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Preface

These proceedings record the papers presented at the Seventh International Con-
ference of B Users (B 2007), held in the city of Besançon in the east of France.
This conference was built on the success of the previous six conferences in this
series, B 1996, held at the University of Nantes, France; B 1998, held at the
University of Montpellier, France; ZB 2000, held at the University of York, UK;
ZB 2002, held at the University of Grenoble, France; ZB 2003, held at the Uni-
versity of Turku, Finland; ZB 2005 held at the University of Surrey, Guildford,
UK. B 2007 was held in January at the University of Franche-Comté, Besançon,
France, hosted by the Computer Science Department (LIFC). LIFC has always
placed particular emphasis on the applicability of its research and its relation-
ship with industrial partners. In this context, it created in 2003 a company
called LEIRIOS Technologies, which produces an automatic test generator tool
(LTG) from models described in the B specification language. Other members of
LIFC work on extensions of the B method for specifying and verifying dynamic
properties.

All the submitted papers in these proceedings were peer reviewed by at least
three reviewers drawn from the B committee, depending on the subject matter
of the paper. The authors of the papers for B 2007 were from Australia, Canada,
Finland, Germany, France, Switzerland, and the UK. The conference featured a
range of contributions by distinguished invited speakers drawn from both indus-
try and academia. The invited speakers addressed significant recent industrial
applications of formal methods, as well as important academic advances serving
to enhance their potency and widen their applicability.

The topics of interest to the conference included: industrial applications and
case studies using B; integration of model-based specification methods in the soft-
ware development lifecycle; derivation of hardware–software architecture from
model-based specifications; expressing and validating requirements through for-
mal models, in particular verifying security policies; theoretical issues in for-
mal development (e.g., issues in refinement, proof process, or proof validation);
model-based software testing versus proof-oriented development; tools support-
ing the B method; development by composition of specifications; validation of
assembly of COTS by model-based specification methods; B extensions and/or
standardization.

Our invited speakers for B 2007 were drawn from France, Ireland, Switzer-
land and the United States of America. Leslie Lamport is an American computer
scientist. The papers by L. Lamport produced original and insightful concepts
and algorithms to solve many fundamental problems in distributed systems.
L. Lamport applies an elegant mathematical approach to very practical engineer-
ing problems. Joseph Morris, from Dublin City University, Ireland, is especially
interested in developing mathematical methods of extracting guaranteed cor-
rect programs from formal specifications. David Chemouil works in the Flight
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Software Department at the French Space Agency (CNES) in Toulouse. His
activities include monitoring the development of flight software contracted by
CNES and carrying out R&D on flight-software engineering. Paul Gibson from
the Department of Computer Science at the National University of Ireland,
Maynooth, is an expert in feature interaction. He is a consultant for the Irish
government for the Irish e-voting system. He knows this system and its bugs
very well and has presented the requirements for its formal – safe and secure
– development. Laurent Voisin from the Swiss Federal Institute of Technology,
Zurich, a member of the European IST project RODIN (Rigorous Open Devel-
opment Environment for Complex Systems), presented Event-B modelling with
the Rodin platform.

Besides its formal sessions, the conference included tool sessions, demonstra-
tions, exhibitions, an industrial event and tutorials. In particular, the indus-
trial event was constituted of an industrial invited talk and five communications
of industry members. Eddie Jaffuel, senior consultant in LEIRIOS Technolo-
gies, talked about the specification process for model-based testing generation.
Ian Oliver at Nokia Research Center in Finland presented experiences in using
B and UML together in industrial developments. Mathieu Clabaut of Systerel
Company presented a tool for firewall administration. Daniel Dollé and Didier
Essaimé of Siemens Transportation Systems in Montrouge, France, used B in
large-scale projects such as the Canarsie Line CBTC. Sarah Hoffman, Sophie
Gabriele, Germain Haugou of STMicroelectronics and Lilian Burdy of ClearSy
presented the use of the B method for the construction of microkernel-based
systems. Neil Evans and Wilson Ifill of AWE (Atomic Weapons Establishment)
in the UK presented a synthesis and some perspectives about the use of B at
AWE for hardware verifications.

The B 2007 conference was initiated by the International B Conference Steer-
ing Committee (APCB). The University of Franche-Comté and the Computer
Science Department LIFC provided local organization. Without the great sup-
port from local staff at the University of Franche-Comté, B 2007 would not have
been possible. In particular, much of the local organization was undertaken by
Bruno Tatibouët with the assistance of Brigitte Bataillard, Christine Bigey, Alain
Giorgetti, Ahmed Hammad, Pierre-Alain Masson, Hassan Mountassir, François
Piat and Laurent Steck. B 2007 was sponsored by Alstom, ClearSy System Engi-
neering, INRETS (French National Institute for Transport and Safety Research),
INRIA (National Institute of Research in Automatic and Computer Science),
LEIRIOS Technologies, PARKEON (Parking Space Management Solution In-
dustry), RATP, the local council of Doubs, the regional council of Franche-Comté
and the town council of Besançon. We are grateful to all those who contributed
to the success of the conference.

Online information concerning the conference is available under the following
URL: http://lifc.univ-fcomte.fr/b2007

This web site and http://www-lsr.imag.fr/B/ provide links to further on-
line resources concerning the B method.
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We hope that all participants and other interested readers benefit scientifically
from these proceedings and also find them stimulating in the process.

October 2006 Jacques Julliand
Olga Kouchnarenko

Fabrice Bouquet
Marie-Laure Potet
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Support

B 2007 greatly benefited from the support of the following organizations:

CNRS
INRIA
LIFC
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E-Voting and the Need for Rigourous Software
Engineering – The Past, Present and Future

J. Paul Gibson

Department of Computer Science,
National University of Ireland, Maynooth,

Ireland
pgibson@cs.nuim.ie

Abstract. In many jurisdictions around the world, the introduction of
e-voting has been subject to wide-ranging debate amongst voters, politi-
cians, political scientists, computer scientists and software engineers. A
central issue is one of public trust and confidence: should voters be ex-
pected to put their faith in “closed” electronic systems where previously
they trusted “open” manual systems?

As the media continues to report on the “failure” of e-voting machines,
electoral administrators and e-voting machine manufacturers have been
required to review their policies and systems in order to meet a set of ever
changing requirements. Such an unstable problem domain stretches their
understanding of the electoral process and their ability to apply a diverse
range of technologies in providing acceptable electronic solutions. The
breadth and depth of the issues suggest that no electoral administration
can justifiably claim to have implemented a “trustworthy” electronic
replacement for a paper system.

All e-voting systems rely substantially on the correct functioning of
their software. It has been argued that such e-voting software is “criti-
cal” to its users, and so one would expect to see the highest standards
being applied in the development of software in e-voting machines: this is
certainly not the case for machines that have already been used. Further-
more, in jurisdictions where e-voting machines have just been procurred
we shall see that the software in these machines is often of very poor
“quality”, even though it has been independently tested and accredited
for use.

Throughout the presentation we will focus on the software engineering
issues, and will consider the question of whether the formal methods
community could have done more - and should do more - to help alleviate
the costly problems that society is facing from badly developed software
in a wide range of critical government information systems (and not just
voting machines).

J. Julliand and O. Kouchnarenko (Eds.): B 2007, LNCS 4355, p. 1, 2006.
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Using B Machines for Model-Based Testing
of Smartcard Software

Eddie Jaffuel

LEIRIOS Technologies
TEMIS Innovation - 18 Rue Alain Savary - 25000 Besançon, France

eddie.jaffuel@leirios.com
http://www.leirios.com

Abstract. Automated test generation from B abstract machines is com-
monly used in the smart card industry since 2003. Several domains are
concerned such as mobile communication applications (e.g. SIM cards) [1],
identity applications (e.g. health cards or identity cards) and banking ap-
plications. The model-based testing tool LTG (LEIRIOS Test Genera-
tor) [2] makes it possible to generate executable test scripts from a B
formal model of the functional requirements. Therefore, the design of the
test cases and the development of the test scripts are based on a modeling
and automated test generation approach.

The model-based testing process is structured in 3 main steps:

Model. The first step consists in developing a behavior model using
the B abstract machine notation. The model represents the expected
behavior of the smart card application under test.

Configure test generation. The configuration of the test generation
with LTG is based on model coverage criteria. Three families of crite-
ria give a precise control over the test generation: decision coverage,
operation effect coverage and data coverage.

Adapt. The generated test cases are then translated in executable test
scripts using an adaptor customized for the test execution environ-
ment and the project.

This talk show how B abstract machines are developed in the context
of model-based testing of smart card applications, how model coverage
criteria makes it possible to generate accurate test cases and how those
test cases are adapted into executable test scripts for a targeted test
execution environment.

References

[1] E. Bernard, B. Legeard, X. Luck, and F. Peureux. Generation of test sequences
from formal specifications: GSM 11-11 standard case study. International Journal
of Software Practice and Experience, 34(10):915–948, 2004.

[2] M. Utting and B. Legeard. Practical Model-Based Testing - A Tools Approach.
Morgan & Kauffman - Elsevier Science 2006. 528 pages, ISBN 0-12-372501-1.

J. Julliand and O. Kouchnarenko (Eds.): B 2007, LNCS 4355, p. 2, 2006.
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The Design of Spacecraft On-Board Software

David Chemouil

French Space Agency (CNES)

Abstract. This presentation deals with the way Space Systems and par-
ticularly Spacecraft On-Board Software are designed. I will try to show
how the design of Space Systems is undergoing a shift from a seasoned-
expert craft to a methodology based upon modelling. First, I will intro-
duce Space Systems by presenting their applications and architecture.
Then I will detail the design of such systems, insisting on systems and
software aspects. Finally, I will describe some directions currently fol-
lowed by CNES regarding modelling technologies. Among them, I will
bring the notion of pre-proven business-specific refinement patterns to
the forefront, as a possible (partial) solution to the reluctance to proof-
based development methods in industry.

David Chemouil works in the On-Board Software Office at the French
Space Agency (CNES) in Toulouse. His activities include monitoring the
development of On-Board Software contracted by CNES and carrying
out R&D on Embedded Software Engineering. David Chemouil holds
a PhD in Computer Science from Université Paul Sabatier, Toulouse
(2004).

J. Julliand and O. Kouchnarenko (Eds.): B 2007, LNCS 4355, p. 3, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Interpreting Invariant Composition in the B
Method Using the Spec# Ownership Relation:
A Way to Explain and Relax B Restrictions

Sylvain Boulmé and Marie-Laure Potet

LSR-IMAG, Grenoble, France
Sylvain.Boulme@imag.fr,

Marie-Laure.Potet@imag.fr

Abstract. In the B method, the invariant of a component cannot be vi-
olated outside its own operations. This approach has a great advantage:
the users of a component can assume its invariant without having to
prove it. But, B users must deal with important architecture restrictions
that ensure the soundness of reasonings involving invariants. Moreover,
understanding how these restrictions ensure soundness is not trivial. This
paper studies a meta-model of invariant composition, inspired from the
Spec# approach. Basically, in this model, invariant violations are mon-
itored using ghost variables. The consistency of assumptions about in-
variants is controlled by very simple proof obligations. Hence, this model
provides a simple framework to understand B composition rules and to
study some conservative extensions of B authorizing more architectures
and providing more control on components initialization.

1 Introduction

Approaches based on formal specifications or annotations become widespread.
They are based on specifications by contract [18] and invariants [13]. When com-
ponents like modules or objects, are involved, the notion of invariant requires a
careful attention, both in specification and validation processes. In particular,
several issues must be addressed [21]: which variables may an invariant depend
on? when do invariants have to hold? It has be proved that a very lax approach,
as initially adopted in JML [14,15], cannot be really implemented in static veri-
fiers. Indeed, when components are involved, verification is also expected to be
modular: invariants must be established without examining the entire program.
Consequently, specifiers need a methodology to explicitly reason about invariants
and their preservation in layered architectures.

In the B method [1], architectural restrictions ensure that when components
are combined, their respective invariants are preserved without further proof
obligations. Hence, in a well-formed architecture, invariant propagation and ver-
ification is a transparent process for developers. The simplicity of invariant com-
position and the control of proof obligations through composition are the main
features in industrial uses of the B method. For example, the Météor project [2,9]

J. Julliand and O. Kouchnarenko (Eds.): B 2007, LNCS 4355, pp. 4–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Interpreting Invariant Composition in the B Method 5

involves about 1000 components, while keeping manageable the proof process.
New projects as Roissy Val [3] and Line 1 of Paris involve even more components.
For railway applications, constructors have developed methodological guides to
build architectures which are adapted to the domain and fulfill architectural
restrictions. The B method has also been used in the domain of smart card ap-
plications [17,24,5]. But, as detailed in section 5, reconciling B restrictions and
natural architectures of applications is harder in this domain.

Alternatively, other approaches, like Spec# [16,6], are based on an explicit
treatment of invariants validity. In the Spec# approach, invariants are properties
that hold except when they are declared to be broken. The main difficulty of
this approach is the specification overheads: developers must describe which
invariants are expected to hold. Thus, the specification process becomes much
more complex and error-prone. In this paper, we propose to relax architectural
restrictions of B using Spec# ideas. But, we avoid Spec# specification overheads,
by characterizing some patterns of architectures.

Section 2 introduces the principles of invariant composition in the B method
and restrictions associated to this approach. Section 3 presents a meta-model
of invariant composition, inspired from the Spec# approach. Section 4 shows
how the invariant composition of the B method can be explained from our meta-
model. Finally, section 5 proposes a new invariant composition principle, and
illustrates the proposed approach through a case study.

2 A Brief Presentation of the B Method

At first, we recall some basic notions about the B method. The core language
of B specifications is based on three formalisms: data are specified using a set
theory, properties are first order predicates and the behavioral part is specified
by Generalized Substitutions. Generalized Substitutions can be defined by the
Weakest Precondition (WP ) semantics, introduced by E.W. Dijkstra [10], and
denoted here by [S]R. Here are two WP definition examples:

[ pre P then S end] R ⇔ P ∧ [S] R pre-conditioned substitution
[S1 ; S2] R ⇔ [S1] [S2] R sequential substitution

Generalized substitutions can equivalently be characterized by two predicates,
trm(S) and prd(S), that respectively express the required condition for substitu-
tion S to terminate, and the relation between before and after states (denoted
respectively by v and v′). Weakest precondition calculus includes termination:
we have [S]R ⇒ trm(S), for any R.

Definition 1 (trm and prd predicates)

trm(S) ⇔ [S]true prdv(S) ⇔ ¬[S]¬(v′ = v)

2.1 Abstract Machine

As proposed by C. Morgan [19], B components correspond to the standard notion
of state machines which define an initial state and a set of operations, acting
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on internal state variables. Moreover, an invariant is attached to an abstract
machine: this is a property which must hold in observables states, i.e. states
before and after operations calls. Roughly, an abstract machine has the following
shape1:

machine M
variables v
invariant I
initialization U
operations

o ← nom_op(i) =̂
pre P then S end ;

. . .
end

M is the component name, v a list
of variable names, I a property on
variables v, and U a generalized
substitution. In the operation def-
inition, i (resp. o) denotes the list
of input (resp. output) parameters,
P is the precondition on v and i,
and S is a generalized substitution
which describes how v and o are up-
dated.

Proof obligations attached to machine M consist in showing that I is an
inductive property of component M :

Definition 2 (Invariant proof obligations)

(1) [U ]I initialization
(2) I ∧ P ⇒ [S]I operations

2.2 Invariants Composition

Abstract machines can be combined, through the two primitives includes and
sees to build new specifications. We do not consider here the clause uses, which
is not really used and supported by tools.

The first feature underlying invariant composition in the B method is invariant
preservation by encapsulated substitutions. A substitution S is an encapsulated
substitution relative to a given component M if and only if variables of M are
not directly assigned in S, but only through calls to M operations. Thus, any
encapsulated substitution relative to M preserves, by construction, invariant of
M (see [23]). The second feature underlying invariant composition is a set of
restrictions when components are combined together:

– M includes N means that operations of M can be defined using any N
operations and M invariant can constrain N variables.

– M sees N means that operations of M can only call read-only N operations
and M invariant can not constrain N variables.

Moreover there is no cycle in includes and sees dependencies and includes
dependency relation is a tree (each machine can be included only once). These
restrictions prevent from combining operations that constrain shared variables
in inconsistent ways. Let us consider the following example:

1 Some others rubrics are permitted such as constants, . . . . Because they have no
particular effect on the composition process, we do not take them into account here.
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machine N
variables x
invariant x ∈ NAT
initialization x := 0
operations

incr =̂ x := x + 1 ;
r ← val =̂ r := x

end

machine M
includes N
invariant even(x)
operations

incr2 =̂
begin incr ; incr end

end

(1) init ; incr2 ; r ← val ; incr2 ; admitted by B
(2) init ; incr2 ; incr ; incr2 ; rejected by B
(3) init ; incr2 ; incr ; incr ; incr2 ; rejected by B

Sequence 1 is authorized because it combines a read-only operation of N
with operations of M . Sequences 2 and 3 are rejected because they combine
modifying operations of N and M . The reject of sequence 2 prevents the second
call of operation incr2 to occur in a state where invariant of M is broken. But,
sequence 3 is rejected although each operation-call happens in a state where all
invariants visible from this operation are valid.

In practical experiments, these restrictions make the design of architectures
difficult [4,12]. Actually, components can share variables only in a very limited
way (at most one writer-several readers). Section 5 describes a smart card case
study [5] illustrating problems raised by a real application.

3 A Meta-model for B Components Inspired from Spec#

The Spec# approach [6,16] proposes a flexible methodology for modular verifi-
cation of objects invariants, which is based on a dynamic notion of ownership.
An ownership relation describes which objects can constrain others objects, i.e.
which object has an invariant depending on the value of another object. It is
imposed that this relation is dynamically a forest. This allows to generate proof
obligations ensuring that an object is not modified while it is constrained by the
invariant of an other object. Dynamic ownership of an object can be transfered
during execution, introducing some flexibility with respect to B restrictions. We
directly present the Spec# approach in the framework of B components and
generalized substitutions style.

Hence, this section proposes a new module language for B inspired from the
Spec# approach. In section 4, this module language is considered as a kind
of meta-model in which we interpret each composition mechanisms of B. This
allows to check very simply the soundness of B proofs obligations with respect
to components composition. And in section 5, we study how this meta-model
can be used to relax B restrictions on composition. In the present state of our
work, refinement of B is not considered, and let for future works.
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3.1 Static Ownership and Admissible Invariants

In our module language, we first assume a relation owns between components: we
write (M, N) ∈ owns to express that “M owns N ”. This relation owns is called
static ownership and is related to admissible invariants, i.e. the invariants which
are not automatically rejected by the static analyzer. By definition 3 below,
admissible invariants of M can only have free variables bound to components
transitively owned by M . In the following, M.Inv denotes the invariant stated
in component M , and M.Var denotes the set of variables declared in M , and
free(P ) denotes the set of unbound variables appearing in formula P , and owns∗

is the reflexive and transitive closure of relation owns.

Definition 3 (Admissible invariant through the owns relation)

free(M.Inv) ⊆ ⋃
N∈ owns∗[M ] N.Var

Here, this notion of admissible invariant is the unique assumption about owns:
correct instances of the meta-model must define owns such that their notion
of admissible invariant matches exactly definition 3. In section 4, we show that
if we consider that owns corresponds exactly to includes clauses between B
components, then B is a quite simple instance of the meta-model. In section
5, in order to relax B restrictions related to includes clauses, we propose to
consider owns only as a particular sub-relation of includes.

Actually, static ownership is related to validity of invariants: the invariant
of a component M can not be safely assumed, when the state of a component
transitively owned by M has been modified outside of M scope. Moreover, we will
see that static ownership gives a hierarchical structure to validity of invariants:
if the invariant of component M can be safely assumed, then all the invariants
of components transitively owned by M can also be safely assumed.

3.2 Dynamic Ownership and Ghost Status Variable

Our module language controls the consistency of constraints on a component
M by ensuring that in each state of the execution, M has at most one unique
dynamic owner. Hence, validity of invariants is now precised: the invariant of a
component X constraining an other component M can be safely assumed, only
when X transitively owns a dynamic owner of M .

In order to express this control, each component M contains a ghost status
variable, called M.st, and belonging to {invalid, valid, committed}. By defi-
nition, a component X is a dynamic owner of M if and only if (X, M) ∈ owns
and X.st �= invalid. And, for each component M , M.st is intended to satisfy:

– if M.st = invalid then M.Inv may be false. In particular, any modification
on M variables is authorized. Moreover, M has no dynamic owner.

– if M.st = valid then M.Inv is established and M has no dynamic owner.
– if M.st = committed then M.Inv is established and M has a single dynamic

owner.
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More formally, for each component M , variable M.st has to verify the following
meta-invariants:

MI1 M.st �= invalid⇒ M.Inv

MI2 M.st �= invalid∧ (M, N) ∈ owns ⇒ N.st = committed

MI3 M.st = committed∧ (A, M) ∈ owns ∧ (B, M) ∈ owns
∧ A.st �= invalid∧ B.st �= invalid⇒ A = B

The first meta-invariant states that a component invariant can be safely as-
sumed if its status is different from invalid. Meta-invariant MI2 imposes that
when a component invariant is not invalid then components transitively owned
by this component have to be declared as committed. Finally MI3 ensures that
a component has at most one unique dynamic owner.

3.3 Preconditioned Assignment Substitution

In our module language, assignment substitution is preconditioned, but it can
occur outside of the component where the assigned variable is bound (there is a
priori no variable encapsulation). We have:

subst trm prd

N.Var := e N.st = invalid N.st′ = N.st ∧ N.Var′ = e

Meta-invariants MI2 and MI3 are obviously preserved by this substitution, be-
cause status variables remain unchanged. We want to prove that the assignment
substitution preserves the meta-invariant MI1 for any component M , i.e.:

M.st �= invalid ⇒ (N.st = invalid ⇒ [N.Var := e]M.Inv)

There are three cases:
1. if N = M then MI1 holds because hypotheses are contradictory.
2. if (M, N) ∈ owns+ then the two hypotheses N.st = invalid and M.st �=

invalidare also contradictory due toMI2: N.st must be equal to committed.
3. if (M, N) �∈ owns∗ then, due to definition 3, N.Var∩free(M.Inv) = ∅. In this

case M.Inv is obviously preserved by the assignment substitution N.Var := e.

3.4 pack(M) and unpack(M) Substitutions

Substitutions are extended with two new commands pack(M) and unpack(M).
The former requires the establishment of M invariant and the latter allows viola-
tion of M invariant. Status variables can only be modified via these commands.
They can be invoked in M or outside of M . They are formally defined by:
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subst trm prd

pack(M) ∀N.((M,N)∈owns⇒N.st=valid)
∧M.st = invalid
∧M.Inv

∀N.((M,N)∈owns⇒N.st′=committed)
∀N.(M �=N∧ (M,N) �∈ owns ⇒N.st′=N.st)
∧M.st′ = valid
∧M.Var′ = M.Var

unpack(M) M.st = valid ∀N.((M,N)∈owns⇒N.st′=valid)
∀N.(M �=N∧ (M,N) �∈ owns ⇒N.st′=N.st)
∧M.st′ = invalid
∧M.Var′ = M.Var

Control of dynamic ownership appears in these commands. The precondition
of pack(M) imposes that the components statically owned by M have no dy-
namic owners, then pack(M) makes M the dynamic owner of all the components
that it statically owns. Of course, unpack(M) has the reverse effect. Here, let us
note that the precondition of unpack(M) imposes that M has itself no dynamic
owner. In other words, if we want to unpack a component N in order to modify it
through a preconditioned assignment, we are first obliged to unpack its dynamic
owner (and so on recursively). It is easy to prove that meta-invariants MI1,
MI2 and MI3 are preserved by these pack and unpack.

Finally, each substitution S built from preconditioned assignment, pack and
unpack constructors and other standard B substitutions satisfies proposition 1.

Proposition 1 (Meta-invariants preservation)

MI1 ∧ MI2 ∧ MI3 ∧ trm(S) ⇒ [S](MI1 ∧ MI2 ∧ MI3)

3.5 Revisiting Example of Section 2.2

substitution Se condition status modification
incr2 ; M.st = valid
unpack(M) ; M.st = valid M.st := invalid||N.st := valid
incr ; N.st = valid
incr ; N.st = valid

pack(M) ;

⎧⎨
⎩
N.st = valid
∧M.Inv
∧M.st = invalid

M.st := valid||N.st := committed

incr2 ; M.st = valid

In our meta-model, sequence 3 of example section 2.2 can be extended by pack
and unpack substitutions such that if Se denotes the resulting substitution,
then we can prove trm(Se). In the table above, we have represented the proof
obligation generated for trm(Se) by associating each basic step of the sequence
to its precondition and its modification of the environment.

In order to express the B semantics of components M and N of the example
into our meta-model, we impose that (M, N) ∈ owns and that substitutions
of modifying operations defined in a component X are implicitly bracketed by
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unpack(X) and pack(X). Hence, in calls to modifying operations of X , variable
X.st is required to be valid before the call, and is ensured to be valid after
the call. Moreover, we impose that this sequence starts in a state such that
M.st = valid and N.st = committed. This interpretation of the B language is
justified in section 4.

4 Encoding B Operations in This Meta-model

This section proposes to check the consistency of invariants in B architectures,
by embedding B components into our meta-model, and verifying that proofs
obligations of B allow to discharge the proof obligations from the meta-model.

First, we consider that (M, N) ∈ owns if and only if M contains a clause
“includes N ”. Indeed, clause sees can not be included in the ownership relation
defined section 3, because it does not authorize seen variables to be constrained
by the invariant part. So, we consider a relation sees, such that (M, N) ∈ sees if
and only if M contains a clause sees N . Moreover, if (M, N) ∈ sees, there is no
meta-invariant like MI2 ensuring that validity of M invariant implies validity of
N invariant. Indeed, modifying operations of N can be called while M is valid:
this leads to an intermediary state where N is unpacked, but M not. Hence,
below, the status of seen components is managed in preconditions of operations.

At last, we need to label B operations using status variables, according to
implicit conditions of B with respect to component invariants. We distinguish
three cases: the initialization process, operations belonging to component inter-
faces and local operations.

4.1 Initialization Process

In the B method, global initialization is an internal process which sequentializes
local initializations in an order compatible with component dependencies. This
step is analog to the Ada elaboratephase and is tool-dependent: depending on the
architecture, several orders could be possible, resulting in different initial values.
This global process can be described in the following way: let < be a partial order
defined by N < M if and only if (M, N) ∈ owns ∪ sees. From < a total order is
built giving in that an initialization procedure specified in the following way:

pre ∀ N . (N ∈ COMP ⇒ N.st = invalid)
then

U1 ; pack(C1) ;
. . .
Un ; pack(Cn) ;

end

with Ci denoting the component labeled by i in the total order and Ui the initial-
ization substitution of component Ci. COMP represents the set of components
concerned by the global initialization process. We proved that this initialization
procedure terminates, and establishes meta-invariants MI1, MI2 and MI3

(thanks to proposition 1).
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4.2 Interface Operations

In the same way, B operations of a component M can be labeled by status
information. We consider two forms of operations: modifying operations and
read-only operations. Let pre P then S end be the definition of an operation
belonging to interface of M . This operation can be labeled in the following way:

modifying pre P ∧ M.st = valid
case ∧ ∀ N .((M, N) ∈ (owns ∪ sees)+ ⇒ N.st �= invalid)

then unpack(M) ; S ; pack(M) end

read-only pre P ∧ M.st �= invalid
case ∧ ∀ N .((M, N) ∈ (owns ∪ sees)+ ⇒ N.st �= invalid)

then S end

In the modifying case, direct assignments of M variables can occur because
M is unpacked. For read-only operations, status precondition is weakest because
a read-only operation does not contain assignment. Hence, read-only operations
can be called, even if M is committed. Formula ∀ N .((M, N) ∈ (owns∪sees)+ ⇒
N.st �= invalid) preconditions, guarantees that invariants of transitively seen
components are also valid, as said at the beginning of this section.

As before, proof obligations of termination contain proof obligations of B
invariants, corresponding to termination of pack calls. Finally, if S does not
contain explicit pack and unpack substitutions and respects B restrictions (M
variables can be directly assigned, included variables are only assignable through
operation calls and seen variables can not be modified in any way) then all status
conditions are established by construction. In particular, any operation body S
of component M fulfills the following property, for any component N :

Proposition 2 (Status preservation through B operations)

MI1 ∧ MI2 ∧ MI3 ∧ prd(S) ⇒ N.st′ = N.st

4.3 Local Operations

In B, local operations can be introduced at the level of implementation [8]. They
authorize assignment of component variables as well as direct assignments of
included variables2. Local operations can be seen as private operations allowing
to factorize code. They do not have to preserve local invariant. Proof obligations
given in [8] consists in proving the preservation of all invariants of included
components. So, let M be a component which (transitively) includes components
N1, . . . , Nn. A local operation in M , defined by the substitution pre P then S
end, can be labeled3 in the following way:

2 At the level of implementation, inclusion takes the form of an imports clause. Here
we do not distinguish these two mechanisms, as it is done in B for the clause sees.

3 To simplify, we do not take into account seen components.
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pre P ∧ M.st = invalid ∧ N1.st = valid ∧ . . . ∧ Nn.st = valid
then unpack(N1) ; . . . ; unpack(Nn) ;

S ;
pack(N1) ; . . . ; pack(Nn) ;

end

Remark that several other forms of local operations would be possible. For in-
stance, we should define friendly local operations that must be called in a state
where the local invariant holds. Such operations would not require to repeat the
invariant (or some part of it) in the precondition of a local operation, as it is
often necessary. Similarly, developers could choose which variables are assigned
and so which included components needs to be unpacked. This would avoid to
reproved all imported invariants: this may be interesting even if such proofs are
obvious. To introduce such flexibility we now define an extension of B language
allowing to directly manipulate conditions on status variables and substitutions
pack and unpack.

5 A More Flexible Composition Principle

Modifying the previous interpretation of B in our meta-model, this section pro-
poses to extend B with a more flexible invariant composition principle, allowing
to specify more sharing between components and more natural architectures.
Specifications can now directly reference component status variables but only in
precondition or assertion parts. Moreover, specifications can perform unpack and
pack substitutions. By this way, developers can precisely state when invariants
must hold. Now, invariant preservation proof obligation is no more an external
process, but directly integrated into the language. Let pre P then S end be
an operation definition. Now, its proof obligation is:

(MI1 ∧ MI2 ∧ MI3 ∧ P ) ⇒ trm(S)

Such a proof obligation guarantees the consistent use of status variables. More-
over, if S contains some pack substitutions then the termination proof obligation
contains proofs obligations relative to the validity of the expected invariants.

Finally, to obtain a powerful invariant composition principle, we propose a
more flexible initialization process and a smaller notion of ownership than the B
includes relation.

5.1 Initialization and Reinitialization Process

As stated section 4.1, in the B method initialization is a global process. Because
more sharing is now admitted, we make explicit the initialization process in us-
ing operations which establish invariants (on the contrary to interface operations
which preserve invariant). In this way, the developer can specify an initialization
order in a precise way, avoiding uncontrollable non-determinism of B initializa-
tion process. At last, initializations can be invoked in any place, in order to
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reinitialize variables. Let U be the initialization substitution of component M .
Several form of initialization operations are possible:

case 1 pre M.st = invalid then U ; pack(M) end

case 2 pre M.st = invalid ∧ N.st �= invalid
then U ; pack(M) end

case 3 pre M.st = invalid ∧ N.st = invalid
then N.Init ; U ; pack(M) end

Case 1 corresponds to initialization of a stand-alone machine. Case 2 corresponds
to an initialization depending on another initialization, like when M sees N in B.
Case 3 corresponds to an initialization performing another initialization: here,
N.Init denotes an initialization operation of component N . Case 3 implicitly
happens in B when M includes N : in particular, the elaboration of M invariant
involves initial values of N .

5.2 A Smaller owns Relation

Modular invariant composition is based on two orthogonal aspects: on one hand,
it is necessary to control components that constrain shared variables and, on the
other hand, it is also necessary to control assignment of shared variables. In the
Spec# approach, the ownership relation allows to control in which way variables
are constrained and the preconditioned assignment substitution allows to control
when sets of variables can be updated. In B, these two aspects are syntactically
grouped together through the two clauses clauses sees and includes:

read operation modifying operation
variables can be constrained includes includes
variables cannot be constrained sees -

The case uncovered by B corresponds to components that call any operations of
a given component M but do not constrain its variables. In this case, there is no
problem as soon as the shared component is not committed (all other components
with an invariant depending on these variables are invalid). So, we narrow relation
owns to only keep the subrelation corresponding to components whose variables
are effectively strengthened by new invariants. Formally, we now define the owns
relation as the smallest subrelation of includes+ (the transitive closure of the re-
lation induced by includes clauses) respecting the notion of admissible invariant
(def. 3). Such a relation exists and is unique. All results of section 3 apply here.

With this smaller owns relation, we now have more meaningful architectures
than before. Let us compare three approaches. Approach 1 is strict B, based on
static restrictions about architectures. Approach 2 is the approach of section 4,
in which the owns relation is assimilated to the clause includes. At last, ap-
proach 3 corresponds to the smaller definition of owns given above. We consider
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the three architectures given below. In the two first approaches, both kind of ar-
rows represent an includes clause. In approach 3, o-arrows represent an owns
pair, and i-arrows represent a includes pair that is not a owns pair.

In approach 1, all these architectures are rejected. In approach 2, architecture
Nested1 is meaningless, because A1 can be never packed. Indeed, B1 must be
packed before A1, but when B1 is packed, C1 is committed, and A1 can not be
packed. On the contrary, in approach 3, A1 can be packed because C1 is not com-
mitted by B1. Moreover, interface operations of B1 can call interface operations
of C1. In approach 2, architecture Triangle can be used with restrictions: one
of the two components A2 or B2 must be invalid because C2 can be committed
only once. In approach 3, C2 is never committed, thus A2 and B2 can be packed
and can freely call interface operations of C2. Finally, architecture Diamond is
also meaningless in approach 2 (A3 can not be packed). On the contrary, in
approach 3, interface operations of B3 can call interface operations of D3 when
C3 is invalid. In A3, we may thus need to unpack C3 before to call operation of
B3 and then repack C3.

5.3 A Case Study

We present here an example extracted from the Java Card byte-code interpreter
case study developed in the BOM project [FME’03]. A Java card virtual machine
has a four components architecture:

– PgMemory contains the byte-code of the program to run. It performs an
abstraction of the physical memory.

– Installer performs the loading of the byte-code into the memory of the card.
– Interpreter provides operations corresponding to each instruction of the

virtual machine.
– V M is the main component, it provides an operation to install a program

and run it step-by-step, using the operations of Interpreter.

In Java Card, the format of byte-code is required to satisfy well-formness
properties that guarantee safety and security properties of the execution [20]: for
instance, a valid instruction starts by an op-code directly followed by its well-
typed parameters, a method entry point always refers an op-code, etc. These
properties need to be expressed in the different components of our architecture:
– PgMemory: the byte-code stored in memory is well-formed (invariant Imem).
– Installer: the byte-code already loaded is well-formed (invariant Iinst).
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– Interpreter: the program counter always points to a valid instruction (in-
variant Iinterp).

This architecture can not be directly
implemented in B because invariants
Iinst and Iinterp constrain the state of
PgMemory (see the discussion in the
conclusion). On the contrary, in the pro-
posed approach, the diamond architec-
ture on the right is adapted.

V M

Installer Interpreter

PgMemory

i i

o o

In V M , Installer and Interpreter do not need to be valid in the same time:
when one is valid, it dynamically owns PgMemory and the other is invalid. So
the V M main operation performs the ownership transfer of PgMemory in the
following way:

PgMemory.Init ; Installer.Init ; Installer.load ;
unpack(Installer) ;
Interpreter.Init ; Interpreter.exec

6 Conclusion

The approach proposed here allows to express invariants which are only valid
on some portions of programs. Such invariants can also be expressed in B by
predicate of the form co = i ⇒ Ii where co is a variable simulating an “ordinal
counter” and Ii the expected invariant when co = i. Such forms of invariants
are extensively used in B-event development. Nevertheless, this solution is not
modular because variable co can not be updated by several components. For
instance, a B solution for the case study of section 5.3 consists in building an
architecture where Installer includes PgMemory, Interpreter sees PgMemory
and V M includes both Installer and Interpreter. The invariant Iinterp is stated
at the level of component V M , in the form co = interp ⇒ Iinterp. This needs
to add the precondition co = interp to each operation of Interpreter (see [12]
for a general solution). Variable co is assigned by V M , but, each Interpreter
operation-call requires precondition co = interp to be established. As stated in
[4], this solution forces to specify some expected invariants in a top component,
rather than in components where operations concerned by these invariants are
defined. Moreover, invariants of the form co = i ⇒ Ii may be confusing because
such invariants should never be violated, but strongly depend on the control. The
Spec# approach systematizes this solution, by introducing explicitly variables
and statements relative to invariants validity. Hence, the notion of invariant
validity is more explicit, while preserving soundness and modularity of invariant
proofs.

The adaptation of the Spec# approach to B proposed in this paper leads to
very simple proof obligations about status variables, most of them being obvious.
Nevertheless, on the contrary to the B method in which invariant composition
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is a transparent process, the Spec# approach is very permissive making specifi-
cation and proof an hard task. Hence, it is necessary to propose some patterns
having good properties, like the different form of B operations described sec-
tion 4. Moreover, it seems also possible to define a static analysis allowing to
approximate whether status variables are used in a consistent way.

Other approaches have been studied in order to overcome B restrictions and
in particular the single writer constraint. In [4], a rely-guarantee approach has
been proposed in order to support architectures where two components A and B
both need to constrain variables of C and to write into these variables. Basically,
in this approach, the user must express in C what A and B are authorized to
do on variables of C. Hence, both A and B know an abstraction of the other
behavior on C, and can verify that this behavior is compatible with their own
invariants. This approach is thus compatible with refinement (in particular, re-
finements of A and B refine their respective abstraction with respect to C). Our
approach seems suitable for the multiple writers paradigm only when all own-
ership transfers between successive writers are performed via a reinitialization
operation. But, in the other cases, when interface operations of writers are inter-
leaved without reinitialization, then our approach is not modular with respect to
the previous rely-guarantee approach: each ownership transfer requires a proof
that the invariant of the new owner hold. On the contrary, the rely-guarantee
approach of [4] does not authorize some combinations which are permitted by
our approach. Indeed, our approach does not impose that invariants of all writers
hold concurrently for all possible interleavings. Hence, it would be interesting to
study the extension of our approach with rely-guarantee. Some proposals in this
direction have already been studied for Spec# by Naumann and Barnett [7,22].

Finally, the main characteristics of the B method are its notion of component
refinement and the monotonicity property allowing substitution of operation
specifications by their implementations. Technically, refinement in B is based on
invariants [11]: the relations between abstract and concrete data are expressed
in a “gluing” invariant of the refining component. If we want to mix B refinement
with our approach, we have the following problem: when we use some pack(M)
outside of component M , we are obliged to prove that the invariant of M holds,
but also that invariants of all refinements of M hold in order to ensure the
substitutability principle. Let us remark that when pack(M) is used inside an
operation of M , this problem does not occur: the proofs that gluing invariants
hold are done in refining operations. Moreover, unpack(M) may occur outside
of M without problem. Thus, in practice, it seems that refinement is compatible
with our approach when it is restricted such that pack(M) calls occur only in
component M . The case study of section 5 is an example where our approach
accepts an architecture not admitted B, which is still compatible with refinement.
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Abstract. We extend B’s GSL by introducing new operators for an-
gelic choice, thus widening its application from its original domain of
conjunctive computations to that of monotonic ones in general. We ex-
plore the impact of this on our theory of substitutions [6], discovering
two dual new normal forms for our new substitutions which we exploit
to formulate two new first-order tests of refinement between them.

1 Introduction

Angelic choice is much less familiar to most program developers as a program-
ming concept than its demonic counterpart. Nevertheless, it has been directly
enlisted with successful effect in applications as diverse as constraint program-
ming [12], the defining of proof tactics [14], the analysis of simple game plays
[2] and others in [18]. Moreover, angelic nondeterminism has long been recog-
nised by refinement theorists as having an important role in refinement theory
[3,7,8]. A way of conceptualising angelic choice operationally is to recognise that
in general when a user runs a program he is doing so to achieve some purpose
or goal. When program execution encounters a demonic choice the user must
accept that this will be resolved capriciously and quite without regard to his
goal, whereas when an angelic choice is encountered he can intervene to resolve
the choice in whichever way best steers the execution towards the achievement
of his goal. Our aim in this paper is to explore the consequences of extending
the Generalised Substitution Language (GSL) with angelic choice.

After disposing of some preliminaries in Section 2, in Section 3 we initially
develop a theory of angelic substitutions, in which demonic choice is completely
replaced by angelic choice, and show that its properties are dual to those of [6].
Then in Section 4 we formulate our language of “extended” substitutions, in
which demonic choice and angelic choice co-exist. But a serious difficulty arises
here that, unlike in the case of ordinary and angelic substitutions, no obvious
before-after relational characterisation of our extended substitutions presents it-
self for us to utilise in a practicable test of refinement between such substitutions.
Fortunately, in Section 5 we are able to exploit recent work [4,15] on the rela-
tional characterisation of monotonic predicate transformers in terms of binary
multirelations [16] to formulate two alternative multirelational characterisations
of extended substitutions, yielding two interesting dual normal forms for them
and providing us with two alternative versions of our desired refinement test.
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2 A Few Preliminaries

Variables and meta-variables. We will often use a single meta-variable to
signify a list or bunch of basic variables. A bunch is essentially a flattened set,
but –in contrast to set theory– bunch theory [9] makes no distinction between
an element a and the singleton bunch comprised by a. In particular,

– bunch union is denoted by comma, thus u, v denotes the bunch comprising
all the elements of u and of v ;

– bunch difference is denoted by backslash, thus u \ z denotes the bunch com-
prising all the elements of u which are not also in z ;

– the empty bunch is denoted by null;
– we write u : v to signify that u is a subbunch of v , which is to say that every

element of u is an element of v .

Non-freeness. We write x \Q to mean that variable x does not appear free in
predicate Q .

Syntactic substitution. When Q is a predicate, u a variable (or list of vari-
ables) and E an appropriately-typed expression, we write Q〈x/E 〉 to denote the
predicate derived from Q by replacing all its free occurrences of (each component
of) x by (the corresponding component of) E .

Applying substitutions to postconditions. We follow the usual B conven-
tion of denoting the weakest-precondition (wp) predicate-transformer effect of
a substitution S on a postcondition Q by [S ]Q . We adopt the syntactic con-
vention that predicate-transformer application has a higher precedence than the
ordinary logical connectives. Thus [S ]Q ∧ R means ([S ]Q) ∧ R rather than
[S ] (Q ∧ R).

Equality for Substitutions. In this paper we will meet angelic and “extended”
(angelico-demonic) varieties of substitutions as well as conventional (demonic)
ones. In all these cases we consider that two substitutions are the same if and
only if they have the same frame of variables to which they assign values and
the same wp predicate-transformer effect on every postcondition.

3 On the Side of the Angels

It took the genius of Jean-Raymond Abrial to invent generalised substitutions
and thereby give us within the B Method [1] the convenience of expressing oper-
ations in an imperative fashion without forgoing any of the power of abstraction
associated more commonly with the relational style of operation specification
employed in other formal methods like Z [19] and VDM [13]. Associated with
any generalised substitution are the characteristic predicates defined in Table 1,
which in the context of their variable alphabets deriving from the substitution’s
frame can be interpreted as alphabetised relations [11]. Indeed, a generalised
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Table 1. Characteristic predicates of a generalised substitution S with frame s

name syntax definition

termination trm(S) [S ] true

feasibility fis(S) ¬ [S ] false

before-after prd(S) ¬ [S ]s �= s ′

predicate

substitution S with frame s is completely characterised by its characteristic
predicates trm(S ) and prd(S ), as embodied in the “normal form” identity [6,
Prop 4].

S = trm(S ) | @ s ′ . prd(S ) =⇒ s := s ′

Anyone perplexed by meeting for the first time the double negation in the defi-
nition of prd(S ) might reasonably ask why we can’t instead just use [S ]s = s ′,
which for the sake of discussion here we will call S ’s before-after “co-predicate”
and denote by crd(S ). The answer, of course, is that the nondeterminism ex-
pressible by generalised substitutions is demonic, and our co-predicate crd(S )
doesn’t accurately capture useful information about demonically nondetermin-
istic behaviour whereas prd(S ) does. Consider, for example, the substitution
x := 1 [] x := 2. For prd(x := 1 [] x := 2) we obtain the useful predicate
x ′ = 1 ∨ x ′ = 2, whereas for crd(x := 1 [] x := 2) we obtain x ′ = 1 ∧ x ′ = 2
which merely collapses to false.

But now consider a variant of the GSL in which demonic choice has been
replaced by angelic choice, which we will call the Angelic Substitution Language
(ASL). We define its wp semantics in Table 2, in which A and B are typical
angelic substitutions with respective frames a and b , Q a typical postcondition
on the state, u a list of distinct variables and E is a corresponding list of ap-
propriately typed values, w a bunch of variables not necessarily disjoint from a
and z a bunch of variables which must be fresh with respect the state and hence
non-free in Q .

Our ASL is a mirror-image of the GSL with properties which are dual to
the latter’s. Whereas in the GSL we can express all conjunctive computations,
i.e. computations characterised by wp predicate transformers which distribute
through all non-empty conjunctions of postconditions, in our ASL we can express
all disjunctive computations, i.e. computations characterised by wp predicate
transformers which distribute through all non-empty disjunctions of postcondi-
tions. We note that conjunctivity and disjunctivity are special cases of mono-
tonicity, a predicate transformer being monotonic if it preserves the implication
ordering between postconditions [5].
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Table 2. The Angelic Substitution Language (ASL)

substitution name syntax frame [subn]Q

skip skip null Q

assignment u := E u Q〈E/u〉

precondition P |A a P ∧ [A]Q

guard P =⇒ A a P ⇒ [A]Q

frame enlargement Aw a,w [A]Q

bounded angelic choice A 	 B a, b [A]Q ∨ [B ]Q

unbounded angelic choice �� z . A a \ z ∃ z . [A]Q

sequential composition A ; B a, b [A] [B ]Q

3.1 Characteristic Predicates of Angelic Substitutions

The characteristic predicates trm, fis and crd of an angelic substitution are
formally defined in Table 3. We note that trm and fis are defined in the same way
as for generalised substitutions, and we retain the same operational intuitions
about them.

Table 3. Characteristic predicates of an angelic substitution A with frame a

name syntax definition

termination trm(A) [A] true

feasibility fis(A) ¬ [A] false

before-after crd(A) [A]a = a ′

co-predicate

The following proposition highlights some tautologies relating the character-
istic predicates in Table 3:

Proposition 3.1 (Properties of trm, fis and crd)
For any angelic substitution A and postcondition Q the following tautologies
hold:
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fis(A) ∨ crd(A) 3.1.1

crd(A) ⇒ trm(A) 3.1.2

fis(A) ∨ [A]Q 3.1.3

[A]Q ⇒ trm(A) 3.1.4

Proof: Each follows trivially from the monotonicity of A. �

3.2 Normal Form of an Angelic Substitution

In order to establish a normal form for angelic substitutions analagous to that
given in [6, Prop 4] for generalised substitutions, we first need the following dual
of [6, Prop 3]:

Proposition 3.2 (Conjunctivity with a frame-independent conjunct)
Let A be an angelic substitution with frame a and Q and R be predicates on
the state such that a \ R . Then

[A] (Q ∧ R) = [A]Q ∧ (fis(A) ⇒ R)

Proof: By structural induction over the constructs of the ASL in Table 2. �

Because the nondeterminism featuring in the ASL is angelic rather than demonic
the boot is now on the other foot with respect to prd and crd. The ordinary
before-after predicate prd(A) of an angelically nondeterministic substitution A
doesn’t capture any useful information about A’s behaviour whereas the co-
predicate crd(A) does. Consider the angelic substitution x := 1 � x := 2. For
prd(x := 1 � x := 2) we obtain x ′ = 1 ∧ x ′ = 2 which merely collapses to false,
whereas for crd(x := 1 � x := 2) we obtain the useful predicate x ′ = 1 ∨ x ′ = 2.
It turns out that an angelic substitution is completely characterised by its fis
and crd. In fact we have the following interesting dual of [6, Prop 4]:

Proposition 3.3 (Normal form of an angelic substitution)
For any angelic substitution A with frame a

A = fis(A) =⇒ ��a′ . crd(A) | a := a′

Proof: Trivially, the right-hand substitution’s frame is also a. We must also
show that the left-hand and right-hand substitutions have the same wp effect on
an arbitrary postcondition Q . This follows from Props 3.2 and 3.1.3, the defini-
tion of crd(A) and the ASL wp definitions in Table 2. �

3.3 Refinement of Angelic Substitutions

Our fundamental notion of refinement for angelic substitutions is the same as
for ordinary generalised substitutions:
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Definition 1 (Angelic refinement)
For any pair of angelic substitutions A and B with respective frames a and b we
say A is refined by B , written A � B , if and only if B ’s frame encompasses that
of A, and B is always guaranteed to establish any postcondition Q that A is:

A � B =df a : b and for every Q , [A]Q ⇒ [B ]Q

Intuitively, we refine an angelic substitution by increasing its angelic nondeter-
minism and reducing its vestigial drastic demonic nondeterminism by weakening
its termination precondition. Thus, for example, we have that

y < 7 | x := 7 � y < 11 | (x := 7 � skip)

Clearly Definition 1 is impractical if we actually want to check whether one
given angelic substitution refines another, since it entails testing against every
postcondition Q . Fortunately, we have the following proposition which provides
the basis for a more practicable check:

Proposition 3.4 (Angelic refinement in terms of fis and crd)
For any pair of angelic substitutions A and B with respective frames a and b

A � B ⇔ a : b ∧ (fis(B) ⇒ fis(A)) ∧ (crd(Ab) ⇒ crd(B))

Proof: (⇒) follows from Definition 1 and the definitions of fis and crd, while
(⇐) follows from Prop 3.3 and the ASL wp definitions in Table 2. �

3.4 Conjugacy and Determinism

Every generalised substitution has a corresponding angelic substitution known
as its conjugate, and conversely. If T is a generalised or angelic substitution with
frame t we denote its conjugate by T o and define it by

frame(T o) = t and [T o ]Q = ¬ [T ]¬ Q

It has the property that T o o = T . For a generalised substitution S with frame
s we have

So = trm(S ) =⇒ �� s ′ . prd(S ) | s := s ′

Conversely, for an angelic substitution A with frame a we have

Ao = fis(A) | @ a′ . crd(A) =⇒ a := a′

The GSL and ASL overlap, since a substitution may be both conjunctive and
disjunctive, which will be the case as long as it involves no non-trivial choices. We
call a substitution which is both conjunctive and disjunctive quasi-deterministic
because it behaves deterministically from states within its termination precon-
dition (trm) and feasibility guard (fis). Moreover, such a substitution may be
its own conjugate, in which case it is properly deterministic. Equivalently, a
substitution T is deterministic exactly if prd(T ) = crd(T ).
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4 The Cosmic Struggle

We have seen that our angelic substitutions enjoy a range of interesting proper-
ties dual to those enjoyed by ordinary generalised substitutions [1,6]. Of course,
in our ASL we have had to sacrifice the ability to express demonically nonde-
terministic behaviour with any real finesse, since all we have there to express
demonic behaviour is the blunt instrument of preconditioning. Yet it is often
important to be able to express both demonic and angelic nondeterminism with
similar degrees of finesse in the same computation [2]. This motivates us to rein-
state the GSL’s original demonic choice operators alongside the angelic ones of
our ASL, and so to obtain a new language which subsumes both the GSL and
the ASL within it. We call this the Extended Substitution Language (ESL). Its
syntax and wp semantics are given in Table 4, where M and N represent typical
extended substitutions with respective frames m and n. Notice that in our ESL
we have replaced the GSL’s original symbol [] for bounded demonic choice by
the symbol � commonly used in other formalisms such as CSP [10,17], in order
to emphasize its duality with bounded angelic choice � .1

Extended substitutions express monotonic computations, i.e. computations
characterised by monotonic wp predicate transformers. The interrelationship
between our three substitution languages is illustrated in Figure 1.

4.1 Riding for a Fall?

The characteristic predicates trm and fis are defined for extended substitutions
in the same way as for generalised substitutions and angelic substitutions, and
we retain the same operational intuitions about them. Unfortunately, though,
neither the before-after predicate prd nor co-predicate crd which we have already
encountered adequately captures the behaviour of a monotonic computation.
For example, let M be (x := 1 � x := 2) � x := 3 We find that prd(M ) is
false while crd(M ) is x ′ = 3, which even together fail to capture fully the actual
behaviour of M . So we have as yet no obvious relational characterisation of
extended substitutions like the trm-prd one for generalised substitutions or the
fis-crd one for angelic substitutions.

This is a potentially devastating deficiency in our theory of extended sub-
stitutions, since without an adequate relational characterisation of extended
substitutions we are unable to formulate an effective first-order test of refine-
ment which generalises those with which [6, Prop 7] and Proposition 3.4 pro-
vide us respectively for generalised and angelic substitutions. Fortunately, a
binary-multirelational representation of monotonic computations has recently
emerged which we can utilise to redeem our theory, as we explain in the next
section.

1 The symbols � and 	 are of course borrowed from Lattice Theory [2]. Our use of
them here in our ESL is justified since it transpires our bounded demonic and angelic
choices are respectively the binary meet and join operators of the refinement lattice
of ESL programs.
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Table 4. The Extended Substitution Language (ESL)

substitution name syntax frame [subn]Q

skip skip null Q

assignment u := E u Q〈E/u〉

precondition P |M m P ∧ [M ]Q

guard P =⇒ M m P ⇒ [M ]Q

frame enlargement Mw m,w [M ]Q

bounded demonic choice M � N m,n [M ]Q ∧ [N ]Q

unbounded demonic choice @ z . M m \ z ∀ z . [M ]Q

bounded angelic choice M 	 N m,n [M ]Q ∨ [N ]Q

unbounded angelic choice �� z . M m \ z ∃ z . [M ]Q

sequential composition M ; N m,n [M ] [N ]Q

5 Paradise Regained

Rewitsky [16] formulates a relational representation, further explored in [15],
of monotonic computations based on what are called binary multirelations. Re-
witsky’s representation has also subsequently been adapted by Cavalcanti et al
[4] into an alphabetised predicative form favoured for incorporation into the
Unifying Theories of Programming (UTP) [11].

5.1 Up-Closed Binary Multirelations

A binary multirelation R from a set X to a set Y is a relation of the form
X ↔ P(Y ). It is said to be up-closed if it has the property that for all elements
x of X and subsets U ,V of Y

x �→ U ∈ R ∧ U ⊆ V ⇒ x �→ V ∈ R

In Rewitzky’s interpretation such an up-closed R represents a heterogeneous
monotonic computation starting in X and finishing (if at all) in Y , in the fol-
lowing way. First, from the starting state x the angel chooses any set U from
among all those sets of final states related to x under R. The demon then con-
cludes the computation by choosing an actual final state y from the set U which
the angel has chosen. Two special cases arise which deserve comment. First, the
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Fig. 1. The hierarchy of substitution languages

starting state x may be outside the domain of R so that there is no available
set U whatsoever for the angel to choose. Such a frustration of the angel repre-
sents a win for the demon, the computation being taken in this case as having
aborted (diverged). Second, if x �→ ∅ ∈ R the empty subset is available for the
angel to choose, which will utterly frustrate the demon since he then has no
potential states from which to choose an actual final state. This represents a
win for the angel, the computation being taken in this case as having succeeded
miraculously.

It is shown in [16] that this binary multirelation representation of monotonic
computations is complete in the sense that there is an isomorphism between
monotonic predicate transformers and up-closed binary multirelations, so every
computation characterised by a monotonic wp predicate transformer is repre-
sented by an up-closed binary multirelation of appropriate type, while every
up-closed binary multirelation represents a monotonic computation. In partic-
ular, the interpretation of the following two extreme binary multirelations is
interesting:

– the empty relation represents the everywhere-aborting computation abort,
since the angel is everywhere frustrated;

– the maximal relation X × P(Y ) represents the everywhere-miraculous com-
putation magic, since from every starting state the angel can choose the
empty set of final states to frustrate the demon.

5.2 An Alternative Interpretation

Rewitzky’s interpretation of the up-closed binary multirelation R : X ↔ P(Y )
as a monotonic computation from X to Y is not the only one possible. We can
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alternatively interpret R by reversing the order of choices of the angel and the
demon, so that now from the starting state x the demon first chooses any set
U from among all those sets of final states related to x under R, the angel then
concluding the computation by choosing an actual final state y from the set U
which the demon has chosen. Once again, the interpretation of the following two
extreme binary multirelations is interesting:

– the empty relation now represents the everywhere-miraculous computation
magic, since the demon is everywhere frustrated;

– the maximal relation X × P(Y ) now represents the everywhere-aborting
computation abort, since from every starting state the demon can choose
the empty set of final states to frustrate the angel.

This second interpretation is adopted in [4] since it fits more readily into the
existing UTP framework where refinement is customarily modelled by reverse
implication, so we will therefore call it the Cavalcanti interpretation. In lattice-
theoretic terms it is the dual or conjugate of the Rewitzky interpretation.

5.3 Alphabetising a Binary Multirelation

Let x be a variable which ranges over values in X , and let u be a variable which
ranges over P(Y ), which is to say u denotes sets of values in Y , and let P be
a predicate over alphabet x , u. Then P characterises a binary multirelation R
such that R ∈ X ↔ P(Y ) where R =df {x , u | x ∈ X ∧ u ⊆ Y ∧ P} .

5.4 Characteristic Predicates of an Extended Substitution

Let M be an extended substitution with frame m, and let u be fresh with
respect to the alphabet of M . Then we define the (before-after) power predicate
of M , denoted pod(M ), as ¬ [M ]m /∈ u. It is in fact the predicate of the
alphabetised form of the binary multirelation whose Cavalcanti interpretation is
the monotonic computation which M expresses. Intuitively, therefore, pod(M )
relates individual starting states to various sets of final states, one of which the
angel must choose to offer the demon, from which he in turn chooses the actual
final state.

Similarly, we define the (before-after) power co-predicate of M , denoted cod(M ),
as [M ]m ∈ u. This is the predicate of the alphabetised form of the binary mul-
tirelation whose Rewitzky interpretation is the monotonic computation which M
expresses.Note that the monotonicity ofM ensures that both pod(M ) and cod(M )
are up-closed. We also note the duality implicit in the fact that cod(M ) =
pod(M o). Intuitively, therefore, cod(M ) relates individual starting states to vari-
ous sets of final states, one of which the demon must choose to offer the angel, from
which she in turn chooses the actual final state.

In contemplating the predicates pod(M ) and cod(M ) we must be careful to
appreciate the type of the variable u which appears in them. This denotes sets of
final states of M . This state space may itself be characterised by several variables,
so in general u will denote a set of bindings of these variables, corresponding,
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for example, to a set of bindings of the appropriate schema type in Z [19].
Alternatively, by assuming an implicit universal lexical ordering on our variable
names, we can represent these sets of values simply as sets of tuples.

We summarise all the characteristic predicates of an extended substitution in
Table 5. Note that fis(M ) and trm(M ) can be derived from pod(M ), since

fis(M ) = ∃ u . pod(M ) and trm(M ) = ¬ pod(M )〈∅/u〉
Dually, they can also be derived from cod(M ), since

trm(M ) = ∃ u . cod(M ) and fis(M ) = ¬ cod(M )〈∅/u〉

Table 5. Characteristic predicates of an extended substitution M with frame m

name syntax definition

termination trm(M ) [M ] true

feasibility fis(M ) ¬ [M ] false

before-after pod(M ) ¬ [M ]m /∈ u
power predicate

before-after cod(M ) [M ]m ∈ u
power co-predicate

5.5 Two Normal Forms of an Extended Substitution

The following two propositions give us alternative normal forms for an extended
substitution:

Proposition 5.3 (Demonic normal form of an extended substitution)
For any extended substitution M with frame m

M = @ u . pod(M ) =⇒ �� m ′ . m ′ ∈ u | m := m ′

Proof: Trivially, the right-hand substitution has the same frame m as the left-
hand one M . We also have to prove that the application of the right-hand sub-
stitution to an arbitrary postcondition Q gives [M ]Q , i.e.

[ @ u . pod(M ) =⇒ �� m ′ . m ′ ∈ u | m := m ′ ]Q ⇔ [M ]Q

Proof (⇒)

[ @ u . pod(M ) =⇒ �� m ′ . m ′ ∈ u | m := m ′ ]Q
≡ { ESL semantics from Table 4 }

∀ u . pod(M ) ⇒ ∃m ′ . m ′ ∈ u ∧ Q〈m ′/m〉
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≡ { defn of pod(M ) }
∀ u . ¬ [M ]m /∈ u ⇒ ∃m ′ . m ′ ∈ u ∧ Q〈m ′/m〉

≡ { logic }
∀ u . [M ]m /∈ u ∨ ∃m ′ . m ′ ∈ u ∧ Q〈m ′/m〉

≡〉 { specialise u as {m | ¬ Q} }
[M ]m /∈ {m | ¬ Q} ∨ ∃m ′ . m ′ ∈ {m | ¬ Q} ∧ Q〈m ′/m〉

≡ { set theory }
[M ]Q ∨ ∃m ′ . m ′ ∈ {m | ¬ Q} ∧ Q〈m ′/m〉

≡ { change name of bound variable }
[M ]Q ∨ ∃m . m ∈ {m | ¬ Q} ∧ Q

≡ { set theory }
[M ]Q ∨ ∃m . ¬ Q ∧ Q

≡ { logic }
[M ]Q ∨ ∃m . false

≡ { logic }
[M ]Q

Proof (⇐):

true
≡ { monotonicity of M }

(∀m . Q ⇒ m /∈ u) ⇒ [M ]Q ⇒ [M ]m /∈ u
≡ { logic }

[M ]Q ⇒ (∀m . Q ⇒ m /∈ u) ⇒ [M ]m /∈ u
≡ { logic }

[M ]Q ⇒ ¬ [M ]m /∈ u ⇒ ¬ (∀m . Q ⇒ m /∈ u)
≡ { logic }

[M ]Q ⇒ ¬ [M ]m /∈ u ⇒ (∃m . m ∈ u ∧ Q)
≡ { make quantification over u explicit }

∀ u . [M ]Q ⇒ ¬ [M ]m /∈ u ⇒ (∃m . m ∈ u ∧ Q)
≡ { u \ [M ]Q }

[M ]Q ⇒ ∀ u . ¬ [M ]m /∈ u ⇒ (∃m . m ∈ u ∧ Q)
≡ { change name of bound variable }

[M ]Q ⇒ ∀ u . ¬ [M ]m /∈ u ⇒ (∃m ′ . m ′ ∈ u ∧ Q〈m ′/m〉)
≡ { defn of pod(M ) }

[M ]Q ⇒ ∀ u . pod(M ) ⇒ (∃m ′ . m ′ ∈ u ∧ Q〈m ′/m〉)
≡ { ESL semantics from Table 4 }

[M ]Q ⇒ [ @ u . pod(M ) =⇒ �� m ′ . m ′ ∈ u | m := m ′ ]Q
�
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Proposition 5.4 (Angelic normal form of an extended substitution)
For any extended substitution M with frame m

M = �� u . cod(M ) | @ m ′ . m ′ ∈ u =⇒ m := m ′

Proof: Dual of Prop 5.3 . �

5.6 Refinement of Extended Substitutions

Our fundamental notion of refinement for extended substitutions is the same as
for ordinary generalised substitutions and angelic substitutions:

Definition 2 (Refinement for extended substitutions)
For any pair of extended substitutions M and N with respective frames m and n
we say M is refined by N , written M � N , if and only if N ’s frame encompasses
that of M , and N is always guaranteed to establish any postcondition Q that
M is:

M � N =df m : n and for every Q , [M ]Q ⇒ [N ]Q

Like Definition 1 for angelic substitutions, Definition 2 is impractical if we actu-
ally want to check whether one given extended substitution refines another, since
it entails testing against every postcondition Q . Fortunately, we can use either
of our new characteristic predicates pod or cod as the basis of a more practicable
first-order test of refinement, as revealed in the following two propositions:

Proposition 5.5 (Refinement by pod)
For extended substitutions M and N with respective frames m and n:

M � N ⇔ m : n ∧ (pod(N ) ⇒ pod(Mn))

Proof: Follows from the demonic normal forms of Mn and N , and up-closedness
of pod. �

Proposition 5.6 (Refinement by cod)
For extended substitutions M and N with respective frames m and n:

M � N ⇔ m : n ∧ (cod(Mn) ⇒ cod(N ))

Proof: Follows from the angelic normal forms of Mn and N , and up-closedness
of cod. �

5.7 An Example Refinement

We will illustrate the use of Prop 5.6 with a small example. Let

M = (x := 0 � x := 1 � skip) � (x := 1 � x := 2)

N = (x := 2 � skip) � x := 1

In this case M and N have the same frame x so Mn = M . We will demonstrate
that M � N by proving that cod(M ) ⇒ cod(N ). We therefore calculate
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cod(M ) = [M ]x ∈ u
= [(x := 0 � x := 1 � skip) � (x := 1 � x := 2]x ∈ u
= [x := 0 � x := 1 � skip]x ∈ u ∨ [ x := 1 � x := 2]x ∈ u
= (0 ∈ u ∧ 1 ∈ u ∧ x ∈ u ) ∨ (1 ∈ u ∧ 2 ∈ u )
= 1 ∈ u ∧ ((0 ∈ u ∧ x ∈ u) ∨ 2 ∈ u )
= 1 ∈ u ∧ (0 ∈ u ∨ 2 ∈ u) ∧ (x ∈ u ∨ 2 ∈ u) (1)

cod(N ) = [N ]x ∈ u
= [(x := 2 � skip) � x := 1]x ∈ u
= [ x := 2 � skip ]x ∈ u ∧ [x := 1]x ∈ u
= (2 ∈ u ∨ x ∈ u) ∧ 1 ∈ u (2)

whence it is clear that (1) ⇒ (2). �

6 Conclusion

We have developed a theory of extended (angelico-demonic) substitutions, the
main fruits of which are our two dual normal forms with their corresponding
simple refinement test for pairs of such substitutions, based respectively on our
new dual notions of power predicate, pod, and power co-predicate, cod. We have
seen how Abrial’s original conception of generalised substitutions, intended for
expressing only conjunctive computations, has proved surprisingly well adaptable
to the wider realm of monotonic computations.
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Abstract. CSP‖B is an integration of the process algebra Communi-
cating Sequential Processes (CSP), and the B-Method, which enables
consistent controllers to be written for B machines in a verifiable way.
Controllers are consistent if they call operations only when they are
enabled. Previous work has established a way of verifying consistency
between controllers and machines by translating control flow to AMN
and showing that a control loop invariant is preserved. This paper of-
fers an alternative approach, which allows fragments of control flow ex-
pressed as annotations to be associated with machine operations. This
enables designers’ understanding about local relationships between suc-
cessive operations to be captured at the point the operations are written,
and used later when the controller is developed. Annotations provide a
bridge between controllers and machines, expressing the relevant aspects
of control flow so that controllers can be verified simply by reference to
the annotations without the need to consider the details of the machine
operations. This paper presents the approach through two instances of
annotations with their associated control languages, covering recursion,
prefixing, choice, and interrupt.

1 Introduction

The design and implementation of critical systems benefits from development in
a formal method such as the B-Method, which models systems in terms of state
and operations. However, this approach does not support specifications of exe-
cution patterns directly, and so approaches such as Event-B [6] and CSP‖B [8]
have been proposed to incorporate action specification with B. This paper de-
velops the CSP‖B approach, which offers a clean separation of control from data
manipulation. The developments presented here fall within the scope of AWE’s
System-B project, which involves collaborative research into the use of CSP‖B
to specify co-designs [5] and to formally investigate systems designs of large scale
developments.

One motivation for the work is a desire to enable Engineers to describe many
aspects of design within a single notation. We introduce control annotations
into the B-Method to enable the formal capture of control flow fragments in
B during the development of the B machines. We generate proof obligations to
demonstrate that the set of executions allowable by the annotations do not cause
operations to diverge. The benefit of this approach is that only the semantics
of the machine operations is required in checking the annotations, and these
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checks are similar in size and difficulty to standard B machine consistency checks.
Annotations can be checked against controllers written in CSP, which describe
the flow of control explicitly. There is no need to check the CSP directly against
the full B description, in contrast to previous CSP‖B work where it was necessary
to translate the entire CSP controller into AMN in order to check it. Once the
annotations are shown to be correct with respect to the B machine we can
evaluate controllers against the annotations without further reference to the
machine. Machines can be refined and implemented in the normal way while
remaining consistent with the controller.

This paper describes the extendable framework for introducing annotations
and controllers and presents two exemplars. This paper is not concerned with
I/O operations. In Section 2, we briefly introduce the approach. In Section 3
we demonstrate the framework by using a simple language for controllers, the
next annotation for B operations, and define the notion of consistency between
them. Section 4 presents a worked example of a simple traffic control system. In
Section 5 we introduce an interrupting annotation from-any, add the CSP in-
terrupt operator to the controller language, and extend the notion of consistency.
We develop the worked example in Section 6 to illustrate the new annotation
and its use. Finally in Section 7 we discuss further directions and related work.

We assume the reader is familiar with the Abstract Machine Notation of the
B-Method [1]. We restrict our attention in this paper to correct B machines:
those for which all proof obligations have already been discharged. We use I to
refer to the invariant of the machine, T to refer to the machine’s initialisation,
Pi to refer to the precondition of operation Opi , and Bi to refer to the body of
operation Opi .

Controllers will be written in a simple subset of the CSP process algebraic
language [4,7]. The language will be explained as it is introduced. Controllers
are considered as processes performing events, which correspond to operations
in the controlled B machine. Thus operation names will appear in the controller
descriptions as well as the B machine definitions.

2 The General Framework

The approach proposed in this paper introduces annotations on B operations as a
mechanism for bridging the gap between B machines and CSP controllers, whilst
maintaining the separation of concerns. The approach consists of the following
components:

– Machine definition: The controlled component must first be defined.
– Annotations: The initialisation and the operations in the machine defini-

tion are annotated with fragments of control flow.
– Annotation proof obligations: Verification conditions that establish con-

sistency of the annotations with the controlled machine. This means that the
fragments of control flow captured by the annotations really are appropriate
for the machine.
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Machine

Annotations

Controller

New AMN proof obligations

Consistency Checks

Fig. 1. Relationship between the different parts of the approach

– Controller: This is a process that describes the overall flow of control for
the B machine.

– Consistency checking: Establishing that the controller is consistent with
the annotations—that every part of the control flow is supported by some
annotation.

Checking a CSP controller against a machine is thus reduced to checking it
against the annotations and verifying that the annotations are appropriate for
the machine. The relationship between the different parts of the approach is
illustrated in Figure 1.

The framework presented here is quite general, in that it may be applied
to a variety of annotations and control languages. The first step to be taken
is therefore to fix on the control language and the associated annotations to
be incorporated into the AMN machine descriptions. The key result that these
build up to is expressed in Theorem 1, though the underlying theory will not be
expanded in this paper for reasons of space.

3 A First Approach

We will demonstrate the approach firstly with a simple model to illustrate how
the aspects of the approach interrelate. The first kind of annotation we consider
is the next annotation, and we use an extremely simple controller language
consisting only of prefixing, choice, and recursion. These go naturally together
because the next annotation is concerned with successive operations, and the
controller language allows simple loops of sequences of operations.

3.1 The next Annotation

We annotate an operation of a B machine with a next annotation. Currently, we
introduce this as a comment included with the description of the operation, so
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that it is invisible to current tools. However, in principle tools could be modified
to recognise an additional ANNOTATION clause to introduce the additional
information into operation descriptions.

A next annotation on an operation Opi introduces another operation Opj , or
set of operations Opj , . . . ,Opk , which should be enabled after Opi is executed.

The next annotation is written as follows:

Opi =̂ PRE Pi THEN Bi END /* { Opj , . . . ,Opk } NEXT */

3.2 Annotation Proof Obligations

The annotation corresponds to the assertion that, following the execution of Opi ,
operations Opj through to Opk are available for execution. This gives rise to the
following proof obligation, which requires that the precondition of each of the
listed operations is enabled:

Definition 1 (next Proof Obligation for Operations). The proof obliga-
tion associated with a next annotated operation Opi is given as:

(I ∧ Pi ⇒ [Bi ](Pj ))
∧ ...

∧ (I ∧ Pi ⇒ [Bi ](Pk ))

If the conjunction of proof obligations for all the annotations are discharged then
we say that the annotations are consistent with the machine. This ensures that
any controller which only calls operations that are listed, following execution of
Opi , can be sure that those operations will be enabled.

Definition 2 (next Proof Obligation for Initialisation). The proof obli-
gation associated with the annotation

T/ ∗ {Opj , . . . ,Opk}NEXT ∗ /

on initialisationT is given by

[T ](Pj )
∧ . . .

∧ [T ](Pk )

This establishes that all of the listed operations are enabled following initial-
isation. Thus, any controller which only begins with such operations will be
consistent with the annotations.

We will use next(Opi) to identify the set of operations given in the next annota-
tion. Thus from the annotation above we have that next(Opi) = {Opj , . . . ,Opk}.
We also use next(INITIALISATION ) to identify the set of operations in the an-
notation of the initialisation clause. To ensure that there is no deadlock in the
system, it is sufficient that every operation, and the initialisation, has a next
annotation.
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3.3 A Simple Controller Language

We will begin with the following simple controller language, which allows only
event prefix, choice, and recursion:

Definition 3 (Controller Syntax)

R ::= a → R | R � R | S
Here, the event a is an operation name, and S is a process variable. Recursive
definitions are then given as S =̂ R. In a controller definition, all process variables
used are bound by some recursive definition. The results presented in this paper
require that all recursive definitions are guarded, which means that at least one
event must occur before a recursive call.

3.4 Consistency

We can now give a definition of consistency between a controller and the an-
notations on a B machine. The key underlying idea is that whenever one event
Opj follows another Opi in the controller’s execution, then there must be an
annotation that underpins this, ensuring that the associated operation Opj is
guaranteed to be enabled after Opi has occurred.

To do this, we first capture the initial events init(R) for a controller R:

Definition 4 (initial elements of CSP controller process)

init(a → R1) = {a}
init(R1 � R2) = init(R1) ∪ init(R2)

init(S ) = init(R) where S =̂ R

Note that in a controller definition the process variable S must be bound by
some recursive definition S =̂ R, and this defines init(S ).

For example, if LOOP =̂ a → b → LOOP , then init(LOOP) = a.
A controller will be step-consistent with a collection of annotations if all con-

secutive events are allowed by the occurrence of some annotation. In the case
where the only kind of annotation is next, it is straightforward to define step-
consistency, and we do this over the structure of the syntax.

Definition 5 (Step-consistency of next Annotated Machines and Con-
trollers). The step-consistency of a controller R with the annotations of ma-
chine M is defined structurally over the syntax of R as follows:

1. a → R is step-consistent with M ’s annotations if init(R) ⊆ next(a) and R
is step-consistent with M ’s annotations.

2. R1 � R2 is step-consistent with M ’s annotations if R1 is step-consistent
with M ’s annotations and R2 is step-consistent with M ’s annotations.

3. S is step-consistent with M ’s annotations.

A family of recursive definitions S =̂ R is step-consistent with M ’s annotations
if each R is step-consistent with M ’s annotations.
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There is one additional aspect of consistency required: that the initial state of the
machine is consistent with the starting point of the controller. This is captured
as initial-consistency:

Definition 6 (Initial-Consistency of next Annotated Machines and
Controllers). A controller R is initially-consistent with the annotations of ma-
chine M if init(R) ⊆ next(INITIALISATION ).

Definition 7 (Consistency). A controller R is consistent with the annota-
tions of machine M if it is step-consistent with M ’s annotations and initially-
consistent with M ’s annotations.

The main result of this section is the following theorem:

Theorem 1. If R is consistent with the annotations of a machine M , and the
annotations of M are consistent with machine M , then operations of M called
in accordance with the control flow of R will never be called outside their pre-
conditions.

The key feature of the proof of this theorem is an argument that no trace of R
leads to an operation of M called outside its precondition. This is established
by building up the traces of R and showing that at each step an operation
called outside its precondition cannot be introduced, by appealing to the relevant
annotation and applying its proof obligation.

The benefit of this theorem is that the details of the operations of M are
required only for checking the consistency of the annotations, and are not con-
sidered directly in conjunction with the controller. The annotations are then
checked against the controller using the definition of consistency above. This
enables a separation of concerns, treating the annotations as an abstraction of
the B machine.

4 Example: Carcassonne Traffic Control System

We use the example of a traffic light system to illustrate the ideas introduced in
the previous section.

A traffic control system for the main street of the walled Cité of Carcassonne
is specified. The main street is narrow and is heavily used by tourists and some
motor vehicles brave enough to edge through the alley. The system must allow
traffic up into the cité market square from the moat or down from the square
to the moat gate along the same single width road. The system must allow time
for motor vehicles to clear the road before changing direction. A B machine that
offers a choice between the traffic flows is given in Figure 2. A controller consis-
tent with the annotations is given in Figure 3. We note that the controller given
here is more restrictive than necessary; it is not the weakest controller consistent
with the annotations.

In order to show that Lights CTRL is an appropriate controller for Lights , we
make use of the annotations. We must show that the annotations are consistent
with the machine, and we must also show that the controller is consistent with
the annotations. We consider each of these in turn.
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MACHINE Lights
SETS COMMAND = { Stop , Go }
VARIABLES Moat , Square
INVARIANT (Moat = Stop ∨ Square = Stop)

∧ Moat ∈ COMMAND ∧ Square ∈ COMMAND
INITIALISATION Moat , Square := Stop , Stop /* { Stop All } NEXT */

OPERATIONS
Stop All =̂ PRE true THEN Moat , Square := Stop, Stop END

/* { Go Moat, Go Square } NEXT */ ;
Go Moat =̂ PRE Moat = Stop ∧ Square = Stop THEN Moat := Go END

/* { Stop All, Stop Moat } NEXT */ ;
Stop Moat =̂ PRE Moat = Go THEN Moat := Stop END

/* { Go Moat, Go Square } NEXT */ ;
Go Square =̂ PRE Moat = Stop ∧ Square = Stop THEN Square := Go END

/* { Stop All, Stop Square } NEXT */ ;
Stop Square =̂ PRE Square = Go THEN Square := Stop END

/* { Go Moat, Go Square } NEXT */
END

Fig. 2. Lights machine

Lights CTRL =̂ Stop All → S CTRL

S CTRL =̂ (Go Moat → Stop Moat → S CTRL)

� (Go Square → Stop Square → S CTRL)

Fig. 3. Lights Controller

4.1 Consistency of Annotations with the Machine

The proof obligations associated with the annotations (eliding the invariant) are
as follows:

– Initialisation: The initialisation clause must establish the precondition of
all the operations identified in its annotation; in this case this is Stop All ,
with precondition true. From Definition 2, we must prove

[Moat ,Square := Stop,Stop](true).

– Stop All: There are two next operations, Go Moat and Go Square, and so
there will be a proof obligation associated with each of them. In fact each
of them have the same precondition: Moat = Stop ∧ Square = Stop. Hence
the two proof obligations are identical, and correspond to

I ∧ PStop All ⇒ [Moat ,Square := Stop,Stop](Moat = Stop ∧ Square = Stop).

– Go Moat: There are two next operations, Stop All and Stop Moat , iden-
tified in the annotation. For Stop All , the precondition is true, so the proof
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obligation is I ∧ PGo Moat ⇒ [Moat := Go](true). Considering Stop Moat ,
its precondition is Moat = Go, so the corresponding proof obligation is

I ∧ PGo Moat ⇒ [Moat := Go](Moat = Go).

– Go Square: The annotation and hence the proof obligations for this oper-
ation are entirely similar to those for Go Moat , but assigning to Square this
time.

– Stop Moat: There are two next operations, Go Moat and Go Square, so
there will be a proof obligation associatedwith each. The proof obligation asso-
ciated with Go Moat is given by I ∧ PStop Moat ⇒ [BStop Moat ](PGo Moat),
which expands to

(Moat = Stop ∨ Square = Stop) ∧ (Moat = Go)
⇒ [Moat := Stop](Moat = Stop ∧ Square = Stop)

The proof obligation associated with Go Square is entirely similar, since the
precondition for Go Square is the same as that of Go Moat .

– Stop Square: The annotation and hence the proof obligations for this op-
eration are entirely similar to that for Stop Moat .

In all cases the proof obligations are discharged. Note that in the case of
Stop Moat the invariant and its precondition are necessary for establishing that
the operation body establishes the precondition of the next operations.

Discharging the proof obligations means that the annotations are a correct
description of allowable sequences of operations. Thus they can be used to verify
the appropriateness of the controller.

4.2 Consistency of the Controller with the Annotations

To show that the controller Lights CTRL is consistent with Lights we apply
the definitions of step-consistent and initially-consistent. Let R CTRL be the
body of the definition of S CTRL. Then it is necessary to show that R CTRL
is step-consistent with the annotations of the Lights machine.

Step-consistency is established by considering the parts of the definition of
R CTRL:

– The process variable S CTRL is step-consistent, by the definition of step-
consistency for process variables.

– Stop All → S CTRL: the prefix rule for step-consistency from Definition 5
requires that init(S CTRL) ⊆ next(Stop All). This is true in this case, since
the process variable S CTRL is step-consistent and

init(S CTRL) = {Go Moat ,Go Square} = next(Stop All).

– Stop Moat → S CTRL: this is step-consistent, since the process variable
S CTRL is step-consistent and

init(S CTRL) = {Go Moat ,Go Square} = next(Stop Moat).
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– Go Moat → Stop Moat → S CTRL: step-consistency follows from the fact
that Stop Moat → S CTRL is step-consistent, and

init(Stop Moat → S CTRL) = {Stop Moat}
⊆ {Stop Moat ,Stop All}
= next(Go Moat).

– Stop Square → S CTRL: this is step-consistent, since the process variable
S CTRL is step-consistent, and

init(S CTRL) = {Go Moat ,Go Square} = next(Go Square).

– Go Square → Stop Square → S CTRL: step-consistency follows from the
fact that the process Stop Square → S CTRL is step-consistent, and

init(Stop Square → S CTRL) = {Stop Square}
⊆ {Stop Square,Stop All}
= next(Go Square).

– Go Moat →Stop Moat →S CTRL�Go Square→Stop Square→S CTRL:
this is step-consistent, due to the step-consistency of both sides of the choice.

Initial-consistency follows from the fact that

next(INITIALISATION ) = init(Lights CTRL).

Thus, S CTRL is consistent with the annotations of the machine Lights , and so
the controller is appropriate for the machine.

5 Introducing from-any Annotations and Interrupts

Section 2 introduced the key components of the annotation approach that pro-
vide a framework for developing controlled systems. In general there will be a
variety of annotations that we will want to make use of, and a richer language
for controllers. These will have an impact on the consistency relationship, and
on the underlying proofs which will need to be adapted to accommodate the
changes.

In this section we will extend the controller language to include interrupts,
which are commonly used to introduce interruptions in the control flow between
one operation and the next. A further annotation will be introduced to accom-
pany this extension to the controller language, and we will see the impact on the
notion of consistency.

5.1 The from-any Annotation

The introduction of interrupts in the control language gives rise to another an-
notation, the from-any annotation.
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The from-any annotation is written /* from-any */. This annotation is
added to an operation which can follow any previous operation (including itself),
and can also follow initialisation. It will naturally be used on an operation which
follows an interrupt, since such an operation might follow any previous operation,
allowing for the fact that the operation might happen anywhere.

Its use in an arbitrary operation Opi is given as follows:

Opi =̂ PRE Pi THEN Bi END /* FROM-ANY */ ;

5.2 Annotation Proof Obligation

The annotation corresponds to the claim that after the execution of any oper-
ation, Opi will always be available to execute. The annotation gives rise to the
following proof obligation: that the precondition Pi of Opi is enabled after any
precondition, and also that it is enabled after initialisation:

Definition 8 (from-any Proof Obligations). The proof obligation associ-
ated with a from-any annotated operation Opi is given as:

∀ op ∈ OPERATIONS • Pop ∧ I ⇒ [Bop ]Pi ∧
[T ]Pi

where T is the initialisation of the machine.

A condition sufficient to establish the proof obligation of Definition 8 is the
assertion I ⇒ Pi . Its use is captured as a lemma:

Lemma 1. If I ⇒ Pi for an operation Opi with a from-any annotation, then
the proof obligations on Opi associated with this annotation are all true.

When it holds, this is a simpler condition to establish. It may not always hold,
since it is stronger than the from-any proof obligations. However, note that if
those proof obligations hold then the invariant of the machine could be strength-
ened to include Pi , in which case the lemma will then hold.

Operations can be annotated with both a from-any annotation and a next
annotation. The former indicates what the operation can follow, and the latter
indicates what can come next.

For a machine M , we define from-any(M ) to be the set of operations of M
that are annotated with a from-any clause.

5.3 Controller Language

We introduce an interrupt operator to the control language as follows:

Definition 9 (Controller Syntax)

R ::= a → R | R � R | R � R | S
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The global interrupt operator, �, permits the second controller fragment to
interrupt the former at any point, even before the first action of the former has
been performed. However, we do not rely on an interrupt establishing initial-
consistency. There should always be a next annotation in the initialisation.

The init(R) function was defined on controllers by means of a structural
induction over the controller syntax. Thus the introduction of an interrupt clause
into the controller syntax necessitates a revision to the definition of init(R), as
follows:

Definition 10 (init on CSP controller process)

init(a → R1) = {a}
init(R1 � R2) = init(R1) ∪ init(R2)
init(R1 � R2) = init(R1) ∪ init(R2)

init(S ) = init(R) where S =̂ R

The first event that can be performed by R1 � R2 is either a first event from
R1, or else a first event from R2 following the occurrence of the interrupt.

5.4 Consistency

We again provide a definition for consistency between a controller and the an-
notations. This is again separated into a notion of step-consistency, which is
concerned with successive events; and initial-consistency, regarding the initial
state of the system.

The notion of step-consistency now needs to take account of a further clause
in the controller language, and the fact that the machine M has more than one
kind of annotation. Thus the definition has one additional clause. We introduce
from-any(M ) to denote the set of operations of M with a from-any annotation.

Definition 11 (Step-consistency of next and from-any Annotated Ma-
chines and Controllers). The step-consistency of a controller R with the an-
notations of machine M is defined structurally over the syntax of R as follows:

1. a → R is step-consistent with M ’s annotations if init(R) ⊆ (next(a) ∪
from-any(M )) and R is step-consistent with M ’s annotations.

2. R1 � R2 is step-consistent with M ’s annotations if R1 is step-consistent
with M ’s annotations and R2 is step-consistent with M ’s annotations.

3. R1 � R2 is step-consistent with M ’s annotations if R1 is step-consistent
with M ’s annotations, R2 is step-consistent with M , and init(R2) ⊆
from-any(M ).

4. S is step-consistent with M ’s annotations.

A family of recursive definitions S =̂ R is step-consistent with M ’s annotations
if each R is step-consistent with M ’s annotations.

In the case for a → R, we require that every operation b that R can perform
first, which are those operations in init(R), must be able to follow a, either
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because b is in next(a) and hence identified explicitly as an operation that can
follow a, or because b is in from-any(M ), and hence can follow anything.

In the case for interrupt, we have that R1 must be step-consistent with M
because all executions of R1 are possible executions of R1 � R2; R2 must also
be step-consistent since control can pass to R2; and every operation that R2 can
initially perform must be able to follow anything, since the interrupt can occur
at any point.

The cases for choice and for recursion are similar to the previous version of
step-consistency.

Definition 12 (Initial-Consistency of next and from-any Annotated
Machines and Controllers). A controller R is initially-consistent with the an-
notations of machine M if init(R) ⊆ next(INITIALISATION )∪ from-any(M )).

As stated previously, a controller R is consistent with the annotations of a B
machine M if it is step-consistent and initially-consistent with the annotations
of M .

Once again we have everything in place to establish the main theorem of this
section:

Theorem 2. If R is consistent with the annotations of a machine M , and the
annotations of M are consistent with machine M , then operations of M called
in accordance with the control flow of R will never be called outside their pre-
conditions.

6 Example Continued

We develop the example of the Carcassonne traffic control system. We wish to
extend the controller so that normal operation can be interrupted at any point
with all lights being set to Stop. The resulting controller is given in Figure 4.

The next annotations of the machine Lights are not sufficient to establish
consistency with Lights CTRL2, and in particular the interrupt requires con-
sideration. The only event immediately following the interrupt is Stop All , so
we require a from-any annotation on that operation in addition to the next
annotation it already has. The resulting operation is as follows:

Stop All =̂ PRE true THEN Moat , Square := Stop, Stop END
/* { Go Moat, Go Square } NEXT */
/* FROM-ANY */

This annotation introduces an additional proof obligation. Since the precondi-
tion PStop All of Stop All is true, it follows that I ⇒ PStop All , and hence by
Lemma 1 that the annotation is consistent with the machine.

It remains to show that the new controller Lights CTRL2 is consistent with
the annotated machine. Initial-consistency, and most of the step-consistency
cases are similar to those seen in the consistency check for Lights CTRL and
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Lights CTRL2 =̂ Stop All → S CTRL2

S CTRL2 =̂ S INNER � Stop All → S CTRL2

S INNER =̂ (Go Moat → Stop Moat → S INNER)

� (Go Square → Stop Square → S INNER)

Fig. 4. A Second Lights Controller

we do not repeat them here. However, the new conditions are required to con-
sider the interrupt construction S INNER � Stop All → S CTRL2. Step-
consistency requires us to check three conditions:

1. S INNER is step-consistent: this follows from the definition of step-
consistency on process variables.

2. Stop All → S CTRL2 is step-consistent: this follows since S CTRL2 is
step-consistent and

init(S CTRL2) = {Go Moat ,Go Square,Stop All}
= {Go Moat ,Go Square} ∪ {Stop All}
= next(Stop All) ∪ from-any(Lights)

3. init(Stop All → S CTRL2) ⊆ from-any(Lights). This follows from the fact
that init(Stop All → S CTRL2) = {Stop All} and that Stop All has a
from-any annotation.

Thus we conclude that Lights CTRL2 is an appropriate controller for the ma-
chine Lights .

7 Discussion

We are currently investigating further extensions to the framework. Operations
with input and output arise naturally in B machines, and can have the an-
notations described previously. However, the situation is more complex, since
controllers can also pass information from one operation call to another. This
can lead to complications in the definitions of step-consistency, and it is neces-
sary to carry around information obtained from previous operation calls when
reasoning about step-consistency. This also gives rise to parameterised recursive
definitions. Query operations are of particular interest, since it appears that dif-
ferent considerations apply: they do not change the state of the machine, but
require output which can affect control flow.

The current approach requires separate construction of annotations and of
controllers. One longer term aim of this line of research is the ability to synthe-
sise controllers from the machine annotations. Such a controller would be the
weakest controller consistent with a machine, and other consistent controllers
would then be refinements. This is a topic of future research.
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We now consider related work. The notion of incorporating temporal proper-
ties in B is not new. Abrial and Mussat [2] introduced the temporal operators
of next , eventually and leadsto. In the case of leadsto (written �) they focus
on identifying predicates P and Q such that if P holds at any point then Q
eventually must hold, together with a list of events that make progress towards
satisfying the final predicate Q . Their approach does not explicitly define the
order in which these events must occur nor whether they occur more than once,
the clause simply identifies which events can be performed in order to satisfy
the P � Q predicate. They use these predicates to express properties of the
system which must hold when the temporal ordering of events is considered. We
are using annotations to give us a handle on what operations are allowed to be
performed when considering the temporal ordering of operations. We do not use
them as a basis for expressing properties of a system and therefore use distinct
clauses to define a possible ordering on operations in a novel way. Our approach
does resonate with [2] in that we do not change the proof obligations that al-
ready exist but also identify additional proof obligations in order to ensure that
the temporal orderings suggested by the annotations are sensible ones.

More recent work on Event-B and B# [6] introduces proof obligations both for
feasibility (that events and initialisation do not block), and for deadlock-freedom
of a system (that the disjunction of the event guards in the system is true). The
control is left implicit, but the properties are sufficient to ensure that at any
stage the execution can continue.

The approach presented in this paper makes the control flow explicit, and
thus deadlock-freedom would follow directly from the deadlock-freedom of a
consistent controller, provided the operations are non-blocking. Feasibility and
deadlock-freedom obligations cannot be expressed directly in terms of the oper-
ation annotations presented here, but this is to be expected: The information in
an annotation is more directive, whereas deadlock-freedom is a general property
which does not contain specific control information within it.

We could represent our running example in Event-B as follows:

stopall = when true then c := 1 end
gosquare = when c=1 then c:= 2 end
stopquare = when c=2 then c:= 1 end
gomoat = when c=1 then c := 3 end
stopmoat = when c=3 then c:= 1 end

The predicates in the guards determine whether an event is enabled or not and
governs when an event can be performed. In this approach the control flow is
implicit and not always straightforward to understand or extract. As we saw in
our example it is possible to allow either gosquare or gomoat to be performed
when both variables are in the state Stop because the next annotation of the stop
all operation refers to both these operations. In our approach this was translated
to an external choice in CSP. In Event-B if more than one guard is true then the
decision as to which event is performed is internal. Because we are only dealing
with temporal ordering at the level of traces this distinction is not significant.
However, contrary to normal B consistency one important difference is that we
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do not need to examine the preconditions of all the operations to identify the
next set of possible operations. By using annotations we can clearly see which
operations should be available to be performed following an operation because we
can look at each operation in isolation. Note that there may be other operations
that are enabled but not mentioned in an annotation—this could possibly be
because the designer providing the annotations does not want them to happen
at that point.

The approach in [9] combines CSP and B so that CSP captures, primarily,
the event aspect of the design, whereas the B captures the state evolution. Each
CSP controller directs a single B machine via communication channels. Con-
trollers may also interact with other controllers. In [9], consistency between the
pre-conditioned B machine and the CSP controllers is established in two ways.
Firstly, by showing that operations are always called within their preconditions,
which establishes divergence freedom. Guarded controllers present the possi-
bility of controller deadlock. A second, consistency condition establishes that
controllers are deadlock free. Consistency is investigated using the weakest pre-
conditions of guarded commands [3], by translating the controller into AMN and
demonstrating that it preserves a control loop invariant (CLI). In contrast, in
this paper we establish divergence freedom by showing that the controller is con-
sistent with the machine annotations. If every operation has a next annotation
then the machine is also deadlock-free.
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Abstract. Event-B is a notation and method for discrete systems mod-
elling by refinement. The notation has been carefully designed to be
simple and easily teachable. The simplicity of the notation takes also
into account the support by a modelling tool. This is important because
Event-B is intended to be used to create complex models. Without ap-
propriate tool support this would not be possible. This article presents
justifications and explanations for the choices that have been made when
designing the Event-B notation.

1 Introduction

In this article we present an overview of the Event-B notation and provide jus-
tifications for the choices made when developing the notation. The Event-B
notation is targeted at an incremental modelling style where models are found
by trial and error. As such it is best explained by referring to concrete modelling
problems resulting from this approach. For this reason we present the justifi-
cations as a list of problem statements. The guiding principles when designing
the notation were its intended simplicity and the aim to make learning it easy.
Usually notations get more complicated and less consistent as they evolve. As
Event-B has evolved from classical B [1] and Action Systems [10] we were aware
of this danger and took a considerable amount of time to discuss the notation.

Event-B [6] is a modelling notation and method for formal development of
discrete systems based on refinement; see e.g. [1,10]. An Event-B model is asso-
ciated with proof obligations that permit us to reason about it. This is essential
for a modelling method: we must be able to reason about models written in it.
In order to explain specific traits of modelling, we compare requirements for a
programming notation to those for a modelling notation. There are some simi-
larities between programming and modelling, and between the proof obligations
to establish properties of programs and models. However, there are differences
that have an impact on the notations used. The most notable difference is that
for modelling we use refinement, introducing more detail in a step-wise fashion;
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whereas for programming we use verification [11] where all detail is introduced
in a single step, i.e. when writing the program.

Event-B has been designed with tool support in mind and we have drawn on
our experience with the tool Click’n’Prove [4] during the discussions. The user
of an Event-B tool should be presented with proof obligations that (1) are not
trivial and (2) can be easily related to the model.

The first point should allow the user to focus on the interesting part of a
problem. Usually, the proportion of more challenging proof obligations makes
only a small percentage of all proof obligations. We are aware that automated
theorem provers can discharge most of the trivial proof obligations that appear
when modelling systems. However, even as theorem provers improve further and
get more powerful, modelling will remain difficult. The reason for this is that
modelling is an exploratory activity that requires ingenuity in order to arrive at
a meaningful model.

The second point is important because we consider proving properties about
a model one of the major facilities to gain understanding of the model. When
a proof obligation cannot be proved, it should be almost obvious what needs to
be changed in the model. When modelling, we usually do not simply represent
some system in a formal notation; but we learn about the system and eliminate
misunderstandings, inconsistencies, and specification gaps. In particular, in order
to eliminate misunderstandings, we first must develop an understanding of the
system.

This article is organised as follows. Section 2 gives a brief overview of the
Event-B notation. In Section 3 we discuss important points about the notation
by stating a list of problems and the solutions we have chosen.

2 The Event-B Modelling Notation

Event-B [6], unlike classical B [1], does not have a fixed syntax. Instead it is a
collection of modelling elements that are stored in a repository. This decision has
been taken so that Event-B can be more easily extended with new constructs,
say, to incorporate probability [17] or CSP [13,19]. Still, we present the basic
notation for Event-B using some syntax. We proceed like this to improve legi-
bility and help the reader remembering the different constructs of Event-B. The
syntax should be understood as a convention for presenting Event-B models in
textual form rather than defining a language. More reasons for this approach are
discussed in Section 3.

Event-B models are described in terms of the two basic constructs contexts
and machines. Contexts contain the static part of a model whereas machines
contain the dynamic part. This is presented in Section 2.1. Contexts can be
extended by other contexts and referenced by machines. Machines can be refined
by machines. This is presented in Section 2.2.

The semantics of an Event-B model is characterised by proof obligations. In
fact, proof obligations have a two-fold purpose. On the one hand, they show
that a model is sound with respect to some behavioural semantics. On the other
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hand, they serve to verify properties of the model. This goes so far that we
only focus on the proof obligations and do not present a behavioural semantics
at all. This approach permits us to use the same proof obligations for very
different modelling domains, e.g., reactive, distributed and concurrent systems
[5], sequential programs [2], electronic circuits [15], or mixed designs [8], not
being constrained to semantics tailored to a particular domain. Event-B is a
calculus for modelling that is independent of the various models of computation.
We believe that this uniformity is a key to teaching the various aspects of systems
modelling.

As a prerequisite to Section 3 which provides the justifications, Sections 2.1
and 2.2 give a brief overview of Event-B.

2.1 Contexts and Machines

Contexts provide axiomatic properties of Event-B models. They play also an
important rôle in model parameterisation (see Section 3.10) and model instan-
tiation [6] which is not discussed in detail in this article. Contexts may contain
carrier sets, constants, axioms, and theorems. Carrier sets are similar to types
but both, carrier sets and constants, can be instantiated as is customary in
algebraic specification, e.g., [9]. Axioms describe properties of carrier sets and
constants. Theorems are derived properties that can be proved from the axioms.
Proof obligations associated with contexts are straightforward: the stated the-
orems must be proved. In this article we focus on (the more interesting) proof
obligations associated with machines.
Machines provide behavioural properties of Event-B models. Machines M may
contain variables, invariants, theorems, events, and variants. Variables v define
the state of a machine. They are constrained by invariants I(v). Possible state
changes are described by means of events. Each event is composed of a guard
G(t, v) and an action S(t, v), where t are local variables the event may contain.
The guard states the necessary condition under which an event may occur, and
the action describes how the state variables evolve when the event occurs. An
event can be represented by the term

any t where G(t, v) then S(t, v) end . (1)

The short form

when G(v) then S(v) end (2)

is used if event e does not have local variables, and the form

begin S(v) end (3)

if in addition the guard equals true. A dedicated event of the form (3) is used
for initialisation. The action of an event is composed of several assignments of
the form

x := E(t, v) (4)
x :∈ E(t, v) (5)
x :| Q(t, v, x′), (6)
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where x are some variables, E(t, v) expressions, and Q(t, v, x′) a predicate. As-
signment form (4) is deterministic, the other two forms are nondeterministic.
Form (5) assigns x to an element of a set, and form (6) assigns to x a value
satisfying a predicate. The effect of each assignments can also be described by a
before-after predicate:

BA
(
x := E(t, v)

)
=̂ x′ = E(t, v) (7)

BA
(
x :∈ E(t, v)

)
=̂ x′ ∈ E(t, v) (8)

BA
(
x :| Q(t, v, x′)

)
=̂ Q(t, v, x′) . (9)

A before-after predicate describes the state just before an assignment has oc-
curred (represented by unprimed variable names x) and the state just after the
assignment has occurred (represented by primed variable names x′). All assign-
ments of an action S(t, v) occur simultaneously which is expressed by conjoining
their before-after predicates, yielding a predicate A(t, v, x′). Variables y that do
not appear on the left-hand side of an assignment of an action are not changed
by the action. Formally, this is achieved by conjoining A(t, v, x′) with y′ = y,
yielding the before-after predicate of the action:

BA
(
S(t, v)

)
=̂ A(t, v, x′) ∧ y′ = y . (10)

In proof obligations we represent the before-after predicate BA
(
S(t, v)

)
of an

action S(t, v) by directly by the predicate

S(t, v, v′) .

Proof obligations serve to verify certain properties of a machine. All proof
obligations in this article are presented in the form of sequents: “antecedent” �
“succedent”.

For each event of a machine, feasibility must be proved:

I(v) ∧ G(t, v)�
(∃v′ · S(t, v, v′)) .

(11)

By proving feasibility we achieve that S(t, v, v′) provides an after state whenever
G(t, v) holds. This means that the guard indeed represents the enabling condition
of the event.

Invariants are supposed to hold whenever variable values change. Obviously,
this does not hold a priori for any combination of events and invariants and,
thus, needs to be proved. The corresponding proof obligation is called invariant
preservation:

I(v) ∧ G(t, v) ∧ S(t, v, v′)�
I(v′) .

(12)

Similar proof obligations are associated with the initialisation event of a machine.
The only difference is that the invariant does not appear in the antecedent of
the proof obligations (11) and (12). For brevity we do not treat initialisation
differently from ordinary events of a machine. The required modifications of
the concerned proof obligations are obvious. We also do not discuss deadlock
freeness, see [6].
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2.2 Context and Machine Relationships

Context extensions is a mechanism to introduce more detail into the ax-
iomatic properties of a model by adding carrier sets, constants, and axioms, or
simply to add derived properties in the form of theorems. There are no specific
proof obligations dealing with context extension. In order to structure axiomatic
properties, contexts may extend several other contexts, see [6].
Context references provide the means to access axiomatic properties from
machines. A machine may reference several contexts. In that case we say the
machine sees these contexts. Seeing more than one context is particularly useful
in conjunction with decomposition [6].
Machine refinement provides a means to introduce more detail about the
dynamic properties of a model [6]. For more on the well-known theory of refine-
ment we refer to the Action System formalism that has inspired the develop-
ment of Event-B [10]. We present some important proof obligations for machine
refinement. As mentioned before, the user of Event-B is not presented with a be-
havioural model but only with proof obligations. The proof obligations describe
the semantics of Event-B models.

A machine CM can refine at most one other machine AM . We call AM the
abstract machine and CM a concrete machine. The state of the abstract machine
is related to the state of the concrete machine by a glueing invariant J(v, w),
where v are the variables of the abstract machine and w the variables of the
concrete machine.

Each event ea of the abstract machine is refined by one or more concrete
events ec. Let abstract event ea and concrete event ec be:

ea =̂ any t where G(t, v) then S(t, v) end (13)
ec =̂ any u where H(u, w) then T (u, w) end . (14)

Somewhat simplified, we can say that ec refines ea if the guard of ec is stronger
than the guard of ea, and the glueing invariant J(v, w) establishes a simulation1

of ec by ea:

I(v) ∧ J(v, w) ∧ H(u, w) ∧ T(u, w, w′)�
(∃t · G(t, v) ∧ (∃v′ · S(t, v, v′) ∧ J(v′, w′))) .

(15)

In the course of refinement usually new events ec are introduced into a model.
New events must be proved to refine the implicit abstract event skip that does
nothing. Moreover, it may be proved that new events do not collectively diverge
by proving that a variant V (w) is decreased by each new event:

I(v) ∧ J(v, w)) ∧ H(u, w)) ∧ T(u, w, w′)�
V (w) ∈ N ∧ V (w′) < V (w) ,

(16)

where we assume that the variant expression is a natural number. It can be more
elaborate [6] but this is not relevant here.

1 More specifically, it establishes a forward simulation [22].
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3 Modelling Problems and Solutions

In this section we present justifications for the Event-B notation, most in the
form of pairs of problem statement and our solution. It resumes many discussions
about the notation and method. Two major objectives during these discussions
were to make the notation as simple as possible and to make learning it easy by
avoiding exceptions and inconsistencies. This section is the heart of the article.
The problems are not sorted according to importance. They are all important in
the sense that they contribute to the overall simplicity of the Event-B notation
and method.

3.1 Terminology

When writing about Event-B we found that by careless choice of terminology
certain concepts are difficult to convey. For instance, instead of the word “ma-
chine”, we could use “model” or “system”. As a consequence, in an introductory
text about B we would have phrases like: “A model consists of models and con-
texts.”, or “A system is a model of a system.”. Such phrases are a hurdle that
is difficult to overcome by beginners learning Event-B. We analysed texts on
Event-B, and have chosen a terminology that, we believe, is neutral with respect
to modelling domains, and does not conflict with habitual modelling terminol-
ogy. This is the reason why, in the end, we have chosen the word “machine” over
its alternatives.

3.2 Labels

Problem. Usually the invariant of a machine I(v) is a conjunction of predicates

I0(v) ∧ I1(v) ∧ . . . ∧ Ik(n) ∧ . . . ∧ In(v) . (17)

When treating proof obligation (12) that serves to verify invariant preservation,

I(v) ∧ G(t, v) ∧ S(t, v, v′)�
I(v′) ,

(12)

we use basic sequent calculus to split the conjunction in the succedent. The
aim of this is to achieve more manageable proof obligations. Instead of (12) we
generate n proof obligations

I(v) ∧ G(t, v) ∧ S(t, v, v′)�
Ik(v′) .

(18)

The advantage of this is that proof obligations are much smaller. The problem in-
troduced by this technique is the following. When a model is changed it can be
costly and sometimes even not possible to relate proofs belonging to previously
generated proof obligations. In our concrete case of (18), if we modify the model,
e.g., by inserting a predicate Ij(v) into the list (17) and changing S(t, v), then all
indices after the insertion point change and, at the same time, many of the predi-
cates Ik(v′) of (17) change. This makes it very difficult to relate existing proofs to
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their associated proof obligation, stopping us from reusing them efficiently. This
problem exists generally if a model contains many theorems, invariants, or events.

Solution. Individual axioms, theorems, invariants, events, guards, and actions
are labelled. For instance, the invariant of a model is a list of labelled predicates:

inv 0: I0(v)
inv 1: I1(v)
...
inv k: Ik(v)
...
inv n: In(v) .

Let e be an event with label evt, then instead of proof obligation (12) we generate
several proof obligations (18) with names

“evt/inv k/inv” ,

where the last segment of the name “/inv” depends on the proof obligation. It
gives an indication about what is being proved. Now it is very easy to locate
old proofs for this proof obligation by name, independently of the complexity
of changes made to a model. The same approach is followed for all proof obli-
gations associated with Event-B models. The predicates Ik(v) are treated like
atomic predicates during proof obligation generation so that there is an imme-
diate correspondence between models and their proof obligations.

An additional benefit of the labels is that they can be used in the documen-
tation of a model. They can also be useful to make the informal requirements
better traceable into the model, because all Event-B modelling elements can be
easily referenced by their label.

3.3 Feasibility

Problem. The intention of specifying a guard of an event is that the event may
always occur when the guard is true. There is, however, some interaction between
guards and nondeterministic assignments (5) and (6), namely x :∈ E(t, v) and
x :| Q(t, v, x′).

We say an assignment is feasible if there is an after-state satisfying the cor-
responding before-after predicate. The first form (5) is not feasible for some t
and v if E(t, v) denotes the empty set, and the second form (6) is not feasible
if Q(t, v, x′) is false. This means that the guard of an event could effectively be
stronger than specified if the guard was true in some state but the assignment
not feasible. Such implicit specification quickly leads to models that are difficult
to comprehend.

Solution. For each event its feasibility (11) must be proved. Note, that for
deterministic assignments the proof of feasibility is trivial (one-point rule). Also
note, that feasibility of the initialisation of a machine yields the existence of an
initial state of the machine. It is not necessary to require an extra initialisation
theorem as used, e.g., in Z [20].
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3.4 Nondeterministic Assignments

Problem. When generating proof obligations such as (12) or (15) we use for
each variable two names, an unprimed name to refer to the before-state and a
primed name for the after-state of the action. In classical B nondeterministic
assignments were denoted by

x :| Q(t, y, x0, x) , (19)

where x0 denotes the value of x in the before-state and y refers to the before-
state for all other variables. This notation requires renaming x0 into x and x
into x′ in the proof obligations. We want to avoid renaming of variables as much
as possible in order to improve readability of the proof obligations. Furthermore,
note the notational inconsistency of subscripting some before-state names (x0,
for variables that may be changed by the assignment) but not others (y, for
variables that are not changed by the assignment). This notation is traditionally
used with predicate transformers, e.g., [16].

Solution. The problem is solved easily by writing on the right-hand side of
(19) a before-after predicate. Then the problem of renaming disappears, as well
as the notational inconsistency. This explains the notation (6) used in Event-B.
With this notation the predicate Q(t, v, x′) is copied without change into proof
obligations, see (9). This notation follows the style of operation specifications
in Z [20].

3.5 Witnesses

Problem. In Section 3.2 we say that separate proof obligations are generated
corresponding to the labelled elements (provided by the user), e.g., events or
invariants. However, this is not directly possible for proof obligation (15):

I(v) ∧ J(v, w) ∧ H(u, w) ∧ T(u, w, w′)�
(∃t · G(t, v) ∧ (∃v′ · S(t, v, v′) ∧ J(v′, w′))) .

(15)

The two existential quantifiers in the succedent stop us from decomposing it into
more manageable pieces.

Solution. As mentioned in Section 2.2 proof obligation (15) describes a simu-
lation of the concrete event by the abstract event. This is an intuitive concept,
i.e. we have an idea of how the simulation “works”. In other words, the required
instantiations of the existentially quantified variables are well-understood. These
can be specified as witnesses in an Event-B model rather than being elaborated
during proof. Let t = E(u, v, w, w′) be the witnesses for the local variables t, and
v′ = F (u, v, w, w′) be the witnesses for the global variables v′ corresponding to
the after-state.

By a witness we usually understand an expression to replace one of the ex-
istentially quantified variables. But the technique can easily be generalised to
predicative witnesses, i.e., by providing a predicate P (x, u, v, w, w′) for a vari-
able x, where x stands for t or v′. In this generalisation the witness is not defined
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by an equation as previously. It just has to satisfy the less restrictive predicate
P (x, u, v, w, w′). Of course, a predicative witness must not be void and, as a
consequence, gives rise to a new proof obligation

I(v) ∧ J(v, w) ∧ H(u, w) ∧ T(u, w, w′)�
(∃x · P (x, u, v, w, w′)) ,

resembling feasibility described in Section 3.3 above.
Whatever the means by which witnesses have been specified, simple or pred-

icative: once the two existential quantifiers have been eliminated by instantiation,
we can split the proof obligation into three larger blocks for the guard G(. . .),
the abstract before-after predicate S(. . .), and the glueing invariant J(. . .). From
there we can continue as described in Section 3.2, further decomposing the proof
obligation. For instance, we obtain several (named) proof obligations for invari-
ant preservation by splitting J(. . .):

I(v) ∧ J(v, w) ∧ H(u, w) ∧ T(u, w, w′)�
Jk(F (u, v, w, w′), w′) .

(20)

By using witnesses in models, a part of the proof has been moved into modelling
itself. The price to pay is that one has to think about proving while modelling.
We do not see this as a problem because we think that modelling and proving
should not be considered different activities. Note, that providing witnesses is a
constructive proof technique. In modelling we prefer this over non-constructive
techniques where the exact nature of the refinement relationship of the two
events is left undetermined. The aim of modelling is always to increase our
understanding of a model.

Using simple techniques and conventions, most of the witnesses used in (20)
can be determined automatically. This frees us in practice from having to search
for many witnesses.

For the global variables x, of an abstract machine, that are linked to the global
variables y of a concrete machine by an equality invariant x = y, the instantiation
is trivial using the one-point rule. In practice, equality invariants are assumed to
hold whenever variable names are reused during refinement. Then such a variable
z of the abstract machine is renamed into, say, z1 and variable z of the concrete
machine is linked to z1 by the invariant z = z1.

For local variables of events we do not have invariants that we could use to find
witnesses. However, most instantiations appear in practice for local variables. So
we need an efficient and simple way to find witnesses for local variables. To this
end, we introduce the following convention: when a local variable name � is
used in a concrete and a corresponding abstract event, then the abstract � is
instantiated with the concrete �. Conceptually, we treat instantiation of local
variables similarly to that of global variables.

3.6 Programming Versus Modelling

In this short section we discuss some general points about modelling that prede-
termine some of the choices we have made in Event-B (those presented in Sec-
tions 3.7 to 3.10). Our discussion contrasts modelling and programming because
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in computing science modelling is often understood to be a form of programming.
We propose to see them as activities of different nature with different aims.

The most important characteristic of a program is that it can be executed
to perform some computation. When we conceive a model, we do not think
about execution. We do not even require that it could be executed. How would
we execute “pressing a button” when this is supposed to be done by a person
in a model we have developed. It is impossible to do this and it was never our
intention. In Event-B a model usually contains elements with such characteristics
because we usually include the environment of a computing artefact, if we are
developing one. In fact, nothing in Event-B requires that a model has anything
to do with computation at all.

Modelling is much more concerned with observation of a model as transitions
between its states occur and with reasoning about properties of the model. Mod-
els often are already useful when they are still very abstract by helping us to
understand the system being modelled. The major concern in programming is
execution. Properties of programs are usually directly linked to the implemen-
tation. They do not capture the system as a whole. Accordingly, programming
offers a lot of support for expressing how something is computed.

Modelling is difficult without refinement. The amount of detail in a complete
model of a complex system is too high to be written in a single model. In fact, we
can write such models but, in practice, we cannot reason about them anymore.
Refinement solves this problem by allowing us to introduce gradually more and
more detail, reasoning at each refinement step about the so-enriched model.
Programming usually begins with a large amount of detail necessary for the
implementation of a program. Hence, it is too late to reason about it if the
program is of high complexity.

Programming is associated with programming notations that have many con-
struct convenient for programming. They are based on the assumption that the
program is to be executed and that the development begins with the implemen-
tation of the program. None of this holds for modelling. We certainly do not
want to begin by implementing something and we do not want our models to
be restricted to those that can be executed. Concluding, we are not interested
in supporting programming notation. In addition to this general discussion Sec-
tions 3.7 to 3.10 present some more technical points about constructs otherwise
customary in programming.

3.7 Sequential Composition

In addition to the general problem discussed in Section 3.6 there are some tech-
nical problems we encounter with sequential composition. While modelling we
usually learn about the system we are modelling. For this reason we frequently
have to switch back and forth between a model and its associated proof obli-
gations. This switching should be as effortless as possible in order to focus on
learning and on improving the model instead of analysing proof obligations with
respect to their significance for the model. We cannot achieve this when we use
sequential composition.
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Problem. Sequential composition can make proof obligations difficult to un-
derstand. We give two little examples to motivate the problem.

Assume we have an invariant I(x, y) and we want to verify that the program

x := E(x, y) ; y := F (x, y) (21)

preserves the invariant. Using a standard definition of sequential composition
(e.g., [1,16]), we derive the following proof obligation

I(x, y)�
I(E(x, y), F (E(x, y), y)) .

The succedent is the invariant I(x, y) rewritten according to (21). To understand
the proof obligation we have to trace backwards through (21). This quickly in-
creases the difficulty of proof obligations. In the case of (21) this is simple. Using
many assignments in sequence, the problem gets more and more difficult. The
following example demonstrates this on a more concrete example. In addition,
it makes use of a non-deterministic assignment which aggravates the problem.

Let x ∈ Z and y ∈ Z be two integer variables; let program P be defined by:

P =̂ begin
x := y − 1 ;
y :∈ {x + 1, x − 1} ;
x := y ∗ x ;
y := y ∗ y − x

end

Suppose we have specified invariant (22) that relates x and y:

x + y = x ∗ y (22)

The proof obligation to verify that (22) is an invariant of P would be a sequent
as shown below2:

x ∈ Z ∧ y ∈ Z ∧ y1 ∈ {y, y − 2} ∧ x + y = x ∗ y�
y1 ∗ (y−1) + (y1 ∗ y1 − y1 ∗ (y−1)) = y1 ∗ (y−1) ∗ (y1 ∗ y1 − y1 ∗ (y−1))

Note, that we had to rename y as a consequence of the appearance of the non-
deterministic assignment. Now we have to judge whether this sequent is true or
false. We can use a theorem prover to help us. If we think it does not hold we
have to change the program. But even in this simple case it is not obvious what
change in the program would cause the desired change of the proof obligation.

One could suggest that an automated theorem prover should discharge this
proof obligation, should it be true. Unfortunately, there is no decision procedure
for general arithmetic expressions. So this will not work.

When modelling we usually encounter sequents that are not provable because
we rarely get a model correct the first time. As a consequence, we expect that we
2 The proof of the claim is much easier once the following three consequences of (22)

are used: x ∈ {0, 2}, y ∈ {0, 2}, and x = y.
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get sufficient support for improving the model. The best way to achieve this is an
immediate correspondence between the model we write and the proof obligations
that result from it.

Solution. Event-B does not contain sequential composition. This does not
mean, however, that we cannot model sequential programs in Event-B [2].

3.8 Conditional Statements

We present a problem of technical nature caused by conditional statements be-
sides the problems discussed in Section 3.6.

Problem. The greatest problem with conditional statements in refinement is
that we cannot avoid generating superfluous proof obligations. Worse, these proof
obligations are often difficult to understand. Let x ∈ Z be an integer variable,
a ∈ BOOL and b ∈ BOOL boolean variables, and m ∈ Z → Z a total function.
Furthermore, let program P be defined by:

P =̂ if a = FALSE ∧ b = FALSE then
x := m(x + 1)

else
x := m(x − 1)

end

We carry out a simple data-refinement of P by program Q defined below:

Q =̂ if (1 − A) ∗ (1 − B) = 0 then
x := m(x − 1)

else
x := m(x + 1)

end

where A ∈ {0, 1} and B ∈ {0, 1} are two integer variables refining a and b,
respectively, using the glueing invariant3

a = bool(A = 1) ∧ b = bool(B = 1) .

Even in this simple example it can not immediately be seen that the refinement
proof obligation below has a contradictory hypothesis. The situation is much
worse when more realistic programs are considered.

a = bool(A = 1)
b = bool(B = 1)
¬((1 − A) ∗ (1 − B) = 0)
¬(a = FALSE ∧ b = FALSE)�
m(x + 1) = m(x − 1)

In particular, note that we have to discharge a proof obligation that is completely
insignificant with respect to the refinement relationship of P and Q. Had we used
3 The notation bool(P ) is used to denote the boolean value corresponding to truth or

falsehood of predicate P .
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a case-statement with 10 branches, 90 out of 100 proof obligations would have
been of this kind. We cannot solve this problem because it is in general not
decidable which branches are supposed to refine which.

Solution. Event-B does not contain conditional statements. One could sug-
gest to name the different branches of the conditional statement and specify
the refinement relationship. But this would effectively remove the conditional
statement. In fact, it corresponds to the approach chosen in Event-B where each
branch would correspond to a separate event. The conditional statement is not
essential for the development of sequential programs in Event-B [2].

3.9 Undefinedness

Problem. Any model may contain expressions that are conditionally defined,
e.g., 1 ÷ x which is not defined for x = 0. A detailed discussion of this problem
can be found in [7,12].

Solution. In our quest for simplicity we prefer not to deviate from classical logic
which has the additional advantage of being in wide-spread use. In Event-B well-
definedness of expressions is treated on the level of type-checking. Type-checking
works in two passes. The first pass checks whether expressions are correctly
typed independently of whether they are defined everywhere. The second pass
creates well-definedness proof obligations that must be discharged by proof. This
technique is similar to predicate sub-typing described in [18].

3.10 Parameterisation

Problem. Often a model depends on a number of parameters, e.g., the num-
ber of components in a distributed system or the size of some buffer. We do
not want to write a new model each time we need different parameter values.
In programming notations, e.g. Ada [21], parameterisation (also called “gener-
icity”) is used to choose specific implementation types and constants left open
for customisation. This permits the development of libraries that can be reused
by instantiating the parameters appropriately. For a modelling method this ap-
proach is not appropriate because the reuse is catered for execution whereas we
need reuse catered for reasoning. In algebra a different form of instantiation is
used. For instance, we first develop group theory and then instantiate groups
with geometric transformations. Once we have proved that the transformations
form a group, we can reuse everything we have proved about groups for transfor-
mations. This technique has been adopted in algebraic specification notations,
e.g. CASL [9].

Solution. In Event-B parameterisation is algebraic. Event-B provides carrier
sets and constants that are contained in contexts. Carrier sets and constants can
be instantiated. After the axioms of the context have been proven to hold for
the instantiated carrier sets and constants all theorems that have been derived
from them can be reused. Machines that reference a context are parameterised
by that context [6].
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3.11 Openness

Problem. Devising a formal method requires a lot of foresight. We would like
the method to be used for years to come, estimating where it could be useful and
making reasonable restrictions on the development processes in which it would
be used.

Solution. Being pessimistic about our capacity to predict the future and the
ability to dictate changes, radical or not, to industries that could profit from
the method, we choose not to finalise Event-B. We expect it to evolve according
to the different needs and application domains. We propose an approach where
the method from which we depart is open with respect to extensions and even
changes. Still, when extending the method great care should be taken not to
complicate the existing theory. In order to be able to serve a larger community
duplication of concepts should be avoided and each single concept should have
a simple and unambiguous interpretation.

4 Conclusion

It took a considerable amount of time to make many of the decisions presented in
Section 3. We believe this effort will pay off in terms of the ease with which Event-
B can be used and taught. We have not presented all decisions we have made,
in particular, with respect to the notation used for predicates and expressions.
In comparison to classical B their syntax has been simplified considerably. The
improvements of the notation used for predicates and expressions has much less
to do with constraints imposed by the need of tool support than with legibility. For
a discussion of notational conventions for predicates and expressions see also [14].

We believe it is important to make the reasoning underlying the notation
publicly available. This is particularly true in the light of Section 3.11. We hope
that all extensions to Event-B will be made cautiously so that the notation keeps
its simplicity and a lot of notation and associated methodology can be shared
between different communities.

At ETH Zurich the RODIN modelling platform for Event-B is being developed
that implements the techniques presented in this article. A description of the
RODIN platform is published separately [3].
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Abstract. A recent contribution to the formal specification and verifica-
tion of concurrent systems is the integration of the state- and event-based
approaches B and CSP, specifically in the ProB model checking tool. At
the implementation end of the development, concurrent programming
in Java remains a demanding and error-prone activity, because of the
need to verify critical properties of safety and liveness as well as func-
tional correctness. This work contributes to the automated development
of concurrent Java programs from such integrated specifications.

The JCSP package was originally designed as a proven clean Java
concurrency vehicle for the implementation of certain CSP specifica-
tions. In the context of best current Java concurrent programming prac-
tice, we extend the original JCSP package to support the integrated B
and CSP specification by implementing new channel classes. We pro-
pose rules for the automated translation of the integrated specification
to multi-threaded Java using the extended JCSP channel classes. We
briefly present a prototype translation tool which extends ProB, with a
worked example, and conclude with a strategy for formally verifying the
translation.

1 Introduction

Concurrency in multithreaded Java programming has always been seen as a
problematic area [Pu00], to the extent that expert practitioner advice has been
to avoid it where possible [MW]. The difficulty arises from the low level of
the methods provided, the responsibility of the programmer for guaranteeing
various awkward concurrency properties - including safety, liveness, and fairness
- and the complexities of scale. The recent JDK 5.0 issue [Go04] has improved
matters somewhat by raising the level of abstraction in the concurrency model,
introducing constructs such as semaphore and mutex. Abstraction has also been
raised, principally in package util.concurrency by deprecating low-level Thread
methods such as stop, resume and suspend and replacing them with high-level
thread-safe facilities. Safety properties have been made more tractable by the
provision of a common cross-platform Java Memory Model [MPA05]. However,
as the concurrency model of Java programs is described in natural language, it is
still difficult to detect and avoid liveness and fairness problems in such programs.
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The difficulty of concurrency motivated the development of formal languages
for modelling concurrent processes such as CSP [SS00] and CCS [RM89]. The
capability of formal and automated [MK99, FS03] verification of safety and live-
ness properties in such concurrency models, before transformation into code,
has added real value to industrial systems, including hardware systems[JP04],
software systems[JL04], and communication protocols [SD04]. Formal analysis
techniques have been applied to concurrent Java programs: [LP05] and [BM02]
provide languages to add assertions to Java programs, and employ runtime veri-
fication techniques to verify the assertions. Such approaches are concerned with
the satisfaction of assertions, not explicit verification against a formal concur-
rency model. An explicit formal concurrency model, which can be verifiably
transformed into a concurrent Java program, represents a useful contribution.

One recent trend in formal approaches to system design is to integrate the
state- and event-based approaches. State-based specification is appropriate when
data structure and its atomic transition is relatively complex; event-based specifi-
cation is preferred when design complexity lies in behaviour, i.e. event and action
sequencing between system elements. In general of course, significant systems will
present design complexity, and consequently require rich modelling capabilities,
in both aspects. [Bu99, TS99] have proposed the integration of the state-based
B method [Ab96] and CSP, an event-based process algebra. The ProB [BL05]
tool supports model checking of combined B and CSP specifications1. A com-
posite specification in ProB uses B for data definition and operations. A CSP
specification is employed as a filter on the invocations of atomic B operations,
thus guiding their execution sequence.

Peter Welch’s JCSP package [PM00a] provides a high-level concurrency model
for Java, implementing the Occam language [ST95], a concurrent programming
language that directly implements a subset of CSP. JCSP is based on the point-
to-point communication model of Occam. The correctness of the JCSP transla-
tion of the Occam channel to a JCSP channel class has been formally proved
[PM00b]: the CSP model of the JCSP channel communication is shown to re-
fine the CSP/Occam concurrency model. Raju [RR03] has developed a tool to
translate subset CSP models directly to JCSP. The tool does not extend beyond
the Occam subset of CSP, and does not scale, in our experience, beyond small
textbook examples. Furthermore, through our experience with JCSP and Raju’s
tool, we find that the point-to-point Occam communication model limits the ca-
pability of JCSP for developing concurrent systems based on other concurrency
models.

Being event-based, CSP is insufficiently expressive of the data aspect of sys-
tems; JCSP is similarly limited. In [RR03], data declaration and assignment are
manually added to the Java programs generated by the tool; this can easily break
the correctness of the system model which is proved by FDR tool.

Motivated by both the Java concurrency issues and the integrated formal
method approaches, we present a translation strategy, which converts combined
B and CSP specifications in ProB into Java programs using an extended JCSP

1 We will call this notation B+CSP for shorthand.
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package. The design of the translation rules has taken some inspiration from
[OC04], which defines a translation from Circus to JCSP.

In Section 2, we briefly introduce the existing JCSP package. We then dis-
cuss the reasons for extending the original package, and the new features of the
extended JCSP package. In Section 3, we demonstrate the translation strategy
from the combined B and CSP specification to Java programs, and discuss the
translation tool which implements these rules in Prolog. In Section 4, we illus-
trate the translation with a Chef-and-Dining-Philosophers example. In Section
5, we outline the verification required of this translation process as future work.
Section 6 discuss future work and conclusions.

2 The Extended JCSP Package

2.1 JCSP

JCSP [PM00a] is a Java package for developing concurrent Java Programs. It
implements the Occam subset of the CSP language [SS00], as well as some other
features of CSP, in a series of process and channel classes. The Occam language
definition is based on that of CSP, but is aimed at modelling channel communi-
cation. Occam channels are based on CSP events. However, Occam channels are
only applied for modelling point to point communication, while CSP events are
used in more general concurrency models. In Figure 1, the concurrency model of
JCSP and Occam is briefly illustrated in CSP syntax. CSP processes ProcA and
ProcB synchronize with each other on channel A, while B and C are unsynchro-
nized channels. The synchronization happens when ProcB is ready to output
data y at A!y, and ProcA is ready to input data x at A?x.

ProcA = A?x → B → ProcA
ProcB = C → A!y → ProcB

Fig. 1. A CSP specification for Occam/JCSP concurrency

A Java application using the JCSP package consists of a number of objects
of JCSP process classes running in parallel. The process objects communicate
with each other via objects of JCSP channel classes. All the process classes
used here implement an abstract JCSP process class CSProcess. The channel
classes all inherit the inputchannel and outputchannel interfaces of the JCSP
package. JCSP supports two process objects synchronizing and communicating
data through a JCSP channel object. A JCSP process blocks when it requires
a data communication with the other process on a specific channel. Only when
both the output and input side processes of the channel are ready for the data
communication, is the data is transmitted through the channel.

Since the JCSP channel classes implement only the Occam channels (as op-
posed to more general CSP events) the communication between two processes
is the only synchronization supported by JCSP channel classes. Although



Automatic Translation from Combined B and CSP Specification 67

Any2OneChannel and Any2AnyChannel classes handle more than two processes,
the synchronization still only involves two processes. For Any2OneChannel, many
writer processes and one reader process are associated on the channel. All the
requests from writer processes are grouped into a queue. At a given time, only
the reader and one writer actually synchronize with each other and pass data
through the channel. Thus the synchronization model still is the point-to-point
communication of Occam.

JCSP does support synchronization between more than two channels with
a Barrier class. However, Barrier is not implemented as a JCSP channel
class, and uses a simple counter to resolve the synchronization. Therefore it
can not help to do multi-way synchronization in a manner faithful to the CSP
concurrency model.

2.2 Why We Extend JCSP

As the JCSP package was designed to implement the Occam subset of CSP
in Java, it cannot be directly used for translating the combined B and CSP
specification in ProB. The reasons for this are twofold.

For the CSP part, the combined specification uses a bigger CSP subset than
that of JCSP package. Important CSP language features, especially some con-
currency facilities such as Alphabetized Parallel, are not supported by JCSP. In
developing a concurrent Java system, the synchronization between more than
two threads on a certain data transition is a typical concurrency problem, which
can be easily specified using CSP. This problem is also identified by JDK5.0,
and in java.util.concurrency package, a CyclicBarrier class is build to imple-
ment this synchronization in a high-level facility. However, modelling this kind
of concurrency in Occam gives the programmer extra work implementing the
synchronization on the shared thread. Implementing them in JCSP also requires
extra facility classes to resolve the synchronization.

Figure 2 shows the CSP specification of a parallel hardware interface. The
interface reads eight bits from eight different channels, and when all the bits are
ready, it generates a byte from the bits. In the specification, each bit process
B(i) gets a bit using event get(i)?bit, and then waits for the makebyte event.
The bit processes interleave with each other. The parallel interface process PI
repeatedly makes bytes with the makebyte event, when all the bits are ready.
The Main process requires all the processes to synchronize on the makebyte
event. As the CSP model of this example has nine processes synchronizing on
the same event, it can not be directly translated into Java using the original
JCSP package.

The channel used in JCSP and Occam is obliged to communicate data be-
tween two processes, while the combined channel we propose uses a more general
definition of CSP event. The CSP event can optionally have data parameters,
with decorations denoting input, output or dot data, which can be either input
or output. Parameters are similarly specified in the B+CSP specification. In the
extended JCSP, we implement these kind of CSP events in Java with the new
channel class.
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B(i) = get(i)?bit → makebyte.byte → B(i)
PI = makebyte.byte → PI
Bsys = ||| i:1..8@ B(i)
Main = PI [|{makebyte}|] Bsys

* ||| declares a set of interleaving processes
* A[|c|]B is the syntax for Alphabetized Parallel, which means that processes A and B

synchronize on a set of events c

Fig. 2. CSP specification of Parallel Interface

Since the JCSP package is designed for implementing CSP specifications in
Java, it has no facility to implement the B part of the combined specification in
Java. Therefore we need a strategy for translating the B specifications into Java.
Fortunately, the B specification used for the automatic translation is mainly
from the B0 subset of the B language, which represents a simple programming
language designed to be automatically translatable to target languages of choice.
The B+CSP channel combines a B operation wih a CSP event; the operational
semantics of this is given in [BL05].

2.3 The Extended JCSP Package

The JCSP package is extended with new channel and facility classes. The new
“parallel/choice” channel class PaChoChannel implements the features of com-
bined B and CSP specifications which are not included in the original JCSP
package. The facility classes implement external choice for the extended channel
class.

The extended channel and facility classes are designed as an add-on package
for the original JCSP. JCSP process classes can declare and use the new channel
classes in a similar manner to using the original JCSP channel classes. As all the
changes have been preserved inside the channel and facility classes, there are no
significant changes in using them in process classes.

Class PaChoChannel supports synchronization between more than two pro-
cesses. It keeps track of all the processes associated with this channel. When
all the associated processes are ready, the data operations in the channel are
triggered. After the data operations complete, all the associated processes are
notified.

PaChoChannel also supports the dot event c.v, where c is a CSP event and
v is a data item on it. The synchronization of dot data channels is not only
decided by the name of the channels, but also by the dot data values. Two
processes, using the same channel c but with different values of v (e.g. c.x,
c.y), will not synchronize with each other. This implementation is based on the
B+CSP semantics. The input c?x and output c!x events are also supported by
the new channel class.

With the implementation of the above two CSP language features, the new
JCSP package can support Alphabetized Parallel of CSP, an important facility for
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specifying concurrent systems. Furthermore, some new facility classes implement
external choice for the extended channel classes.

The main issue for implementing the B part of the combined specification is
how to implement the data transitions of a B operation into a combined channel
class. The PaChoChannel class implements the Serializable interface of Java,
and has an abstract method run. The subclasses of PaChoChannel overwrite
the run method by putting in the target Java code of the B data transitions.
The run method is executed when all the associated processes are ready for the
execution of the channel class.

Thus, the extended JCSP package supports a bigger subset of CSP than
the original JCSP, as well as providing facilities to implement the B part of the
combined specifications in Java. This makes it possible to translate the combined
B and CSP specifications into Java programs. An example with the extended
channel class is discussed in Chapter 4.

The synchronization supported by the extended channel class is implemented
with concurrency primitives from Java monitors, which exclude the facilities
deprecated by Java 5.0. The correctness of this implementation needs to be
verified; a formal proof strategy is proposed later in Section 5.

3 Translation Strategy and Tool

A series of translation rules are developed to structure the automatic translation.
The rules are used recursively to generate a set of Java classes from a combined
B and CSP specification. We discuss some of the key translation rules in this
section. The translation tool implements the translation rules in Prolog.

3.1 Translation Strategy and Rules

In the translation, each combined B+CSP channel is translated into an object
of a channel class. Each process in the CSP part of the combined specification is
translated into an object of a JCSP process class. Indexed processes are trans-
lated into different objects of the same JCSP process class. Their indices are
treated as parameters of the JCSP class constructor.

Translation of the MAIN Process. The translation strategy is mainly based
on the execution behaviour of the system which is specified in the MAIN process,
which is the core process of the CSP part. The translation rules set generates
the executable Java class for the target application. It starts with the MAIN
process with rule Main Proc Decl , and recursively generates process classes for
all the associated CSP processes.

Through this procedure, the translation gathers information of all the CSP
channels υ, B sets S, and variables and constants s. Rule Set Def generates Java
classes to represent B set S. All the variables are declared and initialized by rule
Par Def. The rule generates the declaration and initialization of the variables
with the information from the B part. υ is expanded with rule Ch Def, which will
declare the channel objects for all the channels, and generate channel classes.
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Finally, it generates the code for declaring the MAIN process object, including
the code of the run call.

Table 1. Rule 0: Rule for Declaring Main Process

Name Main Proc Decl
CSP MAIN
B MACHINE M
Java 〈MAIN〉ProcDecl

public class M machine {
public static void main(){

〈S〉SetDef

〈s〉ParDef

〈υ〉ChDef

new 〈M〉ProcCName(〈s〉ParList,〈υ〉ChList).run();
}

}

Support of Multi-way Synchronization. One important feature of the ex-
tended JCSP channel is the support of multi-way synchronization. The parallel
structure is handled by rules from the rule set ProcE. For example, the combina-
tion of the indexed parallel processes is translated by rule ProcE (Re-Parallel).

Table 2. Rule 9: Rule for Replicated Alphabetized Parallel

Name ProcE (Re-Parallel)
CSP [| υ |]n:a@ P(n)
Java CSProcess[] procs = {

new 〈P 〉ProcCName(〈s〉ParList,〈υ〉ChList,〈υ1〉ChList,a1),
.....
new 〈P 〉ProcCName(〈s〉ParList,〈υ〉ChList,〈υn〉ChList,an)

}
new Parallel(procs).run();

In rule ProcE (Re-Parallel) (Table 2), 〈P 〉ProcCName refers to the name of
the indexed process class, while each process object from P (a1) to P (an) is an
instance of that process class. These process objects synchronize on a set of chan-
nels υ. Each process object may include a set of channels υn, which do not syn-
chronize with other indexed processes here. PaChoChannel class provides ready
methods to support multi-way synchronization. When a JCSP process is ready
for the execution of a channel, it calls the ready method of the channel, and
waits for other processes which also synchronize on this channel. As there may or
may not be data on the channel, different implementations of the ready methods
are provided. Table 3 shows the different rules for translating the ready call.



Automatic Translation from Combined B and CSP Specification 71

Ready call rules for input/no input on channel are given in Table 3. The ready
calls including output parameters are discussed in the following section. For rule
Par Vec, the set is of input parameters are grouped into Vector, and performs
as a single parameter for ready method.

Table 3. Rule 6: Rule for Channel Call, ready

Name Ch Call (ready I)
CSP cc.is
B cc(is) Instruction
Java 〈cc〉ChName.ready(〈is〉ParV ec);
Name Ch Call (ready II)
CSP cc
B cc Instruction
Java 〈cc〉ChName.ready();

Translation of Combined Channels. The main issue in translating the com-
bined B+CSP channels is how to resolve the parameters from both B and CSP
sides. In the original JCSP, as there is no data transition inside the channel, a
data x on a channel Ch is simply passed through the channel. Here a process
with channel Ch!x synchronizes with a process with Ch?x event.

Table 4. Rule 29: Rule for Extended Channel Classes

Name ChC
B os ← cc(is) Instruction
Java public class 〈 cc 〉ChCName extends PaChoChannel {

〈 is 〉ParDef

〈 os 〉ParDef

public 〈 cc 〉ChCName(〈 is 〉ParDef){
〈 is 〉ParRel

}
public void run(){

〈 Instruction 〉BInstruction

}
}

Therefore, in the target Java program, two process classes use the read and
write methods of JCSP channel classes to communicate the data:

Process 1:

...

run(){
...; Ch.write(x); ...

}
...

Process 2:

...

run(){
...; x = Ch.read(); ...

}
...
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To resolve the parameter issue for the combined B+CSP channel, we need
to examine the operational semantics of B+CSP in [BL05]. The operational
semantics of the combined B+CSP channel are: (σ,P ) →A (σ′,P ′). σ and σ′ are
the before and after B states for executing operation o, while P and P ′ are the
before and after processes for processing channel ch. The combined channel A is
a unification of the CSP channel ch.a1, ..., aj and the B operation o = o1,...,om

← op(i1,...,in), where j = m + n. Therefore, the combined B+CSP channel A
can be expressed as: A.s1. . . . .sm.sm+1. . . . .sm+n.

In the translation, both o1 ... om and i1 ... in are treated as parameter lists
for the channel classes. In rule ChC (Table 4), o1, .., om are translated into Java
objects os, which are the output parameters, and i1, ..., in are translated into
is, which are the input parameters. Rule Par Def obtains information from the
B specification as before. In the channel class, is are static parameters whose
values won’t be changed. os are private parameters of the channel class and are
made externally visible by being returned by the ready method. os are returned
as a Java Vector, as defined in rule Par Vec.

The two translation rules in Table 5 show how the process gets the output
parameters from the ready call.

Table 5. Rule 6 (continue): Rule for Channel Call, ready

Name Ch Call (ready III)
CSP cc.is.os
B os ← cc(is) Instruction
Java 〈os〉ParV ec = 〈cc〉ChName.ready(〈is〉ParV ec);
Name Ch Call (ready IV)
CSP cc.os
B os ← cc Instruction
Java 〈os〉ParV ec = 〈cc〉ChName.ready();

Translation of B. B0 is a concrete low-level deterministic imperative program-
ming language. It is the target language for generating concrete programs from
verified abstract B machines, and it is translatable to high-level programming
languages [BB1, VT02].

The B0 language only includes concrete B substitutions and only handles
concrete data. It is easy to correctly find corresponding data instructions in
high-level programming languages for the concrete substitutions. There are two
correctness issues in translating B0 into a high-level programming language. The
first is how to translate parameter passing of B operations to the high-level pro-
gramming language. The above discussion on translating the combined B+CSP
channel answered this issue for our translation. The other issue concerning the
correctness of the translation is how to represent some B0 data structures in
a high-level language. Usually, high-level languages provide better support for
the arithmetic data, such as integer and boolean. The only concern here is some
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complex data structures, such as sets and arrays. Java fully supports array struc-
tures which easily represent the B0 array. Currently B0 sets are translated into
enum static classes.

3.2 Translation Tool

The automatic translation tool is constructed as part of the ProB tool. Our
translation tool is also developed in SICStus Prolog, which is the implementation
language for ProB.

In ProB, the B+CSP specification is parsed and interpreted into Prolog terms,
which express the operational semantics of the combined specification. The trans-
lation tool works in the same environment as ProB, acquires information on the
combined specification from the Prolog terms, and translates the information
into the Java program.

4 Examples

In this section we illustrate how the translation tool works. The example we
used here is a simplified version of the Wot, no Chicken example from [We00].
The example was originally constructed for emphasizing fairness issues in the
wait/notify strategy of Java concurrent programming. We use the example to
demonstrate the automatic production of a concurrent Java program from a
B+CSP specification. Our version of the example is simplified in omitting the
lazy philosopher who raises the fairness issues.

This example includes a chef who cooks chicken, a canteen which is used
to store the chicken, and several philosophers who consume the chicken. The
chef spends some time to cook a number of chickens and then put them in the
canteen. The philosophers take time to think, then take chicken from the canteen
and eat. The CSP specification in Figure 3 shows the behaviour of the system.
The Main process is the core process. It consists of a Chef process, and several
Chicken(i) processes and Philosopher processes Phil(i). The Phil(i) processes do
not synchronize with each other, while all the Chicken(i) processes synchronize
on the put event. The Phil(i) processes and Chicken(i) processes synchronize on
the getchicken(i) event. The Chef process synchronizes with other processes on
the put event.

Main = SYSTEM[|{put}|]Chef
Phil(i) = gotocanteen.i → getchicken.i → backtoseat.i → eat.i → thinking.i → Phil(i)
Chef = cook → put → Chef
Chicken(i) = put → getchicken.i → Chicken(i)
PHILS = ||| i:N@ Phil(i)
CHICKENS = [|put|] i:N@ CHICKEN(i).

SYSTEM = PHILS[|{getchicken}|]CHICKENS

Fig. 3. Chef-Philosophers example: CSP part



74 L. Yang and M.R. Poppleton

MACHINE chicken
......
SETS

PhilStates = {thinking, hungry, full} ;
......
OPERATIONS

......
gotocanteen(pp) =

SELECT pp:Phils THEN
state(pp) := hungry

END;
getchicken(pp) =

SELECT pp:Phils THEN
chicken(pp) := 1 ‖

canteen := canteen - 1
END;
eat(pp) =

SELECT pp:Phils THEN
chicken(pp) := 0 ‖
state(pp) := full

END;
backtoseat(pp) =

SELECT pp:Phils THEN
state(pp) := eating

END;
......

END

Fig. 4. Chef-Philosophers example: B part

The B specification in Figure 4 gives a part of the B specification of the
combined specification. It shows the canteen and philosopher part of the chef-
philosopher example. All the B operations use SELECT statements instead of
PRE statements. PRE aborts when the condition is not satisfied, which means
it is not guaranteed to terminate.

The execution of the B operations are guarded by the CSP specification.
Therefore, the translation tool generates a JCSP process object for each process
in the CSP specification.

In Figure 5, the Phils process groups all the interleaving Phil processes into
a process array. Using the translation rule for indexed interleaving, which is sim-
ilar to the rule for indexed parallel in Table 2, the target Phils.java class builds
an array procs for all the Phil process objects, and runs all of them in parallel.
All the associated channel objects are passed to the process object through its
constructor as parameters. The index numbers of all the Phil processes are also
passed to them as parameters. A target JCSP process class, which is translated

public class Phils implements CSProcess{
PaChoChannel gotocanteen;
PaChoChannel getchicken;
PaChoChannel backtoseat;
PaChoChannel eat;
PaChoChannel thinking;
/* Constructor of the class */
public void run(){

CSProcess[] procs = {
new Phil(gotocanteen, getchicken,

backtoseat, eat, thinking, 1),
new Phil(gotocanteen, getchicken,

backtoseat, eat, thinking, 2),
new Phil(gotocanteen, getchicken,

backtoseat, eat, thinking, 3),
new Phil(gotocanteen, getchicken,

backtoseat, eat, thinking, 4),
new Phil(gotocanteen, getchicken,

backtoseat, eat, thinking, 5)
};
new Parallel(procs).run();

}
}

Fig. 5. Target Java Class: Phils.java

from the Phil(i) process, is shown in Figure 6. All the channel objects in the
Phil.java are created by the superior process Phils. So a process Phil(i) needs
to synchronize on some shared channel objects with other processes. The Phil
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public class Phil implements CSProcess{
PaChoChannel gotocanteen;
PaChoChannel getchicken;
PaChoChannel backtoseat;
PaChoChannel eat;
PaChoChannel thinking;
Integer num;
/* Constructor of the class */
public void run(){

while(true){
gotocanteen.dotready(this,num);
getchicken.dotready(this,num);
backtoseat.dotready(this,num);
eat.dotready(this,num);
thinking.dotready(this,num);

}
}

}

Fig. 6. Target Java Class: Phil.java

process objects synchronize with Chicken process objects on getchicken.n chan-
nel objects. The execution sequence of all channel objects in the run method
implements the trace semantics of the CSP process Phil(i). When the process
is ready for the execution of a channel object, it calls the ready method, blocks
itself, and waits for other processes, which also synchronize on this channel, to
be ready for execution.

In the process class, channel objects are declared as instances of PaChoChannel
classes. Actually, they have their own channel classes which extend PaChoChannel
class. Therefore, when a undefined channel class is referred, it needs to be gener-
ated from the combined specification of the channel. The Eat.java class in Figure 7
is the target channel class of eat channel. This channel class is generated using
translation rule ChC, which is discussed in the previous section.

public class eat extends PaChoChannel{
Integer[] chicken;
PhilStates state;
public getchicken(Integer[] chicken,

PhilStates[] state){
super();
this.state = state;
this.chicken = chicken;

}

public synchronized void run(){
Integer dotvalueint =

(Integer)curdotvalue;
chicken[dotvalueint.intValue()] = 0;
state[dotvalueint.intValue()] =

PhilStates.FULL;
}

}

Fig. 7. Target Java Class: Eat.java

In the run method of the eat class, chicken is a global array which records
the number of chickens that each philosopher has. Changing the chicken record
of the current philosopher to 0 implements the data transition chicken(pp) :=
0 in the B operations. PhilStates is a enumeration class which indicates the
status of a philosopher. It can be THINKING, HUNGRY and FULL. After a
philosopher eats a chicken, his status changes to FULL. The global array state
is used to store the status of all the philosophers. Changing the status of the
current philosopher to FULL implements the data transition state(pp) := full

in B operation eat.
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5 Correctness Proof Strategy

A correctness verification is required for the translation. In [RR03, OC04], the
translations are discussed without considering the correctness of the translations.
Formal verification which proves the correctness of the translation in terms of
semantic models of the specification and Java programs respectively would be the
best solution. We propose a more modest approach based on [WM00] for future
work. The new PaChoChannel class is designed to represent the behaviour of
the combined B+CSP channel in the target Java application. To use the new
channel class more confidently, we still need to formally prove that it is a correct
implementation of the combined B+CSP channel.

In [WM00], the correctness of Welch’s original JCSP channel classes is proved.
Each JCSP channel class (i.e. Java implementation) is formally specified by a
CSP model. The desired channel behaviour (which the JCSP class implements)
is also specified in CSP. The refinement checking tool FDR is used to prove the
two CSP models equivalent: that is, JCSP refines CSP and CSP refines JCSP. A
number of such proofs are required: there are a number of JCSP channel classes,
implementing the various capabilities of CSP channels. The proof strategy starts
with the simple One2OneChannel class without alternation, and gradually builds
formal models for more complex JCSP channel classes.

To prove the correctness of the PaChoChannel class, a similar strategy is
proposed: to prove that the implementation refines the specification. First, a
B+CSP model for the PaChoChannel class is built. Then, the required behaviour
of the combined B+CSP channel is specified with B+CSP specifications. As the
ProB tool supports refinement checking between B+CSP models, we can prove
the PaChoChannel class correctly implements (i.e. refines) the B+CSP channel.

The construction of a concrete model for the PaChoChannel class with full
functionality will be a significant task, as will its verification. Hence we would
start with an abstract model of PaChoChannel with simple functionality, gradu-
ally building concrete models with incremental data and concurrency capabilities.

6 Related Work and Conclusion

Our work aims at automatically generating concurrent Java programs from
proven formal specifications. To achieve this, we extend the original JCSP
package to implement the combined B and CSP specification in Java. A set
of translation rules are developed to formalize the translation, and the auto-
matic translation tool is built upon the translation rule set. We also propose a
formal verification strategy for proving the correctness of the translation.

There is a similar tool [RR03] to translate a pure CSP specification into a
Java program using the original JCSP package. As it is not very convenient to
use CSP specification to model data aspect of systems, the target Java code of
this tool always needs further manual revision to add data elements. However,
manual revision has the danger that the concurrency model of JCSP may be
broken by such revision. From our experience, the tool only works on some
specific examples, and seems unstable.
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In [OC04], a set of translation rules are proposed for translating a subset of the
Circus specification language to Java using JCSP. The translation is restricted
because the JCSP package lacks the ability to implement data transitions of
the Circus language. Therefore, [OC04] proposes future work to extend JCSP
to support the full Circus semantics. They also plan to develop an automatic
translation tool using their rules.

[MK99] presents a strategy of using a process algebra language, FSP (Finite
State Processes) to build a formal concurrency model of Java concurrent pro-
gramming. The LTSA (Labelled Transition System Analyser) tool is adopted to
translate the FSP descriptions to a graphical representation. It also checks desir-
able and undesirable properties of the FSP model. However, it doesn’t provide
exhaustive rules or tool support to link the FSP syntax with the Java language.
The development of the concurrent Java code relies on users’ experience of this
approach. Correctness of the target Java program cannot be proved formally.

JML [LP05] and Jassda [BM02] are runtime verification approaches for using
formal methods to help develop concurrent Java programs. They both have as-
sertion languages to specify pre- and post-conditions, and temporal properties
of Java programs. The assertions can be checked at runtime to see whether they
are preserved during the execution of the Java programs. The Java programs
still need to be constructed manually.

An ambitious project [VH00] developed a tool Java Path Finder (JPF), which
integrates model checking, program analysis and testing for Java programs. The
JPF tool can generate a state model of the Java program via the support of its
own Java Virtual Machine(JV MJPF ). Accordingly, formally defined properties
and assertions can be verified in the state model. To avoid state explosion, the
Java language features that can be used in JPF are restricted.

Future plans include a substantial case study using the translation tool. The
stability and scalability of the translation strategy and the tool will be the focus
of this exercise. The development of a GUI (Graphical User Interface) is also
planned. It will provide facilities for configuring the translation, and interfacing
with the target Java application.

Acknowledgements. We would like to thank Denis A. Nicole for his very help-
ful comments.
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Abstract. Symmetry reduction is an established method for limiting
the amount of states that have to be checked during exhaustive model
checking. The idea is to only verify a single representative of every class
of symmetric states. However, computing this representative can be non-
trivial, especially for a language such as B with its involved data struc-
tures and operations. In this paper, we propose an alternate approach,
called permutation flooding. It works by computing permutations of
newly encountered states, and adding them to the state space. This turns
out to be relatively unproblematic for B’s data structures and we have
implemented the algorithm inside the ProB model checker. Empirical re-
sults confirm that this approach is effective in practice; speedups exceed
an order of magnitude in some cases. The paper also contains correct-
ness results of permutation flooding, which should also be applicable for
classical symmetry reduction in B.

Keywords: B-Method, Tool Support, Model Checking, Symmetry
Reduction.1

1 Introduction

The B-method [1] is a theory and methodology for formal development of com-
puter systems. It is used in industry in a range of critical domains. In addition to
the proof activities it is increasingly being realised that validation of the initial
specification is important, as otherwise a correct implementation of an incorrect
specification is being developed. This validation can come in the form of ani-
mation, e.g., to check that certain functionality is present in the specification.
Another useful tool is model checking, whereby the specification can be system-
atically checked for certain temporal properties. In previous work [14], we have
presented the ProB animator and model checker to support those activities.
Implemented in Prolog, the ProB tool supports automated consistency check-
ing and deadlock checking of B machines and has been recently extended for
1 This research is partially supported by the EU funded project: IST 511599 RODIN
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automated refinement checking [15], also allowing properties to be expressed in
CSP [4].

However, it is well known that model checking suffers from the exponential
state explosion problem; one way to combat this is via symmetry reduction [6].
Indeed, often a system to be checked has a large number of states with sym-
metric behaviour, meaning that there are groups of states where each member
of the group behaves like every other member of the group. In the case of B
machines this arises, e.g., when using deferred sets, where one set element can
be replaced by another without affecting the behaviour of the machine. The clas-
sical approach to symmetry reduction requires the determination of a so-called
representative for every symmetry group; the idea being that it is sufficient to
check just the representative. Computing such a representative, at least for a
formalism such as B with its sophisticated data structures and operations, is
a non-trivial task. In this paper we present an alternate way to add symmetry
reduction to B, which we have incorporated into ProB’s model checking algo-
rithm. Indeed, while it is not trivial to pick a (unique) representative for every
symmetry group, it is relatively straightforward in B to generate from a given
state a set of symmetric states, essentially by permuting the elements of deferred
sets. Our new algorithm uses that fact to achieve symmetry reduction; the ba-
sic idea being that when a new state is added to the state space all symmetric
states are also added. While this can result in a considerable number of symmet-
ric states being added, we show that—in the absence of counterexamples—all
of them would have been explored using the classical model checking algorithm
anyway. We have implemented this algorithm, and have evaluated it on a series
of examples. Our experiments show that big savings can be achieved (exceeding
an order of magnitude).

2 Motivation and Overview

Let us examine the following simple B machine, modelling a system where a user
can login and logout with session identifiers being attributed upon login.

MACHINE LoginVerySimple
SETS Session
VARIABLES active
INVARIANT active<:Session
INITIALISATION active := {}
OPERATIONS
res <-- Login = ANY s WHERE s:Session & s/: active THEN

res := s || active := active \/ {s} END;
Logout(s) = PRE s: active THEN active := active - {s} END

END

This machine contains the deferred set Session. For animation, the user has
to select some finite size for this set [14]. Figure 1 contains the full state space
generated by ProB for this machine, where the cardinality of Session was set
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to 3 (and ProB has automatically generated three elements Session1, Session2
and Session3 of that set). One can see that the states 2,3,4 are symmetric, in
the sense that:

– the states can be transformed into each other by permuting the elements of
the set Session;

– if one of the states satisfies (respectively violates) the invariant, then any of
the other states must also satisfy (respectively violate) the invariant;

– if one of the states can perform a sequence of operations, then any other
state can perform a similar sequence of transitions; possibly substituting
operation arguments (in the same way that the state values were permuted).
E.g., state 2 can perform Logout(Session1), state 3 can be obtained from
state 2 by replacing Session1 with Session2, and, indeed, state 3 can perform
Logout(Session2).

The same holds for the states 5,6 and 7.

Fig. 1. Full state space; representatives are marked by double boxes

Classical Approach to Symmetry Reduction. In classical symmetry reduction,
one would compute a representative for every set of symmetric states. A pos-
sible choice for such representatives for the above example would be the states
1,2,5,8; shown as boxes with double borders in Figure 1. When a model checker
with symmetry reduction encounters state 3, it would compute its representative
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(i.e., state 2) which is already in the state space. Thus state 3 would not need
to be checked. The same holds for state 4.

Deciding whether two states can be considered symmetric (also called the
“orbit problem”) is tightly linked to detecting graph isomorphisms (see, e.g.,
[6][Chapter 14.4.1]). Indeed, one can directly employ algorithms for detecting
graph isomorphisms, by converting the system states into graphs and then check-
ing whether these graphs are isomorphic. One efficient approach is by computing
the canonical form of the graphs (called certificates in [12]). Such an approach
also looks promising for B, but requires careful extension due to the data struc-
tures and operations of B.

New Approach. The new algorithm we present in this paper works the other way
around to classical symmetry reduction: when a new state is added to the state
space, we at the same time (proactively so to speak) add all states which can be
obtained by permuting the deferred set values of the state. This is based on the
three insights below:

– Insight 1: Whereas it is difficult to find out if two states are symmetric and
compute a representative, it is actually quite straightforward to generate
symmetric permutation of a given state; at least in B. Indeed, symmetry in
B occurs usually due to the use of deferred sets; this was the case in the
example above. One thus simply has to permute the deferred set elements
that occur in the given state.

Fig. 2. Full state space after permutation flooding
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– Insight 2: In order to prevent symmetric states from being checked, we can
simply add the permutations to the state space and mark them as “already
processed.”

– Insight 3: The obvious drawback of generating all permutations is that there
can be many such permutations, “flooding” the state space. However, they
would all have been encountered during an exhaustive model check anyway!
Thus—at least when compared to classical model checking in the absence of
counterexamples—we have nothing to lose by using the new algorithm. We
gain that for the permuted states we do not have to compute the invariant,
nor compute the enabled operations and their effect. Furthermore we apply
the permutation generation only to one representative of each symmetry
group; all the other representatives will be detected by straightforward state
hashing and identity checking using normalisation [14].

An illustration of the approach on the above example can be found in Figure 2.
When adding the state active = {Session1} the two symmetric states active =
{Session2} and active = {Session3} are also added to the state space. Similarly,
when adding active = {Session1, Session2} its two symmetric states are also
added. As can be seen, a reduction in the checking effort has been achieved: only
4 of the 8 states have to be checked (i.e., the invariant evaluated and the enabled
operations computed).

3 The Algorithm

Informal Explanation Recall, that in B there are two ways to introduce sets into
a B machine: either as a parameter of the machine (by convention parameters
consisting only of upper case letters are sets; the other parameters are integers)
or via the SETS clause. Sets introduced in the SETS clause are called given
sets. Given sets which are explicitly enumerated in the SETS clause are called
enumerated sets, the other given sets are called deferred sets.

Informally, two states are symmetric when the invariant has the same truth
value in both states and when they can both execute the same sequences of
operations (possibly up to some renaming of data values). While in the general
case it is undecidable whether two states are symmetric or not, we can gener-
ate for a given state s a set of states which are guaranteed to be symmetric.
The simplest approach is to permute the deferred set elements within s. This
is what we have done in the example in the previous section. One may won-
der why we only permute the deferred set elements, and not the elements of
enumerated sets. Indeed, in the example above, if we replace Session by an
enumerated set Session = {Session1, Session2, Session3} then the state
space would remain unchanged (Figure 1 would remain exactly the same) as
would the symmetry groups. However, without further knowledge about the
machine, we have no guarantee that this would always be the case. Indeed, as
the elements Session1, Session2, Session3 can now be referenced by name, they
could be used in the invariant or in the precondition of a machine. For example,
Session1:active => not(Session2:active) could be used as a precondition
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of an operation. This would break the symmetry, meaning that we would gener-
ate permutation states which are not symmetric to the original state. In other
words, by not checking the permutation states we may fail to detect an invari-
ant violation or deadlock. Similarly, if the above condition appears inside the
invariant, the state active = {Session1, Session3} would satisfy the invariant,
while the permutation active = {Session1, Session2} would not. Later, in Sec-
tion 6, we will explain how this restriction can be somewhat relaxed; but for the
time being we will only permute deferred set elements. Integers, booleans and
enumerated sets will not be permuted.

Formalisation. The state space of a machine is defined as the cartesian product
of the types of each of the machine variables and constants. We represent the
machine constants and variables by a vector of variables v1, . . . , vn (denoted V ).
The normal form for a B operation operating on the variables V with inputs
x and outputs y is characterised by a predicate P (x, V, V ′, y). Characterising a
B operation of the form X ←− op(Y ) as a predicate in this way gives rise to a
labelled transition relation on states: state s is related to state s′ by event op.a.b,
denoted by s →M

op.a.b s′, when P (a, s, s′, b) holds. Further details may be found
in [15]. We also add a special state root, where we define root →M

initialise s if
s satisfies the initialisation and the properties clause. We now describe how to
generate permutation states.

Definition 1. Let DS be a set of disjoint sets. A permutation f over DS is a
total bijection from ∪S∈DSS to ∪S∈DSS such that ∀S ∈ DS we have {f(s) | s ∈
S} = S.

We can now define permutations for B machines, which permute deferred set
elements, respecting the typing (i.e., we only permute within each deferred set).

Definition 2. Let M be a B Machine with deferred sets DS1, . . . , DSk and enu-
merated sets ES1, . . . , ESm. A function f is called a permutation for M iff it
is a permutation over DS1, . . . , DSk. We extend f to B’s other basic datatypes,
requiring that f must not permute integer, boolean or enumerated values:

– f(x) = x if x : ZZ or x : BOOL or x : ESj (for some j)
Values in B are either elements of given sets (including boolean values and in-
tegers), pairs of values, or sets of values. We recursively lift such an f to pairs
and sets as follows:

– f(x �→ y) = f(x) �→ f(y)
– f({x1, . . . , xn}) = {f(x1), . . . , f(xn)}

We also extend the domain of this function f to state vectors by defining
– f(〈v1, . . . , vk〉) = 〈f(v1), . . . , f(vk)〉

Take for example a B machine with deferred sets DS1 = {s1, s2} and DS2 =
{r1, r2}. Then f = {s1 �→ s2, s2 �→ s1, r1 �→ r1, r2 �→ r2} is a permutation over
{DS1, DS2}. Applying f to states we have for example f(〈s1〉) = 〈s2〉, f(〈r1, 5〉)
= 〈r1, 5〉, f(〈{s1, s2}〉) = 〈{s1, s2}〉, f(〈{s2}, s1〉) = 〈{s1}, s2〉, f(〈{s1}, {1 �→
s1}, {{}, {s2}}〉) = 〈{s2}, {1 �→ s2}, {{}, {s1}}〉. Observe that constants are part
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of the state and are thus also permuted by f .2 We can now define when two
states are a permutation of each other:

Definition 3. Let s, s′ be two states of a B Machine with deferred sets DS1, . . . ,
DSk. The state s is a permutation the state of s′ iff there exists a permutation
f over {DS1, . . . , DSi} such that s′ = f(s).

In order to generate all permutation states of a given state s we thus simply need
to enumerate all possible permutations over {DS1, . . . , DSi}. In our implemen-
tation we have added one improvement: if the state s only contains the deferred
set values V ⊂ ∪i=1..kDSi then we only need to generate “partial” permutations
(i.e., we do not have to map elements which do not occur in s).

We can now formalise our model checking algorithm. Below, error is a function
which returns true if the argument is an error state: usually, this means an
invariant violation or a deadlock.

Algorithm 3.1 [Consistency Checking with Permutation Flooding]

Input: An abstract machine M

Queue := {root} ; Visited := {}; Graph := {}
while Queue is not empty do
state := pop(Queue); Visited := Visited ∪ {state}
if error(state) then

return counter-example trace in Graph from root to state
else

for all succ,Op such that state →M
Op succ do

Graph := Graph ∪ {state →Op succ}
if succ �∈ Visited then

if random(1) < α then add succ to front of Queue
else add succ to end of Queue end if
Visited := Visited ∪ {s|∃f.f is a permutation function ∧ s = f(succ)}

end if
end for

end if od
return ok

Note that all elements of Queue and Visited have associated hash values. It is
therefore usually quite efficient to decide whether succ �∈ Visited . We have im-
plemented this algorithm within ProB, and we provide empirical results later in
Section 5. In the following section we will justify the soundness of the approach.

4 Soundness Results

The permutation flooding algorithm optimises the standard exhaustive checking
algorithm of ProB by assuming that if a state satisfies the invariant, then all
2 If that is not desired then one could simply impose on the allowed permutations,

that for all deferred set elements c occurring in the constants we have f(c) = c.
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permutations of that state also satisfy the invariant. It also assumes that if a
state can reach another state violating the invariant (or exhibiting a deadlock),
then all permutations of that state can also reach a state violating the invariant
(or with a deadlock). This section outlines the correctness of these assumptions.
A key theorem in showing this is that given a state s and a permuted state f(s),
the truth value of predicate P in state s is equivalent to the truth value of P in
state f(s).

The values of free variables in B expressions and predicates are either elements
of given sets (including Boolean values and integers), pairs of values, or sets of
values. We find it convenient to represent the state as a substitution of the
form [v1, . . . , vn := c1, . . . , cn], where v1, . . . , vn (denoted V ) are the variables
in any B expression/predicate and c1, . . . , cn (denoted C) are the values. Such
variables include state variables, machine constants, quantified variables and
local operations variables.

For expression E, we write E[V := C] to denote the value of E in state
[V := C]. This value will be an element of some type constructed from the given
sets of a machine. Similarly for predicate P , we write P [V := C] to denote the
boolean truth value of P in state [V := C]. Most B set operators are defined
in terms of other more basic operators and/or set comprehension3. This means
we can focus on the core predicate and expression syntax as defined in [1]. This
core syntax is shown in figures 3 and 44.

E ::= V ar
| Enum
| (E, E)
| E × E
| P(E)
| {x|x ∈ S ∧ P}
| E(E)

Fig. 3. Core syntax for expressions

P ::= P ∧ P
| ¬P
| E = E
| ∀x.(x ∈ S =⇒ P )
| E ∈ E

Fig. 4. Core syntax for predicates

The goal is now to prove that the permutation function f used in permuta-
tion flooding will preserve the evaluation of any expression or predicate. This is
expressed by the following theorem.

Theorem 1. For any expression E, predicate P , state [V := C] and permuta-
tion function f :

3 For example, S ⊆ T ⇔ ∀x.(x ∈ S =⇒ x ∈ T ).
4 To simplify the presentation we have ignored integer and boolean expressions. These

are never permuted by the algorithm. However an integer expression may contain a
subexpression of the form max(S) or card(S), where S is a set. The set S in max(S)
must be a set of integers and therefore will never be permuted. The set S in card(S)
can be any finite set and therefore may be permuted. Such permutation is sound
since the injectivity of f means that for any set S, card(S) = card(f(S)).
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f(E[V := C]) = E[V := f(C)]
P [V := C] ⇔ P [V := f(C)]

The theorem can be proved by structural induction over expression and predicate
terms. The induction is mutual since expressions may contain predicates and vice
versa. We don’t present the full proof here, but it is instructive to consider two
case of the structural induction. Firstly, consider the base case where E is an
enumerated value ev:

f(ev[V := C])
= f(ev) ev has no free variables
= ev f(ev)=ev
= ev[V := f(C)] ev has no free variables

The case of an equality predicate makes use of the injectivity of f :

(E1 = E2)[V := f(C)]
⇔ E1[V := f(C)] = E2[V := f(C)] substitution distributes
⇔ f(E1[V := C]) = f(E2[V := C]) induction hypothesis
⇔ E1[V := C] = E2[V := C] f is injective
⇔ (E1 = E2)[V := C]

Corollary 1. From Theorem 1 we can conclude that every state permutation f
for a B machine M satisfies

– ∀s ∈ S : s |= I iff f(s) |= I
– ∀s1 ∈ S, ∀s2 ∈ S: s1 →M

op.a.b s2 ⇔ f(s1) →M
op.f(a).f(b) f(s2).

In terms of the terminology of [6][Chapter 14], we have thus shown that our
permutations are automorphisms wrt B’s transition relation between states and
that the truth value of the invariant is preserved by our permutations. Note
that by induction, it follows from Corollory 1 that, if we can execute a trace
t from a state s1 to another state s2, then we can execute a corresponding
trace t′ from f(s1) to f(s2). This ensures that we do not miss out deadlocks
or reachable classes of symmetric states by checking just a single representative
of a class. It also ensures that we do not miss out on traces (up to renaming);
which is important for B’s refinement notion and will enable us (in future) to use
permutation flooding for symmetry reduction during refinement checking [15].

Proof. (Sketch) for Corollory 1.
The first point about invariant preservation is obvious. It is also trivial to show
that enabling of op is preserved by f by applying Theorem 1 to the guard
and pre-condition of op. The fact that the parameters and return values of an
operation are linked can be easily proven by adding new variables to the machine
for the arguments and return values and applying Theorem 1 with P being the
characteristic predicate of the operation op.

From the above results we can also derive an efficiency result for permutation
flooding, namely that all permutation states of some reachable state are also



88 M. Leuschel et al.

part of the reachable state space (this is nicely illustrated in Figures 1 and 2).
In practical terms, this means, in case we exhaustively explore the entire state
space, we have nothing to lose by applying permutation reduction.

5 Empirical Results

In a first phase we have performed classical consistency and deadlock checking
with and without permutation flooding, on a series of examples using ProB’s
model checker. The results can be found in Table 1. The column “Nodes” con-
tains the number of nodes for which the invariant was checked and the outgoing
transitions computed. The experiments were all run on a multiprocessor system
with 4 AMD Opteron 870 Dual Core 2 GHz processors, running SUSE Linux
10.1, SICStus Prolog 3.12.5 (x86 64-linux-glibc2.3) and ProB version 1.2.0.5

scheduler0.mch and scheduler1.ref are the machines presented in [15]. The sched-
uler machine is a variation of scheduler0.mch, and is taken from [13]. In all the
schedulers the deferred sets are the process identifiers. USB is a specification of
a USB protocol, developed by ClearSy. The deferred set are the data transfers.
RussianPostalPuzzle is a B model of a cryptographic puzzle (see, e.g., [10]). In
this case, the deferred set is the number of available keys and locks.
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Fig. 5. Model Checking time and evaluated nodes and transitions for scheduler1.ref

Analysis of the results: The results are very encouraging. As can be seen,
the permutation flooding algorithm pays off, sometimes achieving an order of
magnitude reduction. However, we do not get a fundamental change of the run-
time complexity, as Fig. 5 clearly shows. Still, Table 1 shows that a considerable

5 Note that neither SICStus Prolog nor ProB take advantage of multiple processors.
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Table 1. Model checking with and without (wo) permutation flooding

Machine Card Time Time Speedup Nodes Transitions
wo (s) with wo with wo with

scheduler 1 0.01 0.01 1.0 4 4 5 5
(from [13]) 2 0.04 0.03 1.6 11 7 25 16

3 0.09 0.04 2.1 36 11 121 38
4 0.43 0.07 6.0 125 16 561 75
5 1.97 0.23 8.6 438 22 2481 131
6 8.63 1.22 7.1 1523 29 10489 210
7 36.63 9.87 3.7 5232 37 42617 316

Russian 1 0.05 0.05 1.0 15 15 24 24
PostalPuzzle 2 0.32 0.21 1.6 81 48 177 105

3 1.32 0.46 2.9 441 119 1227 331
4 8.73 1.90 4.6 2325 248 7869 838
5 54.06 12.18 4.4 11985 459 47795 1826

scheduler0 1 0.01 0.01 1.0 5 5 6 6
(from [15]) 2 0.07 0.05 1.5 16 10 37 23

3 0.28 0.07 4.1 55 17 190 59
4 0.98 0.20 5.0 190 26 865 121
5 4.52 0.75 6.0 649 37 3646 216
6 20.35 4.74 4.3 2188 50 14581 351

scheduler1 1 0.01 0.01 1.0 5 5 6 6
(refines 2 0.05 0.06 0.9 27 14 62 32
scheduler0) 3 0.41 0.11 3.8 145 29 447 94

4 2.96 0.34 8.6 825 51 2948 211
5 23.93 1.70 14.1 5201 81 19925 405
6 192.97 13.37 14.4 37009 120 145926 701
7 941.46 167.95 5.61 297473 169 506084 1127

USB.mch 1 0.21 0.26 0.8 23 23 652 652
2 7.70 3.03 2.5 415 214 13120 6736
3 283.05 47.92 5.9 7663 1398 248540 45302

amount of nodes do not need to be evaluated for invariant violations or com-
puting the possible outgoing transitions. Hence, our method will pay off espe-
cially for machines with more complicated invariants or complicated operations.
In the machines above the invariants were actually very simple. For example,
scheduler1’s invariant only contains typing information. We have thus produced
an elaboration of scheduler 1 with a more complicated invariant. The results can
be found in Figure 2, and they confirm our expectation that for more compli-
cated machines the permutation flooding algorithm can be even more beneficial
(e.g., being 68.5 times faster than classical model checking for 5 processes). How-
ever, for simple machines such as the scheduler or scheduler0, the bottleneck is
the generation of the permutations. This explains why the relative performance
improvements drop off for these simple machines for higher cardinalities of the
deferred sets.
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Table 2. Further Experiments

Machine Card Time Time Speedup Nodes Transitions
wo (s) with wo with wo with

scheduler1+ 2 0.23 0.14 1.7 27 14 62 32
(with more 3 1.81 0.37 4.9 145 29 447 94
complicated 4 32.48 1.97 16.4 825 51 2948 211
invariant) 5 766.19 11.18 68.5 5201 81 19925 405

6 Extending the Algorithm for Enumerated Sets

In this section we discuss how to extend our algorithm for enumerated given
sets. It is clear that if an enumerated set element is referenced in the invariant
or in the precondition or guard of an operation, that this can cause unsoundness
of permutation flooding. We have seen that in Section 3. But what if the set
element is only referenced in the body of an operation? Let us look at the
following example.

MACHINE SymCounterEx
SETS S={s1,s2,s3}
VARIABLES x
INVARIANT x:POW(S) & card(x)=1
INITIALISATION x : (x:POW(S) & card(x)=1)
OPERATIONS add = BEGIN x := x \/ {s1} END
END

Here we have three initial states: x = {s1}, x = {s2}, x = {s3}. They are all
symmetric wrt the INVARIANT as well as wrt all Preconditions and Guards of
all operations. Still, it is unsound to just examine one representative. Suppose
we check x = {s1}. This state does not violate the invariant and we detect that
executing add in the state loops back itself and we would incorrectly report that
the invariant is not violated by the machine, while it is when executing the add
operation from either x = {s2} or x = {s3}.

It is instructive to examine exactly where the proof of Section 4 fails if we
permute enumerated sets. It is in Theorem 1, when we have an element of a
given set as the expression. In this case we no longer have f(ev) = ev. As a
result, we no longer have that evaluating the expression and then applying the
permutation gives the same result as applying the permutation first and then
evaluating the expression; breaking the symmetry results. However, if we do not
use an enumerated set element inside any expression, the proof still goes through.
This thus provides a way to extend our correctness results and methodology for
enumerated sets.

This idea has also been implemented inside ProB. The basic idea is that, for
every enumerated given set ESi, we compute the values DESi ⊆ ESi which are
not referenced syntactically inside the invariant, properties, initialisation or the
operations of a B machine. If card(DESi) > 1 then we will permute the values in
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DESi in the same way as deferred set values were substituted for each other. We
thus extend Definition 2 by allowing f to be a permutation over {DS1, . . . , DSk}
∪ {DESi | 1 ≤ i ≤ m ∧ card(DESi) > 1}.

Let us examine this extended algorithm on the example above. Figure 6 shows
the correct state space computed by ProB, where s2 and s3 are considered
symmetric wrt each other but not wrt s1. As can be seen, the invariant violation
is detected. (It can also be seen that ProB inserts artificial permute operations.
This is to provide the user with a better feedback when using the animator.)

One may wonder how often in practice a given set would be defined and only
part of its elements referenced inside the machine. One typical example is when
the set is actually a deferred set, but was enumerated for animation purposes (to
give meaningful names to the set elements). This case is actually quite common.

Fig. 6. Full state space after permutation flooding for SymCounterEx

7 Discussion, Related and Future Work

Future Work. One interesting avenue for further research is to use the per-
mutation flooding idea also for refinement checking. This could be achieved by
suitably taking the “permute” transitions inserted by ProB (see, e.g., Fig. 6)
into account. Another idea is to use symmetry reduction when evaluating pred-
icates with existential or universal quantification, to cut down on the number
of values that need to be tested for the quantified variables. For example, to
evaluate the formula ∀x.x ⊆ DS ⇒ P one would only have to evaluate P for one
representative per symmetry group. Finally, ProB has recently been extended
to be able to treat set comprehensions and lambda abstractions symbolically.
These are converted into a closure and are only evaluated on demand. For this
extension, we would need to adapt the permutation so that it permutes the
values stored inside the closures.

Related Work. The line of research developing symmetry reduction for temporal
logic model checking is the inspiration for the present article. Symmetry reduc-
tion in model checking dates back to [11] and [5], more recent works being [17,18].
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One difference with those works is that in our case we do not consider temporal
logic formulas, but B’s criteria of invariant violations, deadlocks and refinement.
Another important difference is the complexity of B’s data structures and opera-
tors, making the orbit problem [6] particularly tricky. Still, it should be possible
to extend this line of research for B, by using algorithms from graph theory [12]
and systems such as nauty [16].

As our experiments have indicated, classical symmetry reduction by comput-
ing a normal form (i.e., a representative of the set of symmetric states) may in
principle be able to achieve even better results than our approach. The draw-
back of our method is that all permutations are added all of the time (for one
representative per class). Depending on the B machine being checked, this may
be unnecessary work as by pruning symmetric states initially, many of the later
symmetric states may not be reachable anymore. E.g., in Fig 1, this is not the
case, but one could imagine that by pruning 3 and 4, states 6 and 7 became
unreachable. A classical symmetry reduction algorithm would thus not have to
compute a normal form for 6 and 7, whereas we will still add the states 6 and
7 as permutations of 5 to the state space. Furthermore, when invariant viola-
tions are present, adding permutations could result in the model checker taking
longer to find the first counterexample. However, there will also be cases where
permutation flooding is better than a classical symmetry reduction algorithm,
namely when the data values inside the individual states get complicated, thus
making the computation of the normal form of the state graphs expensive. In
our case, the complexity of computing the permutations does not depend on
the complexity of the data values being used (they just need to be traversed
once); only on the number of deferred set elements occurring inside the state.
In summary, a main advantage of our approach lies in its simplicity, along with
the fact that it can naturally deal with complicated data structures (such as the
closures discussed above).

Another class of related work is the one using symmetry for efficient testing of
satisfiability of boolean formulas. These works (e.g., [7], [2,3] or [8]) use symmetry
breaking predicates, which are determined using algorithms from graph theory
and which ensure that a subset of the state space will be ignored. Other related
work in the formal methods area is the BZ testing tool (BZTT) [13]. This is a
test-case generation tool, that also contains an animator. In contrast to ProB,
this animator keeps constraints about the variables of a machine, rather than
explicitly enumerating possible values. As a side benefit, this gives a simple
form of symmetry reduction for the deferred set elements (e.g., the states 2,3,4
in Fig. 1 could be represented by a single state of the form active = {s} with
the constraint s ∈ Session), but in general not for enumerated sets. Also, the
symbolic approach seems difficult to scale up to more complicated B operators
(such as set comprehensions, lambda abstractions, existential quantifications,
etc., which are not supported by BZTT).

Conclusion. In conclusion, we have presented a new way to achieve symme-
try reduction for model checking B specifications. The algorithm proceeds by
computing permutations of the states encountered during the model checking,
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and adding those permutations to the state space, marking them as already
processed. We have presented a formalisation of this approach, along with cor-
rectness results. We have also compared our approach to classical symmetry
reduction, arguing that either approach has its advantages and drawbacks. We
have implemented the algorithm inside the ProB toolset and have evaluated the
approach on a series of examples. The empirical results were very encouraging,
the speedups exceeding an order of magnitude in some cases.
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Abstract. Model-based testing is bound, by essence, to use the enumer-
ated data structures of the system under test (SUT). On the other hand,
formal modeling often involves the use of parameterized data structures
in order to be more general (such a model should be sufficient to test
many implementation variants) and to abstract irrelevant details. Conse-
quently, the validation engineer is sooner or later required to instantiate
these parameters. At the current time, this instantiation activity is a
matter of experience and knowledge of the SUT. This work investigates
how to rationalize the instantiation of the model parameters.

It is obvious that a poor instantiation may badly influence the qual-
ity of the resulting tests. However, recent results in instantiation-based
theorem proving and their application to software verification show that
it is often possible to guess the smallest most general data enumeration.
We first provide a formal characterization of what a most general instan-
tiation is, in the framework of functional testing. Then, we propose an
approach to automate the instantiation of the model parameters, which
leaves the specifier and the validation engineer free to use the desired
level of abstraction, during the model design process, without having to
satisfy any finiteness requirement.

We investigate cases where delaying the instantiation is not a problem.
This work is illustrated by a realistic running example. It is presented
in the framework of the BZ-Testing-Tools methodology, which uses a B
abstract machine for model-based testing and targets many implemen-
tation languages.

1 Introduction

Model-based testing (MBT) [7] is the process of using a formal model to derive
tests cases that are to be run on an implementation, named the system under
test (SUT). The model is designed by a validation engineer from an informal
specification, without looking at the implementation, except for the signatures
of control and observable methods. Nevertheless, several factors influence the
design of this model, among which the fact that the test methodology only
supports finite data structures.

When writing a formal model from an informal specification, the validation
engineer develops a complementary skill of formal specifier. Thus, he/she can
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take benefit of some specific features of formal modeling. One of them is the
possibility to abstract details of the informal specification by designing an initial
model with parameters. In the B method, this first model is called an abstract
machine, and the parameters can be either machine parameters or abstract (i.e.
not enumerated) sets. Then, coming back to his/her validation activity, the en-
gineer has to make all the model data finite, by instantiating them cleverly. Up
to now, this instantiation is performed by hand from the specifier’s knowledge
of the SUT and the informal specification.

However, since the engineer does not (have to) know all the implementation
and informal specification details, his/her instantiation work is somewhat artifi-
cial and not optimal, neither in time nor in quality. Indeed, a poor instantiation
may not exploit all the possibilities of the model: it may leave “dead code” in
it, and no test case will be produced for this dead part of the model, leaving a
–possibly important– part of the SUT not validated.

The first contribution of this work is the formalization (as a proof obligation)
of the “most general instantiation” of a formal model with respect to a coverage
criterion, corresponding to the idea of leaving no execution case without an as-
sociated test. Checking this proof obligation corresponds to dead code detection.
The second contribution is to show how to discharge this proof obligation in a
theorem prover or a constraint solver. The third contribution is a method based
on sorted logic to find an approximation of the most general instantiation. This
work is presented in the framework of the BZ-Testing-Tools [1], an approach
performing model-based testing from B machines.

The paper is organized as follows. Section 2 presents a running example, a
gsm11-11 specification that will be used to illustrate our approach. Section 3
introduces the principles of model-based testing, as performed within the BZ-
Testing-Tools. The proof obligation defining the most general instantiation is
given in Sect. 4. The techniques for solving this proof obligation are detailed in
Sect. 5. The novel instantiation method proposed to guide them is presented in
Sect. 6. Finally, Section 7 concludes and presents future work.

2 Running Example

Our running example is a simplified B model of the interface between the Sub-
scriber Identity Module (SIM) and the Mobile Equipment (ME) within the GSM
11.11 (Global System for Mobile communication) digital cellular telecommunica-
tions system. It is based on an informal specification [8] produced by the Special
Mobile Group (SMG). Section 2.1 briefly presents the aims of the GSM 11.11
standard and describes a parameterized B model of a fragment of it, written for
test purposes. Then, Section 2.2 analyzes a former experience on this example
where the instantiation was at the charge of the specifier.

2.1 Informal and Formal Specifications

The GSM 11.11 is a standard for the second generation of mobile phones. In this
system, the mobile phone embeds a writable card (the SIM: Subscriber Identity
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Module) containing security and application data. The SIM stores data in files
hierarchically organized in a tree structure. The tree root and the other tree
internal nodes are respectively called the master file (MF) and the dedicated
files (DF). They are the directories of the file structure. The tree leaves are
called the elementary files (EF).

MACHINE
gsm1 (FILES)

CONSTANTS
MF , DF ,
EM , /* Elementary Files under the MF */
ED, /* Elementary Files under a DF */
FA,
mf , dg, dt

PROPERTIES
MF ⊆ FILES ∧ DF ⊆ FILES ∧
EM ⊆ FILES ∧ ED ⊆ FILES ∧
MF ∩ DF = ∅ ∧ MF ∩ EM = ∅ ∧
MF ∩ ED = ∅ ∧ DF ∩ EM = ∅ ∧
DF ∩ ED = ∅ ∧ EM ∩ ED = ∅ ∧
FILES = MF ∪ DF ∪ EM ∪ ED ∧
FA ∈ ED −→ DF ∧
mf ∈ FILES ∧ dg ∈ FILES ∧ dt ∈ FILES ∧
MF = { mf } ∧ DF = { dg, dt } ∧
ei ∈ EM

VARIABLES
cd, cf

INVARIANT
cd ∈ (MF ∪ DF) ∧ cf ⊆ (EM ∪ ED) ∧
card (cf ) ≤ 1 ∧
( cf = ∅ ∨

(cf �= ∅ ∧ cf ⊆ ED ∧ cd ∈ DF) ∨
(cf �= ∅ ∧ cf ⊆ EM ∧ cd = mf ) )

INITIALISATION
cd := mf || cf := ∅

OPERATIONS
sw ←− SELECT FILE(ff ) =

PRE
ff ∈ FILES

THEN
IF (ff ∈ (DF ∪ MF))
THEN

/* The last selected file is cd */
IF (

( cd = mf ∧ ff ∈ DF ) ∨
( cd = dg ∧ ff = dt ) ∨
( cd = dt ∧ ff = dg ) ∨
( cd ∈ DF ∧ ff = mf ) ∨
( ff = cd ) ∨ ff = mf ))

THEN
cd := ff || cf := ∅ || sw := 9000

ELSE
sw := 9404 /* Not activable. */

END
ELSE /* ff is an EF */

IF (
( ff ∈ EM ∧ cd = mf ) ∨
( ff ∈ ED ∧ cd ∈ DF

∧ FA(ff ) = cd ) ∨ ff ∈ cf )
THEN

cf := {ff } || sw := 9000
ELSE

sw := 9404
END

END
END

END

Fig. 1. A small B model for the GSM 11-11 SIM - ME interface

During a communication between the SIM and the ME (Mobile Equipment),
the SIM is passive: it only answers to requests sent by the ME, which reads and
modifies the SIM files through functions defined in the communication interface.
Our model focuses on the SELECT function of this communication interface,
because it is the only one which interacts in a complex manner with the file
structure. This B machine, shown in Fig. 1, is simplified and its identifiers are
shortened in order to fit in the format of this paper. We now describe it in details.

The gsm1.mch machine is parameterized with the non empty finite set FILES
of all the files present on the SIM card. Since the master file is unique, it is mod-
eled in B by the mf constant. The SIM card can store files for many applications
but our model focuses on the main one, namely the GSM application, whose ded-
icated files are all directly under the MF. Consequently, the model distinguishes
four types of files: master file, dedicated file, elementary file under the master
file and elementary file under a dedicated file. These four types are respectively
modeled in B by the four pairwise disjoint sets MF, DF, EM and ED whose
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union is the set FILES of all the SIM files1. The property MF = {mf } states
that there is a unique master file and the property DF = {dg, dt} fixes the set of
dedicated files used by the GSM application. These two identifiers respectively
represent the directories DF GSM and DF TELECOM containing the appli-
cation data and some telecommunication service features. The file structure is
completely defined by the total function FA which maps each elementary file in
ED to its FAther, the dedicated file containing it. The data are completed with
the ei constant, representing the EF ICCID, an EF at the MF level storing a
unique identification number for the SIM.

The SELECT function is the sole function which can select a SIM file. More
precisely, it aims at selecting a directory to become the new current directory
and an EF to become the new current elementary file, in conformance with
some access rules. It is modeled by the SELECT FILE operation, which assigns
a value to the two state variables cd (current directory) and cf (current EF).

The initialization chooses the master file as current directory. One can infer
from the informal specification that there is always a single selected directory.
Consequently, the variable cd takes its values in MF ∪ DF. The informal speci-
fication also expects that there is always zero or one selected EF. Consequently,
the variable cf is defined as a set of elementary files (i.e. is included in EM∪ED)
and its value is the empty set when no EF is selected. The property that its car-
dinality should be zero or one is added to the machine invariant. The last part
of the invariant checks that the current EF, when selected, is always a child of
the current directory.

The SELECT function works as follows. If the candidate for selection ff is a
directory, it is selected iff it is the master file, the current directory, an immediate
child, a sibling or the father of the current directory. Now, if ff is an EF, it is
selected iff it is a child of the current directory or was already selected.

2.2 A Previous Experience

In a former work [2], members of our team have published a B model for the
GSM 11.11 (named gsm_revue.mch), where all the sets were enumerated and
where the file structure was modeled by a binary relation, itself enumerated as
a set of pairs. After generating tests sequences, the authors have noticed that a
branch of the model was never activated (this phenomenon is reproduced by the
first ELSE branch of our running example, marked with /* Not activable. */).

The explanation for this phenomenon can be threefold. Firstly, the informal
specification may be contradictory. Secondly, there may be a discrepancy be-
tween the informal specification, assumed contradiction-free, and branches of
the B model, making these branches inconsistent. Thirdly, the enumeration of
sets in gsm_revue.mch may be too restrictive to activate each branch.

After a closer look, the main explanation appeared to be a discrepancy be-
tween specifications: The informal specifier has indeed written that “Selecting a
DF or the MF [always] sets the current directory”, whereas the formal specifier
1 Note that, for this use of the B machine for generating tests, it is equivalent to

consider the FILES machine parameter as an abstract set.
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has added a case of failure for this selection. The test campaign revealed that
this case was not activable, for the enumerated file structure of gsm_revue.mch,
but the question remained open, whether this property was general or due to
a too restrictive enumeration. Our contribution is a methodology, described in
Sect. 4, 5 and 6, to answer such a question. In the present case, it gives two
answers. Firstly, the branch remains dead for any tree structure of height 1,
meaning that the specifier choice of one DF and four EF was general enough for
such a detection. Secondly, this branch becomes activable when one considers at
least one dedicated file of depth 2.

From this example, it is clear that detecting “dead code” in a B model is
a cumbersome and error-prone activity. We want to investigate ways to assist
it with tools. Since the first two explanations for dead branches involve an in-
formal side, they cannot be fully automatized. We therefore focus on the third
explanation, i.e. an instantiation of data which is not general enough to activate
each branch, by setting a framework where this instantiation is automatically
performed.

This instantiation guessing method is based on tools supporting hereditary
finite data structures. This excludes inductive structures and binary relations
in all their generality. Thus, the model gsm_revue.mch has been revised by
replacing the binary relation defining the file structure with a total function
associating its father to each elementary file. When limited to DF of depth
1, this leads to gsm1.mch, used in the following sections to illustrate how the
guessing method proceeds to find a good instantiation of the sets of files in this
tree structure. The method will prove that no instantiation of these sets can
activate the branch marked /* Not activable. */ in Fig. 1, i.e. that the specifier
choice in gsm_revue.mch was not that restrictive.

Now, in order to prove that a DF of depth 2 is sufficient to activate this
dead branch, we have also written a larger model, named gsm2.mch2. Finally,
note that the idea of considering such DFs, excluded in version 5.0.0 of the
standard, is not artificial, since version 6.2.0. of the GSM 11.11 standard allows
their existence.

3 Principles of Model-Based Testing from B Machines

This section describes model-based testing (MBT) from B machines, as per-
formed in the BZ-Testing-Tools [1]. This process takes as an input a B abstract
machine, representing the system under test (e.g. wiper controller, smart card,
speed control device, etc.) from a functional point of view. Test targets are de-
rived from this model according to different coverage criteria, chosen by the
validation engineer. Once the test target is defined, the model is animated (us-
ing a boundary model-checking approach) in order to build a complete test case.
This test generation process relies on a set-theoretic solver, named CLPS-BZ [3],
interfaced with constraint logic programming.

2 Available at http://lifc.univ-fcomte.fr/∼couchot/specs/gsm2.mch.



Instantiation of Parameterized Data Structures for Model-Based Testing 99

We present in this section the principles of test target definition, and the
associated coverage criteria. Then we introduce the CLPS-BZ solver. Finally, we
present the test target conditions of consistency.

3.1 Definition of the Test Targets

The BZ-Testing-Tools approach considers a test case as the activation of a sys-
tem behavior within a pertinent system state. This represents the behavioral
coverage. In addition, a decision coverage is considered to cover the different
possibilities of a disjunctive decision predicate, providing a specific coverage cri-
terion. Finally, the data coverage is obtained by a boundary analysis of the data
–input parameters and state variables– involved in the behavior. These three
items give the outline of the subsection.

Behavioral Coverage. A behavior can be seen as an operation in which no
branching exists. It is computed as a path in the control flow graph of a B
machine operation, in which each branching structure (IF, ASSERT or CHOICE
substitutions) creates a choicepoint. The behavioral coverage of the B machine
consists in producing one test target for the activation of each behavior, by
considering an activation condition for each behavior, as the conjunction of all
the predicates along the considered path.

1

2

3 7

4 86 10

5 9

0

ff ∈ FILES

ff ∈ (DF ∪ MF) ff �∈ (DF ∪ MF)

Cond1 ¬Cond1 Cond2 ¬Cond2

cd := ff ‖
cf := ∅ ‖
sw := 9000

sw := 9404

cf := {ff} ‖
sw := 9000

sw := 9404

Fig. 2. Control-flow graph of the SELECT FILE operation

The Fig. 2 presents the control flow graph of the SELECT FILE operation,
from the running example, where Cond1 is the first IF condition that is

(cd = mf ∧ ff ∈ DF) ∨ (cd = dg ∧ ff = dt)∨
(cd = dt ∧ ff = dg) ∨ (cd ∈ DF ∧ ff = mf)∨
(ff = cd) ∨ (ff = mf)
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and Cond2 is the second IF condition that is

(ff ∈ EM ∧ cd = mf) ∨ (ff ∈ ED ∧ cd ∈ DF ∧ FA(ff) = cd) ∨ ff ∈ cf.

Definition 1 (Set of Activation Conditions). The set of activation condi-
tions of a substitution is the set of activation conditions for each behavior ex-
tracted from an operation. We denote by act(Op) the set of activation conditions
for an operation Op.

Decision Coverage. The decision coverage is achieved by performing different
rewritings on the disjunctive predicates labeling the control-flow graph.

We consider four rewritings, each one deserving a particular decision coverage
criterion. Table 1 distinguishes these rewritings. It consists in creating a bounded
choice ([]) between the different elements of the rewriting, expanding the control
flow graph in as many subgraphs.

Table 1. Definition of the rewritings of the disjunctive predicates

Id Rewriting of P1 ∨ P2 Decision Coverage
1 P1 ∨ P2 DC and SC
2 P1 [] P2 D/CC
3 (P1 ∧ ¬P2) [] (¬P1 ∧ P2) FPC
4 (P1 ∧ P2) [] (P1 ∧ ¬P2) [] (¬P1 ∧ P2) MCC

Rewriting 1 (RW1, for short) consists in leaving all the disjunctions un-
changed. This rewriting satisfies the Decision Coverage (DC, for short), and
Statement Coverage (SC) criterion. Rewriting 2 (RW2, for short) consists in
creating a choice between the two predicates. Thus, the first branch and the sec-
ond branch independently have to succeed when being evaluated. This rewriting
satisfies the Decision/Condition Coverage criterion (D/CC) since it satisfies the
DC and the Condition Coverage (CC) criteria. Rewriting 3 (RW3, for short)
consists in creating an exclusive choice between the two predicates. Only one
of the sub-predicates of the disjunction is checked at one time. This rewriting
satisfies the Full Predicate Coverage (FPC) [11] criterion. Rewriting 4 (RW4,
for short) consists in testing all the possible values for the two sub-predicates to
satisfy the disjunction. This rewriting satisfies the Multiple Condition Coverage
(MCC) criterion.

The decomposition of operation SELECT FILE from the example into RW1-
behaviors is given by Table 2.

Data Coverage. The data coverage consists in performing a boundary anal-
ysis of the data that are involved in the behaviors, depending on their types.
A boundary analysis consists in selecting a data value at its extremum (either
minimum or maximum) of its domain within the context of the behavior acti-
vation. The extremum is chosen depending on the data types; basically, atoms
are enumerated, integers are selected at their bounds, sets are selected as their
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Table 2. RW1-Behaviors extracted from the example

Behavior Activation Condition
b1 ff ∈ FILES ∧ ff ∈ MF ∪ DF ∧ ((cd = mf ∧ ff ∈ DF)∨

(cd = dg ∧ ff = dt) ∨ (cd = dt ∧ ff = dg)∨
(cd ∈ DF ∧ ff = mf) ∨ (ff = cd) ∨ (ff = mf))

b2 ff ∈ FILES ∧ ff ∈ MF ∪ DF ∧ (cd �= mf ∨ ff �∈ DF)∧
(cd �= dg ∨ ff �= dt) ∧ (cd �= dt ∨ ff �= dg)
(cd �∈ DF ∨ ff �= mf) ∧ (ff �= cd) ∧ (ff �= mf)

b3 ff ∈ FILES ∧ ff �∈ MF ∪ DF ∧ ((ff ∈ EM ∧ cd = mf)∨
(ff ∈ ED ∧ cd ∈ DF ∧ FA(ff) = cd) ∨ ff ∈ cf)

b4 ff ∈ FILES ∧ ff �∈ MF ∪ DF ∧ (ff �∈ EM ∨ cd �= mf)∧
(ff �∈ ED ∨ cd �∈ DF ∨ FA(ff) �= cd) ∧ ff �∈ cf

minimal and maximal cardinality. This data selection is recursively performed
on the elements of pairs.

It is important to notice that this step requires finite data structures so that
a bound for data can be selected.

3.2 The CLPS-BZ Constraint Solver

Originally designed to animate B machines, the CLPS-BZ constraint solver [3]
is a set-theoretic solver combined with a finite domain solver on integers. It
allows the acquisition and the evaluation of constraints written using B-like
basic operators.

CLPS-BZ uses an arc-consistency algorithm, whose worst-case complexity is
O(ek3) where e is the number of constraints and k is the cardinality of the
largest data domain, for checking the satisfiability of the constraint system.
Such an algorithm checks only the consistency between the adjacent edges within
the constraint graph. As a consequence, the consistency of the whole constraint
system can only be ensured by the enumeration of the solutions, performed using
a forward-checking labeling algorithm, whose complexity is O(ek2).

3.3 Behavior Consistency Condition

Each test case targets one behavior, extracted from the machine operations.
Thus, a test case is relevant only if the target behavior is activable, i.e. its
activation condition is consistent. The following definition formalizes this notion
of behavior consistency, in the context of the machine properties and invariant.

Definition 2 (Behavior Consistency). A behavior bi is consistent iff the
formula

P ∧ B ∧ (∃X . I ∧ ai) (1)

is satisfiable, where P (resp. I ) is the predicate of the PROPERTIES (resp.
INVARIANT) clause, X is the tuple of the machine state variables, ai is the
activation condition corresponding to the behavior bi and B is the formula
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∧
E

1�j<k�l∧
ej ,ek∈E

ej �= ek

precising that the elements of the set E are pairwise distinct, for each set E =
{e1, . . . , el} enumerated in the SETS clause.

/* Part coming from the PROPERTIES clause P */
MF ⊆ FILES ∧ DF ⊆ FILES ∧ EM ⊆ FILES ∧ ED ⊆ FILES ∧
MF ∩ DF = ∅ ∧ MF ∩ EM = ∅ ∧ MF ∩ ED = ∅ ∧ DF ∩ EM = ∅ ∧
DF ∩ ED = ∅ ∧ EM ∩ ED = ∅ ∧ FILES = MF ∪ DF ∪ EM ∪ ED ∧
FA ∈ ED −→ DF ∧ mf ∈ FILES ∧ dg ∈ FILES ∧ dt ∈ FILES ∧
MF = {mf} ∧ DF = {dg, dt} ∧ ei ∈ EM ∧
∃ cd, cf . /* Part coming from the INVARIANT clause I */

cd ∈ (MF ∪ DF) ∧ cf ⊆ (EM ∪ ED) ∧ card(cf) ≤ 1 ∧(
cf = ∅ ∨ (cf �= ∅ ∧ cf ⊆ ED ∧ cd ∈ DF) ∨
(cf �= ∅ ∧ cf ⊆ EM ∧ cd = mf)

)
∧

∃ ff . /* Activation condition of behavior b4 */
ff ∈ FILES ∧ ff �∈ MF ∪ DF ∧ (ff �∈ EM ∨ cd �= mf) ∧

(ff �∈ ED ∨ cd �∈ DF ∨ FA(ff) �= cd) ∧ ff �∈ cf

(2)

Fig. 3. b4 consistency proof obligation

For instance, Fig. 3 shows the consistency condition of the fourth RW1-
behavior extracted from our example, provided the FILES set is enumerated.

Up to now, all the sets were enumerated and the existential quantifications
in (1) were expanded in disjunctions. This consistency was checked by the CLPS-
BZ solver and the inconsistent behaviors were used to eliminate test cases.

However, the detection of many inconsistent behaviors could be a sign of
weakness of the formal model with respect to the testing methodology, namely
a too narrow instantiation of its data structures. Our purpose is to improve the
testing methodology by adding a tool that guesses a “good” instantiation. We
therefore formalize in the next section a notion of most general instantiation for
a B model, that makes all its behaviors activable.

4 Most General Instantiation

Intuitively, we are looking for an instantiation of a B machine that makes each
of its behaviors activable from at least one of the reachable machine states.

Under the assumption that the reachable states are characterized by the IN-
VARIANT clause, this condition can be formalized by the following definition,
where F (Xi) denotes the formula obtained from formula F by replacing the tuple
of state variables X with Xi .

Definition 3 (Activation Condition). All the behaviors of a B machine are
activable if

P ∧ B ∧
∧

{i|bi is a machine behavior}
∃Xi . I (Xi) ∧ ai(Xi) (3)
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is satisfiable for each behavior bi , where P, B and ai have the same meaning as
in Sect. 3.3 and Xi is a distinct tuple of state variables for each behavior bi .

The tuple of state variables in (3) is distinct for each behavior, because each
behavior may be activable from a different reachable state.

Now, a model of (3) is an instantiation with enumerated sets of all the B
machine parameters and abstract sets. We suggest to call it the most general
instantiation , since it makes the instantiated machine as general as the pa-
rameterized one, for a given testing coverage criterion. Another feature of this
instantiation is that it minimizes the sum of the cardinalities of the instantiating
sets.

In practice, the method to compute this most general instantiation is twofold.
First of all, the behaviors that are not activable for any instantiation are detected
by checking the satisfiability of (1) without enumerating the parametric sets.
The specifier is informed that his/her specification contains some dead code
whatever the parameter values are. Then, the inconsistent behaviors are ignored
and a constraint solver is combined with an instantiation procedure to find an
instantiation that make all the remaining consistent behaviors activable in a
reachable state.

The next sections detail the techniques involved in this method.

5 Checking the Consistency

Finding a model for (3) may take benefit of any satisfiability decision procedure:
a negative answer suggests that the specifier should modify the model whereas a
positive one ensures the existence of a general instantiation and is therefore an
intermediate step before computing it. This satisfiability can be checked either
with a suitable prover or with a constraint solver, provided the data structures
are first made finite.

In the proof-based approach, we exploit the existing bam2rv3 tool that trans-
lates set-theoretic formulas into first order equational formulas ready to be dis-
charged in the haRVey prover [6]. The choice of this tool is motivated by its
compliance with set-theoretic formulas and its scalability [5].

Before applying the constraint-based approach, each machine parameter is
constrained to be equal to (or included in) an arbitrary enumerated superset.
For instance, the set S = {a01, a02, a03, . . . , a30} can be used as a superset
of FILES, since the informal specification [8] allows a maximum of 30 files to
exist on the card. The resulting constraints are then discharged into the CLPS-
BZ solver, already used in the model-based testing methodology presented in
Sect. 3.

In practice, for efficiency reasons, we first check whether each behavior is
consistent, and then check the satisfiability of (3) restricted to the consistent
behaviors. Table 3 summarizes the experimental results4 obtained with each tool
3 http://lifc.univ-fcomte.fr/∼giorgett/Rech/Software/bam2rv/index.html
4 Run on a P4 2.4 GHz with 640Mb RAM.
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applied to the RW1-behaviors from Table 2. The third (resp. fourth) column gives
the time consumed to check the satisfiability with the constraint FILES ⊆ S
(resp. FILES = S ). The fifth column gives the first instantiation found by CLPS-
BZ. The last column gives the time consumed by the proof-based approach with
haRVey.

Table 3. Consistency results for the RW1-behaviors

Behavior Satisfiable? CLPS⊆ CLPS= Instance haRVey
b1 yes 0.4 s 0.3 s FILES = {dg, dt,mf},ff = dg, 0.4 s

DF = {dg, dt}, MF = {mf},
ED = ∅,EM = {ei},FA = ∅

b2 no 0.3 s 0.3 s 0.4 s
b3 yes 0.4 s 0.3 s FILES = {dg, dt,mf, ei}, ff = ei , 0.5 s

DF = {dg, dt}, MF = {mf},
ED = ∅,EM = {ei},FA = ∅

b4 yes > 1 h 0.5 s 0.3 s

Globally, an interesting result is that proving a consistency for any value of
FILES with the haRVey prover is not much more time consuming than checking
it with CLPS-BZ for a unique enumeration of FILES, with 30 elements.

A second result is that all the methods answer that the behavior b2 is not
activable. As announced in Sect. 2, the corresponding behavior extracted from
the larger model gsm2.mch is proved to be activable by haRVey (or by CLPS-BZ
after enumerating FILES with 30 elements) in less than one second.

Finally, the main result concerns b4. For that behavior the enumeration strat-
egy of CLPS-BZ takes too much time (more than one hour) when FILES is con-
strained to be included in S . It is so because the detection by arc-consistency
is not sufficient and CLPS-BZ continues by instantiating from the initial FILES
enumeration, which is too large. The next section will address this problem.
For the moment, since haRVey gives a result, the combination of both tools is
satisfactory.

The next step of the method, checking the satisfiability of (3), presents the
same difficulty as the former one, since (3) is just a generalization of (1) to many
behaviors. Hence, in (3), a coarse choice of the superset size would again make
the solver diverge. The next section presents a method that aims at avoiding
such a combinatorial explosion by restricting the size of the superset S .

6 Sort-Based Instantiation

The previous section ends with the idea that coarsely bounding the size of the
machine parameter may make the instantiation process diverge. In order to re-
duce this problem, this section puts a bridge between the investigated challenge
of guessing a “good” instantiation and classical methods from automated rea-
soning in first order many-sorted logics.
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The underlying idea is that the sets we want to instantiate often come from a
partitioning of more global sets, hence are pairwise disjoint. Consequently, they
can be seen as sorts and the consistency and activation conditions can be seen
as formulas to satisfy in a first order many-sorted logic. In such a logic, the
choice of an Herbrand universe for each sort corresponds to the instantiation
of the associated set. Another use of a many-sorted version of the Herbrand
interpretation to verify software can be found for instance in [9].

Let us now detail the instantiation method derived from this simple idea and
illustrate it on the consistency condition of behavior b4.

A static analysis of the CONSTANTS and PROPERTIES clauses can detect
that some abstract sets partition larger abstract sets. This analysis starts with
the abstract sets declared as machine parameters (or in the SETS clause). They
are considered as primary sorts. Then, the analysis iterates the following two
steps: firstly, it considers that any set inclusion whose right member is a sort
defines its left member as a sort too; secondly, it checks whether the sorts in-
troduced so are pairwise disjoint. In our example, it is obvious that the primary
sort is FILES and that the other sorts are MF, DF, EM and ED. The predicates
defining the sorts are then removed from the formula. In (2), the first three lines
of predicates are removed so.

It is now possible to assign one sort or more to each variable. We consider the
non obvious case where a variable may have many sorts i.e. when it belongs to
(or is included into) a union of sets. For instance the predicate cd ∈ MF∪DF is
interpreted by cd is either of sort MF or of sort DF. Similarly, the elements of
cf are either of sort EM or of sort ED.

Each set-theoretic predicate (cardinality, inclusion, equality) is firstly trans-
lated into a formula where the sole predicates are equality and membership. The
set equality is decomposed into two inclusions. Each union (resp. intersection)
is subsequently translated into a disjunction (resp. conjunction). For instance

cf ⊆ (EM ∪ ED) ∧ card(cf) � 1 (4)

is translated into

∀ x . (x ∈ cf ⇒ (x ∈ EM ∨ x ∈ ED)) ∧ ∀ x , y . (x ∈ cf ∧ y ∈ cf) ⇒ x = y (5)

where x and y are fresh variables whose sort comes from cf, i.e. is either EM or
ED.

We are left with deciding the satisfiability of the formula in a many-sorted first
order logic with equality and membership. We classically begin with considering
a Skolem form of the formula. For instance, the quantifications on cd, cf and ff
in (2) are removed and these variables are replaced with the fresh constants cd,
cf and ff.

A formula of a first order many-sorted logic is satisfiable if and only if it has a
many-sorted Herbrand model [9]. We compute then the graph of sort dependency
whose nodes are labelled with the sorts and whose oriented edges encode the
dependency between sorts: a sort s depends of the sorts s1, . . . , sn if there is a
functional symbol whose signature is s1, . . . , sn → s . These functional symbols
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are either already present in the quantified formula or are introduced by the
skolemization step. For instance, Figure 4 shows the graph resulting from the
skolemization of (2). It contains only one edge, which goes from the sort ED to
the sort DF since the sole non constant functional symbol in the skolemization
of (2) is FA.

EM ED DF MF
FA

Fig. 4. Graph of sort dependency of (2)

We compute then the Herbrand universe by firstly considering the constants
of each sort and secondly building new terms with the functional symbols in the
formula in accordance with the sorts. The computation (and thus the resulting
Herbrand universe) is finite if and only if the graph of sort dependency is acyclic,
which is the case for our example.

An interesting point in this procedure is the treatment of terms that may have
many sorts, like cd with the sorts MF and DF in our example. This corresponds
to a disjunction that a thinner notion of behavior could decompose. We suggest
in this case to add a distinct fresh constant for each sort. For instance, for the
behavior b4, cd4a and cd4b are respectively added in the sorts MF and DF.

This choice has the advantage that it is meaningful for the specifier: each new
constant corresponds to a distinct execution case in a behavior. Moreover, the
constant name can encode this case (like a and b in our example), thus offering
a complete traceability of the origin of each constant. The result is obviously an
upper approximation of the desired instantiation, but it reflects the degree of
precision of the coverage criterion that has produced these behaviors.

One may think that this procedure could be refined by interpreting each
enumerated set on its set of constants (for instance MF interpreted on {mf}
and DF on {dg, dt}). However, such an optimization would require equating
two constants and propagating this information through terms and sorts. Since
this propagation is already developed in the CLPS-BZ solver, we suggest not to
implement this optimization, but let the solver do the remaining work.

For the behavior b4 of the running example, the sort-based instantiation is
MF ⊆ {mf, cd4a , ff4a}, DF ⊆ {dg, dt, cd4b ,ff4b ,FA(ff4d)}, EM ⊆ {ei ,ff4c} and
ED ⊆ {ff4d}. Then, starting from this result, CLPS-BZ finds the following most
general instantiation, MF = {mf}, DF = {dg, dt}, EM = {ei}, ED = {ff4d}, later
called mgi1, in less than one second.

Finally, the sort-based instantiation found for the conjunction of the three
consistent behaviors b1, b3 and b4 is MF ⊆ {mf, cd1a ,ff1a , cd3a ,ff3a , cd4a , ff4a},
DF ⊆ {dg, dt, cd1b ,ff1b ,FA(ff1d), cd3b , ff3b ,FA(ff3d), cd4b ,ff4b ,FA(ff4d)}, EM ⊆
{ei ,ff1c , ff3c ,ff4c} and ED ⊆ {ff1d , ff3d ,ff4d}. Again in less than one second,
CLPS-BZ finds a most general instantiation that appears to be mgi1 again.
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7 Conclusion and Future Work

The global aim of the present work was to unburden the specifier from instan-
tiating the parameters of his/her formal model, when this model is designed to
guide the automated generation of tests. When this formal model is a B machine,
it proposed a way to assist the instantiation phase, by guessing an enumeration
that is sufficient to be employed within the test generation process. The result-
ing enumeration is general enough for activating all the consistent behaviors
extracted from the B machine operations. If it exists, then this enumeration
serves to initialize the SUT. Otherwise, it means that no data is suitable for
testing the wholeness of the SUT. The specifier is then invited to cut his/her
model in separate parts, in a way that remains to be defined.

This approach is related to test data generation with tools such as Korat [4].
Korat aims at producing complex Java structures (such as balanced trees, etc.)
from a boolean method describing the properties of the structure and a bound
on the size of the structure. This approach aims at providing test data as inputs
for Java unit tests. Basically, one may think that our approach is similar, since
we both rely on constraint solving for instantiating the data structures. Never-
theless, the bound used by Korat is user-defined, whereas our approach proposes
to automatically compute it.

For conciseness, this work has been restricted to the RW1 decision coverage, but
it is directly extensible to the RW2, RW3 and RW4 ones. Furthermore, the sort-
based instantiation is presented for one level of sorts, but holds for many levels
too. Since the key is an acyclic graph of sorts, the method is suitable for many
data structures like arrays, trees of bounded depth (as seen in the gsm2.mch) . . .

It is important to notice that although our approach has been presented in
the context of model-based testing, it can be employed for other purposes such
as model-checking using ProB [10]. Indeed, the ProB model-checker also requires
finite data domains. Such an instantiation phase could be performed as a prepro-
cess, that would allow all the operations to be activable, improving the results
of a model verification.

References

1. F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux,
N. Vacelet, and M. Utting. BZ-TT: A Tool-Set for Test Generation from Z and B
using Contraint Logic Programming. In Formal Approaches to Testing of Software,
FATES 2002 workshop of CONCUR’02, pages 105–120, 2002.

2. E. Bernard, B. Legeard, X. Luck, and F. Peureux. Generation of test sequences
from formal specifications: GSM 11-11 standard case study. International Journal
of Software Practice and Experience, 34(10):915–948, 2004.

3. F. Bouquet, B. Legeard, and F. Peureux. CLPS-B: A constraint solver to animate
a B specification. International Journal on Software Tools for Technology Transfer,
STTT, 6(2):143–157, 2004.

4. C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on
java predicates. In ISSTA’02: Proceedings of the ACM SIGSOFT international
symposium on Software testing and analysis, pages 123–133. ACM Press, 2002.



108 F. Bouquet et al.
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Abstract. This paper proposes a way to verify temporal properties ex-
pressed in LTL (Linear Temporal Logic) on B Event Systems. The method
consists in generating a B representation of the Büchi automaton asso-
ciated with the LTL property to verify. We establish the consistency of
the generated event system implies the satisfaction of the LTL property
on the executions of the original event system. We also characterize the
subset of LTL preserved by the B refinement and we propose another re-
finement relation, with necessary and sufficient condition for preserving
any given LTL property.

Keywords: LTL, Büchi Automaton, Verification, Refinement.

1 Introduction

Formal modelling is a widely spread practice in the software developpment. Mod-
elization languages are used to formally describe the systems to study, leading
to safer implementations.

The B method [1] is an incremental software engineering process, starting from
the building of an abstract system which is later on refined to reach an imple-
mentation. For each step, properties have to be checked to ensure the correctness
of the specification. In the case of a B abstract event systems, the specifier has
to ensure that the invariant is established by the initialization and preserved by
the execution of an event. This is the verification process which aims at checking
the correctness of the specification.

Our aim is to check that the model has an expected behavior, i.e., satis-
fies the requirements of an informal specification. For that, one can express the
requirement as formal properties that are checked on the model. A fundamen-
tal framework for such a verification is provided by temporal logics, describing
the behavior of the specification over (discrete) time. In [4], Abrial and Mussat
addresses the verification of temporal requirements in the B framework, by in-
troducing a dynamic modality P � Q intuitively meaning that, after a state
where P holds, a state where Q holds must inevitably be reached in the future.

In this paper, we extend the work of Abrial and Mussat by addressing the
verification of properties expressed in Linear Temporal Logic (LTL) and we study
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their preservation by the B refinement of event systems. The three contributions
of the paper are: (1) A method, close to the one of Alpern and Schneider [7],
allowing the verification of LTL properties within the B framework without ex-
tending it. The approach is the following: from an event system M and a LTL
property φ, we build an event system Mφ such that the consistency of Mφ im-
plies that all the execution paths of M satisfies φ. The method is shown to be
sound; (2) A characterization of the LTL fragment that is preserved by the B
refinement; (3) A new refinement relation, called the φ-refinement, that is both
necessary and sufficient to preserve a given property φ.

This paper is composed as follows. Section 2 recalls notions about B event
systems, defines LTL syntax and semantics and recalls well-known results about
these notions. Section 3 explains how a LTL formula can be verified within the B
framework. The verification is done through the expression in a B machine of the
automaton associated with the LTL formula. We establish the soundness of the
methodology. Section 4 recalls the notion of B refinement and define the notion
of preservation of LTL properties during the refinement. Section 5 characterizes
the subset of LTL preserved by the B refinement, whereas Section 6 proposes a
new refinement relation, the φ-refinement. Section 7 concludes and presents the
perspectives for future work.

Nota bene. Proofs of theorems and propositions are not included in this paper
but can be found in [13].

2 Preliminaries

This section introduces the theoretical background of the paper. First, we recall
in Sect 2.1 general notions about B event systems. Section 2.2 defines the notions
of traces and execution paths associated to event systems. Section 2.3 presents
the Linear Temporal Logic (LTL) and gives its syntax and semantics over a path
of an event system. Section 2.4 presents the structure of Büchi automata, used
for the verification of LTL.

2.1 B Event System

First introduced by J.-R Abrial [1,2], Event B is both a formal development
method and a specification language. B event systems are particular B machines
where all operations are events. Intuitively, an event has no precondition and
can only modify the internal state of the system. For formally defining a B event
system, we need to recall the notion of Generalized Substitution and Weakest
Precondition Calculus.

B predicates on a set of variables x are denoted P (x), Q(x), . . .. When there
is no ambiguity on x, we simply denote P, Q, . . .. We consider in this paper
the following primitive generalized substitutions, (denoted S, T, . . .): Simple or
multiple variable substitution (x, y... := E, F...); guarded substitution (P =⇒
T ); sequence (S; T ); bounded choice (S[]T ) and unbounded choice (@z.S). Given
a substitution S and a post-condition Q we are able to compute the weakest
precondition P such that, if P is satisfied, Q is satisfied after the execution of S.
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The weakest precondition, defined in [1] is denoted [S]Q. We denote by 〈S〉 the
expression ¬[S]¬Q, intuitively meaning that if 〈S〉 is satisfied, there exists a
computation of S terminating in a state satisfying Q. Given a B generalized
substitution S, there exists three particular predicates: a termination predicate
trm(S) denoting the termination of S, a pre-post predicate, denoted prdx(S)
relying the values x before the execution of S with the value x′ after the execution
of S; and a feasibility predicate fis(S).

Definition 1 (prdx, fis(S), trm(S) [1]). Let S be a substitution. The predicates
prdx, fis(S), trm(S) are defined as follows

prdx(S) = 〈S〉(x = x′) fis(S) = 〈S〉(true) trm(S) = [S](true)

In the rest of the paper, events are characterized as follows:

Definition 2 (Events). An event e is defined by a predicate G, called the guard
of e and a generalized substitution T called the action of e such that G ⇒ fis(T )
and trm(T ) ⇔ true.

From now on, given an event e, we denote guard(e) its guard and action(e) its
action. A B event system is defined as follows.

Definition 3 (B event system).
An event system M is a tuple < xM , IM , InitM , InterfaceM > where

– xM is a set of variables;
– IM is a predicate over xM called invariant;
– InitM is a substitution called initialization;
– InterfaceM is a set of events.

Figure 1 displays an example of B event system, describing a system composed
of two platforms: an input platform and an output (respectively modeled by
two booleans De and Dt). A platform is empty (resp. busy, i.e., a piece is on
the platform) is modeled by a value set to FALSE (resp. TRUE. An event load
permits to load a piece on the input platform. An event unload puts the piece on
the output platform and an event discard leaves out the piece from the output
platform. In this paper, we are interested in the verification of event systems
without deadlock since we aim at reasonning over infinite executions. An event
system is without deadlock if in each state, at least one event can be executed.

Definition 4 (B system without deadlock). An event system M is without
deadlock if:

IM ⇒
∨

e∈InterfaceM

guard(e)

We only consider, from now on, B event systems without deadlock, since we
reason about infinite executions of event. It is straightforward to notice that the
B event system displayed in Fig. 1 is without deadlock.

A fundamental notion for B event systems is the notion of consistency. We say
that a B event system is consistent if the initialisation establishes the invariant
and if each event of the system preserves it.
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MACHINE
Robot

VARIABLES
De,Dt

INVARIANT
Dt ∈ BOOL ∧ De ∈ BOOL

INITIALISATION
Dt := FALSE ‖ De := FALSE

OPERATIONS
Load = SELECT Dt = FALSE

THEN Dt := TRUE
END;

Unload = SELECT Dt = TRUE
∧ De = FALSE

THEN Dt := FALSE
‖ De := TRUE

END;

Discard = SELECT De = TRUE
THEN De := FALSE
END

END

Fig. 1. Example of a B event system

Definition 5 (Consistency of an Event System [1]). An event system M
is consistent, denoted M |= true if [INITM ]I and ∀e ∈ InterfaceM.(IM ⇒ [e]IM ).

In [4], Abrial and Mussat have introduced a dynamic modality leadsto, denoted
P � Q.

It intuitively means that when a state satisfy-
MODALITIES
SELECT P

LEADSTO Q
VARIANT V

END

Fig. 2.

ing P is reached, there is inevitably in the future
a state satisfying Q. Figure 2 displays the declara-
tion of the modality P � Q. Notice that the user
must provide a variant V that must decrease for
each event, for proving that P leads inevitably to
Q (as in a termination proof). Although the leadsto
modality permits to express some temporal require-
ment on B event systems, it is not expressive enough to directly specify all the
requirement we are interested in.

Temporal requirements on the example. Our aim is to verify that a B event
system satisfies a temporal property. We illustrate our approach by addressing
the verification of the following three properties on the example given in Fig 1:

An unload can only occurs when the output platform is free (φS)
When the output platform is not free, it is inevitably free (φL1)

If after a certain time, there is always at least one piece on the system,
then both platforms are infinitely often busy (φL2)

These properties have a semantics over the execution paths of the event sys-
tem. The next subsection defines the notion of trace and execution path, on
which these properties will be formally expressed.

2.2 Traces and Execution

LTL formulae are defined on infinite executions [17]. Then, we first define the
notion of trace of a B event system. Intuitively, a trace of a system M is an infinite
sequence of events starting with the initialisation. Notice that our approach could
be extended to B event systems with deadlock, since a finite execution can be
extended into an infinite execution by infinitely repeating the last state [6].
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Definition 6 (Trace). An infinite sequence of events e0, e1, e2, . . . , ei, . . . is a
trace of the B event system M if and only if

– e0 is the initialization of M and,
– ∀i > 0.(ei ∈ InterfaceM ) and
– ∀i ≥ 0.[e0; . . . ; ei]guard(ei+1).

We denote by Traces(M) the set of all the infinite traces of M . Our trace defi-
nition differs from the one in [9] since we use a complete trace semantics. Given
a trace, a path is a sequence of states reached during its execution.

Definition 7 (Path). Let xM be the state variables of a B event system M . Let
t = e0, e1, e2, . . . , ei, . . . ∈ Traces(M) and let σ be an infinite sequence of variables
value s0, s1, s2, . . .. Then, σ is a path associated to t, denoted σ ∈ path(t) if:

– [x′
M := s0]prdxM

(action(e0))
– ∀i > 0.([xM := si−1]guard(ei) ∧ [xM , x′

M := si−1, si]prdxM
(action(ei)))

Notice that several paths can be associated with a trace in Traces(M) because
of the potential indeterminism of the events. In the rest of the paper, given a
B event system M , we denote ΣM the set of paths obtained from Traces(M)
(ΣM = {σ|σ ∈ path(t) ∧ t ∈ Traces(M)}). Given σ ∈ ΣM , we denote by si the
ith state of the path σ. Given an execution path σ the path suffix σi denotes
the infinite path si, si+1, si+2 . . .. Given a state si and a predicate P (xM ), si

satisfies P (xM ), denoted si |= P (xM ) iff [xM := si]P (xM ).
The leadsto modality has a semantics over a path.

Definition 8 ( leadsto Semantics). The modality P � Q is satisfied on a B
event system M if ∀i ≥ 0.∀σ ∈ ΣM .(σi |= P ⇒ ∃j > i.(σj |= Q))

The LTL logic, expressing properties over paths, is now presented.

2.3 LTL

The basic LTL operators [17] are F P (“eventually P”), meaning that there is
eventually a state in the future where P holds; G P (“always P”), meaning that
all the states in the future satisfy P ; X P (“next P”) meaning the next state of
the execution satisfies P ; and finally P U Q, meaning that all the future states
satisfy P until a state where Q holds is reached.

Syntax of LTL. The syntax of LTL is built from atomic propositions, here B
predicates, the logical connectives (∧, ∨, ¬, ...) and the above temporal operators.

Definition 9 (Syntax of LTL). Let P be a B predicate, syntax of LTL is:

φ, ψ ::= φ ∧ ψ | ¬φ | φUψ | Xφ | P

This is the minimal definition. We also add the following shortcuts.

φ ∨ ψ ≡def ¬(¬φ ∧ ¬ψ) Fφ ≡def trueUφ
Gφ ≡def ¬F¬φ ψRφ ≡def ¬(¬ψU¬φ)
φ ⇒ ψ ≡def ¬φ ∨ ψ
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Semantics of LTL. We define the semantics of an LTL property φ with respect
to an execution σ, denoted σ |= φ, as follows.
Definition 10 (Semantics of LTL). Let σ be an execution, let P be a B
predicate, let i ∈ N, let φ and ψ two LTL formulae. We inductively define σi |= φ
as follows:

σi |= P iff si |= P σi |= φ ∧ ψ iff σi |= φ and σi |= ψ
σi |= ¬φ iff ¬(σi |= φ) σi |= ψUφ iff ∃j.(j ≥ i ∧ σj |= φ∧
σi |= Xφ iff σi+1 |= φ ∀k.(i ≤ k < j ⇒ σk |= ψ))

Given a B event system M , we write M |= φ, meaning that the event system M
satisfies the LTL property φ if ∀σ ∈ ΣM .(σ |= φ).

Notice that the modality P � Q is equivalent to the property G(P ⇒ FQ).
Examples of LTL formulae. In LTL, the temporal properties φS , φL1 and φL2

can be respectively expressed by

G((Dt = true ∧ X (Dt = false)) ⇒ De = false) (φS)
G(Dt = true ⇒ (F Dt = false)) (φL1)

(FG(Dt = true ∨ De = true)) ⇒ (GF (Dt = true∧ De = true))) (φL2)

The LTL expressions of Property φS , φL1 and φL2 are explained as follows:

φS In all the states of the execution (G), if the input platform is not free (Dt
= true) and it is free in the next state (X (Dt = false)), i.e., an unload
occurs, then the output platform must be free (De = false) in the current
state.

φL1 In all the states of the execution (G), if the input mechanism in not free (Dt
= true) then it must eventually (F) be free (Dt = false) in the future.

φL2 If, after a finite number a states, the system is never empty (FG(Dt = true∨
De = true)) then both platforms are busy infinitely often (GF).

Safety and Liveness Properties. A fundamental notion in LTL is the notion of
safety and liveness property. Informally, a safety property means that “some-
thing bad must never happen”, whereas liveness properties means “something
good must eventually happen” [15]. Property φS is a safety property, since it
expresses that a particular configuration – when a dischargement occurs and the
evacutation platform is not free – must never happen. Property φL1 is a liveness
property, since when a particular configuration of the system occurs – the input
mechanism is not free – the system must inevitably reach a state satisfying a
property – here a state where the input mechanism is free. Property φL2 is also
a liveness property. Notice that Property φL2 is a special kind of liveness called
fairness in the Litterature [18].

Similarly to the verification of the leadsto primitive in [4], the verification of
liveness properties needs that the specifier gives a wellfounded variant for proving
the termination, whereas verification of safety properties does not. Therefore, we
need to characterize safety and liveness formulae.
Characterization of safety and liveness. The characterization of safety and live-
ness properties is given by the following theorem, due to Alpern and Schneider.
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Theorem 1 (Characterization of Safety and Liveness [6]). The charac-
terization of safety and liveness in the LTL is decidable.

So, if the LTL property φ is a liveness property, the user must also provide
a variant V . Our aim is, given a LTL property φ and an event system M , to
prove that M |= φ. For this verification, we first express LTL formulae in an
intermediate formalism: Büchi automaton.

2.4 Büchi Automata

In this subsection, we give the definition of Büchi automata, further used for the
verification of LTL properties and we give well known results about this class of
automata.

Definition 11 (Büchi Automata). A Büchi automaton A on an alphabet
Pred (here Pred is a set of B predicates) is a tuple < Q, q0, Qf , R > where Q
is a finite set of states, q0 ∈ Q is the initial state, Qf ⊆ Q is the set of the all
accepting states and R ⊆ Q × Pred × Q is a finite set of transition rules.

Then we define the acceptance a a Büchi automata.

Definition 12 (Synchronisation function and Acceptance). Let A =<
Q, q0, Qf , R > be a Büchi Automata. Let σ be a path. The synchronisation func-
tion f from N to 2Q is defined inductively as follows:

– f(0) = {q0}
– ∀i > 0. if σi−1 |= p and q ∈ f(i − 1) and (q, p, q′) ∈ R, then q′ ∈ f(i).

An execution σ is accepted by the automaton A, denoted σ |= A, if

∀i ∈ N.f(i) �= {} (CSync)
There is an infinite set of indexes i such that f(i) ∩ Qf �= {}. (CBuchi)

The condition CBuchi, intuitively meaning that the path contains an infinite num-
ber a states synchronized with an accepting state of the automamta, is called the
acceptance condition of the Büchi Automaton.

Given a set Σ of executions, the set Σ is accepted by the automaton A, denoted
Σ |= A, if ∀σ ∈ Σ.(σ |= A). The link between LTL and Büchi automata is given
by the following well-known theorem.

Theorem 2 (LTL and Büchi Automata). For all LTL properties, there exists
a Büchi Automaton Aφ such that σ |= φ ⇔ σ |= Aφ.

Figure 3 displays the Büchi automata AφS and AφL1
associated respectively with

the LTL properties φS and φL1
1. The next section explains how to translate these

automata into B.
1 These Büchi automata have been obtained with the tool an on-line version of the

tool LTL2BA [11] that can be found at http://www.ti.informatik.uni-kiel.de/
∼fritz/ABA-Simulation/ltl.cgi. The automaton obtained from φL2 is not dis-
played here for place reason. It is composed of 5 states and 12 transitions.
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S0 S1 S0 S1

true

Dt = true∧
De = false

Dt = false
∨De = false

Dt = true

true

De = false

De = falsetrue

Fig. 3. Examples of Büchi automata for φS and φL1

3 Expression of Büchi Automata in B

In this section, we show how to express a Büchi automaton as a B machine.
Starting from a B event system M =< xM , IM , InitM , InterfaceM > and a LTL
property φ we first generate the Büchi automaton Aφ. Second from M and
Aφ =< Q, qo, Qf , R > (where Q = {q0, . . . , qn}), we create a new event system
Mφ that includes a B model BAφ of Aφ. In Mφ, events of M are synchronized
with BAφ. The correctness of Mφ implies that all the executions of M satisfies φ.

The generation of Mφ is done as follows(see Fig. 4): (i) we encode the states
and transitions of the automaton in a B machine BAφ; (ii) we synchronize the
B event system M with BAφ; (iii) we express the condition CSync of the Büchi
automaton by an invariant; (iv) we express the condition CBuchi of the Büchi
automaton, by a leadsto modality.

(i) Encoding in B a Büchi automata consists in (a) encoding its states and (b)
encoding its transitions.

(a) In general, Büchi automata are indeterminist: a state of the event sys-
tem M can be synchronized with several states qi of the automata Aφ.
Therefore, in the Machine BAφ we declare a boolean variable �qi�B for
each states qi of Aφ. The value boolean variable �qi�B is TRUE means
that the current state of the event system is synchronized with �qi�B .
The first state of an execution must always be synchronized with the ini-
tial state q0 of the automata. Therefore, we initialize the variable �q0�B

to TRUE and the others to FALSE.
(b) The transitions of the automata are expressed by an operation automata

that updates the boolean variables �qi�B representing the states w.r.t.
the set of transition rules R of the Büchi automata. The operation
automata takes as parameters the state variables xM . The precondi-
tion of automata only contains the typing predicate of xM (denoted by
Type(xm)). The action of automata represents the transitions relations
of R. For each q′ ∈ Q and for each rule (q, p, q′) ∈ R, the variable �q′�B is
set to TRUE if �q�B is TRUE and if xM satisfies the predicate p. Notice
that a disjunction over the rules is needed because of the indeterminism
of the automata: q′ can be the right hand side of several rules.
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MACHINE
BAφ

VARIABLES
�q0�B , ..., �qn�B

INVARIANT
�q0�B ∈ BOOL ∧ . . .∧ �qn�B ∈ BOOL
INITIALIZATION

�q0�B := TRUE ‖
�q1�B := FALSE ‖ ... ‖
�qn�B := FALSE

OPERATION
automata(xM) = PRE Type(xm)

THEN
�q0�B :=

∨
qj ∈Q∧(qj ,p,q0)∈R

(p(xM ) ∧ �qj�B = TRUE)
‖. . . ‖
�qn�B :=

∨
qj∈Q∧(qj ,p,qn)∈R

(p(xM ) ∧ �qj�B = TRUE)
END

END

SYSTEM
Mφ

INCLUDES
BAφ

VARIABLES
xM

INVARIANT

IM ∧ (�q0�B = TRUE ∨ . . . ∨ �qn�B = TRUE) Iφ

EVENTS
ei = SELECT guard(ei)

THEN action(ei) ‖ automata(xM )

END
MODALITIES

SELECT
∧

q∈Sf
(�q�B = FALSE)

LEADSTO ¬(
∧

q∈Sf
(�q�B = FALSE))

VARIANT Vφ

END

Dφ

END

Fig. 4. The event system Mφ and machine BAφ

(ii) We synchronize the B machine BAφ with the event system M by includ-
ing BAφ in Mφ and by adding to each event of Mφ an invocation of the
operation automata in parallel of its action.

(iii) We check the condition CSync, i.e., each state of the execution must be syn-
chronized with at least one state of Aφ. For that, Mφ contains an invariant
Iφ expressing the disjunction of the boolean variables �q�B representing the
states of the automata. If a state si of the execution is not synchronized
with any state of Aφ(f(i) = {}), then all variables �q�B have the value false:
the invariant Iφ is not satisfied.

(iv) Finally, we check the Büchi acceptance condition (CBuchi), i.e., that the
path contains an infinite number of states synchronized with an accept-
ing state of the automata, Mφ contains a leadsto modality Dφ ensuring
that, if the current state is not synchronized with any accepting state
(
∧

q∈Sf
(�q�B = FALSE)), it will in the future be synchronized with an

accepting state. This is verified thanks to the decrease of the variant Vφ

given by the user.

The consistency of the event system Mφ (see Def. 5,Sect. 2.1) implies that all
the executions of M satisfy φ. The soundness of the method is established by
the following Theorem.

Theorem 3 (Soundness). Given a B event system M and a LTL property φ.

if Mφ |= TRUE then M |= φ

The proof uses the fact that executions of Mφ are exactly the same as executions
of M modulo the introduction of the new variables. The invariant Iφ and the
leadsto modality Dφ ensure that conditions CSync and CBuchi are satisfied. The
example of the event system Mφ and the machine BAφ for the event system in
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Fig 1 and for the Properties φS can be found in [13]. This work is implemented
as an extension of the JAG tool (see [12,14] Table 1 displays the results of the
proof obligation generation of LTL properties on two B models, a communication
protocol (T=1) and a Javacard application (Demoney).

4 LTL and Refinement

This section recalls notions about the refinement of B event systems (Sect. 4.1,
characterizes the relation between abstract and refined traces (Sect. 4.2) and
defines the preservation of LTL properties during the refinement (Sect. 4.3).

4.1 Event B Refinement

Refining an event system consists in refining both its state and its events. Vari-
ables of the refined system Mr and the abstract one Ma are related through
an abstraction relation, expressed in terms of a gluing invariant IMr (xMa , xMr )
connecting variables of the abstract event system to the variables of the re-
fined one. Syntactically, the refined system Mr must at least contain all the
events of its abstraction (Interface(Ma) ⊆ Interface(Mr)). Given an event e
in Interface(Ma), we denote ea its abstract definition and er its refined defi-
nition. The refined event system may also contains a set Enew of new events
(Enew = Interface(Mr)− Interface(Ma) ). We now recall the proof obligations of
the B event refinement.

Definition 13 (Refinement [2]). Let Ma and Mr be two event systems, Mr is
a refinement of Ma, denoted Ma � Mr if the following conditions are satisfied:

Cinit Initialization [InitMr ] < InitMa > IMr

refinement
Cold Old events ∀e ∈ Interface(Ma).(IMa ∧ IMR ⇒ [er] < ea > IMR)

refinement
Cnew New events ∀e ∈ Enew .(IMa ∧ IMR ⇒ [er] < skip > IMR)

refinement
Cdead No dead-lock IMa ∧ IMR ⇒ (

∨
ea∈Interface(Ma) guard(ea) ⇒

introduction
∨

er∈Interface(Mr) guard(er)
Clive No Live-lock ∃V ∈ N.∀er ∈ Enew(Mr).

introduction IMa ∧ IMR ⇒ (n := V )[er](V < n)

Table 1. Results of the proof obligation generation

Example Property # of PO Example Property # of PO
Robot Property φS 3 Protocol T = 1 (P ∧ XQ) ⇒ (X¬R) 4
Robot Property φL1 9 Protocol T = 1 FGP ⇒ FGQ 12
Robot Property φL2 9 Demoney G(P ⇒ GP ) 7

Demoney G(P ⇒ X(Q ∨ R)) 7
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We denote by Traces(Mr) the traces of the event system MR and ΣMR its paths.
They are defined as for an abstract system (see Def. 6 and Def. 7, Sect.2.2).

4.2 Relation Between Abstract and Refined Path

This subsection characterizes the relation between traces of an abstract event
system and its refinement. First, the relation between abstract and refined traces
is done through an abstraction operator that “forgets” the new events.

Definition 14 (Abstraction of Traces). Let Ma and Mr be two event sys-
tems, let tr ∈ Traces(Mr). The abstraction of tr = er0 , er1 , ..., denoted a(tr) is
the sequence of events inductively defined as

– a(er0 , er1 , ...) = ea0 , a(er1 , ...) if er0 �∈ Enew or er0 = InitM .
– a(er0 , er1 , ...) = a(er1 , ...) if er0 ∈ Enew.

All the abstractions of the refined traces are included into the set of abstract
traces.

Proposition 1 (Traces Inclusion). Given Traces(Ma) and Traces(Mr),

∀tr ∈ Traces(Mr).(∃ta ∈ Traces(Ma).(ta = a(tr))).

4.3 Preservation of LTL Properties

The variable state may change during the refinement, therefore we need to define
the satisfaction of a LTL property modulo a gluing invariant. For that, we first
define the satisfaction of a predicate over the abstract variables on a state of the
refined system, i.e., a satisfaction modulo a gluing invariant.

Definition 15 (Satisfaction of a Predicate Modulo a Gluing Invariant).
Let Ma and Mr be two event systems such that Ma � Mr. A predicate P (xMa)
is satisfied on the state s of Mr, denoted s |=IMr

P (xMa) if

[xMr := s]IMr (xMa , xMr ) ⇒ P (xMa)

Then, the definition of the satisfaction of a LTL property modulo a gluing in-
variant is as follows.

Definition 16 (Semantics of a LTL Modulo a Refinement). Let Ma and
Mr be two event systems such that Ma � Mr. Let σ be an execution of Mr, let
P (xMa) be a predicate, let i ∈ N, let φ and ψ two LTL formulae, we inductively
define σi |=IMr

φ as follows:

σi |=IMr
P if si |=IMr

P σi |=IMr
φ ∧ ψ if σi |=IMr

φ and σi |=IMr
ψ

σi |=IMr
¬φ if ¬(σi |=IMr

φ) σi |=IMr
ψUφ if ∃j.(j ≥ i ∧ σj |=IMr

φ∧
σi |=IMr

Xφ if σi+1 |=IMr
φ ∀k.(i ≤ k < j ⇒ σk |=IMr

ψ))
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A refined event system satisfies a LTL property φ, denoted Mr |=IMr
φ, if ∀σ ∈

ΣMr . (σ |=IMr
φ).

Then, a LTL property, holding on a abstract system Ma, is preserved on the
refined one Mr if all executions of Mr are satisfied modulo a refinement.

Definition 17 (Preservation of a LTL Property by Refinement). Let Ma

and Mr be two event systems such that Ma � Mr. A LTL property φ is preserved
by refinement if Ma |= φ ⇒ Mr |=IMr

φ.

Let us now to characterize which type of LTL properties is preserved by the B
refinement.

5 LTL Fragment Preserved by B Refinement

As explained above, the B event refinement introduces so-called new events dur-
ing refinement. Therefore, a property such as Property φS is not preserved during
the B refinement. This is due to the introduction of new events, well-known as
stuttering. Therefore, we recall the notion of stuttering insensitive properties.
Intuitively, a property is stuttering insensitive if for each accepting path, the
property also accept any path where any states of the path are repeated an
arbitrary number of time.

Definition 18 (Stuttering Insensitive Property [5]). Let φ be a LTL for-
mulae, φ is stable under stuttering if for all execution σ = s0, s1, . . . ,

σ |= φ ⇒ ∀i, j, ... ∈ N.((σ′ = s0, . . . , si, . . . , si, . . . , sj , . . . , sj , . . . ) ⇒ σ′ |= φ)

Sistla [18] has shown that all LTL properties without next operator (X) are
stuttering insensitive. We denote L(U) this subset of LTL. Notice that there exists
some LTL properties containing a next operator that are stuttering insensitive
(for example X TRUE). However, these properties have an equivalent expression
without next operator [16].

In terms of B event system trace, stuttering insensitivity can be expressed as
follows.

Proposition 2 (Trace Characterization of Stuttering Insensitive Prop-
erty). Let M be an event system, Let t ∈ Traces(M) such that t = e0, e1, . . .. Let
t′ = e0, skip, . . . , skip, e1, . . . , ei, skip, . . . , skip, ei+1, . . .. Let φ be a LTL property.
φ ∈ L(U) iff. path(t) |= φ ⇒ path(t′) |= φ

The following lemma established an important result: if an abstract trace and a
refined trace are equal modulo a refinement, then, if a L(U) property is satisfied
on the paths of the an abstract trace, it is also satisfied on the paths of the
refined trace.

Lemma 1 (Traces Inclusion modulo Refinement Preserves L(U)). Let
Ma and Mr be two event systems such that Ma � Mr. Let ta ∈ Traces(Ma) and
tr ∈ Traces(Mr). Let φ ∈ L(U).

(∀σa ∈ path(ta).(σa |= φ)) ⇒ (∀σr ∈ path(tr).(σr |=IMr
φ))
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REFINEMENT
Robot2

REFINES
Robot

VARIABLES
De2,Dt2,On

INVARIANT
Dt2 : BOOL & De2 : BOOL & On = BOOL &
Dt2 = Dt & De2 = De

INITIALISATION
Dt2 := FALSE || De2 := FALSE || On = FALSE

OPERATIONS
Load = SELECT Dt2 = FALSE & On = TRUE

THEN Dt2 := TRUE
END;

Unload = SELECT Dt2 = TRUE
& De2 = FALSE

THEN Dt2 := FALSE
|| De2 := TRUE

END;

Discard = SELECT De2 = TRUE
THEN De2 := FALSE
END;

StopStart = SELECT De2 = false
& Dt2 = false

THEN
On := bool(On = FALSE)

END
END

Fig. 5. An event system with a livelock on a new event

The proof is done on induction on the structure of φ.
This result leads to the following theorem, establishing that a LTL property

without next operator (L(U)) is preserved by the B refinement.

Theorem 4. Let φ be a LTL formula without next (X) operator (φ ∈ L(U)), let
Ma and Mr be two event systems such that Ma � Mr if Ma |= φ then Mr |=IMr

φ

Theorem 4 is a direct consequence of Lemma 1 and Proposition 1.
Notice that this result is not surprising since a similar theorem has been

established by Darlot and al. [10] in another context. Comparison with work
in [10] is given in the related work section (see Sect.7).

6 A Particular Refinement for a Particular Formulae

6.1 Illustrating Example

Take a look at the B event system displayed in Fig. 5. This B event system
satisfies the LTL Properties φS and φL1 but it does not satisfy the refinement
condition Clive: it introduces a new event StopStart that can take the control
forever, i.e., be infinitely executed.

A naive solution is to introduce the new event e (in our example StopStart) at
the abstract level. But, consider that e is a very concrete event, involving concrete
variables, then these variables must also be introduced at the most abstract level.
This breaks down the B methodology, which prohibits the introduction concrete
variables on the abstract levels. This problem as already been addressed in [3]
where a solution has been proposed. The B refinement has been introduced to
preserve a certain kind of property, particularly the total correctness for the
step by step development of algorithm. However, the total correctness is not
always the property we aim at preserving. Therefore, we propose a new notion
of refinement, depending of the property we want to preserve.
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6.2 A Refinement Oriented by the Property

In this paper, we propose a refinement, denoted �φ, depending on the LTL
property φ we would like to preserve, i.e.,

Definition 19 (φ-refinement). Given two event systems, Ma and Mr, Mr,
given a L(U) property φ, Mr is a φ-refinement of Ma, denoted Ma �φ Mr iff.

– Conditions Cinit,Cold,Cnew and Cdead are satisfied, denoted Ma �τ Mr (See
Def. 13).

– The Condition ∀er ∈ Enew(Mr)IMa ∧ JMR ⇒ (V := n)[er](0 ≤ V < n)
(Cliveφ

) is satisfied in each state not synchronized with an accepting state.

The φ-refinement differs from the classical B refinement only from the condition
on the non-live-lock introduction. The condition Cliveφ

is a weaker condition
than Clive. It allows the new events to take the control forever under certain
conditions, i.e., that the current state of the execution is synchronized with at
least one accepting state of the Büchi automata.

Theorem 5 established the correctness and completeness of the approach.

Theorem 5 (φ-refinement Theorem). Let φ ∈ L(U), let Ma and Mr such
that Ma �τ Mb. If Ma |= φ then Ma �φ Mr iff. Mr |= φ.

The example of Fig.5 is a φL1-refinement and a φL2-refinement of the example
of Fig.1. The reader can observe that the states where the new event can be
executed are synchronized with an accepting state, so no variant is needed for
the proof of this weaker refinement.

7 Conclusion and Future Works

Conclusion. In this paper, we propose an approach for verifying temporal prop-
erties expressed in LTL into the B framework. The method has been proved to be
sound, does not need any extension of B and has been experimented on several
examples. We also have studied the problem of preservation of LTL properties
during the B refinement process and we have characterized the subclass of LTL
formulae and Büchi automata that are preserved by the B refinement. Finally,
we have defined another condition of refinement, which depends on the property
we want to preserve.
Related Work. Verification of dynamic properties and their preservation has al-
ready been addressed in several works. Abrial and Mussat have proposed to
extend B with two dynamic modalities [4]. In the paper, we extend this work to
the verification of all the LTL properties.

Based on the labelled transition system framework, the work in [10], adresses
the verification of LTL properties by model-checking and their preservation by a
refinement defined as a relation between two transition systems. In this paper,
the verification of LTL is based on proof obligations and on the refinement of
B event systems. To our knowledge, the first attempt for verifying properties
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expressed by Büchi automata on a program using proof obligation is due to
Alpern and Schneider [7]. Our method adapts this approach for the B framework.

In [8], Bert and Barradas propose an approach of verification temporal prop-
erties based on the use of the deductive system of the Unity Logic.

An approach combining automata and proof has been proposed within the
Genesyst [9] tool. But this approach is quite different from ours, since Genesyst
generates transition systems from B event systems. Then the user can observe
that the generated transition systems matches its requirement.
Current and Future Works. The approach proposed in Sect.6, defining the refine-
ment w.r.t. the property we would like to preserve opens interesting perspective
for the incremental development, since it does not consider a general refinement
but a refinement depending from the properties we want to preserve. In this
way, a work is to extend our refinement conditions to the whole LTL. For that,
we must introduce a refinement condition ensuring that new events can only be
introduced when no stability under stuttering is required.

Acknowledgement. The author thanks A. Giorgetti and F. Bellegarde for
interesting comments about the paper. The author also thank N. Stouls and
M-L. Potet for the Demoney specification and S. Chouali and J. Julliand for the
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Abstract. Patterns capture the shape of particular specifications, pro-
viding starting points for developers. The most well known design pat-
terns in software are those of the Gang of Four (GoF ), Gamma, Helm,
Johnson & Vlissides[4], who have provided a set of patterns for Object-
Oriented development. Starting with these patterns as a motivation, this
paper discusses various issues concerning the concept of patterns for the
B Method (B) and explores a number of patterns that could be used
with B. The paper presents a number of case studies to illustrate use of
the patterns, and discusses future exploration of design patterns for B.

A motivation for the development of patterns for B is to enable reuse
and also to make B more accessible to developers from the more informal
side of software development.

Keywords: B Method, design patterns, formal development, classes,
objects.

1 Introduction

Among the definitions the Concise Oxford English Dictionary (COED) gives for
pattern are: a regular form or sequence discernible in the way in which something
happens or is done, and an example for others to follow.

This paper is derived from a fourth year undergraduate software engineering
thesis of Chan & Welch [3]. The patterns presented here are motivated by each
of those definitions. The patterns can be regarded as presenting models of par-
ticular classes of systems, or as providing examples for others to follow. One of
the earliest cited examples of design patterns is Christopher Alexander’s Pattern
Language [1] for architectural and town design. In computing there are the De-
sign Patterns by Gamma, Helm, Johnson & Vlissides[4], commonly referred to
as the Gang of Four (GoF ). The GoF patterns are intended for Object-Oriented
(OO) design, and while the ambience of the these design patterns initiated think-
ing about patterns for the B Method (B), we are not primarily concerned with
duplicating those patterns here. There are many reasons, some of which are dis-
cussed in section 2, why it is not feasible, or desirable to duplicate those patterns
for B. It is also important to develop B design patterns in their own right.

J. Julliand and O. Kouchnarenko (Eds.): B 2007, LNCS 4355, pp. 125–139, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Many of the patterns discussed here will be familiar to those who have used
B, but that is largely the point of a pattern: it is a taxonomy of established
techniques collected for the benefit of others and re-use. Sandrine Blazy, et al [2]
presented a review of the use of patterns in B and a report on their research into
re-use of patterns in B.

In section 2 we discuss the role of patterns in B. Then in section 3 we give
some fundamental B patterns, which we call foundational and in section 4 we use
some case studies to present patterns that extend the foundational patterns. We
try to identify recurring patterns in B developments, and patterns are presented
in terms of machine composition. The contents of the machines are abbreviated
to show only the characteristics that are important for the pattern. Throughout
this paper the examples are chosen to demonstrate structure. In the case studies,
the problem being addressed is not, in itself, the central concern: it is used as
a carrier for the demonstration of a class of patterns. The reason for choosing
actual problems —even though highly abstracted— is to provide a “bridge” for
readers who are not experienced in the use of B.

All proof obligations for the full B specifications, from which the examples
given in this paper are extracted, have been discharged.

2 The Role of Patterns in B

Although this work received significant motivation from the GoF patterns, and
some of the patterns discussed are clearly based on patterns from that source,
we want to emphasise that we are not primarily attempting to simulate the OO
world of design. There are a number of reasons for that: 1) there are significant
parts of inheritance that B, at least in it’s current form, cannot simulate 2) OO
patterns deal mainly with concrete classes, where we intend to deal –at least in
this initial attempt— with (abstract) specifications. It is interesting that some
patterns, for example the GoF Template pattern, present strategies that are in-
trinsic to B, namely the process from abstract specification through refinement
(design) to concrete implementation. An important distinction between OO de-
sign and B design is that OO design assumes an isomorphism between design
classes and implementation; B development assumes no such isomorphism be-
tween the specification, the refinement constructs and the final implementation.
Indeed there is no reason to expect that the structure of an implementation
mirrors the structure of the specification.

Snook and Butler [6] have devised UML-B to provide a bridge between OO
and B, via the Unified Modelling Language (UML).

3 B Foundational Patterns

The patterns presented in this section may be regarded as foundational in the
sense that they are fundamental patterns that are used in many specifications.
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Machine Owner
Variables

owners,
. . . ,
ownership

Invariant
ownerhip ∈ cars �→ owners ∧
. . .

�
Includes

Machine Car
Variables

cars,
. . .

Invariant
cars ⊆ CAR
. . .

Fig. 1. Simple Association Pattern

The foundational patterns will be used in the more advanced patterns that
follow.

3.1 Association Pattern

INCLUDES is used in B to compose (or decompose, depending on your point of
view) machine state. But an important use of composition is to build associations
in the UML sense. An example is shown in Fig. 1.

The inclusion is used to enable an expression of an association, or relation-
ship (bijective function in this case), between variables in the including machine
(owners) and variables in the included (subordinate) machines (cars).

Machine CampaignStaff
Variables

campaignstaff, . . .
Invariant

campaignstaff ∈ campaign ↔ staff ∧
. . .

�
�

�
�

���

�
�

�
�

���

Includes Includes

Machine Campaign
Variables

campaign,
. . .

Invariant
campaign ⊆ CAMPAIGN
. . .

Machine Staff
Variables

staff,
. . .

Invariant
staff ⊆ STAFF ∧
. . .

Fig. 2. Many-to-Many Association Pattern
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Machine Identity ctx
Sets IDENTITY
End

Machine Identity ( maxIdentity )
Constraints maxIdentity ∈ N1

Sees Identity ctx
Variables Identities
Invariant

Identities ⊆ IDENTITY ∧
card ( Identities ) ≤ maxIdentity

Initialisation Identities := {}

Operations
newIdentity ( ids ) =̂

pre ids ∈ IDENTITY ∧ card ( Identities ) �= maxIdentity ∧
ids ∈ IDENTITY − Identities then
Identities := Identities ∪ { ids }

end ;
killIdentity ( ids ) =̂

pre ids ∈ IDENTITY ∧ ids ∈ Identities then
Identities := Identities − { ids }

end
End

Fig. 3a. The Identity Pattern: variant 1

One-to-many relationships can be established with an association pattern in
which many machines are included. In the example shown in Fig. 2 a third
machine is introduced to build a relation between variables of two machines.
An important property of the association pattern is the maintenance of the
independence of the subordinate components of the pattern.

3.2 The Identity Pattern

There are many situations, known to all who have developed specifications
in B, where multiple instances of some object need to be managed: a unique
identity is needed for each instance. For this purpose we will use an Identity
machine to allocate unique tokens for each instance. We will call this the
Identity pattern, see Fig. 3a,3b. Two operations are shown: newIdentity for
allocating a new token, and killIdentity for reclaiming a token. In many appli-
cations tokens are never reclaimed. There are two variants on the newIdentity
operation:
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. . .
newid ←− newIdentity =̂

pre card ( Identities ) �= maxIdentity then
any ids where ids ∈ IDENTITY − Identities then

Identities := Identities ∪ { ids } ‖
newid := ids

end
end ;

. . .

Fig. 3b. The Identity Pattern: variant 2

1. that shown in Fig. 3a, in which the new token is chosen by the invoker of
the operation, and

2. an alternative, shown in Fig. 3b, in which the new token is chosen by the
newIdentity operation. In this case the new token is returned to the invoker
as a result.

Variant 2 is preferred, but cannot be used if the returned value is to be used
subsequently in the invoking operation. This would require sequential composi-
tion, which is not available at the machine level. (Note: this is one of the few
instances that justifies allowing sequential composition in machines.)

In some cases, each instance will need its own attributes and we will use
an Object machine for that purpose. It seems sensible —and consistent with B
terminology to call such aggregates objects.

3.3 The Object Pattern

The Object pattern includes or extends the Identity pattern. The purpose of
the pattern is to add attributes for an identity and to provide operations that
depend on the identity and attributes owned by the identity. A schematic version
of Object is shown Fig. 4. The machine shows a Make operation to create a new
instance of an object, initialising all attributes shown generically by Attri. Also
shown is an operation, Operationi, which is a representative of all operations on
attributes of the object.

3.4 The Subtype Pattern

A simple subtype pattern can be achieved by using EXTENDS, rather than
INCLUDES. This pattern supports, not only subsetting of variables but also
subsetting of operations as shown in Fig. 5a and Fig. 5b. Notice the subsetting
of variables: squares ⊆ rectangles ; and also the subsetting of operations: the
operation SquareArea finally delegates to operation RectangleArea.
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Machine Object ( maxobjects )
Constraints maxobjects ∈ N1

Sees Identity ctx
Includes Identity ( maxobjects )
Sets ATTR ; ARG ; RESULT
Variables objects , attri
Invariant objects ⊆ Identities ∧ attri ∈ objects �→ ATTR
Initialisation objects , attri := {} , {}

Operations
object ←− MakeObject ( INITattr ) =̂

pre card ( objects ) �= maxobjects ∧ INITattr ∈ ATTR then
any obj where obj ∈ IDENTITY − Identities then

newIdentity ( obj ) ‖ objects := objects ∪ { obj } ‖ object := obj ‖
attri ( obj ) := INITattr

end
end ;

result ←− Operationi ( ident , args ) =̂
pre ident ∈ Identities ∧ args ∈ ARG then

result :∈ RESULT ‖ attri :∈ Identities �→ ATTR
end

End

Fig. 4. Object Pattern

3.5 The Interface Pattern

The interface pattern provides for the organisation of a number of machines into
a supermachine that plays the role of a superclass. As an example we will use
the interface pattern to organise the Square and Rectangle machines (seen in
the subtype pattern) together with a Triangle machine into a Shape machine,
represented in the following as the Shape Interface machine.

The essential aspects of the interface pattern are:

1. A set of machines that can form a subtype, in this case machines that com-
pute common properties for Squares, Rectangles, Triangles, etc.

2. A machine that acts as an interface to route requests to the appropriate
machines.

3. The interface machine needs to set up types and variables to enable recog-
nition of the classification of each of member of the subtype.

4. The interface machine uses a switch to direct requests to the appropriate
subtype operation.

Notice that the interface pattern is easily extensible to add new subtype mem-
bers and operations.
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Machine Shape Square
Variables Squares, Sidelength
Invariant

Squares ⊆ SHAPE ∧ Squares ⊆ Rectangles ∧
SideLength ∈ Squares → N1

Operations
newSquare(ids, side) =̂
pre ids ∈ SHAPE ∧ ids �∈ Squares ∧ side ∈ N1

then
Squares := Squares ∪ {ids} ‖ SideLength(ids) := side ‖
newRectangle(ids, side, side)

end;
ans ←− SquareArea(ids) =̂
pre ids ∈ Squares then

ans ←− RectangleArea(ids)
end;
. . .

�

Extends Shape Rectangle

Fig. 5a. Subtype Pattern: Subtype

Machine Shape Rectangle
Variables Rectangles, Height, Width
Invariant

Rectangles ⊆ SHAPE ∧ Height ∈ Rectangles → N1 ∧ Width ∈ Rectangles → N1

Operations
newRectangle(ids, ht, wd) =̂
pre ids ∈ SHAPE ∧ ids �∈ Rectangles ∧ ht ∈ N1 ∧ wd ∈ N1

then
Rectangles := Rectangles ∪ {ids} ‖ Height(ids) := ht Width(ids) := wd

end;
ans ←− RectangleArea(ids) =̂
pre ids ∈ Rectangles then

ans := Height(ids) × Width(ids)
end;
. . .

Fig. 5b. Subtype Pattern: Supertype

Machine Shape Interface ( maxshape )
Constraints maxshape ∈ N1

Sees Shape ctx , Identity ctx
Includes Identity ( maxshape ) , Shape Square , Shape Triangle
Sets SHAPE TYPE = { RECTANGLE , SQUARE , TRIANGLE }
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Variables Shapes , ShapeTypes
Invariant

Shapes ⊆ Identities ∧
card ( Shapes ) ≤ maxshape ∧
ShapeTypes ∈ Shapes → SHAPE TYPE ∧
Shapes = Rectangles ∪ Squares ∪ Triangles ∧
Squares ⊆ Rectangles ∧
Rectangles ∩ Triangles = {} ∧
ShapeTypes −1 [ { RECTANGLE } ] = Rectangles ∧
ShapeTypes −1 [ { SQUARE } ] = Squares ∧
ShapeTypes −1 [ { TRIANGLE } ] = Triangles

Initialisation Shapes , ShapeTypes := {} , {}

Operations
sid ←− Rectangle ( height , width ) =̂

pre height ∈ N1 ∧ width ∈ N1 ∧ card ( Identities ) �= maxshape then
any rid where rid ∈ IDENTITY − Identities then

newIdentity ( rid ) ‖ sid := rid ‖
Shapes := Shapes ∪ { rid } ‖
ShapeTypes ( rid ) := RECTANGLE ‖
newRectangle ( rid , height , width )

end
end ;

sid ←− Square ( side ) =̂
pre side ∈ N1 ∧ card ( Identities ) �= maxshape then

any rid where rid ∈ IDENTITY − Identities then
newIdentity ( rid ) ‖ sid := rid ‖
Shapes := Shapes ∪ { rid } ‖
ShapeTypes ( rid ) := SQUARE ‖
newSquare ( rid , side )

end
end ;

Other shapes go here

ans ←− Area ( sid ) =̂
pre sid ∈ Shapes then

select ShapeTypes ( sid ) = SQUARE ∧ sid ∈ Squares then
ans ←− SquareArea ( sid )

when ShapeTypes ( sid ) = RECTANGLE ∧ sid ∈ Rectangles then
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ans ←− RectangleArea ( sid )
end

end

Other shape operations can be added, for example Perimeter

End

4 Examples and Extensions

In this section we will give some larger examples that use and extend the foun-
dational patterns presented in the previous section. It is important to remember
that the chosen example is not the primary point of interest. We are interested
in describing some patterns that the examples provide. In all cases the examples
are treated abstractly and could be regarded as the initial step in a refinement
process.

4.1 Strategy

The strategy pattern is in the spirit of the GoF strategy pattern, and allows
a number of different algorithms to be used as appropriate for the solution of
some generic problem. The example we use to demonstrate the pattern is a Chess
playing program.

The Chess game sets out to model a system of pairs of players playing a game
of chess. Each player can modify their behaviour dynamically.

The strategy pattern is particularly suited to this problem as it allows us to
define a series of encapsulated, interchangeable chess strategies. The strategy
pattern allows players to alter their strategy during the game without altering
the game or board logic.

The Structure of the Game. The basic structure of chess and abstract strate-
gies are modelled as uninstantiated constant functions in the context machine,
Chess ctx. While uninstantiated, the context machines contains minimal prop-
erties required to present provably consistent machines. This context machine,
carrying an abstract theory of the application being modelled, is a significant
example of a B pattern itself.

The ChessGame machine controls the state of the Chess game, while
the ChessBoard machine maintains the board state.
The ChessStrategies machine is a stateless machine which encapsulates all
of the chess strategies.

The Sequence of Events. The sequence of events described by the Chess
Strategy patten is as follows.

Two players obtain a new board (NewBoard) and attach themselves to White
and Black chess pieces using, respectively, NewBoard, AttachPlayerWhite and
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Machine Chess ctx

The Structure of the Game

Sets
CHESS BOARDS ;
CHESS PIECES ; WHITE PIECES ; BLACK PIECES ;
POSITION ;
CHESS PLAYER ;
CHESS STRATEGIES = { AGGRESSIVE , DEFENSIVE , RANDOM } ;
COLOUR = { BLACK , WHITE }

Constants
legalMoves , legalBlackMoves , legalWhiteMoves ,
legalDefensiveWhiteMoves , legalDefensiveBlackMoves ,
legalAggressiveWhiteMoves , legalAggressiveBlackMoves ,
changeBoard

Properties
WHITE PIECES ∪ BLACK PIECES = CHESS PIECES ∧
WHITE PIECES ∩ BLACK PIECES = {} ∧
card ( WHITE PIECES ) = card ( BLACK PIECES ) ∧
legalMoves ∈ BOARD → MOVES ( CHESS PIECES ) ∧
legalWhiteMoves ∈ BOARD → MOVES ( WHITE PIECES ) ∧
legalBlackMoves ∈ BOARD → MOVES ( BLACK PIECES ) ∧
legalMoves = legalWhiteMoves ∪ legalBlackMoves ∧
legalDefensiveBlackMoves ⊆ legalBlackMoves ∧
legalAggressiveBlackMoves ⊆ legalBlackMoves ∧
legalDefensiveWhiteMoves ⊆ legalWhiteMoves ∧
legalAggressiveWhiteMoves ⊆ legalWhiteMoves ∧
∀ bd . ( bd ∈ BOARD ⇒ dom ( legalMoves ( bd ) ) ⊆ ran ( bd ) ) ∧
changeBoard ∈ BOARD → ( CHESS PIECES �→ ( POSITION �→ BOARD ) ) ∧
∀ ( bd , pc ) . ( bd ∈ BOARD ∧ pc ∈ CHESS PIECES ∧
pc ∈ dom ( legalMoves ( bd ) ) ⇒

pc ∈ dom ( changeBoard ( bd ) ) ) ∧
∀ ( bd , pc , pos ) . ( bd ∈ BOARD ∧ pc ∈ CHESS PIECES ∧ pos ∈ POSITION ∧
pos ∈ legalMoves ( bd ) ( pc ) ⇒

pos ∈ dom ( changeBoard ( bd ) ( pc ) ) )
Definitions

BOARD =̂ POSITION �→ CHESS PIECES ;
MOVES ( X ) =̂ X �→ P ( POSITION )

End

Fig. 6a. Chess ctx: the Chess context machine
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MachineChessGame
Promotes

NewBoard
Variables

strategies, players, opponents, playerGames, playerColour
Invariant

players ⊆ CHESS PLAYER ∧
opponents ∈ players → players ∧
strategies ∈ players �→ CHESS STRATEGIES ∧
playerGames ∈ players �→ chessBoards ∧
playerColour ∈ players �→ COLOUR ∧
playing ⊆ dom(strategies) ∧
playing ⊆ dom(playerGames) ∧
playing ⊆ dom(playerColour)

Definitions
playing =̂ dom(opponents) ∪ ran(opponents)

Operations
player ←− NewPlayer =̂
SetChessStrategy(player , strat) =̂
AttachPlayerWhite(player , board) =̂
AttachPlayerBlack(player , board) =̂
PlayGame(player1, player12) =̂
MakeMove(player) =̂

↓Includes ChessStrategies

Fig. 6b. ChessGame

AttachPlayerBlack. The players then set their playing strategies and initiate
playing a game as opponents, using SetStrategy and PlayGame. The first move
—and all subsequent moves— is made by calling the MakeMove operation. For
each call to MakeMove an operation in ChessStrategies is called, based on the
chosen strategy for the player.

The strategy operations in ChessStrategies are given a board state and the
colour of the player. The strategy then calculates a course of action according to
the strategy that particular operation represents, choosing the piece to be moved
and its new position. The move is then made on the board itself by calling the
MovePiece operation.

It is worth noting that the flow of control always starts and ends at the
same points, with only the strategy itself being variable. This is one of the key
characteristics of the Strategy patterns in both the GoF and B strategy pattern.

4.2 Command

The Command pattern presented here is again in the spirit of the GoF Com-
mand pattern. The case-study presents a model of users and their calculators
in a client-server view where the users can send encapsulated requests to their
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MachineChessStrategies
SeesChess ctx
Promotes

NewBoard
Operations

MakeRandomMove(board , colour) =̂
MakeAggressiveMove(board , colour) =̂
MakeDefensiveMove(board , colour) =̂

↓Includes Chessboard

Fig. 6c. ChessStrategies

Machine ChessBoard
SeesChess ctx
Definitions

BOARDSTATE =̂ POSITION �→ CHESS PIECES
Constants

startingPositions, newPositions
Variables

chessBoards, positions
Invariant

chessBoards ⊆ CHESS BOARDS ∧
positions ∈ chessBoards → (BOARDSTATE) ∧
∀ cb.(cb ∈ chessBoards ⇒

dom(legalBlackMoves(positions(cb))) ⊆ ran(positions(cb))) ∧
∀ cb.(cb ∈ chessBoards ⇒

dom(legalWhiteMoves(positions(cb))) ⊆ ran(positions(cb)))
Operations

board ←− NewBoard =̂
MovePiece(board , piece,newPos) =̂

Fig. 6d. ChessBoard

“calculator” for calculating and storing an arithmetic result. The purpose of this
case-study is to show how foundational patterns are employed in B specifications
and also how they are intertwined to build more complex patterns which then
become a template for new subsystems required to solve a similar problem. In
this example of the calculator, the goal is to build a B specification that provides
parameterised requests, request queueing and support of undo/redo functional-
ity consequently giving rise to a pattern that forms the basis for the Calculator
system example.

B Command Pattern Structure. To keep this pattern understandable, three
machines are used, each of them using the Object pattern to model the Client
(User machine), Command (Command machine) and Receiver (Calculator ma-
chine) objects respectively. These three machines are then connected using the
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Calculator ctx
Sets

CALCULATOR; USER; COMMAND ;
OPERATOR = ADD ,SUB ,MUL,DIV ,MOD ,SQUARE

Fig. 7a. Command Pattern: Context

Machine Command(maxcommand , maxcalc, maxuser)
Sees

Calculator ctx
Promotes

MakeUser , MakeCalculator
Variables

userCommand , userRedo, userUndo, commands,
comCalculators, comOperators,
comOperands, comPrevCalcState

Invariant
commands ⊆ COMMAND ∧
card(commands) ≤ maxcommand ∧
comCalculators ∈ commands → calculators ∧
comOperators ∈ commands → OPERATOR ∧
comOperands ∈ commands → N ∧
comPrevCalcState ∈ commands → N ∧
∀ com.(com ∈ commands ∧ comOperators(com) = DIV ⇒

comOperands(com) �= 0) ∧
userCommand ∈ users �→ commands ∧
userUndo ∈ users �→ seq(commands) ∧
userRedo ∈ users �→ seq(commands)

Operations
cmd ←− MakeCommand(calc, operator , operand) =̂
AttachCommand(user , cmd) =̂
val ←− Compute(user) =̂
val ←− Undo(user) =̂
val ←− Redo(user) =̂

↓IncludesUser ↓IncludesCalculator

Fig. 7b. Command Pattern: Command

Association pattern. In this instance, the Command Machine is used to include
both the Client and Receiver machines. This gives command objects access to
the receiver objects so that they know which Receiver to call for a particular
action. The command objects also need to be associated with a user so the
commands can be placed in the undo/redo stacks for that user.

In this pattern, the Client machine itself does not contain much functionality.
It follows an Identity pattern to manage the Client objects. If desired, the Object
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Machine User(maxuser)
SeesCalculator ctx
Variables

users
Invariant

users ⊆ USER ∧ card(users) ≤ maxuser
Operations

newUser ←− MakeUser =̂
DeleteUser(user) =̂

Machine Calculator(maxcalc)
SeesCalculator ctx
Variables

calculators, values
Operations

calc ←− MakeCalculator =̂
DeleteCalculator =̂
Evaluate(calc, operator , operand) =̂
SetCalculator(calc, newValue) =̂
result ←− GetCalculator(calc) =̂

Fig. 7c. Command Pattern: User & Calculator

pattern could be used to add extra self-contained functionality to the Client
machine.

The Receiver machine in the pattern is used to perform operations as re-
quested by the Clients. This is facilitated through the specification of an “Eval-
uate” operation that can be called by the Command machine. Following the
Object pattern, there is a set of Receiver objects. The Evaluate operation per-
forms some state change on the receiver in question.

Finally, the Command machine models the encapsulation of method calls and
stores the operations to be called as well as the parameters for those operations.
By including both the receiver and the client machines, each command has a
reference to a receiver so it knows which receiver methods it must execute. Each
user can also be associated with a sequence of command objects to specify an
undo stack. The same principle is used to specify a redo stack. As command ob-
jects are created and invoked, they are added to these sequences. When the user
needs to undo a command, they simply take the head of the undo sequence and
restore the state of the receiver to the state that is stored within the command
object.

The Calculator machine models a simple arithmetic calculator class that is
capable of storing state. Only ADD, SUB, MUL, DIV, MOD and SQUARE
operations are available, however the user is free to specify more operations for
the calculator by appending to the Operation operation and also by specifying
how to undo this operation by adding the inverse operation to UndoOperation.

The Undo and Redo operations shown in this specification run commands to
change state. In some applications it may be preferable to save and restore state.
Clearly this pattern can be easily adapted to either of those alternatives. This
type of choice is not central to the pattern itself, and neither is being advocated.

5 Conclusion

We have presented a small subset of the specification patterns that could be
constructed in B. While the basic pattern incentive was taken from the set of
GoF patterns, the objective has been to illustrate patterns that are concerned
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with how to use the compositional mechanisms of B and to produce patterns
that can accurately be described as B patterns. We have attempted to choose
examples that might make it easier for novice B users to understand and use
B. As befits the notion of a pattern the examples have been kept as abstract as
possible. Space limitations have meant significant condensation of the examples.

Many more patterns can be described, but it must be emphasised that, so
far, these patterns are concerned only with the structuring of specifications.
A very rich line to pursue, and one we intend to pursue, is the identification
and development of refinement patterns, where they might address not simply
the structure of a refinement construct, but also the relationship between a
specification and its refinement, and between a refinement and its refinement.
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Abstract. Distributed applications are based on algorithms which
should be able to deal with time constraints. It is mandatory to express
time constraints in (mathematical) models and the current work intends
to integrate time constraints in the modelling process based on event
B models and refinement. The starting point of our work is the event
B development of the IEEE 1394 leader election protocol; from stan-
dard documents, we derive temporal requirements to solve the contention
problem and we propose a method for introducing time constraints us-
ing a pattern. The pattern captures time constraints in a generic event
B development and it is applied to the IEEE 1394 case study.

Keywords: event B, pattern, distributed systems, refinement.

1 Introduction

1.1 Overview

In this article, we present work in progress on the modelling of time in event B
using patterns. The concept of time is not predefined in B but using set theory
we can effectively model it. Generally most formal models "implement" time
in the first abstraction and they explicitly express time constraints in models
of computations or automata; several notations propose solutions for expressing
time and time constraints (timed automata of Alur and Dill [8]). We think that
it is not a good idea to introduce time too early in the development process,
because invariants on time (using natural numbers and arithmetic) introduce
too much noise for proof assistants and consequently most proof obligations
need interaction. Using abstraction without time we can solve and prove more
easily important properties of the system and obtain a first scheduling of events.
For us, time can be introduced later in a specific refinement where time is a
global variable.
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1.2 Motivations for Integrating Time Constraints in Event B
Development

Needs for integrating time constraints in event B development are motivated by
observations on a case study developed by Jean-Raymond Abrial, D. Cansell
and D. Méry [6] and the goal was to redevelop the leader election protocol and
to provide a proof simpler and easier to understand than Devillers et al [16].
The IEEE 1394 leader election protocol works properly provided the network
is acyclic; but it is sensitive to time constraints [20], since it may loop forever
if no time constraint is taken into account. In fact, the problem appears when
the algorithm is executed and leads to a situation where two nodes of a finite
network a and b are in contention. Let us recall the problem using events. Node
a sends a message to b and asks him to be its child, while node b is asking
to a to be its child. The two nodes a and b have sent messages to each other
and the messages were sent independently. No one wants to be the leader but
no other one can be the leader, since they are the last nodes in the election
process: the others nodes have already asked to be children or grand-children of
a or b. This problem is called the contention problem. This problem can occur
with only two nodes of the network (this can be proved using our models). In
the “real” protocol the problem is “solved” by means of timers. As soon as a
node a discovers a contention with node b, it waits for a very short delay in
order to be sure that the other node b has also discovered the problem. The very
short delay in question is at least equal to the message transfer time between
nodes (such a time is supposed to be bounded). After this, each node randomly
chooses (with probability 1/2) to wait for either a “short” or a “large” delay (the
difference between the two is at least twice the message transfer time). After the
chosen delay has passed each node sends a new request to the other if it is in the
situation to do so. Clearly, if both nodes choose the same delay, the contention
situation will reappear. However if they do not choose the same delay, then the
one with the largest delay becomes the father of the other: when it wakes up,
it discovers the request from the other while it has not itself already sent its
own request, it can therefore send an acknowledgement and thus become the
father. According to the law of large numbers, the probability for both nodes
indefinitely choosing the same delay is zero. Thus, at some point, they will (in
probability) choose different delays and one of them will thus becomes the father
of the other.

Abrial et al. [6] present a partial formalisation of the contention problem and
the idea is to introduce a virtual channel which is used to resolve the contention.
Recently, J-R. Abrial et al propose a simpler (without acknowledgement and
confirmation) algorithm [7]. In both models, the contention is solved abstractly
and no time reference is used. The real algorithm uses time constraints to solve
this contention. Our starting questions were:

– can we add time constraints in previous abstract models to facilitate more
realistic refinement?

– can we do this in a systematic way using something similar to design patterns
in object-oriented software development [18]?
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The questions will be partly addressed in the next sections. However, the
introduction of time is not the main issue and the next sub-section motivates
the introduction of patterns in the B methodology.

1.3 B Patterns

Designing models of a complex system using refinement and proofs are very
hard and often not very well used. This proof-based modelling technique is not
automatically done, since we need to extract some knowledge from the sys-
tem in an incremental and clever way. The event B method allows one such
development and many case studies have been developed, including sequential
algorithms [5], distributed algorithms [6,14], parallel algorithms [4] or embed-
ded systems for controlling train like METEOR [10] or Roissy Val [9]. The last
example was developed faster because previous models were reused and a spe-
cific automatic refining tool - Edit B developed by Matra (now Siemens)- was
utilised. EditB provides automatic refinement from an abstract B model, which
can be proved more quickly and automatically using or adding specific rules in
the B prover; EditB is a "private" tool and only Siemens uses it to develop sys-
tems. The interesting thing is that the engineer activity (typing model) is very
much simplified. This tool seems to apply a similar technique to those used in
design patterns. It is the application of well-engineered patterns for a specific
domain.

Three years ago Jean-Raymond Abrial, D. Cansell and D. Méry worked on
using genericity in event B [13,3]. When a designer develops a generic devel-
opment (a list of models related by refinement) both modelling and proof are
easily done. Models are more abstract and consequently the set of proof obli-
gations can be discharged more automatically or in an interactive way (it is
less noisy for the prover). The generic development can be reused by instanti-
ation of the carrier sets and constants of the development (list of models). We
obtain a new development (list of models) which is correct, if all instantiated
sets and constants satisfy properties of the generic development. An interesting
point is that we do not prove the proof obligation of the instantiated devel-
opment. This technique is well known by mathematicians who prove abstract
theorems and reuse these on specific cases reproving the instantiated axioms of
the theorem to obtain (for free or without proof) the instantiated goal of the
theorem.

Recently, Jean-Raymond Abrial has presented [2] patterns for the action/-
reaction paradigm to systematically develop the mechanical press controller.

These contributions follows the same direction leading to reuse previous proof-
based developments, to give guidelines for mechanical refinement in daily soft-
ware development. In our opinion, a B pattern is an event B development which
is proved, sufficiently generic and can be partially reused in another specific B de-
velopment to produce automatically new refinement models: proofs are (partly)
inherited from the B pattern.
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1.4 Summary

Our paper proposes initial and partial answers to these questions. We do not give
an exact definition of B patterns. It is too early to propose a standard definition
as many works are converging to this B pattern concept. We describe a pattern
with regard to time and how we can use it to produce other patterns or to solve
a specific problem. The next section introduces the time constraint pattern and
its construction. Section 3 presents an application of our pattern for a message
passing system. Section 4 concludes the paper by the IEEE 1394 case study and
future works.

2 Time Constraint Pattern

In order to express time and time constraints we introduce a new pattern. This
pattern demonstrates our modelling choice and gives a general background to
reason about things like time progression, clock or timer. The main idea is to
guard events with a time constraint, therefore those events can be observed only
when the system reaches a specific time. The time progress is also an event, so
there is no modification of the underlying language of B. It is only a modelling
technique instead of a specialised formal system. The variable time is in N but
time constraints can be written in terms involving unknown constants or ex-
pressions between different times. Finally, the timed event observations can be
constrained by other events which determine future activations.

2.1 Defining the Pattern

We can explain our method through an example event-B model. Later this model
can be used like a pattern to refine another model adding time considerations.
As you can see below, the pattern has two variables:

model
m0

variables
time, / ∗ current time ∗ /
at/ ∗ Active Times ∗ /

invariant
time ∈ N ∧
at ⊆ N ∧
(at �= ∅ =⇒ time ≤ min(at))

initialisation
time := 0 || at := ∅

events
...
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– time in N models the current time value. The incrementation of this value
denotes the time progression.

– at ⊆ N is the known future active times of the system. Each active time
stands for a future event activation. For example, a simple clock will have a
set of active times like {time + 1, time + 2, ...}.

Since this pattern is very general, the invariant is simple and we have only to
satisfy at �= ∅ ⇒ time ≤ min(at). This means that active times are in the future.
As a consequence of this fact the time can not be moved beyond the first active
time, this is intuitively correct because if time goes beyond one event activation,
then we miss the right moment for observing it.

The three events represent three different temporal aspects. The first event
is the creation of a new active time. In real system this can be the initiali-
sation of a timer or the setting of a new time constraint. We denote this by
“posting” new active times in the event “post_time”. This event is needed when
the activation of the system is dynamic. For our example of a regular clock
the active times are known for every system so we have only to initialise the
set at with N. In this case, the event post_time is not required. For more
complex cases like message passing in a network, the active times are deter-
mined by the message arrival so we need an event like post_time observed
when a message is sent to constrain the system to receiving them some time
later.

post_time =̂
any tm where

tm ∈ N ∧
tm > time

then
at := at ∪ {tm}

end

The event takes a new active time tm which is indeterminate in the most
general case but it can be more specific like time + delay with a constant delay
in N and greater than 0.

The second aspect is time progression. In this modelling approach, in a system
state the time is frozen and it can go with an observation of the tick_tock
event.
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tick_tock =̂
any tm where

tm ∈ N ∧
tm > time ∧
(at �= ∅ =⇒ tm ≤ min(at))

then
time := tm

end

This event simply takes a new value of time in the future and assigns it at
the current time.

As we have already said, time progress is nondeterministic, the new value tm
should only satisfy the invariant with tm ≤ min(at), if at �= ∅. Otherwise time
can take place everywhere and let the system trigger any event potentially. But
as time is a natural and tm > time we are sure that the system will reach the
next active time if tick_tock is activated enough. Thanks to the set at, which
is very general, this event can be copied without modification when we use the
time constraint pattern.

Now we can look at the last aspect which is the goal of our work. With this
event “process_time” we can consider events with time constraints.

process_time =̂
when

time ∈ at
then

at := at − {time}
end

The guard time ∈ at and the invariant implies that time has reached the
first active time. The time can have made one or more step with one or more
activation on tick_tock and other temporised events may have occurred.

The current active time is deleted from at therefore an active time can be used
once and only once. After this removal the time and the system can continue to
change.
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2.2 Applying the Time Constraint Pattern

This model can be used as a pattern, but it is very general and the invariant is
limited. The pattern can be fit to time-sensitive systems in order to introduce
time behaviour and prove invariants. Consequently such B patterns can be used
as a systematic help to refine systems.

As this pattern represents a way to write time arguments it can not be used
directly but needs to be adapted to a specific system (except for tick_tock which
can be used directly).

At first, events of the system involving time must be present and written in a
proved model. The idea is to use refinement and make an abstract model where
time is implicitly controlled by events as usual. One can already reason about
a model without time and prove general or abstract properties on the system.
Next, the pattern should be adapted except tick_tock. The two aspects involved
in post_time and process_time need to be identified from the modelled system.
For instance, the beginning of a timer, sending of message or other initiation of
non-instantaneous actions match the posting time event. Connected to that timer
ending, message reception or finalisation of non-instantaneous actions match the
processing time event. The result will be a set of adapted and renamed instances
of post_time and process_time events.

When this aspect of events has been identified we can use it to refine the
abstract model with a superposition of modified events; we refine the abstract
model; for instance, we can substitute an abstract guard model by concrete
time expression; in this way, we can prove that the time constraints implements
required behaviour.

Some specific adaptation or improvement may be used:

– The two ideas of posting and processing active times have been presented
separately for getting the essence of the concept. However they are often
mixed in the same event. One can make a chain of reactions with time
constraints between events.

– There is no contradiction to consider more than one time posting in an
event which refines post_time. We can add a number of active times in one
shot. Using the same idea, an infinite number of times can be posted using
generalised substitution: for example, on the initialisation of the system.

– In addition to the set at we can add variables to express in a more spe-
cialised and meaningful way active times. These variables have common el-
ements with at. For example, we can store sending time of messages. All
these added variables allow one to write more specialised time constraints
and give different categories of active times inside at.

– With the last remark, we can have different categories but we can not simply
trigger more than one event at the same time because at is a set and it can
not contain several identical values like in a multiset. To resolve this we can
take several sets like at or take a function to index different sets. This index
will represent different processes which can run at the same time. Of course



Time Constraint Patterns for Event B Development 147

this modification needs to be done in the same way for the rest of the model:
invariant and other events. With this adaptation we can represent different
local clocks or several processes.

2.3 Comparisons with Other Methods

Our solution does not require a language with explicit time expression. Conse-
quently it is difficult to compare this work with other solutions. A big part of
other work uses timed automata [8] with model checkers such as Uppaal [11] or
Kronos [15]. These automata allows one to write transition systems with time.
Transitions between states are instantaneous and time can progress inside a state.
One can use several clocks (variables in R). Time constraints are comparisons
of clocks with numeric constants and can be set both on state and transition.
Automata can only stay in a state, if clock does not exceed time constraints. In
the same way system can transit, if constraints are valid. One can reset clock to
zero on transition, so the time may be cyclic.

We can point out fundamental differences with our time model using con-
nections between event B models and automata. In our model it is a transition
(event) which makes time progress under some condition instead of a state such
that time can grow under a limit. For this reason we can have several event ac-
tivations which are instantaneous. Usually we do not reset time to zero because
we can infinitely add active times in the future.

The main difference comes with the use of the active times set which are not
explicit in timed automata theory. The word “clock” does not fit very well with
our approach because the variable time denotes the general time passing. For
us a clock is a relation between time progression and known future active times.
This set is also the main difference with the explicit-time description in [1] and
[19] by L. Lamport et al. As a result our tick_tock event is more general because
it only refers to elements of this set.

Properties certification for timed automata is done by a model-checker. The
infinite number of states (because of time) is reduced to a finite set of partitions
over vector space make by clocks. In our case, proof are made as usual with first
order classical logic and set theory inside B tools.

Some other works related to real-time systems can be found in [17] by C.J.
Fidge and A.J. Wellings, their approach is different than ours because they do
not use instantaneous actions.

3 Message Passing Using the Time Constraint Pattern

This section presents an application of our pattern. We design a system of two
devices a and b. Device a can send a message to b. We prove that a timer triggered
after sending ensure to a the effective reception of message by b (we do not take
into account loss of message). The system is described by two models. The first
model has basic elements and events sequencing. The second model refines the
previous sequencing of events by time constraints.



148 D. Cansell, D. Méry, and J. Rehm

3.1 Abstract Model

As a first step we introduce the problem with an abstract model. The model
consists of two constants a and b for the devices, four variables A, S, B and AB,
and three events :

– sendA : a sends its message to b using connection AB
– recB : b receives it from the connection AB
– quA : when a knows that the message is received by b, it modifies one of its

local variable S.

The invariant of the model is:

A ⊆ { a } ∧
B ⊆ { b } ∧
AB ⊆ { a } ∧
S ⊆ { a } ∧
(A �= ∅ =⇒ AB �= ∅)

According to a distributed system, we consider that A and S are local variables
for device a, B is a local variable for device b and AB is a global variable for the
channel between the two devices. Similarly events sendA and quA are local to
device a and event recB is local to device b. A denotes sending of the message if
and only if A is not empty, similarly B denotes its reception and S denotes the
state after execution of quA. All variables are booleans (empty or not). Next we
define the three events:

sendA =̂
when

A = ∅
then

A := { a } || AB := { a }
end

recB =̂
when

AB = { a }
then

B := { b } || AB := ∅
end

Using A to express the sending of the message and B
its reception, these events implicitly denote a delay be-
tween the execution of sendA and recB. After this delay,
we make an action (the reception of the message) as a re-
quirement. To specify this we explicitly ask the message
to be received, in the guard of quA.

quA =̂
when

B = { b }
then

S := { a }
end

In the abstract model we are “cheating” because event quaA is intended to
be local to device a but it can see the variable B which is intended to be local
to device b. It is as if device a can see local information of device b. In order to
enforce the localisation property as we are moving towards implementation we
refine this specification with the time constraint pattern.
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3.2 Introducing Time by the Time Constraint Pattern

With the method already described we need to adapt the pattern and anchor
events in time. For this we need two constants : prop is the propagation time
needed for the message to transit from a to b and st is the sleeping time used in
the timer. As an adaptation we need two new variables: stm is the “send time
message” and slp the time when a will stop sleeping at the end of the timer.
The tick_tock event can be copied as before and we have the two aspects of the
pattern:

– Only event sendA posts two active times : time + prop and time + st (with
the hypothesis prop < st).

– Events recB and quA are processing an active time.

Next we can write temporal aspects with a refinement of the abstract model.

sendA =̂
when

A = ∅
then

A := {a} ||
AB := {a} ||
at := at ∪ {time + prop}∪
{time + st} || / ∗ added ∗ /

stm := time || / ∗ added ∗ /
slp := time + st / ∗ added ∗ /

end

recB =̂
when

AB = {a} ∧
time = stm + prop / ∗ added ∗ /

then
B := {b} ||
AB := ∅ ||
at := at − {time} / ∗ added ∗ /

end

For these two events the refinement is just a superposition, i.e. some lines
have been added without changing existing expressions. On sendA we can see
the two new active times time + prop and time + st which are the future arrival
time of messages and the awake time ending the timer. On the same event the
informative variables stm and slp are set up. The second event is triggered by
stm + prop which is equal to the posted value time + prop, this active time is
deleted from at, as in the pattern. Now the most interesting event:
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quA =̂
when

A �= ∅ ∧ / ∗ changed to a local guard ∗ /
time = slp / ∗ added ∗ /

then
S := {a} ||
at := at − {time} / ∗ added ∗ /

end

Here the refinement is not just a superposition: the abstract guard was B =
{b} and is changed to a more concrete A �= ∅ ∧ time = slp. The use of the non
local variable B has disappeared with the use of the local variable A and of the
variable time. Variable time is universal and global so we can use it to get more
information from the local state of distributed devices. In order to prove the
refinement we need the following invariant:

time ∈ N ∧
stm ∈ N ∧
slp ∈ N ∧
at ⊆ N ∧
(A �= ∅ =⇒ stm + prop < slp) ∧
(A �= ∅ ∧ time ≥ stm + prop ∧ stm + prop /∈ at =⇒ B = {b}) ∧
(at �= ∅ =⇒ time ≤ min(at)) ∧
at ⊆ {stm + prop, slp} ∧
(A = ∅ =⇒ at = ∅) ∧
(A �= ∅ ∧ at = ∅ =⇒ time ≥ slp) ∧
(A �= ∅ ∧ at �= ∅ =⇒ slp ∈ at) ∧
(A �= ∅ ∧ at = {slp} =⇒ time ≥ stm + prop)

We give explanations on the most interesting part of this invariant and a
derived theorem:

– (A �= ∅ ∧ stm + prop /∈ at ∧ time ≥ stm + prop ⇒ B = {b}:
This part of the invariant is important to prove the refinement of quA. In this
expression if time is beyond stm+prop and if the time constraint stm+prop
has already been processed then we are sure of the reception (B = {b}).

– (A �= ∅ ∧ at = {slp} ⇒ time ≥ stm + prop:
If active times set is only {slp} and message is gone then current time is
after the message reception.

– (A �= ∅ ∧ at = ∅ ⇒ time ≥ slp:
This predicate is interesting if the message has already been sent (A �= ∅) and
if there is no more time constraints on process (at = ∅), in other words once
all the events were observed. In this case, one can affirm that the current
time exceeded the moment when a was awaken.
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– (A �= ∅ =⇒ stm + prop < slp):
This invariant uses the fact that prop < st because event sendA provides the
following proof obligation: {a} �= ∅ =⇒ time + prop < time + st. This fact
is a property on constants st and prop which expresses that the propagation
time is less than the sleep time.

The abstract event quA is cheating, since it looks the variable B in its guard
(B = {b}); the refined version is no more cheating, since the guard is local
(A �= ∅ it has sent the message) and the temporal guard time = slp. Only time
is a global variable shared by each participant of the global system: it is local
for each participant and everyone has the same time. We assume that the time
is the same of everyone.

4 Concluding Remarks and Perspectives

4.1 On the Contention Problem

This work began with the time constraint problems inside the firewire protocol.
The protocol, namely IEEE 1394, can be found in computers and devices like
cameras or external hard-disks and is used to connect them together in a local
network. When one or several devices are connected or disconnected, they are
able to reconfigure themselves. The reconfiguration consists of the election of
a network leader. The network is a symmetric acyclic graph, the algorithm of
election orients edges to obtain a spanning tree rooted by a leader.

At each step of this distributed algorithm a device is submitted to another.
The submitted device is a leaf node among non-submitted devices. The submis-
sion of the device is done by sending a message to the device next to it.

But, at the end of the process, a contention problem may occur with the last
two devices (and only in this case). Since both devices are leaves, they can send
submission almost at the same time. In this case, the two messages cross in the
bi-directional channel between the last devices. The election can not be done
because both devices are in a submission state.

We can see in the figure 1 an example of contention. X and Y devices are
sending messages together with the arrow “1”. After the first sending there is
a period “a”, in this period the other node can send a second message because
the first is not received. The protocol has a special case for this problem, the
chosen solution deletes the two submission messages and tries to choose a leader
with a new message. Messages are not structured packets but constant signals,
so a message can be put on or removed from the channel. To give a chance for
resolving contention each device chooses a delay between a long and a short time.
Then they sleep for the chosen delay. We can see a example below in figure 2
with the two delays “b” and “c” and the deletion of message with the arrow “2”.

When the device awakes, there are two possibilities:

– No message has arrived during the sleeping time, so the device can send a
submission message.
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Y

Fig. 1. Example for the contention problem

– One message has arrived during the sleep, so the device has to receive it and
becomes the leader.

This contention solving succeeds only if the chosen times are different, in this
case only one message is re-sent and the receiver becomes the leader. We can
see this discriminatory message labelled “3” in the figure 2. On the other hand if
sleeping times are the same the contention problem occurs again and the same
process begin.

As we have seen there are a lot of time issues in this part of the protocol.
Time is needed to quantify the two different sleeping times and to represent the
progression of the message signals over the channel.

4.2 Conclusion

The starting point of our work is the proof-based development of the IEEE 1394
leader election protocol and the observation of the partiality of the resulting
proved solution [6]: the development does not take into account time constraints.
Moreover, we paid attention to capture our modelling experience in a pattern
called time constraint pattern. We give a light definition of patterns which are
planned to give a systematic help for specialised refinement. Our work illustrates
the use of a general and global time which interacts with a number of actives
times. The time progression is abstract and nondeterministic; the concept of
active times can be fit to various situations like simple clocks, timers or delays
for messages. We have used our pattern on a realistic problem involving messages
on channels and we have studied time constraints in contention problem of the
IEEE 1394 protocol.

The contention problem is not yet completely solved. But we have enough
elements and tools to solve the contention problem in the event B framework.
With the help of refinement we can introduce time constraints that satisfies
a sequence of events. If a concrete system refines another system with time
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Fig. 2. Example for the contention problem

constraints we can prove the timing validity of the concrete system. For future
work, we can enrich the library of patterns and we can study the applicability
of such a process on others case studies.
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Abstract. Following a brief discussion of uniprocessor scheduling in
which we argue the case for formal analysis, we describe a distributed
Event B model of interrupt driven scheduling. We first consider a model
with two executing tasks, presented with the aid of state machine di-
agrams. We then present a faulty variant of this model which, under
particular event timings, may ”drop” an interrupt. We show how the
failure to discharge a particular proof obligation leads us to the concep-
tual error in this model. Finally we generalise the correct model to n
tasks, leading to a reduction in proof effort.

Keywords: Formal Methods, Interrupt Driven Scheduler, Event
Calculus.

1 Introduction

We present, in a simple Event Calculus of communicating state machines, the
design of an interrupt driven scheduler which is a simplification of one we have
deployed in a number of embedded applications. The simplifications are that we
do not model the creation of tasks, and that all tasks are “interrupt driven”. The
resulting model still contains a particularly critical aspect of the design, which
relates to a possible race hazard in interrupt timings.

The essence of our modelling technique, which is a variant of Event B, is to de-
scribe a state space along with some guarded events which can “instantaneously”
modify this state. The state space description includes a formulation of invari-
ant properties, and we incur proof obligations to show that these properties are
established at initialisation and maintained across all events. Also essential to
the method in general, but not required for our model, are the use of refinement
to gradually introduce richer structure and techniques for reachability analysis.
Current developments are described in [1].

We define separate B “Abstract Systems” which interact by means of shared
events. This is not the predominant modelling technique in Event B, but it is one
which can be expressed in B without difficulty. See for example [2,4]. A tutorial
introduction to our style of modelling is given in [3].

Our paper has the following structure. In section two we discuss uniprocessor
scheduling and justify our choice of a simple but formally modelled scheduler. In
section three we present a model of our scheduler running two tasks, using state
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machine diagrams to aid comprehension. In section four we present a faulty
variant to emphasise the value of formal analysis. Although the scheduler is
simple, the fault is difficult to spot or detect though testing. We show how proof
analysis directs us precisely to the conceptual error in the design. In section
five we generalise the design to n tasks, which, in sharp contrast to the model
checking approach, reduces proof effort. In section six we conclude.

2 Uniprocessor Scheduling in Real Time Environments

Formal analysis of real time scheduling has a long history, but has mainly as-
sumed the correctness of a scheduler design and analysed the ability of a certain
policy to schedule a given set of tasks with assumed priorities, periodicities and
execution times. In 1973 the seminal paper of Liu and Layland [5] showed that for
a set of periodic non-intercommunicating tasks the optimal fixed priority sched-
uler could be obtained by giving higher priorities to tasks that ran at the most
frequent rates. They called this scheme “Rate Monotonic Scheduling” (RMS).
Assuming zero task switching overheads they obtained a least upper bound to
achievable processor utilisation of about 69%. Since that time RMS scheduling
and its variants have dominated scheduling policy and generated an enormous
body of academic literature, some of which is summarised in [6]. One of the
problems considered in this research is “priority inversion”. This occurs when
a higher priority task is waiting for the lower priority task to release a shared
resource. There are a number of methods of dealing with priority inversion, such
as ‘Priority Inheritance” and the ”Priority Ceiling Protocol”, but these are not
always used as they introduce added complexity which incurs performance penal-
ties. RMS scheduling analysis also has difficulty in dealing with asynchronous
events. A flurry of asynchronous events together with priority inversion caused
the well known software crash in the NASA Mars Pathfinder mission.[7].

For our own embedded applications we use an ”interrupt driven round robin”
scheduler. Each i/o device has its own associated task and interrupt service rou-
tine. Events in the environment provoke interrupts. The associated interrupt
service routine performs any urgent action required by the event, e.g. the dis-
patch of a data frame at a precise time, then sets the status flag of its associated
task. The task then runs when its turn arrives and deals with the less urgent
aspects of the event, e.g. the preparation and queueing of subsequent frames.
Round robin (RR) scheduling is sometimes considered too simplistic for use in
the most demanding applications, due to the following apparent disadvantage: a
task with a hard deadline may become ready to run just after it has been consid-
ered by the scheduler. In this case it will need to wait for all other tasks before it
gets its turn and is therefore likely to miss its deadline. With our scheduler how-
ever, we are able to meet hard deadlines via an interrupt response, though we
consider this only appropriate if the required action is fairly simple. Very often
it can be. Take another example. A tank is proceeding on a road with its gun
aimed at a target, when it hits a bump which disturbs the aim. The immediate
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action is to set a flag which momentarily postpones any firing of the gun. The
subsequent action is to re-establish its gun’s orientation.

More generally we can argue a case as follows. By assigning less time to each
task, the round robin will rotate more quickly and reduce variation in task service
times. Indeed, if we ignore scheduling overheads, processor utilisation under RR
tends to 100% as the maximum task service time tends to zero. Letting service
time tend to zero whilst ignoring scheduling overheads has its limitations, but
the formal result indicates why RR is particularly applicable where there is an
efficient scheduling mechanism. Assuming a suitable processor architecture (one
that does not impose significant task switching overheads) such a mechanism is
described in this paper.

There are a number of other well known “work arounds” such as allowing the
most urgent tasks to have multiple entries in the round robin. Formal analysis
assists us here by ensuring that such variations do not introduce faults into the
scheduler design.

Our experience has been that it is worth persisting with the round robin in or-
der to profit from its simplicity, low overheads and fairness properties. Despite its
simplicity however, we will show that even a round robin scheduler requires formal
analysis, as it can exhibit subtle faults which may escape detection by testing.

3 Our First Model: The Scheduler with Two Tasks

We present the model in terms of interacting state machines which synchronise
on shared events. For our previous work using such state machines and describing
their translation into B see [3,4].

The model (though not its invariant properties) is simple enough for its com-
ponents to be expressed as state machine diagrams. We have found this a useful
way to present the design to students and real time practitioners. Although the
practitioners we have collaborated with are trained engineers, they require gentle
treatment when Formal Methods are mentioned, and appear to appreciate this
form of description. We also hope this model will help the reader to understand
the scheduler’s operation. This understanding is essential of course: if we are to
gain the readers confidence with respect to the results of our proof analysis, he
or she needs to agree that what we have analysed is indeed an adequate model
for a scheduler.

The machines in this model do not represent separate physical entities. Rather
they formalise some views (i.e. abstractions) of the design, namely: scheduling
policy, task status history, device interrupt and task execution protocols.

Figure 1 shows the operation of RR scheduling for two tasks. From its initial
state S0, the scheduler may either run task A or skip task A. If it skips A,
it becomes ready to run or skip B . When a task runs, it must subsequently
relinquish the processor to allow other tasks to run. If it has completed the
action required in response to the current interrupt it will stop. Alternatively,
if it still has more work to do but is relinquishing the processor to allow other
tasks a turn, it will pause.
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pause(B)/
stop(B)

pause(A)/
stop(A)

run(A)

skip(B)

skip(A)

run(B)

S3

S2

S1

S0

Fig. 1. Task scheduler running tasks A and B

We translate this state machine into a B abstract system. SELECT con-
structs express the firing condition of each event: e.g. skipp(A) can occur when
t = A and state = S0. Pre-conditions are used to provide type information.1

SYSTEM scheduler

SEES globals/* this defines the set TASK = {A,B} */

SETS SSTATE = {S0,S1,S2,S3}
VARIABLES state

INVARIANT state : SSTATE

INITIALISATION state := S0

EVENTS

skipp(t) =̂ PRE t : TASK THEN
SELECT state = S0 ∧ t = A THEN state := S3
WHEN state = S3 ∧ t = B THEN state := S0 END

END ;

1 Readers may recall the B convention of reserving single character names for meta-
variables. This does not apply to the Click’n’Prove tool available on the B4free web
site, www.b4free.com, and is not used here.
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run(t) =̂ PRE t : TASK THEN
SELECT state = S0 ∧ t = A THEN state := S2
WHEN state = S3 ∧ t = B THEN state := S1 END

END ;

pause(t) = PRE t : TASK THEN
SELECT state = S1 ∧ t = B THEN state := S0
WHEN state = S2 ∧ t = A THEN state := S3 END

END ;

stop(t) = PRE t : TASK THEN
SELECT state = S1 ∧ t = B THEN state := S0
WHEN state = S2 ∧ t = A THEN state := S3 END

END
END

The state machine for the scheduling policy does not indicate how a choice is
made between running or skipping a task, or between stop or pause. This will
be determined by event synchronisation with other state machines.

Each task is modelled in terms of a status flag, an i/o device interrupt protocol
and an execution protocol. We detail those for task A.

The decision as to whether a task will be run or skipped by the scheduler is
made according to the setting of the task’s status flag. The status flag behaviour
for A is shown as the left most state machine of figure 2.

int(A)/
pause(A)

pause(A)/
int(A)

run(A)

TS0

TS1

skip(A)

D1

D0

int(A)

ei(A)

Fig. 2. Task A status flag (left) and i/o device interrupt protocol

In its initial state TS0 this status flag permits the event skip(A) but blocks
run(A). In state TS1 the status flag has the opposite effect, blocking skip(A)
and allowing run(A). It will change from TS0 to TS1 on the occurrence of either
an interrupt for task A (event int(A)) or by a pause in the execution of task A
(event pause(A)). When task A is run, (event run(A)) its status flag is reset to
state TS0.
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From state TS1 the status flag for task A will permit either pause(A) or
int(A) but will remain in the same state. This pair of transitions is represented
with a dotted line, a convention we use to represent the expectation that these
transitions are not expected to occur within the context of the overall system,
but must be included here because it is not the job of the status flag to block
them, and that would be the effect of their omission under our interpretation of
shared (synchronised) events.

Weuse a singleBAbstract System tomodel the status flags of both tasks.Within
this abstract system, status(A) represents the status of task A and status(B) the
status of task B . The firing condition for run(A) is status(A) = TS1 and so on.

SYSTEM status

SEES globals

SETS TASKSTATUS = {TS0,TS1}
VARIABLES status

INVARIANT status : TASK → TASKSTATUS

INITIALISATION status := TASK ∗ {TS0}
EVENTS

skipp(t) =̂ PRE t : TASK THEN
SELECT status(t) = TS0 THEN skip END

END ;

run(t) =̂ PRE t : TASK THEN
SELECT status(t) = TS1 THEN status(t) := TS0 END

END ;

int(t) =̂ PRE t : TASK THEN
BEGIN status(t) := TS1 END

END ;

pause(t) =̂ PRE t : TASK THEN
BEGIN status(t) := TS1 END

END
END

We now consider the interrupt protocol to be followed by a task’s i/o device.
It is the same for all tasks, so we will again just consider the case of task A. After
the event int(A) a further int(A) is impossible until interrupts are enabled for the
device (event ei(A)). This is shown in the rightmost state machine of figure 2.
Our model does not detail what happens when an outside world event which
would cause an interrupt occurs when interrupts are disabled. In this situation
the hardware devices keeps the interrupt pending and will raise it when the
device interrupt is next enabled.

Figure 3 defines the execution protocol of task A. From its initial
non-executing state T0 the task may be run (event run(A)). It returns to the
non-executing state either via a pause (when it has more work still to do but
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other tasks are to have access to the processor) or by re-enabling the interrupts
for its associated i/o device and stopping (when it has completed its work). The

T2

T1

T0

run(A)

ei(A)

pause(A)

stop(A)

Fig. 3. Execution protocol for task A

translation of these last two state machines to B follows exactly the pattern of
the status flags, and will therefore be omitted. The complete model is shown in
figure 4.

The design becomes critical under conditions of heavy load, i.e. when inter-
rupts occur more or less as soon as they are enabled. In this case an interrupt
may arrive to activate a task which is still running in response to a previous
interrupt. A key design decision here is that when a task is dispatched its status
flag is reset to its initial state, allowing its interrupt routine to register an effect
whilst the task is actually running. Event int(B) in the following trace illustrates
this. To indicate which machines participate in each event we use these names:
S for the scheduler; AS ,BS for the status flags; AD ,BD for the i/o devices and
A,B for the execution protocols of the two tasks.

Event Participating Machines Task A Scheduler Task B
T0,TS0,D0 S0 T0,TS0,D0

skip(A) S ,AS T0,TS0,D0 S3 T0,TS0,D0

int(A) AS ,AD T0,TS1,D1 S3 T0,TS0,D0

int(B) BS ,BD T0,TS1,D1 S3 T0,TS1,D1

run(B) S ,B ,BS T0,TS1,D1 S1 T1,TS0,D1

ei(B) B ,BD T0,TS1,D1 S1 T2,TS0,D0

int(B) BS ,BD T0,TS1,D1 S1 T2,TS1,D1

Following these events, task B is running and task activation in response to
an interrupt is pending for both tasks. Under the assumption that no further
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int(A)
int(B)

ei(B)

ei(A)

run(A) run(B)

int(A)/
pause(A)

int(B)/
pause(B)

skip(A) skip(B)

int(A)/pause(A) int(B)/pause(B)

run(A)

ei(A)stop(A)

run(B)

ei(B)stop(B)

pause(A) pause(B)

T0

T1

T2

D0

D1

TS0

TS1

T0

T1

T2

TS0

TS1

D1

D0

pause(B)/
stop(B)

pause(A)/
stop(A)

skip(B)

skip(A)

S3

S2

S1

S0

run(A)

run(B)

Fig. 4. Tasks A and B with status flags, i/o devices and scheduler

interrupts occur and that tasks relinquish the processor via stop, the following
event trace will subsequently occur:

〈stop(B), run(A), ei(A), stop(A), run(B), ei(B), stop(B)...〉

Now let us return to the unwanted event transitions of the status flags, which
are marked by dotted lines in our diagrams, and consider exactly why we do not
want them to occur but must nevertheless include them in the behaviour of our
machines. For example consider the transition:
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TS1
int(A)−−−−−−→TS1

this is unwanted since it fails to register that an interrupt has occurred. It must
be included because it cannot be the business of a status flag, which will be
implemented as a program variable, to control whether an interrupt can occur.
On the other hand the status flag can very well be used, in an if statement,
to control a choice, made by the scheduler, between running or skipping a task,
and this is its function in our model.

A B model of the entire system is constructed by including all component
machines and composing events in parallel. At this level we can also introduce
system invariant properties.

SYSTEM system
INCLUDES globals ,Dev .device,Sched .scheduler ,Task .task ,Status .status
INVARIANT
/*A task’s device is not interrupt enabled when the task is dispatched*/
∀ t .(t : TASK ⇒ (Task .state(t) = T1 ⇒ Dev .state(t) = D1)) ∧
/*If a task’s device is interrupt enabled, the task does not require service*/
∀ t .(t : TASK ⇒ (Dev .state(t) = D0 ⇒ Status .status(t) = TS0)) ∧
/* Global impossibility properties (infeasibility of dotted transitions): */
/* interrupt behaviour */
∀ t .(t : TASK ⇒ (Status .status(t) = TS1 ⇒ Dev .state(t) = D1)) ∧
/* pausing behaviour */
(Status .status(A) = TS1 ⇒ not(Sched .state = S2 ∧ Task .state(A) = T1))
∧
(Status .status(B) = TS1 ⇒ not(Sched .state = S1 ∧ Task .state(B) = T1))
∧
/*scheduler properties*/
(Sched .state = S0 ⇒ ∀ t .(t : TASK ⇒ Task .state(t) = T0)) ∧
(Sched .state = S1 ⇒ Task .state(A) = T0 ∧ Task .state(B) �= T0) ∧
(Sched .state = S2 ⇒ Task .state(A) �= T0 ∧ Task .state(B) = T0) ∧
(Sched .state = S3 ⇒ ∀ t .(t : TASK ⇒ Task .state(t) = T0))

ASSERTIONS
/*only one task runs at a time. Note that the status of an idle task is T0.*/
∀(t1, t2).

(t1 : TASK ∧ t2 : TASK ∧ Task .state(t1) �= T0 ∧ Task .state(t2) �= T0
⇒

t1 = t2)

EVENTS
run(t) =̂ PRE t : TASK THEN

Sched .run(t) || Task .run(t) || Status .run(t)
END ;

skipp(t) =̂ PRE t : TASK THEN Sched .skipp(t) || Status .skipp(t) END ;
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pause(t) =̂ PRE t : TASK THEN
Sched .pause(t) || Status .pause(t) || Task .pause(t)

END ;

stop(t) =̂ PRE t : TASK THEN Sched .stop(t) || Task .stop(t) END ;

ei(t) =̂ PRE t : TASK THEN Dev .ei(t) || Task .ei(t) END ;

int(t) =̂ PRE t : TASK THEN Dev .int(t) || Status .int(t) END

END

Let us now consider some events and invariant clauses of this system model.
As an example event consider run(t). This involves the scheduler, the task t , and
the task’s status flag. We form the system event run(t) by composing the run(t)
events of these three components in parallel. The result is an event which can
only fire if each of its components can fire: a three way event synchronisation.
Checking the definitions of run in the included machines, we see that the effective
firing condition is the conjunction of the following:

– The scheduler is considering whether to run t
– t is in the idle state
– The status flag for t is set.

Now let us turn to the invariant and assertions clauses. The formal checks of
consistency imposed by the B method are to ensure the invariant is established
by the initialisation of the system, and is preserved by any events that occur.
Our system machine has no initialisation clause, and indeed no variables of its
own. Its initialisation is performed within the included machines. The invariant
clause, on the other hand, is quite extensive and we will pick out for discussion
the part that relates to guaranteeing that interrupts cannot be “dropped”.

Since the effect of an interrupt is to set the status flag for the associated
task we will drop an interrupt (i.e. miss its effect) if it occurs when the relevant
status flag is already set. So we want to ensure the event int(t) cannot fire (is
not feasible) when the status flag of t is set: i.e.

∀ t .(t : TASK ⇒ (Status .status(t) = TS1 ⇒ not(fis(int(t)))

This form is not immediately suitable for use in our invariant as our tool
support does not allow us to directly refer to the feasibility of an event. However,
after some obvious manipulations using the definition for fis given in the B Book
[8] the property can be expressed in the following form:

∀ t .(t : TASK ⇒ (Status .state(t) = TS1 ⇒ not(Dev .state(t) = D0)))

This property ensures that whenever interrupts can occur, their effect will be
registered by the system. A further obvious simplification step gives the invariant
clause used above in the model.
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3.1 On the Use of Input Parameters, Event Synchronisation and
Feasibility

Our style differs from most Event B models in its use of parametrized events. We
use what are notionally “input” parameters for this purpose, but here they serve
as a general form of event parameterization.. The resulting proof obligations
for invariant preservation are universally quantified over all possible parameter
values.

The use of event parameters allows us to model n way synchronisations via
parallel composition of events. This is similar to the primitive synchronisation
of actions in CSP. However, CSP also has a more elaborate model of communi-
cation, built on top of primitive synchronisations, which describes the one way
communication of a value from a sender to a receiver via a “channel”. Chan-
nels are used in Michael Butler’s csp2B[2] and in Steve Schneider and Helen
Treharne’s Communicating B Machines[9], two formalisms which provide an in-
tegration of CSP and B. Channels provide an ideal description for the commu-
nicating of information from a transmitter to a receiver along a wire (and for
analogous situations) but their use would be artificial and clumsy for the more
intimate style of modelling we adopt here, where shared events may arise from
the intersecting life cycle histories of purely conceptual components obtained
from taking different “views” of the system.

Feasibility plays an essential role in our modelling. Events are typically
guarded, and may only fire if their guard is true. An event which cannot fire
cannot fail to preserve the system invariant. In terms of formal proof, such
an event is “miraculously” able to guarantee any post condition, and thus can
guarantee the system invariant remains true. Intuitively we can interpret this
miraculous behaviour as “all possible after states will satisfy the post condi-
tion”. As there are no after states, any postcondition can (in this vacuous way)
be satisfied.

4 A Faulty Variant and Its Proof Analysis

In our model a task status of TS1 indicates that a request for future action
by the task is pending, whereas TS0 indicates that there is no such request.
We now look at an alternative characterisation which might initially seem more
appealing. A task will be “asleep” (task status TS0) if it is not running and
not requiring service, or “awake” (task status TS1) if it is running or requiring
service. The only difference from the previous model is that a task’s status is
reset at the stop event rather than the run event. This gives a different life cycle
history for a task’s status flag, as shown in figure 5 for task A.

We invite the reader to try to spot the fault in this model before we show
how it is revealed by proof analysis!

For this model our tool support lists 111 non-trivial proof obligations for the
establishment and preservation of static invariant properties. The large number
of proof obligations means that when we encounter an obligation that we see will
not be true, we can gain very precise information about the fault in our model.
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int(A)/
pause(A)

skip(A)

pause(A)/
int(A)

stop(A)

TS0

TS1

run(A)

Fig. 5. Task A status flag, faulty variant

The first obligation that we find impossible to discharge is one arising from the
ei (enable interrupt) event. It is presented to us as: Statusstate(t$0) = TS0.

The invariant clause to preserved by the event is also displayed at the top of
the proof tree window. Apart from slight variations due to internal normalisation,
it is the clause discussed at the end of the previous section: a tasks status flag is in
state TS0 whenever its interrupts are enabled. The tool has generated the proof
obligation from this by eliminating the universal quantification (introducing, in
the process, the “fresh” variable t$0) and converting the left hand side of the
remaining implication to a hypothesis.

The failure to discharge this obligation leads us to the following analysis. In
this model, when a task is set running its status remains “awake”. It cannot at
this point register the effect of an interrupt, but that is not a problem (yet) be-
cause the corresponding device interrupt is currently disabled. The task enables
its interrupt before it stops. This is the event at which our proof analysis fails,
and it marks an interval of vulnerability when interrupts are enabled and the
task is still running. At this point a device interrupt can occur without register-
ing any effect on the status flag, i.e. the interrupt can be “dropped”. This fault
can escape detection by testing, as it will only manifest itself if the interrupt oc-
curs in a certain time interval. Indeed, one can realistically envisage a situation
in which the scheduler passes some tests and the fault later occurs on prototype
hardware, a scenario that would completely confuse development engineers. For-
mal analysis, however, has precisely directed our attention to the fault.

5 Generalising the Model

To generalise our scheduler model from two to n tasks we change our globals
machine so TASK is a set of unknown size but with at least one element. This
is enough to generalise all the component Abstract Systems in our model with
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the exception of the scheduler. For that, we introduce a new B Abstract System
which represents the round robin as a circular list of tasks. We have a variable
head which indicates the currently selected tasks, and events which select the
current task and move head to the next task in the robin.

SYSTEM sched data

SEES globals

VARIABLES robin, head

INVARIANT
/* robin is an isomorphic function with a single cycle, representing a circular
list of all tasks */

robin : TASK � TASK ∧
head : TASK ∧
∀ ss .(ss ⊆ TASK ∧ robin[ss ] = ss ⇒ ss = TASK )

INITIALISATION
robin, head : (robin : TASK � TASK ∧ head : TASK ∧

∀ ss .(ss ⊆ TASK ∧ head : ss ∧ robin[ss ] ⊆ ss ⇒ ss = TASK ))

EVENTS

this(t) =̂ PRE t : TASK THEN
SELECT t = head THEN skip END

END ;

next(t) =̂ PRE t : TASK THEN
SELECT t = head THEN head := robin(head) END

END
END

A state machine representation of the scheduler which refers to these events
is shown in fig. 6. In state S0 the scheduler is running, and in state S1 a task
is running. We see once again the familiar events run, skip pause and stop but
this time each of these appears in parallel with an event from the sched data
machine, which may be considered as representing the “internal state” of the
scheduler (by which we mean a state not shown explicitly on the state diagram).
The event run(t) occurs in parallel with this(t), which uses a feasibility filter to
ensure that run(t) can only fire when t = head . Without the inhibiting action of
this(t), the event run(t) could fire for any t . The effect of the parallel composition
is to ensure that run(t) is only enabled for the task at the head of the round
robin. The events skip, pause and stop occur in parallel with next , which, as well
as using a feasibility filter to select t = head , updates the internal state of the
scheduler to point the head variable at the following task.

In the translation process which converts the state machine representation to
B we identify the parameter t as a variable by a convention that constants are
named in upper case (e.g. the tasks A, B in the first model were constants) and
variables in lower case.
SYSTEM scheduler
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S1

S0

run(t)‖this(t)

pause(t)‖next(t)

skip(t)‖next(t)

stop(t)‖next(t)

Fig. 6. Generalised Scheduler

SEES globals

INCLUDES sched data

SETS SSTATE = {S0,S1}
VARIABLES state

INVARIANT state : SSTATE

INITIALISATION state := S0

EVENTS

skipp(t) =̂ PRE t : TASK THEN
SELECT state = S0 THEN next(t) END

END ;

run(t) =̂ PRE t : TASK THEN
SELECT state = S0 THEN state := S1 || this(t) END

END ;

pause(t) =̂ PRE t : TASK THEN
SELECT state = S1 THEN state := S0 || next(t) END

END ;

stop(t) =̂ PRE t : TASK THEN
SELECT state = S1 THEN state := S0 || next(t) END

END
END

As with the two task model, we produce a system machine which includes all
distributed components with events composed in parallel to define the system
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level events. The definition of this new system machine is identical to that for
the two task model apart from a re-expression of the invariant in the following
more general terms.

INVARIANT
/*a task’s device is not interrupt enabled when the task is dispatched*/

∀ t .(t : TASK ⇒ (Task .state(t) = T1 ⇒ Dev .state(t) = D1)) ∧
/*if a task’s device is interrupt enabled, the task does not require service*/

∀ t .(t : TASK => (Dev .state(t) = D0 ⇒ Status .state(t) = TS0)) ∧
/* Global impossibility properties (infeasibility of dotted transitions): */
/* interrupt behaviour */

∀ t .(t : TASK => (Status .state(t) = TS1 ⇒ Dev .state(t) = D1))
∧

/* pausing behaviour */
∀ t .(t : TASK ⇒ (Status .state(t) = TS1 ⇒

not(Sched .state = S1 ∧ Sched .head = t ∧ Task .state(t) = T1))) ∧
/*scheduler properties*/

(Sched .state = S0 ⇒ ∀ t .(t : TASK ⇒ Task .state(t) = T0)) ∧
(Sched .state = S1 ⇒

(Task .state(Sched .head) �= T0 ∧ ∀ t .(t : TASK ∧ t �= Sched .head ⇒
Task .state(t) = T0)))

Our first model, specific to two tasks, generated 111 non-trivial proof obliga-
tions of which 77 were discharged automatically and 34 were proved interactively.
For the generalised model, although the scheduler component now has a signifi-
cant invariant of its own, the number of non-trivial proof obligations fell to 41, of
which 21 were discharged automatically and 20 were proved interactively. The
higher proportion of automatic proofs for the first model is due to the proof
obligation generator producing separate proof obligations for task A and task B
in some of the simpler cases. Overall, the generalisation has led to a reduction
in the proof effort required. The models were analysed with the “Click’n’Prove”
tool [10].

6 Conclusions

This paper has presented a formal model which captures the essential aspects
of an interrupt driven scheduler. We have demonstrated how proof analysis of a
faulty variant leads us directly to a subtle fault which could be missed in testing.
We have shown how the model is generalised from two to n tasks, and that, in
contrast to the model checking approach, such a generalisation reduces proof
effort.

We also conjecture that interrupt driven RR scheduling, with some variations,
is a viable choice for demanding real time applications. We propose to elaborate
the extent of this claim in future work, along with a formal analysis of variations
in our scheduler design, such as including multiple entries for urgent tasks.
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Abstract. While refinement gives a formal underpinning to the development of
dependable control systems, such models are difficult to communicate and rea-
son about in a non-formal sense, particularly for validation by non-specialist in-
dustrial partners. Here we present a visualisation of, and guidance for, event B
refinement using a specialisation of UML statemachines. Furthermore, we intro-
duce design patterns and process rules that are aimed at assisting in the software
development process leading to correct refinements. The specialisation will be
incorporated into the UML-B notation to be integrated with the Event B platform
developed by the RODIN project.

1 Introduction

Formal software construction techniques are beneficial when developing complex dis-
tributed control systems. Such systems often demand high integrity to achieve safety
requirements. The use of formal analysis tools can increase confidence in the correct-
ness of the system. These tools are, however, not always easy to use, or well accepted,
in an industrial environment. This barrier can be overcome by a graphical presentation
of the formal models. In many cases, rules of the formal development can be built into
the graphical notation and supported directly within the drawing tool.

We use the Event B [1] formalism as our formal framework for developing dis-
tributed control systems. Event B is a method with tool support for applying distributed
systems in the B Method [2] that is based on Action Systems [5,6] and related to B Ac-
tion Systems [26]. Hence, we can benefit from the useful formalism for reasoning about
distributed systems given by Action Systems and from the tool support in B. Develop-
ment within Event B is performed in a stepwise manner from abstract specification to
concrete implementation using superposition refinement. The correctness of each step
is proved in order to achieve a reliable system. The tool assists the development process
by generating the proof obligations needed. These proof obligations can then be proved
with the automatic or the interactive prover of the tool.

An approach of integrating B with the UML [9] has been developed at Southampton.
The UML-B [22] is a specialisation of UML that defines a formal modelling notation
combining UML and B. It is supported by the U2B tool [21], which translates UML-
B models into B. The translation of UML-B statemachines is similar to that proposed
by Sekerinski [18]. A closer integration of UML-B and Event B tools is being devel-
oped in the RODIN project [17]. In this paper we describe part of this ongoing work
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Fig. 1. Abstract model of a controller failing and recovering

to extend support for the refinement of event models expressed as UML-B statema-
chines. This work is based on previous work to develop control systems using UML
and B [23,24]. We use hierarchical states to model the addition of detail to the state
space and corresponding events. We use junction pseudostates to visualise the required
event refinement relationships and choice pseudostates to visualise how events are
decomposed.

The rest of the paper is structured as follows. In Section 2 we show how to model a
control system in UML-B. Section 3 describes the refinement concept. In Section 4 we
give a practical view of the refinement process via a graphical interface and illustrate
the process with examples. We conclude in Section 5.

2 Modelling Event B Systems in UML

We depict the functional requirements of the system in class diagrams. For each class
we give the attributes and their types, as well as the methods. Hence, the classes model
the state independent properties of the components. The behaviour of each component
of the system is specified with a statemachine diagram. The specification of the eventual
system is then gradually captured and made more and more precise throughout a series
of these diagrams. In the most abstract class diagram we only consider the state value
for the state machine and the command that the component is required to obey. The
methods cover the functionality of the system and an abstract representation of the types
of errors, as well as the possibility to fix these errors. Here, we focus on refinement of
statemachines.

The first abstract statemachine diagram of a control system is shown in Figure 1.
When the system is given proper commands (cmd = true), and is functioning success-
fully (evolve), it remains in state ok. The transition evolve is an abstraction of the be-
haviour of the system. New commands may be given to the system (new_command)
when it is in state ok and the previous command has been processed (cmd = false).
If the system fails, it will go to state susp via transition fail. The controller recovers
(recover) to state ok, if the fault is recoverable. If a non-recoverable fault occurs, the
controller terminates (terminate) in state failed where it is deadlocked. Note that we
do not use the state machine to illustrate the sequencing of the events new_command
and evolve. This is because we wish to refine the data representation of the command
separately from the state of the system.
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2.1 Event B Models

In Event B the variables of a system are given in the VARIABLES-clause. The types
and the invariant properties of the variables are given in the INVARIANT-clause and
their initial value in the INITIALISATION-clause. The events that alter the variables are
given in the EVENTS-clause.

With Event B we model systems, where events are selected for execution in a non-
deterministic manner. This enables modelling of parallel and distributed systems. The
events are given in the form e = WHEN P THEN S END, where P is a predicate on the
variables (also called a guard) and S is a substitution (i.e. the values of zero or more
variables are substituted with new values which may be selected non-deterministically).
When P holds the event e is said to be enabled. Only enabled events are considered
for execution. When there are no enabled events the system terminates. We note that
control systems are designed only to terminate when an unrecoverable failure occurs.
The events are considered to be atomic, and hence, only their pre and post states are of
interest.

In order to be able to ensure the correctness of the system, the abstract model should
be consistent and feasible [3,14]. This can be ensured by proving the following proof
obligations:

1. The initialisation should be feasible and establish the invariant.
2. Each event should be feasible and preserve the invariant.

These proof obligations can be generated automatically and then verified using the tool
Atelier B [11] that supports the B Method and Event B (previously via Evt2B transla-
tion). The proof obligations are generated via before-after predicates denoting the rela-
tion between the variable values before and after the execution of a substitution [3,14].
For example, the before-after predicate, BA, of the simple substitution v := E(v) is
BA(v, v′) =̂ v′ = E(v), where v is the variable value before and v′ after the execution
of the substitution. The proof obligation stating that event e above preserves the invari-
ant I is then I(v) ∧ P (v) ∧ BA(v, v′) ⇒ I(v′). In this paper we give informal
and intuitive descriptions of the proof obligations. Their formal descriptions are given
in [3,14].

2.2 Creating a B-Model from UML

The first step in our formal development is to create an abstract Event B system from the
abstract class diagrams and statemachines. The tool U2B [20] supports this translation.
Attributes in class diagrams correspond to variables in B. Such variables are ’lifted’ and
modelled as functions so that the separate values for each instance can be represented.
However, for simplicity, we do not show this lifting in the examples that follow.

UML-B is given a semantics by translation to Event B as provided by the U2B trans-
lator. Hence, a statemachine represents a variable, s, whose value is one of the states
and a transition path from state A to state B represents an event that is guarded by s=A
and takes action s:=B. UML provides a mechanism for constructing a transition path
via intermediate pseudostates (representing junction and choice). We require exactly
one segment of a transition path to be named and this name is used as the name of



174 C. Snook and M. Waldén

the corresponding event. Unnamed transition segments (between pseudostates) are not
separate events, but may contribute to the guard and action of the named transitions.
Hence, an event is constructed for each complete transition path. Its guard includes the
conjunction of the guards of all the segments in its path and its substitution includes the
parallel composition of the actions of these segments. As there is no branch construct
in Event B, each branch is represented as a separate event. Therefore, if a named transi-
tion segment contributes to multiple paths it translates into multiple events, one for each
path (a naming scheme is used to provide a unique name for each event). Hierarchical
statemachines are represented with further variables, one for each statemachine.

The statemachine of the controller in Figure 1 can be translated to the Event B system
below.

SYSTEM Controller
VARIABLES cmd, state
INVARIANT cmd ∈ BOOL ∧ state ∈ {ok, susp, failed}
INITIALISATION cmd := false ‖ state := ok
EVENTS

new_command == WHEN cmd = false THEN cmd :∈ BOOL END
evolve == WHEN state = ok ∧ cmd = true THEN cmd := false END
fail == WHEN state = ok ∧ cmd = true THEN state := susp END
recover == WHEN state = susp THEN state := ok END
terminate == WHEN state = susp THEN state := failed END

END

Here, the variable cmd models the command of the controller and is initially set to
false. The state is initialised to value ok. New commands are provided by the environ-
ment via event new_command, which can occur when the previous command has been
processed (cmd = false). Note that at this stage we model the input of a new command
as internal choice. Later the representation of commands will be refined and determined
via external choice. The guards and substitutions of the other events evolve, fail, recover
and terminate are formed in a similar manner from the guards and actions of the corre-
sponding transitions in the statemachine in Figure 1.

3 Refining Models

An important feature provided by the Event B formalism is the ability to stepwise refine
specifications. Refinement is a process that transforms an abstract, non-deterministic,
specification into a concrete, deterministic, system that preserves the functionality of
the original specification. We use a particular refinement method, superposition refine-
ment [5,13], where we extend the state space while preserving the old variables. Su-
perposition refinement is a special case of Event B refinement [3,14], which is based
on refinement calculus [7]. When dealing with complex control systems it is especially
convenient to stepwise introduce details about the system to the specification and not to
have to handle all the concrete implementation issues at once [16]. As the system devel-
opment proceeds we also add more elaborated information about faults and conditions
of failure occurrence [16,25].

During the refinement process new features that are suggested by the requirements
are represented by new variables added to the system. Simultaneously, events are refined
to take the new features into account. This is performed by strengthening their guards
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and adding substitutions on the new variables. Furthermore, events may be split so that
several events refine one old event. New events that only assign the new variables may
also be introduced.

In order to gain confidence in the refinement process we need to prove the correct-
ness of each refinement step. With the tool Atelier B we can formally verify that the
refinement is sound by discharging a number of proof obligations. For proving that a
system C is a correct refinement of a system A (A � C) the following proof obligations
have to be satisfied [6,26,14]:

1. The initialisation in C should be a refinement of the initialisation in A, and it should
establish the invariant of C.

2. Each old event in C should refine an event in A, and preserve the invariant of C.
(If the event is renamed in C, the event it refines must be explicitly stated).

3. Each new event in C (that does not refine an event in A) should only concern the
new variables, and preserve the invariant.

4. The new events in C should eventually all be disabled, if they are executed in
isolation, so that one of the old events is executed. (Non-divergence).

5. Whenever an event in A is enabled, either the corresponding event in C or one of
the new events in C should be enabled. (Strong relative deadlock freeness.)

6. Whenever an error occurs in C (an error detection event in C is enabled), an error
should also be possible in A (an error detection event in A should be enabled).

With the error detection events in (6) we mean the events leading to state susp. Hence,
an abstract representation of an error type is partitioned into distinct concrete errors
during the refinement process [25].

The Proof Obligations (1)-(3) above are automatically generated by Atelier B, while
Proof Obligations (4)-(6) can be generated after introducing some additional constructs
discussed in [10,26]. Moreover, Proof Obligation (4) requires a variant that is decreased
by all of the new events. A new Event B tool [4] is being developed that will be able to
generate Proof Obligations (1)-(5). Proof Obligation (6) can be generated in a similar
manner as (5) merely considering the guards of the error detection events. These events
could be discovered via their assignment of the value susp to the variable representing
the state. By discharging all these proof obligations for each refinement step in the
control system development we have proved the correctness of the system with respect
to its specification.

4 Graphical Interface for Refinements

In order to get a graphical interface to the formal development process, the development
is performed via UML artefacts. New features are introduced in a stepwise manner into
the class diagrams and statemachines. As a starting point we ’clone’ the current model
to obtain a copy to be refined. The refinement process is further facilitated by only al-
lowing events, which guarantee that the refinement rules for Event B (and B Action
Systems) are applied [1,26]. The new features are modelled with new variables. The
transitions (events) in the corresponding statemachines are modified to take into account
these new variables. The more concrete behaviour of the system can be modelled with
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Fig. 2. The controller refined by adding hierarchical substates

hierarchical states by adding sub-states and more complex transitions in the statema-
chines. Furthermore, new events may be added between the sub-states. When refining
the class and state-machines in UML we consider two kinds of refinement: data refine-
ment and event refinement. Using these refinement patterns within the UML diagrams
with subsequent translation to Event B assists in discharging the proof obligations given
in Section 3.

4.1 Data Refinement

When refining a system we model the behaviour of the system in a more detailed man-
ner. Before adding more detailed behaviour we need to reveal more detailed state space.
This can be done using hierarchical states to introduce sub-states within a state. For ex-
ample, in Figure 1 we model abstractly with state ok that the controller is working,
while in Figure 2 state ok is split into sub-states to model that when the controller is
working it can be pending (idle), ready (rdy) or running (done).

A new state variable, ok_state, of type {idle, rdy, done} will be generated in B to
model the substates. Note that ok_state retains its value when state is not equal to ok,
even though it then has no meaning in terms of the current state of the system. This cor-
responds to the UML notion of states having a memory (history) that can be returned to.
Here we have shown this step separately for illustration. Normally we would combine
it with the next step, where new events make use of the new states.

The hierarchy of states is usually given in a refined statemachine diagram by elabo-
rating a state with substates. However, after several consequent splittings into substates,
it could be preferable to flatten the hierarchy (i.e. remove old superstates) in order to
reduce the complexity of the diagram.

4.2 Event Refinement - Adding New Transitions to Use Refined States

The more detailed behaviour that is revealed by the hierarchical states is reflected by
refining the old events and adding new transitions (new events) between the substates.
The old transitions (events) may be renamed during the refinement to better describe the
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Fig. 3. The controller refined by adding new transitions

scenario. The guards of the old events may be strengthened and assignments concern-
ing the new feature added in line with the Proof Obligations (1) and (2) in Section 3.
The new events are only allowed to assign the new variables, but may refer to the old
variables as stated in Proof Obligation (3).

In our controller example the abstract transition, evolve, is replaced by a sequence
of the transitions prep, run, and complete. It is the last transition in this sequence that
leaves the system in an equivalent state to the post-state of evolve (i.e., ready to start
the sequence again). Hence, it is the new transition, complete, that refines evolve. This
is specified using a junction pseudostate as shown in Figure 3 indicating the old, re-
fined, transition in angled brackets (<evolve>). In UML, junctions are ’semantic-free’
vertices that are used where two transitions share a common part of their path [15].
Junctions are appropriate where we wish to indicate secondary information such as the
refinement relation of new transitions with previous abstract ones. The two new tran-
sitions, prep and run, are introduced to establishi the enabling guard for the refining
transition complete. Note that we do not want the sequence of transitions to start unless
it can complete (i.e. is feasible) so we put the guard of evolve on the first transition,
prep. This is fulfilling Proof Obligation (5). The guard of complete must not be weaker
than that of evolve according to Proof Obligation (2). This is the case in our refine-
ment because the only possible path of transitions to the state done starts with prep. To
reinforce this (and assist the proof) we attach the invariant cmd=true to the states rdy
and run. Note that the U2B translator automatically adds the premises ok_state=rdy and
ok_state=done.

According to the refinement rules (Proof Obligation (4)) the new events should not
take over the execution. This can be guaranteed by disallowing the new transitions (cor-
responding to new events) from forming a loop in the statemachine diagram. The loop
could be checked for automatically via graph theory. For proof in B, a variant must
be generated. This is done by numbering the states in the diagram with the minimum
path length to a refining transition. If loops are unavoidable, it must be the case that
ancillary variables are modified during the loop in such a way as to cause its eventual
termination. These ancillary variables must be used in the variant otherwise the proof
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Fig. 4. The refinement of failure management

obligation will not be satisfiable. Each new transition between the substates should
decrease the variant, i.e., lead to a new state with a lower designated number or de-
crease the variant by altering the ancillary state variables. If there is no route whereby
a sequence of new transitions can reach one that refines an old transition, then the new
events terminate without enabling an old event and a new deadlock has been introduced.
Hence, for relative deadlock freeness, it is a necessary (but not sufficient) condition for
there to be a route from every new transition to one that refines an old transition.

As features are added to the system the failure management should also be refined. If
a fault occurs at a substate it should be possible to return to that substate after recovery.
Note that we are not introducing new failure situations, but only splitting up the current
non-deterministic failures (according to Proof Obligation (6)).

In Figure 4, the failure management of the controller is refined by splitting the sus-
pended state (susp) into substates corresponding to the substates of state ok. From each
substate of ok a failure transition (prep_fail, run_fail and complete_fail) takes the con-
troller to the corresponding faulty state. Also the recovery transition recover should
be refined so that the controller returns after recovery to the state where the failure
was detected. Notice that the recovery transition utilises the history that is retained by
the substates. That is, the substate that was current when ok was left, is reinstated.
Since the recovery transitions may contain different actions depending on the susp
substates, we refine recover to separate recovery transitions from each of these sub-
states.

Hence, when states are refined into substates to give a more precise description of
the system there is often a corresponding refinement of the superstate’s incoming and
outgoing transitions so that they utilise the new substates. When adding these new tran-
sitions to the statemachine diagram, it is convenient to utilise UML’s entry and exit
pseudostates. These have similar semantic-free interpretation as junction, but are used
to indicate that a transition enters/exits a superstate. An example of using entry and
exit pseudostates is shown in Figure 4 where transition fail is refined by the transitions
prep_fail, run_fail and complete_fail. The refined controller in Figure 4 is translated to
the refined B machine Controller_Ref below.
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REFINEMENT Controller_Ref
REFINES Controller
VARIABLES cmd, state, ok_state, susp_state
INVARIANT cmd ∈ BOOL ∧ state ∈ {ok, susp, failed} ∧ ok_state ∈ {idle, rdy, done} ∧

susp_state ∈ {susp_idle, susp_rdy, susp_done} ∧
(ok_state = rdy ⇒ cmd = true) ∧ (ok_state = done ⇒ cmd = true)

INITIALISATION cmd := false ‖ state := ok ‖ ok_state := idle ‖
susp_state :∈ {susp_idle, susp_rdy, susp_done}

EVENTS
new_command == ...
complete (refines evolve) ==
WHEN state = ok ∧ ok_state = done THEN cmd := false ‖ ok_state := idle END

prep (refines skip) == ...
WHEN state = ok ∧ ok_state = idle ∧ cmd = true THEN ok_state := rdy END

run (refines skip == ...
prep_fail (refines fail) ==

WHEN state = ok ∧ ok_state = idle ∧ cmd = true
THEN state := failed ‖ susp_state := susp_idle END

run_fail (refines fail) == ...
complete_fail (refines fail) == ...
prep_recover (refines recover) ==
WHEN state = susp ∧ susp_state = susp_idle THEN state := ok END

run_recover (refines recover) == ...
complete_recover (refines recover) == ...

END

During the refinement steps described above, it is usual to also add more details
about the operation of the system by adding guards that describe when each transi-
tion/event occurs. In this way we can reduce the non-determinism between alternative
transitions/events, such as operation or failure. At the same time, assignment substitu-
tions are added to the transitions/events to modify the variables controlling these guards.
For clarity we have omitted such detail.

4.3 Data and Event Refinement - Superposition of New Regions

When we refine a simple state by replacing it with a composite one, we elaborate the
behaviour of that particular state separately from any other abstract state. For example,
the behaviour of ok was refined differently to that of susp. Sometimes we wish to spec-
ify a new behaviour that is common to all the current states. This can be done by adding
an orthogonal region to the superstate. In Figure 5, the susp state is refined by adding a
common behaviour pattern that is applicable to all three kinds of failure.

The events/transitions introduced in the orthogonal region are new events in the re-
finement and should only concern new features (Proof Obligation (3)). Hence, they
must also be proved to terminate (Proof Obligation (4)) in order to show that the new
transitions relinquish control. In Figure 5 it is readily observed that there are no loops,
so all that is needed is to generate a variant based on the distance to an exit transition.
The enabling of failure events is not affected by the orthogonal region (Proof Obligation
(6)). After entering the orthogonal region at least one of the new transitions (unfixable,
or diagnose followed by fix) must be enabled in order to satisfy Proof Obligation (5).
This is because the recovering transitions (exit transitions) are not enabled until the
orthogonal region is ready to synchronise with them.

The entry and exit transitions to the orthogonal region are unnamed indicating that
they are not events in their own right. They connect to the named events via fork and
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Fig. 5. Superposition of an orthogonal region

join pseudostates, respectively, meaning that they must be synchronised with the other
events from the same pseudostate. That is, if the lower region is called status, sta-
tus:=unknown is a substitution to be performed in parallel by complete_fail, prep_fail
and run_fail. Similarly, status=fixed is a guard of complete_recover, prep_recover and
run_recover. The composed events are then refinements of the old events complete_fail
etc. in accordance with Proof Obligation (2). The states of the orthogonal regions are
treated as two independent variables in the translated Event B. They are used to perform
synchronisation of entry and exit transitions, but elsewhere each can be altered only by
the transitions of the region it represents.

4.4 Event Refinement - Separating Existing Transitions

When refining an event we may wish to split it into several separate events. Each event
uses newly introduced variables in its guards and actions to reduce non-determinism
(Proof Obligation (2)). While adding conditions concerning new features to the guards
we also refine the failure management. We divide an abstract failure into more specific
failures on the new features according to Proof Obligation (6). Here many events refine
one event.

In UML statemachine diagrams, a transition can choose from multiple paths indi-
cated by splitting the transition with a choice symbol (a diamond shape). The guards of
the outgoing paths depend on the value of variables when the choice point is reached
(i.e. dynamically calculated guards). In our case we wish to show alternative paths re-
sulting from an initial one, but the choice is static, since there is no sequential com-
position in Event B. Each choice represents a separate event whose guard includes the
conjunction of all the segments leading up to that path. Since the conceptual represen-
tation is similar, but the semantics are more constrained, we represent these alternatives
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Fig. 6. The abstract move event and its corresponding failure

with a black diamond shape symbol (which we call salmiakki after a Finnish liquorice
of that shape). We use salmiakki to visualise common parts of transitions and their
relationship to the old refined events.

We illustrate the use of salmiakki with an abstract example of a height positioning
system that drives a motor up or down to achieve a commanded position. The example
was part of a drugs testing machine, Fillwell, and is dealt with in more detail elsewhere
[8]. Here we focus on the event/transition to move shown in the statemachine diagram in
Figure 6. (Event move corresponds to event run in the previous examples). The system is
prepared to move when it is in state rdy. This either results in a success transition move
that takes the system to state done or in a failure transition move_fail that suspends the
system. At this stage no details are given as to how this choice is made. The transitions
in the statemachine diagram in Figure 6 translate to the following events in B.

move == WHEN state = rdy THEN state := done END
move_fail == WHEN state = rdy THEN state := susp_rdy END

In the first refinement step we introduce salmiakki to visualise refinement of the
move and move_fail transitions as shown in Figure 7. The failure transition move_fail
is split into three different failures (Proof Obligation (6)); sensor_fail modelling failure
of the position sensor, motor_fail modelling failure when the motor does not respond
and move_fail1 representing remaining undetermined failures. The guards sf and mf
represent the two specific failure conditions. At this level of abstraction the variables
used in these guards could be boolean values representing the prescence of a failure.
We have chosen to prioritise failures via a sequence of salmiakki. If both sf and mf
are true, the sensor_fail failure will occur since move_fail is guarded by ¬sf. Note that
we do not yet know whether the undetermined failures take priority over the ones we
have specified. Hence, we do not add the negated failure guards to move_fail1. A join
is used to show that the new failure transitions refine the abstract transition move_fail.
The guard for transition move is strengthened (Proof Obligation (2)) by the conjunction
of the negation of all the specific failures (Proof Obligation (5)).

The refined statemachine diagram in Figure 7 translates to the following B events.
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Fig. 7. The first refinement of the move event

move ==
WHEN state = rdy ∧ ¬sf ∧ ¬mf THEN state := done END

move_fail1 (refines move_fail) ==
WHEN state = rdy THEN state := susp_rdy END

sensor_fail (refines move_fail) ==
WHEN state = rdy ∧ sf THEN state := susp_rdy END

motor_fail (refines move_fail) ==
WHEN state = rdy ∧ ¬sf ∧ mf THEN state := susp_rdy END

The second refinement step in Figure 8 shows further decomposition of the remain-
ing undetermined failures in move_fail1. For the motor failure we introduce transition
motor_underspeed that suspends the system due to the motor not running at the ex-
pected speed (Proof Obligation (6)). This corresponds to the superposition of an integer
variable measuring the speed of the motor. In this refinement we have chosen not to pri-
oritise between motor_fail and motor_underspeed, either may be chosen if both failures
are present. This non-determinism may be used when there is functional equivalence
between the kinds of failures. The undetermined failure is again still represented in
move_fail2. We also refine the move transition to show that a decision is made over the
direction to move. Hence, move is split into two transitions, up and down, strengthen-
ing the guards by ¬mu , as well as lp and hp, respectively (Proof Obligations (2) and
(5)). This corresponds to the introduction of variables representing the desired position
and the current position. Unlike the refinement of failures, the desired action is refined
without retaining an undetermined representation of the action.

The transitions in the statemachine diagram in Figure 8 of the second refinement step
translate to the following B events.

up (refines move) ==
WHEN state = rdy ∧ ¬sf ∧ ¬(mf ∨ mu) ∧ lp THEN state := done END

down (refines move) ==
WHEN state = rdy ∧ ¬sf ∧ ¬(mf ∨ mu) ∧ hp THEN state := done END

move_fail2 (refines move_fail1) ==
WHEN state = rdy THEN state := susp_rdy END

sensor_fail ==
WHEN state = rdy ∧ sf THEN state := susp_rdy END

motor_fail ==
WHEN state = rdy ∧ ¬sf ∧ mf THEN state := susp_rdy END

motor_underspeed (refines move_fail1) ==
WHEN state = rdy ∧ ¬sf ∧ mu THEN state := susp_rdy END
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Fig. 8. The second refinement of the move event

In subsequent refinements we only show the latest event/transition refinement step
in the statemachine diagram, e.g. move_fail2 refines move_fail1 in Figure 8. This agrees
with the corresponding B specification where only the last event refined needs to be
indicated. When adding a new feature we usually also add assignment substitutions to
the events and give more detailed recovery functions. Here we have focused on the
guards of the events for clarity.

Refinements should be made until all the possible failures have been identified and
made specific. At this stage the original undetermined failure has been completely re-
fined away. However, since the undetermined failure abstracts away from any detail the
process does not indicate when this is the case. We envisage further work to explore
how this can be assured. For example, hazard analysis could be used to identify all the
specific failure categories and provide an abstract failure analysis model.

5 Conclusions

We have illustrated a specialisation of the UML statemachine notation that enables it to
be used to visualise event models and their refinements including specification of the
refinement relationship between events of the abstract and concrete models. The tech-
niques we have proposed form development patterns that are intended to assist in the
design process of a system where correctness and safety are important issues. The UML
statemachines are translated to Event B, where tool support is available for proving the
correctness of the refinement steps. In the refinement process we use hierarchical sub-
states to provide the additional state space needed for defining new event transitions.
Hence, we provide pragmatic transformation rules relying on Event B semantics for
making the state space and the transitions increasingly fine-grained. In addition to hi-
erarchical state spaces orthogonal regions can be introduced to refine several simple
states with a common compositional one. Moreover, pseudostates for adding secondary
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information to the model such as the prioritisation of newly determined events is also a
useful visualisation technique.

Simons [19] includes a "theory of compatible object refinement" giving a theoreti-
cal treatment to the refinement of states. However, our notion of event refinement, with
refinement relations between events, is richer than Simons. Sekerinski [18] also trans-
lates statemachines into B specifications. However, he does not cover refinement. He
uses parallel regions in his specifications, but for modelling synchronised computation
between objects, instead of modelling common computation of states. UML has also
previously been used as a graphical view of a B development by Idani et al [12]. They
apply abstraction techniques to deal with the development of large systems. However,
they do not provide guidance for the refinement process as we do.

Further investigations are required to explore how orthogonal regions can be better
utilized for visualising the superposition of new features to a system. This is particularly
interesting in relation to the theoretical underpinning suggested by Simons [19], which
utilises intersecting (non-orthogonal) regions to unify the treatment of refined states. We
have found the techniques introduced in this paper to be very useful in communicating
models with colleagues and especially with industrial partners who have less experience
with formal notations. We envisage improving the existing tool support for refinement
in UML-B as part of the RODIN project, in order to make the techniques more attractive
for industrial use.
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Abstract. This paper introduces a method for formal transformation of
platform independent models (PIM) to platform specific models (PSM)
in a model driven architecture (MDA) context. The models are con-
structed using state-machines in the Unified Modeling Language (UML).
As a formal framework for reasoning about the models we use Event B.
In this paper we illustrate our method by introducing fault tolerance to
the PSM. Fault tolerance is not considered in the PIM in order to make
the models reusable for different platforms. On the other hand, the PSM
often has to consider platform specific faults. However, fault tolerance
mechanisms cannot usually be introduced as a refinement in the PSM.
We present a model transformation of the PIM in order to preserve re-
finement properties in the construction of the PSM. Design patterns are
used for guiding the development. Our method can be beneficial for de-
veloping reliable applications in many different areas, since both UML
and B are used for practical applications.

1 Introduction

A platform independent model (PIM) in a Model Driven Architecture (MDA1)
context considers only features in the problem domain. In order to implement the
platform independent model, the model is transformed into a platform specific
model (PSM) that takes into account implementation issues for the platform
where the system will run. For example, fault tolerance and other platform spe-
cific features should not be included in the PIM, since every possible platform
where the system could run would have to be considered. All potential plat-
forms might not even be known at the time the PIM is created [4,11]. In order
to anticipate all the different restrictions that will be encountered on a specific
platform, the fault handling mechanisms and other platform specific features
in the PIM would have to be very general. Hence, they would not provide any
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useful information and could restrict future transformations to other platforms.
However, the PSM is not necessarily a refinement of the PIM, since the PSM
can introduce behaviour that is not considered in the PIM at all [13]. We intro-
duce a method that involves an automatic transformation of the PIM to allow
a very abstract definition of platform specific features. These features can then
be refined to concrete features in the platform specific model. In this paper we
introduce fault tolerance as an example of platform specific features. We then
use patterns to facilitate its introduction.

We have chosen to use UML2 for describing the platform independent and
platform specific models, since it is a specification language that is widely used
in industry. Here we concentrate on state-machines [7]; we do not consider the
object oriented features of UML. To have a formal semantics and good tool sup-
port for analysis, the state-machines are translated to Event B. Event B [3,12]
is a formalism based on Action Systems [5] and the B Method [2] for reasoning
about distributed and reactive systems. It supports stepwise refinement of spec-
ifications and it is also compatible with UML state-machines [14,17]. For the
state-machine transformation from PIM to PSM we give extra rules for ensuring
deadlock freeness and preserving the behaviour of the PIM. Although we use
UML for specification, some of the rules are not UML specific and they can be
used in ordinary Event B as well.

Section 2 gives a short presentation of UML and Section 3 describes Event
B. The translation of UML state-machines to Event B is then given in Section
4. The PIM to PSM transformation is introduced in Sections 5 and 6, together
with an example. In Section 7 we conclude.

2 UML

UML is a popular language for modelling object oriented software. An appli-
cation developed using object oriented methodology [1,15] consists of a set of
objects that communicate by sending messages. Each object consists of a set
of variables and a set of operations describing the functionality of the object.
Messages are assumed to be operation calls. Furthermore, objects run concur-
rently and the communication between them is instantaneous. The behaviour of
the objects is described by state-machines [7]. Here we assume that at most one
state-machine is used for each object.

The state-machine specification in UML is large and complex. For simplic-
ity we will only use a subset of it. We consider only state-machines containing
normal, initial and final states and no composite states. We assume that all
state-machines containing composite states have been flattened.

The transitions in a state-machine describe the behaviour of the enclosing
object. Each transition can be labelled by an event and each event corresponds
to an operation in the object. Hence, state-machines in different objects can
communicate by sending events (operation calls). In UML, events that cannot
fire a transition are normally implicitly consumed. However, we assume that
2 Unified Modeling Language, http://www.uml.org
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s1 s2

e1[ G1 ] / S1

e2[ G2 ] / S2

Fig. 1. A simple state-machine

events are always deferred until they can fire a transition. The events in UML
will later be referred to as UML events. Transitions can have guards and actions
that take into account other variables than the state in the enclosing object.
A guard is a predicate that has to evaluate to true before the transition can
be fired. An action is a substitution that is executed when the corresponding
transition is fired.

A simple state-machine is shown in Figure 1. The state-machine contains
two states s1 and s2. There are two transitions E1 and E2 between the states.
Transition E1 is triggered by UML event e1 and it has the guard G1 and the
action S1.

The specification of state-machines in UML contains also other features than
those described here, such as e.g., composite states, history states, activities,
entry- or exit-actions inside states. However, the aim of this paper is not to give
a complete formal semantics to UML state-machines, but to consider mapping
a PIM into a fault tolerant PSM.

3 Event B

Event B [12] is a formalism based on Action Systems [5] and the B Method [2],
and it is related to B Action Systems [19]. It has been developed for reasoning
about distributed and reactive systems. Both the B Method and Event B have
received interest from industry and they have been applied to practical problems.
An Event B specification consists of an abstract model that can be refined to a
concrete model in a stepwise manner.

3.1 Abstract Model

An Event B model consists of variables giving the statespace and events for
describing the behaviour of the system [12].

Consider model M in Figure 2. The context C of the model provides definitions
of sets s and constants c, where P (s, c) describes their properties. The set of
variables in the model is given by v. Their types and properties are given in the
invariant I(s, c, v). The behaviour of the model is described by the events E1 and
E2. Each event consists of a guard Gi and a substitution Si. When the guard
Gi evaluates to true the event Ei is said to be enabled and the substitution Si

can be executed. Enabled events are chosen non-deterministically for execution.
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MODEL M
SEES
C

VARIABLES
v

INVARIANT
I(s, c, v)

INITIALISATION
S0(s, c, v)

EVENTS
E1 =̂

WHEN G1(s, c, v) THEN S1(s, c, v) END ;
E2 =̂

WHEN G2(s, c, v) THEN S2(s, c, v) END ;
END

CONTEXT C
SETS

s
CONSTANTS

c
PROPERTIES

P (s, c)
END

Fig. 2. An abstract Event B model

A number of proof obligations need to be discharged in order to show that an
Event B model is consistent [12]. To generate the proof obligations every substi-
tution Si(s, c, v) is translated to a before-after predicate BA(Si)(s, c, v, v′). For
example, if the substitution is S(s, c, v) =̂ (v := F (s, c, v)) then the before-after
predicate is BA(S)(s, c, v, v′) =̂ (v′ = F (s, c, v)). The first two proof obligations
concern the correctness of the initialisation.

Mod1: P (s, c) ⇒ ∃v′.BA(S0)(s, c, v′)
Mod2: P (s, c) ∧ BA(S0)(s, c, v′) ⇒ I(s, c, v′)

The proof obligations state that the initialisation should be possible (Mod1) and
it should establish the invariant (Mod2). Note that the before-after predicate for
the initialisation only refer to the new value of the variables v. The correctness
of each event Ei is ensured by the following proof obligations.

Mod3: P (s, c) ∧ I(s, c, v) ∧ Gi(s, c, v) ⇒ ∃v′.BA(Si)(s, c, v, v′)
Mod4: P (s, c) ∧ I(s, c, v) ∧ Gi(s, c, v) ∧ BA(Si)(s, c, v, v′) ⇒ I(s, c, v′)

The first proof obligation states that the substitution in each event Ei should be
possible (Mod3) and the second one that the event has to maintain the invariant
(Mod4).

3.2 Refinement

An Event B model can be refined [12]. As an example consider a model M1 that
is a refinement of the model M in Figure 2. Assume M1 has concrete variables
w and the relation between the variables in the abstract model and the refined
model is given by the refinement invariant J(s, c, v, w). The event Ei is refined
to Ei =̂ WHEN Hi(s, c, w)THEN Ri(s, c, w)END . New events Fi may also
be introduced. In order to show that model M is refined by M1, M � M1, a
number of proof obligations need to be discharged. Event Ei is correctly refined
if the following conditions hold:
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Ref1: P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ Hi(s, c, w) ⇒ ∃w′.BA(Ri)(s, c, w, w′)
Ref2: P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ Hi(s, c, w) ⇒ Gi(s, c, v)
Ref3: P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ Hi(s, c, w) ∧ BA(Ri)(s, c, w, w′) ⇒

∃v′.(BA(Si)(s, c, v, v′) ∧ J(s, c, v′, w′))

The proof obligations states that the refined substitution Ri is possible (Ref1),
the guard of the event is strengthened (Ref2) and that there is an assignment
to the variables in the abstract model corresponding to the assignment in the
refined substitution under relation J (Ref3). The proof obligations for new events
Fi =̂ WHEN Ni(s, c, w)THEN Ti(s, c, w)END are similar to the ones above.
However, they refine skip and, hence, the before-after predicate in the abstract
specification is BA(Sn)(s, c, v, v′) =̂ (v′ = v).

In order to ensure the correctness of the entire model, two additional proof
obligations need to be discharged. The refined system cannot deadlock or termi-
nate more often than the abstract one (Ref4).

Ref4: P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ Gi(s, c, v) ⇒
Hi(s, c, w) ∨ N1(s, c, w) ∨ . . . ∨ Nn(s, c, w)

If an event is enabled in the abstract model it is also enabled in the refined
model or some new events are enabled. This is the strong version of the proof
obligation for deadlock freeness. Finally, we need to show that the new events
terminate when executed in isolation, since they are not allowed to take control
forever. We assume that we have a variant V (s, c, w) that maps the state space
to a well founded structure (N, ≤). Each new event then has to decrease the
variant (Ref5).

Ref5: P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ Ni(s, c, w) ∧ BA(Ti)(s, c, w, w′) ⇒
V (s, c, w′) ∈ N ∧ V (s, c, w′) < V (s, c, w)

These proof obligations are necessary and sufficient to show that an Event B
model is consistent and that the refinement is correct.

A recently introduced feature in Event B is the, so called, anticipating events
[3]. Sometimes a new event is needed in a refinement that also modifies old
variables. The event is then added as an anticipating event in previous refinement
steps. An anticipating event can perform any substitution that maintains the
invariant and does not increase the variant of the current refinement level (if
any). We still have to prove that the new events refining the anticipating events
terminate when executed in isolation. Anticipating events is only syntactic sugar
for actually introducing the events in earlier refinement steps and introducing
extra variables for their variant.

4 Translation of State-Machines to Event B

In order to be able to formally reason about the UML state-machines, we trans-
late them to Event B. There are several translations from UML state-machines
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s1 s2

e1[ G1 ] / S1

e2[ G2 ] / S2

MODEL M
SETS

S = {s1, s2, exit}
VARIABLES

v, s
INVARIANT

I(v, s)
INITIALISATION

S0(v) ‖ s := s1
EVENTS
E1 =̂

WHEN s = s1 ∧ G1
THEN S1 ‖ s := s2
END

E2 =̂
WHEN s = s2 ∧ G2
THEN S2 ‖ s := s1
END

Eexit =̂
WHEN s = s1 THEN s := exit END

END

Fig. 3. Translation of a UML state-machine M to Event B

to B [14,17]. The translation of a subset of UML presented here is similar to
those approaches. However, we use a different semantics concerning UML events
that is suitable for our purpose.

The state-machine in Figure 1 is translated to Event B as shown in Figure 3.
The states of the state-machine are given as an enumerated set S = {s1, s2, exit}
in Event B. The current state of the state-machine is modelled as a variable
s ∈ S. The initial state in a UML state-machine gives the initial value of the state
variable s. The exit states are modelled as a single state, exit ∈ S. The variables
v in M are the variables of the UML state-machine. The transitions correspond
to events in Event B. The events E1 and E2 in Event B (later called B events
to distinguish them from UML events) corresponds to the transitions triggered
by the UML events e1 and e2, respectively. The guards Gi and substitutions Si

refer to the variables v.
The proof obligations for transitions are the standard proof obligations for

events in Event B. However, it is a desirable property that a state-machine
should not deadlock. The only state where no transition should be enabled is
in state exit. To ensure that this holds we introduce an extra proof obligation
(Exit1).

Exit1: I(v, s) ∧ ¬((s = s1 ∧ G1) ∨ . . . ∨ (s = sn ∧ Gm)) ⇒ s = exit

The abstract model in Figure 3 can be refined to take into account more features
and to make the model implementable. In figure 4 we refine the abstract variables
v with concrete variables w. The guards and actions in the transitions of the ab-
tract model are refined to Hi and Ri, respectively, to take the concrete variables
w into consideration. The state variable s is refined by r. The relation between
s and r is given as JS(s, r) =̂ (s = s1 ⇔ r = r1) ∧ (s = s2 ⇔ r ∈ {r2, r3}).
Two new transitions with UML event f1 have also been introduced in the model
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r1 r2

r3

e1[ H1 ] / R1

f1[ N2 ] / T2

e2[ H2 ] / R2

f1[ N1 ] / T1

REFINEMENT M1
REFINES M
SETS

R = {r1, r2, r3, exit}
VARIABLES

w, r
INVARIANT

J(v, w, r) ∧ JS(s, r)
VARIANT

V (w, r)
INITIALISATION

R0(w) ‖ r := r1
EVENTS
E1 =̂

WHEN r = r1 ∧ H1
THEN R1 ‖ r := r2
END

E2 =̂ . . .
F11 =̂

WHEN r = r2 ∧ N1
THEN T1 ‖ r := r3
END

F12 =̂ . . .
Eexit =̂

WHEN r = r1
THEN r := exit
END

END

Fig. 4. Translation of a refined UML state-machine M1

(transitions F11 and F12 in Event B). Translation of the refined state-machine
M1 is performed in the same manner as for the abstract model.

An object-oriented application consists of a set of objects. Here we only model
individual objects and their environment is considered to be a black-box that
calls the operations of the object, i.e. sends UML events to the object as described
in Section 2. We can consider the behaviour of each UML event to be the non-
deterministic choice of all transitions labelled with that event. Assume UML
event e labels transitions E1, . . . , En. Then the behaviour in Event B for e is
given as E1[] . . . []En, where Ei is a B event. The behaviour of e should also be
refined when the state-machine is refined. This interpretation of UML events
gives rules for labeling transitions with UML events: A transition without a
UML event can be refined to a transition with a private, possibly new, UML
event. The UML event cannot be changed on a transition during the refinement
process. Furthermore, if a UML event e can trigger a transition in the abstract
state-machine, it should also be possible in the refined state-machine. This can
be proved by showing the strong version of deadlock freeness in combination
with termination of new transitions, since we have deferred UML events.

5 Introduction of Platform Specific Features

In order to implement a PIM we need to transform it into a PSM. The PSM is
not necessarily a refinement of the PIM, since the PIM does not consider plat-
form specific features. In this paper we exemplify the introduction of platform
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specific features with the introduction of fault tolerance features; we can even
consider fault tolerance to be a platform in its own right (cf. [4,11]). We can
make the following observations: the behaviour in the PIM should be the “nor-
mal” behaviour of the PSM and the new behaviour in the PSM relates mainly to
hardware restrictions and to tolerance of faults that can occur on that specific
platform.

To guarantee the behaviour in this transformation, we would like to preserve
as many refinement properties as possible. The following properties of the PIM
are required to be preserved in the PSM:

1. The sequence of valid calls to public operations are maintained in the PSM
or the state-machine has reached state exit.

2. New public operations (UML events) are not introduced. Hence, an object
does not require new interactions from its environment.

3. New behaviour violating the refinement relation between the PIM and the
PSM cannot take control forever.

4. There should be a trace in the PIM that is also a possible trace in the PSM.
Hence, it should be possible to execute the PSM using only the transitions
in the PIM.

To better illustrate the rules above, they can also be expressed as restrictions
on the state-machine in the PSM. In the view of the environment, a UML state-
machine accepts a language over an alphabet consisting of the events. Assume
that the state-machine in the platform independent model accepts the language
L. The alphabet of the language is the operations of the object. Consider two,
possibly empty, strings L1 and L2 in L such that L = L1L2. Assume that
the platform specific behaviour is represented by the finite string of events α.
The state-machine of the PSM with one platform specific behaviour can then
accept the following language L1L2 + L1αL2 + L1α. This means that the state-
machine operates either normally, performs some platform specific computation
and continues with its normal operation or it prematurely terminates after the
platform specific behaviour.

Fault tolerance is used as an example of platform specific features in this pa-
per. In general, a fault is a defect in the system that possibly can manifest itself
as an error, which might result in a system failure [18]. Because of the unpre-
dictability of the environment, faulty behaviour is evident. Fault tolerance refers
to a method for designing a system so that it is capable of operating, possibly
at a reduced level, rather than failing completely when some error occurs. Con-
sequently, a fault tolerant system is capable of handling unexpected erroneous
events in a sensible manner.

A fault tolerance procedure always starts with error detection, followed by a
diagnosis and the outcome of the error handling method. The error diagnosis is
completely dependent on the uniqueness of the current state. The outcome of
the fault tolerance is achieved through applying a handling method designed for
errors occurring in that specific state. Consequently, an error in a certain state
is always tackled according to the same pattern.



194 P. Boström et al.

The faults that can be handled by the application can be divided into three
groups: the first group consists of faults where the only remedy is to terminate
the application. The second group consists of faults that cannot be recovered
from when the mechanisms for fault tolerance are introduced as a refinement of
the PIM. An example of such a fault could be inserting an item into a buffer. The
PIM considered the buffer to have infinite length, while in the PSM it has a finite
length. When the buffer gets full, messages are dropped, but the application can
otherwise continue its operation. The last group of faults consists of faults that
the fault tolerance mechanisms always can recover from and where the fault
tolerance mechanism can be introduced as a refinement. This group of faults
are not a problem, since the PSM can still be a refinement of the PIM in this
case. If the fault is not considered in the application the behaviour of the system
is undefined, and the system may suffer an uncontrolled ”total” failure, i.e., a
crash.

In our transformation from PIM to PSM we do not allow usage of history
states and of traces. Hence, if there is more than one possible path leading to
the present state, the system cannot know its prior events. Consequently, any
pattern preserving the system conditions is deduced from a unique situation
of the system, making checkpoint dependent recovery [8] unattainable. These
constraints demand more of the development of fault tolerance.

6 Transforming a PIM into a PSM

The PIM is transformed to a PSM in such a manner that the properties in
Section 5 are preserved. In order to transform the PIM into a PSM we use
design patterns. Design patterns are template solutions for solving commonly
occurring problems. Patterns will be discussed in more detail in Subsection 6.3.

6.1 Introducing Anticipating Events

To enable transformation of the PIM to a PSM we use anticipating events in
Event B. We transform the PIM to a model having all the possible anticipat-
ing transitions (B events) modelling very abstract platform specific behaviour.
Figure 5 illustrates how a platform independent model M is transformed into
a platform specific model M′′. First M is automatically translated to a model
T (M) including all the possible anticipating transitions. The model T (M) is
hidden from the developer of the PIM. He/She will only have to consider the
models M, M′ and M′′. To obtain a model M′ with platform specific features,
a pattern p1 is applied to the PIM M by the developer. This procedure can be
repeated until all platform specific features have been introduced. However, the
order in which the patterns are applied is significant and has to be considered.
The result obtained is a model that have similar functionality as M, but can
have several platform specific features, e.g. fault tolerance for memory limita-
tions and network problems. The obtained model M′ is a refinement of T (M),
but not necessarily of the platform independent model M.
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Fig. 5. Transforming a platform independent model M into a platform specific model
M′′

The fault tolerance example can be divided into two separate parts, the mod-
elling of the detection of an error and the error handling as described in Sec-
tion 5. To model the detection of errors in this example, we introduce one new
anticipating transition in T (M) for each transition in the PIM M. These tran-
sitions ei[Gi]/keep (see Figure 6) have the same source, destination and guard
as their corresponding transitions. They contain the action keep =̂ v :∈ I(v),
modelling that the execution of the action failed. To model error handling we
introduce two extra anticipating transitions /keep for each state in the platform
independent model. These anticipating transitions have no event and they are
later labelled by new private UML events or removed if they are unused. One
transition models errors that the system can recover from, the other models
termination of the system in the state exit. All the anticipating transitions can
be refined to any behaviour restricted by the invariant, as for example fault
tolerance. The choice of anticipating events is a trade-off between being able
to introduce new features in the PSM and ensuring that the behaviour of the
PIM is preserved. This also implies that we cannot introduce arbitrary new
behaviour.

An abstract platform independent model is presented in Figure 1 in Section 2.
The model contains two states, s1 and s2 and two transitions between them. The
corresponding transformed PIM T (M) is shown in Figure 6, where anticipating
transitions are introduced for both the states s1 and s2, as well as between these
two states.

s1 s2

/ keep / keep

e2[ G2 ] / S2

/ keep

e2[ G2 ] / keep

e1[ G1 ] / S1

/ keep

e1[ G1 ] / keep

Fig. 6. The transformation of the platform independent model T (M) in Figure 1
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6.2 Validation of the Platform Specific Model

We transform the PIM M to a PSM M′ using a pattern p that takes into account
the transformation rules in this paper. An example of such a transformation from
a PIM to a PSM with fault tolerance is shown in Figure 8. Validation of the PSM
is performed within the Event B framework, where we can show that the PSM
M′ is a refinement of the transformed platform independent model T (M). In
Section 5 we gave four additional properties that the PSM M′ should satisfy
with respect to the original PIM M. They are related to proof obligations in
Event B as follows. The sequence of valid events (1) is preserved, since we have
deferred events and we prove deadlock freeness. All UML events are deferred until
a possible transition is encountered. The proof of strong deadlock freeness (Ref4)
and that the state-machine only deadlocks in state exit (Exit1) guarantees that
transitions in the PIM will either eventually be enabled or the state-machine will
be in state exit. We can check syntactically on the UML model that no new public
events are introduced (2). New behaviour is not allowed to take control forever
(3), which is guaranteed with the proof obligations for anticipating transitions
and new transitions in Event B. Condition (4) stating that there is behaviour
common to the PIM and PSM requires extra proof obligations in Event B.

The fourth requirement in Section 5 is needed, since we introduce several extra
transitions in T (M) compared to M. It is necessary to show that the behaviour
of the PIM is still feasible in the PSM after anticipating transitions have been
labelled with UML events or removed. First, we check that the initialisation
R0(w, r) of the PSM M′ can enable an already existing transition in the PIM
or that it moves to state exit (PSM1).

PSM1: ∃w′, r′.(BA(R0)(w′, r′) ∧ (H1(w′, r′) ∨ . . . ∨ Hn(w′, r′) ∨ r′ = exit))

Here every Hi denotes the Event B guard of a transition in the PSM that refines a
transition in the PIM. Furthermore, let WHEN Hj(w, r)THEN Rj(w, r)END
be a transition in the PSM that is a refinement of a transition in the PIM. For
every such transition there should be assignment w′, r′ to the variables that
enables a transition in the PIM or leads to the state exit (PSM2).

PSM2: I(v, s) ∧ J(v, w, s, r) ∧ Hj(w, r) ⇒
∃w′, r′.(BA(Rj)(w, w′, r, r′) ∧ (H1(w′, r′) ∨ . . . ∨ Hn(w′, r′) ∨ r′ =exit))

When these proof obligations hold the state-machine is not allowed to use solely
platform specific transitions. This rule can also be beneficial in Event B when
using anticipating events in order to ensure that the behaviour from the abstract
model is preserved. Note that these proof obligations are the same as the fea-
sibility proof obligation (see Section 3) with the extra condition (H1(w′, r′) ∨
. . . ∨ Hn(w′, r′) ∨ r′ = exit). The generation of this proof obligation can be im-
plemented in Event B by introducing extra events with the non-deterministic
assignment : | [12] containing the conditions in (PSM1) and (PSM2):

WHEN Hj(w, r)
THEN w, r : |(BA(Rj(w0, w, r0, r)) ∧ (H1(w, r) ∨ . . . ∨ Hn(w, r) ∨ r = exit))
END

These extra rules ensure that the desired properties given in Section 5 hold.
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6.3 Patterns

A pattern introducing new functionality is dependent upon the original model
and must satisfy the system constraints. This means that the pattern must allow
the original functionality of the system. Thus, for all traces in the original M,
there must be corresponding valid traces in the successively developed systems,
including the transition containing keep. Consequently, after e.g. fault tolerance
has been introduced, it can be seen as a “slave” system evolving in parallel with
the original model.

When developing a fault tolerant system according to the method in this
paper, it is deadlock free and preserves the invariant. The patterns are bounded
within the strict constraints proposed here. This means that the system T (M)
will have the following structure, where Li stands for a subset of the language
(UML events) accepted by a state-machine in the PIM, f for an erroneous event
and ∗ denotes the Kleene closure: L1f∗L2f∗ . . . Lnf∗. Hence, any number of
faults can occur between the events of the PIM. If fault tolerance would evolve
in parallel with the model, every added feature could potentially change the
desired recovery method.

In the PSM we can refine the platform specific behaviour α (anticipating
transition) in T (M) to a combination of handled crash h and error recovery
r in M′. The expression L1L2 + L1rL2 + L1h in M′, gives the refined fault
tolerance. Every error state would have to contain at least the worst case scenario
of unexpected total breakdown, leading to hard reboot. However, the unexpected
total breakdown is out of the scope of this paper and is not modelled here.
Our expression models normal behaviour (L1L2), successful recovery (L1rL2)
and handled crash after possible recovery attempts (L1h). By following this
method we can introduce fault tolerance in the PSM while preserving the main
functionality of the PIM.

The benefit of using patterns are twofold. Patterns give a template solution
for common problems and, hence they give the developer a good solution to the
problem at hand. In order to prove that a PSM is correctly derived from the
PIM a number of proof obligations need to be discharged. If the PSM is obtained
by using a pattern, certain proof obligations can be automatically ensured by
the pattern.

To illustrate how a pattern is defined for a state-machine consider the patterns
p(s1, s2, s3, e1, ack, send) in Figure 7. The original model fragment to the left
models sending a message (e1/send) and waiting for a reply (ack). The pattern
p then introduces fault tolerance timeout to handle lost acknowledgements. If
the acknowledgement does not arrive on time, the message is re-transmitted.
The message can be re-transmitted at most max number of times. When a part
of the model where the pattern should be applied matches the model fragment
to the left, it can be substituted for the model fragment to the right. The original
state-machine fragment accepts the language e1 ack, while the resulting fragment
accepts

e1((〈timeout〉 〈retry〉)k 〈ack〉 + (〈timeout〉 〈retry〉)max)

where k < max.
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s1

s2

s3

ack

e1 / send

−→

s3

s1

s2 recover

retry[ tries<max ] /

send || tries++ retry[ tries>=max ]ack

timeoute1 / send || tries:=0

Fig. 7. An example of a pattern p(s1, s2, s3, e1, send, ack)

Even if patterns are used to obtain the PSM we still need to prove it is a
correct derivation of the PIM. Consider a PIM M where we make the pattern
application p(r1, r2, r3, e, rcv, snd) to obtain the PSM M′. We get the refinement
relation

(r′ ∈ {r2, recover} ⇒ r = r2) ∧ (r′ /∈ {r2, recover} ⇒ r′ = r)

between the states r in M and r′ in M′. To prove that M′ is a valid PSM for
the PIM M we only need to prove that the transition retry[tries < max]/snd is
a refinement of an anticipating transition, since the proof obligation of all other
transitions are guaranteed by the pattern. The proof obligations for deadlock
freeness and termination of new transitions, as well as the extra constraints
given in this paper are also ensured automatically by the pattern.

6.4 Example Application

To apply a pattern on the PIM M, we have to make sure that the pattern
is applicable for the scenario. Consequently, M and the pattern prerequisites
must match, as discussed in Subsection 6.3. The proposed pattern matching and
model substitution is clarified with an example of a communication timeout.
Consider the simple communication system implementing hand-shaking in Fig-
ure 8. The system reads, sends and waits for an acknowledgment before sending
the next segment. The pattern introducing timeout fault tolerance is illustrated
in Figure 7. The application p(send, sending, sent, b, ack, send) of the pattern
p matches with a fraction of model M, a(b 〈ack〉c)∗d. Applying the pattern
results in

a(b(〈timeout〉 〈retry〉)k 〈ack〉 c)∗d + a(b(〈timeout〉 〈retry〉)max

7 Conclusions

In this paper we presented a method for transforming a PIM into a PSM in a
MDA context. Our transformation rules are mainly aimed at introducing fault
tolerance features into the models. We consider behavioural models constructed
using UML state-machines and we use Event B as the underlying formal frame-
work. A PIM does not consider platform specific fault tolerance, while it has to
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idle send

sending

sent

p

M M’

T( )M

�

idle send

sending

sent

a / read

recover

b / send || tries:=0

ack

timeout

retry[ tries<max ] /

send || tries++

retry[ tries>=max ]

c[ !finished ]

/ read

d[ finished ]

idle send

sending

sent

a / read

b / send

ack

c[ !finished ] /

read

d[ finished ]

Fig. 8. Transformation of the PIM M into a PSM M′

be considered in the PSM. However, fault tolerance cannot always be introduced
in the PSM as a refinement of the PIM. The transformation rules in this pa-
per will ensure that certain desirable properties are preserved in the PSM. Here
models were created using UML and Event B, but the idea of using patterns for
platform specific features and the extra proof obligations can also be beneficial
when using only Event B to create the PIM and the PSM.

Adding features to a model that do not obey refinement rules has been investi-
gated before. Retrenchment [6] is an approach to make exceptions to refinement
rules in a structured manner. Retrenchment is more flexible than the method
presented in this paper because it has fewer restrictions on the new features that
can be added in the PSM. However, our method better ensures that behaviour
of the PIM is preserved in the PSM. The rules in this paper has been developed
to give a reasonable compromise between preserving behviour of the PIM and
flexibility in introducing platform specific features.

Fault tolerance is often considered directly in the abstract specification (PIM).
Adding fault tolerance in B has been investigated before by Laibinis and Troubit-
syna in e.g. [9,10]. However, we like to construct the PIM without considering
platform specific fault tolerance, in order to focus on the desired functionality
and to make the models more reusable for different platforms.

As future work, we aim at applying the method on a case study to investi-
gate its practicality and to develop reusable patterns. The method is not limited
to only the subset of UML given in the paper, but it can be extended to con-
sider more features from the UML standard. Since UML and B are used in
industry this type of transformation rules can be beneficial in many application
areas.
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Abstract. On one hand, eb3 is a trace-based formal language created
for the specification of information systems (IS). In particular, eb3 points
out the dynamic behaviour of the system. On the other hand, B is a
state-based formal language well adapted for the specification of the IS
static properties. We are defining a new approach called eb4 that inte-
grates both eb3 and B to specify IS. eb3 process expressions are used to
represent and validate the behaviour of the system. Then, the specifica-
tion is translated into B in order to specify and verify the main static
properties of the IS. In this paper, we deal with the refinement of eb3

process expressions into B specifications. Since this process cannot be
automated, we define refinement patterns that can be reused to obtain
B specifications that refine the event ordering properties specified in eb3.

Keywords: Information systems, data integrity constraints, eb3, process
expressions, refinement.

1 Introduction

Our aim is the formal specification of information systems (IS). An IS is a system
that helps an organization to collect and manipulate all its relevant data. In
the context of our work, we mainly consider the specification of database (DB)
applications. The use of formal methods to design IS [8,13,16] is justified by the
relevant value of data from corporations like banks, insurance companies, high-
tech industries or government organizations. There exist several paradigms to
specify IS, but we are interested in two specific formal languages. On one hand,
eb3 [8] is a trace-based formal language created for the specification of IS. eb3

provides process expressions that represent the valid traces of the system and
recursive functions that compute attribute values from the valid traces. On the
other hand, B [1] is a state-based formal language that is well adapted to specify
IS data models [13]. In B, state variables represent the state space of the system
and invariant properties must be preserved by each operation.
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We are defining eb4, an integrated approach that combines both eb3 and
B. Indeed, eb3 and B are complementary when taking the main properties of
IS into account [6]. There exist many integrated methods that combine state-
based specifications with event-based specifications, like csp2B [3], CSP || B [4] or
Circus [17], but none of them is well adapted for the specification of IS, althought
a first attempt with CSP || B has been proposed in [4]. In IS, each action of the
system requires an answer, possibly an error message. We use B rather than
Event B [2], because guarded operations cannot be executed if their guards are
not satisfied, whereas operations with preconditions as in B can be implemented
with the relevant error messages. eb4 is closer to the csp2B approach, where the
CSP specification is translated into B. However, the main characteristics of IS
lead us to choose eb3 rather than CSP for specifying them. A discussion on the
different couplings of state-based specifications with event-based specifications
can be found in [9].

Considering the complementarity between B and eb3 for IS specification, we
are working on a new method that consists of using eb3 to specify the behaviour
of IS, and then using B to specify and prove safety properties on the model. In
that aim, the eb3 specification must be translated into an equivalent B specifica-
tion. In [11], we have proposed an algorithm to partly automate the translation
from eb3 to B. This algorithm generates: i) the state space of the B specifica-
tion; ii) the substitution of each operation body that updates the state variables;
iii) the weakest precondition of each operation such that the invariant of the B
specification is satisfied. However, one part of the operation preconditions was
missing in this translation to represent the exact behaviour of the eb3 specifi-
cation. In [7], Frappier and Laleau have shown how to prove eb3 event ordering
properties on a B specification by using the B refinement relation. However, this
refinement step is difficult to automate and often requires sound mathematical
skills to prove its correctness. In this paper, we reuse the main principles of [7]
to define refinement patterns for typical eb3 process expressions.

The paper is organized as follows. Section 2 is an introduction to the eb4

method. Then, we present in Sect. 3 the main components of an eb3 specification.
Section 4 deals with the synthesis of B specifications that correspond to the data
model of eb3. In Sect. 5, we show how to refine eb3 event ordering properties
into B specifications by using refinement patterns. Finally, Sect. 6 concludes the
paper.

2 The eb4 Method

In this section, a general overview of eb4 is provided. The different steps of
the method will be detailed in the next sections. Generally, the main issue for
integrating two different paradigms is the way each representation is related to
the other one. In eb4 [11], we have chosen to adopt an “embedding” of eb3 in
B. In other words, an eb3 specification of the IS is refined by a B specification.
However, such a refinement is not straightforward and several steps are required
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Fig. 1. Main steps of the eb4 method

to simplify the process. Fig. 1 shows the main steps of the eb4 method. Their
description is the following:

– Step 1: The IS is first specified in eb3. eb3 [8] provides a formal notation
to describe a specification of the input-output behaviour of an IS. An eb3

specification consists of the following elements:
1. a diagram which includes the entity types and associations of the IS, and

their respective actions and attributes. In eb3, the terms entity type and
entity are used instead of class and object, respectively. The diagram is
based on entity-relationship (ER) model concepts and uses a subset of
the UML graphical notation for class diagrams. This graphic is called
ER diagram in the remainder of the paper.

2. a process expression, denoted by main, which describes the sequences of
events accepted by the IS, called the valid input traces of the system.
An event is simply an action call by IS end-users.

3. input-output rules, which assign an output to each valid input trace.
4. recursive functions, defined on the valid input traces of main, that as-

sign values to entity type and association attributes. These particular
functions are called attribute definitions.

– Step 2: The ER diagram and attribute definitions are translated into a
B refinement. The rules of this translation are detailed in [10,11]. The B
description obtained at this step is mainly used as a skeleton for the next
steps. Indeed, eb3 attribute definitions represent the state space and the
effects of transactions of the IS. Consequently, the resulting B refinement
is not complete, since it does not take the dynamic properties described
by eb3 process expressions into account. Moreover, the B operations do
not preserve the invariant properties automatically generated from the ER
diagram, because some preconditions are missing. However, this preliminary
step makes the refinement of eb3 specification into B easier, since it provides
the relevant state variables and invariant properties for the B refinement.
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– Step 3: One of the benefits of the complementarity between eb3 and B is
exploited in this step. Static data integrity constraints are safety properties
that IS entity types and associations must always satisfy. In this step, ad-
ditional static integrity constraints can be described by means of invariant
properties if they are missing in the B model obtained at Step 2. Then, new
preconditions are generated for each operation of the B refinement such that
all the invariant properties are preserved. In [14], we have defined systematic
rules in order to generate such preconditions. This process can be automated
because the general form of B invariant properties is restricted to a subset of
invariant expressions that are characteristic of the domain of IS. At this step,
we can also detect inconsistencies between static properties. In particular,
if some constraints are too strong, then some B operations may be abortive
(i.e., their precondition is always equivalent to false). In that case, we come
back to Step 1.

– Step 4: eb3 actions can be guarded by first-order predicates involving at-
tribute definitions. To reflect the new preconditions of B operations from
Step 3, equivalent guards are generated in this step for the actions in eb3

process expressions.
– Steps 5 and 6: The crux of these steps is to obtain a B refinement that

refines the eb3 specification. For that aim, eb3 process expressions are first
translated into B in Step 5; the translation is detailed in [7]. Then, Step 6
consists of refining this B model of the eb3 specification. The B description
obtained at the end of Step 3 provides the skeleton of the refinement. In
particular, we have already generated: i) the state space of the refinement
(Step 2); ii) the substitution of each operation body that updates the state
variables (Step 2); iii) the precondition of each operation such that the static
integrity constraints are satisfied (Step 3). The only parts that are now
missing in the refinement are the operation preconditions that represent the
behaviour entailed from the ordering constraints expressed in eb3 process
expressions and the gluing invariant.

Most of the aforementioned steps can be automated. In particular, systematic
rules have been defined for steps 2, 4 and 5. Nevertheless, steps 3 and 6 still
require a human intervention. The final B refinement obtained at the end of
the process satisfies both the dynamic properties described in the initial eb3

specification and the safety properties described in B. Step 1 is discussed in
Sect. 3. Then, the translation into B and the verification of safety properties
(steps 2 and 3) are presented in Sect. 4. Section 5 deals with steps 5 and 6.

3 eb3 Specification

Step 1 is an important step of the eb4 method since it provides the initial speci-
fication of the IS. We begin to specify the IS with eb3, because this event-based
language points out the dynamic behaviour of the system, while many existing
IS specification methods tend to focus on the data model. We rather aim at
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describing the IS behaviour as soon as possible, because behaviour specification
is more abstract than the description of the static part.

In eb3, an IS is considered as a black box. Each action has an implicit output
which determines whether an event of this action is valid (“ok”) or not (“error”).
An event is considered as valid if it is accepted by the main process called main.
The denotational semantics of an eb3 specification is given by a relation R
defined on T (main) × O, where T (main) denotes the finite traces accepted by
main and O is the set of output events. Let trace denote the system trace, which
is the list of valid input events accepted so far by the system. Let t :: σ denote
the right append of an input event σ to trace t, and let [ ] denote the empty
trace. The operational behaviour of an eb3 specification is defined as follows:

trace := [ ];
forever do

receive input event σ;
if main can accept trace :: σ then

trace := trace :: σ;
send output event o such that (trace, o) ∈ R;

else
send error message;

To be concise, we describe only the relevant parts of an eb3 specification that
are of interest for the remainder of the paper. We consider a simplified library
management system to illustrate the main aspects of the paper. The system
has to manage book loans to members. A book is acquired (action Acquire)
by the library. It can be discarded (Discard), but only if it is not borrowed.
A member must join (Register) the library in order to borrow a book (Lend).
A member can transfer a loan to another member (Transfer). A member can
relinquish library membership (Unregister) only when all his loans are returned
(Return) or transferred. The title of a book can be modified by action Modify
and displayed with action DisplayTitle. Figure 2 shows the ER diagram for the
library management system.

3.1 Process Expressions

The process expressions of an eb3 specification describe the valid input traces of
the system. The special symbol “ ” may be used as an actual parameter of an
action, to denote an arbitrary value of the corresponding type. The eb3 notation
for process expressions is similar to Hoare’s CSP [12]. Complex eb3 process
expressions can be constructed from elementary process expressions using the
following operators: sequence (denoted by � ), choice ( | ), Kleene closure ( ∗),
interleaving ( � ), parallel composition ( ‖, i.e., CSP’s synchronization on shared
actions), guard ( =⇒ ), process call, and quantification of choice ( |x : T : ... )
and of interleaving ( �x : T : ... ). The complete syntax and semantics of eb3

can be found in [8].
For instance, the eb3 process expression for entity type book is of the following

form:
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Fig. 2. ER diagram of the library

book(bId : bK Set) Δ=
Acquire(bId, )�
(

( | mId : mK Set : loan(mId, bId) )∗

�
Modify(bId, )∗

�
DisplayTitle(bId)∗

)�
Discard(bId)

The process book describes the life-cycle of each book entity of the system. First,
book entity bId is produced by action Acquire. Then, it can be borrowed by
only one member entity mId at once (quantified choice “| mId : mK Set : ...”).
Indeed, the process book calls the subprocess loan that involves actions Lend,
Return and Transfer. The Kleene closure on loan means that an arbitrary finite
number of loans can be made on book entity bId. At any moment, actions Modify
and DisplayTitle can be interleaved with the actions of loan. Finally, book entity
bId is consumed by action Discard. The complete process expressions for the
example are given in [10].

3.2 Attribute Definitions

In IS, attributes of associations and entity types are the main elements, because
they represent the knowledge contained in the IS that can be read to answer
requests from users or updated to reflect evolutions of the IS. The definition
of an attribute in eb3 is a recursive function on the valid input traces of the
system. The function is total and is given in a functional style, as in CAML. It
outputs the attribute values that are valid for the state in which the system is,
after having executed the input events in the trace.

We distinguish key attributes from non-key attributes. A key definition out-
puts the set of existing key values, while a non-key attribute definition outputs
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bookKey(s : T (main)) : F(bK Set) Δ=
match last(s) with
⊥ : ∅,
Acquire(bId, ) : bookKey(front(s)) ∪ {bId},
Discard(bId) : bookKey(front(s)) − {bId},

: bookKey(front(s));

title(s : T (main), bId : bK Set) : T
Δ=

match last(s) with
⊥ : ⊥, (I1)
Acquire(bId, ttl) : ttl, (I2)
Discard(bId) : ⊥, (I3)
Modify(bId, ttl) : ttl, (I4)

: title(front(s), bId); (I5)

Fig. 3. Examples of eb3 attribute definitions

the attribute value for a key value given as an input parameter. For instance,
the key of entity type book is defined by function bookKey in Fig. 3. bookKey
has a unique input parameter s ∈ T (main), i.e., a valid trace of the system, and
it returns the set of key values of entity type book. Note that type F(bK Set)
denotes the set of finite subsets of bK Set. Function title in Fig. 3 is an exam-
ple of non-key attribute definition. Expressions of the form input : expr, like
Acquire(bId, ttl) : ttl, are called input clauses. Expression expr is a term com-
posed of constants, variables and attribute calls. Expressions of the form if then
else end can also be used. The symbol “⊥” denotes undefinedness.

For instance, we have: title([ ], b1) = ⊥, because last([ ]) = ⊥. To evaluate
title([Register(m1)], b1), we first apply (I5) and we have: title([ ], b1). Then, we
obtain the result by applying (I1): title([Register(m1)], b1) = ⊥. A more detailed
description of eb3 attribute definitions can be found in [10].

4 Generating B Specifications from eb3 Attribute
Definitions

We now focus on steps 2 and 3 of the eb4 method. Figure 4 shows the B refine-
ment generated from the eb3 specification of the library management system
by using the algorithms discussed in this section. For the sake of brevity, some
operations have been omitted.

4.1 State Space and Substitutions

Step 2 of the eb4 method allows us to generate a B model of the state space
and the effects of the system transactions. The static part of B specifications is
automatically generated from the ER diagram. The translation is inspired from
the formalization in B of OMT and UML class diagrams [13,15,16]. In particular,
each recursive function k defining a key in the eb3 specification is translated into
a state variable kB whose invariant is an inclusion of the form kB ⊆ TB, where
TB represents the set of all the possible values of k. Each non-key attribute
definition b is translated into a state variable bB such that bB ∈ kB → TB or
bB ∈ kB �→ TB (depending on whether b admits null values), where kB is the
state variable that corresponds to the key of the entity type or the association
in which b is defined and TB represents the set of all the possible values of b.



208 F. Gervais, M. Frappier, and R. Laleau

REFINEMENT B Library
REFINES EB3 Library /* abstract sets mK Set, bK Set and T

will be defined in the abstract machine */
VARIABLES memberKey, nbLoans, bookKey, title, loan
INVARIANT memberKey ⊆ mK Set ∧ nbLoans ∈ memberKey → NAT

∧ bookKey ⊆ bK Set ∧ title ∈ bookKey → T
∧ loan ∈ bookKey �→ memberKey ∧ J

DEFINITIONS borrower(x) Δ= loan(x)
INITIALISATION

memberKey,nbLoans, bookKey, title, loan := ∅, ∅, ∅, ∅, ∅
OPERATIONS
res ←− Acquire(bId, ttl) Δ=

PRE bId ∈ bK Set ∧ ttl ∈ T
THEN

IF SC1 ∧ DC1 THEN
bookKey := bookKey ∪ {bId} ||
title := title<+{bId �→ ttl} ||
res := “ok”

ELSE
res := “error”

END
END;

res ←− Discard(bId) Δ=
PRE bId ∈ bK Set
THEN

IF SC2 ∧ DC2 THEN
bookKey := bookKey − {bId} ||
title := {bId}�−title ||
res := “ok”

ELSE
res := “error”

END
END;

res ←− Lend(bId,mId) Δ=
PRE bId ∈ bK Set ∧ mId ∈ mK Set
THEN

IF SC3 ∧ DC3 THEN
loan := loan<+{(bId,mId)} ||
nbLoans := nbLoans<+{mId �→ nbLoans(mId) + 1} ||
res := “ok”

ELSE
res := “error”

END
END;

Fig. 4. B refinement generated from eb3 attribute definitions
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The translation rules for the static part are detailed in [5,16]. For the sake of
brevity, we generate a single B machine that contains all the operations. This
has no influence on the algorithms described in the paper.

eb3 attribute definitions describe the dynamic behaviour of IS data. Thus,
each attribute definition specifies what the effects of each action on the attribute
values are. In B, attributes are defined as state variables of the system and each
B operation specifies what the substitutions on the state variables are. During
Step 2, a B operation is generated for each action defined in eb3. The translation
rules are detailed in [11]. For instance, let us consider operation Discard in
Fig. 4. Parameter res corresponds to the implicit output of eb3 actions that
determines whether an input event is valid or not. The generated precondition
is only a typing constraint on the input parameter. The body of each operation
is of the form IF THEN ELSE END, in order to reflect the semantics of eb3

specification; the ELSE part corresponds to the case where the new event is
invalid.

In addition to the substitutions associated with res, a substitution is generated
for each attribute definition affected by the action. For example, action Discard
occurs only in functions bookKey and title (see Sect. 3.2). The generation of
substitutions is quite straightforward. For a key definition like bookKey, the
substitution is simply the expression associated with input clause Discard, where
each occurrence of bookKey(front(s)) is replaced by bookKey. For the non-key
attribute definition, we have to determine the key value affected by the execution
of Discard. In that case, bId is directly determined from the pattern matching
and the substitution is generated according to the type of state variable title.
However, if the input clause contains if then else end expressions, then we must
analyse the different conditions in the if predicates to determine the values of
the key attributes that are not bound by the pattern matching [10].

At this step, we are not able to generate the predicates for the IF part of B
operations; they are determined by steps 3 and 6 of the eb4 method. The IF
predicates can be divided in two parts: i) the weakest precondition required to
preserve the invariant of the machine (denoted by SC in the remainder of the pa-
per) and ii) the condition required to impose ordering constraints on operations
(denoted by DC).

4.2 Static Properties

Contrary to other translation methods from semi-formal notations into B [15,13],
where the operation preconditions and invariant properties are automatically
generated from the class diagram, the translation presented in Sect. 4.1 does not
synthesize the preconditions that correspond to the static integrity constraints of
the ER diagram. Consequently, we have developed in [14] a set of systematic rules
that compute preconditions to preserve the invariant of the B specification. These
rules have been defined for a relevant subset of invariant properties that are
characteristic to IS static data integrity constraints. For instance, condition SC1
of operation Acquire is true, since the precondition is sufficient to discharge the
proof obligation, but condition SC2 for operation Discard is: bId �∈ dom(loan).
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The latter predicate has been generated to preserve the invariant property loan ∈
bookKey �→ memberKey. Note that such a condition is not sufficient to represent
the exact behaviour of the eb3 specification; operation Discard still requires
condition DC2, which is the ordering constraint that a book must have been
created before it can be deleted (i.e., bId ∈ bookKey).

The main interest of Step 3 is the use of B to specify and verify additional
static data integrity constraints that are not explicit in the eb3 specification.
By using the aforementioned technique, we are able to generate preconditions
for the safety properties directly expressed in B. For instance, we can state that
the number of loans of each member must be less or equal than five books. This
constraint is specified in B by the following invariant: ∀ mId ∈ memberKey •
nbLoans(mId) ≤ 5. In that case, the generated condition SC for operation Lend
is: nbLoans(mId) ≤ 4. The IF predicates generated at Step 3 are called safety
constraints. They should appear as action guards in the eb3 process expressions,
in order to keep the equivalence between the two representations. This change
is addressed by Step 4 of the eb4 method. For instance, the following guard is
then synthesized for action Lend: nbLoans(trace, mId) ≤ 4.

5 Refinement of eb3 Process Expressions

Steps 5 and 6 of the eb4 method consist of proving that the B model obtained
after several iterations of steps 1, 2 and 3 is a refinement of the B model of eb3

process expressions. Thus, the B refinement will satisfy the dynamic properties
described in the eb3 specification.

5.1 Refinement Proof

Step 5 reuses the B representation of eb3 process expressions introduced by
Frappier and Laleau in [7]. The form of the B abstract machine is shown in
part (a) of Fig. 5. State variable t is the current trace of the system, T (main)
represents the set of all the valid input traces of the IS and, in each operation,
T yp denotes the typing constraints on the input parameters. Informally, the IF
predicate means that an event of Operation(parameters) is executed only if the
current trace augmented with the new event is a valid trace.

The form of the B refinement obtained at the end of Step 3 is recalled in
part (b) of Fig. 5. In each operation, T yp′ denotes the typing constraints, SC
the safety constraints generated during Step 3, and Subst the B substitutions
synthesized by Step 2. Our aim is to define the dynamic constraints DC of each
operation such that the event ordering properties specified in eb3 are preserved
by the operations.

Let I be the invariant of the abstract machine and J the gluing invariant of
the refinement. Since the concrete variables are automatically generated from the
ER diagram in Step 2, the gluing invariant J is straightforward. By convention,
expression Ve denotes the B state variable which represents key definition or
non-key attribute definition e. Then, for each attribute definition e, J includes
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MACHINE EB3 Library REFINEMENT B Library
SETS mK Set; bK Set; T ; REFINES EB3 Library
SEES ... /* definition of T (main) */
VARIABLES t VARIABLES ... /* see Fig. 4 */
INVARIANT t ∈ T (main) INVARIANT ... /* see Fig. 4 */
... ...
OPERATIONS OPERATIONS
res ←− Operation(parameters) Δ= res ←− Operation(parameters) Δ=
PRE Typ PRE Typ′

THEN THEN
IF t :: Operation(parameters) ∈ T (main) IF SC ∧ DC
THEN THEN

t := t :: Operation(parameters) || Subst ||
res := “ok” res := “ok”

ELSE res := “error” ELSE res := “error”
END END

END END
(a) Abstract Machine (b) Refinement

Fig. 5. Abstract machine and refinement

a predicate of the form e(t) = Ve. By analysing the refinement proof obligation
for the operations of Fig. 5 and by performing a case analysis on the possible
values of output parameter res, we deduce that the proof obligation is satisfied
if and only if the three following lemmas are satisfied, under the hypotheses I
and J :

(PO1) T yp ⇒ T yp′

(PO2) SC ∧ DC ⇒ [Subst][t := t :: Operation(parameters)]J
(PO3) SC ∧ DC ⇔ t :: Operation(parameters) ∈ T (main)

Proof obligation (PO1) is straightforward, since T yp and T yp′ are exactly the
same. Proof obligation (PO2) means that the effects Subst are consistent with
respect to the effects of eb3 actions. By definition of our translation rules, the
B substitutions generated by Step 2 are equivalent to eb3 attribute definitions.
The proof of (PO3) is quite difficult. Such a proof requires some creativity, since
the specifier needs to propose the dynamic constraint DC for the operation.
Predicate t :: Operation(parameters) ∈ T (main) can be decomposed, by case
analysis during the proof, in two parts: G ∧ OC. Predicate G corresponds to the
guard that is specified in the eb3 process expressions for the equivalent action.
Predicate OC is the ordering constraint that must be satisfied when the guard G
is supposed to be satisfied. In the eb4 method, eb3 action guards are generated
from the safety constraints specified in the B model; hence, SC is equivalent to
G. Consequently, the specifier has to define, for each operation, a condition DC
such that: DC ⇔ OC. To assist in specifying such conditions, we have defined
some refinement patterns.
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5.2 Refinement Patterns

During Step 1, the IS valid input traces are specified by means of eb3 process
expressions. Obviously, this step cannot be automated, but a set of characteristic
process patterns have been defined in [8] to help the specifier. Since these patterns
are representative of most common IS behaviours, we have proposed refinement
patterns based on these typical process expressions. Thus, the patterns provide,
for each kind of action in the processes, an ordering constraint DC such that
proof obligation (PO3) is satisfied. In the next sections, we present two patterns.

5.2.1 Elementary Pattern for Entity Types and Associations
Actions involved in the life-cycle of an IS entity often follow the pattern “pro-
ducer, modifier, consumer”. This pattern [8] describes the typical behaviour
of an entity type e, whose actions are either producers (P1, ..., Pl), modifiers
(M1, ..., Mn), or consumers (C1, ..., Cm):

e(k : K Set) =
P1(k, ) | ... | Pl(k, )�
(

( M1(k, ) | ... | Mn(k, ) )∗

‖
AP1 ‖ ... ‖ APr

�
Rq∗

1 � ... � Rq∗
p

)�
C1(k, ) | ... | Cm(k, )

where k is the key of e and K Set the type of k. Expressions Rq1, ..., Rqp de-
note the eb3 actions that output one or more attribute values. Expressions
AP1, ..., APr represent the possible process calls corresponding to IS associa-
tions; r depends on the number of associations in which entity type e participates.
Each APi, 1 ≤ i ≤ r, must be replaced by one of the process patterns described
in Sect. 5.2.2 to reflect the cardinalities of each association. Analogously, the
process that describes the life-cycle of an association follows the same pattern,
except for expressions AP1, ..., APr that are removed from it. For instance, the
process of entity type book described in Sect. 3.1 follows the aforementioned
pattern. Actions Acquire, Modify and Discard are respectively producer, modifier
and consumer of book, while action DisplayTitle is a query on attribute title.

The ordering constraint for a producer Pj of an entity of e whose key value is k
must check that this entity does not exist before the execution of Pj . Hence, DC
is of the form: k /∈ Vk. For instance, condition DC1 in the IF part of operation
Acquire is: bId /∈ bookKey. Modifiers and consumers must check that the entity
identified by k exists before their execution. Consequently, condition DC is of
the following form: k ∈ Vk. For instance, condition DC2 of operation Discard
is: bId ∈ bookKey.
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5.2.2 Patterns for Entities Participating in Binary Associations
We consider binary associations with cardinalities 1 : N , 1 : 1 and M : N . In
eb3, the process corresponding to an association is a subprocess of one or more
entity types. Such process calls are represented by expressions APj in the pattern
described in Sect. 5.2.1. Let e1 and e2 be the entity types participating in binary
association a. Let k1 and k2 be their respective key. Let APi1 and APi2 be the
process calls to a in the process expressions of e1 and e2. The form of APi1 and
APi2 depends on the cardinalities in association a. If a is a 1 : N association,
then expressions APi1 and APi2 are respectively of the form (AP-Multi) and
(AP-One):

� k2 : K Set2 : a(k1, k2)∗ (AP-Multi)
( | k1 : K Set1 : a(k1, k2) )∗ (AP-One)

Thus, subprocess a is called in process e1 as a quantified interleaving; hence, an
entity identified by k1 can be associated with several entities k2. In the process
of e2, subprocess a is called as a quantified choice; an entity k2 is therefore
associated with at most one entity k1 at once. Let us consider process book to
illustrate this particular pattern: the process call to loan in book is of the form
(AP-One), since a book can be borrowed by only one member at once. For 1 : 1
associations, the process calls in the entity types participating in the association
are both of the form (AP-One), while for M : N associations, they are both of
the form (AP-Multi).

Let us now consider 1 : N associations; such an association is represented by a
partial function in B. For instance, Va may be defined by: Va ∈ Vk1 �→ Vk2. The
ordering constraint for an association producer must check that: i) the entities
identified by k1 and k2 already exist; ii) the entity identified by k1 is not already
associated with an entity k2, because of the cardinality. The constraint DC is
then of the following form: k1 ∈ Vk1 ∧ k2 ∈ Vk2 ∧ (k1, k2) /∈ Va ∧ k1 /∈ dom(Va).
Note that the first three conditions are common to all kinds of associations. The
last predicate depends on the cardinality of a. For instance, condition DC3
of operation Lend is: bId ∈ bookKey ∧ mId ∈ memberKey ∧ (bId, mId) /∈
loan ∧ bId /∈ dom(loan). The ordering constraint for modifiers or consumers
must check that: i) the entities identified by k1 and k2 already exist; ii) the entity
identified by (k1, k2) is an existing association. Hence, DC is of the following
form: k1 ∈ Vk1 ∧ k2 ∈ Vk2 ∧ (k1, k2) ∈ Va.

5.2.3 Key Idea of the Proof
We now present an overview of the analysis that we have performed to prove
lemma (PO3) for each refinement pattern. For the sake of illustration, we deal
with actions from type producer in 1 : N associations. Let Pj be such a producer
in an association a. We suppose that expressions APi1 and APi2 are of the
form (AP-Multi) and (AP-One), as described in Sect. 5.2.2. To prove that the
condition DC provided by the refinement pattern is equivalent to condition OC,
we have to compare the state transitions associated with action Pj in the valid
input traces with the state transitions of the corresponding B operation.
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By analysing the pattern described in Sect. 5.2.1, we deduce that the following
kind of actions must be executed before the producer Pj of an association entity
identified by (k1, k2): 1) a producer of the entity identified by k1 (in the process
of entity type e1), 2) a producer of the entity identified by k2 (in the process of
e2). To determine OC, we first describe the form of trace t. Let Tk1 be the set
of valid input traces of the form t1 :: Pk1 :: t2, where Pk1 is a producer of the
entity identified by k1, t1 is an arbitrary trace, and t2 is a trace that does not
include any consumer of k1. Similarly, Tk2 is the set of valid input traces of the
form t1 :: Pk2 :: t3, where Pk2 is a producer of the entity identified by k2 and t3
is a trace that does not include any consumer of k2. In that case, the trace t we
are analysing satisfies the predicate t ∈ Tk1 ∩ Tk2. By definition of Pk1 and Pk2,
this predicate is equivalent to k1 ∈ e1(t) ∧ k2 ∈ e2(t), where e1 and e2 are the
key definitions of entity types e1 and e2. We denote this predicate by (OC1).

We deduce from the life-cycle of an association that: i) either a producer of
the association entity identified by (k1, k2) has never been executed since the
initialization of the system, or ii) a finite number of producers of (k1, k2) have
already been executed (Kleene closure on association a), but each of them has
been followed by a consumer. Thus, we can determine the form of t and deduce
that (k1, k2) /∈ a(t), where a denotes the key definition of association a. This
predicate is denoted by (OC2). By following the same pattern of analysis, we
can deduce for the cardinalities that trace t satisfies the following predicate, that
we denote by (OC3): k1 /∈ {k ∈ K Set1 | ∃ k2 ∈ K Set2 • (k, k2) ∈ a(t)}.

Gluing invariant J allows state variable t to be linked to the state variables
representing the different attributes of the IS in the B specification from Step 3.
In particular, we have: e1(t) = Vk1, e2(t) = Vk2, and a(t) = Va. Predicate (OC1)
is then equivalent to k1 ∈ Vk1 ∧ k2 ∈ Vk2, (OC2) to (k1, k2) /∈ Va, and (OC3)
to k1 /∈ dom(Va). Consequently, (OC1) ∧ (OC2) ∧ (OC3) is equivalent to the
condition DC that we have proposed in Sect. 5.2.2.

6 Conclusions

The key idea of the eb4 method is the refinement of an eb3 specification into a
B specification. Thus, the B refinement specification satisfies both the dynamic
properties described in eb3 and the safety properties described in B. In order
to facilitate the refinement, we generate a skeleton of B specification from the
data model of the eb3 specification. Hence, the state space and the relevant
concrete variables are automatically generated. The proof of correctness of this
translation is a work in progress. The main issue addressed in this paper is the
preservation of the dynamic properties specified in eb3. The approach consists
of defining refinement patterns for the most typical eb3 process expressions.
The refinement proof then ensures that the behaviour of the B specification is
consistent with respect to the behaviour of the eb3 specification. As future work,
we aim at providing techniques to verify dynamic properties in eb3. For instance,
the verification of dynamic integrity constraints is an open issue that we now
aim at tackling.
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Abstract. In the area of networks, a common method to enforce a secu-
rity policy expressed in a high-level language is based on an ad-hoc and
manual rewriting process [24]. We argue that it is possible to build a for-
mal link between concrete and abstract terms, which can be dynamically
computed from the environment data. In order to progressively introduce
configuration data and then simplify the proof obligations, we use the B
refinement process. We present a case study modeling a network mon-
itor. This program, described by refinement following the layers of the
TCP/IP suite protocol, has to warn for all observed events which do
not respect the security policy. To design this model, we use the event-B
method because it is suitable for modeling network concepts.

This work has been done within the framework of the POTESTAT1

project [9], based on the research of network testing methods from a
high-level security policy.

Keywords: Security policy enforcement, refinement, TCP/IP layers.

1 Introduction

The separation between policies and mechanisms is considered as a main spec-
ification principle in security. The policy describes the authorized actions while
the mechanism is the method to implement the policy [24,17]. Those two con-
cepts do not have the same abstraction level. The classical process to enforce a
policy consists of manually rewriting the policy in the same terms as the mech-
anism, with ad-hoc methods. We argue that a policy can be formally enforced
in a mechanism by gradually building, through a refinement process, a link be-
tween abstract and concrete terms. We propose to design a specification with
the same abstraction level as the policy and to refine it to obtain the concrete
mechanism. In the case of critical software, using an abstract specification is, for
example, required for test and audit processes or for certification according to
the Common Criteria [7].

To illustrate our approach, we describe a network security software which has
to enforce an abstract security policy in a TCP/IP network. Modern TCP/IP
� Work supported by CNRS and ST-Microelectronics by the way of a doctoral grant.
1 Security policies: test directed analysis of open networks systems.
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networks are heterogeneous and distributed, and their management becomes
more and more complex. Thus, the use of an abstract security policy can give
a global and comprehensive view of a network security [22]. We choose to focus
more specifically on an access control policy because it is the main concept in
network security [10,20].

We aim at designing a monitor, which warns if an action, forbidden by the
policy, is observed on the network. In order to achieve that, we use the event-B
method [1] for modeling network concepts.

The next section is an overview of the event-B method. Section 3 introduces
networks and their security policy concepts. Then, Section 4 presents our ap-
proach, Section 5 describes our method based on the refinement process. Sec-
tion 6 is a presentation of the case study. Finally, we conclude by comparing this
work to related ones and by giving some prospects.

2 Event-B

The B method [2] is a formal development method as well as a specification
language. B components can be refined and implemented. The correctness of
models and refinements can be validated by proof obligations.

Event-B [1] is an extension of the B language where models are described
by events instead of operations. The most abstract component is called system.
Each event is composed by a guard G and an action T such that if G is enabled,
then T can be executed. If several guards are enabled at the same time then the
triggered event is chosen in a nondeterministic way.

Through the refinement process, data representation can be changed. The
gluing invariant describes the relationship between abstract and concrete vari-
ables. If an event eA is refined by an event eR, then the refinement guard has
to imply the abstract one. Moreover, some events can be introduced during the
refinement process (refining the skip event), according to the same principles as
the stuttering in TLA [15]. Due to the guard strengthening through refinement
process, we have to prove that there is always at least one enabled event (no
dead-lock) and that new events do not introduce live-locks.

Table 1. Used sets operators

Operator Meaning
A ↔ B =̂ {R | R ⊆ A × B}
dom(R) =̂ {a | ∃b · ((a, b) ∈ R)}
ran(R) =̂ {b | ∃a · ((a, b) ∈ R)}
R[A] =̂ {b | ∃a · (a ∈ A ∧ (a, b) ∈ R)}
R−1 =̂ {(b, a) | (a, b) ∈ R}
R1 ; R2 =̂ {(a, c) | ∃b · ((a, b) ∈ R1 ∧ (b, c) ∈ R2)}
R1 || R2 =̂ {((a, b), (c, d)) | (a, c) ∈ R1 ∧ (b, d) ∈ R2}
R � B =̂ {(a, b) | (a, b) ∈ R ∧ b ∈ B}
A →� B =̂ {F | F ∈ A ↔ B ∧ ∀(b1, b2) · ((a, b1) ∈ F ∧ (a, b2) ∈ F ⇒ b1 = b2)}
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Table 2. Used primitives substitutions

Substitution Syntactical notation Mathematical notation
Do nothing skip skip
Assignment x := E x := E
Unbounded choice any z where P then T end @z · (P ⇒ T )
Condition if P then T1 else T2 end P =⇒ T1 [] ¬P =⇒ T2

To conclude, Table 1 defines the set notations which are used thereafter and
Table 2 summarizes generalised substitutions.

3 Introduction to Networks and Their Security Policies

3.1 The TCP/IP Protocol Suite

Computer networks use a standard connection model, called OSI (Open Systems
Interconnection) [13], composed of seven layers. The TCP/IP protocol suite im-
plements this model but is described with only four layers: application, transport,
network and link. Each of these layers plays a particular role:
– The Application layer is the interface between the applications and the net-

work (client-side protocol).
– The Transport layer manages the host-to-host communications, but not the

route between them (peer-to-peer networks).
– The Network layer manages the route between networks by selecting the

network interface to use and the first router.
– The Link layer performs the signal translation (analogic/numeric) and syn-

chronizes the data transmission. This layer is most often provided by the
hardware. Therefore, it is not considered in the following sections.

Physical network

DataTransport header

DataNetwork Header

Transport header

Internet Header

Internet Header Transport header

Data

Application

Transport

Data Application

Transport

Network

Link

Network

Link

Frame (Ethernet, Optic fibre, ATM, etc.)

Packet (IP, ICMP, ARP, etc.)

Datagram (TCP, UDP, etc.)

Message (HTTP, telnet, FTP, X11, DNS, etc.)

Fig. 1. Layers of the TCP/IP suite with some examples of protocols

Communications using TCP/IP protocol are composed of protocols for each
layer in the suite. For example, a TCP datagram (Transport layer) is contained
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in the data field of an IP packet (Network layer). Figure 1 shows an example of
communication using TCP/IP.

3.2 Network Security Policies

In the area of networks, security is mainly expressed in terms of access rights. An
access control policy is defined on a set of actions by a set of rules. These rules
determine, for each action, whether the action is authorized or not. Among the
various types of access control policies [11,16], open policies and closed policies can
be distinguished. An open policy (Fig. 2.A) expresses all forbidden actions (called
negative authorizations): a not explicitly denied access is allowed. In a closed pol-
icy (Fig. 2.B), all authorized actions have to be fully specified (called positive au-
thorizations). Finally, some policies are expressed with both positive and negative
rules (Fig. 2.C). In this case, some actions can be conflicting or undefined.

Forbidden actions

Authorized actions

Authorized actions

Forbidden actions

Conflicting actions

Authorized actions

Forbidden actions

Undefined actions

A. Open policy B. Closed policy C. Both policies

Fig. 2. Example of open, closed and both policies

In the following, readers should distinguish network events, which are the
elementary communication steps of the network, and B events, which are the
description of actions in the B method.

In the proposed approach, a closed policy defined by a single set (SP) of autho-
rized actions is used. However, each of these abstract actions can be associated
to one or more concrete network events and conversely.

Definition 1 (Types of Events). An event is correct with regard to a security
policy if it corresponds only to authorized actions of the policy (Fig. 3.A). If the
event is associated only to forbidden actions then this event violates the policy
(Fig. 3.B). If an event is linked to some authorized actions and to some forbidden
ones, then this event is in conflict with the policy (Fig. 3.C).

Actions

SP

Events Actions

SP

Events Actions

SP

Events

A. Correct with regard to SP B. Violates SP C. In conflict with SP
(Pass status) (Fail status) (Conflict status)

Fig. 3. Events correct with regard to SP , in violation of SP or in conflict with SP

Several conformity relations [11,19] can be used when conflicting events can
occur. The approach proposed in this article is the following:
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Definition 2 (Network Conformity). A network conforms to a security pol-
icy if each event of this network is correct with respect to the policy.

Finally, if a security policy is relevant only to a part of the network, then all
events that are not associated to any action of the policy are unspecified.

4 Policy Security Through TCP/IP Levels

4.1 Traceability from Policy to Implementation

The proposed approach aims to express a security policy at an abstract level
(on actions) and to preserve it through the refinement process until its imple-
mentation (on network events). However, each refinement level can only access
information from the protocol header of the corresponding TCP/IP layer (Fig. 1)
and has to implement the same security policy as the specification.

The model used to illustrate this approach is a monitor. A monitor has to
detect at least each network event which violates SP or which is in conflict with
SP . In the ideal case, no event correct w.r.t. SP is detected. The monitor has
then to guarantee, at each refinement level, the next two properties:

Property 1 (Monitor Correctness)
Each event that is not detected is correct with respect to the security policy.

Property 2 (Monitor Completeness)
Each event that is detected violates or is in conflict with the security policy.

In the model, the network events representation gradually changes at each re-
finement (from actions to concrete events). To implement these properties, the
link between the different representations has then to be modeled, in a sys-
tematic way, at each refinement level. So, the end user (the administrator of a
network) can choose the abstraction level of his policy (by using or not the more
abstract levels of the model) and each event is traced through the refinement, as
needed for some certification process such as the one of the Common Criteria [7].

Table 3. Networks concepts by refinement level

Level of specification Network concepts TCP/IP layer
0 (Policy level, actions) Users, services
1 Daemons, Terminal servers Application
2 Hosts, ports Transport
3 (implementation) Interfaces, ports Network

Daemon: software server providing some services.
Terminal server: particular daemon providing some logging services.
Host: machine of the network.
Ports: channels associated, on each host, to zero or one daemon.
Interface: network interface (e.g. a network card).
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Each refinement level represents how the communication is seen between two
elements of the network. At level 0, events correspond to the access by a user to
a service. They are considered as actions of the security policy. At level 1, events
are messages between daemons (Application layer). At level 2, events are requests
between hosts and are attached to particular ports (Transport layer). At level 3,
each event is a connection between interfaces and is attached to particular ports
(Network layer). Table 3 summarizes these different representations.

These network concepts can be extracted from information contained in con-
figuration files. For example the list of registered Linux users can be found in the
/etc/passwd file and the list of daemons hosted on each machine can be found
in /etc/init.d/. This information can then be used to associate each network
event to an action of the policy.

Finally, an observer is introduced in the model to give the internal status
(Pass , Fail or Conflict - Fig. 3) associated to each observed network event. As
the event representation changes through the refinement process, the parameters
of the observer are described in global variables.

4.2 Example

To illustrate the notions of conflict and failure, here is a short example (Fig. 4)
of a monitor that receives a copy of each message from the network and that is
parametrized by a security policy and the network configuration.

Network installation

SP = {(James, Intranet),
(James,Mail),
(Alice,Mail)}

Security policy

Host1 is used by James or Alice
Intranet is hosted on the port 80 from Host2
Mail is hosted on the port 993 from Host2.

Network configuration information

Fig. 4. Example of the monitor installation

A message coming from Host1 and going to Host2 at port 80, is necessarily sent
by James or Alice, because they are the only referenced Host1 users. Moreover,
due to the accessed port of Host2, and according to the configuration information,
the service can only be the Intranet. However, the security policy SP only allows
James to access to the Intranet. Thus, the observed message is in Conflict .

Now, if the message comes from Host1 and goes to port 993 of Host2, then
the accessed service is Mail and all the users of Host1 are authorized to access
it. Therefore, this message is correct w.r.t. the security policy (Pass case).

Finally, if a message is exchanged with a host (Host3) which is not in the
described part of the network, then no user or action is associated to it by the
network configuration: the event is ignored.
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5 Description of Refinement Levels

As previously said, each refinement level represents a different layer of the
TCP/IP protocol suite (Table 3). In the first subsection, we define the data do-
main attached to each refinement level. Next, we present a systematic approach
to model the links between refinements, based on configuration files. Then, we
introduce journals in order to establish the monitor correctness and complete-
ness properties (Properties 1 and 2). Finally, we describe the observer allowing
to trace the status of each event through the refinement process.

5.1 Events Representation

Table 4 gives the representation of the events for each refinement level, according
to the network concepts presented in Table 3. Moreover, the incoming ports are
modeled while the outgoing ports are not so (Levels 2 and 3, Table 4). Outgoing
ports are useless as long as the history of connections is not taken into account.
Indeed, outgoing ports are dynamically and randomly chosen and cannot be
used to identify a daemon or a user, contrary to the incoming ports, that are
statically reserved for each service (managed by the IANA2).

Table 4. Network events representation for each refinement level

Level of specification Network events representation
0 (Policy level) Net0 = USERS × SERVICES
1 Net1 = DAEMONS × DAEMONS
2 Net2 = HOSTS × (HOSTS × PORTS)
3 (Implementation) Net3 = INTERFACES × (INTERFACES × PORTS)

The policy is enforced only on the known part of the network. The constant
KnownNet i represents the known network subset at each level i. Each set is
divided into a known and an unknown part, as follows:

Known Network Definition
Users ⊂USERS ∧ Services⊂SERVICES ∧ Daemons ⊂DAEMONS ∧ Hosts ⊂HOSTS
∧ TerminalServers ⊆ Daemons ∧ Ports ⊂ PORTS ∧ Interfaces ⊂ INTERFACES

∧ KnownNet0 = Users × Services
∧ KnownNet1 = TerminalServers × Daemons
∧ KnownNet2 = Hosts × (Hosts × Ports)
∧ KnownNet3 = Interfaces × (Interfaces × Ports)

These abstract sets correspond to concrete data extracted from configuration
files. Finally, the security policy is described by the constant set SP of all au-
thorized actions of the known network.

Security Policy Definition
SP ⊆ KnownNet0

2 IANA = Internet Assigned Numbers Authority.
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5.2 Representation Relation

The event representation changes through the refinement process. The relation
Representsi defines the representation link between the ith and (i − 1)th refine-
ment levels. For example, Represents1 associates each terminal server to a set of
users and each daemon to a set of services. Note that Representsi is a relation
and not a function because a concrete event is not always associated to a single
abstract event (as seen in the example from Section 4.2). It is neither a function
from KnownNet i−1 to KnownNet i because an action can be associated to sev-
eral concrete events. These relations can be composed to define Representsi�0

between the ith level and the policy level.

Representation Relation axioms
Represents i ∈ KnownNet i ↔ KnownNet i−1 (with i∈1..3)
∧ Represents i�0 ∈KnownNet i ↔ KnownNet0 (with i∈1..3)
∧ Represents i�0 = (Represents i;Represents i−1; . . . ;Represents1) (with i∈1..3)

In order to simplify some further invariants, we define Represents0 as the iden-
tity (id(Net0)). Finally, each element mentioned in the configuration has to be
associated with at least one action and one network event:

The Described Sub-Network is Known as a Whole
dom(Represents i) = KnownNet i ∧ ran(Represents i) = KnownNet i−1

5.3 Journalizing Observed Events

Three journals are maintained: the one of observed events (Monitored i) and two
other ones of warned events (FAILi and CONFLICT i respectively for the events
which violate and are in conflict with the policy). All these journals are defined
as non-ordered sets, because the considered policy does not take into account
the history. Moreover, all warned events are observed and all events observed in
a concrete level are also observed in the abstract level. At the policy level, no
conflict can occur, then CONFLICT 0 is empty.

Invariant (General Journals Definition)
Monitored0 ⊆ KnownNet0

∧ Monitored i ⊆ Represents−1
i [Monitored i−1] (with i ∈ 1..3)

∧ CONFLICT0 = ∅
∧ FAILi ∪ CONFLICT i ⊆ Monitored i (with i ∈ 0..3)
∧ FAILi ∩ CONFLICT i = ∅ (with i ∈ 0..3)

Properties 1 and 2 can be expressed on these journals, by the next two invariants:
(1) All observed events associated with Pass status are correct w.r.t. SP :

Invariant (Monitor Correctness - Property 1)
Represents i�0[Monitored i − FAILi − CONFLICT i] ⊆ SP (with i ∈ 0..3)

(2) No event associated with Conflict or Fail status is correct w.r.t. SP :

Invariant (Monitor Completeness - Property 2)
Represents i�0[FAILi] ∩ SP = ∅ (with i ∈ 0..3)
∧ ∀ei · (ei ∈ CONFLICT i ⇒ Represents i�0[{ei}] �⊆ SP) (with i ∈ 0..3)
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5.4 Observer Introduction

The B event Get status is an observer of the network events. It returns the status
of an event chosen in a nondeterministic way. Because of the change of event
representation, the observer is modeled with two new global variables: ObsEvent
and ObsStatus . ObsEvent is the chosen observed event (ObsEvent i ∈ KnownNet i)
and ObsStatus is its status (ObsStatus i ∈ {Pass, Fail , Conflict}). Fig. 5 gives the
general implementation of the observer Get status.

The variables ObsEvent and ObsStatus are defined at each refinement level with
the following invariant:

Get status =̂ any ei where ei ∈ Monitored i then
if ei ∈ FAILi then ObsEvent i := ei || ObsStatus i := Fail
elsif ei ∈ CONFLICT i then ObsEvent i := ei || ObsStatus i := Conflict
else ObsEvent i := ei || ObsStatus i := Pass
end

end

Fig. 5. General definition of the Get status event

Invariant (Observed Variables)
Monitored i �= ∅ ⇒

((ObsStatus i = Fail) ⇔ (ObsEvent i ∈ FAILi))
∧ ((ObsStatus i = Conflict) ⇔ (ObsEvent i ∈ CONFLICT i))
∧ ((ObsStatus i = Pass) ⇔ (ObsEvent i ∈ Monitored i − FAILi − CONFLICT i))

The observed event is traced through the refinement process:

Invariant (Relation through Refinement)
(ObsEvent i,ObsEvent i−1) ∈ Represents i

Finally, correctness and completeness of the monitor (Properties 1 and 2) are
implemented on the journals with the invariants defined in Section 5.3. However,
these properties can also be checked on the observed variables. So, if the following
assertions hold, then Properties 1 and 2 are verified:

Assertion 1 (Monitor Correctness on Observed Variables)
Monitored i �= ∅ ∧ ObsStatus i = Pass ⇒ ObsStatus i−1 = Pass (with i ∈ 0..3)

Assertion 2 (Monitor Completeness on Observed Variables)
Monitored i �= ∅ ⇒ (with i ∈ 0..3)

(ObsStatus i = Fail ⇒ ObsStatus i−1 = Fail)
∧ (ObsStatus i =Conflict ⇒Represents i�0[{ObsEvent i}] �⊆SP)
∧ (ObsStatus i =Conflict ⇒Represents i�0[{ObsEvent i}]∩SP �=∅)

Therefore we only discuss the verification of those assertions that are sufficient
to show Properties 1 and 2.



Security Policy Enforcement Through Refinement Process 225

6 Model Description

In the previous section, we have presented, in a systematic way, all data required
for the model development. In this section, we describe successively each level
by introducing: the configuration data, the B events and the construction of
the Representsi relation. All invariants and properties described in the previous
section are included at each description level.

In this description, we also focus on the verification of the correctness and the
completeness properties of the monitor by checking Assertions 1 and 2.

6.1 Level 0: User-Service View

The SP constant set is given by the user while constants Users and Services are
retrieved from configuration files. Journals are represented as abstract variables
and are empty in the initial state (Monitored0 := ∅ and FAIL0 := ∅). Con-
sequently, the observed variables are initially undefined (ObsEvent0 :∈ Net0 ∧
ObsStatus0 :∈ {Pass, Fail , Conflict}). If an event e0 occurs on the network then:

– if e0 is not in the observed sub-network then Event filter (Figure 6.B) is
launched and e0 is ignored,

– else Check event (Figure 6.A) is launched and e0 is stored in Monitored0.
Moreover, if e0 violates the policy then it is journalized in FAIL0.

Check event =̂ any e0 where e0 ∈ KnownNet0 then
Monitored0 := Monitored0 ∪ {e0} ||
if e0 �∈ SP then FAIL0 := FAIL0 ∪ {e0} end

end

Event filter =̂ any e0

where e0 ∈ Net0

∧ e0 �∈ KnownNet0

then skip end

A. Check event B. Event filter

Fig. 6. Code of B events Check event and Event filter at the policy level

Finally, this level establishes Properties 1 and 2 by verifying Assertions 1 and 2
with the observed variables only, since there is no conflict at this level.

6.2 Level 1: Servers View

According to Table 3, the daemons sets (Daemons and TerminalServers) are
now described. The relation between this level and the more abstract one, i.e. the
policy level, is extracted from configuration files. Each daemon is configured with
its registered users and its provided services. We model this information with
two relations (Provide and Used By) describing which user can be connected to
a particular terminal server and which daemon provides a particular service. For
example, the registered users list of a telnet server can be found in /etc/passwd.
Represents1 Definition

Used By ∈ TerminalServers ↔ Users ∧ Provide ∈ Daemons ↔ Services
∧ Represents1 = (Used By || Provide)



226 N. Stouls and M.-L. Potet

Check event =̂ any e1 where e1 ∈ KnownNet1 then
Monitored1 := Monitored1 ∪ {e1} ||
let E0 be E0 = (Used By || Provide)[e1] in

if E0 ∩ SP �= ∅ then
FAIL1 := FAIL1 ∪ {e1}

elsif E0 �⊆ SP then
CONFLICT1 := CONFLICT1 ∪ {e1}

end
end

end

Event filter =̂ any e1

where e1 ∈ Net1

∧ e1 �∈ KnownNet1

then skip end

A. Check event B. Event filter

Fig. 7. Code of the B events Check event and Event filter at level 1

The journals and the observed variables are defined according to the invariants
given in Section 5. At this level of refinement, the relation Represents1 is used
dynamically by the B event Check event (Figure 7.A) to compute the status of
the observed network event, while the B event Event filter (Figure 7.B) ignores
all messages exchanged with the unknown part of the network.

The observer refinement (Fig. 5) produces 18 proof obligations, which, asso-
ciated to the three ones generated for Assertions 1 and 2, establish Properties 1
and 2 on the model.

6.3 Level 2: Hosts View

As described in Table 3, this level introduces the notions of Hosts and Ports. The
relation between these concepts and the daemons is extracted from hosts con-
figuration information. They are summarized by two functions: Hosting, which
associates the hosts to the daemons, and Run on, which precises the ports used
by a particular daemon on a host. Configuration data is such that:
Represents2 Definition

Hosting ∈ Hosts ↔ Daemons ∧ Run on ∈ Hosts × Ports →� Daemons
∧ Represents2 = (Hosting � TerminalServers) || Run on

Just as in previous levels, the journals and the observed variables are defined
according to the invariants given in Section 5. The relation Represents2 is used
by Check event (Figure 8.A) to compute the status of the observed network
event, while Event filter (Figure 8.B) ignores all messages exchanged with the
unknown part of the network.

The main contribution of this level is the implementation of the Check event
event (Figure 8.A), which progressively refines the method to compute the E0

set of all actions associated to the observed network events e2.
In the same way as in the previous level, Properties 1 and 2 are established

by proving the three proof obligations generated for Assertions 1 and 2 and the
32 proof obligations generated for the observer event Get status.
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Check event =̂ any e2 where e2 ∈ KnownNet2 then
Monitored2 := Monitored2 ∪ {e2} ||
let E1 be E1 = ((Hosting � TerminalServers) || Run on)[{e2}] in

let E0 be E0 = (Used By || Provide)[E1] in
if E0 ∩ SP �= ∅ then

FAIL2 := FAIL2 ∪ {e2}
elsif E0 �⊆ SP then

CONFLICT2 := CONFLICT 2 ∪ {e2}
end

end
end

end

A. Check event

Event filter =̂ any e2 where e1 ∈ Net2 − KnownNet2 then skip end

B. Event filter

Fig. 8. Code of the B events Check event and Event filter at level 2

6.4 Level 3: Implementation

At this level, hosts are valuated into their IP address (32 bit natural which
identifies hosts for the Network layer) and ports remain unchanged. For example,
the host anchieta.imag.fr can be valuated into its IP address 129.88.39.37 by
using its 32 bit natural value3: 2170038053.

The Represents3 relation is thus the identity and all invariants are inherited
and do not need to be proven again. All other constants (security policy and
configuration information) have also to be valuated. Network parameters can be
retrieved in configuration files while the security policy has to be given by the
administrator. Table 5 gives some concrete examples for Fedora-Core (a Linux
distribution) of files containing usable data.

Table 5. Example of configuration files for Fedora-Core system

Refinement level Constant Data file
0 (Policy level) Users and Services /etc/passwd and /etc/init.d/
1 Provide and Used By Configuration files of each server
2 Run on and Hosting /etc/services and /etc/init.d/
3 (Implementation) Interfaces /etc/hosts

However, the event-B language cannot be directly implemented. The model
is translated into classical B. This transformation is done by some ad-hoc meth-
ods based on the results of the MATISSE4 project [6,3]. Since the guards of
Event filter and Check event are disjoint, the events are replaced by the single
3 2170038053 = ((129 ∗ 256 + 88) ∗ 256 + 39) ∗ 256 + 37
4 Methodologies and Technologies for Industrial Strength Systems Engineering (MA-

TISSE): IST Programme RTD Research Project (2000-2003).
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operation Check event and Event filter (Fig. 9). Moreover, the network event
e3 chosen in the guard any e3 where e3 ∈ Net3 is replaced by three input
parameters IP1, IP2 and P o representing respectively the IP address of the two
hosts and the incoming port.

Check event and Event filter(IP1, IP2, P o) =̂ begin
/* Typing precondition: (IP1, (IP2, P o)) ∈ Net3 */

var tmp in
tmp ←− Is In KnownNet(IP1, IP2, P o) ;
if tmp =true then /* Case of Check event */

Src := IP1 ; Dest := IP2 ; Port := Po ;
tmp ←− Is e3 Out Of SP(IP1, IP2, P o) ;
if tmp =true then Status := Fail ;WriteFail(IP1, IP2, P o)
else

tmp ←− Is e3 In SP(IP1, IP2, P o) ;
if tmp =false then Status := Conflict ;WriteConflict(IP1, IP2, P o)
else Status := Pass end

end
end /* Else case of Event filter : skip */

end
end

Fig. 9. Implementation of the B event Check event

Figure 9 is the implementation of Check event and Event filter operation. It
uses three local operations (Is In KnownNet , Is e3 Out Of SP and Is e3 In SP)
to compute the correctness of each observed event. These operations are imple-
mented as refinements of the corresponding parts of Check event at level 2. For
example, the local operation Is e3 Out Of SP is defined in Figure 10.

rr ←− Is e3 Out Of SP(IP1, IP2, P o) =̂
pre (IP1, (IP2, P o)) ∈ KnownNet3 then

rr=bool((Used By || Provide)[ /*Represents 1[*/
((Hosting�TerminalServers) || Run on)[ /* Represents2[*/

{(IP1, (IP2, P o))} /* {(IP1, (IP2, P o))}*/
] /* ]*/

] ∩ SP = ∅) /* ] ∩ SP = ∅*/
end

Fig. 10. Abstract definition of the Is e3 Out Of SP local operation

The Monitored i set, modeled to store the monitored events, is not imple-
mented, while FAIL and CONFLICT sets are stored in files. That is managed
by an external component providing the operations WriteFail and WriteConflict .
However, Properties 1 and 2 still hold, since the observed variable ObsStatus2

and ObsEvent 2 remain unchanged.
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Finally, constants (configuration data and security policy) are exported in an
external component as shown in Fig. 11. Thus, the model is generic and can
be completely proved independently of the configuration data. The user just
needs to provide some network information, or to retrieve it from configuration
files, and to fulfill the conditions on configuration stated in Sections 5.3 and 5.2.
A similar approach has been used in Météor [5], the Parisian subway without
driver, to develop some generic and reusable components.

If the model is valuated for a simple example of network with two hosts, two
daemons, one service and one user, then 31 proof obligations are generated and
only 26 of them are discharged by the automatic prover. The five remaining
proof obligations have been interactively discharged, but are really obvious and
only need two commands : replace (eh) and predicate prover (pp(rp.0)).

Implementation

Constants

Level2

Level1

Policy level

Implementation

File
management

Implementation

Fig. 11. General model organisation

7 Conclusion

This work has been done within the framework of the POTESTAT5 project
[9], which aims at proposing a methodology for network security testing from
high-level security policies. The main problem is to establish the conformity
relation in order to automatically generate test cases and oracles from an abstract
specification, as it has been implemented in the TGV tool [12] from IRISA and
Verimag french laboratories.

Our contribution is a method to automatically enforce an abstract secu-
rity policy on a network. In order to achieve that, we build a formal relation
(Representsi�0) between abstract and concrete levels. The dynamic part of the
program (Check event and Event filter) computes all actions associated to each
observed event. Finally, we guarantee, by using an observer (Get status), that
all violations and conflicts are detected at each refinement level (Property 1)
and that no warning is issued for an event which is correct with respect to the
policy (Property 2).

The work of D. Senn, D. Basin and of G. Caronni [21] and of G. Vigna [23]
are also dealing with the modeling of network conformity of a security policy.
The model of [23] supports all the TCP/IP layers but does not provide a formal
definition of the policy and needs human interaction to produce the test cases,
while the model introduced in [21] only considers the first two layers and uses a
low-level policy.
5 Security policies: test directed analysis of open networks systems.
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In this paper, we described the development of a network monitor, and the
same approach can be used for generation, verification or test of a network
configuration. The relationship is built in the same way and only the dynamic
part of the model has to be modified.

In particular, many works have been developed relative to the generation of
firewall configurations. For example, Firmato [4] is a tool generating the firewall
configuration from a security policy and a network topology, and the POWER
tool [18], of Hewlett-Packard, can rewrite a security policy into devices configu-
ration. However, Firmato needs some topology information and uses a low-level
policy, and POWER requires some human interactions during the process. The
work presented here does not need human interaction (if all proof obligations
are automatically discharged) or topology information. Due to the existence of
the conflict status, it seems more adapted to the monitoring approach.

Finally, in our model, the conflict case can be removed if Representsi�0 is a
function from KnownNet i to KnownNet0, as done in [8] with a security policy
expressed in the OrBAC framework [14]. In order to achieve that, we have to
recognize the user and the service associated to each event. It can be realistic to
associate only one service to each port, but it is too strict to impose that each
host can be used by only one user. An investigation should be done to properly
compare their approach with ours.

Acknowledgments. The authors would like to thank D. Bert, V. Darmaillacq,
V. Untz, F. Dadeau and Y. Grunenberger for their advises and their reviews.
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et la Sécurité d’Internet et des Systèmes, CRiSIS, Bourges, France, 2005.



Security Policy Enforcement Through Refinement Process 231

10. D. Denning and P. Denning. Data Security. ACM Computing Survey, 11(3):227–
249, 1979.

11. S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for expressing
authorizations. In IEEE Symp. on Research in Security and Privacy, 1997.

12. C. Jard and T. Jeron. TGV: theory, principles and algorithms. International
Journal on Software Tools for Technology Transfer (STTT), 7(4):297–315, 2005.

13. JTC1. Information technology – Open Systems Interconnection (OSI model). Tech-
nical report, Standard ISO 7498, 1997.

14. A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Mige, C. Saurel, and G. Trouessin. Organization Based Access
Control. In IEEE 4th International Workshop on Policies for Distributed Systems
and Networks (POLICY’03), pages 120–131, 2003.

15. L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, may 1994.

16. T. E Lunt. Access control policies for database systems. Database Security II:
Status and Prospects, pages 41–52, North–Holland, Amsterdam, 1989.

17. M. Masullo. Policy Management: An Architecture and Approach. In IEEE First
International Workshop on Systems Management, pages 13–26, 1993.

18. M. Casassa Mont, A. Baldwin, and C. Goh. POWER Prototype: Towards Inte-
grated Policy-Based Management. Technical report, HP Laboratories, 1999.

19. P. Samarati and S. de Capitani di Vimercati. Access Control: Policies, Models,
and Mechanisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security
Analysis and Design, volume 2171 of LNCS, pages 137–196. Springer, 2000.

20. R. S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-Based Access
Control Models. IEEE Computer, 29(2):38–47, 1996.

21. D. Senn, D. Basin, and G. Caronni. Firewall Conformance Testing. In F. Khendek
and R. Dssouli, editors, TestCom, volume 3502 of LNCS. Springer, 2005.

22. M. Sloman. Policy Driven Management for Distributed Systems. Journal of Net-
work and Systems Management, 2(4):333–360, 1994.

23. G. Vigna. A Topological Characterization of TCP/IP Security. In K. Araki,
S. Gnesi, and D. Mandrioli, editors, FME, volume 2805 of LNCS. Springer, 2003.

24. T. Y.C. Woo and S.S. Lam. Authorization in Distributed Systems: A Formal
Approach. In Symposium on Security and Privacy. IEEE Computer Society, 1992.



Integration of Security Policy into System
Modeling
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Abstract. We address the proof-based development of (system) models
satisfying a security policy. The security policy is expressed in a model
called OrBAC, which allows one to state permissions and prohibitions
on actions and activities and belongs to the family of role-based access
control formalisms. The main question is to validate the link between
the security policy expressed in OrBAC and the resulting system; a first
abstract B model is derived from the OrBAC specification of the secu-
rity policy and then the model is refined to introduce properties that
can be expressed in OrBAC. The refinement guarantees that the result-
ing B (system) model satisfies the security policy. We present a generic
development of a system with respect to a security policy and it can be
instantiated later for a given security policy.

Keywords: refinement, integration, security policy.

1 Introduction

One of the most challenging problems in managing large networks is the com-
plexity of security administration. Role-based access control has become the pre-
dominant model for advanced access control because it reduces the complexity
and cost of security administration in large networked applications. Other mod-
els, like OrBAC [1], have been introduced by providing a structure based on the
application domain and by introducing the concept of organisation. Networks
or software systems can be abstracted by action systems or event B models;
however, security requirements should be integrated into the proof-based design
of such systems and we address the integration of security policy - expressed
in a security model OrBAC - in the final systems. This leads us to deal with
security properties like permissions and prohibitions. We leave obligations as
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out of the scope of the current work. J.-R. Abrial [2] contributes to the access
control problem: the study consists of elaborating a system that controls access
to a building for different persons. He does not refer to a security model but his
work influences our current work.

1.1 Integration of Security Policies in System Development

When a system is under development, it is necessary to consider requirements
documentation. The document is either written in a natural language, or in
a semi-formal language, or in a formal language and it may include different
aspects or views of the target system. Security policy is a possible part of this
document and it may be expressed in a specific modelling language designed for
expressing permissions, prohibitions, recommendations, obligations, . . . related
to the target system. Now, a key question is to ensure that the resulting system
conforms to the security policy and it appears to us that in existing systems
the link between the system and its security policy is not clearly established
and formally validated, as shown in figure 1: the satisfaction relation should be
established in a formal way. We illustrate the problem to be solved by considering
two modelling languages:

– the OrBAC modelling language for security policy
– the event B modelling language for systems

Another important point is that we focus on the access control problem and
as shown in figure 1.2, we describe several steps to obtain an implementation of
the system from the statement of the security policy:

1. Generating a B model OM from the security policy O: the translation rela-
tion is explained in the current paper and can be mechanized.

2. Generating a B model RM by refining OM and by adding progressively
details of the document which are not yet integrated into the current model:
the refinement of B models is the key concept ensuring the validation of the
satisfaction relation.

3. Writing a system model SY S from the last B model: the implementation of
a refined B model into a system language can be directed by transformations
over events.

1.2 Proof-Based Incremental Modelling

Proof-based development methods [3] integrate formal proof techniques in the
development of software systems. The main idea is to start with a very abstract
model of the system under development. Details are gradually added to this first
model by building a sequence of more concrete ones. The relationship between
two successive models in this sequence is that of refinement [3,8,4]. The essence
of the refinement relationship is that it preserves already proved system prop-
erties including safety properties and termination. A development gives rise to
a number of, so-called, proof obligations, which guarantee its correctness. Such
proof obligations are discharged by the proof tool using automatic and interac-
tive proof procedures supported by a proof engine [10].
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The goal of the paper is to address the proof-based
development of models satisfying a security policy.
The security policy can be expressed in a formal lan-
guage and it is possible to analyse the security pol-
icy, especially the consistency of the policy. The re-
finement ensures the correctness of the satisfaction
relation: the system satisfies the security policy.

Security Policy O

System Model SYS

satisfaction

Fig. 1. The satisfaction relation

Security Policy O

System Model SYS

satisfaction refinement

translation

implementation

B model OM

B model RM

At the most abstract level it is obligatory to describe the static properties
of a model’s data by means of an “invariant” predicate. This gives rise to proof
obligations relating to the consistency of the model. These are required to ensure
that data properties which are claimed to be invariant are preserved by the
events or operations of the model. Each refinement step is associated with a
further invariant which relates the data of the more concrete model to that of the
abstract model and states any additional invariant properties of the (possibly
richer) concrete data model. These invariants, so-called gluing invariants, are
used in the formulation of proof obligations related to the refinement.

The goal of a B development is to obtain a proved model. Since the devel-
opment process leads to a large number of proof obligations, the mastering of
proof complexity is a crucial issue. Even if a proof tool is available, its effective
power is limited by classical results over logical theories and we must distribute
the complexity of proofs over the components of the current development, e.g.
by refinement. Refinement has the potential to decrease the complexity of the
proof process whilst allowing for traceability of requirements.

B models rarely need to make assumptions about the size of a system being
modelled, e.g. the number of nodes in a network. This is in contrast to model
checking approaches [9]. The price to pay is to face possibly complex mathe-
matical theories and difficult proofs. The re-use of developed models and the
structuring mechanisms available in B help in decreasing the complexity. Where
B has been exercised on known difficult problems, the result has often been
a simpler proof development than has been achieved by users of other more
monolithic techniques.
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2 Models for Security Policy

The interaction of people with IT systems generate various security needs to
guarantee that each system user benefits of its advantages without trespassing
on another user’s rights. These needs vary according to the activity field required.
It could be regarding: Confidentiality (Non disclosure of sensitive information
to non authorised persons), Integrity (Non alteration of sensitive information),
Availability (Supply of information to users according to their rights of access
these information), Auditability (The ability to trace and determine the actions
carried out in the system).

Such requirements usually result in setting up an access control model that ex-
presses security policies, defining for each user his permissions, prohibitions and
obligations. Users (or subjects) are active entities operating on objects (passive
entities) of the system.

Several access control models have been proposed: DAC [14], MAC [5,6],
RBAC [12,15,13] or OrBAC [1]. In the Role-Based access control model, the
RBAC model, security policy does not directly grant permissions to users but
to roles [12]. A role is an abstraction for users. Each user is assigned to one or
several roles, and will inherit permissions or prohibitions associated with these
roles. Such a security model states security properties on the target system and
on a hidden state of the current system. The hidden state clearly expresses
dynamic properties related to permissions and prohibitions. The classical role-
based models have no explicit state variable; the context information might be
used to express the state changes but we think that a state-based approach like
B provides a simpler framework for integrating security policy specification in
the design of a system. Moreover, the refinement may help us in introducing
security properties in a proof-based step.

2.1 Organization-Based Access Control Model: OrBAC

The OrBAC (Organization-Based Access Control model) for modelling the se-
curity policies is an extension of the RBAC model. OrBAC is based on the
concept of organization. The specification of the security policy is completely
parametrized by the organization such that it is possible to handle simultane-
ously several security policies associated with different organizations [1]. Another
advantage of the OrBAC model compared to other models is that it makes it
possible to express contextual permissions or prohibitions.

OrBAC takes again the concept of role such as it was defined in RBAC. Users
are assigned to roles and inherit their privileges. The concept of view (or object’s
groups) is also introduced as an abstraction of the objects of the system. The
construction of these groups of objects must be semantically well founded, this
construction is related to the way in which the various roles carry out various
actions on these objects. It should be noted that there are similarities with
the concept of view in relational databases where it is a question of gathering
objects which have similar properties. Just as for the objects, the actions are
also gathered in activities, this implies that there are two levels of abstraction
in OrBAC:
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– Abstract level: roles (doctor, nurse), activities (management) and views (pa-
tient files, administration files) of the system on which various permissions
and prohibitions are expressed.

– Concrete level: subjects (Paul, Peter, John), actions (create, delete) and
objects (patient file1, patient file2) of the system.

Subjects, actions and objects are respectively assigned to roles, activities and
views by relations defined over these entities(see figure 2). We detail relations in
the next sub-section.

Empower, Use and Consider. Assignment of subjects to roles: subjects are
assigned to one or more roles in order to define their privileges. Contrary to
RBAC, subjects play their roles in organizations, which implies that subjects
are assigned to roles through a ternary relation including the organization:

empower(org, s, r): means that the subject s plays the role r in the
organization org.

Assignment of actions to activities : As for roles and subjects, activities are
an abstraction of various actions authorized in the system. The relation binding
actions to activities is also a ternary relation including the organizations:

consider(org, a, act): means that the action a is considered as an activity
act in the organization org.

Assignment of objects to views : As in relational databases, a view in OrBAC
corresponds to a set of objects having a common property. The relation binding
the objects to the views to which they belong is also a ternary relation including
the organization:

use(org, o, v): means that the organization org uses the object o in the
view v.

Empower

Consider

Use

permission prohibition

(org, role, activity, view, context)

Abstract level

Concrete level

(subject, action, object, context)

Fig. 2. Abstract and Concrete level of OrBAC
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Modeling a Security Policy with OrBAC. When subjects, actions, and
objects are respectively assigned to roles, activities and views, it is now possible
to describe the security policy. It consists of defining different permissions and
prohibitions:

– permission(org, r, act, v, c): means that the organization org grants to the
role r the permission to carry out the activity act on the view v in context c.

– prohibition(org, r, act, v, c): means that the organization org prohibits the
role r to carry out the activity act on the view v in the context c.

The concept of context, which did not exist in RBAC, is important in OrBAC,
since it makes it possible to express contextual permissions (or prohibitions).
Let us consider the example of a security policy in a medical environment. If
one wants to restrict the access to patients records or files to their attending
practitioner, the following permission should be added to the security policy:

permission(hospital, physician, consult, patient file, attending practitionar)

If there is no context: permission(hospital, physician, consult, patient file).
A physician could therefore access the file of any patient, which needs to be

avoided. To be able to use this concept of context, a new relation define should
be introduced:

Define(org, s, a, o, c): means that within organization org, the context c
is true between subject s, the object o and action a.

Hierarchy in OrBAC. The OrBAC model makes it possible to define role
hierarchies (as in RBAC) but also with respect to the organization hierarchies.
The hierarchies allow the inheritance of the privileges (permissions or prohibi-
tions), if for example r2 is a sub-role of r1, for an organization org, an activity
av and a view v in the context ctx:

– When permission(org, r1, av, v, ctx) holds then permission(org, r2, av, v, ctx)
holds.

– When prohibition(org, r1, av, v, ctx) holds then prohibition(org, r2, av, v, ctx)
holds.

In the same way for the organizations, if org2 is a sub-organization of org1
then, for a role r an activity av and a view v in the context ctx:

– When permission(org1, r, av, v, ctx) holds then permission(org2, r, av, v, ctx)
holds.

– When prohibition(org1, r, av, v, ctx) holds then prohibition(org2, r, av, v, ctx)
holds.

The concept of inheritance is a key concept in OrBAC, since it allows gradual
building of the security policy. Indeed, it is necessary to start by establishing
a flow chart of the organizations (and roles) and defining the privileges on the
basic organizations, it will then be enough to add gradually the privileges of the
sub-organisations(sub-roles).
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3 Event B Models from OrBAC

A complete introduction of B can be found in [7]. The question is to integrate
the event B method and the OrBAC method; we have shortly introduced the
event B concepts and the OrBAC concepts. In a B model, we should define
the mathematical structures on which is based the development and the system
under development; this information can be used to derive further properties that
will be used in the validation of models. The B models have a static part and a
dynamic part and in the specification of a security policy in OrBAC one has to
state dynamic properties and to check the consistency of the resulting theory.
The MOTOrBAC tool [11] provides a framework for defining a security policy
and for checking the consistency of the set of facts and rules in a PROLOG-like
style; this approach is clearly based on a fixed-point definition of permissions.
The question of expressing administration model in OrBAC is also crucial and it
is very simple to express the administration of security policy in B, since one can
model the permissions as a variable satisfying the security policy expressed in an
invariant. These points will be recalled when we present the effective translation
of OrBAC models into event B models.

The current status of the work is as follows:

– We assume that we have an OrBAC description of the security policy.
– The security policy is supposed to be stable and consistent; the consistency

is checked using tools like, for instance MOTOrBAC.
– The security policy states permissions and prohibitions.

The problem is to translate OrBAC statements into the event B modelling
language. The translation of the security policy into event B includes several
successive stages. A first B model is built and then other successive refinements
are made as shown by figure 3. The first refinement validates the link between
the abstract level (role, ...) and the concrete level (subject, ....).

The approach is based on refinement and each model or refinement model
is enriched either by a constraint required by the OrBAC specification or by
constraints like workflow constraints or separation of duties. Each constraint is
attached to an invariant. The invariant becomes stronger through the refinement
steps.

3.1 Abstract Model with Permissions and Prohibitions

As presented in the paragraph 2.1, the OrBAC specification has two levels of ab-
straction (see figure 2). The first step consists of an event B model modelling the
abstract part of the security policy, i.e. initially, only concepts of organization,
role, view, activity and context are considered. In the first model, permissions
and prohibitions of the OrBAC model should be described.

– The clause SETS in the event B model contains basic sets such as organi-
sations, roles, activities, views and contexts: ORGS, ROLES, ACTIVITIES,
VIEWS, CONTEXTS.
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Fig. 3. Steps of the passage from OrBAC to a B event-based model

– The clauses CONSTANTS and PROPERTIES contain the constants like perm-
ission and prohibition that will contain privileges of the OrBAC description.
One of the most important concepts contained in OrBAC is the concept
of hierarchy: whether it is organization hierarchy or role hierarchy. Two
new constants sub role and sub org are introduced to take into account
respectively the role and organization hierarchy. It is enough to specify
which roles and which organizations are concerned with inheritances, and the
permissions and prohibitions corresponding to inheritances are deductively
generated.

SETS
ORGS;
ROLES;
ACTIV ITIES;
V IEWS;
CONTEXTS

CONSTANTS
permission,
prohibition,
sub org,
sub role,
default / ∗ default context value ∗ /
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PROPERTIES
permission ⊆ ORGS × ROLES × ACTIV ITIES × V IEWS × CONTEXTS
prohibition ⊆ ORGS × ROLES × ACTIV ITIES × V IEWS × CONTEXTS

sub org ⊆ ORGS × ORGS
sub role ⊆ ROLES × ROLES

default ∈ CONTEXTS

/ ∗ Organization hierarchies ∗ /
∀(org1, org2, r, av, v, ctx).(

(org1 ∈ ORGS ∧ org2 ∈ ORGS∧
r ∈ ROLES ∧ av ∈ ACTIV ITIES∧
v ∈ V IEWS ∧ ctx ∈ CONTEXTS∧
(org1 �→ org2) ∈ sub org∧
(org2 �→ r �→ av �→ v �→ ctx) ∈ permission)

⇒
(org1 �→ r �→ av �→ v �→ ctx) ∈ permission)

/ ∗ Role hierarchies ∗ /
∀(org, r1, r2, av, v, ctx).(

(r1 ∈ ROLES ∧ r2 ∈ ROLES∧
org ∈ ORGS ∧ av ∈ ACTIV ITIES∧
v ∈ V IEWS ∧ ctx ∈ CONTEXTS∧
(r1 �→ r2) ∈ sub role∧
(org �→ r2 �→ av �→ v �→ ctx) ∈ permission)

⇒
(org �→ r1 �→ av �→ v �→ ctx) ∈ permission)

/ ∗ Same properties for prohibitions ∗ /

For a given particular case, it is enough to initialize sets in the clause SETS
by entities, organizations, roles, views, activities, contexts. Properties of con-
stants, like permission, prohibition, sub role and sub org, should also be set in
the clause PROPERTIES. Consequently, permissions and prohibitions can not be
modified, since they are defined as constants; the OrBAC definitions are express-
ing properties satisfied by a consistent theory of permissions and prohibitions.
We will address later the administration of OrBAC.

Introducing State Variables. An event B model expresses properties over
state and state variables; the main problem is effectively that OrBAC has no
explicit variables. In fact, OrBAC users are using some kind of state modifica-
tions but no explicit state exists in OrBAC, even if contexts might be used to
model it. Variables are used to model the status of the system with respect to
permissions and prohibitions:

– The clause VARIABLES contains two variables, the state variable hist abst
that contains the history of system activities; the variable context determines
the running context of the system.
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Variables satisfy the following properties added to the invariant:

INVARIANT
context ∈ CONTEXTS
hist abst ⊆ ORGS × ROLES × ACTIV ITIES × V IEWS × CONTEXTS
hist abst ⊆ permission

The initial values of the two variables are set as follows:

context := default ‖hist abst := ∅

As the security policy is supposed to
be consistent, we should be able to
prove in the clause ASSERTIONS :

ASSERTIONS
pemission ∩ prohibition = ∅
hist abst ∩ prohibition = ∅

– The clause EVENTS contains the following events :
• The event action models when an authorization request for the access

of a subject to an object of the system occurs.
• The two events set default and set context value are attached to the

changes of the system context.

action =̂
any org, r, v, av where

org ∈ ORGS
r ∈ ROLES
v ∈ V IEWS
av ∈ ACTIV ITIES
(org �→ r �→ av �→ v �→ context) ∈ permission

then
hist abst := hist abst ∪ {(org �→ r �→ av �→ v �→ context)}

end

set context default =̂
begin

context := default
end

set context value =̂
begin

context :∈ CONTEXTS − {default}
end

The invariant should be preserved and it means that any activity in the system
is controlled by the security policy through the variable hist abst.

3.2 First Refinement: Concrete Model with Permissions and
Prohibitions

One of our goals is to use the refinement to validate the relation between security
models; OrBAC defines two levels of abstraction and the current model is refined
into a concrete model. The refinement introduces subjects, actions and objects:
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sets SUBJECT S, ACT IONS and OBJECT S contain respectively subjects,
actions and objects of the system under development. The clause CONSTANTS
includes the following constants: empower (assignment of subjects to roles),
use (assignment of objects to views) and consider (assignment of actions to
activities). Properties of constants are stated as follows:

PROPERTIES
empower ⊆ ORGS × ROLES × SUBJECTS
use ⊆ ORGS × V IEWS × OBJECTS
consider ⊆ ORGS × ACTIV ITIES × ACTIONS

Concrete Variables. A new variable hist conc models the control of the sys-
tem according to the security policy; it contains the history of the actions per-
formed by a subject on a given object. The context in which the action occurred
is also stored in this variable.

The relation between
hist conc and the variable
hist abst of the abstract
model is expressed in the
gluing invariant; the first
part of the invariant states
properties satisfied by
variables with respect to
permissions.

INVARIANT
∀(s, a, o, ctx).(

(s ∈ SUBJECTS ∧ a ∈ ACTIONS∧
o ∈ OBJECTS ∧ ctx ∈ CONTEXTS∧
(s �→ a �→ o �→ ctx) ∈ hist conc)

⇒
(∃(org, r, av, v).(
org ∈ ORGS ∧ r ∈ ROLES∧
av ∈ ACTIV ITIES ∧ v ∈ V IEWS∧
(r �→ s) ∈ empower∧
(v �→ o) ∈ use∧
(av �→ a) ∈ consider∧
(org �→ r �→ av �→ v �→ ctx) ∈ hist abst)))

INVARIANT
∀(s, a, o, ctx).(

(s ∈ SUBJECTS ∧ a ∈ ACTIONS∧
o ∈ OBJECTS ∧ ctx ∈ CONTEXTS∧
(s �→ a �→ o �→ ctx) ∈ hist conc)

⇒
(∀(org, r, av, v).(
org ∈ ORGS ∧ r ∈ ROLES∧
av ∈ ACTIV ITIES ∧ v ∈ V IEWS∧
(r �→ s) ∈ empower∧
(v �→ o) ∈ use∧
(av �→ a) ∈ consider)
⇒

(org �→ r �→ av �→ v �→ ctx) /∈ prohibition)))

The invariant states
that each action per-
formed by the system
satisfies the security
policy. For the prohibi-
tions, when a subject
s wants to carry out
an action a on an ob-
ject o in an organiza-
tion org, it is necessary
to check that no pro-
hibition exists for that
action. The second part
of the invariant states
properties satisfied by
variables with respect
to prohibitions:
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action =̂
any s, a, o, org, r, v, av where

s ∈ SUBJECTS ∧ a ∈ ACTIONS ∧ o ∈ OBJECTS∧
org ∈ ORGS ∧ r ∈ ROLES∧
av ∈ ACTIV ITIES ∧ v ∈ V IEWS∧
(r �→ s) ∈ empower∧
(v �→ o) ∈ use∧
(av �→ a) ∈ consider∧

/ ∗ permission ∗ /
(org �→ r �→ av �→ v �→ ctx) ∈ permission∧

/ ∗ prohibition ∗ /
(∀(orgi, ri, avi, vi).(
(orgi ∈ ORGS ∧ ri ∈ ROLES∧
avi ∈ ACTIV ITIES ∧ vi ∈ V IEWS∧
(ri �→ s) ∈ empower∧
(vi �→ o) ∈ use∧
(avi �→ a) ∈ consider)
⇒
((orgi �→ ri �→ avi �→ vi �→ ctx) /∈ prohibition))

then
hist conc := hist conc ∪ {(s �→ a �→ o �→ context)}

end

The Events. The abstract model should consider the permissions and the
prohibitions for a subject s that asks to perform an action a on an object o.

Discussion on Contextual Security Policies. In the different cases we stud-
ied, it appeared that the context notion has two different aspects. The first aspect
concerns the contexts that are global to the system. An example of a global con-
text is a system managing accesses to a building in a company. We may have a
permission (or a prohibition):

permission(company, agent, access, building, opening hours)

In this permission, the context opening hours is global to the system, i.e. the
whole system is, at a given moment, in the context default or opening hour.
A state variable context indicating the running context of the system is used in
this case. On the other hand, in the case, for example, of a system managing the
access to the patient files in a hospital, we may have permissions of the form:

permission(hospital, physician, consult, patient file, attending practitioner)

In this permission, the context attending practitioner (that means that the
permission is valid only if the physician is the attending practitioner of the
patient) is not global to the system but links subjects to the objects. In this
case a new constant define (as in OrBAC) is used. This constant defines links
between objects and subjects with respect to some actions, and has the following
form :
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define ⊆ ORGS × SUBJECT S × ACT IONS × OBJECT S × CONT EXT S

In order to give the system designer the possibility of expressing contextual
permissions of each type, modifications must be made to the B model. If context -
value is a value of a global context, the invariant should be modified as follows:

INVARIANT
∀(s, a, o, ctx).(

(s ∈ SUBJECTS ∧ a ∈ ACTIONS∧
o ∈ OBJECTS ∧ ctx ∈ CONTEXTS∧
(s �→ a �→ o �→ ctx) ∈ hist conc)

⇒
(∃(org, r, av, v).(
org ∈ ORGS ∧ r ∈ ROLES∧
av ∈ ACTIV ITIES ∧ v ∈ V IEWS∧
(r �→ s) ∈ empower∧
(v �→ o) ∈ use∧
(av �→ a) ∈ consider∧
(((org �→ s �→ a �→ o �→ ctx) ∈ define) ∨ (ctx = context value))∧
(org �→ r �→ av �→ v �→ ctx) ∈ hist abst)))

3.3 Second Refinement: Adding Other Constraints Not Expressed
in OrBAC

The state variables of the event B model give additional information on the
system which was not available with OrBAC. It was impossible to know at a
given moment the state of the system and, for example, which member of a
company staff consulted or modified which file. This point is important since
in practice the security policies are increasingly complex and new types of con-
straints appear. The passage towards B allows us to implement the security
policy such as it was established in OrBAC, and enrich it with the possibil-
ity of introducing new constraints such as workflow constraints or the duty
separation.

Workflow Constraints. Workflow constraints express properties on the task
scheduling in a system. For instance, a rule for a given workflow states that
an action act should be executed, only if a set of actions act1, act2..., actn
have already executed. Those constraints can not be expressed in OrBAC, be-
cause, when a subject is assigned to a given role, it obtains its complete priv-
ileges. A permission is systematically delivered to execute the action act, if
one of the roles to which a subject is assigned has the appropriate privilege,
even if one of the actions act1, act2,..., actn has not yet been executed. The
implementation of these constraints in a B model leads to the following
invariant:
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INVARIANT
∀(s, o, ctx).(

(s ∈ SUBJECTS∧
o ∈ OBJECTS∧
ctx ∈ CONTEXTS∧
(s �→ act �→ o �→ ctx) ∈ hist conc)

⇒
(∃(sw, cw).(sw ∈ SUBJECTS ∧ cw ∈ CONTEXTS∧

(sw �→ act1 �→ o �→ cw) ∈ hist conc)∧
∃(sw, cw).(sw ∈ SUBJECTS ∧ cw ∈ CONTEXTS∧

(sw �→ act2 �→ o �→ cw) ∈ hist conc) ∧ . . .
∃(sw, cw).(sw ∈ SUBJECTS ∧ cw ∈ CONTEXTS∧

(sw �→ actn �→ o �→ cw) ∈ hist conc)))

The refinement provides a way to add such a constraint to the model and proof
obligations ensure the correctness of the transformation. Another refinement can
be done to introduce specific rules for aspects such as duty separation.

3.4 Separation of Duties

Separation of duties aims to prevent fraud and errors by disseminating an ac-
tion’s execution privileges among different subjects. To implement a system sat-
isfying this type of constraints, it is necessary that when a subject asks for the
authorization to execute an action on an object, to be able to check if it did not
already act throughout the process, which is impossible to do with OrBAC in
a simple way. However, there is a form of separation of duties known as static
separation of duties (implemented with RBAC [12]). This one consists of pre-
venting a subject from accumulating several important functions, and it can be
achieved when subjects are assigned to roles. In the B model, the following as-
sertion should be proved to guarantee that no subject accumulates two critical
given roles r1, r2. In the clause ASSERTIONS:

∀s.((s ∈ SUBJECTS ∧ (org �→ r1 �→ s) ∈ empower)
⇒ (org �→ r2 �→ s) /∈ empower)

Proceeding this way may be too rigid in some cases. A subject s can cumulate
several functions if it does not intervene many times in the management of the
same object o. To prevent a subject s executing two critical actions act1, act2
on an object o with act1 �= act2, the following invariant has to be proved:

INVARIANT
∀(s1, s2, o, ctx1, ctx2).(

(s1 ∈ SUBJECTS ∧ s2 ∈ SUBJECTS∧
o ∈ OBJECTS∧
ctx1 ∈ CONTEXTS ∧ ctx2 ∈ CONTEXTS∧
(s1 �→ act1 �→ o �→ ctx1) ∈ hist conc)∧
(s2 �→ act2 �→ o �→ ctx2) ∈ hist conc)

⇒
(s1 �= s2))

The separation of
duties and workflow
constraints are only
particular cases of con-
straints where instant
system state must be
known in order for
them to be expressible.



246 N. Benäıssa, D. Cansell, and D. Méry

4 Conclusion and Open Issues

The development of software systems satisfying a given security policy should
be based on techniques for validating the link between the security policy and
the resulting system. The link between the security policy and the system is
called satisfaction and we have used the event B method, especially refinement,
for relating the security policy expressed in OrBAC and the final system. The
link between the two levels of abstractions in OrBAC is proved to be a B re-
finement. Our work is greatly influenced by the case study developed by J.-R.
Abrial [2]; he shows how a system for controling access to buildings can be de-
rived by refinement, and he starts by expressing the essence of the access control.
In our case, we use an elaborate formalism OrBAC for expressing the security
policy and for checking its consistency; we derive a mathematical theory from
OrBAC specification and we define an explicit state of a system which is not
explicit in OrBAC. The refinement provides us with a way to develop a list of
models which progressively integrate details that do not seem to be possible to
express in OrBAC: workflow constraints, for instance. Our models are generic
with respect to the security policy and can be reused to develop a real system.
A crucial question would be to use our models for developing an infrastructure
for controlling an existing system with respect to a security policy. Moreover,
security policy expresses permissions and prohibitions but it remains to consider
obligations which are very difficult to refine because they are close to liveness
properties and should be expressed on traces. Moreover, the administration of
security policy (ADOrBAC) leads to modifiable permissions and prohibitions:
our constants should be transformed into state variables and decisions should be
taken to handle situations, which are not satisfying the invariant (some person
might become undesirable whilst in a building, when security policy is mod-
ified by the administration). Finally, case studies should be developed using
these models.
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Experiences in Using B and UML in Industrial
Development

Ian Oliver

Nokia Research Center, Itämerenkatu 11-13, 00180 Helsinki, Finland

1 Introduction

We describe in this paper the results1 of our experiences on the use of formal
methods with UML and B in the specification and development of part of Nokia’s
NoTA (Network on Terminal Architecture) platform for providing Service Ori-
ented abilities to the embedded, mobile platform.

Nokia’s Network on Terminal Architecture (NoTA) is designed to allow the
notions of service orientation [4] in an embedded environment within a mobile
device. It is based around the combination of two ideas: the first is that the
hardware platform becomes modular by simplifying the connection interface to
just power lines and just two data communication lines. Secondly that the sys-
tem provides resource and session management to components which provide
‘services’ in much the same way as contemporary webservices.

2 The Specifications

In order to evaluate the integration of B and UML [8,1] we made three major
attempts made to model the the upper layers of the NoTA interconnection pro-
tocol (session and transport). The first attempt was by ‘traditional methods’
based around the SDL language [3], the second by making a straight mapping
from a UML class diagram based domain model to B and the third by first
architecting the previous domain model into layers and then mapping one of
those layers into B.

The SDL development was based around a use case driven approach in which
the system is a black box and the use cases describe interactions from outside
the system [6]. During the course of development, the black box is refined to
a state machine and then further decomposed using SDL’s block structures to
more detailed communicating state-machines. The block structure forms a tree-
like hierarchy with the behaviour encoded in the state-machines being found in
the leaf nodes of the block hierarchy.

Rather than taking the use case and functional decomposition approach, when
using object oriented methods it is more beneficial to take advantage of the class
structuring mechanisms - OO is more about the unification of functionality and
structure and this must be taken into consideration. This basically means the
1 Work made in conjunction with the EU funded Rodin project (IST 511599 RODIN).

J. Julliand and O. Kouchnarenko (Eds.): B 2007, LNCS 4355, pp. 248–251, 2006.
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production of a domain model describing the system in terms of the problem.
The use cases utilised earlier were used as tests to this domain model rather
than the primary development artifact. The domain model in UML complete
with a number of constraints expressed in OCL was mapped to B using the U2B
tool [10] - the OCL constraints being mapped by hand.

When working with a layered approach, we started with the domain model
from the previous attempt and then undertook a process of architecting (or
partitioning) the model according to the suggested four layer model of NoTA. In
particular we concentrated on the high level interconnect protocol layer which
provides service registration, discovery and session management protocols to
services. The lower level protocol are concerned with the transport of data.

3 Experiences

All three attempts produced models by which some form of reasoning could
be made about the system. However what was noticed was the effect that the
method employed had upon the particular design.

In the first case with SDL, the functional decomposition to state machines
resulted in very early implementation decisions - it was impossible not to in-
clude implementation details in order to make the models ‘simulatable’ (or ‘ex-
ecutable’). This compromised the intended code generation engine - we have a
customised engine specifically for the mobile device environment - and in partic-
ular this meant that hardware generation was not possible. As the system was
constructed through use cases, which were also the tests for the system, these
tests always ran correctly - if not then this meant that the actual design did not
conform. But this also means that the structure of the system closely follows the
tests rather than what is actually needed. Furthermore the amount of testing of
the system is compromised by the amount of test cases that can be examined -
exhaustive testing can not be made and certain aspects of the system will always
remain untested [5].

Using UML and domain modelling principles forced the developer to think
more about the structure of the system and more importantly the relationships
between those structures. Systems should (must) be constructed to support the
required use cases and not be implementations of use cases.

Mapping the domain model directly to B via U2B produced a much larger
block of B than was anticipated with a large amount of OO superstructure explic-
itly encoded inside the B. Specifically here the relationships between the objects,
constructor/destructor functions and general management of the relationships.
We estimate that approximately 70% of the proof obligations (with AtelierB 3.6)
from a total of approximately 1200 were concerned with this superstructure. The
writing of the OO navigation expressions across the classes to encode the invari-
ants, pre and post-conditions was complicated by having to know how the U2B
translation works. This had an effect on the provability of the proof obligations
and also our ability to work the manual proof. The final attempt is basically a
simplification of the previous but rather than try to utilise the U2B and the OO
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superstructure within the chosen architectural layer we simply used B in a much
purer sense as per the B-Method. We expected this to be simpler and regarding
the proof, much simpler - this is precisely what happened with approximately
200 proof obligations and 80-90% discharge automatically.

4 Conclusions

The mobile phone is not considered a saftey critical device and the usage of
formal methods and in particular verification and proof in this environment in
not common.

The results2 of each of the experiments in terms of time taken showed that the
development time spent designing increases the more formal the approach. In the
three attempts here the 3rd (B) approach spent approximately 150% more time
in design then the 1st (SDL). However much of this time is spent more precisely
figuring out what the customer requires and working with the verification and
validation.

When it came to producing the final working code, the SDL based method
was much faster but the code contained more bugs than either of the UML or
B approaches. Many of these bugs were logical errors from the design resulting
in much more time reworking the original models. Verification of the system
which was not possible with SDL removes many logical errors (buffer overflows
probably being the most visible) while validation through animation and theorem
proving in conjunction with the verification ensure that the system is meeting
the customer’s requirements. We estimate that the code generated from the B
specification contained approximately only 5% of the errors that were seen in
the SDL version.

Overall development time was approximately 50% shorter for the UML versus
the SDL and 30% shorter for B versus the SDL modelling. Much of this can be
explained in terms of the amount of remodelling work required to counteract
errors due to misspecification.

The major problem in industrial development is that of requirements change.
We made no attempt to manage this in order to evaluate somewhat the effects
of this upon the process. Many changes of course affect the use of refinement
but we did not investigate this in detail here. The major result however was
that when working with SDL each requirements change was integrated into the
model as if it were necessary, while in the more formal models we could more
accurately investigate the likely effects upon the system. Overall we saw that
almost 90% of changes could be dismissed due to misunderstanding of the work-
ings of the system - something that was not possible to ascertain with certainty
when working with a non-formal method.

Regarding tools, whatever the situation, a theorem prover is not user friendly
and is not suitable for demonstration of the system. However animations such as
ProB [7] are much more accessible and we found can be used by the customer.
2 Precise figures can not be given due to confidentiality reasons, although we present

here percentages which are indicative of the results instead.
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Interestingly the use of ProB versus traditional prototypes (complete with user-
interface) resulted in the customer being more focussed on what the system
does rather than how the user-interface was constructed. The interface to the
tools is not as critical as we expected, although engineers do expect tools to
interact easily - specifically transfer of models between tools. Sadly for the tool
vendors, the cost of many of these tools is prohibitive in non-safety critical
environments thus hampering the uptake of said tools and formal methods in
general. Environments such as the forthcoming open-source, Eclipse-based Rodin
toolset [2] and newer ProB versions greatly help in this respect.

Overall we consider that the use of formal methods and tools is at a stage
where they can be accepted in normal software engineering practises. Despite
claims that engineers do not accept ‘mathematical methods’ we have found al-
most the opposite when relevant and reasonable analysis of their work can be
made. We also find that coaching of the engineers is required until familiar-
ity with the analysis techniques has development sufficiently. Finally we make
note that strict adherence to formal techniques is often counter productive in
this environment and a much more pragmatic approach [9] must be taken when
introducing and using these techniques.
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Abstract. Eight years ago, Siemens Transportation Systems accom-
plished the first successful application of the B Method on an industrial
project. The vital software of the METEOR automatic train control sys-
tem, with very strong dependability and safety needs, was specified and
coded in B. Beyond the technological challenge of using such a complex
formal method in an industrial context, it is now clear for us that building
software using B is not more expensive than using conventional meth-
ods. Better, due to our experience in using this method, we can assert
that using B is cheaper when considering the whole development process
(from specification to validation and sometimes certification). Since ME-
TEOR, Siemens Transportation Systems has generalized the use of B for
building all vital software of its systems in particular its Communication
Based Train Control Systems (CBTC) recently enacted on the New York
City Canarsie Line. This short paper shares the Canarsie line experience
in the B landscape.

1 Introduction

METEOR was the first project where Siemens Transportation Systems used the
B method to build vital software. The feedback on this project was extremely
positive with respect to the quality of the validation and to the cost effective-
ness of the method. With B, we were able to have a concise and unambiguous
high level software specification that was clearly separated from the low level
algorithms of the code. This allowed our validation team to concentrate on the
specification rather than lose time and energy on the nitty-gritty details of the
code. This approach was made possible for two reasons. On the theoretical side,
B ensures that the code preserves the properties of the formal specification. On
the practical side, the tool we used - the Atelier B - matured in the course of
METEOR from a R&D status to a robust tool capable of dealing with tens of
thousands of proof obligations. Even though METEOR was the company’s first
large scale project using formal methods it induced no significant budget over-
head. The introduction of a new method is indeed costly but we observed that
it was offset by our suppression of unit testing and by an earlier detection of
errors. Rather than having the system go wrong during site tests, all the errors
in the B software were found during reviews and development tests.
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The B method is now completely embedded in our safety critical software
development process. Since METEOR, the major shortcomings of our process
have been corrected and we have gained in effectiveness and in profitability. The
single most important step is automatic refinement. The introduction of this
technique into our development process made it possible to make transparent
the most technical and complex aspect of using the B method and thus making
it accessible to anyone with a very reduced effort of training.

2 The Canarsie Line Experience

After METEOR, the B method has been used to build some parts of the SACEM
systems for new projects in San Juan and in Hong Kong. But the second biggest
experience of SIEMENS Transportation Systems building a large scale system
with B is the Canarsie Line CBTC. The CBTC system with radio communica-
tion and online track database data processing adds new challenges to our vital
software. The software of the Canarsie CBTC is much more complex than that
of METEOR. To give an idea, the onboard vital software of the Canarsie CBTC
is bigger than all vital software of METEOR. Moreover, unusual elements of
the B language such as sequences or generalized concatenation have been deeply
used. Here are some keys indicators for the onboard vital software development:

Activities Persons Average Load Person with
in months METEOR experience

Software Requirement formalisation 4 7 1
Refinement to ADA code 3 3 0
Proof 3 3 1
Functional test 3 3 0

In fact, the onboard vital software was carried out with a team of 4 persons
with little knowledge of METEOR and within not much more than one year. In
addition only 25% of development time was devoted to the coding, the remainder
was devoted to the formalization of the software specification and to the proof.
In addition, two team members had never practised a B development even if one
among them knew the language theoretically.

For us the main feedback is that using B to build vital software is effective
and does not require a pool of experts in formal methods.

3 Is Your Company Ready to Join the “B Landscape”?

B, like any formal method, uses mathematics. But this aspect does not make it
a method reserved to mathematicians. Our daily practice shows it to us. Do you
need a pool of mathematicians experts to start? From our point of view the answer
is no. The real question is what is necessary to launch a B development? For us,
a pilot project and a team with a person having a first B experience and tools.
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In addition, the whole activities of a B development process is partitioned and
each company can concentrate on the activities which adds value to its product.
It is the case for example for software specification formalization activity, which
brings value to the customer because it enables him to apprehend what the soft-
ware does by properties and not by means of algorithms (we shall illustrate that
in the presentation). Once this choice made, the company can request assistance
for the others activities.

4 Conclusion

Our conviction is that this method is compatible with the industrial constraints.
Moreover its use adds real value to the system owner. This method is now tested
and our experience proves it. The use of automatic refinement makes it available
to all with very reduced effort of training. One can introduce this method in
its software development process safely with possibly an external support for a
pilot or a test project.
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Abstract. Firewall administration is not a task free from pitfalls. Some
interfaces exist to alleviate the administrator burden, but none is for-
mally proven, and none is generic enough to manage appliances from
different vendors. A study1 was lead to develop such a formal interface.

1 Firewall Administration, a Tough Job

A security officer and a network administrator in charge of designing and imple-
menting security policies face two difficulties:

1. configure each network device to implement the security policies for one,
2. get the intimate conviction that the configuration correctly implements the

policies for the other.

Indeed, configuring a firewall may be a daunting task on an heterogeneous net-
work, when one knows that each network appliance provider designed a specific
configuration language and use different filtering concepts. Getting the convic-
tion for the security officer that the policies are correctly implemented is not
easier when he does not master all the tip and tricks of each network appliance.

Some existing configuration interfaces may alleviate the administrator burden,
but they appear to suffer from several problems:

– they often are proprietary and work for one type of network appliance only,
– they often do not provide the abstraction level needed to let the security

officer verify the policies enforcement,
– they may introduce some unadvertised (and unwanted) side effects.

Considering these difficulties, a study aimed at designing a firewall configura-
tion tool was launched with the prerequisite to use formal methods.

Its scope was restricted to the configuration of one generic firewall and the
netfilter2 firewall was chosen as an implementation target.
1 This study was funded by the SGDN (Secrétariat Général de la Défense Nationale)

under contract number 2005000110021507501.
2 Firewall implemented in the linux OS.
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2 Interfaces Design

A two levels decomposition based on languages tailored to fit the firewall ad-
ministration task was envisioned.

A high level language (HLL) was designed to define security policies at the
firewall level and to allow abstraction, modularity and reuse of policy chunks.

A low level language (LLL) was in turn designed to define firewall configura-
tions with two constraints in mind: be vendor independent and translate easily
into a specific firewall configuration idiom (i.e. no formal method for this task).

3 Tools

Two tools were then designed to accomplish the transformation from HLL to
firewall configuration:

– a so called compiler, in charge for translating the security policies expressed
in HLL to firewall configuration expressed in LLL,

– a translator, in charge for producing the final netfilter configuration file from
the LLL configuration.

4 Use of Formal Method

The language design task in itself constitutes a response to two of the three
difficulties listed in Sect. 1, but in order to improve the confidence and get rid of
unwanted side effects, the compiler and the translator behavior had to be proven
(given the simplicity of the later, the proof was only done for the compiler).

The B method was elected to prove that the LLL configuration produced by
the tools correctly implements the HLL policies. We have chosen to prove the
tool, that is, to prove that the HLL compiler preserves the semantic of the secu-
rity policies. Note that only the core HLL translation, which works on abstract
syntax trees, has been modelled and proved. The other components (language
parsing, language production, LLL translation) were classically developed in
C/C++.

5 Results and Future Works

The three main tasks in term of effort were the design of a formal, but nonetheless
natural semantic, B modelling and model proving. The proof was quite difficult
even when the model mainly describes a “simple” task, roughly equivalent to
the transformation of a binary formula into its Disjunctive Normal Form.

Even if the modelling task would probably have deserved more work, the study
leads successfully to two functional prototypes, the compiler one being proved.

Several themes were only briefly addressed during this study and may de-
serve some future work: policy testing, configuration of statefull firewalls, policies
equivalence, modelling of firewall behaviour, . . .



The B-Method for the Construction of
Microkernel-Based Systems

Sarah Hoffmann1, Germain Haugou1, Sophie Gabriele1, and Lilian Burdy2

1 STMicroelectronics
2 ClearSy

1 Introduction

Microkernels have been developed to minimize the size of software that needs
to run in privileged CPU-Mode. They provide only a set of general hardware
abstractions, which then can be used to implement an operating system with a
high level of reliability and security on top. L4 is a second generation microker-
nel based on the principles of minimalism, flexibility and efficiency. Its small size
(about 15,000 lines of C++) and its relevance for security make it a good candi-
date for formal analysis. This paper describes our approach to develop a formal
model of the API of the L4 microkernel. The goal was to evaluate the possibility
to model such software with formal techniques, moreover, the objectives were:

– to describe precisely the mechanisms of L4,
– to obtain a more extensive documentation of the microkernel,
– to highlight the points where the specification was incomplete,
– to prove some static properties on the kernel.

The formalism used to model the system is the Event B formalism. Event B
allows to describe a system through a set of data with properties and the events
modifying that data: an event either describes an internal behavior of the system
or how the system reacts to external actions. Finally, B provides automatic and
interactive tools to help proving formally that each event always respects the
properties.

2 Basic Concepts of L4

As a microkernel L4 aims to avoid the implementation of any system policies. It
focuses on the basic mechanisms that allow constructing a complete operating
system in non-privileged mode. The three fundamental abstractions are: tasks,
threads and inter-process communication (IPC).

Tasks provide virtual address spaces. The address space translation towards
physical memory is established decentralized by the tasks themselves. Initially,
sigma0, the task created first, finds the available physical memory in its address
space. It can share this memory with other tasks by sending one or more pages of
virtual memory. The receiving task specifies the place where to put the pages and
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the kernel establishes the new mapping. The task can then access the memory
or map it recursively on to other tasks. Page faults are forwarded to a specific
thread, the pager, which has to resolve the fault by providing a mapping.

Mappings may be revoked (unmapped) at any time, which results in a recur-
sive unmapping of all further mappings that have been established from that
page. For this, the kernel needs to track all mappings in what is conventionally
called the mapping database.

Threads are execution contexts. As such they are attached to a task and are
scheduled by the kernel according to the parameters that can be changed through
system calls.

IPC allows to send messages synchronously and unbuffered between two
threads. The content of these messages may consists of simple registers con-
tents and of memory regions that are copied directly into the receiving address
space. Memory pages are sent to other tasks via IPC as well.

3 Model of the L4 API

We have constructed a representation of the L4 microkernel API using this event
B formalism. We have developed an abstract model of the data inside the mi-
crokernel and described the different ways to interact with it. Those interactions
are, in fact, the different system calls. In L4, a system call is an entry point
that allows carrying out many different actions. We have split those different
actions into different events. This allows defining more clearly what is necessary
to perform a single action and what this action will modify in the kernel. We
have obtained a model describing all the system calls and a manual outlining:

– the structure and the properties of the system abstractions
– and for each possible action its prerequisites as well as the modifications

carried out by this action.

The data structures mainly represent the memory and the threads. These struc-
tures are not described in the API, but they appear through the specification
of the system calls. In the model, they correspond to the definition of constants
and variables. On the other hand, each action is guarded by a predicate on those
variables defining the conditions on which the corresponding system call can be
called. This guard depends also on the system call parameters.

4 Animation and Test

To validate the model against the running code (and vice versa), we have used
the Brama animator framework in order to test the code using the model as an
oracle. A test case consists of a kernel pre- state and a system call with specific
parameters. The corresponding test application first makes some system calls to
position the kernel in the pre-state, then it executes the system call, and finally
the kernel post-state is dumped into a file. Using the animator, one can also set
the model in a given state, execute some events and dump the model state into
a file.
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B Model of the L4 API
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We have developed an interface that allows to convert a kernel state into a
model state, associating the model variables with the implementation data. We
have also converted a system call into a sequence of event executions. This allows
to put the kernel and the model in an equivalent state starting from a unique
description, to execute the system call and to compare the two resulting states
in order to validate the conformance of the code to the model.

5 Conclusion

To conclude, we consider that the development of this model allows us to obtain
more confidence in the correctness of the API, to describe its behavior from a
different point of view and to establish a deeper understanding on how it works.
The test framework allows to validate the model against an implementation;
the relation between the model and the implementation is not proven (as it
could be in a complete formal development with code generation) but the test
allows to ensure more confidence. For software where efficiency is such a crucial
requirement that it rules out code generation, this kind of test framework can be
a realistic solution to construct a validation at two levels: at specification level,
when constructing the model, and at implementation level when testing it.
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The Atomic Weapons Establishment (AWE) has been responsible for the United
Kingdom’s nuclear deterrent for more than 50 years. Its work covers the entire
development lifecycle - from the initial research and design, through manufac-
ture, in- service support and, finally, decommissioning and disposal. In order to
maintain its reputation as a world-class company, AWE upholds strict working
procedures and demands high standards.

The nature of the work at AWE demands precision. In many aspects of the
work, well established engineering principles exist to enforce the necessary rigour.
Historically, the same level of rigour has not been forthcoming in the development
of computer systems (in both software and hardware). The simple answer to this
problem is, of course, formal methods (the choice of which formal method to use
is a bit more difficult). The B Method is AWEs formal method of choice, and this
talk will present its early role in the development and verification of hardware
at AWE, how B is being used today, and its role in the future.

The history of formal methods at AWE began about 15 years ago. The de-
velopment of computerised control systems introduced a need for verified hard-
ware. Since no commercial processors were available to meet this requirement,
an in-house chip was developed: the Arming System Processor (ASP) -a RISC
processor with separate data and program buses, only three registers, and built-
in test utilities. A collaboration with Ib Sorensen at B-Core (U.K.) resulted in
the addition of hardware component libraries and a VHDL code generator to the
B Toolkit (this is documented in [3]). This approach to the formal development
of hardware was named B-VHDL. Using this approach, the ASP was formally
verified [4]. All hardware specifications written in B-VHDL mimic the structure
of a traditional VHDL program1. This was necessary to gain acceptance from
AWE engineers, many of whom were familiar with VHDL but had no experience
with formal methods. In addition to the ASP, B-VHDL has been used in the
development of other pieces of hardware. For example, in [1], B-VHDL was used
to prove the absence of hazards in a example pipelined processor.

One of the problems with mimicking VHDL is the relatively low-level of ab-
straction attainable in the B. In particular, the clocked nature of VHDL means
that constructing B-VHDL models and animating them is very difficult. At the
early stages of a development, it is desirable to abstract away the clock in order
to focus on the more conceptual features of a system. Then the clock can be
introduced at a later stage in the development.
1 www.vhdl.org
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An alternative hardware description language is Handel-C2, which can be used
without the need to refer to the clock. Currently, research is being undertaken to
generate Handel-C code from abstract B specifications. However, certain features
of Handel-C are difficult to express in B. In particular, modelling the concurrent
aspects of Handel-C is not straightforward in B. It is possible to use an integrated
approach such as CSP||B [5] but, once again, the sensitivities of AWE engineers
must be taken into consideration: it would be unreasonable to expect them to
learn yet another formal notation. Instead, an augmentation to the B language
itself is proposed in [2]. Each operation is annotated with control information to
model the possible execution sequences of the operations.

Looking ahead, AWE is funding a number of academic research projects to
investigate how B and its associated tool support can be exploited in other
areas. Within this environment it is possible to pursue more ambitious lines
of research without fear of alienating the AWE workforce. An ongoing project
with the University of Surrey, called SystemB at AWE, is looking at ways to
formalise software/hardware co-design using both CSP and B, and a research
contract is being set up to provide formal analysis techniques in the development
of executable UML (xUML) models. The work with UML will offer a route to
formalize high-level system specifications, whereas the co-design work will afford
an implementation route from CSP||B to platform solutions. All of the work
described in this proposal will contribute to a long term AWE project to built
high integrity systems from formal specifications.
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Abstract. This paper presents an extension of the tool JAG for veri-
fying temporal properties expressed in LTL (Linear Temporal Logic) on
B Event Systems. The tool generates a machine containing a B repre-
sentation of the Büchi automaton associated with the LTL property to
verify and includes it within the original B event system. Then, the user
have to prove the consistency of the generated event system. This proof
of consistency implies the satisfaction of the LTL property on the execu-
tions of the original event system.

Keywords: LTL, Büchi Automaton, Verification.

1 Introduction

This article presents an extension of the JAG tool [3], initially written for Java/
JML. The extension permits to verify temporal properties expressed in LTL on
B event systems1. This is an implementation of the work presented in [4]. The
tool generates, from a B event system S and a property φ, a new system Sφ,
whose correctness ensures the satisfaction of φ on the executions of the original
event system S. The tool has been experimented on different examples.

2 B Event System Example

First introduced by J.-R Abrial [1], event B is both a formal development method
and a specification language. Figure 1 displays an example of B event system,
describing a system composed of two platforms: an input and an output platform
(respectively modeled by two booleans De and Dt). An empty platform (resp.
busy, i.e., a piece is on the platform) is modeled by a value set to FALSE (resp.
TRUE. An event load describes the loadong of a piece on the input platform.
An event unload puts the piece on the output platform and an event discard
leaves out the piece from the output platform. In this paper, we are interested
in verifying that this B event system satisfies some temporal requirements.
� Research partially founded by the french ACI Geccoo.
1 This extension will be fully integrated in the next release of the JAG tool, however,

a demo version is available http://lifc.univ-fcomte.fr/∼groslambert/JAGB/
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MACHINE
Robot

VARIABLES
De,Dt

INVARIANT
Dt ∈ BOOL ∧ De ∈ BOOL

INITIALISATION
Dt := FALSE ‖ De := FALSE

OPERATIONS
Load = SELECT Dt = FALSE

THEN Dt := TRUE
END;

Unload = SELECT Dt = TRUE
∧ De = FALSE

THEN Dt := FALSE
‖ De := TRUE

END;

Discard = SELECT De = TRUE
THEN De := FALSE
END

END

Fig. 1. Example of a B event system

3 Temporal Requirements

The extension of JAG uses temporal properties expressed in LTL [5]. The LTL
operators are F P (“eventually P”), meaning that there is eventually a state
in the future where P holds; G P (“always P”), meaning that all the states in
the future satisfy P ; X P (“next P”) meaning the next state of the execution
satisfies P ; and finally P U Q, meaning that all the future states satisfy P until
a state where Q holds is reached.

Examples of LTL formulae. On the example, one would like to express a temporal
requirement such as “an unload can be done only if the evacuation is free”. This
can be expressed in the LTL logic by the following formula:

G((Dt = true ∧ X (Dt = false)) ⇒ De = false) (1)

It must be understood as follows: in all the states of the execution (G), if
the input platform is not free (Dt = true) and if it is free in the next state
(X (Dt = false)), i.e., an unload has occured, then the output platform must
be free (De = false).

Our tool automatically translates such properties into the B framework. The
architecture of the tool is explained in the next section.

4 Tool Structure and Experiments

The general dataflow of the tool is displayed in Fig. 2. It works as follows.

1. On the one hand, the LTL property φ is firstly translated into a equiva-
lent Büchi automaton (an automaton representation of the property) using
the LTL2BA tool [2]. The automata generated from the LTL property (1) is
displayed in Fig. 3.

2. Then, the automata’s states and transitions are translated into a B machine
Mφ by the JAG converter module. The machine automata (see Fig. 4 - left side)
is the result of the conversion of the automaton in Fig. 3. It is built as follows:
– Each state of the automaton is described by a boolean variable. The

variable associated to the initial state is set to TRUE, and the others to
FALSE.
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Fig. 2. Tool Architecture

– An operation automata 1 represents the transitions of the automaton.
For example, the variable ASS0, representing the initial state of the au-
tomata, is set to TRUE if (i) the automaton was synchronized with the
initial state (ASS0 = TRUE) and the guard of the transition (Dt = FALSE
or De = FALSE) is satisfied. ; or if (ii) the automata was synchronized
with the second state (ASS1 = TRUE) and the guard of the transition was
satisfied (Dt = TRUE & De = FALSE).

3. On the other hand, the system S is parsed and the JAG writer module ex-
tends it by including in it the B machine Mφ. Figure 4 displays, on the right
side, the event system obtained for the Robot example. States of the machine
are synchronized with the automaton by invocations of the automata 1 op-
eration. An invariant ensures that the event system is synchronized with at
least one state of the automata.

Details and soundness of the trans-

S0 S1

true

Dt = true∧
De = false

Dt = false
∨De = false

Dt = true

Fig. 3. Automaton of Property (1)

lation can be found in [4]. The gener-
ated event system Sφ can be proved
using the Atelier B. Table 1 displays
the results of the proof obligation gen-
eration of LTL properties on two B
models, the (T=1) communication
protocol and a Javacard application
(Demoney). Generated proof obliga-
tions have often been done in an in-
teractive way.

5 Conclusion and Future Works

The extension of JAG [3] presented is this paper is an implementation the work
presented in [4]. An interesting future work is to generate the proof obligation
implying the preservation of the LTL properties during a refinement. In our
experimentations,we have observed that the success of automatic proof can be
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MACHINE
BA
VARIABLES

ASS0,ASS1
INVARIANT
ASS0 ∈ BOOL ∧ ASS1 ∈ BOOL
INITIALIZATION

ASS0 := TRUE ‖
ASS1 := FALSE

OPERATION
automata 1(De,Dt) =

PRE De ∈ BOOL ∧ Dt ∈ BOOL
THEN

ASS0 := bool((Dt = TRUE
∧ De = FALSE ∧ ASS1 = TRUE)

∨ (Dt = FALSE ∨ De = FALSE)
∧ ASS0 = TRUE))

‖
ASS1 := bool(ASS0 = TRUE
∧ (Dt = TRUE
∨ ASS1 = TRUE))

END
END

SYSTEM
Robot 1

INCLUDES
BA S

VARIABLES
De,Dt

INVARIANT
Dt ∈ BOOL ∧ De ∈ BOOL

∧ (ASS0 = TRUE ∨ ASS1 = TRUE)

INITIALISATION
Dt := FALSE ‖ De := FALSE

EVENTS
Load = SELECT Dt = FALSE

THEN Dt := TRUE

‖ automata 1(De,Dt)

END;
Unload = SELECT Dt = TRUE

∧ De = FALSE
THEN Dt := FALSE
‖ De := TRUE

‖ automata 1(De,Dt)

END;
Discard = SELECT De = TRUE

THEN De := FALSE

‖ automata 1(De,Dt)

END
END

Fig. 4. JAG outputs

increased by adding extra invariants gluing states of the automaton with states of
the event system. Therefore, a future work is to characterize the relation between
these invariants and the structure of the automaton in the goal of generating
them automatically.

Table 1. Results of the proof obligation generation

Example Property # of PO
Protocol T = 1 (P ∧ XQ) ⇒ (X¬R) 4
Protocol T = 1 FGP ⇒ FGQ 12
Demoney G(P ⇒ GP ) 7
Demoney G(P ⇒ X(Q ∨ R)) 7
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Abstract. Writing a formal specification for real-life, industrial prob-
lems is a difficult and error prone task, even for experts in formal meth-
ods. In the process of specifying a formal model for later refinement and
implementation it is crucial to get approval and feedback from domain
experts to avoid the costs of changing a specification at a late point of the
development. But understanding formal models written in a specification
language like B requires mathematical knowledge a domain expert might
not have. In this paper we present a new tool to visualize B Machines us-
ing the ProB animator and Macromedia Flash. Our tool offers an easy
way for specifiers to build a domain specific visualization that can be
used by domain experts to check whether a B specification corresponds
to their expectations.

Keywords: B-Method, Tool Support, Animation.

1 Motivation

In [1] A. Hunt and D. Thomas describe a shortcoming on formal methods:

Most formal methods capture requirements using a combination of
diagrams and some supporting words. These pictures represent the de-
signers’ understanding of the requirements. However in many cases these
diagrams are meaningless to the end users, so the designers have to inter-
pret them. Therefore there is no real formal checking of the requirements
by the actual user of the system - everything is based on the designers’
explanations, just as in old-fashioned written requirements. We see some
benefit in capturing requirements this way, but we prefer, where possible,
to show the user a prototype and let him play with it.

In previous work [2] we presented the Prolog based ProB animator and model
checker for the B Method,

which addresses the problems mentioned by Hunt and Thomas. ProB can
help a specifier gain confidence that the model that is being specified, refined
and implemented, does meet the domain requirements. This is achieved by the
� This research is being carried out as part of the EU funded research projects: IST

511599 RODIN (Rigorous Open Development Environment for Complex Systems).

J. Julliand and O. Kouchnarenko (Eds.): B 2007, LNCS 4355, pp. 266–269, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Generic Flash-Based Animation Engine for ProB 267

animation component of ProB, that allows to check the presence of desired
functionality and to inspect the behaviour of a specification.

For a domain expert with little knowledge about the mathematical notation of
B, however, it might still be too difficult to understand the meaning of a specific
B state; in other words, understanding a model still relies on the designers’ expla-
nations. We believe that a broad industrial acceptance of formal methods needs
tools that can mediate between domain experts and formal method experts.

In this work we present a generic Flash-based animation engine as a plug-in
for ProB which allows to easily develop visualizations for a given specification.
Our tool supports state-based animations, using simple pictures to represent a
specific state of a B specification, and transition-based animations consisting of
picture sequences. To avoid the creation of many different animations the tool
supports composing visualizations from individual subcomponents.

2 Flash Animation Server

The Flash animation server is a plug-in for the Eclipse version of ProB that
offers support for rapid creation of domain specific visualizations. Such an ani-
mation can be seen as a prototype for the software as mentioned by Hunt and
Thomas. A domain expert can get a feeling what a B operation does and he can
check whether his expectations are met, without having to know the mathemat-
ical notation or relying on the specifiers’ explanations.

Each state of a B machine can be represented by a set of graphical objects such
as text labels or pictures. In addition it is possible to attach a movie to a state
changing operation. We use Macromedia Flash which is the de facto industry
standard for web animations. It is available on many platforms and, in contrast
to dynamic HTML, a Flash movie looks the same in different browsers. Also it
comes with many features and tools that help create professional animations.

Obviously one has to define the mapping between a state and its graphical
representation. This gluing code could be written using the Flash built-in pro-
gramming language ActionScript. Unfortunately, ActionScript is very limited
and error prone, therefore we developed an animation framework which frees
the user from having to use ActionScript. Our animation framework comprises
a generic Flash movie on the client side, i.e., it is not necessary to create differ-
ent Flash movies for different machines. The only thing one has to provide for
each client is the generic movie together with the required pictures. However,
it is also possible to use ActionScript, if desired, but for most applications the
generic movie is sufficient.

For the server side a piece of gluing code is needed, that defines the map-
ping between a state (or two states plus an operation) and a graphical repre-
sentation. This gluing code can be written in Java. In addition to the generic
movie, we have developed a set of Java objects that can be used inside the
gluing code as an abstraction for the Flash objects. These objects live inside
a container named canvas. For example, if we want to create a new image
named ”image1” in the upper left corner and load the file ”old.jpg”, we call
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canvas.createNewFlashMovie(”image1”,”old.jpg”,0,0) if we want to replace that
image with a new one called ”new.jpg”, we could use canvas.get(”image1”).setUrl
( ”new.jpg”). The gluing code has also access to the machine’s current state, the
last operation executed and the machine’s state before executing this operation
using a Java object named machine. This gives the opportunity to write more
sophisticated gluing code.

When any operation is being executed the Flash animation server will be
notified by ProB. The animation server then calls the statechange method of
the gluing code for the particular machine. The gluing code will typically read
information from the machine object, do some updates on the canvas and finally
call the method canvas.commitChanges(). Our animation server then calculates
a XML message from the changed canvas and broadcasts it to all connected
clients whose generic movie will display the new representation.

3 Example of an Application

We applied our generic solution to several nontrivial B specifications. The wa-
terlock example (a detail view of an animation is shown in figure 1) is inspired
by a case study from [3]; the model describes a system of waterlocks that can
be operated separately. The artwork for the example has been rendered using
Bryce1. Setting up the scene in Bryce took about two days; excluding the time
to render the scene and the animations. Writing the gluing code took less than
one hour. This shows that the effort to create an animation is mainly determined
by the artwork. There is another example, downloadable on the tool’s website,
that has been developed during a workshop within three hours including writing
the gluing code and creating the artwork. This example shows that our plug-in
can be used for rapid visualization development.

4 Related and Future Work

The company ClearSy is currently developing a commercial visualization tool
for B specifications, also based on Macromedia Flash technology called Brama.
Brama will be available as a plug-in to the RODIN platform2 and it also uses a B
animator. In contrast to our generic solution, Brama does require programming
in Flash since it provides a library for Action Script instead of an abstraction
layer.

Several items can be pointed out for the most pressing future work:

1. Writing the gluing code is still a relatively cumbersome task, we are devel-
oping a graphical interface to setup the animation and an automatic code
generator to generate the code.

1 http://bryce.daz3d.com
2 http://rodin-b-sharp.sourceforge.net/
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Fig. 1. Visualization of a waterlock system - animation stills

2. We will extend the abstraction layer for Flash components to enable two-
way-communication. Therefore we will support Flash Buttons, this will help
to generate prototype user interface from B machines.

In summary, we have presented a generic animation framework to visualize
B specifications using Flash technology and ProB. We hope that this new tool
will help make formal methods more appealing in an industrial setting, notably
by allowing domain experts to understand formal specifications. Our tool is
available on http://www.stups.uni-duesseldorf.de/ProB/eclipse.
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1 Introduction

The open-source Eclipse platform1 has become hugely popular as an inte-
grated development environment for Java, and a considerable number of plug-ins
have been developed for other programming languages (e.g., C++,PHP, Eiffel,
Python, Fortran, etc.). In this paper we present a new plug-in for Eclipse, sup-
porting the B-method and B’s abstract machine notation (AMN) [1]. In addi-
tion to providing editing and syntax highlighting, the plug-in displays syntax and
structural errors in the B source code, as well as suggesting fixes for those errors.

2 Building a Document Object Model from B

The centerpiece of a semantic-aware editor for programming languages is a parser
that generates a model from source-code. In Eclipse, a parser can be integrated
by creating a plug-in that extends org.eclipse.core.resources.builders. Because we
want to allow later contributions to the parser from other plug-ins, we decided
to build a multi-phase parsing framework for B projects (Fig. 1).

Table 1. Parser phases

Phase Objective
I Create and modify the syntax tree
II Run file based build tools
III Analyze all resources
IV Run tools to decorate the models

For each phase it is guaranteed, that all tools from a previous phase have
finished their work. Since Phases I and II work on a file basis, it is possible that
the builder2 for file1 is in Phase II and for file2 in Phase I.
� This research is partially being carried out within the EU research project: IST

511599 RODIN (Rigorous Open Development Environment for Complex Systems).
1 http://www.eclipse.org/
2 A builder is a tool that runs every time a project is being rebuilt.
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Fig. 1. Phases of the building framework

Phase I generates an abstract syntax tree (AST) from a B file. This is done
by applying a modified version of Tatibouet’s jbtools [6] Parser. If the AST-
Generator completes its work without error, then other plug-ins can be called.
For example, one of our extensions to Phase I checks if the name of the com-
ponent matches the filename and if the type of the component matches the file
extension. Any plug-in that modifies the syntax tree should be run in this phase,
that means that in the second phase the syntax tree is stable.

Phase II contains file based builders that must not modify the syntax tree, but
can create abstractions of the syntax tree or other artifacts. For instance, our
standard builder creates a simplified syntax tree that is easier to handle for some
of the editor views (like the outline view). Tools in Phase II run if and only if
the AST-Generator completed its work without an error.

Phase III runs on all resources even when some AST generation failed. This
phase can be used to perform a “global analysis”. Currently, our standard builder
uses this phase to check if all dependencies (SEES, INCLUDES, etc.) are being
satisfied. In future, we also plan to check the structuring guidelines from [5].

Phase IV must not modify the model in any way, it contains plug-ins that only
read from the model and update other parts of the plug-ins. For example, our
builder uses the final phase to update some properties of the so called markers3.

In Phase I - III it is also possible to give dependencies for a tool. For example,
if a tool C relies on the output of tool A and B it is possible to specify this
dependency in the extension configuration. If the dependencies do not contain
cycles, the building framework will automatically generate an order via topolog-
ical sorting.

Our architecture was designed for extensibility by new, as of yet unknown,
plug-ins (without this requirement, a simple dependency graph of the various
tools would have been sufficient).

3
http://www.eclipse.org/articles/Article-Mark My Words/mark-my-words.html
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3 Using the Model for Editing B

The model created by the parser can be used for several tasks; so far we have
implemented the following features:

– Context based completion: Since the editor knows if the user types within
an operation or the machine’s head, it can choose different proposals to
complete the word the user types4. In addition, we support templates that
contain parts to be filled by the user.

– Hover information: The Editor is aware of the token the mouse points
to and can display information about that token. For instance, if the mouse
points to the token \/, the editor displays the information “S \/ T: union
of sets S and T” as a hover text.

– Error Displaying and Correction: (Syntax) Errors are caught and dis-
played directly in the source code window (line 1 and 18 in Fig. 2) and
additionally in a special “Problems view”. As shown in the screenshot, the
editor supports auto-correction.5 Based on the error it determines a set of
actions called quick-fixes that might be applied to correct the error.

– Outline view:The editor produces an outline view of the machine, e.g.,
the variables used, the operations defined, etc. If the user clicks on any
item in the outline, the editor jumps to the line, where the item is being
defined.

4 Related and Future Work

The BZ testing tool (BZTT) [3] as well as ProB [4] provide simple editing
and highlighting, but lack the features of a dedicated editing/development tool.
The EmacsPri6 and the more recent Click’N’Prove [2] by Dominique Cansell
and J.-R. Abrial provide syntax highlighting and an interface to AtelierB within
Emacs. Bruno Tatibouet’s jbtools package [6] also contains a B plug-in for the
Java-based Editor jEdit, with syntax-highlighting, type checking and a shortcut
pane for the mathematical symbols.

Finally, the Rodin EventB (BSharp) Toolkit7 is also developed within Eclipse,
but has moved away from an ASCII AMN encoding to an internal storage in
an XML database of the components of B machines, which can be manipu-
lated directly by various graphical editors. It is actually our goal to combine
these two Eclipse plug-ins, so as to also allow editing of EventB components
in AMN as well as linking ProB directly to the Rodin EventB core and the
associated provers. We are also working on integration of refactorings into the
editor, as well as more semantic checks and quick-fixes. Our tool is available
from http://www.stups.uni-duesseldorf.de/ProB/be4.

4 As in Java mode, the autocompletion can be invoked typing CTRL+SPACE.
5 CTRL+1 invokes the auto-correction.
6 http://www.atelierb.societe.com/emacspri/emacspri uk.html
7 http://sourceforge.net/projects/rodin-b-sharp/
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Fig. 2. B-Editor screenshot
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BRAMA: A New Graphic Animation Tool for B Models 
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Thierry Servat 

Clearsy System Engineering 

Introduction 

Clearsy is an engineering company specialized in system dependability. 
It verifies the concepts and tools required to create secure systems and uses formal 

techniques to define, design and validate systems, then create critical software for 
their integration. 

The principal formal tools used by Clearsy to create, refine and prove models are 
the Atelier B and B4free, and CompoSys to create formal system models and related 
documentation. 

Based on our various experiments using formal tools in an industrial setting and 
our desire to disseminate formal methods, we have imagined a new approach to pre-
sent models to our customers. The Brama tool supports this approach. 

The objective of this document is to explain the approach and related Brama tool. 

Context: The Need to Validate Models 

Method B is often used in industrial settings to create proven secure software in the 
context of SIL 4 level certification pursuant to the 61508 standard. 

It has now been used for a few years to model systems. 
This new practice has revealed a deficiency. 
When you want to specify a system, you need to: 

- Know what you want 
- Ensure the feasibility of what you want. 

Modeling and proof activities reveal specification issues. This is the very point of 
modeling. An advantage of the B method is it is based on mathematics and therefore 
allows for specifications to be written with unparalleled precision. 

However, we discovered that, when faced with a model, our customers, and in general 
those who did not write the model, have difficulty in understanding it, on the one hand, 
and, on the other, have difficulty in affirming that the model represents the system. 

The completeness and quality of the model are therefore problematic. 
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Translation of Models into Natural Language 

A first response to the issue of B model comprehension was provided by Clearsy with 
its offer of the CompoSys tool, allowing the modeler to prepare model documentation 
at the same time as the model. This allows the user to automatically produce a model 
translation, with various graphic views of dependencies between the different system 
components. The documentation in natural language is an accurate reflection of the 
model and may be read “easily” by all to ensure the model matches the system. 

Animation to "Test" Models 

The Brama model animation tool provides a further response as it may be used by the 
modeler throughout the modeling process. The animation functions allow him to 
“create” various model events, filters and properties; he can "test" the model.  

Graphic Visualization of the System 

A third means consists in using the model to graphically view the system in specific 
operational contexts. 

This approach consists in offering the model’s author tools that allow for: 

- The representation by graphic drawings and animations of the system and its 
different types of states 

- “Linking” these drawings and animations to different events and B model B 
variables 

- Representation by buttons of the various interactions of the elements external 
to the system and re-actualization of the system’s graphic representation in ac-
cordance with these interactions. 

The model is therefore not shown to the client. The system’s graphic representation is 
presented, as it is based on the B model itself. 

More Details on the Brama Tool 

The modeler creates B models with Atelier B, B4free or the Rodin platform, then uses 
the Brama animation tool that in turn uses these models. 

Brama was designed to communicate with Flash tools configured with a communi-
cation extension that is delivered with Brama. 

The modeler’s task consists in representing his system with the Flash tools and 
configuring scripts that allow for communication with the Brama animation engine. 

When the user is satisfied, Brama lets him export the finished animation in the 
form of files which, once saved on a CD, will launch the graphic animation without 
prior installation and on any PC using Windows or Linux. 
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Brama is presented as an Eclipse plug-in suite and Flash extension that can be used 
with Windows and Linux. 

Brama contains the following principal modules: BtoRodin: an animation engine 
(predicate solver), event and B variable visualization tools, an automatic event linkage 
management module, a variable management module, observed predicates and ex-
pressions, and a  Flash communication module. 

Examples and Feedback 

The first examples were developed on the basis of experimental models: mechanical 
press, island/continent road traffic, locks, switches, verification of Ariane’s nozzles. 

The work on these samples demonstrated the deficiencies present in the analyzed 
models and confirmed the value of visualizing the system to better ensure model reli-
ability. 

This graphic representation work is not burdensome: approximately one week to 
perfect the animation of a model created over two months. The largest model repre-
sents 450 events and 17 refinement levels. 

Distribution: In Beta Test on the Rodin Platform 

Brama tools will be made available in Beta test. They can be used from the Open 
Source Rodin modeling platform. 

A converter allows for the transformation of existing B models to this platform’s 
format. 

The Future 

The model animation interface requires improvement. For the time being, the Brama 
tool is used most often to create graphic animations for existing models. 
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1 Introduction

Since 2003, automated test generation from B abstract machines has been trying
out in the smart card industry, using LEIRIOS Test Generator (LTG) for Smart-
Card tool. Now the major card manufacturers, such as Gemalto and Giesecke
& Devrient, are regularly deploying model-based testing in their validation pro-
cesses. The purpose is black-box functional testing: from the specifications (a
standard or specific requirements), a B formal model is developed which is the
basis for test generation. Generated test cases are then translated into executable
test scripts and then run on the application.

This summary gives the main lessons of experience from these large experi-
ments of automated test generation using B abstract machines [1, 2] for smart
card applications [3]. We analyze the effectiveness of B modeling for testing, the
way for controlling test case explosion from the formal model [4], the translation
of generated test cases in executable test scripts [5]and the integration of this
new approach in the validation process. In the sequel of this abstract, we first
introduce the test generation process and then we discuss these various issues.

2 Test Generation Process

The test generation process (see figure 1) is structured in five main stages:

1. Formal model development: The application under test is specified with
a B abstract machine [6], which has a state space (consisting of several state
variables) and several operations that are specified via preconditions and
post-conditions. Usually, for smart card software, each operation corresponds
to an APDU or API of the application. The model abstraction level depends
directly on the overall test objectives.

2. Formal model validation: The B abstract machine is validated using the
LTG symbolic animator. It makes it possible to animate use cases and, step
by step, to verify the invariant properties.

J. Julliand and O. Kouchnarenko (Eds.): B 2007, LNCS 4355, pp. 277–280, 2006.
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3. Test case generation: From the model, the test cases are generated by
covering all the symbolic execution paths for all operations with input pa-
rameter boundary values. Therefore, a test case is a sequence of operation
(APDU) invocations structured in a preamble, a body and a postamble to
automatically link several test cases. Each operation call provides the ex-
pected results for test verdict assignment. Various model coverage criteria
help the test engineer to control the test generation.

4. Test script generation: Previously generated abstract test cases are then
translated in executable test scripts using the format of the targeted test
execution environment. This process is fully automated, using a data dic-
tionary to give the mapping between abstract names (from the model) and
concrete names (used in the test execution environment).

5. Test execution and verdict assignment: The tests are run with the test
execution environment, successively on the simulator platform and then on
the card itself. Each test case includes expected results and the verdict is
automatically computed.

More details on the LTG test generation strategy can be found in the book
”Practical Model-Based Testing - A Tools Approach” [7].

Fig. 1. Test Generation Process

3 B Modeling for Model-Based Testing

LTG for Smartcard tool uses the B abstract machine notation as modeling nota-
tion. Here, B machines are used to formalize models that provide the expected
behavior of the system under test.
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There are four main steps to writing a B model for model-based testing:

1. Choose a high-level test objective.
2. Design the signatures of the operations in the model.
3. Design the state variables of the model and choose their types.
4. Write the precondition and action part of each operation.

As we discuss each of these steps, we shall see that the central theme that
runs through them all is how to choose a good level of abstraction for the model.
The goal is to have just enough detail in the model to be able to generate test
inputs and check the correctness of outputs, while avoiding unnecessary detail
that would make the model larger and more complex.

The first step is to choose a high-level test objective that says which aspects
of the SUT we want to test. For example, if we are testing the software for a
GPS navigation system in a vehicle, we might decide that we want to test just
its position tracking capabilities (including its interaction with the GPS satel-
lites, the car speedometer and gyroscope). Alternatively, we might decide that
we want to test just its route planning capabilities. The B models for these two
alternatives would be quite different, since they would be modeling different as-
pects of the navigation system. The generated tests would also be quite different,
since they would use different subsets of the control and observation ports of the
GPS navigation system. While it would be possible to write a single B model to
test both these aspects at once, this would be undesirable, because the model
would be much more complex, so test generation would be more difficult and
we could get a useless combinatorial explosion between the position tracking
and route planning functions when computing test cases. Whenever possible, it
is preferable to use separate B abstract machines to test different aspects of a
system.

The second step is to decide which control and observation ports of the SUT
we need to use to satisfy our high-level test objective, and how those ports should
be mapped into operations of the B model. As well as choosing a name for each
model operation, we must also decide what input and output parameters it will
have. The input parameters will correspond to the inputs to the SUT control
ports, while the output parameters will correspond to the output from the SUT
observation ports. Typically, the operations of the model will match the control
and observation ports of the SUT quite closely.

The third step is to design the data structures that will be used within
the model. This involves choosing some state variables for the model, with an
appropriate data type for each variable. The goal here is for the model to record
just enough of the internal state of the SUT to make it possible to check the
correctness of its outputs.

The fourth step is to write the preconditions and action part of each oper-
ation. We start by putting the typing conditions of the inputs into the precon-
ditions. For example, the signature may define size:int, but we actually want to
limit the inputs to size < 100, or say that size must be less than the length of
some other input. These kinds of constraints go into the precondition, so that we
only generate test inputs that satisfy these constraints. The action part of each
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operation represents the expected behavior of the system under test depending
with the abstraction level and the test objectives.

4 Lessons of Experience

– Modeling for testing with B abstract machines is cost effective: We
show on several applications (see [7]) that the automatic test generation
process was 30% lower cost than a classical, manually test design process,
including the cost for modeling. Moreover, we show that functional test cov-
erage was always higher with the automated test generation process.

– Model coverage criteria help to control test case explosion: The
test generation strategy is based on model coverage principles (cause-effect
and boundary testing). The test engineer drives the test generation using
various criteria like multiple-conditions coverage, boundary values coverage
and effect coverage. Therefore, the tester can control the number of generated
test cases with these criteria.

– Automated test generation is not disruptive for the overall devel-
opment process: The generated test scripts have the same format than the
classical one. The existing tools, like Test execution environment and version
management are used to execute generated test cases and stored it.
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1 Introduction of Meca

Access Control is a technique which insures security by preserving confidentiality
and integrity of information. Meca (Models for access control) is a tool which
generates, in a B machine, operational conditions that should be verified by an
application to insure security.

The inputs of Meca are a B machine offering a format for presenting a security
model and a functional model containing the presentation of an application with
its sensitive entities like variables and operations. The format of a security model
provides a declarative representation of the access distribution in the system at
a given moment. It is done according to various models related to three branches
policies: discretionary policies model (DAC)[4], Bell and LaPadula model (BLP)
[1], Biba model (Biba) [2] and role based access control model (RBAC) [3]. Meca
generates access rules in a B machine called security kernel. Security kernel
offers secure services under witch sensitive entities of functional model can be
manipulated. The format of the security kernel varies depending of the security
policy model type.

In access control scope, Objects are passive entities that represent system
resources and should be protected. Subjects are active entities accessing to ob-
jects and possessing rights to manipulate them. Figure 1 presents Meca with his
inputs and outputs components.

We illustrate our approach and Meca with a small part of a bank card
example.

Policies format:

Specification and
instanciation of a
security policy

Security
kernel:

Operations
that

manipulate
security
targets with
conditions to
verify the
security
policy

MECA

Fig. 1. MECA schema
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2 Use Case and the Functional Model

The bank card is a smart card with an electronic purse. As the other smart
cards [5], the purse can be debited from a terminal in a shop to pay a purchase
and credited at an ATM from a cash or by withdrawing from a bank account.
There are three different hierarchical levels to operate the purse: debiting the
purse, crediting the purse from cash or from a bank account and performing
administrative operations. With these three access levels correspond three kind
of terminals from which the purse can be manipulated: a terminal in a shop for
debiting the purse, a bank terminal for crediting the purse and an administration
terminal for updating configuration parameters. We note that any operation
allowed on a specific level is allowed on lower levels.

During its life cycle, the card passes through different operating modes load,
use or invalid. When the card is in the load mode, its issuer (the bank) records
the holder pin code (hpc). We present the specification of SetHPC operation in
the functional model:

MACHINE BankCard
SETS

MODE={load,invalid,use}
CONSTANTS

HPC
PROPERTIES

HPC = 0000 . . 9999 /*pin has four digits*/
ABSTRACT VARIABLES

mode,hpc
INVARIANT

mode ∈ MODE ∧ hpc ∈ HPC /*variable hpc is typed in the invariant*/
INITIALISATION

hpc :=1000 || mode:= load
OPERATIONS

setHPC(pin) =
PRE

pin ∈ INT ∧ pin ∈ HPC ∧ mode=load
THEN

hpc := pin
END

END

Thereafter, we present the second entry component for Meca, it is the format
for the security model.

3 Policies Format

As a part of our work, we deal with three models of security policies: The ac-
cess matrix model (belonging to DAC policies), Bell Lapadula model (BLP), Biba
model (belonging to MAC policies) and Role Based Model (RBAC). We will give
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a short definition about each of these policies. In the scope of discretionary poli-
cies (DAC), access control on objects is granted to their creator. Access permis-
sions are read and write [4]. Mandatory policies (MAC) provide a classification for
subjects and objects. According to this classification, read and write operations
are allowed to preserve secrecy (BLP model) [1] or integrity of information (Biba
model) [2]. The originality of role based access control policies (RBAC) is that they
introduce role concept that intercepts permissions, subjects and objects [3]. Per-
missions are granted to roles. Subjects obtain permissions according to roles that
they hold. Permissions are operations that could be executed on objects. Roles
inherit between each others permissions and users [6]. We will give a detailed ac-
count of RBAC instanciated with bank card example. The aim is to safeguard
security when the card is manipulated from various terminals.

MACHINE rbac format BankCard
SETS
SUJET ={shop terminal,bank terminal,admin terminal};
ROLE ={debit,credit,admin };
PERMISSION ={OP checkHPC,OP setHPC ,OP debitPurse,
OP creditPurse}

CONSTANTS
sujet role, role permission, herite de

PROPERTIES
sujet role ∈ SUJET → ROLE
∧ role permission ∈ ROLE ↔ PERMISSION
∧ herite de ∈ ROLE ↔ ROLE
∧ closure1 ( herite de ) ∩ id ( ROLE ) = ∅
∧ sujet role = {(shop terminal �→ debit),

(bank terminal �→ credit),(admin terminal �→ admin)}
∧ role permission = {(admin �→ OP setHPC),

(credit �→ OP creditPurse),(debit �→ OP debitPurse),
(debit �→ OP checkHPC)}
∧ herite de = {(admin �→ credit),(credit �→ debit)}

END

The entities represented in bold are fixed by Meca format while those in simple
depend on the application. A commentary introduced in the header component
announces for Meca the security model used.

The set PERMISSION refers to operations of the application. Subjects are
terminals. Roles are various levels that exist. The relation sujet role is the associ-
ation between a subject and a role. In this example we suppose that a subject can
have only one role. Role permission is the association between a role and one or
several permissions. The hierarchy is presented by the relation called herite de.
We use constants to present these sets since we don´t deal with updating access
distribution. The prefix OP is used for operations in order to avoid names clash
with functional component.



284 A. Haddad

4 The Generated Security Kernel

The security kernel is the component that contains conditions that should be
verified to insure the respect of security. This kernel is produced according to
access rules that govern each model type of security policy. Thereafter, we present
security kernel for RBAC format.

Meca generates for every operation, that belongs to set PERMISSION of
RBAC format, a new predicate to control access. SetHPC operation becomes:

setHPC (pin,su)=
PRE

pin ∈ INT ∧ pin ∈ HPC ∧ mode=invalid
∧ su ∈ SUJET
∧ (sujet role(su),OP setHPC):(closure(herite de);

role permission)
THEN

hpc := pin
END

This mechanism reinforces the precondition of each operation that should be
performed by a specific role. The generated component should be used instead
of the old functional model. Hence, whenever SetHPC is called its precondition
should be satisfied.

5 Contribution and Future Works

Our contribution is materialised by the approach to introduce security in the de-
velopment of certified products. The security kernel could be used in the scope
of a static verification (by B proofs) to reason about the security of an applica-
tion. In a sooner future work, we will exploit the use of the security kernel for a
validation with tests. In the scope of Meca, we formalize also model for security
policies. We are now interested to develop object oriented security models and
to formalize it in the B method. This is done in the scope of POSE project
(http:/wwwrntl-pose.info/).
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{bouquet, dadeau, groslambert}@lifc.univ-fcomte.fr

Abstract. This paper introduces a tool, named JML2B, destined to
check the consistency of JML specifications. JML2B is a solution to the
lack of tool-support for the JML models verification. Our tool translates
JML specifications into the B abstract machines notation. The generated
B machines can then be checked to ensure their correctness. When the
proof fails, it is possible to retrieve the mistakes in the original JML
specification.

1 Introduction

In recent years, the Java Modeling Language –JML– [5] has been introduced
to act as a behavioral interface specification language to formally describe Java
programs. Since its syntax is close to Java, this specification language may even
be used by non-specialists of modeling.

Nevertheless, most of the JML-related tools [1] concentrate on ensuring the con-
formance of the Java code w.r.t. the JML annotations. But the verification of a
JML model itself, to the best of our knowledge, is not tool-supported. Since we
want to use JML as a modeling language, we would like to be able to easily prove
the correctness of the JML model, without taking account to the Java code.

Therefore, we introduce a tool, named JML2B1, which provides a solution to
the verification of JML specifications, by rewriting them into semantically equiv-
alent B machines. This tool is the implementation of the formal work presented
in [2].

2 Java Modeling Language

The Java Modeling Language was introduced by Leavens et al. at the Iowa State
University [5]. This specification language, describing Java modules behavior,
aims at being used by developers as well as by specifiers. The JML annotations
are embedded within Java comments by using //@ for a single-line annotation
1 The JML2B tool is freely available at:
http://lifc.univ-fcomte.fr/∼{}groslambert/JML2B
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class Purse {
//@ invariant balance >= 0;
protected short balance;

/*@ public normal_behavior
@ requires amount >= 0;
@ assignable balance;
@ ensures balance == amount;
@*/

public Purse(short amount) {...}

/*@ public normal_behavior
@ requires amount >= 0;
@ assignable balance;
@ ensures
@ balance == \old(balance) + amount;
@*/

public void credit(short amount) {...}

/*@ public normal_behavior
@ requires p != null && p != this
@ assignable balance;
@ ensures balance == p.getBalance();
@*/

public void transfer(Purse p) {...}

/*@ public behavior
@ requires amount >= 0;
@ assignable balance;
@ ensures
@ balance == \old(balance) + amount;
@ signals (NoCreditException E1)
@ balance == \old(balance)
@ && s > amount
@*/

public void withdraw(short amount)
throws NoCreditException {...}}

}

Fig. 1. JML specification of a Purse

and /*@ . . . @*/ for multiple-lines annotations. Moreover, the JML syntax is
based on the Java syntax for expressing predicates, enriched with several new
operators and keywords.

The examplepresented inFig. 1 specifies a simplified electronicpurse.ThePurse
class describes a basic purse, managing only one attribute named balance repre-
senting the amount of money available in the considered purse. An JML invariant
specifies that this attributes must be greater than zero. This property must hold
for each visible state of the model, i.e., before and after each method execution.

The constructor specification is given with the normal behavior keyword.
The requires clause defines a precondition that must be true before when the
constructor is invoked. The assignable clause expresses the frame condition,
i.e., the attributes modified by the method (here balance) and the ensures
clause defines a condition that must be true at the end of the execution. In
the case of the constructor of Purse(short), the attribute balance must be
assigned to 0. The credit(short) method is used to add money to the purse,
whereas the withdraw(short) method removes money from the purse. Notice
that this latter may possibly throw an exception named NoCreditException,
specified by the signals clause, when there is not enough money in the purse.
Finally, the transfer(Purse) method makes it possible to transfer the amount
contained in the purse in parameter into the current purse.

3 Tool Presentation

JML2B is a compiler that translates the JML files into the B formalism. It pro-
duces as an output abstract machines, that can be used with the usual tools sup-
porting the B notation (AtelierB, ProB, BZ-Testing-Tools, B4Free, Balbulette).
Running provers on these machines makes it possible to check the coherence of
the original JML model.

By running the tool JML2B of the file Purse.java, two B machines are gen-
erated: (i) global.mch (given in [2]) and (ii) Purse.mch displayed in Fig. 2.
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MACHINE Purse
INCLUDES global
CONSTANTS exc_NoCreditException
PROPERTIES

exc_NoCreditException ∈ EXCEPTIONS
∧ exc_NoCreditException �= no_exception

VARIABLES
b_PurseInstances, b_Purse_balance

INVARIANT
/* Purse class expression */
b_PurseInstances ⊆ instances ∧
b_Purse_balance ∈

b_PurseInstances → -32768..32767 ∧
/* Purse class invariant */
(∀xx_inv.(xx_inv ∈ b_PurseInstances
⇒ b_Purse_balance(xx_inv)≥0))

INITIALISATION
b_PurseInstances := {} ‖
b_Purse_balance := {}

OPERATIONS
b_Purse_constructorPurse_short(this,b_amount) =̂

PRE
this ∈ INSTANCES - instances ∧
this �= null ∧
b_amount ∈ -32768..32767 ∧
b_amount ≥ 0 ∧
exception = no_exception

THEN
ANY assigned_balance
WHERE assigned_balance = b_amount
THEN

new({this}) ‖
b_PurseInstances :=

b_PurseInstances ∪ {this} ‖
b_Purse_balance :=

b_Purse_balance ∪

{this �→ assigned_balance}
END

END;
...
b_Purse_withdraw_short(this, b_amount) =̂

PRE
this ∈ b_PurseInstances
∧ b_amount ∈ -32768..32767 ∧
b_amount ≥ 0 ∧ exception = no_exception

THEN
CHOICE

ANY assigned_balance
WHERE
assigned_balance ∈ -32768..32767 ∧
b_amount ≤ b_Purse_balance(this) ∧
assigned_balance =

b_Purse_balance(this) - b_amount
THEN

b_Purse_balance(this) :=
assigned_balance

END
OR
ANY assigned_balance
WHERE
assigned_balance ∈ -32768..32767 ∧
assigned_balance =

b_Purse_balance(this)
THEN
b_Purse_balance(this) :=

assigned_balance
‖ throw(exc_NoCreditException)

END
END

END;
...

Fig. 2. Extract of the machine Purse.mch

(i) The machine global.mchmanages two Java mechanism, that are not related
to classes but to the language itself.
– object management. An abstract set of addresses named INSTANCES rep-

resents of the memory heap. A variable, named instances, subset of
INSTANCES designates the used addresses in the heap. A constant, named
null, represents a null pointer. The operation new permits to allocate a
new address.

– exception management. Exceptions described in the specifications are
referenced in an abstract set, named EXCEPTIONS and a variable named
exception specifies which exception is currently thrown. Two operations
represent the throwing or the catching of exceptions.

(ii) The machine Purse.mch represents the class Purse itself. Details and sound-
ness proof of the translation are given in [2]. It must be intuitively understood
as follows.
(a) A variable b PurseInstances, subset of INSTANCES is declared to rep-

resent the set of the instances of Purse. A variable b Purse balance,
mapping the instances of Purse to the B representation of the short
integers, represents the attributes balance.
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(b) Each JML invariant is expressed as a B invariant containing a universal
quantification over the instances of the class.

(c) Each method is translated by an operation having at least one parameter
representing the instance on which the method is invoked.

(d) The precondition of the operation is composed of the typing predicate
of the parameters and a translation of the precondition.

(e) The assignable clause and the ensures clause are translated into an
ANY...WHERE...THEN...END substitution.

(f) In case of a constructor, the new operation is called to allocate the heap
memory. In case of exceptional postcondition (signals clause) the op-
eration throw is called.

The JML2B tool as been experimented on the example illustrating this paper,
but also on the 500 lines JML model of an industrial case study. The B models
generated from the industrial case study produced 157 proof obligations, 100%
were automatically discharged by the B4Free prover.

4 Conclusion and Future Work

In this paper, we have described JML2B, a tool implementing the work presented
in [2], consisting in expressing JML specifications with B abstract machines, and
therefore using all the B verification tools to prove the model. We have success-
fully used on an industrial case study that has further been used to automatically
generate tests [3]. Most of the JML tools aim at validating or proving the im-
plementation with respect to the model. Our tool is different but complements
them, since it permits to detect model inconsistencies before trying to prove the
implementation. One important point is that our translation generates human-
readable B specifications, so unchecked proof obligations messages may easily
be transposed back into the original JML specifications to provide an assistance
for the writing of correct JML models. However, one interesting future work is
to automate this task, and then, try to automatically find a counter-example by
symbolic animation with JML-Testing-Tools symbolic animator (see [4]).
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Nondeterminacy occurs commonly in computing, much more than we recognise.
Indeed it deserves to be recognised as a fundamental notion, meriting a place
alongside other fundamental notions such as algorithm, recursion, data type,
concurrency, object, etc. Essentially the same notion of nondeterminacy mani-
fests itself in a range of different contexts, among them imperative, functional,
and concurrent programming, competing agents, data refinement, and fixpoint
theory. Nondeterminacy can be recognised, extracted, and studied in isolation
such that the properties we discover are applicable more-or-less without change
in the various domains in which it occurs.

The status of nondeterminacy is analogous to recursion as it occurs in
programming.

1. At the language level, programmers reason about recursion using two logical
rules, typically called the unfolding rule and the induction rule. Analogously,
nondeterminacy can be presented as a set of axioms that allows programmers to
understand it intuitively or to formally verify nondeterministic code.

2. The rules of recursion are justified “under the hood” by a mathematical
theory of fixpoints on complete partial orders that guarantees that the rules are
sound. Similarly, nondeterminacy can be justified by an under-the-hood theory,
in this case that of free completely distributed lattices over a poset.

3. The basic theory of recursion is fundamental in that it is applicable across
many programming paradigms, with local “wiring in” to each host language.
Similarly, the axioms of nondeterminacy account for nondeterminacy in many
paradigms, with some local wiring in.

4. Formally, recursion is defined in terms of two operators, μ and ν correspond-
ing to least and greatest fixpoints, respectively, together with a partial ordering
relation. Analogously, nondeterminacy is described in terms of two choice opera-
tors

�
and

⊔
, together with a partial ordering relation � (called the refinement

order).

� This extended abstract of an invited talk has been included in late-stage editing.
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For example, the function specified informally as “Given a name n and a
phone book b return a phone number for n” can be expressed as

λn:Name, b:PhoneBook · �{x:PhoneNumber | (n, x) ∈ b}

Here,
�

S, where S denotes a set of elements of some type T , is a term of type
T and denotes some element of S nondeterministically chosen.⊔

S also represents a nondeterministic choice over set S. The two choice op-
erators and refinement are intimately related, e.g. they satisfy the classic lattice-
theoretic relationship t � u ⇔ t�u = t ⇔ t�u = u where � and � are the binary
infix versions of

�
and

⊔
, respectively. Two choice operators are necessary in

general to capture the fact that choices may be exercised by different agents,
as when a client interacts with a server. We call this dual nondeterminacy. For
a simple example, consider the game of Nim in which two players alternately
remove from 1 to 4 matches from a pile until none remain. The player who re-
moves the last match loses. The game can be formally specified as follows. The
Home player’s game is described by playH, and the Away player’s by playA.

playH � λn:N· if n = 0 then Home
else (playA ◦ moveH)n
fi

playA � λn:N· if n = 0 then Away
else (playH ◦ moveA)n
fi

moveH � λn:N · ⊔{m:N | 0 < n − m ≤ 4}

moveA � λn:N · �{m:N | 0 < n − m ≤ 4}

By defining the refinement order on {Home,Away} to be Away � Home, we can
encode “there is a winning strategy for the Home player in Nim when offered
n matches (n > 0)” as playH n = Home. The first example showed nondeter-
minacy in the body of a function, and this example throws up nondeterminacy
in arguments. Clearly any theory of nondeterminacy that purports to be widely
applicable must cater for nondeterministic functions.

Turning to data refinement, we address the following question. How does a
function f in an abstract domain translate to one in a concrete domain? Let
F denote the abstraction function from the concrete to the abstract domain. It
turns out that the concrete version of f is F L ◦ f ◦ F where F L denotes the left
adjoint of F . This may appear to have nothing to do with nondeterminacy, but
not so: F L is not in general well defined, but in the presence of dual nondetermi-
nacy large classes of functions have both a left and a right adjoint. Occasionally,
the abstract and concrete domains are related by a function G from the abstract
to the concrete; in that case the concrete version of function f on the abstract
space is G ◦ f ◦ GR where GR denotes the right adjoint of G.
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We may introduce nondeterminacy into an imperative language via its term
language; e.g. we can define x := 0 � x := 1 to be equivalent to x := 0 � 1.
With this approach, however, predicate transformers no longer make sense in
general. For example, the predicate transformer semantics of the assignment
statement, wp(x:=t, R) � (t �= ⊥) ∧ R[x\t], isn’t meaningful when t may be
nondeterministic. We need something better, and the theory of nondeterminacy
tells us what it should be: we should move from predicate transformers to the
more general “term transformers” (as a first approximation, think of these as
predicate transformers in which the postcondition is replaced by a term of any
type). Term transformers rely on the availability of a general theory of non-
determinacy. Predicate transformers can be derived as special instance of term
transformers, and it turns out that the version we get via this route is totally
accommodating of nondeterminacy wherever it may arise. For example, the se-
mantics of assignment we get is wp(x:=t, R) � true � (λx:T · R) t where T
stands for the type of x. Weakest precondition semantics is thus reduced to a
theory of nondeterministic functions. We can reconstruct the refinement calculus
based on nondeterministic functions, and we get a better return. Traditionally
it has been troublesome to accommodate functions (even regular deterministic
ones) in a nondeterministic imperative language because it is extremely difficult
to prevent nondeterminacy leaking from the level of commands to the level of
terms. That worry now disappears because nondeterminacy in terms is welcome.

In the basic theory of nondeterminacy,
�

and
⊔

represent choice as made
by two neutral agents that are perfect duals of one another. When we wire
them in to a host language, however, we may introduce asymmetry between
them, for example by postulating different distribution laws with respect to the
operators of the host language. Wiring in also entails fixing the refinement order
on base types. It is usual for base types to be discretely ordered (i.e. refinement
is identified with equality), but sometimes we depart from this. The more we
depart from the discrete ordering, the more we are imparting benign behaviour
to

⊔
and and malicious behaviour to

�
. For example, if base types contain ⊥ to

represent the “outcome” of a non-terminating computation, and if we postulate
⊥ � t for all terms t, then the agent of

⊔
tries to avoid nontermination, while

the agent of
�

seeks out nontermination. For these reasons we classically refer
to

⊔
as angelic choice, and

�
as demonic choice.

⊔
and

�
do indeed represent

angelic and demonic nondeterminacy, respectively, when they are plugged into
imperative programming as described above.

Knowing that taking an adjoint is facilitated by nondeterminacy, it is natural
to seek other operations that benefit similarly. Taking fixpoints is one such. It
turns out that just about every function in a “reasonable” specification language
has least and greatest fixpoints. To take an extreme example, the successor
function on the naturals λx:N · x + 1 has fixpoints

⊔{m:N · �{n:N | n ≥ m}}
and

�{m:N · ⊔{n:N | n ≥ m}} (if you want to check this, appeal to the lattice
relationship given earlier, and the fact that function application distributes over
choice). The pervasiveness of fixpoints can exploited to give a semantics for
recursive functions in terms of nondeterminacy.
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The theory of nondeterminacy explains how to add nondeterminacy to any
type in a type hierarchy. A process algebra for reasoning about communicating
sequential processes is, putting it rather crudely, a theory of event sequences
with nondeterminacy added. It is therefore reasonable to ask if we can construct
a process algebra as a theory of event sequences enriched with a theory of non-
determinacy. Indeed, one can do so, and it gives rise to process algebras with
elegant algebraic laws.

We have constructed a plug-and-play theory of dual nondeterminacy, in which
nondeterminacy is described by five axioms [4]. We have empirically confirmed
that it is plug-and-play by using it as a basis for theories of nondeterministic
functions [2], term transformers (and predicate transformers as a special case)
[1], recursion [3], and communicating sequential processes [5]. We are currently
employing it on a theory of adjoints and data refinement.
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