side) categories (http://www.vision.caltech.edu/html-files/archive.html),
the Corel Image database for the Wildcats, the Graz bicycles and people data
sets (http://www.emt.tugraz.at/∼pinz/data/GRAZ 01), and the INRIA car database
(http://lear.inrialpes.fr/data).

Training images Test images
class with object without with object without

airplanes 400 450 400 450
motorbikes 400 450 400 450
wildcats 100 450 100 450
bicycles 100 100 50 50
people 100 100 50 50
cars 50 50 29 21

We adopt a simple voting scheme for image classification by summing over
the feature label probabilities assigned by the model. Results of the image clas-
sification experiments are shown in Table 2. We report performance using the
Receiver Operating Characteristic (ROC) equal error rate, a standard evaluation
criterion [26,11]. It is defined to be the point on the ROC curve — obtained by
varying the classification threshold — when the proportion of true positives is
equal to the proportion of true negatives. We used the constrained data asso-
ciation model for these experiments, since constraints were easier to specify for
most of the existing data sets.
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Table 2. Image classification performance on test sets measured using the ROC equal
error rate. The two three columns refer to the performance reported by Fergus et
al. [11] and Opelt et al. [26]. The third column from the right is a reimplementation
of the bag-of-keypoints model of Csurka et al. [7] using affine-invariant Harris-Laplace
interest regions. All the other columns state the performance obtained using the pro-
posed Bayesian model with regions extracted by various detectors (from left to right):
Harris-Laplace [24], Kadir-Brady entropy detector [14], Laplacian of Gaussians [18],
and combination of the three detectors.

data set H-L K-B LoG Combo Csurka Fergus Opelt

airplanes 0.985 0.993 0.938 0.998 0.962 0.902 0.889
motorbikes 0.988 0.998 0.983 1.000 0.980 0.925 0.922
wildcats 0.960 0.980 0.930 0.990 0.920 0.900 —
bicycles 0.920 0.880 0.840 0.900 0.880 — 0.865
people 0.800 0.740 0.840 0.820 0.780 — 0.808
cars 0.966 0.897 0.897 0.931 — — —

Observe that our model in combination with the three detectors always pro-
duces the best image classification (at least when comparisons with other meth-
ods are available). Moreover, our model does very well in classifying car images
in spite of the aforementioned challenges posed by the training examples. We
omitted error bars because independent MCMC trials with fixed priors exhibited
little variance.

One of the more interesting results of Table 2 is that no single detector dom-
inates over the rest. This highlights the importance of having a wide variety of
feature types for object class recognition.
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Fig. 5. The graph on the left plots the ROC curve for classification performance of
car test images using the Harris-Laplace detector (blue solid line) and the combination
of three detectors (red dotted line). The graph on the right shows analogous results
for the bicycles test set. In both cases, the equal error rate (indicated by a large dot)
is inferior in the combination, but according to the full ROC curve it may perform
slightly better.



290 P. Carbonetto et al.

0.5

0.6

0.7

0.8

0.9

1

recall per image recall per image

co
rr

ec
t p

os
iti

ve
s

Point classification on 
training cars

0 50 100

H-L
K-B
LoG
Combo

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
rr

ec
t p

os
iti

ve
s

Point classification on 
test cars

0 50 100

H-L
K-B
LoG
Combo

0.2

0.3

0.4

Fig. 6. Plots of precision (percentage of correct positives) versus average recall per
image for the task of labeling individual features as belonging to cars. Our definition of
recall here is not standard since we do not divide by the number of regions in the image.
The combination scenario extends to 300 along the x-axis, but we cut it off at 100.
Our algorithm learns which features are best in the combination, but this performance
does not necessarily translate to better image classification (shown in Table 2).

Training with the combination of the Harris-Laplace, Kadir-Brady and LoG
detectors often — albeit inconsistently — improves the equal error rate. For
instance, we see that the ROC equal error rate decreases in the combination
scenario for car, people and bicycle classification. Upon closer inspection, how-
ever, the ROC equal error rate can be deceptive. If we examine the full ROC
plots in Fig. 5, the combination of detectors now appears to be equally advan-
tageous. Importantly, a precision-recall plot for the task of labeling individual
features as belonging to cars in Fig. 6 shows that our classifier picks the best
individual features first when given the choice between three detectors in the
combination scenario (the ground truth was determined according to manual
object-background segmentations of the scenes). Note that in Fig. 6 the Harris-
Laplace detector is overly penalized because it often selects corner-like features
that are near, but not on, cars. Fig. 7 shows a couple examples where learning
a model with a combination of detectors results in an improved image classifi-
cation.

We show examples of correctly and incorrectly classified images, along with
the interest regions extracted by the detectors, in Fig. 8. Incorrectly classified
images tended to be unlike any of the images observed during training, such
as the van and the child’s bicycle. Problematic images also tended to exhibit
unusual illumination conditions.
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K-B  1.000 K-B  1.000 K-B  1.000

LoG  1.000 LoG  1.000 K-B  0.996

K-B  0.996 LoG  0.995 K-B  0.988

K-B  0.997 K-B  0.990 K-B  0.986

K-B  0.974 K-B  0.971 LoG  0.964

LoG  0.955 LoG  0.917 K-B  0.913

Fig. 7. Two examples in which the combination of detectors (top row) results in im-
proved image classification over the Harris-Laplace detector (middle row). The circles
represent the 9 interest regions that are most likely to belong to cars or bicycles. The
bottom row shows the top features along with feature type and probability of positive
classification. The combination is an improvement precisely because the Harris-Laplace
detector fails to select good features in these two images.

6.3 Investigation of Data Association

In this section, we ask to what extent our proposed scheme for data association
correctly labels the individual features, given that it is provided very little infor-
mation. In some sense, this task is unfair since many individual interest regions
cannot discriminate the object class. Fig. 9 shows two Kadir-Brady interest re-
gions that do not help discriminate bicycles. Even under the best of conditions,
we should not expect the classifier to predict the feature labels perfectly.
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Fig. 8. Test images correctly (top four images) and incorrectly (bottom four) classi-
fied using interest regions extracted by the Harris-Laplace (for cars and bicycles) or
LoG detector (for people). Dark blue circles represent local interest regions that are
more likely to belong to the object, while yellow circles more probably belong to the
background.

We frame the data association question as follows: if manual segmentations
were provided, how much would we gain over image caption data? The answer of
course depends on the nature and quality of the data. At the very least, we should
expect that our model predicts the correct labels of the discriminative features
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Fig. 9. The yellow circles are two interest regions extracted by the entropy detector.
By looking only at the pixels inside the yellow circle, it is difficult to tell which one
belongs to the bicycle and which one belongs to the background.

in the INRIA car database, since it appears to exhibit sufficient information to
delineate positive and negative instances.

We conduct the experiment on the car database using the interest regions
extracted from the Harris-Laplace detector. We use both hard constraints and
group statistics. We increase supervision by setting some unknown labels yu

i

known to fall on cars to yk
i = 1. Note that there is some noise in this process, since

an interest region near a car may or may nor be associated with it. The results
are presented in Fig. 10. The ROC curves show how the accuracy in labeling
individual features changes with different levels of supervision. As expected, the
addition of a few hand-labeled points improves recognition in training images.
However, further upgrades in supervision result in almost no gains to recognition
in test images. This shows that our data association schemes largely compensate
for the lack of annotations in the data. Fig. 11 demonstrates this effect on a
single image.

6.4 Object Localization

In this section, we evaluate the proposed object localization model. In order
to quantify its effectiveness, we compare the object-background segmentation
predicted by the model with those drawn by hand. Some examples of manual
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Fig. 10. The ROC plots demonstrate how learning with different proportions of hand-
labeled points affects performance on labeling individual car features. (a) Labeling
accuracy using the constrained data association model (Sec. 3.1). (b) Labeling accuracy
using the data association with group statistics model (Sec. 3.2). The Harris-Laplace
detector is used for both these experiments. With a lot of supervision, the models
predict near-perfect feature labels in the training images, but there is little improvement
in the test images.

segmentations are shown in Fig. 12. Perfect localization requires: 1.) that the
boundaries of the segments follow the object boundaries, and 2.) that the condi-
tional random field predicts the segment labels correctly. Even then, the evalua-
tion may not be precise since the ground truth annotations contain some error,
as evidenced by the examples in Fig. 12.
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Fig. 11. Labeling of individual interest regions using the model augmented with data
association constraints. The model was trained with various levels of supervision (see
Fig. 10). Left: Car test image, no observed car labels during training. Right: The same
image, except that the model was trained with an additional 11% observed feature
labels. Dark blue circles are more likely than not to belong to the object, and light
yellow circles are more likely to belong to the background.

Fig. 12. Examples of ground truth segmentations from the bicycle and car databases

The ROC curves in Fig. 13 report the quality of the estimated segmentations
in the car and bicycle databases. The ROC plots are obtained by thresholding
the label probabilities on the segments and then finding the intersection with
the ground truth segmentations. We use the Harris-Laplace detector for the car
images and the Kadir-Brady entropy detector for the bicycles. The “without
CRF” results in Fig. 13 do not use the superpixels; the spatial information is
acquired from the location and scale of the interest regions. Our results show
that we gain a lot in localization by using the segments to propagate interest
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Fig. 13. ROC plots for localization of (a) bicycles and (b) cars, with (solid blue line)
and without (dashed green line) the proposed CRF model. We use the Harris-Laplace
detector for the cars, and the Kadir-Brady entropy detector for extracting interest
regions in the bicycles database. Notice that the addition of the superpixels with the
conditional random field dramatically improve the quality of the object-background
separation.

region labels. The results in Fig. 13 show that our method is more reliable for
locating cars in images. Without the CRF, Fig. 13a shows that the first selected
labels selected are almost always within the boundary of cars, but the model
cannot make any predictions in areas where no interest regions are extracted by
the detector.

Some successful predictions in car test images are shown in Fig. 14, and some
less successful car recognition results are displayed in Fig. 15. Localization failed
when the interest regions and superpixels failed to complement each other. Notice
we did not tailor the CRF to an object class, so recognition performance might
very well generalize to other visual object classes.
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Estimated segmentation Estimated segmentationImageImage

Fig. 14. Good localization results on car test images. Darker patches are more likely
to correspond to cars.

Estimated segmentation Estimated segmentationImageImage

Fig. 15. Poor localization results on car test images. Darker patches are more likely to
belong to the car class.

7 Conclusions and Discussion

In this paper, we extended the discriminative power of local scale-invariant fea-
tures using Bayesian learning. We showed that both models for generalized mul-
tiple instance learning — constrained data association and learning with group
statistics — are remarkably well-behaved in the face of noisy high-dimensional
features and wide variability in the unlabeled training data. Our method allows
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us to solve the important problem of selecting local features for classification. In
addition, we proposed a generic, probabilistic method for robust object localiza-
tion by integrating multiple visual cues learned through our model. The experi-
ments show our method successfully segments the object from the background.
The important implication is that our Bayesian model selects the features that
really lie on or near the object.

The conditional random field we proposed does not adapt its parameters to the
object class in question since there is no learning involved. An important question
is whether our Bayesian methods for data association can be extended to more
advanced models for learning to recognize objects, such as those that incorporate
context, shape information, correlations between features and different types of
features. We suspect that it is as much a challenge for machine learning as it is
for vision.
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Abstract. Cascades of boosted ensembles have become a popular tech-
nique for face detection following their introduction by Viola and Jones.
Researchers have sought to improve upon the original approach by incor-
porating new techniques such as alternative boosting methods, feature
sets, etc. We explore several avenues that have not yet received ade-
quate attention: global cascade learning, optimal ensemble construction,
stronger weak hypotheses, and feature filtering. We describe a proba-
bilistic model for cascade performance and its use in a fully-automated
training algorithm.

1 Introduction

In order for object recognition to be useful in real-world applications such as
robotics, surveillance, or video indexing, recognizers must have the ability to
localize objects of interest in images under viewpoint changes (e.g. changes in
object size or position) and must be robust to complex background clutter.
This aspect of object recognition can be studied from the standpoint of object
detection, where the goal is to develop efficient and accurate classifiers capable of
discriminating a target object from the background. In this chapter, we explore
the efficient and optimal training of cascade classifiers for face detection.

Given an input image, our goal is to return a list of (location, scale)-tuples
that describe the position and size of detected faces. A natural search strat-
egy in this context is to quantize the location × scale space and search it in a
brute-force fashion. In this setting, object instances will frequently occupy only
a small part of the image’s scale space. In this sense, we may say that objects are
“rare events” in the image, hidden among a large background class [32]. This re-
sults in a strongly asymmetric classification problem, since the error rate for the
background class must be on the order of 10−7 to avoid littering the image with
misclassified non-objects, while error rates of a few percent may be acceptable
for the target class.

As popularized by Viola and Jones [29], the rarity of positive examples in ob-
ject detection tasks can be exploited for computational efficiency via the cascade
architecture. Each stage of the cascade either rejects an input region immedi-
ately as a non-object, or passes it on to the next stage for further analysis.

J. Ponce et al. (Eds.): Toward Category-Level Object Recognition, LNCS 4170, pp. 301–320, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Inputs which survive all classifier stages are accepted as object instances. The
cascade is efficient because most instances are non-objects and can be rejected
by the first few stages with a minimal amount of computation. In this approach,
the running time of the detector is no longer simply a function of the size of
the image but also reflects the image’s complexity. Blanchard and Geman have
recently presented a general theoretical analysis of such classifier systems [1].

Each stage in the cascade architecture is an ensemble classifier node. These
nodes are typically trained in a sequential manner, starting with the top node
in the cascade and proceeding to the last. This training process raises several
questions about the optimality and efficiency of cascade induction:

1. How should we handle the trade-off between the detection rate and false
positive rate goals for each node in the cascade, so that the overall cascade
performance is optimized? This decision is complicated by the fact that each
node in the cascade experiences a different distribution of data, as a result
of the filtering performed by earlier nodes.

2. How should we decide when to stop training one stage and move on to
the next one? How should we decide when to stop adding nodes to a given
cascade? In the absence of a fully-automated solution to these questions,
human intervention is required. The resulting lack of repeatability makes it
very difficult to perform experimental comparisons between different cascade
learning methods.

3. Given a desired operating point for a node classifier, how can we ensure that
it will be met? In the standard approach, an ensemble classifier is trained to
minimize misclassification error and then its threshold is adjusted to achieve
the desired tradeoff between error types. How can we address the require-
ments of the node classifier more directly, so that the performance goal in-
forms the training process in a meaningful way?

4. What is the most efficient feature selection method for a node classifier?
Given a large number of potentially-redundant features, are there any filter-
ing schemes which can quickly reduce the number of feature sets that need
to be considered?

We address this first point by developing a probabilistic model for the overall
performance of a cascade classifier during training. We show that distribution
over possible cascade operating points can be modeled as a product of beta
variables (see Sec. 4.2). The stage-wise goal can then be chosen to optimize the
expected overall performance. We address the second issue by defining a global
cascade loss function which is optimized at each stage. The loss function results
in an automatic stopping criteria. The third point is met by a new ensemble rule
which we call the Linear Asymmetric Classifier (LAC) [30] (see Sec. 5.1). This
method re-assigns weights to a set of weak hypotheses and combines them into
an ensemble that is designed for the asymmetric nature of the stage classifica-
tion task. Finally, we present experimental results for feature filtering. We also
show that combining Adaboost with CART-based weak learning can improve
the detector’s final output.
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2 Cascade of Boosted Ensembles

We begin by defining the Cascade of Boosted Ensembles (CoBE) architecture
which provides a mathematical model for the cascade classifier. We express the
CoBE architecture as follows. Let X be the instance space and let c : X → {0, 1}
be the target concept. The stages of the cascade {si}N

i=1 consist of a set of weak
classifiers {hij}Mi

j=1 and a threshold θi such that for all x ∈ X

si(x) = I

⎡
⎣Mi∑

j=1

hij(x) > θi

⎤
⎦ , (1)

where I[·] is the indicator function. Here we follow the convention of using con-
fidence rated classifiers that return an unbounded real value, instead of {0, 1}
or {−1, 1}, removing the need for a weighting coefficient.1 The hypotheses for
the entire cascade can then be expressed as

∧N
i=1 si(x). It is important to note,

however, that while a stage concept si is defined over all X , it will only ever be
applied to the set Xi = {x ∈ X : ∧i−1

k=1sk(x)}. Thus, a stage that performs well
on such a subset might perform poorly on all of X and still fulfill its role in the
detector.

2.1 Training a CoBE

A generic version of the original Viola-Jones training algorithm is presented in
the Learn-CoBE procedure. The subroutines serve as placeholders for a variety
of solutions from the literature that apply to a given subproblem. Before train-
ing a stage, we first apply the standard bootstrapping practice [23] to acquire
appropriate training and validation data. Positive examples that would be re-
jected by the current cascade are removed from the training and validation sets,
and false positives of the current cascade are extracted from an image corpus, in
which the object is either absent or blacked out, to form the negative examples
(Bootstrap). Thus, these data sets consist only of instances not rejected by
any stage of the cascade that has already been trained. Since the set of features
available is often too large (134,736 for the original Viola-Jones set), we then
filter the set down to a manageable size (Filter-Features).

To build the ensemble of classifiers, we first learn a classifier (Weak-Learn)
based on the current set of weights. We then re-weight the examples (Reweight-
Examples), giving the misclassified examples more weight. Finally, we search for
a suitable θi to balance the detection versus false positive tradeoff (Find-Best-
Threshold).2 To assess the performance, we apply the stage to the validation
set to calculate the false positive and detection rate pair 〈f̂i, d̂i〉 (Validate). This

1 Schapire and Singer use the same convention in Sec. 4 of [20], saying that the weight
coefficients are “folded into” the hypothesis.

2 We use the same “validation” data in the Find-Best-Threshold step as we do in
the Validate step. We find that this works well in practice.
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Let F be the set of features and E the set of examples. We denote the weights for E
as W . No more than L iterations of Adaboost are permitted. G refers to the goal cost
for the cascade, and 〈f̂i, d̂i〉 denotes the false positive and detection rate pair for the
ith stage.

procedure Learn-CoBE()
C ← ∅ { C initialize an empty cascade}
for each stage i do

E ← Bootstrap()
F ′ ← Filter-Features()
si ← ∅
W ← Initialize-Weights()
repeat

h ← Weak-Learn()
W ← Reweight-Examples()
si ← si ∪ h
θi ← Find-Best-Threshold()
〈f̂i, d̂i〉 ← Validate()

until |si| > L or Predict-Cost() ≤ G
〈si, θi〉 ← Reweight-Hypotheses
C ← C ∪ 〈si, θi〉

Let P be the set of partitions of the examples induced by the classifier’s form; e.g.
thresholding on a single feature.

procedure Weak-Learn()
ε ← ∞
for all p ∈ P do

hp ← Confidence(p)
if ε > Error(hp) then

hbest ← hp

ε ← Error(hp)
return hbest

measurement and the analogous measurements for all previous stages are used
to predict an overall cost for the cascade that is to be minimized (Predict-
Cost). If this cost is too high, then we repeat the cycle of learning a new
hypothesis, re-weighting the examples, and evaluating the ensemble. Once the
cost has been sufficiently reduced or the maximum number of hypotheses is
reached, we may re-weight the hypotheses and select a new ensemble threshold
(Reweight-Hypotheses). Note that it is also possible to re-weight the en-
semble of hypotheses each time a new one is added, as is done in [17]. Having
completed the training process for a stage, we begin training the next one.

It should be noted that in choosing the stage thresholds θi, the goal should not
be to maximize the performance of the stage in isolation, but rather to maximize
the performance of the cascade as a whole. We will shown how to address this
problem in Sec. 4.
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Next, we turn to the Weak-Learn routine, which outlines the standard pro-
cedure for training weak classifiers. The form of the classifier defines partitions P
of the instance space considered by the algorithm. For instance, if the classifier
thresholds a single feature to make its decision, then the set P could contain all
dichotomies produced by all possible thresholds of all features in F ′. For a given
partition p we denote the corresponding disjoint sets of the instance space as
{Xp

j }, where j indexes over the sections of the partition. We denote the weight
of the positive and negatives examples in these sets as {W+

j } and {W−
j }. The

Weak-Learn routine builds a hypothesis for each partition p by deciding on a
confidence value for each subset of the instance space Xp

j based on the weights
W+

j and W−
j . It then evaluates each hypothesis and returns the best hypothesis

for use in the ensemble.
Although not all changes made to the original Viola and Jones implementation

strictly fit into the above architecture, we believe it provides a useful abstraction
of the CoBE approach.

3 Previous Work

Despite the critical importance of the Find-Best-Threshold and Predict-
Cost functions to the performance of the final detector, these aspects of the
training process have received comparatively little attention in the literature. A
preliminary version of our approach was published in [22]. Likewise, there have
been few controlled, comparative studies that address questions about which
factors have the greatest impact on cascade performance. One exception is [16],
which also examines CART features. See [2] for a detailed comparison to the
present work.

Huitao Luo has recently published a method for adjusting the stage thresholds
after the full cascade has been trained [18]. While the success of this method
illustrates the importance of the stage thresholds for classification performance,
it does not address how the thresholds should be chosen in the cascade training
phase (Find-Best-Threshold), which critically influences the bootstrapped
data, or when it is appropriate to begin training a new stage (Predict-Cost).

Much of the early research on the CoBE architecture focused on the boost-
ing algorithm. In [27], Viola and Jones propose Asymmetric Adaboost, which
changes the Reweight-Examples routine to keep most of the weight on the
positive examples (instead of treating positive and negative examples equally),
ensuring that a high percentage is detected by each weak classifier. Similar strate-
gies from the machine learning literature include AdaUBoost [12], AdaCost [4],
and [24]. Also similar to our work are the BMPM [11], and MRC [3] methods. A
more detailed discussion of the relationships between these methods and LAC
can be found in [30].

Li and Zhang have applied another alternative boosting algorithm to face
detection in their paper on FloatBoost [15], which instead of greedily adding
hypotheses to the ensemble, allows backtracking to eliminate the less useful or
even harmful hypotheses. In other respects, the algorithm proceeds as RealBoost.
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Liu and Shum [17] found that using KL-boost combined with weak classifiers
based on histograms of 1D projections in feature space improved detection per-
formance over the original approach. However, it is not clear whether it is the
changes to the weighting scheme or the means of forming the weak hypotheses
that is critical to the improvement.

A more radical departure from the Learn-CoBE routine is due to Xiao et
al. [33]. Inspired by the observation that the operating point of a stage may
not minimize error, they allow the hypothesis formed by the minimum error
threshold of the previous stage to play the role of a weak hypothesis in the next
stage of the cascade. Having thus produced a cascaded detector, they convert it
to a single weighted voting scheme and train an SVM to relearn the confidence
(vote) weights.

Others have changed the feature set while keeping the other key aspects of
the CoBE architecture. Lienhart et al. [16] proposed another Haar-like feature
set including diagonal features that can also be quickly computed via an integral
image. Froba and Ernst [6] use a modified census transform and achieve state
of the art performance using only three cascade stages. Levi and Weiss [14] also
achieve state of the art performance using a small number of training examples
with features based on edge oriented histograms.

CoVEs. A class of detectors closely related to the CoBE family are the cascades
of voting ensembles. By a voting ensemble, we mean a classifier of the form3∑

i

hi(x) > θ, (2)

where x is an instance and hi returns an unbounded real. Included in this class
are the cascade of semi-Naive Bayes classifiers used by Schneiderman [21], the
cascades of SVMs used by Heisele et al. [10], and the linear classifiers of Keren et
al. [13], Elad et al. [3], and Romdhani et al. [19]. The critical difference between
these detectors and the CoBEs is that they do not use boosting. Nevertheless,
the cascade learning algorithm and some of the empirical results may have im-
plications for these architectures as well.

The material in this chapter is taken primarily from [2] and [30], and the LAC
method is also described in [31]. For a detailed survey of face detection see [34].

4 Cascade Learning

Two of the most important decisions in building a cascade of boosted ensembles
are:
3 A more strict definition of a voting ensemble might require that the classifier be of the

form
∑

i aihi(x) > θ, where hi is a concept returning either 0 or 1. This restriction
causes a vote’s weight to be fixed; whereas the h in the confidence-rated hypotheses
used in Eqn. 2 might adjust their weight according to x. If the confidence-rated
hypotheses return only two distinct values, then the two definitions are equivalent,
but if they can take on more values, then the classifier described in Eqn. 2 does not
meet the more strict definition.
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1. When to stop training a stage to move on to the next one.
2. How to balance the detection versus false positive trade-off within a stage.

In terms of our Learn-CoBE algorithm these decisions are determined by the
function Find-Best-Threshold, which chooses θi, fixing the stage’s operating
point, and by the function Predict-Cost which determines when to move on
to the next stage of the cascade.

4.1 Fixed Stage Goal

If the true false positive and detection rates for the stages are {fi} and {di},
then the false positive and detection rates for the whole cascade are F =

∏N
i=1 fi

and D =
∏N

i=1 di. This is not a statement of independence, but a factorization
of the probability that all stages accept an instance as,

Pr[s1(x), . . . , sN (x)|c(x) = y] =
N∏

i=1

Pr[si(x)|si−1(x), . . . , s1(x), c(x) = y], (3)

where y is either 0 or 1 (non-face or face). Knowing the relationship between
{fi} and {di} will enable us to reason about F and D and thus about the overall
performance of the cascade.

The standard approach to addressing the cascade training goals, as outlined
in [28,27], is to choose a goal operating point 〈Fg, Dg〉 and then take its Lth root
to obtain 〈fg, dg〉, where L is the intended number of stages in the cascade. Each
stage is constrained to achieve one of fg or dg (typically fg works better) and
then terminates when either the other goal criterion is achieved or the maximum
number of boosting iterations is exceeded.

This goal-based strategy leaves something tobedesired, however.First, it rigidly
fixes the number of stages in the cascadebefore any training is done. Second, it does
not permit any trade-off between the detection and false positive rates within the
stages. For instance, when selecting the threshold of a stage, one might be able to
significantly improve the false positive rate at a small expense to the detection rate,
improving the chances of meeting the goal criteria. The extra leeway on the false
positive criterion might also be used at a later stage to improve a stage’s detection
at the expense of the false positive rate. By fixing one element of the operating
point, this strategy precludes taking advantage of such trade-offs.

4.2 Cascade Learning with Beta Variables

We now describe an adaptive method for setting the stage classifier goals. It is
based on our earlier work in [22] and is described in detail in [2]. The inputs to
this alternative method are:

1. A goal operating point for the entire cascade 〈Fg, Dg〉.
2. A ratio η that reflects the relative importance of the false positive and de-

tection criteria.
3. A maximum number of stages L.
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The cascade learner then builds the fastest detector it can while achieving the
goal performance with high probability.

A key element of our approach is that the algorithm views the performance
of the cascade 〈F,D〉 as a random variable and treats the empirical results on
validation data for the individual stages, {f̂i} and {d̂i}, as evidence. A statistical
model estimates the distribution of full cascade operating points, and each stage
is trained to use the minimum number of features that ensure that the probability
of meeting the performance goals is sufficiently high.

The key assumption underlying the statistical model is that the results on the
validation data for the current stage can be repeated at all subsequent stages. We
call this the “repeatability assumption” [22]. It is important to note that a similar
assumption is implied in the fixed stage goal framework, where it is assumed
that a particular operating point will be achieved in each stage. Although, the
repeatability assumption is not strictly true in practice, it provides a guiding
principle for applying our statistical model during training. The advantage of
this model is that it affords a principled and practical way to make detection
and false positive rate trade-offs in the individual stages.

Cost Function. Because a reasonable goal might not be known a priori, the
algorithm must be robust to unattainable goals and produce results that are as
close as possible. Depending on the attainability of the goal, therefore, we adjust
our cost function. For simplicity, assume that η > 1.0, meaning that the false
positive criterion is more important. We consider the following cases

1. If Pr[D < Dg] < γ and Pr[F > Fg] < γ, then

cost = Pr[D < Dg] + ηPr[F > Fg].

2. If Pr[F > Fg] < γ, then cost = 2 + η −D.
3. Otherwise, cost = 2 + η + F .

The first cost function is suitable when both goals are attainable with some
substantial probability, say γ. However, when this is not possible, then the func-
tion provides no incentive to trade a small decrease in the false positive rate
for a large improvement in the detection rate (an analogous statement holds if
η < 1.0, giving detection greater importance). Therefore, if both criteria cannot
be met with probability γ, then we constrain the false positive rate to be met
with probability γ and maximize the detection rate. Finally, if the criterion for
false positive rate cannot be met with probability γ, we simply minimize the
false positive rate. Typically, this means that the false positive rate is reduced
to zero, effectively terminating the training process.

Cost Prediction. Minimizing this cost function requires the ability to compute
Pr[D < Dg] and Pr[F > Fg]. We will only treat the detection criterion, because
the false positive one is analogous. Consider the likelihood Pr[d̂i|di], where d̂i is
the measured detection rate over M positive examples. Given the true detection
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Assume that the cascade has already been trained through stage i and that we are
predicting the cost if the measured operating point of the next stage is 〈f̂i+1, d̂i+1〉.
Predict-Cost-Sample maintains a set of sampled operating points for the currently
trained cascade {〈F k

i , Dk
i 〉}K

k=1. All measurements are made with validation sets of M
negative examples and the same number of positive examples.

procedure Predict-Cost-Sample()
for j = i + 1 to N do

for k = 1 to K do
F k

j ← F k
j−1 · βf̂i

, where βf̂i
is a random beta deviate with parameters f̂iM + 1

and (1 − f̂i)M + 1.
Dk

j ← Dk
j−1 · βd̂i

, where βd̂i
is a random beta deviate with parameters d̂iM + 1

and (1 − d̂i)M + 1.
Gf ← |{k : F k

j > Fg}|/M
Gd ← |{k : Dk

j < Dg}|/M
costj ← Cost(Gf , Gd).

return minj costj .

The above procedure is used for Predict-Cost.
procedure Find-Best-Threshold()

choose θi for which Predict-Cost() is lowest.

rate di, the probability of m out of M examples being detected is just the
binomial distribution (

M
m

)
(1− di)M−mdm

i .

Taking a uniform prior Pr[di] over [0, 1] and applying Bayes rule gives

Pr[di|m,M ] =
Pr[m|di,M ] Pr[di]∫ 1

0 Pr[m|p,M ] Pr[p] dp
=

(1− di)M−mdm
i∫ 1

0 (1 − p)M−mpm dp
,

which is precisely the beta distribution with parameters m+ 1 and M −m+ 1.
Therefore, conditioned on the validation measurements, D is the product of

beta variables. The exact distribution only admits a clean analytic form in a
few specialized cases [8], but it can easily be approximated. One strategy is to
sample from the distribution for D by taking a sample from the distribution
di for each stage and taking their product. The quantity Pr[D > Dg] can be
estimated by counting the fraction of samples greater than Dg. This method is
used in the Predict-Cost-Sample procedure. A final set of samples for a fully
trained cascade is shown in Fig. 1.

This procedure allows us to estimate the cost once the cascade is fully trained.
It remains to specify the final cascade training procedure. It is here that we
apply the repeatability assumption, meaning that if we can achieve 〈f̂i, d̂i〉 on a
validation set for the current stage, then we assume that we can achieve the same
result for all subsequent stages. Therefore, as we are training the ith stage, we
use the results on the validation set to estimate 〈f̂j , d̂j〉 for all previous stages
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Fig. 1. Samples generated by Predict-Cost-Sample of the operating point for a fully
trained cascade. Note the diversity of the sample set.

(j < i), but we use the results for the ith stage on validation data for any
subsequent stages (j > i). The operating point having the lowest cost according
to this estimate is chosen for each stage, as shown in the Find-Best-Threshold
procedure.

4.3 Discussion

The advantage of this approach is that it offers the control of the goal-based strat-
egy over the cascade’s overall performance, while allowing some subtle tradeoffs
between detection and false positive rates in the stages. Moreover, it can “re-
member” past trade-offs to help decide whether a new trade-off will improve
the chances of achieving the cascade’s goal operating point. Note that though
we specify a maximum number of stages, we do not specify a minimum. If the
learner predicts better performance with fewer stages, then it will plan for fewer
stages.

To demonstrate the effectiveness and robustness of our improved cascade
learning algorithm, we point out that all thirty-five detectors used in the ex-
periments of [2] were trained automatically using a single set of parameters.
This set of experiments ranges from a cascade using four level deep CART trees
that achieves state of the art performance, to a cascade where the feature pool
was reduced to 200 randomly selected features (see Sec. 6.2).

It sometimes happens that the early stages of the cascades produced by our
method contain more hypotheses than those prodcued by other approaches. In
most other systems, the number of hypotheses in a stage is manually specified,
and in an effort to create a fast detector the early stages are forced to contain
only a few hypotheses. We could incorporate such a heuristic into the cascade
learning strategy presented here, so long as the cascade learner is provided with
measurement of the earlier stages’ detection and false positive rates.
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5 Adjusting Weights in the Ensemble

When no re-weighting is applied, the stage decision can be rewritten as

s(x) = I
[
1T h(x) > θ)

]
, (4)

which is just a restatement of Eqn. 1 where h denotes the vector of hypotheses
and the subscripts on s and θ have been dropped. In this section, we seek to
replace the weight vector 1 and scalar θ of Eqn. 4 with a new weight vector a and
with a new threshold b that are better suited to stage classification task, which
is to reject a significant portion of negative examples while detecting almost all
of the positive examples. This task corresponds to the Reweight-Hypotheses
procedure in the Learn-CoBE algorithm.

5.1 The Linear Asymmetric Classifier

For convenience, we will denote the hypothesis vector of a positive example as x,
of a negative example as y, and of an unknown class label as z for the remainder
of this section. We can now state our stage learning goal as the program

max
a �=0,θ

Pr
x∼(x̄,Σx)

{aT x ≥ b}

s.t. Pr
y∼(ȳ,Σy)

{aT y ≤ b} = β,
(5)

where β is some constant. In general this problem has no closed-form solution;
however, we will develop an approximation for it. Empirically, it has been found
that setting a false positive goal of 0.5 is effective in the fixed stage goal cascade
learning strategy. Thus, we will give a closed-form (approximate) solution when
β = 0.5.

Let x ∼ (x̄, Σx) denote that x is drawn from a distribution with mean x̄
and covariance matrix Σx. Note that we do not assume any specific form of
the distribution. The only assumption is that its mean and covariance can be
estimated from samples. We are dealing with binary classification problems with
two classes x ∼ (x̄, Σx),y ∼ (ȳ, Σy), which are fixed but unknown.

The key idea to solve this learning problem is to use the cumulative distribu-
tion functions of aT x and aT y to replace the Pr{} function. Let xa denote the
standardized version of aT x (x projected onto the direction of a), i.e.

xa =
aT (x− x̄)√

aTΣxa
, (6)

obviously we have xa ∼ (0, 1). Let Φx,a denotes the cumulative distribution
function (c.d.f.) of xa, i.e.

Φx,a(b) = Pr{xa ≤ b}. (7)

ya and Φy,a are defined similarly as
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ya =
aT (y − ȳ)√

aTΣya
, (8)

Φy,a(b) = Pr{ya ≤ b}. (9)

The constrained optimization problem (5) is equivalent to

min
a �=0

Φx,a

(
aT (ȳ − x̄) + Φ−1

y,a(β)
√

aTΣya√
aTΣxa

)
. (10)

where Φ−1
y,a is the inversion function of Φy,a (The equivalence of these two equa-

tions are proved in detail in [30]). In Eqn. (10), Φx,a and Φ−1
y,a depend upon the

distributions of x and y, in addition to the projection direction a. Because we
have no knowledge of these distributions, we cannot solve Eqn. (10) analytically.
We need to make some approximations to simplify it.

First, let us give a bound for Φ and Φ−1. It is easy to prove the following
bound (see [30] for details):

Φ−1(β) ≤ κ (β) , where κ (β) =

√
β

1− β
(11)

and Φ is the cdf of any random variable that has zero mean and unit variance.
From the definition, it is clear that xa ∼ (0, 1). Thus, instead of minimizing
Φx,a(ξ) in Eqn. (10), we can instead minimize its upper bound κ(ξ). Furthermore,
since κ(ξ) is an increasing function, it is equivalent to minimizing ξ. Thus, we
can approximately solve Eqn. (10) by solving

min
a �=0

aT (ȳ − x̄) + Φ−1
y,a(β)

√
aTΣya√

aTΣxa
, (12)

or, equivalently,

max
a �=0

aT (x̄− ȳ)− Φ−1
y,a(β)

√
aTΣya√

aTΣxa
. (13)

This transformation is approximate because in Eqn. (10), the function Φx,a de-
pends on a, while a also appears in the argument of Φx,a. However, if we assume
that aT x is Gaussian for any a, then xa is the standard normal distribution.
Under this assumption, Φx,a does not depend on a any more, and Eqn. (13) is
exactly equivalent to Eqn. (5).

Second, we assume that the median value of the distribution ya is close to its
mean. This assumption is true for all symmetric distributions and is reasonable
for many others. Under this assumption, we have Φ−1

y,a(0.5) ≈ 0. Thus for β = 0.5
(which is used in the cascade framework), Eqn. (13) can be further approximated
by

max
a �=0

aT (x̄− ȳ)√
aTΣxa

. (14)
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If in addition we can assume that ya is a symmetric distribution and β = 0.5, we
have Φ−1

y,a(0.5) = 0 in addition to Eqn. (13). The implication is that under these
assumptions, Eqn. (14) is exactly equivalent to the node learning goal in Eqn.
(5). We call the linear discriminant function determined by Eqn. (14) the Linear
Asymmetric Classifier (LAC) and use it in the cascade learning framework.

The form of Eqn. (14) is similar to the Fisher Discriminant Analysis (FDA) [7],
which can be written as:

max
a �=0

aT (x̄− ȳ)√
aT (Σx +Σy)a

. (15)

The only difference between FDA and LAC is that the pooled covariance matrix
Σx + Σy is replaced by Σx. This analogy immediately gives us the solution to
Eqn. (14) as:

a∗ = Σ
−1
x (x̄− ȳ), b∗ = a∗T ȳ, (16)

under the assumption that Σx is positive definite. In applications where Σx
happens to be positive semi-definite, Σx + λI can be used to replace Σx, where
λ is a small positive number.

Note that if that x and y have equal covariance matrices, LAC is equivalent
to FDA. If the covariance are not equal, however, the a vectors can differ dra-
matically. In [30], we present empirical evidence that supports the assumptions
underlying the LAC approach.

5.2 Analysis

To assess the effectiveness of the LAC approach, we measure the performance of
individual stages rather than the cascade as a whole. We compare stages trained
using Adaboost with no re-weighting, with FDA re-weighting, and with LAC
re-weighting. Training and validation sets for each stage of the cascade were
obtained via bootstrapping during the training process. This produced training
and validation sets for all stages the cascade for each re-weighting scheme. Each
re-weighting scheme was then trained on each of these training sets. Fig. 2 shows
the false negative rate ( the number of mistakes on faces ) on the validation data
when the false positive rate is set to 0.5.

From the results in Fig. 2, it is clear that both FDA and LAC can greatly re-
duce the false negative rates (i.e. increase the detection rates). In Fig. 2(a), aver-
aged over the 11 nodes shown, AdaBoost+FDA reduces the false negative rates by
31.5% compared to AdaBoost, while in 2(c) AdaBoost+LAC reduces it by 22.5%.

6 Speed-Ups for Ensemble Learning

A significant practical obstacle to the wider use of cascades of boosted ensembles
is their long training times. In [32], we showed how Adaboost with threshold-
based weak learners can be replaced with Forward Feature Selection (FFS).
Without significant loss in detection performance, we were able to dramatically
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Fig. 2. Experiments comparing different linear discriminant functions. The y axis shows
the false negative rate when β = 0.5. In 2(a), training sets are collected from the Ad-
aBoost+FDA cascades for nodes 11 to 21 (x axis shows the node number). AdaBoost
and AdaBoost+FDA are compared using these training sets. Similarly, 2(b) and 2(c)
use training sets from AdaBoost+LAC and Adaboost, respectively.

improve the training time of an ensemble over a naive implementation of Ad-
aboost. The key to the improved training time is that in FFS the best feature
thresholds can be precomputed and re-used during training. In [30], we show
how a similar strategy can be applied to Adaboost by sorting feature values in
a precomputation step. This removes the most expensive part of the threshold-
based weak learning routine. In both cases, the precomputation strategy offers
a dramatic speed-up, though FFS remains slightly faster than the faster imple-
mentation of Adaboost.

The training time of the three algorithms are summarized as follows. Detailed
analysis can be found in [30].

1. Naive AdaBoost. The naive algorithm requires O(|F ′||E|) time for pre-
computation and O(|F ′||E| log |E|) time per iteration, where F ′ is the set of
selected features and E is the set of examples.

2. Forward Feature Selection. The FFS algorithm requiresO(|F ′||E| log |E|)
for precomputation and O(|F ′||E|) time per iteration.

3. Faster Adaboost. The faster implementation of Adaboost has the same
asymptotic training time as that of FFS, but with a larger constant.
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6.1 Fast Feature Selection

A primary issue in the training cost of the cascade classifier is the fact that in
every round of boosting the Weak-Learn routine examines every example for
every feature. Since reducing the example corpus weakens the generalization,
reducing the feature pool via the Filter-Features routine is an attractive
option.

To actually improve the training time, however, the filtering algorithm itself
must be faster than Adaboost. Unfortunately, few filtering algorithms offer an
asymptotic improvement in training time. Nevertheless, asymptotically equiv-
alent methods often admit implementation speed-ups, which make the actual
run-time faster than the worst-case analysis time would indicate. Moreover, be-
cause Adaboost’s greedy selection of features is not optimal, limiting the feature
pool available to Adaboost may actually improve the results. The idea is that
Adaboost may produce a better classifier when it is presented with a small set
of features, all of which are good, rather than a large set containing these same
good features in addition to many spurious ones.

For purposes of this discussion, therefore, we divide filtering techniques into
two broad categories:

Fast Filters: This category consists primarily of ranking schemes which exam-
ine each feature once and sort according to some measure of the feature’s
discriminative power. These filters are typically much faster than Adaboost
and run in O(|F | log |F |) time. From this category, we test random selec-
tion and ranking by mutual information. For the latter, we choose a feature
threshold that maximizes the mutual information between the resulting bi-
narized feature and the class label, and then select the features that have
the largest mutual information (see [25] for a related method).

Slow Filters: This category includes methods that examine each feature in
F before choosing the next feature to add to the selected pool F ′. These
filters run in O(|F ′||F ||E|) time and are about as fast as Adaboost with
a thresholding weak learner. From this category, we use the Conditional
Mutual Information Maximization (CMIM) method of [5] and Forward Fea-
ture Selection [32]. Note that the algorithm in [5] represents a significant
speed-up over the original CMIM method in [26].

Notice that the running times given above assume that the precomputation of
best feature thresholds has been performed. With this strategy, the evaluation
of a feature, either for selection or for use in a weak classifier, can be performed
in O(|E|) time, where E is the set of examples. It is also important to realize
that although these filtering methods sometimes choose a threshold value for the
feature during selection, the original feature values are retained for the boosting
or ensemble learning phase of the training process.

In this context, we hypothesize that filters from the first category might im-
prove the training time significantly without diminishing the quality of the re-
sults. On the other hand, we hypothesize that filters from the second category
could improve the quality of the results and perhaps offer a modest improvement
in training time.
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6.2 Results

Fast Filters. Each of the fast methods was used to reduce the feature pool
by 90% (RND13473 and RANK13473) and 99% (RND1347 and RANK1347)
during the training of several detectors. Results on the CMU-MIT data set for
a detector using Adaboost and no re-weighting are shown in Fig. 3.
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Fig. 3. Comparison of ROC curves for detectors trained with random feature selection
(RND) and ranking by mutual information (RANK) for 90% feature reduction (left)
and 99% feature reduction (right). Results for discrete Adaboost shown.

In both cases, random selection gives comparable performance to the ranking
method. At first, this may seem counter-intuitive. The ranking method does,
after all, include the most discriminative features. How can a random selection
of features produce detectors that perform just as well or better? The answer is
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for random feature pools also shown for comparison. Both “slow” filtering methods
perform than random selection (RND200), but do no better than not filtering at all
(RND13473). Results shown with Gentleboost.
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the well known redundancy problem [9]. The “best” features tend to misclassify
the same examples, making it difficult for Adaboost to learn an ensemble of
hypotheses that classifies these examples correctly.

Slow Filters. To assess the asymptotically slower methods, conditional mutual
information maximization (CMIM) and forward feature selection (FFS), we first
randomly selected 10% of the features and then used these methods to filter
down to 200 features. For a baseline comparison we also trained a detector with
200 randomly selected features (RND200). The ROC curves for the resulting
detectors trained with Gentleboost are shown in Fig. 4. Both FFS and CMIM
produce ROC curves comparable to the one produced by RND13473. That is,
the detectors perform as well as they would if no filtering had been applied at
all. Thus, although these methods offer a modest improvement in training time,
they do not outperform the greedy selection naturally employed by Adaboost.

7 Weak Learning

Although thresholding on a single feature has been the dominant practice in
CoBEs for object detection, Adaboost does not restrict how the weak learning
takes place. The thresholding strategy may be efficient in terms of training or
execution time, but it seems doubtful that such a simple weak learner would give
the best results. We therefore explore the use of CART-based weak hypotheses,
which we found to significantly improve the cascade performance.

Our experiments show that CART-based detectors offer improved detection
rates with only small drops in speed. As shown in [2], this result holds across
Discrete Adaboost, RealBoost, and Gentleboost. The ROC curve of Fig. 5 shows
the improvement that results from using CART trees of depth 2, 4, and 6, as
opposed to stumps (i.e. threshold-based hypotheses).
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Table 1. A comparison of detection rates at fixed numbers of false positives on the
CMU-MIT data set for several standard detectors

False Positives
Detector 6 10 31 46 50 65 78 95
Viola-Jones [29] – 0.761 0.884 – 0.914 0.920 0.921 0.929
Viola-Jones [29] (voting) – 0.811 0.897 – 0.921 0.931 0.931 0.932
Luo [18] 0.866 0.874 0.903 – 0.911 – – –
Li and Zhang [15] – 0.836 0.902 – – – – –
Schneiderman [21] 0.897 – – 0.957 – – – –
CART-4 w/ Realboost 0.891 0.905 0.931 0.935 0.935 0.943 0.948 0.951

Table 1 gives a comparison between our best detector and other published cas-
cade training methods. While a comprehensive comparison would include testing
speed as well as classification performance, these numbers suggest that the cur-
rent method produces results which are comparable to published work that is
based on substantial modifications to the basic Adaboost learning method. Our
results show that the basic method can yield excellent performance if stronger
weak hypotheses are employed. Moreover these results can be obtained without
hand-tweaking cascade parameters during training, as a consequence of our auto-
matic global training method. Promising directions for future studies include an
evaluation of these methods from the standpoint of testing speed and the use of
our global training method of Sec. 4.2 in conjunction with previously-published
stage learning algorithms.

8 Conclusion

We argue that the cascade architecture is well-suited for the rare event nature
of object detection problem, and present two algorithms that address challenges
specific to the cascade. First, the cascade learning algorithm of Sec. 4.2 provides
a principled way to choose the operating point for stage of the cascade and to
decide when to stop training one stage and move onto the next. Second, the
Linear Asymmetric Classifier of Sec. 5.1 re-weights the hypotheses chosen by
the ensemble learning algorithm to more effectively meet the high detection and
moderate false positive requirements for stage classification.

A major barrier to the wider use of cascades of boosted ensembles is that they
take a long time to train. We show how to alleviate this problem by applying a
precompution strategy to ensemble learning. This strategy produces a dramatic
speed-up when applied to both FFS and Adaboost over a more naive implemen-
tation. We also explore feature filters which can produce a moderate speed-up
by reducing the set of features available to the ensemble learner.

Finally, we show that although thresholding on single features to form weak
hypotheses may reduce training time and produce a faster detector, combin-
ing Adaboost with CART-based weak learning can improve the detector’s final
output.
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Abstract. The chapter describes visual classification by a hierarchy of
semantic fragments. In fragment-based classification, objects within a
class are represented by common sub-structures selected during train-
ing. The chapter describes two extensions to the basic fragment-based
scheme. The first extension is the extraction and use of feature hier-
archies. We describe a method that automatically constructs complete
feature hierarchies from image examples, and show that features con-
structed hierarchically are significantly more informative and better for
classification compared with similar non-hierarchical features. The sec-
ond extension is the use of so-called semantic fragments to represent
object parts. The goal of a semantic fragment is to represent the differ-
ent possible appearances of a given object part. The visual appearance
of such object parts can differ substantially, and therefore traditional
image similarity-based methods are inappropriate for the task. We show
how the method can automatically learn the part structure of a new do-
main, identify the main parts, and how their appearance changes across
objects in the class. We discuss the implications of these extensions to
object classification and recognition.

Introduction

Object classification involves two main stages: feature extraction, and then us-
ing these features to classify a novel image. Many different features have been
proposed in the past, ranging from simple local ones such as Wavelets or Gabor
filters [23], to complex features such as geons [3],[13] which are view-invariant
3-D primitive shapes. Most of the features used in the past, from the simple to
the more complex, were usually generic in the sense that the same limited set of
features was used for all objects and object classes.

In several recent classification schemes, objects are represented as a combi-
nation of informative image parts [1],[6],[9],[21]. This approach was shown to
be effective for various classification problems. Unlike previous schemes, these
features are class-specific: different features are extracted automatically for dif-
ferent classification tasks from the training data. The present work extends this
approach in two directions: the use of hierarchical features, and the representa-
tion of object parts by equivalence classes of features, called ‘semantic features’.
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The idea of representing objects in a class by their informative parts can be
extended recursively: the informative object parts can themselves be represented
as an arrangement of informative sub-parts, the sub-parts can then be split into
smaller parts and so on. This general scheme raises a number of questions, related
to the creation of such a hierarchy: a method for selecting the best parts and sub-
parts, a stopping rule for decomposing the features, and the optimal selection
of parameters such as the size of search region for each part. There are also
questions related to the use of the hierarchy: how to perform classification using
this structure, and how to best detect sub-parts of the object using their context.
We discuss these questions in Part 2 of the chapter.

Each object part and sub-part (say, an eye) can be represented not just by a
single representative image fragment, but by a collection of semantically equiv-
alent fragments, representing different appearances of the part, such as an open
eye, closed eye, or eyes of different shapes. Questions related to this issue include:
how to extract such sets of semantically equivalent fragments, and how to use
them for classification. These issues are discussed in Part 3.

The two components discussed above, hierarchical representation and seman-
tic features, can be used independently, but can also be used naturally in a
combined manner. Taken together, they give rise to the following feature or-
ganization: an object or a class are represented by a hierarchy of parts and
sub-parts. This hierarchy can be represented as a tree, with semantic fragments
at each node, as as illustrated schematically in Figure 1. In the remaining of this
chapter we will discuss how this hierarchy of semantic fragments is constructed
and used. The chapter is divided into three parts. The first briefly summarizes
the extraction of informative features, the second describes the construction of

Fig. 1. Representing a class by a hierarchy of semantic fragments. A face is represented
as an arrangement of parts such as nose, eyes, ear and mouth. Each of these parts is
represented as a semantic equivalence set. The parts are represented in turn in terms
of their sub-parts. For simplicity, only the sub-parts of the eye part are shown.
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feature hierarchies, and the third describes the extraction and use of semantically
equivalent parts. We conclude with a discussion of using the feature hierarchies
and semantic equivalence sets together.

1 Informative Classification Fragments

In this section we describe the algorithm for extracting informative images frag-
ments and learning their associated parameters, such as the detection thresh-
old for each fragment. This family of features proved to be highly effective for
classification. An empirical comparisons with other classification features can be
found in [22].

Fragments are selected from the training data using the the procedure in
[21]. The process proceeds by identifying fragments that deliver the maximal
amount of information about the class. A large number (tens of thousands) of
candidate fragments are extracted from the training images at multiple locations
and sizes. For each fragment, the optimal detection threshold is computed as
explained below. This detection threshold indicates the minimal visual similarity
that a fragment must have within an image, to be detected. Normalized cross-
correlation was used in the past as a similarity measure, but other similarity
measures, such as SIFT [12], can also be used. A binary variable can then be
associated with each fragment depending on its presence in the image I:

fi(I, θi) =
{

1, if S(I, fi) > θi

0, otherwise
(1)

S(I, fi) is the maximal visual similarity between fragment fi and image I, θi is
the threshold associated with fi. The class variable variable C(I) is defined as 1
if the image belongs to the class being detected, and 0 otherwise. We can then
derive the mutual information between the two binary variables:

MI(fi(θi);C) =
∑
fi, C

p(fi, C) log
p(fi, C)
p(fi)p(C)

(2)

The mutual information in this expression depends on the detection threshold θi.
If the threshold is too low, the information delivered by the fragment about the
class will be low, because the fragment will be detected with high frequency in
both the class and non-class images. A high threshold will also yield low mutual
information, since the fragment will be seldom detected in both the class and
non-class images. At some intermediate value of threshold, the mutual informa-
tion reaches a maximum. The value θi of threshold yielding maximal information
for the fragment fi is therefore associated with the fragment. The most infor-
mative fragments are selected successively, using the following max-min proce-
dure. After finding the first fragment with the highest mutual information score,
the search identified the next fragment that delivered the maximal amount of
additional information. At iteration i the fragment fi is selected to increase the
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mutual information of the fragment set by maximizing the minimal addition in
mutual information with respect to each of the first i-1 fragments.

fi = arg max
fk∈Ki

min
fj∈Si

(MI(fk, fj ;C)−MI(fj;C)) (3)

Ki is the set of candidate fragments, Si is the set of already selected fragments
at iteration i, fi is the new fragment to be selected at iteration i. The update
rule for the fragment sets is:

Ki+1 = Ki\{fi}
Si+1 = Si ∪ {fi}

(4)

The initial K0 is the set of all candidate fragments; S0 is the set containing a
single fragment with the highest mutual information with the class. The itera-
tions end when adding new fragment to the set S makes only a small increment
to the mutual information, less than some small threshold ε. Once the set of
informative fragments is determined, the optimal size of the region of interest
(ROI) for each selected fragment is computed. The ROI defines the area in novel
images where the fragment is searched for. For each fragment f , the amount of
information it delivers about the class depends on the size of its ROI. When
the ROI is too small, the information is low, because in many class images the
fragment will fall outside the search region, and therefore will not be detected. If
the size of the ROI is too large, the number of false detections will increase. At
some intermediate size of the ROI, the mutual information reaches a maximum
(Figure 6). The algorithm therefore evaluates different ROI sizes from zero to
half the size of the full search window, and identifies the size that brings the
MI to its maximum. The full search window is a fixed region within the input
image, where the algorithm looks for the entire object. This window was set in
the experiments described in this chapter to size 200x200 pixels. To detect an
object within a larger image, the search window can either scan the image, or
move only to selected salient locations [10]. The locations of the ROIs of the
informative fragments are defined relative to the center of the search window.

2 Feature Hierarchies for Object Classification

In this part we describe a method for extracting complete feature hierarchies
from training examples. The method includes the construction of the feature hi-
erarchies, and learning the required parameters, such as the combination weight
for each part. We briefly discuss a method of using the feature hierarchy for
classification. Experimental comparisons with other classification features illus-
trate the advantages offered by the use of feature hierarchies compared with
non-hierarchical features.

2.1 Construction of Hierarchical Features

The search for useful sub-fragments is similar to the search of useful top-level
classification features. The top-level features are selected based on their useful-
ness for detected class examples. In an analogous manner, useful sub-fragments
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should appear with high frequency in regions containing the ‘parent’ feature, but
infrequently elsewhere. As for the top-level fragments, a useful selection criterion
is the mutual information between the sub-fragment and its parent fragment. To
evaluate this information, we need for each ‘parent’ fragment f a set of positive
examples, namely, image regions containing the fragment f , and a set of negative
examples, where the detection of f should be avoided. The positive examples for
the fragment f are provided by identifying all the locations in the class images
where the fragment f was detected. This set is then increased, since the goal of
the fragment decomposition is to successfully detect additional examples, which
were not captured by the fragment f alone. The positive set is increased by
lowering the detection threshold of the fragment f , yielding examples where f
is either detected or almost detected. The reduced threshold was determined to
increase the positive set by 20%. This amount of increase was chosen to add a
significant number of almost-detected examples, and avoid examples that are dis-
similar to f . A set of negative examples was similarly derived from the non-class
images. Negative examples are selected from non-class images that give “false
alarms”, and therefore supply negative instances which lie close to the boundary
between class and non-class instances. The reduced detection threshold used for
the positive examples is applied here as well, to obtain non-class examples where
the feature was incorrectly detected, or almost detected.

In terms of the positions of the fragment examples within the training im-
ages, examples come from regions in class images where the parent feature was
detected or almost detected within its ROI, and negative examples come from
regions in the non-class images where the feature was detected. In this case, the
feature position in the training images was determined by the computation of
optimal positions of all the hierarchy nodes together (Part 2.2) so that at most
one example was taken from each training image.

Once the positive and negative examples of the feature f are established, sub-
fragments are selected by exactly the same information maximization procedure
used at the first level. The candidate sub-fragments in this case are the sub-
images with their center point within the parent fragment, and having an area
up to 1/4 of the parent’s area. Sub-features are added to the tree, until the addi-
tional information falls below a threshold (0.08). Experimentally, fragments with
smaller contributions did not improve significantly the detection of the parent
feature. If the decomposition of f into simpler features increased the information
delivered by the entire hierarchy, the same decomposition was also applied to
f ’s sub-features. Each of the sub-fragments is considered in turn a parent frag-
ment, positive and negative examples are found and the set of its informative
sub-fragments is selected. Otherwise, the decomposition is terminated, with f
considered an atomic fragment. Atomic fragments were usually simple, typically
containing edges, corners or lines. Hierarchy examples are shown in Figure 4.
Examples of atomic fragments are shown in Figure 5.

During the classification stage, only the atomic features are directly correlated
with the input image, and their responses are combined using weights learned
at the training stage (Part 2.2).
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2.2 Optimizing the Parameters of the Hierarchy

For each hierarchy node (fragment or sub-fragment), a region of positional tol-
erance is extracted, which is the feature’s region of interest (ROI) (as in Part
1). The locations of the ROIs of sub-fragments in every image are determined
relative to the detected position of their parent fragment. The dimensions of the
ROI for all the sub-fragments are adjusted during learning to maximize the in-
formation delivered by the feature hierarchy. During the hierarchy construction,
the initial ROI size of a sub-fragment is set to the size of its parent. After the
hierarchy is completed, additional optimization of the ROI sizes is performed
in a top-down manner: first, the ROI of the uppermost node is optimized to
maximize the mutual information between the class variable and hierarchy’s de-
tection variable, while all other ROIs are fixed. A similar process is then applied
to its sub-fragments, and the optimization proceeds down the hierarchy, where
at each stage the ROIs of the higher levels are kept fixed.

An additional set of hierarchy parameters used for classification is the com-
bination weights of the sub-features responses. The optimization of the combi-
nation weights is described below together with the use of these weights in the
classification process.

The classification performance of the hierarchy was evaluated using a network
model similar to HMAX [16], with layers performing maximization and weighted
sum operations. For a given feature, the maximal response of each sub-feature
is taken over the sub-feature’s ROI, and then the responses of all sub-features
are combined linearly:

r = w0 +
n∑

i=1

wisi (5)

where r is the combined response, si the maximal response of sub-feature i within
its ROI, wi are the weights of the combination, and n the number of sub-features.
For the atomic sub-features, the response was equal to the maximal normalized
cross-correlation between the sub-feature and the image within the ROI. The
final response sp of the parent feature was obtained by a sigmoid function,

sp =
2

1 + e−r
− 1 (6)

which normalizes sp to the range [-1,1].
The response of the topmost node of the hierarchy, which determines the pres-

ence or absence of the entire object, is then compared to a detection threshold.
The amount of information about the class carried by the hierarchy is defined as
the mutual information between the class variable C and the hierarchy detection
variable H , which is equal to 1 when the response of the topmost node is higher
than threshold and 0 otherwise.

The combination weights are adjusted during training using iterative opti-
mization that alternates between optimizing positions and weights, as described
below. First, the weights are initialized randomly in the range (0,1). The scheme
then alternates between the following two steps.
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Positions Step: fix the weights, optimize feature positions. For every position
of the parent fragment within its ROI the positions of sub-fragments (within
their relative ROIs) that maximize the responses of the sub-fragments are found.
Then, the position of the parent fragment that maximizes its response sp is cho-
sen. This routine can be implemented efficiently using Dynamic Programming.

Weights Step: fix feature positions, optimize weights. The combination weights
of the features are optimized using the standard Back-Propagation algorithm
with batch training protocol. The algorithm ends when no feature changes its
position during the Positions Step.

This weight selection procedure can be shown to converge to a local minimum
of classification error. Experimentally, we found that the algorithm converged in
less than 10 iterations, average just 3 iterations. The obtained optimum was
found to be stable, since starting from multiple random initial weights the algo-
rithm terminated with similar performance.

2.3 Experiments

Empirical testing was used to test two main aspects of the hierarchical scheme.
First, we compared the classification performance of the hierarchical features with
similar features used in a holistic, non-hierarchical manner. Second, we compared
the use of adaptive against a uniform hierarchy. The adaptive hierarchy adjusted
the center positions and individual ROI for all the features as described above.
The uniform hierarchy used instead a hierarchy where both ROI sizes and the
sub-fragments were chosen in a fixed manner on a uniform grid.

In comparing the adaptive with a fixed grid hierarchy, the fixed ROI size was
set at each hierarchy level to the average size of the units in the adaptive scheme,
which simulations showed to be a good average size. Comparisons were averaged
for all units with more than a single hierarchical level. To compare a fixed-grid
hierarchy with the adaptable scheme above, each parent feature was divided
into k sub-features, where k was set to the average number of sub-features in
the adaptive hierarchy (6 for faces, airplanes, 9 for cows). The horizontal and
vertical dimensions of the sub-features were similarly set at each level to the
average dimensions in the adaptive hierarchy, shown by simulations to be a
good average size.

Training images for features extraction contained 200 faces, 95 cows, 320 air-
planes. The images were grey-level, 120-210 pixels in each dimension. Non-class
images included a random collection of landscape, fruits, toys, etc., with a sim-
ilar grey-level range. Feature detection experiments were performed on a new
set of 1770 images (800 faces, 220 cows, 750 airplanes), repeated by randomly
partitioning the full set into training and test images.

In computing the ROC curves [8] of a feature, the hits and false alarms were
defined by using the feature as a single feature classifier. That is, test images
were classified based on the feature in question; hits corresponded to class image
identified correctly, false alarms to non-class images identified incorrectly. By
varying the classification threshold, the complete ROC curves were obtained.
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2.4 Summary of the Results

We first compared the non-hierarchical top level fragments with the same frag-
ments detected in a hierarchical manner, in terms of information supplied and
classification performance. The information supplied by the first-level hierarchi-
cal features increased in the test set for all fragments (n=150, 3 classes), and was
significantly higher compared with the corresponding holistic features (average
increase 46.6%, s.d. 30.5%, p < 10−9 one-tailed paired t-test). The holistic and
hierarchical features were also compared using their complete ROC curves, show-
ing a significant advantage of the hierarchical detection over the entire range,
(0-90% false alarm, n=150, p < 0.000001, Figure 3b). These comparisons clearly
show that hierarchical features are more informative and produce better classi-
fication.

Further decomposition into a multi-level hierarchy provided additional sig-
nificant gain in information (n=97 features, average increase 10.0%, s.d. 10.7%
p < 10−9 one-tailed paired t-test). The ROC detection curves also improved
significantly (example in Figure 3a).

The full hierarchy also proved considerably more robust than holistic features.
This is of interest particularly when the feature hierarchies are considered as
a possible biological model for object processing. A biological system cannot
be expected to converge to the exact optimal parameters, but we found that
introducing size and position errors (13%, 25% of feature size) reduced the MI
on average by 10.8% for the full hierarchy, compared with 35.3% for holistic
features (n =41, p < 10−10, paired t-test).

Using the optimal ROI sizes adds significantly to the MI compared with a fixed
ROI size, that was optimized for each level separately (average 8.1% s.d. 13.7%
p < 0.0055), and different subunits had different optimal ROI size. Adapting the
relative positions of the subunits is also significant: if the subunits’ centers were
arranged on a uniform grid, rather than selecting their optimal locations during
training, the MI decreases (N=153, average 43% s.d. = 35% p < 10−10 paired
t-test), and the detection performance of the units decreases (Figure 3a).

These results can be used to compare the use of hierarchical and holistic
features in both computer vision and biological modelling. Most computational
models of recognition and classification in the past did not use hierarchical fea-
tures. This is in contrast to the primate visual system where objects are analyzed
by a hierarchy of features. Our analysis and testing shows that hierarchical fea-
tures are significantly more informative and better for classification than holistic
features. It also shows that this improvement requires the learning of positions
and sizes; without this the hierarchical scheme is not significantly better than a
single layer of top-level features.

Some previous biological models ([11],[16]) used a hierarchy of features, to
simulate the cortical structure. However, these models used fixed uniform archi-
tecture in contrast with the adaptive scheme used here, and which proved valu-
able to the construction of a successful hierarchy. The method of selecting the
features, based on the information they contribute, also proved to produce better
results than either fixed features [16], or features extracted by back-propagation
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Fig. 2. Informative fragments (examples on the left) and their optimal sub-fragments
(right), selected automatically from three object classes by maximizing mutual infor-
mation

neural network model [11]. See [5] for more details on experimental comparisons
with other types of features.

3 Semantically Equivalent Features

In this part we consider the problem of detecting semantically equivalent parts
of objects belonging to the same class. By ‘semantic’ equivalence we mean parts
of the same type in similar objects, often having the same part name, such as
a nose in a face, an animal’s tail, a car’s headlight and the like. The aim is to
identify such parts, although their visual appearance can be highly dissimilar.
The input to the algorithm is a set of images belonging to the same object class,
together with an image patch (called below a “root fragment”), depicting a part
of an object. The output is a set of image patches from the input images, con-
taining object parts which are semantically equivalent to the one depicted in
the root fragment. Examples of semantically equivalent fragments are shown in
Figure 7. In each row, the leftmost image contains the root fragment, the other
images are semantically equivalent fragments discovered by the algorithm. The
identification of equivalent object parts has two main goals. First, the correct
detection and identification of object parts is important on its own right, and
can be useful for various applications that depend on identifying parts, such as
recognizing facial expressions, visual aid for speech recognition, visual inspection,
surveillance and so on. Second, the correct identification of semantically equiva-
lent object parts improves the performance of object recognition algorithms. In
several recent object recognition schemes [1],[6],[9],[21] image fragments depict-
ing object components are used as classification features. Our results show that
the performance of such schemes can be improved when an object component
is represented not by a single fragment, but by a set of semantically equivalent
fragments.

The general idea behind our approach is to use common context to identify
equivalent parts. Given an image fragment F depicting a part of an object, we
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(a) (b)

Fig. 3. Comparing recognition by hierarchical and holistic features. (a) ROC of a single
fragment comparing detection by a holistic feature (third from top), optimal decompo-
sition into sub-features (second from top), full hierarchical decomposition (top curve),
and decomposition on a fixed grid (lowest curve). y-axis: percent correct identification
of class images by the fragment (hits), x-axis: percent incorrect identification of non-
class images (false alarms). (b) Average gain in ROC, vertical axis: increase in hit rate,
horizontal: false alarm rate (n = 150 fragments). See text for further details.

Fig. 4. Examples of full feature hierarchies, (bottom nodes are atomic features)

E B T/C X

Fig. 5. Atomic features, derived from three classes. Most are tuned to oriented edges
(E), bars (B), terminations/corners (T/C); some are more complex (X).
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Fig. 6. Increase in mutual information as a function of search region size, for one sub-
feature (inset). Color code: increase in mutual information, horizontal axes: ROI size,
(size of parent feature is taken as ‘1’). Optimal x-size: 0.27, y-size: 0.43.

Fig. 7. Examples of semantically equivalent fragments, extracted by the algorithm.
The leftmost image in each set is the input root fragment, the others are equivalent
parts identified by the algorithm (horse torso with forelegs, car wheels). The algorithm
identifies semantically similar parts that can have markedly different appearance in the
image.
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look for a context C, defined as a collection of image fragments that co-occur
with F consistently and in a stable geometric configuration. When such context is
found, we look for all images where the context fragments are detected, and infer
from their positions the location of fragments that are likely to be semantically
equivalent to F (Figure 8).

3.1 Description of the Algorithm

In this section, we describe the algorithm for the detection of semantically equiv-
alent image fragments. The main stages of the algorithm are the identification of
common context (3.1) and the use of context to extract equivalent parts (3.1).
We begin with describing visual similarity matching used as a pre-processing
step.

Visual Similarity Matching. The input to the algorithm consists of a set
of images of different objects within a class, Ik, and a single fixed fragment F
(the “root fragment”). We first identify in each of the input images Ik the image
patch with the maximal similarity to F . We used the value of normalized cross–
correlation as a similarity measure, but other image-based similarity measure can
be used as well. To improve the performance of visual similarity-based matching,
the images are filtered with Difference of Gaussians (DoG) filter [12] before
computing the NCC. This filter emphasizes the gradients in images and removes
small noise. The combination of DoG filtering with computation of NCC is called
below DNCC.

Image patches at all locations in Ik are examined, and the patch P (Ik, F )
with highest DNCC score is selected. If the cross-correlation between P (Ik, F )
and F exceeds a pre-defined threshold, then F is detected in Ik, and P (Ik, F )
is called the patch corresponding to F in image Ik. The set of all the images
Ik where corresponding patches P (Ik, F ) are detected is denoted by D(F ). The
detection threshold for candidate context patches was chosen automatically as
explained in Part 1.

Context Retrieval. After determining the set D(F ), containing the images
where F was detected , the next goal is to identify context fragments that consis-
tently co-occur with F and its corresponding patches P (Ik, F ). Reliable context
fragments should meet two criteria: the context fragment f and root fragment F
should have high probability of co-occurrence, and their spatial relations should
be stable. We next describe the selection based on these criteria.

The search for good context fragment starts by pairing the root F with patches
fi in each image in D(F ) at multiple sizes and positions. These patches are the
candidate context patches for F . In practice, we limited the search to patch sizes
ranging from 50% of F size up to 150% in each dimension, with scaling step of
1.5. For each patch size, we examine patches in positions placed on a regular grid
with step equal to 1/4 of the size of a patch. The exact position and size of a
context patch is eventually optimized as described later in this section. For every
candidate patch f , we find the set D(f) of images containing patches visually
similar to f , as described in Part 3.1.
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The first context condition above was high co-occurrence, that is, a good con-
text fragments should satisfy p(F |f) > p(F ). We also want to focus on context
fragments that appear together with F at least some minimal number of times,
and therefore require:

P (f |F ) > θp p(F |f) > p(F ) (7)

The value of θp was computed automatically by sampling a set of candidate
patches from D(f), computing their probabilities of co-occurrence with F , and
setting the threshold to average co-occurrence probability plus one standard
deviation.

Second, F and f should appear in a stable spatial configuration. If the vari-
ations in scale and orientation between the images are assumed to be small,
then the relative location of F and f when they are detected together should be
similar. We therefore test the variance of coordinate differences:

V ar(Fx − fx) < θV arX V ar(Fy − fy) < θV arY (8)

Here Fx and fx are vectors of x-coordinates of the centers of image patches
corresponding to F and f , respectively, in images from D(F ) ∩D(f) , similarly
for Fy and fy. The thresholds θV arX and θV arY determine the flexibility of
the geometric model of the object. These thresholds are also set automatically
by computing the values of V ar(Fx − fx) and V ar(Fy − fy) for the sampled
fragments, for which P (f |F ) > θp and setting the thresholds to the average of
these values plus one standard deviation.

To identify the best context fragments, we first remove from the set of can-
didates all fragments that do not meet requirements (7) and (8). We next se-
lect from the remaining set the fragments with the highest probability of co-
occurrence with F , and smallest variances of coordinate differences (indicating a
stable geometric relation with the root F ). To combine these criteria, we compute
a ‘consistency weight’, wf :

wf = P (f |F ) · 1
1 +
√

max(V ar(Fx − fx), V ar(Fy − fy))
(9)

The fragment with the highest wf is then selected as a context fragment. Since
the initial search for context fragments was limited to a fixed grid, we refine
the optimal position and size of the context fragment by searching locally for
the best fragment position and size that maximize wf . We add the optimized
fragment to the set of context fragments.

To avoid redundancy, and prefer conditionally independent context fragments
(see Part 3.1 for details), we remove from the set of remaining candidates all
the fragments that intersect the selected one by more than 25% of their area,
and repeat the process until no candidates are left. The final context set con-
tains fragments fi that have high co-occurrence with F , and with stable relative
positions. Typically this set contains between 6 and 12 fragments.
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Fig. 8. Left: a root fragment (mouth) together with context fragments (ear and eye).
Right: the same context detected in another image; a semantically equivalent part is
identified by the context.

Identifying Semantically Equivalent Parts. After the set of context frag-
ments has been selected, they are used to infer the positions of fragments that
are semantically equivalent to the root fragment F . Using a probabilistic model,
we identify for each image Ik, in which at least one context fragment has been
detected, the most likely position of Fk, a semantically equivalent fragment to F .

Assume for simplicity first that our context set consists of a single fragment C.
Our modelling assumption is that if C is detected in some image Ik at coordinates
(xc, yc); then the probability density of F being found at coordinates (x, y) is
2D Gaussian centered at (x̂c, ŷc), where x̂c and ŷc are the expected coordinates
of the root fragment’s center, predicted by context fragment C. The values of x̂c

and ŷc are computed as:

x̂c = xc +Δxc ŷc = yc +Δyc (10)

where Δxc and Δyc are the mean coordinate differences between the centers of
F and C, estimated during training.

P (F (x, y)|C) = P (F |C) ·N(x− x̂c, y − ŷc;Σc) (11)

where Σc is the covariance matrix of coordinate differences between the centers
of fragments F and C, estimated during training.

If the context fragment C is not detected in the image Ik, we assume 2D
uniform probability density of F being found at coordinates (x, y):

P (F (x, y)|C̄) = P (F |C) · U(W,H) (12)

here the distribution bounds W and H are set to the width and height of the
image.

When the context consists of several fragments, we assume conditional inde-
pendence between them given the detection of F at position (x, y):

P (C1, ..., CN |F (x, y)) =
N∏

i=1

P (Ci|F (x, y)) (13)
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The modelling assumption of the conditional independence is motivated by the
observation that if geometric relation between fragments is stable, the positions
of the context fragments are determined by the position of the root fragment.
The fluctuations of the positions are due to noise, which is assumed to be inde-
pendent for the context fragments. Modelling of higher-order geometric relations
between fragments is also possible, but we found in testing that it did not make
a significant contribution. Applying Bayes rule to (13):

P (F (x, y)|C1, ..., CN ) =
P (F (x, y))

P (C1, ..., CN )

N∏
i=1

P (Ci|F (x, y)) (14)

We assume the prior probability P (F (x, y)) of finding F at the coordinates (x, y)
to be uniform, consequently not depending on x and y. It is also straightforward
to use non-uniform prior. The probability P (C1, ..., CN ) similarly does not de-
pend on (x, y). Therefore, we can write:

P (F (x, y)|C1, ..., CN ) ∝
N∏

i=1

P (Ci|F (x, y)) (15)

For the individual factors P (Ci|F (x, y)) we use equations (11) or (12), depending
on whether or not the context fragment Ci was detected in the image. Applying
the Bayes rule again, if Ci was detected in the image:

P (Ci|F (x, y)) =
P (Ci) · P (F (x, y)|Ci)

P (F (x, y))
=

P (Ci) · P (F |Ci) · N(x − x̂ci, y − ŷci; ΣCi)
P (F (x, y))

(16)

If Ci was not detected in the image:

P (Ci|F (x, y)) =
(1 − P (Ci)) · P (F (x, y)|C̄i)

P (F (x, y))
=

(1 − P (Ci)) · P (F |Ci) · U(W, H)

P (F (x, y))
(17)

Now we can find the values of coordinates x and y that maximize (15), i.e. find a
Maximum Likelihood solution for the coordinates of the center of the fragment
F :

(x, y) = argmax
∏

i

N(x− x̂ci, y − ŷci;Σci) (18)

where each 2D Gaussian can be explicitly written in terms of its parameters:
mean position and covariance matrix. Note that the product is taken over only
the detected context fragments. Taking the log of the product, differentiating
with respect to x and y, and setting the derivatives to zero, yields a system of
equation of the form:

xA− yB + C = 0 yD − xB + E = 0 (19)
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where
A =

∑
i

1
(1−ρ2

xyi)σ
2
xi

B =
∑
i

ρxyi

σxiσyi

C =
∑
i

(ρxyi(yci+Δyci)
σxiσyi

− xci+Δxci

(1−ρ2
xyi)σ

2
xi

)

D =
∑
i

1
(1−ρ2

xyi)σ
2
yi

E =
∑
i

(ρxyi(xci+Δxci)
σxiσyi

− yci+Δyci

(1−ρ2
xyi)σ

2
yi

)

(20)

σxi =
p

V ar(x − xci), σyi =
p

V ar(y − yci), ρxyi =
CoV ar((x − xci), (y − yci))

σxiσyi

Solving (19), we obtain:

y =
AE +BC

B2 −AD
x =

By − C

A
(21)

After obtaining the maximal likelihood solution for the coordinates (x, y), we
extract a fragment centered at (x, y) with size equal to the size of F , and add it
to the set of fragments semantically equivalent to F .

The set of semantically equivalent fragments constructed in this manner is
called the “equivalence set” of the part. We next sort it by measuring the strength
of the evidence used to select the fragments. This is obtained by setting the op-
timal values found for (x, y) into (15) and taking the log. The resulting quantity
is equal to the log-likelihood of the optimal solution plus a constant factor. This
value is then used to sort the equivalence set: the log-likelihood will be smaller
when only a few context fragments are detected in a particular image, or when
their evidence was inconsistent, i.e. they predict different locations of a semantic
fragment. The decision regarding the number of fragments from the equivalence
set to be used is application-dependent. For the object recognition experiments
we used the upper 30% of the sorted equivalence set. For the part detection
experiments we used the entire set and counted the number of errors.

The section above describes the main computation; its accuracy can be im-
proved by incorporating a number of additional steps. We used in particular
simple criteria to reject outliers, based on the fact that they will be detected at
highly variable image locations. We therefore computed the average value of co-
ordinate differences between the detected positions of F and f, and removed the
farthest outliers, until the variance of coordinate differences is below threshold.
The same procedure for outlier rejection is used when performing the Maximum
Likelihood estimation, since some of the context fragments can correspond to
false detections.

3.2 Experimental Results

Object Parts Detection. We selected first for testing 7 root fragments de-
picting different parts of the human face (shown in Table 1), and applied the
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algorithm described in Section 3.1 to detect semantically equivalent parts in new
face images independently for each root fragment. For comparison, we applied
the algorithm for detecting face parts based on their visual similarity to the root
fragment, as described in Section 3.1, using the same input image set and root
fragments. The visual similarity for testing was computed using two different
measures - DNCC and SIFT [12]. We applied both algorithms to a database
of 1000 face images (about 150x200 pixels in size, roughly the same scale and
orientation) and counted the number of images where all the parts were simul-
taneously detected correctly. The numbers of face images where all 7 fragments
were simultaneously detected correctly were 379 using semantic equivalence, 5
using DNCC visual similarity and 7 using SIFT visual similarity. As can be seen,
the method is successful in recovering a large number of correct part configu-
rations, that cannot be identified by their visual similarity. The percentage of
correctly identified matches, verified by humans, for semantic equivalence and
DNCC visual similarity was also computed for each individual part, yielding the
results in Table 1. Using the SIFT similarity measure produced similar results
to DNCC. See [4] for the details of the experiments on other object classes.

Object Recognition. The classifier we used for the experiments is an exten-
sion of a classifier described in [21]. Briefly, an object from a general class is
represented by a collection of object parts. A set of fragments (either visually
similar or semantically equivalent) selected automatically, is used to represent
each part. An object part is detected in the image if one of the fragments rep-
resenting it is detected within a detection window. Each fragment is assigned a
weight wi determined by the log-likelihood ratio:

wi = log
P (Fi|C = 1)
P (Fi|C = 0)

(22)

where C is a class variable (1 in images containing an object, 0 otherwise) and
Fi is a fragment variable (1 when the fragment was detected, 0 otherwise). Final
detection is based on a Bayesian decision,∑

i

wiFi > θ (23)

where θ is decision threshold; by varying θ complete ROC curves are obtained
(Figure 9).

Face detection performance was compared using 7 face parts, shown in Table 1.
Each part was then represented by 20 representative image fragments selected to
optimize performance. The two schemes we compared used an identical classifier,
but differed in the selection of the image fragments representing each part. In
the ‘semantic’ scheme, each part was represented by a set of 20 semantically
equivalent fragments, selected by the algorithm described in Part 3.1. In the
‘visual similarity’ scheme, each part was represented by 20 representative image
fragments, selected from the set of visually similar fragments so as to optimize
performance.
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The selection of representative fragments for each face part was done in a
greedy fashion, using a mutual information criterion: the fragment delivering
the highest information between the classifier response and the true class was
selected first. Next, all the remaining fragments were examined, to determine the
fragment contributing the largest amount of additional information when added
to the first one. The process was repeated until 20 fragments have been selected.
An identical selection procedure was used to select the best representatives from
the set of visually similar fragments.

The image set was divided randomly into a training set (300 images) and test
set (700 images), and the computation was repeated 50 times. The results are
presented in Figure 9. Figure 9a shows the comparison of ROC curves of a single
root fragment (the mouth in Table 1): the ROC curve of the classifier based on
this fragment alone (line with circles), the ROC curve of the classifier based on
visually similar fragments (dashed line) and the ROC curve of the classifier based

(a) (b)

(c) (d)

Fig. 9. Comparing recognition by semantic equivalence and visual similarity. (a) ROC
curves for a single part (mouth); (b) classification by 7 parts; (c) average gain in ROC
between semantic and visual similarity for single parts; (d) average gain in ROC for
classification by 7 parts, using semantic vs. visual similarity. See text for further details.



Visual Classification by a Hierarchy of Extended Fragments 339

Table 1. Percentage of correctly identified fragments representing object parts in three
classes: faces, car rear views and toy cars. See text for further details.

Root fragment Semantic equivalence Visual similarity (DNCC)

94% 33%

92% 39%

92% 71%

89% 20%

90% 29%

88% 51%

84% 26%

65% 41%

55% 18%

64% 25%

71% 59%

42% 32%

on semantic equivalence class (solid line). Figure 9b shows the performance of
7 root fragments, compared to the performance of visually similar and semantic
fragments, where each of 7 parts was represented by a set of 20 fragments.
The graph also shows the performance based on the selection of 140 individual
fragments. Figure 9c shows the mean difference between the ROC curves of the
classifier based on visually similar fragments, and the classifier that uses semantic
equivalence classes for single parts. Figure 9d shows the mean difference between
the ROC curves of the classifier based on the group of 7 parts, represented by
semantically equivalent fragments, compared with the performance of 7 root
fragments used together.

Image similaritywas based in the scheme above on normalized cross-correlation.
Other, more robust image comparison measures can be used to compensate for
scale changes, affine transformations, and small local distortions (see [15] for a re-
view). Comparisons in [14] have shown that in the absence of scale changes and
affine transformations, the performance of normalized cross-correlation is compa-
rable to the performance of the SIFT descriptor [12] and better than the results
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obtained with other measures. Since we tested the algorithm under these condi-
tions, the use of DNCC was appropriate. We also compared the performance of
DNCC and SIFT, in the following way. For each face image, the fragment semanti-
cally equivalent to the root and the fragment most visually similar to the root were
determined by the algorithm (only the images where both fragments were found by
the algorithms were considered). The images where the computed semantic frag-
ment was correct (as determined by an observer), but the fragment selected by vi-
sual similarity was incorrect, were chosen for comparison. For each image, we then
normalized the three fragments (the root, the semantically equivalent and the most
visually similar) by an affine transform to a normal form [15], and compared the
SIFT distance between the root and semantic fragment, to the SIFT distance be-
tween the root and the visually similar fragment. In 74.6% of the cases, the SIFT
made the incorrect selection: the visually similar fragment was closer to the root
fragment than the semantic fragment. We conclude that the SIFT distance did not
overcome the incorrect choice of the visually similar fragment made by the DNCC.

3.3 Other Methods of Obtaining Equivalent Fragments

The scheme described above identifies sets of semantically equivalent fragments
in the training images. These semantically equivalent fragments depict corre-
sponding parts in different objects of the same class, such as different hairlines,
aircraft wings, car wheels and the like. They can also identify different views
of the same object part under different conditions, such as a smiling vs. neutral
mouth, or open vs. closed eye. Other methods have been developed in the past for
identifying the same object part under changes in viewing conditions, in particu-
lar, changes in viewing direction and illumination conditions. These equivalence
relations then play a crucial part in identifying specific objects under different
conditions. We briefly review in this section past methods for identifying such
equivalent fragments, and comment in the final discussion on their use in object
identification.

Motion-Based Fragment Equivalence. Motion can serve as a powerful cue
for identifying the same object part under different viewing conditions. If an
image region transforms in a smooth continuous manner over time, then its
image at different times are likely to represent the same part under different
conditions. In particular, when the object moves rigidly in space, such motion-
based equivalence can be used to identify different appearances of an object
part from different viewing directions. Motion-based equivalence has been used
to deal with the problem of position invariance [7] as well as more complex
transformations [17],[19],[20].

In [19], the problem of obtaining fragment sets representing the same object
part under different viewing angles was considered, and a method for identifying
informative equivalent parts was developed based on motion correspondence.
The method first extracts a large pool of so-called extended fragments, which
are sets of fragments representing the same object part under different viewing
conditions, in this case different viewing directions. The correspondence between
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fragments in different views is established using motion tracking [18]. From this
initial pool of motion-related fragments, informative extended fragments are ex-
tracted based on the mutual information supplied by the extended fragments
for view-invariant recognition. The selection of informative fragments is similar
to the algorithm described in Part 1, but applied to extended fragments rather
than to individual fragments. The selection process is initialized by selecting the
extended fragment with the highest mutual information. Extended fragments
are then added one by one by the max-min procedure described above, until
the gain in mutual information is small, or a pre-selected size of fragment bank
is reached. Fragment detection is done by computing the maximal similarity
between the fragment and underlying image patch over the entire image, and
comparing it to a pre-determined threshold. The optimal thresholds were com-
puted automatically, by a procedure similar to the one described in Part 1.

In the recognition stage, the system was given a single image of a novel ob-
ject from the learned class, for example, a face in frontal view. The task was
then to identify the same object from a side view, from a large set of both
frontal and side-view faces. The identification was based on the activation of
the identified extended fragments. The main underlying assumption is that af-
ter learning, a frontal face F and a corresponding side view F ′ share the same
extended fragment. If a particular fragment f is found in the frontal view, then
its corresponding counterpart f ′ should be present in the side view. In order to
identify the corresponding side view, the activation pattern for the query frontal
view was computed. The activation pattern is a binary vector containing 1 in
n-th position if the n-th fragment in the object representation was active in the
image, and 0 otherwise. Similarly, the activation patterns were computed for all
the images in the test set. The test image, whose activation pattern was the
closest to the one of the query image, was then selected as the corresponding
side view.

Equivalence Under Arbitrary Changes in Viewing Conditions. The
motion-based correspondence of object parts proved useful for dealing with view-
invariance under changes in viewing direction. However, motion-based correspon-
dence is not always applicable for identifying the same object part under different
conditions. For example, views of the same object under different illumination
conditions are usually not related by continuous motion. In [2], a different cri-
terion for obtaining fragment equivalence sets was therefore employed, without
relying on motion correspondence. Fragment equivalence was established instead
based on the consistency in parts appearance in different objects in which these
parts are present. If two fragments, F1 and F2 represent the same object part
under different viewing conditions (such as different illuminations, or also differ-
ent viewing directions), C1 and C2, then their detections should be consistent –
namely, if F1 is detected is an image of some object O under viewing condition
C1, then F2 should also be detected in an image of O under condition C2. In
contrast, two unrelated fragments will be in general significantly less consistent.
Therefore, this consistency criterion can be used for identifying equivalent object
fragments.
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Given a set of images I11. . .I1N of N objects taken under condition C1 and
a set of images I21. . .I2N taken under condition C2, the activation patterns A1
and A2 of fragments F1 and F2 respectively can be computed. Their consistency
can be derived, for example by the simple score:

S(F1, F2) =
NCC(A1, A2) + 1

2

This is just the correlation of the activation patterns, but re-normalized to lie
between 0 and 1. To make the scheme robust to noise and to within-object
redundancy, this consistency measure was augmented with a measure based on
geometric consistency, which used a simple proximity assumption: if two object
parts are located nearby, their matching parts also should lie close to each other.
This constraint was implemented using a hierarchical representation of proximity
relations. The scheme was shown to deal effectively with changes in illumination
and pose without relying on motion correspondence.

4 Summary and Discussion

In this chapter we have presented two extensions of the fragment-based object
recognition scheme. The basic scheme uses informative image fragments as clas-
sification features. Here we proposed a hierarchical decomposition of the features
into parts and sub-parts at multiple levels. The second extension was to use se-
mantic equivalence sets of features, depicting different appearances of the same
object part. We have shown that hierarchical features are more informative and
better for classification compared with the same features used non-hierarchically.
For semantic features, we have shown how the method can automatically learn
the part structure of a new domain and extract sets of semantically equivalent
fragments. Semantic features are an example of the more general concept of
extended features, which are sets of fragments representing the same or similar
object parts under different viewing conditions. Different methods were described
above for extracting extended fragments based on common context, motion, and
consistency across transformations. Extended features are used in the proposed
scheme as the basis for making broad generalizations in object recognition, at the
level of general classification as well as specific object identification. For example,
a particular object can be recognized across changes in pose, illumination, and
complex local shape changes, based on the representation of its components in
terms of extended features. The capacity of the recognition system to deal with
large variability in appearance at the objects level is inherited in this scheme
from learning the variability at the level of common informative components.

The two aspects described above, hierarchical representation and the use of
extended fragments, can be combined into a representation using a hierarchy
of sub-parts, were each sub-part is represented by extended fragments. This
representation can be extended in several directions. For example, in terms of
the classification algorithm using this representation, instead of the bottom-
up computation described above, we have also used a full Bayesian network
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which produced a significantly better interpretation of the constituent parts. A
second general direction is the extension of the hierarchy from a single class to
a multi-class representation. The issues here include, for example, the optimal
construction of a feature hierarchy for multiple classes simultaneously, extracting
semantically equivalent fragments across different classes, sharing features across
classes at multiple levels in the hierarchy, and using the hierarchy to make fine
distinctions between similar classes. Finally, given the hierarchical nature of
objects representation in the primate visual cortex, it will be of interest to use
the computational studies of feature hierarchies and extended features to model
aspects of the human visual system.

Acknowledgements

This work was supported by grant no. 3-992 from the Israeli Ministry of Science
and Technology, and conducted at the Moross Laboratory for Vision and Motor
Control.

References

1. S. Agarwal, A. Awan, D. Roth. Learning to detect objects in images via a sparse,
part-based representation. IEEE TPAMI, Vol. 26(11). (2004) 1475–1490

2. E. Bart, S. Ullman. Class-based matching of object parts, Proc. CVPR Workshop
on Image and Video Registration, (2004)

3. I. Biederman. Recognition-by-Components: A Theory of Human Image Under-
standing. Psychological Review, Vol. 94(2) (1987) 115–147.

4. B. Epshtein, S. Ullman. Identifying Semantically Equivalent Object Fragments.
CVPR, (2005) 2–9

5. B. Epshtein, S. Ullman. Feature Hierarchies for Object Classification. ICCV,
(2005), to appear.

6. R. Fergus, P. Perona, A. Zisserman. Object Class Recognition by Unsupervised
Scale-Invariant Learning. CVPR, (2003) 264–271

7. P. Foldiak. Learning invariance from transformation sequences. Neural Computa-
tion, Vol. 3(2). (1991) 194–200

8. D. Green, J. Swets. Signal Detection Theory and Psychophysics. Wiley, NY, (1966)
9. B. Heisele, T. Serre, M. Pontil, T. Vetter, T. Poggio. Categorization by learning

and combining object parts. NIPS, (2001)
10. L. Itti, C. Kosh, E. Niebur. A model of saliency-based visual attention for rapid

scene analysis. IEEE TPAMI, Vol. 20(11) (1998) 1254–1259
11. Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. Jackel.

Backpropagation applied to handwritten zip code recognition. Neural Computa-
tion, Vol. 1(4) (1989) 541–551

12. D. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comp.
Vis, Vol. 60(2) (2004) 91–100

13. D. Marr, H. Nishihara. Representation and recognition of the spatial organization
of three dimensional structure. Proceedings of the Royal Society of London B,
Vol. 200 (1978) 269–294.



344 S. Ullman and B. Epshtein

14. Mikolajczyk, K., Schmidt, C.: A performance evaluation of local descriptors.
CVPR, (2003) 257–264.

15. K. Mikolajczyk, C. Schmidt. Scale and affine invariant point detectors. Int. J.
Comp. Vis, Vol. 60(1) (2004) 63–86

16. M. Riesenhuber, T. Poggio. Hierarchical models of object recognition in cortex.
Nature Neuroscience, Vol. 2(11) (1999) 1019–1025

17. S. Stringer, E. Rolls. Invariant object recognition in the visual system with novel
view of 3D objects. Neural Computation, Vol. 14. (2002) 2585–2596

18. C. Tomasi, T. Kanade. Detecting and tracking of point features. Technical Report
CMU-CS-91-132, Carnegie Mellon University (1991)

19. S. Ullman, E. Bart. Recognition invariance obtained by extended and invariant
features. Neural Networks, Vol. 17. (2004) 833–848

20. S. Ullman, S. Soloviev. Computation of pattern invariance in brain-like structures.
Neural Networks, Vol. 12. (1999) 1021–1036

21. S. Ullman, M. Vidal-Naquet, E. Sali. Visual features of intermediate complexity
and their use in classification. Nature Neuroscience, Vol. 5(7) (2002) 1–6

22. M. Vidal-Naquet, S. Ullman. Object Recognition with Informative Features and
Linear Classification. ICCV, (2003) 281–288

23. L. Wiskott, J. Fellous, N. Kruger, C. von der Malsburg. Face Recognition by Elastic
Bunch Graph Matching, IEEE TPAMI, Vol. 19(7), (1997) 775–779



Shared Features for Multiclass Object Detection

Antonio Torralba1, Kevin P. Murphy2, and William T. Freeman1

1 Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, USA

2 Departments of computer science and statistics
University of British Columbia, Canada

Abstract. We consider the problem of detecting a large number of dif-
ferent classes of objects in cluttered scenes. We present a learning proce-
dure, based on boosted decision stumps, that reduces the computational
and sample complexity, by finding common features that can be shared
across the classes (and/or views). Shared features, emerge in a model of
object recognition trained to detect many object classes efficiently and
robustly, and are preferred over class-specific features. Although that
class-specific features achieve a more compact representation for a single
category, the whole set of shared features is able to provide more efficient
and robust representations when the system is trained to detect many
object classes than the set of class-specific features. Classifiers based on
shared features need less training data, since many classes share similar
features (e.g., computer screens and posters can both be distinguished
from the background by looking for the feature “edges in a rectangular
arrangement”).

1 Introduction

A long-standing goal of machine vision has been to build a system which is able
to recognize many different kinds of objects in a cluttered world. Although the
general problem remains unsolved, progress has been made on restricted ver-
sions of this goal. One succesful special case considers the problem of detecting
individual instances of highly textured objects, such as magazine covers or toys,
despite clutter, occlusion and affine transformations. The method exploits fea-
tures which are invariant to various transformations, yet which are very specific
to a particular object [9,15]. This can be used to solve tasks such as “find an
object that looks just like this one”, where the user presents a specific instance;
but it cannot be used to solve tasks such as “find an object that looks like a
car”, which requires learning an appearance model of a generic car.

The problem of detecting a generic category of object in clutter is often posed
as a binary classification task, namely distinguishing between object class and
background class. Such a classifier can be turned into a detector by sliding it
across the image (or image pyramid), and classifying each such local window
[1,6,20]. Alternatively, one can extract local windows at locations and scales
returned by an interest point detector and classify these, either as an object or
as part of an object (see e.g., [4]). In either case, the classifier will be applied to
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a large number of image locations, and hence needs to be fast and to have a low
false positive rate.

Various classifiers have been used, such as SVMs [17], naive Bayes [22], mix-
tures of Gaussians [4], boosted decision stumps [26], etc. In addition, various
types of image features have been considered, ranging from generic wavelets
[21,26] to class-specific fragments [6,25]. Since it is expensive to compute these
features at run-time, many classifiers will try to select a small subset of useful
features.

The category-level object detection work mentioned above is typically only
concerned with finding a single class of objects (most work has concentrated on
frontal and profile faces and cars). To handle multiple classes, or multiple views of
a class, separate classifiers are trained and applied independently. There has been
work on training a single multi-class classifier, to distinguish between different
classes of object, but this typically assumes that the object has been separated
from the background (see e.g., [12,16]).

We consider the combined problem of distinguishing classes from the back-
ground and from each other. This is harder than standard multi-class isolated
object classification problems, because the background class is very heteroge-
neous in appearance (it represents “all other classes”), and is much more likely
to appear than the various object classes (since most of the image is background).

The first key insight of our work [24] is that training multiple binary classi-
fiers at the same time needs less training data, since many classes share similar
features (e.g., computer screens and posters can both be distinguished from the
background by looking for the feature “edges in a rectangular arrangement”).
This observation has previously been made in the multi-task learning literature
(see e.g., [3,23]). However, nearly all of this work focuses on feedforward neural
networks, whereas we use a quite different kind of classifier, based on boosted
decision stumps[19]. Transfering knowledge between objects to improve general-
ization has also been studied in several recent papers [2,13,22].

The second key insight of our work is that training multiple binary classifiers
at the same time results in a much faster classifier at run time, since the computa-
tion of many of the features can be shared for the different classes. This observa-
tion has previously been made in the neural network literature [10,11]. However,
in these systems, the architecture of the network (and hence its computational
complexity) is fixed in advance, whereas we effectively learn the structure.

2 Sharing Features

As objects tend to share many properties, an efficient visual dictionary of objects
should capture those commonalities. Since objects are typically embedded in
cluttered backgrounds, the representations have to be robust enough to allow
for reliable discrimination between members of an object class and background
distractors (non-objects). Here we show that shared features emerge in a model of
object recognition trained to detect many object classes efficiently and robustly,
and are preferred over class-specific features. Note that edge features emerge here
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from a visual recognition task, rather than from a statistical criterion such as
sparse coding or maximizing statistical independence. We show that, although
that class-specific features achieve a more compact representation for a single
category, the whole set of shared features is able to provide more efficient and
robust representations when the system is trained to detect many object classes
than the set of class-specific features.

Fig. 1 illustrates the difference between two representations for objects. The
first representation (Fig. 1a-left), obtained when training a set of classifiers to
detect each object independently, is based on class-specific features of interme-
diate complexity, which have been shown to maximize the information delivered
about the presence of an object class [25]. One drawback of class-specific features
is that they might be too finely tuned, preventing them from being useful for
other objects classes. The second representation is obtained when training the
system to detect 29 object classes by allowing the classifiers to share features.
The resulting representation is based on a vocabulary of shared visual features
where each feature is used by a subset of the 29 object classes. Each object
is represented as configurations of simple features that resemble edge and line
detectors instead of relying on configurations of class-specific features.

Our learning algorithm, based on multiclass Boosting [19], is an iterative
procedure that adds one feature at each step in order to build a dictionary
of visual features. Each feature is found by selecting, from all possible class
groupings and features, the combination that provides the largest reduction of
the multiclass error rate. The feature added in the first iteration will have to
be as informative as possible for as many objects as possible, since only the
object classes for which the feature is used will have their error rate reduced.
In the second iteration the same selection process is repeated but with a larger
weight given to the training examples that were incorrectly classified by the
previous feature. Once the second feature is selected, new weights are given to
each training example to penalize more the examples incorrectly classified using
both features. This process is iterated until a desired level of performance is
reached. The algorithm has the flexibility to select class-specific features if it
finds that the different object classes do not share any visual property.

2.1 Boosting for Binary Classification

Boosting [5,19,20] provides a simple way to sequentially fit additive models of
the form

H(v) =
M∑

m=1

hm(v),

where v is the input feature vector, M is the number of boosting rounds, and
H(v) = logP (c = 1|v)/P (c = 0|v) is the log-odds of being in class c. (Hence
P (c = 1|v) = σ(H(v)), where σ(x) = 1/(1 + e−x) is the sigmoid or logistic
function.) In the boosting literature, the hm(v) are often called weak learners,
and H(v) is called a strong learner.
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Face

One way sign

Fig. 1. Example of specific (left) and generic (right) features, and their class-conditional
response distributions. Two possible representations of objects (e.g., face and one-way
sign). The number of features used for each representation is selected so that both
representations achieve the same detection performance (area under ROC is 0.95).
The first representation (left) uses class-specific features (optimized for detecting each
object class in cluttered scenes). Each feature is shown in object-centered coordinates.
In contrast, the second representation is built upon the best features that can be shared
across 29 object categories.

Boosting optimizes the following cost function one term of the additive model
at a time:

J = E
[
e−zH(v)

]
(1)

where z is the class membership label (±1). The term zH(v) is called the “mar-
gin”, and is related to the generalization error (out-of-sample error rate). The
cost function can be thought of as a differentiable upper bound on the misclas-
sification rate [20] or as an approximation to the likelihood of the training data
under a logistic noise model [5].

There are many ways to optimize this function. We chose to base our algo-
rithm on the version of boosting called “gentleboost” [5], because it is simple
to implement, numerically robust, and has been shown experimentally [14] to
outperform other boosting variants for the face detection task. In gentleboost,
the optimization of J is done using adaptive Newton steps, which corresponds
to minimizing a weighted squared error at each step. Specifically, at each step
m, the function H is updated as H(v) := H(v) + hm(v), where hm is chosen so
as to minimize a second order Taylor approximation of the cost function:

argmin
hm

J(H + hm) � argmin
hm

E
[
e−zH(v)(z − hm)2

]
(2)

Replacing the expectation with an empirical average over the training data, and
defining weights wi = e−ziH(vi) for training example i, this reduces to minimizing
the weighted squared error:
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Jwse =
N∑

i=1

wi(zi − hm(vi))2, (3)

where N is the number of training examples. How we minimize this cost depends
on the specific form of the weak learners hm.

It is common to define the weak learners to be simple functions of the form
hm(v) = aδ(vf > θ) + b, where vf denotes the f ’th component (dimension) of
the feature vector v, θ is a threshold, δ is the indicator function, and a and b
are regression parameters. (Note that we can replace

∑
m bm by a single global

offset in the final strong classifier.) In this way, the weak learners perform feature
selection, since each one picks a single component f .

These weak learners are called decision or regression “stumps”, since they can
be viewed as degenerate decision trees with a single node. We can find the best
stump just as we would learn a node in a decision tree: we search over all possible
features f to split on, and for each one, we search over all possible thresholds θ
induced by sorting the observed values of f ; given f and θ, we can estimate the
optimal a and b by weighted least squares. Specifically, we have

b =
∑

i wiziδ(v
f
i ≤ θ)∑

i wiδ(v
f
i ≤ θ)

, (4)

a+ b =
∑

i wiziδ(v
f
i > θ)∑

i wiδ(v
f
i > θ)

, (5)

We pick the f and θ, and corresponding a and b, with the lowest cost (using
Eq. 3), and add this weak learner to the previous ones for each training example:
H(vi) := H(vi) + hm(vi). Finally, boosting makes the following multiplicative
update to the weights on each training sample:

wi := wie
−zihm(vi)

This update increases the weight of examples which are missclassified (i.e., for
which ziH(vi) < 0), and decreases the weight of examples which are correctly
classified. The overall algorithm is summarized in Fig. 2.

2.2 Multiclass Boosting and Shared Stumps

In the multiclass case, we modify the cost function as in Adaboost.MH [19]:

J =
C∑

c=1

E
[
e−zcH(v,c)

]
(6)

where zc is the membership label (±1) for class c and

H(v, c) =
M∑

m=1

hm(v, c).
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1. Initialize the weights wi = 1 and set H(vi) = 0, i = 1..N .
2. Repeat for m = 1, 2, . . . , M

(a) Fit stump:
hm(vi) = aδ(vf

i > θ) + b

(b) Update class estimates for examples i = 1, . . . , N :

H(vi) := H(vi) + hm(vi)

(c) Update weights for examples i = 1, . . . , N :

wi := wie
−zihm(vi)

Fig. 2. Boosting for binary classification with regression stumps. vf
i is the f ’th feature

of the i’th training example, zi ∈ {−1, +1} are the labels, and wi are the unnormalized
example weights. N is the number of training examples, and M is the number of rounds
of boosting.

where H(v, c) = logP (c = 1|v)/P (c = 0|v), so P (c|v) = eH(v,c)/
∑

c′ eH(c′,v) (the
softmax function).

Proceeding as in the regular gentleBoost algorithm, we must solve the follow-
ing weighted least squares problem at each iteration:

Jwse =
C∑

c=1

N∑
i=1

wc
i (z

c
i − hm(vi, c))2 (7)

where wc
i = e−zc

i H(vi,c) are the weights1 for example i and for the classifier for
class c. Here, we use the same procedure as in Adaboost.MH, but we change the
structure of the multiclass weak classifiers. The key idea is that at each round m,
the algorithm will choose a subset of classes S(m) to be considered “positive”;
examples from the remaining classes can be considered “negative” (i.e., part of
the background) or ignored. This gives us a binary classification problem, which
can be solved by fitting a binary decision stump as outlined above. (Some small
modifications are required when we share classes, which are explained below.)
The goal is to pick a subset and a weak learner that reduces the cost for all
the classes. At the next round, a different subset of classes may be chosen. For
classes in the chosen subset, c ∈ S(n), we can fit a regression stump as before.
For classes not in the chosen subset, c 
∈ S(n), we define the weak learner to be
a class-specific constant kc. The form of a shared stump is:

hm(v, c) =
{
aδ(vf

i > θ) + b if c ∈ S(n)
kc if c /∈ S(n)

(8)

1 Note that each training example has C weights, one for each binary problem. It is
important to note that the weights cannot be normalized for each binary problem
independently, but a global normalization does not affect the results.
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The purpose of the class-specific constant kc is to prevent a class being chosen
for sharing just due to the imbalance between negative and positive training
examples. (The constant gives a way to encode a prior bias for each class, without
having to use features from other classes that happen to approximate that bias.)
Note that this constant does not contribute to the final strong classifier, but it
changes the way features are shared, especially in the first iterations of boosting.

1. Initialize the weights wc
i = 1 and set H(vi, c) = 0, i = 1..N , c = 1..C.

2. Repeat for m = 1, 2, . . . , M
(a) Repeat for n = 1, 2, . . . , 2C − 1

i. Fit shared stump:

hn
m(vi, c) =

{
aδ(vf

i > θ) + b if c ∈ S(n)
kc if c /∈ S(n)

ii. Evaluate error

Jwse(n) =
C∑

c=1

N∑
i=1

wc
i (z

c
i − hm(vi, c))2

(b) Find best subset: n∗ = arg minn Jwse(n).
(c) Update the class estimates

H(vi, c) := H(vi, c) + hn∗
m (vi, c)

(d) Update the weights

wc
i := wc

i e
−zc

i hn∗
m (vi,c)

Fig. 3. Boosting with shared regression stumps. vf
i is the f ’th feature of the i’th

training example, zc
i ∈ {−1, +1} are the labels for class c, and wc

i are the unnormalized
example weights. N is the number of training examples, and M is the number of rounds
of boosting.

Minimizing Eq. 7 gives

b =

∑
c∈S(n)

∑
i w

c
i z

c
i δ(v

f
i ≤ θ)∑

c∈S(n)
∑

i w
c
i δ(v

f
i ≤ θ)

, (9)

a+ b =

∑
c∈S(n)

∑
i w

c
i z

c
i δ(v

f
i > θ)∑

c∈S(n)
∑

i w
c
i δ(v

f
i > θ)

, (10)

kc =
∑

i w
c
i z

c
i∑

i w
c
i

c /∈ S(n) (11)
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Thus each weak learner contains 4 parameters (a, b, f, θ) for the positive class,
C − |S(n)| parameters for the negative class, and 1 parameter to specify which
subset S(n) was chosen.

Fig. 3 presents the simplest version of the algorithm, which involves a search
over all 2C −1 possible sharing patterns at each iteration. Obviously this is very
slow. Instead of searching among all possible 2C − 1 combinations, we use best-
first search and a forward selection procedure. This is similar to techniques used
for feature selection but here we group classes instead of features (see [7] for a
review of feature selection techniques). We start by computing the best feature
for each leaf (single class), and pick the class that maximally reduces the overall
error. Then we select the second class that has the best error reduction jointly
with the previously selected class. We iterate until we have added all the classes.
Finally we select from all the sets we have examined the one that provides the
largest error reduction.

The complexity is quadratic in the number of classes, requiring us to explore
C(C + 1)/2 possible sharing patterns instead of 2C − 1. We can improve the
approximation by using beam search considering at each step the best Nc < C
classes. However, we have found empirically that the maximally greedy strategy
(using Nc = 1) gives results which are as good as exhaustive search.

Fig. 4 compares two features, one optimized for one class only (faces) and
another selected for optimal sharing.

0

1 Chair
0

Pedestrian

0

1 Traffic light

0

1 One way Sign

0

1 Face

Class-specific feature Shared feature

Strength of feature responseStrength of feature response

Chair

0

1

Pedestrian
0

1

0
Traffic light1

One way sign

0

1

Face
0

1
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Fig. 4. These graphs compare the behavior of the two types of features for five object
classes. Each graph shows the response distribution of a feature for non-objects (gray)
and objects (black) of several classes. On the left side, the feature is class-specific
and is optimized for detecting faces. The distributions show that the feature responds
strongly when a face is present in its receptive field and weakly for non-objects or other
object classes. When other object classes are present, the feature has no selectivity and
is unable to discriminate between other object classes and non-objects, as expected.
The plots on the right show the behavior of a feature selected for optimal sharing.
This feature has elevated activation for a variety of objects (chairs, one-way signs, and
faces).
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3 Multiclass Object Detection

We are interested in the problem of object detection in cluttered scenes. In the
rest of sections, we provide some experimental results and discuss some of the
benefits of sharing features between a large number of object detectors.

3.1 LabelMe Database for Multiclass Object Detection

One important problem when developing algorithms for multiclass object de-
tection is the lack of databases with labeled data. Most of existing databases
for object recognition are inadequate for the task of learning to detect many
object categories in cluttered real-world images. For this reason we have build a
large database of hand-labeled images. Fig. 5 shows some examples of annotated
images from the LabelMe database [18]. The LabelMe database and the online
annotation tool for labeling new objects, can be found at:

http://www.csail.mit.edu/∼brussell/research/LabelMe/intro.html

Fig. 5. Some examples of images from the LabelMe database

For the experiments presented here we used 21 object categories: 13 indoor
objects (screen, keyboard, mouse, mouse pad, speaker, computer, trash, poster,
bottle, chair, can, mug, light); 7 outdoor objects (frontal view car, side view car,
traffic light, stop sign, one way sign, do not enter sign, pedestrians); and heads
(which can occur indoors and outdoors).

3.2 Local Features

For each 32x32 window in the image, we compute a feature vector. The features
we use are inspired by the fragments proposed by [25]. Specifically, we extract
a random set of 2000 patches or fragments from a subset of the 32x32 training
images from all the classes (Fig. 6). The fragments have sizes ranging from 4x4
to 14x14 pixels. When we extract a fragment gf , we also record the location from
which it was taken (within the 32x32 window); this is represented by a binary
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spatial mask wf . To compute the feature vector for a 32x32 window, we perform
the following steps for each of the 2000 fragments f :

1. Apply normalized cross correlation between the window and the fragment
to find where the fragment occurs;

2. Perform elementwise exponentiation of the result, using exponent p. With a
large exponent, this has the effect of performing template matching. With
p = 1, the feature vector encodes the average of the filter responses, which
are good for describing textures.

3. Weight the response with the spatial mask (to test if the fragment occurs in
the expected location).

4. Sum the result across all 32x32 pixels.
5. Perform element wise exponentiation using exponent 1/p.

Fig. 6. Each feature is composed of a template (image patch on the left) and a binary
spatial mask (on the right) indicating the region in which the response will be averaged.
The patches vary in size from 4x4 pixels to 14x14.

This procedure converts each 32x32 window into a single positive scalar for
each fragment f . This operation, for all image locations and scales, can be sum-
marized as:

vf (x, y, σ) = (wf ∗ |Iσ ⊗ gf |p)1/p (12)

where Iσ is the image at scale σ, gf is the fragment, wf is the spatial mask, ⊗
represents the normalized correlation, and ∗ represents the convolution operator.

In this chapter, we use p = 10; this is good for template matching as it
approximates a local maximum operator (although we feel that other values
of p will be useful for objects defined as textures like buildings, grass, etc.).
Using 2000 fragments give us a 2000 dimensional feature vector for each window.
However, by only using M rounds of boosting, we will select at most M of these
features, so the run time complexity of the classifier is bounded by M .

3.3 Dictionary of Visual Shared Features

One important consequence of training object detectors jointly is in the nature of
the features selected for multiclass object detection. When training objects jointly,
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the system will look for features that generalize across multiple classes. These fea-
tures tend to be edges and generic features typical of many natural structures.

Fig. 7 shows the final set of features selected (the parameters of the regression
stump are not shown) and the sharing matrix that specifies how the different
features are shared across the 21 object classes. Each column corresponds to one
feature and each row shows the features used for each object. A white entry in
cell (i, j) means that object i uses feature j. The features are sorted according
to the number of objects that use each feature. From left to right the features
are sorted from generic features (shared across many classes) to class-specific
features (shared among very few objects).

screen
poster

car frontal
chair

keyboard
bottle

car side
mouse

mouse pad
can

trash can
head

person
mug

speaker
traffic light

one way Sign
do not enter 

stop Sign
light
cpu

Fig. 7. Matrix that relates features to classifiers, which shows which features are shared
among the different object classes. The features are sorted from left to right from more
generic (shared across many objects) to more specific. Each feature is defined by one
filter, one spatial mask and the parameters of the regression stump (not shown). These
features were chosen from a pool of 2000 features in the first 40 rounds of boosting.

Fig. 1 illustrates the difference between class-specific and generic features. In
this figure we show the features selected for detecting a traffic sign. This is a
well-defined object with a very regular shape. Therefore, a detector based on
template matching will be able to perform perfectly. Indeed, when training a
single detector using boosting, most of the features are class-specific and behave
like a template matching detector. But when we need to detect thousands of
other objects, we cannot afford to develop such specific features for each object.
This is what we observe when training the same detector jointly with 20 other
objects. The new features are more generic (configuration of edges) which can
be reused by other objects.
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Fig. 8 shows some typical results for the detection of office objects. Note that
not all the objects achieve the same performance after training. The figure shows
some results for the detection of computer monitors, keyboards and mouse pads.
The three classifiers have been trained jointly with 18 other objects.
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Fig. 8. ROC for detection of screens, keyboards and mouse pads when trained jointly
with other 18 objects. On the right, we show some typical results of the detector output
on images with size 256x256 pixels. The multiclass classifier, trained using boosting,
uses 500 features (stumps) shared across 21 object classes.

3.4 Generalization and Effective Training Set

When building a vision system able to detect thousands of objects, using a set of
independent classifiers will require a large amount of computations that will grow
linearly with respect to the number of object classes. Most of those computations
are likely to be redundant.

One important consequence of feature sharing is that the number of features
needed grows sub-linearly with respect to the number of classes. Fig. 9.a shows
the number of features necessary to obtain a fixed performance as a function of
the number of object classes to be detected. When using C independent classi-
fiers, the complexity grows linearly as expected. However, when sharing features
among classifiers, the complexity grows sublinearly. (A similar result has been
reported by Krempp, et. al ([8]) using character detection as a test bed.) In fact,
as more and more objects are added, we can achieve good performance in all the
object classes even using fewer features than objects.

Another important consequence of joint training is that the amount of training
data required is reduced. If different classes share common features, the learning
of such features should benefit from the multiple classes reducing the amount
of data required for each class. In the case where we are training C object class



Shared Features for Multiclass Object Detection 357

2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

Class-specific features

Shared features

Number of object classesN
u
m

b
er

 o
f 

fe
at

u
re

s 
(f

o
r 

ar
ea

 u
n
d
er

 R
O

C
 =

 0
.9

5
)

0.7

0.75

0.8

0.85

0.9

0.95

1

1 5 10 20 50
A

v
er

ag
e 

ar
ea

 u
n
d
er

 R
O

C
Number of training examples per class (12 classes)

Shared features

Class-specific features

a) b)

Fig. 9. Efficiency and generalization improve when objects are trained jointly allowing
them to share features. a) Number of features needed in order to reach a fix level
of performance (area under the ROC equal to 0.95). The results are averaged across
20 training sets. The error bars show the variability between the different runs (80%
interval). b) Detection performance as a function of number of training examples per
class when training 12 detectors of different object categories.

detectors and we have N positive training examples for each class, by jointly
training the detectors we expect that the performance will be equivalent to
training each detector independently with Ne positive examples for each class,
with N ≤ Ne ≤ NC. The number of equivalent training samples Ne will depend
on the degree of sharing between objects.

Fig. 9.b shows the detection performance as a function of number of train-
ing examples per class when training 12 detectors of different object categories
(we used 600 features in the dictionary, and 1000 negative examples). Sharing
features improves the generalization when few training samples are available,
especially when the classes have many features in common. The boosting pro-
cedure (both with class-specific and shared features) is run for as many rounds
as necessary to achieve maximal performance on the test set. From Fig. 9.b, we
get that Ne ≈ 2.1N (i.e., we need to double the size of the training set to get
the same performance out of class-specific features).

3.5 Multiview Object Detection

In the case of multiple views, some objects have poses that look very similar. For
instance, in the case of a car, both frontal and back views have many common
features, and both detectors should share a lot of computations. However, in the
case of a computer monitor, the front and back views are very different, and we
will not be able to share many features. Our algorithm will share features as
much as possible, but only if it does not hurt performance.
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By sharing features we can find a good trade-off between specificity of the
classifier (training on very specific views) and computational complexity (by
sharing features between views). By sharing features we could have a set of
features shared across all views, not very specific and trying to solve the view
invariant detection problem, and then a set of features with less sharing and more
specific to few views of the object. Our goal is to implement an object detector
that works for many views of the object and that can provide an estimation of
the pose of the object.

Fig. 10 shows a dictionary of features (here localized image patches) build, us-
ing multiclass Boosting, for the task of multiview car detection. Here we trained
12 detectors each one tuned to one orientation.
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Fig. 10. Matrix that relates features to classifiers, which shows which features are
shared among the different car views (orientation is discretized in 12 groups). The
features are sorted from left to right from more generic (shared across many objects)
to more specific.

Fig. 11 shows the results of multiview car detectors and compares the clas-
sifiers obtained with specific and shared features. In both cases, we limit the
number of stumps to 70 and training is performed with 20 samples per view (12
views). Both classifiers have the same computational cost. The top row shows
typical detection results obtained by combining 12 independent binary classifiers,
each one trained to detect one specific view. When the detection threshold is set
to get 80% detection rate, independent classifiers produce over 8 false alarms per
image on average, whereas the joint classifier results in about 1 false alarm per
image (averages obtained on 200 images not used for training). Test images were
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a) No sharing between views.

b) Sharing between views.

Fig. 11. View invariant car detection (dashed boxes are false alarms, and solid boxes
are correct detections). a) No feature sharing, b) feature sharing. The joint training
provides more robust classifiers with the same complexity.
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Fig. 12. a) ROC for view invariant car detection. b) Detection performance as a func-
tion of number of training examples per class (each class correspond to one out of the 12
car orientations) when using view-specific and shared features. Detection performance
is measured as the average area under the ROC for all the classes.
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128x128 pixels, which produced more than 17000 patches to be classified. The
detector is trained on square regions of size 24x24 pixels. Fig. 12 summarizes the
result showing the ROC for detectors using specific and shared features.

Intuitively, we expect that more features will be shared in the multiview case
than in the multiclass case. The experiment confirms this intuition. In order to
be comparable with the results of fig. 9.b, we used 600 features in the dictio-
nary (created from patches extracted from cars), and 1000 negative examples.
Specifically, we find that in the multiclass case (fig. 9.b), each feature was shared
amongst 5.4 classes on average, whereas in the multiview case, each feature was
shared amongst 7 classes on average. In Fig. 12, we obtain that the equiva-
lent training set size is Ne ≈ 4.8N (i.e., joint training effectively increases the
training set for every class by almost a factor of 5).

4 Conclusion

We have introduced an algorithm for multi-class object detection that shares
features across objects. The result is a classifier that runs faster (since it com-
putes fewer features) and requires less data to train (since it can share data
across classes) than independently trained classifiers. In particular, the number
of features required to reach a fixed level of performance grows sub-linearly with
the number of classes, as opposed to the linear growth observed with indepen-
dently trained classifiers. We believe the computation of shared features will be
an essential component of object recognition algorithms as we scale up to large
numbers of object classes.
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Abstract. We propose a generative approach to the problem of label-
ing images containing configurations of objects from multiple classes.
The main building blocks are dense statistical models for individual ob-
jects. The models assume conditional independence of binary oriented
edge variables conditional on a hidden instantiation parameter, which
also determines an object support. These models are then be composed
to form models for object configurations with various interactions includ-
ing occlusion. Choosing the optimal configuration is entirely likelihood
based and no decision boundaries need to be pre-learned. Training in-
volves estimation of model parameters for each class separately. Both
training and classification involve estimation of hidden pose variables
which can be computationally intensive. We describe two levels of ap-
proximation which facilitate these computations: the Patchwork of Parts
(POP) model and the coarse part based models (CPM). A concrete im-
plementation of the approach is illustrated on the problem of reading
zip-codes.

1 Introduction

Work in object recognition has focused on two main areas. The first area in-
volves classifying images of segmented objects or images known to contain only
one object. The problems are formulated in different ways, sometimes a deci-
sion among several classes [3,7], and at times a decision class vs. background
[15]. The second area involves the detection of instances of an object class in
large images, which may contain any number of these objects or none at all,
[24,4,16,27,26]. In [25] several objects are detected simultaneously. These two
areas are of course closely related, and raise important issues such as how is
photometric and geometric variability handled? How is the background defined?
What type of training is used?

There is a rather clear dividing line in the literature between those that em-
phasize non-parametric discriminative learning of decision boundaries and those
that employ parametric modeling of the different object classes. For example in
handwritten digit recognition the work in [11,3] involves discriminative learning
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using different algorithms, whereas a generative modeling approach is proposed
in [23]. For object detection the work in [27] uses large numbers of examples of
faces and massive numbers of non-face examples to train a classifier between face
and non-face. These ideas are extended in [25]. On the other hand in [17] training
is performed on several hundred object examples alone. Although the method
there is described as a cascade of classifiers, it is shown in [5] that these can
be viewed as approximations to an underlying stochastic model for face images.
The approach in [12,15] is also generative.

Yet both detection and classification are in fact reductions of the real goal of
labeling images with multiple instances of different object classes, with various
types of interactions between the objects. If we put aside the approach of bottom
up segmentation and subsequent classification, we need to be able to combine
detection and classification for multi-object configurations. This issue arises even
when detecting a single object class, say faces. When several faces are present
close to each other, or even occluding each other, or when trying to determine
how to prune clusters of very close detections, one encounters the issue of object
configurations which are not accounted for with simple object/background dis-
criminative boundaries. All the more so when multiple object classes are present.

One interesting example of a coherent discriminative framework for dealing
with object configurations, in the context of reading handwritten digits, is found
in [20]. A well defined cost function is proposed involving an interaction between
segmentations and outputs of classification. However for the system to work the
authors needed to train the network with massive numbers of digits presented
with flanking digits so that the pretrained classifiers would be robust to clutter
in the subwindow being processed. It does not appear that such an approach
can scale to multiple objects and novel types of configurations. Moreover the
requirements on the training set size are prohibitive.

In terms of generative approaches [18,9] provide an overall theoretical pro-
posal for compositional scene models involving hierarchies of parts/objects that
are successively composed, ultimately to provide an explanation of the entire
scene. In [5] a concrete attempt is made to compose object models into scene
models. The notion of an object support is defined in terms of the model and
the object instantiation. This concept is crucial in composing object models,
defining object configurations, occlusion and other forms of interactions. In [5] it
is assumed the object supports do not overlap, and the range of poses is rather
limited. The main challenge comes from the presence of clutter and noise. Object
supports can be defined naturally when one employs dense data models, such
as the Bernoulli edge based model proposed in [2] and used in [5]. Sparse mod-
els such as the constellation models of [15,13], or [14] do not provide an object
support, and could in fact be viewed as approximations to dense models. In [21]
object supports are derived from constellation models.A related non-generative
approach to computing object supports is proposed in [10].

In this chapter the ideas of [5] are extended to highly deformable objects, e.g.
handwritten digits. We start with the formulation of single object deformable
Bernoulli models and their composition into scene models (section 2). In section 3
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we outline the patchwork of parts (POP) approximation to the Bernoulli model,
which allows for tractable and efficient training and testing. In section 4 we de-
scribe a further coarse part based approximation which can be used to efficiently
discover clusters within object classes, as well as quickly scan a large image for
candidate detections. Results on combining the two approximations for isolated
digit classification are given in section 5. In section 6 we explain how an image
containing multiple objects is processed using the above models and how the
optimal scene labelling is computed. Finally in 7 we provide some experimental
results on hand written zip-codes from the US postal CEDAR database.

2 The Deformable Bernoulli Model

2.1 Oriented Edge Features

The data models defined below are all based on a set of eight binary oriented
edge features defined originally in [4], and employed in multiple applications see
e.g. [2,5,6]. The edge features are binary and computed at each point in the
image which is defined on a grid L. Several edges can be present at one location
- they are not mutually exclusive. These features are highly robust to intensity
variations. Each detected edge is spread to its immediate 3 × 3 neighborhood.
This spreading operation providing robustness to small local deformations which
are very difficult to model, and greatly improves performance of any classifier
implemented on the data. We write the binary data (after spreading) as X =
{Xe(x) | x ∈ L, e = 1, · · · , E}, where E = 8, corresponding to 8 orientations at
increments of 45 degrees. In figure 1 we show the edges extracted on a typical
zip-code for two different orientations. The darker points are the original edges
and the gray areas the spreading regions.

Fig. 1. Left: A sample zip-code. Middle: Horizontal edges. Right: Vertical edges. Dark
points original edges, gray points after spreading.

2.2 One Object

We start with a data model for the edge features in an image containing only
one object.

There are several components in the description of the model.

Instantiation set. A set Θ = L× Θ0 describing the possible instantiations of
the object, where L is the image lattice and indicates all possible locations
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of the object, and Θ0 describes the linear and non-linear deformations of
the object. We write θ = (ξ, ϑ) where ξ ∈ L, ϑ ∈ Θ0. There will be a
product prior distribution P (θ) = P (ξ)P (ϑ), indicating that the deformation
of the object is independent of its location. Typically with one object P (ξ)
is uniform on L.

Probability maps. A probability map on a reference grid G.
pe ≡ pe(z), z ∈ G, e = 1, . . . , 8.

Probability instantiation. For any θ ∈ Θ and any point x ∈ L define an op-
erator θpe(x) which assigns a probability of finding edge e at x as a function
of the instantiation θ, and the probability map pe. For example if θ is a map
of G→ L one reasonable form would be

θpe(x) =

{
pe(θ−1x) ifx ∈ θG

pe,bgd x /∈ θG
, (1)

where pe,bgd is a generic background probability for edge e, and θ−1x =
ϑ−1(x − ξ). We will propose a different form in the context of the POP
models below.

Given only one object of this class is present in the image at instantiation
(ξ, ϑ) we assume the edges in the image are independent and have marginal
probabilities at each point x given by θpe(x). Specifically we write

P (X |θ) =
∏
e

∏
x∈L

θpe(x)Xe(x)(1− θpe(x))1−Xe(x). (2)

Let the object support for edge type e be defined as

Sθ,e = {x ∈ L : θpe(x) 
= pe,bgd}, (3)

namely the set of pixels with probabilities different from the generic background
probability, which bear some information regarding the presence of the object.
The probability model is rewritten as

P (X |θ) =
∏
e

⎡
⎣ ∏

x∈Sθ,e

θpe(x)Xe(x)(1− θpe(x))1−Xe(x) ·
∏

x/∈Sθ,e

p
Xe(x)
e,bgd (1− pe,bgd)1−Xe(x)

⎤
⎦

= P−1
bgd

∏
e

∏
x∈Sθ,e

(
θpe(x)
pe,bgd

)Xe(x)(1− θpe(x)
1− pe,bgd

)1−Xe(x)

, (4)

where Pbgd can be viewed as the probability of the data given no object is present
in the image.

If Θ0 consists of smooth mappings of G into L we have described a deformable
template model. However since typically a semantic object class can contain
more than several distinct smoothly deformable structures we model classes
as mixtures of Bernoulli models. In other words introduce a discrete variable
m ∈ {1, . . . ,K} denoting the component and a distribution P (m). For each
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m we have a specific distribution on instantiations Θ, denoted P (θ|m), and a
specific probability map pe,m. Write the joint distribution of observables, defor-
mation and component as

P (X, θ,m) = P (X |θ,m)P (θ|m)P (m), (5)

where P (X |θ,m) has the same form as equation (4) with the probability maps
pe,m.

For each component of each object class we denote the probability maps as
pe,m,c,m = 1, . . . ,K. Given an image with a single object of unknown class we
may ask for the maximum posterior on class

c̃ = argmaxcP (c|X) = argmaxcP (c)P (X |c)

= argmaxcP (c)
∑
m

∫
Θ

P (X |θ,m, c)P (θ|m, c)dθP (m|c), (6)

where the key data term P (X |θ,m, c) is given in equation (4). The integration
above is very difficult to compute so we substitute a maximization for integration
and summation and define the classifier as

ĉ = argmaxcP (c)max
θ,m

P (X |θ,m, c)P (θ|m, c)P (m|c). (7)

There may be an advantage to computing ĉ since is comes together with an
estimate of the instantiation. Note that in the standard classification problems
with segmented data it is assumed that ξ = 0.

2.3 Scene Models

Define a scene as a set of objects c1, . . . , ck with their instantiations and compo-
nents θ1,m1, . . . , θk,mk, and a partial ordering determining an occlusion relation
between the objects. For simplicity we can assume that if i < j than cj can not
occlude ci. Denote a scene as

D = {k, c1,m1, θ1, . . . , ck,mk, θk}. (8)

Let Si denote the support of object i (equation (3)). Let the occluding region of
object ci for edge type e be the union of the supports of all previous objects,

Oi,e = ∪i−1
j=1Sj,e. (9)

The likelihood of the data given a scene D is then

P (X|D) = P−1
bgd

Y
e

kY
i=1

Y
x∈Si,e\Oi,e

„
θipe,ci,mi(x)

pe,bgd

«Xe(x) „
1 − θpe,ci,mi(x)

1 − pe,bgd

«1−Xe(x)

.

(10)
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We introduce a prior on scenes with a probability distribution P (k) on the
number of elements in the scene and an interaction term between the objects
involving their instantiation parameters. Assuming no interaction between the
class and component labels we have

P (D) = P (k)

(
exp[Uk(θ1, . . . , θk)]

k∏
i=1

P (θi,mi, ci)

)
/Zk, (11)

where P (θi|m, c) are the original distributions on Θ for the component m of
class c. Again given the edge data of an image the scene label is obtained by
maximizing the posterior on the entire scenes parameter

D̂ = argmaxD∈DP (D)P (X |D), (12)

yielding a set of pose parameters in addition to the labels of the objects.
The introduction of interactions between the instantiations introduces signif-

icant complications in the form of the distribution P (D). For example in our
application these interactions involve constraints on the intersections of the sup-
ports of objects. Thus Zk involves the normalization of the product on the right
on a subset of admissible k-tuples. In general computing Zk is a challenge but
it is essential for comparing the posterior on scenes with different numbers of
elements. This is the fundamental challenge of compositional models (see [9].)

In our particular setting of reading zip-codes we have k = 5 so that Zk is irrel-
evant in comparing different admissible instantiations. Another simpler setting
is where the interaction term involves only the locations ξi of the objects:

Uk(θ1, . . . , θk) = Uk(ξ1, . . . , ξk).

Since P (θi|c,m) is independent of ξi the normalization constant Zk is computed
independently in terms of the ξ. In other circumstances if there is a very good
data model, the likelihood component of the posterior should overwhelmingly
point towards a particular value of k in which case there is no problem. But in
general this issue remains a challenge.

3 Approximations I: Patchwork of Parts (POP) Models

So far we have considered Θ0 as a set of smooth maps of the reference grid G into
the lattice L, with the operator θpe(x) defined in terms of equation (1). The main
problem in this formulation is the complex form of the posterior distribution on
θ conditional on the data. This presents computational challenges which effect
both training and labeling. In [6] a convenient approximation is introduced which
we describe in brief.

3.1 POP Model Formulation

Instead of describing a full map of the reference grid the instantiation is summa-
rized as the mapping of a moderate number of reference points y1, . . . , yn in the
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Fig. 2. a: Sample seven. b. The function I(x) for instantiation θ. Black dots are the
reference points yi. White arrows show the shifts zi − yi. Darker areas are correspond
to higher values. (c,d) Extracted horizontal and vertical edges. (e,f) The global POP
model for the two edge types given θ. (g,h) The model probability map for the two
edge types (mean global POP), black dots are the reference points.

reference grid into the image lattice. Let zi =θyi, i=1, . . . , n and with some abuse
of notation write θ=(z1, . . . , zn). Define parts Qi of the full probability map

Qi,e(s)
.= pe(yi + s), e = 1, . . . , 8, s ∈W, (13)

where W is some fixed size subwindow around the origin. Now imagine that
the part Qi is ‘moved’ to the point zi. Edges at points in the image lattice
that are not covered by any of the windows zi + W get assigned background
probabilities. At points covered by one or more of the translated parts edges are
assigned the average of the contributed probabilities. Specifically for each x ∈ L
let I(x) = {i : x ∈ zi + W} be the set of shifted reference points whose W
neighborhood covers x. The marginal probability at each point x is then given
by the following average of the contributions of the parts:

θpe(x) = P (Xe(x) = 1|θ) =

{
1

|I(x)|
∑

i∈I(x)Qi,e,x−zi if |I(x)| > 0

pe,bgd if |I(x)| = 0,
(14)

where pe,bgd is a generic background probability for edge type e.
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This patchwork of the local models using the pointwise average of all local
submodels covering the point x motivates the term patchwork of parts (POP)
model. With this new definition of θpe(x), and staying with the conditional
independence assumption, we write the global POP model conditional on the
points θ as

P (X |θ) = P (X |z1, . . . , zn) =
∏
x

∏
e

[θpe(x)]Xe(x)[1− θpe(x)](1−Xe(x)), (15)

with θpe(x) defined in (14). Let θ̄ = (yi)i=1,...,n, i.e. the original reference points.
The original probability map pe(y), y ∈ G is given by θ̄pe(y). Since the windows
have not been moved the probabilities in the average in (14) are all the same
and equal to pe,y.

In 2(a) we show a sample ‘7’, with the function I(x) in 2(b), together with white
arrows connecting the reference points yi to the instantiation points zi. In panels
(c,d) we show two edge types extracted from the image, in (e,f) we show the global
POP model conditional on z1, . . . , zn, and in (g,h) the original probability map.
The gray areas in panels (g,h) show areas in the reference grid where pe = pbgd,
the remaining areas are the object support at reference pose. The same holds for
(e,f) - the object support includes all pixels outside the gray areas.

3.2 Training

This simplified model lends itself to a very simple and effective approximate esti-
mation procedure. Given a fixed collection of start points xi on a coarse subgrid
of the reference grid, separately estimate a Bernoulli model Q̃i supported on a
window of size W , for the data around xi. For each local model, the unobserved
variable - the instantiation - is simply a shift τ of the start point xi, constrained
within a fixed window V . For estimation assume that conditional on the shift
τ the data is generated independently according to Q̃i inside xi + τ + W and
according to the homogeneous background model everywhere else in the image.
Since we can enumerate all the shifts in V a full EM algorithm can be imple-
mented. Some of the local Bernoulli models Q̃i end up being very close to a
homogeneous background model and are eliminated.

The reference points yi are obtained from this procedure as xi + τ̄i where
τ̄i is the average shift, estimated through the EM procedure, over all training
points. Finally the full probability map is created by patching together the local
models using equations (14),(15) with θ = (y1, . . . , yn). The probability maps
shown in figure 2 (g,h) were estimated in this manner. Despite the separate
training of each part Qi the data imposes consistency between models estimated
at neighboring windows and the final probability map is smooth and has the
form of a seven. For more details see [6].

3.3 Computing an Instantiation

Once the probability map and the reference points of the POP model have been
estimated it is possible to run the model on a test image. Around each reference
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point yi, find the optimal shift τ∗i for the submodel Qi defined in equation (13),
in terms of the likelihood ratio to the background model, within the range V of
shifts. This is done independently of all other shifts. Setting zi = yi+τ∗i , compute
the likelihood under the global POP model P (X |z1, . . . , zn). The instantiation
shown in 2 (b) was obtained in this manner. Joint optimization of the shifts τi
to optimize the full likelihood is computationally very intensive.

3.4 Training Additional Parameters

Once the probability map is estimated other parameters of the model can be es-
timated by computing an instantiation for each training data using the method
outlined in 3.3. One can obtain the distribution of the computed likelihoods,
which are assumed to be Gaussian and summarized with a mean and stan-
dard deviation μ, σ. Furthermore we estimate a joint distribution p(θ) for the
computed instantiations. Assuming a joint Gaussian we take the means to be
yi, i = 1, . . . , n and a 2n× 2n covariance matrix Γ , whose dimension is twice the
number of reference points. A POP model for a class c can be summarized as
the collection

Mpop
c = {Qi,c, yi,c, i = 1, . . . , n, Γc, μc, σc}, (16)

where each Qi,c is the local model in the window W around point yi.

4 Approximations II: Coarse Part Based Mixture Models

Whereas the estimation of the probability maps with a POP model proves to
be rather simple, estimating a mixture of POP models is quite a challenge. One
can formulate a more complex EM procedure that involves both the unobserved
instantiation parameters and the discrete component parameter, see for example
[1]. However this is quite computationally demanding. We propose the following
simplification which involves introducing a further approximation of the POP
model in terms of part models on a coarse grid.

4.1 Generic Part Library with Rotational Symmetry

It is intuitively clear that the local Bernoulli models, i.e. the restriction of the
full model to small windows, can be well approximated by a moderate number
of fixed models - a fixed library of parts. We thus consider local edge maps in a
window W arbitrarily placed in the image as coming from a mixture distribution
of local Bernoulli models. Since it is sensible to assume that any local structure
occurs at all rotations we assume the mixture includes a discrete set of A equally
spaced rotations of a small number of base components. This both simplifies the
problem of chosing the number of components and provides a means for rotating
models.

We do not want to model ‘background’ windows in this mixture, i.e. windows
with no real structure. These are assumed to be distributed according to a
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Bernoulli model with homogeneous probabilities pe,bgd for each edge. We reject
the null background hypothesis on a subwindow if its probability under the back-
ground model is less than .01. For example if pe,bgd ≡ pbgd this reduces to setting
a minimal number of edges τe in the window. The training sample then consists of
windows W + x around random points in a set of images, where the background
hypothesis has been rejected. Write the mixture as

P (XW ) =
KF∑
f=1

A−1∑
α=0

τf,αPf,α(XW ) (17)

Pf,α(XW ) =
∏

s∈W

∏
e

pe,f,α(s)Xe(s)(1 − pe,f,α(s))(1−Xe(s)).

Theoretically one would want to write pe,f,α(s) = pα−1e,f (α−1s) for some base
probabilities pe,f . This however is problematic since it is unclear how to rotate
the edge by angles that are not multiples of π/4 and the square domain W is not
invariant under rotations. Instead we assume that if the edge map - XW+x - in
a subwindow is from component (f, α), then after rotation of the original image
around x by angle a the resulting edge map in the same window is a sample
from component (f, α+a), i.e. it is distributed according to Pf,α+a. We take the
addition of the angle indices to be modulo A.

Thus for each point x which is the center of a valid ‘non-background’ sub-
window we rotate the original gray level image around x at the A angles and
compute the edge maps X(a)

x+W , a = 0, . . . , A − 1 from the rotated images. We
denote the resulting training set as Xt,a

W , t = 1, . . . , T, a = 0, . . . , A− 1. Suppose
Xt,0

W is a sample from Pft,αt then Xt,a
W is a sample from Pf,αt+a. But ft, αt are

unobserved and are dealt with in the framework of the EM algorithm. The es-
timate of pe,f,α with fully observed data (i.e. knowing αt, ft for each training
sample X(t)

W ) would reduce to

p̂e,f,α(s) =
1
Tf

∑
t:ft=f

X(t,α−αt)(s), α = 0, . . . , A− 1 (18)

where Tf is the number of training subwindows from component f . Instead,
denoting by πf,α,t the estimated conditional expectation on (f, α) for training
sample t, the EM algorithm produces the following estimate

p̂e,f,α(s) =
1
wf

T∑
t=1

A−1∑
a=0

πf,a,tX
(t,α−a)
e (s), α = 0, . . . , A− 1

wf =
1
T

T∑
t=1

A−1∑
a=0

πf,a,t. (19)

The resulting features are very easy to interpret. In the first column of figure
3 we show the mean gray level images with KF = 6 parts at angle α = 0 found
on the MNIST data base. In other words we show the mean of all subwindows
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Fig. 3. Left column KF = 6 parts at angle α = 0. Subsequent columns rotations of
parts at multiples of π/8. All together 96 parts.

assigned to each cluster. In the subsequent columns are the parts corresponding
to the rotations α = 1, . . . , 16(A = 16). The mean images are easier to visualize
than the actual probability maps, but the clustering based on edge maps is
essential for photometric invariance. The same process can be performed on
generic gray level images with widely varying lighting and gray scale maps.
The unsupervised clustering process has discovered several basic local structures
- curves with different curvatures, ‘junctions’ and ‘endings’. We have not yet
developed a rigorous framework for choosing the number of components KF ,
but experiments show that the results are not very sensitive to this choice if
a sufficient number of angles is used. The only price for using more angles is
computational. In this chapter, since the rotation information of the features is
not used, we relabel the A ·KF features with the index f = 1, . . . , F .

4.2 Feature Labeling, Spreading and Subsampling

Having estimated a set of local features, a local feature map Yf (x), f = 1, . . . , F
is computed. At each point x for which the local edge data Xx+W is found to be
non-background, the most likely feature under the mixture model is recorded, i.e.

Yf (x) =

{
1 if f = argmaxf ′ logPf ′(Xx+W )
0 otherwise

Note that the computation of the log-likelihood at all locations is simply a linear
convolution on the binary edge data, not the original image data.

The result is a new set of feature maps on the image lattice L. Since each fea-
ture encodes an entire local structure, its exact position is no longer as important
as the exact edge positions. We take advantage of this fact by spreading the de-
tected features to a neighborhood B of the original location and subsampling to
a sublattice Lb at spacing b of the original lattice L.

Y s
f (x) = max

ξ∈B+b·x
Yf (ξ) (20)

for x ∈ Lb. Note that after subsampling several features can occur at the same
point x ∈ Lb.
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4.3 Part Based Object Models -CPM’s

The local features - parts - on the coarse subgrid were motivated as approxima-
tions of the original POP model. After spreading and subsampling one assumes
that the local deformations are accounted for and there is no need for a deforma-
tion variable ϑ and the instantiation is determined by the location ξ. Thus each
class is modeled as a mixture of Kc Bernoulli models based on the new features
in a coarse reference grid Gb. That is, conditional on the model component m,
each feature Y s

f is assumed to occur independently at each location z in L with
some probability pf,m,c(z):

P (Y s|M = m,C = c, ξ = x)

=
∏

y∈x+Gb

∏
f

pf,m,c(y − x)Y s
f (y)(1 − pf,m,c(y − x))(1−Y s

f (y)) (21)

In this context the independence assumption is blatantly wrong unless one uses
a very large number of components; after all if one conditions on ‘enough’ all
variables become independent. Nonetheless these mixture models give rise to a
well defined estimation procedure based on the EM algorithm. Our experience
is that due to the simplicity of the model - the parameters involve simple pro-
portions - the EM algorithm is very stable and does not depend heavily on the
initialization. For each component we also estimate the mean and standard de-
viation of the log-likelihood - μcoarse

c,m , σcoarse
c,m . We denote the final coarse part

based model (CPM) for a class c as

Mcoarse
c = {pf,m,c(z), z ∈ Gb, μ

coarse
c,m , σcoarse

c,m , f = 1, . . . , F,m = 1, . . . ,Kc}.
(22)

The value Kc is chosen so that on average there would be approximately 20
samples per component which is sufficient to provide good estimates of each of
the marginal probabilities.

In [8] we show that such coarse models yield very powerful likelihood based
classifiers on the MNIST dataset, as well as good single object detectors, see also
section 5.2. In training they are used to obtain class clusters which become the
components of the POP models. Finally for the purpose of scene analysis these
models will be used as an indexing mechanism to prune the number of locations
and classes on which to compute the more detailed POP models.

5 Combining CPM’s and POP Models

5.1 Mixtures of POP Models

Given Kc mixture components of the coarse object models each training image
will have one component with highest likelihood. It is almost always the case
that the likelihood of one component is much higher than all the rest and there
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is no ambiguity. In the top row of figure 4 we show the mean image for each
of the components of the coarse model. It is already clear that the estimation
procedure using the coarse features discovers interesting subclasses of each digit
class. The same phenomenon is observed with a dataset of face images.

Fig. 4. Top: Mean images of training data in each cluster estimated from coarse feature
based models. Bottom: Mean global image for the POP model estimated from the data
points in each cluster.

Now use the images assigned to each component m to train a full POP model
on the original reference grid G. To visualize the effect of the estimation of the
POP models it is possible to create a global mean image as opposed to visualizing
the probability maps of each model. Given the original images of the training
data: I(t), t = 1, . . . , T , and for each start point xi, take the average of the shifted
subimages:

JW,i = 1/T
T∑

t=1

I
(t)

xi+τ
(t)
i +W

,

where τ
(t)
i is the most likely shift, as computed in the EM procedure. Now

create a global mean image using the patchwork operation with the subimages
JW,i using the estimated reference points yi,

J(x) =

{
1

|I(x)|
∑

i∈I(x) JW,i(x− yi) if |I(x)| > 0

0 else
. (23)

In figure 4 we show the global mean image for the POP models for the five
clusters of sevens below the regular mean images of the sevens in each cluster.
The subsequent estimation of the POP models creates a much crisper model
since the local variations are accounted for.

5.2 Hierarchical Classification

The hierarchy of coarse feature based models and refined POP models leads
to a natural organization of computation. For example in simple standardized
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classification problems one can first run a classifier based on the CPM’s and
only when the log-likelihood ratio between the top two classes is below some
threshold run the more computationally intensive and refined POP models. The
results of this procedure on the MNIST data set is summarized in table 1. We
see that generative models with no discriminative training are able to obtain
state of the art classification rates (under 1% error) with small training samples.
However this classification problem, so intensively studied in the machine learn-

Table 1. Error rates on MNIST

No. of Training Components CPM CPM+POP SVM
data per class per model error rate error rate Error rate

30 2 4.26 3.43 6.57
100 5 2.68 1.73 3.02
500 20 1.71 1.12 1.47
1000 30 1.51 .9 1.15

ing community is very artificial. The objects are not only cleanly segmented,
they are also scaled and centered. This is hardly the case when trying to analyze
unsegmented scenes even as ‘simple’ as a zip-code. In section 6 we approach the
issue from a top down model based approach.

5.3 Scale and Slant Clusters

The characters in the MNIST dataset are well centered and scaled. In real zip-
codes there is much larger variability in terms of scale, and other linear para-
meters such as slant or shear. In one zip-code one can find a 2:1 ratio in size
of characters, some upright characters and some heavily slanted ones. In princi-
ple one could add a linear parameter to the instantiation parameter θ. However
within a small neighborhood of the identity map the linear variations are eas-
ily accommodated by the configurations of the reference points. For the larger
variations we produce additional components to the mixture models indexed by
a linear parameter. Specifically define a discrete set of scales and slants Σ. For
each σ ∈ Σ apply σ to the training data of component m and retrain a POP
model. The end result is Km × |Σ| POP models covering a large range of linear
variations and the non-linear variations governed by the ϑ parameter.

In addition, to expedite certain computations we also store a simple estimate
Msimple

c,m,σ of marginal probabilities of the edges for the training data in each
component m, with no accounting for local shifts. We now write

Mfine
c = {Mpop

c,m,σ,Msimple
c,m,σ ,m = 1, . . . ,Kc, σ ∈ Σ} (24)

where each Mpop
c,m,σ is a POP model as in equation (16).
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6 Analyzing a Scene

The scene labeling is defined as the optimizer in equation (12) over the set
D. This is of course an intractable computation and some short cuts need to
be defined. First extract a moderate number of candidate detections, i.e. class-
component-instantiation triples (c,m, θ), ignoring their interactions. Many of
these detections may have substantial overlaps in their supports. The goal is to
make sure the correct objects are among these detections at the price of having
say several hundred false positives. This is done in several stages.

6.1 Stage I: Candidate Detections Using CPM’s

The coarse grid Lb is labeled with the collection of part variables Yf , f = 1, . . . , F
as detailed in section 4.2. At each point x ∈ Lb run all the CPM’s on Yx+Gb

and
keep those models for which the likelihood is higher than μcoarse

c,m −α·σcoarse c,m
where α is a parameter usually set to 2 or 3. This yields a list Δcoarse of candidate
detections (c, ξ), where ξ = x · b denotes a location on the original lattice L. In
the present setting we omit the m variable denoting the component index from
the detection. Note that this step is the only one involving a full scan of the
image on the coarse grid.

Even though the coarse models yield good classifiers on segmented and nor-
malized data, they do not provide precise information regarding object support
and hence are not as useful when constructing probability models for object con-
figurations. Therefore each candidate CPM detection is subsequently analyzed
with the POP models.

6.2 Stage II: Refining Candidate Detections

For each detection in (c, ξ) ∈ Δcoarse choose the most likely POP component.
It is inefficient to compute the full instantiation (see section 3.3) for each pair
(m,σ), which involves optimization on each reference point yi. Instead we use
Msimple

c,m,σ and compute the likelihood ratio to the background for each (m,σ) and
for a range of locations around ξ. The optimal likelihood ratio then determines
the preferred component (m∗, σ∗), and a location x. An optimal instantiation
ϑ is only computed for the POP model Mpop

c,m∗,σ∗ at location x. The result is a
list Δfine of quintuples δ = (c,m, σ, ϑ, x) derived from the original list of class
location pairs Δcoarse.

6.3 Finding the Optimal Scene Labeling

From the list of detections Δfine we now want to extract the optimal scene D of
the image. Even if the distribution on scenes is fully specified (see discussion in
section 2.3) this would be a complex computation and one can not guarantee that
a global optimum will be found. Rather one would need to develop a sequence
of reasonable approximations.
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Table 2. Parameters used in zip-code experiment

Reference grid sizes G − 40 × 40, Gb − 5 × 5, b = 6
Number of local features K = 96, KF = 6, 6 components, 16 angles.

Window sizes W − 6 × 6, V − 5 × 5
Background prob. pe,bgd ≡ .1

Min. no. of edges for non-bgd. window τe = 40
Scales and slants 5 - scales .7 - 1.8, 3 slants.
Coarse models Training - 100 per class, 5 components per class.
Fine models Training - 500 per class, 20 components per class.

On the other hand in the particular problem of reading zip-codes this is not
an issue since we know there are 5 objects, and these are more or less linearly
organized. Thus in equation (11) k = 5 and the interaction term only involves
hard constraints on the arrangements of the objects. First there is an upper
limit on the area of the intersection of the supports of any two objects relative
to the areas of each of the objects. Then assuming the objects are ordered left
to right, which also determines the order of occlusion, given two consecutive
objects δ = (c,m, σ, ϑ, x), δ′ = (c′,m′, σ′, ϑ′, x′) we assume x1 < x′1 and impose
an upper limit on |x−x′|. We also impose an upper limit on the angle between x
and x′. One could add some soft constraints such as penalizing large differences
in the linear pose index σ between two consecutive objects, we have not done
so.

Since object i−1 can not occlude object i+1 rewrite the likelihood of equation
(10) for an admissible sequence of 5 objects δ1, . . . , δ5 as

P (X |D) = P−1
bgd

∏
e

k∏
i=1

∏
x∈Si,e\Si−1,e

(
θipe,i(x)
pe,bgd

)Xe(x)(1− θipe,i(x)
1− pe,bgd

)1−Xe(x)

,

(25)
where pe,i = pe,ci,mi,σi , Si,e is the support of object δi and S0,e = ∅.

Now the likelihood is a product of terms only involving consecutive pairs
of detections, and the constraints on configurations are also given in terms of
pairs. Consequently optimizing the likelihood over all admissible sequences of
five objects from the list of candidate detections can be efficiently done with
dynamic programming. The state space for each of the five ‘slots’ is the set of
detections in Δfine. Since the same pair (δ, δ′) of detections can be entertained
several times we precompute the value

Φ(δ, δ′) =
X

e

X
x∈Sδ′,e\Sδ,e

Xe(x) log
„

θ′pe,δ(x)
pe,bgd

«
+ (1 − Xe(x)) log

„
1 − θ′pe,δ(x)

1 − pe,bgd

«
,

but only for those pairs which satisfy the pairwise hard constraints. Once Φ is
precomputed dynamic programming reduces to lookups and summations. It is
also an easy matter to compute L top sequences which could be further processed
if needed.
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7 Experimental Results

Table 2 summarizes the parameter settings in the experiments. In figure 5.a we
show all locations of detections of class 2 in the coarse pass on a zip-code. In 5
(b,c,d) we show the support of a number of these detections after computation
of the optimal (m,σ) and the instantiation θ of the corresponding POP model.
Note that due to the range of sizes of the models, the algorithm finds 2’s in
strange places. There is no apriori way to know the correct size, since in some
zip-codes the size of the digits ranges quite drastically.

a b

c d

Fig. 5. a. Coarse detections of class 2. b-d Support of some fine model detections of
2’s after optimizing over model component, linear parameter and instantiation. The
supports shown are the union of the supports Se,θ for the different edge types.

In figure 6 we show the top two scene labelings obtained with dynamic pro-
gramming for three different zip-codes. These examples illustrate several inter-
esting aspects. First we see that due to the clutter in the form of the horizontal
bar in the first zip-code there is a well formed 2 shown in figure 5(c). This in-
stance appears in the second best labeling shown in figure 6(b). It appears with
some overlap with the subsequent detection. As indicated above some percent
overlap between supports is allowed and is then modeled as if one object par-
tially occludes the other. This is necessary since indeed sometimes digits share
some parts of the stroke. The dynamic programming happens to select the cor-
rect labeling in the first zip-code despite the presence of the bar. However since
there is no explicit modeling of structures other than digits, other types of clut-
ter could lead to false positives and incorrect labeling. In both the second and
third zip-code one sees the large differences in object size as well as the difficulty
in computing a bottom up segmentation; The flanking 4 and 6 in the second
zip-code and the connected 0’s in the third. Indeed any labeling obtained by the
algorithm, together with the object supports provides a top down object based
segmentation.

Finally table 3 shows some of the results on a set of 1000 zip-codes from the
US postal CEDAR data base. For comparison we show two reported results from
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a b

c d

e f

Fig. 6. Zip-code labeling. For three different zip-codes we show the top 2 labelings,
together with the support (white dots) of each detection.

the literature in the mid-90’s. All the reported methods used quite a number of
dedicated preprocessing steps tailored to the problem. In our implementation no
preprocessing or normalization is performed on the zip-code image, nor is there
any presegmentation. The overall full zip-code recognition rate is 85.8, with 20%
rejection the rate rises to 93.1%, reaching 97.6% at 50% rejection. The models
employed in this implementation correspond to the third row of table 1 reporting
an error rate just under 1% on the normalized MNIST images. One would then
expect a lower error rate on the zipcodes. However as mentioned above, error
rates on presegmented and centered images is misleading. If the scene labeling
algorithm is run on individual MNIST images just as it is run on the zip-codes,
assuming 1 object per image (k = 1) but assuming the location and pose are not
known, the error rate increases significantly, to around 4%.

The computation time on a 2Ghz P-IV is approximately 10-15 seconds per
zip-code where the largest computation is the massive loop over components
and linear poses using the simple Bernoulli step. There are many ways one could

Table 3. Left: Comparison of zip-code classification results. Right: Scene Model clas-
sification rate against rejection rate.

Author n % corr. % corr. at % rej
[19] 436 85% 97% - 34%
[22] 1566 * 96.5% - 32%
[28] 1000 72% 95.4% - 43%

Scene Models 1000 85.8 % 96.3% - 33%

% rej. % corr.
10% 89.1%
19% 93.1%
30% 95.5%
50% 97.6%
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expedite this step in particular are more clever use of coarse to fine computational
techniques as proposed in [16].

8 Discussion

We have shown that scene based models can be used to label object configura-
tions with no preprocessing or presegmentation, yielding competitive results. The
application o zipcodes is constrained since the number of objects is known and
their arrangement is linear. Still, a variety of greedy algorithms can be used to
find high scoring configurations in terms the proposed scene data model, such as
sequentially selecting the most likely object from the remaining candidate detec-
tions conditional on those already selected. Of primary interest is improving the
background model. The conditional independence assumption for background is
very strong and the result is that clutter in the background can score very high
in terms of the likelihood ratio of certain object models. One possibility is to use
the fixed part library as a collection of ‘background’ objects whose labels and lo-
cations are incorporated in the scene annotation. The alternative to a candidate
object instantiation would be the set of parts covering the same support.

Acknowledgement. Yali Amit was supported in part by NSF Grant 0427223,
and by L2TI, Université Paris XIII, Villetaneuse.

References

1. S. Allassonnière, Y. Amit, and A. Trouvé. Toward a coherent statistical frame-
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Object Detection and Localization
Using Local and Global Features

Kevin Murphy1, Antonio Torralba2, Daniel Eaton1, and William Freeman2

1 Department of Computer Science, University of British Columbia
2 Computer Science and AI Lab, MIT

Abstract. Traditional approaches to object detection only look at local
pieces of the image, whether it be within a sliding window or the regions
around an interest point detector. However, such local pieces can be
ambiguous, especially when the object of interest is small, or imaging
conditions are otherwise unfavorable. This ambiguity can be reduced by
using global features of the image — which we call the “gist” of the
scene — as an additional source of evidence. We show that by combining
local and global features, we get significantly improved detection rates.
In addition, since the gist is much cheaper to compute than most local
detectors, we can potentially gain a large increase in speed as well.

1 Introduction

The most common approach to generic1 object detection/ localization is to slide
a window across the image (possibly at multiple scales), and to classify each
such local window as containing the target or background. This approach has
been succesfully used to detect rigid objects such as faces and cars (see e.g.,
[26,24,27,35]), and has even been applied to articulated objects such as pedestri-
ans (see e.g., [20,36]). A natural extension of this approach is to use such sliding
window classifiers to detect object parts, and then to assemble the parts into
a whole object (see e.g., [19,20]). Another popular approach is to extract local
interest points from the image, and then to classify each of the regions around
these points, rather than looking at all possible subwindows (see e.g., [5,11]).

A weakness shared by all of the above approaches is that they can fail when
local image information is insufficient e.g. because the target is very small or
highly occluded. In such cases, looking at parts of the image outside of the
patch to be classified — that is, by using the context of the image as a whole —
can help. This is illustrated in Figure 1.
1 By generic detection, we mean detecting classes (categories) of objects, such as any

car, any face, etc. rather than finding a specific object (class instance), such as a
particular car, or a particular face. For one of the most succesful approaches to the
instance-level detection problem, see [18]. The category-level detection problem is
generally considered harder, because of the need to generalize over intra-class vari-
ation. That is, approaches which memorize idiosyncratic details of an object (such
as particular surface pattern or texture) will not work; rather, succesful techniques
need to focus on generic object properties such as shape.

J. Ponce et al. (Eds.): Toward Category-Level Object Recognition, LNCS 4170, pp. 382–400, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. An image blob can be interpreted in many different ways when placed in dif-
ferent contexts. The blobs in the circled regions have identical pixel values (except for
rotation), yet take on different visual appearances depending on their context within
the overall image. (This image is best viewed online.)

An obvious source of context is other objects in the image (see e.g., [10,30],
[31,7,15] for some recent examples of this old idea), but this introduces a chicken-
and-egg situation, where objects are mutually dependent. In this chapter, we
consider using global features of the image — which we call the “gist” of the
image — as a source of context. There is some psychological evidence [22,3,28]
that people use such global scene factors before analysing the image in detail.

In [23,34], Oliva and Torralba showed how one can use the image gist to
predict the likely location and scale of an object. without running an object
detector. In [21], we showed that combining gist-based priming with standard
object detection techniques based on local image features lead to better accu-
racy, at negligible extra computational cost. This chapter is an extension of [21]:
we provide a more thorough experimental comparison, and demonstrate much
improved performance.2

2 These improvements are due to various changes: first, we use better local features;
second, we prepare the dataset more carefully, fixing labeling errors, ensuring the ob-
jects in the test set are large enough to be detected, etc; finally, we have subsantially
simplified the model, by focusing on single-instance object localization, rather than
pixel labeling i.e., we try to estimate the location of one object, P (X = i), rather
than trying to classify every pixel, P (Ci = 1); thus we replace N binary variables
with one N-ary variable. Note that in this chapter, in order to focus on the key issue
of local vs global features, we do not address the scene categorization problem; we
therefore do not need the graphical model machinery used in [21].
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We consider two closely related tasks: Object-presence detection and object
localization. Object-presence detection means determining if one or more in-
stances of an object class are present (at any location or scale) in an image. This
is sometimes called “image classification”, and can be useful for object-based
image retrieval. Formally we define it as estimating P (O = 1|f(I)), where O = 1
indicates the presence of class O and f(I) is a set of features (either local or
global or both) extracted from the image.

Object localization means finding the location and scale of an object in an im-
age. Formally we define this as estimating P (X = i|f(I)), where i ∈ {1, . . . , N}
is a discretization of the set of possible locations/ scales, so

∑
i P (X = i|·) = 1. If

there are multiple instances of an object class in an image, then P (X|·) may have
multiple modes. We can use non-maximal suppression (with radius r, which is
related to the expected amount of object overlap) to find these, and report back
all detections which are above threshold. However, in this chapter, we restrict
our attention to single instance detection.

Table 1. Some details on the dataset: number of positive (+) and negative (-) images
in the training, validation and testing sets (each of which had 668, 132 and 537 images
respectively). We also show the size of the bounding box which was used for training
the local classifier.

Train + Train - Valid + Valid - Test + Test - Size (hxw)
Screen 247 421 49 84 199 337 30x30

Keyboard 189 479 37 95 153 384 20x66
CarSide 147 521 29 104 119 417 30x80
Person 102 566 20 113 82 454 60x20

For training/testing, we used a subset of the MIT-CSAIL database of objects
and scenes3, which contains about 2000 images of indoor and outdoor scenes,
in which about 30 different kinds of objects have been manually annotated. We
selected images which contain one of the following 4 object classes: computer
screens (front view), keyboards, pedestrians, and cars (side view). (These classes
were chosen because they had enough training data.) We then cropped and scaled
these so that each object’s bounding box had the size indicated in Table 1. The
result is about 668 training images and 537 testing images, most of which are
about 320x240 pixels in size.

The rest of the chapter is structured as follows. In Section 2, we will discuss
our implementation of the standard technique of object detection using sliding
window classifiers applied to local features. In Section 3, we will discuss our
implementation of the ideas in [34] concerning the use of global image features
for object priming. In Section 4, we discuss how we tackle the object presence
detection problem, using local and global features. In Section 5, we discuss how
we tackle the object localization problem, using local and global features. Finally,
in Section 6, we conclude.

3 http://web.mit.edu/torralba/www/database.html
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2 Object Detection Using Local Image Features

The standard approach to object detection is to classify each image patch/ win-
dow as foreground (containing the object) or background. There are two main
decisions to be made: what kind of local features to extract from each patch,
and what kind of classifier to apply to this feature vector. We discuss both of
these issues below.

2.1 Feature Dictionary

Following standard practice, we first convolve each image with a bank of filters
(shown in Figure 2). These filters were chosen by hand, but are similar to what
many other groups have used. After filtering the images, we then extract image
fragments from one of the filtered outputs (chosen at random). The size and
location of these fragments is chosen randomly, but is constrained to lie inside
the annotated bounding box. (This approach is similar to the random intensity
patches used in [37], and the random filtered patches used in [29].) We record
the location from which the fragment was extracted by creating a spatial mask
centered on the object, and placing a blurred delta function at the relative offset
of the fragment. This process is illustrated in Figure 3. We repeate this process
for multiple filters and fragments, thus creating a large (N ∼ 150) dictionary of
features. Thus the i’th dictionary entry consists of a filter, fi, a patch fragment
Pi, and a Gaussian mask gi. We can create a feature vector for every pixel in
the image in parallel as follows:

vi = [(I ∗ fi)⊗ Pi] ∗ gi

where ∗ represents convolution, ⊗ represents normalized cross-correlation and
vi(x) is the i’th component of the feature vector at pixel x. The intuition behind
this is as follows: the normalized cross-correlation detects places where patch Pi

occurs, and these “vote” for the center of the object using the gi masks (c.f.,
the Hough transform). Note that the D ∼ 10 positive images used to create the
dictionary of features are not used for anything else.

Fig. 2. The bank of 13 filters. From left to right, they are: a delta function, 6 oriented
Gaussian derivatives, a Laplace of Gaussian, a corner detector, and 4 bar detectors.

2.2 Patch Classifier

Popular classifiers for object detection include SVMs [20], neural networks [26],
naive Bayes classifiers [22], boosted decision stumps [26], etc. We use boosted
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* =

fP

g

Fig. 3. Creating a random dictionary entry consisting of a filter f , patch P and
Gaussian mask g. Dotted blue is the annotated bounding box, dashed green is the
chosen patch. The location of this patch relative to the bounding box is recorded in
the g mask.

decision stumps4, since they have been shown to work well for object detection
[26,17] they are easy to implement, they are fast to train and to apply, and
they perform feature selection, thus resulting in a fairly small and interpretable
classifier.

We used the gentleBoost algorithm [9], because we found that it is more
numerically stable than other confidence-rated variants of boosting; a similar
conclusion was reached in [14].

Our training data for the classifier is created as follows. We compute a bank
of features for each labeled image, and then sample the resulting filter “jets” at
various locations: once near the center of the object (to generate a positive training
example), and at about 20 random locations outside the object’s bounding box
(to generate negative training examples): see Figure 4. We repeat this for each
training image. These feature vectors and labels are then passed to the classifier.

We perform 50 rounds of boosting (this number was chosen by monitoring
performance on the validation set). It takes 3–4 hours to train each classifier
(using about 700 images); the vast majority of this time is spent computing the
feature vectors (in particular, performing the normalized cross correlation).5 The
resulting features which are chosen for one of the classes are shown in Figure 5.
(Each classifier is trained independently.)

Once the classifier is trained, we can apply it to a novel image at multiple
scales, and find the location of the strongest response. This takes about 3 seconds
for an image of size 240x320.

The output of the boosted classifier is a score bi for each patch, that approx-
imates bi ≈ logP (Ci = 1|Ii)/P (Ci = 0|Ii), where Ii are the features extracted
from image patch Ii, and Ci is the label (foreground vs background) of patch
i. In order to combine different information sources, we need to convert the
output of the discriminative classifier into a probability. A standard way to
do this [25] is by taking a sigmoid transform: si = σ(wT [1 bi]) = σ(w1 + w2bi),

4 A decision stump is a weak learner of the form h(v) = aδ(vi > θ)+ b, where vi is the
i’th dimension (feature) of v, θ is a threshold, a is a regression slope and b an offset.

5 All the code is written in matlab, except for normalized cross-correlation, for which
we use OpenCV, which is written in C++.
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Fig. 4. We create positive (X) and negative (O) feature vectors from a training image by
applying the whole dictionary of N = 150 features to the image, and then sampling the
resulting “jet” of responses at various points inside and outside the labeled bounding
box

. . .

1 2 3 M-1 M

Fig. 5. Some of the M = 50 features which were chosen from the dictionary for the
screen classifier. Within each group, there are 3 figures, representing (clockwise from
upper left): the filtered image data; the filter; the location of that feature within the
analysis region.

where the weights w are fit by maximum likelihood on the validation set, so that
si ≈ P (Ci = 1|Ii). This gives us a per-patch probability; we will denote this
vector of local scores computed from image I as L = L(I). Finally we convert
this into a probability distribution over possible object locations by normalizing:
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P (X = i|L) = si/(
∑N

j=1 sj), so that
∑

i P (X = i|L) = 1. (None of these oper-
ations affect the performance curves, since they are monotonic transformations
of the original classifier scores bi, but they will prove useful later.)

2.3 Results

To illustrate performance of our detector, we applied it to a standard dataset of
side views of cars6. In Figure 6, we show the performance of our car detector on
the single scale dataset used in [2] and the multiscale dataset used in [1]. (Note
that the multiscale dataset is much harder, as indicated by the decreased per-
formance of both methods.) This shows that our local features, and our boosted
classifier, provide a high quality baseline, which we will later extend with global
features.
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Fig. 6. Localization performance features on UIUC carSide data. (Left) Single scale.
(Right) Multi scale. Solid blue circles (upper line): our approach based on boosted clas-
sifiers applied to local features; Dashed black circles (lower line): Agarwal’s approach,
based on a different kind of classifier and different local features. See Section 5.1 for an
explanation of precision-recall curves.

3 Object Detection Using Global Image Features

3.1 The Gist of an Image

We compute the gist of an image using the procedure described in [32]. First
we compute a steerable pyramid transformation, using 4 orientations and 2
scales; second we divide the image into a 4x4 grid, and compute the average
energy of each channel in each grid cell, giving us 4 × 2 × 4 × 4 = 128 fea-
tures; finally, we reduce dimensionality by performing PCA, and taking the first
80 dimensions. We will denote the resulting global feature vector derived from
image I by G = G(I). Note that this procedure is similar to the one used in [34],
except in that chapter, Torralba used Gabor filters instead of steerable pyramids.
6 http://l2r.cs.uiuc.edu/∼cogcomp/Data/Car/
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We have found both methods to work equally well, and mainly chose steerable
pyramids because there is a good implementation available in Matlab/C.7 We
have also performed some preliminary experiments where we replace the steer-
able pyramids with the 13 filters in Figure 2; this has the advantage that some
of the work involved in computing L and G can be shared. Performance seems
to be comparable; however, the results in this chapter are based on the steerable
pyramid version of gist.

The gist captures coarse texture and spatial layout of an image. This is illus-
trated in Figure 7, where we show a real image I and a noise image J , both of
which have roughly the same gist, i.e., G(I) ≈ G(J). (J was created by initial-
izing it to a random image, and then locally perturbing it until ||G(I)−G(J)||
was minimized.)

Fig. 7. An illustration of the gist of an image. Top row: original image I ; bottom row:
noise image J for which gist(I) = gist(J). We see that the gist captures the dominant
textural features of the overall image, and their coarse spatial layout. (This figure is
best viewed online.)

3.2 Location Priming Using the Gist

As shown in [34], it is possible to predict the rough location and scale of ob-
jects based on the gist, before applying a local detector. We will denote this as
P (X |G). (Note that this is typically much more informative than the uncon-
ditional prior marginal, P (X): see Figure 9.) This information can be used in

7 http://www.cns.nyu.edu/∼eero/STEERPYR/
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two ways: We can either threshold P (X |G) and apply the local detector only
to the locations deemed probable by the gist (to increase speed), or we can can
apply the detector to the whole image and then combine P (X |L) and P (X |G)
(to increase accuracy). In this chapter, we adopt the latter approach. We will
discuss how we perform the combination in Section 5.2, but first we discuss how
to compute P (X |G).

Location priming learns a conditional density model of the form p(X =
x, y, s|G). Following [34], we assume scale and location are conditionally inde-
pendent, and learn separate models for p(x, y|G) and p(s|G). As shown in [34],
we can predict the y value of an object class from the gist reasonably well, but
it is hard to predict the x value; this is because the height of an object in the
image is correlated with properties which can be inferred from the gist, such as
the depth of field [33], location of the ground plane, etc., whereas the horizontal
location of an object is essentially unconstrained by such factors. Hence we take
p(x|G) to be uniform and just learn p(y|G) and p(s|G).

In [34], Torralba used cluster weighted regression to represent p(X,G):

p(X,G) =
∑

q

P (q)P (G|q)P (X|G, q)=
∑

q

π(q)N (G;μ(1)
q , Σ(1)

q )N (X; WqG+μ(2)
q , Σ(2)

q )

where π(q) are the mixing weights, Wq is the regression matrix, μ(i)
q are mean

(offset) vectors, and Σ
(i)
q are (diagonal) covariance matrices for cluster q. These

parameters can be estimated using EM. A disadvantage of this model is that it
is a generative model of X and G. An alternative is a mixture of experts model
[16], which is a conditional model of the form

p(X |G) =
∑

q

P (q|G)P (X |G, q) =
∑

q

softmax(q;wT
q G)N (X ;WqG,Ψq)

This can also be fit using EM, although now the M step is slightly more com-
plicated, because fitting the softmax (multinomial logistic) function requires an
iterative algorithm (IRLS). In this chapter, we use a slight variant of the mix-
ture of experts model called mixture density networks (MDNs) [4]. MDNs use a
multilayer perceptron to represent P (q|G), E[X |G, q] and Cov[X |G, q], and can
be trained using gradient descent. The main reason we chose MDNs is because
they are implemented in the netlab software package.8 Training (using multiple
restarts) only takes a few minutes, and application to a test image is essentially
instantaneous. When applied to the dataset used in [34], we get essentially the
same results using MDN as those achieved with cluster weighted regression. (We
have also performed some preliminary experiments using boosted stumps for
regression [12]; results seem comparable to MDNs.)

To evaluate performance, the prior P (X |G) can be evaluated on a grid of
points for each scale: Gi = P (x, y|G)P (s|G), where i = (x, y, s). We then nor-
malize to get P (X = i|G) = Gi/(

∑
j Gj) so that

∑
i P (X = i|G) = 1. We can

visualize this density by multiplying it elementwise by the image: see Figure 8
8 http://www.ncrg.aston.ac.uk/netlab
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for an example. We can evaluate the performance of the density estimate more
quantitatively by comparing the predicted mean, EX =

∫
Xp(X |G)dX , with

the empirical mean X̂: see Figure 9. We see that we can predict the y value
reasonably well, but the scale is harder to predict, especially for pedestrians.

Fig. 8. Example of location priming for screens, keyboards, cars and people using
global features. In each group, the image on the left is the input image, and the image
on the right is the input image multiplied by the probability, given the gist, of the
object being present at a given location, i.e., I. ∗ P (x|G(I)).

4 Object Presence Detection

Object presence detection means determining if one or more instances of an
object class are present (at any location or scale) in an image. A very successful
approach to this problem, pioneered by [6], is as follows: first, extract patches
around the interest points in an image; second, convert them to codewords using
vector quantization; third, count the number of occurrences of each possible
codeword; finally, classify the resulting histogram. Unfortunately, if this method
determines the object is present, it is not able to say what its location is, since
all spatial information has been lost. We therefore use the more straightforward
approach of first running a local object detector, and then using its output as
input to the object presence classifier. More specifically, we define Lm = maxi Li

as the largest local detection score, and take P (O = 1|L) = σ(wT [1 Lm]), so
that 0 ≤ P (O = 1|L) ≤ 1.

As shown in [34], it is possible to use the gist to predict the presence of
objects, without needing to use a detector, since gists are correlated with ob-
ject presence. Torralba used a mixture of (diagonal) Gaussians as a classifier:j p ( g )

P (O = 1|G)=
P (G|O = 1)

P (G|O = 1) + P (G|O = 0)
= q π+

q N(G; μ+
q , Σ+

q )

q π+
q N(G; μ+

q , Σ+
q ) + q π−

q N(G; μ−
q , Σ−

q )

where each class-conditional density P (G|O = ±, q) is modeled as a Gaussian
with diagonal covariance. We have found that using a single mixture component
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Fig. 9. Localization performance of screens, keyboards, people and cars using global
features. Left column: vertical location of object; right column: scale of object. Vertical
axis = truth, horizontal axis = prediction. We see that the gist provides a coarse
localization of the object in vertical position and scale c.f., [34].

(i.e., a naive Bayes classifier) is sufficient, and has the advantage that EM is not
necessary for learning. (We have also performed preliminary experiments using
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boosted decisions stumps; results were slightly better, but in this chapter, we
stick to the naive Bayes classifier for simplicity.)

To combine the local and global features, we treat P (O = 1|G) and P (O =
1|L) as scalar features and combine them with logistic regression:

P (O = 1|L,G) = σ(wT [1 P (O = 1|L) P (O = 1|G)])

We estimate the weights w using maximum likelihood on the validation set, just
in case either P (O = 1|L) or P (O = 1|G) is overconfident. Applying one classifier
inside of another is a standard technique called “stacking”. Other approaches
to combining the individual P (O = 1|L) and P (O = 1|G) “experts” will be
discussed in Section 5.2.

We compare the performance of the 3 methods (i.e., P (O|L), P (O|G) and
P (O|L,G)) using ROC curves, as shown in Figure 10. We summarize these
results using the area under the curve (AUC), as shown in Table 2. We see
that the combined features always work better than either kind of feature alone.
What is perhaps surprising is that the global features often perform as well as,
and sometimes even better than, the local features. The reason for this is that
in many of the images, the object of interest is quite small; hence it is hard to
detect using a local detector, but the overall image context is enough to suggest
the object presence (see Figure 11).

Table 2. AUC for object presence detection

Screen Kbd Car Ped
L 0.93 0.81 0.85 0.78
G 0.93 0.90 0.79 0.79

L,G 0.96 0.91 0.88 0.85

5 Object Localization

Object localization means finding the location and scale of an object in an image.
Formally, we can define the problem as estimating P (X = i|·). We will compare
3 methods: P (X|L), P (X|G) and P (X |L,G).

5.1 Performance Evaluation

We evaluate performance by comparing the bounding box Bp corresponding to
the most probable location, i∗ = arg maxP (X = i|·), to the “true” bounding
box Bt in manually annotated data. We follow the procedure adopted in the
Pascal VOC (visual object class) competition9, and compute the area of overlap

a =
area(Bp ∩Bt)
area(Bp ∪Bt)

(1)

9 http://www.pascal-network.org/challenges/VOC/
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Fig. 10. Performance of object presence detection. (a) Screens, (b) keyboards, (c)
cars, (d) pedestrains. Each curve is an ROC plot: P (O|G): dotted blue, P (O|L):
dashed green, P (O|L, G): solid red. We see that combining the global and local features
improves detection performance.

If a > 0.5, then Bp is considered a true positive, otherwise it is considered a false
positive.10 (This is very similar to the criterion proposed in [1].)

We assign the best detection a score, s(i∗) = P (O = 1|·), which indicates
the the probability that the class is present. By varying the threshold on this
confidence, we can compute a precision-recall curve, where we define recall =
TP/nP and precision = TP/ (TP+FP), where TP is the number of true positives
(above threshold), FP is the number of false positives (above threshold), and nP
is the number of positives (i.e., objects) in the data set.

We summarize performance of the precision-recall curves in a single number
called the F1 score:

F =
2 ·Recall · Precision
Recall + Precision

10 We used a slightly stricter criterion of a > 0.6 for the case of pedestrians, because
the variation in their height was much less than for other classes, so it was too easy
to meet the 0.5 criterion.
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We use precision-recall rather than the more common ROC metric, since the
latter is designed for binary classification tasks, not detection tasks. In particular,
although recall is the same as the true positive rate, the false positive rate,
defined as FP/nN where nN is the number of negatives, depends on the size of
the state space of X (i.e., the number of patches examined), and hence is not
a solution-independent performance metric. (See [1] for more discussion of this
point.)

5.2 Combining Local and Global Features

We combine the estimates based on local and global features using a “product
of experts” model [14]

P (X = i|L,G) =
1
Z
P (X = i|L)γP (X = i|G)

The exponent γ can be set by cross-validation, and is used to “balance” the rela-
tive confidence of the two detectors, given that they were trained independently
(a similar technique was used in [15]). We use γ = 0.5.

Another way to interpret this equation is to realise that it is just a log-linear
model:

P (X = i|L,G) ∝ eγψL(X=i)+ψG(X=i)

where the fixed potentials/features are ψL(X) = logP (X |L) and ψG(X) =
logP (X |G). Since Z =

∑N
i=1 P (X = i|L,G) is tractable to compute, we could

find the optimal γ using gradient descent (rather than cross validation) on the
validation set. A more ambitious approach would be to jointly learn the pa-
rameters inside the models P (X = i|L) and P (X = i|G), rather than fitting
them independently and then simply learning the combination weight γ. We
could optimize the contrastive divergence [14] instead of the likelihood, for speed.
However, we leave this for future work.

Note that the product of experts model is a discriminative model, i.e. it defines
P (X |I) rather than P (X, I). This gives us the freedom to compute arbitrary
functions of the image, such as G(I) and L(I). Also, it does not make any
claims of conditional independence: P (X |L) and P (X |G) may have features in
common. This is in contrast to the generative model proposed in [34], where the
image was partitioned into disjoint features, I = IG∪IL, and the global features
were used to define a “prior” P (X |IG) and the local features were used to define
a “likelihood” P (IL|X):

P (X |I) =
P (IL, IG, X)
P (IL, IG)

=
P (IL|X, IG)P (X |IG)P (IG)

P (IL|IG)P (IG)
∝ P (IL|X, IG)P (X |IG)
≈ P (L(I)|X)P (X |G(I))
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Fig. 11. Examples of localization of screens, keyboards, cars and pedestrians. Within
each image pair, the top image shows the most likely location/scale of the object
given local features (arg max P (X|L)), and the bottom image shows the most likely
location/scale of the obhect given local and global features (arg max P (X|L, G)).
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Fig. 12. Localization performance for (a) screens, (b) keyboards, (c) cars, (d) pedestri-
ans. Each curve shows precision-recall curves for P (X|G) (bottom blue line with dots),
P (X|L) (middle green line with crosses), and P (X|L, G) (top red line with diamonds).
We see significant performance improvement by using both global and local features.

The disadvantage of a product-of-experts model, compared to using Bayes’
rule as above, is that the combination weights are fixed (since they are learned
offline). However, we believe the advantages of a discriminative framework more
than compensate.

The advantages of combining local and global features are illustrated qualita-
tively in Figure 11. In general, we see that using global features eliminates a lot of
false positives caused by using local features alone. Even when the local detector
has correctly detected the location of the object, sometimes the scale estimate is
incorrect, which the global features can correct. We see a dramatic example of
this in the right-most keyboard picture, and some less dramatic examples (too
small to affect the precision-recall results) in the cases of screens and cars. The
right-most pedestrian image is an interesting example of scale ambiguity. In this
image, there are two pedestrians; hence both detections are considered correct.
(Since we are only considering single instance detection in this chapter, neither
method would be penalized for missing the second object.)
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In Figure 12 we give a more quantitative assessement of the benefit using
precision-recall curves.11 (For the case of global features, we only measure the
peformance of P (y, s|G), since this method is not able to predict the x location
of an object.) We summarize the results using F1 scores, as shown in Table 3;
these indicate a significant improvement in performance when combining both
local and global features.

Table 3. F1 scores for object localization

Screen Kbd Car Ped
G 0.66 0.33 0.45 0.33
L 0.78 0.51 0.63 0.40

L,G 0.81 0.60 0.68 0.45

6 Discussion and Future Work

We have shown how using global features can help to overcome the ambiguity
often faced by local object detection methods. In addition, since global features
are shared across all classes and locations, they provide a computationally cheap
first step of a cascade: one only needs to invoke a more expensive local object
detector for those classes that are believed to be present; furthermore, one only
needs to apply such detectors in plausible locations/ scales.

A natural extension of this work is to model spatial correlations between
objects. One approach would be to connect the X variables together, e.g., as a
tree-structured graphical model. This would be like a pictorial structure model
[8] for scenes. However, this raises several issues. First, the spatial correlations
between objects in a scene are likely to be much weaker than between the parts of
an object. Second, some object classes might be absent, so Xc will be undefined;
we can set Xc to a special “absent” state in such cases (thus making the Oc

nodes unnecessary), but the tree may still become effectively disconnected (since
location information cannot propagate through the “absent” states). Third, some
objects might occur more than once in an image, so multiple Xc nodes will be
required for each class; this raises the problem of data association, i.e., which
instance of class c should be spatially correlated with which instance of class c′.

An alternative approach to directly modeling correlations between objects is
to recognize that many such correlations have a hidden common cause. This
suggests the use of a latent variable model, where the objects are considered
conditionally independent given the latent variable. In [21], we showed how we
could introduce a latent scene category node to model correlations amongst the
O variables (i.e., patterns of object co-occurrence). Extending this to model cor-
relations amongst the X variables is an interesting open problem. One promising
approach is to estimate the (approximate) underlying 3D geometry of the scene
11 Note that the results for the car detector in Figure 12 are much worse than in

Figure 6; this is because the MIT-CSAIL dataset is much harder than the UIUC
dataset.
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[13]. This may prove helpful, since e.g., the keyboard and screen appear close
together in the image because they are both supported by a (potentially hidden)
table surface. We leave this issue for future work.
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Abstract. We introduce a stochastic model to characterize the online
computational process of an object recognition system based on a hier-
archy of classifiers. The model is a graphical network for the conditional
distribution, under both object and background hypotheses, of the clas-
sifiers which are executed during a coarse-to-fine search. A likelihood is
then assigned to each history or “trace” of processing. In this way, likeli-
hood ratios provide a measure of confidence for each candidate detection,
which markedly improves the selectivity of hierarchical search, as illus-
trated by pruning many false positives in a face detection experiment.
This also leads to a united framework for object detection and tracking.
Experiments in tracking faces in image sequences demonstrate invariance
to large face movements, partial occlusions, changes in illumination and
varying numbers of faces.

1 Introduction

The two main categories of traditional pattern classification methods are gener-
ative and discriminative [8]. Generative methods involve the design and estima-
tion of a probability distribution over features, both observed and unobserved,
which capture the appearance of patterns in each class. Recent variations include
work on spatial arrangements of parts [4], Boolean models [1], reusable parts [13]
and compositional vision [11]. Such methods usually require intense computation
(e.g., computing MAP estimators) and extensive modeling. Nonetheless, in prin-
ciple, they can account for context and semantic labels at many levels, thereby
providing a comprehensive analysis of natural scenes. In contrast, discriminative
methods usually aim at inducing decision surfaces directly from training data.
Popular methods include support vector machines [21,15], neural networks [17]
and Adaboost [22]. Some are well-grounded in the theory of inductive learning
and achieve high performance in classification. However, they often require very
large training sets and their extension to global, full-scale scene interpretation is
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by no means obvious. Of course, these categories are hardly disjoint and many
methods, including those proposed here, involve components of both.

Recently, a different approach has been applied to pattern recognition [3,10,2].
In computational modeling, the primary object of analysis is the online compu-
tational process rather than probability distributions or decision surfaces. Hier-
archies of binary classifiers which cover varying subsets of hypotheses are built
from standard discriminative methods by exploiting shared properties of the
appearance of shapes. Online, the hierarchy is traversed using a coarse-to-fine
(CTF) search strategy: a classifier is evaluated if and only if all its ancestors
have been evaluated and were positive. One important consequence is that com-
putation is concentrated on ambiguous regions of the image; in particular, the
“object hypothesis” is rejected as quickly as possible in background regions. A
limitation of this approach is that statistical interactions among the classifiers
in the hierarchy is not taken into account; in particular, no global likelihoods
are assigned.

Here, we extend computational modeling, and take a step towards contextual
analysis, by introducing a global stochastic network to model classifier interac-
tions. The central concept is the trace of processing, which encodes the computa-
tional history – the family of classifiers performed, together with their outcomes,
during CTF search. Notice that the trace is a far richer structure than the output
of a decision tree; it is in fact a data-driven subtree of the original hierarchy since
many branches may be partially traversed before a negative result is encountered
or a leaf is reached. The trace space is represented by a tree-structured graph-
ical network and a likelihood is assigned to each trace under both object and
background hypotheses. This provides a generative framework for the hierarchy
of classifiers. Detections (full chains of positive responses) can then be analyzed
using likelihood ratio tests, adding a statistical component to sequential search
strategies.

We test the effectiveness of our trace model in experiments in face detection
and face tracking. Single-frame detection is based on the CTF framework pro-
posed in [10], where a hierarchy of linear classifiers is used to efficiently reject
non-face patterns and focus computation on face-like regions. Likelihood ratios
of observed traces represent a measure of confidence for each detection, allow-
ing for higher discrimination than with purely CTF search. This is illustrated
by successfully pruning false positives to produce a strictly superior ROC curve.
Tracking of faces in a video sequence is accomplished by integrating frame-based
probability measures within a spatial-temporal Markov model for the joint evo-
lution of poses and traces. Due to continuously updating detections, there are no
restrictions on face movements. Unlike existing approaches, the motion model is
not used to restrict the search domain but rather only to link detections between
consecutive frames. This framework then unites detection and tracking within a
single stochastic model.

In Section 2, we provides an overview of hierarchical object detection. The
trace model is introduced in Section 3, along with the construction of a probabil-
ity distribution on the space of traces relative to a general hierarchy of classifiers.
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Fig. 1. Hierarchical class/pose decomposition. Each cell represents a subset of classes
and poses. An alarm is identified with a fine (leaf) cell Λ if the classifiers for every
coarser cell (i.e containing Λ) responds positively.

In Section 4, we specialize to the case of learning a trace model for a hierarchy
based on the pose of a frontal view of a face and in Section 5 we demonstrate
how this model can eliminate false positives in hierarchical face detection. In
Section 6, the spatial trace model is integrated into a spatial-temporal Markov
model in order to produce a real-time face tracking system. Concluding remarks
are provided in Section 7.

2 Hierarchical Object Detection

Object detection refers to discovering and localizing instances from a list of
object classes based on a grey level image of an underlying scene. The basic
hierarchical framework can be found in [3,10,2,18]. In hierarchical detection, both
learning and parsing algorithms are based on a tree-structured representation of
hypotheses – a sequence of nested partitions – which captures shared structure,
e.g., common shape features. Hypotheses correspond to individual class/pose
pairings, although the framework is more general. Whereas scene interpretations
may involve multiple, inter-connected pairings, we shall focus on pure detection.
Each cell of the hierarchy corresponds to a subset of hypotheses and is included
in exactly one of the cells in the preceding, coarser partition (see Fig.1). Fine
cells may not correspond to individual hypotheses.

A binary classifier Xη is associated with the cell at each η ∈ T , where T
denotes the tree graph underlying the hierarchy. Classifier Xη is designed to re-
spond positively (Xη = 1) to all images labeled by the cell at η and negatively
(Xη = −1) to as many images as possible which fall into a suitable alternative
category. These classifiers range from those near the root of T , which accommo-
date many hypotheses simultaneously, to those near the leaves of T , which are
more dedicated (and hence selective). In principle, the classifiers could be con-
structed by any learning algorithm, but under the constraint that each classifier
maintain a very small false negative error rate, which facilitates early termination
of the search.
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Scenes are parsed by a coarse-to-fine exploration of the hierarchy, i.e., starting
at the root and evaluating a classifier if and only if all ancestors have been
evaluated and returned a positive answer. This processing strategy is known
to be theoretically optimal [3] under certain assumptions about how the power
and cost of the classifiers are related and how these quantities interact with the
“scope” of the classifiers – the number of hypotheses covered.

The result of processing an image is then the list of hypotheses determined
by the union of all leaf cells η ∈ ∂T with the property that Xη = 1 and all
classifiers at ancestors of η also respond positively. This can be visualized as a
chain of positive responses in the hierarchy of cells (see Fig. 1). Areas of the
image rejected by coarse tests are then rapidly processed, whereas ambiguous
areas are not labeled until at least some fine classifiers have been evaluated. The
resulting distribution of processing is highly skewed and detection is rapid at the
expense of some false positives.

On an empirical level, the success of this technique has been demonstrated
in several contexts, including experiments in face detection [10,18] and multi-
class character recognition [2]. In the former case, for example, parsing an image
results in a binary decision labeling each non-overlapping k × k window (e.g.,
k = 16) as either “background” or “face”. Although this method is quite fast and
accurate (see Section 5 for comparisons with other methods), it does not assign
any numeric confidence measure to each detection, which can aid in resolving
competing interpretations. More generally, there is no global stochastic model
for the hierarchy of classifiers.

The key to introducing a model, and accounting for context, is to exploit
the rich information provided by hierarchical search. Information is lost by only
collecting the list of complete chains. Clues about the semantic identity of image
regions, specifically the existence and presentations of objects of interest, can
be accumulated by considering the global history of the search process. More
specifically, processing a subimage leaves a fairly distinctive “signature” because
every test tells us something about every possible interpretation. That is, if y ∈ Y
is an interpretation (e.g., face at some pose), then each classifier Xη in the
hierarchy offers some evidence for the presence or absence of y, even if Xη is
based on a subset Λη ⊂ Y which does not contain y. The trace model is intended
to capture this type of global information.

3 The Trace of Coarse-to-Fine Search

Our approach is to model the computational history using a graphical stochastic
network indexed by certain subtrees of T . This then provides a joint probability
distribution over all possible processing records. The nature of the coarse-to-
fine processing makes this feasible as the search imposes major restrictions on
the possible records – subtrees – that can be observed. This in turn leads to a
simple distribution on the search histories or “traces” and provides a natural
likelihood-ratio test for weeding out false detections.
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Fig. 2. The result of CTF search is a labeled subtree where dark circles indicate a
positive classifier result and light circles a negative result. The traces are depicted
together with the outcomes of the classifiers performed. Top panel: (a) A hierarchy of
three classifiers; (b) The 5 different traces that can result from CTF search. Bottom
panel: (a) A hierarchy of seven classifiers; (b) Five of the 26 possible traces for this
hierarchy.

3.1 Trace Configurations

Depending on the image I, certain nodes η ∈ T are visited during CTF search
and their corresponding classifiers Xη ∈ {−1, 1} are evaluated. The result of
CTF search is then a labeled subtree of T , which we call the trace of image I.
The nodes of the trace correspond to the classifiers evaluated and the labels
correspond to the outcomes. Specifically, let S(I) ⊂ T denote the set of visited
nodes, a random subtree, and write Z(I) = {Xη, η ∈ S(I)} ∈ Z for the trace,
where Z denotes the set of all possible traces for a given hierarchy. In addition,
let Aη denote the set of parent nodes of η. For any trace Z(I), certain constraints
result from the fact that a classifier Xη is performed if and only if all ancestor
classifiers {Xξ, ξ ∈ Aη} are performed and each one is positive. In particular, i)
the classifier at any non-terminal node of S(I) must be positive; ii) the classifier
at any node which is terminal in S(I) but not terminal in T must be negative;
and iii) the classifier at a terminal node of both S(I) and T can be either positive
or negative.

The situation is illustrated in Fig. 2 for two simple binary hierarchies. For
three nodes and three corresponding binary classifiers X1, X2, X3, there are 23

total possible full realizations but only five possible traces, listed in the upper
right of Fig. 2. With seven nodes and classifiers, there are 27 = 128 full realiza-
tions and twenty-six possible traces, five of which are shown in the lower right
of Fig. 2. In general, the total number of traces depends on T .
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Fig. 3. (a) A trace Z from a binary hierarchy with three levels; (b) All possible full
configurations X that could result in Z

The hierarchies we construct in our experiments are not binary. However, in
the binary case, there is a simple relationship between the number of subtrees,
nsub(k), of a tree T with depth k (the depth of the root is 1) and the number
of traces, ntr(k) = |Z|. In fact, it is easy to show there is a one-to-one cor-
respondence between Z and the subtrees of a tree of depth k + 1, and hence
ntr(k) = nsub(k+1). Given the trace of a tree of depth k, expanding every “on”
node (which is necessarily terminal) into two children gives a subtree of a tree of
depth k + 1; conversely, every subtree can be identified with a trace by cutting
off its terminal leaves. It follows that

ntr(k) = nsub(k + 1) = n2
sub(k) + 1 = n2

tr(k − 1) + 1, k ≥ 2.

In particular, ntr(1) = 2, ntr(2) = 5 and ntr(3) = 26 (see Fig. 2(b)).

3.2 Trace Distributions

CTF search induces a mapping τ : {−1, 1}T → Z from full configurations X
to traces Z. In general, many realizations X are mapped to the same trace Z.
In Fig. 3, the four configurations in (b) are mapped to the trace in (a). This
mapping induces a partition of the entire configuration space. Consequently,
given any probability distribution pX for X, we have∑

z∈Z
pX(τ−1(z)) = 1. (1)

However, in order to construct a distribution on Z we need not start with a
distribution on the full configuration space.

One natural distribution on Z can be constructed directly along the lines of
graphical models. This direct construction has the added advantage that the
model requires only one parameter for each node in T . In contrast, learning a
graphical model for X on the full realization space {−1, 1}T can be difficult
for large T even with conditional independence assumptions since the number
of nodes, as well as the number of parameters determining each conditional
probability, increases exponentially with |T |. Moreover, in terms of online com-
putation, the original motivation for constructing a hierarchy of classifiers under
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the zero false negative constraint was the amount of computation involved in
evaluating classifiers at many image locations and resolutions.

Theorem 1. Let {pη, η ∈ T } be any set of numbers with 0 ≤ pη ≤ 1. Then

P (z) =
∏

η∈Sz

pη(xη) (2)

defines a probability distribution on traces where Sz is the subtree identified with
z and pη(1) = pη and pη(−1) = 1− pη.

Proof. There are several ways to prove that (2) implies
∑

z P (z) = 1 using the
type of “peeling” argument common in graphical models. The “direct” proof pro-
ceeds by performing the summation one node at a time starting from the leaves
of T . Start with any terminal node η of T and divide all traces into three disjoint
groups: those for which S does not contain η; those for which η ∈ S and xη = 1;
and those for which η ∈ S and xη = −1. The second and third groups are of equal
size and there is a one-to-one pairing between them in which each pair is the same
trace except for the sign of xη. Adding the probabilities in each pair, and using
pη(1) + pη(−1) = 1, results in a reformulation of the problem with probabilities
identical to those in (2) except that node η does not appear, i.e., the trace space
is relative to T \ {η}. Recursively looping over all the leaves of T then reduces the
problem to a hierarchy of depth k − 1; continuing this way, proving

∑
z P (z) = 1

eventually reduces to pη(1) + pη(−1) = 1 for the root η of T . ��

There is obviously a natural connection between the trace distribution given by
(2) and a graphical model pX on the full configuration space, linked by defining

pη(xη) = pX(xη|xξ = 1, ξ ∈ Aη). (3)

Here, the distribution pX on {−1, 1}T is determined by imposing the splitting
property of DAGs [16]:

pX(x) = P (Xη = xη, η ∈ T ) =
∏
η∈T

P (Xη = xη|Xξ = xξ, ξ ∈ Aη). (4)

We can choose any graphical model pX consistent with (3). Then we only need
to show that (2) holds; normalization is guaranteed by the mapping from full
realizations to traces. Proving this is again a standard argument in graphical
models. In fact, (3) holds relative to any sub-configuration on a subtree of T (i.e.,
whether or not the node histories consist of all positive responses). In particular,
if Ω(z) is the subset of the full configuration space that maps to trace z, we
clearly have:

P (Z = z) =
∑

x∈Ω(z)

pX(x)

=
∑

x∈Ω(z)

∏
η∈T

p(xη|xξ, ξ ∈ Aη).
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This reduces to (2) by factoring the product of conditional probabilities into two
groups and by extracting common terms in a recursive fashion.

The important point is that the conditional probabilities in the full model are
reduced to binomial terms pη(xη) since all the conditional events are “positive
histories.” Consequently, specifying a single parameter pη(1) for every node η ∈ T
yields a consistent probability model on traces. In contrast, in the full model
with binary trees, 2k parameters would be required to specify each conditional
probability for a history of length k, and hence order 4k parameters would be
required altogether, at least without imposing further Markov assumptions on
path histories.

4 Learning Trace Models for a Pose Hierarchy

In this section, we specialize the trace formulation to the case of a pose hierarchy
for faces. A reference set of poses is recursively partitioned into finer and finer
cells Λη and the classifier Xη for cell η is designed to detect all faces with
poses in Λη. The manner in which the classifiers are constructed from training
data, and full scenes are processed, will be reviewed only briefly in the following
section since these issues have been discussed in previous work; for example
further details may be found in [10] and [2]. Here we review what the hierarchy
represents in order to understand what the corresponding trace distributions
mean and how they are estimated from data.

4.1 Pose Hierarchy

The space of hypotheses is the set of poses of a face. Each classifier is trained
on a specific subset of face subimages which satisfy certain pose restrictions. In
detecting frontal views of faces, tilts are restricted to the range −15◦ ≤ α ≤ 15◦.
The base detector is designed to detect faces with scales (the number of pixels
between the eyes) in the range 8 ≤ s ≤ 16. The position of the face (taken
to be the midpoint between the eyes) is unrestricted. To detect larger faces,
the original image is downsampled before applying the base detector. With four
levels of downsampling, one is able to detect faces with sizes from 8 to 128 pixels.

Processing an entire image with a single hierarchy of classifiers would entail
building a root classifier which applies to all face positions simultaneously, and
to tilts and scales in the ranges given above. Instead, the face location in the
coarsest cell in the hierarchy is restricted to an 8× 8 block and the entire image
is processed by visiting each (non-overlapping) 8 × 8 block and applying the
base detector to the surrounding image data. Specifically, then, the classifier
at the root of the hierarchy is designed to detect faces with tilts in the range
−15◦ ≤ α ≤ 15◦, scales in the range 8 ≤ s ≤ 16, and location restricted to
an 8 × 8 window. The leaf cells localize faces to a 2 × 2 region with Δα = 10◦

and Δs = 2 pixels. In particular, faces are not detected at the resolution of one
specific position, scale and tilt, but rather at the resolution of the leaf cells. For
ease of notation, however, each leaf cell s ∈ ∂T in the hierarchy T is represented
by a single pose in that cell, call it θs.
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The discussion in Section 3 about constructing trace distributions can now be
applied conditionally on each leaf cell s, i.e., under the hypothesis that there is a
face with pose in Λs. Using the representative pose θs to signify this hypothesis,
the conditional probability of observing a trace z in the pose hierarchy is then

P (z|θs) =
∏

η∈Sz

pη(xη|θs). (5)

4.2 Learning

The task of learning is then to estimate the probabilities pη(1|θs), η ∈ T , for
each leaf cell s ∈ ∂T . Recall that this probability represents the likelihood that
the classifier at node η responds positively given that all its ancestors have re-
sponded positively. In addition, detection will involve a likelihood ratio test for
the hypothesis “θs” against a universal “background hypothesis,” denoted by
B. Under B, the trace data follow another distribution estimated from non-face
subimages. Consequently, we must also learn the probabilities pη(1|B), η ∈ T .

Due to the natural assumption of space-invariance (i.e., the trace distributions
are block-independent), we need to only learn the responses of classifiers for all
poses contained within a single, reference block. Moreover, two pose cells at the
same level in the (reference) hierarchy which differ only in the location of the
subset of positions (i.e., cover the same subset of scales and tilts and the same
subset of positions up to translation) can evidently be aggregated in collecting
statistics. Notice also that, in estimating pη(1|θs) for a fixed η, all the face
training data with poses in the leaf cell represented by θs are also aggregated in
compiling empirical statistics.

The model parameters are learned for the object model by accumulating the
results of classification tests over a standard face database and for the back-
ground model from subimages randomly sampled from the WWW. Fig. 4 illus-
trates the distribution of the model parameters pη(1|θs) for one specific pose θs

and under the background hypothesis. Only the section of the hierarchy that
contains the complete chain corresponding to the pose θs is illustrated. A darker
circle indicates a higher value of the probability pη(1|θs). As expected, we observe
darker circles along the chain that corresponds to the true pose. A consistent
decrease in the darkness at deeper levels is observed for the background model.

5 Experiments in Face Detection

We now demonstrate the advantage of the trace model with respect to the base-
line detector utilized in previous work [2,3,10] on coarse-to-fine object detection.
Briefly, the baseline detector operates as follows: The image is partitioned into
disjoint 8× 8 blocks and the image data surrounding each block is processed by
the hierarchy of classifiers which corresponds to the (reference) pose hierarchy.
The search is breadth-first CTF. A detection is declared at a terminal pose cell ξ
when there is a chain in the hierarchy, from the root to ξ, for which Xξ = 1 and
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Fig. 4. (a) The learned parameters pη(1|θs) under the hypothesis of a face with pose
in the cell represented by θs; (b) The same parameters for the background model. Only
the section of the full hierarchy that contains the complete chain to the cell represented
by θs is shown. A circle shaded darker indicates a higher value of the parameter.

Xη = 1, η ∈ Aξ. In the baseline system, when multiple detections are recorded
for a given block, some criterion must be used to identify a unique detection
for that block. The details are not important for our purposes. The important
point is that there is no global probabilistic model for assigning likelihoods to
detections or measuring one detection against another, or against a background
hypothesis. The trace model provides for this.

The general design of the hierarchy and the classifiers follows previous work
[10]. In this work, we use a slightly modified pose hierarchy (see §4.1) and make
use of both positive (face) and negative (non-face) training instances in con-
structing the classifiers. We use the Adaboost [22] learning algorithm to build
each Xη, η ∈ T . The features are the same oriented binary edge fragments from
[10]. The same learning algorithm is applied to each cell; only the training set
changes. More specifically, a standard training dataset is used to build both the
hierarchical classifiers and the trace models. 1600 faces are synthesized from the
dataset for each different pose and 10000 randomly selected image patches were
downloaded from the WWW and used as “non-faces”. The non-face instances
used at cell η are those which have responded positively to the preceding clas-
sifiers Xξ, ξ ∈ Aη. In this way, in training Xη, the system is competing with
those particular non-faces encountered during CTF search, which increasingly
resemble faces.

5.1 Trace-Based Likelihood Ratios

Assume the hierarchy of classifiers has been constructed and processed using
the baseline detection system, resulting in a susbset (usually empty) of complete
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chains for a given 8× 8 block W . (Recall that the baseline detector is applied to
each in a series of downsampled images in order to detect faces at a wide range
of scales.) Let Z(W ) denote the trace of block W . For each complete chain in W ,
say arriving at leaf node s ∈ ∂T , we perform a likelihood ratio test, comparing
P (Z(W )|θs) to P (Z(W )|B). A detection is declared “at θs” if

P (Z(W )|θs)
P (Z(W )|B)

≥ τ.

An ROC curve may then be constructed by varying τ and collecting statistics on
a test set; see below. The smallest value of τ , i.e., the most conservative in terms
of retaining faces at the expense of false positives, is determined by studying the
distribution of the likelihood ratio over a training set of faces and non-faces and
choosing a value that maintains every face.

NOTES:

– The speed of the algorithm is mainly governed by the baseline detection
scheme as the evaluation of each trace likelihood is only performed at com-
plete chains.

– However, restricting the search to complete chains is merely a computational
shortcut. Very little would change if screening for complete chains was omit-
ted and hence the likelihood ratio was maximized over every pose hypothesis
in each block. This is due to the underlying false negative constraint on each
classifier. Given a face with pose θ, any trace z which does not contain a
path to the leaf containing θ, including a positive value at the leaf, has very
small probability compared with P (z|B). As a result, the likelihood ratio is
smaller than even the smallest value of τ described above and consequently
there is no detection at (the leaf cell containing) θ. Hence, the detector for
block W is effectively a true likelihood ratio test.

5.2 Towards a Global Model

One might ask whether this block-by-block likelihood ratio test can be related
to a full-image search based on a global, generative model. Consider a single
hierarchy for the entire image; suppose there is a branch from the root to the
subset of poses corresponding to each region Wi, 1 ≤ i ≤ n, for a partition
of the image pixels into non-overlapping 8 × 8 blocks. Suppose also that the
root test is virtual – always positive. How might the global trace Z be used
to make inferences about the poses of all faces in the image? Let Θ denote a
collection of poses representing a global (image-wide) hypothesis. Suppose the
prior distribution P (Θ) forbides any two components of Θ with positions in
the same 8 × 8 block W ; otherwise it is uniform. (This only rules out severe
occulsion.) We make no assumptions about the number of faces in the image
(up to the number of blocks). Let Θ = {γ1, ..., γn} where γi = B signals “no face
in block Wi” and γi = θi is a pose with location in Wi.



412 S. Gangaputra and D. Geman

Fig. 5. Detection results on the CMU+MIT test set

Let Z(i) correspond to the trace generated with image block Wi. Make the
convenient assumptions that that the components of Z are conditionally inde-
pendent given both Θ and background, that P (Z(i)|Θ) = P (Z(i)|γi) and that
P (Z(i)|γi = B) follows a universal “background law” denoted P (Z|B). (The con-
ditional independence assumption is violated in practice because Z(i) depends
on the image data surrounding Wi; for example, in the scale range 8 ≤ s ≤ 16,
faces might occupy a region of order 32 × 32 and hence adjacent traces have
overlapping supports. The other assumptions are reasonable.) Then

P (Z|Θ)
P (Z|B)

=
n∏

i=1

P (Z(i)|γi)
P (Z(i)|B)

=
∏

i∈F (Θ)

P (Z(i)|θi)
P (Z(i)|B)

(6)

where F (Θ) ⊂ {1, ..., n} is the set of blocks for which γi 
= B. Maximizing this
over all Θ is evidently intractable. However, visiting the blocks one-by-one and
performing an individual likelihood ratio test is a reasonable approximation.

5.3 Results

Our algorithm is implemented in C++ on a standard Pentium 4 1.8GHz PC,
and we use a subset of the CMU+MIT [17,20] frontal face test set to estimate
performance. Images with strong pose variations in 2D and out-of-plane face
orientations are removed from the original test set. Figure 5 shows the result of
the trace-based system at a high detection rate (i.e., small τ) on a few images
of this test set. Processing a 320× 240 image takes only a fraction of a second.

Fig. 6 illustrates the difference in detection performance between the trace-
based system and the baseline detector on some images from the test set. Typi-
cally, true detections and false positives produce different types of traces.
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Fig. 6. Top row: The results of pure detection using the baseline CTF system. Bottom
row: False positives are eliminated by setting an appropriate threshold on the trace
likelihood.

For instance, the trace signatures of false positives tend to have multiple com-
plete chains and generate larger subtrees S. The traces generated by actual faces
are usually more locally concentrated with fewer long chains. These phenomena
are manifested in the learned trace models, which is why the likelihood ratio test
is efficient in reducing false positives while maintaining faces.

Some comparisons with the baseline CTF system as well as other face detec-
tion methods are reported in Table 1. A detection rate of 88.8% with 126 false
positives is achieved on 164 images from the test set. For the same detection rate,
the false positive rate for the trace-based system is lower than that of the baseline
CTF system. The trace-based results are also comparable to other well-known
systems. It should be noted that the results from each system are reported on
slightly different subsets of the CMU+MIT test set. Also, the performance of
both the baseline CTF system and the trace-based system could very likely be
improved by considering a richer feature set and/or a richer training set.

Table 1. Detection rates for various face detection systems

Detection False positives / image
Trace-Based CTF 89.1% 0.77
Baseline CTF 89.1% 1.11
Viola-Jones 90.8% 0.73
Rowley-Baluja-Kanade 89.2% 0.73

5.4 Comparison of ROC Curves

Another way to compare the baseline and trace-based systems is using ROC
curves. The ROC principle is based on varying a free parameter (e.g., a thresh-
old) in order to quantify the tradeoff between false positive and false negative
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Fig. 7. ROC curve - detection rate vs. false positives on the MIT+CMU test set for
the baseline CTF and the trace-based system

error rates. In the case of the baseline CTF system, the parameter τ is the mini-
mum number of complete chains required for an 8× 8 window to be classified as
containing the location of a face. For example, when τ = 1 the detector produces
a high number of false positives but few missed detections. For the trace-based
system, the parameter is the threshold on the likelihood ratio, as discussed ear-
lier. If multiple chains yield likelihood ratios above the threshold, the trace-based
system chooses the chain (for that 8 × 8 block) that maximizes the likelihood
ratio. For selected values of these thresholds, the false alarm rate and the true
detection rate on the CMU+MIT test set are plotted in Fig. 7. The trace ROC
curve is strictly superior, indicating that information does indeed reside in the
“history of processing.”

6 Application to Face Tracking

Face tracking usually involves characterizing the temporal evolution of shapes,
features or statistics. Tracking might be keyed by low level features such as color
[19] and contours [7]. In some model-based methods [9], foreground regions are
segmented by constantly updating a background model. Monte Carlo methods
[12] applied to the posterior probability distribution of the object state employ
dynamic sampling and Bayesian inference to estimate parameters of interest. Non-
parametric methods, such as the mean-shift algorithm [6], have also been proposed
for visual tracking. Most of these approaches exploit the temporal correlation be-
tween successive frames in order to refine the localization of a target. In most
cases, real-time performance is achieved by restricting the search space by way of a
highly constrained motion model. In general, work in face tracking has progressed
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Fig. 8. Top row: The result of our tracker in three different frames. Bottom row: The
raw results of pure detection in the same three frames.

largely independently from work in face detection and only a few approaches have
attempted to merge them into a single framework [14].

In order to make inferences about a dynamical system, it is customary to
specify two models – one that describes the evolution of the state with time
(the system model) and one that relates the noisy measurement to the state
(the measurement model). In our work, the state at time t is the set of poses of
the faces in frame t and the trace is the measurement. A simple joint Markov
model provides a natural probabilistic formulation and allows for the updating
of information based on new measurements.

6.1 A Model for Face Tracking

In order to illustrate the role of the trace model, we shall only discuss tracking
a single face, assumed visible throughout the sequence. We use I0:t−1 and θ0:t−1
to denote the set of observed image frames and the set of observed poses, re-
spectively, from time 0 to t− 1. The (global) trace for image frame It is denoted
by Zt; recall from Section 4.2 that Zt = {Zt(i)}, where Zt(i) is the trace for the
hierarchy corresponding to the i’th block. The tracking problem is formulated by
estimating the pose of a face for every time t, given (i) a new trace, Zt; (ii) the
previously recorded set of traces, Z0:t−1; and (iii) the set of previously observed
poses, θ0:t−1. The MAP estimate θ̂t of the pose at time t is

θ̂t = argmax
θt

P (θt|Z0:t, θ0:t−1)

= argmax
θt

P (Z0:t, θ0:t)
P (Z0:t, θ0:t−1)

= argmax
θt

P (Z0:t, θ0:t)

= argmax
θt

P (Zt, θt|Z0:t−1, θ0:t−1)
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where we have rearranged the terms and dropped those independent of the ar-
gument θt. The trace and the pose are assumed to be a joint Markov process
(Zt, θt), t ≥ 0. The maximization is then simplified to

θ̂t = arg max
θt

P (Zt, θt|Zt−1, θt−1)

= arg max
θt

P (Zt|Zt−1, θt, θt−1)P (θt|Zt−1, θt−1).

We further assume that the trace Zt is conditionally independent of the previous
trace and the previous pose given the current pose θt, and that the current pose
θt is independent of the previous trace Zt−1 given the previous pose θt−1. These
assumptions are reasonable and are consistent with other probabilistic-based
tracking approaches. This leads to the following baseline tracker

θ̂t = arg max
θt

P (Zt|θt)P (θt|θt−1). (7)

The likelihood function P (Zt|θt) of the global trace Zt = {Zt(i), i = 1, ..., n} is
defined in the same way as in Section 5.2, but under the simplifying constraint
that all but one of the components of Θ represent “background”. Writing W (i(t))
for the (unique) block containing the location component of θt, this likelihood
can be written:

P (Zt|θt) = C(Zt)×
P (Zt(i(t))|θt)
P (Zt(i(t))|B)

(8)

where

C(Zt) =
n∏

i=1

P (Zt(i)|B)

is independent of θt.
A new track is initialized by examining the likelihood ratio as before, i.e., the

maximization can be restricted to those θt which fall inside terminal pose cells
at the end of complete chains. An old track is continued by restricting the pose
space to regions in a neighborhood of the previous pose θt−1. The size of the
neighborhood is determined by the variability captured by the pose transition
model. The restriction of the pose-space does not limit the ability of the tracker
to handle faces with large motions; these faces are detected as new faces by the
CTF detection scheme.

The transition probability P (θt|θt−1) is assumed stationary and captures our
prior knowledge about how the pose moves from one frame to another. Our
transition model is learned from a set of training video sequences, recorded in
a video conference setting with a subject normally seated not far from a fixed
camera; there is then limited motion of the subject’s face. The training sequences
are manually landmarked and provide ground truth data for estimating pose
transitions. A histogram of the pose differences θt − θt−1 is generated for the
entire training set and serves as a good estimate for the pose transition model
P (θt|θt−1).
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Fig. 9. Trajectories for the x and y coordinates of the estimated position during a
tracking sequence. The dashed line represents ground truth and the solid line is the
outcome of the trace-based Markov tracker. The right panel illustrates the results in
some static frames extracted from the sequence.

Multiple faces and varying numbers of faces can also be accommodated since
the evaluation of the trace is global. Multiple faces are tracked by implement-
ing the baseline tracker independently for each new face. We omit the details
concerning the initialization of new tracks and the removal of existing ones. Ex-
tending the algorithm to accommodate more variations in the pose of a face
is straightforward. Pose hierarchies corresponding to left and right profiles are
learned separately and are added directly to the original hierarchy (frontal faces)
via a virtual node at the root and pose representation is augmented by a para-
meter indicating whether the view is frontal, left profile or right profile.

6.2 Results

Video sequences from commercial films and the Web are used to test the per-
formance of the tracker. The sequences contain multiple faces per frame under
various conditions of illumination and occlusion. With a standard desktop PC
and with no MMX optimizations, faces are tracked at around 15 frames per
second. Since the evaluation of trace likelihoods is restricted to regions of inter-
est, the speed of the tracker is mainly determined by the efficiency of detection.
Real-time performance can be obtained by only executing the full-image detector
every few frames or by incorporating global temporal information.

Fig. 6 illustrates the difference in the quality of single-frame detection be-
tween the trace-based Markov tracking model and the static algorithm (with-
out the trace model) in [10]. Naturally, exploiting temporal continuity and the
trace model removes false detections. In fact, tracking generally results in both
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Fig. 10. Tracking of multiple faces: occlusion handling

a higher detection rate and a lower false positive rate. A higher detection rate
is achieved because of the tracker’s ability to “interpolate” when the detector
fails to signal an alarm. The interpolation is possible due to the trace model’s
ability to produce valid probability measures even for poses that do not corre-
spond to detected alarms. This phenomenon is mainly observed in cases where
a subject temporarily violates the pose requirements or in cases of temporary
occlusion. The state estimation of the Markov model filters out false positives
which normally appear as high-frequency noise throughout a video sequence.

An empirical analysis of the tracker’s performance is illustrated in Fig. 9. A
single face is tracked in each sequence and its image coordinates are plotted
through a segment of 200 frames. The video sequences are provided by [5] and
are available at http://www.cs.bu.edu/groups/ivc/HeadTracking/. The frames in
the right panel of Fig. 9 illustrate the result of the tracker at different points
throughout the sequence. The dashed line represents ground truth which is ob-
tained by manually landmarking the video sequence. The solid line is the out-
come of the trace-based Markov tracker. As can be observed, the face position
is correctly determined through most of the sequences. Some discontinuities are
observed and are attributed to a failure of the CTF detection algorithm. The
second sequence in Fig. 9 exhibits varying illumination; as a result, the detector
provides inconsistent initialization and this propagates to the tracker, generating
the observed discontinuity. A slight amount of jitter in position is attributed to
inability of the first-order Markov model to integrate information over multiple
frames.

Fig. 11. Tracking results on a difficult sequence with high camera instability
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Fig. 10 shows the result of tracking multiple faces through occlusions. Fig. 11
depicts the result of tracking a subject in a very challenging video sequence [23].
The face of the subject is successfully tracked despite heavy camera panning
and unsteady focus. Unlike most tracking algorithms, the search is global and
the influence of the CTF detection model reduces the dependence on accurate
motion estimation.

7 Conclusions

We have characterized the online computational process of an object detection
system in the context of a graphical model for the history or “trace” of process-
ing. This introduces a generative component into sequential detection strate-
gies based on coarse-to-fine processing of a hierarchy of classifiers. The trace
model captures and exploits the interactions among various classifiers within the
hierarchy.

The utility of the trace model is demonstrated with experiments in face detec-
tion and tracking. There is a substantial gain in selectivity. Roughly speaking, at
the same detection rate, the trace model eliminates around 40% of the false pos-
itives in deterministic hierarchical search. It also provides a unified framework
for static face detection and dynamic face tracking, in which frame-based trace
measures are merged with time-varying pose parameters within a simple Markov
model. Unlike traditional tracking algorithms, there are no restrictions on the
motion of a face. This is possible due to the computational efficiency of CTF
detection, allowing for a nearly real-time search for multiple faces over an en-
tire video frame at each instant. Further experiments will appear in forthcoming
work.
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Abstract. This chapter presents an approach for texture and object
recognition that uses scale- or affine-invariant local image features in
combination with a discriminative classifier. Textures are represented
using a visual dictionary found by quantizing appearance-based descrip-
tors of local features. Object classes are represented using a dictionary of
composite semi-local parts, or groups of nearby features with stable and
distinctive appearance and geometric layout. A discriminative maximum
entropy framework is used to learn the posterior distribution of the class
label given the occurrences of parts from the dictionary in the training
set. Experiments on two texture and two object databases demonstrate
the effectiveness of this framework for visual classification.

1 Introduction

By analogy with a text document, an image can be viewed as a collection of parts
or “visual words” drawn from a “part dictionary.” This parallel has been exploited
in recent bag-of-keypoints approaches to visual categorization [6,27], unsupervised
discovery of visual “topics” [24], and video retrieval [18]. More generally, represen-
tations based on local image features, or salient regions extracted by specialized in-
terest operators, have shown promise for recognizing textures [13], different views
of the same object [9,22], and different instances of the same object class [1,7,8,26].
For textures, appearance-based descriptors of salient local regions are clustered
to form characteristic texture elements, or textons. For objects, such clusters can
also play the role of generic object parts. In our own previous work [15], we have
introduced a more expressive representation based on composite semi-local parts,
defined as geometrically stable configurations of multiple local regions that are
robust against approximately rigid deformations and intra-class variations.

In this chapter, we present an approach to visual categorization that first con-
structs a texture or object representation based on a dictionary of textons or parts,
and then learns a discriminative classifier that can effectively distinguish assem-
blies of parts or occurrence patterns of textons characteristic of different classes.
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For the classification step, we adopt a discriminative maximum entropy frame-
work, which has been used successfully for text document classification [3,21] and
image annotation [10]. This framework has several characteristics that make it at-
tractive for visual categorization as well: It directly models the posterior distribu-
tion of the class label given the image, leading to convex (and tractable) parameter
estimation; moreover, classification is performed in a true multi-class fashion, re-
quiring no distinguished background class. Because the maximum entropy frame-
work makes no independence assumptions, it offers a principled way of combining
multiple kinds of features (e.g., keypoints produced by different detectors), as well
as inter-part relations, into the object representation. While maximum entropy
has been widely used in the computer vision for generative tasks, e.g., modeling
of images as Markov random fields [28], where it runs into issues of intractabil-
ity for learning and inference, it can be far more efficient for discriminative tasks.
For example, Mahamud et al. [18] have used maximum entropy to combine multi-
ple nearest-neighbor discriminators, and Keysers et al. [12] have applied it to digit
recognition. In this chapter, we explore this framework in a part-based object cat-
egorization setting.

The rest of our presentation is organized as follows. We review in Section 2 the
basics of exponential models, which arise from maximum entropy considerations.
Sections 3 and 4 describe our approach to texture and object recognition, and
Section 5 concludes with a summary and discussion of future directions. The
research reported in this chapter has been previously published in [14].

2 The Maximum Entropy Framework

A discriminative maximum entropy approach seeks to estimate the posterior dis-
tribution of class labels given image features that matches the statistics of the
features observed in the training set, and yet remains as uniform as possible.
Intuitively, such a distribution properly reflects our uncertainty about making a
decision given ambiguous or inconclusive image data. (By contrast, some genera-
tive methods, e.g., mixtures of Gaussians, tend to yield peaky or “overconfident”
posterior distributions.) Suppose that we have defined a set of feature functions
fk(I, c) that depend both on the image I and the class label c (the definitions of
the specific feature functions used in our work will appear in Sections 3 and 4).
To estimate the posterior of the class label given the features, we constrain the
expected values of the features under the estimated distribution P (c|I) to match
those observed in the training set T . The observed “average” value of feature fk

in the training set T is

f̂k =
1
|T |
∑
I∈T

fk(I, c(I)) .

Given a particular posterior distribution P (c|I), the expected value of fk, taken
with respect to the observed empirical distribution P (I) over the training set, is

E[fk] =
1
|T |
∑
I∈T

∑
c

P (c|I)fk(I, c) .
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We seek the posterior distribution that has the maximum conditional entropy

H = − 1
|T |
∑
I∈T

∑
c

P (c|I) logP (c|I)

subject to the constraints E[fk] = f̂k. It can be shown that the desired distrib-
ution has the exponential form

P (c|I) =
1
Z

exp

(∑
k

λkfk(I, c)

)
, (1)

where

Z =
∑

c

exp

(∑
k

λkfk(I, c)

)

is the normalizing factor,1 and the λk are parameters whose optimal values are
found by maximizing the likelihood of the training data under the exponential
model (1). This optimization problem is convex and the global maximum can
be found using the improved iterative scaling (IIS) algorithm [3,21]. At each
iteration of IIS, we compute an update δk to each λk, such that the likelihood
of the training data is increased. To do this, we bound L(λ + δ) − L(λ) from
below by a positive function F (δ), and find the value of δ that maximizes this
function. The derivation of updates is omitted here, but it can be shown [3,21]
that when the features are normalized, i.e., when

∑
k fk(I, c) is a constant S for

all I and c, updates can be found efficiently in closed form:

δk =
1
S

(
log f̂k − logEλ[fk]

)
. (2)

Because of the computational efficiency gained in this case, we use only normal-
ized features in the present work.

Because of the form of (2), zero values of f̂k cause the optimization to fail,
and low values cause excessive growth of the weights. This is a symptom of one
of the biggest potential pitfalls of the maximum entropy framework: overfitting.
When the training set is small, the observed averages may deviate significantly
from the “true” expectations, leading to a poor estimate of the posterior distrib-
ution. This problem can be alleviated by adding a zero-mean Gaussian prior on
the weights [21]. However, in our experiments, we have achieved better results
with a basic IIS setup where simple transformations of the feature functions are
used to force expectations away from zero. Specifically, for all the feature func-
tions defined in Sections 3 and 4, we use the standard Laplace smoothing, i.e.,
1 Note that Z involves only a sum over the classes, and thus can be computed ef-

ficiently. If we were modeling the distribution of features given a class instead, Z
would be a sum over the exponentially many possible combinations of feature values
— a major source of difficulty for a generative approach. By contrast, the discrim-
inative approach described here is more related to logistic regression. It is easy to
show that (1) yields binary logistic discrimination in the two-class case.
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adding one to each feature value and renormalizing. To simplify the subsequent
presentation, we will omit this operation from all feature function definitions.

We close this section with a note concerning the technique we use to design fea-
ture functions. Instead of directly defining class-dependent features fk(I, c), it is
much more convenient to obtain them from a common pool of class-independent
features gk(I), as follows:

fd,k(I, c) =
{
gk(I) if c = d,
0 otherwise.

Then we have

P (c|I) =
1
Z

exp

⎛
⎝∑

d,k

λd,kfd,k(I, c)

⎞
⎠ =

1
Z

exp

(∑
k

λc,kgk(I)

)
.

Thus, “universal” features gk become associated with class-specific weights λc,k.
All our feature functions will be defined in this way. Note, however, that the
exponential framework also allows completely different features for representing
each class.

3 Texture Recognition

In this section, we describe the application of the maximum entropy framework
to texture recognition. Section 3.1 describes our texton-based representation,
and Section 3.2 discusses experiments on two large collections of texture images,
the Brodatz database [4] and the UIUC database [13].

3.1 Feature Functions

For texture recognition, we use the sparse representation introduced in our earlier
work [13], where the locations and shapes of salient image regions are found by
a specialized keypoint detector. We use either a scale- or an affine-invariant
detector (returning circular and elliptical regions, respectively), depending on
the degree of invariance required by a particular database. Next, the extracted
regions serve as domains of support for computing appearance-based descriptors
(the specific choices of detectors and descriptors used in our experiments are
discussed in Section 3.2). After descriptors have been extracted from the training
set, a texton dictionary is formed by clustering them, and associating each cluster
center with a discrete texton label. Finally, each descriptor from a new image is
assigned the label of the closest cluster center.

The next step is to define the feature functions for the exponential model. For
text classification, Nigam et al. [21] use scaled counts of word occurrences in a
document. By analogy, we define feature functions based on texton frequencies:

gk(I) =
Nk(I)∑
k′ Nk′(I)

,
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where Nk(I) is the number of times texton label k occurs in the image I. To
enrich the feature set, we also define functions gk,� that encode the probability
of co-occurrence of pairs of labels at nearby locations. Let k � " denote the event
that a region labeled " is adjacent to a region labeled k. Specifically, we say that
k � " if the center of " is contained in the neighborhood obtained by “growing”
the shape (circle or ellipse) of the kth region by a constant factor (4 in the
implementation). Let Nk��(I) denote the number of times the relation occurs in
the image I, and define

gk,�(I) =
Nk��(I)∑

k′,�′ Nk′��′(I)
.

An image model incorporating co-occurrence counts of pairs of adjacent labels
is a counterpart of a bigram language model that estimates the probabilities of
two-word strings in natural text. Just as in language modeling, we must deal
with sparse probability estimates due to many relations receiving extremely low
counts in the training set. Thus, we are led to consider smoothing techniques
for probability estimates [5]. One of the most basic techniques, interpolation
with marginal probabilities, leads to the following modified definition of the
co-occurrence features:

g̃k,�(I) = (1− α)gk,�(I) + α
(∑

�′
gk,�′(I)

)(∑
k′

gk′,�(I)
)
,

where α is a constant (0.1 in our implementation). Informally, a co-occurrence
relation k � " should have higher probability if both k and " occur frequently in
samples of the class, and if they each have many neighbors.

While smoothing addresses the problem of unreliable probability estimates, we
are still left with millions of possible co-occurrence relations, and it is necessary
to use feature selection to reduce the model to a manageable size. Possible feature
selection techniques include greedy selection based on increase of likelihood under
the exponential model [3], mutual information [7,21] and likelihood ratio [7].
However, since more frequently occurring relations yield more reliable estimates,
we have chosen a simpler likelihood-based scheme: For each class, we find a fixed
number of relations that have the highest probability in the training set, and
then combine them into a global “relation dictionary.”

3.2 Experimental Results

In this section, we show classification results on the Brodatz database (999 im-
ages: 111 classes, 9 samples per class) [4] and the UIUC database (1000 images:
25 classes, 40 samples per class) [13]. Figure 1 shows examples of images from
the two databases. For the Brodatz database, we use a scale-invariant Lapla-
cian detector [16], which finds salient blob-like circular regions in an image. This
level of invariance is sufficient for the Brodatz database, which does not feature
any significant geometric deformations between different samples from the same
class. By contrast, the UIUC database contains arbitrary rotations, perspective
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Brodatz texture database

UIUC texture database

Fig. 1. Examples of five classes each from the Brodatz database (top) and
the UIUC database (bottom). The UIUC database is publicly available at
http://www-cvr.ai.uiuc.edu/ponce grp/data.

distortions and non-rigid deformations. This greater degree of geometric variabil-
ity requires a greater degree of invariance in the low-level features. Therefore,
we process the UIUC database with an affinely adapted version of the Laplacian
detector, which returns elliptical regions. In both cases, the appearance of the
detected regions is represented using SIFT descriptors [17]. The SIFT descrip-
tor consists of gradient orientation histograms within the support region. For
each of 8 orientation planes, the gradient image is sampled over a 4 × 4 grid
of locations, thus resulting in a 128-dimensional feature vector. We have cho-
sen to use SIFT descriptors because of their impressive performance in a recent
comparative evaluation [20].

To form the texton dictionary, we run K-means clustering on a randomly
selected subset of all training descriptors. To limit the memory requirements of
the K-means algorithm, we cluster each class separately and concatenate the
resulting textons. We find K = 10 and K = 40 textons per class for the Brodatz
and the UIUC database, respectively, resulting in dictionaries of size 1110 and
1000. For co-occurrence relations, we select 10K features per class; because the
relations selected for different classes sometimes coincide, the total number of
gk,� features is slightly less than ten times the total number of textons.

Table 1 shows a comparison of classification rates obtained using various meth-
ods on the two databases. All the rates are averaged over 10 runs with different
randomly selected training subsets; standard deviations of the rates are also
reported. The training set consists of 3 (resp. 10) images per class for the Bro-
datz (resp. UIUC) database. The first row shows results for a popular baseline
method using nearest-neighbor classification of texton histograms with the χ2

distance (for an example of such an approach, see, e.g., [25]). The second row
shows results for a Naive Bayes baseline using the multinomial event model [19]:
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Table 1. Texture classification results (see text)

Brodatz database UIUC database

Mean (%) Std. dev. Mean (%) Std. dev.

χ2 83.09 1.18 94.25 0.59
Naive Bayes 85.84 0.90 94.08 0.67
Exp. gk 87.37 1.04 97.41 0.64
Exp. gk,� 75.20 1.34 92.40 0.93
Exp. gk + gk,� 83.44 1.17 97.19 0.57
Exp. g̃k,� 80.51 1.09 95.85 0.62
Exp. gk + g̃k,� 83.36 1.14 97.09 0.47

P (I|c) =
∏
k

P (k|c)Nk(I) ,

where P (k|c) is given by the frequency of texton k in the training images for class
c. The results for the two baseline methods on the Brodatz database are compa-
rable, though Naive Bayes has a potential advantage over the χ2 method, since
it does not treat the training samples as independent prototypes, but combines
them in order to compute the probabilities P (k|c). This may help to account for
the slightly better performance of Naive Bayes on the Brodatz database. The
third and fourth rows show results for exponential models based on individual
gk (textons only) features and gk,� (relations only) features, respectively, and
the fifth row shows results for the exponential model with both kinds of features
combined. For both databases, the texton-only exponential model performs much
better than the two baseline methods; the relations-only models are inferior to
the baseline. Interestingly, combining textons and relations does not improve
performance. To test whether this is due to overfitting, we compare performance
of the gk,� features with the smoothed g̃k,� features (last two rows). While the
smoothed features do perform better, combining them with textons-only features
once again does not bring any improvement. Thus, texton-only features clearly
supercede the co-occurrence relations.

To get a more detailed look at the performance of the exponential model, re-
fer to Figure 2, which shows the histograms of classification rates achieved by the
parts-only exponential model for individual classes. With this model, 100% recog-
nition rate is achieved by 61 classes from the Brodatz database and by 8 classes
from the UIUC database. The distribution of classification rates, in particular for
the Brodatz database, suggests another reason (besides overfitting) for the lack
of improvement afforded by co-occurrence features. Namely, most classes in the
database can be represented quite well without taking texton co-occurrences into
account, while a few are either extremely nonhomogeneous or extremely percep-
tually similar to another class. Consequently, adding relations to the exponential
model cannot improve the recognition of either the “easy” or the “difficult” classes.
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Brodatz database UIUC database
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Fig. 2. Histograms of classification rates for the exponential parts-only model for the
Brodatz database (left) and the UIUC database (right)

Overall, the gk exponential model performs the best for both texture data-
bases. For the Brodatz database, our result of 87.37% is comparable to the rate
of 87.44% reported in [13]. Note, however, that the result of [13] was obtained
using a combination of appearance- and shape-based features. In our case, we
use only appearance-based features, so we get as much discriminative power with
a weaker representation. For the UIUC database, our result of 97.41% exceeds
the highest rate reported in [13], that of 92.61%.

4 Object Recognition

In this section, we describe our approach to object recognition using semi-local
parts and present results of experiments on two challenging datasets: the CalTech
dataset [8] consisting of airplanes, cars, faces, and motorbikes; and a bird dataset
that we have collected, consisting of images of six different species.

4.1 Semi-local Parts

For our texture recognition experiments, Laplacian region detectors have proven
to be successful. However, we have found them to be much less satisfactory for
detecting object parts with complex internal structures, e.g., eyes, wheels, heads,
etc. Instead, for object recognition, we have implemented the scale-invariant
detector of Jurie and Schmid [11], which finds salient circular configurations of
edge points, and is robust to clutter and texture variations inside the regions.
Just as in Section 3, the appearance of the extracted regions is represented using
SIFT descriptors.

For each object class, we construct a dictionary of composite semi-local parts
[15], or groups of several nearby regions whose appearance and spatial con-
figuration occurs repeatably in the training set. The key idea is that consistent
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occurrence of (approximately) rigid groups of simple features in multiple images
is very unlikely to be accidental, and must thus be a strong cue for the pres-
ence of the object. Semi-local parts are found in a weakly supervised manner,
i.e., from cluttered, unsegmented training images, via a direct search for visual
correspondence.2 The intractable problem of simultaneous alignment of multi-
ple images is reduced to pairwise matching: Candidate parts are initialized by
matching several training pairs and then validated against additional images.

The key operation of two-image matching is accomplished efficiently with the
help of strong appearance (descriptor similarity) and geometric consistency con-
straints. Specifically, initial constraints on descriptor similarity are used to create
a short list of potential matches for each region in the other image; semi-local
neighborhood constraints [9,23] reduce the set of all potential matches even fur-
ther. Then, starting from the smallest possible seed group of nearby matches that
allows us to estimate an aligning transformation, we conduct a greedy search for
additional geometrically and photometrically consistent matches lying in the
neighborhood of the current group. The aligning transformation can be scal-
ing, similarity, or affine. Originally, we have introduced semi-local parts in the
context of an affine alignment model [15]; however, for the two databases used
in this chapter, scale and translation invariance are sufficient. Note that in the
implementation, we treat all transformation groups within the same compu-
tational framework. Namely, we use linear least squares to estimate an affine
alignment between the two groups of regions, and then enforce additional geo-
metric constraints by rejecting any alignment that deviates too much from the
desired model. In particular, for a scale-and-translation model, we reject trans-
formations that include too much skew, rotation, and anisotropic scaling. The
correspondence search terminates when the residual of the transformation grows
too large, or when no further consistent matches can be found. Note that the
number of regions in the correspondence (the size of the part) is determined
automatically as a result.

In existing literature, similar procedures for growing groups of matches based
on geometric and appearance consistency have been successfully applied to the
recognition of the same object instance in multiple views [9]; one of the key
insights of our earlier work [15] is that such procedures are also quite effective for
building models of object classes with substantial intra-class variation. Because
of the strong geometric and photometric consistency constraints that must be
satisfied by semi-local parts, they are much more discriminative than atomic
parts, and much less likely to give rise to false detections.

A detected instance of a candidate part in a validation image may have mul-
tiple regions missing because of occlusion, failure of the keypoint detector, etc.
We define the repeatability ρk(I) of a detected instance of part k in image I as
the number of regions in that instance normalized by the total number of regions
in that part. If no instances of part k are detected at all, we have ρk(I) = 0,
and if several instances are detected, we simply select the one with the highest

2 See [2] for another recent approach to object recognition that shares our emphasis
on geometric correspondence.
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repeatability. This implicitly assumes that an object can contain at most one in-
stance of each part. In the future, we plan to improve our feature representation
to allow for multiple detected instances of the same part. This would allow us
to perform more accurate localization for classes such as cars (which have two
wheels) or faces (which have two eyes).

After recording the repeatability values for a given part in all positive and
negative validation images, we compute a validation score for the part by taking
the χ2 distance between hp, the histogram of repeatabilities of the part over
the positive class, and hn, the histogram of its repeatabilities in all the negative
images (for examples of these histograms, see Figures 5(b) and 7(b)). The χ2

distance is defined as follows:

d(hp, hn) =
1
2

B∑
b=1

(
hp(b)− hn(b)

)2
hp(b) + hn(b)

,

where B is the number of bins (discrete repeatability levels) in the histograms,
and hp(b) (resp. hn(b)) is the proportion of all part detections in positive (resp.
negative) images falling into the bin with index b. The validation score can
range from 1, when the two histograms have no overlap at all, to 0, when they
are identical. A fixed number of highest-scoring parts is retained for each class,
and their union forms our dictionary.

Finally, for each part k and each training image I, we compute a normalized
feature function based on its repeatability:

gk(I) =
ρk(I)∑
k′ ρk′(I)

.

Just as in our texture recognition experiments, we also investigate whether, and
to what extent, incorporating relations into the object representation improves
classification performance. To this end, we define overlap relations between pairs
of parts that belong to the same class. Let ωk,�(I) be the overlap between de-
tected instances of parts k and " in the image I, i.e., the ratio of the intersection
of the two parts to their union. This ratio ranges from 0 (disjoint parts) to 1
(coincident parts). Then we define

gk,�(I) =
ωk,�(I)∑

k′,�′ ωk′,�′(I)
.

The overlap relations are very flexible — in effect, they enforce only spatial
coherence. This flexibility potentially allows us to deal with non-rigid and/or
articulated objects. In the future, we plan to experiment with more elaborate
relations that take into account the distance, relative scale, or relative orienta-
tions of the two parts [1]. Finally, it is important to note that we currently do not
use feature selection techniques to reduce the number of overlap relations within
the exponential model. Because of the small size of the part dictionaries used in
the experiments presented in the next section (namely, 20 parts per class), the
resulting number of overlap relations (190 per class) is quite manageable, unlike
in our texture recognition experiments, where we had to contend with millions
of potential co-occurrence relations.
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Airplanes Cars (rear) Faces Motorbikes

CalTech database

Egret Mandarin duck Snowy Owl Puffin Toucan Wood duck

Birds database

Fig. 3. One example image per class for the CalTech database (top) and the
birds database (bottom). The birds database is publicly available at http://
www-cvr.ai.uiuc.edu/ponce grp/data.

4.2 Experimental Results

This section presents recognition results obtained on two multi-class object data-
bases. The first is a subset of the publicly available CalTech database [8]. We
have taken 300 images each from four classes: airplanes, rear views of cars, faces,
and motorbikes (Figure 3, top). The second database, which we collected from
the Web, consists of 100 images each of six different classes of birds: egrets, man-
darin ducks, snowy owls, puffins, toucans, and wood ducks (Figure 3, bottom).
For the CalTech database, 50 randomly chosen images per class are used for
creating candidate parts. Each image is paired up to two others, for a total of
100 initialization pairs. Of the several hundred candidate parts yielded by this
matching process, the 50 largest ones are retained for training and selection.
Candidate parts are then matched against every image from another training
set, which also contains 50 randomly chosen images per class, and 20 highest-
scoring parts per class are retained to form the part dictionary. The repeatability
results of the selected parts on this training set are also used as training data
to estimate the parameters of the exponential model. Finally, the remaining 200
images per class make up the test set. We follow the same protocol for the bird
dataset, except that 20 images per class are used for finding candidate parts, an-
other 30 for part selection, and the remaining 50 for testing. Unlike the texture
recognition results of Section 3.2, the results of this section are not averaged over
multiple splits of the databases because of the considerably larger computational
expense involved in computing semi-local parts. With our current unoptimized
MATLAB implementation, a single run through an entire object database (both
training and testing) takes about a week.

Figures 5 and 7 illustrate training and part selection. As can be seen from the
plots of validation scores for all selected parts, the quality of part dictionaries
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found for different classes varies widely. Extremely stable, salient parts are formed
for faces, motorbikes, and ducks. The classes with the weakest parts are airplanes
for the CalTech database and egrets for the bird database. Both airplanes and
egrets lack characteristic texture, and often appear against busy backgrounds that
generate a lot of detector responses (buildings, people, and airport machinery in
case of planes, or grass and branches in case of egrets). In addition, both egrets
and airplanes are “thin” objects, so the local regions that overlap the object also
capture a lot of background. Thus, the SIFT descriptors computed over these re-
gions end up describing mostly clutter. To alleviate this problem, we plan to ex-
periment with alternative descriptors that capture the shape of the edges close to
the boundary of the scale-invariant regions [11], as opposed to the internal tex-
ture, as the SIFT descriptor does. Note that our part selection framework is suit-
able for choosing between semi-local parts based on different descriptors, since
it abstracts from the low-level details of matching (i.e., how appearance similar-
ity is computed, what aligning transformation is used, or how the correspondence
search is performed), and looks only at the end result of the matching on the train-
ing set (i.e., how repeatable the resulting parts are, and whether they can be used
to distinguish between positive and negative examples for a given class).

The parts obtained for classes other than airplanes and egrets have higher
scores and capture much more salient object features. Interestingly, though, for
cars, even the highest-scoring part includes spurious background detections along
the horizontal line at the eye level of the image. This comes from the relative
visual monotony of the car class: all the rear views of cars were apparently cap-
tured through the windshield by a person in the front seat. Thus, the “horizon”
formed by the converging sides of the road is approximately in the same location
in all the images, and the scenery at the roadside (trees, buildings) gives rise
to a lot of features in stable positions that are consistently picked up by the
matching procedure.

Tables 2 and 3 show classification performance of several methods with 20
parts per class. The first column of the tables shows the performance of a baseline
Naive Bayes approach with likelihood given by

P (I|c) =
∏
k

P (ρk(I)|c) .

The distributions P (ρk|c) are found by histogramming the repeatabilities of
part k on all training images from class c. Note that we take into account the
repeatability of parts on images from all classes, not only the class which they
describe. Roughly speaking, we expect P (ρk(I)|c) to be high if part k describes
class c and ρk(I) is high, or if part k does not describe class c and ρk(I) is low or
zero. Thus, to conclude that an object from class c is present in the image, we
not only have to observe high-repeatability detections of parts from class c, but
also low-repeatability detections of parts from other classes. The exponential
model, which encodes the same information in its feature functions, also uses
this reasoning.
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Table 2. Classification rates for the CalTech database using 20 parts per class

CalTech Naive Exp. Exp. Exp. parts &
database Bayes parts relations relations

Airplanes 98.0 88.0 78.0 87.5
Cars (rear) 95.5 99.5 90.5 99.5
Faces 96.5 98.5 96.5 98.0
Motorbikes 97.5 99.5 83.0 99.5
All classes 96.88 96.38 87.0 96.13

Table 3. Classification rates for the birds database using 20 parts per class

Birds Naive Exp. Exp. Exp. parts &
database Bayes parts relations relations

Egret 68 90 72 88
Mandarin 66 90 66 90
Snowy owl 66 98 52 96
Puffin 88 94 94 94
Toucan 88 82 82 82
Wood duck 96 100 86 100
All classes 78.67 92.33 75.33 91.67

The second (resp. third, fourth) columns of Tables 2 and 3 show the clas-
sification performance obtained with exponential models using the gk features
only (resp. the gk,� only, gk and gk,� combined). For the CalTech database, the
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Fig. 4. Classification rate (exp. parts) as a function of dictionary size: CalTech database
(left), birds database (right). For the CalTech database, because three of the four classes
have extremely strong and redundant parts, performance increases very little as more
parts are added. For the bird database, diminishing returns set in as progressively
weaker parts are added.
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Fig. 5. Learning part vocabularies for the CalTech database. (a) The highest-scoring
part for each class. The two training images that were originally matched to obtain the
part are shown side by side, with the matched regions (yellow circles) superimposed.
The aligning transformation between the two groups of matches is indicated by the
bounding boxes: the axis-aligned box in the left image is mapped onto the parallelogram
in the right image. (Recall that we use an affine alignment model and then discard any
transformation that induces too much distortion.) (b) Repeatability histograms for
the top part. The solid red line (resp. dashed blue line) indicates the histogram of
repeatability rates of the part in all positive (resp. negative) training images. Recall
that the validation score of the part is given by the χ2 distance between the two
histograms. (c) Plots of top 20 part scores following validation.

Naive Bayes and the exponential parts-only models achieve very similar results,
though under the exponential model, airplanes have a lower classification rate,
which is intuitively more satisfying given the poor part dictionary for this class.
Note that our classification accuracy of over 96% on the four CalTech classes
is comparable to other recently published results [6,7]. For the bird database,
the exponential model outperforms Naive Bayes; for both databases, relations-
only features alone perform considerably worse than the parts-only features, and
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Fig. 6. CalTech results. (a), (b) Two examples of correctly classified images per class.
Left of each column: original image. Right of each column: transformed bounding boxes
of all detected part instances for the given class superimposed on the image. (c) Ex-
amples of misclassified images. Note that localization is poor for airplanes and very
good for faces (notice the example a changed facial expression). For motorbikes, the
front wheel is particularly salient. Out of the entire test set, only one bike image was
misclassified, and it is one in which the front wheel is not properly visible.

combining parts-based with relation-based features brings no improvement. Fig-
ure 4 shows a plot of the classification rate for the exponential model as a function
of part dictionary size. Note that the curves are not monotonic — adding a part
to the dictionary can decrease performance. This behavior may be an artifact
of our scoring function for part selection, which is not directly related to clas-
sification performance. In the future, we plan to experiment with part selection
based on increase of likelihood under the exponential model [3].

Though we did not conduct a quantitative evaluation of localization accuracy,
the reader may get a qualitative idea by examining Figures 6 and 8, which show
examples of part detection on several test images. A poorer part vocabulary for
a class tends to lead to poorer localization quality, though this is not necessarily
reflected in lower classification rates. Specifically, an object class represented by
a relatively poor part vocabulary may still achieve a high classification rate,
provided that parts for other classes do not generate too many false positives
on images from this class. The second airplane example in Figure 6 is a good
illustration of this phenomenon: only three airplane parts are detected in this
image, yet the airplane is recognized correctly since the image does not contain
enough clutter to generate false detections of parts from other classes.



438 S. Lazebnik, C. Schmid, and J. Ponce

Top part Validation hist. Top 20 scores

(a) (b) (c)

E
gr

et

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Part number

S
co

re

size 21 score 0.346

M
an

da
ri

n

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Part number

S
co

re

size 99 score 0.652

Sn
ow

y
ow

l

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Part number

S
co

re
size 23 score 0.601

P
uffi

n

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Part number

S
co

re

size 22 score 0.657

T
ou

ca
n

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Part number

S
co

re

size 21 score 0.490

W
oo

d
du

ck

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Part number

S
co

re

size 54 score 0.871

Fig. 7. Learning part vocabularies for the birds database. (a) The highest-scoring part
for each class superimposed on the two original training images. (b) Validation repeata-
bility histograms for the top parts. (c) Plots of validation scores for the top 20 parts
from each class.



A Discriminative Framework for Texture and Object Recognition 439

Successfully classified images Misclassified image

(a) (b) (c)

E
gr

et
M

an
da

ri
n

O
w

l
P

uffi
n

T
ou

ca
n

W
oo

d
du

ck

Fig. 8. Birds database results. (a), (b) Two examples of successfully classified images
per class. The original test image is on the left, and on the right is the image with
superimposed bounding boxes of all detected part instances for the given class. Notice
that localization is fairly good for mandarin and wood ducks (the head is the most
distinctive feature). Though owl parts are more prone to false positives, they do capture
salient characteristics of the class: the head, the eye, and the pattern of the feathers on
the breast and wings. (c) Misclassified examples. The wood duck class has no example
because it achieved 100% classification rate.

Perhaps the most suprising finding of our experiments is that inter-part rela-
tions do not improve classification performance. From examining the part detec-
tion examples in Figures 6 and 8, it seems intuitively clear that the pattern of
overlap of different part instances encodes useful information: the part detections



440 S. Lazebnik, C. Schmid, and J. Ponce

that lie on the object tend to be clustered close together, while false detections
are frequently scattered all over the image. At this stage, we conjecture that the
overlap information may be more useful for localization than for recognition. We
are currently in the process of hand-segmenting the bird database so as to be
able to evaluate localization quantitatively.

5 Summary and Future Work

In this chapter, we have presented an approach to texture and object recognition
that uses a visual dictionary of textons or object parts in combination with a
discriminative maximum entropy framework. Our experiments have shown that
the approach works well for both textures and objects. The classification rate
achieved by our method on the UIUC database exceeds the state of the art [13],
and our results on the four CalTech classes are comparable to others in recent
literature [6,7]. Interestingly, while all our recognition experiments used small
training sets (from 3 to 50 images per class), no overfitting effects were observed.
In addition, we have found that the Naive Bayes method, which we used as a
baseline to evaluate the improvement provided by the exponential model, can
be quite powerful in some cases — a finding that is frequently expresssed in the
document classification literature [19,21]. Specifically, for the Brodatz database,
Naive Bayes outperforms the other baseline, histograms with χ2 distance; for
the CalTech database, it performs as well as the exponential model.

The most important negative result of this chapter is the lack of performance
improvement from co-occurrence and overlap relations. Once again, this is con-
sistent with the conventional wisdom in the document classification community,
where it was found that for document-level discrimination tasks, a simple or-
derless “bag-of-words” represententation is effective. For textures, we expect
that co-occurrence features may be helpful for distinguishing between different
textures that consist of local elements of similar appearance, but different spa-
tial layouts. To investigate this further, it is necessary to collect larger-scale,
more difficult texture databases that include a wider variety of classes. For ob-
ject recognition, the lack of improvement can be ascribed, at least partly, to
the weakness of our overlap relations, especially compared to the strong geo-
metric consistency constraints encoded within semi-local parts. In the future,
we plan to investigate geometric relations that capture more discriminative
information, and to test their behavior for classification on additional object
databases.
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Abstract. We present a “parts and structure” model for object cate-
gory recognition that can be learnt efficiently and in a weakly-supervised
manner: the model is learnt from example images containing category in-
stances, without requiring segmentation from background clutter.

The model is a sparse representation of the object, and consists of a
star topology configuration of parts modeling the output of a variety of
feature detectors. The optimal choice of feature types (whose repertoire
includes interest points, curves and regions) is made automatically.

In recognition, the model may be applied efficiently in a complete
manner, bypassing the need for feature detectors, to give the globally
optimal match within a query image. The approach is demonstrated on
a wide variety of categories, and delivers both successful classification
and localization of the object within the image.

1 Introduction

A variety of models and methods exist for representing, learning and recogniz-
ing object categories in images. Many of these are variations on the “Parts and
Structure” model introduced by Fischler and Elschlager [10], though the modern
instantiations use scale-invariant image fragments [1,2,3,12,15,20,21]. The con-
stellation model [3,8,21] was the first to convincingly demonstrate that models
could be learnt from weakly-supervised unsegmented training images (i.e. the
only supervision information was that the image contained an instance of the
object category, but not the location of the instance in the image). Various types
of categories could be modeled, including those specified by tight spatial config-
urations (such as cars) and those specified by tight appearance exemplars (such
as spotted cats). The model was translation and scale invariant both in learning
and in recognition.
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However, the Constellation model of [8] has some serious short-comings,
namely: (i) The joint nature of the shape model results in an exponential explo-
sion in computational cost, limiting the number of parts and regions per image
that can be handled. For N feature detections, and P model parts the complexity
for both learning and recognition is O(NP ); (ii) Since only 20-30 regions per im-
age and 6 parts are permitted by this complexity, the model can only learn from
an incredibly sparse representation of the image. Good performance is therefore
highly dependent on the consistent firing of the feature detector; (iii) Only one
type of feature detector (a region operator) was used, making the model very
sensitive to the nature of the class. If the distinctive features of the category
happen, say, to be edge-based then relying on a region-based detector is likely
to give poor results (though this limitation was overcome in later work [9]); (iv)
The model has many parameters resulting in over-fitting unless a large number
of training images (typically 200+) are used.

Other models and methods have since been developed which have achieved
superior performance to the constellation model on at least a subset of the ob-
ject categories modeled in [8]. These models range from bag-of-word models
(where the words are vector quantized invariant descriptors) with no spatial or-
ganization [5,18], through to fragment based models [2,15] with particular spatial
configurations. The methods utilize a range of machine learning approaches EM,
SVMs and Adaboost.

In this paper we propose a heterogeneous star model (HSM) which main-
tains the simple training requirements of the constellation model, and also,
like the constellation model, gives a localization for the recognized object. The
model is translation and scale invariant both in learning and in recognition.
There are three main areas of innovation: (i) both in learning and recognition
it has a lower complexity than the constellation model. This enables both the
number of parts and the number of detected features to be increased substan-
tially; (ii) it is heterogeneous and is able to make the optimum selection of
feature types (here from a pool of three, including curves). This enables it to
better model objects with significant intra-class variation in appearance, but
less variation in outline (for example a guitar), or vice-versa; (iii) The recog-
nition stage can use feature detectors or can be complete in the manner of
Felzenswalb and Huttenlocher [6]. In the latter case there is no actual detec-
tion stage. Rather the model itself defines the areas of most relevance using a
matched filter. This complete search overcomes many false negatives due to fea-
ture drop out, and also poor localizations due to small feature displacement and
scale errors.

2 Approach

We describe here the structure of the heterogeneous star model, how it is learnt
from training data, and how it is applied to test data for recognition.
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2.1 Star Model

As in the constellation model of [8], our model has P parts and parameters
θ. From each image i, we extract N features with locations Xi; scales Si and
descriptors Di. In learning, the aim is to find the value of θ that maximizes the
log-likelihood over all images:∑

i

log p(Xi,Di,Si|θ) (1)

Since N >> P , we introduce an assignment variable, h, to assign features to
parts in the model. The log-likelihood is obtained by marginalizing over h.∑

i

log
∑
h

p(Xi,Di,Si,h|θ) (2)

In the constellation model, the joint density is factored as:

p(Xi,Di,Si,h|θ) = p(Di|h, θ)︸ ︷︷ ︸
Appearance

p(Xi|Si,h, θ)︸ ︷︷ ︸
Rel. Locations

p(Si|h, θ)︸ ︷︷ ︸
Rel. Scale

p(h|θ)︸ ︷︷ ︸
Occlusion

(3)

In [8], the appearance model for each part is assumed independent but the rel-
ative location of the model parts is represented by a joint Gaussian density.
While this provides the most thorough description, it makes the location of all
parts dependent on one another. Consequently, the EM-based learning scheme,
which entails marginalizing over p(h|Xi,Di,Si, θ), becomes an O(NP ) opera-
tion. We propose here a simplified configuration model in which the location of
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Fig. 1. (a) Fully-connected six part shape model. Each node is a model part while
the edges represent the dependencies between parts. (b) A six part Star model. The
former has complexity O(NP ) while the latter has complexity O(N2P ) which may be
further improved in recognition by the use of distance-transforms [6] to O(NP ).

the model part is conditioned on the location of a landmark part. Under this
model the non-landmark parts are independent of one another given the land-
mark. In graphical model terms, this is a tree of depth one, with the landmark
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part being the root node. We call this the “star” model. A similar model, where
the reference frame acts as a landmark is used by Lowe [16] and was studied in a
probabilistic framework by Moreels et al. [17]. Figure 1 illustrates the differences
between the full and star models. In the star model the joint probability of the
configuration aspect of the model may be factored as:

p(X|S,h, θ) = p(xL|hL)
∏
j �=L

p(xj |xL, sL, hj , θj) (4)

where xj is the position of part j and L is the landmark part. We adopt a
Gaussian model for p(xj |xL, sL, hj , θj) which depends only on the relative posi-
tion and scale between each part and the landmark. The reduced dependencies
of this model mean that the marginalization in Eqn. 2 is O(N2P ), in theory
allowing us to cope with a larger N and P in learning and recognition.

In practical terms, we can achieve translation invariance by subtracting the
location of the landmark part from the non-landmark ones. Scale invariance
is achieved by dividing the location of the non-landmark parts by the locally
measured scale of the landmark part.

It is useful to examine what has been lost in the star compared to the constel-
lation model of [8]. In the star model any of the leaf (i.e. non-landmark) parts
can be occluded, but (as discussed below) we impose the condition that the land-
mark part must always be present. With small N this can lead to a model with
artificially high variance, but as N increases this ceases to be a problem (since
the landmark is increasingly likely to actually be detected). In the constellation
model any or several parts can be occluded. This is a powerful feature: not only
does it make the model robust to the inadequacies of the feature detector but it
also assists the convergence properties of the model by enabling a subset of the
parts to be fitted rather than all simultaneously.

The star model does have other benefits though, in that it has less parameters
so that the model can be trained on fewer images without over-fitting occurring.

2.2 Heterogeneous Features

By constraining the model to operate in both learning and recognition from the
sparse outputs of a feature detector, good performance is highly dependent on
the detector finding parts of the object that are characteristic and distinctive
of the class. The majority of approaches using feature-based methods rely on
region detectors such as Kadir and Brady or multi-scale Harris [11,13] which
favour interest points or circular regions. However, for certain classes such as
bottles or mugs, the outline of the object is more informative than the textured
regions on the interior. Curves have been used to a limited extent in previous
models for object categories, for example both Fergus et al. [9] and Jurie &
Schmid [12] introduce curves as a feature type. However, in both cases the model
was constrained to being homogeneous, i.e. consisting only of curves. Here the
models can utilize a combination of different features detectors, the optimal
selection being made automatically. This makes the scheme far more tolerant to
the type of category to be learnt.
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Fig. 2. Output of three different feature detectors on two airplane images. (a) Curves.
(b) Kadir & Brady. (c) Multi-scale Harris.

In our scheme, we have a choice of three feature types: Kadir & Brady; multi-
scale Harris and Curves. Figure 2 shows examples of these 3 operators on two
sample airplane images. The detectors were chosen since they are somewhat com-
plementary in their properties: Kadir & Brady favours circular regions; multi-
scale Harris prefers interest points, and curves locate the outline of the object.

To be able to learn different combinations of features we use the same rep-
resentation for all types. Inspired by the performance of PCA-SIFT in region
matching [14], we utilize a gradient-based PCA approach in contrast to the
intensity-based PCA approach of [8]. Both the region operators give a location
and scale for each feature. Each feature is cropped from the image (using a square
mask); rescaled to a k×k patch; has its gradient computed and then normalized
to remove intensity differences. Note that we do not perform any orientation
normalization as in [14]. The outcome is a vector of length 2k2, with the first k
elements representing the x derivative, and the second k the y derivatives. The
derivatives are computed by symmetric finite difference (cropping to avoid edge
effects).

The normalized gradient-patch is then projected into a fixed PCA basis1 of
d dimensions. Two additional measurements are made for each gradient-patch:
its unnormalized energy and the reconstruction error between the point in the
PCA basis and the original gradient-patch. Each region is thus represented by a
vector of length d+ 2.

Curve features are extracted in the same manner as [9]: a Canny edge detector
is run over the image; the edgels are grouped into chains; each chain is then

1 The fixed basis was computed from patches extracted using all Kadir and Brady
regions found on all the training images of Motorbikes; Faces; Airplanes; Cars (Rear);
Leopards and Caltech background.
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broken at its bitangent points to give a curve. Since the chain may have multiple
bitangent points, each chain may result in multiple curves (which may overlap
in portions). Curves which are very straight tend to be uninformative and are
discarded.

The curves are then represented in the same way as the regions. Each curve’s
location is taken as its centroid with the scale being its length. The region around
the curve is then cropped from the image and processed in the manner described
above. We use the curve as an feature detector, modeling the textured region
around the curve, rather than the curve itself. Modeling the actual shape of the
curve, as was done in [9], proved to be uninformative, in part due to the difficulty
of extracting the contours consistently enough.

2.3 Learning the Model

Learning a heterogeneous star model (HSM) can be approached in several ways.
One method is to learn a fully connected constellation model using EM [8] and
then reduce the learnt spatial model to a star by completely trying out each of
the parts as a landmark, and picking the one which gives the highest likelihood
on the training data. The limitation of this approach is that the fully connected
model can only handle a small number of parts and detections in learning. The
second method, which we adopt, is to learn the HSM directly using EM as in
[8,21], starting from randomly-chosen initial conditions, enabling the learning of
many more parts and with more detections/image.

Due to the more flexible nature of the HSM, successful learning depends on
a number of factors: To avoid combinatorics inherent in parameter space and
to ensure the good convergence properties of the model, an ordering constraint
is imposed on the locations of the model parts (e.g. the x-coordinates must
be increasing). However, to enable the landmark part to select the most stable
feature on the object (recall that we force it to always be present), the land-
mark is not subject to this constraint. Additionally, each part is only allowed
to pick features of a pre-defined type and the ordering constraint only applies
within parts of the same type. This avoids over-constraining the shape model.
Imposing these constraints prevents exact marginalization in O(N2P ), however
by using efficient search methods, an approximation can be computed using all
hypotheses within a threshold δ of the best hypothesis that obeys the constraint
(δ = e−10 in our experiments). In Figure 3, the mean time per iteration per
frame in learning is shown as N and P are varied. In Figure 3(a) P is fixed at 6
and N varied from 20 up to 200 while recording the mean time per image over
all EM iterations in learning. The curve has a quadratic shape with the time per
image still respectable even for N = 200. It should be noted that a full model
cannot be learnt with N > 25 due to memory requirements. In Figure 3(b) N is
fixed at 20 and P varied from 2 to 13 with the mean time per image plotted on a
log-scale y-axis. The curve for the full model is a straight line as expected from
the O(NP ) complexity, stopping at P = 7 owing to the memory overhead. The
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Fig. 3. Plots showing the learning time for a star model with different numbers of
parts (P ) and detections per image (N). (a) P fixed to 6 and N varied from 20 to
200. The curve has a quadratic shape, with a reasonable time even for N = 200. (b)
N fixed to 20 and P varied from 2 to 13, with a logarithmic time axis. The full model
is shown with a dashed line and the star model with a solid line. While both show
roughly exponential behavior (i.e. linear in the log-domain), the star model’s curve is
much flatter than the full model.

star model’s curve, while also roughly linear, has a much flatter gradient: a 12
part star model taking the same time to learn as a 6 part full model.

The optimal choice of feature types is made using a validation set. For each
dataset, given a pre-defined number of parts, seven models each with differ-
ent combinations of types are learnt: Kadir & Brady (KB); multi-Scale Harris
(MSH); Curves (C); KB + MSH; KB + C; MSH + C; KB + MSH + C. In
each case, the parts are split evenly between types. In cases where the dataset
is small and the validation set would be too small to give an accurate estimate
of the error, the performance on the training set was used to select the best
combination.

Learning is fairly robust, except when a completely inappropriate choice of
feature type was made in which case the model occasionally failed to converge,
despite multiple re-runs. A major advantage of the HSM is the speed of learning.
For a 6 part model with 20 detections/feature-type/image the HSM typically
takes 10 minutes to converge, as opposed to the 24 hours of the fully connected
model – roughly the same time as a 12 part, 100 detections/feature-type/image
would with the HSM. Timings are for a 2Ghz Pentium 4.

2.4 Recognition Using Features

For the HSM, as with the fully connected Constellation Model of [8], recogni-
tion proceeds in a similar manner to the learning process. For a query image,
regions/curves are first found using a feature detector. The learnt model is then
applied to the regions/curves and the likelihood of the best hypothesis com-
puted using the learnt model. This likelihood is then compared to a threshold
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to determine if the object is present or not in the image. Note that as no order-
ing constraint is needed (since no parameters are updated), this is an O(N2P )
operation.

Good performance is dependent on the features firing consistently across dif-
ferent object instances and varying transformations. To ensure this, one approach
is to use a very large number of regions, however the problem remains that each
feature will still be perturbed slightly in location and scale from its optimal posi-
tion so degrading the quality of the match obtainable by the model. We address
these issues in the next section.

2.5 Complete Recognition Without Features

Relying on unbiased, crude feature detectors in learning is a necessary evil if
we wish to learn without supervision: we have no prior knowledge of what may
or may not be informative in the image but we need a sparse representation to
reduce the complexity of the image sufficiently for the model learning to pick out
consistent structure. However in recognition, the situation is different. Having
learnt a model, the appearance densities model the regions of the image we
wish to find. Our complete approach relies on these densities having distinctive
mean and a sufficiently tight variance so that they can be used for soft template
matching.

The scheme, based on Feltzenswalb and Huttenlocher [6], proceeds in two
phases: first, the appearance densities are run completely over the entire image
(and at different scales). At each location and scale, we compute the likelihood
ratio for each part. Second, we take advantage of the Star model for location
and employ the efficient matching scheme proposed by [6], which enables the
global maximum of both appearance and location to be found within the image.
The global match found is clearly superior to the maximum over a sparse set of
regions. Additionally, it allows us to precisely localize the object (and its parts)
within the image. See figure 4 for an example.

In more detail, each PCA basis vector is convolved with the image (employing
appropriate normalizations), so projecting every patch in the image into the PCA
basis. While this is expensive (O(k2N), where N is now the number of pixels in
the image and k is the patch size) this only needs to be performed once regardless
of the number of category models that will evaluate the image. For a given model,
the likelihood ratio of each part’s appearance density to the background density
is then computed at every location, giving a likelihood-ratio map over the entire
image for that part. The cost is O(dN), where the dimension of the PCA space,
d is much less than k2.

We then introduce the shape model, which by the use of distance transforms
[6], reduces the cost of finding the optimal match from O(N2P ) to O(NP ). Note
that we cannot use this trick in learning since we need to marginalize out over
all possible matches, not just the optimal. Additionally, the efficient matching
scheme requires that the location model be a tree. No ordering constraint is
applied to the part locations hence the approximations necessary in learning are
not needed.



A Sparse Object Category Model 451

200 400 600 800 1000 1200 1400 1600 1800

200

400

600

800

1000

1200

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5
Descriptor: 1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5
Descriptor: 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5
Descriptor: 3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5
Descriptor: 4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5
Descriptor: 5

(b)

1

2
3

4

5

200 400 600 800 1000 1200 1400 1600 1800

200

400

600

800

1000

1200
−4

−3

−2

−1

0

1

2

3

4

(c)
800 850 900 950 1000 1050

500

550

600

650

700

(d)

Fig. 4. An example of the complete recognition operation on a query image. (a) A
mosaic query image. (b) First five descriptor densities of a 5 part face model (black
is background density). (c) Overall matching probability (red is higher). The global
optimum indicated by the white circle, while the magenta +’s show the maximum of
each part’s response. Note they are not in the same location, illustrating the effect of
the shape term. (d) Close-up of optimal fit with shape model superimposed. Crosses
indicates matched location of each part, with the squares showing their scale. The
ellipses show the variance of the shape model at 1 standard deviation.

3 Experiments

We investigate the performance of the HSM in a number of ways: (i) we compare
to the fully connected model; (ii) the effect of increasing the number of parts
and detections/image; (iii) the difference between feature-based and complete
recognition.

3.1 Datasets

Our experiments use a variety of datasets. Evaluation of the HSM using feature-
based detection is done using nine widely varying, unnormalized, datasets
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summarized in Table 1. While some are relatively consistent in nature (Mo-
torbikes, Faces) others were collected from Google’s image search and are not
normalized in any way so are highly variable (Camels, Bottles). Guitars and
Houses are two diverse datasets, the latter of which is highly variable in nature.
The negative test set consists of a variety of scenes around Caltech. All datasets
are available from our website [7]. In recognition, the test is a simple object
present/absent with the performance evaluated by comparing the equal error
rates (p(Detection)=1-p(False Alarm)). To test the difference between feature-

Table 1. A comparison between the star model and the fully connected model across
9 datasets, comparing test equal error rate. All models used 6 parts, 20 Kadir & Brady
detections/image. In general, the drop in performance is a few percent when using the
simpler star model. The high error rate for some classes is due to the inappropriate
choice of feature type.

Total size Full model Star model
Dataset of dataset test error (%) test error (%)

Airplanes 800 6.4 6.8
Bottles 247 23.6 27.5
Camels 350 23.0 25.7

Cars (Rear) 900 15.8 12.3
Faces 435 9.7 11.9

Guitars 800 7.6 8.3
Houses 800 19.0 21.1

Leopards 200 12.0 15.0
Motorbikes 900 2.7 4.0

based and complete recognition where localization performance is important, the
UIUC Cars (Side) dataset [1] is used. In this case the evaluation in recognition
involves localizing multiple instances of the object.

3.2 Comparison of HSM and Full Model

We compare the HSM directly with the fully connected model [8], seeing how
the recognition performance drops when the configuration representation is sim-
plified. The results are shown in Table 1. It is pleasing to see that the drop in
performance is relatively small, only a few percent at most. The performance
even increases slightly in cases where the shape model is unimportant. Figures
6-9 show star models for guitars, bottles and houses.

3.3 Heterogeneous Part Experiments

Here we fixed all models to use 6 parts and have 40 detections/feature-type/frame.
Table 2 shows the different combinations of features which were tried, along with
the best one picked by means of the training/validation set. We see a dramatic
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difference in performance between different feature types. It is interesting to note
that several of the classes perform best with all three feature types present. Figure
6 shows a heterogenous star model for Cars (Rear).

Table 2. The effect of using a combination of feature types on test equal error rate.
Key: KB = Kadir & Brady; MSH = Multi-scale Harris; C = Curves. All models had
6 parts and 40 detection/feature-type/image. Figure in bold is combination automati-
cally chosen by training/validation set.

Dataset KB MSH C KB,MSH KB,C MSH,C KB,MSH,C
Airplanes 6.3 22.5 27.5 11.3 13.5 18.3 12.5
Bottles 24.2 23.3 17.5 24.2 20.8 15.0 17.5
Camel 25.7 20.6 26.9 24.6 24.0 22.9 24.6

Cars (Rear) 11.8 6.0 5.0 2.8 4.0 5.3 2.3
Faces 10.6 16.6 17.1 12.0 13.8 12.9 10.6

Guitars 6.3 12.8 26.0 8.5 9.3 18.8 12.0
Houses 17.0 22.5 36.5 20.8 23.8 26.3 20.5

Leopards 14.0 18.0 45.0 13.0 23.0 23.0 18.0
Motorbikes 3.3 3.8 8.8 3.0 3.3 3.8 3.5

3.4 Number of Parts and Detections

Taking advantage of the efficient nature of the star model, we now investigate
how the performance alters as the number of parts and the number of detections/
feature-type/frame is varied. The choice of features-types for each dataset is fixed
for these experiments, using the optimal combination, as chosen in Table 2.
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Fig. 5. (a) Test equal error rate versus number of parts, P , in the star model for
40 detections/feature-type/image. (b) Test equal error rate versus the number of
detections/feature-type/image, N , for 8 part star models. In both cases the combi-
nations of feature-types used was picked for each dataset from the results in Table 2
and fixed.
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Part 2 − Det: 2x10-28
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Fig. 6. An 8 part heterogeneous star model for Cars (Rear), using all three feature
types (Kadir & Brady (K); multi-Scale Harris (H); Curves (C)) Top left: Detection in
a test image with the spatial configuration model overlaid. The coloured dots indicate
the centers of regions (K or H) chosen by the hypothesis with the highest likelihood.
The thick curve in red is the curve selected by one of the curve parts – the other curve
part being unassigned in this example. The magenta dots and thin magenta curves are
the centers of regions and curves assigned to the background model. The ellipses of
the spatial model show the variance in location of each part. The landmark detection
is the top left red one. Top right: 7 patches closest to the mean of the appearance
density for each part, along with the determinant of the variance matrix, so as to give
an idea of the relative tightness of each distribution. The colour of the text corresponds
to the colour of the dots in the other panels. The letter by each row indicates the type
of each part. Bottom panel: More detection examples. Same as top left, but without
the spatial model overlaid. The size of the coloured circles and diamonds indicate the
scale of regions in the best hypothesis. The test error for this model is 4.5%.
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Fig. 7. An 8 part model for Guitars, using 40 Kadir & Brady features per image. 6.3%
test error.

As the number of parts in the model is increased (for a fixed number of de-
tections/frame) some of the categories show a slight change in performance but
many remain constant. Examination of the models reveals that many of the ad-
ditional parts do not find stable features on the object, suggesting that more
features on the image are required. Increasing the number of detections/feature-
type/image increases the error rate slightly in some cases such as camels, since
many of the additional detections lie in the background of the image, so increas-
ing the chances of a false positive. With a suitable combination of feature-types
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Fig. 8. A 6 part model for Bottles, using a maximum of 20 Harris regions and 20
Curves per image. 14.2% test error.

however, the increased number of parts and detections can give a more complete
coverage of the object, improving performance (e.g. Cars (Rear) where the error
drops from 4.5% at 8 parts to 1.8% with 12 parts, using 40 detections/image of
all 3 feature types).

3.5 Complete Search Experiments

We now investigate the performance of feature-based recognition versus the com-
plete approach. Taking the 8-part Cars (Rear) model shown in Figure 6, we apply
it completely to the same test set resulting in the equal error rate dropping from
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Fig. 9. A 10 part model for Houses, using 40 Kadir & Brady features per image. 16.5%
test error.

4.5% to 1.8%. Detection examples for the complete approach are shown in Figure
11, with the ROC curves for the two approaches shown in Figure 11(b).

The localization ability of the complete approach is tested on the Cars (Side)
dataset, shown in Figure 10. A fully connected model (Figures 10 (a) & (b))
was learnt and then decomposed into a star model and run completely over
the test set. An error rate of 7.8% was achieved – a decrease from the 11.5%
obtained with a fully connected model using feature-based detection in [8]. The
performance gain shows the benefits of using the complete approach despite the
use of a weaker shape model. Examples of the complete star model localizing
multiple object instances can be seen in Figure 10(c).
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Fig. 10. (a) & (b) A 6 part model Cars (Side), learnt using Kadir & Brady features.
(c) Examples of the model localizing multiple object instances by complete search.
(d) Comparison between feature-based and complete localization for Cars (Side). The
solid recall-precision curve is [1]; the dashed line is the fully connected shape model
with feature-based detection [8] and the dotted line is the complete-search approach
with star model, using the model shown in (a) & (b). The equal error rate of 11.5%
from [8] drops to 7.8% when using the complete search with the star model.
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Fig. 11. (a) Detection examples of the 8 part Cars (Rear) model from Figure 6 be-
ing used completely. (b) ROC curves comparing feature-based (dashed) and complete
detection (solid) for the 8 part Cars (Rear) model in Figure 6. Equal error improves
from 4.5% for feature-based to 1.8% for complete.

4 Summary and Conclusions

We have presented a heterogeneous star model. This model retains the impor-
tant capabilities of the constellation model [8,21], namely that it is able to learn
from unsegmented and unnormalized training data; and in recognition on unseen
images it is able to localize the detected model instance. The HSM outperforms
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the constellation model on almost all of the six datasets presented in [8]. It is
also faster to learn, and faster to recognize (having O(NP ) complexity in recog-
nition rather than the O(NP ) of the constellation model). We have also demon-
strated the model on many other object categories varying over compactness
and shape. Note that while other models and methods have achieved superior
performance to [8], for example [5,15,18,19], they are unable to both learn in a
weakly-supervised manner and localize in recognition.

There are several aspects of the model that we wish to improve and investi-
gate. Although we have restricted the model to a star topology, the approach is
applicable to a trees and k-fans [4], and it will be interesting to determine which
topologies are best suited to which type of object category.
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Abstract. We present a new class of statistical models for part-based
object recognition. These models are explicitly parametrized according
to the degree of spatial structure that they can represent. This provides
a way of relating different spatial priors that have been used in the past
such as joint Gaussian models and tree-structured models. By providing
explicit control over the degree of spatial structure, our models make
it possible to study questions such as the extent to which additional
spatial constraints among parts are helpful in detection and localization,
and the tradeoff between representational power and computational cost.
We consider these questions for object classes that have substantial geo-
metric structure, such as airplanes, faces and motorbikes, using datasets
employed by other researchers to facilitate evaluation. We find that for
these classes of objects, a relatively small amount of spatial structure in
the model can provide statistically indistinguishable recognition perfor-
mance from more powerful models, and at a substantially lower compu-
tational cost.

1 Introduction

Since the 1970’s it has been observed that many objects can be represented
in terms of a small number of parts arranged in a deformable configuration
(e.g., [1,2,4,5,10,11,12,14,15,17]). In such models, the appearance of each part is
usually captured by a template, and the spatial relationships between parts are
represented by spring-like connections between pairs of parts. Recently there has
been a considerable resurgence in the use of these models for object recognition
– both for detection and localization – and in learning models from example
images. Particular emphasis has been on the recognition of generic classes of
objects using models that are learned from specific examples.

The models that have been used to capture geometric relationships between
the parts of an object differ substantially in their representational power and
computational complexity. On one hand, joint Gaussian models (e.g., [4,5,11])
have been used to explicitly capture spatial dependencies between all pairs of
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object parts, but the detection and localization algorithms that use these mod-
els rely on search heuristics in order to be computationally tractable. On the
other hand, tree-structured graphical models (e.g., [10,14]) have been used to
efficiently detect and localize certain kinds of objects such as humans and faces,
but are only able to explicitly capture a small fraction of the spatial depen-
dencies between the parts of an object. An important goal of this chapter is to
improve our understanding of such tradeoffs between representational power and
computational complexity for part-based recognition. We do this by introducing
a family of spatial priors that provide explicit control over the degree of spatial
structure that can be represented.

We use a problem formulation similar to the one in [10,12], where for detec-
tion or localization a single overall problem is solved that takes into account
both how well individual parts match the image data at each location and also
the global spatial arrangement of parts. This framework is different from most
other object recognition approaches (e.g. [4,11]) that first perform feature de-
tection to find possible locations for each part in an image and then use the
detected feature locations to search for good object configurations. These meth-
ods have been popular because the explicit feature detection step reduces the
number of object configurations that must be considered, but they have the dis-
advantage that false-negatives in the feature detection step can prevent parts
from being properly localized. In [10] an efficient method was developed for tree-
structured models that did not use feature detection, instead considering both
part appearance and global spatial configuration at once. That method is able
to provably compute the optimal object configuration in an image without ex-
plicitly searching the entire configuration space. A disadvantage to that method
is that tree-structured models may not always be appropriate because of the
relatively weak spatial structure that trees can capture.

In this chapter we extend the implicit search techniques of [10] in order to
efficiently perform object recognition without feature detection using a class of
spatial priors defined by graphs that we call k-fans. Models defined by k-fans
provide a natural family of priors for part-based recognition. The parameter k
controls both the representational power of the models and the computational
cost of doing inference with them. When k = 0, the locations of the object parts
are independent. As k increases the spatial prior captures more information.
When k = 1 the graphical structure of the prior is a star graph. For k = n− 1
(where n is the number of parts in the model) there are no conditional inde-
pendencies among the part locations as in the case of a joint Gaussian model.
This family of models gives us a natural way of investigating the degree to which
additional spatial constraints improve recognition and affect computational cost.
Using more powerful (higher-k) models does not necessarily improve classifica-
tion, as it can lead to over-fitting during learning.

Besides providing an explicit balance between representational power and
computational cost, k-fan models have a strong geometrical foundation. In a
k-fan model the locations of k distinguished parts can be used to define the pose
of an object. With this view recognition using k-fans is related to geometric
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alignment [13]. From a different perspective k-fans can be used to define con-
straints on sets of k + 1 parts in the model. With this view recognition using
k-fans is related to geometric invariants [6]. In both cases k-fan models general-
ize the geometric methods by explicitly modeling uncertainty and replacing hard
constraints with soft constraints based on statistical models.

As our experimental results demonstrate, for certain object classes that have
been used recently in the literature, such as motorbikes, faces and airplanes, a
relatively small amount of spatial structure provides almost the same recognition
accuracy that is obtained using more powerful models. For small values of k,
recognition with k-fans is highly practical without relying on search heuristics
or feature detection.

2 Part-Based Statistical Models

The central principle underlying part-based modeling is the observation that
many objects can be represented by a small number of parts arranged in a
characteristic configuration. The spatial relationships between parts in such a
model are captured by a set of parameters S, while the appearance of each part
is characterized by a set of parameters A. The model for an object is defined by
the pair M = (S,A).

Consider an object model with n parts V = (v1, . . . , vn). The location of the
object in an image is given by a configuration of its parts L = (l1, . . . , ln), where
li is the location of the ith part. Throughout this chapter we assume that the
location of a part is given by a point in the image, li = (xi, yi). Using Bayes’
law, the probability that the object is at a particular location given an image
and a fixed set of model parameters can be written as,

pM (L|I) ∝ pM (I|L)pM (L). (1)

Here, pM (I|L) is the likelihood of observing image I given that a particular
configuration of the object occurs in the scene, and pM (L) is the prior probability
that the object configuration is L. In this chapter we consider three fundamental
problems that can be formulated in terms of these distributions:

1. Detection. The detection problem is to decide if the image has an instance
of the object (hypothesis w1) or if the image is background-only (hypothesis
w0). It is natural to consider the ratio of the two likelihoods,

q =
pM (I|w1)
pM (I|w0)

, (2)

and compare it to a threshold to make the classification decision. The nu-
merator is usually computed by summing over all possible configurations L
as described in Section 3.4.

2. Localization. Assuming the object is present in the scene, the configura-
tion that most likely corresponds to its true position is one with maximum
posterior probability,

L∗ = argmax
L

pM (L|I).
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3. Supervised learning. The maximum-likelihood estimate of the model pa-
rameters given a set of labeled training images {(I1, L1), . . . , (IT , LT )} is,

S∗ = argmax
S

∏
i

pM (Li),

A∗ = argmax
A

∏
i

pM (Ii|Li).

The algorithmic complexity of solving these three problems is highly depen-
dent on the form of the likelihood model pM (I|L) and the spatial prior pM (L).
In the next section we discuss a particular likelihood model which has important
structural properties, while the focus of the rest of the chapter is primarily on
the form of the spatial prior.

2.1 Appearance

For computational purposes, the most important property of the appearance
model is that pM (I|L) factors into two parts: a term which does not depend on
the object configuration, and a product of functions each of which depends on
the location of a single part. Because of this factorization, any independence as-
sumption that is present in the spatial prior will also be present in the posterior.
The majority of the recent work on part-based recognition has used a similar
factorization. A notable exception is the patchwork of parts model in [2] which
does not make this assumption in order to better capture overlapping parts.

In our work we use a simple template-based appearance model that operates
on oriented edge maps in order to be relatively invariant to changes in image
intensity. Let I be the output of an oriented edge detector, so that for each pixel
p, I(p) is either 0 indicating that there is no edge at p or a value in {1, . . . , r}
indicating that there is an edge in one of r possible quantized orientations at p.
We assume that the values of each pixel in the image are independent given the
object configuration. The appearance of the ith part is given by a template Ti.
The probability that a pixel p ∈ Ti has value u is defined by a foreground model
for that part, fi(p)[u]. We further assume that each pixel in the background has
value u with probability b[u]. The model parameters A = ((Ti, fi), ..., (Tn, fn), b)
encode the foreground model for each part and the background model.

Let w0 be the hypothesis that the object is not present in the image. By our
independence assumption we have,

pM (I|w0) =
∏
p

b[I(p)].

We say that parts i and j do not overlap if (Ti ⊕ li) ∩ (Tj ⊕ lj) = ∅. Here ⊕
denotes Minkowsky addition, which is used to translate the templates according
the locations of the parts. For a configuration L without overlap we have,

pM (I|L) = pM (I|w0)
∏

vi∈V

gi(I, li), (3)
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where

gi(I, li) =
∏
p∈T

fi(p)[I(p + li)]
b[I(p+ li)]

. (4)

Each term in gi is the ratio of the foreground and background probabilities for
a pixel that is covered by template Ti. In equation (3) the denominator of gi

cancels out the contribution of pM (I|w0) for those pixels that are under some
part. As long as we only consider configurations L without overlapping parts the
likelihood function defined above is a true probability distribution over images,
in that it integrates to one. When parts overlap this is an approximation. Note
that for many objects the spatial prior pM (L) strongly encourages parts in the
model to not overlap, thus making this a reasonable appearance model.

2.2 Spatial Prior

The spatial prior pM (L) represents geometric relationships between the parts
of an object. The simplest form of the prior assumes that there are no spatial
dependencies between parts, so that the part locations are independent of one
another (the naive Bayes assumption). Under this assumption, pM (L) can be
written as:

pM (L) =
∏

vi∈V

pM (li).

The detection and localization problems are particularly easy with this spatial
prior. For localization it is only necessary to maximize gi(I, li)pM (li) indepen-
dently for each li. This can be done in O(nh) time for a model with n parts
and h possible locations for each part. But while this model yields computa-
tionally tractable recognition and learning procedures, it is unable to accurately
represent multi-part objects since it captures no relative spatial information.

Another option is to make no independence assumptions on the locations of
different parts by, for example, using a joint Gaussian model for the spatial
distribution pM (L) (e.g. as in [5]). Learning a maximum-likelihood distribution
from labeled images in this case is easy, by simply computing the sample mean
and covariance of the labeled part locations. However it is not known how to
perform exact inference using this spatial prior efficiently. To make inference
tractable, various heuristics have been employed to reduce the search space. For
example, feature detection is normally used to constrain the possible locations
of each part.

Spatial models between the two extremes just described can be defined by
making certain conditional independence assumptions. These assumptions are
commonly represented using an undirected graphical model (or Markov random
field). Let G = (V,E) be an undirected graph. The graph is used to define a
distribution for the random variables (l1, . . . , ln) in the following way. The value
for the location of vi is independent of the values of all other nodes, conditioned
on the values of the neighbors of vi in the graph. The independence assumptions
of the naive Bayes model are represented by a graph with no edges while a model
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with no independence assumptions such as the joint Gaussian corresponds to a
complete graph.

Efficient learning and inference procedures for models with tree-structured
spatial priors are known. The detection and localization problems can be solved
in O(nh2) time using dynamic programming. Moreover, in many cases one can
solve these problems in O(nh) time – the same asymptotic time as the naive
Bayes case where there are no dependencies between part locations (see [10]).

To summarize, we can imagine a spectrum of spatial priors, arranged accord-
ing to the degree of spatial independence assumptions they make. On one end
of the spectrum, we assume that all parts are spatially independent, so that
the location of a given part does not constrain the location of any other part.
Inference in this case is efficient but the object model is weak. At the other end
are models that make no independence assumptions. This form of spatial prior
can capture arbitrarily complex spatial relationships between part locations, but
even for restricted cases it is not known how to perform exact inference efficiently.
Tree-structured spatial priors fall in between the two extremes. In the following
section, we introduce a family of spatial priors, called k-fans, which are explicitly
parametrized according to where they fall along this spectrum.

3 k-Fans

Now we consider a class of spatial priors that lie between the two extremes of the
naive Bayes assumption and a fully-connected spatial model. Our goal is to find
models with recognition performance comparable to a fully-connected model but
that support fast procedures for exact (discrete) inference and learning. We start
by considering a restricted form of tree model, the star graph, and then extend
that model. A star graph is a tree with a central node that is connected to all
other nodes. Let G = (V,E) be a star graph with central node vr. Undirected
graphical models with a star structure have a particularly simple interpretation
in terms of conditional distributions. The values of random variables associated
with nodes vi 
= vr are independent when conditioned on the value of vr. This
leads to the following factorization of the prior distribution,

pM (L) = pM (lr)
∏

vi �=vr

pM (li|lr).

We can think of the central node vr as a reference part. The position of other
parts in the model are evaluated relative to the position of this reference part.
k-fans extend the star graph model to include more than one reference part.

Let R ⊆ V be a set of reference parts, and R = V −R be the remaining parts in a
model. Then a graph can be constructed which consists of a complete subgraph
over the nodes in R, while each node in R is connected to every node in R (but
to no other nodes). We call this graph a k-fan for k = |R|. Some examples of
k-fans on six nodes are shown in Figure 1.

A clique in an undirected graph is a set of vertices for which there is an edge
connecting every pair of nodes in the set. A k-fan can be seen as a collection of
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cliques of size k + 1 connected together along a common clique of size k. The k
nodes in the common clique are the reference parts R.

A k-fan can be constructed by starting with a k-clique corresponding to the
reference nodes and sequentially adding new nodes by connecting each of them
to the reference nodes and nothing else. With this view it is clear that k-fans
are a special class of k-trees [16]. In particular k-fans are decomposable (also
known as triangulated or chordal) graphs. Because k-fans are k-trees there are
standard algorithms that can perform inference with these models in time that
is polynomial in n and exponential in k, where n is the number of nodes in the
graph [3]. An important difference between k-fans and arbitrary k-trees is that
k-fan models can be learned in time polynomial in n and exponential in k while
learning a k-tree is NP-hard even for small k.

As k grows from 0 to n−1 we get a set of graphs which intuitively interpolate
between the empty graph and the complete graph on n nodes. Thus k-fans define
a class of graphical models of increasing expressive power.

Fig. 1. Some k-fans on six nodes. The reference nodes are shown in black while the
regular nodes are shown in gray.

We claim that k-fans form an important class of graphical models for part-
based recognition. These are exactly the models where the locations of the non-
reference parts are conditionally independent given the locations of the reference
parts. Let R = {v1, . . . , vk} be the reference parts in a k-fan. We denote by
lR = (l1, . . . , lk) a particular configuration of the reference parts. The spatial
prior defined by a k-fan can be written in conditional form as,

pM (L) = pM (lR)
∏

vi∈R

pM (li|lR). (5)

In general both the localization and detection problems for models with spatial
priors based on k-fans can be solved in O(nhk+1) time, where n is the number
of parts in the model and h is the number of locations in the image. Thus k
controls the computational complexity of inference with these models. With the
additional assumption that pM (L) is Gaussian we can use distance transforms
and convolutions to solve the inference problems in O(nhk), as described below.
In practice the running time can be further improved using conservative pruning
heuristics that eliminate low-probability configurations.
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For learning k-fan models it will be useful to write the spatial prior in terms
of marginal distributions,

pM (L) =

∏
vi∈R pM (li, lR)
pM (lR)n−(k+1) . (6)

The numerator is the product of marginal probabilities for the n − k maximal
cliques and the denominator involves the marginal probability for the nodes
shared by all maximal cliques (the so-called separator set which in this case is
R). This is a special form of the factorization for a triangulated graph, which is
the ratio of a product over maximal cliques and a product over separators [7].

3.1 Geometric Interpretation

As mentioned in the introduction there is a natural connection between k-fan
models and geometric alignment [13]. In a k-fan model the locations of the
reference parts can be used to compute a global transformation aligning a geo-
metrical model and the image. This alignment defines an ideal location for each
non-reference part, and deviations from these ideal locations can be measured
by the conditional distributions pM (li|lR).

There is a also a close connection between k-fan models and object recognition
using geometric invariants. Each maximal clique in a k-fan consists of exactly
k+1 parts, and the location of these parts can be used to define shape constraints
that are invariant to certain geometric transformations (see [6]). The number of
reference parts controls the type of geometric invariants that can be represented.

In a k-fan the location of a non-reference part can be described in a reference
frame defined by the locations of the k reference parts. For example, when k = 1
the location of a non-reference part can be described relative to the location of
the single reference part. The values l′i = li− lr are invariant under translations,
so 1-fans can be used to define translation invariant models. For the case of
k = 2 the two reference parts can be used to define models that are invariant
to rigid motions and global scaling. When k = 3 we can use the three reference
parts to define an affine basis in the image plane; if the location of every non-
reference part is described in this basis we obtain affine invariant models. These
models are important because they capture arbitrary views of planar objects
under orthographic projection.

To enforce geometric invariants over k+ 1 parts one could define pM (li|lR) to
be one if the k + 1 locations satisfy a geometric constraint and zero otherwise.
In general our models capture soft geometric constraints, giving preference to
configurations that satisfy relationships on k + 1 features as much as possible.
The distribution over the reference part locations pM (lR) could be uniform in
the case where all geometric constrains are defined in terms of k+ 1 parts. Non-
uniform distributions can be used to represent interesting classes of non-rigid
objects.



470 D. Crandall, P. Felzenszwalb, and D. Huttenlocher

3.2 Gaussian k-Fans

We now consider k-fan models with the additional constraint that pM (L) is a
Gaussian distribution. For a Gaussian model the marginal distribution of any
subset of variables is itself Gaussian. Let μR and ΣR be the mean and covariance
for the locations of the reference parts. The marginal distribution of the reference
parts together with one non-reference part is given by a Gaussian with mean and
covariance,

μi,R =
[
μi

μR

]
, Σi,R =

[
Σi ΣiR

ΣRi ΣR

]
. (7)

These can be used to define the spatial prior in terms of equation (6). We will
use this for learning Gaussian k-fans. For inference we use the conditional form
of the prior in equation (5). For a Gaussian distribution, conditioning on a
set of variables preserves the Gaussian property. In particular, the conditional
distribution of a non-reference part location given particular locations for the
reference parts pM (li|lR) has mean and covariance,

μi|R(lR) = μi +ΣiRΣR
−1(lR − μR), (8)

Σi|R = Σi −ΣiRΣR
−1ΣRi, (9)

Note how the covariance Σi|R is independent of the location of the reference
parts. This is a non-trivial property that enables the use of distance transforms
and convolutions to obtain faster inference algorithms than is possible with non-
Gaussian models, as we will show in Sections 3.4 and 3.5.

3.3 Learning

We can learn the spatial prior for Gaussian k-fan models from labeled images
using a maximum likelihood criterion. For a fixed set of reference parts, estimat-
ing the maximum likelihood parameters S∗ involves estimating the mean and
covariances in (7). These can be obtained from the sample mean and covariance
of the labeled configurations.

The more interesting case is when the reference parts are not fixed. In this
situation all possible reference sets of size k can be considered to find the set R
that yields the best possible model. There are

(
n
k

)
possible reference sets, which

is not very large for small values of k. For each reference set we compute the
maximum likelihood model parameters using the sample mean and covariance,
as described above. We select the best reference set by choosing the set R that
maximizes the likelihood of observing the training data given the model.

Learning the appearance parameters A∗ for the models described in Sec-
tion 2.1 using labeled training data is also simple. To estimate fi, the position
of the ith part in each training example is used to align the training images.
The maximum likelihood estimate for fi(p)[v] is simply the frequency that pixel
p has value v on the aligned data. The only parameter that is not learned from
the data is the size and shape of the template Ti. For the experiments shown in
this chapter we used square windows of a fixed size.
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3.4 Detection

For detection we consider the likelihood ratio in (2). The numerator of this ratio,
which is the probability of an image given that it contains the object, can be
expressed as a sum over all possible object configurations,

pM (I|w1) =
∑
L

pM (L)pM (I|L).

Using the likelihood function (3) we see that

pM (I|w1)
pM (I|w0)

=
∑
L

pM (L)
∏

vi∈V

gi(I, li).

For a k-fan model the sum over all configurations L can be factored using the
conditional form of the spatial prior in (5). For each vi ∈ R we define

αi(lR) =
∑
li

pM (li|lR)gi(I, li).

Now the likelihood ratio can be computed as,

pM (I|w1)
pM (I|w0)

=
∑
lR

pM (lR)
∏

vi∈R

gi(I, li)
∏

vi∈R

αi(lR).

Note that each αi can be computed by brute force in O(hk+1) time, while the
likelihood ratio can be computed using the αi in O(nhk) time. This procedure
gives an O(nhk+1) algorithm for computing the likelihood ratio.

For the case of a Gaussian k-fan we can compute the likelihood ratio even
faster, using convolutions. For each non-reference part vi we have,

pM (li|lR) = N (li, μi|R(lR), Σi|R),

a Gaussian distribution with mean and covariance given by equations (8) and
(9). Let α′

i(li) be the convolution of gi(I, li) with a Gaussian kernel of covariance
Σi|R. It is not hard to see that,

αi(lR) = α′
i(μi|R(lR)).

So each αi can be implicitly computed by a convolution in the space of possible
part locations. This can be done in O(h log h) time instead of O(hk+1).

The overall running time of the likelihood ratio computation for the case
of a Gaussian k-fan model is O(nhk + nh log h). Note that for a 1-fan model
this is almost the same as O(nh), the time that it would take to compute the
likelihood ratio if the locations of the parts were completely independent. The
log h dependency can be removed by using linear time methods that approximate
Gaussian convolutions, such as the box-filter technique in [18].
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3.5 Localization

For localization we look for an object configuration L∗ with maximum posterior
probability. Using Bayes law the posterior distribution for a k-fan model can
be written in terms of the likelihood function (3) and the spatial prior (5). By
manipulating the terms we get,

pM (L|I) ∝ pM (lR)
∏

vi∈R

gi(I, li)
∏

vi∈R

pM (li|lR)gi(I, li).

For any vi ∈ R the quality of an optimal location for the ith part can be
expressed as a function of the reference locations,

α∗
i (lR) = max

li
pM (li|lR)gi(I, li). (10)

Using the α∗
i we can express the posterior probability of an optimal configuration

for the object with particular reference locations lR as,

β∗(lR) = pM (lR)
∏

vi∈R

gi(I, li)
∏

vi∈R

α∗
i (lR). (11)

These functions can be used to compute an optimal configuration for the ob-
ject in time polynomial in the number of parts n and the number of locations
for each part h (but exponential in k). Each α∗

i can be computed by brute
force in O(hk+1) time, while β∗ can be computed in O(nhk) time. An optimal
configuration for the reference parts l∗R is one maximizing β∗. Finally, for each
non-reference part we select l∗i maximizing pM (li|l∗R)gi(I, li). This can be done
in O(h) time. The overall running time of this procedure is O(nhk+1), which is
reasonable for very small k.

As in the case of detection we can speed up the localization procedure for
Gaussian k-fans. For localization the role of convolutions is played by generalized
distance transforms [9]. In this case the running time is reduced to O(nhk).

4 Inference with Gaussian k-Fans

We have shown that in theory it is possible to perform exact inference (detection
and localization) with Gaussian k-fan models efficiently without relying on fea-
ture detection. It turns out that the inference algorithms are also intuitive and
straightforward to implement. In this section we describe how the localization
algorithm works using generalized distance transforms, with a running example
to illustrate each step of the process.

Figure 2(a) shows a diagram of a 1-fan model with six parts for detecting mo-
torbikes. A simplified representation of the appearance model template of each
part is shown, giving the probability of an edge at each location (disregarding
orientation). Bright spots in the templates correspond to locations with higher
edge probabilities. In this model the reference part is the back wheel and each
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non-reference part is positioned according to its mean location μi|R with respect
to the reference. The figure also shows the conditional covariance Σi|R of each
non-reference part location, represented by an ellipse plotted at two standard
deviations away from the mean. We will describe how the localization proce-
dure works using this motorbike model on the sample input image shown in
Figure 2(b). There are three steps to the procedure which are outlined below.
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Fig. 2. A six part 1-fan model for motorbikes, with the back wheel as the reference
part and a sample input image

4.1 Step 1: Apply Part Appearance Operators

The first step in performing localization is to evaluate gi(I, li) as defined in
equation (4) for each part at each possible location. This produces a quality
map for each part, indicating how well the part appearance model matches the
local image information at each location. In practice we compute

Ci(li) = − log gi(I, li)

and think of Ci(li) as the cost of placing part i at location li. While these costs
have a particular form defined by the statistical model one can think of this step
as essentially doing template matching with an edge template for each part. We
can use the fact that edge images are sparse to compute the quality maps quickly.

Figure 3(a) shows the quality maps that were generated by the motorbike
model on the sample input image, with good locations (low costs) represented
by brighter intensities. Note that the individual quality maps are quite noisy, so
that simply choosing the best location for each part without taking into account
their relative positions (as in the naive Bayes method) would generate poor
localization results. For example, the front and back wheel appearance models
are similar and there are peaks at the location of the front wheel in the back
wheel quality map, and vice-versa.

4.2 Step 2: Apply Distance Transforms

The next step takes into account the spatial dependencies in the model as en-
coded by the conditional covariances of each non-reference part with respect to
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(a)

(b)

(c) (d)

Fig. 3. Illustration of the localization procedure: (a) quality maps indicating the cost of
placing each part at each location, with brighter intensity indicating better locations,
(b) result of the distance transform applied to the quality maps of the non-reference
parts, (c) final quality map showing the cost of placing the reference part at each
location, and (d) final result, showing the localized part locations

the references. This is done by computing the generalized distance transform of
the quality map for each non-reference part to allow for variations in its posi-
tion relative to the references. The output is a new quality map Di(li) for each
non-reference part. The results of this step on the running example are shown
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in Figure 3(b). The transformation “spreads” the quality maps produced by the
appearance models. Intuitively the resulting cost Di(li) is low near locations
where the original cost is low. The size and shape of this spreading operation is
controlled by the conditional covariances Σi|R for each part.

The new costs are defined by,

Di(x) = min
y

Ci(y) +
(x− y)TΣ−1

i|R(x− y)

2
.

The algorithm in [9] can be used to compute these distance transforms in time
linear in the number of possible locations for each part.

4.3 Step 3: Combine Evidence

The last step in the localization procedure is to combine the distance transformed
quality maps for the non-reference parts with the quality maps of the reference
parts. The result is a cost for every configuration of the reference parts that takes
into account the placement of the whole model. More specifically the cost for each
placement of the reference parts encorporates the cost of the best placements
of all the other parts. This is preciselly the negative logarithms of β∗(lR) in
equation (11), up to an additive constant.

The procedure is particularly simple for the case of a translation invariant
1-fan model. In this case the computation of − log(β∗(lR)) up to an additive
constant can be done as follows. We shift the distance transformed quality maps
Di(li) by the ideal position of part i relative to the reference part and sum
these shifted quality maps together with the quality map for the reference part
Cr(lr). The resulting map for the sample input image is shown in Figure 3(c).
An optimal location for the reference part (the back wheel) l∗r is determined by
picking a lowest cost location in this map. After that the locations of the other
parts can be found by selecting l∗i for each non-reference part so as to maximize
pM (li|l∗r)gi(I, li). The final localization results in the sample image are shown in
Figure 3(f).

Performing localization using a k-fan model with k > 1 can be done in a
similar way. In general equation (11) can be rewritten as

− log(β∗(lR)) = − log(pM (lR)) +
∑
vi∈R

Ci(li) +
∑
vi∈R

Di(μi|R(lR)) + Z.

For a 1-fan − log(β∗(lR)) is a two-dimensional quality map but for general k it
is a 2k dimensional map. To compute − log(β∗(lR)) we iterate over all possible
reference locations and evaluate the sum above.

5 Experiments

This section presents results from experiments we have conducted to character-
ize the detection and localization performance of k-fans as k is varied. Since the
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running time varies exponentially with k, it is clear that in practice it is best
to choose the lowest value of k that still provides adequate detection and local-
ization performance. We also compare our results to those of Fergus et al [11]
who used full multivariate Gaussians (i.e. n− 1-fans, where n is the number of
parts) as the spatial priors. However, since inference with this spatial model is
intractable, they performed approximate inference using feature detection and
various search heuristics. One of the goals of our experiments was to compare
the performance of the exact (discrete) inference method for k-fans with small
k to their approximate inference method for full Gaussian prior models.

To facilitate comparison of results with previous work we used some of the
datasets from [11]: airplanes (800 images), faces (435 images), motorbikes (800
images), and background scenes (800 images). To further facilitate evaluation,
we considered only the case of Gaussian k-fans (that is, we did not use the
reference parts to define a geometric basis as described in Section 3.1). We tried
to reproduce the experimental protocol of [11] as closely as possible, including
using the same partitioning of the data into training and test images. We also
pre-scaled all images so that object width was roughly uniform, using the same
ground truth bounding boxes used in their experiments. To prevent biases related
to image size, we padded out all images to a large, uniform size.

5.1 Learning the Models

As in [11], six parts were used to model each object. For airplanes we used the
front and back landing gear, nose, wing tip, tail, and vertical stabilizer. For faces
we used the two eyes, nose, two corners of the mouth, and chin. For motorbikes,
the front and back wheel, headlight and tail light, and the front and back of
the seat were used. Ground truth was collected by hand-labeling the training
images. Note that [11] used an unsupervised training method but we should not
expect supervised learning to necessarily give better results than unsupervised
learning – a supervised approach is limited by the quality of the parts chosen
and the accuracy of the hand-labeled ground truth.

The models were learned from labeled examples using the procedure described
in Section 3.3. To learn the appearance model for a given part, a fixed-size
patch surrounding the labeled part location was extracted from each training
image. Canny edge detection was used to generate edge maps. Edge orientation
was quantized into four directions (north/south, east/west, northeast/southwest,
northwest/southeast) and represented as four separate binary edge maps. Note
that opposing directions were quantized into the same bin. This prevents edge
directions from changing when an object is moved from a light background to
a dark background or vice-versa. Morphological dilation was applied on each
map independently. Finally, foreground model probabilities were estimated by
computing the frequency of each of the 16 possible combinations of edge orienta-
tions at each position in the template across all training images. The background
model probabilities were estimated from the observed density of edges in back-
ground images.
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Figure 4 illustrates some of the models we learned. Note that in each case the
configuration of parts is readily recognizable as a prototype of the object. It is
particularly interesting to compare the 1-fan and 2-fan models for the airplanes.
Note that as k increases, the variability in the non-reference part locations (as

(a) Airplane, 1-fan (b) Airplane, 2-fan

(c) Airplane, 3-fan

(d) Motorbike, 1-fan (e) Motorbike, 2-fan

(f) Motorbike, 3-fan

Fig. 4. Illustration of some of the learned models. Images (a) through (f) show part
appearance models positioned at their mean configuration. The reference parts have
a black border around them. The ellipses illustrate the conditional covariances for a
non-reference part given the locations of the references. High intensity pixels represent
high edge probabilities. For clarity, just the probability of an edge is shown, although
the actual models capture probabilities of each individual edge orientation. Note how
the locations of parts are more constrained as k increases.
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Vertical Horizontal 45 degrees 135 degrees
Probability of edge at each orientation

Fig. 5. The appearance model for the front wheel of the motorbike model

shown by the ellipses) decreases substantially. Figure 5 illustrates the appearance
model for the front wheel of the motorbike model in detail.

5.2 Detection Results

For detection we found an optimal configuration for the object in each test image,
using the procedure described in Sections 3.5 and 4, and then used that location
to approximate the likelihood ratio in equation (2). With this approach each
positive detection comes with a particular localization. We kept all parameters
exactly the same across the different object classes (template size = 50 × 50,
dilation radius = 2.5 pixels).

Figure 6 shows ROC curves generated from these experiments. For each object
class, the figure compares ROC curves for k-fans with k ranging from 0 (no
structure) to 2. We observe that for motorbikes, high accuracy is achieved using
0-fans, and adding spatial constraints gives little improvement. On the other
hand, for airplanes, 1-fans perform significantly better than 0-fans, and 2-fans
perform significantly better than 1-fans, indicating that increasing degrees of
spatial constraints give better performance. We conclude that the appropriate
amount of spatial structure in the model varies from object to object.
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Fig. 6. Detection results for (a) motorbiks and (b) airplanes. Note that the ROC curves
are truncated at a false positive rate of 0.7 and a true positive rate of 0.3.

Table 1 summarizes the recognition accuracy at the equal ROC points (point
at which the true positive rate equals one minus the false positive rate). We
note that our equal ROC results compare favorably with those obtained using
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Table 1. Equal ROC performance for the detection experiments. A boldface number
for a k-fan indicates a statistically significant difference between the areas under the
ROC curves of the k − 1 and k-fan models (with 95% confidence).

Planes Bikes Faces
0-fans 90.5% 96.5% 98.2%
1-fans 91.3% 97.0% 98.2%
2-fans 93.3% 97.0% 98.2%

Table 2. Confusion matrices for the multi-class detection experiments. Rows corre-
spond to actual classes, while columns correspond to predicted classes.

0-fan
Planes Bikes Faces BG

Planes 357 10 0 33
Bikes 4 382 0 14
Faces 3 9 205 0
Background 72 28 0 700

1-fan 2-fan
Planes Bikes Faces BG Planes Bikes Faces BG

Planes 362 5 0 33 370 8 0 22
Bikes 4 384 0 12 4 384 0 12
Faces 3 8 206 0 1 9 207 0
Background 68 24 0 708 53 23 0 724

full multivariate Gaussian structural models (with heuristics that make inference
sub-optimal but computationally tractable) in [11]. They report 90.2%, 92.5%
and 96.4% for airplanes, motorbikes and faces respectively, under the same ex-
perimental conditions.

We applied the statistical test in [8] to judge the differences in areas under
the ROC curves of the various models. These results are also shown in Table 1.
For each object class we computed the probability that the area under the ROC
curve for the k-fan model is significantly different from the area under the ROC
curve for the model with one less reference part. Differences significant at a
greater than 95% confidence level are shown in boldface.

We also conducted multi-class detection experiments to test the ability of
the models to differentiate between the three different object classes and the
background images. For each test image, the three object detectors were applied,
and the object class with the highest likelihood was chosen. That likelihood
was compared to the threshold at the equal ROC point to decide between that
object class and the background class. The results are shown in Table 2. The
performance of multi-class recognition is similar to the single class case. The use
of relatively accurate probabilistic models allows for direct comparison between
the scores of each object class without tuning weighting parameters.
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As in [11], we also tested the detectors in a setting where the object scale
was not known (i.e. images were not pre-scaled to a uniform object width). The
object widths varied between about 200 and 700 pixels for the motorbike and
plane categories, while the face dataset had very little scale variation. We applied
the detectors at four different scales to each image and chose the scale having
the highest-likelihood detection. Recognition performance in this experiment was
comparable to the case of pre-scaled images.

The average running time per image of the detection algorithm on these
datasets on a 3GHz Pentium 4 is approximately 0.1 seconds for a 1-fan model,
3.3 seconds for a 2-fan model, and 37.6 seconds for a 3-fan model.

5.3 Localization Accuracy

Figure 7 illustrates some localization results produced by our system on the
motorbike dataset, showing precise localization of the parts despite substantial
variability in their appearances and configurations. Recent work has generally
focused on evaluating detection performance but we believe it is also important
to evaluate the accuracy of localization. For example, some applications may
benefit from knowing the exact locations of each part individually. Also, exam-
ining localization performance helps to reveal the evidence that the detection
algorithm is using to perform its classification decisions, and to ensure that it is
not exploiting “unfair” biases in the image data, such as image size or patterns in
the image backgrounds. For each object class, for the subset of images that were
correctly classified during the detection task at the equal ROC point, the part

Fig. 7. Some localization results. In each of these cases all parts were localized correctly.
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Table 3. Part localization errors for the correctly detected motorbike images, showing
75% and 90% trimmed means of Euclidean distance between estimated part locations
and ground truth

Model rear wheel front wheel
75% 90% 75% 90%

No structure 15.6 34.4 1.9 2.3
1-fan 2.1 12.5 1.9 2.3
2-fan 1.9 2.4 1.9 2.3

Model headlight tail light back of seat front of seat
75% 90% 75% 90% 75% 90% 75% 90%

No structure 10.9 18.8 12.0 19.3 21.6 33.9 6.3 12.2
1-fan 10.9 18.6 11.4 18.7 20.6 32.9 6.3 12.0
2-fan 10.1 16.6 11.0 18.3 17.2 28.5 5.4 9.3

locations produced by our system were compared to hand-labeled ground truth.
We computed the trimmed means (at 75% and 90%) of the Euclidean distances
(in pixels) between estimated locations and the ground truth. For the motorbike
models the localization errors are reasonably small (less than 10 pixels) for most
parts when k > 0, while the errors for faces are less than 2 pixels. Table 3 summa-
rizes the results for the motorbikes models. In this case the localization accuracy
is high for most parts when using a model without spatial structure. The accu-
racy increases as we add spatial constraints even when recognition performance
does not increase.

Acknowledgements

This material is based upon work supported under a National Science Foundation
Graduate Research Fellowship.

References

1. Y. Amit. 2D Object Detection and Recognition, Models, Algorithms, and Networks.
MIT Press, 2002.
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Abstract. We approach recognition in the framework of deformable
shape matching, relying on a new algorithm for finding correspondences
between feature points. This algorithm sets up correspondence as an in-
teger quadratic programming problem, where the cost function has terms
based on similarity of corresponding geometric blur point descriptors as
well as the geometric distortion between pairs of corresponding feature
points. The algorithm handles outliers, and thus enables matching of ex-
emplars to query images in the presence of occlusion and clutter. Given
the correspondences, we estimate an aligning transform, typically a regu-
larized thin plate spline, resulting in a dense correspondence between the
two shapes. Object recognition is handled in a nearest neighbor frame-
work where the distance between exemplar and query is the matching
cost between corresponding points. We show results on two datasets.
One is the Caltech 101 dataset (Li, Fergus and Perona), a challenging
dataset with large intraclass variation. Our approach yields a 45% correct
classification rate in addition to localization. We also show results for lo-
calizing frontal and profile faces that are comparable to special purpose
approaches tuned to faces.

1 Introduction

The problem of visual object recognition is really a family of inter-related prob-
lems. If we consider spatial extent, the notion of “object” extends downwards to
parts (faces, eyes, propellers, wings), and upwards to scenes (kitchens, cityscapes,
beaches). On the generalization dimension, we have categorization at varying
levels all the way to identification of individuals (mammals,primates, humans,
“Fred”). Sometimes, even the term “object” is questionable, when we consider
visual recognition of materials such as sand or cornflakes.

What computational architecture would support a solution to all these prob-
lems in a common framework? In addition to the functional requirements above,
processing must be fast, a large number of categories need to be handled, and
the approach should be trainable with very few examples.

We propose a three stage architecture:

– Initial Retrieval: Retrieving a shortlist of potentially matching models for a
query image based on feature descriptors. At this stage the spatial config-
uration of the feature locations can be ignored in order to facilitate rapid
indexing.

J. Ponce et al. (Eds.): Toward Category-Level Object Recognition, LNCS 4170, pp. 483–507, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– Shape Matching: Aligning template views of stored exemplars to the support
of an unknown object in the query image. In face recognition this would be
the stage where the corners of eyes, nose, lips and other landmarks would
be “lined up”.

– Discriminative Classification: Given alignments of models to images we can
now compare corresponding features as well as their configurations. Dis-
criminative classifiers can give more weight to the characteristics that best
distinguish examples of one category from other related categories.

This chapter outlines a solution to the second of these stages, shape matching.
Since we wish to deal with intra-category variability, all shape matching is for us
necessarily deformable shape matching. Back in the 1970s, at least three different
research groups working in different communities initiated such an approach:
in computer vision, Fischler and Elschlager [12], in statistical image analysis,
Grenander ([14]and earlier), and in neural networks, von der Malsburg ([17] and
earlier). The core idea that related but not identical shapes can be deformed
into alignment using simple coordinate transformations dates even further back,
at least to D’Arcy Thompson, in the 1910’s with On Growth and Form [34].

The basic subroutine in deformable matching takes as input an image with
an unknown object (shape) and compares it to a model by first aligning the two
and then computing a similarity based on both the aligning transform and the
residual difference after applying the aligning transformation. Searching for an
alignment can be quite difficult. We show that the search can be approximated
by an easier discrete matching problem, the correspondence problem, between
key points on a model and a novel object.

Practically speaking, the basic difficult question for the correspondence prob-
lem is, “How do we algorithmically determine which points on two shapes cor-
respond?” The correspondence problem in this setting is more difficult than in
the setting of binocular stereopsis, for a number of reasons:

1. Intra-category variation: the aligning transform between instances of a cate-
gory is not a simple parameterized transform. It is reasonable to assume that
the mapping is smooth, but it may be difficult to characterize by a small
number of parameters as in a rigid or affine transform.

2. Occlusion and clutter: while we may assume that the stored prototype shapes
are present in a clean, isolated version, the shape that we have to recognize
in an image is in the context of multiple other objects, possibly occluding
each other.

3. 3D pose changes: since the stored exemplars represent multiple 2D views of
a 3D object, we could have variation in image appearance which is purely
pose-related, the 3D shapes could be identical

The principal contribution of this work is a novel algorithm for solving the
correspondence problem for shape matching.

We represent shape by a set of points sampled from contours on the shape.
Typically 50-100 pixel locations sampled from the output of an edge detector are
used; as we use more samples we get better approximations. Note that there is
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nothing special about these points – they are not required to be keypoints such
as those found using a Harris/Forstner type of operator or scale-space extrema
of a Laplacian of Gaussian operator, such as used by Lowe [21].

We exploit three kinds of constraints to solve the correspondence problem
between shapes:

1. Corresponding points on the two shapes should have similar local appear-
ance. For this purpose we develop geometric blur to measure rough shape
similarity.

2. Minimizing geometric distortion: If i and j are points on the model corre-
sponding to i′ and j′ respectively, then the vector from i to j, rij should
be consistent with the vector from i′ to j′, ri′j′ . As examples: If the trans-
formation from one shape to another is a translation accompanied by pure
scaling, then these vectors must be scalar multiples. If the transformation is
a pure Euclidean motion, then the lengths must be preserved. etc.

3. Smoothness of the transformation from one shape to the other. This en-
ables us to interpolate the transformation to the entire shape, given just the
knowledge of the correspondences for a subset of the sample points. We use
regularized thin plate splines to characterize the transformations.

The similarity of point descriptors and the geometric distortion is encoded in a
cost function defined over the space of correspondences. We purposely construct
this to be an integer quadratic programming problem (cf. Maciel and Costeira
[22]) and solve it using fast-approximate techniques.1

We address two object recognition problems, multi-class recognition and face
detection. In the multiple object class recognition problem, given an image of an
object we must identify the class of the object and find a correspondence with an
exemplar. We use the Caltech 101 object class dataset consisting of images from
101 classes of objects: from accordion to kangaroo to yin-yang, available at [7].
This dataset includes significant intra class variation, a wide variety of classes,
and clutter. On average we achieve 45% accuracy on object classification with
quite good localization on the correctly classified objects.

It is important to point out that these results are achieved with a simple gen-
erative model based solely on coarse shape. Better recognition can be achieved
by building class specific discriminative models combining shape with other cues
such as color and texture. The point here is experimental evidence of simple
generative shape models proving useful for both localization and recognition.

We also consider face detection for large faces, suitable for face recognition
experiments. Here the task is to detect and localize a number of faces in an
image. The face dataset we use is sampled from the very large dataset used
in [6] consisting of news photographs. With only 20 exemplar faces our generic
system provides a ROC curve with slightly better generalization, and slightly
worse false detection rate than the quite effective specialized face detector of
Mikolajczyk [24] used in [6].
1 It is worth noting that this formulation is amenable to various probabilistic models,

maximum likelihood estimation for a product of Gaussians among others, but we do
not address this further here.
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2 Shape Descriptor

A simple descriptor based on blurred edge maps is used to compare shapes
locally. These descriptors do not cover an entire object and so we refer to them
as local shape descriptors, nevertheless they have a broader spatial support than
typical local descriptors. The consequence of broad spatial support is variation
between views of similar local structures. We use a spatially varying geometric
blur over the positions of edges to provide the necessary robustness.

Descriptors are computed using geometric blur on edge maps. Oriented edge
maps are computed and then blurred. Keypoints are then located along edges
and sample points are drawn from the blurred edge maps. The vector of these
samples is the descriptor as shown in Figure 8.

Geometric blur is an average over geometric transformations of a signal rep-
resenting the spatial distribution of features in an image. The objective of the
averaging is to make comparison of signals robust to typical geometric distor-
tions within a bounded range. We will use a descriptor based on geometric blur
to evaluate similarity between shapes.

First we motivate basing local shape descriptors on edge maps and the need for
spatial uncertainty. This is followed by the mathematical definition of geometric
blur. Two motivations for using a simple family of blurs — linearly increasing
blur with distance from the center feature point — are presented, and a relatively
low dimensional descriptor based on geometric blur is defined. A brief comparison
to alternate descriptors concludes this section.

2.1 Motivation

The two helicopters shown in Figure 1 are easily recognizable as helicopters and
a young child could indicate positions for the nose and tail of each. The crops
below indicate the difficulty faced by a computer. Analogous structures in the
images are only very roughly similar. In order to find a correspondence and then
an alignment between the two objects it is necessary to find some way to get at
this rough similarity. We approach this problem by first representing the rough
spatial pattern of edges.

2.2 Simple Example

Before beginning the formal development of geometric blur a simple example of
comparing distorted signals is presented to make concrete some of the mathemat-
ics to follow. Here we begin to show how geometric blur can provide robustness
to spatial variation.

In Figure 2, which signal, A or C, is most similar to the signal B? The ques-
tion is ambiguous, and we need to take into consideration some type of accepted
variation, say small affine transformations. Note that here we mean spatial affine
transformations, not transforms in intensity. Making robust comparison of sig-
nals with variation in intensity is rather better studied than the variation in
signals due to distortions in geometry. Even with this added information, the
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Fig. 1. In the top row are two images showing similar objects, helicopters. The bottom
row shows that the local structure of the objects is only very roughly similar. Geometric
blur is motivated by the goal of identifying rough similarity between bits of shapes.

A B C

Fig. 2. Three similar signals composed of impulses. They represent the spatial location
of features in an image. The goal is to recognize that a small transformation brings A
and B into alignment, but not so for B and C.

correlation between either the left (A & B) or right (B & C) pair of signals is
low and quite similar, providing no information about which are more similar.
This can be seen in the first row of Figure 3 where the insets show the point-wise
products of the signals on either side. Note that smoothing the signals with a
uniform Gaussian does not quite solve the problem, as can be seen in the sec-
ond row of the Figure 3. After blurring the signals with a uniform Gaussian the
correlation between either pair of signals is similar, missing the clear differences.
The basic idea of geometric blur is to blur or average the signals over the range of
acceptable transformations (small affine transformations in this case), as shown
in the third row of Figure 3. This will turn out to be mathematically equiva-
lent to convolving the signal with a spatially varying kernel. Roughly speaking,
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A B C

Fig. 3. The top row shows three signals, A, B, and C. The top row insets show
the point-wise product of the signals on either side, each results in correlation 0.2. the
second row shows the result of applying a Gaussian blur to the signals. Note that more
context is now included, but the correlations are still equal (0.22). The third row shows
the result of applying geometric blur, a spatially varying blur replicating the effect of
averaging over small affine transforms of the signal. Now the insets indicate a difference
between the correlations: 0.63 for the correct match versus 0.4 for the incorrect match.

parts of the signal farther from the center are blurred more because they have
the opportunity to move more. After this type of blur, correlation can correctly
identify the more similar pair, as can be seen on the bottom row of Figure 3.

2.3 Definition

We define geometric blur and show that it can be written as a spatially varying
convolution.

The geometric blur GBI(x) of a signal I(x) over coordinate x is the integral
over a range of distorted versions of the signal:

GBI(x) =
∫

T

I(T (x))dμ (1)
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Where T are spatial transforms and μ is a measure on the space of transforms.
Under appropriate conditions2 there is a density ρ such that:

GBI(x) =
∫

p

I(Tp(x))ρ (Tp) dp (2)

Where Tp is a transform specified by parameters p in R
k and the integral is com-

puted with respect to the Lebesgue measure on R
k. The density ρ is determined

by the measure on transforms. In order to reduce notational clutter we will usually
drop the subscript p and assume that the transform T is parameterized by p.

Fig. 4. Correlation of signal B and rotated (A) or rotated and flipped (C) versions of
itself with no blur, uniform blur, or geometric blur. The far right end of the graph,
rotation by 0.34 radians, corresponds to the signals shown in Figure 3.

Equation 1 is an integration over warped versions of the signal. We rewrite
this to integrate over the range (spatial coordinates of I) of the transforms and
change variables:

GBI(x) =
∫

z

I(z)
∫

T :T (x)==z

ρ (T )dp̃dz (3)

=
∫

y

I(x− y)
∫

T :(x−T (x))==y

ρ (T )dp̃dy (4)

=
∫

y

I(x− y)Kx(y)dy (5)

The geometric blur is then a convolution with a spatially varying kernel,
Kx(y) =

∫
T :(x−T (x))==y

ρ (T )dp̃.3

2 Additional details and derivations concerning geometric blur, including motivation
as an approximation to Bayesian estimation, can be found in [4].

3 In Equations 3 and 4 dp̃ indicates integration with respect to the measure on the
“slice”, {T : T (x) == z} and {T : x − T (x) == y} respectively.
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An Example: Returning to the example signals in Figures 2 and 3. We now
consider comparing signal B to rotations of itself, and rotations of its vertical
mirror image. The green dashed lines in Figure 4 show the correlation between B
and rotated versions of itself, and the red dashed line shows correlations between
B and rotated versions of its vertical mirror image. As a reference, the signals
shown in Figure 2 would correspond to the signals used for a rotation of 0.35
radians as shown on the far right of Figure 4.

In this and all other examples in this section the kernel function is Kx(y) =
f(α|x|+ β)Gα|x|+β(y), where G is a Gaussian with the specified standard devi-
ation, and f is a normalization factor so that the Kx is L2 normalized.

2.4 Empirical Measurement for Blur

By construction geometric blur with the kernel used above is appropriate in the
case of signals undergoing small affine distortions. In general if we have enough
examples of patches that are known to correspond we can actually find an optimal
blur pattern. We illustrate this with an example using wide base-line stereo pairs.

Fig. 5. Rectified paired patches found by the Harris-Affine detector. Note that the
centers of the patches are usually on edges or at corners, and that the orientations and
scales of matched patches are often slightly different.

We use images from different camera positions looking at the same object
or scene4. The correspondence between images is known. A region of interest
operator is applied, and where it works correctly, producing corresponding re-
gions on images, the corresponding patches are used. Figure 5 shows pairs of
corresponding patches. The raw patches are replaced by edge maps and the co-
variance between corresponding patches of edge maps is shown in Figure 6. Each
4 Images are from work by Mikolajczyk and Schmid [25] on region of interest operators

and descriptors for wide-baseline matching.
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small block in the figure represents the covariance of all the pixels in one patch
of edge map with respect to a particular pixel in the corresponding patch of
edge map. The general structure shows a more concentrated covariance near the
center, and a more diffuse covariance near the periphery. Plotting this shows
the nearly linear pattern in Figure 7. While these examples support the linearly
increasing blur kernel, they are restricted to images of the same object or scene.
Replicating this study on images of categories of objects it is necessary to find
correspondences in the face of intra-category variation.

2.5 Descriptor

Creating a descriptor using geometric blur involves design choices for the region
of interest operator, underlying features, blur kernel, and subsampling.

Region of Interest Operator. Descriptors and region of interest operators
are the head and tail respectively of a thorny beast indeed. The two are coupled

Fig. 6. Covariance of edge response between corresponding patches using a Harris-
Affine detector. These have been reshaped so that each small block represents the
covariance of all the pixels in one patch of edge map with respect to a particular pixel
in the corresponding patch of edge map. The location of the small block specifies the
pixel in the corresponding patch of edge map. For example the block at the lower right
of the image shows the covariance of the all the pixels in a patch of edge map with the
pixel in the lower right of the corresponding patch of edge map.
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Fig. 7. Results of fitting Gaussians to the blur patterns shown in Figure 6 of covariance
of edge response between corresponding patches. The estimated standard deviation is
plotted against the distance from the center. The amount of blur in the covariance
increases almost linearly.

because the choice of interest point operator effects the type of variation the
descriptor must tolerate [4].

One benefit of the spatially varying blur is that geometric blur can be used for
localization. The work by Berg & Malik [5] concentrates mainly on this aspect of
geometric blur. This is quite different from other contemporary descriptors such
as SIFT [20] that rely on an interest point operator to select similar locations for
potential matches. As a result a somewhat promiscuous interest point operator
can be used in conjunction with geometric blur, and the localization of the
best match can be left up to the descriptor itself. We will place interest points
anywhere in an image where there is a strong edge response, using sampling with
repulsion to spread interest points throughout the image.

Choosing the scale for the descriptor can also be a complex problem. In this
case we duck the issue by tying the scale of the descriptor to the scale of the object
model. This means that if the object scale varies, multiple sets of descriptors must
be used. Luckily geometric blur is designed to handle affine distortion including
scale, and tolerates scale variation relatively well. For instance the multi-category
recognition results shown later use a single scale of descriptor despite variation
in scale for some of the categories.

Feature Channels. Motivated by wide ranges of appearance we base the fea-
ture channels on a coarse scale edge detector. The best results are obtained using
the boundary detector of [23]. This boundary detector is constructed not to re-
spond to texture, and produces relatively consistent boundary maps. In addition
a simple and computationally less expensive edge detector based on elongated
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sparse oriented edge channels

~
geometric blur idealized signaldescriptor

Fig. 8. The steps to compute a geometric blur descriptor. Starting with a feature point
on an image (eg the point at the center of the circle in the upper left) and a region
of interest (the circle). The sparse feature channels are cropped out as shown in the
upper right. Geometric blur is applied to each channel (shown here with an idealized
signal for clarity) and the signal is sub-sampled. The final descriptor is the vector of
values indicated by dots with differing intensity at lower left.

derivative of Gaussian filters is used for comparison [27]. In both cases edge
detection results are split up by orientation and oriented non-max suppression
is applied producing multiple sparse channels as shown in Figure 8.

Blur Kernel. As before we use a simple blur kernel based on a Gaussian. If
Ga(x) is a Gaussian with standard deviation a then:

Kx(y) = Gα|x|+β(y)

is our blur kernel. The kernel is normalized with respect to the L2 norm.

Sub-sampling. The geometric blur of a signal should be sub-sampled using
a pattern that matches the amount of blur introduced. In particular in the
periphery fewer samples are required. For the kernel we consider above this
implies a density of samples decreasing linearly with distance from the origin.
The sampling pattern used in these experiments is shown in Figure 8.

A quick summary of steps for computing geometric blur descriptors for an
image follows:

1. Detect feature locations: oriented edge detectors.
2. Choose interest points: random sampling with repulsion on points with high

edge energy.
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3. Compute multiple blurred versions of the channels: using the spatially vary-
ing Gaussian kernel described above.

4. Around each interest point, for each channel, sample points according to the
dart-board pattern in Figure 8. These samples should be drawn from the
appropriate blurred version of the channel.

5. These samples form the geometric blur descriptors.

The descriptors are compared using normalized correlation.

2.6 Comparison to SIFT

The geometric blur descriptor in this work is used to measure rough similarity
in structure. There are currently a number of somewhat similar descriptors for
local structure. We will use SIFT as an example to illustrate the differences.5

The first difference is the region of interest operator. SIFT is usually used in
conjunction with a region of interest operator based on finding local maxima of a
scale space operator based on the difference of Gaussians applied to pixel values.
For views of the same object this works quite well, providing repeatable regions,
but in the presence of intra-category variation this is no longer the case.6 The
region of interest operator we use is based simply on edge response, which is
more repeatable across intra-category variation. The scale of the descriptor is
tied to the object scale as described section 2.5. It is worth noting that in general
the scale relative to the edge features is much larger that commonly found with
the SIFT region of interest operator. This larger scale allows more context to be
used.

The relatively large context of the geometric blur based descriptors requires
more tolerance of change in the signal, which is accomplished by the radially
increasing blur. One way to think of the SIFT descriptor is as constant blur
with a grid subsampling pattern (4x4) instead of the dart-board pattern used
for the geometric blur descriptor. As the relative size of the patch considered
increases the difference between constant blur and geometric blur increasing
linearly with distance becomes larger.

Finally the underlying features for the geometric blur based descriptor de-
scribed in this chapter and SIFT are both based on oriented edge maps, with
slightly different details in engineering. In particular the number of orientations,
non-max suppression, and sometimes use of the pb detector from Martin et al[23].

5 Shape contexts [3] are also quite similar in spirit to geometric blur based descriptors.
The main differences are the hard decision about feature presence and location with
shape contexts vs soft decision for both using geometric blur. Work on geometric
blur introduced the connection between blur increasing linearly with distance and
robustness to affine distortion, which was later used to justify the sampling pattern
in shape contexts.

6 It is important to note that some features will be reliably found even in the presence
of intra-category variation, in order to find good alignment we require more matches,
and so must tolerate more variation. The trick is to maintain discriminative infor-
mation while being tolerant of more variation.
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It is the smoothing and subsampling of the edge maps along with the region of
interest operator where most differences arise.

Generally the SIFT type descriptors are suited to identifying parts of the same
object from multiple views, while the geometric blur based descriptor described
here is designed to evaluate potential similarity under intra-class variation ex-
ploiting larger support and spatially varying blur. There are many choices for
descriptors, the experiments later in the chapter indicate that a generic geomet-
ric blur based descriptor fares well as part of a correspondence algorithm for a
wide variety of object categories.

3 Geometric Distortion

Local shape similarity measurements are not sufficient to identify similar shapes.
In order to combine local shape similarity measurements using geometric blur
descriptors we need some way of measuring changes in the entire shape. This is
accomplished be measuring the distortion in the configuration of feature points
induced by a correspondence.

We consider correspondences between feature points {pi} in model image
P and {qj} in image Q. A correspondence is a mapping σ indicating that pi

corresponds to qσ(i). To reduce notational clutter we will sometimes abbreviate
σ(i) as i′, so σ maps pi to qi′ .

The quality of a correspondence is measured in two ways: how similar fea-
ture points are to their corresponding feature points, and how much the spatial
arrangement of the feature points is changed. We refer to the former as the
match quality, and the later as the distortion of a correspondence.

We express the problem of finding a good correspondence as minimization of a
cost function defined over correspondences. This cost function has a term for the
match quality and for the geometric distortion of a correspondence: cost(σ) =
ωmCmatch(σ) + ωdCdistortion(σ)

Where constants ωm and ωd weigh the two terms. The match cost for a
correspondence is:

Cmatch(σ) =
∑

i

c(i, i′) (6)

Where c(i, j) is the cost of matching i to j in a correspondence. We use the
negative of the correlation between the feature descriptors at i and j as c(i, j).

We use a distortion measure computed over pairs of model points in an image.
This will allow the cost minimization to be expressed as an integer quadratic
programming problem.

Cdistortion(σ) =
∑
ij

H(i, i′, j, j′) (7)

Where H(i, j, k, l) is the distortion cost of mapping model points i and j to k
to l respectively. While there are a wide variety of possible distortion measures,
including the possibility of using point descriptors and other features, in addition
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to location, we concentrate on geometric distortion and restrict ourselves to
measures based on the two offset vectors rij = pj − pi and si′j′ = qj′ − qi′ .

Cdistortion(σ) =
∑
ij

distortion(rij , si′j′) (8)

Our distortion cost is made up of two components:

Cdistortion(σ) =
∑
ij

γda(σ) + (1− γ)dl(σ) (9)

da(σ) =
(

αd

|rij |+ βd

) ∣∣∣∣arcsin
(
si′j′ × rij

|si′j′ ||rij |

)∣∣∣∣ (10)

dl(σ) =
||si′j′ | − |rij ||
|rij |+ μd

(11)

where da penalizes the change in direction, and dl penalizes change in length.7

A correspondence σ resulting from pure scale and translation will result in
da(σ) = 0, while σ resulting from pure translation and rotation will result in
dl(σ) = 0. The constants αd, βd, μd, are all terms allowing slightly more flexibil-
ity for nearby points in order to deal with local “noise” factors such as sampling,
localization, etc. They should be set relative to the scale of these local phe-
nomena. The constant γ weighs the angle distortion term against the length
distortion term.

Outliers. Each point pi, in P , is mapped to a qσ(i), in Q. This mapping auto-
matically allows outliers in Q as it is not necessarily surjective – points qj may
not be the image any point pi under σ. We introduce an additional point qnull
and use σ(i) = null to allow a point pi to be an outlier. We limit the number
of points pi which can be assigned to qnull, thus allowing for outliers in both P
and Q.

4 Correspondence Algorithm

Finding an assignment to minimize a cost function described by the terms in
Equations 7 and 6 above can be written as an Integer Quadratic Programming
(IQP) problem.

cost(x) =
∑
a,b

H(a, b)xaxb +
∑

a

c(a)xa (12)

Where the binary indicator variable x has entries xa, that if 1, indicate σ(ai) =
aj . We then have H(a, b) = H(ai, aj, bi, bj), and c(a) = c(ai, aj) from Equations
7 and 6.
7 It is possible to construct a pairwise distortion measure based on bending energy

which is compatible with the thin plate spline we use alter for interpolation [29],
however we are interested in more structured transformations such as rotation and
scaling, resulting in the simple distortion measure presented here.
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Fig. 9. An exemplar with a subset of feature points marked (left), the novel “probe”
image with all feature points in white, and the feature points found to correspond
with the exemplar feature points marked in corresponding colors (left center), the
exemplar with all its feature points marked in color, coded by location in the image
(right center), and the probe with the exemplar feature points mapped by a thin
plate spline transform based on the correspondences, again colored by position in the
exemplar (far right). See Figure 10 for more examples.

We constrain x to represent an assignment. Write xij in place of xaiaj . We
require

∑
j xij = 1 for each i. Furthermore if we allow outliers as discussed in

Section 3, then we require
∑

i xinull ≤ k, where k is the maximum number of
outliers allowed. Using outliers does not increase the cost in our problems, so
this is equivalent to

∑
i xinull = k. Each of these linear constraints are encoded

in a row of A and an entry of b. Replacing H with a matrix having entries
Hab = H(a, b) and c with a vector having entries ca = c(a). We can now write
the IQP in matrix form:

min cost(x) =x′Hx+ c′x subject to, (13)
Ax = b, x ∈ {0, 1}n

4.1 Approximation

Integer Quadratic Programming is NP-hard, however specific instances may be
easy to solve. We follow a two step process that results in good solutions to our
problem. We first find the minimum of a linear bounding problem, an approx-
imation to the quadratic problem, then follow local gradient descent to find a
locally minimal assignment. Although we do not necessarily find global minima
of the cost function in practice the results are quite good.

We define a linear objective function over assignments that is a lower bound
for our cost function in two steps. First compute qa = min

∑
b Habxb. Note that

from here on we will omit writing the constraints Ax = b and x ∈ {0, 1}n for
brevity.

If xa represents σ(i) = j then qa is a lower bound for the cost contributed
to any assignment by using σ(i) = j. Now we have L(x) =

∑
a(qa + ca)xa as a

lower bound for cost(x) from Equation 13. This construction follows [22], and is
a standard bound for a quadratic program. Of note is the operational similarity
to geometric hashing.

The equations for qa and L are both integer linear programming problems, but
since the vertices of the constraint polytopes lie only on integer coordinates, they
can be relaxed to linear programming problems without changing the optima,
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and solved easily. In fact due to the structure of the problems in our setup they
can be solved explicitly by construction. If n is the length of x, each problem
takes O(n) operations with a very small constant. Computing qa for a = 1 . . . n
requires O(n2) time.

We then perform gradient descent changing up to two elements of the assign-
ment at each step. This takes O(n2) operations per step, and usually requires a
very small number of steps (we put an upper bound on the number of steps). In
practice we can solve problems with m = 50 and n = 2550, 50 possible matches
for each of 50 model points with outliers, in less than 5 seconds.

4.2 Example Correspondences

Given a model image P of an object, and a target image Q, possibly containing
an instance of a similar object we find a correspondence between the images as
follows:

1. Extract sparse oriented edge maps from each image.
2. Compute features based on geometric blur descriptors at locations with high

edge energy.
3. Allow each of m feature points from P to potentially match any of the k

most similar points in Q based on feature similarity and or proximity.
4. Construct cost matrices H and c as in Section 3.
5. Approximate the resulting Binary Quadratic Optimization to obtain a cor-

respondence. Store the cost of the correspondence as well.
6. Extend the correspondence on m points to a smooth map using a regularized

thin plate spline [28].

See Figures 9 and 10 for a number of examples. In the leftmost column of
the figures is the image, P , shown with m points marked in color. In the middle
left column is the target image Q with the corresponding points found using
our algorithm. A regularized thin plate spline is fit to this correspondence to
map the full set of feature points on the object in P , shown in the middle
right column, to the target, as shown on the far right column. Corresponding
points are colored the same and points are colored based on their position (or
corresponding position) in P – in P colors are assigned in uniform diagonal
stripes, the distortion of these striped in the far right column of the figure gives
some idea of the distortion in the correspondence.

5 Object Recognition

The Caltech 101 [10] dataset consists of images from 101 categories of objects:
from accordion to kangaroo to yin-yang8. Example images from 100 of the cat-
egories can be seen in Figure 13. There are a wide variety of image categories:
man-made objects, animals, indoor images and outdoor images, drawings, etc.
8 Available from http://www.vision.caltech.edu/Image Datasets/Caltech101/Caltech101.html
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Fig. 10. Each row shows an alignment found using our technique described in section
4. Leftmost is an exemplar with some feature points marked. Left center is a probe
image with the correspondences found indicated by matching colors (all possible feature
matches are shown with white dots). All of the feature points on the exemplar are shown
center right, and their image using a thin plate spline warp based on the correspondence
are shown in the right most image of the probe. Note the ability to deal with clutter
(1,6), scale variation(3), intraclass variation (all), also the whimsical shape matching
(2), and the semiotic difficulty of matching a bank note to the image of a bank note
painted on another object (5).

In addition many of the images have background clutter. There are up to 800
images in a category, although many categories contain 50 or fewer images. Some
categories offer more variation and clutter than others.
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6 Recognition Experiments

Our recognition framework is based on nearest neighbors.

Preprocessing: For each object class we store a number of exemplars, possibly
replicated at multiple scales, and compute features for all of the exemplars.
Features are only computed on the support of the objects. At this point object
supports are marked by hand. Section 9 shows how to find them automatically.

Indexing: Extract features from a query image. For each feature point in an ex-
emplar, find the best matching feature point in the query based on normalized
correlation of the geometric blur descriptors. The mean of these best correla-
tions9 is the similarity of the exemplar to the query. We form a shortlist of the
exemplars with highest similarity to the query image.

Correspondence: Find a correspondence from each exemplar in the shortlist
to the query as described above. Pick the exemplar with the least cost.

We address two object recognition problems, multi-class recognition and face
detection. In the multiple object class recognition problem, given an image of an
object we must identify the class of the object and find a correspondence with an
exemplar. We use the Caltech 101 object class dataset consisting of images from
101 classes of objects: from accordion to kangaroo to yin-yang, available at [7].
This dataset includes significant intra class variation, a wide variety of classes,
and clutter. On average we achieve 45% accuracy on object classification with
quite good localization on the correctly classified objects.

We also consider face detection for large faces, suitable for face recognition
experiments. Here the task is to detect and localize a number of faces in an
image. The face dataset we use is sampled from the very large dataset used
in [6] consisting of news photographs collected from yahoo.com. With only 20
exemplar faces our generic system provides a ROC curve with slightly better
generalization, and slightly worse false detection rate than the quite effective
specialized face detector of Mikolajczyk [24] used in [6].

For each image, edges are extracted at four orientations and a fixed scale.
For the Caltech dataset where significant texture and clutter are present, we use
the boundary detector of [23] at a scale of 2% of the image diagonal. With the
face dataset, a quadrature pair of even and odd symmetric Gaussian derivatives
suffices. We use a scale of σ = 2 pixels and elongate the filter by a factor of 4 in
the direction of the putative edge orientation.

Geometric blur features are computed at 400 points sampled randomly on the
image with the blur pattern shown in Figure 8. We use a maximum radius of 50
pixels (40 for faces), and blur parameters α = 0.5 and β = 1.

For correspondence we use 50 (40 for faces) points, sampled randomly on edge
points, in the correspondence problem. Each point is allowed to match to any
of the most similar 40 points on the query image based on feature similarity. In
addition for the Caltech 101 dataset we use γ = 0.9 allowing correspondences
9 Some normalization is necessary to deal with relatively smaller or larger objects with

fewer or more descriptors.
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Fig. 11. For a probe or query image exemplars are ranked according to feature simi-
larity. We plot the percentage of probes for which an exemplar of the correct class was
found in the shortlist. Here the first exemplar is correct 41% of the time. Left Full
curve. Right Curve up to shortlist length 100 for detail.

with significant variation in scale, while for the faces dataset we handle scale
variation partly by repeating exemplars at multiple scales and use γ = 0.5.

7 Caltech 101 Results

Basic Setup: Fifteen exemplars were chosen randomly from each of the 101
object classes and the background class, yielding a total 1530 exemplars. For
each class, we select up to 50 testing images, or “probes” excluding those used
as exemplars. Results for each class are weighted evenly so there is no bias toward
classes with more images.

The spatial support of the objects in exemplars is acquired from human la-
beling. The top entry in the shortlist is correct 41% of the time. One of the top
20 entries is correct 75% of the time. (Figure 11).

Recognition and Localization. Using each of the top ten exemplars from
the shortlist we find a good correspondence in the probe image. We do this
by first sampling 50 locations on the exemplar object and allowing each to be
matched to its 50 best matching possibilities in the probe with up to 15% outliers.
This results in a quadratic programming problem of dimension 2550. We use a
distortion cost based mainly on the change in angle of edges between vertices
(γ = 0.9). This allows matches with relatively different scales (Figure 10 line
3). The exemplar with the lowest distortion correspondence gives 45% correct
classification, at the same time providing localization. Note that this is using a
simple nearest neighbor classifier and generative models. A baseline experiment
comparing gray scale images using SSD and 1-nearest neighbor classification
gives 16%. At press, the best results from the Caltech group are 40% using
discriminative methods [15]. No other techniques have addressed correspondence
at the level of detail presented here.
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Mikolajczyk’s Face Detector
This Work

Fig. 12. Top ROC curves for our face detector using 20 exemplar images of faces (split
between frontal and profile) and the detector of Mikolajczyk. Mikolajczyk’s detector
has proven to be effective on this dataset. simply finding sets of feature points in an
image that have a good correspondence, based on distortion cost, to an exemplar. Good
correspondences allow detection and localization of faces using a simple generative
model, no negative examples were used. bottom Detections from our face detector
marked with rectangles.
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Fig. 13. Example images from 100 of the categories in the Caltech 101 dataset

Multiscale. We compute exemplar edge responses and features at a second scale
for each exemplar resulting in twice as many exemplars. This improves shortlist
performance by 1% or less, and does not change recognition performance. This
illustrates the general lack of scale variation in Caltech 101. The face dataset
exhibits a large range of scale variation.

8 Face Detection Results

We apply the same technique to detecting medium to large scale faces for use
in face recognition experiments. The face dataset is sampled from the very large
dataset in [6] consisting of A.P. news photographs. A set of 20 exemplar faces
split between front, left, and right facing, was chosen from the database by
hand, but without care. The test set was selected randomly from the remaining
images on which the face detector of [24] found at least one 86×86 pixels or
larger face. We use the generic object recognition framework described above,
but after finding the lowest cost correspondence we continue to look for others.
A comparison of the ROC curves for our detector and that of [24] is found in
Figure 12. Our detector has an advantage in generalization, while producing
more false positives. While not up the the level of specialized face detectors,
these are remarkably good results for a face detector using 20 exemplars and a
generative model for classification, without any negative training examples.

9 Automatic Segmentation

In the recognition experiments above, exemplar objects were hand segmented
from their backgrounds. This can be automated by finding the repetitive aspects
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Hand Segmentation
Automatic Segmentation

Fig. 14. Illustrating automatic model segmentation: One training image (a.) the re-
maining 14 training images (b.) darkness of the central circle for each feature indicates
how well on average the area around the feature point matched after aligning transforms
to each of the other training images (c.) At lower right, the percentage of probes for which
an exemplar of the correct class was found in the shortlist. The darker curve shows per-
formance with hand segmented exemplars, the lighter curve shows performance with
automatically segmented exemplars. For hand segmented exemplars the first exemplar
is correct 41% of the time, for automatically segmented exemplars 45%. (d.)

of objects in the example images. Starting with a set of example images {Ii}
from an object class find the support of the object in an image Ii0 as follows.
For each image Ij where j 
= i0 :

1. Find a correspondence from Ii0 to Ij .10

2. Use a regularized thin plate spline to map all of the feature points in Ii0 to
Ij .

3. For each mapped feature from Ii0 , the quality of the match is the similarity
to the best matching nearby feature in Ij .

10 Here we allow 40% outliers instead of 15% as used in the recognition experiments.
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The median quality of match for a feature is the measure of how common that
feature is in the training images.

Feature points with median quality within 90% of the best for that image are
considered part of the object. Repeating the recognition experiments in Section 7,
the shortlist accuracy improves by 1-4% (Fig. 14). While the estimated support
is usually not perfect, recognition performance is similar to that using hand
segmented images, 45%.

The learned models of support reflect a region of the image that is consistent
across training images, as opposed to individual discriminative features. For
instance the cheek on a face is not by itself discriminative for faces, but when
considering faces transformed into alignment the cheek is usually consistent.
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Abstract. We present a method for object categorization in real-world
scenes. Following a common consensus in the field, we do not assume that
a figure-ground segmentation is available prior to recognition. However,
in contrast to most standard approaches for object class recognition, our
approach automatically segments the object as a result of the catego-
rization.

This combination of recognition and segmentation into one process is
made possible by our use of an Implicit Shape Model, which integrates
both capabilities into a common probabilistic framework. This model
can be thought of as a non-parametric approach which can easily handle
configurations of large numbers of object parts. In addition to the recog-
nition and segmentation result, it also generates a per-pixel confidence
measure specifying the area that supports a hypothesis and how much it
can be trusted. We use this confidence to derive a natural extension of the
approach to handle multiple objects in a scene and resolve ambiguities
between overlapping hypotheses with an MDL-based criterion.

In addition, we present an extensive evaluation of our method on
a standard dataset for car detection and compare its performance to
existing methods from the literature. Our results show that the proposed
method outperforms previously published methods while needing one
order of magnitude less training examples. Finally, we present results for
articulated objects, which show that the proposed method can categorize
and segment unfamiliar objects in different articulations and with widely
varying texture patterns, even under significant partial occlusion.

1 Introduction

The goal of our work is object categorization in real-world scenes. That is, given
some training examples of an object category, we want to recognize a-priori un-
known instances of that category, assign the correct category label, and localize
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them in novel images. In order to transfer this capability to new domains, it is
especially important that class characteristics be learned instead of hard-coded
into the system. Therefore, we aim to learn solely from example images.

In order to learn an object category, we pursue a two-staged approach. In the
first step, we learn a Codebook of Local Appearance that contains information
which local structures may appear on objects of the target category. Next, we
learn an Implicit Shape Model that specifies where on the object the codebook
entries may occur. As the name already suggests, we do not try to define an
explicit model for all possible shapes a class object may take, but instead define
“allowed” shapes implicitly in terms of which local appearances are consistent
with each other. The advantages of this approach are its greater flexibility and
the smaller number of training examples it needs to see in order to learn possible
object shapes. For example, when learning to categorize articulated objects such
as cows, our method does not need to see every possible articulation in the
training set. It can combine the information of a front leg seen on one training
cow with the information of a rear leg from a different cow to recognize a test
image with a novel articulation, since both leg positions are consistent with the
same object hypothesis.

This idea is similar in spirit to approaches that represent novel objects by a
combination of class prototypes [11], or of familiar object views [23]. However,
the main difference of our approach is that here the combination does not occur
between entire exemplar objects, but through the use of local image patches,
which again allows a greater flexibility. Also, the Implicit Shape Model is formu-
lated in a probabilistic framework that allows us to obtain a category-specific
segmentation as a result of the recognition process. This segmentation can then
in turn be used to improve the recognition results. In particular, we obtain a
per-pixel confidence measure specifying how much both the recognition and the
segmentation result can be trusted.

In addition, we extend the method to handle multiple objects in a scene
and effectively resolve ambiguities between overlapping hypotheses by a novel
criterion based on the MDL principle. We also extensively evaluate the method
on two large data sets and compare its performance to existing methods from the
literature. Our results show a significant improvement over previously published
methods. Finally, we present results for articulated objects, which show that
the proposed method can categorize and segment unfamiliar objects in different
articulations, with widely varying texture patterns, and under significant partial
occlusion.

The chapter is structured as follows. The next section discusses related work.
After that, we describe the recognition approach and its extension to generate
category-specific segmentations. Section 4 then presents an evaluation on a car
detection task. Using the segmentation obtained in the previous step, Section 5
extends the approach to resolve ambiguities between multiple object hypothe-
ses with an MDL-based criterion and compares our performance to existing
methods. Finally, Section 6 shows experimental results for the recognition and
segmentation of articulated objects. A final discussion concludes our work.



510 B. Leibe, A. Leonardis, and B. Schiele

2 Related Work

Various shape models have been used for the recognition of object classes. When
regularly textured objects are used, the shape can be modelled by spatial fre-
quency statistics of texture descriptors [21]. For detection and recognition of more
general object classes, many current methods learn global or local features in fixed
configurations [22,20,24]. Since they treat the object as a whole, such approaches
need a large number of training examples. Others learn the assembly of hand-
selected object parts using configuration classifiers [19] or by modelling the joint
spatial probability distribution [4]. Weber & Perona [25] also learn the local parts
and explicitly compute their joint distribution. Fergus et al. [8] extend this ap-
proach to scale-invariant object parts and estimate their joint spatial and appear-
ance distribution. However, the complexity of this combined estimation step re-
stricts their methods to a small number of parts. Agarwal & Roth [1] keep a larger
number of object parts and apply a feature-efficient classifier for learning spatial
configurations between pairs of parts. However, their learning approach relies on
the repeated observation of cooccurrences between the same parts in similar spa-
tial relations, which again requires a large number of training examples.

The idea to use top-down knowledge to drive the segmentation process has re-
cently developed into an area of active research. Approaches, such as Deformable
Templates [27], or Active Appearance Models [7], are typically used when the
object of interest is known to be present in the image and an initial estimate of
its size and location can be obtained. Borenstein & Ullman [3] generate class-
specific segmentations by combining object fragments in a jigsaw-puzzle fashion.
However, their approach assumes only a single object to be present in the scene.
Yu & Shi [26] present a parallel segmentation and recognition system in a graph
theoretic framework, but only for a set of known objects.

Our approach integrates the two processes of recognition and segmentation
in a common probabilistic framework. Given a set of training examples from
an object class, it is able to automatically learn a category representation and
recognize and segment a-priori unknown objects of this class in novel settings.
By representing allowed part configurations in terms of an implicit model, it
retains high flexibility while making efficient use of the available training data.
The following sections describe this combination in detail.

3 Approach

In order to represent the appearance variability of an object category C, we
introduce an Implicit Shape Model ISM(C) = (IC , PI,C), which consists of a
class-specific alphabet IC (in the following termed a codebook) of local appear-
ances that are prototypical for the object category, and of a spatial probability
distribution PI,C which specifies where each codebook entry may be found on
the object.

We make two explicit design choices for the probability distribution PI,C . The
first is that the distribution is defined independently for each codebook entry.
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Fig. 1. The recognition procedure. Image patches are extracted around interest points
and compared to the codebook. Matching patches then cast probabilistic votes, which
lead to object hypotheses that can later be refined. Based on the refined hypotheses,
we compute a category-specific segmentation.

This makes the approach flexible, since it allows to combine object parts during
recognition that were initially observed on different training examples. In ad-
dition, it enables us to learn recognition models from relatively small training
sets, as our experiments in Sections 4 and 6 demonstrate. The second constraint
is that the spatial probability distribution for each codebook entry is estimated
in a non-parametric manner. The method is thus able to model the true dis-
tribution in as much detail as the training data permits instead of making an
oversimplifying Gaussian assumption.

The rest of this section explains how this learning and modeling step is im-
plemented and how the resulting implicit model is used for recognition.

3.1 A Codebook of Local Appearance

In order to generate a codebook of local appearances of a particular object
category, we use an approach inspired by the work of Agarwal and Roth [1].
From a variety of images, patches of size 25 × 25 pixels are extracted with the
Harris interest point detector [10]. Starting with each patch as a separate cluster,
agglomerative clustering is performed: the two most similar clusters C1 and C2
are merged as long as the average similarity between their constituent patches
(and thus the cluster compactness) stays above a certain threshold t:

similarity(C1, C2) =

∑
p∈C1,q∈C2

NGC(p, q)
|C1| × |C2|

> t, (1)

where the similarity between two patches is measured by Normalized Greyscale
Correlation (NGC):

NGC(p, q) =
∑

i(pi − pi)(qi − qi)√∑
i(pi − pi)2

∑
i(qi − qi)2

(2)
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This clustering scheme guarantees that only those patches are grouped which are
visually similar, and that the resulting clusters stay compact, a property that
is essential for later processing stages. From each resulting cluster, we compute
the cluster center and store it in the codebook.

Rather than to use this codebook directly to train a classifier, as in [1], we
use them to define our Implicit Shape Model. For this, we perform a second
iteration over all training images and match the codebook entries to the images
using the NGC measure. Instead of taking the best-matching codebook entry
only, we activate all entries whose similarity is above t, the threshold already
used during clustering. For every codebook entry, we store all positions it was
activated in, relative to the object center.

During recognition, we use this information to perform a Generalized Hough
Transform [2,17]. Given a test image, we extract image patches and match them
to the codebook to activate codebook entries. Each activated entry then casts
votes for possible positions of the object center. Figure 1 illustrates this proce-
dure. It is important to emphasize that we use a continuous voting space in order
to avoid discretization artefacts. We search for hypotheses as maxima in the vot-
ing space using Mean-Shift Mode Estimation [5,6]. For promising hypotheses, all
contributing patches are collected (Fig. 1(bottom)), therefore visualizing what
the system reacts to. Moreover, we can refine the hypothesis by sampling all the
image patches in its surroundings, not just those locations returned by the in-
terest point detector. As a result, we get a representation of the object including
a certain border area.

3.2 Probabilistic Formulation

In the following, we cast this recognition procedure into a probabilistic frame-
work [13,12]. Let e be our evidence, an extracted image patch observed at loca-
tion ". By matching it to our codebook, we obtain a set of valid interpretations
Ii. Each interpretation is weighted with the probability p(Ii|e, "). If a codebook
cluster matches, it can cast its votes for different object positions. That is, for
every Ii, we can obtain votes for several object identities on and positions x
according to its spatial probability distribution P (on, x|Ii, "). Formally, this can
be expressed by the following marginalization:

p(on, x|e, ") =
∑

i

P (on, x|e, Ii, ")p(Ii|e, "). (3)

Since we have replaced the unknown image patch by a known interpretation, the
first term can be treated as independent from e. In addition, we match patches
to the codebook independent of their location. The equation thus reduces to

p(on, x|e, ") =
∑

i

P (on, x|Ii, ")p(Ii|e). (4)

=
∑

i

P (x|on, Ii, ")p(on|Ii, ")p(Ii|e). (5)

The first term is the probabilistic Hough vote for an object position given its
identity and the patch interpretation. The second term specifies a confidence
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that the codebook cluster is really matched on the object as opposed to the
background. This can be used to include negative examples in the training.
Finally, the third term reflects the quality of the match between image patch
and codebook cluster.

By basing the decision on single-patch votes, assuming a uniform prior for
the patches, and collecting contributing votes over a tolerance window W (x), we
obtain

score(on, x) =
∑

k

∑
xj∈W (x)

p(on, xj |ek, "k). (6)

From this probabilistic framework, it immediately follows that the p(Ii|e) and
p(x|on, Ii, ") should both sum to one. In our experiments, we spread the weight
p(Ii|e) uniformly over all valid patch interpretations (setting p(Ii|e) = 1

|I| , with
|I| the number of matching codebook entries), but it would also be possible to
let the p(Ii|e) distribution reflect the relative matching scores.

By this derivation, we have embedded the Hough voting strategy in a proba-
bilistic framework. In this context, the Mean-Shift search over the voting space
can be interpreted as a Parzen window probability density estimation for the
correct object location. The power of this approach lies in its non-parametric
nature. Instead of making Gaussian assumptions for the codebook cluster dis-
tribution on the object, our approach is able to model the true distribution in
as much detail as is possible from the observed training examples.

3.3 Object Segmentation

In this section, we describe a probabilistic formulation for the segmentation prob-
lem (as derived in [13]). As a starting point, we take a refined object hypothesis
h = (on, x) obtained by the algorithm from the previous section. Based on this
hypothesis, we want to segment the object from the background.

Up to now, we have only dealt with image patches. For the segmentation,
we now want to know whether a certain image pixel p is figure or ground,
given the object hypothesis. More precisely, we are interested in the probability
p(p = figure|on, x). The influence of a given patch e on the object hypothesis
can be expressed as

p(e, "|on, x) =
p(on, x|e, ")p(e, ")

p(on, x)
=
∑

I P (on, x|I, ")p(I|e)p(e, ")
p(on, x)

(7)

where the patch votes p(on, x|e, ") are obtained from the codebook, as described
in the previous section. Given these probabilities, we can obtain information
about a specific pixel by marginalizing over all patches that contain this pixel:

p(p = figure|on, x) =
∑

p∈(e,�)

p(p = figure|on, x, e, ")p(e, "|on, x) (8)

with p(p = figure|on, x, e, ") denoting patch-specific segmentation information,
which is weighted by the influence p(e, "|on, x) the patch has on the object hy-
pothesis. Again, we can resolve patches by resorting to learned patch interpre-
tations I stored in the codebook:
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p(p = figure|on, x)=
∑

p∈(e,�)

∑
I

p(p=fig.|on, x, e, I, ")p(e, I, "|on, x) (9)

=
∑

p∈(e,�)

∑
I

p(p=fig.|on, x, I, ")
P (on, x|I, ")p(I|e)p(e, ")

p(on, x)
(10)

This means that for every pixel, we build a weighted average over all segmen-
tations stemming from patches containing that pixel. The weights correspond to
the patches’ respective contributions to the object hypothesis. For the ground
probability, the result is obtained in an analogue fashion.

The most important part in this formulation is the per-pixel segmentation
information p(p = figure|on, x, I, "), which is only dependent on the matched
codebook entry, no longer on the image patch. In our approach, we implement
this probability by keeping a separate segmentation mask for every stored oc-
currence position of each codebook entry. These patch figure-ground masks are
extracted from a reference segmentation given for each training image. Further,
we assume uniform priors for p(e, ") and p(on, x), so that these elements can be
factored out of the equations. In order to obtain a segmentation of the whole
image from the figure and ground probabilities, we build the likelihood ratio for
every pixel:

L =
p(p = figure|on, x)
p(p = ground |on, x)

. (11)

Figure 7 shows example segmentations of cars, together with p(p=figure|on, x),
the system’s confidence in the segmentation result. The darker a pixel, the higher
its probability of being figure. The lighter it is, the higher its probability of being
ground. The uniform gray region in the background of the segmentation image
does not contribute to the object hypothesis and is therefore considered neutral.
The estimate of how much the obtained segmentation can be trusted is espe-
cially important when the results shall later be combined with other cues for
recognition or segmentation. It is also the basis for our MDL-based hypothesis
selection criterion described in Section 5.

4 Results

In order to compare our method’s performance to state-of-the-art approaches,
we applied it to the UIUC car database [1]. This test set consists of 170 images
containing a total of 200 sideviews of cars. The images include instances of par-
tially occluded cars, cars that have low contrast with the background, and images
with highly textured backgrounds. In the dataset, all cars are approximately the
same size.

Together with the test set, Agarwal & Roth provide a training set of 550 car
and 500 non-car images. In our experiments, we do not use this training set, but
instead train on a much smaller set of only 50 hand-segmented images (mirrored
to represent both car directions) that were originally prepared for a different ex-
periment. In particular, our training set contains both European and American
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Fig. 2. Results on the UIUC car database with and without the MDL hypothesis
verification stage

cars, whereas the test set mainly consists of American-style sedans and limou-
sines. Thus, our detector remains more general and is not tuned to the specific
test conditions. The original data set is at a relatively low resolution (with cars
of size 100*40 pixels). Since our detector is learned at a higher resolution, we
rescaled all images by a constant factor prior to recognition (Note that this step
does not increase the images’ information content). All experiments were done
using the evaluation scheme and detection tolerances from [1].

Figure 2 shows a recall-precision curve (RPC) of our method’s performance.
As can be seen from the figure, our method succeeds to generalize from the
small training set and achieves good detection results with an Equal Error Rate
(EER) of 91%. Analyzing the results on the test set, we observed that a large
percentage of the remaining false positives are due to secondary hypotheses,
which contain only one of the car’s wheels, e.g. the rear wheel, but hypothesize
it to be the front wheel of an adjoining car (see Figure 3 for an example). This
problem is particularly prominent in scenes that contain multiple objects. The
following section derives a hypothesis verification criterion which resolves these
ambiguities in a natural fashion and thus improves the recognition results.

5 Multiple-Object Scene Analysis

As already mentioned in the previous section, a large number of the initial false
positives are due to secondary hypotheses which overlap part of the object.
This is a common problem in object detection. Generating such hypotheses is a
desired property of a recognition algorithm, since it allows the method to cope
with partial occlusions. However, if enough support is present in the image, the
secondary detections should be sacrificed in favor of other hypotheses that better
explain the image. Usually, this problem is solved by introducing a bounding box
criterion and rejecting weaker hypotheses based on their overlap. However, such
an approach may lead to missed detections, as the example in Figure 3 shows.
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Fig. 3. (left) Two examples for overlapping hypotheses (in black); (middle) p(p =
figure |h) probabilities for the front and (right) for the overlapping hypotheses. As can
be seen, the overlapping hypothesis in the above example is fully explained by the two
correct detections, while the one in the lower example obtains additional support from
a different region in the image.

Here the overlapping hypothesis really corresponds to a second car, which would
be rejected by the simple bounding box criterion. However, since our algorithm
provides us with an object segmentation together with the hypotheses, we can
improve on this. In the following, we derive a criterion based on the principle of
Minimal Description Length (MDL), inspired by the approach pursued in [16].

The MDL principle is an information theoretic formalization of the general
notion to prefer simple explanations to more complicated ones. In our context,
a pixel can be described either by its grayvalue or by its membership to a scene
object. If it is explained as part of an object, we also need to encode the presence
of the object (“model cost”), as well as the error that is made by this representa-
tion. The MDL principle states that the best encoding is the one that minimizes
the total description length for image, model, and error.

In accordance with the notion of description length, we can define the savings
[16] in the encoding that can be obtained by explaining part of an image by the
hypothesis h:

Sh = K0Sarea −K1Smodel −K2Serror (12)

In this formulation, Sarea corresponds to the number N of pixels that can be
explained by h; Serror denotes the cost for describing the error made by this
explanation; and Smodel describes the model complexity. In our implementation,
we assume a fixed cost Smodel = 1 for each additional scene object. As an
estimate for the error we use

Serror =
∑

p∈Seg(h)

(1 − p(p = figure|h)) (13)

that is, over all pixels that are hypothesized to belong to the segmentation of h,
we sum the probabilities that these pixels are not figure.
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Our algorithm 97.5%

Fig. 4. Comparison of our results on the UIUC car database with others reported in
the literature

The constants K0, K1, and K2 are related to the average cost of specifying
the segmented object area, the model, and the error, respectively. They can
be determined on a purely information-theoretical basis (in terms of bits), or
they can be adjusted in order to express the preference for a particular type of
description. In practice, we only need to consider the relative savings between
different combinations of hypotheses. Thus, we can divide Eq(12) by K0 and,
after some simplification steps, we obtain

Sh = −K1

K0
+ (1− K2

K0
)N +

K2

K0

∑
p∈Seg(h)

p(p = figure|h). (14)

This leaves us with two parameters: K2
K0

, which encodes the relative importance
that is assigned to the support of a hypothesis, as opposed to the area it ex-
plains; and K1

K0
, which specifies the total weight a hypothesis must accumulate

in order to provide any savings. Good values for these parameters can be found
by considering some limiting cases, such as the minimum support a hypothesis
must have in the image, before it should be accepted.

Using this framework, we can now resolve conflicts between overlapping hy-
potheses. Given two hypotheses h1 and h2, we can derive the savings of the
combined hypothesis (h1 ∪ h2):

Sh1∪h2 = Sh1 + Sh2 − Sarea(h1 ∩ h2) + Serror(h1 ∩ h2) (15)

Both the overlapping area and the error can be computed from the segmentations
obtained in Section 3.3. Let h1 be the stronger hypothesis of the two. Under the
assumption that h1 opaquely occludes h2, we can set p(p = figure|h2) = 0
wherever p(p = figure|h1) > p(p = ground |h1), that is for all pixels that belong
to the segmentation of h1. Rather than to search for the globally optimal solution,
which may become untractable, it is sufficient for our application to consider only
pairwise combinations, as argued in [16].
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Fig. 5. Example detections on difficult images from the test set

5.1 Experimental Results

Figure 2 shows the results on the UIUC car database when the MDL criterion
is applied as a verification stage. As can be seen from the figure, the results
are significantly improved, and the EER performance increases from 91% to
97.5%. Without the verification stage, our algorithm could reach this recall rate
only at the price of a reduced precision of only 74.1%. This means that for
the same recall rate, the verification stage manages to reject 64 additional false
positives while keeping all correct detections. In addition, the results become
far more stable over a wider parameter range than before. This can be illus-
trated by the fact that even when the initial acceptance threshold is lowered
to 0, the MDL criterion does not return more than 20 false positives. This
property, together with the criterion’s good theoretical foundation and its
ability to correctly solve cases like the one in Figure 3, makes it an important
contribution.

Figure 4 shows a comparison of our method’s performance with other results
reported in the literature. The adjacent table contains a comparison of the equal
error rates (EER) with three other approaches. With an EER of 97.5%, our
method presents a significant improvement over previous results. Some example
detections in difficult settings can be seen in Figure 5. The images show that
our method still works in the presence of occlusion, low contrast, and cluttered
backgrounds. At the EER point, our method correctly finds 195 of the 200 test
cases with only 5 false positives. All of these error cases are displayed in Figure
6. The main reasons for missing detections are combinations of several factors,
such as low contrast, occlusion, and image plane rotations, that push the object
hypothesis below the acceptance threshold. The false positives are due to richly
textured backgrounds on which a large number of spurious object parts are
found.

In addition to the recognition results, our method automatically generates
object segmentations from the test images. Figure 7 shows some example seg-
mentations that can be achieved with this method. Even though the quality of
the original images is rather low, the segmentations are reliable and can serve as
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Fig. 6. All missing detections (above) and false positives (below) our algorithm re-
turned on the car test set. The last picture contains both a false positive and a missing
detection.

(a) original (b) segment. (c) p(figure)

Fig. 7. (left) Example object detections, segmentations, and figure probabilities auto-
matically generated by our method; (right) Some more detections and segmentations
(white: figure, black: ground, gray: not sampled)

a basis for later processing stages, e.g. to further improve the recognition results
using global methods.

6 Recognition of Articulated Objects

Up to now, we have only considered static objects in our experiments. Even
though environmental conditions can vary greatly, cars are still rather restricted
in their possible shapes. This changes when we consider articulated objects, such
as walking animals. In order to fully demonstrate our method’s capabilities, we
therefore apply it to a database of video sequences of walking cows originally
used for detecting lameness in livestock [18]. Each sequence shows one or more
cows walking from right to left in front of different, static backgrounds.

For training, we took out all sequences corresponding to three backgrounds
and extracted 112 randomly chosen frames, for which we manually created a
reference segmentation. We then tested on 14 different video sequences show-
ing a total of 18 unseen cows in front of novel backgrounds and with varying
lighting conditions. Some test sequences contain severe interlacing and MPEG-
compression artefacts and significant noise. Altogether, the test suite consists of
a total of 2217 frames, in which 1682 instances of cows are visible by at least
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Fig. 8. (left) Precision/Recall curves for the cow sequences when x% of the cow’s length
is visible. (right) Absolute number of test images for the different visibility cases.

50%. This provides us with a significant number of test cases to quantify both
our method’s ability to deal with different articulations and its robustness to oc-
clusion. Using video sequences for testing also allows to avoid any bias caused by
selecting only certain frames. However, since we are still interested in a single-
frame recognition scenario, we apply our algorithm to each frame separately.
That is, no temporal continuity information is used for recognition, which one
would obviously add for a tracking scenario.

We applied our method to this test set using exactly the same detector settings
as before to obtain equal error rate for the car experiments. The only change we
made was to slightly adjust the sensibility of the interest point detector in order
to compensate for the lower image contrast. Using these settings, our detector
correctly finds 1535 out of the 1682 cows, corresponding to a recall of 91.2%.
With only 30 false positives over all 2217 frames, the overall precision is at 98.0%.
Figure 8 shows the precision and recall values as a function of the visible object
area. As can be seen from this plot, the method has no difficulties in recognizing
cows that are fully visible (99.1% recall at 99.5% precision). Moreover, it can cope
with significant partial occlusion. When only 60% of the object is visible, recall
only drops to 79.8%. Even when half the object is occluded, the recognition rate
is still at 69.0%. In some rare cases, even a very small object portion of about
20 − 30% is already enough for recognition (such as in the leftmost image in
Figure 10). Precision constantly stays at a high level.

False positives mainly occur when only one pair of legs is fully visible and the
system generates a competing hypothesis interpreting the front legs as rear legs,
or vice versa. Usually, such secondary hypotheses are filtered out by the MDL
stage, but if the correct hypothesis does not have enough support in the image
due to partial visibility, the secondary hypothesis sometimes wins.

Figures 9 and 10 show example detection and segmentation results for two
sequences1. As can be seen from these images, the system not only manages to

1 The full result sequences are available at
http://www.mis.informatik.tu-darmstadt.de/projects/interleaved
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Fig. 9. Example detections and automatically generated segmentations from one cow
sequence. (middle row) segmentations obtained from the intial hypotheses; (bottom
row) segmentations from refined hypotheses.

recognize unseen-before cows with novel texture patterns, but it also provides
good segmentations for them. Again, we want to emphasize that no tracking
information is used to generate these results. On the contrary, the capability
to generate object segmentations from single frames could make our method
a valuable supplement to many current tracking algorithms, allowing to (re-)
initialize them through shape cues that are orthogonal to those gained from
motion estimates.

7 Discussion and Conclusion

The probabilities p(p = figure|h) in Figs. 3 and 7 demonstrate why our approach
is successful. These probabilities correspond to the per-pixel confidence the sys-
tem has in its recognition and segmentation result. As can be seen from the
figure, the cars’ wheels are found as the most important single feature. However,
the rest of the chassis and even the windows are represented as well. Together,
they provide additional support for the hypothesis. This is possible because we
do not perform any feature selection during the training stage, but store all local
parts that are repeatedly encountered on the training objects. The resulting com-
plete representation allows our approach to compensate for missing detections
and partial occlusions.

Another factor to the method’s success is the flexibility of representation
that is made possible by the Implicit Shape Model. Using this framework, it can
interpolate between local parts seen on different training objects. As a result, the
method only needs a relatively small number of training examples to recognize
and segment categorical objects in different articulations and with widely varying
texture patterns.
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Fig. 10. Example detections and automatically generated segmentations from another
sequence. Note in particular the leftmost image, where the cow is correctly recognized
and segmented despite a high degree of occlusion.

The price we have to pay for this flexibility is that local parts could also be
matched to potentially illegal configurations, such as a cow with 6 legs. Since
each hypothesized leg is locally consistent with the common object center, there
would be nothing to prevent such configurations. An example where this happens
can be seen in Fig. 9. In the experiments presented here, this effect did not
hurt recognition performance, but it may become a problem in heavily crowded
scenes. A recent extension of our method resolves this problem by adding a
global, explicit shape model on top of the current implicit model [15].

Another restriction of the approach, as it is described in this chapter, is its
reliance on single-scale interest points, which only tolerate relatively small scale
changes of about 10− 15%. In more recent work [14], we have however extended
it also to scale-invariant detection. The key idea in this extension is to replace
the single-scale Harris detector by scale-invariant interest points and let matched
features vote not only for the object position, but also for its scale using a 3D
voting space (see [14] for details).

Quite interestingly, the current model is purely representational. Although
equation (5) allows for the inclusion of negative training examples, we do not
yet use any such discriminative information, nor do we model the background
explicitly. For the data sets used in this evaluation, this was not necessary, but
we expect that the performance and robustness of our method can be further
improved by incorporating these steps. In addition, future work will explore how
the method scales to larger object sets and how multi-view objects should best
be treated.

In conclusion, we have presented a method that combines the capabilities of
object categorization and segmentation in a common probabilistic framework.
The resulting approach is able to recognize previously unseen objects of a learned
category, localize them in cluttered real-world images, and automatically seg-
ment them from the background. In order to resolve the ambiguities between
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overlapping hypotheses, we have introduced a further hypothesis verification
criterion based on the MDL principle. This criterion significantly improves the
method’s results and allows it to handle scenes containing multiple objects in
a principled manner. Finally, we have presented an extensive evaluation on two
large data sets for cars and cows. Our results show that the method achieves
excellent recognition and segmentation results, even under adverse viewing con-
ditions and with significant occlusion. At the same time, its flexible representa-
tion enables it to generalize already from small training sets. These capabilities
make it an interesting contribution with potential applications in object detec-
tion, categorization, segmentation and tracking.
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Abstract. Human faces are an example of a class of objects in which
each example exhibits significant variation in shape and appearance, but
which is composed of a fixed number of sub-parts which have a similar
configuration in every case. For such objects we can define landmark
points on each example which imply a correspondence between different
examples. We can then build statistical models of the shape by consid-
ering the relative positions of landmarks, and can model the pattern of
intensities across the object by warping them into a common reference
frame. Such combined models of shape and appearance have been found
to be powerful tools for image interpretation. They are generative mod-
els, capable of synthesizing new examples similar to those in the training
set. The formulation of such models is described, and their application to
face location and recognition investigated. Particular attention is paid to
methods of matching such models to new images in a multi-stage process.

1 Introduction

When interpretting images of general scenes (eg images from photograph albums
or newspaper archives) we commonly come across human faces. In some cases it
is sufficient to know that a particular region contains a human face, but more
commonly we wish to know more about that face. Typically we are interested
in who the person is, and perhaps what their expression is. In an object recog-
nition framework, we must sub-divide the class of ”Human Faces” into multiple
sub-classes, one for each individual, or alternatively, one class for each facial
expression.

In order to interpret images of faces, it is important to have a model of how
the face can appear. Faces can vary widely, but the changes can be broken down
into two parts – changes in shape and changes in the texture (patterns of pixel
values) across the face. Both shape and texture can vary because of differences
between individuals, and due to changes in expression, viewpoint and lighting
conditions. In this chapter we will describe a powerful method of generating
compact models of shape and texture variation, and describe how such models
can be used to interpret images of faces. This involves locating the faces in an
image, and matching the models in a multi-stage process.

J. Ponce et al. (Eds.): Toward Category-Level Object Recognition, LNCS 4170, pp. 525–542, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Statistical Models of Appearance

We wish to build models of facial appearance and variation. We adopt a sta-
tistical approach, learning the ways in which the shape and texture of the face
vary across a range of images. This relies on obtaining a suitably large and rep-
resentative training set of images of faces, each of which is annotated with a set
of feature points defining correspondences across the images. The positions of
the feature points are used to define the shape of the face, and are analysed to
learn the ways in which the shape can vary. The patterns of intensities are then
analysed to learn the ways in which the texture can vary. The result is a model
which is capable of synthesizing any of the training images and generalising from
them, but is specific enough that only face-like images are generated.

2.1 Statistical Shape Models

To build a statistical model, we require a set of training images. The set should
be chosen so as to cover the types of variation we wish the model to represent.
For instance, if we are only interested in faces with neutral expressions, we should
only include neutral expressions in the model. If, however, we wish to be able to
synthesize and recognise a range of expressions, the training set should include
images of people smiling, frowning, winking and so on. The faces in the training
set should be of at least as high a resolution as those in the images we wish to
synthesize or interpret.

Each face must then be annotated with a set of points defining the key facial
features. These points are used to define the correspondences across the training
set, and to represent the shape of the face in the image. Thus the same number of
points should be placed on each image, each with the same set of labels. Figure 1
shows a set of 68 points used to annotate frontal faces. The more points that are
used, the more subtle the variations in shape that can be represented. Typically
one would place points around the main facial features (eyes, nose, mouth, eye-
brows) together with points around the outline to define the boundary of the face.

Fig. 1. Example of 68 points defining facial features
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Shape is usually defined as that quality of a configuration of points which
is invariant under some transformation. In two or three dimensions we usually
consider either the similarity transformation (translation, rotation and scaling)
or the affine transformation.

Let St(x) apply a transformation defined by parameters t. In 2D, similar-
ity transformations have 4 parameters, affine transformations are defined by
6 parameters. The configurations of points defined by x and St(x) are con-
sidered to have the same shape. Shape differences are those changes that can-
not be explained by application of such a global transformation. If we use n
points,{(xj , yj)}, to describe the face shape, then we can represent the shape as
the 2n element vector, x, where

x = (x1, . . . , xn, y1, . . . , yn)T (1)

Given s training examples, we generate s such vectors xi (i = 1..s). Before we
can perform statistical analysis on these vectors it is important that the shapes
represented are in the same co-ordinate frame. This can be achieved by using
Procrustes Analysis [12]. This transforms each shape in a set, xi, so that the
sum of squared distances of the shape to the mean (D =

∑
|S(xj) − x̄|2) is

minimised.

Statistical Models of Variation. Let the vector xi contain the n coordinates
of the ith shape. These vectors form a distribution in 2n dimensional space. If
we can model this distribution, we can generate new examples, similar to those
in the original training set, and we can examine new shapes to decide whether
they are plausible examples.

To simplify the problem, we first wish to reduce the dimensionality of the
data from nd to something more manageable. An effective approach is to apply
Principal Component Analysis (PCA) to the data [4]. The data form a cloud of
points in the 2n-D space. PCA computes the main axes of this cloud, allowing
one to approximate any of the original points using a model with fewer than 2n
parameters. The result is a linear model of the form

x = x̄ + Psbs (2)

where x̄ is the mean of the data, Ps = (φ1|φ2| . . . |φt) contains the t eigenvec-
tors of the covariance of the training set, corresponding to the largest eigenvalues,
and bs is a t dimensional parameter vector. The best choice of parameters for a
given shape x is given by

bs = PT
s (x− x̄) (3)

(PT P = I since the eigenvectors are orthonormal.)
The vector bs defines a set of parameters of a deformable model. By varying

the elements of bs we can vary the shape, x, using Equation 2. The variance of
the ith parameter, bi, across the training set is given by λi. By applying suitable
limits to the model parameters we ensure that the shape generated is similar to
those in the original training set.
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If the original data, {xi}, is distributed as a multivariate Gaussian, then the
parameters b are distributed as an axis-aligned Gaussian, p(b) = N(0, Λ) where
Λ = diag(λ1, . . . , λt). Our experiments on 2D images suggest that the Gaussian
assumption is a good approximation to the face shape distribution, as long as the
training set only contains modest viewpoint variation. Large viewpoint variation
tends to introduce non-linear changes into the shape [3].

A shape in the image frame, X, can be generated by applying a suitable
transformation to the points, x : X = St(x). Typically St will be a similarity
transformation described by a scaling, s, an in-plane rotation, θ, and a transla-
tion (tx, ty).

Face Shape Variation. Figure 2 shows the first two most significant modes of
face shape variation of a model built from examples of a single individual with
different viewpoints and expressions. The model has learnt that the 2D shape
change caused by 3D head rotation causes the largest shape change.

Shape Mode 1 Shape Mode 2

Fig. 2. Two modes of a face shape model (Parameters varied by ±2 s.d. from the mean)

2.2 Statistical Models of Texture

To build a statistical model of the texture (intensity or colour over an image
patch) we warp each example image so that its feature points match a reference
shape (typically the mean shape). The warping is usually achieved through a
piece-wise affine transformation using a triangulation of the region. Warping to
a reference shape removes spurious texture variation due to shape differences
which would occur if we simply performed eigenvector decomposition on the
un-normalised face patches (as in the eigen-face approach [16,20]). The intensity

Original Image Warped to mean shape

Fig. 3. Example of face warped to mean shape
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information is sampled from the shape-normalised image over the region covered
by the mean shape to form a texture vector, gim. Texture is sampled at Nt

points on a regular grid. For example, Figure 3 shows a labelled face image and
the face patch warped into the mean shape. Although the main shape changes
due to smiling have been removed, there is considerable texture difference from
a purely neutral face.

The texture sample is then normalised to remove global lighting effects. A
simple approach is to apply a linear transformation

g = (gim − β1)/α (4)

The values of α and β can be chosen so that the sum of elements is zero and
the variance of elements is unity,

By applying PCA to the normalised data we obtain a linear model:

g = ḡ + Pgbg (5)

where ḡ is the mean normalised grey-level vector, Pg is a set of orthogonal modes
of variation and bg is a set of grey-level parameters.

The texture in the image frame can be generated from the texture parameters,
bg, and the normalisation parameters α, β, by:

gim = α(ḡ + Pgbg) + β1 (6)

By varying the elements of the texture parameter vector bg within lim-
its learnt from the training set, we can generate a variety of plausible shape-
normalised face textures. For instance Figure 4 shows the first four modes of a

Texture Mode 1 Texture Mode 2

Texture Mode 3 Texture Mode 4

Fig. 4. Four modes of a face texture model (Parameters varied by ±2 s.d. from the
mean)
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texture model built from 400 images of 100 different individuals (including neu-
tral, smiling, frowning and surprised expressions of each). The model represents
about Nt = 20, 000 pixels.

2.3 Combined Models of Appearance

The shape and texture of any example can thus be summarised by the parameter
vectors bs and bg. Since there may be correlations between the shape and texture
variations, we apply a further PCA to the data as follows. For each example we
generate the concatenated vector

b =
(

Wsbs

bg

)
=
(

WsPT
s (x− x̄)

PT
g (g − ḡ)

)
(7)

where Ws is a diagonal matrix of weights for each shape parameter, allowing
for the difference in units between the shape and grey models. We apply a PCA
on these vectors, giving a further model

b = Pcc (8)

where Pc are the eigenvectors and c is a vector of appearance parameters con-
trolling both the shape and grey-levels of the model. By the nature of its con-
struction, c has zero mean across the training set.

Note that the linear nature of the model allows us to express the shape and
grey-levels directly as functions of c

x = x̄ + PsW−1
s Pcsc , g = ḡ + PgPcgc (9)

where

Pc =
(

Pcs

Pcg

)
(10)

This can be summarized as

x = x̄ + Qsc
g = ḡ + Qgc

(11)

where
Qs = PsW−1

s Pcs

Qg = PgPcg
(12)

An example image can be synthesised for a given c by generating the shape-
free grey-level image from the vector g and warping it using the control points
described by x.

Example: A Facial Appearance Model. Figure 5 shows the first four modes
of a combined appearance model built from the same 400 face images as described
above. The modes combine the variation due to lighting, identity and expression.
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Combined Mode 1 Combined Mode 2

Combined Mode 3 Combined Mode 4

Fig. 5. Four modes of combined shape and texture model (Parameters varied by ±2
s.d. from mean)

Non-ID Mode 1 Non-ID Mode 2

Fig. 6. Two modes of individual face variation (non-identity modes)

Separating Sources of Variability. Since we know the identity of the person
in each training image, we can compute within-identity and between-identity
covariance matricies for the parameters associated with each image. The eigen-
vectors, Pw, of the within-identity covariance matrix give us a (linear) way of
manipulating the face of an individual:

c = Pwcw (13)

Varying the elements of the vector cw varies the appearance parameters c, and
thus the appearance of the face in ways that an individual’s face can change.
Figure 6 shows the first two such modes for the data described above. These are
predominantly expression changes.

Similarly those of the between-identity matrix, Pb, allow us to examine the
differences between individuals with fewer confounding effects from individual



532 T.F. Cootes, D. Cristinacce, and V. Petrović

ID Mode 1 ID Mode 2

Fig. 7. Two modes of variation between individuals (identity modes)

face variation. Figure 7 shows the first two such modes for the data described
above. These modes should cause minimal apparent expression change, but de-
scribe the differences in face shape and texture between people.

In this case the between-class covariance matrix is formed from the mean for
each class (identity), which may not be a good representative of the individual,
and may itself be corrupted by some non-reference expression or head pose. For
instance, the first ID mode in Figure 7 includes a small amount of expression
change, so isn’t a pure identity variation. Costen et al.[5] describe an iterative
approach to separating different sources of variability, to obtain better linear
models of facial variation.

In the following sections we describe an approach to matching the models to
new images.

3 Model Matching

The models described above are capable of synthesizing almost any face, if
trained on sufficiently varied examples. Thus they can be used to represent and
interpret faces in new images. If we can find the model parameters which syn-
thesize a face which is very similar to that in the target image, the parameters
of the model then encode that face, and can be analysed in order to determine
the identity or expression of the person.

However, in order to interpret a new image containing one or more faces, the
first step is to locate the position of any faces in the image. Then a more local
search is required to match the detailed appearance model. We have found that
good results can be obtained by splitting the localisation stage into two steps. We
first locate the approximate position of the facial features using combinations of
templates, and use these to initialise an Active Appearance Model [10,2] which
matches the full statistical appearance model to the face in the image.

In the following we will summarise the steps of the matching process.

3.1 Face Detection

The face is detected in the image by applying the Boosted Cascade Face Detector
due to Viola and Jones [18]. This algorithm utilises a boosting method known
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as AdaBoost [11] to select and combine a set of features, which can discriminate
between face and non-face image regions. The detector is run over a test image
and the image window with the highest face score1 deemed to be the location of
the face in the image.

3.2 Feature Detectors

Detectors are built for 17 facial features using a manually labelled training set
consisting of 1055 images collected in our lab. An example marked up face is
shown in Figure 8(a). Images patches are extracted around each manually la-
belled point (excluding the chin and temples) and used to train a Boosted Cas-
cade Detector for each individual feature. Example training patches are shown
in Figure 8(b). The patches are sampled 5 times with small random rotations
and scale changes, to provide 5275 positive training examples for each feature
detector.

(a) Example training image (b) Example feature detector
training patches

Fig. 8. Example of feature patch training set

During training a bounding box is computed on the range of each feature
location within the region found by the face detector (for successful searches).
Given the region computed by the face detector, feature detection can then
proceed by merely searching within the bounded regions and the best match
taken as the location of each feature. However, it has been shown that without
further constraints such an approach does not work well [6]. Search accuracy
can only be improved by employing a shape constraint to force the configuration
of points returned by the feature detectors to form a valid face shape [6,7].
Typically this is achieved using a statistical shape model [9]. Good results can be
achieved by learning pairwise relationships between feature locations and using
these to combine feature responses using a voting strategy. Such an approach
has been dubbed Pairwise Reinforcement of Feature Responses (PRFR) [8], and
is summarised below.
1 Calculated by summing the classifier scores from each level of the cascade.
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3.3 PRFR Model

The method does not use an explicit shape model, rather it models shape implic-
itly by learning the pairwise distribution of all true feature locations relative to
the best match of each individual feature detector. When searching, the location
of each feature is predicted by multiple detectors. The combination of multiple
predictions makes the final prediction of each feature point more robust com-
pared to searching for each feature independently.

The pairwise distribution Pij(xi|xj) is defined as the distribution of the true
location of feature i given the best match for feature detector j in the reference
frame defined by the whole face region. In practice we use histograms of the form
Hij(xi − xj) as an approximation to Pij(xi|xj). These distributions must be
learnt for all possible pairs of feature detector and true feature locations. There
are 17 feature detectors, trained to search for 17 feature locations, therefore 289
(=17x17) pairwise histograms are required.

Learning of histograms is achieved by applying the global face detector, fol-
lowed by unconstrained feature detection, to a verification set of face images.
For each verification image, the true location of all features within the global
candidate frame is recorded along with the best match of each feature detec-
tor. The ensemble of true feature locations and detector matches allows relative
histograms Hij to be computed for the distribution of true feature location i
relative to detector j.

Relative histograms Hij for the right eye pupil location, are shown in Figure 9.
Each diagram plots the distribution of true feature locations relative to the best
match of a feature detector (marked with a cross). For example, the spread of
true right eye locations relative to a right eye detection are shown in Figure 9(a).
The spread of right eye locations relative to a left eye detection are shown in
Figure 9(b).

(a) Right eye detec-
tor

(b) Left eye detector (c) Left mouth cor-
ner detector

(d) Inner right eye
corner detector

Fig. 9. Right eye pupil location histograms relative to the best match of four different
feature detectors (black pixels indicate peaks in each histogram)

Using histograms allows realistic pairwise statistics to be modelled and makes
no prior assumptions as to the distribution of any feature location relative to any
particular feature detector. For example Figures 9(c) and 9(d) show multi-modal
histograms which encode variation in the right eye pupil location relative to the
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more noisy left mouth corner and inner right eye corner feature detectors. This
information may have been lost if simpler single Gaussian modelling had been
used.

One disadvantage of using histograms is that a reasonably large amount
of training data is required to obtain a representative sample of feature loca-
tion/feature detection pairs. The number of samples required increases with the
number of histogram bins. In our experiments, 100x100 bins were used for the
whole candidate frame region, trained with 500 verification faces. It may be
possible to approximate the distribution histograms using a Gaussian Mixture
Model, if insufficient verification data is available. This would also produce a
more compact model.

3.4 PRFR Search

Given an order list of detections for each feature detector we wish to predict
the location x̂i of feature i by combining feature responses with the pairwise
distributions Pij(xi|xj) as follows:-

x̂i = arg max
n∑

j=1

k∑
t=1

Pij(xi|qjt) (14)

Here qjt is the position of the tth maxima in the response image for feature
detector j. We sum the probabilities (effectively voting) rather than multiplying,
as this generally gives more robust results. Multiplication would be appropriate
if all features were independent, but in this case they are not. Note that the
prior distribution P (qjt) of each feature detector is ignored here and only raw
matches to the current face region are used to predict the final feature locations
(x̂i).

The first k matches of each feature detector j are used instead of just the best
match. This helps to protect against spurious false matches and provides more
robust results. By empirical testing a suitable value of k is found to be 3. Similar
results are obtained, using any value of k in the range (3, 10). However taking
more detections into account increases the time taken to perform PRFR.

In practice the pairwise distributions Pij(xi|xj) are represented by relative
histograms Hij(xi−xj). When searching, the PRFR algorithm projects the top
k feature locations from the jth detector into the histogram frame. Given the fea-
ture locations qjt the relative histogram Hij can be used to predict distributions
Dijt of likely locations for feature i. The most likely location x̂i is determined by
simply summing over all predicted distributions Dijt and selecting the highest
ranking pixel in the histogram frame. The predicted feature locations x̂i in the
histogram frame can then be mapped back to the corresponding location in the
image being searched.

3.5 AAM Refinement

The Active Appearance Model (AAM) algorithm [1] can also be used to predict
feature locations. The method attempts to match a shape and texture model



536 T.F. Cootes, D. Cristinacce, and V. Petrović

to an unseen face by adapting the parameters of a linear appearance model
(described above) so that it synthesizes an image as close as possible to the face
in the target image. The basic search algorithm is described by Cootes et al. [2].

It has been found that using an objective function which minimises difference
between raw intensity values is less robust than one which minimises differences
between local features (such as normalised edge strength and cornerness) across
the face region (see experiments below).

For instance, Scott et al. [19] computes four values for each pixel; gx, the nor-
malised gradient in the x direction, gy the normalised gradient in the y direction,
e a measure of “edgeness” and c a measure of “cornerness”. A method based on
the Harris corner detector [13] is used to compute the edge e and corner values c.

Such an approach is particularly useful when dealing with images with un-
constrained lighting conditions, as the chosen features are less sensitive to such
variation than raw intensities.

Although the AAM could be initialised directly from the results of the global
face detector, it is demonstrated below that better accuracy is obtained if it is
started from the point positions defined by the PRFR algorithm. This is because
the AAM has only a relatively small bowl of convergence.

3.6 Examples of Facial Feature Location

Test Data. The accuracy of feature search is assessed by applying search al-
gorithms to a publicly available test set known as the BIOID database2 (which
is completely independent of the training set). This data set was first used by
Jesorsky et al. [14], to evaluate face detection and eye finding algorithms, but
is now available with a set of 20 manually labelled feature points. The BIOID
images consist of 1521 images of frontal faces taken in uncontrolled conditions
using a web camera within an office environment. The face is reasonably large in
each image, but there is background clutter and unconstrained lighting. Example
images from the BIOID data set are shown in Figure 10.

Fig. 10. Examples from the BIOID test set

Some faces lie very close to the edge of the image in the BIOID data set,
which prevents detection using the Boosted Cascade Face Detector. To avoid
such edge effects, each BIOID image was extended by replicating edge pixels to
create an artificial border around each image.
2 http://www.humanscan.de/support/downloads/facedb.php
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Proximity Measure. To assess the accuracy of feature detection the predicted
feature locations are compared with manually labelled feature points. The aver-
age point to point error (me) is calculated as follows.

me = 1
ns

i=n∑
i=1

di (15)

Where di are the point to point errors for each individual feature location and
s is the known inter-ocular distance between the left and right eye pupils. Here
n is the number of feature points modelled. The search error me computed over
the 17 features shown in Figure 8 is referred to as me17.

Results of Search. Figure 11a) plots the cumulative distribution of me17 over
the BIOID test set and shows that the PRFR algorithm outperforms both un-
constrained search and average point prediction. For example, using a proximity
threshold of me17 < 0.15 the PRFR algorithm is successful in 96% of cases,
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Fig. 11. Search accuracy (me17) of various methods when applied to the BIOID test set
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compared to 85% using average point prediction. Unconstrained feature detec-
tion performs very poorly achieving a success rate of only 68%.

Figure 11b) compares the edge/corner texture sampling AAM (described in
section 3.5) with the basic AAM texture sampling method, initialised with the
average points. The graph shows that with me17 = 0.15 the edge/corner AAM
achieves as success rate of 95%, compared to a success rate of 90% using the
basic AAM. The edge/corner AAM is more successful than the basic AAM at
all values of me17, so is clearly superior. Both AAM approaches improve on the
search accuracy of average point prediction.

Figure 11c) compares the search accuracy of the edge/corner AAM, the PRFR
method and PRFR followed by edge/corner AAM refinement. Figure 11c) shows
that the PRFR followed by edge/corner AAM search is far superior to any other

me17 = 3.93% me17 = 4.45%

me17 = 5.84% me17 = 7.14%

Fig. 12. Example searches and search errors (me17), using PRFR+edge/corner AAM
on the BIOID data set. Here “+”= manually labelled ground truth and “x”= points
predicted using PRFR+edge/corner AAM search.
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method. For example with me17 = 0.1, the PRFR+AAM search is successful
for 96% of the BIOID images, whilst at the same accuracy threshold, both the
PRFR method alone and the edge/corner AAM initialised with average points
achieve only 87% success rate.

Some example search results and associated search errors using the PRFR
+AAM method are shown in Figure 12.

The edge/corner AAM approach is shown to outperform the original AAM
approach when searching the BIOID data set, initialised using average feature
points predicted from the Boosted Cascade Face Detector (see Figure 11b). How-
ever, it is also shown that far superior results can be obtained by initialising the
edge/corner AAM with points predicted by PRFR (see Figure 11c). This indi-
cates that the AAM needs a very good initialisation to avoid inaccurate matching
due to false minima. PRFR point prediction is much more accurate than aver-
age point prediction, so more false minima can be avoided and the overall search
performance improved when using PRFR+AAM.

4 Face Recognition Using Combined Appearance Models

Given a face image, we can estimate the model parameters, c, which best match
the model to the target face. If the model is sufficiently complex then the pa-
rameters should summarise almost all the important information required to
describe the face, and can thus be used for face interpretation.

In particular, it is possible to use the parameters for face verification or recog-
nition. By comparing the vectors representing two face images, c1 and c2, we can
measure how similar they are. Experiments suggest that an effective measure of
difference is the normalised dot product,

d = 1− c1

|c1|
.
c2

|c2|
(16)

This is zero for a perfect match. This out-performs other simple metrics such as
the euclidean distance or the un-normalised dot product [15].

As mentioned above, the model parameters encode a range of variations, both
those due to differences between people and those due to changes in an individual
face. The changes of one individual’s face can be larger than those between two
different people, and can confound simple verification algorithms.

An effective method of dealing with these is to explicitly model the changes of an
individual (see Section 2.3 above). The eigenvectors, Pw, of the within-individual
covariance matrix describe the most significant facial changes (see Figure 6).

Given a set of face parameters, c, we can estimate the within-individual vari-
ation as cw = PT

wc and remove it to give a set of parameters which represent
the face without pose, expression or lighting variation.

cn = c−Pwcw = c−PwPT
wc (17)

If we then compare these corrected vectors from different images, we obtain
much better discrimination between individuals. This approach has been found
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to perform better than using Linear Discriminant Analysis to select a suitable
subspace for face verification [15].

Recent experiments applying this technique to the XM2VTS data set [17]
suggest that this approach can achieve equal error rates 3 of 0.8% when using
hand annotations of the data set. This result was obtained using a face model
trained on a completely separate data set of 1800 images. The within-individual
variation models were estimated from 600 images in the XM2VTS registration
set and tested on the 960 images from the XM2VTS test set. The result is
sensitive to the number of modes used in the model of within-identity variation,
and the choice points used to align the shape model (using only points from
the eyes, nose and mouth during shape alignment gives better performance than
using all the points, perhaps because they tend to be more stable). Note that if
we do not correct for within-individual variations (using Eq.17), the performance
is 7.1%, a considerable degradation.

It should be noted that the above results were performed with hand annotation
of 68 points on each image, and thus give some measure of the upper limit of
the technique. When the fully automatic search described above is used, the
performance degrades significantly, from 0.8% to 4.1%. This is because the search
algorithm introduces extra errors (and sometimes completely fails to converge).
When used for recognition (rather than verification) we find the first choice of
identity is correct 93% of the time. Note that without using the PRFR algorithm
to initialise the AAM, the equal error rate more than doubles, demonstrating
the importance of accurate feature location.

The inclusion of combined shape and texture variation allows for additional
flexibility which makes the models more specific and more compact than rigid
approaches such as ‘eigen-face’ approaches [16,20]. However, the resulting mod-
els require more parameters to be estimated during search, potentially leading
to more frequent search failures. In cases in which the faces tend to be well
constrained, for instance frontal images with neutral expressions (such as the
XM2VTS database), the inclusion of shape variation can roughly halve the equal
error rate (we obtained a rate of about 2% when repeating the experiment re-
ported above with a rigid shape model on the manually labelled data). However,
it is possible that the increased uncertainty in the matching a flexible model
due to the larger number of parameters may lead to worse results overall for a
full system. This is less likely to be the case for faces exhibiting larger pose or
expression changes, for which rigid models are inappropriate.

5 Discussion and Conclusions

We have described statistical models of the shape and texture of faces capable
of synthesizing convincing face images. They can represent a wide range of vari-
ations exhibited by faces, and can be used to separate the sources of variation

3 Equal error rate (EER) - the error at the operating point of the system where the
proportion of expected false positives is equal to that of false negatives.
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(such as those due to differences between individuals from those due to changes
of expression, head pose or lighting).

To accurately locate and classify a face in an image it is necessary to use
multiple stages. In the first stage candidate faces are found using a global search
with a face/non-face classifier. Each candidate location can then be explored
more carefully by first locating facial features using combinations of feature de-
tectors, then using their positions to initialise an Active Appearance Model. The
resulting appearance model parameters can then be used for further analysis,
such as recognising or verifying the identity of the person located.

Though described for application to faces, the techniques are applicable to
modelling any other structures whose variability can be effectively described
using a deformable template. However, it should be noted that the approach
relies on establishing correspondences across a training set, and between models
and new images.

The results demonstrate that the key to achieving reliable recognition or ver-
ification is accurate model matching. Even modest mis-alignment can lead to
significant degradation in recognition performance. Though effective methods
have been demonstrated, there is still considerable room for improvement.
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Abstract. In this chapter we present a Bayesian framework for pars-
ing images into their constituent visual patterns. The parsing algorithm
optimizes the posterior probability and outputs a scene representation
as a “parsing graph”, in a spirit similar to parsing sentences in speech
and natural language. The algorithm constructs the parsing graph and
re-configures it dynamically using a set of moves, which are mostly re-
versible Markov chain jumps. This computational framework integrates
two popular inference approaches – generative (top-down) methods and
discriminative (bottom-up) methods. The former formulates the pos-
terior probability in terms of generative models for images defined by
likelihood functions and priors. The latter computes discriminative prob-
abilities based on a sequence (cascade) of bottom-up tests/filters. In our
Markov chain algorithm design, the posterior probability, defined by the
generative models, is the invariant (target) probability for the Markov
chain, and the discriminative probabilities are used to construct pro-
posal probabilities to drive the Markov chain. Intuitively, the bottom-up
discriminative probabilities activate top-down generative models. In this
chapter, we focus on two types of visual patterns – generic visual pat-
terns, such as texture and shading, and object patterns including human
faces and text. These types of patterns compete and cooperate to explain
the image and so image parsing unifies image segmentation, object detec-
tion, and recognition (if we use generic visual patterns only then image
parsing will correspond to image segmentation [48].). We illustrate our
algorithm on natural images of complex city scenes and show examples
where image segmentation can be improved by allowing object specific
knowledge to disambiguate low-level segmentation cues, and conversely
where object detection can be improved by using generic visual patterns
to explain away shadows and occlusions.

1 Introduction

1.1 Objectives of Image Parsing

We define image parsing to be the task of decomposing an image I into its
constituent visual patterns. The output is represented by a hierarchical graph
W — called the “parsing graph”. The goal is to optimize the Bayesian posterior
probability p(W |I). Figure 1 illustrates a typical example where a football scene
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is first divided into three parts at a coarse level: a person in the foreground,
a sports field, and the spectators. These three parts are further decomposed
into nine visual patterns in the second level: a face, three texture regions, some
text, a point process (the band on the field), a curve process (the markings on
the field), a color region, and a region for nearby people. In principle, we can
continue decomposing these parts until we reach a resolution limit (e.g. there is
not sufficient resolution to detect the blades of grass on the sports field). The
parsing graph is similar in spirit to the parsing trees used in speech and natural
language processing [33] except that it can include horizontal connections (see
the dashed curves in Figure 1) for specifying spatial relationships and boundary
sharing between different visual patterns.

a football match scene

texture

text

face

person

color region

curve groups
texture

sports field spectator

texture

persons

point process

Fig. 1. Image parsing example. The parsing graph is hierarchical and combines gen-
erative models (downward arrows) with horizontal connections (dashed lines), which
specify spatial relationships between the visual patterns. See Figure 4 for a more ab-
stract representation including variables for the node attributes.

As in natural language processing, the parsing graph is not fixed and depends
on the input image(s). An image parsing algorithm must construct the parsing
graph on the fly1. Our image parsing algorithm consists of a set of reversible
Markov chain jumps [21] with each type of jump corresponding to an operator
for reconfiguring the parsing graph (i.e. creating or deleting nodes or changing
the values of node attributes). These jumps combine to form an ergodic and
reversible Markov chain in the space of possible parsing graphs. The Markov
chain probability is guaranteed to converges to the invariant probability p(W |I)
1 Unlike most graphical inference algorithms in the literature which assume fixed

graphs, such as belief propagation [58].
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and the Markov chain will simulate fair samples from this probability2. Our
approach is built on previous work on Data-Driven Markov Chain Monte Carlo
(DDMCMC) for recognition [61], segmentation [48], grouping [49] and graph
partitioning [1,2].

Image parsing seeks a full generative explanation of the input image in terms
of generative models, p(I|W ) and p(W ), for the diverse visual patterns which
occur in natural images, see Figure 1. This differs from standard approaches
to computer vision tasks — such as segmentation, grouping, and recognition –
which usually involve isolated vision modules which only explain different parts
(or aspects) of the image. The image parsing approach enables these different
modules to cooperate and compete to give a consistent interpretation of the
entire image.

The integration of visual modules is of increasing importance as progress on
the individual modules starts approaching performance ceilings. In particular,
work on segmentation [45,48,17] and edge detection [26,8] has reached perfor-
mance levels where there seems little room for improvement when only low-
level cues are used. For example, the segmentation failures in Figure 2 can only
be resolved by combining segmentation with object detection and recognition.
Combining these cues is made easier because of recent successful work on the
detection and recognition of objects [30,56,42,4,55,57] and the classification of
natural scenes [3,39] using, broadly speaking, discriminative methods based on
local bottom-up tests.

But combining different visual modules requires a common framework which
ensures consistency. Despite the effectiveness of discriminative methods for com-
puting scene components, such as object labels and categories, they can also
generate redundant and conflicting results. Mathematicians have argued [6] that
discriminative methods must be followed by more sophisticated processes to (i)
remove false alarms, (ii) amend missing objects by global context information,
and (iii) reconcile conflicting (overlapping) explanations through model compar-
ison. In this chapter, we impose such processes by using generative models for
the entire image.

As we will show, our image parsing algorithm is able to integrate discrimi-
native and generative methods so as to take advantage of their complementary
strengths. Moreover, we can couple modules such as segmentation and object
detection by our choice of the set of visual patterns used to parse the image.
In this chapter, we focus on two types of patterns: – generic visual patterns for
low/middle level vision, such as texture and shading, and object patterns for
high level vision, such as frontal human faces and text.

These two types of patterns illustrate different ways in which the parsing
graph can be constructed (see Figure 16 and the related discussion). The object
patterns (face and text) have comparatively little variability so they can often
be effectively detected as a whole by bottom-up tests and their parts can be

2 For many natural images the posterior probabilities P (W |I) are strongly peaked
and so fair samples are close to the posterior maximum arg maxW P (W |I). So in
this chapter we do not distinguish between sampling and inference (optimization).
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/
a. Input image b. Segmentation c. Synthesized image d. Manual segmentation

Fig. 2. Examples of image segmentation failure by an algorithm [48] which uses only
generic visual patterns (i.e. only low-level visual cues). The results (b) show that low-
level visual cues are not sufficient to obtain good intuitive segmentations. The limi-
tations of using only generic visual patterns are also clear in the synthesized images
(c) which are obtained by stochastic sampling from the generative models after the
parameters have been estimated by DDMCMC. The right panels (d) show the seg-
mentations obtained by human subjects who, by contrast to the algorithm, appear
to use object specific knowledge when doing the segmentation (though they were not
instructed to) [35]. We conclude that to achieve good segmentation on these types of
images requires combining segmentation with object detection and recognition.

located subsequentially. Thus their parsing sub-graphs can be constructed in a
“decompositional” manner from whole to parts. By contrast, a generic texture
region has arbitrary shape and its intensity pattern has high entropy. Detecting
such a region by bottom-up tests will require an enormous number of tests
to deal with all this variability, and so will be computationally impractical.
Instead, the parsing subgraphs should be built by grouping small elements in a
“compositional” manner [5].

We illustrate our algorithm on natural images of complex city scenes and give
examples where image segmentation can be improved by allowing object spe-
cific knowledge to disambiguate low-level cues, and conversely object detection
can be improved by using generic visual patterns to explain away shadows and
occlusions.

This chapter is structured as follows. In Section (2), we give an overview of
the image parsing framework and discuss its theoretical background. Then in
Section (3), we describe the parsing graph and the generative models used for
generic visual patterns, text, and faces. In Section (4) we give the control struc-
ture of the image parsing algorithm. Section (5) gives details of the components
of the algorithm and show how AdaBoost can be used to get proposals for detect-
ing objects such as text and faces. In Section (6) we present experimental results.
Section (7) addresses some open problems in further developing the image parser
as a general inference engine. We summarize the chapter in Section (8).
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2 Overview of Image Parsing Framework

2.1 Bottom-Up and Top-Down Processing

A major element of our work is to integrate discriminative and generative meth-
ods for inference. In the recent computer vision literature, top-down and bottom-
up procedures can be broadly categorized into two popular inference paradigms
– generative methods for “top-down” and discriminative methods for “bottom-
up”, illustrated in Figure 3. From this perspective, integrating generative and
discriminative models is equivalent to combining bottom-up and top-down
processing3.

The role of bottom-up and top-down processing in vision has been often dis-
cussed. There is growing experimental evidence (see [46,28]) that humans can
perform high level scene and object categorization tasks as fast as low level tex-
ture discrimination and other so-called pre-attentive vision tasks. This suggests
that humans can detect both low and high level visual patterns at early stages in
visual processing. It contrasts with traditional bottom-up feedforward architec-
tures [34] which start with edge detection, followed by segmentation/grouping,
before proceeding to object recognition and other high-level vision tasks. These
experiments also relate to long standing conjectures about the role of the bottom-
up/top-down loops in the visual cortical areas [38,54], visual routines and path-
ways [53], the binding of visual cues [47], and neural network models such as
the Helmholtz machine [14]. But although combining bottom-up and top-down
processing is clearly important, there has not yet been a rigorous mathematical
framework for how to achieve it.

In this chapter, we combine generative and discriminative approaches to de-
sign an DDMCMC algorithm which uses discriminative methods to perform
rapid inference of the parameters of generative models. From a computer vi-
sion perspective, DDMCMC combines bottom-up processing, implemented by
the discriminative models, together with top-down processing by the generative
models. The rest of this section gives an overview of our approach.

2.2 Generative and Discriminative Methods

Generative methods specify how the image I is generated from the scene repre-
sentation W ∈ Ω. It combines a prior p(W ) and a likelihood function p(I|W )
to give a joint posterior probability p(W |I). These can be expressed as proba-
bilities on graphs, where the input image I is represented on the leaf nodes and
W denotes the remaining nodes and node attributes of the graph. The structure
of the graph, and in particular the number of nodes, is unknown and must be
estimated for each input image.

To perform inference using generative methods requires estimating W ∗ =
argmaxP (W |I). This is often computationally demanding because there are
3 Recently the term ”discriminative model” has been extended to cover almost any

approximation to the posterior distribution P (W |I), e.g. Kumar and Hebert [27].
We will use “discriminative model” in its traditional sense of categorization.
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usually no known efficient inference algorithms (certainly not for the class of
P (W |I) studied in this chapter).

In this chapter, we will perform inference by stochastic sampling W from the
posterior:

W ∼ p(W |I) ∝ p(I|W )p(W ). (1)

This enables us to estimate W ∗ = arg maxP (W |I). Stochastic sampling is
attractive because it is a general technique that can be applied to any inference
problem. Moreover, it generate samples that can be used to validate the model
assumptions. But the dimension of the sample space Ω for image parsing is very
high and so standard sampling techniques are computationally expensive.

By contrast, discriminative methods are very fast to compute. They do not
specify models for how the image is generated. Instead they give discriminative
(conditional) probabilities q(wj |Tstj(I)) for components {wj} of W based on
a sequence of bottom-up tests Tstj(I) performed on the image. The tests are
based on local image features {Fj,n(I)} which can be computed from the image
in a cascade manner (e.g. AdaBoost filters, see Section (5.2)),

Tstj(I) = (Fj,1(I), Fj,2(I), ..., Fj,n(I)), j = 1, 2, ...,K. (2)

The following theorem (proved in [51]) shows that the KL-divergence between
the true marginal posterior p(wj |I) and the optimal discriminant approxima-
tion q(wj |Tst(I)) using test Tst(I) will decrease monotonically as new tests are
added4.

Theorem 1. The information gained for a variable w by a new test Tst+(I) is
the decrease of Kullback-Leibler divergence between p(w|I) and its best discrim-
inative estimate q(w|Tstt(I)) or the increase of mutual information between w
and the tests.

EI[KL(p(w|I) || q(w|Tst(I)))] − EI[KL(p(w|I) || q(w|Tst(I),Tst+(I)))]
= MI(w || Tst,Tst+)−MI(w || Tst)
= ETst,Tst+KL(q(w |Tstt,Tst+) || q(w |Tstt) ≥ 0,

where EI is the expectation with respect to P (I), and ETst,Tst+ is the expectation
with respect to the probability on the test responses (Tst,Tst+) induced by P (I).

The decrease of the Kullback-Leibler divergence equals zero if and only if Tst(I)
are sufficient statistics with respect to w.

In practice discriminative methods, particularly standard computer vision algo-
rithms – see subsection (4.1), will typically only use a small number of features for
computational practicality. Also their discriminative probabilities q(wj |Tst(I))
will often not be optimal. Fortunately the image parsing algorithm in this chapter
only requires the discriminative probabilities q(wj |Tst(I)) to be rough approxi-
mations to p(wj |I).
4 The optimal approximation occurs when q(wj |Tst(I)) equals the probability

p(wj |Tst(I)) induced by P (I|W )P (W ).
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Fig. 3. Comparison of two inference paradigms: Top-down generative methods versus
bottom-up discriminative methods. The generative method specifies how the image
I can be synthesized from the scene representation W . By contrast, the discrimina-
tive methods are based by performing tests Tstj(I) and are not guaranteed to yield
consistent solutions, see crosses explained in the text.

The difference between discriminative and generative models is illustrated in
Figure 3. Discriminative models are fast to compute and can be run in parallel
because different components are computed independently (see arrows in Fig-
ure 3). But the components {wi} may not yield a consistent solution W and,
moreover, W may not specify a consistent model for generating the observed im-
age I. These inconsistencies are indicated by the crosses in Figure 3. Generative
models ensure consistency but require solving a difficult inference problem.

It is an open problem whether discriminative methods can be designed to infer
the entire state W for the complicated generative models that we are dealing
with. Recent work [27] is a step in this direction. But mathematicians [6] have
argued that this will not be practical and that discriminative models will always
require additional post-processing.

2.3 Markov Chain Kernels and Sub-kernels

Formally, our DDMCMC image parsing algorithm simulates a Markov chain
MC =< Ω, ν,K > with kernel K in space Ω and with probability ν for the
starting state. An element W ∈ Ω is a parsing graph. We let the set of parsing
graphs Ω be finite as images have finite pixels and grey levels.

We proceed by defining a set of moves for reconfiguring the graph. These include
moves to: (i) create nodes, (ii) delete nodes, and (iii) change node attributes. We
specify stochastic dynamics for these moves in terms of transition kernels5.

For each move we define a Markov Chain sub-kernel by a transition matrix
Ka(W ′|W : I) with a ∈ A being an index. This represents the probability that
the system makes a transition from state W to state W ′ when sub-kernel a is

5 We choose stochastic dynamics because the Markov chain probability is guaranteed to
converge to the posterior P (W |I). The complexity of the problem means that deter-
ministic algorithms for implementing these moves risk getting stuck in local minima.
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applied (i.e.
∑

W ′ Ka(W ′|W : I) = 1, ∀W ). Kernels which alter the graph struc-
ture are grouped into reversible pairs. For example, the sub-kernel for node cre-
ation Ka,r(W ′|W : I) is paired with the sub-kernel for node deletion Ka,l(W ′|W :
I). This can be combined into a paired sub-kernel Ka = ρarKa,r(W ′|W : I) +
ρalKa,l(W ′|W : I) (ρar + ρal = 1). This pairing ensures that Ka(W ′|W : I) = 0
if, and only if, Ka(W |W ′ : I) = 0 for all states W,W ′ ∈ Ω. The sub-kernels (after
pairing) are constructed to obey the detailed balance condition:

p(W |I)Ka(W ′|W : I) = p(W ′|I)Ka(W |W ′ : I). (3)

The full transition kernel is expressed as:

K(W ′|W : I) =
∑

a

ρ(a : I)Ka(W ′|W : I),
∑

a

ρ(a : I) = 1, ρ(a : I) > 0. (4)

To implement this kernel, at each time step the algorithm selects the choice
of move with probability ρ(a : I) for move a, and then uses kernel Ka(W ′|W ; I)
to select the transition from state W to state W ′. Note that both probabilities
ρ(a : I) and Ka(W ′|W ; I) depend on the input image I. This distinguishes our
DDMCMC methods from conventional MCMC computing [29,7].

The full kernel obeys detailed balance, equation (3), because all the sub-
kernels do. It will also be ergodic, provided the set of moves is sufficient (i.e. so
that we can transition between any two states W,W ′ ∈ Ω using these moves).
These two conditions ensure that p(W |I) is the invariant (target) probability of
the Markov Chain [7] in the finite space Ω.

Applying the kernel Ka(t) updates the Markov chain state probability μt(W )
at step t to μt+1(W ′) at t+ 1, 6:

μt+1(W ′) =
∑
W

Ka(t)(W ′|W : I)μt(W ). (5)

In summary, the DDMCMC image parser simulates a Markov chainMC with
a unique invariant probability p(W |I). At time t, the Markov chain state (i.e. the
parse graph) W follows a probability μt which is the product of the sub-kernels
selected up to time t,

W ∼ μt(W ) = ν(Wo) · [Ka(1) ◦ Ka(2) ◦ · · · ◦ Ka(t)](Wo,W ) −→ p(W |I). (6)

where a(t) indexes the sub-kernel selected at time t. As the time t increases,
μt(W ) approaches the posterior p(W |I) monotonically [7] at a geometric rate [15]
independent of the starting configuration. The following convergence theorem is
useful for image parsing because it helps quantify the effectiveness of the different
sub-kernels.

6 Algorithms like belief propagation [58] can be derived as approximations to this
update equation by using a Gibbs sampler and making independence assumptions
[43].
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Theorem 2. The Kullback-Leibler divergence between the posterior p(W |I) and
the Markov chain state probability decreases monotonically when a sub-kernel
Ka(t), ∀ a(t) ∈ A is applied,

KL(p(W |I) ||μt(W ))−KL(p(W |I) ||μt+1(W )) ≥ 0 (7)

The decrease of KL-divergence is strictly positive and is equal to zero only after
the Markov chain becomes stationary, i.e. μ = p.

[Proof] See [51].
The theorem is related to the second law of thermodynamics [13], and its

proof makes use of the detailed balance equation (3). This KL divergence gives
a measure of the “power” of each sub-kernel Ka(t) and so it suggests an efficient
mechanism for selecting the sub-kernels at each time step, see Section (7). By
contrast, classic convergence analysis (c.f. [51]) show that the convergence of
the Markov Chain is exponentially fast, but does not give measures of power of
sub-kernels.

2.4 DDMCMC and Proposal Probabilities

We now describe how to design the sub-kernels using proposal probabilities and
discriminative models. This is at the heart of DDMCMC.

Each sub-kernel7 is designed to be of Metropolis-Hastings form [36,24]:

Ka(W ′|W : I) = Qa(W ′|W : Tsta(I))min{1, p(W
′|I)Qa(W |W ′ : Tsta(I))

p(W |I)Qa(W ′|W : Tsta(I))
},

(8)
where a transition from W to W ′ is proposed (stochastically) by the proposal
probability Qa(W ′|W : Tsta(I)) and accepted (stochastically) by the acceptance
probability:

α(W ′|W : I) = min{1, p(W
′|I)Qa(W |W ′ : Tsta(I))

p(W |I)Qa(W ′|W : Tsta(I))
}. (9)

The Metropolis-Hastings form ensures that the sub-kernels obey detailed bal-
ance (after pairing) [7].

The proposal probabilities Qa(W ′|W : Tsta(I)) will be built from discrimi-
native probabilities using tests Tsta(I) performed on the image. The design of
the proposal probabilities is a trade-off. Ideally the proposals would be sampled
from the posterior p(W ′|I), but this is impractical. Instead the trade-off requires:
(i) it is possible to make large moves in Ω at each time step, (ii) the proposals
should encourage moves to states with high posterior probability, and (iii) the
proposals must be fast to compute.

More formally, we define the scope Ωa(W ) = {W ′ ∈ Ω : Ka(W ′|W : I) > 0}
to be the set of states which can be reached from W in one time step using

7 Except for one that evolves region boundaries.
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sub-kernel a. We want the scope Sa(W ) to be large so that we can make large
moves in the space Ω at each time step (i.e. jump towards the solution and not
crawl). The scope should also, if possible, include states W ′ with high posterior
p(W ′|I) (i.e. it is not enough for the scope to be large, it should also be in the
right part of Ω).

The proposals Qa(W ′|W : Tsta(I)) should be chosen so as to approximate

p(W ′|I)∑
W ′′∈Ωa(W ) p(W ′′|I) if W ′ ∈ Ωa(W ), = 0, otherwise. (10)

The proposals will be functions of the discriminative models for the com-
ponents of W ′ and of the generative models for the current state W (because
it is computationally cheap to evaluate the generative models for the current
state). The details of the model p(W |I) will determine the form of the proposals
and how large we can make the scope while keeping the proposals easy to com-
pute and able to approximate equation (10). See the detailed examples given in
Section (5).

This description gives the bare bones of DDMCMC. We refer to [49] for further
details of these issues from an MCMC perspective. In the discussion section, we
describe strategies to improve DDMCMX. Preliminary theoretical results for the
convergence of DDMCMC are encouraging for a special case, see [51]. We refer
to [51] for the important practical issue of how to maintain detailed balance
when there are multiple routes to transition between two state W and W ′. We
describe two ways to do this and the trade-offs involved.

3 Generative Models and Bayesian Formulation

This section describes the graph structure and the generative models used for
our image parsing algorithm in this chapter.

Figure 1 illustrates the general structure of a parsing graph. In this chapter,
we use a two-layer-graph illustrated in Figure 4. The top node (“root”) of the
graph represents the whole scene (with a label). It has K intermediate nodes
for the visual patterns (face, text, texture, and shading). Each visual pattern
has a number of pixels at the bottom (“leaves”). In this graph no horizontal
connections are considered between the visual patterns except the constraint
that they share boundaries and form a partition of the image lattice (see [49] for
an example of image parsing where horizontal connections are used, but without
object patterns).

The number K of intermediate nodes is a random variable, and each node
i = 1, ...,K has a set of attributes (Li, ζi, Θi) defined as follows. Li is the
shape descriptor and determines the region Ri = R(Li) of the image pixels
covered by the visual pattern of the intermediate node. Conceptually, the pix-
els within Ri are child nodes of the intermediate node i. (Regions may contain
holes, in which case the shape descriptor will have internal and external bound-
aries). The remaining attribute variables (ζi, Θi) specify the probability models



Image Parsing: Unifying Segmentation, Detection, and Recognition 555

text backgdface

),,( 111 ΘLζ ),,( 222 ΘLζ ),,( 333 ΘLζ

scene

Fig. 4. Abstract representation of the parsing graph used in this chapter. The inter-
mediate nodes represent the visual patterns. Their child nodes correspond to the pixels
in the image.

p(IR(Li)|ζi, Li, Θi) for generating the sub-image IR(Li) in region R(Li). The vari-
ables ζi ∈ {1, ..., 66} indicate the visual pattern type (3 types of generic visual
patterns, 1 face pattern, and 62 text character patterns), and Θi denotes the
model parameters for the corresponding visual pattern (details are given in the
following subsections). The complete scene description can be summarized by:

W = (K, {(ζi, Li, Θi) : i = 1, 2, ...,K}).

The shape descriptors {Li : i = 1, ...,K} are required to be consistent so that
each pixel in the image is a child of one, and only one, of the intermediate nodes.
The shape descriptors must provide a partition of the image lattice Λ = {(m,n) :
1 ≤ m ≤ Height(I), 1 ≤ n ≤Width(I)} and hence satisfy the condition

Λ = ∪K
i=1R(Li), R(Li) ∩R(Lj) = ∅, ∀i 
= j.

The generation process from the scene description W to I is governed by the
likelihood function:

p(I|W ) =
K∏

i=1

p(IR(Li)|ζi, Li, Θi).

The prior probability p(W ) is defined by

p(W ) = p(K)
K∏

i=1

p(Li)p(ζi|Li)p(Θi|ζi).



556 Z. Tu et al.

In our Bayesian formulation, parsing the image corresponds to computing the
W ∗ that maximizes a posteriori probability over Ω, the solution space of W ,

W ∗ = arg max
W∈Ω

p(W |I) = arg max
W∈Ω

p(I|W )p(W ). (11)

It remains to specify the prior p(W ) and the likelihood function p(I|W ). We
set the prior terms p(K) and p(Θi|ζi) to be uniform probabilities. The term
p(ζi|Li) is used to penalize high model complexity and was estimated for the
three generic visual patterns from training data in [48].

3.1 Shape Models

We use two types of shape descriptor in this chapter. The first is used to define
shapes of generic visual patterns and faces. The second defines the shapes of text
characters.

1. Shape descriptors for generic visual patterns and faces
In this case, the shape descriptor represents the boundary8 of the image region
by a list of pixels Li = ∂Ri. The prior is defined by:

p(Li) ∝ exp{−γ|R(Li)|α − λ|Li|}. (12)

In this chapter, we set α = 0.9. For computational reasons, we use this prior
for face shapes though more complicated priors [11] can be applied.

2. Shape descriptors for text characters
We model text characters by 62 deformable templates corresponding to the ten
digits and the twenty six letters in both upper and lower cases. These deformable
templates are defined by 62 prototype characters and a set of deformations.

Fig. 5. Random samples drawn from the shape descriptors for text characters

The prototypes are represented by an outer boundary and, at most, two inner
boundaries. Each boundary is modeled by a B-spline using twenty five control
8 The boundary can include an “internal boundary” if there is a hole inside the image

region explained by a different visual pattern.
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points. The prototype characters are indexed by ci ∈ {1, ..., 62} and their control
points are represented by a matrix TP (ci).

We now define two types of deformations on the templates. One is a global
affine transformation, and the other is a local elastic deformation. First we allow
the letters to be deformed by an affine transform Mi. We put a prior p(Mi) to
penalize severe rotation and distortion. This is obtained by decomposing Mi as:

Mi =
(
σx 0
0 σy

)(
cosθ −sinθ
sinθ cosθ

)(
1 h
0 1

)
.

where θ is the rotation angle, σx and σy denote scaling, and h is for shearing.
The prior on Mi is

p(Mi) ∝ exp{−a|θ|2 − b(
σx

σy
+
σy

σx
)2 − ch2},

where a, b, c are parameters.
Next, we allow local deformations by adjusting the positions of the B-spline

control points. For a digit/letter ci and affine transform Mi, the contour points
of the template are given by GTP (Mi, ci) = U×Ms×Mi×TP (ci). Similarly the
contour points on the shape with control points Si are given by GS(Mi, ci) =
U ×Ms × Si (U and Ms are the B-Spline matrices). We define a probability
distribution p(Si|Mi, ci) for the elastic deformation given by Si,

p(Si|Mi, ci) ∝ exp{−γ|R(Li)|α −D(GS(Mi, ci)||GTP (Mi, ci))},

where D(GS(Mi, ci)||GTP (Mi, ci)) is the overall distance between contour tem-
plate and the deformed contour (these deformations are small so the correspon-
dence between points on the curves can be obtained by nearest neighbor matches,
see [50] for how we can refine this). Figure 5 shows some samples drawn from
the above model.

In summary, each deformable template is indexed by ci ∈ {1..62} and has a
shape descriptor:

Li = (ci,Mi, Si),

The prior distribution on Li is specified by:

p(Li) = p(ci)p(Mi)p(Si|Mi, ci).

Here p(ci) is a uniform distribution on all the digits and letters (we do not
place a prior distribution on text strings, though it is possible to do so [25]).

3.2 Generative Intensity Models

We use four families of generative intensity models for describing intensity pat-
terns of (approximately) constant intensity, clutter/texture, shading, and face.
The first three are similar to those defined in [48].
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1. Constant intensity model ζ = 1:
This assumes that pixel intensities in a region R are subject to independently
and identically distributed (iid) Gaussian distribution,

p1(IR(L)|ζ = 1, L,Θ) =
∏

v∈R(L)

G(Iv − μ;σ2), Θ = (μ, σ)

2. Clutter/texture model ζ = 2:
This is a non-parametric intensity histogram h() discretized to take G values
(i.e. is expressed as a vector (h1, h2, ..., hG)). Let nj be the number of pixels in
R(L) with intensity value j.

p2(IR(L)|ζ = 2, L,Θ) =
∏

v∈R(L)

h(Iv) =
G∏

j=1

h
nj

j , Θ = (h1, h2, ..., hG).

3. Shading model ζ = 3 and ζ = 5, ..., 66:
This family of models are used to describe generic shading patterns, and text
characters. We use a quadratic form

J(x, y;Θ) = ax2 + bxy + cy2 + dx+ ey + f,

with parameters Θ = (a, b, c, d, e, f, σ). Therefore, the generative model for pixel
(x, y) is

p3(IR(L)|ζ∈{3, (5, ..., 66)}, L,Θ)=
∏

v∈R(L)

G(Iv−Jv;σ2), Θ=(a, b, c, d, e, f, σ).

4. The PCA face model ζ = 4:
The generative model for faces is simpler and uses Principal Component Analysis
(PCA) to obtain representations of the faces in terms of principal components
{Bi} and covariances Σ. Lower level features, also modeled by PCA, can be
added [37]. We also add other features such as the occlusion process, as described
in Hallinan et al [22].

p4(IR(L)|ζ = 4, L,Θ) = G(IR(L) −
∑

i

λiBi;Σ), Θ = (λ1, .., λn, Σ).

4 Overview of the Algorithm

This section gives the control structure of an image parsing algorithm based on the
strategy described in section (2), see the diagram in Figure 7. Our algorithm must
construct the parse graph on the fly and estimate the scene interpretation W .

Figure 6 illustrates how the algorithm selects the Markov chain moves (dy-
namics or sub-kernels) to search through the space of possible parse graphs of
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Fig. 6. Examples of Markov chain dynamics that change the graph structure or the
node attributes of the graph giving rise to different ways to parse the image

the image by altering the graph structure (by deleting or adding nodes) and by
changing the node attributes. An equivalent way of visualizing the algorithm is
in terms of a search through the solution space Ω, see [48,49] for more details of
this viewpoint.

We first define the set of moves to reconfigure the graph. These are: (i) birth or
death of face nodes, (ii) birth or death of text characters, (iii) splitting or merging
of regions, (iv) switching node attributes (region type ζi and model parameters
Θi), (v) boundary evolution (altering the shape descriptors Li of nodes with
adjacent regions). These moves are implemented by sub-kernels. The first four
moves are reversible jumps [21], and will be implemented by the Metropolis-
Hastings equation (8). The fifth move, boundary evolution, is implemented by a
stochastic partial differential equation.

The sub-kernels for these moves require proposal probabilities driven by ele-
mentary discriminative methods, which we review in the next subsection. The
proposal probabilities are designed using the criteria in subsection (2.4), and full
details are given in Section (5).

The control structure of the algorithm is described in Section (4.2). The full
transition kernel for the image parser is built by combining the sub-kernels, as
described in subsection (2.3) and Figure 7. The algorithm proceeds (stochasti-
cally) by selecting a sub-kernel, selecting where in the graph to apply it, and
then deciding whether or not to accept the operation.

4.1 The Discriminative Methods

The discriminative methods give approximate posterior probabilities
q(wj |Tstj(I)) for the elementary components wj of W . For computational ef-
ficiency, these probabilities are based only on a small number of simple tests
Tstj(I).
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We briefly overview and classify the discriminative methods used in our imple-
mentation. Section (5) shows how these discriminative methods are composed,
see crosses in Figure 7, to give proposals for making moves in the parsing graph.

1. Edge Cues. These cues are based on edge detectors [9],[8],[26]. They are
used to give proposals for region boundaries (i.e. the shape descriptor attributes
of the nodes). Specifically, we run the Canny detector at three scales followed
by edge linking to give partitions of the image lattice. This gives a finite list
of candidate partitions which are assigned weights, see section (5.1) and [48].
The discriminative probability is represented by this weighted list of particles.
In principle, statistical edge detectors [26] would be preferable to Canny because
they give discriminative probabilities q(wj |Tstj(I)) learnt from training data.

2. Binarization Cues. These cues are computed using a variant of Niblack’s
algorithm [40]. They are used to propose boundaries for text characters (i.e.
shape descriptors for text nodes), and will be used in conjunction with propos-
als for text detection. The binarization algorithm, and an example of its output,
are given in Section (5.2). Like edge cues, the algorithm is run at different para-
meters settings and represents the discriminative probability by a weighted list
of particles indicating candidate boundary locations.

3. Face Region Cues. These cues are learnt by a variant of AdaBoost
[44],[55] which outputs discriminative probabilities [19], see Section (5.2). They
propose the presence of faces in sub-regions of the image. These cues are com-
bined with edge detection to propose the localization of faces in an image.

4. Text Region Cues. These cues are also learnt by a probabilistic version
of AdaBoost, see Section (5.2). The algorithm is applied to image windows (at a
range of scales). It outputs a discriminative probability for the presence of text
in each window. Text region cues are combined with binarization to propose
boundaries for text characters.

5. Shape Affinity Cues. These act on shape boundaries, produced by bi-
narization, to propose text characters. They use shape context cues [4] and
information features [50] to propose matches between the shape boundaries and
the deformable template models of text characters.

6. Region Affinity Cues. These are used to estimate whether two regions
Ri, Rj are likely to have been generated by the same visual pattern family and
model parameters. They use an affinity similarity measure [45] of the intensity
properties IRi , IRj .

7. Model Parameter and Visual Pattern Family cues. These are used to
propose model parameters and visual pattern family identity. They are based on
clustering algorithms, such as mean-shift [12]. The clustering algorithms depend
on the model types and are described in [48].

In our current implementation, we conduct all the bottom-up tests Tstj(I),
j = 1, 2, ...,K at an early stage for all the discriminative models qj(wj |Tstj(I)),
and they are then combined to form composite tests Tsta(I) for each subkernel
Ka in equations (8,9). It may be more efficient to perform these test as required,
see discussion in section (7).
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Fig. 7. Integrating generative (top-down) and discriminative (bottom-up) methods for
image parsing. This diagram illustrates the main points of the image parser. The dy-
namics are implemented by an ergodic Markov chain K, whose invariant probability is
the posterior p(W |I), and which is composed of reversible sub-kernels Ka for making
different types of moves in the parse graph (e.g. giving birth to new nodes or merging
nodes). At each time step the algorithm selects a sub-kernel stochastically. The selected
sub-kernel proposes a specific move (e.g. to create or delete specific nodes) and this
move is then evaluated and accepted stochastically, see equation (8). The proposals
are based on both bottom-up (discriminative) and top-down (generative) processes,
see subsection (2.4). The bottom-up processes compute discriminative probabilities
q(wj |Tstj(I)), j = 1, 2, 3, 4 from the input image I based on feature tests Tstj(I). An
additional sub-kernel for boundary evolution uses a stochastic partial differential equa-
tion will be described later.

4.2 Control Structure of the Algorithm

The control strategy used by our image parser is illustrated in Figure 7. The
image parser explores the space of parsing graphs by a Markov Chain Monte
Carlo sampling algorithm. This algorithm uses a transition kernel K which is
composed of sub-kernels Ka corresponding to different ways to reconfigure the
parsing graph. These sub-kernels come in reversible pairs9 (e.g. birth and death)
and are designed so that the target probability distribution of the kernel is the
generative posterior p(W |I). At each time step, a sub-kernel is selected sto-
chastically. The sub-kernels use the Metropolis-Hasting sampling algorithm, see
equation (8), which proceeds in two stages. First, it proposes a reconfiguration

9 Except for the boundary evolution sub-kernel which will be described separately.
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of the graph by sampling from a proposal probability. Then it accepts or rejects
this reconfiguration by sampling the acceptance probability.

To summarize, we outline the control strategy of the algorithm below. At
each time step, it specifies (stochastically) which move to select (i.e. which sub-
kernel), where to apply it in the graph, and whether to accept the move. The
probability to select moves ρ(a : I) was first set to be independent of I, but
we got better performance by adapting it using discriminative cues to estimate
the number of faces and text characters in the image (see details below). The
choice of where to apply the move is specified (stochastically) by the sub-kernel.
For some sub-kernels it is selected randomly and for others is chosen based on
a fitness factor (see details in section (5)), which measures how well the current
model fits the image data. Some annealing is required to start the algorithm
because of the limited scope of the moves in the current implementation (the
need for annealing will be reduced if the compositional techniques described in
[1]) are used).

We improved the effectiveness of the algorithm by making the move selection
adapt to the image (i.e. by making ρ(a : I) depend on I). In particular, we
increased the probability of giving birth and death of faces and text, ρ(1) and
ρ(2), if the bottom-up (AdaBoost) proposals suggested that there are many
objects in the scene. For example, let N(I) be the number of proposals for faces
or text above a threshold Ta. Then we modify the probabilities in the table by
ρ(a1) "→ {ρ(a1) + kg(N(I))}/Z, ρ(a2) "→ {ρ(a2) + kg(N)}/Z, ρ(a3) "→ ρ(a3)/Z,
ρ(a4) "→ ρ(a4)/Z, where g(x) = x, x ≤ Tb g(x) = Tb, x ≥ Tb and Z = 1 + 2k is
chosen to normalize the probability.

The basic control strategy of the image parsing algorithm is summarized as
follows:

1. Initialize W (e.g. by dividing the image into four regions), setting their shape
descriptors, and assigning the remaining node attributes at random.

2. Set the temperature to be Tinit.
3. Select the type a of move by sampling from a probability ρ(a), with ρ(1) =

0.2 for faces, ρ(2) = 0.2 for text, ρ(3) = 0.4 for splitting and merging,
ρ(4) = 0.15 for switching region model (type or model parameters), and
ρ(5) = 0.05 for boundary evolution. This was modified slightly adaptively,
see caption and text.

4. If the selected move is boundary evolution, then select adjacent regions
(nodes) at random and apply stochastic steepest descent.

5. If the jump moves are selected, then a new solution W ′ is randomly sampled
as follows:
− For the birth or death of a face, we propose to create or delete a face.

This includes a proposal for where in the image to do this.
− For the birth of death of text, we propose to create a text character or

delete an existing one. This includes a proposal for where to do this.
− For region splitting, a region (node) is randomly chosen biased by its

fitness factor. There are proposals for where to split it and for the at-
tributes of the resulting two nodes.
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− For region merging, two neighboring regions (nodes) are selected based
on a proposal probability. There are proposals for the attributes of the
resulting node.

− For switching, a region is selected randomly according to its fitness factor
and a new region type and/or model parameters is proposed.

• The full proposal probabilities, Q(W |W : I) and Q(W ′|W : I) are com-
puted.

• The Metropolis-Hastings algorithm, equation (8), is applied to accept or
reject the proposed move.

6. Reduce the temperature T = 1+Tinit×exp(−t×c|R|), where t is the current
iteration step, c is a constant and |R| is the size of the image.

7. Repeat the above steps and until the convergence criterion is satisfied (by
reaching the maximum number of allowed steps or by lack of decrease of the
negative log posterior).

5 The Markov Chain Kernels

This section gives an example of the Markov Chain kernels, the proposal prob-
abilities, and their fitness factors.

We first need boundary evolution, see Figure (8). This evolves the positions of
the region boundaries but preserve the graph structure. It is implemented by a
stochastic partial differential equation (Langevin equation) driven by Brownian
noise and can be derived from a Markov Chain [20]. The deterministic component
of the PDE is obtained by performing steepest descent on the negative log-
posterior, as derived in [60].

Control 
Points

Template

Fig. 8. The evolution of the region boundaries is implemented by stochastic partial dif-
ferential equations which are driven by models competing for ownership of the regions

The other sub-kernels alter the graph structure. See Figure (9) for an example
where regions are split or merged. We will describe below the sub-kernel for the
birth and death of text. We refer to [51] for the other subkernels.
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proposed

proposed

compute proposal 
probabilities for merge

compute proposal 
probabilities for split W′W

Fig. 9. An example of the split-merge sub-kernel. State W consists of three regions
and proposals are computed for 7 candidate splits. One is selected, see arrow, which
changes the state to W ′. Conversely, there are 5 candidate merges in state W ′ and the
one selected, see arrow, returns the system to state W .

5.1 Markov Chain Sub-kernel for the Birth and Death of Text

This pair of jumps is used to create or delete text characters. We start with
a parse graph W and transition into parse graph W ′ by creating a character.
Conversely, we transition from W ′ back to W by deleting a character.

proposed

proposed

proposals for 
birth of text

T 
W W′EXT 

proposals for 
death of text

T T E

T E

Fig. 10. An example of the birth-death of text. State W consists of three generic
regions and a character “T”. Proposals are computed for 3 candidate characters, “E”,
“X”, and “T”, obtained by AdaBoost and binarization methods (see section (5.2)). One
is selected, see arrow, which changes the state to W ′. Conversely, there are 2 candidate
in state W ′ and the one selected, see arrow, returns the system to state W .
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The proposals for creating and deleting text characters are designed to ap-
proximate the terms in equation (10). We obtain a list of candidate text character
shapes by using AdaBoost to detect text regions followed by binarization to de-
tect candidate text character boundaries within text regions (see section (5.2)).
This list is represented by a set of particles which are weighted by the similarity
to the deformable templates for text characters (see below):

S1r(W ) = { (z(μ)
1r , ω

(μ)
1r ) : μ = 1, 2, ..., N1r}.

Similarly, we specify another set of weighted particles for removing text charac-
ters:

S1l(W ′) = { (z(ν)
1l , ω

(ν)
1l ) : ν = 1, 2, ..., N1l}.

{z(μ)
1r } and {z(ν)

1l } represent the possible (discretized) shape positions and text
character deformable templates for creating or removing text, and {ω(μ)

1r } and
{ω(ν)

1l } are their corresponding weights. The particles are then used to compute
proposal probabilities

Q1r(W ′|W : I) =
ω1r(W ′)∑N1r

μ=1 ω
(μ)
1r

, Q1l(W |W ′, I) =
ω1l(W )∑N1l

ν=1 ω
(ν)
1l

.

The weights ω(μ)
1r and ω

(ν)
1l for creating new text characters are specified by

shape affinity measures, such as shape contexts [4] and informative features [50].
For deleting text characters we calculate ω

(ν)
1l directly from the likelihood and

prior on the text character. Ideally these weights will approximate the ratios
p(W ′|I)
p(W |I) and p(W |I)

p(W ′|I) .

5.2 AdaBoost for Discriminative Probabilities for Face and Text

This section describes how we use AdaBoost techniques to compute discrimina-
tive probabilities for detecting faces and text (strings of letters). We also describe
the binarization algorithm used to detect the boundaries of text characters.

The standard AdaBoost algorithm, for example for distinguishing faces from
non-faces [55], learns a binary-valued strong classifier HAda by combining a set of
n binary-valued “weak classifiers” or feature tests TstAda(I) = (h1(I), ..., hn(I))
using a set of weights αAda = (α1, ..., αn)[18],

HAda(TstAda(I)) = sign(
n∑

i=1

αihi(I)) = sign < αAda,TstAda(I) > . (13)

The features are selected from a pre-designed dictionary ΔAda. The selection
of features and the tuning of weights are posed as a supervised learning problem.
Given a set of labeled examples, {(Ii, "i) : i = 1, 2, ...,M} ("i = ±1), AdaBoost
learning can be formulated as greedily optimizing the following function [44]

(α∗
Ada,Tst∗Ada) = arg min

TstAda⊂ΔAda
arg min

αAda

M∑
i=1

exp−�i<αAda,TstAda(Ii)> . (14)
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To obtain discriminative probabilities we use a theorem [19] which states
that the features and test learnt by AdaBoost give (asymptotically) posterior
probabilities for the object labels (e.g. face or non-face). The AdaBoost strong
classifier can be rederived as the log posterior ratio test.

Theorem 3. (Friedman et al 1998) With sufficient training samples M and
features n, AdaBoost learning selects the weights α∗

Ada and tests Tst∗Ada to satisfy

q(" = +1|I) =
e�<αAda,TstAda(Ii)>

e<αAda,TstAda(Ii)> + e−<αAda,TstAda(Ii)>
.

Moreover, the strong classifier converges asymptotically to the posterior prob-
ability ratio test

HAda(TstAda(I)) = sign(< αAda, TstAda(I) >) = sign(
q(" = +1|I)
q(" = −1|I) ).

In practice, the AdaBoost classifier is applied to windows in the image at different
scales. Each window is evaluated as being face or non-face (or text versus non-
text). For most images the posterior probabilities for faces or text are negligible
for almost all parts of an image. So we use a cascade of tests [55,57] which enables
us to rapidly reject many windows by setting their marginal probabilities to be
zero.

Of course, AdaBoost will only converge to approximations to the true poste-
rior probabilities p("|I) because only a limited number of tests can be used (and
there is only a limited amount of training data).

Note that AdaBoost is only one way to learn a posterior probability, see
theorem (1). It has been found to be very effective for object patterns which
have relatively rigid structures, such as faces and text (the shapes of letters are
variable but the patterns of a sequence are fairly structured [10]).

We refer to Viola and Jones [55] and Chen and Yuille [10] for details of how
AdaBoost learning [18,19] can be performed to detect face and text.

In both cases, we evaluated the log posterior ratio test on testing datasets
using a number of different thresholds (see [55]). In agreement with previous work
on faces [55], AdaBoost gave very high performance with very few false positives
and false negatives, see table (1). But these low error rates are slightly misleading
because of the enormous number of windows in each image, see table (1). A small
false positive rate may imply a large number of false positives for any regular
image. By varying the threshold, we can either eliminate the false positives or the
false negatives but not both at the same time. We illustrate this by showing the
face regions and text regions proposed by AdaBoost in Figure 11. If we attempt
classification by putting a threshold then we can only correctly detect all the
faces and the text at the expense of false positives.

When Adaboost is integrated with the generic region models in the image
parser, the generic region proposals can remove false positives and find text that
AdaBoost misses. For example, the ’9’ in the right panel of Figure 11 is not
detected because our AdaBoost algorithm was trained on text segments and can
fail to detect isolated letters. Instead it is detected as a generic shading region
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Table 1. Performance of AdaBoost at different thresholds

Object False Positive False Negative Images Subwindows
Face 65 26 162 355,960,040
Face 918 14 162 355,960,040
Face 7542 1 162 355,960,040
Text 118 27 35 20,183,316
Text 1879 5 35 20,183,316

Fig. 11. The boxes show faces and text as detected by the AdaBoost log posterior ratio
test with fixed threshold. Observe the false positives due to vegetation, tree structure,
and random image patterns. It is impossible to select a threshold which has no false
positives and false negatives for this image. As it is shown in our experiments later,
the generative models will remove the false positives and also recover the missing text.

and later recognized as a letter ‘9’, see Figure 13. Some false positive text and
faces in Figure 11 are removed in Figures 13 and 15.

The AdaBoost algorithm for text needs to be supplemented with a binariza-
tion algorithm, described below, to determine text character location. This is
followed by appling shape contexts [4] and informative features [50] to the bina-
rization results to make proposals for the presence of specific letters and digits.

In many cases, see Figure 12, the results of binarization are so good that the
letters and digits can be detected immediately (i.e. the proposals made by the
binarization stage are automatically accepted). But this will not always be the
case. We note that binarization gives far better results than alternatives such as
edge detection [9].

The binarization algorithm is a variant of one proposed by Niblack [40]. We
binarize the image intensity using an adaptive thresholding based on a adaptive
window size. Adaptive methods are needed because image windows containing
text often have shading, shadow, and occlusion. Our binarization method de-
termines the threshold Tb(v) for each pixel v by the intensity distribution of its
local window r(v) (centered on v).
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Tb(v) = μ(Ir(v)) + k · std(Ir(v)),

where μ(Ir(v)) and std(Ir(v)) are the intensity mean and standard deviation
within the local window. The size of the local window is selected to be the
smallest possible window whose intensity variance is above a fixed threshold.
The parameter k = ±0.2, where the ± allows for cases where the foreground is
brighter or darker than the background.

Fig. 12. Example of binarization on the detected text

6 Experiments

The image parsing algorithm was applied to a number of outdoor/indoor images.
The speed in PCs (Pentium IV) is comparable to segmentation methods such as
normalized cuts [32] or the DDMCMC algorithm in [48]. It typically runs around
10-20 minutes. The main portion of the computing time is spent in segmenting
the generic patterns and by boundary diffusion [60].

a. Input image b. Segmentation c. Object recognition d. Synthesized image

Fig. 13. Results of segmentation and recognition on two images. The results are im-
proved compare to the purely bottom-up (AdaBoost) results displayed in Figure 11.
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a. Input image b. Synthesis 1 c. Synthesis 2

Fig. 14. A close-up look of an image in Figure 13. The dark glasses are explained by the
generic shading model and so the face model does not have to fit this part of the data.
Otherwise the face model would have difficulty because it would try to fit the glasses
to eyes. Standard AdaBoost only correctly classifies these faces at the expense of false
positives, see Figure 11. We show two examples of synthesized faces, one (Synthesis 1)
with the dark glasses (modelled by shading regions) and the other (Synthesis 2) with
the dark glasses removed (i.e. using the generative face model to sample parts of the
face (e.g. eyes) obscured by the dark glasses.

Figures 13, 14, and 15 show some challenging examples which have heavy
clutter and shading effects. We present the results in two parts. One shows the
segmentation boundaries for generic regions and objects, and the other shows the
text and faces detected with text symbols to indicate text recognition, i.e. the
letters are correctly read by the algorithm. Then we synthesize images sampled
from the likelihood model p(I|W ∗) where W ∗ is the parsing graph (the faces,
text, regions parameters and boundaries) obtained by the parsing algorithm. The
synthesized images are used to visualize the parsing graph W ∗, i.e. the image
content that the computer “understand”.

In the experiments, we observed that the face and text models improved the
image segmentation results by comparison to our previous work [48] which only
used generic region models. Conversely, the generic region models improve object
detection by removing some false alarms and recovering objects which were not
initially detected. We now discuss specific examples.

In Figure 11, we showed two images where the text and faces were detected
purely bottom-up using AdaBoost. It is was impossible to select a threshold so
that our AdaBoost algorithm had no false positives or false negatives. To ensure
no false negatives, apart from the ’9’, we had to lower the threshold and admit
false positives due to vegetation and heavy shadows (e.g. the shadow in the sign
“HEIGHTS OPTICAL”).

The letter ’9’ was not detected at any threshold. This is because our AdaBoost
algorithm was trained to detect text segments, and so did not respond to a single
digit.

By comparison, Figure 13 shows the image parsing results for these two im-
ages. We see that the false alarms proposed by AdaBoost are removed because
they are better explained by the generic region models. The generic shading
models help object detection by explaining away the heavy shading on the text
“HEIGHTS OPTICAL” and the dark glasses on the women, see Figure 14. More-
over, the missing digit ’9’ is now correctly detected. The algorithm first detected
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a. Input image b. Segmentation c. Object recognition d. Synthesized image

Fig. 15. Results of segmentation and recognition on outdoor images. Observe the abil-
ity to detect faces and text at multiple scale.

it as a generic shading region and then reclassified as a digit using the sub-kernel
that switches node attributes.

The ability to synthesize the image from the parsing graphW ∗ is an advantage
of the Bayesian approach. The synthesis helps illustrate the successes, and some-
times the weaknesses, of the generative models. Moreover, the synthesized images
show how much information about the image has been captured by the models. In
table (2), we give the number of variables used in our representationW ∗ and show
that they are roughly proportional to the jpeg bytes. Most of the variables in W ∗

are used to represent points on the segmentation boundary, and at present they are
counted independently. We could reduce the coding length ofW ∗ substantially by
encoding the boundary points effectively, for example, using spatial proximity. Im-
age encoding is not the goal of our current work, however, and more sophisticated
generative models would be needed to synthesize very realistic images.

Table 2. The number of variables in W ∗ for each image compared to the JPG bytes

Image Stop Soccer Parking Street Westwood
jpg bytes 23,998 19,563 23,311 26,170 27,790
|W ∗| 4,886 3,971 5,013 6,346 9,687
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7 Discussion

In this section, we describe two challenging technical problems for image parsing.
Our current work addresses these issues.

1. Two mechanisms for constructing the parsing graph
In the introduction to this chapter we stated that the parsing graph can be
constructed in compositional and decompositional modes. The compositional
mode proceeds by grouping small elements while the decompositional approach
involves detecting an object as a whole and then locating its parts, see Figure 16.

4 Object Regions

113 Atomic Regions

46,256 Pixels

PCA faces 

parts 

image pixels

(a) “composition” (b) “decomposition”

Fig. 16. Two mechanisms for constructing the parsing graph. See text for explanation.

The compositional mode appears most effective for Figure 16(a). Detecting
the cheetah by bottom-up tests, such as those learnt by AdaBoost, seems difficult
owing to the large variability of shape and photometric properties of cheetahs. By
contrast, it is quite practical using Swendsen-Wang Cuts [2] to segment the image
and obtain the boundary of the cheetah using a bottom-up compositional ap-
proach and a parsing tree with multiple levels. The parsing graph is constructed
starting with the pixels as leaves (there are 46, 256 pixels in Figure 16(a)). The
next level of the graph is obtained using local image texture similarities to con-
struct graph nodes (113 of them) corresponding to “atomic regions” of the image.
Then the algorithm constructs nodes (4 of them) for “texture regions” at the
next level by grouping the atomic regions (i.e. each atomic region node will be
the child of a texture region node). At each level, we compute a discriminative
(proposal) probability for how likely adjacent nodes (e.g. pixels or atomic re-
gions) belong to the same object or pattern. We then apply a transition kernel
implementing split and merge dynamics (using the proposals). We refer to [2]
for more detailed discussion.
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For objects with little variability, such as the faces shown in Figure 16(b), we
can use bottom-up proposals (e.g. AdaBoost) to activate a node that represents
the entire face. The parsing graph can then be constructed downwards (i.e. in
the decompositional mode) by expanding the face node to create child nodes for
the parts of the face. These child nodes could, in turn, be expanded to grandchild
nodes representing finer scale parts. The amount of node expansion can be made
adaptive to depend on the resolution of the image. For example, the largest face
in Figure 16(b) is expanded into child nodes but there is not sufficient resolution
to expand the face nodes corresponding to the three smaller faces.

The major technical problem is to develop a mathematical criterion for which
mode is most effective for which types of objects and patterns. This will enable
the algorithm to adapt its search strategy accordingly.

2. Optimal ordering strategy for tests and kernels
The control strategy of our current image parsing algorithm does not select the
tests and sub-kernels in an optimal way. At each time step, the choice of sub-
kernel is independent of the current state W (though the choice of where in the
graph to apply the sub-kernel will depend on W ). Moreover, bottom-up tests
are performed which are never used by the algorithm.

It would be more efficient to have a control strategy which selects the sub-
kernels and tests adaptively, provided the selection process requires low com-
putational cost. We seek to find an optimal control strategy for selection which
is effective for a large set of images and visual patterns. The selection criteria
should select those tests and sub-kernels which maximize the gain in information.

We propose the two information criteria that we described in Section (2).
The first is stated in Theorem 1. It measures the information gained for variable

w in the parsing graph by performing a new test Tst+. The information gain is
δ(w||Tst+) = KL(p(w|I) || q(w|Tst(I)))−KL(p(w|I) || q(w|Tstt(I), F+)), where
Tst(I) denotes the previous tests (and KL is the Kullback-Leibler divergence).

The second is stated in Theorem 2. It measures the power of a sub-kernel Ka

by the decrease of the KL-divergence δ(Ka) = KL(p ||μt)−KL(p ||μtKa). The
amount of decrease δa gives a measure of the power of the sub-kernel Ka when
informed by Tstt(I).

We need also take into account the computational cost of the selection pro-
cedures. See [6] for a case study for how to optimally select tests taking into
account their computational costs.

8 Summary and Future Work

This chapter introduces a computational framework for parsing images into basic
visual patterns. We formulated the problem using Bayesian probability theory
and designed a stochastic DDMCMC algorithm to perform inference. Our frame-
work gives a rigorous way to combine segmentation with object detection and
recognition. We give proof of concept by implementing a model whose visual
patterns include generic regions (texture and shading) and objects (text and
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faces). Our approach enables these different visual patterns to compete and
cooperate to explain the input images.

This chapter also provides a way to integrate discriminative and generative
methods of inference. Both methods are extensively used by the vision and ma-
chine learning communities and correspond to the distinction between bottom-
up and top-down processing. Discriminative methods are typically fast but can
give sub-optimal and inconsistent results, see Figure 3. By contrast, generative
methods are optimal (in the sense of Bayesian Decision Theory) but can be slow
because they require extensive search. Our DDMCMC algorithm integrates both
methods, as illustrated in Figure 7, by using discriminative methods to propose
generative solutions.

The goal of our algorithm is to construct a parse graph representing the image.
The structure of the graph is not fixed and will depend on the input image. The
algorithm proceeds by constructing Markov Chain dynamics, implemented by
sub-kernels, for different moves to configure the parsing graph – such as creating
or deleting nodes, or altering node attributes. Our approach can be scaled-up by
adding new sub-kernels, corresponding to different vision models. This is similar
in spirit to Ullman’s concept of “visual routines” [54]. Overall, the ideas in this
chapter can be applied to any other inference problem that can be formulated
as probabilistic inference on graphs.

Other work by our group deals with a related series of visual inference tasks
using a similar framework. This includes image segmentation [48], curve grouping
[49], shape detection [50], motion analysis [2], and 3D scene reconstruction [23].
In the future, we plan to integrate these visual modules and develop a general
purpose vision system.

Finally, we are working on ways to improve the speed of the image parsing
algorithm as discussed in Section (7). In particular, we expect the use of the
Swendsen-Wang cut algorithms [1,2] to drastically accelerate the search. We
anticipate that this, and other improvements, will reduce the running time of
DDMCMC algorithms from 10-20 minutes [48] to well under a minute.
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Abstract. A popular framework for the interpretation of image
sequences is the layers or sprite model, see e.g. [15], [6]. Jojic and Frey
[8] provide a generative probabilistic model framework for this task, but
their algorithm is slow as it needs to search over discretized transforma-
tions (e.g. translations, or affines) for each layer simultaneously. Exact
computation with this model scales exponentially with the number of
objects, so Jojic and Frey used an approximate variational algorithm to
speed up inference. Williams and Titsias [16] proposed an alternative
sequential algorithm for the extraction of objects one at a time using a
robust statistical method, thus avoiding the combinatorial explosion.

In this chapter we elaborate on our sequential algorithm in the fol-
lowing ways: Firstly, we describe a method to speed up the computation
of the transformations based on approximate tracking of the multiple
objects in the scene. Secondly, for sequences where the motion of an ob-
ject is large so that different views (or aspects) of the object are visible
at different times in the sequence, we learn appearance models of the
different aspects. We demonstrate our method on four video sequences,
including a sequence where we learn articulated parts of a human body.

1 Introduction

A powerful framework for modelling video sequences is the layer-based approach
which models an image as a composite of 2D layers, each one representing an
object in terms of its appearance and region of support or mask, see e.g. Wang
and Adelson [15] and Irani et al. [6]. A layered representation explicitly accounts
for occlusion between the objects, permits motion segmentation in a general
multiple-frame setting rather than in pairs of frames, and provides appearance
models for the underlying objects. These properties can allow layered models to
be useful for a number of different purposes such as video compression, video
summarization, background substitution (e.g. alpha matting applications), ob-
ject recognition (e.g. learning an object recognition system from video clips with-
out needing human annotation) and others.

Jojic and Frey [8] provided a principled generative probabilistic framework for
learning a layered model allowing transparency between the layers. Williams and
Titsias [16] developed a similar model where layers strictly combine by occlusion.

J. Ponce et al. (Eds.): Toward Category-Level Object Recognition, LNCS 4170, pp. 577–595, 2006.
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Learning these models using an exact EM algorithm faces the problem that as
the number of objects increases, there is a combinatorial explosion of the number
of configurations that need to be considered. If there are L possible objects, and
there are J transformations that any one object can undergo, then we will need
to consider O(JL) combinations to explain any image. Jojic and Frey [8] tackled
this problem by using a variational inference scheme searching over all transfor-
mations simultaneously, while Williams and Titsias [16] developed a sequential
approach using robust statistics which searches over the transformations of one
object at each time. Both these methods do not require a video sequence and
can work on unordered sets of images. In this case, training can be very slow
as it is necessary to search over all possible transformations of at least a single
object on every image. However, for video sequences we could considerably speed
up the training by first localizing each object based on a recursive processing of
the consecutive frames. Recursive localization can approximate the underlying
sequence of transformations of an object in the frames and thus learning can be
carried out with a very focused search over the neighbourhood of these transfor-
mations or without search at all when the approximation is accurate. We refer
to the recursive localization procedure as object tracking.

In this chapter we describe two developments of the above model. Firstly,
assuming video data and based on tracking we speed up the method of Williams
and Titsias [16]. First, the moving background is tracked and then its appear-
ance is learned, while moving foreground objects are found at later stages. The
tracking algorithm itself recursively updates an appearance model of the tracked
object and approximates the transformations by matching this model to the
frames through the sequence.

Secondly, in order to account for variation in object appearance due to changes
in the 3D pose of the object and self occlusion, we model different visual aspects
or views of each foreground object. This is achieved by introducing a set of mask
and appearance pairs, each one associated with a different view of the object.
To learn different viewpoint object models we use approximate tracking, so that
we first estimate the 2D or planar transformations of each foreground object in
all frames and then given these transformations we stabilize the video and learn
the viewpoint models for that object using a mixture modelling approach.

The structure of the remainder of the chapter is as follows: In section 2 we
describe the layered generative model which assumes multiple views for each
foreground object. Section 3 describes learning the model from a video sequence,
while section 4 discusses related work. Section 5 gives experimental results and
we conclude with a discussion in section 6.

2 Generative Layered Model

For simplicity we will present the generative model assuming that there are two
layers, i.e. a foreground object and a static background. Later in this section
we will discuss the case of arbitrary number of foreground layers and a moving
background.
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Let b denote the appearance image of the background arranged as a vector.
Assuming that the background is static, b will have the same size as the data
image size (although note that for moving backgrounds, b will need to be larger
than the image size). Each entry bi stores the ith pixel value which can either
be a grayscale intensity value or a colour value. In our implementation we allow
coloured images where bi is a three-dimensional vector in the RGB space. How-
ever, for notational convenience below we assume that bi is a scalar representing
a grayscale value.

In contrast to the background, the foreground object occupies some region
of the image and thus to describe this layer we need both an appearance f and
mask π. The foreground is allowed to move so there is an underlying transfor-
mation with index j that e.g. corresponds to translational or affine motion and
a corresponding transformation matrix so that Tjf and Tjπ is the transformed
foreground and mask, respectively. A pixel in an observed image is either fore-
ground or background. This is expressed by a vector of binary latent variables
s, one for each pixel drawn from the distribution

P (s|j) =
P∏

i=1

(Tjπ)si

i (1− Tjπ)1−si

i , (1)

where 1 denotes the vector of ones. Each variable si is drawn independently so
that for pixel i, if (Tjπ)i � 0, then the pixel will be ascribed to the background
with high probability, and if (Tjπ)i � 1, it will be ascribed to the foreground
with high probability. Note that s is the binary mask of the foreground object
in an example image, while π is the prior untransformed mask that captures
roughly the shape of the object stored in f .

Selecting a transformation index j, using prior Pj over J possible values with∑J
j=1 Pj = 1, and a binary mask s, an image x is drawn from the Gaussian

p(x|j, s) =
P∏

i=1

N(xi; (Tjf)i, σ
2
f )siN(xi; bi, σ2

b )1−si , (2)

where each pixel is drawn independently from the above conditional density. To
express the likelihood of an observed image p(x) we marginalise out the latent
variables, which are the transformation j and the binary mask s. Particularly,
we first sum out s using (1) and (2) and obtain

p(x|j) =
P∏

i=1

(Tjπ)iN(xi; (Tjf)i, σ
2
f ) + (1− Tjπ)iN(xi; bi, σ2

b ). (3)

Using now the prior Pj over the transformation j, the probability of an observed
image x is p(x) =

∑J
j=1 Pjp(x|j). Given a set of images {x1, . . . ,xN} we can

adapt the parameters θ = {b, f ,π, σ2
f , σ

2
b} to maximize the log likelihood using

the EM algorithm.
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The above model can be extended so as to have a moving background and
L foreground objects [16]. For example, for two foreground layers with parame-
ters (f1,π1, σ

2
1) and (f2,π2, σ

2
2) and also a moving background, the analogue of

equation (3) is

p(x|j1, j2, jb) =
P∏

i=1

(Tj1π1)iN(xi; (Tj1 f1)i, σ
2
1) + (1 − Tj1π1)i×

[
(Tj2π2)iN(xi; (Tj2 f2)i, σ

2
2) + (1 − Tj2π2)iN(xi; (Tbb)i, σ

2
b )
]
, (4)

where j1, j2 and jb denote the transformation of the first foreground object, the
second foreground object and the background, respectively.

Furthermore, we can allow for an arbitrary occlusion ordering between the
foreground objects, so that it can vary in different images, by introducing an
additional hidden variable that takes as values all L! possible permutations of
the foreground layers.

2.1 Incorporating Multiple Viewpoints

The layered model presented above assumes that the foreground object varies
due to a 2D (or planar) transformation. However, in many video sequences
this assumption will not be true e.g. a foreground object can undergo 3D ro-
tation so that at different times we may see different views (or aspects) of the
object. For example, Figure 3 shows three frames of a sequence capturing a
man walking; clearly the man’s pose changes substantially during time. Next
we generalize the layered model so that the appearance of a foreground ob-
ject can be chosen from a set of possible appearances associated with different
viewpoints.

Assume again that there are two layers: one static background and one moving
foreground object. We introduce a discrete latent variable v, that can obtain V
possible values indexed by integers from 1 to V . For each value v we introduce
a separate pair of appearance fv and mask πv defined as in section 2. Each pair
(fv,πv) models a particular view of the object.

To generate an image x we first select a transformation j and a view v using
prior probabilities Pj and Pv, respectively. Then we select a binary mask s from
the distribution P (s|j, v) =

∏P
i=1(Tjπ

v)si

i (1 − Tjπ
v)1−si

i , and draw an image
x from the Gausssian p(x|j, v, s) =

∏P
i=1 N(xi; (Tjfv)i, σ

2
f )siN(xi; bi, σ2

b )1−si .
Note the similarity of the above expressions with equations (1) and (2). The
only difference is that now the appearance f and mask π are indexed by v to
reflect the fact that we have also chosen a view for the foreground object.

To express the probability distribution according to which an image is gener-
ated given the transformation, we sum out the binary mask and the view variable
and obtain

p(x|j) =
V∑

v=1

Pvp(x|j, v), (5)
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where p(x|j, v) is given as in (3) with f and π indexed by v. Notice how the
equation (5) relates to equation (3). Clearly now p(x|j) is a mixture model of
the type of model given in (3) so that each mixture component is associated
with a visual aspect. For example, if we choose to have a single view the latter
expression reduces to the former one.

It is straightforward to extend the above model to the case of L foreground
layers with varying viewpoints. In this case we need a separate view variable v�

for each foreground object and a set of appearance and mask pairs: (fv�

� ,πv�

� ),
v� = 1, . . . , V�. For example, when we have two foreground objects and a mov-
ing background the conditional p(x|j1, j2, jb, v1, v2) is given exactly as in (4)
by introducing suitable indexes to the foreground appearances and masks that
indicate the choices made for the viewpoint variables.

3 Learning

Given the set of possibly unordered images {x1, . . . , xN} a principled way to learn
the parameters θ = ({fv1

1 ,πv1
1 , σ2

1,v1
}V1

v1=1, . . . , {fvL

L ,πvl

L , σ
2
L,vL

}VL
vL=1,b, σ

2
b ) is by

maximizing the log likelihood L(θ) =
∑N

n=1 log p(xn|θ) using the EM algorithm.
However, an exact EM algorithm is intractable. If the foreground objects and
the background can undergo J transformations and assuming V views for each
foreground object, the time needed to carry out the E-step for a training image is
O(JL+1V LL!). Clearly, this computation is infeasible as it grows exponentially
with L. A variational EM algorithm can be used to simultaneously infer the
parameters, the transformations and the viewpoint variables in all images in
time linear with L. However such algorithm can face two problems: (i) it will
be very slow as the number of all transformations J can be very large (e.g. for
translations and rotations can be of order of hundred of thousands) and (ii)
simultaneous search over all the unknown quantities can be prone to severe local
maxima, e.g. there is a clear danger of confusion the aspects of one object and
the corresponding aspects of a different object.

Our learning algorithm works for video data and proceeds in stages so that,
roughly speaking, each stage deals with a different set of unknown variables.
Table 1 illustrates all the different steps of the algorithm. At Stage 1, we ignore
the search needed to compute the occlusion ordering of the foreground objects
and we focus on approximating the transformations {jn

1 , j
n
2 , . . . , j

n
L, j

n
b }N

n=1 and
inferring the viewpoint variables {vn

1 , . . . , v
n
L}N

n=1 for all training images. In this
stage also we obtain good initial estimates for the parameters of all objects.
At Stage 2 we compute the occlusion orderings and we jointly refine all the
parameters by optimizing the complete likelihood of the model where all the
transformations, view variables and occlusion orderings have been “filled in”
using their approximate values.

Stage 1 is the intensive part of the learning process and is divided in
sub-stages. Particularly, the object parameters and their associated transfor-
mations are estimated in a greedy fashion so as to deal with one object at a
time. Particularly, we first track the background in order to approximate the
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transformations (j1b , . . . , j
N
b ) and then given these transformations we learn the

background appearance. Then for each foreground object sequentially we track
it and learn all of its different views.

Table 1. The steps of the learning algorithm

– Stage 1:

1. Track the background to compute the transformations (j1b , . . . , j
N
b ). Then

learn the background parameters (b, σ2
b ).

2. Suppress all the pixels that have been classified as part of the back-
ground in each training image, so that wn

1 indicates the remaining non-
background pixels in the image xn.

3. for " = 1 to L

(a) Using the wn
� vectors track the "th object to compute the transforma-

tions (j1� , . . . , j
N
� ). Then learn the parameters {fv�

� ,πv�

� , σ2
�,v�
}V�

v�=1.
(b) If " = L go to Stage 2. Otherwise, construct the vectors wn

�+1 from
wn

� so that all the pixels classified as part of the "th object in all
images are additionally suppressed.

– Stage 2: Using the inferred values of the parameters θ from Stage 1, the
transformations, and the view variables, compute the occlusion ordering of
the foreground layers in each image. Then using these occlusion orderings
refine the parameters of the objects.

The next three sections explain in detail all the steps of the learning algorithm.
Particularly, section 3.1 discusses learning the background (step 1 in Stage 1),
section 3.2 describes learning the foreground objects (steps 2 and 3 in Stage 1)
and section 3.3 discusses computation of the occlusion ordering of the foreground
objects and refinement of the parameters (Stage 2). A preliminary version of
this algorithm was presented in [12].

3.1 Learning the Background

Assume that we have approximated the transformations {j1b , . . . , jN
b } of the back-

ground in each frame of the video. We will discuss shortly how to obtain such
approximation using tracking. Using these transformations we wish to learn the
background appearance.

At this stage we consider images that contain a background and many fore-
ground objects. However, we concentrate on learning only the background. This
goal can be achieved by introducing a likelihood model for the images that
only accounts for the background while the presence of the foreground ob-
jects will be explained by an outlier process. For a background pixel, the fore-
ground objects are interposed between the camera and the background, thus
perturbing the pixel value. This can be modelled with a mixture distribution
as pb(xi; bi) = αbN(xi; bi, σ2

b ) + (1 − αb)U(xi), where αb is the fraction of times
a background pixel is not occluded, and the robustifying component U(xi) is a
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uniform distribution common for all image pixels. When the background pixel is
occluded it should be explained by the uniform component. Such robust models
have been used for image matching tasks by a number of authors, notably Black
and colleagues [2].

The background can be learned by maximizing the log likelihood
Lb =

∑N
n=1 log p(xn|jn

b ) where

p(x|jb) =
P∏

i=1

αbN(xi; (Tjb
b)i, σ

2
b ) + (1− αb)U(xi). (6)

The maximization of the likelihood over (b, σ2
b ) can be achieved by using the

EM algorithm to deal with the pixel outlier process. For example, the update
equation of the background b is

b←
N∑

n=1

[T T
jn
b
(rn(jn

b ) ∗ xn)]./
N∑

n=1

[T T
jn
b
rn(jn

b )], (7)

where y ∗z and y./z denote the element-wise product and element-wise division
between two vectors y and z, respectively. In (7) the vector r(jb) stores the value

ri(jb) =
αbN(xi; (Tjb

b)i, σ
2
b )

αbN(xi; (Tjb
b)i, σ2

b ) + (1 − αb)U(xi)
(8)

for each image pixel i, which is the probability that the ith image pixel is part
of the background (and not some outlier due to occlusion) given jb.

The update for the background appearance b is very intuitive. For each image
xn, the pixels which are ascribed to non-occluded background (i.e. rn

i (jn
b ) �

1) are transformed by T T
jn
b
, which reverses the effect of the transformation by

mapping the image xn into the larger and stabilized background image b so that
xn is located within b in the position specified by jn

b . Thus, the non-occluded
pixels found in each training image are located properly into the big panorama
image and averaged to produce b.

Tracking the Background. We now discuss how we can quickly approximate
the transformations {j1b , . . . , jN

b } using tracking. To introduce the idea of our
tracking algorithm assume that we know the appearance of the background b as
well as the transformation j1b that associates b with the first frame. Since motion
between successive frames is expected to be relatively small we can determine
the transformation j2b for the second frame by searching over a small discrete set
of neighbouring transformations centered at j1b and inferring the most probable
one (i.e. the one giving the highest likelihood given by equation (6), assuming
a uniform prior). This procedure can be applied recursively to determine the
sequence of transformations in the entire video.

However, the background b is not known in advance, but we can still apply
roughly the same tracking algorithm by suitably initializing and updating the
background b as we process the frames. More specifically, we initialize b so that
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the centered part of it will be the first frame x1 in the sequence. The remaining
values of b take zero values and are considered as yet not-initialized which is
indicated by a mask m of the same size as b that takes the value 1 for initialized
pixels and 0 otherwise. The transformation of the first frame j1b is the identity,
which means that the first frame is untransformed. The transformation of the
second frame and in general any frame n+1, n ≥ 1, is determined by evaluating
the posterior probability

R(jb) ∝ exp

{∑P
i=1(Tjb

mn)i log pb(xn+1
i ; (Tjb

bn)i)∑P
i=1(Tjb

mn)i

}
, (9)

over the set of possible jb values around the neighbourhood of jn
b . The approx-

imate transformation jn+1
b for the frame is chosen to be jn+1

b = j∗b , where j∗b
maximizes the above posterior probability. Note that (9) is similar to the likeli-
hood (6), with the only difference being that pixels of the background that are
not initialized yet are removed from consideration and the score is normalized
(by

∑P
i=1(Tjb

mn)i) so that the number of not-yet-initialized pixels (which can
vary with jb) does not affect the total score. Once we know jn+1

b , we use all
the frames up to the frame xn+1 (i.e. {x1, . . . ,xn+1}) to update b according
to equation (7) where the vectors rt(jt

b) with t = 1, . . . , n + 1 have been have
been updated according to equation (8) for the old value bn of the background.
The mask m is also updated so that it always indicates the pixels of b that are
explored so far.

The effect of these updates is that as we process the frames the background
model b is adjusted so that any occluding foreground object is blurred out,
revealing the background behind. Having tracked the background, we can then
learn its full structure as described earlier in this section.

3.2 Learning the Foreground Objects

Imagine that the background b and its most probable transformations in all
training images have been approximated. What we wish to do next is to learn
the foreground objects. We are going to learn the foreground objects one at each
time. Particularly, we assume again that we have approximated the transforma-
tions {j1� , . . . , jN

� } of the "th foreground object in all frames. This approximation
can be obtained quickly using a tracking algorithm (see later in this section),
that is repeatedly applied to the video sequence and each time outputs the
transformations associated with a different object.

Learning of the "th foreground object will be based on a likelihood model for
the images that only accounts for that foreground object and the background,
while the presence of the other foreground objects is explained by an outlier
process. Particularly, the other foreground objects can occlude both the "th
foreground object and the background. Thus, we robustify the foreground and
background pixel densities so that the Gaussians in equation (2) are replaced by
pf (xi; fi) = αfN(xi; fi, σ

2
f ) + (1 − αf )U(xi) and pb(xi; bi) = αbN(xi; bi, σ2

b ) +
(1 − αb)U(xi) respectively, where U(xi) is an uniform distribution in the range



Sequential Learning of Layered Models from Video 585

of all possible pixel values and αf and αb express prior probabilities that a
foreground (resp. background) pixel is not occluded. Any time a foreground or
background pixel is occluded this can be explained by the uniform component
U(xi).

Based on this robustification, we can learn the parameters associated with all
different aspects of the object by maximizing the log likelihood

L� =
N∑

n=1

log
V�∑

v�=1

Pv�

P∏
i=1

{
(Tjn

�
πv�

� )ipf (xn
i ; (Tjn

�
fv�
� )i)+(1−Tjn

�
πv�

� )ipb(xn
i ; (Tjn

b
b)i)

}
,

(10)
where pf (xn

i ; (Tjn
�
fv�

� )i) and pb(xn
i ; (Tjn

b
b)i) have been robustified as explained

above. This maximization is carried out by EM where in the E-step the quan-
tities, Qn(v�), rn(j�) and sn(j�) are computed as follows. Qn(v�) denotes the
probability p(v�|xn, jn

b , j
n
� ) and is obtained by

Qn(v�) =
Pv�

p(xn|jn
b , j

n
� , v�)∑V�

v�=1 Pv�
p(xn|jn

b , j
n
� , v�)

, (11)

while the vectors sn(j�) and rn
i (jn

1 ) store the values

sn
i (v�) =

(Tjn
�
πv�

� )ipf�
(xn

i ; (Tjn
�
fv�

� )i)
(Tjn

�
πv�

� )ipf�
(xn

i ; (Tjn
�
fv�

� )i) + (1− Tjn
�
πv�

� )ipb(xn
i ; (Tjn

b
b)i)

, (12)

and

rn
i (v�) =

αfN(xn
i ; (Tjn

1
fv�

� )i, σ
2
1)

αfN(xn
i ; (Tjn

1
fv�

� )i, σ2
1) + (1− αf )U(xn

i )
, (13)

for each image pixel i. In theM-stepweupdate the parameters {fv�

� ,πv�

� , σ2
�,v�
}V�

v�=1.
For example the updates of πv�

� and fv�

� are

πv�

� ←
N∑

n=1

Qn(v�)T T
jn
�
[sn(v�)]./

N∑
n=1

Qn(v�)[T T
jn
�
1], (14)

fv�

� ←
N∑

n=1

Qn(v�)T T
jn
�
[sn(v�) ∗ rn(v�) ∗ xn]./

N∑
n=1

Qn(v�)T T
jn
�
[sn(v�) ∗ rn(v�)]. (15)

The above updates are very intuitive. Consider, for example, the appearance
fv�

� . For pixels which are ascribed to the "th foreground and are not occluded
(i.e. (sn(v�) ∗ rn(v�))i � 1), the values in xn are transformed by T T

jn
�

which
reverses the effect of the transformation. This allows the foreground pixels found
in each training image to be mapped in a stabilized frame and then be averaged
(weighted by the viewpoint posterior probabilities Qn(v�)) to produce fv�

� .

Tracking the Foreground Objects. The appearance of each foreground
object can vary significantly through the video due to large pose changes. Thus,
our algorithm should be able to cope with such variation. Below we describe a
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tracking algorithm that each time matches a mask π� and appearance f� to the
current frame. Large viewpoint variation is handled by on-line updating π� and
f� so that each time they will fit the shape and appearance of the object in the
current frame.

We first discuss how to track the first foreground object, so we assume that
" = 1. The pixels which are explained by the background in each image xn

are flagged by the background responsibilities rn(jn
b ) computed according to

equation (8). Clearly, the mask rn(jn
b ) = 1 − rn(jn

b ) roughly indicates all the
pixels of frame xn that belong to the foreground objects. By focusing only on
these pixels, we wish to start tracking one of the foreground objects through the
entire video sequence and ignore for the moment the rest foreground objects.

Our algorithm tracks the first object by matching to the current frame and
then updating in an on-line fashion a mask π1 and appearance f1 of that ob-
ject. The mask and the appearance are initialized so that π1

1 = 0.5 ∗ r1(j1b ) and
f1
1 = x1, where 0.5 denotes the vector with 0.5 values1. Due to this initialization

we know that the first frame is untransformed, i.e. j11 is the identity transfor-
mation. To determine the transformation of the second frame and in general the
transformation jn+1

1 , with n ≥ 1, of the frame xn+1 we evaluate the posterior
probability

R(j1) ∝ exp

{
P∑

i=1

(wn+1
1 )i log

(
(Tj1πn

1 )i×

pf (xn+1
i ; (Tj1 f

n
1 )i)+(1 − Tj1πn

1 )i(1 − αb)U(xn+1
i )

)}
, (16)

where pf (xn+1
i ; (Tjn+1

1
fn
1 )i) is robustified as explained earlier, j1 takes values

around the neighbourhood of jn
1 and wn+1

1 = rn+1(jn+1
b ). R(j1) measures the

goodness of the match at those pixels of frame xn+1 which are not explained by
the background. Note that as the objects will, in general, be of different sizes,
the probability R(j1) over the transformation variable will have greater mass on
transformations relating to the largest object. The transformation jn+1

1 is set
to be equal to j∗1 , where j∗1 maximizes the above posterior probability. Once we
determine jn+1

1 we update both the mask π1 and appearance f1. The mask is
updated according to

πn+1
1 =

(
βπn

1 + T T
jn+1
1

[sn+1]
)
./
(
β + T T

jn+1
1

[1]
)
, (17)

where β is a positive number. The vector sn+1 expresses a soft segmentation
of the object in the frame xn+1 and is computed similarly to equation (12).
The update (17) defines the new mask as a weighted average of the stabilized
segmentation in the current frame (i.e. T T

jn+1
1

[sn+1(jn+1
1 )]) and the current value

of the mask. β determines the relative weight between these two terms. In all

1 The value of 0.5 is chosen to express our uncertainty about whether these pixels will
ultimately be in the foreground mask or not.
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our experiments we have set β = 0.5. Similarly, the update for the foreground
appearance f1 is given by

fn+1
1 =

(
βfn

1 + T T
jn+1
1

[sn+1 ∗ rn+1 ∗ xn+1]
)
./
(
β + T T

jn+1
1

[sn+1 ∗ rn+1]
)
. (18)

The vector rn+1 is defined similarly to equation (13). Again the above update
is very intuitive. For pixels which are ascribed to the foreground (i.e. sn+1 ∗
rn+1 � 1), the values in xn+1 are transformed by T T

jn+1
1

into the stabilized frame
which allows the foreground pixels found in the current frame to be averaged
with the old value fn in order to produce fn+1. Note that the updates given
by (17) and (18) are on-line versions of the respective batch updates of the EM
algorithm for maximizing the log likelihood (6) assuming that V1 = 1.

The above tracking algorithm is a modification of the method presented in
[12] with the difference that the batch updates of (f1,π1) used there have been
replaced by on-line counterparts that allow tracking the object when the appear-
ance can significantly change from frame to frame.

Once the first object has been tracked we learn the different viewpoint models
for that object by maximizing (10). When these models has been learned we can
go through the images to find which pixels are explained by this object. Then
we can remove these pixels from consideration by properly updating each wn

vector which allows tracking a different object on the next stage. Particularly,
we compute the vector ρn

1 =
∑V1

v1=1 Q
n(v1)(Tjn

1
πv1

1 )∗ rn(vn
1 ). ρn

1 will give values
close to 1 only for the non-occluded object pixels of image xn, and these are
the pixels that we wish to remove from consideration. We can now run the same
tracking algorithm again by updating wn

�+1 (" ≥ 1) as by wn
�+1 = (1− ρn

� ) ∗wn
�

which allows tracking a different object on the "+ 1th iteration. Note also that
the new mask π�+1 is initialized to 0.5∗wn

�+1 while the appearance f�+1 is always
initialized to the first frame x1.

3.3 Specification of the Occlusion Ordering and Refinement of the
Object Models

Once we run the greedy algorithm (Stage 1 in Table 1), we obtain an estimate
of all model parameters, an approximation of the object transformation in each
training image as well as the probabilities Qn(v�) which express our posterior
belief that image xn was generated by the view v� of model ". Using now these
quantities we wish to compute the occlusion ordering of the foreground objects
in each training image. This is necessary since even when the occlusion ordering
remains fixed across all video frames, the algorithm might not extract the objects
in accordance with this ordering, i.e. discovering first the nearest object to the
camera, then the second nearest object etc. The order the objects are found
is determined by the tracking algorithm and typically the largest objects that
occupy more pixels than others are more likely to be tracked first.

A way to infer the occlusion ordering of the foreground objects or layers
in an image xn is to consider all possible permutations of these layers and
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choose the permutation that gives the maximum likelihood. The simplest case
is to have two foreground objects with parameters {πv1

1 , fv1
1 , σ2

1,v1
}V1

v1=1 and
{πv2

2 , fv2
2 , σ2

2,v2
}V2

v2=1, respectively. From the posterior probabilities Qn(v1) and
Qn(v2) corresponding to image xn we choose the most probable views vn

1 and
vn
2 . Conditioned on these estimated views as well as the transformations, the log

likelihood values of the two possible orderings are

Ln
kl =

P∑
i=1

log
{
(Tjn

k
π

vn
k

k )ipfk
(xn

i ; (Tjn
k
fvn

k

k )i) + (1− Tjn
k
π
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k

k )i ×
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l
π
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l

l )ipfl
(xn
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l
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l

l )i) + (1− Tjn
l
π
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l

l )ipb(xn
i ; (Tjn

b
b)i)]

}
, (19)

where k = 1, l = 2 or k = 2, l = 1. The selected occlusion ordering for the
image xn is the one with the largest log likelihood. When we have L foreground
objects we work exactly analogously as above by expressing all L! permutations
of the foreground layers and selecting the one with the largest likelihood.

The above computation of the occlusion ordering takes L! time and it can be
used only when we have few foreground objects. However, in most of the cases
we can further speed up this computation and estimate the occlusion ordering
for large number of objects. The idea is that an object " usually does not overlap
(either occludes or is occluded) with all the other L − 1 objects, but only with
some of them. Thus, if for each object we identify the overlapping objects, the
complexity in the worse case will be O(G!) where G is the largest number of
objects that simultaneously overlap with each other. Details of this algorithm
together with illustrative examples are given in section B.3 in [13].

Once the occlusion ordering has been specified for each training image, we can
maximize the complete log likelihood for the model described in section 2 (using
the approximated transformations, viewpoints and the occlusion orderings) and
refine the appearances and masks of the objects. Note that for this maximization
we need the EM algorithm in order to deal with the fact that each pixel follows
a L+ 1-component mixture distribution (for L = 2 see equation (4)). However,
this EM runs quickly since all the transformations, viewpoints and occlusion
orderings have been “filled in” with the approximated values provided at previous
stages of the learning process.

4 Related Work

There is a huge literature on motion analysis and tracking in computer vision,
and there is indeed much relevant prior work. Particularly, Wang and Adelson
[15] estimate object motions in successive frames and track them through the
sequence by computing optical flow vectors, fit affine motion models to these
vectors, and then cluster the motion parameters into a number of objects us-
ing k-means. Darrell and Pentland [3], and Sawhney and Ayer [10] used similar
approaches based on optical flow estimation between successive frames and ap-
ply the MDL principle for selecting the number of objects. Note that a major
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limitation of optical-flow based methods concerns regions of low texture where
flow information can be sparse, and when there is large inter-frame motion. The
method of Irani et al. [6] is much more relevant to ours. They do motion estima-
tion using optical flow by matching the current frame against an accumulative
appearance image of the tracked object. The appearance of a tracked object de-
velops though time, although they do not take into account issues of occlusion,
so that if a tracked object becomes occluded for some frames, it may be lost.

The work of Tao et al. [11] is also relevant in that it deals with a background
model and object models defined in terms of masks and appearances. However,
note that in their work the mask is assumed to be of elliptical shape (parame-
terised as a Gaussian) rather than a general mask. The mask and appearance
models are dynamically updated. However, the initialization of each model is
handled by a “separate module”, and is not obtained automatically. For the
aerial surveillance example given in the paper initialization of the objects can
be obtained by simple background subtraction, but that is not sufficient for the
examples we consider. Later work by Jepson et al. [7] uses a polybone model
for the mask instead of the Gaussian, but this still has limited representational
capacity in comparison to our general mask. Jepson et al. also use more complex
tracking methods which include the birth and death of polybones in time, as
well as temporal tracking proposals.

The idea of focusing search when carrying our transformation-invariant clus-
tering has also been used before, e.g. by Fitzgibbon and Zisserman [4] in their
work on automatic cast listing of movies. However, in that case prior knowledge
that faces were being searched for meant that a face detector could be run on
the images to produce candidate locations, while this is not possible in our case
as we do not know what objects we are looking for apriori.

As well as methods based on masks and appearances, there are also feature-
based methods for tracking objects in image sequences, see e.g. [14], [17]. These
attempt to track features through a sequence and cluster these tracks using
different motion models. Allan et al. [1] describe a feature-based algorithm for
computing the transformations of multiple objects in a video by simultaneously
clustering features of all frames into objects. The obtained transformations are
then used to learn a layered generative model for the video.

Currently in our method we ignore the spatial continuity in the segmentation
labels of the pixels. This might result in noisy segmentations at some cases. A
method for learning layers that incorporates spatial continuity has been recently
considered by [17] and [9]. They use a layered model with a MRF prior for the
pixel labels and make use of the graph cuts algorithm for efficient updating of
the masks. Note that within our framework we could also incorporate a MRF
for the pixel labels at the cost of increased computation.

Finally, the mechanism for dealing with multiple viewpoints using mixture
models has been considered before in [5]. However, in this work they con-
sider one object present in the images against a cluttered background, and
only the appearance images of different poses of the object are learned (not
masks). Also they do not apply tracking and they consider a global search over
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transformations. In contrast, our method can be applied to images with multiple
objects and learns the background as well as different poses for the foreground
objects. An important aspect of our method is the use of tracking (applied prior
to learning) which stabilizes an object and then efficiently learns its views.

5 Experiments

We consider four video sequences: the Frey-Jojic (FJ) sequence (Figure 1) avail-
able from http://www.psi.toronto.edu/layers.html, the arms-torso video
sequence showing a moving human upper body (Figure 2), the man-walking se-
quence (Figure 3) and the Groundhog day van sequence2 (Figure 4). We will
also assume that the number of different views that we wish to learn for each
foreground object is known.

The FJ sequence consists of 44 118×248 images (excluding the black border).
This sequence can be well modelled by assuming a single view for each of the
foreground objects, thus we set V = 1 for both objects. During tracking we
used a 15 × 15 window of translations in units of one pixel during the tracking
stage. The learning stage requires EM which converged in about 30 iterations.
Figure 1a shows the evolution of the initial mask and appearance (t = 1) through
frames 10 and 20 as we track the first object (Frey). Notice that as we process
the frames the mask focuses on only one of the two objects and the appearance
remains sharp only for this object. The real running time of our MATLAB
implementation for processing the whole sequence was 3 minutes. The computer
used for all the experiments reported here was a 3GHz Pentium. Figure 1b shows
the results after Stage 1 of the algorithm is completed. Figure 1c shows the final
appearances of the foreground objects after the computation of the occlusion
ordering and the joint refinement of all the parameters. Comparing Figure 1b
with Figure 1c, we can visually inspect the improvement over the appearances
of the objects, e.g. the ghosts in the masks of Figure 1b have disappeared in
Figure 1c.

When we carry out the refinement step, we always initialize the background
and the foreground appearances and masks using the values provided by the
greedy algorithm. The variances are reinitialized to a large value to help escape
from local maxima. Note also that for this maximization we maintain the ro-
bustification of the background and foreground pixel densities (αb and αf are
set to 0.9) in order to deal with possible variability of the objects, e.g. local
clothing deformation, or changes of the lighting conditions. The EM algorithm
used for the above maximization converges in few iterations (e.g. less than 20).
This is because the objects’ appearances obtained from the greedy algorithm are
already close to their final values, and all the transformations of the objects have
been “filled in” with the approximated values provided by the greedy algorithm.

We demonstrate our method for learning parts of human body using the
arms-torso sequence that consists of 79 76 × 151 images. Three frames of this
2 We thank the Visual Geometry Group at Oxford for providing the Groundhog day

van data.
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t = 1 t = 10 t = 20
(a)

(b)

(c)

Fig. 1. Panel (a) shows the evolution of the mask π1 (top row) and the appearance
f1 (bottom row) at times 1, 10 and 20 as we track the first object (Frey). Again notice
how the mask becomes focused on one of the objects (Frey) and how the appearance
remains clear and sharp only for Frey. Panel (b) shows the mask and the element-wise
product of the mask and appearance model (π ∗ f) learned for Frey (first column from
the left) and Jojic (second column) using the greedy algorithm (after Stage 1; see
Table 1). Panel (c) displays the corresponding masks and appearances of the objects
after the refinement step.

sequence are shown in Figure 2a. To learn the articulated parts we use transla-
tions and rotations so that the transformation matrix Tj�

that applies to π� and f�
implements an combination of translation and rotation. We implemented this us-
ing the MATLAB function tformarray.m and nearest neighbour interpolation.
Note that we set the number of views V� = 1 for all foreground objects. The
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Fig. 2. Panel (a) shows three frames of the arms-torso video sequence. Panel (b) dis-
plays the masks and appearances of the parts of the arms-torso video sequence. Particu-
larly, the plots in the first column show the learn mask (top row) and the element-wise
product of the mask and appearance (bottom row) for the head/torso. Any pair of
panels in the other two columns provides the same information for the two arms.

Fig. 3. The panels in the first row show three frames of the man-walking sequence. The
panels in the last two rows show the element-wise product of the mask (thresholded
to 0.5) and appearance (showing against a grey background) for all six viewpoint
models.
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(a)

(b)

(c)

Fig. 4. Panel (a) shows three frames of the van sequence. Panel (b) shows the pairs
of mask and the element-wise product of the mask and appearance (showing against
a grey background) for all different viewpoints. Note that the element-wise products
are produced by making the masks binary (thresholded to 0.5). Panel (c) displays the
background.

tracking method searches over a window of 10×10 translations and 15 rotations
(at 2o spacing) so that it searches over 1500 transformations in total. Figures 2b
shows the three parts discovered by the algorithm i.e. the head/torso and the
two arms. Note that the ambiguity of the masks and appearances around the
joints of the two arms with the torso which is due to the deformability of the
clothing in these areas. The total real running time for learning this sequence
was roughly one hour. Note that when we learn object parts we should also learn
a joint distribution over the parts; a method for computing such a distribution
is described in [13].
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The man-walking sequence consists of 85 72 × 176 colour images. Figure 3
displays three frames of that sequence and also the learned visual aspects (the
element-wise product of each appearance and mask pair). We assumed that the
number of different views is six, i.e. V1 = 6. When we applied the tracking algo-
rithm we used a window of 15× 15 translations in units of one pixel. Processing
the whole video took 5 minutes.

In our fourth experiment, we used 46 144× 176 frames of the Groundhog day
van sequence. Figure 4a displays three frames of that sequence. During tracking
we assumed a window of 15×15 translations in units of one pixel, plus 5 scalings
for each of the two axes spaced at a 1% change in the image size, and 5 rotations
at 2o spacing. We assumed that the number of different views of the foreground
object that we wish to learn is three, i.e. V1 = 3. Figure 4b shows the learned
prior mask (πv1

1 ) and the element-wise product of the appearance (fv1
1 ) and the

mask for each view. Figure 4c shows the background that is also learned. Clearly,
each appearance has modelled a different view of the van. However, the masks
are a bit noisy; we believe this could be improved by using spatial continuity
constraints. Processing the whole video took 6 hours, where the most of the time
was spent during tracking.

6 Discussion

Above we have presented a general framework for learning a layered model from a
video sequence. The important feature of this method is tracking the background
and the foreground objects sequentially so as to deal with one object and the
associated transformations at each time. Additionally, we have combined this
tracking method with allowing multiple views for each foreground object so as
to deal with large viewpoint variation. These models are learned using a mixture
modelling approach. Tracking the object before knowing its full structure allows
for efficient learning of the object viewpoint models.

Some issues for the future are to automatically identify how many views are
needed to efficiently model the appearance of each object, to determine the
number of objects, and to deal with objects/parts that have internal variability.
Another issue is to automatically identify when a detected model is a part or
an independent object. This might be achieved by using a mutual information
measure, since we expect parts of the same object to have significant statistical
dependence.
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Abstract. In this chapter we present a principled Bayesian method for
detecting and segmenting instances of a particular object category within
an image, providing a coherent methodology for combining top down and
bottom up cues. The work draws together two powerful formulations:
pictorial structures (ps) and Markov random fields (mrfs) both of which
have efficient algorithms for their solution. The resulting combination,
which we call the object category specific mrf, suggests a solution to the
problem that has long dogged mrfs namely that they provide a poor prior
for specific shapes. In contrast, our model provides a prior that is global
across the image plane using the ps. We develop an efficient method,
ObjCut, to obtain segmentations using this model. Novel aspects of
this method include an efficient algorithm for sampling the ps model,
and the observation that the expected log likelihood of the model can
be increased by a single graph cut. Results are presented on two object
categories, cows and horses. We compare our methods to the state of
the art in object category specific image segmentation and demonstrate
significant improvements.

1 Introduction

Image segmentation has seen renewed interest in the field of computer vision,
in part due the arrival of new efficient algorithms to perform the segmenta-
tion [5], and in part due to the resurgence of interest in object category recog-
nition [2,8,17]. Segmentation fell from favour partly due to an excess of papers
attempting to solve ill posed problems with no means of judging the result. In-
terleaved object recognition and segmentation [4,17] is both well posed and of
practical use. Well posed in that the result of the segmentation can be quantita-
tively judged e.g. how many pixels have been correctly and incorrectly assigned
to the object. Of practical use because (a) the more accurately the image can be
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segmented the more certain the recognition results will be, and (b) image editing
tools can be designed that provide a “power assist” to cut out applications like
‘Magic Wand’, e.g. “I know this is a horse, please segment it for me, without the
pain of having to manually delineate the boundary.”

Markov Random Fields (mrfs) provide a useful model of images for segmen-
tation and their prominence has been increased by the availability of efficient
publically available code for their solution. Boykov and Jolly [5], and more re-
cently Rother et al. [21], strikingly demonstrate that with a minimum of user
assistance objects can be rapidly segmented. However samples from the Gibbs
distribution defined by the mrf very rarely give rise to realistic shapes and on
their own mrfs are ill suited to segmenting objects. What is required is a way
to inject prior knowledge of object shape into the mrf. Within this chapter we
derive a Bayesian way of doing this in which the prior knowledge is provided by
a Pictorial Structure (ps). Pictorial Structures [6] and the related Constellation
of Parts model [8] have proven to be very successful for the task of object recog-
nition. In addition, ps have been highly effective in localizing object parts, e.g.
human limbs. We cast the problem of object category specific segmentation as
that of estimating an mrf (representing bottom up information) which is influ-
enced by a set of latent variables, the ps (representing top down information),
encouraging the mrf to resemble the object. Unlike mrfs, which model the prior
using pairwise potentials, the ps model provides a prior over the shape of the
segmentation that is global across the image plane.

Many different approaches for segmentation using a global shape prior have
been reported in the literature. Huang et al. [13] describe an iterative algorithm
which alternates between fitting an active contour to an image and segmenting
it on the basis of the shape of the active contour. However, the computational
inefficiency of the algorithm restricts the application of this method. Freedman et
al. [9] describe an efficient algorithm based on mincut which uses a shape prior
for segmentation. Both these methods, however, require manual initialization.

Borenstein and Ullman [4] describe an automatic algorithm for segmenting
instances of a particular object category from images using a patch-based ap-
proach. Leibe and Schiele [17] provide a probabilistic formulation for this while
incorporating spatial information of the relative location of the patches. How-
ever, in order to deal with intra-class shape and appearance variation, as well
as large deformations of articulated objects, these methods have to resort to the
computational inefficiency of hundreds of exemplars.

In this chapter, we propose a novel probabilistic mrf model which overcomes
the above problems. We develop an efficient method, ObjCut, to obtain seg-
mentations using this model. The basis of our method are two new theoreti-
cal/algorithmic contributions: (1) we make the (not obvious) observation that
the expectation of the log likelihood of an mrf with respect to some latent
variables can be efficiently optimized with respect to the labels of the mrf by
a single graph cut optimization; (2) we provide a highly efficient algorithm for
marginalizing or optimizing the latent variables when they are a ps following a
Potts model.
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The chapter is organized as follows. In Section 2 the probabilistic mrf model
of the image is described in broad terms. Section 3 gives an overview of an
efficient method for solving this model for figure-ground labellings. In section 4
the layered pictorial structures (lps) model is described, which extends the ps
model so that it handles partial self occlusion. The important issue of automatic
initialization of the lps is addressed in section 5. The ObjCut algorithm is
described in section 6. Results are shown for two object categories, namely cows
and horses, and a comparison with other methods is given in section 7.

2 Object Category Specific MRF

In this section we describe the model that forms the basis of our work. We
formally specify and build upon previous work on segmentation, providing a
Bayesian graphical model for work that has previously been specified in terms
of energy functions [5]. Notably there are three issues to be addressed in this
section: (i) how to make the segmentation conform to object and background
appearance models, (ii) how to encourage the segmentation to follow edges within
the image, (iii) how to encourage the segmentation to look like an object.

Given an image D containing an instance of a known object category, e.g.
cows, we wish to segment the image into figure, i.e. pixels belonging to the object,
and ground, i.e. the background. Taking a Bayesian perspective, we define a set
of binary labels, m, one label mx for each pixel x, that optimizes the posterior
probability given by the Gibbs distribution

p(m|D) =
p(D|m)p(m)

p(D)
=

1
Z1

exp(−Ψ1(m)). (1)

Here Z1 is the normalizing constant (or partition function), i.e.

Z1 =
∫
p(D|m)p(m)dm, (2)

which ensures that the probabilities sum up to one. The energy is defined by the
summation of clique potentials and has the form:

Ψ1(m) =
∑

x

(
φ(D|mx) +

∑
y

ψ(mx,my)

)
, (3)

where y is a neighbouring pixel of x. The likelihood term φ(D|mx) is the emission
model for one or more pixels and is given by

φ(D|mx) =
{
− log(p(x ∈ figure|Hobj)) if mx = 1
− log(p(x ∈ ground|Hbkg)) if mx = 0,

where Hobj and Hbkg are the rgb distributions for foreground and background
respectively. The prior ψ(mx,my) takes the form of an Ising model:

ψ(mx,my) =
{
P if mx 
= my,
0 if mx = my.
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which (equally) favours any two neighbouring pixels having the same label, thus
ensuring smoothness.

In the mrfs used for image segmentation, a contrast term is used to favour
pixels with similar colour having the same label [3,5], thereby pushing the
boundary to lie on image edges. This is done by reducing the cost within the
Ising model for two labels being different in proportion to the difference in
intensities of their corresponding pixels e.g. by subtracting an energy term
γ(x, y) = λ(1−exp

(
−g2(x,y)

2σ2

)
1

dist(x,y)), where g2(x, y) measures the difference in
the rgb values of pixels x and y, and dist(x, y) gives the spatial distance between
x and y [3,5]. In our experiments, we use P = λ = 0.1 and σ = 5. Together with
the prior, this makes the pairwise terms discontinuity preserving [14]. However,
this has previously not been given a proper Bayesian formulation which we now
address. It can not be included in the prior, for the prior term cannot include
the data. Rather it leads to a pair wise linkage between neighbouring labels and
their pixels as shown in the graphical model given in Figure 1. The posterior
probability is now given by p(m|D) = 1

Z2
exp(−Ψ2(m) where

Ψ2(m) =
∑

x

(
φ(D|mx) +

∑
y

(φ(D|mx,my) + ψ(mx,my))

)
(4)

and Z2 =
∫
p(D|m)p(m)dm. The contrast term of the energy function is given

by:

φ(D|mx,my) =
{
−γ(x, y) if mx 
= my,

0 if mx = my.

mrf-based segmentation techniques which use mincut [14] have achieved ex-
cellent results [3,5] with manual initialization. However, due to the lack of a
shape model, these methods do not work so well for automatic segmentation of
instances of specific object categories. We would like to use the power of the
mincut algorithm for interleaved object recognition and segmentation. In some
sense the result of the recognition will replace the user interventions. In order to
achieve this we introduce a stronger shape model to the mrf. This shape model
will supply a set of latent variables, Θ, which will favour segmentations of a
specific shape, as shown in the graphical model depicted in Figure 1. We call
this new mrf model the object category specific mrf, which has the following
energy function:

Ψ3(m,Θ) =
∑

x

(
φ(D|mx) + φ(mx|Θ) +

∑
y

(φ(D|mx,my) + ψ(mx,my))

)
(5)

with posterior p(m,Θ|D) = 1
Z3

exp(−Ψ3(m,Θ)), where

Z3 =
∫
p(D|m,Θ)p(m,Θ)dmdΘ, (6)

is the partition function. The function φ(mx|Θ) is chosen so that if we were
given an estimate of the location and shape of the object, then pixels falling
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Fig. 1. Graphical model representation of the object category specific mrf. The con-
nections introducing the contrast term are shown in blue. Note that some of these
connections (going diagonally) are not shown for the sake of clarity of the image. The
labels m lie in a plane. Together with the pixels shown below this plane, these form the
contrast-dependent mrf used for segmentation. In addition to these, the object cate-
gory specific mrf makes use of an underlying shape parameter in the form of an lps
model (shown lying above the plane). The lps model guides the segmentation towards
a realistic shape closely resembling the object of interest.

near to that shape would be more likely to have object label than pixels falling
far from the shape. It has the form:

φ(mx|Θ) = − log p(mx|Θ). (7)

In this work, we choose to define p(mx|Θ) as

p(mx = figure|Θ) =
1

1 + exp(μ ∗ dist(x,Θ))
(8)

and p(mx = ground|Θ) = 1− p(mx = figure|Θ), where dist(x,Θ) is the spatial
distance of a pixel x from the shape defined by Θ (being negative if inside the
shape). The parameter μ determines how much the points outside the shape are
penalized compared to the points inside the shape. We use μ = 0.2 in our exper-
iments. Note energy function Ψ3(m,Θ) can still be minimized via mincut [14].

We combine the Contrast Dependent mrf with the layered pictorial structures
(lps) model (see section 4). However we observe that the methodology below is
completely general and could be combined with any sort of latent shape model.

The optimal figure-ground labelling should be obtained by integrating out the
latent variable Θ. The surprising result of this work is that this rather intractable
looking integral can in fact be optimized by a simple and computationally effi-
cient set of operations. In order to do this, we need to demonstrate two things:
(i) Given an estimate of m we can sample efficiently for Θ. This we shall demon-
strate for the case of lps, and in §5.1 we describe a new algorithm for efficient
calculation of the marginal distribution for a non regular Potts model (i.e. when
the labels are not specified by an underlying grid of parameters, complementing
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the result of Felzenszwalb and Huttenlocher [7]). (ii) Given the distribution of Θ
we can efficiently optimize m so as to increase the posterior. For a MRF this is
not immediately obvious. However we shall demonstrate this in the next section.

3 Roadmap of the Solution

For the problem of segmentation the parameters m are of immediate interest and
the em framework provides a natural way to deal with the latent parameters Θ
[11] by treating them as missing data. We are interested in maximizing the log
posterior density of m is given by

log p(m|D) = log p(Θ,m|D)− log p(Θ|m,D), (9)

where p(Θ,m|D) = 1
Z3

exp(−Ψ3(m,Θ)). The em framework iteratively refines
the estimate of m by marginalizing the latent parameters Θ. Given the current
guess of the labelling m′, we treat Θ as a random variable with the distribution
p(Θ|m′,D). Averaging over Θ yields

log p(m|D) = E(log p(Θ,m|D))− E(log p(Θ|m,D)), (10)

where E is the averaging over Θ under the distribution p(Θ|m′,D).
The key result of em is that the second term on the right side of equation (10),

i.e.
E(log p(Θ|m,D)) =

∫
(log p(Θ|m,D))p(Θ|m′,D)dΘ (11)

is maximized when m = m′. Our goal then is to choose a labelling m′′ (different
from m′) which maximizes

E(log p(Θ,m|D)) =
∫

(log p(Θ,m|D))p(Θ|m′,D)dΘ. (12)

This labelling increases E(log p(Θ,m|D) (the first term of equation (10)) and
decreases E(log p(Θ|m,D)) (the second term of equation (10) which is maxi-
mized when m = m′). Thus, it increases the posterior p(m|D). The expression
in equation (12) is called Q(m|m′), the expected complete-data log-likelihood,
in the em literature.

In §5.1 it will be shown that we can efficiently sample from a ps which sug-
gests a sampling based solution to maximizing (12). Let the set of s samples be
Θ1 . . .Θs, with weights p(Θi|m′,D) = wi, then the minimization corresponding
to equation (12) can be written as

m̂ = arg min
m

i=s∑
i=1

wiΨ3(m,Θi)− C. (13)

Here C =
∑

i wi logZ3 is a constant which can be ignored during minimization.
This is the key equation of our approach. Section 6 describes an efficient method
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for minimizing the energy function (13). We observe that this energy function is a
weighted linear sum of the energies Ψ3(m,Θ) which, being a linear combination,
can also be optimized using mincut [14]. This demonstrates the interesting
result that for Markov random fields, with latent variables, it is computationally
feasible to optimize Q(m|m′).

The em algorithm often converges to a local minima of the energy function
and its success depends on the initial labelling m0 (i.e. the labelling m′ at the
first iteration). In the last section a generative graphical model for pixel by pixel
segmentation was set up. However, it would be computationally extravagant to
attempt to minimize this straight off. Rather an initialization stage is adopted
in which we get a rough estimate of the object’s posterior extracted from a set
of image features Z, defined in § 4.1. Image features (such as textons and edges)
can provide high discrimination at low computational cost. We approximate the
initial distribution p0(Θ|m,D), as g(Θ|Z), where Z are some image features
chosen to localize the object in a computationally efficient manner. Thus, the
weights wi required to evaluate equation (13) on the first EM iteration are
obtained by sampling from the distribution g(Θ|Z), defined in Section 4.

The next section describes the lps model in detail. In the remainder of the
chapter, we describe an efficient method to obtain the samples from the posterior
of a ps model required for the marginalization in equation (13), and the ObjCut
algorithm which re-estimates the labelling m by minimizing equation (13). These
methods are applicable to any articulated object category which can be modelled
using an lps. We demonstrate the results on two quadrupeds, namely cows and
horses.

4 Layered Pictorial Structures

Pictorial structures (ps) are compositions of 2D patterns, termed parts, under
a probabilistic model for their shape, appearance and the spatial layout. When
calculating the likelihood of model parameters, a typical assumption under the
ps model is that the parts do not (partially) occlude each other [15]. Thus, the
estimated poses of similar parts of the ps model tend to overlap. For example,
the two forelegs of a cow tend to be explain the same pixels in the image as this
provides a high likelihood.

In the layered pictorial structures (lps) model introduced in [16] (and in a
similar model described in [1]), in addition to shape and appearance, each part
pi is also assigned a layer number li which determines its relative depth. Several
parts can have the same layer number if they are at the same depth. A part pi

can partially or completely occlude part pj if and only if li > lj . The parts of
an lps are defined as rigidly moving components of the object. In the case of
side views of quadrupeds, this results in 2 layers containing a total of 10 parts:
head, torso and 8 half limbs (see Figure 2). The parts are obtained as described
in § 4.2.

An lps can also be viewed as an mrf with the sites of the mrf corresponding
to parts. Each site takes one of nL part labels which encode the putative poses of
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Fig. 2. Layered pictorial structure of a cow. The various parts belonging to layers 2
and 1 are shown in the top left and right image respectively. Pairwise potentials defined
for every pair of parts as shown in equation (16) only allow valid configurations of a
cow. Three such configurations are shown in the bottom row.

the part. The pose of the ith site is defined by ti = (xi, yi, θi, σi), where (xi, yi)
is the location, θi is the orientation, σi is the scale.

For a given part label ti and image D, the ith part corresponds to the set
of pixels Di ⊂ D which are used to calculate features zi = (z1, z2). Let nP

be the number of parts. The shape and appearance parameters for part pi,
represented as si and ai, are used to compute z1 and z2 respectively. The feature
z2(Di) is initially obtained using texture exemplars as described in § 4.1. Once
an initial estimate of the model is obtained, the location of the object is used
to estimate the rgb histograms for object and background as described in § 5.2
(and texture exemplars are no longer used). Assuming that Di does not include
pixels accounted for by pj , lj > li, we get

p(Z|Θ) =
i=nP∏
i=1

p(zi|ai, si), (14)

where Z = {z1 . . . znP } are the image features.
lps, like ps, are characterized by pairwise only dependencies between the sites.

These are modelled as a prior on the relative poses of parts:

p(Θ) ∝ exp

⎛
⎝− i=nP∑

i=1

j=nP∑
j=1,j �=i

α(ti, tj)

⎞
⎠ . (15)

Note that we use a completely connected mrf. In our approach, the pairwise
potentials α(ti, tj) are given by a Potts model, i.e.

α(ti, tj) =
{
d1 if valid configuration
d2 otherwise,
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where d1 < d2. In other words, all valid configurations are considered equally
likely and have a higher prior. A configuration is valid provided the relative shape
parameters of the two poses lie within a box, i.e. if tmin

ij ≤ |ti − tj | ≤ tmax
ij ,

where tmin
ij = {xmin

ij , ymin
ij , θmin

ij , σmin
ij } and tmax

ij = {xmax
ij , ymax

ij , θmax
ij , σmax

ij }
are learnt using training video sequences as described in § 4.2. The posterior of
the model parameters is given by

g(Θ|Z) ∝
i=nP∏
i=1

p(zi|ai, si) exp

⎛
⎝−∑

j �=i

α(ti, tj)

⎞
⎠ (16)

We now describe how we model the likelihood of the parts of the lps.

4.1 Feature Likelihood for Parts

We define the features Z extracted from the pixels D. As described earlier, we use
two types of features zi(Di) = (z1(Di), z2(Di)) for the shape and appearance of
the part respectively. Assuming independence of the two features, the likelihood
based on the whole data is approximated as

p(zi|ai, si) = p(z1|si)p(z2|ai) (17)

where p(z1|si) = exp(−z1) and p(z2|ai) = exp(−z2).
Outline (z1(Di)): In order to handle the variability in shape among members
of an object class (e.g. horses), it is necessary to represent the part outline by a
set of exemplar curves. Chamfer distances are computed for each exemplar for
each pose ti. The first feature z1(Di) is the minimum of the truncated chamfer
distances over all the exemplars of pi at pose ti. Truncated chamfer distance mea-
sures the similarity between two shapes U = (u1, u2, ...un) and V = (v1, v2, ...vm).
It is the mean of the distances between each point ui ∈ U and its closest point
in V :

dcham =
1
n

∑
i

min{min
j
||ui − vj ||, τ1}, (18)

where τ1 is a threshold for truncation which reduces the effect of outliers and
missing edges. Edge orientation is included by computing the chamfer score only
for edges with similar orientation, in order to make the distance function more
robust [10]. We use 8 orientation groups for edges.

Texture (z2(Di)): Similar to the outline of a part, we represent the texture of an
object by a set of exemplars. We use the VZ classifier [23] which obtains a texton
dictionary by clustering the vectorized raw intensities of N ×N neighbourhood
of each pixel in the exemplars. We use N = 3. The exemplars are then modelled
as a histogram of pixel texton labellings [18]. The feature z2(Di) is defined as
the minimum χ2 distance of the histogram of texton labellings for Di with the
histogram modelling the exemplars. We now describe how the lps parameters
are learnt so as to handle intra-class variability in shape and appearance.
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4.2 Learning the LPS

The various parameters of the lps model are learnt using the method described
in [16] which divides a scene in a video into rigidly moving components and pro-
vides the segmentation of each frame. We use this approach on 20 cow videos of
45 frames each1. Correspondence between parts learnt from two different videos
is established using shape context with continuity constraints [22]. This gives us
the multiple shape exemplars for each part required to compute the feature z1
and multiple texture exemplars for calculating z2 along with the layer numbers
of all parts (see Figure 3). Furthermore, this provides us with an estimate of
|ti − tj | (after normalizing the size of all cows to 230× 130), for each frame and
for all pairs of parts pi and pj. This is used to compute the parameters tmin

ij and
tmax
ij that define valid configurations.

Fig. 3. Correspondence using shape context matching. Outlines of the two cows are
shown in the first row. Lines are drawn to indicate corresponding points. The second
and third row show the multiple exemplars of the head and the torso part obtained
using this method.

To obtain the shape exemplars and texture examples for horses, we use 20
segmented images of horses2. A point to point correspondence is established
over the outline of a cow from a training video to the outlines of the horses using
shape context with continuity constraints [22]. Using this correspondence and
the learnt parts of the cow, the parts of the horse are determined (see Figure 4).
The part correspondence thus obtained maps the parameters tmin

ij and tmax
ij

that were learnt for cows to horses. In the next section, we describe an efficient
algorithm for matching the lps model in the image.

1 Courtesy Derek Magee, University of Leeds.
2 Courtesy Eran Borenstein, Weizmann Institute of Science.
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Fig. 4. Correspondence using shape context matching. Outlines of the a horse and
a cow are shown in the first row. Lines are drawn to indicate corresponding points.
The second and third row show the multiple exemplars of the head and the torso part
obtained using this method.

5 Sampling the LPS

Given an image, our objective is to match the lps model to the image to obtain
samples from the distribution g(Θ|Z). We develop a novel algorithm for efficient
sampling which generalizes the method described in [7] to non-grid based mrfs.
We achieve this sampling in two stages: (i) Initialization, where we fit a ps model
of the object (using texture to measure z2(Di)) to a given image D as described
in [15] without considering the layer numbers of the parts, and (ii) Refinement,
where the initial estimate is refined by (a) using a better appearance model i.e.
the rgb distribution for the object and background and (b) using the layering
of the lps parts.

5.1 Initial Estimation of Poses

We find the initial estimate of the poses of the ps for an image D in two stages:
(i) part detection, or finding putative poses for each part along with the corre-
sponding likelihoods and, (ii) estimating posteriors of the putative poses.

Part detection: The putative poses of the parts are found using a tree cascade of
classifiers as described in [15]. In our experiments, we constructed a 3-level tree
by clustering the templates using a cost function based on chamfer distance. We
use 20 exemplars per part and search over discrete rotations between −π/4 and
π/4 in intervals of 0.1 radians and scales between 0.7 and 1.3 in intervals of 0.1.

The edge image of D is found using edge detection with embedded
confidence [19]. The feature z1(Di) (truncated chamfer distance) is computed
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efficiently by using a distance transform of the edge image. The feature z2(Di)
is computed only at level 3 of the tree cascade by efficiently determining the
nearest neighbour of the histogram of texton labelling of Di among the his-
togram of texture examples using the method described in [12] (modified for χ2

distance instead of Euclidean distance).
Associated with each node of the cascade is a threhold used to reject bad poses.

The putative poses ti of parts pi are found by traversing through the tree cascade
starting from the root node. The likelihoods p(Di|ai, si) are approximated by
feature likelihoods p(zi|ai, si) as shown in equation (17).

Next, an initial estimate of the model is obtained by commputing the poste-
riors of the putative poses. The pose of each part in the initial estimate is given
by the putative pose which has the highest posterior.

Estimating posteriors: We use loopy belief propagation (lbp) to find the poste-
rior probability of pi having a part label ti. lbp is a message passing algorithm
proposed by Pearl [20]. It is a Viterbi-like algorithm for graphical models with
loops.

The message that pi passes to its neighbour pj at iteration t is a vector of
length equal to the number of discrete part labels nL of pj and is given by:

mt
ij(tj) ←

∑
ti

p(zi|ai, si) exp(−α(ti, tj))
∏

s�=i,s�=j

mt−1
si (ti). (19)

The beliefs (posteriors) after T iterations are calculated as:

bTi (ti) = p(zi|ai, si)
∏
s�=i

mT
si(ti), (20)

and
bTij(ti, tj) = p(zi|ai, si)p(zi|ai, si)

∏
s�=i,s�=j

mT
si(ti)mT

sj(tj). (21)

All messages are initialized to 1. The algorithm is said to have converged when
the rate of change of all beliefs falls below a certain threshold. The time com-
plexity of this algorithm is O(nPn

2
L) where nP is the number of parts in the lps

and nL is the number of putative poses per part. This makes sampling infeasible
for large nL which is the case with smaller parts of the lps model such as the
half-limbs. Thus, we develop an efficient novel algorithm for lbp for the case
where the pairwise potentials are given by a Potts model as shown in equation
(16). The algorithm exploits the fact that the number of pairs of part labels
n′

L, one for each of the two parts pi and pj , which form a valid configuration is
much smaller than the total number of such pairs, n2

L, i.e. n′
L � n2

L. Note that
a similar method is described in [7] which takes advantage of fast convolutions
using fft. However, it is restricted to mrfs with regularly discretized labels, i.e.
the labels lie on a grid, which is not true for putative poses of parts of the lps.

Let Ci(tj) be the set of part labels of pi which form a valid pairwise config-
uration with tj . The part labels Ci(tj) are computed just once before running
lbp.
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We define
T (i, j) =

∑
ti

p(zi|ai, si)
∏

s�=i,s�=j

mt−1
si (ti), (22)

which is independent of the part label tj of pj and needs to be calculated only
once before pi passes a message to pj. It is clear from equation (19) that if no
part label ti forms a valid configuration with tj , then the message mij(tj) is
simply exp(−d2)T (i, j). To compute the contribution of the labels ti ∈ Ci(tj) in
computing mij(tj) we define

S(i, tj) =
∑

ti∈Ci(tj)

p(zi|ai, si)
∏

s�=i,s�=j

mt−1
si (ti), (23)

which is computationally inexpensive to calculate since Ci(tj) consists of very
few part labels. The message mt

ij(tj) is calculated as

mt
ij(tj)← exp(−d1)S(i, tj) + exp(−d2)(T (i, j)− S(i, tj)). (24)

Fig. 5. Two example cow images are shown in the first row. The second row shows the
initial estimate obtained for poses of parts (see § 5.1). The half-limbs tend to overlap
since layer numbers are not used. Refined estimates of the poses obtained using the
rgb distribution of foreground and background together with the lps model are shown
in the third row (see § 5.2). The fourth row shows the segmentation obtained using the
ObjCut algorithm (see § 6).



An Object Category Specific mrf for Segmentation 609

Our method speeds up lbp by a factor of nearly nL. Extension to Generalized
Potts model is trivial. The beliefs computed using lbp allow us to determine
the map estimate which provides the initial estimate of the poses of the parts.
Figure 5 (row 2) shows the initial estimate obtained for two cow images.The
initial estimate is refined using the lps model as described below.

5.2 Layerwise Refinement

Once the initial estimate of the parts is obtained using texture, we refine it by
using the colour of the object and background together with the lps model. The
colour of the object and background are represented as histograms Hobj and
Hbkg of rgb values learnt using the initial estimate. The feature z2(Di) is now
redefined such that

p(z2|ai) =
∏

x∈Di

p(x|Hobj)
p(x|Hbkg)

, (25)

i.e. no longer using texture exemplars.
The refined estimate of the poses are obtained by compositing the parts of

the lps in descending order of their layer numbers as follows. When considering
layer li, putative poses of the parts pj belonging to li are found using the tree
cascade of classifiers around the initial estimate of pj . In our experiments, we
consider locations which are at most at a distance of 15% of the size of the object
as given by the initial estimate. When computing the likelihood of the part at
a given pose, pixels which have already been accounted for by a previous layer
are not considered. The posteriors over the putative poses is computed using the
efficient lbp algorithm.

5.3 Sampling the lps

One might argue that if the map estimate of the poses has a very high posterior
compared to other configuration of poses, then equation (13) can be approxi-
mated using only the map estimate Θ∗ instead of the samples Θ1 . . .Θs. How-
ever, we found that this is not the case especially when the rgb distribution
of the background is similar to that of the object. Figure 5 (row 3) shows the
map estimate of the refined poses of the parts using the initial estimate shown
in Figure 5 (row 2). Note that the legs of the first cow in Figure 5 (row 3) are
detected incorrectly since the parts of the background have roughly the same
colour as the cow. Thus, it is necessary to use multiple samples of the lps model.

We describe the method for sampling for 2 layers. The extension to an arbi-
trary number of layers is trivial. To obtain a sample Θi, parts belonging to layer
2 are considered first. The posterior for sample Θi is approximated using lbp as

g(Θi|Z) =

∏
ij bij(ti, tj)∏
i bi(ti)qi−1 , (26)

where qi is the number of neighbouring parts of part i. Note that the posterior is
exact only for a singly connected graph. However, using this approximation lbp
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has been shown to converge to stationary points of the Bethe free energy [24].
The posterior is then sampled for poses of parts, one part at a time (i.e. Gibbs
sampling), such that the pose of the part being sampled forms a valid configu-
ration with the poses of the parts previously sampled. The process is repeated
to obtain multiple samples Θi which do not include the poses of parts belonging
to layer 1. This method of sampling is efficient since Ci(j) are pre-computed and
contain very few part labels. The best nS samples, with the highest belief, are
chosen.

To obtain the poses of parts in layer 1 for sample Θi, we fix the poses of parts
belonging to layer 2 as given by Θi and calculate the posterior over the poses
of parts in layer 1 using lbp. We sample this posterior for poses of parts such
that they form a valid configuration with the poses of the parts in layer 2 and
with those previously sampled. As in the case of layer 2, multiple samples are
obtained and the best nS samples are chosen. The process is repeated for all
samples Θi for layer 2, resulting in a total of n2

S samples.
However, since computing the likelihood of the parts in layer 1 for each Θ is

inefficient, we approximate by using only those poses whose overlap with layer
2 is below a threshold τ . Figure 6 shows some of the samples obtained using the
above method for cows shown in Figure 5. These samples are the input for the
ObjCut algorithm.

Fig. 6. Posteriors over the putative poses of parts are calculated using lbp. The
posterior is then sampled to obtain instances of the object (see § 5.3) . The half-limbs
are detected correctly in some samples.

6 Estimation – The ObjCut Algorithm

Given an image D containing an instance of a known object category, and the
samples Θ1 . . .Θs of the lps parameters, we wish to obtain the segmentation of
the object, i.e. infer labels m. We now present the ObjCut algorithm which
provides reliable segmentation using both (a) modelled and (b) unmodelled
deformations of articulated object categories.
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Modelled deformations. These are taken into account by the lps model which
uses multiple shape exemplars for each part and allows for all valid configurations
of the object category using pairwise potentials α(ti, tj). The various samples Θi

localize the parts of the object in the image. They also provide us with refined
estimates of the histograms Hobj and Hbkg which model the appearance of the
figure and ground.

Unmodelled deformations. These are accounted for by merging pixels surround-
ing the object which are similar in appearance to the object. Only those pixels
which lie in a ‘band’ surrounding the outline of the object are considered. The
width of the band is 10% of the size of the object as specified by the sample of
the lps. Points lying inside the object are given preference over the points sur-
rounding the object. As is the case with mrf-based segmentations, boundaries
are preferred around image edges (using the contrast term φ(bfD|mx,my)).

The segmentation is obtained by minimizing equation (13) using the mincut
algorithm. The various terms in equation (13) are defined as follows. The weights
wi are approximated as wi ≈ g(Θi|Z). The data likelihood term φ(D|mx) is
computed using equation (4). The contrast term is given by equations (4) and
(5). The function φ(mx|Θi) is defined by equation (7). Table 1 summarizes the
main steps of obtaining the segmentation using the ObjCut algorithm.

The figure-ground labelling m obtained as described above can be used itera-
tively to refine the segmentation using the em algorithm. However, we found that
this does not result in a significant improvement over the initial segmentations as
the samples Θ1 . . .Θs do not change much from one iteration to the other.

Table 1. The ObjCut algorithm

1. Given an image D, an object category is chosen, e.g. cows or horses.
2. Initial estimate of the pose of the pictorial structure (PS) using edges and texture:

(a) A set of candidate poses (tj = (xi, yi, θi, σj)) for each part is identified using
a tree cascade of classifiers [15].

(b) An initial estimate of the PS is found using the efficient LBP algorithm de-
scribed in §5.1.

3. Improved estimation of the pose of the layered pictorial structure (LPS) taking in
to account occlusion and colour:
(a) Update the appearance model of both foreground and background as described

in §5.2.
(b) Generate a new set of candidate poses for each part by densely sampling pose

space around the estimate found in step 2 above.
(c) Estimate the pose of the (LPS) using efficient LBP and layering as described

in §5.2.
4. Obtain the samples Θ1, · · · ,ΘS from the posterior g(Θ|Z) of the LPS (§5.3).
5. OBJCUT

(a) Compute the weights wi = g(Θi|Z).
(b) Minimize the energy in equation (13) using a single MINCUT operation to obtain

the segmentation m.
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Fig. 7. Segmentation results I. The first two images in each row show some of the
samples of the lps model. The segmentation obtained using the object category specific
mrf is shown in the last column. Most of the errors were caused by the tail (which was
not a part of the lps model) and parts of the background which were close and similar
in colour to the object.
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7 Results

We present several results of the ObjCut algorithm for two object categories,
namely cows and horses, and compare it with a state-of-the-art method and
ground truth. In all our experiments, we used the same values of the parame-
ters. Figure 5 (row 4) shows the results of the ObjCut algorithm for two cow
images. Figures 7 and 8 show the segmentation of various images of cows and
horses respectively. To obtain a comparison with ground truth, all 8 cow images
and 5 horse images were manually segmented. For the cow images, out of the

Fig. 8. Segmentation results II. The lps model for the horse learnt using segmented
horse images was used to segment previously unseen images. Most of the errors were
caused by unmodelled parts i.e. the mane and the tail.
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Fig. 9. Comparison with Leibe and Schiele. The first two images of each row show
some of the samples obtained by matching the lps model to the image. The third image
is the segmentation obtained using the ObjCut algorithm and the fourth image is the
segmentation obtained using [17]. Note that ObjCut provides a better segmentation
of the torso and head without detecting extra half limbs.

125,362 foreground pixels and 472,670 background pixels present in the ground
truth, 120,127 (95.82%) and 466,611 (98.72%) were present in the segmentations
obtained. Similarly, for the horses images, out of the 79,860 foreground pixels
and 151,908 background pixels present in the ground truth, 71,397 (89.39%)
and 151,185 (99.52%) were present in the segmentations obtained. In the case
of horses, most errors are due to unmodelled mane and tail parts. Results indi-
cate that, by considering both modelled and unmodelled deformations, excellent
segmentations are obtained by ObjCut.

Figure 9 shows a comparison of the segmentation results obtained when using
ObjCut with a state-of-the-art method for object category specific segmentation
described in Leibe and Schiele [17]. A similar approach was described in [4].
The ObjCut algorithm provides better segmentations using significantly smaller
number of exemplars by exploiting the ability of mincut for providing excellent
segmentations using a good initialization obtained by lps.

Figure 10 shows the effects of using only the shape or only appearance infor-
mation by discarding the other completely. Shape alone undersegments the image
as different samples assign different poses to the half-limbs. Thus, the segmenta-
tion mainly includes the head and the torso (which do not change considerably
among the various samples). Using only appearance results in some parts of the
background, which have a similar colour to the object, being pulled into the
segmentation. Results indicate that good segmentations depend on combining
both shape and appearance, as is the case with the ObjCut algorithm.
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Fig. 10. Effects of shape and appearance information. The first column shows an image
containing a cow. The segmentation results obtained by using only the rgb histograms
for the object and the background provided by the lps model are shown in the second
column. The results obtained by using only the shape prior provided by the lps model
is shown in the third column. The fourth column shows the segmentations we get using
the ObjCut algorithm. Results indicate that good segmentation is obtained only when
both shape and appearance information are used.

8 Summary and Conclusions

We presented a new model, called the object category specific mrf, which com-
bines the lps and the mrf model to perform object category specific segmenta-
tion. The method needs to be extended to handle multiple visual aspects of an
object category and to deal with partial occlusion by other objects.
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