
Integration of Security Policy into System
Modeling

Nazim Benäıssa2,4,5, Dominique Cansell1,5, and Dominique Méry2,3,5,�

1 Université de Metz
cansell@loria.fr

2 Université Henri Poincaré Nancy 1
3 mery@loria.fr

4 benaissa@loria.fr
5 LORIA
BP 239

54506 Vandœvre-lès-Nancy
France

Abstract. We address the proof-based development of (system) models
satisfying a security policy. The security policy is expressed in a model
called OrBAC, which allows one to state permissions and prohibitions
on actions and activities and belongs to the family of role-based access
control formalisms. The main question is to validate the link between
the security policy expressed in OrBAC and the resulting system; a first
abstract B model is derived from the OrBAC specification of the secu-
rity policy and then the model is refined to introduce properties that
can be expressed in OrBAC. The refinement guarantees that the result-
ing B (system) model satisfies the security policy. We present a generic
development of a system with respect to a security policy and it can be
instantiated later for a given security policy.

Keywords: refinement, integration, security policy.

1 Introduction

One of the most challenging problems in managing large networks is the com-
plexity of security administration. Role-based access control has become the pre-
dominant model for advanced access control because it reduces the complexity
and cost of security administration in large networked applications. Other mod-
els, like OrBAC [1], have been introduced by providing a structure based on the
application domain and by introducing the concept of organisation. Networks
or software systems can be abstracted by action systems or event B models;
however, security requirements should be integrated into the proof-based design
of such systems and we address the integration of security policy - expressed
in a security model OrBAC - in the final systems. This leads us to deal with
security properties like permissions and prohibitions. We leave obligations as
� The research is supported by the DESIRS project of the ACI Sécurité et Informatique

of the Ministry of Research. The first author has obtained a partial PhD grant from
the Région Lorraine.

J. Julliand and O. Kouchnarenko (Eds.): B 2007, LNCS 4355, pp. 232–247, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Integration of Security Policy into System Modeling 233

out of the scope of the current work. J.-R. Abrial [2] contributes to the access
control problem: the study consists of elaborating a system that controls access
to a building for different persons. He does not refer to a security model but his
work influences our current work.

1.1 Integration of Security Policies in System Development

When a system is under development, it is necessary to consider requirements
documentation. The document is either written in a natural language, or in
a semi-formal language, or in a formal language and it may include different
aspects or views of the target system. Security policy is a possible part of this
document and it may be expressed in a specific modelling language designed for
expressing permissions, prohibitions, recommendations, obligations, . . . related
to the target system. Now, a key question is to ensure that the resulting system
conforms to the security policy and it appears to us that in existing systems
the link between the system and its security policy is not clearly established
and formally validated, as shown in figure 1: the satisfaction relation should be
established in a formal way. We illustrate the problem to be solved by considering
two modelling languages:

– the OrBAC modelling language for security policy
– the event B modelling language for systems

Another important point is that we focus on the access control problem and
as shown in figure 1.2, we describe several steps to obtain an implementation of
the system from the statement of the security policy:

1. Generating a B model OM from the security policy O: the translation rela-
tion is explained in the current paper and can be mechanized.

2. Generating a B model RM by refining OM and by adding progressively
details of the document which are not yet integrated into the current model:
the refinement of B models is the key concept ensuring the validation of the
satisfaction relation.

3. Writing a system model SY S from the last B model: the implementation of
a refined B model into a system language can be directed by transformations
over events.

1.2 Proof-Based Incremental Modelling

Proof-based development methods [3] integrate formal proof techniques in the
development of software systems. The main idea is to start with a very abstract
model of the system under development. Details are gradually added to this first
model by building a sequence of more concrete ones. The relationship between
two successive models in this sequence is that of refinement [3,8,4]. The essence
of the refinement relationship is that it preserves already proved system prop-
erties including safety properties and termination. A development gives rise to
a number of, so-called, proof obligations, which guarantee its correctness. Such
proof obligations are discharged by the proof tool using automatic and interac-
tive proof procedures supported by a proof engine [10].

234 N. Benäıssa, D. Cansell, and D. Méry

The goal of the paper is to address the proof-based
development of models satisfying a security policy.
The security policy can be expressed in a formal lan-
guage and it is possible to analyse the security pol-
icy, especially the consistency of the policy. The re-
finement ensures the correctness of the satisfaction
relation: the system satisfies the security policy.

Security Policy O

System Model SYS

satisfaction

Fig. 1. The satisfaction relation

Security Policy O

System Model SYS

satisfaction refinement

translation

implementation

B model OM

B model RM

At the most abstract level it is obligatory to describe the static properties
of a model’s data by means of an “invariant” predicate. This gives rise to proof
obligations relating to the consistency of the model. These are required to ensure
that data properties which are claimed to be invariant are preserved by the
events or operations of the model. Each refinement step is associated with a
further invariant which relates the data of the more concrete model to that of the
abstract model and states any additional invariant properties of the (possibly
richer) concrete data model. These invariants, so-called gluing invariants, are
used in the formulation of proof obligations related to the refinement.

The goal of a B development is to obtain a proved model. Since the devel-
opment process leads to a large number of proof obligations, the mastering of
proof complexity is a crucial issue. Even if a proof tool is available, its effective
power is limited by classical results over logical theories and we must distribute
the complexity of proofs over the components of the current development, e.g.
by refinement. Refinement has the potential to decrease the complexity of the
proof process whilst allowing for traceability of requirements.

B models rarely need to make assumptions about the size of a system being
modelled, e.g. the number of nodes in a network. This is in contrast to model
checking approaches [9]. The price to pay is to face possibly complex mathe-
matical theories and difficult proofs. The re-use of developed models and the
structuring mechanisms available in B help in decreasing the complexity. Where
B has been exercised on known difficult problems, the result has often been
a simpler proof development than has been achieved by users of other more
monolithic techniques.

Integration of Security Policy into System Modeling 235

2 Models for Security Policy

The interaction of people with IT systems generate various security needs to
guarantee that each system user benefits of its advantages without trespassing
on another user’s rights. These needs vary according to the activity field required.
It could be regarding: Confidentiality (Non disclosure of sensitive information
to non authorised persons), Integrity (Non alteration of sensitive information),
Availability (Supply of information to users according to their rights of access
these information), Auditability (The ability to trace and determine the actions
carried out in the system).

Such requirements usually result in setting up an access control model that ex-
presses security policies, defining for each user his permissions, prohibitions and
obligations. Users (or subjects) are active entities operating on objects (passive
entities) of the system.

Several access control models have been proposed: DAC [14], MAC [5,6],
RBAC [12,15,13] or OrBAC [1]. In the Role-Based access control model, the
RBAC model, security policy does not directly grant permissions to users but
to roles [12]. A role is an abstraction for users. Each user is assigned to one or
several roles, and will inherit permissions or prohibitions associated with these
roles. Such a security model states security properties on the target system and
on a hidden state of the current system. The hidden state clearly expresses
dynamic properties related to permissions and prohibitions. The classical role-
based models have no explicit state variable; the context information might be
used to express the state changes but we think that a state-based approach like
B provides a simpler framework for integrating security policy specification in
the design of a system. Moreover, the refinement may help us in introducing
security properties in a proof-based step.

2.1 Organization-Based Access Control Model: OrBAC

The OrBAC (Organization-Based Access Control model) for modelling the se-
curity policies is an extension of the RBAC model. OrBAC is based on the
concept of organization. The specification of the security policy is completely
parametrized by the organization such that it is possible to handle simultane-
ously several security policies associated with different organizations [1]. Another
advantage of the OrBAC model compared to other models is that it makes it
possible to express contextual permissions or prohibitions.

OrBAC takes again the concept of role such as it was defined in RBAC. Users
are assigned to roles and inherit their privileges. The concept of view (or object’s
groups) is also introduced as an abstraction of the objects of the system. The
construction of these groups of objects must be semantically well founded, this
construction is related to the way in which the various roles carry out various
actions on these objects. It should be noted that there are similarities with
the concept of view in relational databases where it is a question of gathering
objects which have similar properties. Just as for the objects, the actions are
also gathered in activities, this implies that there are two levels of abstraction
in OrBAC:

236 N. Benäıssa, D. Cansell, and D. Méry

– Abstract level: roles (doctor, nurse), activities (management) and views (pa-
tient files, administration files) of the system on which various permissions
and prohibitions are expressed.

– Concrete level: subjects (Paul, Peter, John), actions (create, delete) and
objects (patient file1, patient file2) of the system.

Subjects, actions and objects are respectively assigned to roles, activities and
views by relations defined over these entities(see figure 2). We detail relations in
the next sub-section.

Empower, Use and Consider. Assignment of subjects to roles: subjects are
assigned to one or more roles in order to define their privileges. Contrary to
RBAC, subjects play their roles in organizations, which implies that subjects
are assigned to roles through a ternary relation including the organization:

empower(org, s, r): means that the subject s plays the role r in the
organization org.

Assignment of actions to activities : As for roles and subjects, activities are
an abstraction of various actions authorized in the system. The relation binding
actions to activities is also a ternary relation including the organizations:

consider(org, a, act): means that the action a is considered as an activity
act in the organization org.

Assignment of objects to views : As in relational databases, a view in OrBAC
corresponds to a set of objects having a common property. The relation binding
the objects to the views to which they belong is also a ternary relation including
the organization:

use(org, o, v): means that the organization org uses the object o in the
view v.

Empower

Consider

Use

permission prohibition

(org, role, activity, view, context)

Abstract level

Concrete level

(subject, action, object, context)

Fig. 2. Abstract and Concrete level of OrBAC

Integration of Security Policy into System Modeling 237

Modeling a Security Policy with OrBAC. When subjects, actions, and
objects are respectively assigned to roles, activities and views, it is now possible
to describe the security policy. It consists of defining different permissions and
prohibitions:

– permission(org, r, act, v, c): means that the organization org grants to the
role r the permission to carry out the activity act on the view v in context c.

– prohibition(org, r, act, v, c): means that the organization org prohibits the
role r to carry out the activity act on the view v in the context c.

The concept of context, which did not exist in RBAC, is important in OrBAC,
since it makes it possible to express contextual permissions (or prohibitions).
Let us consider the example of a security policy in a medical environment. If
one wants to restrict the access to patients records or files to their attending
practitioner, the following permission should be added to the security policy:

permission(hospital, physician, consult, patient file, attending practitionar)

If there is no context: permission(hospital, physician, consult, patient file).
A physician could therefore access the file of any patient, which needs to be

avoided. To be able to use this concept of context, a new relation define should
be introduced:

Define(org, s, a, o, c): means that within organization org, the context c
is true between subject s, the object o and action a.

Hierarchy in OrBAC. The OrBAC model makes it possible to define role
hierarchies (as in RBAC) but also with respect to the organization hierarchies.
The hierarchies allow the inheritance of the privileges (permissions or prohibi-
tions), if for example r2 is a sub-role of r1, for an organization org, an activity
av and a view v in the context ctx:

– When permission(org, r1, av, v, ctx) holds then permission(org, r2, av, v, ctx)
holds.

– When prohibition(org, r1, av, v, ctx) holds then prohibition(org, r2, av, v, ctx)
holds.

In the same way for the organizations, if org2 is a sub-organization of org1
then, for a role r an activity av and a view v in the context ctx:

– When permission(org1, r, av, v, ctx) holds then permission(org2, r, av, v, ctx)
holds.

– When prohibition(org1, r, av, v, ctx) holds then prohibition(org2, r, av, v, ctx)
holds.

The concept of inheritance is a key concept in OrBAC, since it allows gradual
building of the security policy. Indeed, it is necessary to start by establishing
a flow chart of the organizations (and roles) and defining the privileges on the
basic organizations, it will then be enough to add gradually the privileges of the
sub-organisations(sub-roles).

238 N. Benäıssa, D. Cansell, and D. Méry

3 Event B Models from OrBAC

A complete introduction of B can be found in [7]. The question is to integrate
the event B method and the OrBAC method; we have shortly introduced the
event B concepts and the OrBAC concepts. In a B model, we should define
the mathematical structures on which is based the development and the system
under development; this information can be used to derive further properties that
will be used in the validation of models. The B models have a static part and a
dynamic part and in the specification of a security policy in OrBAC one has to
state dynamic properties and to check the consistency of the resulting theory.
The MOTOrBAC tool [11] provides a framework for defining a security policy
and for checking the consistency of the set of facts and rules in a PROLOG-like
style; this approach is clearly based on a fixed-point definition of permissions.
The question of expressing administration model in OrBAC is also crucial and it
is very simple to express the administration of security policy in B, since one can
model the permissions as a variable satisfying the security policy expressed in an
invariant. These points will be recalled when we present the effective translation
of OrBAC models into event B models.

The current status of the work is as follows:

– We assume that we have an OrBAC description of the security policy.
– The security policy is supposed to be stable and consistent; the consistency

is checked using tools like, for instance MOTOrBAC.
– The security policy states permissions and prohibitions.

The problem is to translate OrBAC statements into the event B modelling
language. The translation of the security policy into event B includes several
successive stages. A first B model is built and then other successive refinements
are made as shown by figure 3. The first refinement validates the link between
the abstract level (role, ...) and the concrete level (subject,).

The approach is based on refinement and each model or refinement model
is enriched either by a constraint required by the OrBAC specification or by
constraints like workflow constraints or separation of duties. Each constraint is
attached to an invariant. The invariant becomes stronger through the refinement
steps.

3.1 Abstract Model with Permissions and Prohibitions

As presented in the paragraph 2.1, the OrBAC specification has two levels of ab-
straction (see figure 2). The first step consists of an event B model modelling the
abstract part of the security policy, i.e. initially, only concepts of organization,
role, view, activity and context are considered. In the first model, permissions
and prohibitions of the OrBAC model should be described.

– The clause SETS in the event B model contains basic sets such as organi-
sations, roles, activities, views and contexts: ORGS, ROLES, ACTIVITIES,
VIEWS, CONTEXTS.

Integration of Security Policy into System Modeling 239

B Abstract model with
permissions and prohibitions

permissions and prohibitions
B Concrete model with

Continue to develop
the system with B

not expressed in OrBAC
Adding other constraints

Security policy
in OrBAC

Checking
Consistency

OrBAC to B
refinement

refinement

refinement

Translation from

Fig. 3. Steps of the passage from OrBAC to a B event-based model

– The clauses CONSTANTS and PROPERTIES contain the constants like perm-
ission and prohibition that will contain privileges of the OrBAC description.
One of the most important concepts contained in OrBAC is the concept
of hierarchy: whether it is organization hierarchy or role hierarchy. Two
new constants sub role and sub org are introduced to take into account
respectively the role and organization hierarchy. It is enough to specify
which roles and which organizations are concerned with inheritances, and the
permissions and prohibitions corresponding to inheritances are deductively
generated.

SETS
ORGS;
ROLES;
ACTIV ITIES;
V IEWS;
CONTEXTS

CONSTANTS
permission,
prohibition,
sub org,
sub role,
default / ∗ default context value ∗ /

240 N. Benäıssa, D. Cansell, and D. Méry

PROPERTIES
permission ⊆ ORGS × ROLES × ACTIV ITIES × V IEWS × CONTEXTS
prohibition ⊆ ORGS × ROLES × ACTIV ITIES × V IEWS × CONTEXTS

sub org ⊆ ORGS × ORGS
sub role ⊆ ROLES × ROLES

default ∈ CONTEXTS

/ ∗ Organization hierarchies ∗ /
∀(org1, org2, r, av, v, ctx).(

(org1 ∈ ORGS ∧ org2 ∈ ORGS∧
r ∈ ROLES ∧ av ∈ ACTIV ITIES∧
v ∈ V IEWS ∧ ctx ∈ CONTEXTS∧
(org1 �→ org2) ∈ sub org∧
(org2 �→ r �→ av �→ v �→ ctx) ∈ permission)

⇒
(org1 �→ r �→ av �→ v �→ ctx) ∈ permission)

/ ∗ Role hierarchies ∗ /
∀(org, r1, r2, av, v, ctx).(

(r1 ∈ ROLES ∧ r2 ∈ ROLES∧
org ∈ ORGS ∧ av ∈ ACTIV ITIES∧
v ∈ V IEWS ∧ ctx ∈ CONTEXTS∧
(r1 �→ r2) ∈ sub role∧
(org �→ r2 �→ av �→ v �→ ctx) ∈ permission)

⇒
(org �→ r1 �→ av �→ v �→ ctx) ∈ permission)

/ ∗ Same properties for prohibitions ∗ /

For a given particular case, it is enough to initialize sets in the clause SETS
by entities, organizations, roles, views, activities, contexts. Properties of con-
stants, like permission, prohibition, sub role and sub org, should also be set in
the clause PROPERTIES. Consequently, permissions and prohibitions can not be
modified, since they are defined as constants; the OrBAC definitions are express-
ing properties satisfied by a consistent theory of permissions and prohibitions.
We will address later the administration of OrBAC.

Introducing State Variables. An event B model expresses properties over
state and state variables; the main problem is effectively that OrBAC has no
explicit variables. In fact, OrBAC users are using some kind of state modifica-
tions but no explicit state exists in OrBAC, even if contexts might be used to
model it. Variables are used to model the status of the system with respect to
permissions and prohibitions:

– The clause VARIABLES contains two variables, the state variable hist abst
that contains the history of system activities; the variable context determines
the running context of the system.

Integration of Security Policy into System Modeling 241

Variables satisfy the following properties added to the invariant:

INVARIANT
context ∈ CONTEXTS
hist abst ⊆ ORGS × ROLES × ACTIV ITIES × V IEWS × CONTEXTS
hist abst ⊆ permission

The initial values of the two variables are set as follows:

context := default ‖hist abst := ∅

As the security policy is supposed to
be consistent, we should be able to
prove in the clause ASSERTIONS :

ASSERTIONS
pemission ∩ prohibition = ∅
hist abst ∩ prohibition = ∅

– The clause EVENTS contains the following events :
• The event action models when an authorization request for the access

of a subject to an object of the system occurs.
• The two events set default and set context value are attached to the

changes of the system context.

action =̂
any org, r, v, av where

org ∈ ORGS
r ∈ ROLES
v ∈ V IEWS
av ∈ ACTIV ITIES
(org �→ r �→ av �→ v �→ context) ∈ permission

then
hist abst := hist abst ∪ {(org �→ r �→ av �→ v �→ context)}

end

set context default =̂
begin

context := default
end

set context value =̂
begin

context :∈ CONTEXTS − {default}
end

The invariant should be preserved and it means that any activity in the system
is controlled by the security policy through the variable hist abst.

3.2 First Refinement: Concrete Model with Permissions and
Prohibitions

One of our goals is to use the refinement to validate the relation between security
models; OrBAC defines two levels of abstraction and the current model is refined
into a concrete model. The refinement introduces subjects, actions and objects:

242 N. Benäıssa, D. Cansell, and D. Méry

sets SUBJECTS, ACTIONS and OBJECTS contain respectively subjects,
actions and objects of the system under development. The clause CONSTANTS
includes the following constants: empower (assignment of subjects to roles),
use (assignment of objects to views) and consider (assignment of actions to
activities). Properties of constants are stated as follows:

PROPERTIES
empower ⊆ ORGS × ROLES × SUBJECTS
use ⊆ ORGS × V IEWS × OBJECTS
consider ⊆ ORGS × ACTIV ITIES × ACTIONS

Concrete Variables. A new variable hist conc models the control of the sys-
tem according to the security policy; it contains the history of the actions per-
formed by a subject on a given object. The context in which the action occurred
is also stored in this variable.

The relation between
hist conc and the variable
hist abst of the abstract
model is expressed in the
gluing invariant; the first
part of the invariant states
properties satisfied by
variables with respect to
permissions.

INVARIANT
∀(s, a, o, ctx).(

(s ∈ SUBJECTS ∧ a ∈ ACTIONS∧
o ∈ OBJECTS ∧ ctx ∈ CONTEXTS∧
(s �→ a �→ o �→ ctx) ∈ hist conc)

⇒
(∃(org, r, av, v).(
org ∈ ORGS ∧ r ∈ ROLES∧
av ∈ ACTIV ITIES ∧ v ∈ V IEWS∧
(r �→ s) ∈ empower∧
(v �→ o) ∈ use∧
(av �→ a) ∈ consider∧
(org �→ r �→ av �→ v �→ ctx) ∈ hist abst)))

INVARIANT
∀(s, a, o, ctx).(

(s ∈ SUBJECTS ∧ a ∈ ACTIONS∧
o ∈ OBJECTS ∧ ctx ∈ CONTEXTS∧
(s �→ a �→ o �→ ctx) ∈ hist conc)

⇒
(∀(org, r, av, v).(
org ∈ ORGS ∧ r ∈ ROLES∧
av ∈ ACTIV ITIES ∧ v ∈ V IEWS∧
(r �→ s) ∈ empower∧
(v �→ o) ∈ use∧
(av �→ a) ∈ consider)
⇒

(org �→ r �→ av �→ v �→ ctx) /∈ prohibition)))

The invariant states
that each action per-
formed by the system
satisfies the security
policy. For the prohibi-
tions, when a subject
s wants to carry out
an action a on an ob-
ject o in an organiza-
tion org, it is necessary
to check that no pro-
hibition exists for that
action. The second part
of the invariant states
properties satisfied by
variables with respect
to prohibitions:

Integration of Security Policy into System Modeling 243

action =̂
any s, a, o, org, r, v, av where

s ∈ SUBJECTS ∧ a ∈ ACTIONS ∧ o ∈ OBJECTS∧
org ∈ ORGS ∧ r ∈ ROLES∧
av ∈ ACTIV ITIES ∧ v ∈ V IEWS∧
(r �→ s) ∈ empower∧
(v �→ o) ∈ use∧
(av �→ a) ∈ consider∧

/ ∗ permission ∗ /
(org �→ r �→ av �→ v �→ ctx) ∈ permission∧

/ ∗ prohibition ∗ /
(∀(orgi, ri, avi, vi).(
(orgi ∈ ORGS ∧ ri ∈ ROLES∧
avi ∈ ACTIV ITIES ∧ vi ∈ V IEWS∧
(ri �→ s) ∈ empower∧
(vi �→ o) ∈ use∧
(avi �→ a) ∈ consider)
⇒
((orgi �→ ri �→ avi �→ vi �→ ctx) /∈ prohibition))

then
hist conc := hist conc ∪ {(s �→ a �→ o �→ context)}

end

The Events. The abstract model should consider the permissions and the
prohibitions for a subject s that asks to perform an action a on an object o.

Discussion on Contextual Security Policies. In the different cases we stud-
ied, it appeared that the context notion has two different aspects. The first aspect
concerns the contexts that are global to the system. An example of a global con-
text is a system managing accesses to a building in a company. We may have a
permission (or a prohibition):

permission(company, agent, access, building, opening hours)

In this permission, the context opening hours is global to the system, i.e. the
whole system is, at a given moment, in the context default or opening hour.
A state variable context indicating the running context of the system is used in
this case. On the other hand, in the case, for example, of a system managing the
access to the patient files in a hospital, we may have permissions of the form:

permission(hospital, physician, consult, patient file, attending practitioner)

In this permission, the context attending practitioner (that means that the
permission is valid only if the physician is the attending practitioner of the
patient) is not global to the system but links subjects to the objects. In this
case a new constant define (as in OrBAC) is used. This constant defines links
between objects and subjects with respect to some actions, and has the following
form :

244 N. Benäıssa, D. Cansell, and D. Méry

define ⊆ ORGS × SUBJECTS × ACTIONS × OBJECTS × CONTEXTS

In order to give the system designer the possibility of expressing contextual
permissions of each type, modifications must be made to the B model. If context -
value is a value of a global context, the invariant should be modified as follows:

INVARIANT
∀(s, a, o, ctx).(

(s ∈ SUBJECTS ∧ a ∈ ACTIONS∧
o ∈ OBJECTS ∧ ctx ∈ CONTEXTS∧
(s �→ a �→ o �→ ctx) ∈ hist conc)

⇒
(∃(org, r, av, v).(
org ∈ ORGS ∧ r ∈ ROLES∧
av ∈ ACTIV ITIES ∧ v ∈ V IEWS∧
(r �→ s) ∈ empower∧
(v �→ o) ∈ use∧
(av �→ a) ∈ consider∧
(((org �→ s �→ a �→ o �→ ctx) ∈ define) ∨ (ctx = context value))∧
(org �→ r �→ av �→ v �→ ctx) ∈ hist abst)))

3.3 Second Refinement: Adding Other Constraints Not Expressed
in OrBAC

The state variables of the event B model give additional information on the
system which was not available with OrBAC. It was impossible to know at a
given moment the state of the system and, for example, which member of a
company staff consulted or modified which file. This point is important since
in practice the security policies are increasingly complex and new types of con-
straints appear. The passage towards B allows us to implement the security
policy such as it was established in OrBAC, and enrich it with the possibil-
ity of introducing new constraints such as workflow constraints or the duty
separation.

Workflow Constraints. Workflow constraints express properties on the task
scheduling in a system. For instance, a rule for a given workflow states that
an action act should be executed, only if a set of actions act1, act2..., actn
have already executed. Those constraints can not be expressed in OrBAC, be-
cause, when a subject is assigned to a given role, it obtains its complete priv-
ileges. A permission is systematically delivered to execute the action act, if
one of the roles to which a subject is assigned has the appropriate privilege,
even if one of the actions act1, act2,..., actn has not yet been executed. The
implementation of these constraints in a B model leads to the following
invariant:

Integration of Security Policy into System Modeling 245

INVARIANT
∀(s, o, ctx).(

(s ∈ SUBJECTS∧
o ∈ OBJECTS∧
ctx ∈ CONTEXTS∧
(s �→ act �→ o �→ ctx) ∈ hist conc)

⇒
(∃(sw, cw).(sw ∈ SUBJECTS ∧ cw ∈ CONTEXTS∧

(sw �→ act1 �→ o �→ cw) ∈ hist conc)∧
∃(sw, cw).(sw ∈ SUBJECTS ∧ cw ∈ CONTEXTS∧

(sw �→ act2 �→ o �→ cw) ∈ hist conc) ∧ . . .
∃(sw, cw).(sw ∈ SUBJECTS ∧ cw ∈ CONTEXTS∧

(sw �→ actn �→ o �→ cw) ∈ hist conc)))

The refinement provides a way to add such a constraint to the model and proof
obligations ensure the correctness of the transformation. Another refinement can
be done to introduce specific rules for aspects such as duty separation.

3.4 Separation of Duties

Separation of duties aims to prevent fraud and errors by disseminating an ac-
tion’s execution privileges among different subjects. To implement a system sat-
isfying this type of constraints, it is necessary that when a subject asks for the
authorization to execute an action on an object, to be able to check if it did not
already act throughout the process, which is impossible to do with OrBAC in
a simple way. However, there is a form of separation of duties known as static
separation of duties (implemented with RBAC [12]). This one consists of pre-
venting a subject from accumulating several important functions, and it can be
achieved when subjects are assigned to roles. In the B model, the following as-
sertion should be proved to guarantee that no subject accumulates two critical
given roles r1, r2. In the clause ASSERTIONS:

∀s.((s ∈ SUBJECTS ∧ (org �→ r1 �→ s) ∈ empower)
⇒ (org �→ r2 �→ s) /∈ empower)

Proceeding this way may be too rigid in some cases. A subject s can cumulate
several functions if it does not intervene many times in the management of the
same object o. To prevent a subject s executing two critical actions act1, act2
on an object o with act1 �= act2, the following invariant has to be proved:

INVARIANT
∀(s1, s2, o, ctx1, ctx2).(

(s1 ∈ SUBJECTS ∧ s2 ∈ SUBJECTS∧
o ∈ OBJECTS∧
ctx1 ∈ CONTEXTS ∧ ctx2 ∈ CONTEXTS∧
(s1 �→ act1 �→ o �→ ctx1) ∈ hist conc)∧
(s2 �→ act2 �→ o �→ ctx2) ∈ hist conc)

⇒
(s1 = s2))

The separation of
duties and workflow
constraints are only
particular cases of con-
straints where instant
system state must be
known in order for
them to be expressible.

246 N. Benäıssa, D. Cansell, and D. Méry

4 Conclusion and Open Issues

The development of software systems satisfying a given security policy should
be based on techniques for validating the link between the security policy and
the resulting system. The link between the security policy and the system is
called satisfaction and we have used the event B method, especially refinement,
for relating the security policy expressed in OrBAC and the final system. The
link between the two levels of abstractions in OrBAC is proved to be a B re-
finement. Our work is greatly influenced by the case study developed by J.-R.
Abrial [2]; he shows how a system for controling access to buildings can be de-
rived by refinement, and he starts by expressing the essence of the access control.
In our case, we use an elaborate formalism OrBAC for expressing the security
policy and for checking its consistency; we derive a mathematical theory from
OrBAC specification and we define an explicit state of a system which is not
explicit in OrBAC. The refinement provides us with a way to develop a list of
models which progressively integrate details that do not seem to be possible to
express in OrBAC: workflow constraints, for instance. Our models are generic
with respect to the security policy and can be reused to develop a real system.
A crucial question would be to use our models for developing an infrastructure
for controlling an existing system with respect to a security policy. Moreover,
security policy expresses permissions and prohibitions but it remains to consider
obligations which are very difficult to refine because they are close to liveness
properties and should be expressed on traces. Moreover, the administration of
security policy (ADOrBAC) leads to modifiable permissions and prohibitions:
our constants should be transformed into state variables and decisions should be
taken to handle situations, which are not satisfying the invariant (some person
might become undesirable whilst in a building, when security policy is mod-
ified by the administration). Finally, case studies should be developed using
these models.

References

1. A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miège, C. Saurel, and G. Trouessin. Organization Based Access
Control. In 4th IEEE International Workshop on Policies for Distributed Systems
and Networks (Policy’03), June 2003.

2. J.-R.Abrial. Etude système:méthode et exemple. http://www.atelierb.societe.com/
documents.html.

3. J.R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge University
Press, 1996. ISBN 0-521-49619-5.

4. R.-J. Back and J. von Wright. Refinement Calculus. Springer-Verlag, 1998.
5. D. E. Bell and L. J. LaPadula. Secure computer systems: Unified exposition and

multics interpretation. MTR-2997, (ESD-TR-75-306), available as NTIS AD-A023
588, MITRE Corporation, 1976.

6. K. Biba. Integrity consideration for secure computer systems. Technical Report
MTR-3153, MITRE Corporation, 1975.

Integration of Security Policy into System Modeling 247

7. Dominique Cansell and Dominique Méry. Logical foundations of the B method.
Computers and Informatics, 22, 2003.

8. K. M. Chandy and J. Misra. Parallel Program Design A Foundation. Addison-
Wesley Publishing Company, 1988. ISBN 0-201-05866-9.

9. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
2000.

10. ClearSy. Web site B4free set of tools for development of B models, 2004.
11. F. Cuppens. Orbac web page. http://www.orbac.org.
12. D.F. Ferraiolo, R.Sandhu, S.Gavrila, D.R. Kuhn, and R.Chandramouli. Proposed

nist standard for role-based access control. ACM Transactions on Information and
System Security, 4(3):222–274, 2001.

13. Serban I. Gavrila and John F. Barkley. Formal specification for role based access
control user/role and role/role relationship management. In ACM Workshop on
Role-Based Access Control, pages 81–90, 1998.

14. Butler Lampson. Protection. In Proceedings of the 5th Annual Princeton Confer-
ence on Information Sciences and Systems, pages 437–443, Princeton University,
1971.

15. R.Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control
models. IEEE Computer, 29(2):38–47, 1996.

	Introduction
	Integration of Security Policies in System Development
	Proof-Based Incremental Modelling

	Models for Security Policy
	Organization-Based Access Control Model: OrBAC

	Event B Models from OrBAC
	Abstract Model with Permissions and Prohibitions
	First Refinement: Concrete Model with Permissions and Prohibitions
	Second Refinement: Adding Other Constraints Not Expressed in OrBAC
	Separation of Duties

	Conclusion and Open Issues

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

