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Abstract. We present an efficient construction of a private disjointness
testing protocol that is secure against malicious provers and honest-but-
curious (semi-honest) verifiers, without the use of random oracles. In a
completely semi-honest setting, this construction implements a private
intersection cardinality protocol. We formally define both private inter-
section cardinality and private disjointness testing protocols. We prove
that our construction is secure under the subgroup decision and subgroup
computation assumptions. A major advantage of our construction is that
it does not require bilinear groups, random oracles, or non-interactive
zero knowledge proofs. Applications of private intersection cardinality
and disjointness testing protocols include privacy-preserving data min-
ing and anonymous login systems.

Keywords: private disjointness testing, private intersection cardinality,
subgroup decision assumption, private data mining, anonymous login.

1 Introduction

Suppose two parties, Alice and Bob, each have a private database of values,
respectively denoted A and B, where the set cardinalities |A| and |B| are pub-
licly known. Alice wishes to learn whether their two sets are disjoint, that is,
whether A∩B = ∅, or how large the intersection is, that is, |A∩B|. In doing so,
Alice cannot reveal information about her set A to Bob, who in turn does not
want to reveal information about his set B, other than the bit A ∩ B

?= ∅ or,
perhaps, the size of the intersection |A ∩B|. These are respectively the private
disjointness testing (PDT) and private intersection cardinality (PIC) problems.

For example, Alice may be a law enforcement agent ensuring that no suspects
under investigation purchased tickets on a flight operated by Bob. Alice cannot
simply reveal her list of suspects to Bob without compromising her investigation.
Nor can Bob disclose any passenger names without explicit subpoenas. Yet, both
parties have an interest in alerting Alice whether any suspects are on Bob’s flight.

As another example, suppose Bob wants to anonymously login to Alice’s sys-
tem. Bob needs to prove that one of his identities in a (possibly singleton) set B
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intersects the set A of Alice’s valid users. Alice should be convinced that Bob is
a legitimate user, without learning which specific user he is. Thus, both parties
wish to determine whether |A ∩B| �= 0.

These types of private set operations may be implemented by several existing
techniques. They may be viewed as a general two-party secure computation
problem, solvable by classic secure multiparty computation techniques [12, 22].
Zero-knowledge sets [16] support private operations like disjointness testing, set
union, and set intersection.

Unfortunately, these techniques have remained unused in practice due to their
high computation, communication, and implementation costs. Oblivious poly-
nomial evaluation protocols, such as those due to Naor and Pinkas [17], may
also be applied to private set operations. However, using generalized oblivious
polynomial evaluation for private set operations is inefficient in comparison to
specialized protocols.

This paper builds on specialized private set operation protocols recently devel-
oped by Freedman, Nissim, and Pinkas (FNP) [11], and Kiayias and Mitrofanova
(KM) [14], and offers a new construction that is more efficient in a malicious-
prover setting. When both parties are honest-but-curious (semi-honest), the
Hohenberger and Weis (HW) construction presented in this work is a private
intersection cardinality protocol, where a verifier party (who is played by Alice
in the above examples) learns |A∩B|. The efficiency in this setting is equivalent
to both FNP and KM, but is based on a different complexity assumption.

Note that in the context of “honest-verifier”, we are using the term “honest”
interchangeably with “semi-honest”. This means the verifier honestly abides by
the protocol, but may be curious and examine any received values to try to learn
more about B. The notion of semi-honest or honest-but-curious was introduced
in [12].

The HW construction improves on existing results in settings where the prover
is malicious and the verifier is honest-but-curious. In this malicious-prover set-
ting, the HW construction implements a private disjointness testing protocol.
A malicious, polynomial-time bounded prover able to send arbitrary messages
cannot convince a verifier that their sets intersect, unless they actually do. In
the anonymous login example, Bob will not be able to login unless he possesses
a legitimate identity string.

The HW honest-but-curious (semi-honest) private intersection cardinality
protocol presented in this paper as is becomes a private disjointness testing
protocol in the malicious-prover setting. By contrast, previous works require ad-
ditional computations, such as adding zero-knowledge proofs [14] or homomor-
phic encryptions [11], to be made secure in a malicious-prover setting. Moreover,
both FNP and KM require random oracles to be made secure in the presence of
a malicious prover, whereas the HW construction does not.

1.1 The FNP Protocol Paradigm

The FNP protocol [11] is quite intuitive and simple, and is the design paradigm
used in both the KM and HW protocols. An FNP invocation where Bob has
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The FNP Protocol:

1. V chooses a random constant or irreducible polynomial G(x).
2. V computes f(x) = G(x) · (∏ai∈A(x − ai)) =

∑
αix

i.
3. If any αi = 0, restart the protocol.
4. V encrypts the coefficients of f(x) with a homomorphic encryption scheme

and sends the encryptions ci = E(αi) to P .
5. Using the homomorphic properties of E, P obliviously evaluates f(x) at some

value b, obtaining E(f(b)).
6. P randomizes his evaluation as c = E(Rf(b)) and sends it to V.
7. V decrypts c. If D(c) = 0, V knows P ’s value intersects with A.

Fig. 1. An overview of the Freedman, Nissim, and Pinkas (FNP) protocol

a singleton set is informally outlined in Figure 1. To provide further techni-
cal details, suppose (G, E, D) is a semantically-secure homomorphic encryption
scheme. Let V have set A = {a1, . . . , an} and P have set B = {b1, . . . , bm}.

As shown in Figure 1, the verifier (also known as Alice) first selects a ran-
dom constant or irreducible polynomial G(x) (i.e. G(x) will have no roots). The
verifier than computes f(x) = G(x) · (∏ai∈A(x − ai)) =

∑
αix

i. Note that the
roots of f are exactly the values in the set A. The verifier then encrypts the α
coefficients of f under a public key pk that she chooses, and sends them to the
prover. That is, V encrypts each coefficient as ci = Epk (αi) with a homomorphic
cryptosystem, e.g., [18, 19].

Recall that homomorphic cryptosystems like Paillier’s allow a party given
Epk (x) and Epk (y) to obliviously compute Epk (x) · Epk (y) = Epk (x + y), or
to compute Epk (x)z = Epk (x · z), where z is some constant. Note that given
the encryptions ci, these homomorphic operations are sufficient to obliviously
evaluate the polynomial f . For example, the encryptions c0 = Epk (4) and c1 =
Epk (3) commit the polynomial f(x) = 3x + 4. A second party may evaluate
this at a particular value x = 2, by computing c2

1 · c0 = Epk (3 · 2) · Epk (4) =
Epk (6 + 4) = Epk (10) = Epk (f(2)).

Thus, given coefficients encrypted as ci values, the prover (Bob) may oblivi-
ously evaluate f(bi) for each element bi ∈ B. Note that if bi ∈ A, then f(bi) = 0.
The prover will now randomize all his obliviously evaluated f(bi) values by
homomorphically multiplying them by a random nonzero value. That is, he
computes Epk (f(bi))r = Epk (r · f(bi)) where r is a random nonzero value.
Thus, if f(bi) = 0, then the encryption of Epk (r · f(bi)) = Epk (0). Other-
wise, Epk (r · f(bi)) is some random value. This hides any information about
elements in the prover’s set that are not in the verifier’s set. The prover now
sends these encrypted oblivious evaluations E(ri · f(bi)) to the verifier. The ver-
ifier then decrypts and tests whether any of the resulting plaintexts are zero.
If bi ∈ A, then f(bi) = 0, so if any decrypted values are zero, then the verifier
believes there is an intersection with the prover’s set. Note that the original FNP
protocol reveals the elements in the intersection of the two sets, by having the
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prover return the ciphertext Epk (r · f(bi) + bi) instead. Thus if f(bi) = 0, the
verifier obtains the elements of the intersection – not just the cardinality!

We focus on applications where the prover explicitly does not want to reveal
anything about his set, except the size or existence of the intersection. For in-
stance, the anonymous login application cannot have the verifier learn the actual
intersection values. This paper will only focus on the private intersection cardi-
nality protocol version of FNP, although finding actual intersection values will
be discussed further in Section 7.

In the KM protocol [14], the same techniques as FNP are applied, except
that it uses a new primitive called superposed encryption based on Pedersen
commitments [20]. Superposed encryption is closely related to a homomorphic
ElGamal variant first used in voting schemes by Cramer, Gennaro, and Schoen-
makers [9]. In the KM protocol the prover returns to the verifier a single ci-
phertext Epk (r · |A ∩B|), where r is a random value. Thus, this is specifically a
PDT protocol rather than a PIC protocol. The verifier accepts if the ciphertext
decrypts to zero and rejects otherwise.

Both the FNP and KM constructions, based on Paillier’s homomorphic en-
cryption [18, 19] and Pedersen’s commitment scheme [20], suffer from a crucial
flaw: malicious adversaries may simply encrypt or commit to zero values. For
instance, in the FNP case, someone can simply encrypt 0 with the public key
and convince the verifier that an intersection exists when it does not. This is
a critical failure which both FNP and KM immediately recognize and address.
To cope with malicious provers, FNP proposes a fix that relies on the random
oracle model (ROM), despite its inherent problems [2, 7].

Fixing KM against malicious adversaries requires random oracles as well as
universally-composable (UC) commitments [6] (which require a common refer-
ence string). While relatively efficient, the best known UC commitment schemes
are interactive and would increase communication complexity by a quadratic
factor [5, 8, 10].

The weakness of FNP and KM in the face of malicious provers begs the
question: Can we implement an efficient private disjointness testing protocol
without the use of random oracles or costly sub-protocols? This paper answers
this question in the affirmative.

1.2 Overview of the HW Construction

This section provides intuition for understanding the Hohenberger and Weis
(HW) construction in the context of prior work. Essentially, the main difference
is that in both the FNP and KM protocols, a prover convinces a verifier to accept
by returning an encryption of zero. If the prover was honest, then if the verifier
receives an encryption of a zero value, it implies some element in P ’s set is also
in V ’s set. However, if the prover is malicious, then he can easily encrypt a zero
value from scratch and send it to the verifier. To prevent this, both FNP and KM
must add costly computations to check that the prover follows a specified protocol.

To cope with malicious provers, the HW construction essentially substitutes
a cryptographic primitive dubbed “testable and homomorphic commitments”
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Table 1. Three private set protocols compared in different security settings. ROM
stands for “Random Oracle Model”, NIZK for “Non-Interactive Zero Knowledge”, and
UC for “Universally Composable”.

Security Setting FNP KM HW

Semi-Honest Cardinality Disjointness Cardinality

Malicious Prover Cardinality Disjointness Disjointness
(Requirements) (ROM) (NIZK Proofs) (None)

(ROM)

Malicious Verifier Cardinality Disjointness See Section 7
(Requirements) (Multiple (UC-Commitments)

Invocations) (ROM)

in the place of Paillier’s homomorphic encryption. Instead of encryptions of
zero, elements belonging to the intersection of the two sets will be encoded to
have a specific order in a multiplicative group. In other words, a prover con-
vinces a verifier that an intersection exists by returning elements of a specific
order.

The necessary complexity-theoretic assumptions are that it is hard to for a
prover to decide whether group elements belong to a particular subgroup of
unknown order, and that it is hard to compute elements in the subgroup. Under
this subgroup computation assumption, computing an element of this order is
hard for a prover, unless he correctly follows the protocol (and there is a non-
empty intersection). Thus, in the malicious-prover setting, the HW construction
is sound by default, whereas FNP and KM must augment their protocols with
costly computations in the random oracle model.

In the HW construction presented in Section 4, the verifier begins, as in FNP,
by selecting a random polynomial f(·) whose roots correspond to set A. The
verifier computes a testable and homomorphic commitment (THC) of each co-
efficient, which is essentially a BGN encryption [3] set in group G, which has
order n = pq where p and q are large primes.

For each element bi ∈ B, the prover uses THCs to compute a value that will
be a random element in G if bi �∈ A or will be a random element of order p
if bi ∈ A. The verifier, with knowledge of p and q, can test the order of each
element returned by the prover. In this way, the verifier learns the cardinality of
the intersection, just as in FNP.

The main benefit, however, is that a malicious prover cannot, under the sub-
group computation problem, compute an element of order p from scratch. As
proven in the full version of this paper, the HW construction remains sound in
the malicious-prover setting without any augmentation. As in the FNP PDT
protocol, the verifier can potentially learn the cardinality of the intersection, but
is not guaranteed to do so when talking with a malicious prover. That is, if the
prover happens to be honest, the verifier will learn the cardinality – but there
is no way to know whether a prover is honest. Table 1 compares the behavior of
FNP, KM, and the HW construction in different security settings.
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1.3 Related Work

Kissner and Song [15] offer FNP-inspired schemes for solving several closely
related privacy-preserving set operations like set disjointness, cardinality, and
set union. They offer improved efficiency compared to FNP in the multiparty,
honest-but-curious setting. Again, when translated to the malicious adversary
model, their constructions require relatively costly zero-knowledge proof of
knowledge sub-protocols. In all fairness, Kissner and Song address a richer set
of problems than simple disjointness testing like set union, set intersection, and
multiplicity testing. They also work in a multiparty model, so it is not surprising
that their solutions require more computation.

Constructions from both Pedersen’s commitment scheme [20] and Paillier’s
homomorphic cryptosystem [18, 19] are both closely related to the “testable and
homomorphic commitment” primitive in Section 4.2.

The Subgroup Decision Assumption (SDA) and the Subgroup Computation
Assumption (SCA) described in Section 2.1 are crucial to proving security of the
construction presented herein. Yamamura and Saito apply the SDA to the private
information retrieval problem [21]. The composite residuosity assumptions made
by Paillier are also closely related.

A similar bilinear subgroup complexity assumption is made by Boneh, Goh,
and Nissim for their 2DNF ciphertext evaluation scheme [3]. Groth, Ostro-
vsky, and Sahai also make the same complexity assumption to implement non-
interactive zero knowledge proofs [13].

2 Preliminaries

Notation. Let Z be the integers. Let negl(·) be a negligible function such that
for all polynomials p(·) and all sufficiently large k ∈ Z, we have negl(k) < 1/p(k).
We denote that two distributions C and D are perfectly indistinguishable us-
ing C ≈ D and computationally indistinguishable using C

c≈ D notation.
A Mppt subscript will indicate that a interactive Turing machine M runs in
probabilistic polynomial time. The value ord(x) is the order of x. The tran-
script ViewM[M(x)N (y)] will represent the view of algorithm M after inter-
acting with algorithm N on inputs x and y, respectively. M’s view includes its
input, its randomness, and the public transcript of the protocol. We denote a
distribution of views over random inputs as {ViewM[M(x)N (y)]}.

2.1 Complexity Assumptions

The complexity assumptions applied in the HW construction exist in various
forms throughout the literature. The formalization here is closest to that of Ya-
mamura and Saito [21]. Recently, Boneh, Goh, and Nissim introduced a stronger
version of these assumptions for bilinear groups [3].

Definition 1 (Subgroup Decision Assumption (SDA) [3, 21]). Let S(1k)
be an algorithm that produces (G, p, q) where G is a group of composite order
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n = pq, and p < q are k-bit primes. Then, we say that the subgroup decision
problem is hard in G if for all probabilistic polynomial time adversaries A,

Pr
[
(G, p, q)← S(1k); n = pq; x0 ← G; x1 ← xq

0; b← {0, 1};
b′ ← A(G, n, xb) : b = b′

] ≤ 1
2

+ negl(k).

Basically, the SDA means that given the description of a group G, in the form
of a generator g, and its order n = pq, a probabilistic polynomial-time adversary
cannot distinguish random elements of order p in G from random elements in G.
Clearly, if factoring is easy, then the SDA fails to hold. Similarly, someone able
to compute discrete logarithms given (G, n, x) can decide this problem by com-
puting gcd(logg x, n), for some generator g. It is not clear how the SDA relates
to the Decisional Diffie-Hellman (DDH) assumption.

Additionally, the security of the HW scheme requires the following computa-
tional assumption:

Definition 2 (Subgroup Computation Assumption (SCA)). Let S(1k) be
an algorithm that produces (G, p, q) where G is a group of composite order n =
pq, and p < q are k-bit primes. Then, we say that the subgroup computation
problem is hard in G if for all probabilistic polynomial time adversaries A,

Pr
[
(G, p, q)← S(1k); n = pq; x← A(G, n) : ord(x) = p

] ≤ negl(k).

An example group where these assumptions may be applied is a subgroup G of
order n = pq, consisting of the quadratic residues of Zp′ , where p′ = 2pq + 1
and p′, p, q are all primes. Of course, the HW construction can also operate
over the bilinear groups where Boneh et al. [3] assume the subgroup decision
problem is hard. It is not clear that the SDA assumption implies SCA, or vice
versa, although a relation between the two seems plausible. Further exploration
of both assumptions could be valuable in other schemes as well.

3 Problem Definitions

This section formally defines private intersection cardinality (PIC) and private
disjointness testing (PDT) protocols. Let 1k be a security parameter in unary.
Let Q be the domain of values for this protocol such that |Q| ∈ Θ(2k). Let the
universe U be the set of all poly(k)-sized subsets of Q. For sets A ∈ U and B ∈ U ,
define the disjointness predicate D(A, B) = (A ∩ B = ∅), that is, D(A, B) will
have value 1 if and only if A and B are disjoint.

Let verifier V and prover P be two probabilistic polynomial time interactive
Turing machines. Each party takes as input a (possibly different) element of U
and the interaction of P and V yields a result to V only.

3.1 Private Disjointness Testing Definition

Definition 3 (Honest-Verifier Private Disjointness Testing). Two prob-
abilistic polynomial time interactive Turing machines (P ,V) define an Honest-
Verifier Private Disjointness Testing protocol if the following conditions hold:
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1. Completeness: For honest parties, the protocol works and the verifier learns
the disjointness predicate; that is,

∀A ∈ U, ∀B ∈ U, Pr
[P(B)V(A) = D(A, B)

] ≥ (1− negl(k))

where the probability is taken over the randomness of P and V.
2. Soundness: For a random set A ∈ U , the probability that the prover will

convince the verifier to accept is negligible; that is,

∀P∗
ppt, Pr

A∈U

[P∗V(A) �= 0
] ≤ negl(k)

where probability is taken over the choice of A ∈ U and the randomness
of P∗ and V.

3. Malicious-Prover Zero Knowledge (MPZK): A malicious prover learns
nothing about the verifier’s set; that is,

∃Sppt, ∀P∗
ppt, ∀A ∈ U, {ViewP∗[P∗V(A)

]} c≈ {ViewP∗[P∗S(1|A|)
]}

4. Honest-Verifier Perfect Zero Knowledge (HVPZK): An honest-but-
curious verifier learns nothing about the prover’s set beyond the size of the
intersection; that is,

∃Sppt, ∀A ∈ U, ∀B ∈ U, {ViewV[P(B)V(A)
]} ≈ {S(A, 1|B|, 1|A∩B|)}

Note that an honest-but-curious verifier is allowed to potentially learn |A ∩B|,
but he is not guaranteed to learn that value. One might define a stronger def-
inition where rather than being provided 1|A∩B|, the simulator would only be
provided D(A, B).

3.2 Private Intersection Cardinality Definition

Definition 4 (Honest-Verifier Private Intersection Cardinality). An
Honest-Verifier Private Intersection Cardinality protocol has the same setup as
in Definition 3, except for the following differences:

1. Completeness: For honest parties, the protocol works and the verifier learns
the cardinality predicate; that is,

∀A ∈ U, ∀B ∈ U, Pr
[P(B)V(A) = |A ∩B|] ≥ (1− negl(k))

where probability is taken over the randomness of P and V.
2. Cardinality Soundness: A malicious prover can not convince an honest

verifier that the cardinality is larger than it really is; that is,

∀P∗
ppt, ∀B ∈ U, Pr

A∈U

[P∗(B)V(A) > |A ∩B|] ≤ negl(k)

where probability is taken over the choice of A ∈ U and the randomness of P
and V.
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3.3 Informal Explanation of the Definitions

Completeness means that a correct execution between two honest parties will
return the correct value to V with negligible chance for error. In a PDT protocol,
the correct value is the disjointness predicate D(A, B) and in a PIC protocol it
is the intersection cardinality |A ∩B|.

PDT soundness implies that on a random input set A ∈ U , V has a negligi-
ble chance of obtaining a non-zero result when interacting with any malicious
probabilistic polynomial-time prover P∗. That is, unless P∗ actually knows a
value in V ’s set, or is extremely lucky, then V will not be fooled into thinking
otherwise. Neither the FNP nor KM protocols are sound by this definition. In
those schemes, a verifier will believe that there is an intersection if it receives
the value zero encrypted under a public-key. A malicious prover could trivially
violate the soundness property by encrypting zero itself.

PIC soundness is similar to the PDT soundness definition, except that for any
set B, and random set A, the protocol has a negligible chance of returning a value
greater than |A∩B| to a verifier V interacting with P∗(B). The idea is that this
prevents a malicious prover from doing trivial attacks like duplicating elements
in its set B to inflate the cardinality returned to the verifier. Of course, a mali-
cious prover can always run the protocol on some subset of B, which would with
high probability under-report the cardinality. This is unavoidable and is why
cardinality soundness is only concerned with over-reporting the cardinality. As
it turns out, this property will be the reason why the HW construction in Section
4 is not an Honest-Verifier PIC protocol. Section 6 will discuss this further.

Since a verifier is allowed to potentially learn |A ∩ B| in both the PDT and
PIC protocols, the zero knowledge definitions presented in this paper are the
same. This relaxation appears in FNP as well, but not KM.

The Malicious-Prover Zero Knowledge (MPZK) property means that no prob-
abilistic polynomial-time potentially malicious prover P∗ can learn anything
about a set A from an interaction with V that it could not simulate on its own.
In other words, the verifier’s set, for example a database of passwords, remains
hidden from even malicious provers. Here the distributions are computationally
indistinguishable. Any action that V takes as a result of a successful protocol
invocation, such as allowing P∗ to anonymously login, is considered outside the
protocol definition.

Finally, the Honest-Verifier Perfect Zero Knowledge (HVPZK) property im-
plies that a probabilistic polynomial-time semi-honest verifier V does not learn
anything about B beyond the size of the set intersection. There is a subtle point
here in the PDT protocol: the verifier is only guaranteed to learn the bit D(A, B),
but we allow an honest-but-curious verifier to potentially learn the size of the
intersection. The flexibility suits the applications mentioned in the introduction.
In fact, in the semi-honest setting, the distribution an adversary can simulate
on its own is perfectly indistinguishable from a real transcript distribution.

Above we do not explicitly consider auxiliary inputs in the zero-knowledge
definitions. To do so, we would need to quantify over all polynomial-size advice
strings and provide this string to both the party in question and the simulator.
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4 HW Private Disjointness Testing

In this section, we present a construction that efficiently implements a PDT
protocol. In the full version of this paper, we prove that this construction se-
curely meets the requirements of Definition 3. Overall, this construction is very
similar to those of Freedman, Nissim, and Pinkas (FNP) [11] and Kiayias and
Mitrofanova (KM) [14].

FNP and KM respectively rely on Paillier’s homomorphic encryption sys-
tem [18, 19] and a Pedersen commitment variant [20] as underlying primitives.
This paper offers a new testable and homomorphic commitment (THC) primi-
tive that will be used in a FNP-style oblivious polynomial evaluation scheme.
The THC construction presented is reminiscent of both Paillier’s and Pedersen’s
schemes. It is very similar to the encryption scheme for small messages due to
Boneh, Goh, and Nissim (BGN) [3], but is used for the full range of messages.

The advantage of the HW construction is that it offers a stronger security
guarantee than the basic FNP and KM protocols, with equivalent computation
and communication costs. Although variants of both FNP and KM can be mod-
ified to offer stronger security, they require either the use of random oracles or
significantly more computation.

4.1 Verifier System Setup

The verifier’s system setup algorithm is as follows:

1. Run S(1k) to obtain (G, p, q).
2. Choose two random generators g and u from G.
3. Compute n = pq and h = uq.
4. Publish (G, n) and keep (p, q, g, h) private.

Note that h is a random generator of the subgroup of order p. The verifier
only needs to publish G and n. The prover will not know p, q, h or even g.
Learning h, p, or q would allow a malicious prover to spuriously convince the
verifier that an intersection exists.

4.2 Testable and Homomorphic Commitments

The public order n and private values g and h may be used for a testable and
homomorphic commitment (THC) scheme. This primitive will be the basis of the
HW construction. Informally, a THC scheme supports the following operations:

– Commit: Com(m, r) a message m with randomness r,
– Addition: For all m, r, m′, r′, Com(m, r) ·Com(m′, r′) = Com(m+m′, r + r′),
– Constant Multiplication: For all m, r, c, Com(m, r)c = Com(cm, cr)
– Equality Test: Test(Com(m, r), x), returns 1 if m = x.

Definition 5 (Testable and Homomorphic Commitment Hiding Prop-
erty). Let n be an integer, and let a0, a1, r be values in Z

∗
n. Then, we say that
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a testable and homomorphic commitment Com set in a group G of order n is
computationally hiding over the distribution of r if

∀a0, a1 ∈ Z
∗
n, {G, n, a0, a1, Com(a0, r)} c≈ {G, n, a0, a1, Com(a1, r)}

The encryption scheme for small messages due to BGN is very similar to the
HW construction, except for two differences. First, we provide the adversary with
even less information about the commitment; that is, the values g and h remain
private. Secondly, BGN allow and support bilinear map operations, whereas we
do not consider them. Similarly to their scheme, the HW testable and homo-
morphic commitment primitive operates as shown in Figure 2.

Testable and Homomorphic Commitments Operations:

1. Setup: Let S(1k) be an algorithm that outputs (G, p, q) where G is a group
of composite order n = pq, and p < q are k-bit primes. Let g, u be random
generators of G and let h = uq . Publish n; keep all else private.

2. Commit: Given m and r ∈ Z
∗
n, compute: Com(m,r) = gmhr

3. Addition: Com(m, r) · Com(m′, r′) = gm+m′
hr+r′

= Com(m + m′, r + r′)
4. Constant Multiplication: Com(m,r)c = gcmhcr = Com(cm, cr)
5. Equality Test: If Test(Com(m, r)) = (gmhr/gx)p = (gp)m−x = 1, output 1;

else, output 0.

Fig. 2. Testable and homomorphic commitment construction

Lemma 1. The testable and homomorphic commitment scheme described in
Figure 2 is computationally hiding, i.e., it satisfies definition 5.

This lemma follows, more or less, from the semantic security of the encryption
scheme of Boneh, Goh, and Nissim. For completeness, however, we prove in the
full version of this paper that this construction is computationally hiding.

4.3 Oblivious Polynomial Evaluation

Suppose a party knowing h has some polynomial f(x) =
∑

αix
i ∈ Zq[x]. This

party can publish commitments to f ’s coefficients as Com(αi, γi) = gαihγi ,
where γi values are random. Let s = �√n�. Assuming p and q are not twin
primes, we have that p < s < q. Let the group Z∗

s be the domain of set values.
Due to the homomorphic properties of Com, anyone can obliviously evaluate a
commitment to f(z) for any z ∈ Z∗

s .
The HW construction uses this ability by having a verifier V compute a poly-

nomial f with A as its set of roots. P can then obliviously evaluate f and return
the result to V . Note, this is not a contribution due to HW. Similar constructions
were proposed by Naor and Pinkus [17] and FNP [11]. It is also the basis of the
KM scheme [14]. V ’s polynomial is constructed as shown in Figure 3.
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Oblivious Polynomial Evaluation:

1. V chooses a random constant or irreducible polynomial G(x).

2. V computes f(x) = G(x) · (∏ai∈A(x − ai)) =
∑|A|

i=0 αix
i ∈ Zq[x].

3. If any αi = 0, restart the protocol.
4. V chooses a random polynomial r(x) =

∑|A|
i=0 γix

i ∈ Zp[x].
5. V publishes commitments Com(αi, γi) = gαihγi , for i = 0 to |A|.

Fig. 3. HW oblivious polynomial evaluation

Given these commitments to the αi coefficients, P may use the homomorphic
operations to compute a commitment to f(z) for an arbitrary point z ∈ Z∗

s :∏
i Com(αi, γi)zi

= g
∑

i αiz
i

h
∑

i γiz
i

= gf(z)hr(z) = Com(f(z), r(z)). Because P
does not want to accidentally reveal information about values z /∈ A to V ,
he can select a random R ∈ Z∗

n and compute the value Com(Rf(z), Rr(z)) =
gRf(z)hRr(z) = Com(f(z), r(z))R. If f(z) �= 0 mod q, then Rf(z) will be some
random value in Zn, and Com(f(z), r(z))R will be a random value in G.

However, if f(z) = 0 mod q, then gRf(z) will have order p (or 1). Since h has
order p, this means that Com(f(z), r(z))R will have order p, which can be tested
by V by checking if the Test operation returns a 1 value. Thus, if P returns some
value with order p, V concludes that P obliviously evaluated the polynomial at
a root.

Recall that P does not know p, q, or even g or h. To erroneously convince V
that he knows a root, a malicious P∗ must produce some value of order p. Finding
such a value is at least as hard as the Subgroup Computation Problem described
in Definition 2.

5 HW Private Disjointness Testing

Given the oblivious polynomial evaluation protocol from the previous section, the
HW construction to implement Private Disjointness Testing with a testable and
homomorphic commitment primitive is quite simple. As mentioned, the overall
protocol paradigm originally proposed by FNP [11]. Figure 4 illustrates the HW
private disjointness testing protocol that is specified in Figure 5.

Theorem 1. The HW construction is correct and secure, i.e., it satisfies Defini-
tion 3, under the Subgroup Decision and the Subgroup Computation assumptions.

Theorem 1 is proven in four steps: completeness, soundness, malicious-prover
zero knowledge, and honest-verifier zero knowledge. These proofs appear in the
full version of this paper due to space considerations.

Remark: Note that when talking to an honest prover, a verifier will actually
learn |A∩B| in this protocol by counting the number of elements returned with
order p. We could somewhat obfuscate this value by having the prover return a
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V(A)

Com(α0, γ0), . . . , Com(α|A|, γ|A|) �

w1, . . . , w|B|�
P(B)

Fig. 4. An illustration of HW private disjointness testing

HW Private Disjointness Testing:

1. V runs S(1k) to obtain (G, p, q), selects random generators g, u in G, and
computes n = pq and h = uq.

2. V publishes (G, n).
3. V and P announce |A| and |B| for respective input sets A and B, which

are poly(k)-sized subsets of Z
∗
s .

4. V publishes commitments to polynomial coefficients Com(αi, γi) = gαihγi ∈ G

for i = 0 to |A|.
5. For each bj ∈ B selected in random order:

(a) P obliviously evaluates f(bj) as vj = gf(bj)hr(bj).
(b) P selects a random exponent Rj ∈ Z

∗
n.

(c) P sends V the value wj = v
Rj

j .
6. V halts if any wj = 1.
7. V tests each wj by computing wp

j .
8. If any wp

j = 1, then V concludes that A ∩ B �= ∅.
9. Otherwise, V concludes A ∩ B = ∅.

Fig. 5. HW private disjointness testing

random number of copies of each element in his set. This would not be true zero-
knowledge, but it would be good enough for many practical applications. This
protocol can be modified to hide |A ∩ B| at a cost of increased communication
as discussed in Section 7.

6 Semi-honest Private Intersection Cardinality

The construction in Section 4 is not an Honest-Verifier Private Intersection Car-
dinality protocol. Unfortunately, there are trivial ways a malicious-prover can
manipulate the actual cardinality value obtained by the verifier. The simplest
attack would be to obliviously evaluate each element in B twice. The verifier will
think the cardinality is 2 · |A ∩ B|. By the HVPZK property, an honest verifier
cannot detect this attack, otherwise it could distinguish different evaluations by
the prover.

For this reason, the HW construction violates the Cardinality Soundness prop-
erty from definition 4. However, we may consider a weaker PIC setting by as-
suming that both the prover and verifier are honest-but-curious (semi-honest).
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Recall that a honest-but-curious party will follow a protocol as specified, but
may further examine any received values [12].

Definition 6 (Semi-Honest Private Intersection Cardinality). An Semi-
Honest Intersection Cardinality protocol has the same setup as in Definition 3,
except for the following difference:

Completeness: For semi-honest parties, the protocol works and the verifier
learns the cardinality predicate; that is,

∀A ∈ U, ∀B ∈ U, Pr
[P(B)V(A) = |A ∩B|] ≥ (1 − negl(k))

where probability is taken over the randomness of P and V.

Corollary 1. The HW construction from Section 4 implements a Semi-honest
Private Intersection Cardinality Protocol, under the Subgroup Decision and the
Subgroup Computation assumptions.

Corollary 1 follows directly from the proof of Theorem 1.

7 Discussion

Malicious Verifiers. The HW construction is only secure against honest-but-
curious verifiers. A malicious verifier V∗ can choose arbitrary setup parame-
ters (G, n), such as G = Zp′ where p′ = 2n + 1, and send P an arbitrary set of
values gci ∈ G, where the ci values define some polynomial f(x) =

∑
cix

i. In
response, a legitimate P will send values w = gRf(b) for each b ∈ B, where R is
chosen randomly from Z∗

n.
If gf(b) has order n, then w will be a random element of order n. However, a

malicious V∗ can design the polynomial f(·) to have different orders for different
inputs. So, if p′ = 2pq + 1, V∗ might have two sets S, T such that ∀s ∈ S, f(s) =
0 mod p and ∀t ∈ T, f(t) = 0 mod q. Thus, V∗ would be able to distinguish how
many elements of B were in either S or T . In fact, V∗ could choose n to have
many factors. This would allow her to test how many elements of B belonged to
several different sets.

To make the HW construction secure against malicious verifiers, V could pro-
vide a zero knowledge proof that n was the product of two large primes p and q.
V could then include a proof that each of her commitments was the product
of at least one value with order p. Camenisch and Michels describe efficient
proofs which can be used in this setting [4]. Of course, the costs of creating and
verifying these proofs may be equivalent to the costs of the existing malicious
verifier-secure protocols of FNP and KM.

Computation and Communication Costs. The computation and commu-
nication costs of the HW construction are equivalent to the costs of FNP’s
malicious-prover secure scheme, except the HW construction offers security
against malicious provers without random oracles. The costs of HW are as
follows:
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V Computation Costs: Computing αi coefficients requires O(|A|2) modular
additions and multiplications. Committing requires O(|A|) modular exponentia-
tions and multiplications. Testing whether responses have order p requires O(|B|)
modular exponentiations.
P Computation Costs: Using Horner’s method, P can obliviously evaluate

a d-degree polynomial with O(d) modular exponentiations and multiplications.
Normally, P will perform O(|A||B|) operations; that is, one polynomial eval-
uation at a cost of O(|A|) operations for each of the |B| elements in P ’s set.
However, as described in FNP, if the balanced hash-bucket scheme of Azar et
al. [1] is employed P can perform only O(|B| ln ln |A|) modular operations.

Communication Costs: The total exchange between P and V is O(k(|A|+
|B|)) bits or alternatively O(k(|A| ln ln |A|+ |B|)) if a hash-bucket optimization
is used, where 1k is the security parameter.

Hiding Set Sizes. In the HW construction, the size of the prover and veri-
fier’s sets is public information. In practice, however, the prover P with set B
or the verifier V with set A might wish to mask the true size of their sets us-
ing well-known techniques. To do this, the verifier V can compute a random
polynomial f(·) with roots in set A as normal, then multiply it by some irre-
ducible polynomial of arbitrary degree d. Then, P (or anyone else) will only learn
that V ’s set is of some size less or equal to |A| + d. Similarly, P can evaluate f
on each value in B an arbitrary number of times. Each copy will be randomized
by the regular protocol. This will maintain correctness of Private Disjointness
Testing, but would obviously change the results of an honest-but-curious private
intersection cardinality protocol, as described in Section 6.

Small Set Domains. The HW construction requires that sets A and B are
small with respect to the domain of set values. Obviously, in the HW PDT proto-
col, if |B| = Θ(

√
n), then a malicious adversary can factor n in time polynomial

to the size of its input. This would allow an adversary to generate values of
order p and violate the Soundness property.

Private Information Retrieval. Recalling Private Information Retrieval
(PIR), one party will have a database of m + 1 bits x0, . . . , xm, while a second
party wishes to privately query a particular bit xi without revealing i. Putting
this in the context of the HW construction, A would be the set of indices where x
is 1 and B = {i}. Unfortunately, it may be the case that |A| is large with respect
to the domain Z

∗
m.

As a result, the requirement of small set domains mentioned in Section 7
precludes directly using the HW construction for PIR in general. Yamamura
and Saito offer a simple PIR solution based on the SDA [21]. However, their PIR
solution approach is very inefficient and requires O(km) bits of communication
to privately retrieve a single bit from a m-bit database, where k is a security
parameter.

Multiparty Extensions. Another interesting variant to the 2-party PDT pro-
tocol is considering a multi-verifier, single-prover PDT scenario. For example,
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suppose that law enforcement agencies from different countries, in the role of
verifiers, wish to be assured by an airline, in the role of the prover, that no
one on any of their watch-lists is getting on the next flight. The law enforce-
ment agencies neither trust each other nor the airline with their individual
databases, yet may want to corroborate their watch lists (so as to possibly work
together).

Suppose there are two verifiers. The HW construction may be extended as
follows. First, each verifier computes his own values ni = piqi and a group of
known order

∏
i ni is published. Next, both verifiers publish commitments to

their own polynomials using a random generator g from the group of order n1n2

and, respectively, h1 of order (n1n2)/p1 = q1n2 and h2 order (n1n2)/p2 = n1q2.
That is, values of the form gαihri

1 and gβjh
rj

2 , where f(x) =
∑

αix
i and z(x) =∑

βjx
j . A third party can obliviously evaluate commitments to the sum of these

polynomials. If the third party’s set contains an element ci such that f(ci) =
z(ci) = 0, then this party can output elements hr

1h
r′
2 , which have order q1q2.

No single party can compute elements of order q1q2 by themselves; such an
element is produced only after an evaluation on an element in both of the law
enforcement agencies’ sets. Each agency, knowing q1 and q2 respectively, could
collaborate to detect this fact and take further action. The benefit here is that
the contents of the sets of the law enforcement agencies and the airline all re-
main private, up to knowledge of any three-way intersections. This digression
illustrates that unknown order subgroups might be applied in other interesting
applications.

Finding Intersection Values with HW. As previously mentioned, basic FNP
is actually a Private Intersection or Private Matching protocol. The verifier party
learns which specific values are in the set intersection. Essentially, the prover will
send homomorphic encryptions of the form Epk (r · f(b) + b) for values b ∈ B.
If b ∈ A, then f(b) = 0 and the verifier will receive an encryption of b. Otherwise,
the verifier receives a random value. Of course, this is still susceptible to malicious
prover attacks. A malicious prover can encrypt any value he likes or can encrypt
values like Epk (r1 ·f(b1)+r2 ·f(b2)+b1), which can be interpreted as “If (b1 ∈ A)
and (b2 ∈ A), then tell the verifier that (b1 ∈ A)”. FNP’s fixes the problem by
using the random oracle model to force a prover to use the encrypted coefficient
values prepared by the verifier.

This begs the question of whether the HW testable and homomorphic com-
mitment primitive could be used in a private intersection protocol. Initially, one
may consider using the exact FNP construction and having the prover oblivi-
ously evaluate gRf(b)+bhr. If f(b) = 0, raising this to the power q will result in
the value (gq)b. The verifier can then check whether for any of its own values a,
that (gq)a = (gq)b.

Unfortunately, like FNP, a malicious prover could also send conditional eval-
uations, like “if x is in A, then reveal that y is in B”. This would violate the
soundness of a private intersection protocol. Thus, a HW-style private intersec-
tion protocol offers no advantage over FNP. They have equivalent computation
costs and the same level of security.
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8 Open Questions

In the full version of this paper, we discuss several open problems related to HW.
Briefly, some of them are: (1) Are there natural constructions of more general
private set operations like union or intersection? (2) What is the relation between
the SCA and SDA assumptions? (3) How does either assumption relate to Diffie-
Hellman or factoring?
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